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Statistics is now recognized and universally accepted a discipline of science.
With the advent of computer technologies, the use of statistics has increased
manifold. One can hardly find any area where there is no use of statistics. In
the field of Biological Sciences, the use of statistics is also keeping pace with
other disciplines. In fact development of many statistical theories has their
roots in biological sciences, in particular agricultural sciences. This has led to
ever increasing areas of its application in diversified fields. Newer and
varieties of problems are being tackled by the subject. Like other branches
of science, statistics is being extensively used in agricultural/animal/fishery/
dairy and other fields in explaining various basic as well as applied problems.
Availability of wide range of statistical techniques suited for various
problems has made it possible for its wider application. Everyday type of
problem is getting increased and more and more tools or techniques need to
be developed to solve various specific problems. Development and/or selec-
tion of appropriate statistical technique for a given problem is mostly
warranted for getting meaningful explanation of the problems under
consideration.

Students/teachers/researchers/practitioners from agriculture and allied
fields are to deal with various factors like living flora and fauna, soil, air,
water, nutrients, etc. along with socio-economic and behavioral aspects of
plant and animal beings for successful research and development. Under-
standing of the theory and essence of both the agricultural science and the
theory of statistics is a must for getting and explaining the problem under
consideration in a meaningful way. It is felt increasingly that a user in any
field should have well understanding of the logic behind any experimentation
as well as the specific statistical tools (during planning, designing, executing,
collecting information/data, analytical methods and drawing inference from
the results) to be used to draw meaningful conclusion from the experiment.

Statistics is a mathematical science in association with uncertainty. There
is a large section of students/teachers/researchers/practitioner who do not
have enough mathematical orientation and as such are scares of using
statistics, in spite of its wider acceptability. To reach to these huge users
remains a challenging task to the statisticians, particularly the
biostatisticians. Statistics must reach to the users particularly to these types
of user in their terms/manners and language. Biological sciences have moved
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on from mostly simple qualitative description to concepts founded on numer-
ical measurements and counts. In order to have proper understanding of
phenomena, correct and efficient handling of these measurements is needed
and actually done by statistics. Understanding of basic statistics is essential
for planning measurement programs and for analyzing and interpreting data
but frequently it has been observed that many users lack in good comprehen-
sion of statistics, moreover do not feel comfortable while making simple
statistics based decisions. A number of books are available, which deal with
various aspects of statistics. The need for the present book has been crept in
to the mind of the author during his teaching experience. In India only, there
are more than hundred colleges where agriculture, veterinary, fishery, dairy
and home science are taught at graduation and post-graduation levels as per
the syllabi of the Indian Council of Agricultural Research. Outside India,
millions of students are there in these wings. A textbook to cater the need of
these types of students with a guide to handle their data using easily available
statistical software is mostly needed. An attempt has been made in this book
to present the theories of statistics in such a way that the students and
researchers from biological/agricultural/animal/fishery/dairy and allied field
find it easy to handle and use in addressing many real life problems of their
respective fields.

This book starts with an introduction to the subject which does not require
any previous knowledge about the subject. The ultimate aim of the book is to
make it self-instructional textbook, which can be helpful to the users in
solving their problems using statistical tools also with the help of simple
and easily available computer software like MSEXCEL. It is expected that
thousands of students of biological/agricultural/animal/fishery/dairy and
allied fields would be benefitted from this book. In each chapter, theories
have been discussed with the help of example(s) from real life situations,
followed by worked out examples. Simple easily available packages like
MSEXCEL, SPSS, etc. have been used to demonstrate the steps of calcula-
tion for various statistical problems. Statistical packages used for demonstra-
tion of analytical techniques are gratefully acknowledged. Attempts have
been made to familiarize the problems with examples on each topic in lucid
manner. Each chapter is followed by a number of solved problems (more
than 165) which will help the students in gaining confidence on solving those
problems. Due care has been taken on solving varied problems of biological/
agricultural/animal/fishery/dairy and allied fields and the examination need
of the students. It has got 13 chapters. The first chapter is to address and
explain the subject statistics, its usefulness and application with particular
reference to biological/agricultural/animal/fishery/dairy and allied fields.
A brief narration on statistics, highlighting its use, scope, steps in statistical
procedure and limitations along with example, has been provided in Chap. 1.
Main ingredient of statistics is the varied range of information or data; in
second chapter, attempts have been made to explain different types of
information/data from relevant fields. In this chapter, discussion has been
made on collection, scrutinisation and presentation of data in different forms
so as to have first-hand idea about the data. The third chapter deals with
measures of central tendency and measures of dispersion along with
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skewness and kurtosis. Different measures of central tendencies and disper-
sion along with their uses, merits and demerits have been discussed.
Measures of skewness and kurtosis have also been discussed. The theory of
probability has been dealt in Chap. 4. Utmost care has been taken to present
the theory of probability in its simplest form, starting from the set theory to
the application of different laws of probability. Quite a good number of
examples on probability theory and random variable are the special features
of this chapter. A few discrete and continuous probability distributions like
Binomial, Poisson, Normal, ;{2, t and F have been discussed in brief. Intro-
ductory ideas about population, types of population, sample, sampling
techniques used under different situations, comparison of sample survey
techniques and census have been discussed in Chap. 5. Statistical inference
has been discussed in Chap. 6. Starting with the introduction of statistical
inference, both statistical estimation and testing of hypothesis have been
discussed in this chapter. Tests based on distributions mentioned in Chap. 4
have been discussed. Discussions on different non-parametric tests included
in this chapter hope to find their applications in various agriculture and allied
fields. These tests have been designed with an objective to cater the need of
the students of agriculture/animal science/dairy/fishery and allied fields as
per the syllabi of the Indian Council of Agricultural Research. Chapter 7 is
devoted to the study of correlation. Starting with the idea of bivariate data,
bivariate frequency distribution and covariance, this chapter has described
the idea of simple correlation and its properties, significance and rank
correlation. The idea of regression, need, estimation of parameters of both
simple and multiple regression, meaning and interpretations of parameters,
test of significance of the parameters, matrix approach of estimation of
parameters, partitioning of total variance, coefficient of determination,
game of maximization of R?, adjusted R?, significance test for R?, problem
of multicollinearity, regression vs. causality, part and partial correlation are
discussed in Chap. 8. Discussion on properties and examples are the special
features of the correlation and regression chapters. Starting with general idea,
the analysis of variance technique has been discussed in Chap. 9. Extensive
discussion has been made on assumptions, one-way analysis of variance
(with equal and unequal observations), two-way analysis of variance (with
one or more than one observations per cell), violation of the assumptions of
ANOVA vis-a-vis transformation of data, effect of change in origin and scale
on analysis of variance with worked-out examples. Chapter 10 is devoted to
basics of experimental design and basic experimental designs. This chapter
discusses on experiment, types of experiments, treatment, experimental unit,
experimental reliability, precision, efficiency, principles of design of field
experiments — replication, randomization, local control, lay out, uniformity
trial and steps in designing field experiments. In this chapter, elaborate
discussion has been made on completely randomized design, randomized
block design and latin square design along with missing plot techniques.
Efforts have been made to explain the basic principles and procedures of
factorial experiments in Chap. 11. Factorial experiments, their merits and
demerits, types of factorial experiments, two factor factorial (symmetrical
and asymmetrical) CRD, two factor factorial (symmetrical and
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asymmetrical) RBD, three factor factorial (symmetrical and asymmetrical)
CRD, three factor factorial (symmetrical and asymmetrical) CRD, split plot
and strip plot designs are discussed in this chapter. Some special types of
experimental designs which are useful to the students, teachers, researchers
and other users in agriculture and allied fields have been discussed in
Chap. 12. In this chapter, attempt has been made to discuss on augmented
CRD and RBD, augmented designs with single control treatment in factorial
set up, analysis of combined experiments, analysis of data recoded over times
and experiments at farmers fields. Computer has come in a great way to help
the experimenter not only in analysis of experimental data but also in
different ways. But there has been a tendency of using computer software
without providing due consideration to ‘what for’, ‘where to use’, ‘which tool
is to use’ and so on. In last chapter of this book, an attempt has been made, by
taking example, to show how computer technology can be misused without
having knowledge of appropriate statistical tools.

A great number of books and articles in different national and interna-
tional journals have been consulted during preparation of this book which
provided in reference section. An inquisitive reader will find more material
from these references. The need of the students/teachers/researchers/
practitioners in biological/agricultural/animal/fishery/dairy and allied fields
remained the prime consideration during the preparation of this book.

I express my sincere gratitude to everyone who has helped during the
preparation of the manuscripts for the book. The anonymous international
reviewers who have critically examined the book proposal and put forwarded
their valuable suggestions for improvement of the book need to be acknowl-
edged from the core of my heart. My PhD research students, especially Mr
Vishawajith K P, Ms Dhekale Bhagyasree, Md Noman, L. Narsimaiah and
others, who helped a lot during analysis of the examples based on real life
data and need to be acknowledged. Taking the help of MSEXCELL, SPSS
and SAS softwares various problems have been solved as examples in this
book; the author gratefully acknowledges the same. My departmental
colleagues and our teachers at BCKV always remained inspiration to such
book projects, thanks to them. My sincere thanks to the team of Springer
India in taking responsibility of publishing this book and continued monitor-
ing during the publication process. Most importantly my family members,
who have always remained constructive and inspirational for such projects
need to be thanked; without their help and co-operation it would have not
been possible to write such a book. All these will have a better success if this
book is well accepted by the students, teachers, researchers and other users
for whom this book is meant for. I have the strong conviction that like other
books written by the author, this book will also be received by the readers and
will be helpful to everyone. Sincere effort are there to make the book error
free, however any omissions/mistake pointed out, along with constructive
suggestions for improvement will be highly appreciated and acknowledged.

Mohanpur, India Pradip Kumar Sahu
26th January 2016
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1.1 Introduction

Knowingly or unknowingly, people use “statis-
tics.” In ancient days, people generally used the
term statistics to understand the political state.
German scholar Gottfried Achenwall most prob-
ably used the word “statistics.” In any case, the
word statistics is being used knowingly or
unknowingly since time immemorial. The word
statistics is being used in two different forms:
(a) in singular sense, it is the body of science,
which deals with principles, techniques,
collections, scrutiny, analysis, and drawing infer-
ence on a subject of interest, and (b) in plural
sense, itrefers to data,i.e., presentations of facts
and figures or information. Year-wise food grain
production figures of different provinces of the
United States of America may constitute a data
set — food grain production statistics — whereas
the problem of identifying, analyzing, and
establishing the differences between two herds
of cows to facilitate breeding improvement pro-
gram may be the subject matter of the subject
statistics. Given a set of data, one can explain it
to some extent, but beyond a certain level, it
becomes difficult to unearth the hidden informa-
tion from the data. Data require analysis, theoret-
ical, and computational treatment to speak for
itself. Thus, the “subject statistics” is being
used to “data statistics” to unearth the so long-
hidden information in a set of data for the benefit
of humanity.

© Springer India 2016

Inquisitiveness is the mother of all inventions.
Human instinct is to study, characterize, and
explain the things which so long remained
unknown or unexplained; in other words, to
study population behavior, characterize it and
explain it. In statistics, a population is a collec-
tion of well-defined entities, i.e., individuals hav-
ing common characteristics. Often it becomes
very difficult to study each and every individ-
ual/unit of the population, maybe because of
time, resource, or feasibility constraints. In all
these cases, the subject statistics plays additional
role in characterizing population under
consideration.

Statistical tools/methods applied to biological
phenomenon are generally known as biostatis-
tics. Biological phenomena are characterized by
the resultant of interaction between the genetic
architecture and the environmental factors under
which lives exist. Thus, one must be careful in
taking into consideration of all these factors
while inferring about any biological phenome-
non. So the understanding of the mechanism of
existence of life and also the statistical methods
required for specific real-life problem is of
utmost importance to a biostatistician.

1.2  Use and Scope of Statistics

In every sphere of modern life, one can notice the
application of statistics. In agriculture, fishery,

P.K. Sahu, Applied Statistics for Agriculture, Veterinary, Fishery, Dairy and Allied Fields,
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veterinary, dairy, education, economics, busi-
ness, management, medical, engineering, psy-
chology, environment, space, and everywhere,
one can find the application of statistics — both
data and subject statistics. Not only in daily life,
statistics has got multifarious roles in research

concerning the abovementioned and other
fields also.
1.3  Subject Matter of Statistics

Human instinct is to study the population — a
group of entities/objects having common
characteristics. In doing so, we are mostly inter-
ested in knowing the overall picture of the popu-
lation under study, rather than a particular
individual of the population. The subject matter
of statistics is to study the population rather than
the individual unit of the population. If the inter-
est of study be the study of economic status of the
fishermen of a particular country, then the study
should be interested in getting the average
income, the range of income, their average
expenditure, average family structure, variation
in income/expenditure, etc. of the population of
the fishermen rather than attempting to the infor-
mation of particular fisherman. Thus, statistics
deals with aggregated information on a subject
of interest in which there is a little scope for an
individual item to be recognized.

The subject statistics plays a great role in
situations particularly where there is little scope
to study the whole population, i.e., it is difficult
to study each and every element of the popula-
tion toward explaining the population behavior.
A population can be characterized by studying
each and every element/unit of the population.
As we know, a population may be finite
(constituted of definite number of units) or infi-
nite (constituted of indefinite number of units).
Time and resource (money, personals, facilities,
etc.) required to study the huge number of indi-
vidual elements of the population may not be
available. If available at all, by the time the
information are unearthed, these might have
lost relevance due to time lapse or otherwise.
Sometimes, it may not be possible to have access
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to each and every element of the population. Let
us take some examples. Hilsa hilsa is a famous
fish for favorite dishes of a section of nonvege-
tarian people. Now the question is how to know
the availability of the quantum of hilsa during a
particular season in a particular country. It is very
difficult to have an idea about the number of Ailsa
that would be available, their weights, etc. But
the study has a number of impacts on food habit,
business, and economy of the concerned area.
Statistics plays a vital role in these situations.
How to assess the possible food grain production
of a particular country for assured food supply to
its population? Taking information from each
and every farmer after crop harvest and assessing
the same may take considerable time and may
come across with shortage of resources and fea-
sibility problem. Both the statistics, singular
(subject) and plural (data), play important role.

In most of the cases, a part of the population
(sample) is studied and characterized, and infer-
ence(s) is/are drawn about that part (sample), in
the first step. And in the next step, statistical
theories are applied on sample information to
judge how far the sample information are appli-
cable for the whole population of interest or
otherwise. All the above are accomplished fol-
lowing different steps. In the following section,
we shall see the different steps in statistical pro-
cedure for the practitioners/users; but one thing
should be kept in mind, that neither the steps are
exhaustive nor every step is essential and in
order. Depending upon the problem, steps and
order may change.

1.4  Steps in Statistical

Procedure

Data are one of the basic inputs on which statis-
tical theories are applied to make these informa-
tive or which otherwise remain hidden. The
subject statistics starts with the formation of
objective and proceeds to planning for collection
of data, care of data, scrutinization and summari-
zation of data, application of statistical theories
and rules, and lastly drawing inference.
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(b)

Steps in Statistical Procedure

Objective and planning: At the first outset,
an investigator should clearly delineate the
objective of the problem encountered. Well-
defined objectives are the foundations for
proper planning and application of different
statistical procedures so as to make the data
more  informative and  conclusive.
Depending upon the objective of the study,
data needed, type of data needed, source of
data, etc. are guided. For example, if one
wants to have a comparison on the average
performance of different newly developed
breeds of milch cows for milk production,
he/she has to plan for an experiment from
which the information on the performance
of these breeds can be compared under iden-
tical situations. Similarly, if one wants to
compare the economic conditions of the
people of different agroecological zones of
a country, he/she has to plan for collection
of data either from primary or secondary
sources. In order to study the growth and
yield behavior of different varieties of a
particular crop, one needs to set up
experiments in such away so as to generate
required data to fulfill the objectives. Thus,
depending upon the objective of the study,
the procedure of collection of information
will have to be fixed.

Collection of data: Having fixed the
objectives, the next task is to collect or
collate the relevant data. Data can be col-
lated from the existing sources, or these can
be generated from experiments conducted
for the purpose adopting (i) complete enu-
meration and (ii) sampling technique. In
complete enumeration technique (census),
data are collected from each and every indi-
vidual unit of the targeted population. As
has already been pointed out, in many
situations, it may not be possible or feasible
(because of time, financial, accessibility, or
other constraints) to study each and every
individual element of interest, resulting in
the selection of a representative part

(©

(d)

(sample) of the study objects (population)
using appropriate sampling technique. For
the purpose, a sampling frame is needed to
be worked out (discussed in Chap. 5) befit-
ting to the data requirement and nature of
the population. Data collection/collation
should be made holistically with utmost
sincerity and always keeping in mind the
objectives for which these are being col-
lected/collated.

Scrutinization of data: Once the data are
collected, these need to be checked for cor-
rectness at the first instance. In a study deal-
ing with the yield potentials of different
wheat varieties, if records show an observa-
tion 90 t/ha yield under the northern plains
of India, one has to check for the particular
data point for its correctness. Thus, data sets
collected (raw data) should be put under
rigorous checking Dbefore these are
subjected to further presentation or analysis.
Tabulation of data: Upon collection/colla-
tion of the data following a definite proce-
dure of collection/collation from the
population, having specific objectives in
mind, and on being scrutinized, it is
required to be processed in such a way that
it gives a firsthand information at a glance
about the data collected. Thus, for example,
the following data are collected about the
acreages (in ‘000 ha) of wheat for different
wheat-growing provinces in India during
the period 2011-2012 from the Directorate
of Wheat Research in India: AP 8, Assam
53, Bihar 2142, Chhattisgarh 109, Gujarat
1351, Haryana 2522, HP 357, J&K
296, Jharkhand 159, Karnataka 225, MP
4889, Maharashtra 843, Odisha 1.46,
Punjab 3528, Rajasthan 2935, UP 9731,
Uttarakhand 369, WB 316, and others
92, with a total for the whole of India
29,865. One can hardly get a comprehen-
sive picture. For getting a firsthand idea, this
data can be presented in tabular form as
given below:
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States AP | Assam Bihar | Chhattisgarh | Gujarat | Haryana HP J&K | Jharkhand | Karnataka
Area 8 53 2142 | 109 1351 2522 357 296 | 159 225
(‘000 ha)

States ‘ MP ‘ Maharashtra‘ Odisha| Punjab ‘ Rajasthan‘ UP ‘ Uttarakhand| WB | Others ‘ India
Area 4889‘ 843 ‘ 1.46 ‘ 3528 ‘ 2935 ‘ 9731 ‘ 369 ‘ 316 ‘ 92 ‘ 29,865
(‘000 ha)

From data collated on areas under wheat in
different states of India, if presented in tabular
form, one can have better idea than the previous

States Odisha AP

Area 1.46 8 53 92

(‘000 ha)

States ‘ Uttarakhand| Maharashtra‘ Gujarat‘ Bihar ‘ Haryana
Area ‘ 369 ‘ 843 ‘ 1351 ‘ 2142 ‘ 2522
(‘000 ha)

one. The above presentation can be modified or
made in an order as follows:

Assam | Others | Chhattisgarh | Jharkhand | Karnataka| J&K | WB | HP

109 159 225 296 |316 |357

‘ Rajasthan | Punjab | MP | UpP ‘ India
‘ 2935 ‘ 3528 ‘ 4889‘ 9731 ‘ 29,865

Now, the investigator is far better placed to
explain wheat acreage scenario in India; it is
possible to get the states having minimum and
maximum area under wheat and also the relative
position of the states. Explanatory power of the
investigator is increased. Thus, tabulation pro-
cess also helps in getting insight into the data.
Data may also be processed or presented in dif-
ferent forms to obtain firsthand information, and
these are discussed in details in Chap. 2.

(e) Statistical treatment on collected data: Dif-
ferent statistical measures/tools are now
applied on the data thus generated,
scrutinized, and processed/tabulated to
extract or to answer the queries fixed in step
(a), i.e., objective of the study. Data are
subjected to different statistical tools/
techniques to get various statistical measures
of central tendency, measures of dispersion,
association, probability distribution, testing
of hypothesis, modeling, and other analyses
so as to answer the queries or to fulfill the
objectives of the study.

(f) Inference: Based on the results as revealed
from the analysis of data, statistical
implications vis-a-vis practical inferences
are drawn about the objectives of the study
framed earlier. Though data used may be

pertaining to sample(s), through the use of
statistical theories, conclusions, in most of
the cases, are drawn about the population
from which the samples have been drawn.

With the help of the following example, let us
try to have a glimpse of the steps involved in
statistical procedure. The procedure and steps
followed here are neither unique nor exhaustive
and may be adjusted according to the situation,
objective, etc. of the study.

Example 1.1 In an Indian village, Jersey cows
(an exotic breed) have been introduced and
acclimatized. An investigator wants to test
whether the milk yield performance of the cows
are as expected or not. It is believed that Jersey
cows generally yield 3000 kg of milk per
lactation.

(a) Objective: To find out whether the average
milk production of acclimatized Jersey
cows is 3000 kg/lactation or not.

The whole problem can be accomplished
with the help of the following specific steps:
(i) To determine or estimate the average
milk production
(i) To find the interval for the average
milk at a given probability level
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(iii) To test whether the population average
u = 3000kg or not, with respect to

milk production per lactation
(b) Planning and collection of data: In order to
have proper execution of the study to fulfill
the objectives, one needs to have idea about
the population under study, resources avail-
able for the study, and also the acquaintance
of the investigator with appropriate statistical

tools.

Here the population is the Jersey milch cows
in a particular village. Thus, the population is
finite, and the number of units in the population
may be obtained. If resources, viz., time, man-
power, money, etc. are sufficiently available,
then one can go for studying each and every
cow of the village. But it may not be possible
under the limited resource condition. So one
can go for drawing sample of cows following
appropriate sampling technique (discussed in
Chap. 5) and calculate the average milk produc-
tion per lactation. In the next step, a confidence
interval may be set up and tested for equality
of sample average with population-assumed
average.

2470 2750 3011 3047
2480 2813 3012 3050
2490 2890 3014 3050
3285 2950 3015 3087
2501 2960 3015 3089
2505 2960 3016 3090
2510 2973 3016 3098
2510 2978 3017 3108
2514 2979 3025 3115
2520 2995 3028 3117
2525 2995 3029 3118
2525 3006 3032 3118
2527 3006 3039 3120
2607 3010 3045 3122

(¢) Collection of data: Let us suppose one has
drawn a sample of 100 Jersey cows following
simple random sampling without replace-
ment and the following yields in kilograms
are recorded.

2490 3265 2973 3135 3120 3184 3029
2495 3268 2978 3115 2750 2960 3225
2505 3269 2979 3117 3140 3149 3016
3232 2510 2995 3139 3131 3146 3014
2525 3032 3015 3135 3127 3155 3047
2520 3245 3017 3137 2950 3159 3125
3262 2525 3012 3118 3142 3250 3028
2527 3274 3011 3137 3151 3172 3200
2501 3256 3010 3128 3161 3155 3016
2607 3145 3006 3139 3143 3135 3045
2510 3278 3039 3140 3050 3144
2813 3285 3015 3135 3098 2960
2514 3291 2995 3118 3087 3122
2470 3050 3006 3136 3089 2890
2480 3221 3025 3108 3090 3132

From the above, one can hardly get any idea
about the data and the distribution of amount of
milk per lactation for Jersey cows in the village
concerned. For the purpose, one can arrange the
data either in ascending or descending order and
also check for validity of the data points, i.e.,
scrutinization of data. Let us arrange the above
data in ascending order.

(d) Processing and scrutiny of data:

3125 3140 3184 2495
3127 3140 3200 3221
3128 3142 3290
3131 3143 3225
3132 3144 3232
3135 3145 3245
3135 3146 3250
3135 3149 3256
3135 3151 3262
3136 3155 3265
3137 3155 3268
3137 3159 3269
3139 3161 3274
3139 3172 3278
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(i) From the above table, one can have an idea
that the milk yield per cow per lactation
ranges between 2477 and 3291 kg. Also,
none of the data point is found to be
doubtful.

(i) Same amounts of milk per lactation are
provided by more than one cow in many
cases. Thus, depending upon the amount of
milk produced, 100 Jersey cows can be
arranged into the following tabular form:

Milk No. of | Milk No. of | Milk No. of | Milk No. of | Milk No. of | Milk No. of
yield | cows yield |cows yield | cows yield | cows yield | cows yield | cows
2470 1 2890 1 3017 1 3115 1 3140 |2 3221 1
2480 1 2950 1 3025 1 3117 1 3142 1 3225 1
2490 1 2960 |2 3028 1 3118 2 3143 1 3232 1
2495 1 2973 1 3029 1 3120 1 3144 1 3245 1
2501 1 2978 1 3032 1 3122 1 3145 1 3250 1
2505 1 2979 1 3039 1 3125 1 3146 1 3256 1
2510 |2 2995 2 3045 1 3127 1 3149 1 3262 1
2514 1 3006 |2 3047 1 3128 1 3151 1 3265 1
2520 1 3010 1 3050 |2 3131 1 3155 2 3268 1
2525 2 3011 1 3087 1 3132 1 3159 1 3269 1
2527 1 3012 1 3089 1 3135 |4 3161 1 3274 1
2607 1 3014 1 3090 1 3136 1 3172 1 3278 1
2750 1 3015 2 3098 1 3137 2 3184 1 3285 1
2813 1 3016 |2 3108 1 3139 |2 3200 1 3290 1

From the above table, one can have the idea that
most of the cows have different yields, whereas
two cows each have produced 2510 and 2525 kg of
milk and so on. A maximum of four cows have
produced the same 3135 kg of milk each.

To have a more in-depth idea and to facilitate

(e) Application of statistical tools: From the
above frequency distribution table, one
can work out different measures of central
tendency, dispersion, etc. (discussed in
Chap. 3). To fulfill the objectives, one
needs to calculate arithmetic mean and

further statistical treatments/calculations, one standard deviation from the sample
can form a frequency distribution table placing observations.
100 cows in 10 different classes:

Frequency distribution
Frequency distribution Mid-
Class No. of cows value | Frequency . -2

Class (x) f) fx fx
2470-2552 13 2470 | 2552 | 2511 13 32,643 | 81,966,573
2552-2634 1 2552 | 2634 |2593 1 2593 | 6,723,649
26342716 0 2634 | 2716 | 2675 0 0 0
2716—2798 1 2716 | 2798 | 2757 1 2757 7,601,049
27982880 1 2798 | 2880 | 2839 1 2839 | 8,059,921
2880—2962 4 2880 | 2962 |2921 4 11,684 | 34,128,964
20623044 21 2962|3044 3003 | 21 63,063 | 189,378,189
T
31263208 29 3208 | 3290 | 3249 14 45,486 | 147,784,014
32083290 14 Total 100 302,268 | 918,784,740

Details of formation of frequency distribution
table are discussed in Chap. 2.

Now we use the formulae for arithmetic mean
and standard deviation, respectively, as
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Interval Estimation The interval in which the

true value of the population mean (i.e., average
milk production) is expected to lie is given by

— N _ s

Plx - ta/2,nflﬁ <p <X+ ta/Z,nflﬁ

=1l—-a

Hence, the confidence interval for average
milk production at 5 % level of significance is

226.39

3022.7 — 1.98 x

226.39
1.98 x T] = [2977.87 < u < 3067.52]

<< 30227+

where 1,5, and t|_q5 ,— are, respectively, the
upper and lower § points of t-distribution with
(n—1) d.f.

Thus, the average milk production of Jersey
cows, as evident from data for 100 cows, is expected
to be between 2978 and 3068 kg per lactation.

Testing of Hypothesis For the above problem,
the null hypothesis is Hy 4 = 3000kg against H,
1 # 3000 kg, where p is the population mean,
i.e., average milk produced per lactation.

X

The test statistics is Z = 42 where 7 is the
s/vn

sample size (100). Z follows a standard normal
distribution.

The calculated value of Z:%:
27 _
21— 1,002

From the normal probability table and for
two-tailed (both-sided) test, the critical values
of Z are 1.96 (at a = 0.05) and 2.576 (at @ =
0.01 ), respectively. For the above problem,
|Z| < 1.96. So we cannot reject the null hypothe-
sis at 5 % level of significance.

(f) Conclusion: We conclude that average milk
production of Jersey cows in the studied vil-
lage can be taken as 3000 kg per lactation
with range of 2978 to 3068 kg. That means
the performance of the Jersey cows is in the
tune of the expectation.

The above problem is nothing but an example
to sketch the steps involved in statistical
procedures but not a unique one. Depending
upon the nature of the problem, appropriate
steps are followed.

1.5 Limitation of Statistics

In spite of its tremendous importance and huge
applicability, statistics is also not free from
limitations. One should be well aware about the
limitations, applicability, and suitability of statis-
tical tools before a particular tool is being put to
use for drawing inference.

(i) As has been mentioned, one of the
ingredients of statistics is data/information.
A well-framed objective associated with
carelessly framed experiment followed by
bad quality of data may lead to bias or
worthless conclusion irrespective of the
use of appropriate sophisticated statistical
tools. On the contrary, in spite of having a
good quality of data, unacceptable or use-
less conclusions are drawn because of the
use of incompetent/inadequate/inappropri-
ate statistical tools. Thus, for efficient use
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of statistics for the betterment of humanity,
there should be an organic linkage between
the objective of the study and the knowl-
edge of statistics. A user should have
acquaintance with the subject statistics up
to a reasonable level; if not, consultation
with a statistician is required. At the same
time, the statistician should have some sorts
of acquaintance about the field of study
under consideration. Under this situation,
only a meaningful extraction of the hidden
truth could be possible.

Statistics deals with totality of the popula-
tion; it is least interested in providing an
explanation why an individual member of
the population is performing exceedingly
good or bad. Statistics deals with population
rather than individual.

Statistical laws or rules are not exact in the
sense that statistical inferences are in terms
of probability or chances. To each and
every conclusion, based on statistical anal-
ysis, a chance (probability) factor is
associated.

Statistics can be used to draw inferences as
per the choice of the users. Showing a piece
of broken chalk, one can say “three fourths
of a chalk” or “a one fourth exhausted
chalk.” Eighty percent of the people who

)
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take alcohol regularly suffer from liver
problem. Apparently, this statement seems
to be true. But this is partly true because one
does not know the percentage of people
suffering from liver problem who do not
take alcohol or one does not know the per-
centage of alcohol takers in the population.
It depends upon the choice of the user how
he/she is going to use statistics. It has
rightly been said that statistics is like a
molded clay one can make devil or God
out of it.

Because of reasons stated above, there is
every possibility that statistics is being
misused. Computers have made the use of
sophisticated statistics more easy vis-a-vis
its increased acceptability and interest and
at the same time has created tremendous
problem in the form of misuse of statistics.
Without providing due importance, reasons
and area of applicability for statistical tools,
these are being used indiscriminately to
draw inferences with the help of computer
programs. Knowledge of subject statistics
and also the subject where the statistical
theories are to be used and also the particu-
lar program among different options, to be
used in solving a particular problem, are
essential for the best use.



2.1 Data

While making curry, one needs to have
vegetables, spices, and methodology for prepara-
tion of particular curry. Using the same ingredi-
ent, rice, vegetables, butter and oil, spices etc.,
one can make veg-rice or veg fried rice, byriani,
or other preparation like pulao, chitranna, etc.,
depending upon the method used and the inten-
tion of the cook. Similarly, for explaining a phe-
nomenon through the extraction of otherwise
hidden information from it, one needs to have
data. Statistical theories/tools are applied on data
to make these informative and hence extraction
of information toward explaining a phenomenon
under consideration. Thus, the ingredient of sta-
tistics is data. Data are known/generated things/
facts/figures from which conclusive information
are attempted to be drawn. Data requires to be
analyzed so that it becomes more and more infor-
mative. Data can be obtained from hearsay to
results from well-defined and designed research
program or investigation. To have objective deci-
sion on any phenomenon, it must be based on
unbiased and reliable data/information. Reliabil-
ity of data generally refers to the quality of data
that can be documented, evaluated, and believed.
If any of these factors is missing, the reliability
vis-a-vis the confidence in decision making is
reduced. A good quality data should have quan-
titative accuracy and should be representative,
complete, and comparable; all these can be
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checked only through peer reviewing. Data can
be categorized into different groups/types
depending upon its source, type, etc.

2.1.1. Data can be classified into natural or
experimental. Natural data are found to
occur in nature. On the other hand, exper-
imental data are obtained through well-
planned and designed experiments to ful-
fill the specific objectives the experi-
menter has in his or her mind.

. Data can be primary or secondary
depending upon the source of its collec-
tion/generation or collation. Primary data
are generated by the investigator/experi-
menter through a well-planned program
for specific purpose. Primary data may
be obtained through survey or conduction
of field experiments etc. Thus, primary
data are generated by the user for specific
purpose. Example of primary data may be
the data collected on egg-laying capacity
of particular poultry breed under particu-
lar management practice from different
growers in particular area. Example of
primary data may be the yield data
obtained for five different varieties of
rice following specific management prac-
tice under experimental setup with an
objective to compare the average perfor-
mance of the varieties under given condi-
tion. On the other hand, secondary data
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are those data used by the experimenter or
user, which are collated from other
sources. For example, weather data are
recorded by the department of meteorol-
ogy, one of their primary objectives or
mandates; but many agencies like the air-
port authority, agriculture department,
disaster management department, and the
experimenters/researchers in biological
sciences use these weather data collating
from the meteorology department in order
to explain more meaningful way the phe-
nomenon under their considerations.
Thus, weather data, market data, etc. are
used by various users but are generated/
recorded by specific agencies. As such,
weather data, market data, etc. are primary
data to the department concerned which is
involved in generating or recording these
data as one of their primary responsi-
bilities, but when these data are used by
other  agencies/experimenters, these
become secondary to the users. Data
generated by different national and inter-
national agencies like the Central Statis-
tics Organization (CSO), National Sample
Survey Office (NSSO), State Planning
Board (SPB), Food and Agriculture Orga-
nization (FAO), World Health Organiza-
tion (WHO), etc. are used by various
researchers or users; to the users these
data are secondary data. Secondary data
are required to pass through rigorous
reviewing for its methodology of collec-
tion, correctness, etc. before these are put
to use by the users.

. Data can be cross-sectional data or time

series data. A set of observations recorded
on a particular phenomenon at a particular
time frame is termed as cross-sectional
data. Milk production of different states/
provinces of a country during the year
2012-2013, the market prices of poultry
eggs at different markets of a county dur-
ing 2012-2013, inland fish production of
different countries at a particular time
frame constitute cross-sectional data. On

2 Data-Information and Its Presentation

the other hand, when the data are recorded
on a particular phenomenon over different
periods, then it becomes time series data.
Milk production or inland fish production
of country over the period 2001-2013
constitutes time series data. Thus, cross-
sectional data generally have spatial vari-
ation at a particular period, whereas time
series data have got variation over time. A
time series data may be constituted of
secular trend, cyclical, seasonal, and irreg-
ular components. Overall movement of
the time series data is known as secular
trend. Periodic movement of the time
series data, with period of movement
being more than a year, is known as cycli-
cal component, whereas periodic move-
ment of the time series data, with period
of movement being less than a year,
is known as seasonal component. Portion
of the time series data which cannot
be ascribed to any of the above three
movements is termed as irregular compo-
nent. Detailed discussion on time series
data is left out; an inquisitive reader
may consult Agriculture and Applied
Statistics — II by this author.

In Table 2.1, data pertaining to production of
milk is a cross-sectional data as it relates to
production figures of different states at a particu-
lar point of time, i.e., the year 2011-2012. On the
other hand, the information given in table B, C,
and D are time series data because in all the
cases, the figures relate to realization of the
variables “capture fisher production,” “popula-
tion of cattle,” and “milk production” at different
points of time, arranged chronologically.

2.1.4. A special type of data, combination of
both cross-sectional and time series data
with the introduction of multiple
dimensions, is known as panel data.
Panel data consist of observations of mul-
tiple phenomena/characters at different
time periods over the same elements/
individuals, etc. It is also known as



Table 2.1 Cross-sectional and time series data

A. Cross-sectional data

Estimated state-wise milk production (million tones) in India during 2011-2012

State Production State Production
AP 12,088 Manipur 79
Arunachal 22 Meghalaya 80
Assam 796 Mizoram 14
Bihar 6643 Nagaland 78
Goa 60 Orissa 1721
Gujarat 9817 Punjab 9551
Haryana 6661 Rajasthan 13,512
HP 1120 Sikkim 45
J&K 1614 TN 5968
Karnataka 5447 Tripura 111
Kerala 2716 UP 22,556
MP 8149 WB 4672
Maharashtra 8469 India 127,904

B. Time series data

World inland capture fishery production

Year Production (million tonnes)

2006 9.8

2007 10

2008 10.2

2009 10.4

2010 11.2

2011 11.5

Source: The State of World Fisheries and Aquaculture, FAO-2012

C. Time series data

Year-wise cattle population (million) in India

Year Cattle

1951 155.3

1956 158.7

1961 175.6

1966 176.2

1972 178.3

1977 180.0

1982 192.5

1987 199.7

1992 204.6

1997 198.9

2003 185.2

D. Time series data

Year-wise milk production (million tonnes) in India

Year Production Year Production
1991-1992 55.6 2001-2002 84.4
1992-1993 58.0 2002-2003 86.2
1993-1994 60.6 2003-2004 88.1
1994-1995 63.8 2004-2005 92.5
1995-1996 66.2 2005-2006 97.1
1996-1997 69.1 20062007 102.6
1997-1998 72.1 2007-2008 107.9
1998-1999 75.4 2008-2009 112.2
1999-2000 78.3 2009-2010 116.4
2000-2001 80.6 2010-2011 121.8

Source: National Dairy Development Board
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Table 2.2 Panel data

Year State
2007-2008 AP
Arunachal
Assam
Bihar
2008-2009 AP
Arunachal
Assam
Bihar
2009-2010 AP
Arunachal
Assam
Bihar
2010-2011 AP
Arunachal
Assam
Bihar

Source: National Dairy Development Board, India, 2013
4Al — artificial insemination

longitudinal data in biostatistics. Example
of panel data may be the state-wise milk
production and artificial insemination
data of different states in India as given
in (Table 2.2).

2.2  Character

Data are collected/collated for different
characteristics of the elements of the popula-
tion/sample under consideration. Characters can
broadly be categorized into (a) qualitative char-
acter and (b) quantitative character. Religion
(viz., Hindu, Muslim, Christian, Jains, Buddhist,
etc.), gender (male/female, boys/girls), color
(viz., violet, indigo, blue, red, green, etc.), and
complexion (bad, good, fair, etc.) are the
examples of qualitative character. Thus,
characters which cannot be quantified exactly
but can be categorized/grouped/ranked are
known as qualitative characters. Qualitative
characters are also known as attributes. On the
contrary, characters which can be quantified and
measured are known as quantitative characters.
Examples of quantitative characters are height,
weight, age, income, expenditure, production,
disease severity, percent disease index, etc.

2 Data-Information and Its Presentation

Milk production ZAI(*000 nos.)

8925 3982
32 1
752 144
5783 251
9570 4780
24 1
753 134
5934 514
10,429 5039
26 1
756 204
6124 950
11,203 5183
28 2
790 204
6517 1948

2.3  Variable and Constant

Values of the characters (physical quantities)
generally vary over situations (viz., over
individuals, time, space, etc.); but there are cer-
tain physical quantities which do not vary, i.e.,
which do not change their values over situations.
Thus, characters (physical quantities) may be
categorized into variable and constant. A con-
stant is a physical quantity which does not vary
over situations. For example, universal gravita-
tional constant (G), acceleration due to gravity
(g), etc. are well-known constants. Again, in
spite of being a constant, the value of the accel-
eration due to gravity on the surface of the earth,
on the top of a mountain, or on the surface of the
moon is not same. The value of acceleration due
to gravity is restricted for a particular situation;
as such constant like acceleration due to gravity
is termed as restricted constant. Whereas,
constants like universal gravitational constant,
Avogadro’s number, etc. always remain constant
under any situation; as such these are termed as
unrestricted constant.

We have already defined that a character
(physical quantity) which varies over individual,
time, space, etc. is known as variable; milk pro-
duction varies between the breeds, egg-laying
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capacity of chicks varies over the breeds, length
and weights of fishes vary over species, ages, etc.
Thus, milk production, number of eggs laid by
chicks, length of fishes, weights of fishes, etc. are
examples of variable. There are certain variables
like length, height, etc. which can take any value
within a given range; these variables are known
as continuous variable. On the other hand,
variables like number of eggs laid by a chick,
number of insects per plant or number of
parasites per cattle, number of calves per cattle,
etc. can take only the integer values within a
given ranges; these variables are called discrete
variables. If we say that per day milk production
of Jersey cows varies between 8 and 10 kg under
Indian condition, that means if one records milk
production from any Jersey cow under Indian
condition, its value will lie between 8 and
10 kg; it can be 8.750 or 9.256 kg or any value
within the given range. That is why milk produc-
tion per day is a continuous variable. Let us
suppose that while netting in a pond, the number
of fish catch per netting varies between 6 and 78.
This means in any netting, one can expect any
whole number of fishes between 6 and 78. The
number of fishes in netting cannot be a fraction; it
should always be whole number within the range.
Thus, the number of fishes per net, number of
insects per plant, number of calves per cattle, etc.
are the examples of discrete variable.

Table 2.3 Weights of 60 poultry birds

Bird no. Weight (g) Bird no. Weight (g)
1 1703 16 1726
2 1823 17 1850
3 2235 18 2124
4 2433 19 1823
5 2434 20 1682
6 2177 21 1300
7 2446 22 2399
8 2520 23 1573
9 1915 24 1213
10 1713 25 1865
11 2124 26 1788
12 2054 27 2124
13 1847 28 1823
14 2205 29 2434
15 1183 30 1682
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We have already come to know that statistics
is a mathematical science associated with uncer-
tainty. Now only we have discussed that values
of the variable vary over the situations. If we take
into account both uncertainty and possible values
of the variable under different situations, then we
come across with the idea of variate; there are
chances in realizing each and every value or
range of value of a particular variable. That
means a chance factor is associated with each
and every variable and realization of its different
values or range of values. Thus, the variable
associated with chance factor is known as the
variate, and in statistics we are more concerned
about the variate instead of the variable.

24  Processing of Data

What firsthand information/data the user gets,
either through primary sources or secondary
sources, are known as raw data. Raw data hardly
speaks anything about the data quality and or
information contained in it. In order to judge its
suitability/correctness, it must go through a
series of steps outlined below. Data collected or
collated at the initial stage must be arranged.
Let us take the example of weights of 60 broiler
poultry birds at the age of 50 days recorded
through a primary survey as given in Table 2.3.

Bird no. Weight (g) Bird no. Weight (g)
31 1640 46 1124
32 1682 47 1438
33 1476 48 1476
34 2124 49 1593
35 1573 50 1341
36 1300 51 1476
37 2047 52 2434
38 1438 53 2508
39 1865 54 2124
40 1213 55 1444
41 1976 56 1924
42 1300 57 1405
43 1439 58 2434
44 1300 59 2124
45 1442 60 2398
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It is very difficult either to scrutinize the data
or to have any idea about the data from the above
table. Data requires to be sorted in order. In
Table 2.2 raw data are sorted in ascending
order. From Table 2.4 one can easily get idea
about some aspects of the data set. Following
observations can be made from the above table:
(a) weights of broiler chicks vary between 1124
and 2520 g and (b) values are consistent with the
knowledge that means no broiler weight is found
to be doubtful. Hence further presentation and
analysis can be made taking this information
(Table 2.4).

Arrangement of Data

From this data we can either comment on
how many birds are there having average weight,
weights below average, weights above average,
etc. It is also found that some birds have
registered identical weights; we need to be con-
cise with these information. So one makes a
frequency distribution table on the basis of the
bird weight. Frequency is defined as the number
of occurrence of a particular value in a set of
given data, i.e., how many times a particular
value is repeated in the given set of data
(Table 2.5).

Table 2.4 Sorted weights of 60 poultry birds

Weight Weight
Bird no | Weight (gm) Bird no Weight (gm) | Bird no (gm) Bird no (gm)
46 1124 33 1476 19 1823 54 2124
15 1183 48 1476 28 1823 59 2124
24 1213 51 1476 13 1847 6 2177
40 1213 23 1573 17 1850 14 2205
21 1300 35 1573 25 1865 3 2235
36 1300 49 1593 39 1865 60 2398
42 1300 31 1640 9 1915 22 2399
44 1300 20 1682 56 1924 4 2433
50 1341 30 1682 41 1976 5 2434
57 1405 32 1682 37 2047 29 2434
38 1438 1 1703 12 2054 52 2434
47 1438 10 1713 11 2124 58 2434
43 1439 16 1726 18 2124 7 2446
45 1442 26 1788 27 2124 53 2508
55 1444 2 1823 34 2124 8 2520
Table 2.5 Frequency distribution of body weights of 60 poultry birds
Weight (g) Frequency Weight (g) Frequency Weight (g) Frequency
1124 1 1640 1 2047 1
1183 1 1682 3 2054 1
1213 2 1703 1 2124 6
1300 4 1713 1 2177 1
1341 1 1726 1 2205 1
1405 1 1788 1 2235 1
1438 2 1823 3 2398 1
1439 1 1847 1 2399 1
1442 1 1850 1 2433 1
1444 1 1865 2 2434 4
1476 3 1915 1 2446 1
1573 2 1924 1 2508 1
1593 1 1976 1 2520 1
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With the help of the MS Excel, one can per-
form the same using the steps mentioned in fol-
lowing slides (Slides 2.1, 2.2, 2.3, and 2.4).

As because we are dealing with only 60 data
points (observations), it is relatively easy to
understand the data characters. But when dealing

with a huge number of data points, then we are to
think for further processing of data. So the next
objective will be to study the feasibility of
forming groups/classes of elements (birds)

which are more or less homogeneous in nature
with respect to body weight.
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Slide 2.4 Data sorted on the basis of body weight from smallest to largest

The first question in classification that comes into
mind is how many classes one should form. The
guideline for the formation of classes is that
within group variability should be minimum
and between groups variability should be

2,5 Classification/Grouping

Classification refers to grouping of large number
of observations into relatively fewer groups so
that an instant idea is obtained seeing the groups.
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maximum. Problem is how to know under which
classification the above guideline is obeyed! One
has to go for trial and error method, which has
got its own limitations. However, a good classi-
fication or grouping should have the following
features:

(i) Classes should be well defined and
exhaustive.
Classes should not be overlapping.
Classes should be of equal width as far as
possible.
Number of classes should not be too few or
too many.
(v) Classes should be devoid of open-ended
limit.
Classes should be framed in such a way that
each and every class should have some
observation.

(ii)
(iii)

@iv)

(vi)

There are two rules to guide in fixing the
number of classes, viz., Yule formula and Sturges
formula. Fortunately both the methods yield
almost similar number of classes for a given set
of observations. According to Yule, £k = 2.5 X
n''*, and the formula given by Sturges for the
same purpose is k =/ + 3.322 logon, where n
is the number of observations and k is the
number of classes.

Let us take the example of weights of
60 broiler poultry birds at the age of 50 days as
obtained from a primary survey and as given in
Table 2.3. There are number of sixty birds, which
are required to be grouped into suitable number
of groups abiding the above guideline.
According to Yule formula, the number of clas-
ses comes out to be 2.5 x (60)% = 6.96 ~ 7.00,
and due to Sturges formula it is 1+ 3.322 log;,60 =
6.91 ~ 7.00. Thus, one can go for formation of
7 classes with 60 observations. The lowest value
is 1124 and the highest value is 2520; hence, the
range 2520-1124 = 1396 is to be distributed
over seven classes; thereby making the class
interval 199.43. It is advisable to make the class
interval a round figure (whole number) instead of
compound fraction. Thus, in this case one can
take class interval as 200 and adjust the lowest
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and highest values of the data set accordingly as
given below:

1119-1319
1320-1520
1521-1721
1722-1922
1923-2123
2124-2324
2325-2525

One can see that adjustment has been made on
both the ends of the data set. So we are having
seven classes with class width 200 in every case:
1119, 1320, 1521, 1722, 1923, 2124, and 2325
are the lower class limits and 1319, 1520, 1721,
1922, 2123, 2324, and 2525 are the upper class
limits, respectively, for respective classes. One
can find that though weights of chicks are a
continuous character, during classification we
have not considered the continuity, as one can
find the gap of one gram between the upper limit
of any class and the lower limit of the subsequent
class. In doing so we invite two problems: (a) if
any chick is found to have body weight in
between upper limit of a class and the lower
limit of the following class, say 1520.5 g, then
there is no way to include the same in the present
classification; (b) different measures like average
weight, median weight, etc. may not come out to
be whole number. As such, depending upon the
nature of the character (discrete/continuous),
data are advised to be presented in continuous
form, so that each and every data point within the
given range, irrespective of its value, gets a
unique class. This is done by subtracting d/2
from the lower class limit of any class and
adding “d/2” to the upper class limit, where “d”
is the difference between the upper limit of any
class and the lower limit of the following class; in
this case d =1, and thus constructed class limits
are known as lower class boundary and upper
class boundary, respectively, in the case of con-
tinuous distribution. Class width is defined as the
difference between the upper boundary and the
lower boundary of the respective class, and mid
value of the class is defined as the average of the
two boundaries. Readers may note that there is
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no change in the mid values of different classes
with the change of classes from discrete to con-
tinuous. Now, with the help of these classes, let
us frame the following frequency distribution
table (Table 2.6).

2.5.1 Method of Classification

Once after forming continuous classes, we come
across with typical problem of allocation of items
in different classes. For example, if any value is
there like 1319.5, then in which class, class one
(1118.5-1319.5) or class two (1319.5-1520.5),
should the observation be included? When both
the lower boundary and upper boundary of a
particular class are included in the class, it is
known as inclusive method of classification,
while in other method, one of the limits is
excluded from the respective class and the
method is known as exclusive method of classifi-
cation. Clearly, one cannot have inclusive
method of classification with continuous data
set: it is applicable for discrete character only.

2.,5.2 Cumulative Frequency

It is simply the accumulation of observation up to
certain level in arranged data. Cumulative fre-
quency divides the entire range of data set into
different component as per the requirement of the
investigator. Cumulative frequency is of two
types: cumulative frequency less than type and
cumulative frequency greater than type. Cumu-
lative frequency less than type is the total number
of observations below a particular value; it gen-
erally corresponds to the upper boundary of dif-
ferent classes. Thus cumulative frequency less
than type of the class 1520.5-1721.5 is 27; it
means there are 27 chicks whose weights are
below 1721.5 g. On the other hand, cumulative
frequency greater than type is the total number of
observations equals to or above a particular
value; it generally corresponds to the lower

2 Data-Information and Its Presentation

boundary of different classes. For example, in
the above frequency distribution table, the cumu-
lative frequency greater than type of the class
1520.5-1721.5 is 42; it means there are 42 chicks
whose weights are equal to or more than1520.5 g.
Cumulative frequency helps in getting immedi-
ate idea about the percent distribution or partition
values of the data set.

2,5.3 Relative Frequency

Relative frequency gives an idea about the con-
centration of observations in different classes
with respect to total frequency and is defined as
the proportion of observation in a particular class
to total number of observations. Thus, the rela-
tive frequency of the class 1520.5-1721.5 is
9/60 = 0.15. Relative frequency may also be
expressed in percentage.

2.5.4 Frequency Density

Using the same idea of density, one can define
frequency density as the frequency per unit of
class width, i.e., fd = f;/h, where f; is the fre-
quency of the ith class and h is the class width
of the respective class. Thus for first class, fre-
quency density is 8/201 = 0.0398. Frequency
density gives an idea about the relative concen-
tration of observation with respect per unit of
class width.

One can find that with the processing of data
at different stages, the investigator finds himself
or herself in better and better position to explain
the data on hand about the objective of the study.

In the following slides, demonstrations have
been made on how to frame frequency distribu-
tion table along with the syntax for getting cumu-
lative frequency, relative frequency, and
frequency density. Readers may please note the
formulae for calculations of these measures in
the slides to follow (Slides 2.5, 2.6, 2.7, and 2.8):
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Classification/Grouping

2.5
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107 Frequency Distribution table

" Discrete [Lower|[Upper | Mid | Continuous wer | Upper | Mid |Frequency|Cumulative]Cumulative| Relative |
108  Class Limit | Limit | value(x) Class Boundary |Boundary| value (f) Frequency<|Frequencyz | Frequency
109 1119-1319| 1119 | 1319 1219 [1118.5-1319.5| 1118.5 1319.5 | 1219 8 8 60
110 1320-1520| 1320 | 1520 1420 ]1319.5-1520.5| 1319.5 1520.5 | 1420 10 18 =K109-110q
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Slide 2.6 Calculation of greater than or equals to type cumulative frequency

feels the urgency of presenting the information
extracted from the data on hand. There are differ-
ent methods and techniques for presentation of
data; among these the fextual, tabular, and dia-
grammatic forms are widely used.

2.6 Presentation of Data

At every stage of processing of data, the investi-
gator becomes more and more equipped to explain
the phenomenon under consideration and thereby
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Slide 2.8 Calculation of frequency density

2.6.1 Textual Form

In textual form of presentation, information is
presented in the form of a text paragraph. While
discussing the findings of the research, this method
is adopted for explanation of research papers or

articles. Before presenting the general budget, the
Finance Minister presents a survey of the eco-
nomic condition, achievements, lacunae, etc. in a
book, viz., the Economic Survey. In this economic
survey, the minister discusses the economic situa-
tion of the country with facts, figures, and data in
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the form of paragraphs or several pages. The above
information on weights of 60 chicks can very well
be presented in textual form as follows:

Weights of 60 birds of 50 days old are taken to
have an idea about the growth of the particular
breed of chicks. It is found that the chick weights
vary between 1124 g and as high as 2520 g in the
same village. Though variations in weights
among the birds are recorded, quite a good num-
ber of birds are found to have recorded similar
weights. More than 50% birds (37 in exact) are
found to have less than1922.5 g body weight,
while comparatively less number of birds are
found to have higher body weight and so on.

Any literate person can have idea about the
results on chick weight by studying the para-
graph. This form of presentation of data is not
suited for illiterate persons; moreover when a
huge amount of data is to be presented, then
this form of presentation may not be suitable
because of monotony in reading a big paragraph
or even a good number of paragraphs and pages.

2.6.2 Tabular Form

As has already been discussed during the forma-
tion of frequency distribution table, a huge num-
ber of data can be presented in a very concise
form in a table. At the same time, it can extract
out some of the essential features of the data
which were hidden in the raw data set. This is
one of the most widely used forms of presenta-
tion of data. Research findings are generally
presented in the form of tables followed by dis-
cussion. A table is consisting of rows and
columns. In general a table has (a) title,

2 Data-Information and Its Presentation

(b) stub, (c) caption, (d) body, and (e) footnote.
Title gives a brief idea about the content or sub-
ject matter presented in table. Generally the title
should be as short as possible and at the same
time should be lucrative in drawing attention of
the readers. Stub of a table describes the contents
of the rows of a table. In the frequency distribu-
tion table, the stub describes the different weight
classes, viz., 1118.5-1319.5, 1319.5-1520.5, and
so on. Thus with the help of the stub, one can
extract the features of the rows. For example,
there are ten chicks which have gotten a body
weight in between 1319.5 and 1520.5, there are
18 chicks which have weight less than 1520.5 g,
and there are 52 chicks which have a body weight
equal to or greater than 1319.5 g and so on.

Caption informs the readers about the content
of each and every column. Thus, “mid value,”
“frequency,” cumulative frequency less than
type, cumulative frequency greater than or equals
to type, relative frequency, and frequency density
are the captions of the frequency distribution
table. Relevant information corresponding to dif-
ferent row—column combination are provided in
the body of the table. In the frequency distribu-
tion table, the data pertaining to different classes
and columns constitute the body of the table.

Footnotes are generally used to indicate the
source of information or to explain special nota-
tion (if any) used in the table. Footnotes are not
essential but optional to a table, depending upon
the requirement of the situation in explaining the
phenomenon under consideration. Information
presented in tables are more appealing than infor-
mation presented in textual form. But likewise to
that of textual form, tables are also useful for
literate persons only.
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2.6.3 Diagrammatic Form

Diagrammatic forms of presentations are more
appealing and especially useful to the illiterate
persons. Seeing the graphs, one can have idea
about the nature of the data under study. Among
the different diagrammatic forms of presentation,
(i) line diagram, (ii) bar diagram, (iii) histogram,
(iv) frequency polygon, (v) cumulative frequency
curve or ogive, (vi) pie charts, (vii) stem and leaf,,
(viii) pictorial diagrams, etc. are widely used.

Frequency

Frequency

2 4

0 - :
1118.5-1319.51319.5-1520.51520.5-1721.5172

Fig. 2.1 Frequency line graphs

60 -\
50: \

40
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(1) Line diagrams are the two-dimensional
presentations of data in X-Y axes with X
axis generally presenting the category or
classes and the corresponding values are
presented along Y axis. Frequencies, cumu-
lative frequencies, relative frequencies, etc.
can be presented in the form of line diagrams
(Figs. 2.1, 2.2, and 2.3).

How to draw the line diagrams using MS
Excel is shown in the following slide (Slide 2.9):

line graph

—+—Frequency

1.5-1922.51922.5-2123.52123.5-2324.52324.5-2525.5
Class

Cumulative frequency graph, Ogives

-

30

P
o] ==
.

Cumulative frequency

—
< ||

0

1118.5 1319.5 1520.5 1721.5 1922.5 2123.5 2324.5 2525.5

Class boundary

e (<

CF>

Fig. 2.2 Line graphs of cumulative frequency < and cumulative frequency >
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Fig. 2.3 Line graphs of relative frequency and frequency density
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Slide 2.9 Slide showing the drawing of line graphs using MS Excel

(ii) Bar

diagrams  are  two-dimensional
presentations of data in X-Y axis. For exam-
ple, frequencies corresponding to discrete
classes can be represented graphically by
drawing bars/ordinates equal to the fre-
quency on a convenient scale at the various
values of the variable class. Figure 2.4

corresponds to Table 2.6. The tops of the
ordinate may be joined by straight bars.

Drawing of bar diagram using MS Excel is
presented in the following slide (Slide 2.10):

Now when selecting the appropriate menu in
the chart tool, one can modify the chart.
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Slide 2.10 Slide showing drawing of bar diagram using MS Excel

(i) Histogram: Histogram is a bar diagram for Histogram can be drawn using the technique
continuous data set. Only difference as shown in the following slide (Slide 2.11):
between the bar diagram and the histogram
is that in the case of histogram, there isa gap (iv) Frequency polygon: When you join the
between two consecutive bars; others are as midpoints of the top of the bars in histo-
per the bar diagram (Fig. 2.5). gram and then connect both the ends to the
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Frequency Histogram
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Slide 2.11 Drawing of histogram using MS Excel

horizontal axis by straight line segments, distribution table; these classes have been
then a frequency polygon is obtained. assumed with class frequency zero in each
To complete the polygon, it is customary case (Fig. 2.6).

to join the extreme points at each end of If one wants to present more than one param-

the frequency polygon to the midpoints eter/character in the same figure using bar dia-
of the next higher and lower hypothetical ~gram, then one can have the option for clustered
class intervals on the horizontal line (class bar, stacked bar, and 100 % stacked bar diagram.
axis here). Readers may please note that In clustered bar diagrams, values of same item
there were no classes like 917.5-1118.5 for different categories are compared. While in
and 2525.5-2726.5 in the frequency stacked columns, proportions of the values across
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Fig. 2.6 Frequency histogram and/or polygon

Continuous class

Table 2.7 Egg production (million) in major states of India

State 2008-2009 2009-2010 2010-2011
Andhra Pradesh 18,345 19,396 20,128
Haryana 3815 3845 3964
Mabharashtra 3550 3864 4225
Punjab 3679 3283 3545
Tamil Nadu 8810 10,848 11,514
West Bengal 3306 3698 3994
Other 14,058 15,334 15,655

the categories are shown. In 100 % stacked bar,
comparison of each category is made in such a
way so as to make the total bar length to 100 %

divided into different categories, one above the and Table 2.7).

other. Let us take the following example of state-
wise egg production figures for the years
2008-2009, 2009-2010, and 20102011 (Fig. 2.7
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Fig. 2.7 (a) Stacked bar diagram of egg production in  (¢) 100 % stacked bar diagram of egg production in
different states of India from 2008-2009 to 2010-2011 different states of India

(b) Clustered bar diagram of egg production in different

states of India from 2008-2009 to 2010-2011

All the above diagrams can be made using MS ~ (v) Pie chart: The essence of presenting the
Excel as demonstrated in the following slide whole information in the form of pie chart
(Slides 2.12, 2.13, and 2.14): is to assume the total frequencies as 100 %
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Slide 2.13 Slide showing the options for making stacked bars

and present the same in a circle with 360° in the form of a pie diagram. The technique
angle at the center. In the frequency distribu- behind the calculation during pie diagram is
tion table of body weight of bird, the relative as follows (Fig. 2.8):

frequency calculated can effectively be used
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Slide 2.14 Slide showing the options for making 100 % stacked bars

(vi) Stem and leaf diagram: When the variations
in the data set are comparatively less, a well-
1118.5-1319.5 accepted form of presentation of data is the
s stem—leaf presentation. In this method, each
and every data point is divided into two

1319.5-1520.5 parts — stem part and the leaf part. Generally
2123.5-2324.5 17%

S 9 the stem part consists of higher decimal
\ places for all the data points, and the leaf

part consists of the rest of the parts of the

””2;“3‘5 152";5;,1:“5 data points. For example, if data points are
11515035 234, 345, 1324, 987, and so on, then stem
17% part should include 23, 34, 132, and

98, respectively, leaving 4, 5, 6, and
7, respectively, for the leaf part. Data
Fig. 2.8 Pie chart are sorted in ascending or descending
order, stem portion is provided in the first

Class Frequency | RE__| %RF | Angle column, and the leaf part of each data point
1118.5-1319.5 | 8 0.133 | 13.33 |3.6 x 13.33 = 48 is recorded in appropriate row. Let us take
1319.5-1520.5 | 10 0.167 | 16.67 | 3.6 x 16.67 = 60 R .
15205-17215 | 9 0.150 | 15.00 | 3.6 x 15.00 = 54 the example of body weights of 60 chicks;
1721.5-1922.5 | 10 0.167 | 16.67 | 3.6 x 16.67 = 60 one can frame the following stem—leaf dia-
1922.5-2123.5 | 4 0.067 | 6.67 | 3.6 x 6.67 =24 gram (Fig. 2.9):

2123.5-2324.5| 9 0.150 | 15.00 | 3.6 x 15.00 = 54

2324.5-2525.5 | 10 0.167 | 16.67 | 3.6 x 16.67 = 60
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Stem|Leaf Stem|Leaf
1124 182 3,3,3
1183 1847
12133 1850
130 0,0,0,0 186 5,5
1341 1915
140 5 1924
143 8,8,9 197 6
14424 204 7
147 6,6,6 205 4
157 3,3 21244,44.4.4
1593 2177
1640 2205
168222 2235
170 3 23938,9
1713 2433,4,4,44
172 6 2508
178 8 2520

Fig. 2.9 Stem-leaf diagram of body weight of 60 chicks

In the above stem and leaf plot, one can see
that corresponding to 143 in stem (seventh row),
there are three observations, viz., 1438, 1438,
and 1439. Similarly, the third stem observation
from the last is 243, which has got 3, 4, 4, 4, and
4 in the leaf column; that means there are four
observations and the observations are 2433,
2434, 2434, 2434, and 2434.

Example 2.1
Let us take another example of monthly milk
yields (kilogram) of 100 milch cows (Fig. 2.10)
In this stem and leaf plot, one can find that
corresponding to the first observation, 23 in the
stem column, there are six observations and the
observations are 236, 237, 237, 238, 239, and
239. The stem and leaf plot is almost similar to
that of the bar diagram with the advantage of
knowing the data values along with their
concentrations. The only problem with this type
of presentation is that if there are large variations
among data points, then, under extreme case, the
plot will be a huge one and a presentation may
not be so useful.

2 Data-Information and Its Presentation

Stem | Leaf

23| 6,7,7,8,9,9

24 | 0,0,3,3,5,5,5,6,7,7,7.9
251 0,0,1,1,2,3,6.8

26 | 1,2,2,2,3,4,5.8

27 | 0,0,4,4,6,68.8,8
28 | 0,2,4,5,5,6,7

29 | 0,0,0,1,2

30 | 1,1,2,3,4,5,7

311 0,1,1,2,2,4,6,6

32 | 0,3,3,3,4,5,7.8.9,
33 1 0,0,1,2,3,6,7,9,9,9,9
34 |23
3510,0,12,2,2

Fig. 2.10 Stem-leaf diagram of monthly milk produc-
tion of 100 cows

(vii) Pictorial diagram: A picture/photograph
speaks for itself. Instead of a bar diagram,
line diagram, or pie chart, if one uses a
relevant picture/photograph to present the
data, then it becomes more lively and
attractive to the readers. Let us take the
following example.

Example 2.2
A study was conducted to investigate the
egg-laying capacity of certain breeds of poultry
bird. Following data presents, the frequency dis-
tribution of the egg-laying groups of the birds. If
we represent each egg as equivalent to five
observations/frequencies, then one can have the
following diagram. From the following picture,
any person can understand which breed is having
highest egg-laying capacity as well as the distri-
bution of the breeds in accordance with the
egg-laying capacity (Fig. 2.11).

This type of pictorial representation is helpful
to understand even by the layman and is more
eye catching. But the problem with this type of
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2.6 Presentation of Data
Type and Egg Class
& 235-249 15
250-264 19
265-279 10
280-294 13
295-309 8
310-324 13
325-339 14
340-354 8

Fig. 2.11 Pictorial diagram

representation is that the frequencies should be
divisible by whole number otherwise there would
be truncated figures in the presentation like in
most of the cases of the above figure excepting
the classes one and three. It is very difficult to
present the information in true to the scale also.

(viii) Maps: Maps are also one of the important
and useful tools for summarization and
presentation of data. Generally these are
used to represent the information on par-
ticular parameters like forest area in a
country, paddy-producing zone, different
mines located at different places in a coun-
try, rainfall pattern, population density,
temperature zone, agroclimatic zone, etc.

Frequency No of eggs.

3.8

2.6

1.6

2.6

2.8

1.6

The following maps give different zones
of two countries, viz., India and Nigeria,
based on rainfall distributions (Figs. 2.12
and 2.13).

This type of representation of data is easily
conceived by any person but utmost care should
be taken to make the statistical map true to the
sense and scale.

From the above discussions on different pre-
sentation forms of information, it is clear that
neither all forms of presentation are suitable
every situation nor to all users. Depending upon
the nature of the data, need of the situation, and
the targeted readers, the appropriate form of pre-
sentation is to be decided.
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The general instinct of any investigator is to
present his/her data with a single value. For
example, a breed of poultry bird is known by its
average-egg laying capacity, which is obtained
from the eggs laid by the individual chick in a
group of chicks. At the same time, the investiga-
tor may also be interested to know the variations
in egg-laying capacity that he or she expects a

range with in which a particular breed should lay
eggs. Thus, the overall picture, instead of the
capacity of the individual chicks, is of utmost
interest to the investigator. Let us consider two
data sets of weights (pounds) of 20 fishes of a
particular breed caught from two different ponds.
Our objective is to find the better pond for rearing
of that particular breed of fish.

Example 3.1
Fish weight (Ib)
PondA [12 |09 [15 |13 |20 |20 [13 |16 [20 |15 [16 |17 |21 |12 |13 [09 |16 [14 |19 |17
PondB [086 |20 (24 |16 [1.09 |19 [13 |18 [1.65 |10 |21 |10 |22 |22 |14 [05 |12 [20 |06 |2
That means we need to have certain measures Example 3.2

by which one can compare the two ponds with
respect to their performance in yielding better
weights of fishes. Moreover, human instinct is
to find out certain value(s), which can represent
the set of information given in a big data set. Let
us take another example of run scored by two
batsmen in ten different cricket innings which
they have played together.

© Springer India 2016

Run scored by two batsmen in 10 innings played
together

Player A [12 |93 | 164 [16 [26 [73 |178 |13 |3 |38
Player B |46 |64 |75 |45 |62 |58 |106 |45 |45 |40

Now the question is which player is better?
How to measure the effectiveness? Thus, in both
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the cases, we are in search of such a measure,
which can describe the inherent characteristics of
a given set of data so that with the help of this
measure, we can compare.

In its preliminary form, the characteristic of a
given data set can be visualized with the help of
its measure of central tendency and measure of
dispersion. What do we mean by central ten-
dency and dispersion? Tendencies of the values
of the observations in a given data set to cluster/
center around a particular value are known as
central tendency. On the other hand, tendencies
of the values of the observations in a given data
set to remain scattered or dispersed from a par-
ticular value are known as dispersion. Thus,

3 Summary Statistics

central tendency and dispersion are the two
opposite phenomena for a given set of data.
How to measure the central tendency or the dis-
persion? In fact there are different measures of
central tendency and also for dispersion. Differ-
ent measures of central tendency and dispersion
are presented below:

Measures of Central Tendency

a) Mean

b) Median 1) Arithmetic mean
¢) Mode i1) Geometric mean
d) Mid point range iii) Harmonic mean

Measull‘es of Dispersion

Absolllte measure
i) Range
ii) Mean deviation
iii)Standard deviation
iv)Quartile deviation
v) Moments

RelativeI measure
i) Coefficient of variation
i) Coefficient of mean deviation
iii) Coefficient of quartile deviation

In addition to the above measures of central
tendency and dispersion, there are certain
partitions like quartile, percentile, deciles, etc.
which also helps in extracting information and
partitioning of data set into different parts. Let us
first discuss the measures of central tendency.

Characteristics of Good Measure

As shown above there are different measures for
both the central tendency and dispersion, but
among these measures, one should try to exploit
the best one. That means we are in search of the
qualities of good measure. By and large a good
measure should be (a) clearly defined, (b) based
on all observations, (c) very easy to calculate,
(d) very easy to understand, (e) readily amenable
to mathematical treatments, and (f) least affected
by sampling fluctuations

3.1 Measures of Central Tendency
As we have already come to know, there are
different measures of central tendency. Now the
question is whether all the measures are equally
good or applicable everywhere. For that let us
discuss about the characteristics of good
measures of central tendency. A good measure
of central tendency should be (a) rigidly defined,
there should not be any ambiguity in defining the
measure, (b) based on all observations, (c) easy
to calculate, (d) easy to understand, (e) least

affected by sampling fluctuations, and
(f) readily acceptable for mathematical
treatments.



3.1 Measures of Central Tendency

3.1.1 Arithmetic Mean
Arithmetic mean is nothing but simple average of
a set of observations and is calculated as the sum
of the values of the observations divided by the
number of observations.

Suppose there are N number of observations
X1, X5, Xj3,...Xy for variable X, then its

Pond A [1.2 [09 |15 [13 [2.1 [20 [13 [16 |20
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arithmetic mean (AM) denoted by X is given

N

2

i=1

as X = XN

If we take the example of the fish weights
(in pound) in pond A of the Example 3.1, then
we have

[15 [16 |17 [21 |12 [13 [09 [16 [14 [19 [17

The AM of the weights of 20 fishes is

N
>

=1

12409+ 15+ 1L

34+201+---+19+17

X=1 = 1.541bs
N 20
For grouped data, the arithmetic mean is :
defined as follows: Body weight (g) Frequency (f)
Arithmetic mean of a set of N number of 1“8'5_13;9'5 18
observations X, X5, X3,...,. Xy, grouped into “n” 1319.5-1520.5 0
. 1520.5-1721.5 9
number of classes with mid-values and 1731.5-1922.5 0
frequencies of different classes is given as below 192252123 5 4
Mid-values(x;) |Xx; | X2 |X3...X0 . Xy | Xpe1 | Xn i;;ig_ii:: 13
Frequency fi e fao Ao faa [ famr | -
Body weight Mid-value | Frequency
where X1, X2,. . Xj,. . .X, and fi, fo,. . fi. . f,are the (&) (x:) (fi) fixi
mid-values and frequencies of the respective 1118.5-1319.5 [ 1219 8 9752
n 1319.5-1520.5 | 1420 10 14,200
. - ;f"x’ 1520.5-1721.5 | 1621 9 14,589
classes given as X = >, 1721.5-1922.5 | 1822 10 18,220
! 1922.5-2123.5 |2023 4 8092
2123.5-2324.5 | 2224 9 20,016
Example 3.3 2324.5-2525.5 | 2425 10 24,250
Let us consider the body weights of 60 poultry — Total 60 109,119
AM 1818.65

birds as given below:

7

E :}ixl'

=l

n
E ;]ixi
=l

88X 121941

>

0 x 1420+ ... 49 x 2224 4 10 x 2425

7
200 + ... 4 24250

9752 + 14

8+10+...+94+10

109119

— 1818.65¢g

60
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Merits and Demerits of Arithmetic Mean AM
is clearly defined, easy to calculate and under-
stand, and also based on all observations; so it is
following most of the characteristics of good
measure of central tendency. But the demerit
of AM is that if one of the observations in the
given data set is missing, then it cannot be
calculated. Moreover, AM is highly susceptible
to extreme values; a single large value or a small
value can change the AM drastically. Some
important properties of AM are discussed
below:

(a) Arithmetic mean of a set of “n” number of
constants (X = M, say) is also the constant,
because

EX M+M+M+ M
nM
:—:M
n

(b) Arithmetic mean depends on both the change

of origin and scale:

Let Y = 4% where X and Y are variables and
both a and b are constants.

Thus, a is the change in origin and b is the
change in scale.

Now, we have X =a + bY

= X; = a + bY;, where i stands for i -th
observation.

Body weight (g) Mid-value (x)

1118.5-1319.5 1219 8
1319.5-1520.5 1420 10
1520.5-1721.5 1621 9
1721.5-1922.5 1822 10
1922.5-2123.5 2023 4
2123.5-2324.5 2224 9
2324.5-2525.5 2425 10
Total 60
AM

Frequency (f)

3 Summary Statistics

The arithmetic means of two related variables X
and Y are also related with change of origin and scale.
This relationship is also true for grouped data

X =)

where a and b are change of origin and scale,
respectively, x; are mid-values of i-th class for
X and f; is the frequency of i-th class, and y; is the
transformed value corresponding to xi.

Let us use the same example of body weight
of 60 poultry birds and also suppose that we have
changed the origin to 1800 g and scale to 200 g
for the body weight X, i.e., ¥ = 51800

200
Now we have the following table for calculation:

x;—1800

fixi Yi = %00 S
9752 —2.91 —23.240
14,200 —1.90 —19.000
14,589 —0.90 —8.055
18,220 0.11 1.100
8092 1.12 4.460
20,016 2.12 19.080
24,250 3.13 31.250
109,119 5.595
1818.65 0.09325
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We have

I < 1

n
i=1
i

i=1
=5.595/60 = 0.09325¢

y: l 60
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i = —[—23.24 — 19 — 8.055 + 1.1 + 4.46 + 19.08 + 31.25]

..X = 1800 4+ 200xy = 1800 + 200 x 0.09325 = 1818.65¢

which is exactly the same value that we got
without changing the origin and scale.

One of the important uses of this type change
of origin and scale is to reduce the large values
into small ones with suitable change of origin
and scale.

(c) Composite arithmetic mean of “k” number of
samples having arithmetic means Xp,X,, X3,
.., Xx for ny, mnp, ns,...., n; number of
observations, respectively, is the weighted
average of the arithmetic means of the

samples.
Samples 12 13 |4 |5 |k
No. of observations ‘nl ‘nz ‘n3 |n4 ‘n5 ‘ ‘nk
AM Bt e
We have the sum of all observations
k
mxy +nyxo + ... + mpXxp = Zn,‘i,‘
i=1
So the average of the  above

k
Soni=(n+ ny+ n3+ ...+ m)=n obser-
i=1

k

E )‘1[)_(,'

i=1
k

=X

vation is

n;
i=1

Example 3.4

The following table gives the average body
weights (kg) of five groups of goats. Find out
the overall average weight of the goats.

Group 1 2 3 4 5
No of Goats 132 40 |30 [35 |13
Average weight (kg) |14.5 168 |17.5 |16.0 |18

The overall average weight of 150 goats is
given by

k

2T
i=1
k
2
i=1
X=[32x145+40x 168 +30x 17.5

+35 x 16+ 13 x 18] x /150
=16.37 kg.

, here k = 5,s0

=I

3.1.2 Geometric Mean

Geometric mean of a set of “N” observations X,
X5,X3,...,X,,.... Xy is defined as the N-th root of
the product of the observations.

Thus, the geometric mean (GM) of X X5,
Xs,.. . X;,. . . Xy 1s given as

= log(Xg) =

= llv.[logXl + logX, + .... + logXy]
1

= N;logX,»

= GM(say)

So, X, = Antilog(GM)

[Arithmetic mean of the
logarithms of the observations]
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Thus geometric mean is the antilogarithm of
the arithmetic mean of logarithms of the
observations.

The geometric mean for grouped data of a set
of “N” observations grouped into “n” number of
groups with mid-values and frequencies of the
different classes, respectively, given as

Mid-values of X1 | X | Xx3..., Xpo1 | X,

different classes (x;) Xiye o Xp_n

Class Frequency fi | |faeens ot |Ja
Jise - fn—2

is given as

xy= )2 = ()"

Using similar technique, we have

x{iﬂ)l/N l/zn:fi

— i=1

(I~

Xo= (.

PondA |12 [09 [15 [13 [21 [20 [13 |16 |20

3 Summary Statistics

1 o )
= log(X,) = o [xfl‘.xfz2 . xf;}
1
= ylfilogni +fologe +... +f

—Zf logx; =

"X, = Alog(AM')
= Antilogarithm of weighted arithmetic
mean of the logarithmsof the mid
values of different classes.

Logx,]

AM/(say)

For grouped frequency data, x; is taken as the
mid-values of the i-th class

With the help of log conversion or scientific
calculator, one can easily find out the
geometric mean.

Example 3.5

If we go back to the data of fish weight of
20 fishes, then what should be the GM?

|15 [16 |17 [21 |12 [13 |09 [16 |14 [19 |17

Solution The geometric mean for 20 fishes is
given by G = (1.2 x 09 x 1.5 x 1.3 x.
1.9 x 1.7)"?° = (3202.566) '/*° = 1.497 b

Example 3.6
Let us find out the geometric mean of body weights
of ten chicks at birth using the following data:

Chick No 1(2/3/4 /5678910
Body weight (2) | 42| 32| 55| 27|30 35| 45| 52| 47| 40

Solution: Method 1 The geometric mean for
ten chicks is given by G = (42 x 32 x 55 X
27 x 30 x 35 x 45 x 52 x 47 x 40)'/'° =
(9219104294400000.00) /' = 39.49

Method 2: We can calculate geometric mean
as the antilogarithm of the arithmetic mean of
logarithms of the observations. Thus, we have

G = Antilog[(1/10)(log42 + 1og32 + log55 + 10g27 + 1og30 + log35 + log45 + 10og52 + logd7 + log40)]
= Antilog[(1/10) (1.623 + 1.505 + 1.740 + 1.431 + 1.477 + 1.544 + 1.653 4+ 1.716 + 1.672 + 1.602)]

= Antilog(1.5965) = 39.49
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Example 3.7

Let us find out the geometric mean of the body
weights of 60 poultry birds from the following
frequency distribution:

Body weight (g) Mid-value (x;) Frequency (f)
1118.5-1319.5 1219 8
1319.5-1520.5 1420 10
1520.5-1721.5 1621 9
1721.5-1922.5 1822 10
1922.5-2123.5 2023 4
2123.5-2324.5 2224 9
2324.5-2525.5 2425 10

Log(Xg) =

nl tog <ﬁx;f,->
S

=1

1
= —log(1219°.1420".1621°......

60
1

"~ 60
+ 9log(2224) + 10log(2425)]

1

~ 60
49 x 3.3471 x 10 x 3.3847]

1
= —[194.8998] = 3.2483
<ol ]
X, = Alog(3.2483) = 1771.4516¢
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Solution From the above frequency distribu-
tion, we have the geometric mean

1/ifi
=1

X, (x{‘ X0 x,{)

[8log(1219) + 10log(1420) + 9log(1621) + 10log(1822) + 4log(2023)

[8 % 3.086 + 10 x 3.1523 + 9 x 3.2098 + 10 x 3.2605 + 4 x 3.3060

Thus the geometric mean of the above simple
frequency distribution is 1771.4516 g.

Merits and Demerits of Geometric Mean

The definition of geometric mean is clear-cut, and
there is no ambiguity in defining geometric mean;
geometric mean is based on all observations but it
is not so easy to calculate or understand the physi-
cal significance of GM; mathematical treatments
are not so easy as in the case of arithmetic mean. If
one of the values in the given data set is zero, then
the GM is also zero for the whole data set. Com-
pared to AM, GM is least affected by the inclu-
sion/deletion of extreme value in the data set. Let
us discuss some of the important properties of GM.

(a) Letus suppose we have k number of samples;
G1, Gy, .. .., G are the geometric means of
the samples, and ny, n,, .. .., n; are the num-
ber of observations of the respective

samples; then the combined geometric
mean is given by

k
]/Zi’l,‘
i=1

G = (G}'.Gy....G}¥)

k
I/Zn,-
G. i=1

1

e

Il
—_—

i
k

or,log G =——» n;log[G]

i=1
>
=1

(b) If all the observations are equal to a constant,
say M, then the geometric mean is also equal
to M.

(c) Likewise to that of AM, GM of a set of
observations also depends on change of origin
and scale.
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3.1.3 Harmonic Mean

Harmonic mean of a set of “N”’ observations X/,
X5,X3,. . ,X;,. . ..Xy 1s defined as the “the recipro-
cal of the arithmetic mean of the reciprocals of
the observations”.

N
N

Thus, harmonic mean H.M. =

i1V

For grouped data of a set of “N” observations
grouped into “n” number of groups with
mid-values and frequencies of the different clas-

ses, respectively, given as

PondA |12 [09 [15 [13 [21 [20 [13 |16 |20

3 Summary Statistics

Mid-values of X | X2 Xz, Xp1 | Xn
different classes (x;) Xiye o Xy
Class frequency ‘ i a1 fseo fot | fn
Jore o fu2
Dot

the harmonic mean is given as H = -~

> filxi

i=1

Example 3.8
Let us take the example of the fish weights
(in pound) in pond A of the Example 3.1:

[15 |16 [17 [20 [12 [13 [09 |16 |14 [19 |17

to find the harmonic mean of the above fish
weights.

Solution Here the number of observations is 20.
So the harmonic mean of the fish weights
(in pound) is given by

20
HM. = 0]
L:l;’
3 18
*1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
12709 15 1321 20 13 16 20 15 16 1.7 21 12 13 09 1.6 14 19 17
20
= =1.45191b
13.77437 ?
Example 3.9

To find the harmonic mean of milk production
(liter) per day from a data of 20 days for a particu-
lar cow from the following frequency distribution:

Milk(l/day)
Frequency

10
5

12
ki

14
2

16
2

18
4

Solution This is a simple frequency distribution;
hence, the formula for getting harmonic mean is

n 5
> X
i=1 =l
5

HM=——1_ —
il Y
= i=1

547424244
AN
1214 16 ' 18

=12.711

15734
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Example 3.10

To find the harmonic mean of the body weights
of 60 poultry birds from the following frequency
distribution:

Body weight (g) Mid-value (x;) Frequency (f)
1118.5-1319.5 1219 8
1319.5-1520.5 1420 10
1520.5-1721.5 1621 9
1721.5-1922.5 1822 10
1922.5-2123.5 2023 4
2123.5-2324.5 2224 9
2324.5-2525.5 2425 10
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Solution From the above frequency distribu-
tion, we have harmonic mean

— 8+10+....+9+10

HM

10 9

10 4 9 10

= 7 — = 8
ZI:(/‘:'/W 1219 T 1220 T 1621

+ 1822 + 2023 + 2224 + 2425

60

~ 0.00656 + 0.00704 + 0.00555 + 0.00549 + 0.00198 + 0.00405 + 0.00412

60
0.03479

= 1724.4676 g

Merit and Demerits of a Harmonic Mean

Like other two means, viz., the arithmetic mean and
geometric mean, the harmonic mean is also defined
clearly; it is also based on all observations but
comparatively complicated in calculation and
understanding. Moreover, if one of the observations
is zero, then it is difficult to work out the harmonic
mean. The harmonic mean of “n” number of
constants is the constant. Let there be a set of “N”
observations, each having a constant value, say

=U.

“U,” so their harmonic mean = ~ =
1

dzl =

i=1 u

3.1.4 Use of Different Types of Means

If one critically examines the values of three types
of means from the same data of 60 poultry birds as
given in Examples 3.3, 3.6, and 3.10, one can find
that AM > GM > HM (AM = 1818.65 g, GM
= 1771.4516 g, HM = 1724.4676 g). In fact the
relation among the three types of means is that
AM > GM > HM. Thus for a given set of data,
HM has the lowest value. This type relationship
among the three means raises the question as to

which type of mean should be used to represent a
particular data set. Arithmetic mean is widely used
in most of the situations where the data generally
do not follow any definite pattern. It can be used to
have an overview of both the discrete as well as
continuous characters. Before using one should
check for the existence of any extreme value(s) in
the data set. Geometric mean is generally used
when values of a series of observations change in
geometric progression (i.e., values of the observa-
tions change in a definite ratio). Average rate of
depreciation, compound rate of interest, etc. are the
examples of some of the areas where geometric
mean can effectively be used. GM is useful in the
construction of index numbers. As GM gives greater
weights to smaller items, it is useful in economic
and socioeconomic data. Though the use of har-
monic mean is very restricted, it has got ample
uses in practical fields, particularly under changing
rate scenario. Let us take the following example:

Example 3.11

Price of petrol changes fortnightly (mostly), and
let us assume that a two-wheeler owner has fixed
amount of money allocated on fuel from his
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monthly budget. So, the use of petrol is to be
managed in such a way that both the conditions
are satisfied (monthly expenditure on petrol
remains constant and the prices of petrol changes
over the fortnights), i.e., the objective is to get
average price of petrol per liter, which will fix the
amount of average consumption of petrol/month
vis-a-vis the mileage he can run the two
wheelers.

Solution Let fortnightly expenditure on petrol
be Rs and “E” and the prices of petrol for “n”
consecutive fortnights be pi, ps,. .., p,, respec-
tively. Thus the amounts of petrol used in n

fortnights are [’EI [%, pﬁ, respectively. Then
average fortnightly consumption of petrol is

given by

nkE

E E E

— =+ =

P1 P> Pn
nk

T /11 1
El—+—+...+—
I’ll p2 pn

= ———— = Harmonic mean of price of petrol
Zl/ Pi
i=1

3.1.5 Median

Median of a set of “N” number of observations
X1, X5, X3,.. .. Xy for variable X is defined as the
value of the middlemost observation. When we
talk about the value of the middlemost observa-
tion, then there is a need for arrangement of the

3 Summary Statistics

data either in ascending or descending order, so
that middlemost observation could be identified.
One can easily find that the median of a set of
observations divides the whole set of data set into
two parts; below and above the median there are
equal number of observations.

Example 3.12

Number of insects per plant is given as follows:
17,27, 30, 26, 24, 18, 19, 28, 23, 25, and 20. Find
out the median value of number of insects per
plant.

Solution Let us arrange the data in ascending
order of their values as follows: 17, 18, 19, 20,
23, 24, 25, 26, 27, 28, and 30. Here, we have
11 observations, so the middlemost observation
is the (11-1)/2 + 1 = 6th observation and the
value of the sixth observation is 24. Hence, the
median value of number of insects per plant is
24,

Problem with this definition is that when num-
ber of observation is even, then one cannot have
a unique middlemost observation; rather there
would be two middlemost observations. In this
type of situation, median is worked out by taking
the average of the values of two middlemost
observations. Let us consider the following
example;

Example 3.13

Following table gives the fish production figures
of 20 Indian states/union territories during
2011-2012. Find out the median fish production
of the states.

Chhatt- Guja-| Hary-| Jhark- | Karn- Maha- Pondi- Rajas- Tri-
State/UT AP | Assam| Bihar| isgarh | Goa| rat ana | hand | ataka | Kerala| MP| rashtra | Orissa cherry | Punjab| than | TN | pura | UP | WB
Production

(°000 t)

1603‘229 ‘344 ‘251 ‘90 ‘784 ‘106 ‘92 ‘546 ‘693 ‘75‘579 ‘382 ‘42 ‘98 ‘48 ‘611‘53 ‘430‘ 1472

Solution Here the number of states is 20, an
even number; so the median value would be the
average of the values of two middlemost

1 2 3 4 5 6 7 8 9 10
Guja- Maha- | Karn-
State/UT | AP | WB | rat

Production
(000 t)

Kerala| TN | rashtra| ataka | UP | Orissa| Bihar| tisgarh| Assam| Haryana| Punjab| hand | Goa| MP| Tripura| than
16()3‘ 1472‘ 784 ‘693 ‘6”‘ 579 ‘546 ‘430‘ 382 ‘ 344 ‘ 251 ‘229 ‘ 106 ‘98 ‘92 ‘90 ‘75 ‘53 ‘43 ‘42

observations, i.e., tenth and 11th observations
after the states are arranged in order as follow:

11 12 13 14 15 16 |17 | 18 19 20

Chhat- Jhark- Pondi-
cherry

Rajas-
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From the above arranged data, one can find
that Bihar and Chhattisgarh occupy the
middlemost positions. Therefore, the median
value of fish production would be (344 + 251)/
2 = 297.6 thousand tone.

Thus, calculation of median for even and odd
number of observations is different. This situation,
however, takes different forms for grouped data.

Steps in Calculation of Median from Raw Data

1. Arrange the raw data, either in ascending or
descending order.

2. Locate the middlemost (for odd number of
observation) or two middlemost observation
(s)(for even number of observations).

3. When the total number of observations is odd,
then the value of the middlemost observation
would be the median, while the average of the
two middlemost observations would be the
median for even number of observations.

For grouped data, the median of a set of
N number of observations X;, X5, X3,...,Xy for
variable X grouped into “»” number of classes as
follows is given as

Class Mid-value (x;") | Frequency (f;) | CF< | CF>
X=X x; N Fy F/
Xo—X; X2 S F, E,/
X5—Xy x5’ /3 F; Fy
Xn_Xn+1 xny fn Fn Fnl

¥_F

7 ~1

Me = X; + 2—""— CI
fme

where X; = is the lower class boundary of the
median class

N = total frequency

Fe—1 = cumulative frequency (less than
type) of the class preceding the median class
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fme = frequency of the median class and CI =
width of the median class

The first task for getting the median value
from a classified data is to find out the median
class from the cumulative frequency column of
frequency distribution table; that means the class
in which the middlemost observation(s) is lying.
Then one can use the above formula to get
median value. Step by step procedure of getting
median from classified data is presented below:

Steps in Calculation of the Median from Grouped
Datal

1. Identify the median class (i.e., the class
containing N/2th or N/2 + 1th observation)
from the cumulative frequency (less than type)
column of the frequency distribution table.

2. Identify the lower class boundary (X)), class
width (CI), and the frequency (f,,) of the
median class.

3. Identify the cumulative frequency (less than
type) of the class preceding the median class
(Fe—1) and the frequency of the median
class, i.e., fe-

4. Use the above values in the formula for median.

Example 3.14

Once again let us take the classified data for body
weight of 60 poultry birds. Find out the median
value of body weights from following frequency
distribution table.

Body weight (g) | Mid-value (x;) | Frequency (f) | CF<
1118.5-1319.5 | 1219 8 8
1319.5-1520.5 | 1420 10 18
1520.5-1721.5 | 1621 9 27
1721.5-1922.5 | 1822 10 37
1922.5-2123.5 |2023 4 41
2123.5-2324.5 | 2224 9 50
2324.5-2525.5 | 2425 10 60

Solution From the above table, we have total
number of observation, 60, an even number.
Therefore, the median would be the average of
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the values of the two middlemost observations
(viz., 30th and 31st observations). From the col-
umn of cumulative frequency, one can find that
30th and 31st observations are lying in class
1721.5-1922.5.
Lower boundary
class = 1721.5.
Frequency of the median class = 10.
Cumulative frequency of the class preceding
the median class = 27.
Class interval/width = 201.

Therefore the median Me = X;+

(X)) of the median

N
7_Fme—l

me

CI = 1721.5 + 22 x 201 = 1721.5 + 60.3 =
1781.8 ¢.
Note

1. For even number of observations in classified
data, two middlemost observations may lie
in two consecutive classes. In that case, one
would have two median classes, and two
medians are to be worked out using the above
procedure as usual. Ultimately the median of
the set of given data would be the average of
the two median values worked out.

2. Median can also be worked from the intersec-
tion point of the two cumulative frequency
(less than and more that type) curves.

Merits and Demerits of Median Median is
easy to calculate and understand; it can also be
used for qualitative data. But median is not
defined rigidly as one could find for AM, GM,
or HM. The median is also not based on all
observation, to the median, one needs to have
information on middlemost observations/classes.
The median cannot be put under mathematical
treatment easily. The median is comparatively
more affected by sampling fluctuations.

Uses of the Median The median has got various
uses in agriculture and allied fields as well as in
industry. As this is basically a partition value,
divide the whole population into two equal parts;
it is used as an indicator stratifying the popula-
tion. Most important use of median is found in
qualitative data sets where the numerical
measures of central tendency may not work
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suitably. The formula for median can very well
be improvised in getting different partition
values.

3.1.6 Partition Values (Percentiles,
Deciles, and Quartiles)

Sometimes it becomes of interest to partition the
whole population into different parts. For exam-
ple, one may be interested to know the income
level below which there are 90 % or 3/4th or
60 % of the people in a particular area. One
may be interested in knowing the number of
insects per plant below which 25 % or 1/4th,
70 %, or 90 % of the plants exist in a particular
field. Thus, we are interested in partitioning the
whole population into different quarters, differ-
ent deciles, different percentiles, etc. Knowing
these values one can take decision on different
aspects of practical utility. The economic injury
level population of different pests in different
crops have been identified by the scientists.
Knowledge of the percentage or deciles of plant
populating below or above the corresponding
economic injury level population will help the
farmers in taking decision whether to go for
chemical control measure or otherwise. It has
already been discussed that median divides the
whole population into two equal halves; below
and above which there are 50 % observations;
thus median can be thought of as fifth decile or
second quartile in any set of data. One can work
out different percentiles, deciles, or quartiles
from the frequency distribution improvising the
formula of median. The formula for median can
be modified to work out different percentile/dec-
ile/quartile values by substituting “Np/100,”
“Nd/10,” or “Ng/4” and the corresponding cumu-
lative frequencies (less than type) in place of “N/
2” in median formula; where “p,” “d,” and “g”
denote for p-th percentile, d-th decile, and g-th
quartile, respectively.

Thus, the formulae for percentiles, deciles, or
quartiles are as follows:

. 30 — Fpso_y
30th percentile or P39 = X; + ————.CI

P30
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X; = is the lower class boundary of the 30th
percentile class.

N = total frequency.

Fp;,_; = cumulative frequency (less than type) of
the class preceding the 30th percentile class.

fp30 = frequency of the 30th percentile class.

CI = width of the 30th percentile class.

Y — Fdg_,

6th decile or Dg = X; + 12 CI
ecile or Dg 1+ Fde

X; = is the lower class boundary of the sixth
decile class.

N = total frequency.

Fd, , = cumulative frequency (less than type) of
the class preceding the sixth deciles class.

fde = frequency of the sixth decile class.

CI = width of the sixth decile class.

—Fq;_,

3N
3rd quartile or Q3 = X; + 4 CI
fas

X, = is the lower boundary of the third quartile
class.

n = total frequency.

Fq;_, = cumulative frequency (less than type) of
the class preceding the third quartile class.

fqs = frequency of the third quartile class.

CI = width of the third quartile class.

Example 3.15

Let us take the example of body weight of
60 poultry birds once again and try to find out
the body weights below which 40 %, 8/10 parts,
and 3/4th birds exist. We have the following
frequency distribution table:

Body weight (g) | Mid-value (x;) | Frequency (f) | CF<

1118.5-1319.5 | 1219 8 8

1319.5-1520.5 | 1420 10 18
1520.5-1721.5 | 1621 9 27
1721.5-1922.5 | 1822 10 37
1922.5-2123.5 |2023 4 41
2123.5-2324.5 | 2224 9 50
2324.5-2525.5 | 2425 10 60
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Solution Thus the problem is to find out 40th
percentile, eighth decile, and third quartile values
for body weight of 60 poultry birds.

(a) Calculation of 40th percentile value, i.e., P4
Wehave N = 60, Py is the value of the 5340 =

24th observation, and the 24th observation is lying
in the third class, i.e., in 1520.5—-1721.5 class.

40N
100~ FPyy_y
SP40 = X, + CI
! fPao
40.60
—— — 18
—1520.5 + %.201

= 1520.5+ 134 = 1654.5¢

.. There are 40 % (=24) poultry birds out of total
60 birds which have body weight 1654.5 g or
less, and 60 % (=36) birds are having body
weight above 1654.5 g.

(b) Calculation of eighth decile value, i.e., Dg

We have N = 60, Dy is the value of the % =
48th observation and the 48th observation is

lying in sixth class, i.e., in 2123.5-2324.5 class.
8N

— —Fdg_;
10
De=x,+10 " (1
8 1+ Fds
8.60
S 4
—21235 +10T.201

=2123.5+156.33 =2279.83¢g

.. There are 8/10 parts(=48) poultry birds out of

total 60 birds which have body weight 2279.83 g
or less, and 2/8th (=12) birds are having body
weight above 2279.83 g

(¢) Calculation of third quartile value, i.e., Q3

We have N = 60, Qs is the value of the 604—X3
= 45th observation, and the 45th observation
is lying in sixth class, i.e., in 2123.5-2324.5
class.
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W_p
0y =X, + 4B cr=21235
f4s
3.60 _
5201 = 2123.5 + 89.33
—221283¢

Thus, there are 3/4th(=45) poultry birds out of
total 60 birds which have body weight 2212.83 g
or less, and 1/4th (=15) birds are having body
weight above 2212.83 g.

3.1.7 Mode

It is not necessary that all the observations or all
the classes in a given set of data have got equal
frequency. One might be interested in knowing
the observation or the value which is having
maximum occurrence in a given data set, for
the purpose mode is defined. Mode of a set of
given data is defined as the value of the observa-
tion having maximum frequency.

Example 3.16

Let us suppose the following data are pertaining
to the of panicle per plant (hill) in a paddy field:
12,13, 15,8,6,9, 15,12, 10, 8,7, 15, 10, 10, 8, 9,
10, 9, 13, and 10. Find out the mode of the
number of panicle per plant.

67 8910 12 13 15
[tlfsfsfs |2 [2 |3

No. of panicle/plant
Frequency

Thus, modal value of number of panicle per
plant of paddy from the above data is found to be
10, as this value has maximum (5) frequency
among all other values.

For grouped data mode of a set of N number of
observations X;, X5, X3,...,Xy for variable X is

grouped into “a” number of classes as follows:

Class Mid-value (x;") Frequency ( f;)
X1-X2 ‘ Xy’ ‘fl
Xo-x3 ‘ X ‘fz
X3-x4 } X3’ ‘f3
E E
X1 EN s
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Now mode of the above data set is given as

fmo _fmufl
(fmo _fmn—l) + (fmo _fm0+l)

where X; = the lower class boundary of the
modal class.

fmo—1 = frequency of the class preceding the
modal class.

fmo = frequency of the modal class.

fmo+1 = frequency of the class following the
modal class.

CI = width of the modal class.

Mo =X, + .CI

The first step for getting modal value from a
classified data is to find out the modal class from
the frequency column of frequency distribution
table; that means to identify the class in which
maximum number of observations is lying. Then
one can use the above formula to get modal
value. Step by step procedure of getting mode
from classified data is presented below:

Steps in Calculation of Mode from Grouped Data

1. Identify the modal class, i.e., the class having
maximum frequency.

2. Identify the lower class boundary (X)), class
width (CI), and the frequency (f,,) of the
modal class.

3. Identify the frequencies of the class preceding
and following the modal classes, respectively

(i-e-’fmofl andfm0+l)'
4. Use the above values in the formula for mode.

Example 3.17

Let us take the example of body weight of
60 poultry birds once again to find out the mode
of body weights birds. We have the following
frequency distribution table:

Body weight (g) Mid-value (x;) Frequency (f)

1118.5-1319.5 1219 8
1319.5-1520.5 1420 10
1520.5-1721.5 1621 9
1721.5-1922.5 1822 10
1922.5-2123.5 2023 4
2123.5-2324.5 2224 9
2324.5-2525.5 2425 10
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Solution Total number of  observation
(birds) = 60

From the frequency distribution table one can
find that there are three classes, viz., second
(1319.5-1520.5), fourth (1721.5-1922.5), and
seventh (2324.5-2525.5), having same highest
frequency, i.e., 10. Thus we are coming across
with multimodal frequency distribution. A criti-
cal examination reveals that there is no problem
in working out the modal values from the second
and fourth classes, but getting a modal value
from the seventh class, the last class of the fre-
quency distribution, is not possible using the
above formula for calculation of mode.

Let us try to find out the mode from the second

class:

1. Modal class is 1319.5-1520.5.

2. Lower class boundary (X;) =1319.5, class
width (CI) =201, and the frequency
(f,n) = 10 of the modal class.

3. Frequency of the class preceding the modal
class (f,,..1) = 8 and frequency of the class
following the modal class (f,,,4+1) = 9.

So the mode
fm 7fm —1
Mo =X o —Jmo I
© l+(fm0 —fmo — 1)+ (fmo — fmo + 1)
10 —
=1319.5 + 0-8 201

(10 —9)+ (10 —-18)
=1319.5 + 134.00 = 1453.50 g

Similarly one can also find out the mode
corresponding to the fourth class.

Merits and Demerits of Mode Mode is easy to
calculate and understand; it can also be used
qualitative data. But mode is not defined rigidly
like AM, GM, or HM. For a given set of data, one
can have only one AM, GM, HM, and median
values, respectively, but there might be more
than one mode for some distributions like in
Example 3.17. Mode is also not based on all
observations, like median; to know the mode
one need not know the information on
observations at the beginning or at the end of
the data set; one needs to have information on
modal class and its preceding and following
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classes; information on rest of the classes are of
least importance as far as calculation of modal
value is concerned. If mode happens to lie in the
last class of the frequency distribution, then it
poses problem in its calculation. Mode cannot
be put under mathematical treatment easily.
Like median, mode also is comparatively more
affected by sampling fluctuations.

Uses of Mode Mode has got various uses in
agriculture and allied fields as well as in industry.
As this is basically gives importance on concen-
tration of observations, it plays vital role in qual-
itative data analysis. Mode is best used when
number of observations is huge.

Relationship of the Mean, Median, and
Mode No exact relationship among the arithme-
tic mean, median, and mode could be found. But
for a moderately skewed (a dispersion property
discussed in the next chapter) unimodal distribu-
tion, the following approximate relation holds
good: Mean — Mode = 3(Mean — Median). This
can be used for approximate value of any one of
the three if the other two are given. Moreover for
symmetric distributions like normal distribution,
Mean = Median = Mode.

3.1.8 Midpoint Range

Midpoint range of a set of “N” number of
observations X, X5, X3,...,Xy for variable X is
defined as the average of the maximum and min-
imum values of a given set of data. If “M” and
“m” are the maximum and minimum values of a
given set of data, respectively, the midpoint
range is (M + m)/2. Thus, to get midpoint range
of given set of data, may it be ungrouped or
grouped data, one needs to know only the maxi-
mum and minimum values of the data set.
Though very simple and easy to understand, as
this measure is based on only two extreme
values, it does not satisfy the criteria of good
measure. As such it is affected by the extreme
values in the data set and also by the sampling
fluctuation.
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3.1.9 Selection of Proper Measure
of Central Tendency

From the above discussions on different
measures of central tendency, it is clear that all
measures are not suitable to be used in every set
of data. Selection of a particular measure mainly
depends on the (a) type of data, (b) objective of
the study, and (c) merits and demerits of the
measures on hand. Though three types of means
are based on all observation, these have their own
merits and demerits and restrictive nature in use.
Moreover, median and mode, though are useful
measure for qualitative data, are not based on all
observation for quantitative data. If the objective
of the study is to find out the point or region of
highest concentration of occurrence of the
observations, then one can very well use mode.
On the other hand, if one is interested in dissec-
tion of the population, then partition values may
provide useful information. Thus, while selecting
a measure, one should be very careful and should
have thorough knowledge about the measures.

Trimmed Mean In many cases the arithmetic
mean is affected by the presence of outlier
(values are supposed to be different from the
rest of the values of a given data set; thus outliers
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are generally high or low values compared to
other values in a data set). On the other hand,
the median is least affected by the presence of
outlier in a data set compared to arithmetic mean.
But arithmetic mean has got other advantages
over median. To overcome the drawback of
arithmetic mean in presence of outlier, trimmed
mean has been advocated. Trimmed mean is the
arithmetic mean of the ordered data set after
deleting a percentage of data points from both
the ends of the ordered data set. On the other
hand, trimming percentage is the percentage of
data points at each end not considered for calcu-
lation of arithmetic mean. Thus 10 % trimmed
mean means 10 % data points from each end is
not considered for calculation of mean; that
means altogether 80 % middle observation are
being included during calculation  of
trimmed mean.

Example 3.18

The following data are pertaining to the milk
yield (kg/day) of ten different cows of particular
breed. Find out the arithmetic mean and the 10%
trimmed mean from the data, and conclude the
arithmetic mean, trimmed mean, and median in
describing the central tendency of the data.

5.6 115.6 135.6 1125 1145 146 15 116.5 1134 15.9
Solution The arithmetic mean is calculated to The ordered data would be:
be 5.6 + 15.6 + ...13.4 + 15.9/10 = 15.92 kg/
day.
5.6 12.5 13.4 14.5 14.6 15 15.6 15.9 16.5 35.6
We have ten observations; hence, 10 % too low(5.6) and too high (35.6), the arithmetic

trimmed means were calculated, the mean leaving
aside one observation at each end. Thus the arith-
metic mean of 12.5, 134,....... 16.5 would
12.5 + 134 +... + 159 + 16.5/8 = 14.75 kg/day

Now the median calculated from ordered data
would be the average value of 14.6 and 15, i.e.,
14.8 kg/day. Clearly due to the presence of two

mean was overestimated. On the other hand, the
10 % trimmed mean and the median result in
same average of 14.75 and 14.8 kg/day, respec-
tively. Thus, one can conclude that median and
10 % trimmed means are the better measure
(least affected by the presence of outlier) of cen-
tral tendency.
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3.2 Dispersion and Its Measures
We have already defined that tendencies of the
values of the observations in a given data set to
remain scattered or dispersed from a particular
value(observation) are known as dispersion.

Batsman A:
Batsman B:
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Example 3.19
Let us suppose that the run scored by two
batsmen in ten different innings are:

1120
162

98
56

A critical analysis reveals that both the
batsmen have scored equal total runs, viz.,
480 in ten innings, but the run scored by the
batsman A varies between 0 and 120 while that
of the batsman B is in between 35 and 65. Thus
the scoring patterns of the two batsmen are not
same; the batsman A has the tendency to score
around the 48, the average score, whereas the
batsman B has the tendency of scoring pattern
to remain scattered from the average value 48.
Thus, the run scored by the batsmen in different
innings has same central tendency, but they dif-
fer in dispersion. So to know the nature of the
data, or to explain the information hidden within
a set of data, measure of central tendency only is
not sufficient: one should explore the measure of
dispersion also.

In this chapter we have seen that there are two
types of measures of dispersions, viz., the abso-
lute measures of dispersions and the relative
measures of dispersion. Now the question is
whether all the measures are applicable in every
situation or are equally effective. To get answers
to these queries, one should have clear-cut idea
about the characteristics of good measures of
dispersion. Ideally a good measure of dispersion
should have the following characteristics:

(@) A good measure of dispersion should be
rigidly defined-,there should not be any
ambiguity in defining the measure.

(b) A good measure of dispersion should be
based on all observations.

(¢) A good measure of dispersion should be
easy to calculate.

(d) A good measure of dispersion should be
easy to understand.

(e) A good measure of dispersion should be
least affected by sampling fluctuations

(f) A good measure of dispersion should be
readily  acceptable for mathematical
treatments.

(g) A good measure of dispersion should be
least affected by the extreme values.

In order to reflect the true nature of the data, a
good measure should be based on all
observations and must be defined without any
ambiguity. To be applicable by varied range of
users, a good measure of dispersion should be
easy to understand and explain. For further appli-
cation of a measure, it should be responsive to
mathematical treatments and must be least
affected either by sampling fluctuations or by
extreme values in the data set.

With the above knowledge, let us now exam-
ine the different measures and their important
properties:

3.2.1 Absolute Measures of Dispersion
The range, mean deviation, variance, standard
deviation, quartile deviation, and moments are
the prominent absolute measures. In the follow-
ing sections, we shall discuss the measures:

3.2.1.1 Range
Range of a set of N observations X1, X5, X3,. . ..Xy
is defined as the difference between the
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maximum value and the minimum value of a set
of data, i.e., X ax—Xmin. This is the simplest of all
the measures of dispersion. Thus, to get range in
a set of data, one need not to put the data under
any rigorous processing, excepting to find out the
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two extreme values (the maximum and the mini-
mum) in the given data set.

Example 3.20
Find out the range of egg-laying capacity of
100 birds from the following data.

Bird no | Egg/Year | Bird no | Egg/Year | Bird no ‘Egg/Year Bird no ’Egg/Year
1 170 26 173 51 164 76 122
2 182 27 185 52 168 77 154
3 224 28 212 53 148 78 158
4 243 29 182 54 212 79 169
5 243 30 168 55 157 80 144
6 218 31 130 56 130 81 158
7 245 32 240 57 205 82 253
8 252 33 157 58 144 83 261
9 192 34 121 59 187 84 222
10 171 35 187 60 117 85 154
11 212 36 179 61 198 86 202
12 205 37 212 62 130 87 151
13 185 38 182 63 144 88 253
14 221 39 243 64 130 89 222
15 118 40 168 65 144 90 250
16 138 41 218 66 159 91 259
17 158 42 223 67 174 92 268
18 178 43 228 68 189 93 277
19 198 44 233 69 204 94 286

20 218 45 238 70 219 95 295

21 238 46 243 71 234 96 304

22 258 47 248 72 249 97 313

23 278 48 253 73 264 98 322

24 298 49 258 74 279 99 331

25 318 50 263 75 294 100 340
From the above data, it is clear that the vari- Example 3.21

able egg-laying capacity (X) has maximum value
340 (Xppax) and minimum value 117 (Xpin)-
Therefore, the range of egg-laying capacity of
100 poultry birds is (Xyax—Xmin) = 340-117
= 223 eggs/year.

Following table gives the milk yield (kilogram/
month) of 100 cows in certain village. Find out
the range of monthly milk yield from the given
data.
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Cow no MM~ | Cow no |MM"
1 275 26 250
2 287 27 262
3 329 28 289
4 348 29 259
5 348 30 245
6 323 31 207
7 350 32 317
8 357 33 234
9 297 34 200
10 276 35 264
11 317 36 256
12 310 37 289
13 290 38 259
14 326 39 320
15 223 40 245
16 243 41 295
17 263 42 300
18 283 43 305
19 303 44 310
20 323 45 315
21 343 46 320
22 363 47 325
23 383 48 330
24 403 49 335
25 424 50 340

Cowno | MM" | Cowno | MM’
51 256 76 224
52 260 77 256
53 240 78 260
54 304 79 271
55 249 80 246
56 222 81 260
57 297 82 355
58 236 83 363
59 279 84 324
60 213 85 256
61 290 86 304
62 222 87 253
63 236 88 355
64 222 89 324
65 236 90 352
66 251 91 361
67 266 92 370
68 281 93 379
69 296 94 388
70 311 95 397
71 326 96 406
72 341 97 315
73 356 98 325
74 371 99 285
75 386 100 242

Note: MM = Milk yield(kg) per month

Milk yield among the given 100 cows has the
maximum (X,,,) and minimum (X,,;,) values
424 kg and 200 kg, respectively. Therefore, the range
of monthly milk yield of 100 cows is Rx = Xax —
Xin = 424 — 200 = 224 kg per month.

Merits and Demerits of Range

1. Range is rigidly defined and can be calculated
easily.

2. It is easy to understand and also convincing.

3. Though, to find out range in a given data set,
all the observations are required to be exam-
ined, its calculation is based on only two
values in the given entire data set.

4. Range cannot be worked out if there are miss-
ing value(s).

5. Range is difference between the two extreme
values in a given data set, so it is very much
affected by sampling fluctuation.
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Uses of Range In spite of all these drawbacks,
range is being used in many occasions only
because of its simplicity and to have a firsthand
information on variation of the data. Range can
be used in any type of continuous or discrete
variables. It is easy to calculate so an ordinary
person can also use it. It is hard to find any
field of study where range has not been used
to get firsthand information about a given
data set.

3.2.1.2 Mean Deviation

Mean deviation of a set of N observations X, X»,
X3,...,Xy of a variable “X” about any arbitrary
point “A” is defined as the mean of the absolute
deviation of different values of the variable from

the arbitrary point “A” and may be denoted as
N
MD, = %Z IX; — A
i=1
For grouped data mean deviation about an
arbitrary point A of a set of N number of
observations X;, X,, X3,... Xy, of the variable
X grouped into “n” number of classes with
mid-values and frequencies of different classes

given as below:

Mid- X1 Xo | X3 Xy e Xppn | X1 | Xp
values(x;)
Frequency |fi  |fa |f3--ofi - fu2 fom1 | fa

LS A
Zfi =1

i=1

MD, =

The deviation from arbitrary point can suitably
be replaced by the arithmetic mean ( X ),
median (M,), or mode (M,) to get mean deviation
from arithmetic mean or median or mode,
respectively, and the respective formula is given
below:

Breed of sheep Meat (kg) at 12 month age (X;)
Gaddi 14
Nali 18
Rampur Bushair ‘ 18
Chokla 18
Sonadi 19
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Mean
deviation
from Ungrouped data | Grouped data
AM 1 X _ 1 & R
L e AT
i—1 =1
> f
=1
Median 1 & 1 1 )
S - M|y fiki = M|
N i1 Zf i=1
=
Mode 1 & 1 n .
SN Xi M| | ik = M|
N i1 Zfz i=1
=1
Example 3.22

Following table gives the average meat weight
(kg) from ten different Indian breeds of sheep.
Find out the mean deviations from arbitrary
value 18 kg, arithmetic mean, median, and mode.

Breed of sheep Meat (kg) at 12 month age
Gaddi 14
Rampur Bushair 18
Chokla 18
Nali 18
Marwari 21
Magra 28
Malpura 21
Sonadi 19
Patanwadi 22
Muzaffarnagari 25

As we are dealing with ungrouped data, there
would be no change in arithmetic mean and
mode if we arrange the data in order. On the
other hand, this arrangement will facilitate to
find out the median. Thus, using the arranged
data, one can find that the (a) arithmetic mean
of the given data setisX = 5[14 + 18 + 18+ ...
+ 25 + 28] = 20kg; (b) median is average value
of the fifth and sixth observations, i.e., (19 + 21)/
2 = 20 kg, and (c) mode of the given data set is
18 kg. Now using these information, one can
frame the following table:

|X; — 18] X, — X| |X: — M,| Xi — M|
4 6 6 4
0 2 2 0
0 2 2 0
0 2 2 0
1 K i 1

(continued)
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Breed of sheep Meat (kg) at 12 month age (X;) |X; — 18] [x; — X| IX; — M,| 1X; — M,|
Malpura 21 K 1 1 3
Marwari 21 3 1 1 3
Patanwadi 22 4 2 2 4
Muzaffarnagari 25 7 5 5 7
Magra 28 10 8 8 10
Average 20 3.2 3 3 3.2
Thus, we have For a frequency distribution, the above
1 formulae for calculation of mean deviation from
MD;g = _[|14 — 18|+ [18 — 18| +...... an arbitrary point “A,” mean, median, and
10 mode may be calculated using the following
+125 - 18] + 28 — ISH formulae:
1
=—[44+0+...... + 7+ 10] 1 &
» Lo MDi= Y A
=— =132kg. L=l
1 1 n
- _ _ 2. - X
MD 10[|14 20|+ 18 = 20| +...... MD = — ;fi|xi_x|
+ 25 — 20| + [28 — 20]] Do
i=1
1
=—[6+2+...... +5+ 8] | &
;8 3 MDy, = —— Y filxi — Me|
= =3.0kg. ; =
0 g ;f
1 4 1 &
MDy, = 7[|14 = 20| +[18 =20] + ... : MDy, = —— > _filxi = Mol
+[25 — 20| + |28 — 20]] > o
i=1
1
=—[6+2+...... +5+8] o ‘
10 For a grouped frequency, distribution x; is
_ % —3.0ke. taken as the mid-value of the i-th class.
1 Example 3.23
MDy, = EHM — 18|+ |18 — 18] +...... Following table gives the frequency distribution
4125 — 18] + |28 — 18]] for IOQ poultry.blrds with respect to their
| egg-laying capacity per year. Using the data,
=—[4+0+...... +7+10] find out the mean deviation from 200, mean,
;g median, and mode.
=—=32k
10 &

Egg class 117-144 145-172 173-200 | 201228 | 229-256 | 257-284 |285-312 |313-340
Frequency 5 10 14 31 20 10 7 3
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From the above information, let us make fol-
lowing frequency table:

3 Summary Statistics

Class Frequency (f) | x; CF< | fix; |x; —200] | f;]x; — 200]| ‘x, 7)7(‘ fi |x; - )?} |x; —Me| | f;|xi — Me| | |x; — Mo| | f;|xi — Mo|
117-144| 5 130.5] 5| 6525 | 69.5 347.5 90.72 | 453.60 | 88.79 | 44395 | 86.89 | 43445
145-172| 10 1585 15 | 15850 | 415 415.0 6272 | 62720 | 60.79 | 607.90 | 58.89 | 588.90
173-200 | 14 186.5 29 | 26110 | 135 189.0 3472 | 48608 | 3279 | 459.06 | 30.89 | 432.46
201-228 | 31 2145 60 | 6649.5 | 14.5 449.5 672 | 20832 | 479 | 14849 2.89 89.59
229-256 | 20 2425| 80 | 48500 | 425 850.0 2128 | 42560 | 2321 | 46420 | 25.11 | 50220
257-284| 10 2705 90 | 27050 | 70.5 705.0 4928 | 49280 | 5121 | 51210 | 5311 | 531.10
285-312 7 298.5) 97 | 2089.5 | 98.5 689.5 7728 | 54096 | 7921 | 55447 | 8111 | 567.77
313-340| 3 3265[100 | 9795 | 1265 379.5 10528 | 31584 |10721 | 32163 [109.11 | 327.33
Total 1828 22,122 4025 3550.40 3511.80 3473.80
Average 221.22 40.25 35.50 35.12 34.74

The arithmetic mean is calculated as per the 2. MDsys
formula given in and found to be 221.22.

From the cumulative frequency (less than MDyge = Z ZP‘I Me|

i=1 ll

type), it is found that the median class is the
fourth class, i.e., the class 201-228. Using the
formula for calculation of median from grouped
data (vido Example 3.14), the median of the
distribution is calculated to be 219.29.

Mode of the distribution is lying within the
class 201-228 and using the formula for calcula-
tion of mode from grouped data (vido Example
3.17), we have mode of the distribution as
217.39.

Using the above values for mean, median, and
mode, respective mean deviations are worked out.

MDyg =

Jxi — 200]
Z[ 1 ’lZf

100[5 x [130.5 — 200| + 15 x |130.5 — 200|

.47 x [298.5 — 200| + 3 x |326.5 — 200]]
4025

=—— =402
100 0.25n0

¥
Zl 1 ”Zf

|
5 [130.5 — 221.22| + 15
= 1ol *| |+

x[130.5 — 221.22| + ... +7

x|298.5 —221.22| 4+ 3 x |326.5 — 221.22|]
3550.45
=0 35.504no0.

—[5 x |130.5 — 219.29| + 15

x|130.5 — 219.29| + ... +7
x[298.5 — 219.29] + 3 x [326.5 — 219.29]]

~ 3511.80
100

3 . MDMD

= 35.118no.

n

%EW — Mo|
Zf,- =

[5 x |130.5 — 217.39] + 15

MDy, =

~ 100
x|130.5 — 217.39| + ... +7

x|298.5 — 217.39| + 3 x |326.5 — 217.39]]
~3473.80

= 34. .
100 34.738no

Mean deviations are good measures of disper-
sion, but these are defined only for absolute
values of the deviations. In fact, because of
wide acceptability and easy comprehension,
mean deviation from mean is widely used over
other measures.

Example 3.24
Let us take the problem of milk yield per month
for 100 cows as given in the following table. Find
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out the mean deviation from arbitrary point
300, arithmetic mean, median, and mode.

Milk class 220-228 228-256 256-284 284-312 312-340 340-368 368-396 396424
Frequency |8 | 14 |21 | 18 | 16 |13 |6 |4

Solution This is an example of continuous var- calculation of arithmetic mean, median, and

iable, milk yield per month in kilogram. From the = mode, one can have the following measures:

given information and using the formulae for AM = 298.84 kg, median = 294.889 kg, and
mode = 275.6 kg.

Class Frequency (f)|x; | CF<| fux; [x; — 300] | f;]x; — 300] | |x; — X| | fi]xi = X| | i — Mel | fi|x; — Me]| | |x; — Mo| | f;|x; — Mo
220-228 8 214 8 1712 86 688 84.84 | 678.72 81 648 62 496
228-256| 14 242| 22 3388 58 812 56.84 | 795.76 53 742 34 476
256-284| 21 270| 43 5670 30 630 28.84 | 605.64 25 525 6 126
284-312| 18 298| 61 5364 2 36 0.84 15.12 3 54 22 396
312-340| 16 326| 77 5216 26 416 27.16 | 434.56 31 496 50 800
340-368 | 13 354 90 4602 54 702 55.16 | 717.08 59 767 78 1014
368-396 6 382 96 2292 82 492 83.16 498.96 87 522 106 636
396-424| 4 410| 100 1640 110 440 111.16 | 444.64 | 115 460 134 536
Total 100 29,884 4216 4190.48 4214 4480
Average 298.84 42.16 41.90 42.14 44.80

Using the above values for mean, median, and 5. MDy,,
mode, respective mean deviations are worked out.

Z Zf |x; — Me|
i=1 lI

1 &,
MD300 = H—Z}‘i|xi — 300|

1
.|

) = ool % [214 — 294.89] 4 14

':1‘ 242 — 294.89| + ... + 7x

= $oo18 * 1214 = 300] + 14x 1382 — 294.89] + 3 x |410 — 294.89)]

1242 — 300] + ... + 7 x [382 — 300 ,4120104_42 14ke

+3 % |410 — 300]]

4216

= W = 4216kg MDMo Z Zf |xl M0|
=1 II
L g« 14— 275.60) + 14
_ ~ 100

4. —X| % [242 — 275.60] + -+ - + T

;f,- 1382 — 275.60| + 3 x [410 — 275.60]]

4480
- — 44.80k
100[8 x [214 — 298.84] + 14x 100 g

242 — 298.84| + ...+ 7x

|382 — 298.84| + 3 x |410 —298.84|] 3.2.1.3 Standard Deviation
4190.48 To avoid the criticism of taking only absolute
100 values of the deviations in case of mean
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deviation, a measure known as variance has been
proposed by taking mean of the squared
deviations from arithmetic mean. And the posi-
tive square root of the variance is termed as
standard deviation. Thus we have for N number
of observations X;, X,, X3,...,.Xy for variable

N

. 2 <

X the variance as 6§ = %> (X; — X)~, where X
i=1

is the arithmetic mean of the variable X based on
X1, X5, X3,...,Xy Therefore, standard deviation

N p—
is given as oy = +4 [+ Y (X; —X)2
i=1

For grouped data variance is defined as
follows:

For a set of N number of observations X, X5,
X3,. .., Xy, grouped in “n” number of classes with
mid-values and frequencies of different classes
as given below

Mid-values(x;) ‘ X1 ‘ X ‘ X300 o Xjye o X2 ‘ Xyt ‘ X

b edefus faa S

n
=
o

i=1

Frequency

Variance is given as

3 Summary Statistics
Variance can also be written as:

1. Ungrouped data

N

1 —\2 1 N 2 v
oy — N; (X, ~X)* = N; (X2 +X - 2x,X)

L SPENR Al L o e
= N2 2D X )

1< o o 1 -
:NZX? —X 4+ X :NZX,.Z X
i=1 i=1

2. Similarly for grouped data

) n 1 n
oy =—— (x:

1
n = i
1

i

n
= 1
X,‘z —2X m

i—1 !
Zf"li Zfi 1
i= P pn
_Enl:f 'nl a2 X = % _”1 i X
.Z,: -Z},:
/ : :}f

i=1 i=1

=1
i=1 Zfi i=1

20.4 kg.

—\2 . where f; and x; are the frequency and mid-value
fi(xi—X)" and the standard deviation as i ' dueney
of the i-th class.
I & —2
= (x; — X
oxX=1 |3 ;f ’( ! ) Example 3.25
Zf i Find the variance of meat weight (kg) of ten
= different breeds of sheep from the following data.
Breed of Rampur
sheep Gaddi | Bushair | Chokla | Nali | Marwari | Magra | Malpura | Sonadi | Patanwadi | Muzaffarnagari
Meat (kg) at | 14 18 18 18 |21 28 21 19 22 25
12 month age
. ) 1 N <\ 2
Method 1: Using the o3 = —Z (X —X) Meat (kg) at .,
N e Breed of sheep 12 month age (x;) (X —X)
Let us construct the following table and  Gaddi | 14 | 40.96
get the totals and average of each column. From  Rampur Bushair | 18 576
the first column we get arithmetic mean as Chokla | 18 ‘ 5.76
Nali | 18 5.6
(continued)
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Meat (kg) at Meat (kg) at
Breed of sheep 12 month age (x;) (X — )_()2 Breed of Sheep 12 month age (x;) X?

Marwari 21 0.36 Gaddi 14 196
Magra 28 57.76 Rampur Bushair 18 324
Malpura 21 0.36 Chokla 18 324
Sonadi 19 1.96 Nali 18 324
Patanwadi 22 2.56 Marwari 21 441
Muzaffarnagari 25 21.16 Magra 28 784
Total 204 142.4 Malpura 21 441
Mean 20.4 14.24 Sonadi 19 361
Patanwadi 22 484
Now using this value of arithmetic mean, Muzaffarnagari 25 625
L 424 Total 204 4304

one can have oy = Z (xi — )_()2 =—-"~ Mean 204 4304

N i=1

10
14.24kg?

Method 2 Using the formula

2=

N
2 _
Oy =
=1

1

XX
Let us construct the following table and get
the totals and average of each column. Using the
arithmetic mean from first column in the above

formula for variance, we have:

1 —
2 2 _ 2 _ 2
oy = N ig_l X; —X =4304-204"=14.24kg

For calculation of variance from frequency dis-
tribution, let us take the following example:

Example 3.26

Using the table of frequency distribution for
100 poultry birds with respect to their egg-laying
capacity per year, find out the variance.

Egg class 117-144 145-172 173-200 201-228 229-256 257-284 285-312 313-340
Frequency 5 10 14 31 20 10 7 3

Class Frequency X; fixi x;-AM (;c,--AM)2 f,-(;c,--AM)2
117-144 5 130.50 652.50 90.72 8230.1184 41150.59
145-172 10 158.50 1585.00 62.72 3933.7984 39337.98
173-200 14 186.50 2611.00 34.72 1205.4784 16876.70
201-228 31 214.50 6650.00 6.72 45.1584 1399.91
229-256 20 242.50 4850.00 21.28 452.8384 9056.77
257-284 10 270.50 2705.00 49.28 2428.5184 24285.18
285-312 7 298.50 2090.00 77.28 5972.1984 41805.39
313-340 3 326.50 979.50 105.28 11083.8784 33251.64
Total 1828.00 22122.00 207164.20
Average 221.20 2071.642
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From the above data, mean is calculated to be

1
27.585 cm, and using method 1 0')2( = —=7—
Yot

S filv-X)’ = L 2071642 = 2071.64
i=1

3 Summary Statistics

100

Class Frequency X; fixi X7 fxl?

117-144 5 130.5 652.5 17030.25 85151.25

145-172 10 158.5 1585 25122.25 251222.5

173-200 14 186.5 2611 34782.25 486951.5

201-228 31 214.5 6649.5 46010.25 1426317.75

229-256 20 242.5 4850 58806.25 1,176,125

257-284 10 270.5 2705 73170.25 731702.5

285-312 7 298.5 2089.5 89102.25 623715.75

313-340 3 326.5 979.5 106602.25 319806.75

Total 100 1828 22,122 5100993.000

Average 221.22 51009.93

) ) observations (as all are same), question of mea-

and using method 20y = S f Zf =4 = guring the variability does not arise at al.

51009.93 — 221.22% = 2071.64

Thus, both the methods’ result same variance.

Standard deviation worked out from the vari-
ance is ++v/Variance = ++/2071.64 = 45.52no0.

Variance is the squared quantity of standard
deviation, as such properties of standard devia-
tion and variance are same; moreover variance is
easier to handle than standard deviation because
of no question of taking square root. In the fol-
lowing sections, we shall discuss the important
merits and demerits of variance.

Merits and Demerits of Variance

Variance is a good measure of dispersion as it is
defined clearly, is based on all observations, is
easy to understand, is easy to put under mathe-
matical treatments, ranges between zero to infin-
ity, and is least affected by sampling fluctuations
or extreme values. Let us examine some of the
important properties of variance.

(i) Variance for a set of constant is zero.
Intuitively, variance measures the variability

among the values of the observations; if there is
no variability among the values of the

Mathematically,a)z( = f Z f Xij — ;
1 1/

i=1
now for the present situation, x; = ¢ (say) for all

observations, and as a result the arithmetic mean

is also “¢,” i.e., 6)2(2

[TPRL)

of the constants “c

02 =0

(c—c) = -

;fi =l

n
Zfi =1
i=1

(ii) Variance does not depend on change of ori-
gin but depends on change of scale.

Let us suppose a variable Q is changed to P,
such that P =a + bQ, where a and b are

constants. If O and 02Q are the arithmetic mean

and variance, respectively, for the variable Q,
then what could be the variance for P?

We know that o3 = %Zfi(Pi -P)’
Z:lfi =1

(a+bQ; —a—b0)’

Zn:fi =1

= Pf,(0 - 0)" =
Zx](‘lZ
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Thus, the variance of P depends only on

change in scale “b,” not on change in origin.
Similarly, o, = s.d(P) = |blog = |b|s.d.(Q)

Example 3.27

If the relation between weight (Y) and length (X)
of fish is given as ¥ = 5 + 0.5X and the oy’ =
10.2 then find the standard deviation of Y.

Solution We know that o7 = bh’c% ; here
b=055002 = (057 x 102 = 2.55.
Standard deviation oy = ++(2.55) = 1.596

(iii) Composite variance of “k” number of

61
2 2 .

6 .... 63~ with ny, ny, ns,. .., n; number of

observations, respectively, is
Samples 1 2 3 4... |i ... | K
No. of ny |nm |ny |ng n; Ny
observations
AM En E-T BT - E T N E
Variance ‘ {712 | {722 ‘ (732 ‘ {)'42 ‘ (7,'2 | ‘ ()']\,2

k k
1 .
o2 = - E nia? + E nid? , where 6% is
Sy Li=T i—1
1
i=1
the variance of i-th sample with “n;”

observations, and d; =X, — X, where X is the

samples  having  arithmetic = means combined arithmetic mean of all the samples.
X1,X2,X3, ...,Xk, variances 012 022 03 e Let us put k£ = 2, the composite variance
1 — 2 2 _ mX +mX
62 zi[nla% + nzag +n (X %) +m(x —X) ],Where,x =
ny+n ny + ny

1
*—[H]U% +n25% —+ n <)_61 —

ny+np ny +ny

nixy + naXp

2 _ N2
_ mXxp+nxp
+ X - ———=
ny +np

:L[nlaf + ngo% “+ ny
n +np

:L nlcr%Jrnzcr% +n1<
ny +np

_ 1

_I’ll + ny

1

_ — 2
npX1 — NaXp
ny +ny

2\ny + ny

ny + ny

- —\2
X — X
2 2 2 [ X1 2
nio| + nxo; +nin ( ) +

ny +np

_ _ ~ _\2 - - - —\2
nixXy + npXp — nix; — nzxz> n (nlxz + npxp — nixy — nzxz)
ny

_ —\2
nixXp — niXxj
| ————
ny +np

- —\2
2 X2 — X1
nny| ——
! ny +ny

nin, ()_Cl — )_Cz)z(nz + I’ll)

2 2
=——|no] +mo, +
n +np

— 1 2 2
=———|mol +moj +
n +np

(ny + 712)2
nlnz()_cl —f2)2
(n1 + n2)

Thus, for two samples, one need not to calcu-
late composite mean also to get composite
variance.

Example 3.28

Following data gives the no. of cobs per plant in
two samples of maize. Find out the composite
variance of maize plants.

Characteristics Sample 1 | Sample 2
Sample size 140 145
Average number of cobs/plant ‘ 12 ‘ 15
Sample variance ‘ 4.2 ‘ 2.5

Solution Combined variance of two sample is
given as
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3 Summary Statistics

n1n2 (f] — )_62)2

2 2 2
o o+ m nyoy N0, (n1+l’t2) ‘|
1 40 x 45(12 — 15)*
= |40x42+45%x25
20+ 45| 0  HETRXE T as)
1 1800(—3)*
=168 +112.5 + ——
5170 LT ]

1
= g[168 + 112.5 + 190.588]

1
— —_[471.088
—5.542

3.2.1.4 Quartile Deviation

Quartile deviation is defined as the half of the
difference between the third and first quartile
values of a given set of data; as such it is also
known as semi-interquartile range and is calcu-
lated as QD = % The usual procedure is to
calculate the quartile values from the given raw
data or frequency distribution and get the quartile
deviation value. It is clear from the definitions
of quartiles as well as the quartile deviation that
this measure may not be based on all obser-
vations; rather a few observations or groups are
considered during calculation of quartile devia-
tion. But it is easy to understand and better than
the range.

3.2.2 Moments

A more general type of measures to describe the
nature of a given set of data is given by moments. It
can be easily verified that the measures like arith-
metic mean, mean deviations, variances, etc. can
very well be expressed in terms of moments. The
r-th moment of a set of N number of observations
X1, X5, X3,. . .,.Xy for variable X about an arbitrary
point A is defined as the mean of the r-th power of
the deviations of the observations from the arbi-

trary point A and is expressed as
1 ,
() =5 (Xi =AY r=0123..

i=1

For grouped data the r-th moment of a set of
N number of observations X;, X,, X3,..., Xy for
variable X grouped into “n” number of classes
with mid-values and frequencies of different
classes as given below

AXn—2 |X,1,1 |X,,

fi b B b e

Mid-values(x;) ‘xl ‘xz ‘x3...,x,-,..
Frequency

about an arbitrary point A is given as

= n
Zfi =1
i=1
Let us take A = 0, then we have

and in particular

ifi =1

fxi=A
Zl 1 ’Z

putting A = X, we have

#1(0) =

)_()r, the rthmoment about

mean, known as rth central moment and is
denoted as m,..
Henceforth, we shall denote the raw moments

and central moments with “u”’ and “m,”
respectively.

It can be noted that

Uo(A) =mp=1 and u,(0)=X, m = 0,

I712=62
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Now putting r = 1,2.3.4 we have
Raw data
1 N
i (A) = N;(xi —A)= N
1 )
Ha(A) = NZ(X" —A)
i=1

1 5
uz(A) = NZ(Xi —A)

1 4
Ha(A) = NZ(X" —A)

Similarly for central moments,

Raw data
N

1< o1
nmi :NZI(X[ —X) :NZXI —

i=1

X —

>

N
my, = %;(X,- —)_()2 = Variance
1 N —\3
ms = NZ(X, —X)
i—1

1Y -
my = N;(XI 7X)4

Central Moment Does Not Depend on Change

of Origin but on Scale

Let us suppose a variable Q is changed to P, such
that P = a + bQ, where a and b are constants.

X

lN
ZX,-—A:)?—A
i=1

=0

n

Grouped data

1
MI(A) =

i=1 i=1

Grouped data

1 n . 1 n -
ml:n—‘ I()"iX): n Zfi./\’,'*X
S
=1 =1
n
my = nl (i — }7)2 = Variance
e i=1
l n .
m3 = — I(Xi _X)3
=
1 n .
my =— ()C, _X)

— LS a4 b0, —a—b0) =S Vb0, — 0
[ i=1

1

> fi

i=1

n_ _ 1
n Zb’fi (Ql - Q) =V n
i=1

>

i=1
n

> fi@i—0) = ¥m(Q)
Zfi i=1
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X-X=0
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Conversion of Moments

3 Summary Statistics

Let us suppose we have the mid-values of

1. Conversion of central moments to raw different classes of the variable X denoted by x;
moments about an arbitrary origin. and that the mean of variable is denoted by X; the
arbitrary origin is “A.”
1 n o 1 n B .
m =y filxi =) = (5 —~A-T+A)

n
i=1
i
i=1

= > fillw —4) - @-A))

= > il —A)"—(I)fZf,~<x.~—A>"‘<x—A)+("> >
=1 =1 i

a IV I(‘XI_A)
S L PR L P + (-1 ' mp T+ (=1) ) 11:”l
o) ) 1) r) =Y filw — A)
Nijl
=F—A

Using the above relationship and putting
r =1,2,3,4, one can find out

m1:0

2 2 )
my=Hy =\ | JHabr + {5 |H2ol

oy — 2y py + 42
Ho —

1
3 3 3
ms = pz — (1>M3—1ﬂ1 + <2>ﬂ3—2ﬂ,2 - (3),‘43—3#‘?

= p3 = 3popy + 3ugp — i
= p3 = 3popy + 2407

4 4 4 4
my = piy — (1>ﬂ4—1ﬂ1 + <2>ﬂ4—2ﬂ,2 - (3),“4—3/4? + <4>/44—4M‘,1

= py — dpspy + Opop? — i +
= py — dpspy + Opop® — 3p?
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2. Conversion of raw moments about an arbi-
trary origin to central moments.

Let us suppose we have the mid-values of
different classes of the variable X denoted by x;

1 & . 1 & .
(; —A)" = E fili —x—A+Xx)

'.'#l' =

— n i
i=1
i
i=1

n

r r r r
=m + me_py + meop? + ..+ my 4 ur
1 2 r—1 r
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and that the mean of variable is denoted by X; also
the arbitrary origin is “A.”
Let us suppose the arbitrary origin is “A.”

[ =X—A]

Using the above relationship and putting r =1,
2, 3, 4, one can find out

2
Hy=my+ | - =0+p

2 2
My =My + (1)”1271/41 + (2)’"272#12

=my + 2mipy + 2
=my +,Mlz

3 3 , (3 R
M3 =m3 + 1 ma_ipy + 2 m3_opi + 3 |M3-3H;

=m3 + 3map, + 3m1,u|2 +,ul3
= m3 + 3mop; + 3 X Op> + i’
= m3 + 3mp, +/t|3

4 4 )
My =m3 + 1 my—1py + o | Ma—2b]

+ (2 S () et
3 my—3p; 4 -4l

=m3 + 4dmap, + 6m2,u|2 +4m1/4? +/«l?
=ms + dmsu, + 6m2/4]2 +/4‘l‘ [ m = 0]

Sheppard’s Correction for Moments

During calculation of moments from grouped
data, we assume that in any class, all the
observations are equal to the mid-value (class
mark) of the particular class. Actually, this may
not be true; the values within a class also vary
among themselves. Because of this assumption,
error is automatically introduced; this error is
known as error due to grouping. To correct
these errors due to grouping for different
moments, Sheppard’s correction is introduced.
Corrections adopted for first four raw and central
moments are given below:



66

3 Summary Statistics

Raw moments

Central moments

u, (corrected) = No correction needed

m1=0

2
pa(corrected) = y, (uncorrected) — %

my(corrected) = my(uncorrected) — %

p3(uncorrected) — %/41

mj3 = no correction needed

( )
p3(corrected)
( )

py(corrected) = p (uncorrected) — % #,(uncorrected) + 2‘71_0}’4

my(corrected) = my(uncorrected) — %zmz(uncorrected) + oo h?

where “h” is the class width.

Sheppard’s correction should be used when
(1) total frequency should be very large, prefera-
bly > 1000; (ii) no. of classes is not too many,
preferably <20; (iii) only the frequency at both
the ends of the distribution approaches to zero
values; and (iv) the frequency distribution is
moderately skewed (discussed later in this
chapter).

Merits and Demerits of Moments

Moments are clearly defined and based on
all observations. Moments are more general
class of measures than the measures of central

tendency and dispersion; these take care of both
the central tendency and dispersion. In the
subsequent section, we shall see that moments
have got further uses in measuring the horizontal
as well as vertical departure of the frequency
distributions.

Example 3.29

Compute the first four raw moments about the
value 20 and the four central moments from the
following data on fruits per plant from 1045
plants of ladies’ finger (okra/bhindi). Use
Sheppard’s correction for moments for the fol-
lowing distribution.

Fruit
no./plant 46 |7-9 |10-12 | 13-15 |16-18 | 19-21 |22-24 |25-27 |28-30 |31-33 |34-36 |37-39 |40-42 |43-45
Frequency 54 |67 |83 94 111 157 104 91 74 66 52 45 32 15
(a) Method 1: Let us make the following table:

Class
Fruit Frequency | mark
no./plant | (f) x; (6 =20) | fi(xi —20) | (v —20)% | fi(i —20)% | (v —20)* |fi(x =20 | (i —20)* | fi(x —20)"
4-6 54 5 —15 —810 225.00 12,150 —3375.00 | —182250.00 | 50625.00 | 2733750.00
7-9 67 8 —12 —804 144.00 9648 —1728.00 | —115776.00 | 20736.00 1389312.00
10-12 83 11 -9 —747 81.00 6723 —729.00 | —60507.00 6561.00 544563.00
13-15 94 14 -6 —564 36.00 3384 —216.00 | —20304.00 1296.00 121824.00
16-18 111 17 -3 —333 9.00 999 —27.00 —2997.00 81.00 8991.00
19-21 157 20 0 0.00 0 0.00 0.00 0.00 0.00
22-24 104 23 3 312 9.00 936 27.00 2808.00 81.00 8424.00
25-27 91 26 6 546 36.00 3276 216.00 19656.00 1296.00 117936.00
28-30 74 29 9 666 81.00 5994 729.00 53946.00 6561.00 485514.00
31-33 66 32 12 792 144.00 9504 1728.00 114048.00 20736.00 1368576.00
34-36 52 35 15 780 225.00 11,700 3375.00 | 175500.00 | 50625.00 | 2632500.00
37-39 45 38 18 810 324.00 14,580 5832.00 | 262440.00 | 104976.00 | 4723920.00
4042 32 41 21 672 441.00 14,112 9261.00 296352.00 194481.00 6223392.00
4345 15 44 24 360 576.00 8640 13824.00 | 207360.00 | 331776.00 | 4976640.00
Total 1045 1680 101,646 750,276 25,335,342
Average 1.608 97.269 717.967 24244.346
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Thus, from the above table, we have the raw Using the above raw moments and the rela-
moments about 20 as tionship for conversions of raw moments to cen-
1608 tral moments, one can have the following central
Hi = moments:
1y = 97.269
uy = 717.967

Hy = 24244.346

m; = 0
my = p, — /412 =97.269 — 1.608% = 97.269 — 2.586 = 94.683
ms = p3 — 3up; + 2y]3 = 717.967 — 3x97.269x1.608 + 2x1.608>
= 717.967 — 469.226 + 8.315
= 1195.508
My = py — dpspy + pop’ — 3pt
= 24244.346 — 4x717.967 x 1.608 + 6x97.269 x 1.608> — 3x1.608"
= 24244.346 — 4617.964 + 1509.0297 — 20.0057
=21115.406

So the arithmetic mean and standard deviation (b) Method 2: Instead of using this relationship
of the number of fruits per plant are: between raw and central moments, one can
Wehave yy =x—A=>x=pu, +A directly use the formulae for calculation of
different central moments. For the purpose,

Arithmetic mean ¥ = 20+, = 20 +1.608 let us make the following table:

= 21.608 and
Standard deviation sd = +1/94.683 = 9.7305
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3.2 Dispersion and Its Measures

From the above table, one can easily verify that
AM =21.608,m; = 0,and m, = 94.684, and these
are exactly the same as what we got using the
relationship between the central and raw moments.

Raw moments

uy (corrected) = No correction needed = 1.608
2
u,(corrected) = p, (uncorrected) — é
22
=97.269 — — = 96.936
12
0
ps(corrected) = p3(uncorrected) — —pu,
=717.967 — 1.608 = 716.359
" 7 .
py(corrected) = p4(uncorrected) — —, (uncorrected) + —Oh
= 24244.346 — 2 x 97.269 4+ 0.029 x 16
= 24244813 — 194.538
= 24050.275
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Now using the formulae for correction of
moments as per Sheppard’s correction, one can
have the following corrected moments:

Central moments
myp = 0

2
my(corrected) = m;, (uncorrected) — —

22
=94.684 — — =94.351
12

ms3 = no correction needed

2

I 7
my (corrected) = my (uncorrected) — %mz(uncorrected) + mh“
=21115.357 — 2 x 94.684 4+ 0.029 x 16

=21115.357 — 189.368 + 0.464
= 20926.453

3.2.3 Relative Measures of Dispersion

The absolute measures discussed in the previous
section are not unit-free; as such if one wants to
compare the dispersions of different variables, it
is not possible because different variables are
measured in different units. Relative measures
of dispersions are mainly the coefficients based
on the absolute measures. As such these do not
have any definite units; these can be used to
compare the dispersions of different variables
measured in different units. In literature, based
on almost all the absolute measures of dispersion,
one can find different coefficients of dispersions
developed. In the following section, let us dis-
cuss those coefficients of dispersion.

(i) Based on range: Coefficient of dispersion
based on range is defined as %, where
Xmax and X;, are the maximum and mini-
mum values of the variable “X.”

(ii) Based on quartile deviation: Coefficient of

dispersion based on quartiles is defined as

30
= 0,-0,

&o T 0470,

Milk class 200-228 228-256 256-284

284-312
Frequency 8 14 21 18

(iii) Based on mean deviation: Coefficient of
dispersion based on mean deviation

from mean/median/mode is given by

MD mean/median/mode etc.
Mean/Median/Mode

Based on standard deviation: Coefficient of
dispersion based on standard deviation is

(iv)

defined as l;:x’ where oy and X are, respec-

tively, the standard deviation and arithmetic
mean of the variable “X.” This measure
takes care of two most widely used absolute
measures of central tendency (arithmetic
mean) and dispersion (standard deviation)
and is termed as “coefficient of variation
(CV).” Most widely used form of coeffi-
cient of variation is to express it in percent-
age form, i.e., %‘ x 100.

Example 3.30

Let us take the problem of milk yield per
month for 100 cows as given in the following
table. Find out the different relative measures of
dispersion.

312-340 340-368 368-396 396424
16 13 6 4
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Solution From the given information, the fol-
lowing table is prepared, and using the formulae

3 Summary Statistics

for calculation of arithmetic mean, median,
mode, and standard deviations are calculated.

Frequency

Class f) x; | CF< | fa; fix? |xi —X| | filxi —X| || —Me| | filxi —Me| | |x; — Mo| | f;|xi — Mol
200-228 8 214 8 1712 366,368 | 84.84 678.72 81 648 62 496
228-256 | 14 242 | 22 3388 819,896 | 56.84 795.76 53 742 34 476
256284 | 21 270 | 43 5670 1,530,900 | 28.84 605.64 25 525 6 126
284-312 | 18 298 | 61 5364 1,598,472 0.84 15.12 3 54 22 396
312-340 | 16 326 | 77 5216 1,700,416 | 27.16 434.56 31 496 50 800
340-368 | 13 354 | 90 4602 1,629,108 | 55.16 717.08 59 767 78 1014
368-396 6 382 | 96 2292 875,544 | 83.16 498.96 87 522 106 636
396-424 4 410 | 100 1640 672,400 | 111.16 44464 | 115 460 134 536
Total 100 - | - [29.884 9,193,104 4190.48 - 4214 - 4480
Average - - | - 298.84 91,931 41.90 - 42.14 - 44.80

AM = 298.84 kg, median = 294.889 kg,
mode = 275.6 kg, Q1 = 260, Q3 = 336.5, and
standard deviation = 51.24 kg

From the above table, we have MD
(300) = 42.16, MD = 41.90, MDy,. = 42.14,
and MDy,, = 44.80.

Thus, the Coefficient of Dispersion Is Based on

() Range: Xmax — Xmin 424 —220 204
8 Xmax + Xmin 424 +220 644
0.3167
03-0;
. . _0 -0
(b) Quartile deviation: 2
%10 0540,
336.5—-260 76.5
= =0.128
336.5+260 596.5
(c) Mean deviation about:
(i) MDmean 41.90
= =0.140

Mean 2908.84
(i) MD median  42.14

Median  204.889 014
(iii) MDmode 44.80

Mode 2756 1%

(d) Standard deviation = coefficient of variation
(CV) = Sg" = 32 = 0.1714 or in percent-
age form CV% = 32:x100 = 324 x100 =
17.14%

3.3 Skewness and Kurtosis

With the introduction of relative measures of
dispersion in the previous section, it is now

clear that neither the measure of central ten-
dency nor the measure of dispersion alone is
sufficient to extract the inherent characteristics
of a given set of data. We need to combine
both these measures together. We can come
across with a situation where two frequency
distributions have same measures of central
tendency as well as measure of dispersion, but
they differ widely in their nature. Let us take
the following example where we can see that
both the frequency distributions have almost
same arithmetic mean and standard deviation,
yet the nature of these two distributions is
different.

Example 3.31

Given below are the two frequency distributions
for panicle length (mm) of 175 panicles in each
case. Calculation of data indicates that the two
distributions have got means (AM1 = 127.371
and AM2 = 127.171) and standard deviations
(sdl = 34.234 and sd2 = 34.428) almost same.
Thus, both the distributions have almost same
measure of central tendency as well as measure
of dispersion. But a close look at the graphs,
drawn for two frequency distributions, shows
that they differ widely in nature.

Frequency Frequency

distribution distribution

A) B)

Class Frequency | Class Frequency
112.5-117.5 9 112.5-117.5 9
117.5-122.5 25 117.5-122.5 23

(continued)
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Frequency Frequency

distribution distribution

A) (B)

Class Frequency | Class Frequency

122.5-127.5 55
127.5-132.5 52
132.5-137.5 28
137.5-142.5 6
AM 127.371
Variance 34.234

122.5-127.5 69
127.5-132.5 37
132.5-137.5 31
137.5-142.5 6
AM 127.171
Variance 34.428

1251175 11751225 12251275 12751325 1325-1375 13751425

Frequency Distribution (A)

Frequency Distribution(B)

Thus, either the measure of central tendency
or the measure of dispersion in isolation or in
combination may not always speak about the
nature of the data. So, along with the measures
of dispersion and central tendency, one needs to
have other techniques/measures to extract the
original nature of the given set of data. Skewness
and kurtosis provide additional information
about the nature of the data set in this regard.

3.3.1 Skewness

Skewness of a frequency distribution is the
departure of the frequency distribution from
symmetry. Based on the skewness, a distribution

is either symmetric or asymmetric. A frequency
distribution of a discrete variable X is said to be
symmetric about X’, a value of the variable if the
frequency of the variable in X’ — & is same as the
frequency of the variable in X’ + §, for different
values of 6. Similarly a frequency distribution of
a continuous variable X is said to be symmetric
about X', a value of the variable, if the frequency
density of the variable in X’ — & is same as the
frequency density of the variable in X’ + 8, for
different values of 6.

Again an asymmetric/skewed distribution
may be positively skewed or negatively skewed
depending upon the longer tail on higher or lower
values, respectively.
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Frequency distribution
|

Symmetric
(similar tails at both the
lower and higher values)

3 Summary Statistics

Asynrllmetric/Skewed

[
Positively skewed
(Longer tail at higher values)

|
Negatively skewed
(Longer tail at lower values)

+ve skewed
Symmetric
-ve skewed
Given a frequency distribution, how should problems, Pearsonian type II measure has
one know whether it is symmetric or asymmetric been proposed.
distribution? In fact in literature, there are differ- (c) Pearsonian type Il measure: According to
ent measures of skewness; among these ; _ 3(Mean—Median)
. ow: g this measure Skewness = g - e
Pearsonian  measures, Bowley’s measure, In this measure instead of using mode like
measures based on moments, etc. are widely in type I measure, median has been used
used. based on the empirical relationship (mean-
mode) = 3(mean-median). But this relation-
Measures of Skewness ' N ship is true for moderately skewed dis-
(@) Based on the relative position of mean, tribution, so moderate skewness of the
median, and mode, the frequency distribu- distribution is assumed, which may not
tion 1s o . always hold true.
(i) Symmetric if mean = median = (q) Bowiey’s measure: According to this mea-
mode. (0:=0,)—(0,—-0))
.. .. . . sure, Skewness = = —=:—<2=<L thus the
(ii) Positively skewed if mean > median '  (0-0)+H0-0) '
> mode. measure is entirely fie.:p.endent on qua.rt.ﬂe
(iii) Negatively skewed if mean < median values and as such criticized for not consid-

< mode.Problem with this measure is
that if uniform trend is not found
among the AM, median, and mode,
then it is difficult to use the same
measure.

Pearsonian type I measure: According to
_ (Mean—Mode)

~ Standard deviation®
This measure assumes that there exists

only one mode for the frequency distribu-
tion. But in a frequency distribution, mode
may not exist or may have more than one
mode, in these cases this definition does not
work properly. To overcome these

(b)

this measure Skewness

ering all the values/observations of a given
data set.
() Measure based on moments: According
n=vp =

where m3 and m, are the third

to this measure skewness
ms __ mn3

- 3
m3, sd

and second central moments, respectively.
This type of measure is widely used. The
sign of /@, depends on the sign of ms.
Limiting value of the above measure is the-
oretically —oo to + oo. It may be noted
that all the measures of skewness have no
units; these are pure numbers and equal to
zero when the distribution is symmetric.
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3.3.2 Kurtosis

Inspite of having same measure of central ten-
dency (AM), dispersion (variance), and skew-
ness, two frequency distributions may vary in
their nature; these may differ in peakedness.
Peakedness of frequency distribution is termed
as kurtosis. Kurtosis is measured in terms of
By —3 =i —3 =y, where my and m, are
the fourth and second central moments, respec-
tively. Depending upon the value y,, a frequency
distribution is termed leptokurtic (y, > 0),

platykurtic (y, < 0), or mesokurtic (y, = 0).

Both the skewness and kurtosis have got great
practical significance. These two picturize the
concentration of the observation in different
ranges for a given set of data.

Thus, to know the nature of data, measures of
central tendency and measures of dispersion
along with skewness and kurtosis of the fre-
quency distribution are essential.

Calculation of Descriptive Statistics Through

MS Excel

Step 1: Go to Data Analysis submenu of Data in
MS Excel. Select the Descriptive Statistics as
shown below:

Leptokurtic

Mesokurtic

»Platykurtic
-3 -2 -1 0 1 2 3
(o ) Bock] - Microsoh Excel =L
_"L} Home et  Pagelayout  Formulss | Dats | Review  View  Adddn  Acrobat W-=Xx

2| Connections 3 X £ Clea - —wi i Lg L E IR 5 #3 show Detad | [y Data Anatysis
e w b |25 BE B de &)W E g oo
drei Il s Fme Tetto Remove  Dats  Comsolidste Whatd  Group Ungroup Subtotsl
¥ S Advanced | Columns Duplicates Validation - s = = =
Cannecthans. Seat & Filter Duata Toek Owitiire
A B c o E F 6 H 1 I [ L M N o ) aQ
1 Cowno| MM
2 1 275
S e
4 3 3 S T
5 4! Anovva: TwoFacter Without Replcation
Correlation
] 4 Coanance -
T [ 2 Exporents Smoathng .
8 7 ) F-Test Two-Sample for Variances
Fourer Analyss
9 8§ 57 Festogram
10 9 297 Maving Average
220 |Rardom Munber Generaton =

il 10 276
12 1 317
B 12 310
L] 13 290
15 14 326
16 15 223
17 16 243
18 17 263
19 18 283
0 19 0.
nl 20 2
2| 2l 4.
Bl 363
u B | il
W 4 W Sheetl ~Sheetd Sheetd I i | 8
Ready

BE o €(=[2]=

[ =]




74 3 Summary Statistics

Step 2: Provide the input range and the output analysis), and tick on to Summary Statistics as
range (where the output is to be placed upon show below:

IR o BRI

% son m;

St S
. 4 B | .3 W R R J—— M [ N
1| Cowno | MM
a1 ] 2
:J

el nelelslelslsple R Elgleles]a ] =

Step 3: Click on OK to get the windows as given
below containing the output.




3.3 Skewness and Kurtosis 75

Calculation of Descriptive Statistics Through sources or importing, looks like the following
SPSS slide.
Step 1: When these data are transformed to

SPSS. Data editor, either copying from the

e Ede Yeew QDea Irsskom  Anelyze  Graphs  \tiSer Addgnn  Wndow  Hel
CHO B o0 LERE A Al EE6E 399
1M |ars | Viskle: 1 4 1 Viristing

i

26700
3=00
34800
34300
3B
3000
300
270
76,00
3700
310,00
29000
i
2300
24300
%300
2300
303,00
3B
34300
®3I00
B0
403,00
a2a0m

1| i

|5PSS Processormreedy | | =

iginziBlzEEElazlsmze]ele o0 =wn

%

Step 2: Go to analysis menu followed by Descrip-
tive Statistics and Descriptive as shown below.

2

3

4

5

B »

7 *

8 L

a *

10 Y

1 m S 5

12 3100 Honparametric Tests *

13 x0m s Zars »

1" wW n! 4

15 23m [ manairg Valse Anatgss .

16 H3m b i

17 ®m Compjee Sangies ¥

8 26300 Sy Conkeed L

1 W0 7] moc curye..

o mm

21 M3m

7l ®IW

a B0

FT] a3m |
e

” Tﬂ A2a 00 o

|SP5S Processorisresdy | | ==
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Step 3: Select the variable for which one wants
the Descriptive statistics and then click on to
Option menu as shown below.

B "Unttied1 [DataSent] - SPSS Duta Eeftor =@ 8 |
CHA B 60 LER At BEE 329
1M |25 | Wisitle: 1 o4 1 Viriabing
| ma | e | w [ e | e [ e vat var vat var | v var var var var vie | vae

26700
3200 1
34800

Ham
s B Descriptives =)

] Save stanarciged vahuss as varisbles.

2300 | (o ][ ewe ][ goeet [ concet |[ nee |

Step 4: From the options, select the required
measures as shown below, and click on to
continue and then OK to get output as below.

# “Output [ 1 - 5PS5 Viewer | gl
CHAR B E o0 Dnwik 2% & Gws &jep + - O@ T28]

Outpa
;ﬂ Log DESCRIPTIVES VARIABLES=MN
ED’““':‘“ /STATIST sTUDEV nIN RAX
- Motes
Active Dataset
[bataset0]
Descriptive Statistics
N | Minimum | Masmum | Mean | 1 Oedston | vasiance Siwness Kurh
suvssc | ctavstc | swese | ot | cianeve | cwavene | staanc | o Evor | sravese [ s eror |
[ 100 | 20000 | 42400 |20876E2 | 5130856 | 2633E3 T | -6 478
vasdn 100




4.1  Introduction

In our daily life, we are experienced about the
fact that occurrence or nonoccurrence of any
event/phenomenon is associated with a chance/
uncertainty factor. We are always in search of
likelihood of happening or nonhappening of
event/phenomenon. The farmers who want to
have plant protectional spray on a particular day
will be interested to know the likelihood of
raining before and after spray so that the effect
of spray is not washed out by the occurrence rain.
A fish farm will be interested to spend money on
a particular type of feed only knowing after like-
lihood of increasing body weight of fishes by the
new feed. In statistics, the likelihood of happen-
ing or nonhappening of an event is generally
known as probability. Probability is a mathemat-
ical construction that determines the likelihood
of occurrence or nonoccurrence of events that are
subjected to chance factor. Thus the farmers are
interested to know the probability of occurrence
rain before and after spraying. As we have
already discussed, the subject matter of statistics
is concerned with drawing inference about the
population based on observations recorded,
mostly from sample. In this regard probability
plays a great role. Noting a particular character
(say percentage of cancer patients or percentage

© Springer India 2016

of disease affected area in a field), in a sample the
experimenter wants to infer about the (percent-
age of cancer) population or percentage of
disease-affected area as a whole, with a probabil-
ity. Greater is the probability of drawing accurate
inference about the population; better is the infer-
ence about the population.

Before dealing with the theory of probability,
it is useful to have some knowledge of set theory.
Knowledge of set theory and its laws will help us
in understanding probability theory. In the next
section, we shall discuss the set theory in brief.

Set A set is accumulation or aggregation of
well-defined objects/entities having some specific
and common characteristics. For example, the
fishes in a pond, fishes of weight greater than
1 1b in a pond, fishes with scales in a pond, and
fishes without scales in a pond, all these consti-
tute set of fishes in the pond, set fishes greater
1 1b in the pond, set of scaled fishes in the pond,
and set fishes without scales in the pond, respec-
tively. The individual member of set is called
its element/member/point of the set. If x is a
member of a set “X,” then we denote it as x €
X that means x belongs to or is an element of
the set X, and if x does not belong to a set X or
x is not a member of the set, then it is denoted as
x¢X.
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4.2 Types of Set

Finite Set Finite set is a set having finite number
of elements/members, e.g., ripe mangoes in a
tree, integers beween 1 and 100, etc.

Infinite Set A set consisting of infinite number
of elements/member/units is called infinite set.
Infinite set again is of two types: (a) countably
infinite and (b) uncountably infinite. A set
consists of infinite number of elements but
these can be ordered and is known as countably
infinite set, e.g., the set of all integers, i.e.,
X = {x: all integers} = {1, 2, 3, 4, 5,...}. On
the other hand, an uncountably infinite set is a set
of elements which can neither be counted nor be
ordered, e.g., the set of numbers in between 0 and
l,ie, A= {x0<x<1}.

Equal Set Two sets “A” and “B” are said to be
equal if every element of the set “A” is also an
element of the set “B” and vice versa and is
denoted as A = B. Thus, if A = {1,2,3} and
B ={23,1},A =B.

Null Set A set having no element is called
an empty set or null set and is denoted by ¢.
The set of negative integers between 2 and
3, i.e., A = {x:2 < all negative numbers < 3}.
The set A = {0} is not a null set as it contains an
element zero. Null set is a subset of every set.

Subset A set “A” is said to be a subset of a set
“B” if all the elements of the set A are included in
the set B and we write A C B.

Suppose we have two sets A = {x: 0 < x
(integer) < 3} ={1,2,3} and B={x: 0 <
x (all numbers) < 3} ={0, 0.1,
0.2,...1,...2,...,3}, then A C B.

It is to be noted that if a set has n elements,
then it has 2" subsets.

Mainly there are three types of fertilizers, viz.,
inorganic, organic, and bio-fertilizers. So each of
the set of inorganic, organic, or bio-fertilizers are
individually the subsets of the set of fertilizers.

4 Probability Theory and Its Application

Power Set A set of all the subset of a set
A including the null set is called the power set
of A. In tossing a coin, the set of outcomes
would be {H, T}, {H}, and {T}, then the set
[[¢, {H}, {T}, {H, T}] is the power set A.

Universal Set Suppose all the sets under con-
sideration are the subsets of a certain set A, then
this set A is called the universal set or the whole
set, and it is generally denoted by U.

If A = {x: all the fertilizers}
B = {x: all inorganic fertilizers}
C = {x: all the organic fertilizers}
D = {x: all the bio-fertilizers}

Therefore, A is the universal set for all the sets B,
C, and D.

Union Set A set A is said to be the union of two
sets B and C if it contains all the elements
belonging to either set B or set C or both, but
no repetition is allowed and is denoted as
A = BUC. The idea of union can very well be
extended to more than two sets also. Thus,
BU C = {x:x € Borx € C}. Similarly for
more than two sets B; (i =1, 2, 3...n),

n
UB;,=x:x€ B;, for at least one i, i =1,
i=1

2,3...n}.
Example 4.1 In throwing a dice, let A be the set
of all odd faces and B be the set of all even faces.

Find out the union set for A and B.

Solution Thus,

A = {x: all odd faces of the dice} = {1,3,5}

B = {x: all even faces of the dice} = {2,4,6}

AUB = {x: all faces of the dice} = {1, 2, 3,
4,5,6}

Complement The complement of a set A is the
set containing the elements except the elements
of the set A and is denoted by A '/A° /A. Thus, a
set and its complement divide the universal set
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into two distinct sets. In throwing a dice, the set
of odd faces of the dice is the complement of
the set of all even faces. All elements belonging
to the universal set U but not belonging to
A constitute A®. Thus a set A '//A° /A is the com-
plement of the set A if it is constituted of all
the elements of the universal set which are not
members of the set A.

Example 4.2

U = {x: all faces of dice} = {1, 2, 3,4, 5, 6}.

Now if A = {x: all odd faces of dice} = {1,3,5}
then

= A° = {x: all even faces of dice} = {2, 4, 6}

Example 4.3 If the universal set U = {x: all
fertilizers} and

if A = {x: all inorganic fertilizers}, then
A /A JA = {x: all fertilizers excepting inorganic
fertilizers}

Intersection The intersection set of two or more
sets is the set of all elements common to all the
component sets. Thus the intersection of two sets
A and B is the set of all elements contained in
both the sets and is denoted as A N B. Similarly,

for more than two sets A; (i = 1, 2,3...n), rnﬁ A;
i=1

=x:x €A; foralli, i =1,2,3...n}.
If there is no common element in both the sets,
then AN B = ¢ (null set).

Example 4.4 In throwing a dice, let A be set of

all faces multiple of three, i.e.,

A = {x: all faces multiple of three of dice}
= {3,6}, and B be a set of all even faces, i.e.,
B = {x: all even faces of dice} = {2,4,6}

SJANB = {6}.
Disjoint Set When there exists no common
element among two or more sets, then the sets
n
are known as disjoint; as such N A; = ¢, where

i=1
A; denotes i-th set.
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Example 4.5 Let A = {x: all inorganic
fertilizers}, B = {x: all organic fertilizers}, then
AN B = ¢ and we call set A and set B as disjoint.

Difference A set consisting of all elements
contained in set A but not in set B is said to be
the difference set of A and B and is denoted as
A—B.

A—B = {x:x €A, butx¢B}

Similarly B—A = {x:x € B, butx¢ A} is the
set of all elements belonging to the set B but not in
A. It may be noted that a difference set is the subset
of the set from which difference of other set is
being taken, ie., A—B CA,B—A C B. More-
over, it should also be noted that A—B # B—A

Example 4.6 Let

A = {x: all fertilizers, i.e., inorganic, organic,
and bio-fertilizers }

B = {x: all inorganic and organic fertilizers}

= A—B = {x: all bio-fertilizers}

4.3 Properties of Sets

The above mentioned sets follow some important
properties. Let us state some of the important
properties without going into those details.

(i) Commutative law for union: If A and B are
two sets,then AUB =B UA
Commutative law for intersection: If A and
B are two sets, then AN B = BN A.
Distributive law of union: If A, B, and
C are three sets, then A U(BN C) =
(AUB) N(AU ().

Distributive law of intersection: If A, B,
and C are three sets, then A N(BUC) =
(ANB) UAN Q).

Associative law: If A, B, and C are three
sets, then AU (B UC) = (AU B) UC
andAN (BNC) = (AN B) NC.

(i)
(iii)

(iv)

)
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(vi) Difference law: If A and B are two
sets, then (i) A—B = A NB° and (ii)
A—B=A—-(ANB)=(A UB)—B.

(vii) Complementary laws: (a) U= ¢ and
¢c=U, (b)) AUU=U, (c) ANU=A,
DANA =g, @) AUPp=A,HANP =
¢, (g) AUA® = U, and (h) (A°)° = A.

(viii) De Morgan’s law: (a) (AUB) = A° N B,
(b) (A NB) = A UB“.

44  Experiment

So long we have tried to establish probability in
terms of chances or likelihood of occurrence of
events. Such events may be thought of as out-
come of experiments. Now the question is what
do we mean by an experiment? What are its
types? What are its components? In the following
section, we shall try to discuss in brief about
experiment and related terminologies.

(i) Experiment and random experiment: An
experiment is a systematic process or activ-
ity which leads to collection of information
and its analysis on certain objects to answer
to the objectives that the researcher has
already in mind. An experiment may be
regarded as an act which can be repeated
essentially under the same condition. A ran-
dom experiment is an experiment whose
results cannot be predicted in advance or
whose results depend on chance factor. For
example, in throwing a dice, any one face
out of six faces, viz., 1, 2, 3, 4, 5, and 6, can
appear, but nobody knows which face will
appear in any particular throw. The results of
any random experiment are called outcome
of the experiment. In throwing a dice having
six faces, the possible outcomes are 1, 2,
3, 4,5, or 6. Thus any outcome of any
random experiment is always associated
with chance factor. For an unbiased dice,
each face has got 1/6 chance to appear in
any draw.

4 Probability Theory and Its Application

(i) Event: One or more outcomes of a random
experiment constitute event. Event is almost
synonymous to outcome of a random exper-
iment; actually events are set of certain
specified outcomes of random experiment;
on the other hand, outcomes or the elemen-
tary events are the ultimate results of any
random experiment which cannot be
disaggregated further.

Example 4.7 In the experiment of throwing a
dice, appearance of 1, 2, 3, 4, 5, or 6 in any
throw is the outcome of the experiment, but the
three outcomes 1, 3, and 5 or 2, 4, and 6 constitute
two events, viz., event of odd faces and event of
even faces, respectively. Both the events of odd
faces and the even faces can further be
disaggregated into the outcomes of 1, 3, and
5 or 2, 4, and 6, respectively. Again take the
example of tossing an unbiased coin: the
outcomes are head (H) or tail (T). Thus head
and tail both are outcomes as well as elementary
events for the experiment of throwing an
unbiased coin.

(iii) Compound event: When an event is
obtained by combining together two or
more events, then it is known as com-
pound event. For example, in throwing
dice getting multiple of three is a com-
pound event because this will occur if
either or both of the elementary events
3 and 6 occur.

Trial: When an experiment is repeated
essentially under the same/identical condi-
tion, instead of providing unique result,
provide one of the possible outcomes,
then it is called a trial. In other words,
each performance of a random experiment
is called a trial, and all the trials conducted
under the same condition form a random
experiment. In the example of throwing
coins, each time we throw the coin, it
results in one of the outcomes, head or
tail — thus it is known as trial. When this
trial of throwing coin is repeated, and

(iv)
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)

(vi)

(vii)

(viii)

Probability Defined

other conditions remain constant, then
these constitute a random experiment of
throwing coin. Take another example:
before releasing any variety, the same is
put under experimentation along with
some check varieties at different situations
(may be locations) under the same experi-
mental protocol; we call these as multi-
locational trials. All these multilocational
trials constitute the varietal experiment.
Mutually exclusive events: Two events are
mutually exclusive or incompatible if the
occurrence or nonoccurrence of one event
precludes the occurrence or nonoccur-
rence of the other event. Let us take the
example of throwing an unbiased coin: if
head appears in any throw, this means tail
cannot appear and vice versa. Thus
appearance of head in any throw
precludes/cancels the appearance of tail
and vice versa. More than two events
may also be mutually exclusive. For exam-
ple, in throwing a dice, any one of the six
faces will appear and other five faces can-
not appear. Thus appearance of one face
precludes/nullifies/cancels the occurrence
of other faces.

Exhaustive events: Exhaustive event is the
set of all possible outcomes of any random
experiment. For example, in case of
throwing a dice, the set of all the possible
outcomes, viz., 1, 2, 3, 4, 5, and
6, constitutes exhaustive events for the
experiment.

Independent events: Two or more events
are said to be independent if the occur-
rence or nonoccurrence of an event is not
affected by the occurrence or nonoccur-
rence of other events. In throwing an unbi-
ased coin, the outcome does not have
anything to do with the outcomes of its
previous or subsequent throws. Similarly
in throwing a dice, the result of the second
throw does not depend on the result of the
first, third, fourth, or subsequent throws.
Equally likely events: Two or more events
of any random experiment are equally
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likely when one cannot have any reason
to prefer one event rather than the others.
In tossing coin, there is no reason to prefer
head over tail, because both the faces of
the coin have same chances to appear in
any throw. So the events head and tail are
equally likely.

(ix) Sample space: A sample space is related
with an experiment; more specifically it is
related with the outcomes of the experi-
ment. Actually a sample space is the set of
all possible outcomes of any random
experiment, and each element of the sam-
ple space is known as the sample point or
simply point. Sample space may be finite
or infinite. For example, in throwing dice
the sample space is S = {1,2,3,4,5,6},
a finite sample space. Now if we are
conducting an experiment in the form of
tossing a coin such that the coin is tossed
till a head appears or a specific number of
head appears; in this case the sample space
may be S = [{H}, {T.H},{T,T,H},{T,T,T,
H}...]. Thus the time or duration of tele-
phonic talk per day from a particular num-
ber in a particular telephone exchange is
also an example of infinite continuous
sample space, which may be written as
S ={x0<t<24h}.

(x) Favorable event: By favorable event we
mean the number of outcomes or events,
which entails the happening of an event in
a trial. For example, in throwing an unbi-
ased coin, the number of cases/event
favorable of getting head out of two
alternatives H/T is one, as such either
head or tail is the favorable event.

(xi) & (sigma) field: It is the class of events or
set of all subsets of sample space “S.”

4.5 Probability Defined

In its simplest form, probability is a way to
measure the chances of uncertainty. Probability
can be a priori or a posteriori. If a day is cloudy,
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our general knowledge says that there might be
rain. If the weather conditions are cloudy and
humid, then there is probability of late blight of
potato. Thus, such probabilities come from the
logical deduction of the past experience and are
known as a priori probability. On the other hand,
an a posteriori probability is to be ascertained by
conducting planned experiment. For example,
tuition helps in getting better grade by the
students can be established only after placing a
group of students under tuition and recording
their grades with certain probability.

Probability can be explained and defined in
different approaches: (i) the classical or mathe-
matical approach, (ii) the statistical/empirical
approach, and (iii) the axiomatic approach.

According to mathematical or classical

approach, probability of an event A is defined

as P(A) — Number of favourable cases forA _ m where
Total number of cases n
€699

the random experiment has resulted in “n
exhaustive, mutually exclusive, equally likely
events and out of which “m” is favorable to a
particular event “A” with m > 0,n > 0, and
m < n. Thus, according to the conditions above,
0 < P(A) < 1.In spite of its simplicity and easy
to understand nature, this definition suffers from
the fact that in many cases, the cases or event
may not be equally likely. Moreover when the
sample space or the number of exhaustive cases
is not finite, then it is difficult to define the
probability.

Example 4.8 Suppose in a throwing coin exper-
iment, out of ten tosses, head has appeared six
times. Hence the probability of the event head in
the above experiment is 6/10 = 0.6.

According to statistical approach probability
of an event, A is defined as P(A) = lim, .2,
under the condition that the experiment has been
repeated a great number of times under the same
condition where “m” is the number of times in
which the event A happens in a series of “n” trials
and the above limit exists. This definition also
suffers from the fact that it is not easy to get the
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limit always and sometimes limit does not pro-
vide a unique value; also as we increase the
number trials to a great number, it is very diffi-
cult to maintain the identical experimental
condition.

The axiomatic approach of probability has an
intention to overcome the limitations of the other
two definitions. In this approach any function
“P” defined on a (F (sigma) field satisfying the
following axioms is called probability function
or simply probability.

Axiom I: For any event P(A) > 0;A €&

Axiom II: P(S) = 1 (§ = sample space)

Axiom III: For any countably infinite number of
mutually exclusive events A;, A,... each
belonging to E-field P(A; UA; UAs....) =
P(A1) + P(A2) + P(A3) + ..., i.e., P(UX|A) =

iP(Ai)
P

In the following section, we shall state some
of the important results of probability without
going details in to their proofs.

4.5.1 Important Results in Probability

(i) P(¢) =0

(i) IfAy, Ay, As, .. A, are ndisjoint events each
belonging to (E-field, then

P(L"JA,-}iP(A,-)

Example 4.9 In throwing a coin, there two

mutually exclusive equally likely outcomes/

events, head and tail, each with probability 1/2

and 1/2. Hence, PHUT) = P(H) + P(T) = 1/2

+1/2=1.

(iii) If A is an event in (E-field, then P(A€) = 1—
P(A).
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Example 4.10 In the above Example 4.9,

the complement of head is the tail. Hence

P(T) =1-PH) = 1/2.

(iv) If A; and A, are two events in (E-field and
Ay C Ay, then P(A]) < P(Az)

Example 4.11 Suppose there are two events, A:

{x:1,2,3,4,5}, and B:{2,3,4}, in a sample space S:

{1,2,3,4,5,6}, clearly B C A. Now P(A) = 5/6

and P(B) = 3/6, so P(B) < P(A).

(v) For any two events A and B in the (E-field,
P(AU B) = P(A) + P(B)— P(AN B).

@99

The above result can also be extended for any “n

events as follows:
p (UA:-) B ERS zP<AﬂA,-)
i=1 i=1 1<izj<n

+ Z ZZ(AimAijk)— ......

1<i<j<k<n

...... + (—1)<"*‘>P(A1ﬂAzﬂA3.........ﬂAn)

Example 4.12 In an examination out of
100 students, 70 passed in statistics, 80 in math-
ematics, and 60 in both. Then how many students
passed either in statistics or mathematics or both?

Thus we have P(S) = probability of passing
in statistics = 70/100 = 0.70,

P(M) = probability of passing in mathemat-
ics = 80/100 = 0.80, and

P(SN M) = probability of passing both the

subjects = 60/100 = 0.60

SP(SUM)=P(S)+PM)—P(SNM)
=0.70 4 0.80 — 0.60 = 0.90

(vi) Boole’s inequality: For any three events Ay,
A,, and As:

3
(@) P(AjUAUA3) <> P(A)

i=1
(b) P(A1NAyNA;) > i:P(Ai)i:P(Ai) -2
i=1

i=1
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(vii) Conditional probability: Two events A,
and A, are such that neither P(A;) nor
P(A,) equals to zero, then probability
of happening “A;” fully knowing that
“B” has already happened is known as the
conditional probability of “A;” given
that “A,” has already occurred and is
given as P(A|/A;) = P(A; NAy)/P(A,).
Similarly, the conditional probability
of “A,” given that “A,;” has already
occurred is given by  P(Ay/A)) =
P(A; NAy)/P(Ay).

Example 4.13 In a paddy field, 50 % is affected
by BPH (brown plant hopper), 70 % by GLH
(green leathopper), and 40 % by both BPH and
GLH. Find the probability of (i) area affected by
either of the pests, and (ii) find the probability of
any area affected by BPH when it is already
affected by GLH and vice versa.

The first problem is related with union
of probabilities (fifth important results in prob-
ability 4.5.1.V) and the second one is with
the conditional probability of one happening
even when the other event has already occurred
(i.e., 4.5.1.VII). Let us first find out the
probabilities:

Probability of an area affected by BPH =P
(BPH) = 50/100 = 0.50.

Probability of an area affected by GLH =P
(GLH) = 70/100 = 0.70.

Probability of an area affected by both BPH
and GLH

GLH = P(BPHN GLH) = 40/100 = 0.40.
(i) So the probability of an area affected by

either BPH/GLH/both is the union of the
two probabilities

~.P(BPH U GLH) = P(BPH) + P(GLH)

—P(BPH N GLH)
=0.50 4+ 0.70 — 0.40
=0.80
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(i) Conditional probability of an area affected
by GLH when the area is already affected

by
P(BPH N GLH
BPH is P(GLH,/BPH) — D(EPH O GLH)
P(BPH)
040
= 55 = 080

and the conditional probability of an area
affected by BPH when the area is already

affected by  BPHis P(BPH/GLH) =
P(BPHNGLH) 040 _
P(GLH) 070

(ix) Independent events: Two events A and B are
said to be independent if the probability of
happening of the event A does not depend
on the happening or nonhappening of the
other event B. Thus using the formula of
conditional probability of two events A and
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B, for two independent events A and B, we
have P (A/B) = P (A) and P(B/A) = P(B).

So when two events A and B are independent,
then using compound law of probability, we have
P(ANB)=P(A)P(B).

For three or more events A, A,, As. .
independent, we have

A, to be

If only the condition (1) is satisfied, then Ay,
A,, and A; are pair-wise independent. The idea of
three events can be extended to n events A;, A,,
As,. .., A, and, we shall have

(x) Bayes’ theorem: Suppose E is an arbitrary

event such that P(E) # 0 and also suppose
that let A1,A,,...,A, are “n” mutually exclu-
sive events whose union is the sample space

S such that P(A;) > O for each I, then

P(A;)P(E/A;)

n b}

ZP P(E/A))

In this context one should note that (i) P(A;)
s are the priori probabilities, (ii) P(A;/E)s are
posterior probabilities, and (iii) P(E/A;)s are like-

P(A;/E) =

Example 4.14 In an experiment of fruit setting
in pointed gourd, three different methods of pol-
lination were used in 30 %, 40 %, and 30 %
plots, respectively, knowing fully that the suc-
cess rates of three types of pollination are 50 %,
85 %, and 90 %, respectively. What is the prob-
ability that a particular plot has been pollinated
by the method two?

Solution Let A, A,, and A3 denote the three
methods of pollination, respectively, and E be
the event of pollination. Now as per the informa-
tion P(A;) = 0.3, P(A,) = 0.4, and P(43) = 0.3,
also P(E/A,) = 0.5, P(E/A;) =0.85, and P(E/

lihood probabilities. Az) = 0.90.
_ P(A;NE) P(A2)P(E/Az)
P(A2/E) = PZ(E) T P(ANP(E/A)) +P(A§)P(E/Aj) + P(A3)P(E/A3)
B (0.4)(0.85) 0.340 034 0447
~(0.3)(0.5) + (0.4)(0.85) + (0.3)(0.9) 0.154+0.34+027 0.76
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Thus the probability of the plants of a particular
plot being pollinated by method two is 0.447.

Random Variables and Their Probability Distributions
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Similarly the probability of the plants of a
particular plot being pollinated by the method
one will be

" P(A)JE) = P(AINE) _ P(A1)P(E/A,)
P(E)  P(A)P(E/A1) + P(A2)P(E/Az) + P(A3)P(E/A3)
B (0.3)(0.5) B 0.15 _ 015 0.197
~(0.3)(0.5) + (0.4)(0.85) + (0.3)(0.9)  0.15+0.34+0.27 0.76
and the probability of the plants of a particular
plot being pollinated by the method three will be
" P(AsJE) = P(AsNE) P(A3)P(E/A3)
: P(E)  P(A)P(E/A)) + P(A)P(E[Ay) + P(A3)P(E/A3)
_ (0.3)(0.9) _ 0.27 _ 0.27 — 0.355
(0.3)(0.5) 4+ (0.4)(0.85) + (0.3)(0.9) 0.15+0.3440.27 0.76 '

Random Variables and Their
Probability Distributions

4.6

We have described the random experiment and
the events arising out of the random experiment.
In this section we shall define random variable and
its properties. For each elementary event in the
sample space of a random experiment, one can
associate a real number or a range of real numbers
according to certain rule or following certain func-
tional form. Here we define a random variable as a
rule or function that assigns numerical values
which varies randomly to observations. Thus, it
takes different values for different observations at
random in a random experiment. Given a random
experiment with sample space S, a function X
which assigns to each element weS one and
only one real number X(w) = x is called a ran-
dom variable. The space of X is the set of real
numbers R = {x: x = X(w),weS}.

Suppose X is a random variable and xj, x,,
are the values which it assumes, the
aggregate of all sample points on which
X assumes the fixed values x; forms the event that
X = xj its probability is denoted by P[X = x;] =

X3eeeennnn

fx;), where i = 1,2,3, .. .is called the probability
distribution of the random variable X. Clearly, f (x;)

> 0 and Zf(xi) = 1.

Example 4.15 Suppose a coin is tossed two
times, then its sample space will be HH, HT,
TH, and TT. Thus, the number of heads (X) to
be observed in tossing the unbiased coin two
times, we have

X=x | : ‘ 2 | 1 ‘ 0
Events favorable | : ‘ 1 | 2 ‘ 1
P(X = %) |: 4 |2a 1

This is the probability distribution of the ran-
dom variable X (number of heads)

Distribution Function Random variables can
be discrete or continuous. A continuous random
variable can take any value in an interval of real
numbers, whereas a discrete random variable
can take particular values, mostly the integer
values, in the given interval. For example, plant
height of paddy at particular growth stage can
take any value within the interval [21,h2], where
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hl and h2 are the shortest and tallest height
values of the interval, respectively; so paddy
plant height is an example of continuous random
variable. On the other hand, the number of grains
per panicle of particular paddy variety is an
example of discrete random variable. Thus each
value of the random variable or the each range
of the random variable can be treated as event
and as such occurs with certain probability fol-
lowing certain probability law. Presentation of
probabilities corresponding to different values of
the discrete random variable or corresponding to
the ranges of values of the random variable can
be presented in the form of table/graphl/formula
which is known as probability distribution. When
the cases are finite, for a discrete random variable
the probability distribution corresponds to the
frequency distribution as per the classical defini-
tion of probability. Function that provide the
probability distribution corresponding to a ran-
dom variable is known as probability function.
The discrete probability function is known as
probability mass function (pmf), whereas the
continuous probability function is known as
probability density function (pdf). If a function
“P” is the pmf for a random variable X within a
range of [a, b], then P(X = x) >0 and

Z:P(x) = 1. On the other hand, if a function

“f’ is the pdf of the random variable X within a
range [a, b], then f(X =x)>0 and

/ahf(x)dx: 1.

4.7 Mean, Variance, and Moments

of Random Variable

Analogous to that of measures of central ten-
dency, dispersion as discussed for variables, for
random variables also these can be worked out
using its probability distribution. In this section
we shall discuss the mean, variance, and
moments of random variables.

Expectation of Random Variables
We have already discussed that the measure of
central tendency particularly the average value of
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any phenomenon is of utmost importance in our
daily life. Given a data set, we always want to
know mean/average so that we can have an idea
about its expected value in the population. Thus,
in all sphere of data handling, the major aim is to
have an expected value of the random variable.
Given the probability distribution of a random
variable, its expectation is given as follows:

(i) For discrete random variable X, if P(x) is
the probability mass function, then E(X) =

ZxP(x).

(ii)) For a continuous random variable “X”
within a range a < x < b with pdf f(x), E(X)

b
= / xf(x)dx (provided the integration is

a
convergent).

Example 4.16 Suppose an experiment is
conducted with two unbiased coins. Now the
experiment is repeated 50 times, and the number
of times of occurrence of each event is given as
follows. Find out the expected occurrence of
head.

HH HT
12 15

TH TT
14 9

Solution The favorable event for the above
experiment is occurrence of head.

So the probability distribution of occurrence
of head is:

Event HH HT TH TT

Prob. 1/4 1/4 | 1/4 1/
=

Event 2H 1H 2T

Prob. | 1/4 |12 | 1/4

Two heads — 1/4, one head = 1/4 + 1/4 =
2/4 = 1/2, and 0 head = 1/4. So the occurrence
of head in the above experiment of tossing two
coins is a random variable, and it takes the values
0, 1, and 2 with probabilities 1/4, 1/2, and 1/4
respectively.
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No. of heads 0 1 2
Probability 0.25 0.5 0.25
Frequency 9 29 12

So for getting the expected value of head out
50 trial is 1/4x9 + 1/2x29 + 1/4x12 = 19.75

Properties of Expectation

(a) Expectation of a constant “c” is E(c) = c.
(b) IfY=a+ Xthen E(Y) = a + E(X), where
a is a constant.

If Y=a+bX, then EY) =a+ b EX),
where both a and b are constants.
EX+Y)=EX)+E®Y), where
X and Y are random variables.

If “X” is random variable such that X > 0,
then E(X) > 0.

Expectation of a random variable serves as
the average or the arithmetic mean of the
random variable.

(©)
(d) both
(e)

)

The geometric mean, harmonic mean,
median, mode quartile values, percentile value,
etc. of discrete random variable can be calculated
from the probability distribution of the random

variable using the following formulae,
respectively:
Geometric 1 )
mean Log(G) = Z log(x;).P(x;), where n is number
i=1
of observations
Harmonic & . .
mean Z;’P (i), where n is number of observations
i
Median m n 1
ZP(X,‘) = Z P(x;) = =, where n is number
A P 2
i=1 i=m+1
of observations and m is the halfway point
Mode P(r—1) <P(r) > P(r + 1), where ris the r-th
event
Q1 and Q3 01 1 03 3
= P(x;) =-and Q; = P(x;) =~
2, ;() ;nd 0 ;U 1
i-th i
percentile bi = P(x;) =5~
- 100

If the random variable X is continuous, then
the corresponding expectation, geometric mean,
harmonic mean, median, mode quartile values,
percentile value, etc. of the random variable can
be calculated from the probability distribution of
the random variable using the following
formulae, respectively:
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Expectation b

[artas
Geometric b
mean log(G) = /logx.f(x)dx
Harmonic b |
mean [ 3w

X

Median m b |

[rwas= [rwas=3
Mode For mode f’(x) = 0 and f’(x) < 0 within the

range of x = [a,b]

Variance of a Random Variable

One of the of the most important measures of
dispersion is the variance, and variance of a
random variable is a measure of the variation/
dispersion of the random variable about its
expectation (mean). The variance of a random

variable is given as V(X) = E{X — E(X)}?

E[Xz +EX)) - 2X.E(X)}
E(X?) + {E(X)}* - 2E(X).E(X)
= E(X*) - {E0)Y’

Properties of Variance of Random Variable
Most of the properties of variance for a variable
discussed in Chap. 3 hold good for variance of
random variable. Thus,

(a)
(b)

V(c) = 0, where “c” is a constant.
Variance of random variable does not
depend on change of origin but depends on
change of scale. Thus V(c +X) = V(X),V
(cX) = V(X) and V(b + ¢X) = 2V (X).

VX+7Y) V(X) 4+ V(Y) +2Cov(X,Y),
where X and Y are two random variables.
(d Cov(X,Y) = E(XY) — EX)E(Y).

(c)

Moments
(a) If X is a discrete random variable, then:
(i) The r-th raw moment about origin is

defined by o, =EX") Zx[P(xi)7
i=1
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provided E|X"| < co. Clearly, v, =
E(X) =u and vg = 1.

(ii)) The r-th central moment about its
expectation is defined as

n

m, = E(X — E(X))" =Y (X; — E(X))"P(x;)

i=1

provided it exists.

The other measures of dispersion like mean
deviation about mean, r-th raw moment about
any arbitrary point A are given as follows:

Mean deviation about the mean

Dk —E(X)|P(x)

/4,.' (about point A)

(b) If X is continuous random variable, then the
mean deviation about mean, r-th moment
about origin, r-th moment about any arbi-
trary point A, and r-th moment about mean,
quartiles, and percentiles can be calculated
using the following formulae, respectively:

Mean deviation b
about the mean / |x — E(X)|f (x)dx

v, (about origin)
Xf(x)dx

(x =AY F()dx

a
b
'a/
/4,.’ (about point A) /b
a
m,. (about mean) b
[ = By Fear
a
QI and Q3 o1 1 03 3
/f(x)dx = Zand/ fx)dx = )
i-th percentile pi

i
pi= [ =55

a

Distribution Function If X is a random variable
defined on (S, (&, P) then the function F (x) = P
X <x)=Pw:Xw) <x) is known as the

4 Probability Theory and Its Application

distribution function of the random variable X. It
should be noted that F(—oo0) = 0,F(4+00) =1,
and 0 < F(x) < 1.

Example 4.17 The fish length of certain breed
of fish at the age of 6 months is supposed to be
within the range of 12—24inches. If the probabil-
ity density function of length of fish is given as k
(x—3x + 2):

(a) Find the value of “k.”

(b) Work out the cumulative distribution func-
tion of the variable fish length (X).

(c) Find the probability of fishes having length
less than 1.5" and 1.75'.

Solution
(a) We know that a function fis a density func-
tion of certain continuous random variable

/ f(x)dx = 1. For this function to be a den-
R

sity function

2
/ 1k(x* —3x+2)dx =1

3 2 2

SA-35 ] =k
23 22 13 12

Or, (?—374-2.2)—(?—37—0—2.1 =1/k
Or,(8/3—6+4)— (1/3—3/2+2)=1/k
or,2/3-5/6 = 1/k
Or, —1/6 =1/k
or,k = —6.

So the pdf. of the random variable plant height
X) is
kOP=3x +2) = (—6)*=3(—6)x + 2 = —6x°
+ 18x — 12.

(b) The cumulative density function F(x) is
given by
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X

F(x) = /(—6t2 + 18t — 12)dt

—6x3

+9x% —2x — (=2 +9 - 12)
=23 +9%—12x+5

(c) The probability of fishes having length
less than 1.5 =P(X < 1.5') =P(X < 1.5
=F(1.5)

= -2 4+9%?—12x+5
=5-12x154+9x15*-2x1.5°
=5—18+20.25—6.75

= 0.50

Similarly the probability of fish length less
than 1.75 m is given by P(X < 1.75).
Now P(X < 1.75) = F(1.75)

F(x) = =2x +9x — 12x+ 5
SF(x) =5-12x1.754+9 x1.75* =2 x 1.75°
=5-21+27.56—-10.72
=32.56 — 31.72
=0.84

Thus, Mx(t) = Ele"]
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So the probability that the fish length lies
between 1.5 and 1.75 is given by
P(1.5<X<1.75) = F(1.75) — F(1.5) =0.84
—0.50=0.34

4.8 Moment-Generating Function
Already we have come to know that with the help
of moments, important characteristics like mean,
median, mode, variance, skewness, kurtosis, etc.
can be presented. Thus with the help of the
moments, one can characterize distribution of a
random variable also. In this section, we are
interested to know whether there exists any func-
tion like probability function which can provide
different moments. In fact in literature, one can
find such functions called moment generating
function (mgf) which generates different
moments corresponding to probability function
of random variables.

The moment generating function (mgf) of a
random variable “X” is defined by M, (1) = E[e"|

= / e"f(x)dx, for continuous random variable

R
Z e”P(x), for discrete random variable

:E{l + 1(x) +|g(x)2+ ............ + () H
£ ) tr .

=1 +1E(x) +QE{(X) }+ ......... O e

:1+ll)1+|§1)2—|— ........ —|—|t—;1),-+ ......... y

where v, is the moment of ored r about the origin
or simply ™ raw moment.
Thus, the coefficient of ’E in M, (¢) gives v, the

r-th moment about origin. The function M (?) is

_d'M(1)

_dEfer] dE[1+ () +

called the mgf since it generates the moments.
When a distribution is specified by its mgf, then
its r-th raw moment can be obtained by taking r-
th derivative with respect to ¢, i.e.,

2

S
—
-
~—

[§)
_|_
+
|
=
_|_
\:_n

oy

ar |, dr
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Thus,
o = dﬂflxt(t)} =EX)
0 dz[z;(’)} =)
vy = dS[ZQO)} =E(X)

Thus, M,_,(t) = E[e' * ]

4 Probability Theory and Its Application

Similarly the central moments can be obtained
by taking deviations from mean (u) of the distri-
bution, i.e.,

=E|l+1t . 2 ’ ’

= { +t(x — ) —|—2|—2(x—,u) F o +Er(x—;4) F o
1+tE(xu)+|t—2E{(xu)%}+ ......... +II—£E{(X7/J)’}+ .......
:1+tm1—|—tEm2+ ......... —l—im,.—l— ......... ,

where, m, is the central moment of order r or
simply rth central moment.

Central moments can also be worked out by
differentiating the mgf about AM of different
orders and equating to zero as follows:

d"My.,(t) d'E[et =]
my=——0"—" =
ar|._, dr
d"E{l—i—t(x—ﬂ) —|—%(X—//l) F e T ) ]
B dar
Thus Properties of Moment Generating Function
(i) For arandom variable X, if Mx(¢) is its mgf,
my = dMX—”(I)} =EX—p)=EX)—u then the mgf of the random variable bX is
-l M (1) = M (bD).
=u—n=0 (i) Let Y = a + bX where both X and Y are
d2MX_”(;)' 9 random variables and the mgf of X is Mx
m=— | = E(X —u) (1), then the mgf of Y is My (1) = e* My (br),
3 _ a and b being constants.
my = d M";f‘(t) —E(X - ﬂ)* @iii) Let Xy, X5, X3,...X,, be n independent ran-
e |, dom variables with Mx(¢), Mx,(7),
a*M. (0] Mx;(t). . .Mx,(f) being their respective
_ X—p =EX — )4 . .
M4 =—"a = K moment generating functions. If Y =
= =0

iX[ then
i=1
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My(l) = f[Mxi(t)
— M (1) Mo (1) Mo (1) Mo (0).

(iv) Let two random variables X; and X, having
respective mgf Mx(f) and Mx,(¢) such that
Mx(t) = Mx,(¢), then the two random
variables have got the same probability
distribution.

4.9 Theoretical Probability

Distributions

The probability distributions of random variables
play great roles in our daily lives. Many of our
real-life activities can be presented by some well-
known theoretical probability distribution, hence
the importance of studying the probability
distributions of random variables. Depending
upon the involvement of number of variables,
probability distributions are univariate, bivariate,
or multivariate. In the following sections, we
shall consider some of the widely used univariate
probability distributions like binomial, Poisson,
normal, ;(2, t, and F distribution. Among these
theoretical distributions, the first two are discrete

while the rest are continuous probability
distributions.
4.9.1 Binomial Distribution

Before discussing this distribution, let us have
some discussion about the Bernoulli trial. A
Bernoulli trial is a trial where one can expect
either of only two possible outcomes. For exam-
ple, in tossing a coin, either head or tail will
appear in any tossing, so tossing of coin can be
regarded as Bernoulli trial. Similarly, while
spraying insecticide in a field of crop, one can
expect that either the insect will be controlled or
continue to infest the field. Thus in Bernoulli
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trial, the probability of occurrence of either of
the events is 1/2.

Let a random experiment be conducted with
“n” (fixed) independent Bernoulli trials each hav-
ing “success” or ‘“failure” with respective
probabilities “p” and “g” in any trial. Then the
random variable X, number of successes out of
“n” trials, is said to follow binomial distribution

if its pmf is given by

PX=x)=Pkx) = {(Z)pxq”x},

x=0,1,2,....,m5qg=1—p.

= 0 otherwise

where “n” and “p” are the two parameters of the
distribution and the distribution is denoted as
X ~ b(n, p), i.e., the random variable follows

binomial distribution with parameters “n” and

[73 1)

.
Thus, P(x) > 0and Y P(x) = ¢" + ()"
x=0
p+ () AP = (g +p) = 1.

Moment Generating Function of Binomial
Distribution
Moment generating function is given as

M(1) = E(e") =) "P(x)
x=0

n
n ¢ -
24 X _Nn—Xx
(4 e
X
x=0

x=0

Moments of Binomial Distribution
(a) From moment generating function

_ d'My(1)

_ dE[e"]
Ur = "ar

=0 dr

We know that

d'E [1+ t(x) +%(x)2+ AAAAAAAAAAAA FE) s }
- dr
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Thus,
oy = dlvijx](t)} » = npe'(pe' + q)n—l}ﬁo — np
2 n—
vy =0 = nln = D2 (pe +q)' "+ mpel(pe +q)" | = nln— 1)p 4 np

vy =LY == 1)(n = 2)pe¥(pe + )"+ 2n(n — 1P (pel +q)"
=0

+n(n— D)p*e¥(pe' + )" + npe'(pe' + q)”fl] .
=
=n(n—1)(n—-2)p*>+2n(n—1)p> +np

=n(n—1)(n—2)(n—-3)p* +6n(n—1)(n—2)p> +Tn(n — 1)p* +np

X _Nn—Xx

D

(b) Without using moment generating function n < >
x=0

As we know that r-th order raw moment
about the origin is given by o, =EX") =

Thus,
1 n
v = ZX< >pan—x
x=0 X
= X"
— xl(n—x)!
(n—1)! g .
X— (n—1)—(x—1)}
Z x—DHm-1)— (x— 1)}!p 4

1

n—1 n—1
Z( _l>p Lgln=1=(= ')—npz<y >pyq<”‘1‘”[where,y = x—1]

y=0

=np(qg+p)' " =np

pqg" ", putting r =1, 2, 3,......

~shall get different moments about origin.

.We
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Similarity,
v =E(X*) =EX(X—-1)+X] =EXX—1)] +E[X]
- nn—1)(n—2)!
= —1 X N—Xx EIX
2 ) - 2t -
Can—=1)(n=2)! .
a o (x—2)(n —x)! 7q P
n
(n—2)! 2
=n(n—1)p* P
=2 (X - 2)'( )'
= n(n—1)p*(g+p)" " +np
=n(n—1)p* +np
3 =E(X’) =EXX-1)(X-2)+3X(X - 1) + X]
= EXX-1)X-2)]+3EXX-1)] +E[X]
:Zx(x—l p"q”"—|—3nn—1)p +np
x=0 y
=n(n—1)( 3 B¢ +3n(n—1)p* +n
( Z (x > q (n—=1)p*+np

=n(n—1)(n—2)p* +3n(n—1)p* +np

=EX") =EXX-1)X-2)(X=-3)+6X(X - 1)(X —2) +7X(X — 1) + X]

=nn—1)(n—-2)(n-3)p*+6nn—1)(n—2)p*+7Tn(n — 1)p* +np
Thus, mean of the binomial distribution is £ The fourth central moment is

X) = np. 5 .
The second central moment is my = vy — 40301+ 602017 = 3vy
=n(n—1)(n—2)(n—3)p*+6n(n—1)(n—-2)p?
my = vy — 0> + Tn(n— 1)p® +np
= n(n— 1)p* + np — (np)* — 4n(n = 1)(n = 2)p* + 2n(n — 1)p* + nplnp

= n’p? — np* + np — n?p* = np(1 — p)

= npg = variance

The third central moment is

ms = v3 — 3001 + 20,3
=n(n—1)(n—2)p* +3n(n—1)p* +np
= 3{n(n—1)p* + np}np + 2(np)?
= npq(q +p —2p)
= npq(q —p)

+ 6[n(n — 1)p? + np)(np)* — 3(np)*
= npq(l + 3(n — 2)pq]
The coefficient of skewness and kurtosis as

measured through f; and f,, respectively, is
given as follows:

p m (1-2p)
1 — 3
m3 npq

Thus the skewness is positive forp < %, negative

for p > J and zero forp = 1
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my 1 —6pq
fr="g=3+—1.
m npq
Thus, the distribution is leptokurtic or

platykurtic depending upon the value of p.

Recurrence Relation for the Probabilities
of Binomial Distribution
We know that

P(X) B nCprqnfx B n—x-+ 1 p
P(x — l) - nC<x71)px—lqnfx+l - X 'q
— 1
=P =P T T G D= 1,230
q X

Using the above recursion relationship, the
probabilities of the individual terms of the bino-
mial distribution can be calculated.

Properties of Binomial Distribution

(i) For a random variable X ~ b(n,p), its mean
and variance are np and npq, respectively.
As p and g both are fractions (generally),
mean is always greater than variance.

My(t) = Ele"]
- [ TCES ~~*Xk>}
= E[e®1].E[e*].......... E[e™]. -
:Mxl (f)MXz(f) .......... Mxk(l‘)

4 Probability Theory and Its Application

(i1) The wvariance of binomial distribution is
maximum when p = Y2, and the maximum
variance is n/4.

PROOF: V(x) = npq = np(1 — p)

Thus the variance is maximum when

(I? - %)2 is zero, and it is possible only when p
n

1 1
:Eandatp:E,V(X) =71

(i) If Xy, Xopeeeoeenne X, be k independent

binorr?al varietei with parameter (n;, p)

then > X; ~b( > ,ni,p .

i=1 i=1

The mgf of the binomial distribution is

M(t) = (q + pe')".
Now the mgfof ¥ = X+ X5 + ... + X, is

VX1 Xpe X}, are independent]

which is the mgf of the binomial distribu-

tion with parameter ny+npp ...+ ng

k
(nl + npy ... + nk:Zn,)) and p.
i=1

Example 4.18 It is claimed that 70 % insects
will die upon spraying a particular insecticide
on cauliflower. Five insects in a jar were
subjected to particular insecticide: find out the

probability distribution of the number of insect
that responded. Also find out the probability
(1) that at least three insects will respond and
(i1) more than three insects will respond.

Solution Given that the probability of
responding to the insecticide is 70/100 = 0.7
and we assume that the response to the insecti-
cide by the individual insect is independent of
other insects; we have n = 5.

According to Binomial law of probability, the
probability of x insects die is
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P(x) = P(X = x)="Cop'q’ " ="C..(0.7)"(0.3)",
where p = 0.7, =0.3,x=0,1,2,..,5

With the help of the above pmf, let us find out
the probabilities for different values of X and the
cumulative probability distribution as follows:

X P(x) F(x)

0 0.0024 0.0024
1 0.0284 0.0308
2 0.1323 0.1631
3 0.3087 0.4718
4 0.3602 0.8319
5 0.1681 1.0000

Alternatively the probabilities for different
values of X could be worked out using the recur-
rence relationship of Binomial probability, i.e.,
P(x) = 2 P(x — 1),

The initial probability, i.e., (X = 0) is worked
out as P(x) = P(X = 0)=Co p*¢> °=3C,.(0.7)°
(0.3)°7° = 1.1.0.00243 = 0.00243. Now using
this initial probability, following probabilities
are worked out as follows:

P(x) = s =l p(x — 1),

X P(x =0) x=1,2,3,4,5 F(x)

0 0.0024 — 0.0024
1 - 0.0284 0.0308
2 — 0.1323 0.1631
3 — 0.3087 0.4718
4 - 0.3602 0.8319
5 - 0.1681 1.0000

(i) To find out the probability that at least three
insects will die means we are to add P(x = 3)

Frequency No. of insects dead (x) (m—x + 1)/x
f (1 (2)

0 0 —

3 1 7.00000

14 2 3.00000

25 3 1.66667

47 4 1.00000

21 5 0.60000

7 6 0.33333

3 7 0.14286

* Nearest whole number
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+Px=4)+Px=5)=1—-F(x
1 —0.1631 = 0.8369.

(ii) Probability of responding more than three
insects, i.e., P(x =4) + P(x = 5) = 0.3602
+ 0.1681 = 0.5283.

=2)=

Example 4.19 An experiment was conducted to
know the effect of rotenone chemical to remove
the undesirable fishes from the small tank. Rote-
none was sprayed to 120 tanks containing seven
undesirable fishes each. The following table
gives the frequency distribution of number of
fishes that died in 120 tanks.

No. of unwanted 01112 3 4 5 6 |7
fishes died
No. of tanks 0|3 |14 24 |47 |21 |7 |3

1. Fit binomial distribution with equal probabil-
ity of dying and living after spraying.

2. With unknown probability of dying or living
per tank.

Solution There are two mutually exclusive
outcomes of the above experiment:

1. That is, either the fish will die or not die. So
this can be treated as Bernoulli trial having
binomial distribution. The two events “die” or
“not die” have the same probability of 1/2.

Given that,n = 7, N = 120, and the probability
p =05
Let us try to construct the following table.

Col.2xplq | P(x) = P(x—1) x Col.3 | Exp. frequency
3) (€)) /¥ =N x col4
- 0.00781 1
7.00000 0.05469 7
3.00000 0.16406 20
1.66667 0.27344 33
1.00000 0.27344 33
0.60000 0.16406 20
0.33333 0.05469 7
0.14286 0.00781 1
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With equal probability of dying and living,
a fish sprayed with the rotenone, the ratio of
plq = 0.5/0.5 = 1. We have P(0): the probabil-
ity of zero fish dying per tank is

(Mpq = @)’ " = ¢ = (})" = 0.00781.
From the recursion relation of binomial
probabilities, we have P(x) ==t .g Plx—1)
for x = 1,2,3,...,7. Using the above relation, the
probabilities are calculated and placed in the col.
4 of the above table. Expected frequencies are
obtained by multiplying the total frequency (V)
with respective probabilities.

2. In this problem to fit binomial distribution, p,
the probability of success has to be estimated
from the observed distribution.

Frequency No. of insects dead (x) (m—x + 1)/x
f 1 2

0 0 -

3 1 7.00000

14 2 3.00000

25 3 1.66667

47 4 1.00000

21 5 0.60000

7 6 0.33333

3 7 0.14286

* Nearest whole number
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We know that the mean of the binomial
distribution is given by “np.” For the given

distribution mean is calculated as
= if,-xi = 3.85 where £ is the
Z/ i=1 Zf i=1
number of classes
Thus np = 3.85.
Sp = 385 =048.S0g =1-0.48 =0.52.
Thus,; =0.923 and P(0) = (0.52)" = 0.010.

Using the same procedure used in (1), we
make the following table:

Col.2 % P(x) = P(x—1)xCol3 Exp. frequency
3 4 f<=nxCol4
- 0.01028 1

6.46154 0.06643 8

2.76923 0.18396 22

1.53846 0.28301 34

0.92308 0.26124 31

0.55385 0.14469 17

0.30769 0.04452 5

0.13187 0.00587

Note: With the change in probability of success and failure, the probabilities as well as the expected frequencies have changed.

4.9.2 Poisson Distribution

There are certain events which occur rarely, for
example, the number of accidents at a particular
place of highway at a specific interval of time,
number of spastic child born per year in a particu-
lar hospital, number of mistakes per pages of a
book, number of telephone calls received by a
person per unit time, number of defective items
per lot of item, etc. The probability distribution of
such events was discovered by S D Poisson, a
French mathematician in 1837. This distribution
is applicable when the number of trials is very
large but the chances of occurrence of the event is
rare, as such the average number of occurrence of
the event is moderate. A discrete random variable
X is said to have Poisson distribution if its proba-
bility mass function is given by

7/1&)(
P(x)zex, X =0,1,2,3, ... 4> 0
Obviously, P(x) > 0, Vx and
3 /14 15
{1 + 4 + + + a0 + = 30 F o,

== e

A is known as a parameter of the distribution and
the distribution is denoted as X ~ P(4).

Assumptions

(a) Probability of occurrence of an event at any
interval is the same.

The occurrence of the event in any interval
is independent of its occurrences in other
interval.

(b)
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Moment Generating Function
The mgf of the Poisson distribution is given by

0 ef/llx
M) = Ble) = 32 e
L SN () AR Ae'=1)
—eE 1 —e et = etf

Differentiating M (f) once, twice etc. with
respect to ‘¢’ and putting ¢+ = 0 we can get the
raw moments.

Moments of Poisson Distribution from
Moment Generating Function
d'M,(1) _ d'E[eM)

ar |, _ ar

We know that v, =

A

- de(t)} = Aeze,l(eul)]tzo _

vy = M} — (let)zei(e’,l) +ﬂ€t€2([)171>:|
=0 t=0
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3

vy = L2010 1:145([)] o= Petet +3)% +
=2 4+32+2

oo =] = dteie 462 + 72 42

=1 +683+712+2

Moments of Poisson Distribution Without
Using mgf
[e'e] o] efﬂllx
v =E(X) XZO:X (x) Z:O:x -
o] /1,{71
= Je
NS
22
_
= e <1 + A+ E F o )
= e et = 4

Hence the mean of the Poisson distribution
is A.

vy =E(X*) =EX(X - 1)] + E[X]

o0

ﬂ"x
—e Y x-S 42
e X:Ox(x )x!+

x=2

x—=2

A
(x—2)!} 4

=Ne et +A=1+1
v =EX’) =EXX-1)(X-2)] +3EX(X — 1)] + E[X]

00 e—/l)vx
— ﬂgx(x — D -2)——+ 3242
s e 2 2
=Ae 302+
e XZ; —3) =+ +

=e e +32 + A= 4+312+ 2

vy =E(X*) = EX(X - 1)(X - 2)(X = 3)] + 6E[X(X — 1)(X — 2)] + TE[X(X — 1)] + E[X]

. 00 /Ix—4 3 o0 ;Lx—3 5

x=4 x=

=Mt + 683+ T2+ A=2+61° + 742+
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The four central moments of the distribution are
as follows:

m; = 01 =1
m=vy—v’=+1) =1
ms3 = 03 — 3001 + 20;°
=P +32+2) =344 +2) +24°
=383 +322 +24 -3 377
=1
my = v4 — 4030 + 61)21)12 — 31)14
= (61 + T+ 1) — 44X + 347+ 2)
+ 622 (2* +2) =32
=683+ T2+ 41— 42 — 1223 — 42
+ 614 + 613 =32
=324

Coefficient of skewness and kurtosis is given by

_M32_ﬂz 1

b= m3 B2
and
mgy 1
= — = 3 —
ﬁZ }’}122 + )
1
rn=vh = 7/—1
and
1
= — 3 = —
Y2 =P 2
Thus, Poisson distribution is positively

skewed and leptokurtic in nature.

Recurrence Relation for Probability of
Poisson Distribution

e*/lﬁ)c+l
P(x+1) =
(41 =55
and
e—/lﬂx
Plx) = x!
We have
6_/1/1X+l y)
P(x+1)(x+1)'<x+1>'P(x) A
P(x) e MA" P(x) S\ 1)
x!

4 Probability Theory and Its Application

SP(x41) = ( A

).P(x),x =0,1,2.......
x+1

Properties of Poisson Distribution

1. Poisson distribution may be looked upon as
the limiting form of binomial distribution. If
n, the number of trials, tends to be infinitely
large, i.e., n — oo, with constant probability
of success, p in each trial is very small i.e.,
p — 0 and np = 4 (say) is finite.

2. If Xq, Xo.uun. , Xx be k independent Poisson
variates with Ay, A5.......... , A parameters,

k k
respectively, then in ~ P < /1,-) .
i=1 i=1

1

Example 4.20 A number of swine death in a
rearing yard of equal dimension and capacity
are given below.

No. of swine death |0 |1 2 |3 |4 |5 |6 |7
per yard
Frequency 16 114 |24 [28 |19 [11 |3 |1

(i) Find out the average swine death per
rearing yard.
(i) Find the probability of having death less
than four.
(iii) Find the number of yards having death more
than four.

Solution Death in rearing yard may be treated
as rare event, and as such it is assumed to follow
Poisson distribution. We know that the Poisson
distribution is characterized by its only parame-

ter 4 = mean = variance and the Poisson
probabilities are calculated from its probability
mass function, given as P(x) = ff:!’”. So to get the

probabilities corresponding to different values of
“x” (no. of swine death per yard), first we are to
get the mean of the distribution.

No. of swine 0|1 2 |3 |4 |5 6 |7
death per yard (x;)

Frequency (f) |6 |14 |24 [28 [19 |11 |3 |1
fix; 0 |14 |48 |84 |76 |55 |18 |7
(i) Mean == fx;i=302/106 = 2.849 = A.

D65
Thus the average swine death per yard is
2.849. From the pmf we have
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72A8492.8490 72.8492.8491 72.8492.8492

P(0) = = ¢ = 0.0579, P(1) = ————— = 0.1630, P(2) = “——"—— = 0.2350
~2849) 849° ~2849) 849* 28492 849°

PB3) = eT =0.2232,P(4) = eT =0.1590, P(5) = eT = 0.0906
72A8492.8496 72A8492.8497

P(6) = eT = 0.0430,P(7) = ET = 0.0175

Readers may note that the sum of the (iii)) The number of yards having more

probabilities worked out using the pmf in this
procedure is not unity, rather it is 0.009 less
than the unity. This happens because of approxi-
mation in decimal places throughout the calcula-
tion. As a customary, the probability of last
outcome is taken as 1-sum of the all other previ-
ous probabilities. As such the probability of
seven  deaths per yard should be
1-0.9735 = 0.0265.

Using the recurrence relationship of Poisson
probabilities, other probabilities and
corresponding cumulative probabilities (F(x))
can be worked out as given in the following
table:

x P(x) P(x+1) = (2}5419)[J (*x) F(x)

0 0.0579 0.0579
1 0.1650 0.2229
2 0.2350 0.4578
3 0.2232 0.6810
4 0.1589 0.8399
5 0.0906 0.9305
6 0.0430 0.9735
7 0.0265* 1.0000

* This has been calculated as 1-sum of all
other probabilities, i.e., 1-0.9735, as total proba-
bility must be equal to unity.

(i) So the probability that a farm yard has less
than four swine deaths is given by P(0) + P
(1) + P(2) + P(3) = 0.0579 + 0.1650 +
0.2350 + 0.2232 = 0.6810, or F(X = 3)
= 0.6810.

than four swine deaths is given by N.P(5)
+ N.P(6) + N.P(7) 106[0.0906 +
0.0430 + 0.0265] 106 x 0.1601
16.97 ~ 17 (as the number of yards cannot
be fraction), where N is the total frequency.

Example 4.21 The number of cow death per
month within a distance of 1 km due to accident
in particular highway is as given below. Fit
Poisson distribution to the given data.

0‘1 ‘2 ‘3 ‘4 ‘5 ‘6
month

No. of cow death per ‘
6

Frequency ‘ 17 ‘ 19 ‘ 14 ‘ 13 ‘9 ‘5
Solution We know that the only parameter for
the Poisson distribution is 4 = mean. In order to
fit the data in Poisson distribution, we are to

Z fax; = 2.698.

estimate the 1 = E(x) by 2
fi

i
We know that for Poisson distribution, the prob-

ability is given by P(x) = ‘7‘% So the probability
of x=0) is given by
P(0) = <=0 — o=26% — 0.067. The rest of

the probabilities are obtained with the help of
the recursion relation for Poisson probabilities,

ie., P(x+1) (%) P(x),x=0,1,2,3,4,5,6.

Expected frequencies corresponding to different
values of number of cow death per month are
obtained by multiplying n =83 with the respec-
tive  probabilities. The following table
summarizes the result of Poisson fitting of the
above data with P(x = 0) = 0.067.
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A

No. death (x) Frequency (f) 1

0 6 2.6988
1 17 1.3494
2 19 0.8996
3 14 0.6747
4 13 0.5398
5 9 0.4498
6 5 0.3855
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4.9.3 Normal Distribution

Most probably in the history of statistics, formu-
lation of normal distribution is a landmark.
Names of three scientists, viz., de Moivre, a
French mathematician; P Laplace of France,
and Gauss of Germany, are associated with the
discovery and applications of this distribution.
Most of the data in different fields like agricul-
ture, medical, engineering, economics, social,
business, etc. can reasonably be approximated
to normal distribution. Discrete distributions

) =7ze

4 Probability Theory and Its Application

Expected freq.* = NP(x)

5.5610 ~ 06
0.1816 15.0728 ~ 15
0.2450 20.3350 ~ 20
0.2204 18.2932 ~ 18
0.1487 12.3421 ~ 12
0.0903 7.4949 ~ 08
0.0470 3.9010 ~ 04

82

A random variable X is said to follow the
normal probability distribution with parameter
u (mean) and o (standard deviation) if its proba-
bility density function is given by the probability
law

1 _lﬂ)z}foo<x<oo,5>0,7r,

and e have their usual values
and is denoted as X ~ N(u, 62).
Clearly, f(x) > OVx

like binomial distribution can very well be Proof T " oy b L («’C*H)zd
approximated to normal distribution for large roof To prove that f(x) = Ve | € *
number of observations. ) o
is a pdf
1 (e=p)” d
/ f(x) e 20’ dx, [puttmg z = e =dz= x}
271'0 c o

ﬁ_

2

b
=/

= e
2r

dt
V2t

ﬁ

Il
\80

o

5l

3 L 1
/ e 2 dz {putting t= 522 =dt = zdz}
—t

[ 1
e—’tz l /e_xx"_ldx =In=(n-1) andl“<§> =z
0
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If X ~N(u, 6% then Z :)% is known as
standardized normal variate.

Now, E(Z) :E[X*l‘] _EX)-EW) _p—p _

"o E(o) c
and
Var (2) = E(2?) = [ =B = %=1

Thus, Z follows a normal distribution with
mean 0 and variance 1, i.e., Z ~ N(0,1).

The pdf of the standard normal distribution
can be written as

Subsequently the distribution function is
written as

101

®D(z) =P(Z<z)= /¢(u)du

2

1 W
=—— [ e 2du
\/En/

Properties of Normal Distribution:
l. ®(—z) = PZ<—z)=P(Z>z)=1-P

(Z<z)=1-®(2)
2. Pla<x<b)

—P (“ Ho:<
(1"
=Plz<
c
ol o
c o
3. The mean of normal distribution is given by
EX)

—H
o

z
u

b,u) x

2=

c

—P(zgaiﬂ)
c

X — dx
ﬂ,we have dz = ]
c c

and the 2nd term is zero because it is an odd function
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4. Moment generating function:

The moment generating function of the nor-
mal distribution is given by

[o.¢]

My(t) = E(e™) = /e”‘f(x)dx

—00

(o)
1 _ — d
/e e 26~ dx putting z = u, we have dz = @
c c
-0

122
1(1+02) o= "5 47

en T 71 z — 2z0t + (o1)* — (6[)2:|
/ 2 dz
t20'

Differentiating once, twice, etc. with respect
to ¢ and putting ¢ = 0, one can get raw moments.
5. Central moment of normal distribution:

The odd-order central moments of the normal
distribution about the mean (u) is given by

oo o0
1 . 1(x=p\2
M1 = / (=0 Wy = / (= e 2T ax

1 _
:—/(az)z’ﬂe 2dz, smce{ ﬂ]

27 o
—00
2r+1 3 2
T
(2 _z
_ /22r+le dz
2n
—00
Now 22+l e~ dz is an odd function of z so Thus all odd-order central moments of normal

distribution are zero. The even-order central

< 2 moment of this distribution is
/22"+167 2dz=0
—o0

LMol = 0
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f(x)dx

3
N
I
|
—_ 8\8
=
|
=

—p

S)
[N}
-
N
(o
|
—
o
L
~
[\S)
=
QAU
N

N

)
©

S

0'2]‘ T 2 2
= 2 [ (e (F12) gz
%!o
o r . dt 7
=2 20) e —,[t==
\/2%/( ) V2t ( 2)
2)‘ 2 000
(o2 d 1
My = /e”t('“)*ldt
T
VT J
7621‘ 1
= My, = \/_ I'(r+ 5

Changing r to (r—1), we get

2r—162(7'71) 1
Myy_n = \/J_TF<I‘ — 2>

1
F<r + —>
26° N2 = 26" (r — l)
F(r — 1) 2
2
= ¢*(2r — 1),since [I'r = (r — )I'(r — 1)
= My = 62(21‘ — l)mZ,A_z

. Moy

myr—2

This gives the recurrence relation for the
moments of normal distribution. Putting
r=12 we have my = o> = Variance and
my = 36* Thus f; = O and g, = 3.

6. Median of
4 = Mean.

the normal distribution is

Let M be the median of the normal distribu-
tion, then

103

— d
—(x ”), we have dz = _x}
c

1
We know that N

Comparing (D) 2) we have
Yr—0= M=y

.". The median of the normal distribution is x
7. Mode of the normal distribution is y = Mean.

The mode is the value of X for which f(x) is
maximum, i.e., the mode is the solution of

f () =0andf < 0. Mode of the normal distri-

bution is obtained as follows:

Flg =4 _ 1 eé(“‘;")z{_z(—ﬂﬂ

dx \2ro 2\ o2
_ 2
= * 'u e_%(Tﬂ) = O
o3\ 2n

It is possible only when x = p (".'f(x) #0)

o
£ = I
Gl R BISTCS,
o5\ 2n 3\ 2n
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If X ~ N(u,c?), then th
Now, 18| <9 (7). then the

dx?
X=U X

. : : — L1(x=m)?

.f(x). is maximum atx = p. So mode of the Plu <X <x)) = / Odx = /672( = dx
normal distribution is y. V2706

Thus, mean = median = mode = p. The nor- X — g

e . . Puttmg( ) z

mal distribution is symmetrical about the point c

— : _ _ _ 1 —Lu? 2
X—,Ll, smcef(,u—l—u) - f(/’t M) _\/Zae 2, P(/d<X<X1):P(0<Z<Zl):L efé(z) dZ
whatever u may be. \/2‘”0

8. The linear combination of independent nor- = / P(z)dz = / ¢(z)dz— / ¢(z)dz = ®(z;) — 0.5
mal variate is also a normal variate.

Let X;, Xa,...X, be n independent normal where ¢(z) is the probability function of standard

. . 2 2 2, normal variate.
variates  with (3, 617), (42, 627), (U3, 63°) .

........... (n, 0,0), 1ie., if then Za[X,- ~ / ¢(z)dz gives the area under standard

The area under standard normal curve is

0
. ~ ., normal curve between z = 0 and z = z;.
g aipt;, E ai"o;
shown below

9. Area under normal distribution.

Fitting of normal Probability Curve of Standard Normal Distribution
distribution 0.60

0.45

0.30

0.00
-3.50 -1.75 0.00 1.75 3.50

Example 4.22 Fit a normal distribution to the
frequency distribution for body weight (kg) of
chicks reared in a poultry farm.

Body 2.00- 2.10- 2.20- 2.30- 2.40- 2.50- 2.60- 2.70- 2.80- 2.90-
weight (x) 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00

Frequency(f) |7 15 17 129 137 134 28 |16 |14 '8



4.9 Theoretical Probability Distributions

Solution The first step in fitting any distribution
is to estimate the parameters of the concerned
distribution. In case of normal distribution, the
parameters are the mean y and the standard devi-
ation ¢. The method of moments can give us the
estimates X and s from the given data for popula-
tion parameters u and o, respectively. From the

b
n/Le’ﬁ(x - X)zdx = n/g{)(r)df [where T=
V2ns ’ '
a

a—x

- 7¢(7)d7— 745(1)6”
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above data, we have n = 205, mean = 2.50 kg,
and standard deviation s = 0.222 kg.

Having worked out these estimates, we can
calculate the expected frequencies by using the
tables of the standard normal variate given in
Table 1 of Chap. 6. The expected frequency of
the standard normal variate within an interval
[a,b] is given by

X—X
s

In order to draw the fitted normal curve over the
histogram, one should compute the ordinates for
different values of x, and x’s are taken as class
boundaries. The ordinates are computed as follows:

L paale ) 2¢(z)[where,z =*%].  The

I’lm e B
values of @(r) and ®(tr) are given in the

(Table 6.1) in Chap. 6 corresponding to different
values of 7.

With the help of the above information and
Table 6.2 given in Chap. 6, we prepare the fol-
lowing table:

Expected
Height _ probability frequency ordinate =

Class (em) (v) |T=%5F O(z) = A®(7) n.AD(z) H(@) L(2)
<2.00 2.00 —2.25225 0.01215 0.01215 2 0.031740 29.30918
2.00-2.10 2.10 —1.80180 0.03579 0.02364 5 0.078950 72.90446
2.10-2.20 2.20 —1.35135 0.08829 0.05250 11 0.160383 148.1017
2.20-2.30 2.30 —0.90090 0.18382 0.09553 20 0.266085 245.7093
2.30-2.40 2.40 —0.45045 0.32619 0.14237 29 0.360527 332.9191
2.40-2.50 2.50 0.00000 0.50000 0.17381 36 0.398942 368.3927
2.50-2.60 2.60 0.45045 0.67381 0.17381 36 0.360527 332.9191
2.60-2.70 2.70 0.90090 0.81618 0.14237 29 0.266085 245.7093
2.70-2.80 2.80 1.35135 091171 0.09553 20 0.160383 148.1017
2.80-2.90 2.90 1.80180 0.96421 0.05250 11 0.078950 72.90446
2.90-3.00 3.00 2.25225 0.98785 0.02364 5 0.031740 29.30918
>3.00 00 00 1.00000 0.01215 2 0.000000 0
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400 0.45
350 F 0.4

£ 300 | 0.35

g F03

L 250 1 '

a f 025

2 200 |

;—E' 0.2
150 -

2 L 0.5

S

n:: 100 4 - 0.1
50 4 0.05

<2.00 2.00-2.102.10-2.202.20-2.302.30-2.402.40-2.502.50-2.602.60-2.702.70-2.802.80-2.902.90-3.00 >3.00
Body Wieght

Example 4.23 Egg weight of particularly chick
breed is known to follow normal distribution
with mean 56 g and sd 5.65 g. Find the probabil-
ity that (i) P(X > 60 g), (ii)) P(X < 60 g), and
(iii)) P(40 < X <70 g).

Solution Given that 4 = 56 g and 6 = 5.65 g,
i.e.,, X ~N(56,31.92).
For X = 60, we have Z = % =0.70

(i) P(X > 60) =P(Z > 0.70)
= 0.50 — P(0 < Z < 0.70)
=0.5 — 0.2580
=0.242

(i) P(X < 60) =1—P(X > 60)

=1-P(Z > 0.70)
=1 -0242
=0.758

(iii) P(40 < X < 70)

(40 —56 _X-—56

=P < <
565 — 565

= P(—2.83 < Z < 2477)
= P(Z<2.83)— P(Z < —2.477)
= P(Z <283)— (1 — P(Z <2477))
=0.9976 — (1 — 0.9932)
= 0.9976 — 0.0068
= 0.9908

70 — 56
5.65

4,10 Central Limit Theorem

Central limit theorem is one of the landmarks in
the history of statistics. In majority of the cases,
we study the population or infer about the popu-
lation with its mean . In doing so on the basis of
the samples, sample mean X is taken as estimate
of population mean. So one needs to study the
sampling behavior of sample mean, i.e., we must
study the sampling distribution of sample mean
arising out of different samples for different pop-
ulation distributions. It may be noted that not
necessarily all the distributions will follow nor-
mal distribution and its characteristics. So the
means arising out of different types of
distributions and different samples need to be
studied before it is taken as estimator of popula-
tion mean. To tackle these varied situations, cen-
tral limit theorem plays a very important role.
Though the central limit theorem (CLT) has been
put forwarded in different ways, the simplest one
is as follows: under the sufficiently large n (the
number of observations), the distribution of X is
approximately normal with mean y and standard
deviation o/+/n irrespective of the nature of
population distribution, i.e., X ~ N(u,6/\/n) as
n— oo.
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4.11 Sampling Distribution

The main objective of studying statistics is to char-
acterize population, particularly with respect to its
different parameters. In doing so, we examine the
sample characteristics and try to infer about the
population on the basis of the knowledge of sample
properties. The process of knowing population
characteristics from the knowledge of sample char-
acteristic is known as the statistical inference. Sam-
pling distribution plays an important role in
statistical inference. Generally we construct differ-
ent statistics from sample observations to estimate
population parameters. Depending upon the
parameter(s) and the form of the parameters of
the parent population, the statistics are developed.
In the following sections, we shall discuss some of
the important distributions, used in day-to-day
activities in agricultural and allied fields.

4.11.1 x*-Distribution

Statistical theory mostly deals with quantitative
data, but there are certain tests based on y* distri-
bution which can effectively be used for qualita-
tive data. Tests based on y* distribution have
got its application both in parametric and

— M)
o1 dt L-O 4
2
=] =nl-G+ )]0 -

=2n(3+1)(1 - 20) ]

2

=n(n+2)(1 - Zt)f("/Hz)}

=n(n+2)

<
W
Il
S‘“
)
P
by
Il
=}
I

=nn+2)(n+4
=nn+2)(n+4

20+ )[4+ 2] 120

2n(n+2)(2+2)(1 - 2,)—<n/z+s>}
=n(n+2)(n+4)(1 - 2:)—<"/2+3>}
=n(n+2)(n+4)

vy = d“l‘jﬁ (0} = )+ H[=(5+3)]01 - 2t>—(n/2+4)(_2)}
=2n(n+2)(n+4)(2+3)(1 - 2t)_("/2+4)}

)(n+6)(1 - 2:)*<"/2+4>]

)(n+6)
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nonparametric statistical inference. y* test is
used to test goodness of fit, to test the hypotheti-
cal value of population variance, to test the
homogeneity of variances, to test the indepen-
dence of attributes, etc.

Let X, X5, X;5....... X, be “n” independent
standard normal variates with mean zero and

n
variance unity, then the statistic ZX,2 is called
i=1
a chi-square (y) variate with “n” degrees
of freedom and is denoted as y,”. The pdf of y*

distribution is given by

A =5 ()T 0< P < o0
2
If X;, X5, X;....... X, be independent normal

variates, instead of standard normal variate, with

mean y; and variance 67(i = 1,2,3, ..., n), then
n 2
Xi—pi)" . . .
7= E %15 x> — variate with n degrees
o

i=1 !

of freedom.

Properties of y* Distribution

1. The moment generating function of the y*
distribution is given by
M) = (1 =202 21 < 1.

2. The first four raw moments are

=0
t=0

t=0

t=0
t=0

t=0

=0
t=0

t=0
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3. The first four central moments of y* distribu-
tion are:

nm =ovy=n
my =vy —v>=n(n+2) —n’

=n? +2n— {n}’

=2n
m3 = vz — 3v0y + 21)13
=nn+2)(n+4)—3n*(n+2) +2n°
n® + 6n> + 8n — 3n® — 61 + 213
=8n

my =v4 — 40301 + 61)121)2 — 30‘11
=n(n+2)(n+4)(n+6) —4n(n+2)(n+4)n
+6n’n(n +2) — 3n*
=n* 4+ 1213 + 44n* + 48n — 4n* — 2413
—32n% + 6n* + 12n0° — 3n*

=121 + 48n
=12n(n+4)
it
Xin s 2,

Fig. Percentage points of y* distribution with n d.f.
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o Wl32 8 my 12

*73:77ﬂ2:72:7+3
niy- n nmy n

4. P
Therefore, n being positive number, y* distri-
bution is positively skewed and leptokurtic in
nature.

5. Both skewness and kurtosis are inversely pro-
portional to the degrees of freedom. So as the
degrees of freedom increase, the distribution

tends to be symmetric.

That means n — oo, "\2/;—;’ — N(0,1).

6. Mode of the y,,” distribution is (n—2).

7. If 1% and y,” are independent y variates with
ny and n, df, then (;(12 + ;(22) is also a ;(2
variate with (n; + n,) df. This is known as
the additive property of the y* distribution.

Vi)

n=2

n=4

2

4
Fig. Shape of the density curve of y*

4.11.2 t-Distribution

In statistics sometimes we want to test the sig-
nificant difference between the sample mean
and the hypothetical population mean, between
two sample means, to test the significance
of observed correlation coefficient, regression
coefficient, partial correlation coefficient, etc.,
and in these regards the tests based on #-distribu-
tion play a vital role. The above tests have been
discussed in detail in Chap. 6 of this book. In this

section we shall define and examine the
properties of ¢-distribution.

Let X be a standard normal variate; now we
define ¢ statistic as the ratio of the standard nor-
mal variate to the square root of a y* variate
divided by its degrees of freedom. Thus t = —

2

n

with n degrees of freedom where x is a standard
normal variate and y” is independent of X. The

pdf  of  tdistribution is  given  as
_ 1 1 _
FO = gy T~ <1 <o
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Properties of #-Distribution

1. Likewise to that of normal distribution, ¢-dis-
tribution is a continuous, symmetric distribu-
tion about zero.

2. All odd-order moments about the origin
are zero, i.e., vy41 = 0;7r =0,1,2,3..........
As central moments coincide with the
moments about origin, . =0;r =0,1,

3. The 2r-th order central moment, i.e., the even-

order moment of ¢-distribution is given by
(2r=1)(2r=3)....c...... 5.3.1

n—2)(n—4)(n—6).....(n—2r) >
where n is the degrees of freedom.

my, = nr( n>2r,

Thus
n
mzzn_z,n>2,
3n?
= n>4.
M ) —a)"
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2 . .
4. py=15=0,p, = 2% =322 Thus r-distri-

bution is symmetric and leptokurtic. Again as
_2
n— oo,lim,Hoo3<H) = 3, thereby the dis-

tribution tends to be mesokurtic. As n — 00,
the r-distribution approaches to the distribu-
tion of standard normal variate.

5. Plt >ty s =a and P[t < tj_4,] =a, then
tqnandti_,, are the upper and lower
a-points, respectively, of ¢-distribution
with n degrees of freedom. By symmetry,
Hean = —la,n

6. Using student’s #-distribution one can work out
the Fisher’s t-distribution also (Ref 4.11.5).

Probability Density Function Curve of t- distribution(10)
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4.11.3 F Distribution

Another important sampling distribution is the
F distribution. Tests based on F distribution
have varied range of application in statistics,
e.g., test for significances of equality of two
population variances, multiple correlations, cor-
relation ratio, etc. Tests based on F distribution

have been discussed in Chap. 6. Another impor-
tant use of this distribution has been made in
comparing several means at a time through the
technique of analysis of variance as discussed in
Chap. 9.

An F statistic is defined as the ratio of two
independent y* variates divided by their respec-

tive degrees of freedom. Thus, F =% /M yhere

02/’
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212 and y,? are two independent x° variates with
n; and n, degrees of freedom, respectively, i.e.,
an F variate with (n,n,) degrees of freedom.

4 Probability Theory and Its Application

Properties of F Distribution
1. Unlike normal and t-distribution,
F distribution is a continuous but asymmetric

distribution.
2. The r-th moment
F distribution is given by

The pdf of F distribution is given by

ny /2
n F (nTl’ 1)
ﬁmﬁmw< 0 S F <o

about origin of

f(F) =
ni

1+ —F
np

v, = E(F) = /OO F'f(F)dF = (”_2) 7 <’ N % n_22 - ’")

ny np ’
0 #(5%)

ny

) <@>’F(r+2—l)r(z

ny

ny
np—2°

only on the d.f. of the numerator y* and mean
is always greater than unity.

Thus mean, v =

np > 2, mean depends

2
ny ny+2
=2 T >4
T =2 —4) ™

"= nl(l’lz — 2)2(712 — 4)

3. The mode of F distribution is given by

ny (n—2 :
- (n; +2) . Thus mode exists only when n; > 2.

4. The distribution is positively skewed.

1
F(ni,m)=———.
(m1,m) F(ny,ny)

6. If P[F > Fyp,n]=a and P[F < Fy_gp, n,]
= a then Fg, ,, and Fi.q,,,,, are the upper
and lower a -point of F distribution with

(ny, np) df. respectively and Fi_gp,n, =
1
Fa;nz,nl

bution for different degrees of freedom are
given in most of the statistical tables.

. As such only upper a -point of F-distri-

7. Incasen; = 1,thenF = where Xlzisjust

X1
3in’
the square of a standard normal variate. Hence
Fi.,, = t* where ¢ has the ¢ distribution with

Ny d.f.

8. If ny — oo, then y*> = n; F distribution with
degrees of freedom.

' fF)

v

F' TF” F

For s(k-1),(n-k)

4.11.4 Sampling Distribution of Sample
Mean and Sample Mean Square

Let x,x5,x3,...x, be a random sample drawn

from N(u, 6°). Then the sample mean
n

)_C:% > x; also follows normal distribution
i=1

with mean p and variance (az/n). Thus the pdf
of X is given by

N
oV2n

- 2
—55(¥—p)

) =

e , — 00 <X <00
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We knoen thst )(ﬁ == 5 = 5
nx—pu)’ (n—1)s

+ 2 o2
x—n

G N(0,1)

n(x—p)? ~
S ,

Since

By additive we have

(n=Ds* 1)

property of x?,

Nan

Hence the distribution of the sample mean
(n—1)s%

n-l_y
67 22 .((nfl)s
Pl

2)2

(s%) is L

square )
22Tt

n—1)s2
(522
n=1
(n—1)°

fef()—t— D -t
1= -1
202V L
20?71

0<s?< o0

4.11.5 Fisher’s t-Distribution
and Student’s t-Distribution

We have sample mean and s* are distributed

independently and since ¥ ~ N(u, 6% /n)
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z and y?, both are indepenedent.
Then according to the definition of #, we have

},
;= z c/ﬁ X—p

\/;(2/1171 - \/n 1)s _S/\/_

2(n=1)

With (n-1) d.f;

this is known as student’s ¢ statistic.
Let us suppose two independent samples of
sizes n; and n, are drawn randomly from two

normal populations and we assume that
o3 =03 = o’
Thus,  x1, X2, X3, cceunnnnn Xp, ~ N (,ul,af) =
¥ ~ N(uy,0%/n;) and
Y Yo y3,..2. ...... Y, ~N (;42,62) =
¥ ~ Ny, 0% /m)
Thus,X—in(yl Has o +”>
:>sz_y_2(lul - /’lZ) N(O,l)
(xi=X) X
Again = ps = <m;z )5 "’)(3,_1 and
o
;(y; ¥) _(nz 1)»
o2 - N)(m 1
—1)s?
ThuS, anfl +/¥n2—1 :X%1+n272 — (ﬂlo_2 )Yx _|_

(n2 71)s;7
)

iz = AN, 1) and = 0
and t = :
ny — 1)s? 2—1
{(IGZ)MF }/”1+n2 2)
_ X—y— (i —p) 5~ (1 — )
(n171)9+n271 s 1.1
(n1+n2 -|- n np

known as Fisher’s ¢ statistic with (n; +
2_(n1—1)x+( 2—1)5

where s° =
n+n —2



5.1 Population

The main objective of studying statistics is to
characterize population, defined as the collection
of well-defined entities having some common
characteristics. The observations or entities
could refer to anything like persons, plants,
animals, and objects (books, pens, pencils,
medicines, engines, etc.), and a character is
defined on the population. Population may be
constituted of persons living in a country, popu-
lation of goats in a country, population of books
in a library, population of fishes in a particular
pond, population of farmers in a country,
populations of students in a country/state/univer-
sity, etc. Individual member of the population is
known as element or unit of the population. Pop-
ulation size refers to the number of observations
in the population. Depending upon the size of the
population, a population may be finite or infinite.
A finite population is a population having fixed
number of observations/units/elements, e.g.,
population of students in a university,
germplasms of mango in a mango garden,
books in a particular library, population of cattle
in a province, and so on. On the other hand, an
infinite population is a population having infinite
number of observations/units/element. For
example, fishes in a particular river, stars in a
galaxy, population of hairs on a person’s head,
etc. An infinite population may be infinite or
countably infinite.

© Springer India 2016

5.2 Sample

From the above definition and examples of pop-
ulation, it is quite clear that to study a particular
population, one has to study each and every
element/unit of the population (the census or
complete enumeration method). But, it may not
be possible/feasible to study each and every ele-
ment/unit of population for various reasons. To
study each and every element of a population
may not be possible/feasible because of time,
labor, and cost involvement. Sometimes, it may
not be possible also to identify each and every
unit of the population (infinite population). As
such in our daily, life we are quite familiar with
the word sample and sample survey method of
data collection. A sample is a representative part
of the population. If we go to market to buy any
commodity, we ask the retailer to show the sam-
ple. The retailer shows a handful of the commod-
ity from a stock of huge amount. We check the
sample for its quality assuming that the quality of
the commodity from which we are supposed to
buy (the population) a certain amount of that
commodity will be of the same quality as that
of the sample shown to us. If the sample shown to
the buyer is not a proper representative part of the
population, then it may lead to wrong decision
with regard to buying of the commodity. In sta-
tistics, one studies the sample characteristics and
verifies how far the sample behaviors are
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acceptable for the whole population (inference
about the population without studying all the
elements of particular population), with the help
of appropriate statistical theories. The sample and
the inference about the population based on its
characteristics play important role particularly dur-
ing the time of disasters, natural calamities, etc. in
quick estimating the quantum of losses incurred
and thereby helping the policy-makers in taking
immediate measures. Sampling technique has
been, in fact, use in every sphere of our daily life.
The branch of statistical science, in which the
technique of sampling for various types of
populations and study of the characteristics are
dealt with, is coming under sampling theory.
Sampling theory mainly has three major
components: (a) how to select proper sample,
(b) collection of information from the samples,
and (c) analysis of sample information to be
utilised during drawing of inferences about the
population as a whole. If the sample fails to
represent the population adequately, then there
is every chance of drawing wrong inference
about the population based on such sample
because of the fact that it may overestimate or
underestimate population characteristics. In fact,
one of the major areas of sampling theory is to
decide appropriate technique of drawing samples
which clearly reflects the nature of the popula-
tion; in doing so, variability and the nature of the
population play a vital role. Before drawing sam-
ple from any population, we should have a sam-
pling frame. A list of all the units in the
population to be sampled constitutes sampling
frame. A list of all the blocks in India may
constitute the sampling frame in a survey over
India. Let us suppose that we want to know the
average height of the students of a college. If the
college is coeducation college and one draws
(i) a sample of either boys or girls only, or
(i1) from a particular class, then the sample fails
to represent the whole population, i.e., the
students of that particular college vis-a-vis the
average height obtained from the sample may fail
to picturize the true average height of the
students of the college (the population). Suppose
we want to know the productivity of milking
cows in a particular block. While selecting

5 Population and Sample

sampling units, one must take into considerations
that the milk yield varies depending upon the
breed of the cows in the concerned block, age
of the cows, rearing conditions of the cows, and
so on. All these are to be provided due impor-
tance so that each and every category is
represented in the sample, and thereby the sam-
ple becomes in true to the sense a representative
part of the milking cows in the particular block.
This will lead to efficient estimation of average
productivity of the milking cows in the block;
otherwise, this will be misleading. A sample, if
fails to represent the parent population, is known
biased sample, whereas an unbiased sample is
statistically almost similar to its parent popula-
tion, and thus inference about population based
on this type of sample is more reliable and
acceptable than from biased sample. A clear
specification of all possible samples of a given
type with their corresponding probabilities is said
to constitute a sample design.

Size (n) of a sample is defined as the number
of elements/units with which the sample is
constituted of. There is no hard and fast rule,
but generally a sample is recognized as large
sample if the sample size n > 30, otherwise
small sample.

Before discussing the sampling techniques in
details, let us have a comparative study of the
two methods of data/information collection, viz.,
the census and the sample survey method.

A comparative account of the two methods of
collection of data is given below:

S1

Sample survey method | no. | Census method

Only a representative 1 Every element of the
part of the population population comes under
(sample) comes under investigation
investigation

Comparatively less 2 Accurate

accurate, if not done

properly

Economical 3 Costly

Lesser time and Time- and resource
resource consuming consuming

Helpful in case of 5 Not possible for infinite
infinite population population

(continued)



5.5 Subject Matter of Sampling

S1
Sample survey method | no. | Census method
Helpful for large 6 Difficult for large
population population
Having both sampling 7 Sampling errors are
and non-sampling errors absent
Nonresponse errors can | 8 Difficult to solve
be solved nonresponse problem
Parameters are to be 9 Parameters are directly
estimated and tested worked out
Used frequently 10 | Not used frequently
(e.g., human population
census, livestock
census, etc. are not
done frequently)

5.3  Parameter and Statistic

Let us suppose, we have a population Yy, Y,,
Ys,...,Yy of size N. Now a parameter is defined
as a real-valued function of the population
values.

=Y

For example, population mean

~

1< . ,
]VZ Y;, Population variance =0
i=1

e _
N Z (Y,- — Y)2; Population coefficient of varia-
i=1

. o
tion = Cy =
Y

Let us suppose, we have selected a sample yy,
Y25 Y3 - -,y Of size n from a population of size N.
Now a statistic is defined as a real-valued func-
tion of the sample values only. For example:

] n
sample mean = y = — g Yis
n4
i=1
1
. 2 —\2
sample variance = 5’} = p E ;=97

5.4  Estimator

An estimator is a statistic when it is used to
estimate the population parameter. From each
and every sample, estimator(s) can be worked
out, as such estimators for a particular population
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parameter behave like a random variable. The
particular value, which the estimator takes for a
given sample, is known as an estimate. Let the
probability of getting the ith sample be p;, and let
t; (i =1, 2, 3 .....Ng) be the estimate, i.e., the
value of estimator ¢ based on this sample for the
parameter 6, N, being the total number of possi-
ble samples for the specified probability scheme.
The expected value or the average value of the

No
estimator ¢ is given by E(f) = Z t;p;. The esti-
i=1

mator ¢ is said to be an unbiased estimator of
the parameter 6 if E(¢) = 6. In case E(f) is not
equal to 6, the estimator is said to be biased
estimator of parameter 6, and the bias of ¢ is
given as B(t) = E(r) — 6. The difference
between the estimate #; based on the ith sample
and the parameter 6, i.e., (t; — @), may be called
the error of the estimate. A commonly used loss
function is the squared error (#; — ), and the
expected loss function is known as mean square
error (MSE). The MSE of an estimator ¢ of 0 is

M,
M(t) = E(t— 9)2 = Zp,-(t,' - 9)2. The vari-
=1

ance of ¢ is defined by V(1) = E[t — E(1)]* =

S pilt— E()P
i=1

We have M(1) = E(t — 6)*
= E[t—E(t) + E(t) — 0
= E[t—E@)]* + [E(r) - 6]
+ 2E[t — E(1)][E(r) — 6]
= V(1) +[B(1)]*, (since E{t — E(r)} =0).

Efficient Estimator Given two estimators f;
and 7, for the population parameter 0, the estima-
tor t; is said to be more efficient than ¢, if MSE
(t1) < MSE(1,).

5.5 Subject Matter of Sampling

Whole subject matter of sampling is directed
toward (a) selection of proper method to obtain
a representative sample, (b) to determine the size
of the sample, (c) to ensure good quality of
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information, and (d) to estimate parameters,
minimizing errors toward valid inferences about
the population.

Once the purpose and objective of the study is
fixed, one has to prepare a suitable sampling plan
to fulfill the objective of the study. An ideal
sampling plan should be concerned about:

(a) Definition of population and sampling units

(b) Scope of study area or domain (i.e., crop,
animals, forest plants, human beings, eco-
nomic parameters, etc.) to be covered

(c) Preparation of sampling frame

(d) Time period allowed

(e) Amount of cost permissible

(f) Coverage, i.e., type of information (qualita-
tive or quantitative) to be collected

(g) Type of parameters to be estimated and type
of inference to be made about the
population

(h) Sampling design

(i) Selection of sample and collection of data
through trained investigators

(j) Analysis of sampled data to arrive at the
population figures to fulfill the objective of
the study

All the above steps aim at reducing the sam-
pling error at a given cost within limited
resources toward drawing efficient inference
about the population under consideration.

A good sampling plan is “essential” for draw-
ing an efficient sample. Along with a good sam-
pling plan, its execution is also the most
important. It is necessary to have a “good” sam-
pling plan followed by its “efficient execution” to
get good estimates of the population parameters.
A “good” sampling plan, if not executed prop-
erly, may give “bad” (unreliable, inaccurate)
results leading to wastage of time, energy, and
money used. For efficient execution of the sam-
pling plan, the investigators responsible for the
data collection must possess necessary
qualifications. The investigators must be prop-
erly trained before the data collection. They
must be taught how to handle the equipments
and make correct observations  and
measurements and note them down carefully. A
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proper supervision of the fieldwork must be
followed by scrutiny and editing of the collected
data. Sincere attempts are needed to identify the
sample units, in specifying the units (s) of
measurements at every stage and to minimize
the error in recording of the data. Initially, a
pilot survey may be undertaken to select the
suitable sampling plan among the alternative
plans. An efficient execution of sampling plan
cannot only reduce both the sampling and
non-sampling errors but also helps in reducing
the cost of study.

5.6  Errors in Sample Survey

In every sphere of scientific endeavor, there are
possibilities of error. In sampling, also mainly
there are two types of errors associated with
estimates worked out from the sample:
(i) sampling error and (ii) non-sampling error.

Sampling Error The error due to differences in
samples is generally termed as sampling error. It
is our common experience that even if we use
different samples, drawn exactly the same way
from the same population, the estimates from
each sample may differ from the other in spite
of using the same questionnaires, instructions,
and facilities that are provided for selection of
all the samples. This difference is termed as
sampling error.

Non-sampling Error Non-sampling errors on
the other hand are mainly due to differential
behavior of respondents as well as interviewers/
supervisors. Thus, difference in response,
difficulties in  defining, difference in
interpretations and inability in recalling informa-
tion, and so on are the major sources of
non-sampling errors.

5.7 Sample Size

The number of units to be taken into consider-
ation while recording information from the pop-
ulation, i.e., sample size, plays an important role.



5.7 Sample Size

A number of factors govern the size of the sam-
ple to be drawn for a specific purpose.
(i) Objective and scope of the study, (ii) nature
of population and sampling unit, (iii) the sam-
pling technique and estimation procedure to be
used, (iv) structure of variability in the popula-
tion, (v) structure of time and cost component,
(vi) size of the population, etc. are the major
decisive factors in fixing the size of the sample
for a particular study. An efficient and optimum
sample either minimizes the mean squared error
of the estimator for a fixed cost or minimizes the
cost for a fixed value of mean squared error.
Fixing of optimum sample size becomes compli-
cated when more than one parameter is to be
estimated or more than one variable is under
study. In fact, it is very difficult to have a fixed
rule for getting sample size. However, based on
past information or information gathered through
pilot study conducted before the main study and
giving due consideration to the above decisive
factors, sample sizes are fixed for specific stud-
ies. Krejcie and Morgan (1970) have provided
the following formula guiding the determination
of sample size from a finite population:

Z*NP (1 —P)
Cd*(N - 1) + 22P(1—P)

Population | 10 |25 |50 |100 | 150 {200 [300 {400 |500 | 600
size (N)
Sample 10 |24 |44 |80 |108 |132 169 | 196 (217 |234
size (n)
% of 100 (96 (89 |80 |72 |66 |56 |49 |43 |39
elements
Population {1900 |2000(2100{2200|23002400{2500{2600|2700|2800
size (N)
Sample 320 322 325|327 [329 |331 333 |335 336 |338
size (n)
% of 17 16 (15 |15 |14 |14 |13 |13 |12 |12
elements
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where

S = required sample size

2> = the table value of y* for one degree of
freedom at the desired confidence level

N = the population size

P = the population proportion (assumed to be
0.50 since this would provide the maximum
sample size)

d = the degree of accuracy expressed as a pro-
portion (0.05)

Example 5.1 Let us find out the sample size for
drawing sample from a population of 100 units
(N). If we select 5 % level of significance
(d = 0.05) and P = 0.5, then the sample size
would be

2*NP (1 —P)
d* (N—1) + 22P(1 - P)
3.841 x 100 x 0.5(1 —0.5)
0.05%(100 — 1) + 3.841 x 0.5(1 —0.5)

~96.025
©1.20775

=179.5073 ~ 80

The following table gives an idea about the sam-
ple size in accordance with the above formula for
different population size:

700 | 800 [900 {1000{1100(|1200{13001400|1500(1600 1700| 1800

248 260 269 |278 285 |291 297 302 |306 (310 |313 |317

35 |32 (30 |28 (26 |24 (23 |22 |20

2900(3000{3100(3200|3300|3400|3500{3600|3700{3800 3900|4000

339 |341 342 |343 344 |345 |346 | 347 |348 349 |350 |351

12 |11 |11 |11 |10 |10 |10 |10

Determination of Sample Size When Popula-
tion Size Is Unknown

Some information are essential about the popula-
tion on hand; also the nature of the sample one
wants to draw is essential before drawing the
sample from a population of unknown size. It is

very difficult to draw a perfect sample which can
mimic the population, so one needs to fix the
allowable error limit and also the confidence
interval with respect to the parameter. Com-
monly used confidence levels are 90 %, 95 %,
99 %, etc. Also, one should have an idea about
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the quantum of variance one expects in
responses. Mostly, 0.5 is used to have a large
sample with the expectation of minimization of
error. Incorporating the above information in the
following formula, required sample size is deter-

mined for unknown population size.
S — Z-score? x Sd(1—Sd)
- Margin of error?

confidence interval is 1.645, 1.96, and 2.326 for
90 %, 95 %, and 99 %, respectively.

Let us suppose that we have 95 % confidence
interval with 0.5 Sd and 5 % being the margin of
error, then the sample size would be

Z score for different

_ Z-score? x Sd(1 — Sd)
~ Margin of error?

(1.96)* x 0.5(0.5)

S

(3.8416 x 0.25)

(0.05)* 0.0025
0.9604
= 00005 — 384.16 = 384

Instead of 95 %, if we take 90 % confidence
interval with the same Sd and level of error,
then the required sample size would be

_ Z-score? x Sd(1 — Sd)
~ Margin of error?

(1.645)* x 0.5(0.5)  (2.706 x 0.25)
(0.05)* 0.0025

S

_0.67651

= = 270. ~ 271
0.0025 70.603 7

Again instead of 0.5 Sd, if we take 0.4 Sd with
same confidence level and level of error, then the
required sample size would be

_ Z-score? x Sd(1 — Sd)
~ Margin of error?

(1.645)% x 0.4(0.6)  (2.706 x 0.24)
(0.05)* 0.0025

~0.64945
"~ 0.0025

S

= 259.776 ~ 260

Thus, depending upon the desired level of accu-
racy and confidence level, the sample size is
fixed. Moreover, unknown population size does
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not create acute problem because of the fact that
the population size is irreverent unless the size of
the sample exceeds a few percent of the total
population. Thus, a sample of 500 elements is
equivalently useful in examining a population of
either 1,500,000 or 100,000. As such, the survey
system ignores population size when the popula-
tion is either large or unknown.

5.8 Selection of Sample (Sampling

Technique)

Depending upon the nature and scope of the
investigation and situations under which the
study is being carried out, appropriate sampling
technique is being chosen. Available sampling
techniques can broadly be categorized in to two
categories (a) probability sampling and (b) non-
probability sampling. When the units in the sam-
ple are selected using some probability mecha-
nism, such a procedure is called probability
sampling. The procedure of selecting a sample
without using any probability mechanism is
termed as non-probability sampling:

Non-probability
Probability sampling sampling
(1) Simple random sampling
(2) Varying probability
sampling

(1) Quota sampling
(2) Judgment
sampling

(3) Stratified sampling (3) Purposive
sampling

(4) Systematic sampling

(5) Cluster sampling

(6) Multistage sampling

(7) Multiphase and double
sampling

(8) Sampling on two occasions

(9) Inverse sampling

Besides the above, some complex and mixed
sampling techniques like (a) two-stage or three-
stage sampling with stratification, (b) double
sampling for stratification, (c) sampling on suc-
cessive occasions are useful in studies related
with socioeconomic, agronomic, and animal hus-
bandry aspects.
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5.9 Different Sampling Techniques

5.9.1 Probability Sampling

In this type of sampling scheme, sampling units
are selected with definite probability rule; sam-
pling units cannot be selected as per the whims of
the investigator or user. Depending upon the
nature of the population and objective of the
study, different sampling techniques have been
developed to fit the respective situation following
definite probability rule. In the following
sections, let us discuss in brief some of the useful
and widely used sampling techniques.

5.9.1.1 Simple Random Sampling

The basic assumption in simple random sampling
is that the population is assumed to be homoge-
nous in nature. Units are drawn into the sample
from the population with the condition that each
and every element in the population has got equal
probability to be included in the sample. There
are two methods of selecting sampling units
using simple random sampling technique from a
population, viz., simple random sampling with
replacement (SRSWR) and simple random sam-
ple without replacement (SRSWOR).

In simple random sampling with replacement
(SRSWR), if there are “N” units in the popu-
lation, then every unit has got 1/N probability
to be included in the sample. After selecting a
unit, it is noted and returned to the population,
before the second unit is selected from the
population and the process is continued till
n (the sample size) number of units is selected
from the population. Thus, from a population
of N units, we select each and every unit by
giving equal probability 1/N to all units with
the help of random numbers.

On the other hand, in simple random sampling
without replacement (SRSWOR) after selec-
tion of the first unit from N number of unit in
the population with 1/N probability, the
selected unit is not returned in to the population
before drawing of the second unit. Thus, the
second unit is selected with 1/(N—1) probabil-
ity from (N—1) units. Subsequent units are
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selected accordingly from the rest (N—2),
(N-3), (N—4)....... respectively units at each
stage. The beauty of this method is that in spite
of reduced number of elements in the popula-
tion after each draw, it can be shown that the
probability of drawing selecting a unit in the
sample remains same. We shall demonstrate
the same as follows.

Let us suppose we are to draw a sample of
n units from a population of N units using
SRSWOR. Under the given conditions, the proba-
bility of drawing any unit in the first drawing out
of N units is 1/N and that of second unit from the
remaining (N—1) units is 1/(N—1), third unit from
(N—2) remaining units is 1/(N—2), and so on. If M,.
be an event such that a specific unit is selected at
the rth draw, then the probability of M,. is given as

P(M,) = the probability of the specific unit
being not selected in r—1 previous draws and
has been selected only during the rth draw is

r—1
HP(that the element is not selected at ith draw)
i=1

x P(that the element is selected at ith draw)

_Tip_ 1 }X 1
11 N—(i—-1)] "N=(r—1)
e N-—i 1
WUN—i+1"N=(r—1)
N-1 _N-2 _N-3
N "N—-1"N=2
N—4 N—r+1 1
X iiiiiiennnnn X
N-3 N—r+2 N-r+1
1
N
1
P(Mz)_P(Ml):N

Let us illustrate how to use random number from
a random number table for drawing a random
sample from a finite population.

Example 5.2 The number of calves in lifetime
per adult for 50 different goats is given below.
The problem is to find out the average no. of
calves per goat from a sample of 10 breeds
(i) with replacement and (ii) without replacement
from the population:
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Goat no. Calves Goat no. Calves Goat no. Calves Goat no. Calves Goat no. Calves
1 8 11 4 21 14 31 10 41 6
2 12 12 5 22 15 32 8 42 7
3 10 13 7 23 2 33 9 43 8
4 8 14 12 24 5 34 11 44 12
5 9 15 14 25 15 35 3 45 11
6 11 16 8 26 17 36 8 46 9
7 3 17 10 27 8 37 10 47 12
8 8 18 10 28 38 12 48 15
9 10 19 5 29 12 39 7 49 18
10 12 20 6 30 13 40 9 50 16

The sampling units are the goat number,
which varies from 1 to 50. Thus N, the population
size is 50, a two-digit number:

(a) Method-1 (direct approach)

Consider only two-digit random numbers from
01 to 50 and reject the numbers greater than 50 and
00. One can start at any point of the random num-
ber table arranged in row and column; one can
move in any random way; and it can be vertically
downward or upward, to the right or to the left. Let
us start at random from a number vertically down-
ward. The numbers selected from the random num-
ber table are given in the following table:

Random numbers found Selected random numbers
from the table SRSWR SRSWOR
12 12 12
4 04 4
36 36 36
80 - _
36 36 -
32 32 32
95 — _
63 - _
78 _ _
18 18 18
94 _ _
11 11 11
87 — _
45 45 45
15 15 15
32 32 -
71 — _
77 - -
55 - -
95 - _
27 - 27
33 - 33

The random samples of size 10 with replace-
ment and without replacement consist of the unit
numbers 12, 4, 36, 36, 32, 18, 11, 45, 15, and
32 and 12, 4, 36, 32, 18, 11, 45, 15, 27, and
33, respectively. It can be seen from the above
table that we have discarded the random numbers
above 50, viz., 80, 95, 63, 78, 94, and 87. While
selecting the random numbers according the
SRSWR, we have kept some random numbers,
viz., 36 and 32, more than once because these
units after selection are returned to the population
before selecting the next unit. But no repetition of
random number is found in SRSWOR method.
Demerit of the direct approach is that a large
number of random numbers are rejected simply
because these are more than the population size.

Now, from the selected samples (using
SRSWR and SRSWOR), respectively, one can
find out the average number of calves per goat:

SRSWR method SRSWOR method
Goat Calves Goat Calves
12 5 12 5
4 8 4 8
36 8 36 8
36 8 32 8
32 8 18 10
18 10 11 4
11 4 45 11
45 11 15 14
15 14 27 8
32 8 33

Using the above calve data, one find that the
average number of calves per goat for two
methods is coming out to be:

SRSWR: 5 +8+8+......... + 11+ 14 + 8)/
10 =84
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SRSWOR: (5 + 8 + 8 +
10 =85

(b) Method-II (using random number generated
through MS Excel)

In MS Excel, one can generate random num-
bers within a given range. For the above exam-
ple, random numbers are to be generated

between 01 and 50. Ten random numbers are
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to be generated using SRSWR and SRSWOR.
This can be accomplished using following
steps:

Stepl: Select any cell and write=rand between
01 and 50 to get the first random number
between 01 and 50. Then, copy the formula
to subsequent cells in column or row to get as
many random numbers as one wants.
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The random numbers, thus, generated and paste special option, these are required to be
changes with every operation, so by using copy fixed, as given below:

2 Peromocedmmun
Hame & Bange...

Step 2: Copy the cells containing random num- these will change every time the cell is
bers, and then using paste special value com- activated.
mand, fix the random numbers; otherwise,
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Step 3: From the random number generated,
select the random numbers with repetition
and without repetition for SRSWR and
SRSWOR, respectively.

Simple random sampling is the most simple
and easy method of drawing sample. It is also
very easy to estimate the parameters through this
technique. But the only problem with this tech-
nique is that if the population is not homoge-
neous, then it will fail to produce a
representative part of the population, and subse-
quently the estimates of the population
parameters will not be accurate.

If a sample(yq, y2, y3-- .. - v,) of n units are
drawn from a population of N units adopting

n
SRSWR, then the sample mean y = %Zy,- is
i=1
an unbiased estimator of the population mean
Y (E(y) =
sample mean, i.e.,

Y), and the sampling variance of the

V(y) is given as ‘j—j where ¢ is the population
variance. But unlike sample mean sample vari-
ance is not an unbiased estimator of population
variance. On the other hand mean square ( sz) is
an unbiased estimator of the population variance

IZ

As such the standard error of the sample mean

is given by SE(y) = and the estimated

i.e. E(s?) = o* where, s?

SE.(9) :% For SRSWOR E(y) =7, V(3) =
V=R = (-3 B = where

§? = ﬁz (Y — 7)2 is the population mean
P

square, an unbised estimator of population vari-
ance and f = £ = sampling fraction.

The factor v N” = (1 —f) is correction factor
for the finite population.

Readers may please note that VWOR ) =54
nz (1 — ﬁ—ll) - approaches to - > as N — 0.
Thus V() = Vwor(Y) whenN — 0.
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5.9.1.2 Varying Probability Sampling
(Probability Proportional to Size
Sampling)
While selecting farmers for any study, we fre-
quently come across with the situation that the
farm size varies among the farmers and it will not
be wise to select farmers for drawing a sample
assigning equal probability to each farmer having
differences in their farm sizes. Let us suppose
there are N number of units in a population with
Xl’ Xz, X3 Xl sXN as their
respective farm sizes. Using SRS, we would
have selected units with probability of being
selected as 1/N, providing equal weightage to
all the farms varying in sizes. But in this proba-
bility proportional to size sampling, the probabil-

ity of selecting ith unit is %, with X = ZX,’.
i=1
Probability proportional to size sampling
method considers both heterogeneity in the popu-
lation and the varying size of the population units/
elements. Thus, this method uses auxiliary infor-
mation (unit size), which helps in getting more
efficient estimator of the population parameter.
If a sample of » units is drawn from a popula-
tion of N units with PPSWR, then an unbiased
estimator of the population total Y is given by

n
Y ppg = %Z& with its estimated sampling

i=1 i

variance
V (YPPS n(n ) Z <p — Ypps) ) where
pi=5

Selection of Sample
There are two methods, (i) cumulative total
method and (ii) Lahiri’s method, to select a sam-
ple according to this PPS method. Let us discuss
the methods in brief:

(a) Cumulative total method. Let X; (i = 1,2,3,
, N) be the size of the ith unit in the
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population, and suppose that these are
integers. Then in the first step, we assign
1 to X; number to the first unit having X,
size, (X; + 1) to (X; + X5) to the second unit
having size X,, X;+Xp+1) to
(X1 + X2 + X3) to the third unit having
size X3, and so on. In the second step,
we are to select a random number from

N
ltoX = (Z X,-) using any of the method
i=1
described above, and the unit in whose
range the random number falls is taken in

Herd
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the sample. The above steps are repeated
n times to get a sample of size n with proba-
bility proportional to size with replacement.

Example 5.3 To estimate the average milking
capacity of a particular breed of cow, informa-
tion from 25 herds were collected. The following
table gives the herd number and herd size. The
procedure to select five herds using PPS sam-
pling cumulative total method is delimited
below:

11123 456 7|89 ]10/11]12]13]14]15/16]17 18|19 20|21 |22]23|24]25

Herd size (no.)| 10| 15|20 |30 25|30 12| 18|28/ 42|55 50| 60| 20|34 38|45|55|70 80|55/ 65|85|42| 16

We are to select five farms with probability
proportional to size with replacement.

Solution

Here in this example, the herd size is taken as the
criteria. With the above data, let us frame the
following:

Herd

size Cumulative Numbers
Herd | (no.) herd size total | associated | PPSWR
1 10 10 01-10
2 15 25 11-25
3 20 45 26-45
4 30 75 46-75
5 25 100 76-100 N
6 30 130 101-130
7 12 142 131-142
8 18 160 143-160
9 28 188 161-188
10 |42 230 189-230
11 55 285 231-285
12 |50 335 286-335
13 |60 395 336-395
14 |20 415 396-415
15 34 449 416449 |
16 |38 487 450-487
17 |45 532 488-532 |
18 |55 587 533-587
19 |70 657 588-657 |
20 (80 737 658-737

(continued)

Herd
size Cumulative Numbers
Herd | (no.) herd size total | associated | PPSWR
21 |55 1792 1738792 |
2 |65 857 793-857 |
23 |85 1942 1858942 |4
24 42 1984 1943-984 |
25 |16 | 1000 1 985-1000 |

We shall select five random numbers from
1 to 1000 from the random number table, and
suppose the random numbers selected from the
random number are 502, 648, 902, 91, and 440.
The herds associated with these numbers are
17th, 19th, 23rd, 5th, and 15th, respectively.
Thus, according to PPS with replacement, the
sample should contain 5th, 15th, 17th, 19th, and
23rd herd from the 25 herds at random.

(i1) Lahiri’s method

Lahiri’s (1951) method of PPS sampling uses
only two values, i.e., the population size (N) and
the highest size of the population elements; it
does not accumulate the sizes of the elements of
the population. A random number from 1 to N is
selected and noted to the corresponding unit of
the population. Another random number from
1 to M (the maximum or any convenient number
greater than the maximum size among the
elements of the population) is drawn. If the
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second random number is smaller or equal to the
size¢ of the wunit provisionally marked
corresponding to the first random number, the
unit is selected into the sample. If not, the entire
procedure is repeated until a unit is finally
selected, and the whole process is repeated until
sample of desired size is achieved.

Herd
Herd size
(no.)
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Example 5.4 To demonstrate the process let us
take the same example in 5.3. To estimate the
average milking capacity of a particular breed of
cow, information from 25 herds were collected.
The following table gives the herd number and
herd size. The procedure to select five herds
using PPS sampling cumulative total method is
delimited below:

1023 4567 (8 ]9 10/11]12][13]14]15/16]17]18]19]20]21]22]23]24]25
‘10‘15‘20‘30‘25‘30‘12‘18‘28‘42‘55‘50‘60‘20‘34‘38‘45‘55‘70‘80‘55‘65‘85‘42‘16

We are to select five farms with probability
proportional to size with replacement using
Lahiri’s method.

In this example, we have N =25 and
M = 85. First, we are to select a random number
from 1 to 25 and a second random number from
1 to 85. Referring to the random number table,
the pair is (10, 40). Here 40 < X ;o = 42. Hence,
the tenth unit is selected in the sample. Suppose
we choose another pair (19, 80). Here 80 > X9
= 70. So the 19th unit is rejected. We choose
another pair (7, 55). Here 55 > X; = 12. Thus,
the seventh unit is also rejected. Let the fourth
pair of random numbers be (3,12); 12 < X;
= 20. So the third unit is selected in the sample.
The process is continued till we have sample of
desired size (5) here.

5.9.1.3 Stratified Sampling

Both the simple random sampling and the proba-
bility proportional to size methods of sampling
are mostly used in homogenous population situ-
ation. Under the heterogeneous population situa-
tion, these methods result in lesser efficient
samples. Moreover, these two methods are com-
paratively costly. Stratified random sampling is
one of the methods of tackling the heterogeneous
population. The essence of stratified random
sampling method lies on dividing the whole het-
erogeneous population of size N in to small
groups (known as strata) of comparative homo-
geneous elements/units. Thus, the strata are
homogeneous within and heterogeneous among
themselves as much as possible; random samples

are drawn from each of the homogeneous stra-
tum. A suitable stratifying factor like age, sex,
educational or income level, geographical area,
economic status, soil fertility pattern, stress level,
tiller size, sex of fish, different species of fish,
and so on is used for the purpose of stratification.
Efficiency in stratification leads to the efficient
stratified random sampling.

In stratified sampling method, we come across
two types of problems, (i) how many strata
should one form with a given population and
(i) how many units from each stratum should
be selected for the sample? The basic principle
followed during stratification is that stratification
can be done to the extent which produces lesser
variance and such that only one unit is selected
from each stratum. Moreover, it is not always
true that too many numbers of strata always
lead to lesser variance. The second problem of
allocation of number of units to be selected from
different strata is being dealt with different
method like (a) equal allocation,
(b) proportional allocation, (c) optimum alloca-
tion, (d) Neyman’s allocation. Before discussing
all these methods, let us first discuss the unbiased
estimator of population mean and total from
stratified population.

Suppose we have a population with popula-
tion mean Y and variance 62, The population is
stratified into L strata with N, be the sizes of hth

Y, and variance o3

stratum having mean
(h=123,...L).

Therefore, N = N;,+N, + ....... + N;.
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L L
We may write, ¥ = ZWhY_h, o ZWW/%

h=1 h=1
L
+> Wa(¥y - Y)’,
h=1
where, W, = &
N

Let us take a random sample of size n by
selecting 7, units from hth stratum such that

L

Znh =n. Let y, and 5,> be the sample mean

h=1

and sample mean square for the nth stratum
ny

h= #thf
=1
Ny 2
Z (yhj - yh) .

j=1
Unbiased estimator for the population mean Y
and the population total Y are given by ¥ =5y,

2 1
Sh o1

where, and

L

= ZW;J,, andY = Ny, and their estimated
h=1

variances are given by

yvt th l_fh Jn',,,

V(N yxt) = N V(yvt) where fh

N/x

With this idea, let us now discuss the methods
of allocation of number of units to be selected
from different strata.

(@) Equal allocation: Total sample size is
divided equally among the strata, i.e., sam-
ple ny, to be selected from Ath stratum such
that n;, = n/L.

(b) Proportional allocation: In proportional
allocation, n; oo (proportional to) Ny, i.e.,
Nh = I’lWh; h = 1, 2, 3,. ey L.

(c) Optimum allocation: The simplest cost

L
function is of the form C = Cy + Z Cuny,
n=1
where Cy is an overhead cost, Cy, is the cost
of sampling a unit from the Ath stratum,
and C is the total cost. We have to find n,,
such that V(¥,,) is minimum for specified
cost C = C'. To solve this problem, we
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have n, = (C'—Co) —VS1VC _ j =1,
Z WS/ Ch
=1

2,3,.........L, where S,,Z is the population

mean square for the Ath stratum.
This is known as optimum allocation.
(d) Neyman allocation: A special case arises
when the C;, = C”, i.e., if the cost per unit
is the same in all the strata. In this case,

_ W},Sh _— NhSh
np =n-— =n-—;

Z WS ZNhSh
h=1 h=1

tion is known as Neyman allocation, after
the name of Neyman (1934). In particular, if

. This alloca-

Si=8=...=8;, one can see that
Neyman allocation reduces to proportional
allocation.

5.9.1.4 Cluster Sampling
While dealing with huge population, simple ran-
dom sampling becomes not so easy because of
the nature of the population and the cost and time
involvement in the process. As such, subsection
or grouping of the population is needed for effi-
cient sampling. In stratified sampling, discussed
in previous section, the strata are the subsection
of the population and which are formed in such a
way that there are homogeneity among the units
of the stratum and heterogeneity among the
strata. As such, these strata fail to picturize the
nature of the population individually; individu-
ally, each of these is subsection of the popula-
tion. On the other hand in cluster sampling,
clusters are thought of as a typical part of popu-
lation rather than subsection. We need to select
larger units/clusters instead of units directly from
the population. For example, in a large country
wide survey, one can have list of blocks or
villages, which can be used as cluster having all
the properties of the population not the subsec-
tion of the population for probability sampling.
In cluster sampling, the whole population is
divided into a number of clusters each consisting
of several units and continues to hold the nature
of the population from which these are formed.
Cluster size may vary from cluster to cluster. The
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best size of cluster depends on the cost of
collecting information from the clusters and the
resulting variance. Our aim is to reduce both the
cost and variance, and for that we can have a pilot
survey also, if felt necessary. Then some clusters
are selected at random out of all the clusters. The
advantages of cluster sampling from the point of
view of cost arise mainly due to the fact that
collection of data for nearby units is easier,
faster, cheaper, and more convenient than
observing units scattered over a region, as in the
case of simple random sampling.

Suppose we have a population divided into
N clusters having M units each, i.e., the size
of the population is NM. Let X;; be the value
of the character X under study for jth obser-
vation corresponding to ith cluster (i =1,
2, 3,...... N and j =1, 2, 3,
population X

N M N
X= NLMZZXU = ﬁzz,where, X; is the
i i=1

ith cluster mean. A sample of n clusters is
drawn with SRSWOR, and all the units in the
selected clusters should be surveyed. An
unbiased estimator of the population mean X

is given by
n

mean X is defined as

X =1 E %; and its estimated variance is
=1

M

A~ 2 2 o

Vv (X¢> = N[;n %, where, X; = AL/I E Xij =
Jj=1

mean for the ith selected cluster and

n 2

Sp” Zﬁz (E—E)

i=1

The cluster sampling is useful when the study
area is very big, and listing of population units is
not available or possible under the given
conditions of resources and time, but the same
may be available for small segments of the pop-
ulation. The problem with cluster sampling arises
when the clusters fail to represent the true nature
of the population.

5.9.1.5 Multistage Sampling
For study in larger area, we have suggested for
cluster sampling method. This cluster sampling
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method can be made more efficient by forming
clusters at different stages. Suppose in a house-
hold survey of farmers, as per cluster sampling
method, the whole country can be visualized as
composed of number blocks, and from blocks,
the farmers could be selected. The process can be
made more efficient, instead of taking blocks as
the clusters, if we select some districts at random,
followed by sum blocks from each of the selected
districts at random, followed by some villages
from each of the selected blocks at random and
ultimately some households at random from the
selected villages. Thus, there are different stages
of clustering, and in each stage, units are selected
at random. In this case, selected districts, blocks,
and villages form the first-stage, second-stage,
and third-stage units, respectively, with farmers
as the ultimate sampling units. The whole pro-
cess of such sampling is known as multistage
sampling method.

Multistage sampling is a very flexible sam-
pling technique. It is useful especially for an
underdeveloped condition where sampling
frame is not available. But it is less accurate
than single-stage sampling and is tedious when
the number of stages is more. The whole process
depends on the expertise of the supervisor.

Suppose we have a population, which is
divided into N first-stage units (fsu) having

M second-stage units (ssu) each. The population
N

N M
mean X = WZ ZX,] = }VZ}_([.
i i=1

If a sample of N first-stage units (fsu) is
selected from N first-stage units (fsu) with
SRSWOR and a sample of M second-stage units
(ssu) is selected from each selected fsu with
SRSWOR, then an unbiased estimator for Y is
given by

n

<

= %ZX,' with its estimated variance

i=1

A~ el 2 —

vV (X,) = (1 —f1)57+f‘(imf2>sz2, where
m n ~ 2

)T,—%Zyij,s%:ﬁ ()‘(,—X,) and
j=1 i=1

n m
2 1
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Multistage sampling is a very useful and flex-
ible sampling technique especially under the sit-
uation of nonavailability of sampling frame. The
efficiency of the sampling process depends on
the expertise of the supervisor. Moreover, it is
comparatively less accurate than single-stage
sampling, and as the number of stages increases,
the process becomes very tedious, and the esti-
mation procedure becomes complicated.

5.9.1.6 Multiphase and Double
(Two-Phase) Sampling

A variant form of tackling large population is
multiphase sampling, i.e., to carry out sampling
in two or more phases. With the help of auxiliary
information collected and used in subsequent
subsampling stages, sampling procedure is
accomplished. Two-phase or double sampling is
the simplest procedure in multiphase sampling.
The usual procedure is to take a large sample of
size m from the population of N units to observe
the x-values of the auxiliary character and to
estimate the population parameter (say mean),
while a subsample of size n is drawn from m to
study the character under consideration.

Suppose we want to select a sample of farmers
with probability proportional to size of farm for a
country. It is very difficult to have information on
farm size from each of the farmers for a huge
country. The multiphase sampling, here
two-phase sampling (say), starts with an initial
random sample of families having varied farm
sizes, and information on their farm sizes are
collected; then a subsample is taken from the
initial sample with probability proportional to
size of the farms. This will serve as the test
sample for the character under study from a
selected sample on the basis of farm size. Thus,
in multiphase sampling, every sample is obtained
from previous sample.

The difference in between multiphase sam-
pling and the multistage sampling is that in mul-
tistage sampling, the sampling units at each stage
are the clusters of units of the next stage and the
ultimate observable units are selected in stages,
sampling at each stage being done from each of
the sampling units or clusters selected in the
previous stage. On the other hand, in multiphase
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sampling, information are collected initially
from a wider sample of the population, and
subsequent information are collected from
subsequent samples.

5.9.1.7 Systematic Sampling

Systematic sampling is simple and convenient to
apply. The basic idea of systematic sampling is to
select units for sample in a systematic way, as
such not fully in random manner. In systematic
random sampling, only the first unit is selected at
random, and the rest units of the sample get
selected automatically according to some
predesigned pattern. Suppose we have a popula-
tion of N units and the N units of the population
are numbered from 1 to N in some order. Let
N = nk, where n is the sample size and k is an
integer, and a random number less than or equal
to k is selected first, and every kth unit thereafter
is selected in systematic manner. There are two
methods of systematic selection of sample
according to this method, (a) as linear systematic
sampling and (b) circular systematic sampling.
Let us now discuss the methods in brief:

(a) Linear systematic sampling (LSS): As has
already been stated, a population of size N is
numbered, and to select a sample of size n,
we select number k such that N = nk where
k is an integer. At first, a random number
r in between 1 to k is selected. We start with
rth unit, and thereafter every unit at every
kth interval is selected for the desired sam-
ple. Thus, in this procedure, the sample
comprises the units r, r+ k, 1+ 2k,. ...,
and r + (n—1)k. The selected random num-
ber r is known as the random start, and £ is
called the sampling interval.

Circular systematic sampling: The problem
with linear systematic sampling is if N #
nk. To counter the problem, the circular
systematic sampling will be useful. In this
method, the sampling interval & is taken as
an integer nearest to N/n; a random number
is chosen from 1 to k, and every kth unit is
drawn in the sample. Under this condition,
the sample size will be n or one less than n.
Some workers suggest that one should

(b)
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continue to draw units until one gets a sam-
ple of size n.

It is also economical and requires less time
than simple random sampling. But it does not
give a right representation of the population and
also may not give efficient result if the popula-
tion is not in a systematic manner. It can also be
shown that in case of circular systematic sam-
pling, though the sample mean is an unbiased
estimator of the population mean, an unbiased
estimate of the variance is not available for a
systematic sample with one random start because
a systematic sample is regarded as a random
sample of one unit. Some biased estimators are
possible on the basis of a systematic sample. If
two or more systematic samples are available, an
unbiased estimate of the variance of the
estimated mean can be made.

Systematic sampling is simple, and it is
widely used in various types of surveys, i.e., in
census work, forest surveys, in milk yield
surveys, in fisheries, etc., because in many
situations, it provides estimates more efficient
than simple random sampling.

5.9.1.8 Inverse Sampling

So far the methods of sampling discussed are to
draw sample of desired size, but we may come
across a situation where we do not know the
exact size of the sample to be drawn. Suppose
we want to draw a sample of plants in which
there must be at least £ mutant plants (in which
rare mutation has taken place). Thus, in this
process of sampling, drawing of sample units
should continue at random until XK number mutant
plants have been selected in the sample. The
drawing will continue and the sample size will
go on increasing. Such a sampling procedure is
known as inverse sampling. Thus, though costly,
time-consuming, and labor consuming, this sam-
pling gives due weightage to rare elements in the
population. Inverse sampling is generally used
for the estimation of a rare population parameter.
For example, inverse sampling designs have
been used to populations in which the variable
of interest tends to be at or near zero for many of
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population units and distinctly different from
zero for a few population units.

Suppose p denotes the proportion of units in
the population possessing the rare attribute under
study. Evidently, Np number of units in the pop-
ulation will possess the rare attributes. To esti-
mate p, units are drawn one by one with
SRSWOR. Sampling is discontinued as soon as
the number of units in the sample possessing the
rare attribute (a predetermined number, m) is
reached. Let us denote by n the number of units
required to be drawn in the sample to obtain
m units possessing the rare attribute. An unbiased

m=1 and an unbi-

n—1°
ased estimator of the variance of p is

Vi(p) =L 1 -5t

estimator of p is given by p =

5.9.1.9 Bootstrap Sampling

The main idea of sampling from population is to
handle lesser number of elements instead of a
population that consists of huge number of
elements and to use the sample statistic to esti-
mate the population parameter in a befitting man-
ner. Thus, the sampling distribution of sample
statistic is important in this aspect. One way to
achieve the same is to draw number of samples
from the population, but the procedure does not
make any sense as it would be too costly and
against the principle of sampling theory as such.
Here lies the importance of bootstrap sampling.
In order to get idea about the sampling distribu-
tion of the sample statistic, we use repeated
samples of same size from the original sample
drawn from the population. If the number of
resample (with replacement) be very large, then
one would get good idea about the sampling
distribution of a particular statistic from the col-
lection of its values arising out of these repeated
samples. In literature, one can find the
terminologies, surrogate population and phan-
tom samples, corresponding to original random
sample drawn from the population and resamples
of the same size with replacement from the sur-
rogate sample, respectively. The sample sum-
mary/statistic is then computed from each of the
bootstrap samples (generally a few thousands).
At the elementary application stage of bootstrap,
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one produces a large number of “copies” of a
sample statistic, computed from these phantom
bootstrap samples. A histogram of the set of
these computed values is referred to as the boot-
strap distribution of the statistic. Then, a confi-
dence interval 100(1—a)% is set corresponding
to unknown population parameter of interest; the
value of a is decided by the experimenter
according to the situation.

5.9.2 Non-probability Sampling

5.9.2.1 Quota Sampling

In this method of non-probability sampling, defi-
nite number of sampling units is selected from
different subsections of the population. Selection
of units for sampling is left to the expertise/con-
venience of the sampler, and an interviewer
selects the respondents in nonrandom manner.
The greatest weakness of the procedure is non-
random selection of the units for sampling pur-
pose. In most of the cases, each interviewer/
sampler is assigned to record information from
a fixed number of respondents (quota) that are
taken as representation of whole sample.

As such, this procedure of sampling is less
costly and convenient, does not require any sam-
pling frame, and provides quick response. The
success of the entire exercise depends on the skill
and the efficiency of the interviewer/sampler.

5.9.2.2 Judgment Sampling
In this method of sampling, most emphasis is
provided to the purpose or objective of the
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sampling. As such, those units are only selected
which can serve the purpose of sampling. Thus,
in judgment sampling, the basic idea is to select a
sample of desired size giving full judgment to the
purpose of the study, and the elements of the
sample is selected in such a way so as to fulfill
the objective of the study. Though the method is
very simple, it may lead to biased and inefficient
sample depending upon the efficiency of the
supervisor.

5.9.2.3 Purposive Sampling

The choice of the supervisor is the most impor-
tant parameter in selecting a unit into the sample.
As such, purposive sampling does not follow the
basic theories of sampling. Selection of element
to be included in the sample is entirely made on
the basis of the choice of the supervisor. Like-
wise to that of judgment sampling, the purposive
sampling is very easy to handle, but it provides
rarely a representative part of the population.
Thus, the results from purposive sampling are
mostly biased and inefficient.

Besides the above, there are various sampling
schemes depending up on the nature of the popu-
lation in hand and the situations. In many cases,
combinations of more than one method are used,
e.g., in estimation of marine fish landing in India,
a multistage stratified in combination of system-
atic sampling is adopted. For getting an immedi-
ate idea about any phenomenon under
consideration (like crop loss due to sudden out-
break of pest/disease, damage of life due to tsu-
nami, etc.), sampling technique for rapid
assessment (STRA) is also used.
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Different Sampling Techniques
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Random number table

00-04 05-09 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49
00 54,463 22,662 65,905 70,639 79,365 67,382 29,085 69,831 47,058 08,186
01 15,389 85,205 18,850 39,226 | 42,249 90,669 96,325 23,248 60,933 26,927
02 85,941 40,756 82,414 | 02,015 13,858 78,030 16,269 65,978 01,385 15,345
03 61,149 69,440 11,286 88,218 58,925 03,638 52,862 62,733 33,451 77,455
04 05,219 81,619 10,651 67,079 92,511 59,888 84,502 72,095 83,463 75,577
05 41,417 98,326 87,719 92,294 | 46,614 50,948 64,886 20,002 97,365 30,976
06 28,357 94,070 20,652 35,774 16,249 75,019 21,145 05,217 47,286 76,305
07 17,783 00,015 10,806 83,091 91,530 36,466 39,981 62,481 49,177 75,779
08 40,950 84,820 29,881 85,966 62,800 70,326 84,740 62,660 | 77,379 90,279
09 82,995 64,157 66,164 | 41,180 10,089 41,757 78,258 96,488 88,629 37,231
10 96,754 17,676 55,659 44,105 47,361 34,833 86,679 23,930 53,249 27,083
11 34,357 88,040 53,364 | 71,726 | 45,690 66,334 60,332 22,554 90,600 | 71,113
12 106,318 37,403 49,927 57,715 50,423 67,372 63,116 | 48,888 21,505 80,182
13 62,111 52,820 | 07,243 79,931 89,292 84,767 85,693 73,947 22,278 11,551
14 47,534 09,243 67,879 00,544 23,410 12,740 | 02,540 54,440 32,949 13,491
15 98,614 | 75,993 84,460 62,846 59,844 14,922 | 48,730 | 73,443 48,167 34,770
16 24,856 | 03,648 44,898 09,351 98,795 18,644 39,765 71,058 90,368 44,104
17 96,887 12,479 80,621 66,223 86,085 78,285 02,432 53,342 | 42,846 94,771
18 90,801 21,472 | 42,815 77,408 37,390 | 76,766 52,615 32,141 30,268 18,106
19 55,165 77,312 83,666 36,028 28,420 | 70,219 81,369 41,943 47,366 | 41,067
20 | 75,884 12,952 84,318 95,108 72,305 64,620 91,318 89,872 45,375 85,436
21 16,777 37,116 58,550  |42,958 21,460 |43,910 |01,175 87,894 81,378 10,620
22 46,230 | 43877 80,207 88,877 89,380 32,992 91,380 | 03,164 98,656 59,337
23 42,902 66,892 |46,134 | 01,432 94,710 23,474 20,423 60,137 60,609 13,119
24 81,007 00,333 39,693 28,039 10,154 95,425 39,220 19,774 31,782 | 49,037
25 68,089 01,122 51,111 72,373 06,002 | 74,373 96,199 97,017 41,273 21,546
26 20,411 67,081 89,950 16,944 93,054 87,687 96,693 87,236 | 77,054 33,848
27 58,212 13,160 | 06,468 15,718 82,627 76,999 05,999 58,680 96,739 63,700
28 70,577 42,866 24,969 61,210 | 76,046 67,699 42,054 12,696 93,758 03,283
29 94,522 | 74,358 71,659 62,038 79,643 79,169 44,741 05,437 39,038 13,163
30 42,626 86,819 85,651 88,678 17,401 03,252 99,547 32,404 17,918 62,880
31 16,051 33,763 57,194 16,752 54,450 19,031 58,580 | 47,629 54,132 60,631
32 08,244 27,647 33,851 44,705 94,211 46,716 11,738 55,784 95,374 | 72,655
33 59,497 04,392 | 09,419 89,964 51,211 04,894 | 72,882 17,805 21,896 83,864
34 97,155 13,428 40,293 09,985 58,434 | 01,412 69,124 82,171 59,058 82,859
35 98,409 66,162 95,763 47,420 20,792 61,527 20,441 39,435 11,859 41,567
36 | 45476 84,882 65,109 96,597 25,930 66,790 65,706 61,203 53,634 22,557
37 89,300 69,700 50,741 30,329 11,658 23,166 | 05,400 66,669 48,708 03,887
38 50,051 95,137 91,631 66,315 91,428 12,275 24,816 68,091 71,710 33,258
39 31,753 85,178 31,310 89,642 98,364 | 02,306 24,617 09,609 83,942 22,716
40 | 79,152 53,829 77,250 20,190 56,535 18,760 69,942 | 77,448 33,278 48,805

(continued)
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00-04 05-09 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49
41 44560 38,750 [83,635 |56,540 |64,900 |42,912 13953 | 79,149 18,710 | 68,318
42 |68,328 |83378 |63,369 |71,381 39,564 | 05,615 |42451 64,559 |97,501 65,747
43 146,939 38,680 |58,625 08342 |30459 |85,863 20,781 09,284 | 26,333 91,777
44 | 83,544 | 86,141 15,707 96,256 | 23,068 13,782 | 08,467 [89,469 93,842 |55,349
45 91,621 00,881 04,900 | 54,224 |46,177 | 55,309 17,852 | 27,491 89,415 | 23,466
46 91,896 67,126 |04,151 03,795 | 59,077 11,848 12,630 98,375 [52,068 |60,142
47 | 55,751 62,515 |21,108 |80,830 |02,263 29,303 37,204 96,926 |30,506 | 09,308
48 |85,156 |87,689 |95,493 88,842 | 00,664 |[55,017 |55,539 17,771 69,448 | 87,530
49 07,521 56,898 12,236 | 60,277 [39,102 |62,315 12,239 | 07,105 11,844 |01,117




6.1 Introduction

As has already been discussed, the objective of
statistics is to study the population behavior. And
in the process generally we are provided with the
samples parts of the population. The experi-
menter or the researchers are to infer about the
population behavior based on the sample
observations. Here lies the importance of accu-
racy and efficiency. The whole process of study-
ing the population behavior from the sample
characteristics is dealt in statistical inference.
Statistical inference mainly has two components,
viz., estimation and testing of hypothesis. In esti-
mation part, we are generally concerned with
estimating/identifying measures or to have an
idea about the measures which can be used for
measuring population characters efficiently. On
the other hand, in testing of hypothesis, we are
concerned about testing/deciding how far the
information based on sample observations could
be used for population. In this context, one must
have idea about the parameter and the statistic. A

parameter is the real-valued function of the pop-
ulation observations, whereas a statistics is the
valued function of the sample observations. For
example, the population mean

N
U= }\, > X;is a population parameter, where
i=1

7
as sample mean X = % 21: X; is sample statistic.
There may be morel tlllan one statistic to esti-
mate a particular parameter; now the question is
which statistic can effectively estimate the popu-
lation parameter? All these are answered in esti-
mation part. On the other hand, after selecting a
best estimator corresponding to a particular pop-
ulation parameter and working out its value from
the sample observations, how far the value is
acceptable or, otherwise, for the population is
being dealt in testing of hypothesis. Sometimes,
hypothetical value about the population parame-
ter, based on preconception or previous knowl-
edge, is also being tested through testing of
hypothesis to ascertain the acceptability of such
value for the population.

Statistical Inference

Estirnation

Point Estimation

Interval estimation Parametric

Testing of Hypothesis

Non Parametric
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6.1.1 Estimation
Estimation is the process of knowing the
unknown population parameter with the help of
population  observations.  Suppose Xy, X,
X3pereernees , X, be a random sample from a popula-
tion, in which @ be a parameter. Now estimation
problem lies in estimating the @ with the help of
the above sample values x1, X5, X3,....... , X
Any statistic which is used to estimate (or to
guess) y(0), a function of parameter 6, is said to
be an estimator of w(f). The experimentally
determined value (i.e., from sample) of an esti-
mator is called its estimate. In order to estimate
the population parameter €, one can draw a num-
ber of samples from the population and can pro-
pose number of statistic to estimate the parameter
0. Suppose, X1, X2, X3yeeeeenee , X, be a sample
drawn from N(y, 62), then one can have statistic
like 3" x; and ) x7 for the population parameter.
Now the question is among the statistic(s), which
one is the best one to estimate the population
parameter under question. So there must be cer-
tain criteria to judge a good estimator. According
to R. A. Fisher, an estimator which is unbiased,
consistent, efficient, and sufficient is known as a
good estimator. In the next sections, we would
discuss about the unbiasedness, consistency, effi-
ciency, and sufficiency properties of the
estimators.

Unbiased Estimator: An estimator ¢ of param-
eter 6 is said to be unbiased estimator of 6 if
E(t)—0 = 0. On the other hand, E(f) — 6 #
0 indicates that ¢ is a biased estimator.

Consistent Estimator: An estimator ¢ is said to
be a consistent estimator of the parameter 6 if the
probabilistic value of the estimator ¢ approaches
toward € as the sample size increases, i.e.,

P{ Lele — 0] = 0} =0 where n is the sample
n— oo
size. Thus, consistency is a large sample

property.

Efficient Estimator: Already we have come to
know that there might be more than one
estimators to estimate a particular population
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parameter. Now among the estimators, the esti-
mator having minimum variance is known as the
efficient estimator for the corresponding popula-
tion parameter. Suppose we have ¢, #1, t,, t3.....
estimators to estimate the population parameter
6, now among these estimator ¢ would be called

as efficient estimator if V() < V(7),
i=1,2.3,..... In comparison to any other esti-
mator ¢;, t is said to be efficient if% < 1 and the

value of this ratio of two variances is termed as
efficiency.

Sufficient Estimator: If f{X/6) be the density
function of a random variable X, 6 is the
unknown fixed parameter, and 6 belongs to
parametric space, then the necessary and suffi-
cient condition for an estimator ¢ to be sufficient
for 4 is that the joint probability density function
of x;, x5, X3 .... x, should be of the form f
(X1, X2, X3.... X,10) = g(2/0) h (x;, X2, X3 ..... Xnys
where g(#/ 6) is the marginal density of ¢ for
fixed @ and A (x;, x5, x3..X,)) does not depend on 6.
It has been noticed that not all the good
estimators posses all the above good properties.
For example, if we have a sample from
normal population N(u, 6%), then sample mean
n
(x= % 1:21 x;) as well as the sample median (m,);
both are the consistent estimator for population
mean. Similarly, the sample variance S, and the
sample mean square (sxz) are both consistent
estimators for population variance o7, but s,” is
an unbiased estimator for 02, and sz is a biased
estimator for ¢°. Thus, one should prefer sample
mean square as an estimator of population vari-
ance instead of sample variance. Any estimator
which is characterized by unbiasedness and
having minimum variance is known as
“minimum  variance unbiased  estimator”
(MVUE). There are different methods of estima-
tion of parameters viz. (a) method of maximum
likelihood, (b) method of moments, (c) method of
minimum variance, (d) method of least squares,
(e) method of minimum y*, (f) method of inverse
probability; which are generally used depending
upon the situation. We shall skip the details of
these procedures at this level of study.
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Sampling Distribution: By this time, we have
come to know that a number of samples can be
drawn from a population and there are different
sample statistic(s) to estimate and test a particu-
lar parameter of the population. A statistic is a
function of sample observations; as such, there is
every possibility that it will vary from sample to
sample and it will behave like a random variable.
So the knowledge of probability distribution of
such statistic, i.e., sampling distribution, plays a
great role in inferring about the population param-
eter based on such statistic. In this context, the idea
of central limit theorem is most important in sta-
tistical inference. In its simplest form, according to
the central limit theorem, when samples of size n
are drawn from some population with meangand
Varianceaz, the distribution of mean can be
represented with a normal probability distribution
with mean p and standard deviation 6/+/n, if n is
sufficiently large. Thus, for large samples, the
mean is supposed to be distributed normally.

Degrees of Freedom: In statistical inference,
degrees of freedom is a very important concept.
Let us suppose that to promote rearing of hybrid
cattle, the government has taken a plan to distrib-
ute n number of such cattles among selected
farmers; cattles are kept in a place, and the farmers
in queue are going there and selecting one cattle
each. In the process, each farmer can enjoy the
freedom of selecting cattle from the group of cattle
excepting the last farmer, because he/she has no
other option but to take the last cattle. In the
process, out of n farmers (n—1), farmers can exer-
cise their freedom of selecting cattle. Thus, by
degrees of freedom, we simply mean the number
of free observations. Suppose we are calculating
the arithmetic mean from » number of
observations. Now arithmetic mean being fixed
for a given sample, n—1 number of observations
can vary, but rest one cannot vary because it has to
take only that value which keeps the arithmetic
mean for the given observations constant. As such,
the degree of freedom in this case is also n—1.
Instead of taking one variable at a time, if we
consider two variables at a time for
n observations, then the degrees of freedom
would be n—2. Thus, degree of freedom is actually
the number of observations less the number of

135

restrictions. Degree of freedom is actually the
number of independent observations associated
with the estimation of variance. Depending upon
the number of restrictions, the degree of freedom is
worked out, e.g., in regression analysis the degrees
of freedom associated with mean sum of squares
due to regression is n—k, where k is the number of
variables/parameters involved in the regression
analysis.

Statistical Hypothesis: We all know about
Avogadro’s hypothesis, and likewise in statistics,
a statistical hypothesis is an assertion/statement
about the probability distribution of population
characteristic(s) which is (are) to be verified on
the basis of sample information. For example, the
statement about the students of particular univer-
sity is that the 1Q of the students is 0.9 in 1.0
point scale or the average milk yield of a partic-
ular breed of cow is 3500 / for liter per lactation.
Now on the basis of sample observations, we are
to verify the statements that the IQ of the students
0.9 in 1.0 point scale or not, and average milk
yield of a particular breed of cow is 3500 / for
liter per lactation or not.

Null Hypothesis and Alternative Hypothesis:
Statistical hypothesis can broadly be categorized
into (a) null hypothesis and (b) alternative hypothe-
sis. Initial, unbiased/unmotivated statistical hypo-
thesis whose validity is to be verified for possible
acceptance or rejection on the basis of sample
observations is called null hypothesis. And the sta-
tistical hypothesis which differs from the null
hypothesis is called the alternative hypothesis. In
the above two examples, the statements that (a) the
students of a particular university has the IQ 0.9 in
1.0 point scale and (b) the average milk yield of
the particular breed of cow is 3500 / of liter per
lactation are null hypotheses, whereas any hypoth-
esis like (c) IQ of the students is not 0.9 in 1.0 point
scale or (d) the average milk yield of the particular
breed of cow is not 3500/ of liter per lactation or the
average milk yield of the particular breed of cow is
less than 3500 / of liter per lactation or the average
milk yield of the particular breed of cow is more
3500 / of liter per lactation etc. are the examples of
alternative hypothesis. In fact to every null hypoth-
esis, there exists at least one alternative hypothesis.
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Simple and Composite Hypothesis: Depen-
ding upon the amount of information provided in
a hypothesis, a statistical hypothesis can be
categorized into (a) simple hypothesis and
(b) composite hypothesis. Let us consider the fol-
lowing two hypotheses, (i) the average milk yield
of the particular breed of cow is 3500 / of liter per
lactation with standard deviation 25 / of liter and
given that the milk yield follows a normal distribu-
tion and (ii) the average milk yield of the particular
breed of cow is 3500 / of liter per lactation, and it
follows a normal distribution. Simple hypothesis
specifies all the parameters of the probability dis-
tribution of the random variable; on the other hand,
in a composite hypothesis, information about one or
more parameters of the population remains miss-
ing. Thus, the first hypothesis is a simple hypothe-
sis, because it provides complete information about
the population. On the other hand, the second
hypothesis is composite hypothesis because it
does not completely specify the population.

Parametric or Nonparametric Hypothesis: 1t is
not necessary that every statistical hypothesis
will be related to the parameter of the population.
Suppose we want to verify the hypothesis that the
freshwater fish production in India has changed
randomly since independence. This hypothesis
does not involve any parameter, as such is
known as nonparametric hypothesis. On the
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other hand, if we want to verify that the average
freshwater fish production in India since inde-
pendence has remained p million tons per year
with s.d. o tons following a normal distribution;
in this example, parameters of the population
distribution are involved; hence, this is a
parametric hypothesis. Thus, depending upon
the involvement or noninvolvement of the popu-
lation parameter in a statistical hypothesis, it is
either parametric or nonparametric hypothesis.

Critical Region: The critical region for a par-
ticular hypothesis test is a subset of sample space
defined in such a way that it leads to rejection or
acceptance of a null hypothesis depending upon
whether the value of the statistic falls within the
zone or otherwise. Suppose a random sample x;,
X2, X3, .....X, be represented by a point x in n-
dimensional sample space Q and @ being a sub-
set of the sample space, defined such that it leads
to the rejection of the null hypothesis on the basis
of given sample if the corresponding sample
point x falls in the subset w. This subset w is
known as the critical region of the test, and as it
rejects the null hypothesis, it is also known as the
zone of rejection. The complementary region to
the critical region of the sample space, i.e., ' or
w, is known as the zone of acceptance. Two
boundary values of the critical region are also
included in the region of acceptance:

Probability Density Function Curve of Standard Normal Variate
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The area beyond the 4+ 2.576 values (critical
values) (shaded area) is known as the zone of
rejection, and the rest of the area is known as
zone of acceptance. If the calculated value of the
test statistic falls beyond the critical values of the
corresponding critical region of the tests, then
null hypothesis is rejected; otherwise, the null
hypothesis cannot be rejected.

Errors in Decision: While drawing inference
about the population based on sample observa-
tion, there are different steps like drawing of
appropriate sample, collection of appropriate
information about the population as well as
recording of sample characteristics, tabulation,
processing of raw information from sample,
application of appropriate statistical tool, and
ultimately drawing inference about the popula-
tion using inferential methods on sample values.
In any or all these steps, there are possibilities of
committing error. In fact, the following table
presents the situation which could arise during
the inferential procedure:

Null hypothesis Decision taken

(Ho) Reject Ho Not to reject Ho

True Incorrect Correct
decision decision

False Correct Incorrect
decision decision

Thus, from the above table, it is clear that the
conclusion drawn about the population parame-
ter based on sample observation may not be
always true; we may reject true null hypothesis,
or we may accept a false null hypothesis.
Thus, out of four possibilities, there are two
possibilities in which we can commit error.

Rejection of null hypothesis when it is really
true is known as the type I error, and acceptance
of a false null hypothesis is known as type II
error. The probability of type 1 error is known
as the level of significance and denoted by a , and
that of type Il error is generally denoted by . We
always try to keep a and f as small as possible.
But there exists an inverse relationship between
the a and f, i.e., a test that minimizes «, in fact
maximises f. That is why we fix a, at desired
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level, and minimize f. The probability of deci-
sion of rejecting a false null hypothesis (correct
decision) is known as the power of the test and is
denoted by 1 — f. In practice, a is taken to a
number very close to zero.

Level of Significance: The probability of com-
mitting type I error, i.e., a, is called the level of
significance. The level of significance is also
known as the size of the critical region. If the
calculated value of a test statistic lies in the
critical region, the null hypothesis is said to be
rejected at a level of significance. Generally, the
level of significance depends on the objective of
the study. Sometimes we may have to opt for
0.01 % or 0.001 % level of significance, particu-
larly in relation to medical studies. A researcher
has the freedom to select his or her level of
significance depending upon the objective of
the study.

6.1.1.1 Point Estimation

As the name suggest, in point estimation, we are
in search of a value of the estimator from the
sample values which is used to estimate the pop-
ulation parameter. Let x;, x5, X3 .....x,, be a ran-
dom sample from a density f(X/6), where 6 is an
unknown parameter, and “#” be a function of x;,
X2, X3 .....X, so that ¢ is a statistic and hence a
random variable; and if ¢ is used to estimate 0,
then ¢ is called a point estimator of 0. Again if the
realized value of ¢ from the sample is used for 6,
then ¢ is called a point estimate of 6.

6.1.1.2 Interval Estimation

As the name suggests, in contrast to the proce-
dure of point estimation, in interval estimation
method, we are in search of an interval, from the
sample observations, within which the unknown
population parameter is supposed to lie with
greatest probability. That is, we are in search of
a probability statement, from the sample values,
about the parameter 6 of the population from
which the sample has been drawn. Let x;, x5,
X3 ....Xx, be a random sample drawn from a
population, we are in search of two functions
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“uy” and “u,,” so that the probability of 8 lying in
the interval (uy, u,) is given by a value say 1— a,
that means P(u; < 6 < u) =1 — a. Thus, the
interval (uy, u,), for which P(u; <6 < uz) =
1 — a, if exists, is known as confidence inter-
val for the parameter 6; “u,” and “uy”
known as lower and upper confidence limits,
respectively, and 1— «a is called the confidence
coefficient.

are

Steps in Construction of Confidence Interval
(i) The first step in the construction of confi-

dence interval is to decide the most appro-
priate estimator of the population parameter
(say 0).

(i) In the second step, ascertain the sampling

distribution of the estimate 6 of .

In the next step, one has to find out the

estimate (i.e., the value of the estimator)

from the given sample.

(iii)

(iv) Next we are to work out a function (D(é, 0),
(say) for which sampling distribution is not

dependent on 6.

iv) Next we are to fix the confidence coefficient

and select ®,, and QD(IJ) such that
2
P(@>0,0) =a/2and P(®< D, )=
2
a/2 where, @, and CI)(

and lower 100(a/2) % point of the distribu-
tion of ® respectively.

Thus, P((I)(li%) < ®(0,0) < cb%) —1—a

yare the upper

-

Example 6.1

Average milk yield per lactation for a sample
of 100 cows is found to be 3750 kg with stan-
dard deviation 700 kg. Find out the 95 % confi-
dence interval for population average milk
yield u.

Solution Let X denotes the milk yield of cows.
Since the sample size is large and under the
assumption of random and independent
observations, 95 % confidence interval of the
population mean u is given by X & 79 g5 %

6 Statistical Inference

Given that X = 3750 kg and 6 =700 kg, so the
95 % confidence interval is given as X = 7¢ g5 \/f’—ﬁ,

where 7 is a standard normal variate and as per
the standard normal distribution P(zq ¢p5) = 1.96.
Hence, the 95 % confidence interval for this
problem is given as

X — 70.025 % <p <X+ 70025 %
= 3750 — 1.96 x 700/+/100 <
< 3750 + 1.96 x 700/+/100
= 3750 — 137.2 < p < 3750 + 137.2

= 3612.8 < pu < 3887.2

Readers may note that as per central limit
theorem, we have taken the sample of size 100
as large sample, and hence its mean is supposed
to behave like a normal probability distribution.

So the average milk yield will vary in between
3612.8 kg and 887.2 kg at 5 % level of
significance.

Example 6.2

The following figures are pertaining to the daily
milk yield (kg) provided by ten randomly
selected cows of a particular breed. Find out the
95 % confidence interval of average daily milk
yield of the particular breed of cows assuming
that the milk per day follows normal distribution
with unknown mean and variance. Milk yield
(kg/day) is 5,6,8,10,5,9,8,7.8,9.

Solution Let X denotes the milk yield (kg) per
day per cow. Given that the population is nor-
mally distributed with unknown mean u and o as
standard deviation, our problem is to find confi-
dence limits for the population mean u of X.
Under the assumption, the 95 % confidence
limits of y should be as follows:

X —to0sn-1; SHS XA 10.0250-17
where Xand s are, respectively, the
sample mean and square root of the sample
mean square. To get the values of these two
quantities, let us make the following table:
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xi E 6 '8 110
(—%)° 625 [225 025  [625
Mean ‘ 7.5

Mean square ‘ 2.944
Now using the values of mean, mean square,
and 7y o250 from table r-distribution, we have

s _ s
<pu< X+ fo.ozs,n—17,

X —10.025.n-1—F=

Vi Vi
= 7.5-2.262 x 1.716/3/10 < u <7.5+2.262x1.716//10
= 6.273 <pu<8.727

6.1.2 Testing of Hypothesis

As mentioned already, in testing of hypothesis
part, we generally discuss the acceptability or
otherwise of the statistical hypothesis related to
population based on the sample observation.
Generally, a set of rules is specified in taking
decision with respect to the acceptance or
rejection of the statistical hypothesis under
consideration. In the process, a test statistic is
framed based on the sampling distribution of
the best estimator of the population parameter,
i.e., to decide the probability distribution; the
statistic should follow under the given
circumstances, as there are number of probabil-
ity distribution specifically suited for different
situations. More specifically, a test statistic is a
function of sample observations whose
computed value when compared with the prob-
ability distribution it follow leads us to take
final decision with regard to acceptance or
rejection of null hypothesis.

Types of Test: We have already mentioned that
for each and every null hypothesis, there exists
one or more alternative hypotheses. Depending
upon the nature of alternative hypothesis, a test
is one sided (one tailed) or both sided (two
tailed). Let us suppose we are to test Ho:
¥ = u,, a specific value of u in the population.
To this null hypothesis, we can have the follow-
ing three alternative  hypotheses  Hj:

(i) 1 # pos (i) p > po, (iii) p < pg
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When the test is framed to test the null hypothesis
against the alternative hypothesis u # py, then we
are interested to test only y = u,; the test is both-
sided (or two-tailed) test, and we are to consult the
both-sided tables of the probability distribution; the
test statistic follows. If the test is significant, the
calculated value of the test statistic based on sample
observation will be greater than the corresponding
table value; Ho is rejected and infer that p # u; it
may be more than or less than y. But if we consider
the alternative hypothesis either (ii) or (iii), then we
are to consult the critical value corresponding to
upper a probability or lower a probability value,
respectively. On rejection of the Ho, i.e., if the
calculated value of the test statistic be greater than
the critical value corresponding to upper o probabil-
ity or less than the critical value corresponding to
lower o probability value, respectively, we infer that
1 > g or p < p accordingly. In both the cases, the
test is one-sided or one-tailed test.

Steps in Testing of Statistical Hypothesis
Likewise to that of steps in interval estimation, in
this section, we shall discuss about the steps to be
followed during the testing of hypothesis. As testing
of hypothesis is an important part of statistical infer-
ence, sincere approach is required in each and every
step so that inference about the population could be
drawn with accuracy as much as possible. Testing of
hypothesis is mainly accomplished through the fol-
lowing steps: (1) defining the objective of the study;
(2) knowing/gathering information about the popu-
lation; (3) framing the appropriate statistical hypoth-
esis to be tested; (4) selection of appropriate test
statistic and its sampling distribution; (5) fixing the
level of significance; (6) deciding upon the criti-
cal value of the test statistic depending upon its
sampling distribution, degrees of freedom, and
type of test (both sided or one sided);
(7) calculation of test statistic from sample
information; (8) comparing the calculated
value of the test statistic with that of the critical
value(s) decided previously step (6); (9) decision
with respect to rejection or acceptance of the null
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hypothesis; and ultimately (10) drawing the
inference about the population in the line of the
objectives.

One should not have any confusion in fixing
the objective of the study, i.e., whether to test the
equality of two population means from two dif-
ferent samples drawn from same parent popula-
tion or from two different populations or to test
whether population mean can be taken as p,
(a specified value) or not and so on. Information
or knowledge about the population and its distri-
bution from which the parameters understudy
have been taken help the process. Depending
upon the objective of the study and available
knowledge about the population from which the
parameter understudy, we should frame the
appropriate null hypothesis and corresponding
alternative hypothesis(es). This step is very
important because selection of null hypothesis
and corresponding alternative hypothesis will
lead us to the type of test (i.e., one sided or two
sided) to be performed. One should be very care-
ful to select such a statistic whose sampling dis-
tribution will best reflect the distribution of
population from which the samples have been
drawn and parameter to be tested. It has been
mentioned earlier that selection of appropriate
level of significance depends on so many factors
like objective of the study, type of parameter,
type of study object and precision required, etc.
Though in modern computer, oriented statistical
softwares provide exact probability at which the
test is significant, it is important that the experi-
menter should have a prefixed level of signifi-
cance guided by the objective of the study, type
of parameter, and type of study object and pre-
cision required, and he or she should stick onto
this level of significance. The type of test (one
sided or both sided), test statistic and its distri-
bution, etc. decide the critical value(s) for a
particular test under the given setup. A test is
significant (i.e., rejection of null hypothesis) or
nonsignificant (acceptance of null hypothesis)
depending upon the values of the calculated
value of the test statistic and the table value of
the statistic at prefixed level of significance. The
fault in selection of the critical values may lead
to wrong conclusion about the population
understudy.

6 Statistical Inference

6.2 Testing of Hypothesis

It has already been mentioned that the testing
of hypotheses can broadly be classified into two
categories, (i) parametric and (ii) nonparametric.
In parametric hypothesis testing, we are concerned
about the population parameters, its value, and so
on. But in nonparametric testing of hypotheses, we
are in the mood of judging the nature of the popu-
lation like how the observation changes in a popu-
lation randomly or following a definite pattern etc.
Nonparametric tests are very useful for qualitative
characters of the population.

Parametric tests are mostly based on certain
assumptions about the parent population and its
parameters, e.g., the assumptions of normality,
independence, and homoscedasticity (mean con-
stant variance). In statistics, a method is said to be
“robust” if the inferences made by using the method
is valid even if one or more of these assumptions are
violated. In practical situations, sometimes it is hard
to have typical normal population. We come
across with population in which one or more
characteristics of normal distribution are violated,
and as a remedial measure, we take help of the
transformation technique to make the variables nor-
mally distributed. As a result, in almost all the exact
tests, the parent population is assumed to be normal,
and we estimate and/or test the parameters under
different situations. Another way of assuming nor-
mality behavior of the variable is by taking large
samples and using the central limit theorem. On the
other hand, in nonparametric tests, instead of the
normality assumption or taking a large sample,
continuity of the distribution function is assumed.

Nonparametric methods should not be confused
with “distribution-free” methods. A statistical
method is nonparametric if the parent distribution
is dependent on some general assumption like
continuity. On the other hand, a distribution-free
method depends neither on the form nor on the
parameters of the parent distribution, as is the case
of parametric method, which depends on number
of parameters. Thus, a nonparametric test is a
statistical test where the information on parameters
of the parent population from which sample
(s) have been drawn random need be known.

In the following section, let us discuss merits
and demerits of the nonparametric methods.
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Merits of the Nonparametric Methods

(i) Nonparametric methods are useful for those
data which are classificatory in nature, i.e.,
measured in nominal scales. That’s why
nonparametric tests found their wide range
of use in socioeconomic studies along with
other studies.
Nonparametric tests are also useful for
qualitative characters which can be ranked
only as well as for the data which can be
ranked from numerical figures.
Irrespective of the nature of the population
distribution, nonparametric statistical tests
are exact.

(ii)

(iii)

(iv) Nonparametric tests are useful even under

unknown population distribution, for very

small sample size, and are

comparatively easy.

(v) Sample made up of observations from dif-
ferent populations can also be put under

nonparametric tests

Demerits of the Nonparametric Methods

(i) Probability of committing type I error is more
in nonparametric method than in parametric
method. As a result, when assumptions are
valid, parametric test is superior over the com-
parable nonparametric method, because we
know that the power of a test is given by one
probability of type II error.
For estimation of population parameters,
nonparametric method cannot be used.
Mostly, the nonparametric methods do not
take into consideration the actual scale of mea-
surement and substitute either ranks or grade.
Suitable nonparametric method is lacking
for testing interaction effects in analysis of
variance.

(ii)
(iii)

@iv)

6.2.1 Parametric Tests

Parametric tests can be categorized into (i) tests
based normal population, (ii) tests based on large
samples and utilizing the properties of central
limit theorem, and (iii) other tests. In the first
place, we shall discuss the parametric statistical
tests.
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6.2.1.1 Statistical Test of Population
Parameters Based on Normal
Population
For a wvariable distributed normally, the

P{rg —10/2} = P{rz ra/z} =aqa/2 and P{z <
—‘L'a/z} +P{1 > ‘L'a/z} =a the zone of rejection
and the rest zone under standard normal proba-
bility curve is 1 — athe zone of acceptance. Here,
7 is the standard normal variate and defined as
r:}%, where X,u,0 are the random variable,
its mean, and standard deviation, respectively.
Depending upon the type of test (i.e., one sided
or both sided) and the level of significance, the
upper and lower value of the critical zone (i.e.,
the zone of acceptance and the zone of rejec-
tion) under standard normal probability curve is
determined. The table below presents the criti-
cal values’ 5 % and 1 % level of significance:

Level of Level of
significance significance
Type of test a = 0.05 a=0.01
Both-sided test ‘ 1.96 2.576
(two-tailed test)
One-sided (left tailed) | —1.645 —2.33
One-sided (right 1.645 2.33

tailed)

In the following section, we shall discuss some of
the mostly used tests based on normal population:

(1) Test for specified values of population mean
In this type of testing of hypotheses, we come
across two situations, (a) population variance
is known or (b) population variance is
unknown. The test procedures are different
for two different situations; in the first situa-
tion, the test statistic follows like a standard
normal variate, whereas in the second
situation, i.e., under unknown population
variance situation, the test statistic follows
t-distribution. Let us discuss both the tests
along with examples (Tables 6.1 and 6.2).

(a) Test for specified values of population mean
with known population variance

Let xq, X, X3,. . .. . ... ..X,, be a random sample
drawn from a normal population N(u, ¢°). Vari-
ance o> is known. Now we have to test H,:
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Table 6.1 Table of ordinate and area of the standard normal deviate

z $(@ D(7) T $(z) D(r) z $(@) D(7)

0.00 0.3989423 0.5000000 0.50 0.3520653 0.6914625 1.00 0.2419707 0.8413447
0.01 0.3989223 0.5039894 0.51 0.3502919 0.6949743 1.01 0.2395511 0.8437524
0.02 0.3988625 0.5079783 0.52 0.3484925 0.6984682 1.02 0.2371320 0.8461358
0.03 0.3987628 0.5119665 0.53 0.3466677 0.7019440 1.03 0.2347138 0.8484950
0.04 0.3986233 0.5159534 0.54 0.3448180 0.7054015 1.04 0.2322970 0.8508300
0.05 0.3984439 0.5199388 0.55 0.3429439 0.7088403 1.05 0.2298821 0.8531409
0.06 0.3982248 0.5239222 0.56 0.3410458 0.7122603 1.06 0.2274696 0.8554277
0.07 0.3979661 0.5279032 0.57 0.3391243 0.7156612 1.07 0.2250599 0.8576903
0.08 0.3976677 0.5318814 0.58 0.3371799 0.7190427 1.08 0.2226535 0.8599289
0.09 0.3973298 0.5358564 0.59 0.3352132 0.7224047 1.09 0.2202508 0.8621434
0.10 0.3969525 0.5398278 0.60 0.3332246 0.7257469 1.10 0.2178522 0.8643339
0.11 0.3965360 0.5437953 0.61 0.3312147 0.7290691 1.11 0.2154582 0.8665005
0.12 0.3960802 0.5477584 0.62 0.3291840 0.7323711 1.12 0.2130691 0.8686431
0.13 0.3955854 0.5517168 0.63 0.3271330 0.7356527 1.13 0.2106856 0.8707619
0.14 0.3950517 0.5556700 0.64 0.3250623 0.7389137 1.14 0.2083078 0.8728568
0.15 0.3944793 0.5596177 0.65 0.3229724 0.7421539 1.15 0.2059363 0.8749281
0.16 0.3938684 0.5635595 0.66 0.3208638 0.7453731 1.16 0.2035714 0.8769756
0.17 0.3932190 0.5674949 0.67 0.3187371 0.7485711 1.17 0.2012135 0.8789995
0.18 0.3925315 0.5714237 0.68 0.3165929 0.7517478 1.18 0.1988631 0.8809999
0.19 0.3918060 0.5753454 0.69 0.3144317 0.7549029 1.19 0.1965205 0.8829768
0.20 0.3910427 0.5792597 0.70 0.3122539 0.7580363 1.20 0.1941861 0.8849303
0.21 0.3902419 0.5831662 0.71 0.3100603 0.7611479 1.21 0.1918602 0.8868606
0.22 0.3894038 0.5870644 0.72 0.3078513 0.7642375 1.22 0.1895432 0.8887676
0.23 0.3885286 0.5909541 0.73 0.3056274 0.7673049 1.23 0.1872354 0.8906514
0.24 0.3876166 0.5948349 0.74 0.3033893 0.7703500 1.24 0.1849373 0.8925123
0.25 0.3866681 0.5987063 0.75 0.3011374 0.7733726 1.25 0.1826491 0.8943502
0.26 0.3856834 0.6025681 0.76 0.2988724 0.7763727 1.26 0.1803712 0.8961653
0.27 0.3846627 0.6064199 0.77 0.2965948 0.7793501 1.27 0.1781038 0.8979577
0.28 0.3836063 0.6102612 0.78 0.2943050 0.7823046 1.28 0.1758474 0.8997274
0.29 0.3825146 0.6140919 0.79 0.2920038 0.7852361 1.29 0.1736022 0.9014747
0.30 0.3813878 0.6179114 0.80 0.2896916 0.7881446 1.30 0.1713686 0.9031995
0.31 0.3802264 0.6217195 0.81 0.2873689 0.7910299 1.31 0.1691468 0.9049021
0.32 0.3790305 0.6255158 0.82 0.2850364 0.7938919 1.32 0.1669370 0.9065825
0.33 0.3778007 0.6293000 0.83 0.2826945 0.7967306 1.33 0.1647397 0.9082409
0.34 0.3765372 0.6330717 0.84 0.2803438 0.7995458 1.34 0.1625551 0.9098773
0.35 0.3752403 0.6368307 0.85 0.2779849 0.8023375 1.35 0.1603833 0.9114920
0.36 0.3739106 0.6405764 0.86 0.2756182 0.8051055 1.36 0.1582248 0.9130850
0.37 0.3725483 0.6443088 0.87 0.2732444 0.8078498 1.37 0.1560797 0.9146565
0.38 0.3711539 0.6480273 0.88 0.2708640 0.8105703 1.38 0.1539483 0.9162067
0.39 0.3697277 0.6517317 0.89 0.2684774 0.8132671 1.39 0.1518308 0.9177356
0.40 0.3682701 0.6554217 0.90 0.2660852 0.8159399 1.40 0.1497275 0.9192433
0.41 0.3667817 0.6590970 0.91 0.2636880 0.8185887 1.41 0.1476385 0.9207302
0.42 0.3652627 0.6627573 0.92 0.2612863 0.8212136 1.42 0.1455641 0.9221962
0.43 0.3637136 0.6664022 0.93 0.2588805 0.8238145 1.43 0.1435046 0.9236415
0.44 0.3621349 0.6700314 0.94 0.2564713 0.8263912 1.44 0.1414600 0.9250663
0.45 0.3605270 0.6736448 0.95 0.2540591 0.8289439 1.45 0.1394306 0.9264707
0.46 0.3588903 0.6772419 0.96 0.2516443 0.8314724 1.46 0.1374165 0.9278550
0.47 0.3572253 0.6808225 0.97 0.2492277 0.8339768 1.47 0.1354181 0.9292191
0.48 0.3555325 0.6843863 0.98 0.2468095 0.8364569 1.48 0.1334353 0.9305634
0.49 0.3538124 0.6879331 0.99 0.2443904 0.8389129 1.49 0.1314684 0.9318879

(continued)
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Table 6.1 (continued)
T o) D(2) 4 P O(7) 4 P D(7)
1.50 0.1295176 0.9331928 2.00 0.0539910 0.9772499 2.50 0.0175283 0.9937903
1.51 0.1275830 0.9344783 2.01 0.0529192 0.9777844 2.51 0.0170947 0.9939634
1.52 0.1256646 0.9357445 2.02 0.0518636 0.9783083 2.52 0.0166701 0.9941323
1.53 0.1237628 0.9369916 2.03 0.0508239 0.9788217 2.53 0.0162545 0.9942969
1.54 0.1218775 0.9382198 2.04 0.0498001 0.9793248 2.54 0.0158476 0.9944574
1.55 0.1200090 0.9394292 2.05 0.0487920 0.9798178 2.55 0.0154493 0.9946139
1.56 0.1181573 0.9406201 2.06 0.0477996 0.9803007 2.56 0.0150596 0.9947664
1.57 0.1163225 0.9417924 2.07 0.0468226 0.9807738 2.57 0.0146782 0.9949151
1.58 0.1145048 0.9429466 2.08 0.0458611 0.9812372 2.58 0.0143051 0.9950600
1.59 0.1127042 0.9440826 2.09 0.0449148 0.9816911 2.59 0.0139401 0.9952012
1.60 0.1109208 0.9452007 2.10 0.0439836 0.9821356 2.60 0.0135830 0.9953388
1.61 0.1091548 0.9463011 2.11 0.0430674 0.9825708 2.61 0.0132337 0.9954729
1.62 0.1074061 0.9473839 2.12 0.0421661 0.9829970 2.62 0.0128921 0.9956035
1.63 0.1056748 0.9484493 2.13 0.0412795 0.9834142 2.63 0.0125581 0.9957308
1.64 0.1039611 0.9494974 2.14 0.0404076 0.9838226 2.64 0.0122315 0.9958547
1.65 0.1022649 0.9505285 2.15 0.0395500 0.9842224 2.65 0.0119122 0.9959754
1.66 0.1005864 0.9515428 2.16 0.0387069 0.9846137 2.66 0.0116001 0.9960930
1.67 0.0989255 0.9525403 2.17 0.0378779 0.9849966 2.67 0.0112951 0.9962074
1.68 0.0972823 0.9535213 2.18 0.0370629 0.9853713 2.68 0.0109969 0.9963189
1.69 0.0956568 0.9544860 2.19 0.0362619 0.9857379 2.69 0.0107056 0.9964274
1.70 0.0940491 0.9554345 2.20 0.0354746 0.9860966 2.70 0.0104209 0.9965330
1.71 0.0924591 0.9563671 2.21 0.0347009 0.9864474 2.71 0.0101428 0.9966358
1.72 0.0908870 0.9572838 2.22 0.0339408 0.9867906 2.72 0.0098712 0.9967359
1.73 0.0893326 0.9581849 2.23 0.0331939 0.9871263 2.73 0.0096058 0.9968333
1.74 0.0877961 0.9590705 2.24 0.0324603 0.9874545 2.74 0.0093466 0.9969280
1.75 0.0862773 0.9599408 2.25 0.0317397 0.9877755 2.75 0.0090936 0.9970202
1.76 0.0847764 0.9607961 2.26 0.0310319 0.9880894 2.76 0.0088465 0.9971099
1.77 0.0832932 0.9616364 2.27 0.0303370 0.9883962 2.77 0.0086052 0.9971972
1.78 0.0818278 0.9624620 2.28 0.0296546 0.9886962 2.78 0.0083697 0.9972821
1.79 0.0803801 0.9632730 2.29 0.0289847 0.9889893 2.79 0.0081398 0.9973646
1.80 0.0789502 0.9640697 2.30 0.0283270 0.9892759 2.80 0.0079155 0.9974449
1.81 0.0775379 0.9648521 2.31 0.0276816 0.9895559 2.81 0.0076965 0.9975229
1.82 0.0761433 0.9656205 2.32 0.02704381 0.9898296 2.82 0.0074829 0.9975988
1.83 0.0747663 0.9663750 2.33 0.0264265 0.9900969 2.83 0.0072744 0.9976726
1.84 0.0734068 0.9671159 2.34 0.0258166 0.9903581 2.84 0.0070711 0.9977443
1.85 0.0720649 0.9678432 2.35 0.0252182 0.9906133 2.85 0.0068728 0.9978140
1.86 0.0707404 0.9685572 2.36 0.0246313 0.9908625 2.86 0.0066793 0.9978818
1.87 0.0694333 0.9692581 2.37 0.0240556 0.9911060 2.87 0.0064907 0.9979476
1.88 0.0681436 0.9699460 2.38 0.0234910 0.9913437 2.88 0.0063067 0.9980116
1.89 0.0668711 0.9706210 2.39 0.0229374 0.9915758 2.89 0.0061274 0.9980738
1.90 0.0656158 0.9712834 2.40 0.0223945 0.9918025 2.90 0.0059525 0.9981342
1.91 0.0643777 0.9719334 2.41 0.0218624 0.9920237 291 0.0057821 0.9981929
1.92 0.0631566 0.9725711 2.42 0.0213407 0.9922397 2.92 0.0056160 0.9982498
1.93 0.0619524 0.9731966 2.43 0.0208294 0.9924506 2.93 0.0054541 0.9983052
1.94 0.0607652 0.9738102 2.44 0.0203284 0.9926564 2.94 0.0052963 0.9983589
1.95 0.0595947 0.9744119 2.45 0.0198374 0.9928572 2.95 0.0051426 0.9984111
1.96 0.0584409 0.9750021 2.46 0.0193563 0.9930531 2.96 0.0049929 0.9984618
1.97 0.0573038 0.9755808 2.47 0.0188850 0.9932443 2.97 0.0048470 0.9985110
1.98 0.0561831 0.9761482 2.48 0.0184233 0.9934309 2.98 0.0047050 0.9985588
1.99 0.0550789 0.9767045 2.49 0.0179711 0.9936128 2.99 0.0045666 0.9986051

(continued)



144

6 Statistical Inference

Table 6.1 (continued)

T o) D(2) T P O(7) T P D(2)

3.00 0.0044318 0.9986501 3.34 0.0015084 0.9995811 3.68 0.0004573 0.9998834
3.01 0.0043007 0.9986938 3.35 0.0014587 0.9995959 3.69 0.0004408 0.9998879
3.02 0.0041729 0.9987361 3.36 0.0014106 0.9996103 3.70 0.00042438 0.9998922
3.03 0.0040486 0.9987772 3.37 0.0013639 0.9996242 3.71 0.0004093 0.9998964
3.04 0.0039276 0.9988171 3.38 0.0013187 0.9996376 3.72 0.0003944 0.9999004
3.05 0.0038098 0.9988558 3.39 0.0012748 0.9996505 3.73 0.0003800 0.9999043
3.06 0.0036951 0.9988933 3.40 0.0012322 0.9996631 3.74 0.0003661 0.9999080
3.07 0.0035836 0.9989297 341 0.0011910 0.9996752 3.75 0.0003526 0.9999116
3.08 0.0034751 0.9989650 342 0.0011510 0.9996869 3.76 0.0003396 0.9999150
3.09 0.0033695 0.9989992 343 0.0011122 0.9996982 3.77 0.0003271 0.9999184
3.10 0.0032668 0.9990324 3.44 0.0010747 0.9997091 3.78 0.0003149 0.9999216
3.11 0.0031669 0.9990646 3.45 0.0010383 0.9997197 3.79 0.0003032 0.9999247
3.12 0.0030698 0.9990957 3.46 0.0010030 0.9997299 3.80 0.0002919 0.9999277
3.13 0.0029754 0.9991260 347 0.0009689 0.9997398 3.81 0.0002810 0.9999305
3.14 0.0028835 0.9991553 3.48 0.0009358 0.9997493 3.82 0.0002705 0.9999333
3.15 0.0027943 0.9991836 3.49 0.0009037 0.9997585 3.83 0.0002604 0.9999359
3.16 0.0027075 0.9992112 3.50 0.0008727 0.9997674 3.84 0.0002506 0.9999385
3.17 0.0026231 0.9992378 3.51 0.0008426 0.9997759 3.85 0.0002411 0.9999409
3.18 0.0025412 0.9992636 3.52 0.0008135 0.9997842 3.86 0.0002320 0.9999433
3.19 0.0024615 0.9992886 353 0.0007853 0.9997922 3.87 0.0002232 0.9999456
3.20 0.0023841 0.9993129 3.54 0.0007581 0.9997999 3.88 0.0002147 0.9999478
3.21 0.0023089 0.9993363 3.55 0.0007317 0.9998074 3.89 0.0002065 0.9999499
322 0.0022358 0.9993590 3.56 0.0007061 0.9998146 3.90 0.0001987 0.9999519
3.23 0.0021649 0.9993810 3.57 0.0006814 0.9998215 391 0.0001910 0.9999539
3.24 0.0020960 0.9994024 3.58 0.0006575 0.9998282 3.92 0.0001837 0.9999557
3.25 0.0020290 0.9994230 3.59 0.0006343 0.9998347 3.93 0.0001766 0.9999575
3.26 0.0019641 0.9994429 3.60 0.0006119 0.9998409 3.94 0.0001698 0.9999593
3.27 0.0019010 0.9994623 3.61 0.0005902 0.9998469 3.95 0.0001633 0.9999609
3.28 0.0018397 0.9994810 3.62 0.0005693 0.9998527 3.96 0.0001569 0.9999625
3.29 0.0017803 0.9994991 3.63 0.0005490 0.9998583 3.97 0.0001508 0.9999641
3.30 0.0017226 0.9995166 3.64 0.0005294 0.9998637 3.98 0.0001449 0.9999655
3.31 0.0016666 0.9995335 3.65 0.0005105 0.9998689 3.99 0.0001393 0.9999670
3.32 0.0016122 0.9995499 3.66 0.0004921 0.9998739

333 0.0015595 0.9995658 3.67 0.0004744 0.9998787

Table 6.2 Value of the standard normal deviate (1) at o Inference:

level
a 0.05 0.025 0.01 0.05
T 1.645 1.960 2.326 2.576

1 = po. The alternative hypotheses may be H:
i) 7 po» i) > po, i) p < po.
The test statistic under the given null hypoth-

esis is 7 = =£L where X is the sample mean, 7 is
o/\/n

the number of observations in the sample, and
this 7 follows a standard normal distribution.

(a) For Hy: pu # py, ie., for both-sided test,
reject Hy if calculated value of |z7| < 7,5,
where 7, is the table value of 7 at upper a/
2 level of significance, i.e., 1.96 and 2.576,
respectively, for 5 % andl % level of sig-
nificance; otherwise, do not reject the null
hypothesis (Table 6.3).

(b) If we have the alternative hypothesis H;:
1>y, 1.e., for right-sided test, reject Hy if
calculated value of 7 > 7,, where 7, is the
table value of 7 at upper a level of
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Table 6.3 Values of t statistic at different degrees of freedom and level of significance

Probability of a larger value, sign ignored

Degree of freedom | 0.500 |0.400 |0.200 |0.100 |0.05 0.025 0.01 0.005 0.001
1 1.000 | 1.376 |3.078 [6.314 |12.706 |25.452 |63.657 127.321 | 636.619
2 0.816 | 1.061 1.886 [2.920 |4.303 6.205 9.925 14.089 31.599
3 0.765 [0.978 1.638 [2.353 |3.182 4.177 5.841 7.453 12.924
4 0.741 ]0.941 1.533  |2.132 |2.776 3.495 4.604 5.598 8.610
5 0.727 10.920 |1.476 |2.015 |2.571 3.163 4.032 4.773 6.869
6 0.718 [0.906 1.440 | 1.943 |2.447 2.969 3.707 4.317 5.959
7 0.711 [0.896 1.415 1.895 |2.365 2.841 3.499 4.029 5.408
8 0.706 | 0.889 1.397 1.860 | 2.306 2.752 3.355 3.833 5.041
9 0.703 |0.883 1.383 1.833  |2.262 2.685 3.250 3.690 4.781
10 0.700 |0.879 1.372 | 1.812 |2.228 2.634 3.169 3.581 4.587
11 0.697 [0.876 1.363 1.796  |2.201 2.593 3.106 3.497 4.437
12 0.695 |0.873 1.356 | 1.782 | 2.179 2.560 3.055 3.428 4.318
13 0.694 [0.870 |1.350 |[1.771 |2.160 2.533 3.012 3.372 4.221
14 0.692 |0.868 1.345 1.761 | 2.145 2.510 2.977 3.326 4.140
15 0.691 |0.866 1.341 1.753  |2.131 2.490 2.947 3.286 4.073
16 0.690 |0.865 1.337 1.746 | 2.120 2.473 2.921 3.252 4.015
17 0.689 |0.863 1.333 1.740 |2.110 2.458 2.898 3.222 3.965
18 0.688 | 0.862 1.330 |1.734 |2.101 2.445 2.878 3.197 3.922
19 0.688 |0.861 1.328 1.729  |2.093 2.433 2.861 3.174 3.883
20 0.687 |0.860 |1.325 1.725 |2.086 2.423 2.845 3.153 3.850
21 0.686 | 0.859 1.323 1.721 |2.080 2414 2.831 3.135 3.819
22 0.686 |0.858 1.321 1.717 |2.074 2.405 2.819 3.119 3.792
23 0.685 |0.858 1.319 | 1.714 | 2.069 2.398 2.807 3.104 3.768
24 0.685 |0.857 1.318 1.711 | 2.064 2.391 2.797 3.091 3.745
25 0.684 |0.856 1.316 | 1.708 | 2.060 2.385 2.787 3.078 3.725
26 0.684 |0.856 1.315 1.706 |2.056 2.379 2.779 3.067 3.707
27 0.684 |0.855 1.314 | 1.703 |2.052 2.373 2.771 3.057 3.690
28 0.683 |0.855 1.313 1.701 2.048 2.368 2.763 3.047 3.674
29 0.683 |0.854 |1.311 1.699 | 2.045 2.364 2.756 3.038 3.659
30 0.683 |0.854 |1.310 |[1.697 |2.042 2.360 2.750 3.030 3.646
35 0.682 |0.852 1.306 | 1.690 |2.030 2.342 2.724 2.996 3.591
40 0.681 |0.851 1.303 1.684 | 2.021 2.329 2.704 2971 3.551
45 0.680 |0.850 |1.301 1.679 |2.014 2.319 2.690 2.952 3.520
50 0.679 |0.849 1.299 |1.676 |2.009 2.311 2.678 2.937 3.496
55 0.679 |0.848 1.297 1.673 | 2.004 2.304 2.668 2.925 3.476
60 0.679 |0.848 1.296 | 1.671 2.000 2.299 2.660 2915 3.460
70 0.678 |0.847 1.294 | 1.667 1.994 2.291 2.648 2.899 3.435
80 0.678 |0.846 1.292 | 1.664 1.990 2.284 2.639 2.887 3.416
90 0.677 ]0.846 1.291 1.662 1.987 2.280 2.632 2.878 3.402
100 0.677 ]0.845 1.290 |1.660 | 1.984 2.276 2.626 2.871 3.390
120 0.677 ]0.845 1.289 | 1.658 1.980 2.270 2.617 2.860 3.373
Infinity 0.675 ]0.842 1.282 | 1.645 1.960 2.241 2.576 2.807 3.291

Note: Values for both-sided test

significance, i.e., 1.645 and 2.33, respec- (c) If we have the alternative hypothesis H;:
tively, for 5 % and1 % level of significance; 1 < py, 1.e., for left-sided test, reject Hy if
otherwise, do not reject the null hypothesis. calculated value of 7 > 7,_,, where 7;_, is

the table value of 7 at lower a level of
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significance; otherwise, do not reject the
null hypothesis.

Example 6.3

A random sample of ten eggs is drawn from a
huge lot of eggs of a particular breed of chick and
found that the average weight of egg is 65 g. Test
whether the average weight of egg is taken as
70 g at 5 % level of significance. The weight per
egg is assumed to follow normal distribution
with variance 7.

Solution To test Hy: population mean p =65
against Hy : pu # 65.

This is both-sided test. As the sample has
been drawn from normal population with
known variance, the appropriate test statistic

i — X ; _ 65-70 _
will be 7 = 6/\/%. For this problem, 7 = 77718 =
-5 _

751 = 2.25.

From the table of the standard normal variate,
we have 7991 (=2.576) > Itl.y (=2.25). So the
test is nonsignificant at 1 % level of significance.
Hence, we accept the null hypothesis, i.e.,
Ho : u = py. So the average egg weight for the
given sample can be taken as 70 g.

(b) Test for specified value of population mean
with unknown population variance.

Let xy, x5, X3,. . .. ......X,, be a random sample
drawn from a normal population N (i, 7). Vari-
ance o~ is unknown. Now we have to test Hy:
u = py. The alternative hypotheses may be H;:
(i) p 7 po, (i) > g, (i) p < prg.

The test statistic under the given null hypoth-

esis is t = j/_\’;%, with (n—1) degrees of freedom;

X and s? are the sample mean and sample mean
square, respectively. Sample mean square

n
52 :ﬁz (x,- —X)z
i=1

Inference

(a) If we consider the first alternative hypothe-
sis Hy: p # pg, i.e., for both-sided test, reject
H, if calculated value of 7 > #,/5,,1, or cal
t < ti_gppn-1 = —lajpp-rie.callt] > te,
where f,/5 ,— is the table value of t at upper

6 Statistical Inference

af2 level of significance with (n—1) d.f;
otherwise, do not reject the null hypothesis.

(b) If we have the alternative hypothesis H:
u >y, i.e., for right-sided test, reject Hy if
calculated value of ¢ > t, ,_, where 7,4,
is the table value of ¢ at upper a level of
significance with (n—1) d.f.; otherwise, do
not reject the null hypothesis.

(c) If we have the alternative hypothesis H;:
1< py, 1.e., for left-sided test, reject Hy if
calculated value of < tj_4,-1, where
ti—an—1 1s the table value of ¢ at lower a
level of significance with (n—1) d.f.; other-
wise, do not reject the null hypothesis.

Example 6.4
Given bellow are the milk yield per cow per day of
ten randomly selected Jersey cows. Milk yield is
assumed to follow normal distribution with
unknown variance. Can we assume that the average
milk per cow per day for the Jersey cow be 20/day.
Milk yield per day: 14, 16, 19, 21, 22, 17,
18, 22, 25, 19.

Solution Given that (i) milk yield per day
follows a normal distribution with unknown var-
iance and (ii) population hypothetical mean is
20 /day.

To test Hy, population mean u = 20 against

Hy :u #20. The test statistic under the null
hypothesis is t = f/_j% with (n — 1) d.f., and the
test is a both-sided test. We have sample mean

=1 x=114+16+19... .. +19]=19.30
i=1

n

1
and s° = 1z:(x,- —x)’

1

1 10 -
=5 lzxf - 10.(19.30)21 =10.67
1

_19.30-20 __ —0.70 —
So, 1 = {24090 — <070 — —0.20.

The table value of “#” at 9 d.f. at 2.5 % level
of significance is 2.262 which is greater than the
absolute value of the calculated value of “t,” i.e.,
7| < t0.025,9. So the test is nonsignificant and the
null hypothesis cannot be rejected. That means
the milk yield per cow per day for the Jersey cow
breed may be taken as 20/day.
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(ii) Test for significance for specified population
variance
In this type of testing of hypotheses also,
we come across with two situations, (a) popula-
tion mean is known or (b) population mean is
unknown. The test procedures are different for
two different situations; in both situations, the
test statistic follows like y* variate but in the
first situation with n degrees of freedom,
whereas in the second situation, i.e., under
unknown population mean situation with
n— ldegrees of freedom, one degree of freedom
is less due to estimation of population mean
from the sample observation. Let us discuss
both the tests along with examples.

(a) Test for significance for specified popula-
tion variance with known population mean: Sup-
pose we have xi, x5, X3,. . ........x, be a random
sample drawn from a normal population with
mean u and variance 62, ie., N (4, 02). We want
to test Hy : 6> = o5 where 6> is any specified
value for the population variance and the popula-
tion mean is known. Under the given condition,
we can have the following alternative hypotheses:

()H, : 6 # o3, (ii)H; : 6* > o3,
(ii)H, : 6* < 6%

Under the given null hypothesis Hy: 6> = 6%,

Z (x; — /4)2

the test statistic is y2 = =———— with n d.f.
0

(i) When we consider H, : o> 7503, i.e., a
both-sided test, the null hypothesis is
rejected if the calculated value of y,” is
greater than the table value of 27 at upper
a/2 level of significance and at “n” degrees
of freedom, i.e., Cal ;(3 > tab ;({21/2’,1 or cal-

culated )(,,2 < tabulated ;(a/z,,f; otherwise,

do not reject the null hypothesis.
(ii) If we considerH, : 6% > 05, i.e., aright-sided
test, the null hypothesis is rejected if calcu-
lated value of y* is greater than the table value
of 4 at upper « level of significance and at
“n” degrees of freedom, i.e., cal ;(,12 > tab ;(,,2;
otherwise, do not reject the null hypothesis.
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(iii) If we consider H; : 6 < 05, i.e., left-sided
test, the null hypothesis is rejected if calcu-
lated value of y,,” is less than the table value
of y* at lower a level of significance and at
“n” degrees of freedom, i.e., cal y,> < tab
Xi_qn otherwise, do not reject the null
hypothesis (Table 6.4).

Example 6.5
The following data are from random sample of
ten layer of particular breed of chicks for
counting the number of eggs laid per months.
Do these data support that the variance of num-
ber of eggs laid per month be 7. Given that the
mean number of eggs laid per layer chicken is 26.
No. of eggs per month: 24, 26, 27, 30, 25, 29,
22,19, 28, 27.

Solution Given that (i) the population mean is
29, (ii) the same has been drawn from a normal
population, and (iii) sample size is 10.

To test Hy: o> =7 against o> # 7.

Under the Hy, the test statistic is

X10 = 0'(2)
B0+ T+16+1+9+164+49 +4 +1]
N 7
101
:i:14.42
7
From the table, we have the value of

X3.025- 10 =20.483 and y3 475,10 = 3.25. The
calculated value of ){2, 1.e., 14.42, lies between
these two values. So the null hypothesis cannot
be rejected. That means we can conclude that the
population variance can be taken as 7.

(b) Test of significance for hypothetical popula-
tion variance when population mean (u) is
unknown

Suppose we have xy, x5, x3,. . .. ......x, be a ran-
dom sample drawn from a normal population with
mean y and variance 62, ie., N (u, 52). We want to
test Hy : 6> = 0'(2) where 6, is any specified value
for the population variance and the population mean
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is known. Under the given condition, we can have
the following alternative hypotheses:

(i)H, :6* # 03, (i) Hy : 6* > 63, (iii) H, : 6* < 0,

Under the null hypothesis Hy: 6% = 6%, with
unknown population mean, the test statistic is

i (=%
i=1

)((2,171) = with (n—1) degrees of free-

n

. 1
dom where ¥ is the sample mean = — Zx,-
=

(i) When we consider H,: ¢° #* ag, i.e., a both-
sided test, the null hypothesis is rejected if
the calculated value of 2, is greater than
the table value of y* at upper /2 level of
significance and at “n—1" degrees of free-
dom, i.e., cal )(ﬁ_l > tab xi/Z,nfl or calcu-
lated ;(ﬁ_l < tabulated ;({21 AR otherwise,
do not reject the null hypothesis.

(ii) If we consider H;: o> > ag, ie., a right-

sided test, the null hypothesis is rejected if

calculated value of y? is greater than the
table value of y* at upper a level of signifi-

cance and at “n—1" degrees of freedom, i.e.,

cal y2_| > tab y7_,,_: otherwise, do not

reject the null hypothesis.

If we consider H;: 62 < ag, i.e., left-sided

test, the null hypothesis is rejected if calcu-

lated value of y2 | is less than the table
value of y* at lower a level of significance
and at “n—1” degrees of freedom, i.e., cal

(iii)

;(371 < tab x%fa 41> otherwise, do not reject
the null hypothesis.

Example 6.6

A random sample of 30 broiler chicks at the age
of 40 days gives an average weight per chicks as
1.80 kg with variance 0.08 from a normal popu-
lation. Test at 5 % level of significance whether
the variance of the chicks can be taken as 0.10.
The population mean is unknown.

Solution Given that:

(i) Sample size “n” = 30
(ii) Sample mean ( ) =1.80
(iii)) Sample variance = 0.08

6 Statistical Inference

(iv) The sample has been drawn from normal
population with unknown mean.

To test Hy: 6> = 0.10 against H,: 6> # 0.10,
the test is both-sided test, and under the null

n

=%

hypothesis, the test statistic is y39 = ~—— =

%

30 x 0.08 _ 24

0.10 ’

From the table, we have ;(%95’29 = 17.708 and
X0s.20 = 42.557. Since 17.708 < Cal 4* <
42.557, Hy cannot be rejected. That means we

can accept that the variance of weight of broiler
chicken may be 0.10.

(iii) Test of equality of two population variances
Sometimes, it is required to test whether the
two populations are the same or not with
respect to their variabilities. Suppose we have
two independent random samples xiq, X2,
X{3peereenn Xim and X1, X329, X33, Xp, drawn
from two normal populations N (u, 012) and
N (42, 6%, respectively. Now we want to test
whether these two populations differ in
variability or not, i.e., to test Hy: 67 = o3. In
testing this hypothesis, we may come across
with two different situations, (a) population
means y; and y, are known and (b) population
means 4 and u, are unknown but equal.

(a) Test of equality of two population variances

when population means are known: Under

the given null hypothesis with known means
of the population means y; and u, are
known against the alternative hypotheses

() Hy: o2 # 63, (ii) Hy: 67 > o3, (iii) Hy:

(Y% < (7%; the test  statistic  is
3 G/

Foymn=3——— with m and n d.f,;

Z (vai=p2) /n

i=1
and a is the level of significance.
(i) If we are going to test the Hy: 012 = 022
against the alternative hypothesis
Hi : 6% # 63, we reject Hy if Cal F >
tabFa/z (mmy T Cal F< Fy _ oy, nn;
(i) If we are going to test the Hy: 0]2 = 02
against the alternative hypothesis H :
> O'%, wereject Hyif Cal F > tabF, ().
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(iii) If we are going to test the H: 012 = 022
against the alternative hypothesis
Hi : 03 < 03, we reject the H, if Cal
F<F-a), (nn)

(b) Test of equality of two population variances
when population means are unknown:
Under the given null hypothesis with
unknown means of the two populations,

the test statistic will be F,_1 ,_1 = with
v2

(m—1, n—1) d.f., where s12 and s22 are the
sample mean squares of the samples of sizes
m and n, respectively.

(1) If we are going to test the H: 012 = 522
against the alternative hypothesis
Hi : 67 # 03, we reject H, if Cal F >
tab  Fypn (m—1n-1y or Cal F <

Faap), m-1,n-1)-

If we are going to test the Hy: 61> = o3

against the alternative hypothesis

Hi : 6} > 03, we reject H, if Cal F >

tab Fa, (m—1,n—1)-

(i)

If we are going to test the Hy: 612 = 522
against the alternative hypothesis
Hi : 6} < 03, we teject the H, if Cal
F < F(i_a), (n—1,n—1) (Tables 6.5 and
6.6).

(iii)

Example 6.7

Two random samples of male Sirohi goat breed
are drawn as follows. It is assumed that the parent
populations are normal with N(u;, 6,%) and N
(o, 622) and the respective mean weights are
45.34 and 47.74 kg. Can we assume from the
data that both populations have the same
variability, measured in terms of variance at
5 % level of significance?

Sample Body weight in kg
Sirohi 1 43.56 48.34 43.43
Sirohi 2 47.32 49.43 47.43

46.56
51.23
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Solution Null hypothesis Hy : 67 = 63 against
the alternative hypothesis H IO'% # a%. Given
that the populations are normal with mean
45.34 and 47.47 kg, respectively; under the
given circumstance, the test statistic will be

n

> Gi— ) /n

F=%2L with n

ny
Z (xi —Mz)z/"z
i=1

d.f. Under the given alternative hypothesis, the

test is two-sided test. Given that n; = 7, n, = 8,

uy =45.34kg, and i, = 47.74kg; from the given

information, we have

7
—/41)2/111 =7.01;

>

i=1

and n,

8
3 - ﬂ2)2/n2 — 480

i=1

(x;
(x;
The test is both sided; we are to compare
the calculated value of F with table value of
Fo.025;78

Cal F = 1.45; from the table we have,
F0_025;7’g = 452 and F0'975:7’8 = 020

Since 0.20 < Cal F < 4.52, so the test is
nonsignificant, and the null hypothesis cannot

be rejected, that means we can conclude that
both populations have the same variance.

Example 6.8

Two random samples of large white Yorkshire
swine breed are drawn from two normal
populations which were fed with same feed.
Body weights at maturity are recorded. Test
whether the variability in body weight of both

‘ 48.43 ‘ 42.45 ‘ 41.42

50.77 52.43 47.72 ‘ 53.34
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populations can be taken equal or not at 5 %
level of significance:

6 Statistical Inference

Sample | Body weight in kg
L. 131832 45432 [370.54 [399.43 [391.43 317.32 |365.34 |354.53 |37532 |383.43
2. 131244 34377 39832 37732 32734 34598 |347.42 36743 34578 |389.59

Solution Given that (i) the populations are nor-
mal and the means of the populations are
unknown, (ii) sample sizes in each sample is
10, i.e., n; = np, = 10.
To test, Hy : 67 = o5 against H; : 67 # o3.
Under the given conditions, the test statistic is
2
F= i—;with (n;—1) and (n,—1) d.f, where slz and
2

s22 are the sample mean squares

We have s? :nl_IZ(xll )% sS=
10 5
nzl,l Z (X2i — X%2)%; = len and
i i=1
- nz Z-le
i=1
From the given data, we haveXx; =372.99 kg.,

X, = 35553 kg., s% = 1584.59, s% = 738.80, and
F = %E = 2.14. As the test is both sided, we are
)

compare the calculated value of F with F,p 99
i.e Foosoo and Fi_gp.991.e. Fog759,9. From
the table we have, Fogs59,9=4.03 and
Fo9759,0 = 0.2481.

Since 0.2481 < Cal F < 4.03, the test is non-
significant, and the null hypothesis cannot be
rejected, that means we can conclude that both

the populations have the same variance.
(iv) Test for equality of two population means

Sometimes, it is required to test whether the
two populations are the same or not with respect
to their arithmetic means. Suppose we have two
independent random samples Xji, X2, X135eeecee.
Xim and X1, X2, X23,ee.e... Xy, drawn from two
normal populations N (u;, 612) and N (u», 522),
respectively. Now we want to test whether these
two populations differ in their central tendencies

measured in terms of arithmetic mean or not, i.e.,
to test Hy: u; = p,. In testing this hypothesis, we
may come across two different situations,
(a) population variances 021 and 022 are known
and (b) population variances 6%, and 6%, are

unknown but equal 6*; = 6, = o°.

(a) Test of equality of two population means
when population variances are known:
Under the given null hypothesis Hy:
11 = pp with known population variances
6%, and ¢%, against the alternative hypoth-
esis Hjp :u; # u,, the test statistic would

be 7=
2

= which follows a standard

s
normal distribution, and X; and X,
the arithmetic means of the first and
second samples, respectively. As the
test is both sided, we are to compare the
calculated value of 7 with that of the
table value under standard normal value
at a/2 level of significance for taking
decision.

(b) Test of equality of two population means
when population variances are unknown
but equal (two sample t test or Fisher t test)
Before performing this test, one should
ascertain that first Hy : 6% = O'% by F-test
statistic discussed in test iii (b). If it is
accepted, then we perform ¢ test statistic;
otherwise, we are to opt for Cochran’s
approximation to Fisher-Behrens problem
as discussed latter on. For the first time, let
us suppose that the test concerning 67 = o3

has been accepted.

are

So to test Hy: u; = pp against Hy: u, 75;42
under the given condition that 6 = 0% =6
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(unknown), the test statistic is no longer 7 rather

it would be t = —2=Y

—— with (n; + n,—2) degrees

TR
2 (mfl)x%Jr(nzfl)s% 2
- ni+ny—2 and s

2
and s,” are the sample mean squares for two
samples, respectively.

The sample mean square for any variable X is
n

defined as s> = -1 3 (x; — ¥)°. According to
i=1

the alternative hypothesis, the test would be a
both-sided test, and we are to compare the table
value of 7 atZlevel of significance at (n; + ny—2)
d.f.

If the calculated absolute value of “¢’ is
greater than the table value of “/” at upper §
level of significance and at (n; +n, —2) d.f,
then the test is significant, and the null hypothesis
is rejected, that means the two population means
are unequal; otherwise, these are equal.

of freedom, where s

Cochran’s Approximation to the Fisher-
Behrens Problem The problem of testing the
significance of equality of two population
means under unknown and unequal population
variances (i.e., 07 # 03) is known as Fisher-
Behrens problem. In case testing, the significance
of equality of two population means under
unknown and unequal population variances
(i.e., o3 #03), ie., in case of existence of

Breed Body weight at 7 weeks in kg
Caribro Vishal 202|215 [193  |2.03
Caribro Dhanarja 213 |1.89 202 |1.88
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Fisher-Behrens problem, we are to opt for
Cochran’s approximation. Cochran’s approxima-
tion is applicable for the null hypothesis Hy:
Hy = pp against Hj:pu; > p,. According this
xX—y
sm
used in previous case does not follow #-distribu-
tion, and as such ordinary #-table value will not
be sufficient for comparing. According to
Cochran’s approximation, the calculated value
of above t statistic is to be compared with

t* _ [1S?/}’L1+[2X§/n2
s /n+s2/ny

values of z-distribution at (n;—1) and (n,—1)
degrees of freedom, respectively, with upper a
level of significance. Other decisions will be as
usual, but one should note that this is not a both-
sided test rather one-sided (right) test.

approximation, the test statistic ¢ =

as

where #; and t, are the table

Example 6.9

The following data give the body weight at
7 weeks of two sample breeds, Caribro Vishal
and Caribro Dhanraja chicken, under same feed-
ing condition. It is also known that the variability
measures in terms of variance of two breeds are
0.02 and 0.05, respectively. Test whether these
two breeds differ significantly with respect to
body weight (kg). Given that the weight of chicks
follows normal distribution:

211
12.10

11.95
|2.14

12.13
11.98

11.89
12.03

1220|216
196 |

Solution Let the level of significance be 0.05.
So the null hypothesis Hy : yy = pp (under
known population variance) is to be tested
against the alternative hypothesis Hy : py # pp,
a both-sided test.
Under the given condition, the test statistic is

V-D .

T z% which follows a standard normal
e

variate.

From the sample observation, we have

ny = 10; np = 9and V = 2.06; D = 2.02
12.06 — 2.02]

0.04

0.02 ;, 005 _ 0.04 = =
\/ 10 + 9 1/0.002+0.005 1/0.007 0.49

We know that at @ =0.05, the value of 7, =1.96,
as the calculated Izl < 1.96, so the test is nonsig-
nificant, and we cannot reject the null hypothesis.
We conclude the breeds do not differ signifi-
cantly with respect to body weight.
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Example 6.10 Given below are the two samples
of body weights of two broiler breeds. Is it possi-
ble to draw inference that the body weight of
breed Cornish Crosses is more than that of Dela-
ware broilers, assuming that the body weight
follows normal population:

Sample | Mean Sample mean
Broiler breed | size weight (kg) | square
Cornish 13 4.80 1.20
crosses(X)
Delaware 12 3.78 0.83
broilers(Y)

Solution H,: Both the breeds of broiler have the
same body weight, i.e., Hy : y; = u,, against the
alternative hypothesis, H;: Cornish Crosses has
more body weight than Delaware broiler, i.e.,
Hy :puy > p,. Let us select the level of signifi-
cance, a =0.05. According to H, the test is a
one-sided test. We assume that oy = 63 = o°.

The test statistic, under the given null hypothesis
xX=y
/it
with (ny +ny, —2) d.f. where X and y are the
sample mean body weight of two breeds Cornish
Crosses and Delaware broilers, respectively, and
s* is the composite sample mean square and
(i1171)s%+(11271)s}%
ny+n,—2
sample mean squares as usual.

and unknown variance but equal, is ¢t =

given by s? = , 5,7, and sy2 by the

First, we test Hy : 6)2( = 6%/ by F :;;
2
(ny — 1,my — 1) d.f. against H : 63 # o7.

Thus, F = % = 1.44 with (12, 11) d.f. From
the table we have, Fogs,12,11 =3.32 and
Fo975.11,12 = 0.30. Since 0.30 < cal F < 3.22,

Hy : 6% = o} cannot be rejected. So we can per-

with

form ¢ test to test Hy: u, = y,.We have s> =

(nlfl)Ser(nzfl)si 2
ni+n,—2 =9
17.82+47.63 __
24763 — 1,08

_ (13-1)1.20°+(12-1)0.84> __
- 134122 -

Y-y 480378 _ _ 1.02
sy/EeL roay/Eeh 104006
As per the alternative hypothesis, the test is one
sided (right sided), so we are to compare table
value of t at upper 5 % level of significance.

From the table, we have 7y 5,23 = 1.71. Since
Cal r > 1.71, the test is significant, and we reject

St= = 2.45.

6 Statistical Inference

the null hypothesis, i.e., we accept u; > u,. That
means the body weight of Cornish Crosses is
more than that of the body weight of Delaware
broilers.

Example 6.11 Given bellow are the samples
about egg weight of two duck breeds. Is it possi-
ble to draw inference that the egg weight of breed
Khaki is more than that of Khaki Campbell,
assuming that the egg weight follows normal
population?

No. of | Mean Sample mean
Duck breed egg weight (g) | square
Khaki (K) 15 67.5 3.94
Khaki 17 64 7.4
Campbell(C)

Solution We are to test the null hypothesis
Hy: ux = pc (under unknown and unequal pop-
ulation variances) against alternative hypothesis
Hy :ugx > pc. This is a typical Fisher-Behrens
problem.

Let the level of significance a =0.05. Under
the given conditions, we apply Cochran’s
approximation to Fisher-Behrens problem.
Thus, the test statistic is given by
K-C

2 2
S i

"K+”C

tes? 2

kSg/nk+tesg/ne
s [ng+s%/nc

t= , which is then compared with the

value of 1" = , and appropriate deci-

sion is taken.

We have ¢ = 07.5-64 — 3.5 — 4 18,

The table value of ¢ at upper 5 % level of
significance with (ng—1) = 14 d.f. and (nc—1)
= 16 d.f. is 1.76 and 1.74, respectively. Hence,

o176 x 3.94/15 4 1.74 x 7.40/17
B 3.94/15 +7.40/17

1.21
=069 " 1.74.
Now the Cal r > t*; hence, we can reject the null
hypothesis, i.e., H; is accepted. That means we
can conclude that the egg weight of the Khaki
duck is greater than that of Khaki Campbell
breed of duck.
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(v) Test for parameters of bivariate normal
population

So far we have discussed about the tests tak-
ing one variable at a time, but as we know in
population, variables tend to move together;
bivariate normal distribution comes into play
when we consider two variables at a time. Here,
in this section, we shall discuss some of the tests
based on bivariate normal distribution.

(@) To test equality of two population means
with unknown population parameters

The test, we are going to discuss now is
known as paired t test.

Suppose (x1,Y1), (¥2,¥2), (X3,Y3) -« evvee v
(x,,y,) be n pairs of observations in a ran-
dom sample drawn from a bivariate normal
distribution with parameters uy, p,, 6X2, cryz
and p where pyand p,, are the means and ox,
ay2 are the variances and p is the population
correlation coefficient between X and Y. We
want to test the null hypothesis Hy : py = p,

Initial yield (liters)

Final yield (liters) 2.11 1.87 2.15

1.38 1.35 1.36 1.40
2.34
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i.e. Ho: piy —p, = pg =0 ice., the differ-
ence between the two population means is
equal to zeroThe test statistic under H will

be ¢=4 with (n—1)df,

n

where d =

<l

n

d,‘ = % Z(x,‘ _yi) and Sd2 :n+1
1 i=1 i

_a)y.

The table value of “#” at (n—1) d.f. for a
level of significance will be compared with
the calculated value of “#” to test the signifi-
cance of the test according to the nature of
alternative hypothesis.

n

I =

1

n

C

Example 6.12

An experiment was conducted to know the effect
of feeding of cotton cake on milk yield of Borgou
cattle breed. A sample of ten cattle was taken.
Initial milking capacity and yield after feeding
for 15 days were recorded. Test whether feeding
cotton cake has an effect on milking capacity or
not:

1.42 1.37 1.39 1.41 1.34 1.37
2.95 1.67 1.76 2.45 1.56 2.11

Solution Let x represent the initial yielding
capacity, and y is the final yielding capacity. So
X —y = d. Assuming that X and Y follow a bivar-
iate normal distribution with parameters p,, py,

6y, 0y and p,,, we want to test Ho:pu, = p,
against Hy @ p, < py.

The test statistic under Hy is ¢t = ﬁ with
(n—1) d.f.

Initial yield (liters) |1.38 1.35 1.36 1.40 1.42 1.37 1.39 1.41 1.34 1.37

Final yield (liters) 2.11 1.87 2.15 2.34 2.95 1.67 1.76 2.45 1.56 2.11

X-Y (d) -0.73 |-0.52 |-0.79 |-094 |—-153 |-030 |—-037 |—-1.04 |-022 |-0.74
So d = _—0.72 and sd = Conclusion From the table values, we have

\/ﬁ (S - 10d'] = \/ﬁ S 104"
— \/5[6.55— 10 x 0.51]=0.39

—0.72

L 072
0.39/y/10  0.12

= —5.83.

t0.05,9 = 2.26 and tp01,9 = 3.24. The calculated
value of ¢ is less than the table value at both the
levels of significance. Hence, the test is signifi-
cant at 1 % level of significance. So we reject the
null hypothesis Hy : p, = p, and accept the
Hy :p, < py, ie., there was significant effect of
cotton cake on cattle milk yield.
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(b) To test for significance of population corre-
lation coefficient

As usual, suppose (x1,y1), (X¥2,y2), (X3,y3)

eoeee e (X5y,) be n pairs of observations in a
random sample drawn from a bivariate normal
distribution with parameters uy, u,, ox%, ayzand
p where ux and p, are the means and ox’, oyz are
the variances and p is the population correlation
coefficient between X and Y.

Here, we want to test, i.e., Hy: p = 0 against
H : p # 0. This test is also used to test the sig-
nificance of the sample correlation coefficient

[Tt

r” to the population correlation coefficient.

The test statistic under Hy will be r = % at
(n—2) d.f. where “r” is the sample correlation
coefficient between X and Y.

If the calculated value of Ifl is less than the
tabulated value of “s” at (n—2) d.f. for upper §
level of significance, we cannot reject the null
hypothesis, i.e., sample correlation coefficient can-
not be taken as zero, or the variables are uncorre-
lated. Otherwise, we reject the null hypothesis, and
sample correlation coefficient is significant to the
population correlation coefficient, and the variables

have significant correlation between them.

Example 6.13

The correlation coefficient between the age and
weight of 25 Caribro Tropicana broiler is found
to be 0.92. Test for the existence of correlation
between these two characters using 1 % level of
significance.

Solution Under the given information, we want
to test Hy: p =0 against H; : p # 0. The test

statistic is given by r = "V with (n—2) d.f.

Given that r = 0.92, n = 25, so

,_092/(25-2) 092 x v23 _ |,
V1-0.92° V0.1536 '

Particulars | Egg weight (g)

6 Statistical Inference

The table value of fy¢;,23 = 2.807. Since calcu-
lated t value is more than table ¢ value at 23 d.f.,
the null hypothesis Hy : p = 0 is rejected. So we
can conclude that the age and weight of Caribro
Tropicana broiler chicken are correlated.

(c) Test for equality of two population variances
from a bivariate normal distribution

Let (x1,51), (Xx2,52), (X3,3) « oo v vv v (X)) bE
n pairs of observations in a random sample drawn
from a bivariate normal distribution with
parameters py, [y, ox% ayzand p where py and
Uy are the means and ox°s oyz are the variances
and p is the population correlation coefficient
between X and Y.

The null hypothesis for testing the equality of
two variances is Hy : 0% = 65.

Let us derive two new variables U and V such
that U = X +Y and V = X—Y. So the Cov(U,
V)y=CoviX +7Y, X-Y) = 0)2( — 03. Under the
null hypothesis H : 63 = 03, Cov(U,V) = 0 and
thus U and V are two normal variates with corre-
lation coefficient pyy = 0 when Hj is true.

Hence, Hy: 0)2( = 65 is equivalent to test H:

puv =0.
T . ruvy/ (n1—2)
So the test statistic is given by ¢ = Vs
with(n — 2)d.f, where r,, is the sample correla-
tion coefficient between “u” and “v” and is a
both-sided test, and the inference will be

accordingly.

Example 6.14

To know the effect of light regime on the weight
of egg, an experiment is conducted; 15 layers are
selected randomly and egg weight is recorded
before applying light regime and after 1 month
of applying light regime. Work out the signifi-
cant difference in variability of egg weight
before and after light regime:

Before (v) | 38.35 |36.81 [39.39 |4340 |3640 |39.63 |4058 [37.21 |41.98 |38.08 |37.58 |38.10 |4139 |39.90 |38.02

After (y)

[3923 |39.81 |41.10 |4470 3840 4012 [41.12 [3798 [4212 [39.56 [39.52 [39.12 |42.90 [42.20 |39.10
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Solution The null hypothesis to test is Hy : oy
= oy against H, : o, # o,. This is equivalent to
test p,, = 0, where u and v are x + y and x—y,
respectively. The test statistic for the same will
be

Before (x)

38.35 | 36.81
After (y)

39.23 | 39.81

41.10 | 44.70 | 38.40 | 40.12

39.39 | 43.40 | 36.40 | 39.63 | 40.58
41.12
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t= ﬁ\m — 2 with (n—2) d.f.
We have

37.21
37.98

41.98 | 38.08 | 37.58 | 38.10 | 41.39 | 39.90 | 38.02
42.12 | 39.56 |39.52 | 39.12 | 42.90 |42.20 | 39.10

u=(x+y)|77.58 | 76.63 | 80.49 | 88.10 | 74.80 | 79.75 [ 81.70 | 75.19 | 84.10 | 77.64 [ 77.11 | 77.22 | 84.29 | 81.10 | 77.12
v=(—y) |-0.88]-3.00| -1.71] —1.30| —2.00| —0.49| —0.54| —0.77| —0.14| —1.48| —1.94| —1.02| —1.51| —1.30| —1.08

E uy — nuv

Ty = =0.30
\/(Z W — nﬁz) (Z V- nV2>
Thus, r = —030 .\ /15-2=1.13.
1-0.30°

From the table, we get # 025,13 = 2.16. Thus,
the calculated value of 7 is less than the table
value. So we cannot reject the null hypothesis of
equality of variances. So there exists no differ-
ence in egg weight due to application of light
regime.

(d) Test for specified values of intercept and
regression coefficient in a simple linear
regression

Let us suppose we have a regression equation
Y = a + pX. In regression analysis, we may be
interested to know whether both the coefficients
or either of the coefficients @ and f have the
specified values @y and S, in the population or
not. Now we can have the following three types
of null hypotheses to test:

(iYHy : @ = ap; only a is specified but unspec-
ified value for f

(i) Ho:p = fo;
unspecified value for a

(i) Hy:a=ay, =P, both a and p are
specified

Under the given conditions the standard errors

only f is specified but

ofa =aandf = b are given by

— 1 % ) ResSS _ %
Sa = (n + SS,U) n—2 and Sh = (SSXX

respectively and

ResSS = i(yi —y)* — bi(xi -%)(y; —y)

i=1 =

= SS(y) — b*SS(xx)

Let us now discuss the testing procedure of the
above mentioned three null hypotheses:
(i) To test Hy: @ = ap against Hy : a # ap

a—Qo a—ap

- estSE@) 1, % )Resss
(H*s‘m) =)

If the calculated value of lfl > t,/ (4.2), the
null hypothesis is rejected; otherwise, we cannot
reject the null hypothesis.

(ii) To test Hy : f = p,

_ b by

estSE (3 ) Resss

If the calculated value of |t| > laj2,(n—2), the

with (n — 2)d.f.

with (n — 2) d.f.

null hypothesis is rejected, otherwise we can not
reject the null hypothesis.

(iii) To test Hy : @ = ap, B = py; this is equiv-
alent to testing the overall significance of the
regression equation.

n

Z (vi—a0—Poxi)* ResSS}/Z
F=-= ResSS /(i) with (2,n —2) d.f.

If the calculated value of F > Fg» ,—2, the
null hypothesis is rejected, otherwise we can
not reject the null hypothesis.

Example 6.15 The following table gives the
information on energy supplied by 100 g of poul-
try feed and its protein content in gram. Find out
the regression equation of energy on protein
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content of the feed. Test for (i) the significance of
specified intercept value of 95, (ii) the signifi-
cance of specified slope coefficient of 25, and

(iii) overall
equation:

significance of the regression

Observation| 1 [2 [3 [4 [5 [e6 [7 [8 [o [0 [1n [12 [13 [14 [15 [16 [17 |18 [19 [20
Energy 163 [ 191 [ 185 | 170 | 170 | 161 [ 170 [ 173 [178 [ 167 | 182 [ 184 [174 |168 |162 |182 | 191 |161 | 164 | 185
(K cal)
Protein (g) | 12.9] 133|139 135 13.8| 13.1| 13.1] 132] 13.6| 12.97| 13.76| 13.77 13.34| 12,98 12.77| 13.77] 13.98 | 12.87| 12.99 | 13.87
Solution Let the level of significance be 0.05.
From the given information, let us frame the
following table:
Observation | Energy (K cal) X; | Protein X, | X;* X2 X, X> EstX, e & {X, — (95 +25X,)}?
1. 163 12.9 26569 16641 | 210270 | 164561 | —1.561 | 2435 | 1524903
2. 191 133 36481 17689 | 254030 | 172577 | 18.423 |339.408 | 1836123
3. 185 13.9 34225 19321 | 257150 | 184.602 0398 | 0159 | 1914063
4. 170 13.5 28900 18225 | 229500 | 176585 | —6.585 | 43365 | 1701563
5. 170 13.8 28900 19044 | 234600 | 182598 | —12.598 |158.698 | 176400
6. 161 13.1 25921 17161 | 2109.10 | 168.569 | —7.569 | 57.286 | 1548423
7. 170 13.1 28900 17161 | 2227.00 | 168.569 1431 | 2048 | 1620063
8. 173 13.2 29929 17424 | 228360 | 170.573 2427 | 5891 | 166464
9. 178 13.6 31684 18496 | 242080 | 178580 | —0589 | 0347 | 178929
10. 167 12,97 27889 16822 | 216599 | 165963 1037 | 1075 | 157014.1
1. 182 13.76 33124 189.34 | 250432 | 181.796 0204 | 0042 | 185761
12. 184 13.77 33856 189.61 | 2533.68 | 181.996 2004 | 4015 | 1877056
13. 174 1334 30276 17796 | 2321.16 | 173379 0621 | 038 | 1701563
14. 168 12.98 28224 168.48 | 2180.64 | 166.164 1836 | 3372 | 1580063
15. 162 12.77 26244 163.07 | 2068.74 | 161.955 0045 | 0002 | 149189.1
16. 182 13.77 33124 189.61 | 2506.14 | 181.996 0004 | 0000 | 185976.6
17. 191 13.98 36481 19544 | 2670.18 | 186.205 4795 | 22993 | 1984703
18. 161 12.87 25921 165.64 | 207207 | 163959 | —2.959 | 8757 | 150350.1
19. 164 12.99 26896 168.74 | 213036 | 166364 | —2.364 | 5590 | 155039.1
20. 185 13.87 34225 19238 | 2565.95 | 184.000 1000 | 0999 | 190750.6
Sum 3481 267.47 607769 3580.11 | 46615.23 | 3481 0.000 | 656.867 | 3424725
Mean 174.05 13.37 3038845 | 179.00 | 233076
Var(X;) = 95.048 Var(X,) = 0.155 Cov(X,X;) =3.103 | ry0 = 0.809
. Se _ [95.048 _ _ a— %
byyx, = Moo, = 0.809/%4ss = 20.043 and ¢t = T ress
. _ - X es
the intercept a=x —20.043%, = <_ + é) s
n xXx) n—

174.05 — 20.043 x 13.37 = —93.97

So the regression equation of X; on X, is given 93.97 — 95 188.97
as X1 = —93.97 + 20.043X>. = =

45.892

(i) According to the given condition 7, test Hy :
a = ap(=95) against H; : a # ap(95)

;= a—
estSE(a )
a — Qo

= with (n — 2) d.f.

1+ %\ ResSS
n SSxx) n—2

L+ 13.37> \656.867
20 20x0.155) 18

=4.118

Now the calculated value of |t| 2 la/2,(n-2)
i.e. 10.025,18 = 2.101,

.. The null hypothesis is rejected i.e. in popu-
lation a # 95.
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(i1) According to the given condition to test
Hy : = By(=25), against Hy : § # Po(= 25)
= b _bh with (n—2)df.

estSE(} ) Resss
()

, —po 20043 —-25 —4.957
Resss o 530867 T 3431
SSxx 20x0.155
= —1.445

The calculated value of M <lgp,(n-2) 1.€.
t0.025,18 = 2.018, the null hypothesis can not be
rejected,

So one can conclude that at 5 % level of
significance the slope coefficient may be taken
as 25.

(iii)) According to the given condition to
test Hyp :a=ap, f =Py

we have the test statistic F =
2": (yfaoﬂox;)zResSS:| /2
RS with (2,n — 2)d.f.
[Z (v — @0 — Boxi)* — ResSS] /2
F= ResSS/(n — 2)
_ [3424725 — 656.867]/2 _ 46914.543

656.867/(18)

The calculated value of ' > Fg s.2.15(=3.55), so
the null hypotheses are rejected, i.e., in popula-
tion we cannot expect the regression of energy on
protein content as energy = 95 + 25 protein.

Example 6.16

The following data are pertaining to weight of
eggs and number of eggs laid per cycle by certain
poultry bird, and the regression equation worked
for weight of eggs (Y) on number of eggs hatched
(X)is Y = 52.29 4+ 0.0182X. Test for the regres-
sion coefficients:

45
80

48
80

49
85

50
88

51
92

52
92

Weight of egg(s) (g)
Hatching
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Solution In order to test the significance of
regression coefficient, we have the following
null and alternative hypotheses, respectively:

H()Zﬂl =0
leﬁl 7&0

Assuming that the dependent variable follows
normal distribution, we have the following test
statistic under the given hypotheses:
_ b0 _ b _ b
! = SEG) JE S SSxx

degrees of freedom, where s is the standard devi-
ation of the model and an estimate of the popula-
tion variance and is worked out as the square root
of the residual mean sum of square.

Let the level of significance be a =0.05.

Using the above information, let us frame the
following table:

with n—2

Observation Y X Y Residual (e) &

1. 45 80 53.74 —8.74 76.422
2. 48 80 53.74 —5.74 32.970
3. 49 85 53.83 —4.83 23.356
4. 50 88 53.89 —3.89 15.111
5. 51 92 53.96 —2.96 8.761
6. 52 92 53.96 —1.96 3.841
7. 53 90 53.92 —0.92 0.853
8. 54 91 53.94 0.06 0.003
9. 55 92 53.96 1.04 1.082
10. 56 92 53.96 2.04 4.162
11. 57 89 5391 3.09 9.577
12. 58 86 53.85 4.15 17.215
13. 59 84 53.81 5.19 26.888
14. 60 82 53.78 6.22 38.710
15. 61 80 53.74 7.26 52.679
Sum 808.00 | 1303.00 | 808.00 | 0.00 311.63
Res S§=311.63

§? = ResMS = ResSS/(n—2) = 311.63/13 = 23.95

Also from the above, we have the SS,. =
n

> (i —x)?=31573

=1

53
90

55
92

56
92

57
89

60
82

61
80

91 86 84
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Thus,

458w = S8 /315,73 = 0.065.

Now the calculated value of Il < 7y (n—2) =
loosrs = 2.16, so the test is nonsignificant, and
the null hypothesis cannot be rejected. Thus, one
should conclude that at 5 % level of significance
on the population regression coefficient of egg
weight on number of eggs laid per hatching cycle
cannot be taken different from zero.

we  have

(vii) Test for significance of the population mul-
tiple correlation coefficient

As has been discussed in Chap. 8 of this book,
multiple correlation coefficient is the correlation
coefficient between the dependent variable and
the estimated values of the dependent variable
from the line of regression of the dependent
variable on other variables. Suppose we have

p variables X, Xo,..cccceeueee. X, and following a
p-variate normal distribution, then the multiple
correlation of X; on X5, X3,........... X, is given

by pi23,... p and the corresponding sample
multiple correlation coefficient can be written
as Ry»3... p, from a random sample of size
n. In this section of inference, we are interested
to test whether the population multiple correla-
tion is zero or not, i.e., to test Hy : P123,....p =0
against the alternative hypothesis H,:
P12, 3,....p > 0. Under Hy, the appropriate test
R103...p/ (P—1

F= (1*Rz1.23,....,.(,1%7/(11)*]1)
(p — 1, n— p) d.f. According to the given alter-
native hypothesis, the test is right-sided test; this
is because of the fact that the multiple correlation
coefficient is the ratio of two variances and can-
not be negative. If the calculated value of F be
greater than the table value of F' at specified level
of significance and appropriate degrees of free-
dom, then the null hypothesis is rejected; other-
wise, one cannot reject the null hypothesis.

statistic will be with

Example 6.17

Thirty Jersey cows were tested for dependence of
their milking capacity (X;) on weight of the cows
(X5), number of lactation (X3), and age (X4). The
multiple correlation coefficient of milking

6 Statistical Inference

capacity (X;) on all other three variables was
found to be 0.898. Test for significance of multi-
ple correlation coefficient at 5 % level of
significance.

Solution Assuming that all the variables under
consideration behave like normal variables, under
the given condition, i.e., Hy : p; 34 = 0 against
Hj 1 pia3g > 0, the test statistic under is given by

_ RE 034/ (P—1) _ RY 34/ (4= 1)
(1 _R%234) /(n—p) (1 —R%_234)/(30 —4)
(0.898)%/3

R%.234/(p — 1)

CF= =
(1=Ri,)/(n—p) (1-0.898%)/26
0.268

:m=9.571

The calculated value of F is greater than the table
value of F s 326 = 2.98, so the test is signifi-
cant, and null hypothesis is rejected. That means
population multiple correlation coefficient
differs significantly from zero.

(viii) Test for significance of population partial
correlation coefficient

As has been discussed in Chap. 8 of this book,
partial correlation coefficient is the correlation
coefficient between the dependent variable and
one of the independent variables after
eliminating the effects of other variables on
both the variables. Suppose we have p variables
D, CTD. CTR X, and following a p-variate nor-
mal distribution, then the partial correlation coef-
ficient of X; and X, after eliminating the effects
of X3,................. X, from both X; and X is
given by pio34.. 5 and the corresponding
sample partial correlation coefficient from a ran-
dom sample of size “n” is given by 1234 P
Under the given conditions, the test statistic for

Hy : prosa.. » = 0 against Hy : p1p34. . » F

PV TP ith (n — p) df.

)
1 —r21234..., »

If the calculated value of Ifl be greater than the
table value of ¢ at specified level of significance
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and n—2 degrees of freedom, then the null
hypothesis is rejected; otherwise, there is no rea-
son to reject the null hypothesis.

Example 6.18

Thirty Jersey cows were tested for dependence of
their milking capacity (X;) on weight of the cows
(X3), number of lactation (X3), and age (X4). The
partial correlation coefficient of milking capacity
(X1) of Jersey cow with the no. of lactation (X3)
by eliminating the effect of weight (X,) and age
of cow (X,) is found to be 0.777. Test for signifi-
cance of partial correlation coefficient at 5 %
level of significance.

Solution Assuming that the variables behave
like normal variables, we have the test statistic

t—'”% V' Pata = 0.05and n — p d.f. for Hy :
"3

P1324 = 0 against Hy : pi34 # 0.

From the given information, we have
= rsauyn—p _ 0.777y/30-4 __ 3.961 __ = 6.297 ith
Vicra Vim0 ™
(30—4) =26 d.f.

From the table, we have 1526 = 2.055.
Since the calculated Il >2.055, the null hypothe-
sis of zero partial correlation coefficient between
milking capacity and no. of lactation is rejected.

6.2.1.2 Statistical Test of Population
Parameters for Large Samples

As has already been discussed, if a large random
sample of size n is drawn from an arbitrary popu-
lation with mean y and variance 6> and any sta-
tistic be “s”” with mean E(¢) and variance V(), then
¢t is asymptotically normally distributed with
mean E(f) and variance V(?), i.e., t ~ N(E(1),V(t))
as n — oo. Any sample having sample size 30 or
more is treated as a large sample. A test procedure
where the null hypotheses are tested against the
alternative hypothesis based on large sample is
known as the large sample test. Corresponding
estimator is supposed to follow like a standard

=EQ@)
0 N(0,1).

In the following section, we shall discuss
some of the important and mostly used large
sample tests.

normal variate 7 =
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(1) Test for specified value of population mean

Let xq, X, X3,. . .. . ... ..X,, be a random sample
drawn from a population with mean u and vari-
ance o~ and given that the size of the sample is n
> 30. Now we have to test Hy: 4 = . From the
given sample, one can calculate the sample mean
X. According to large sample theory

x~N (ﬂ,%z) as n — oo., under the given situa-

tion, our null hypothesis would be u = g, a
specified value. Here we come across with two
situations, (i) the population variance o7 is
known (ii) the population variance o> is not
known. Like parametric setup, here also we
have two approximate test statistics under two
situations to test the Hy: u = y, and are given by

X—u .
T= 0 ,when 6%is known and

WJ‘

X —

when 62 is unknown,

Sn/ \/—

where 52 = — E —x)? is the sample variance.
1—]

Depending upon the nature of the alternative
hypothesis and level of significance, the table
value of the standard normal variate 7 is to be
decided. If the calculated value of 7 falls in the
zone of rejection, the null hypothesis is to be
rejected; otherwise, one cannot reject the null
hypothesis at the specified level of significance.

Example 6.19

A fishing community in Uganda claims that the
average amount of fish catch per day is 33.12 kg
using motorized boat with a variance of 4.72.
Information from 30 boats were collected and
found that the average fish catch per day is
37.62 kg per boat with s.d. of 2.45. Conclude
whether the claims are justified or not.

Solution Let us suppose that we are to test the
null hypothesis at 5 % level of significance.

Given that (i) population mean (¢) =33.12 kg
and variance (¢%) = 4.72.
(i) Sample size (n) = 30, X = 37.62, and

5, = 2.45.
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Thus, under the given condition, the null
hypothesis Hy : 4 = 33.12 kg against the alterna-
tive hypothesis H; : u # 33.12 kg, the test statis-
X—py
o/Vn
normal distribution. As per the alternative

hypothesis, the test is a both-sided test:

tic would be 7 = which follows a standard

37623312 45

= T =125
2.17/3/30 040

The calculated value of Izl = 11.25 is greater than
70.025 = 1.96. So the test is significant and the
null hypothesis is rejected. Thus, we reject the
claim that a fishing community in Uganda
catches 33.12 kg fish using motorized boat.

In fact, instead of taking alternative hypothe-
sis as Hj : u # 33.12 kg, if we take alternative
hypothesis as H; : y > 33.12 kg to test the null
hypothesis Hy : u = 33.12 kg, we would have
rejected the null hypothesis in favor of the alter-
native hypothesis. Let us examine.

We want to test the null hypothesis Hy : p =
33.12kg against the alternative hypothesis
Hi : p > 33.12 kg, a right-sided test.

Under the given condition, the test statistic
will remain the same, but we are to compare the
calculated value of the test statistic with upper
table value of the test statistic at 5 % level of
significance.

_ X—Hy _ 37.62-33.12 _ 45 _
ThU.S,T—O_/\/%—W—m—llzs

The calculated value of 7 = 11.25 is greater
than 79 s = 1.645. So the test is significant and
the null hypothesis is rejected. Thus, we reject
the claim and conclude that the average fish
weight caught by the fishers of Uganda is more
than the claimed 33.12 kg/day.

Example 6.20

A particular hatchery of broiler chicks claims
that the average weight of chicks of his hatchery
would be 2.24 kg at 42 days of age. A sample of
77 chicks were tested and found that the average
weight was 2.16 kg with variance 0.014. Using
5 % level of significance, test whether the claim
is justified or not.

Solution Given that (i) the sample is large
n (=77 > 30),

6 Statistical Inference

(ii) Sample mean ( X ) = 2.16,
variance = 0.014

(iii) Population variance is unknown

We want to test Hy : 4 = 2.24 kg against

sample

Hy:pu#224

The approximate test statistic under the given
condition is

_X—pg_216-224 008 ..
so/v/n 0.014/4/77  0.0015 '

Thus, the calculated value of Izl, i.e., 53.33, is
greater than the table value of 7gg5 = 1.96.
Hence, the test is significant and the null hypoth-
esis is rejected. So we conclude that the claim of
the company is not justified.

T

(ii) Test for significance of specified population
standard deviation

Suppose xq, X, X3,. . .. ......x, be a large ran-
dom sample of size n drawn from a population
with mean y and variance o°. We want to test Hy:
6 = o, where ¢ is any specified value for the
population variance.

When the sample size n is large, then the
sampling distribution of the sample standard
deviation s, follows approximately normal distri-
bution with mean E(s,,) = ¢ and variance V(s,,) =

6°2n, ie., as n — oo, Sy~ N(a, %)
To test the above null hypothesis, we have the
following approximate test statistic:

=52~ N0, 1)

%

2n
For acceptance or rejection of Hy, we have to
compare the calculated value of 7 with the appro-
priate tabulated value keeping in view the alter-
native hypothesis.

Example 6.21

To test the variability in size of eggs, a sample of
50 eggs was examined and found that the vari-
ance of the size of egg was 64. But the concerned
poultry farm claims that the variability in size of
egg was 25 only. Based on the information
provided, can we conclude that the claim of the
poultry farm is justified or not?
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Solution The sample size is large with n = 50.
The population variance of egg size is assumed
to be 25. Under the given condition, we are to test
the null hypothesis

Hy : 0 =5, against the alternative hypothesis
Hi:0#5.

The test statistic is a both-sided test with a
given sample variance being 64. For the above
null hypothesis, the appropriate test statistic

would be 7= “”*”2”; S, and o are the sample

o

0
2n

and population standard deviation respectively.
Let the level of significance be 0.05:

T:sn—cfo: 8.0-5.0 :3'0:600
% \/25/2x50) 050
2n

The calculated value of |zl > tabulated value of
To.0s (1.96). The test is significant and the null
hypothesis is rejected. So the population variance
of the size of eggs cannot be taken as 25. Hence,
the claim of the poultry farm is not justified.

(iv) Test for significant difference between two
standard deviations

Suppose we have drawn two independent
samples,  (X11, X[2yeeerveen , X1, and  (xoq,
B , X2,,), of sizes m and n with means X,
%, and variance S, S, from two populations
with variances o,> and 6,%, respectively. We
want to test for the equality of two standard
deviations o; and o,. Thus, the null hypothesis
is Hy : 01 = 0>.

According to large sample criteria, both S,,%,

2
S,2 are distributed as S, ~N (01,;—;”) and

$u~N(022).

Now E(S,, — S») = E(Sw) — E(S,) = 61 — 02
and
612 622
SE(Sy —Sn) =V V(Su—Su) =1/ —+—
2m  2n
As the samples are large, so (S, —S,) ~

2 2
_ o1 02
N(61 02, 2m+2n)'
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The test

(Sm—5n) ]

statistic under Hy, would be
T =
o 2 o 2
Tt
. . 2
In most of the cases, population variances o
and 0'22 remain unknown, and for large samples,
01 and o, are replaced by the corresponding
sample variances, and the test statistic reduces to

v =S N(0,1).

2 2
5.9
Im T 2n

Example 6.22 The following table gives the egg
production features of two independent random
samples from a poultry farm in Bihar state of
India. Test whether the variability of two
samples are the same or not:

Sample Sample size Wt of egg(cg) S.D
Sample 1 |48 | 6548.26 11027.34
Sample 2 |37 | 6786.73 1234323

Solution: Let the variability be measured in
terms of standard deviation. So under the given
condition, we are to test:

Hy: the standard deviations of both the
samples are equal against

Hi: the standard deviations of the samples are
not equal.

That is, Hy : 61 = 0, against H : 61 # 0,

Let the level of significance be a = 0.05.

Under the above null hypothesis, the test sta-
tistic is

=S N(O, 1),
52 s2
(Sw—S,)  (1027.34 — 2343.23)

2,8 342 232
VG5 |/ (memg)
_ —1315.89 _ —1315.89
\/(10994.0362 +74199.01) 291.878

= —4.508

The calculated value of Izl > tabulated value of
70.05 (1.96). The test is significant and the null
hypothesis is rejected. So the population variance
of weight of eggs is not same. Hence, the poultry



166

farm has got different variabilities in weights of
eggs.

(iii) Test of significance between two means

Analogous to that of testing of equality of two
sample means from two normal populations, in
large sample case also, sometimes, it is required
to test whether the two populations are same or
not with respect to their arithmetic means. Sup-
pose we have two independent random large
samples X1, X12, X135eeeene Xim and  Xpq, Xoo,
XD3peennnen X5, drawn from two populations (4, 612)
and (u», 622), respectively. Now we want to
test whether these two populations differ in
their central tendencies measured in terms of
arithmetic mean or not, i.e., to test Ho: | = 5.
As two large samples are drawn independently
from two population, so X; ~ N (u;,67/n;) and
)_Cz ~ N(/lz, 0'22/112).

Therefore,

E(x —X) = E(x1) — E(X2) = p — pp and

_ _ _,_o? 0’
V(X —X)=V@E)+V(E) = . —|—n—
1 2
e o, 5
SX =X~ N\ —py, —+ =
ni ny

The standard normal variate corresponding to the

difference between the two means, d = x| — X,
would be

_d—-E(d) (X —-%)-E® —%)
SE(d) V(X —X)
_ (&1 —X) — (4 — )
et

Thus, to test Hy
(1 —x2)

A
ny ' onp

: M = U, and the test statistic is

T= , In testing this hypothesis, we may

different

(a) population variances 0% and a% are known

and (b) population variances o7 and 63 = o7

are unknown but equal 67 = o3 = o°.

come  across two situations,
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(@) Test of equality of two population means
when population variances are known:
Under the given null hypothesis Hy:
1 = pp with known population variances
(721 and 622 against the alternative
hypotheses H : p; # p,, the test statistic

X1 —X

> )
o2 o2

it

dard normal distribution, and X; and X, are
the arithmetic means of the first and second
samples, respectively. As the test is both
sided, we are to compare the calculated
value of 7 with that of the table value
under standard normal value at a/2 level of

significance for taking decision.

would be 7 = which follows a stan-

(b) Test of equality of two population means
when population variances are unknown
but equal: Before performing this test, one
should ascertain that first Hy : 67 = 63 by
F-test statistic discussed in test iii(b). If
it is accepted then, we perform the test using

2
2 Sy TSy,

—  — 2
=3 is the

T = —==2— where 6
2 1 ny+np

&> (i)

estimate of common population variance.

2 2 2

Thus, the test statistic under o1° = 62~ = o

(unknown) comes out to be
Y=Y which follows N (0, 1).
Vo)
When population variance is unknown, then
these are replaced by respective sample
variances sfl and sfz.

T =

For acceptance or rejection of Hy, we have to
compare the calculated value of 7 with the appro-
priate tabulated value keeping in view the alter-
native hypotheses.

Example 6.23

To compare the shelf life of milk from two large
samples, sample of 50 each was selected and
found that the average shelf life of first sample
milk was 36 h and that of second sample was 42 h
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with a standard deviation of 6 and 5 h, respec-
tively. Assuming that both the milk samples have
same variability, test whether the shelf life sec-
ond sample is more than the first sample or not.

Solution Given that:

Mean SD Sample size
First sample 36 6 50
Second sample 42 5 50

Under the given condition of 67 # 63 and both
being unknown, the null hypothesis and the alter-
native hypothesis remain same. That is, Hy: aver-
age shelf life of milk of first sample and second
sample are equal against H: average shelf life of
milk of second sample > first sample.

Let the level of significance be a = 0.05,
being a one-sided test the critical value is 1.645
for standard normal variate 7. The test statistic is

Xy — X

Gd
n np

_ _4-3 _ 6 _ _6 __
Thus, 7 = (%%)—\/%_m_s.%

Since Cal 7 > 705 = 1.645, the test is signifi-
cant; we reject the null hypothesis and accept the
alternative hypothesis, i.e., average shelf life of
milk of second sample > first sample.

Example 6.24

To compare the vase life of flower from two large
samples, samples of 50 each were selected and
found that the average vase life of first sample of
flower was 36 h and that of second sample was
42 h with a standard deviation of 6 and 5 h,
respectively. Assuming that the samples have
different variability, test whether the vase life
of flower of second sample > first sample.

Solution Given that:

Mean SD Sample size
First sample ‘ 36 ‘ 6 ‘ 50
Second sample ‘ 42 ‘ 5 ‘ 50
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Under the given condition o7 =03 = o>
(unknown), and the null hypothesis is H: aver-
age vase life of flower of both the samples are
equal against H;: average vase life of second
sample > first sample. Also suppose that the
equality of variances hold good. So the test sta-

tistic under H is

X1 — X2

~ (1 .
o2 (E + _2)
Where

72 — ms s, 50« 2450 x 5¢ _ 50(36+25) _ 61
- ny+ny -

~N(0,1)

50+50 100 2

Let the level of significance be @ = 0.05. This

is a one-tailed test. Since the Cal 7 > 7905

=1.645, the test is significant; we reject the null

hypothesis and accept the alternative hypothesis,

i.e., average vase life of flower of second sample
> first sample.

Sor=

(v) Test for significance of specified population
proportion

In our daily life, often we want to test the
proportion of a part