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Preface

Statistics is now recognized and universally accepted a discipline of science.

With the advent of computer technologies, the use of statistics has increased

manifold. One can hardly find any area where there is no use of statistics. In

the field of Biological Sciences, the use of statistics is also keeping pace with

other disciplines. In fact development of many statistical theories has their

roots in biological sciences, in particular agricultural sciences. This has led to

ever increasing areas of its application in diversified fields. Newer and

varieties of problems are being tackled by the subject. Like other branches

of science, statistics is being extensively used in agricultural/animal/fishery/

dairy and other fields in explaining various basic as well as applied problems.

Availability of wide range of statistical techniques suited for various

problems has made it possible for its wider application. Everyday type of

problem is getting increased and more and more tools or techniques need to

be developed to solve various specific problems. Development and/or selec-

tion of appropriate statistical technique for a given problem is mostly

warranted for getting meaningful explanation of the problems under

consideration.

Students/teachers/researchers/practitioners from agriculture and allied

fields are to deal with various factors like living flora and fauna, soil, air,

water, nutrients, etc. along with socio-economic and behavioral aspects of

plant and animal beings for successful research and development. Under-

standing of the theory and essence of both the agricultural science and the

theory of statistics is a must for getting and explaining the problem under

consideration in a meaningful way. It is felt increasingly that a user in any

field should have well understanding of the logic behind any experimentation

as well as the specific statistical tools (during planning, designing, executing,

collecting information/data, analytical methods and drawing inference from

the results) to be used to draw meaningful conclusion from the experiment.

Statistics is a mathematical science in association with uncertainty. There

is a large section of students/teachers/researchers/practitioner who do not

have enough mathematical orientation and as such are scares of using

statistics, in spite of its wider acceptability. To reach to these huge users

remains a challenging task to the statisticians, particularly the

biostatisticians. Statistics must reach to the users particularly to these types

of user in their terms/manners and language. Biological sciences have moved
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on from mostly simple qualitative description to concepts founded on numer-

ical measurements and counts. In order to have proper understanding of

phenomena, correct and efficient handling of these measurements is needed

and actually done by statistics. Understanding of basic statistics is essential

for planning measurement programs and for analyzing and interpreting data

but frequently it has been observed that many users lack in good comprehen-

sion of statistics, moreover do not feel comfortable while making simple

statistics based decisions. A number of books are available, which deal with

various aspects of statistics. The need for the present book has been crept in

to the mind of the author during his teaching experience. In India only, there

are more than hundred colleges where agriculture, veterinary, fishery, dairy

and home science are taught at graduation and post-graduation levels as per

the syllabi of the Indian Council of Agricultural Research. Outside India,

millions of students are there in these wings. A textbook to cater the need of

these types of students with a guide to handle their data using easily available

statistical software is mostly needed. An attempt has been made in this book

to present the theories of statistics in such a way that the students and

researchers from biological/agricultural/animal/fishery/dairy and allied field

find it easy to handle and use in addressing many real life problems of their

respective fields.

This book starts with an introduction to the subject which does not require

any previous knowledge about the subject. The ultimate aim of the book is to

make it self-instructional textbook, which can be helpful to the users in

solving their problems using statistical tools also with the help of simple

and easily available computer software like MSEXCEL. It is expected that

thousands of students of biological/agricultural/animal/fishery/dairy and

allied fields would be benefitted from this book. In each chapter, theories

have been discussed with the help of example(s) from real life situations,

followed by worked out examples. Simple easily available packages like

MSEXCEL, SPSS, etc. have been used to demonstrate the steps of calcula-

tion for various statistical problems. Statistical packages used for demonstra-

tion of analytical techniques are gratefully acknowledged. Attempts have

been made to familiarize the problems with examples on each topic in lucid

manner. Each chapter is followed by a number of solved problems (more

than 165) which will help the students in gaining confidence on solving those

problems. Due care has been taken on solving varied problems of biological/

agricultural/animal/fishery/dairy and allied fields and the examination need

of the students. It has got 13 chapters. The first chapter is to address and

explain the subject statistics, its usefulness and application with particular

reference to biological/agricultural/animal/fishery/dairy and allied fields.

A brief narration on statistics, highlighting its use, scope, steps in statistical

procedure and limitations along with example, has been provided in Chap. 1.

Main ingredient of statistics is the varied range of information or data; in

second chapter, attempts have been made to explain different types of

information/data from relevant fields. In this chapter, discussion has been

made on collection, scrutinisation and presentation of data in different forms

so as to have first-hand idea about the data. The third chapter deals with

measures of central tendency and measures of dispersion along with
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skewness and kurtosis. Different measures of central tendencies and disper-

sion along with their uses, merits and demerits have been discussed.

Measures of skewness and kurtosis have also been discussed. The theory of

probability has been dealt in Chap. 4. Utmost care has been taken to present

the theory of probability in its simplest form, starting from the set theory to

the application of different laws of probability. Quite a good number of

examples on probability theory and random variable are the special features

of this chapter. A few discrete and continuous probability distributions like

Binomial, Poisson, Normal, χ2, t and F have been discussed in brief. Intro-

ductory ideas about population, types of population, sample, sampling

techniques used under different situations, comparison of sample survey

techniques and census have been discussed in Chap. 5. Statistical inference

has been discussed in Chap. 6. Starting with the introduction of statistical

inference, both statistical estimation and testing of hypothesis have been

discussed in this chapter. Tests based on distributions mentioned in Chap. 4

have been discussed. Discussions on different non-parametric tests included

in this chapter hope to find their applications in various agriculture and allied

fields. These tests have been designed with an objective to cater the need of

the students of agriculture/animal science/dairy/fishery and allied fields as

per the syllabi of the Indian Council of Agricultural Research. Chapter 7 is

devoted to the study of correlation. Starting with the idea of bivariate data,

bivariate frequency distribution and covariance, this chapter has described

the idea of simple correlation and its properties, significance and rank

correlation. The idea of regression, need, estimation of parameters of both

simple and multiple regression, meaning and interpretations of parameters,

test of significance of the parameters, matrix approach of estimation of

parameters, partitioning of total variance, coefficient of determination,

game of maximization of R2, adjusted R2, significance test for R2, problem

of multicollinearity, regression vs. causality, part and partial correlation are

discussed in Chap. 8. Discussion on properties and examples are the special

features of the correlation and regression chapters. Starting with general idea,

the analysis of variance technique has been discussed in Chap. 9. Extensive

discussion has been made on assumptions, one-way analysis of variance

(with equal and unequal observations), two-way analysis of variance (with

one or more than one observations per cell), violation of the assumptions of

ANOVA vis-a-vis transformation of data, effect of change in origin and scale

on analysis of variance with worked-out examples. Chapter 10 is devoted to

basics of experimental design and basic experimental designs. This chapter

discusses on experiment, types of experiments, treatment, experimental unit,

experimental reliability, precision, efficiency, principles of design of field

experiments – replication, randomization, local control, lay out, uniformity

trial and steps in designing field experiments. In this chapter, elaborate

discussion has been made on completely randomized design, randomized

block design and latin square design along with missing plot techniques.

Efforts have been made to explain the basic principles and procedures of

factorial experiments in Chap. 11. Factorial experiments, their merits and

demerits, types of factorial experiments, two factor factorial (symmetrical

and asymmetrical) CRD, two factor factorial (symmetrical and
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asymmetrical) RBD, three factor factorial (symmetrical and asymmetrical)

CRD, three factor factorial (symmetrical and asymmetrical) CRD, split plot

and strip plot designs are discussed in this chapter. Some special types of

experimental designs which are useful to the students, teachers, researchers

and other users in agriculture and allied fields have been discussed in

Chap. 12. In this chapter, attempt has been made to discuss on augmented

CRD and RBD, augmented designs with single control treatment in factorial

set up, analysis of combined experiments, analysis of data recoded over times

and experiments at farmers fields. Computer has come in a great way to help

the experimenter not only in analysis of experimental data but also in

different ways. But there has been a tendency of using computer software

without providing due consideration to ‘what for’, ‘where to use’, ‘which tool

is to use’ and so on. In last chapter of this book, an attempt has been made, by

taking example, to show how computer technology can be misused without

having knowledge of appropriate statistical tools.

A great number of books and articles in different national and interna-

tional journals have been consulted during preparation of this book which

provided in reference section. An inquisitive reader will find more material

from these references. The need of the students/teachers/researchers/

practitioners in biological/agricultural/animal/fishery/dairy and allied fields

remained the prime consideration during the preparation of this book.

I express my sincere gratitude to everyone who has helped during the

preparation of the manuscripts for the book. The anonymous international

reviewers who have critically examined the book proposal and put forwarded

their valuable suggestions for improvement of the book need to be acknowl-

edged from the core of my heart. My PhD research students, especially Mr

Vishawajith K P, Ms Dhekale Bhagyasree, Md Noman, L Narsimaiah and

others, who helped a lot during analysis of the examples based on real life

data and need to be acknowledged. Taking the help of MSEXCELL, SPSS

and SAS softwares various problems have been solved as examples in this

book; the author gratefully acknowledges the same. My departmental

colleagues and our teachers at BCKV always remained inspiration to such

book projects, thanks to them. My sincere thanks to the team of Springer

India in taking responsibility of publishing this book and continued monitor-

ing during the publication process. Most importantly my family members,

who have always remained constructive and inspirational for such projects

need to be thanked; without their help and co-operation it would have not

been possible to write such a book. All these will have a better success if this

book is well accepted by the students, teachers, researchers and other users

for whom this book is meant for. I have the strong conviction that like other

books written by the author, this book will also be received by the readers and

will be helpful to everyone. Sincere effort are there to make the book error

free, however any omissions/mistake pointed out, along with constructive

suggestions for improvement will be highly appreciated and acknowledged.

Mohanpur, India

26th January 2016

Pradip Kumar Sahu
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Introduction to Statistics and Biostatistics 1

1.1 Introduction

Knowingly or unknowingly, people use “statis-

tics.” In ancient days, people generally used the

term statistics to understand the political state.

German scholar Gottfried Achenwall most prob-

ably used the word “statistics.” In any case, the

word statistics is being used knowingly or

unknowingly since time immemorial. The word

statistics is being used in two different forms:

(a) in singular sense, it is the body of science,

which deals with principles, techniques,

collections, scrutiny, analysis, and drawing infer-

ence on a subject of interest, and (b) in plural

sense, it refers to data, i.e., presentations of facts

and figures or information. Year-wise food grain

production figures of different provinces of the

United States of America may constitute a data

set – food grain production statistics – whereas

the problem of identifying, analyzing, and

establishing the differences between two herds

of cows to facilitate breeding improvement pro-

gram may be the subject matter of the subject

statistics. Given a set of data, one can explain it

to some extent, but beyond a certain level, it

becomes difficult to unearth the hidden informa-

tion from the data. Data require analysis, theoret-

ical, and computational treatment to speak for

itself. Thus, the “subject statistics” is being

used to “data statistics” to unearth the so long-

hidden information in a set of data for the benefit

of humanity.

Inquisitiveness is the mother of all inventions.

Human instinct is to study, characterize, and

explain the things which so long remained

unknown or unexplained; in other words, to

study population behavior, characterize it and

explain it. In statistics, a population is a collec-
tion of well-defined entities, i.e., individuals hav-

ing common characteristics. Often it becomes

very difficult to study each and every individ-

ual/unit of the population, maybe because of

time, resource, or feasibility constraints. In all

these cases, the subject statistics plays additional

role in characterizing population under

consideration.

Statistical tools/methods applied to biological

phenomenon are generally known as biostatis-

tics. Biological phenomena are characterized by

the resultant of interaction between the genetic

architecture and the environmental factors under

which lives exist. Thus, one must be careful in

taking into consideration of all these factors

while inferring about any biological phenome-

non. So the understanding of the mechanism of

existence of life and also the statistical methods

required for specific real-life problem is of

utmost importance to a biostatistician.

1.2 Use and Scope of Statistics

In every sphere of modern life, one can notice the

application of statistics. In agriculture, fishery,
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veterinary, dairy, education, economics, busi-

ness, management, medical, engineering, psy-

chology, environment, space, and everywhere,

one can find the application of statistics – both

data and subject statistics. Not only in daily life,

statistics has got multifarious roles in research

concerning the abovementioned and other

fields also.

1.3 Subject Matter of Statistics

Human instinct is to study the population – a

group of entities/objects having common

characteristics. In doing so, we are mostly inter-

ested in knowing the overall picture of the popu-

lation under study, rather than a particular

individual of the population. The subject matter

of statistics is to study the population rather than

the individual unit of the population. If the inter-

est of study be the study of economic status of the

fishermen of a particular country, then the study

should be interested in getting the average

income, the range of income, their average

expenditure, average family structure, variation

in income/expenditure, etc. of the population of

the fishermen rather than attempting to the infor-

mation of particular fisherman. Thus, statistics

deals with aggregated information on a subject

of interest in which there is a little scope for an

individual item to be recognized.

The subject statistics plays a great role in

situations particularly where there is little scope

to study the whole population, i.e., it is difficult

to study each and every element of the popula-

tion toward explaining the population behavior.

A population can be characterized by studying

each and every element/unit of the population.

As we know, a population may be finite

(constituted of definite number of units) or infi-

nite (constituted of indefinite number of units).

Time and resource (money, personals, facilities,

etc.) required to study the huge number of indi-

vidual elements of the population may not be

available. If available at all, by the time the

information are unearthed, these might have

lost relevance due to time lapse or otherwise.

Sometimes, it may not be possible to have access

to each and every element of the population. Let

us take some examples. Hilsa hilsa is a famous

fish for favorite dishes of a section of nonvege-

tarian people. Now the question is how to know

the availability of the quantum of hilsa during a

particular season in a particular country. It is very

difficult to have an idea about the number of hilsa

that would be available, their weights, etc. But

the study has a number of impacts on food habit,

business, and economy of the concerned area.

Statistics plays a vital role in these situations.

How to assess the possible food grain production

of a particular country for assured food supply to

its population? Taking information from each

and every farmer after crop harvest and assessing

the same may take considerable time and may

come across with shortage of resources and fea-

sibility problem. Both the statistics, singular

(subject) and plural (data), play important role.

In most of the cases, a part of the population

(sample) is studied and characterized, and infer-

ence(s) is/are drawn about that part (sample), in

the first step. And in the next step, statistical

theories are applied on sample information to

judge how far the sample information are appli-

cable for the whole population of interest or

otherwise. All the above are accomplished fol-

lowing different steps. In the following section,

we shall see the different steps in statistical pro-

cedure for the practitioners/users; but one thing

should be kept in mind, that neither the steps are

exhaustive nor every step is essential and in

order. Depending upon the problem, steps and

order may change.

1.4 Steps in Statistical
Procedure

Data are one of the basic inputs on which statis-

tical theories are applied to make these informa-

tive or which otherwise remain hidden. The

subject statistics starts with the formation of

objective and proceeds to planning for collection

of data, care of data, scrutinization and summari-

zation of data, application of statistical theories

and rules, and lastly drawing inference.
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(a) Objective and planning: At the first outset,

an investigator should clearly delineate the

objective of the problem encountered. Well-

defined objectives are the foundations for

proper planning and application of different

statistical procedures so as to make the data

more informative and conclusive.

Depending upon the objective of the study,

data needed, type of data needed, source of

data, etc. are guided. For example, if one

wants to have a comparison on the average

performance of different newly developed

breeds of milch cows for milk production,

he/she has to plan for an experiment from

which the information on the performance

of these breeds can be compared under iden-

tical situations. Similarly, if one wants to

compare the economic conditions of the

people of different agroecological zones of

a country, he/she has to plan for collection

of data either from primary or secondary

sources. In order to study the growth and

yield behavior of different varieties of a

particular crop, one needs to set up

experiments in such away so as to generate

required data to fulfill the objectives. Thus,

depending upon the objective of the study,

the procedure of collection of information

will have to be fixed.

(b) Collection of data: Having fixed the

objectives, the next task is to collect or

collate the relevant data. Data can be col-

lated from the existing sources, or these can

be generated from experiments conducted

for the purpose adopting (i) complete enu-

meration and (ii) sampling technique. In

complete enumeration technique (census),

data are collected from each and every indi-

vidual unit of the targeted population. As

has already been pointed out, in many

situations, it may not be possible or feasible

(because of time, financial, accessibility, or

other constraints) to study each and every

individual element of interest, resulting in

the selection of a representative part

(sample) of the study objects (population)

using appropriate sampling technique. For

the purpose, a sampling frame is needed to

be worked out (discussed in Chap. 5) befit-

ting to the data requirement and nature of

the population. Data collection/collation

should be made holistically with utmost

sincerity and always keeping in mind the

objectives for which these are being col-

lected/collated.

(c) Scrutinization of data: Once the data are

collected, these need to be checked for cor-

rectness at the first instance. In a study deal-

ing with the yield potentials of different

wheat varieties, if records show an observa-

tion 90 t/ha yield under the northern plains

of India, one has to check for the particular

data point for its correctness. Thus, data sets

collected (raw data) should be put under

rigorous checking before these are

subjected to further presentation or analysis.

(d) Tabulation of data: Upon collection/colla-

tion of the data following a definite proce-

dure of collection/collation from the

population, having specific objectives in

mind, and on being scrutinized, it is

required to be processed in such a way that

it gives a firsthand information at a glance

about the data collected. Thus, for example,

the following data are collected about the

acreages (in ‘000 ha) of wheat for different

wheat-growing provinces in India during

the period 2011–2012 from the Directorate

of Wheat Research in India: AP 8, Assam

53, Bihar 2142, Chhattisgarh 109, Gujarat

1351, Haryana 2522, HP 357, J&K

296, Jharkhand 159, Karnataka 225, MP

4889, Maharashtra 843, Odisha 1.46,

Punjab 3528, Rajasthan 2935, UP 9731,

Uttarakhand 369, WB 316, and others

92, with a total for the whole of India

29,865. One can hardly get a comprehen-

sive picture. For getting a firsthand idea, this

data can be presented in tabular form as

given below:
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From data collated on areas under wheat in

different states of India, if presented in tabular

form, one can have better idea than the previous

one. The above presentation can be modified or

made in an order as follows:

Now, the investigator is far better placed to

explain wheat acreage scenario in India; it is

possible to get the states having minimum and

maximum area under wheat and also the relative

position of the states. Explanatory power of the

investigator is increased. Thus, tabulation pro-

cess also helps in getting insight into the data.

Data may also be processed or presented in dif-

ferent forms to obtain firsthand information, and

these are discussed in details in Chap. 2.

(e) Statistical treatment on collected data: Dif-

ferent statistical measures/tools are now

applied on the data thus generated,

scrutinized, and processed/tabulated to

extract or to answer the queries fixed in step

(a), i.e., objective of the study. Data are

subjected to different statistical tools/

techniques to get various statistical measures

of central tendency, measures of dispersion,

association, probability distribution, testing

of hypothesis, modeling, and other analyses

so as to answer the queries or to fulfill the

objectives of the study.

(f) Inference: Based on the results as revealed

from the analysis of data, statistical

implications vis-à-vis practical inferences

are drawn about the objectives of the study

framed earlier. Though data used may be

pertaining to sample(s), through the use of

statistical theories, conclusions, in most of

the cases, are drawn about the population

from which the samples have been drawn.

With the help of the following example, let us

try to have a glimpse of the steps involved in

statistical procedure. The procedure and steps
followed here are neither unique nor exhaustive

and may be adjusted according to the situation,
objective, etc. of the study.

Example 1.1 In an Indian village, Jersey cows

(an exotic breed) have been introduced and

acclimatized. An investigator wants to test

whether the milk yield performance of the cows

are as expected or not. It is believed that Jersey

cows generally yield 3000 kg of milk per

lactation.

(a) Objective: To find out whether the average

milk production of acclimatized Jersey

cows is 3000 kg/lactation or not.

The whole problem can be accomplished

with the help of the following specific steps:

(i) To determine or estimate the average

milk production

(ii) To find the interval for the average

milk at a given probability level

States Odisha AP Assam Others Chhattisgarh Jharkhand Karnataka J&K WB HP

Area

(‘000 ha)

1.46 8 53 92 109 159 225 296 316 357

States Uttarakhand Maharashtra Gujarat Bihar Haryana Rajasthan Punjab MP UP India

Area

(‘000 ha)

369 843 1351 2142 2522 2935 3528 4889 9731 29,865

States AP Assam Bihar Chhattisgarh Gujarat Haryana HP J&K Jharkhand Karnataka

Area

(‘000 ha)

8 53 2142 109 1351 2522 357 296 159 225

States MP Maharashtra Odisha Punjab Rajasthan UP Uttarakhand WB Others India

Area

(‘000 ha)

4889 843 1.46 3528 2935 9731 369 316 92 29,865
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(iii) To test whether the population average

μ ¼ 3000kg or not, with respect to

milk production per lactation

(b) Planning and collection of data: In order to

have proper execution of the study to fulfill

the objectives, one needs to have idea about

the population under study, resources avail-

able for the study, and also the acquaintance

of the investigator with appropriate statistical

tools.

Here the population is the Jersey milch cows

in a particular village. Thus, the population is

finite, and the number of units in the population

may be obtained. If resources, viz., time, man-

power, money, etc. are sufficiently available,

then one can go for studying each and every

cow of the village. But it may not be possible

under the limited resource condition. So one

can go for drawing sample of cows following

appropriate sampling technique (discussed in

Chap. 5) and calculate the average milk produc-

tion per lactation. In the next step, a confidence

interval may be set up and tested for equality

of sample average with population-assumed

average.

(c) Collection of data: Let us suppose one has

drawn a sample of 100 Jersey cows following

simple random sampling without replace-

ment and the following yields in kilograms

are recorded.

2490 3265 2973 3135 3120 3184 3029
2495 3268 2978 3115 2750 2960 3225
2505 3269 2979 3117 3140 3149 3016
3232 2510 2995 3139 3131 3146 3014
2525 3032 3015 3135 3127 3155 3047
2520 3245 3017 3137 2950 3159 3125
3262 2525 3012 3118 3142 3250 3028
2527 3274 3011 3137 3151 3172 3200
2501 3256 3010 3128 3161 3155 3016
2607 3145 3006 3139 3143 3135 3045
2510 3278 3039 3140 3050 3144
2813 3285 3015 3135 3098 2960
2514 3291 2995 3118 3087 3122
2470 3050 3006 3136 3089 2890
2480 3221 3025 3108 3090 3132

From the above, one can hardly get any idea

about the data and the distribution of amount of

milk per lactation for Jersey cows in the village

concerned. For the purpose, one can arrange the

data either in ascending or descending order and

also check for validity of the data points, i.e.,

scrutinization of data. Let us arrange the above

data in ascending order.

(d) Processing and scrutiny of data:

2470 2750 3011 3047 3125 3140 3184 2495
2480 2813 3012 3050 3127 3140 3200 3221
2490 2890 3014 3050 3128 3142 3290
3285 2950 3015 3087 3131 3143 3225
2501 2960 3015 3089 3132 3144 3232
2505 2960 3016 3090 3135 3145 3245
2510 2973 3016 3098 3135 3146 3250
2510 2978 3017 3108 3135 3149 3256
2514 2979 3025 3115 3135 3151 3262
2520 2995 3028 3117 3136 3155 3265
2525 2995 3029 3118 3137 3155 3268
2525 3006 3032 3118 3137 3159 3269
2527 3006 3039 3120 3139 3161 3274
2607 3010 3045 3122 3139 3172 3278
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(i) From the above table, one can have an idea

that the milk yield per cow per lactation

ranges between 2477 and 3291 kg. Also,

none of the data point is found to be

doubtful.

(ii) Same amounts of milk per lactation are

provided by more than one cow in many

cases. Thus, depending upon the amount of

milk produced, 100 Jersey cows can be

arranged into the following tabular form:

From the above table, one can have the idea that

most of the cows have different yields, whereas

two cows each have produced 2510 and 2525 kg of

milk and so on. A maximum of four cows have

produced the same 3135 kg of milk each.

To have a more in-depth idea and to facilitate

further statistical treatments/calculations, one

can form a frequency distribution table placing

100 cows in 10 different classes:

Frequency distribution

Class No. of cows

2470�2552 13

2552�2634 1

2634�2716 0

2716�2798 1

2798�2880 1

2880�2962 4

2962�3044 21

3044�3126 16

3126�3208 29

3208�3290 14

Details of formation of frequency distribution

table are discussed in Chap. 2.

(e) Application of statistical tools: From the

above frequency distribution table, one

can work out different measures of central

tendency, dispersion, etc. (discussed in

Chap. 3). To fulfill the objectives, one

needs to calculate arithmetic mean and

standard deviation from the sample

observations.

Frequency distribution

Class

Mid-

value

(x)
Frequency

( f ) f.x f.x2

2470 2552 2511 13 32,643 81,966,573

2552 2634 2593 1 2593 6,723,649

2634 2716 2675 0 0 0

2716 2798 2757 1 2757 7,601,049

2798 2880 2839 1 2839 8,059,921

2880 2962 2921 4 11,684 34,128,964

2962 3044 3003 21 63,063 189,378,189

3044 3126 3085 16 49,360 152,275,600

3126 3208 3167 29 91,843 290,866,781

3208 3290 3249 14 45,486 147,784,014

Total 100 302,268 918,784,740

Now we use the formulae for arithmetic mean

and standard deviation, respectively, as

Milk

yield

No. of

cows

Milk

yield

No. of

cows

Milk

yield

No. of

cows

Milk

yield

No. of

cows

Milk

yield

No. of

cows

Milk

yield

No. of

cows

2470 1 2890 1 3017 1 3115 1 3140 2 3221 1

2480 1 2950 1 3025 1 3117 1 3142 1 3225 1

2490 1 2960 2 3028 1 3118 2 3143 1 3232 1

2495 1 2973 1 3029 1 3120 1 3144 1 3245 1

2501 1 2978 1 3032 1 3122 1 3145 1 3250 1

2505 1 2979 1 3039 1 3125 1 3146 1 3256 1

2510 2 2995 2 3045 1 3127 1 3149 1 3262 1

2514 1 3006 2 3047 1 3128 1 3151 1 3265 1

2520 1 3010 1 3050 2 3131 1 3155 2 3268 1

2525 2 3011 1 3087 1 3132 1 3159 1 3269 1

2527 1 3012 1 3089 1 3135 4 3161 1 3274 1

2607 1 3014 1 3090 1 3136 1 3172 1 3278 1

2750 1 3015 2 3098 1 3137 2 3184 1 3285 1

2813 1 3016 2 3108 1 3139 2 3200 1 3290 1
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Interval Estimation The interval in which the

true value of the population mean (i.e., average

milk production) is expected to lie is given by

P x� tα=2,n�1

sffiffiffi
n

p < μ < xþ tα=2,n�1

sffiffiffi
n

p
� �

¼ 1� α

Hence, the confidence interval for average

milk production at 5 % level of significance is

3022:7� 1:98� 226:39

10
< μ < 3022:7þ

�

1:98� 226:39

10

�
¼ 2977:87 < μ < 3067:52½ �

where tα=2,n�1 and t1�α=2,n�1 are, respectively, the

upper and lower α
2
points of t-distribution with

(n�1) d.f.

Thus, the average milk production of Jersey

cows, as evident fromdata for 100 cows, is expected

to be between 2978 and 3068 kg per lactation.

Testing of Hypothesis For the above problem,

the null hypothesis is H0 μ ¼ 3000kg against H1

μ 6¼ 3000 kg, where μ is the population mean,

i.e., average milk produced per lactation.

The test statistics is Z ¼ x�μ0
s=

ffiffi
n

p where n is the

sample size (100). Z follows a standard normal

distribution.

The calculated value of Z ¼ 3022:7�3000
226:39=10 ¼

22:7
22:64 ¼ 1:002

From the normal probability table and for

two-tailed (both-sided) test, the critical values

of Z are 1.96 (at α ¼ 0:05) and 2.576 (at α ¼
0:01 ), respectively. For the above problem,

Zj j < 1:96. So we cannot reject the null hypothe-

sis at 5 % level of significance.

(f) Conclusion: We conclude that average milk

production of Jersey cows in the studied vil-

lage can be taken as 3000 kg per lactation

with range of 2978 to 3068 kg. That means

the performance of the Jersey cows is in the

tune of the expectation.

The above problem is nothing but an example

to sketch the steps involved in statistical

procedures but not a unique one. Depending

upon the nature of the problem, appropriate

steps are followed.

1.5 Limitation of Statistics

In spite of its tremendous importance and huge

applicability, statistics is also not free from

limitations. One should be well aware about the

limitations, applicability, and suitability of statis-

tical tools before a particular tool is being put to

use for drawing inference.

(i) As has been mentioned, one of the

ingredients of statistics is data/information.

A well-framed objective associated with

carelessly framed experiment followed by

bad quality of data may lead to bias or

worthless conclusion irrespective of the

use of appropriate sophisticated statistical

tools. On the contrary, in spite of having a

good quality of data, unacceptable or use-

less conclusions are drawn because of the

use of incompetent/inadequate/inappropri-

ate statistical tools. Thus, for efficient use

1.5 Limitation of Statistics 7



of statistics for the betterment of humanity,

there should be an organic linkage between

the objective of the study and the knowl-

edge of statistics. A user should have

acquaintance with the subject statistics up

to a reasonable level; if not, consultation

with a statistician is required. At the same

time, the statistician should have some sorts

of acquaintance about the field of study

under consideration. Under this situation,

only a meaningful extraction of the hidden

truth could be possible.

(ii) Statistics deals with totality of the popula-

tion; it is least interested in providing an

explanation why an individual member of

the population is performing exceedingly

good or bad. Statistics deals with population

rather than individual.

(iii) Statistical laws or rules are not exact in the

sense that statistical inferences are in terms

of probability or chances. To each and

every conclusion, based on statistical anal-

ysis, a chance (probability) factor is

associated.

(iv) Statistics can be used to draw inferences as

per the choice of the users. Showing a piece

of broken chalk, one can say “three fourths

of a chalk” or “a one fourth exhausted

chalk.” Eighty percent of the people who

take alcohol regularly suffer from liver

problem. Apparently, this statement seems

to be true. But this is partly true because one

does not know the percentage of people

suffering from liver problem who do not

take alcohol or one does not know the per-

centage of alcohol takers in the population.

It depends upon the choice of the user how

he/she is going to use statistics. It has

rightly been said that statistics is like a

molded clay one can make devil or God

out of it.

(v) Because of reasons stated above, there is

every possibility that statistics is being

misused. Computers have made the use of

sophisticated statistics more easy vis-à-vis

its increased acceptability and interest and

at the same time has created tremendous

problem in the form of misuse of statistics.

Without providing due importance, reasons

and area of applicability for statistical tools,

these are being used indiscriminately to

draw inferences with the help of computer

programs. Knowledge of subject statistics

and also the subject where the statistical

theories are to be used and also the particu-

lar program among different options, to be

used in solving a particular problem, are

essential for the best use.

8 1 Introduction to Statistics and Biostatistics



Data–Information and Its Presentation 2

2.1 Data

While making curry, one needs to have

vegetables, spices, and methodology for prepara-

tion of particular curry. Using the same ingredi-

ent, rice, vegetables, butter and oil, spices etc.,

one can make veg-rice or veg fried rice, byriani,

or other preparation like pulao, chitranna, etc.,
depending upon the method used and the inten-

tion of the cook. Similarly, for explaining a phe-

nomenon through the extraction of otherwise

hidden information from it, one needs to have

data. Statistical theories/tools are applied on data

to make these informative and hence extraction

of information toward explaining a phenomenon

under consideration. Thus, the ingredient of sta-

tistics is data. Data are known/generated things/

facts/figures from which conclusive information

are attempted to be drawn. Data requires to be

analyzed so that it becomes more and more infor-

mative. Data can be obtained from hearsay to

results from well-defined and designed research

program or investigation. To have objective deci-

sion on any phenomenon, it must be based on

unbiased and reliable data/information. Reliabil-
ity of data generally refers to the quality of data

that can be documented, evaluated, and believed.

If any of these factors is missing, the reliability

vis-à-vis the confidence in decision making is

reduced. A good quality data should have quan-

titative accuracy and should be representative,
complete, and comparable; all these can be

checked only through peer reviewing. Data can

be categorized into different groups/types

depending upon its source, type, etc.

2.1.1. Data can be classified into natural or

experimental. Natural data are found to

occur in nature. On the other hand, exper-

imental data are obtained through well-

planned and designed experiments to ful-

fill the specific objectives the experi-

menter has in his or her mind.

2.1.2. Data can be primary or secondary
depending upon the source of its collec-

tion/generation or collation. Primary data

are generated by the investigator/experi-
menter through a well-planned program

for specific purpose. Primary data may

be obtained through survey or conduction

of field experiments etc. Thus, primary

data are generated by the user for specific

purpose. Example of primary data may be

the data collected on egg-laying capacity

of particular poultry breed under particu-

lar management practice from different

growers in particular area. Example of

primary data may be the yield data

obtained for five different varieties of

rice following specific management prac-

tice under experimental setup with an

objective to compare the average perfor-

mance of the varieties under given condi-

tion. On the other hand, secondary data

# Springer India 2016

P.K. Sahu, Applied Statistics for Agriculture, Veterinary, Fishery, Dairy and Allied Fields,
DOI 10.1007/978-81-322-2831-8_2

9



are those data used by the experimenter or

user, which are collated from other
sources. For example, weather data are

recorded by the department of meteorol-

ogy, one of their primary objectives or

mandates; but many agencies like the air-

port authority, agriculture department,

disaster management department, and the

experimenters/researchers in biological

sciences use these weather data collating

from the meteorology department in order

to explain more meaningful way the phe-

nomenon under their considerations.

Thus, weather data, market data, etc. are

used by various users but are generated/

recorded by specific agencies. As such,

weather data, market data, etc. are primary

data to the department concerned which is

involved in generating or recording these

data as one of their primary responsi-

bilities, but when these data are used by

other agencies/experimenters, these

become secondary to the users. Data

generated by different national and inter-

national agencies like the Central Statis-

tics Organization (CSO), National Sample

Survey Office (NSSO), State Planning

Board (SPB), Food and Agriculture Orga-

nization (FAO), World Health Organiza-

tion (WHO), etc. are used by various

researchers or users; to the users these

data are secondary data. Secondary data

are required to pass through rigorous

reviewing for its methodology of collec-

tion, correctness, etc. before these are put

to use by the users.

2.1.3. Data can be cross-sectional data or time
series data. A set of observations recorded

on a particular phenomenon at a particular

time frame is termed as cross-sectional
data. Milk production of different states/

provinces of a country during the year

2012–2013, the market prices of poultry

eggs at different markets of a county dur-

ing 2012–2013, inland fish production of

different countries at a particular time

frame constitute cross-sectional data. On

the other hand, when the data are recorded

on a particular phenomenon over different

periods, then it becomes time series data.

Milk production or inland fish production

of country over the period 2001–2013

constitutes time series data. Thus, cross-

sectional data generally have spatial vari-

ation at a particular period, whereas time

series data have got variation over time. A

time series data may be constituted of

secular trend, cyclical, seasonal, and irreg-

ular components. Overall movement of

the time series data is known as secular

trend. Periodic movement of the time

series data, with period of movement

being more than a year, is known as cycli-

cal component, whereas periodic move-

ment of the time series data, with period

of movement being less than a year,

is known as seasonal component. Portion

of the time series data which cannot

be ascribed to any of the above three

movements is termed as irregular compo-

nent. Detailed discussion on time series

data is left out; an inquisitive reader

may consult Agriculture and Applied

Statistics – II by this author.

In Table 2.1, data pertaining to production of

milk is a cross-sectional data as it relates to

production figures of different states at a particu-

lar point of time, i.e., the year 2011–2012. On the

other hand, the information given in table B, C,

and D are time series data because in all the

cases, the figures relate to realization of the

variables “capture fisher production,” “popula-

tion of cattle,” and “milk production” at different

points of time, arranged chronologically.

2.1.4. A special type of data, combination of

both cross-sectional and time series data

with the introduction of multiple

dimensions, is known as panel data.
Panel data consist of observations of mul-

tiple phenomena/characters at different

time periods over the same elements/

individuals, etc. It is also known as

10 2 Data–Information and Its Presentation



Table 2.1 Cross-sectional and time series data

A. Cross-sectional data

Estimated state-wise milk production (million tones) in India during 2011–2012

State Production State Production

AP 12,088 Manipur 79

Arunachal 22 Meghalaya 80

Assam 796 Mizoram 14

Bihar 6643 Nagaland 78

Goa 60 Orissa 1721

Gujarat 9817 Punjab 9551

Haryana 6661 Rajasthan 13,512

HP 1120 Sikkim 45

J&K 1614 TN 5968

Karnataka 5447 Tripura 111

Kerala 2716 UP 22,556

MP 8149 WB 4672

Maharashtra 8469 India 127,904

B. Time series data

World inland capture fishery production

Year Production (million tonnes)

2006 9.8

2007 10

2008 10.2

2009 10.4

2010 11.2

2011 11.5

Source: The State of World Fisheries and Aquaculture, FAO-2012

C. Time series data

Year-wise cattle population (million) in India

Year Cattle

1951 155.3

1956 158.7

1961 175.6

1966 176.2

1972 178.3

1977 180.0

1982 192.5

1987 199.7

1992 204.6

1997 198.9

2003 185.2

D. Time series data

Year-wise milk production (million tonnes) in India

Year Production Year Production

1991–1992 55.6 2001–2002 84.4

1992–1993 58.0 2002–2003 86.2

1993–1994 60.6 2003–2004 88.1

1994–1995 63.8 2004–2005 92.5

1995–1996 66.2 2005–2006 97.1

1996–1997 69.1 2006–2007 102.6

1997–1998 72.1 2007–2008 107.9

1998–1999 75.4 2008–2009 112.2

1999–2000 78.3 2009–2010 116.4

2000–2001 80.6 2010–2011 121.8

Source: National Dairy Development Board



longitudinal data in biostatistics. Example

of panel data may be the state-wise milk

production and artificial insemination

data of different states in India as given

in (Table 2.2).

2.2 Character

Data are collected/collated for different

characteristics of the elements of the popula-

tion/sample under consideration. Characters can

broadly be categorized into (a) qualitative char-

acter and (b) quantitative character. Religion

(viz., Hindu, Muslim, Christian, Jains, Buddhist,

etc.), gender (male/female, boys/girls), color

(viz., violet, indigo, blue, red, green, etc.), and

complexion (bad, good, fair, etc.) are the

examples of qualitative character. Thus,

characters which cannot be quantified exactly

but can be categorized/grouped/ranked are

known as qualitative characters. Qualitative

characters are also known as attributes. On the

contrary, characters which can be quantified and

measured are known as quantitative characters.

Examples of quantitative characters are height,

weight, age, income, expenditure, production,

disease severity, percent disease index, etc.

2.3 Variable and Constant

Values of the characters (physical quantities)

generally vary over situations (viz., over

individuals, time, space, etc.); but there are cer-

tain physical quantities which do not vary, i.e.,

which do not change their values over situations.

Thus, characters (physical quantities) may be

categorized into variable and constant. A con-
stant is a physical quantity which does not vary

over situations. For example, universal gravita-

tional constant (G), acceleration due to gravity

(g), etc. are well-known constants. Again, in

spite of being a constant, the value of the accel-

eration due to gravity on the surface of the earth,

on the top of a mountain, or on the surface of the

moon is not same. The value of acceleration due

to gravity is restricted for a particular situation;

as such constant like acceleration due to gravity

is termed as restricted constant. Whereas,

constants like universal gravitational constant,

Avogadro’s number, etc. always remain constant

under any situation; as such these are termed as

unrestricted constant.
We have already defined that a character

(physical quantity) which varies over individual,

time, space, etc. is known as variable; milk pro-

duction varies between the breeds, egg-laying

Table 2.2 Panel data

Year State Milk production aAI(‘000 nos.)

2007–2008 AP 8925 3982

Arunachal 32 1

Assam 752 144

Bihar 5783 251

2008–2009 AP 9570 4780

Arunachal 24 1

Assam 753 134

Bihar 5934 514

2009–2010 AP 10,429 5039

Arunachal 26 1

Assam 756 204

Bihar 6124 950

2010–2011 AP 11,203 5183

Arunachal 28 2

Assam 790 204

Bihar 6517 1948

Source: National Dairy Development Board, India, 2013
aAI – artificial insemination
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capacity of chicks varies over the breeds, length

and weights of fishes vary over species, ages, etc.

Thus, milk production, number of eggs laid by

chicks, length of fishes, weights of fishes, etc. are

examples of variable. There are certain variables

like length, height, etc. which can take any value

within a given range; these variables are known

as continuous variable. On the other hand,

variables like number of eggs laid by a chick,

number of insects per plant or number of

parasites per cattle, number of calves per cattle,

etc. can take only the integer values within a

given ranges; these variables are called discrete

variables. If we say that per day milk production

of Jersey cows varies between 8 and 10 kg under

Indian condition, that means if one records milk

production from any Jersey cow under Indian

condition, its value will lie between 8 and

10 kg; it can be 8.750 or 9.256 kg or any value

within the given range. That is why milk produc-

tion per day is a continuous variable. Let us

suppose that while netting in a pond, the number

of fish catch per netting varies between 6 and 78.

This means in any netting, one can expect any

whole number of fishes between 6 and 78. The

number of fishes in netting cannot be a fraction; it

should always be whole number within the range.

Thus, the number of fishes per net, number of

insects per plant, number of calves per cattle, etc.

are the examples of discrete variable.

We have already come to know that statistics

is a mathematical science associated with uncer-

tainty. Now only we have discussed that values

of the variable vary over the situations. If we take

into account both uncertainty and possible values

of the variable under different situations, then we

come across with the idea of variate; there are

chances in realizing each and every value or

range of value of a particular variable. That

means a chance factor is associated with each

and every variable and realization of its different

values or range of values. Thus, the variable

associated with chance factor is known as the

variate, and in statistics we are more concerned

about the variate instead of the variable.

2.4 Processing of Data

What firsthand information/data the user gets,

either through primary sources or secondary
sources, are known as raw data. Raw data hardly

speaks anything about the data quality and or

information contained in it. In order to judge its

suitability/correctness, it must go through a

series of steps outlined below. Data collected or

collated at the initial stage must be arranged.

Let us take the example of weights of 60 broiler

poultry birds at the age of 50 days recorded

through a primary survey as given in Table 2.3.

Table 2.3 Weights of 60 poultry birds

Bird no. Weight (g) Bird no. Weight (g) Bird no. Weight (g) Bird no. Weight (g)

1 1703 16 1726 31 1640 46 1124

2 1823 17 1850 32 1682 47 1438

3 2235 18 2124 33 1476 48 1476

4 2433 19 1823 34 2124 49 1593

5 2434 20 1682 35 1573 50 1341

6 2177 21 1300 36 1300 51 1476

7 2446 22 2399 37 2047 52 2434

8 2520 23 1573 38 1438 53 2508

9 1915 24 1213 39 1865 54 2124

10 1713 25 1865 40 1213 55 1444

11 2124 26 1788 41 1976 56 1924

12 2054 27 2124 42 1300 57 1405

13 1847 28 1823 43 1439 58 2434

14 2205 29 2434 44 1300 59 2124

15 1183 30 1682 45 1442 60 2398
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It is very difficult either to scrutinize the data

or to have any idea about the data from the above

table. Data requires to be sorted in order. In

Table 2.2 raw data are sorted in ascending

order. From Table 2.4 one can easily get idea

about some aspects of the data set. Following

observations can be made from the above table:

(a) weights of broiler chicks vary between 1124

and 2520 g and (b) values are consistent with the

knowledge that means no broiler weight is found

to be doubtful. Hence further presentation and

analysis can be made taking this information

(Table 2.4).

Arrangement of Data

From this data we can either comment on

how many birds are there having average weight,

weights below average, weights above average,

etc. It is also found that some birds have

registered identical weights; we need to be con-

cise with these information. So one makes a

frequency distribution table on the basis of the

bird weight. Frequency is defined as the number

of occurrence of a particular value in a set of
given data, i.e., how many times a particular

value is repeated in the given set of data

(Table 2.5).

Table 2.4 Sorted weights of 60 poultry birds

Bird no Weight (gm) Bird no Weight (gm) Bird no
Weight

(gm) Bird no
Weight 
(gm)

46 1124 33 1476 19 1823 54 2124
15 1183 48 1476 28 1823 59 2124
24 1213 51 1476 13 1847 6 2177
40 1213 23 1573 17 1850 14 2205
21 1300 35 1573 25 1865 3 2235
36 1300 49 1593 39 1865 60 2398
42 1300 31 1640 9 1915 22 2399
44 1300 20 1682 56 1924 4 2433
50 1341 30 1682 41 1976 5 2434
57 1405 32 1682 37 2047 29 2434
38 1438 1 1703 12 2054 52 2434
47 1438 10 1713 11 2124 58 2434
43 1439 16 1726 18 2124 7 2446
45 1442 26 1788 27 2124 53 2508
55 1444 2 1823 34 2124 8 2520

Table 2.5 Frequency distribution of body weights of 60 poultry birds

Weight (g) Frequency Weight (g) Frequency Weight (g) Frequency

1124 1 1640 1 2047 1

1183 1 1682 3 2054 1

1213 2 1703 1 2124 6

1300 4 1713 1 2177 1

1341 1 1726 1 2205 1

1405 1 1788 1 2235 1

1438 2 1823 3 2398 1

1439 1 1847 1 2399 1

1442 1 1850 1 2433 1

1444 1 1865 2 2434 4

1476 3 1915 1 2446 1

1573 2 1924 1 2508 1

1593 1 1976 1 2520 1
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With the help of the MS Excel, one can per-

form the same using the steps mentioned in fol-

lowing slides (Slides 2.1, 2.2, 2.3, and 2.4).

As because we are dealing with only 60 data

points (observations), it is relatively easy to

understand the data characters. But when dealing

with a huge number of data points, then we are to

think for further processing of data. So the next

objective will be to study the feasibility of

forming groups/classes of elements (birds)

which are more or less homogeneous in nature

with respect to body weight.

Slide 2.1 Data entered in the Excel sheet

Slide 2.2 Data selected for sorting on the basis of weight, from smallest to largest
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2.5 Classification/Grouping

Classification refers to grouping of large number

of observations into relatively fewer groups so

that an instant idea is obtained seeing the groups.

The first question in classification that comes into

mind is how many classes one should form. The

guideline for the formation of classes is that

within group variability should be minimum

and between groups variability should be

Slide 2.3 Instruction to sort the data set

Slide 2.4 Data sorted on the basis of body weight from smallest to largest
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maximum. Problem is how to know under which

classification the above guideline is obeyed! One

has to go for trial and error method, which has

got its own limitations. However, a good classi-

fication or grouping should have the following

features:

(i) Classes should be well defined and

exhaustive.

(ii) Classes should not be overlapping.

(iii) Classes should be of equal width as far as

possible.

(iv) Number of classes should not be too few or

too many.

(v) Classes should be devoid of open-ended

limit.

(vi) Classes should be framed in such a way that

each and every class should have some

observation.

There are two rules to guide in fixing the

number of classes, viz., Yule formula and Sturges

formula. Fortunately both the methods yield

almost similar number of classes for a given set

of observations. According to Yule, k ¼ 2.5 �
n1/4, and the formula given by Sturges for the

same purpose is k ¼1 + 3.322 log10n, where n

is the number of observations and k is the

number of classes.

Let us take the example of weights of

60 broiler poultry birds at the age of 50 days as

obtained from a primary survey and as given in

Table 2.3. There are number of sixty birds, which

are required to be grouped into suitable number

of groups abiding the above guideline.

According to Yule formula, the number of clas-

ses comes out to be 2.5 � (60)¼ ¼ 6.96 ~ 7.00,

and due to Sturges formula it is 1+ 3.322 log1060 ¼
6.91 ~ 7.00. Thus, one can go for formation of

7 classes with 60 observations. The lowest value

is 1124 and the highest value is 2520; hence, the

range 2520–1124 ¼ 1396 is to be distributed

over seven classes; thereby making the class

interval 199.43. It is advisable to make the class

interval a round figure (whole number) instead of

compound fraction. Thus, in this case one can

take class interval as 200 and adjust the lowest

and highest values of the data set accordingly as

given below:

1119–1319

1320–1520

1521–1721

1722–1922

1923–2123

2124–2324

2325–2525

One can see that adjustment has been made on

both the ends of the data set. So we are having

seven classes with class width 200 in every case:

1119, 1320, 1521, 1722, 1923, 2124, and 2325

are the lower class limits and 1319, 1520, 1721,

1922, 2123, 2324, and 2525 are the upper class
limits, respectively, for respective classes. One

can find that though weights of chicks are a

continuous character, during classification we

have not considered the continuity, as one can

find the gap of one gram between the upper limit

of any class and the lower limit of the subsequent

class. In doing so we invite two problems: (a) if

any chick is found to have body weight in

between upper limit of a class and the lower

limit of the following class, say 1520.5 g, then

there is no way to include the same in the present

classification; (b) different measures like average

weight, median weight, etc. may not come out to

be whole number. As such, depending upon the

nature of the character (discrete/continuous),

data are advised to be presented in continuous

form, so that each and every data point within the

given range, irrespective of its value, gets a

unique class. This is done by subtracting d/2

from the lower class limit of any class and

adding “d/2” to the upper class limit, where “d”
is the difference between the upper limit of any

class and the lower limit of the following class; in

this case d ¼1, and thus constructed class limits

are known as lower class boundary and upper

class boundary, respectively, in the case of con-

tinuous distribution. Class width is defined as the

difference between the upper boundary and the

lower boundary of the respective class, and mid

value of the class is defined as the average of the

two boundaries. Readers may note that there is
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no change in the mid values of different classes

with the change of classes from discrete to con-

tinuous. Now, with the help of these classes, let

us frame the following frequency distribution

table (Table 2.6).

2.5.1 Method of Classification

Once after forming continuous classes, we come

across with typical problem of allocation of items

in different classes. For example, if any value is

there like 1319.5, then in which class, class one

(1118.5–1319.5) or class two (1319.5–1520.5),

should the observation be included? When both

the lower boundary and upper boundary of a

particular class are included in the class, it is

known as inclusive method of classification,

while in other method, one of the limits is

excluded from the respective class and the

method is known as exclusive method of classifi-

cation. Clearly, one cannot have inclusive

method of classification with continuous data

set: it is applicable for discrete character only.

2.5.2 Cumulative Frequency

It is simply the accumulation of observation up to

certain level in arranged data. Cumulative fre-

quency divides the entire range of data set into

different component as per the requirement of the

investigator. Cumulative frequency is of two

types: cumulative frequency less than type and
cumulative frequency greater than type. Cumu-

lative frequency less than type is the total number

of observations below a particular value; it gen-
erally corresponds to the upper boundary of dif-

ferent classes. Thus cumulative frequency less

than type of the class 1520.5–1721.5 is 27; it

means there are 27 chicks whose weights are

below 1721.5 g. On the other hand, cumulative

frequency greater than type is the total number of
observations equals to or above a particular

value; it generally corresponds to the lower

boundary of different classes. For example, in

the above frequency distribution table, the cumu-

lative frequency greater than type of the class

1520.5–1721.5 is 42; it means there are 42 chicks

whose weights are equal to or more than1520.5 g.

Cumulative frequency helps in getting immedi-

ate idea about the percent distribution or partition

values of the data set.

2.5.3 Relative Frequency

Relative frequency gives an idea about the con-

centration of observations in different classes

with respect to total frequency and is defined as

the proportion of observation in a particular class

to total number of observations. Thus, the rela-

tive frequency of the class 1520.5–1721.5 is

9/60 ¼ 0.15. Relative frequency may also be

expressed in percentage.

2.5.4 Frequency Density

Using the same idea of density, one can define

frequency density as the frequency per unit of

class width, i.e., fd ¼ fi/h, where fi is the fre-

quency of the ith class and h is the class width

of the respective class. Thus for first class, fre-

quency density is 8/201 ¼ 0.0398. Frequency

density gives an idea about the relative concen-

tration of observation with respect per unit of

class width.

One can find that with the processing of data

at different stages, the investigator finds himself

or herself in better and better position to explain

the data on hand about the objective of the study.

In the following slides, demonstrations have

been made on how to frame frequency distribu-

tion table along with the syntax for getting cumu-

lative frequency, relative frequency, and

frequency density. Readers may please note the

formulae for calculations of these measures in

the slides to follow (Slides 2.5, 2.6, 2.7, and 2.8):
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2.6 Presentation of Data

At every stage of processing of data, the investi-

gator becomes more and more equipped to explain

the phenomenon under consideration and thereby

feels the urgency of presenting the information

extracted from the data on hand. There are differ-

ent methods and techniques for presentation of

data; among these the textual, tabular, and dia-
grammatic forms are widely used.

Slide 2.5 Calculation of less than type cumulative frequency

Slide 2.6 Calculation of greater than or equals to type cumulative frequency
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2.6.1 Textual Form

In textual form of presentation, information is

presented in the form of a text paragraph. While

discussing the findings of the research, thismethod

is adopted for explanation of research papers or

articles. Before presenting the general budget, the

Finance Minister presents a survey of the eco-

nomic condition, achievements, lacunae, etc. in a

book, viz., the Economic Survey. In this economic

survey, the minister discusses the economic situa-

tion of the country with facts, figures, and data in

Slide 2.7 Calculation of relative frequency

Slide 2.8 Calculation of frequency density
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the formof paragraphs or several pages. The above

information on weights of 60 chicks can very well

be presented in textual form as follows:

Weights of 60 birds of 50 days old are taken to

have an idea about the growth of the particular

breed of chicks. It is found that the chick weights

vary between 1124 g and as high as 2520 g in the

same village. Though variations in weights

among the birds are recorded, quite a good num-

ber of birds are found to have recorded similar

weights. More than 50% birds (37 in exact) are

found to have less than1922.5 g body weight,

while comparatively less number of birds are

found to have higher body weight and so on.

Any literate person can have idea about the

results on chick weight by studying the para-

graph. This form of presentation of data is not

suited for illiterate persons; moreover when a

huge amount of data is to be presented, then

this form of presentation may not be suitable

because of monotony in reading a big paragraph

or even a good number of paragraphs and pages.

2.6.2 Tabular Form

As has already been discussed during the forma-

tion of frequency distribution table, a huge num-

ber of data can be presented in a very concise

form in a table. At the same time, it can extract

out some of the essential features of the data

which were hidden in the raw data set. This is

one of the most widely used forms of presenta-

tion of data. Research findings are generally

presented in the form of tables followed by dis-

cussion. A table is consisting of rows and

columns. In general a table has (a) title,

(b) stub, (c) caption, (d) body, and (e) footnote.
Title gives a brief idea about the content or sub-

ject matter presented in table. Generally the title

should be as short as possible and at the same

time should be lucrative in drawing attention of

the readers. Stub of a table describes the contents
of the rows of a table. In the frequency distribu-

tion table, the stub describes the different weight

classes, viz., 1118.5–1319.5, 1319.5–1520.5, and

so on. Thus with the help of the stub, one can

extract the features of the rows. For example,

there are ten chicks which have gotten a body

weight in between 1319.5 and 1520.5, there are

18 chicks which have weight less than 1520.5 g,

and there are 52 chicks which have a body weight

equal to or greater than 1319.5 g and so on.

Caption informs the readers about the content

of each and every column. Thus, “mid value,”

“frequency,” cumulative frequency less than

type, cumulative frequency greater than or equals

to type, relative frequency, and frequency density

are the captions of the frequency distribution

table. Relevant information corresponding to dif-

ferent row–column combination are provided in

the body of the table. In the frequency distribu-

tion table, the data pertaining to different classes

and columns constitute the body of the table.

Footnotes are generally used to indicate the

source of information or to explain special nota-

tion (if any) used in the table. Footnotes are not

essential but optional to a table, depending upon

the requirement of the situation in explaining the

phenomenon under consideration. Information

presented in tables are more appealing than infor-

mation presented in textual form. But likewise to

that of textual form, tables are also useful for

literate persons only.
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2.6.3 Diagrammatic Form

Diagrammatic forms of presentations are more

appealing and especially useful to the illiterate

persons. Seeing the graphs, one can have idea

about the nature of the data under study. Among

the different diagrammatic forms of presentation,

(i) line diagram, (ii) bar diagram, (iii) histogram,

(iv) frequency polygon, (v) cumulative frequency
curve or ogive, (vi) pie charts, (vii) stem and leaf,,

(viii) pictorial diagrams, etc. are widely used.

(i) Line diagrams are the two-dimensional

presentations of data in X-Y axes with X

axis generally presenting the category or

classes and the corresponding values are

presented along Y axis. Frequencies, cumu-

lative frequencies, relative frequencies, etc.

can be presented in the form of line diagrams

(Figs. 2.1, 2.2, and 2.3).

How to draw the line diagrams using MS

Excel is shown in the following slide (Slide 2.9):
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(ii) Bar diagrams are two-dimensional

presentations of data in X-Y axis. For exam-

ple, frequencies corresponding to discrete

classes can be represented graphically by

drawing bars/ordinates equal to the fre-

quency on a convenient scale at the various

values of the variable class. Figure 2.4

corresponds to Table 2.6. The tops of the

ordinate may be joined by straight bars.

Drawing of bar diagram using MS Excel is

presented in the following slide (Slide 2.10):

Now when selecting the appropriate menu in

the chart tool, one can modify the chart.
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Fig. 2.3 Line graphs of relative frequency and frequency density

Slide 2.9 Slide showing the drawing of line graphs using MS Excel
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(ii) Histogram: Histogram is a bar diagram for

continuous data set. Only difference

between the bar diagram and the histogram

is that in the case of histogram, there is a gap

between two consecutive bars; others are as

per the bar diagram (Fig. 2.5).

Histogram can be drawn using the technique

as shown in the following slide (Slide 2.11):

(iv) Frequency polygon: When you join the

midpoints of the top of the bars in histo-

gram and then connect both the ends to the

Fig. 2.4 Bar diagram

Slide 2.10 Slide showing drawing of bar diagram using MS Excel
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horizontal axis by straight line segments,

then a frequency polygon is obtained.

To complete the polygon, it is customary

to join the extreme points at each end of

the frequency polygon to the midpoints

of the next higher and lower hypothetical

class intervals on the horizontal line (class

axis here). Readers may please note that

there were no classes like 917.5–1118.5

and 2525.5–2726.5 in the frequency

distribution table; these classes have been

assumed with class frequency zero in each

case (Fig. 2.6).

If one wants to present more than one param-

eter/character in the same figure using bar dia-

gram, then one can have the option for clustered

bar, stacked bar, and 100 % stacked bar diagram.

In clustered bar diagrams, values of same item

for different categories are compared. While in

stacked columns, proportions of the values across

Fig. 2.5 Frequency histogram

Slide 2.11 Drawing of histogram using MS Excel
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the categories are shown. In 100 % stacked bar,

comparison of each category is made in such a

way so as to make the total bar length to 100 %

divided into different categories, one above the

other. Let us take the following example of state-

wise egg production figures for the years

2008–2009, 2009–2010, and 2010–2011 (Fig. 2.7

and Table 2.7).

Table 2.7 Egg production (million) in major states of India

State 2008–2009 2009–2010 2010–2011

Andhra Pradesh 18,345 19,396 20,128

Haryana 3815 3845 3964

Maharashtra 3550 3864 4225

Punjab 3679 3283 3545

Tamil Nadu 8810 10,848 11,514

West Bengal 3306 3698 3994

Other 14,058 15,334 15,655

Fig. 2.6 Frequency histogram and/or polygon
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All the above diagrams can be made using MS

Excel as demonstrated in the following slide

(Slides 2.12, 2.13, and 2.14):

(v) Pie chart: The essence of presenting the

whole information in the form of pie chart

is to assume the total frequencies as 100 %

Fig. 2.7 (a) Stacked bar diagram of egg production in

different states of India from 2008–2009 to 2010–2011

(b) Clustered bar diagram of egg production in different

states of India from 2008–2009 to 2010–2011

(c) 100 % stacked bar diagram of egg production in

different states of India
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and present the same in a circle with 360�

angle at the center. In the frequency distribu-

tion table of body weight of bird, the relative

frequency calculated can effectively be used

in the form of a pie diagram. The technique

behind the calculation during pie diagram is

as follows (Fig. 2.8):

Slide 2.13 Slide showing the options for making stacked bars

Slide 2.12 Slide showing the options for making cluster bars
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(vi) Stem and leaf diagram:When the variations

in the data set are comparatively less, a well-

accepted form of presentation of data is the

stem–leaf presentation. In this method, each

and every data point is divided into two

parts – stem part and the leaf part. Generally
the stem part consists of higher decimal

places for all the data points, and the leaf

part consists of the rest of the parts of the

data points. For example, if data points are

234, 345, 1324, 987, and so on, then stem

part should include 23, 34, 132, and

98, respectively, leaving 4, 5, 6, and

7, respectively, for the leaf part. Data

are sorted in ascending or descending

order, stem portion is provided in the first

column, and the leaf part of each data point

is recorded in appropriate row. Let us take

the example of body weights of 60 chicks;

one can frame the following stem–leaf dia-

gram (Fig. 2.9):

Slide 2.14 Slide showing the options for making 100 % stacked bars

Class Frequency RF %RF Angle

1118.5–1319.5 8 0.133 13.33 3.6 � 13.33 ¼ 48

1319.5–1520.5 10 0.167 16.67 3.6 � 16.67 ¼ 60

1520.5–1721.5 9 0.150 15.00 3.6 � 15.00 ¼ 54

1721.5–1922.5 10 0.167 16.67 3.6 � 16.67 ¼ 60

1922.5–2123.5 4 0.067 6.67 3.6 � 6.67 ¼ 24

2123.5–2324.5 9 0.150 15.00 3.6 � 15.00 ¼ 54

2324.5–2525.5 10 0.167 16.67 3.6 � 16.67 ¼ 60

Fig. 2.8 Pie chart
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In the above stem and leaf plot, one can see

that corresponding to 143 in stem (seventh row),

there are three observations, viz., 1438, 1438,

and 1439. Similarly, the third stem observation

from the last is 243, which has got 3, 4, 4, 4, and

4 in the leaf column; that means there are four

observations and the observations are 2433,

2434, 2434, 2434, and 2434.

Example 2.1

Let us take another example of monthly milk

yields (kilogram) of 100 milch cows (Fig. 2.10)

In this stem and leaf plot, one can find that

corresponding to the first observation, 23 in the

stem column, there are six observations and the

observations are 236, 237, 237, 238, 239, and

239. The stem and leaf plot is almost similar to

that of the bar diagram with the advantage of

knowing the data values along with their

concentrations. The only problem with this type

of presentation is that if there are large variations

among data points, then, under extreme case, the

plot will be a huge one and a presentation may

not be so useful.

(vii) Pictorial diagram: A picture/photograph

speaks for itself. Instead of a bar diagram,

line diagram, or pie chart, if one uses a

relevant picture/photograph to present the

data, then it becomes more lively and

attractive to the readers. Let us take the

following example.

Example 2.2

A study was conducted to investigate the

egg-laying capacity of certain breeds of poultry

bird. Following data presents, the frequency dis-

tribution of the egg-laying groups of the birds. If

we represent each egg as equivalent to five

observations/frequencies, then one can have the

following diagram. From the following picture,

any person can understand which breed is having

highest egg-laying capacity as well as the distri-

bution of the breeds in accordance with the

egg-laying capacity (Fig. 2.11).

This type of pictorial representation is helpful

to understand even by the layman and is more

eye catching. But the problem with this type of

Stem Leaf Stem Leaf
112 4 182 3,3,3
118 3 184 7
121 3,3 185 0
130 0,0,0,0 186 5,5
134 1 191 5
140 5 192 4
143 8,8,9 197 6
144 2,4 204 7
147 6,6,6 205 4
157 3,3 212 4,4,4,4,4,4
159 3 217 7
164 0 220 5
168 2,2,2 223 5
170 3 239 8,9
171 3 243 3,4,4,4,4
172 6 250 8
178 8 252 0

Fig. 2.9 Stem–leaf diagram of body weight of 60 chicks

Stem Leaf

23 6,7,7,8,9,9
24 0,0,3,3,5,5,5,6,7,7,7,9
25 0,0,1,1,2,3,6,8
26 1,2,2,2,3,4,5,8
27 0,0,4,4,6,68,8,8
28 0,2,4,5,5,6,7
29 0,0,0,1,2
30 1,1,2,3,4,5,7
31 0,1,1,2,2,4,6,6
32 0,3,3,3,4,5,7,8,9,
33 0,0,1,2,3,6,7,9,9,9,9
34 2,3
35 0,0,1,2,2,2

Fig. 2.10 Stem–leaf diagram of monthly milk produc-

tion of 100 cows
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representation is that the frequencies should be

divisible by whole number otherwise there would

be truncated figures in the presentation like in

most of the cases of the above figure excepting

the classes one and three. It is very difficult to

present the information in true to the scale also.

(viii) Maps: Maps are also one of the important

and useful tools for summarization and

presentation of data. Generally these are

used to represent the information on par-

ticular parameters like forest area in a

country, paddy-producing zone, different

mines located at different places in a coun-

try, rainfall pattern, population density,

temperature zone, agroclimatic zone, etc.

The following maps give different zones

of two countries, viz., India and Nigeria,

based on rainfall distributions (Figs. 2.12

and 2.13).

This type of representation of data is easily

conceived by any person but utmost care should

be taken to make the statistical map true to the

sense and scale.

From the above discussions on different pre-

sentation forms of information, it is clear that

neither all forms of presentation are suitable

every situation nor to all users. Depending upon

the nature of the data, need of the situation, and

the targeted readers, the appropriate form of pre-

sentation is to be decided.

Type and Egg Class Frequency No of eggs.

235-249 15 3

250-264 19 3.8

265-279 10 2

280-294 13 2.6

295-309 8 1.6

310-324 13 2.6

325-339 14 2.8

340-354 8 1.6

Fig. 2.11 Pictorial diagram

2.6 Presentation of Data 33



Fig. 2.12 Rainfall distribution map of India

Fig. 2.13 Rainfall distribution map of Nigeria



Summary Statistics 3

The general instinct of any investigator is to

present his/her data with a single value. For

example, a breed of poultry bird is known by its

average-egg laying capacity, which is obtained

from the eggs laid by the individual chick in a

group of chicks. At the same time, the investiga-

tor may also be interested to know the variations

in egg-laying capacity that he or she expects a

range with in which a particular breed should lay

eggs. Thus, the overall picture, instead of the

capacity of the individual chicks, is of utmost

interest to the investigator. Let us consider two

data sets of weights (pounds) of 20 fishes of a

particular breed caught from two different ponds.

Our objective is to find the better pond for rearing

of that particular breed of fish.

Example 3.1

That means we need to have certain measures

by which one can compare the two ponds with

respect to their performance in yielding better

weights of fishes. Moreover, human instinct is

to find out certain value(s), which can represent

the set of information given in a big data set. Let

us take another example of run scored by two

batsmen in ten different cricket innings which

they have played together.

Example 3.2

Run scored by two batsmen in 10 innings played

together

Player A 12 93 164 16 26 73 178 13 3 8

Player B 46 64 75 45 62 58 106 45 45 40

Now the question is which player is better?

How to measure the effectiveness? Thus, in both

Fish weight (lb)

Pond A 1.2 0.9 1.5 1.3 2.1 2.0 1.3 1.6 2.0 1.5 1.6 1.7 2.1 1.2 1.3 0.9 1.6 1.4 1.9 1.7

Pond B 0.86 2.0 2.4 1.6 1.09 1.9 1.3 1.8 1.65 1.0 2.1 1.0 2.2 2.2 1.4 0.5 1.2 2.0 0.6 2

# Springer India 2016

P.K. Sahu, Applied Statistics for Agriculture, Veterinary, Fishery, Dairy and Allied Fields,
DOI 10.1007/978-81-322-2831-8_3

35



the cases, we are in search of such a measure,

which can describe the inherent characteristics of

a given set of data so that with the help of this

measure, we can compare.

In its preliminary form, the characteristic of a

given data set can be visualized with the help of

its measure of central tendency and measure of

dispersion. What do we mean by central ten-

dency and dispersion? Tendencies of the values

of the observations in a given data set to cluster/
center around a particular value are known as

central tendency. On the other hand, tendencies

of the values of the observations in a given data
set to remain scattered or dispersed from a par-

ticular value are known as dispersion. Thus,

central tendency and dispersion are the two

opposite phenomena for a given set of data.

How to measure the central tendency or the dis-

persion? In fact there are different measures of

central tendency and also for dispersion. Differ-

ent measures of central tendency and dispersion

are presented below:

Measures of Central Tendency
a) Mean
b) Median                              i) Arithmetic mean
c) Mode                             ii) Geometric mean
d) Mid point range            iii) Harmonic mean

Measures of Dispersion

Absolute measure                Relative measure
i) Range i) Coefficient of variation
ii) Mean deviation ii) Coefficient of mean deviation
iii)Standard deviation iii) Coefficient of quartile deviation
iv)Quartile deviation
v) Moments

In addition to the above measures of central

tendency and dispersion, there are certain

partitions like quartile, percentile, deciles, etc.

which also helps in extracting information and

partitioning of data set into different parts. Let us

first discuss the measures of central tendency.

Characteristics of Good Measure

As shown above there are different measures for

both the central tendency and dispersion, but

among these measures, one should try to exploit

the best one. That means we are in search of the

qualities of good measure. By and large a good

measure should be (a) clearly defined, (b) based

on all observations, (c) very easy to calculate,

(d) very easy to understand, (e) readily amenable

to mathematical treatments, and (f) least affected

by sampling fluctuations

3.1 Measures of Central Tendency

As we have already come to know, there are

different measures of central tendency. Now the

question is whether all the measures are equally

good or applicable everywhere. For that let us

discuss about the characteristics of good

measures of central tendency. A good measure

of central tendency should be (a) rigidly defined,

there should not be any ambiguity in defining the

measure, (b) based on all observations, (c) easy

to calculate, (d) easy to understand, (e) least

affected by sampling fluctuations, and

(f) readily acceptable for mathematical

treatments.
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3.1.1 Arithmetic Mean

Arithmetic mean is nothing but simple average of

a set of observations and is calculated as the sum

of the values of the observations divided by the

number of observations.

Suppose there are N number of observations

X1, X2, X3,. . .,XN for variable X, then its

arithmetic mean (AM) denoted by X is given

as X ¼
PN
i¼1

XiN

If we take the example of the fish weights

(in pound) in pond A of the Example 3.1, then

we have

The AM of the weights of 20 fishes is

X ¼

XN
i¼1

Xi

N
¼ 1:2þ 0:9þ 1:5þ 1:3þ 2:1þ � � � þ 1:9þ 1:7

20
¼ 1:54 lbs

For grouped data, the arithmetic mean is

defined as follows:

Arithmetic mean of a set of N number of

observations X1, X2, X3,. . .,XN, grouped into “n”

number of classes with mid-values and

frequencies of different classes is given as below

Mid-values(xi) x1 x2 x3. . .,xi,. . .xn�2 xn�1 xn
Frequency f1 f2 f3. . .,fi,. . .fn�2 fn�1 fn

where x1, x2,. . .xi,. . .xn and f1, f2,. . .fi,. . .fn are the
mid-values and frequencies of the respective

classes given as X ¼
Pn
i¼1

f ixiPn
i¼1

f i

Example 3.3

Let us consider the body weights of 60 poultry

birds as given below:

Body weight (g) Frequency ( f )

1118.5–1319.5 8

1319.5–1520.5 10

1520.5–1721.5 9

1721.5–1922.5 10

1922.5–2123.5 4

2123.5–2324.5 9

2324.5–2525.5 10

Body weight

(g)

Mid-value

(xi)
Frequency

( fi) fixi

1118.5–1319.5 1219 8 9752

1319.5–1520.5 1420 10 14,200

1520.5–1721.5 1621 9 14,589

1721.5–1922.5 1822 10 18,220

1922.5–2123.5 2023 4 8092

2123.5–2324.5 2224 9 20,016

2324.5–2525.5 2425 10 24,250

Total 60 109,119

AM 1818.65

X ¼

Xn
i¼1

f ixi

Xn
i¼1

f i

¼

X7
i¼1

f ixi

X7
i¼1

f i

¼ 8� 1219þ 10� 1420þ . . .þ 9� 2224þ 10� 2425

8þ 10þ . . .þ 9þ 10

¼ 9752þ 14200þ . . .þ 24250

60
¼ 109119

60¼ 1818:65g

Pond A 1.2 0.9 1.5 1.3 2.1 2.0 1.3 1.6 2.0 1.5 1.6 1.7 2.1 1.2 1.3 0.9 1.6 1.4 1.9 1.7
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Merits and Demerits of Arithmetic Mean AM

is clearly defined, easy to calculate and under-

stand, and also based on all observations; so it is

following most of the characteristics of good

measure of central tendency. But the demerit

of AM is that if one of the observations in the

given data set is missing, then it cannot be

calculated. Moreover, AM is highly susceptible

to extreme values; a single large value or a small

value can change the AM drastically. Some

important properties of AM are discussed

below:

(a) Arithmetic mean of a set of “n” number of

constants (X ¼ M, say) is also the constant,

because

Xn
i¼1

Xi ¼ 1

n
M þM þM þ . . .þM½ �

¼ nM

n
¼ M

(b) Arithmetic mean depends on both the change

of origin and scale:

Let Y ¼ X�a
b where X and Y are variables and

both a and b are constants.

Thus, a is the change in origin and b is the

change in scale.

Now, we have X ¼ a þ bY

) Xi ¼ a þ bYi; where i stands for i -th
observation.

)
XN
i¼1

Xi ¼
XN
i¼1

a þ bYið Þ

) 1

N

XN
i¼1

Xi ¼ 1

N

XN
i¼1

a þ bYið Þ

) X ¼ 1

N

XN
i¼1

aþ 1

N

XN
i¼1

bYi ¼ Na

N
þ b

1

N

XN
i¼1

Yi ¼ aþ bY

The arithmetic means of two related variables X

andYarealso relatedwith changeoforigin and scale.
This relationship is also true for grouped data

X ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xið Þ

¼ 1Xn
i¼1

f i

Xn
i¼1

f i aþ byið Þ

¼ 1Xn
i¼1

f i

Xn
i¼1

f iaþ
1Xk

i¼1

f i

Xn
i¼1

f ibyi

¼ aþ bY,

where a and b are change of origin and scale,

respectively, xi are mid-values of i-th class for

X and fi is the frequency of i-th class, and yi is the
transformed value corresponding to xi.

Let us use the same example of body weight

of 60 poultry birds and also suppose that we have

changed the origin to 1800 g and scale to 200 g

for the body weight X, i.e., Y ¼ X�1800
200

Nowwe have the following table for calculation:

Body weight (g) Mid-value (x) Frequency ( f ) fixi yi ¼ xi�1800
200 fiyi

1118.5–1319.5 1219 8 9752 �2.91 �23.240

1319.5–1520.5 1420 10 14,200 �1.90 �19.000

1520.5–1721.5 1621 9 14,589 �0.90 �8.055

1721.5–1922.5 1822 10 18,220 0.11 1.100

1922.5–2123.5 2023 4 8092 1.12 4.460

2123.5–2324.5 2224 9 20,016 2.12 19.080

2324.5–2525.5 2425 10 24,250 3.13 31.250

Total 60 109,119 5.595

AM 1818.65 0.09325
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We have

y ¼ 1Xn
i¼1

f i

Xn
i¼1

f iyi ¼
1

60
�23:24� 19� 8:055þ 1:1þ 4:46þ 19:08þ 31:25½ �

¼ 5:595=60 ¼ 0:09325g
∴x ¼ 1800þ 200xy ¼ 1800þ 200� 0:09325 ¼ 1818:65g

which is exactly the same value that we got

without changing the origin and scale.

One of the important uses of this type change

of origin and scale is to reduce the large values

into small ones with suitable change of origin

and scale.

(c) Composite arithmetic mean of “k” number of

samples having arithmetic means x1, x2, x3,
. . . , xk for n1, n2, n3,. . .., nk number of

observations, respectively, is the weighted

average of the arithmetic means of the

samples.

Samples 1 2 3 4 5 . . . k

No. of observations n1 n2 n3 n4 n5 . . . nk
AM x1 x2 x3 x4 x5 xk

We have the sum of all observations

n1x1 þ n2x2 þ ::::þ nkxk ¼
Pk
i¼1

nixi

So the average of the abovePk
i¼1

ni ¼ n1 þ n2 þ n3 þ ::::þ nkð Þ ¼ n obser-

vation is

Pk
i¼1

nixiPk
i¼1

ni

¼ x

Example 3.4

The following table gives the average body

weights (kg) of five groups of goats. Find out

the overall average weight of the goats.

Group 1 2 3 4 5

No of Goats 32 40 30 35 13

Average weight (kg) 14.5 16.8 17.5 16.0 18

The overall average weight of 150 goats is

given by

x ¼

Xk
i¼1

nixi

Xk
i¼1

ni

, here k ¼ 5, so

x ¼ ½32� 14:5þ 40� 16:8þ 30� 17:5
þ 35� 16þ 13� 18� � =150

¼ 16:37 kg:

3.1.2 Geometric Mean

Geometric mean of a set of “N” observations X1,

X2,X3,. . .,Xi,. . .,XN is defined as the N-th root of

the product of the observations.

Thus, the geometric mean (GM) of X1,X2,

X3,. . .,Xi,. . .,XN is given as

Xg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1:X2:::::Xi:::::XN

N
p

¼ X1:X2:::::Xi:::::XNð Þ1=N

¼ QN
i¼1

Xi

� �1=N

Now, Xg ¼
QN
i¼1

Xi

� �1=N

) log Xg

� � ¼ 1

N
log

QN
i¼1

Xi

� �

¼ 1

N
: logX1 þ logX2 þ ::::þ logXN½ �

¼ 1

N

XN
i¼1

logXi
½Arithmetic mean of the

logarithms of the observations�
¼ GM sayð Þ
So, Xg ¼ Antilog GMð Þ
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Thus geometric mean is the antilogarithm of

the arithmetic mean of logarithms of the

observations.

The geometric mean for grouped data of a set

of “N” observations grouped into “n” number of

groups with mid-values and frequencies of the

different classes, respectively, given as

Mid-values of

different classes (xi)
x1 x2 x3. . .,

xi,. . .xn�2

xn�1 xn

Class Frequency f1 f2 f3. . .,
fi,. . .fn�2

fn�1 fn

is given as

Xg ¼
Q

xi
f i

� �1�Pn
i¼1

f i ¼ x
f 1
1 :x

f 2
2 . . . xf nn

� 	1=N
Using similar technique, we have

Xg ¼ x
f 1
1 :x

f 2
2 . . . xf nn

� 	1=N
¼ Q

xi
f i

� �1�X
n

i¼1

f i

) log Xg

� � ¼ 1

N
log x

f 1
1 :x

f 2
2 . . . xf nn

h i
¼ 1

N
f 1logx1 þ f 2logx2 þ . . .þ f nlogxn½ �

¼ 1

N

Xn
i¼1

f ilogxi ¼ AM0 sayð Þ

∴Xg ¼ Alog AM0ð Þ
¼ Antilogarithm of weighted arithmetic

mean of the logarithmsof the mid

values of different classes:

For grouped frequency data, xi is taken as the

mid-values of the i-th class

With the help of log conversion or scientific

calculator, one can easily find out the

geometric mean.

Example 3.5

If we go back to the data of fish weight of

20 fishes, then what should be the GM?

Solution The geometric mean for 20 fishes is

given by G ¼ (1.2 � 0.9 � 1.5 � 1.3 �. . .�
1.9 � 1.7)1/20 ¼ (3202.566) 1/20 ¼ 1.497 lb

Example 3.6

Let us find out the geometric mean of body weights

of ten chicks at birth using the following data:

Chick No 1 2 3 4 5 6 7 8 9 10

Body weight (g) 42 32 55 27 30 35 45 52 47 40

Solution: Method 1 The geometric mean for

ten chicks is given by G ¼ (42 � 32 � 55 �
27 � 30 � 35 � 45 � 52 � 47 � 40)1/10 ¼
(9219104294400000.00) 1/10 ¼ 39.49

Method 2: We can calculate geometric mean

as the antilogarithm of the arithmetic mean of

logarithms of the observations. Thus, we have

G ¼ Antilog½ 1=10ð Þ log42þ log32þ log55þ log27þ log30þ log35þ log45þ log52þ log47þ log40ð Þ�
¼ Antilog½ 1=10ð Þ 1:623þ 1:505þ 1:740þ 1:431þ 1:477þ 1:544þ 1:653þ 1:716þ 1:672þ 1:602ð Þ�
¼ Antilog 1:5965ð Þ ¼ 39:49

Pond A 1.2 0.9 1.5 1.3 2.1 2.0 1.3 1.6 2.0 1.5 1.6 1.7 2.1 1.2 1.3 0.9 1.6 1.4 1.9 1.7
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Example 3.7

Let us find out the geometric mean of the body

weights of 60 poultry birds from the following

frequency distribution:

Body weight (g) Mid-value (xi) Frequency ( f )

1118.5–1319.5 1219 8

1319.5–1520.5 1420 10

1520.5–1721.5 1621 9

1721.5–1922.5 1822 10

1922.5–2123.5 2023 4

2123.5–2324.5 2224 9

2324.5–2525.5 2425 10

Solution From the above frequency distribu-

tion, we have the geometric mean

Xg ¼ x
f 1
1 :x

f 2
2 . . . x

f n
n

� 	1=Xn
i¼1

f i
:

Log Xg

� � ¼ 1Xn
i¼1

f i

log
Qn
i¼1

x
f i
i

� �

¼ 1

60
log 12198:142010:16219::::::::242510
� �

¼ 1

60
8log 1219ð Þ þ 10log 1420ð Þ þ 9log 1621ð Þ þ 10log 1822ð Þ þ 4log 2023ð Þ½

þ 9log 2224ð Þ þ 10log 2425ð Þ�
¼ 1

60
8� 3:086þ 10� 3:1523þ 9� 3:2098þ 10� 3:2605þ 4� 3:3060½

þ 9� 3:3471� 10� 3:3847�
¼ 1

60
194:8998½ � ¼ 3:2483

∴Xg ¼ Alog 3:2483ð Þ ¼ 1771:4516g

Thus the geometric mean of the above simple

frequency distribution is 1771.4516 g.

Merits and Demerits of Geometric Mean

The definition of geometric mean is clear-cut, and

there is no ambiguity in defining geometric mean;

geometric mean is based on all observations but it

is not so easy to calculate or understand the physi-

cal significance of GM; mathematical treatments

are not so easy as in the case of arithmetic mean. If

one of the values in the given data set is zero, then

the GM is also zero for the whole data set. Com-

pared to AM, GM is least affected by the inclu-

sion/deletion of extreme value in the data set. Let

us discuss some of the important properties of GM.

(a) Let us suppose we have k number of samples;

G1, G2, . . .., Gk are the geometric means of

the samples, and n1, n2, . . .., nk are the num-

ber of observations of the respective

samples; then the combined geometric

mean is given by

G ¼ Gn1
1 :G

n2
2 :::::G

nk
k

� �1�X
k

i¼1

ni

¼ Qk
i¼1

G

1
�Xk

i¼1

ni

i

or, log G ¼ 1X1
i¼1

ni

Xk
i¼1

nilog Gi½ �

(b) If all the observations are equal to a constant,

say M, then the geometric mean is also equal

to M.

(c) Likewise to that of AM, GM of a set of

observations also depends on change of origin

and scale.
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3.1.3 Harmonic Mean

Harmonic mean of a set of “N” observations X1,

X2,X3,. . .,Xi,. . .,XN is defined as the “the recipro-

cal of the arithmetic mean of the reciprocals of

the observations”.

Thus, harmonic mean H:M: ¼ NXN
i¼1

1

xi

.

For grouped data of a set of “N” observations

grouped into “n” number of groups with

mid-values and frequencies of the different clas-

ses, respectively, given as

Mid-values of

different classes (xi)
x1 x2 x3. . .,

xi,. . .xn�2

xn�1 xn

Class frequency f1 f2 f3. . .,
fi,. . .fn�2

fn�1 fn

the harmonic mean is given as H ¼
Pn
i¼1

f iPn
i¼1

f i=xi

Example 3.8

Let us take the example of the fish weights

(in pound) in pond A of the Example 3.1:

to find the harmonic mean of the above fish

weights.

Solution Here the number of observations is 20.

So the harmonic mean of the fish weights

(in pound) is given by

H:M: ¼ 20X20
i¼1

1

xi

¼ 18

1

1:2
þ 1

0:9
þ 1

1:5
þ 1

1:3
þ 1

2:1
þ 1

2:0
þ 1

1:3
þ 1

1:6
þ 1

2:0
þ 1

1:5
þ 1

1:6
þ 1

1:7
þ 1

2:1
þ 1

1:2
þ 1

1:3
þ 1

0:9
þ 1

1:6
þ 1

1:4
þ 1

1:9
þ 1

1:7

¼ 20

13:77437
¼ 1:4519 lb

Example 3.9

To find the harmonic mean of milk production

(liter) per day from a data of 20 days for a particu-

lar cow from the following frequency distribution:

Milk(l/day) 10 12 14 16 18

Frequency 5 7 2 2 4

Solution This is a simple frequency distribution;

hence, the formula for getting harmonic mean is

H:M ¼

Xn
i¼1

f i

Xn
i¼1

f i=xi

¼

X5
i¼1

f i

X5
i¼1

f i=xi

¼ 5þ 7þ 2þ 2þ 4

5

10
þ 7

12
þ 2

14
þ 2

16
þ 4

18

¼ 20

1:5734
¼ 12:71 l

Pond A 1.2 0.9 1.5 1.3 2.1 2.0 1.3 1.6 2.0 1.5 1.6 1.7 2.1 1.2 1.3 0.9 1.6 1.4 1.9 1.7
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Example 3.10

To find the harmonic mean of the body weights

of 60 poultry birds from the following frequency

distribution:

Body weight (g) Mid-value (xi) Frequency ( f )

1118.5–1319.5 1219 8

1319.5–1520.5 1420 10

1520.5–1721.5 1621 9

1721.5–1922.5 1822 10

1922.5–2123.5 2023 4

2123.5–2324.5 2224 9

2324.5–2525.5 2425 10

Solution From the above frequency distribu-

tion, we have harmonic mean

H:M ¼

Xn
i¼1

f i

Xn
i¼1

f i=xið Þ
¼ 8þ 10þ ::::þ 9þ 10

8

1219
þ 10

1420
þ 9

1621
þ 10

1822
þ 4

2023
þ 9

2224
þ 10

2425

¼ 60

0:00656þ 0:00704þ 0:00555þ 0:00549þ 0:00198þ 0:00405þ 0:00412

¼ 60

0:03479
¼ 1724:4676g

Merit and Demerits of a Harmonic Mean

Like other twomeans, viz., the arithmeticmean and

geometric mean, the harmonic mean is also defined

clearly; it is also based on all observations but

comparatively complicated in calculation and

understanding.Moreover, if one of the observations

is zero, then it is difficult to work out the harmonic

mean. The harmonic mean of “n” number of

constants is the constant. Let there be a set of “N”

observations, each having a constant value, say

“U,” so their harmonic mean ¼ NXN
i¼1

1

U

¼ N
N
U

¼ U.

3.1.4 Use of Different Types of Means

If one critically examines the values of three types

of means from the same data of 60 poultry birds as

given in Examples 3.3, 3.6, and 3.10, one can find

that AM > GM > HM (AM ¼ 1818.65 g, GM

¼ 1771.4516 g, HM ¼ 1724.4676 g). In fact the

relation among the three types of means is that

AM � GM � HM. Thus for a given set of data,

HM has the lowest value. This type relationship

among the three means raises the question as to

which type of mean should be used to represent a

particular data set. Arithmetic mean is widely used

in most of the situations where the data generally

do not follow any definite pattern. It can be used to

have an overview of both the discrete as well as

continuous characters. Before using one should

check for the existence of any extreme value(s) in

the data set. Geometric mean is generally used

when values of a series of observations change in

geometric progression (i.e., values of the observa-

tions change in a definite ratio). Average rate of

depreciation, compound rate of interest, etc. are the

examples of some of the areas where geometric

mean can effectively be used. GM is useful in the

construction of index numbers.AsGMgives greater

weights to smaller items, it is useful in economic

and socioeconomic data. Though the use of har-

monic mean is very restricted, it has got ample

uses in practical fields, particularly under changing

rate scenario. Let us take the following example:

Example 3.11

Price of petrol changes fortnightly (mostly), and

let us assume that a two-wheeler owner has fixed

amount of money allocated on fuel from his
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monthly budget. So, the use of petrol is to be

managed in such a way that both the conditions

are satisfied (monthly expenditure on petrol

remains constant and the prices of petrol changes

over the fortnights), i.e., the objective is to get

average price of petrol per liter, which will fix the

amount of average consumption of petrol/month

vis-à-vis the mileage he can run the two

wheelers.

Solution Let fortnightly expenditure on petrol

be Rs and “E” and the prices of petrol for “n”

consecutive fortnights be p1, p2,. . ., pn, respec-
tively. Thus the amounts of petrol used in n

fortnights are E
p1
, Ep2

, . . . , Epn
, respectively. Then

average fortnightly consumption of petrol is

given by

¼ nE
E

p1
þ E

p2
þ . . .þ E

pn

¼ nE

E
1

p1
þ 1

p2
þ . . .þ 1

pn

� �
¼ nXn

i¼1

1=pi

¼ Harmonic mean of price of petrol

3.1.5 Median

Median of a set of “N” number of observations

X1, X2, X3,. . .,XN for variable X is defined as the

value of the middlemost observation. When we

talk about the value of the middlemost observa-

tion, then there is a need for arrangement of the

data either in ascending or descending order, so

that middlemost observation could be identified.

One can easily find that the median of a set of

observations divides the whole set of data set into

two parts; below and above the median there are

equal number of observations.

Example 3.12

Number of insects per plant is given as follows:

17, 27, 30, 26, 24, 18, 19, 28, 23, 25, and 20. Find

out the median value of number of insects per

plant.

Solution Let us arrange the data in ascending

order of their values as follows: 17, 18, 19, 20,

23, 24, 25, 26, 27, 28, and 30. Here, we have

11 observations, so the middlemost observation

is the (11–1)/2 + 1 ¼ 6th observation and the

value of the sixth observation is 24. Hence, the

median value of number of insects per plant is

24.

Problem with this definition is that when num-

ber of observation is even, then one cannot have

a unique middlemost observation; rather there

would be two middlemost observations. In this

type of situation, median is worked out by taking

the average of the values of two middlemost

observations. Let us consider the following

example;

Example 3.13

Following table gives the fish production figures

of 20 Indian states/union territories during

2011–2012. Find out the median fish production

of the states.

Solution Here the number of states is 20, an

even number; so the median value would be the

average of the values of two middlemost

observations, i.e., tenth and 11th observations

after the states are arranged in order as follow:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

State/UT AP WB

Guja-

rat Kerala TN

Maha-

rashtra

Karn-

ataka UP Orissa Bihar

Chhat-

tisgarh Assam Haryana Punjab

Jhark-

hand Goa MP Tripura

Rajas-

than

Pondi-

cherry

Production

(’000 t)

1603 1472 784 693 611 579 546 430 382 344 251 229 106 98 92 90 75 53 48 42

State/UT AP Assam Bihar

Chhatt-

isgarh Goa

Guja-

rat

Hary-

ana

Jhark-

hand

Karn-

ataka Kerala MP

Maha-

rashtra Orissa

Pondi-

cherry Punjab

Rajas-

than TN

Tri-

pura UP WB

Production

(’000 t)

1603 229 344 251 90 784 106 92 546 693 75 579 382 42 98 48 611 53 430 1472
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From the above arranged data, one can find

that Bihar and Chhattisgarh occupy the

middlemost positions. Therefore, the median

value of fish production would be (344 + 251)/

2 ¼ 297.6 thousand tone.

Thus, calculation of median for even and odd

number of observations is different. This situation,

however, takes different forms for grouped data.

Steps in Calculation of Median from Raw Data

1. Arrange the raw data, either in ascending or

descending order.

2. Locate the middlemost (for odd number of

observation) or two middlemost observation

(s)(for even number of observations).

3. When the total number of observations is odd,

then the value of the middlemost observation

would be the median, while the average of the

two middlemost observations would be the

median for even number of observations.

For grouped data, the median of a set of

N number of observations X1, X2, X3,. . .,XN for

variable X grouped into “n” number of classes as

follows is given as

Class Mid-value (xi’) Frequency ( fi) CF< CF�
X1�X2 x1’ f1 F1 F1

0

X2�X3 x2’ f2 F2 F2
0

X3�X4 x3’ f3 F3 F3
0

: : : : :

: : : : :

: : : : :

: : : : :

: : : : :

Xn�Xn+1 xn’ fn Fn Fn
0

Me ¼ Xl þ
N
2
� Fme�1

f me
:CI

where Xl ¼ is the lower class boundary of the

median class

N ¼ total frequency

Fme�1 ¼ cumulative frequency (less than

type) of the class preceding the median class

fme ¼ frequency of the median class and CI ¼
width of the median class

The first task for getting the median value

from a classified data is to find out the median

class from the cumulative frequency column of

frequency distribution table; that means the class

in which the middlemost observation(s) is lying.

Then one can use the above formula to get

median value. Step by step procedure of getting

median from classified data is presented below:

Steps in Calculation of the Median from Grouped

Data1

1. Identify the median class (i.e., the class

containing N/2th or N/2 + 1th observation)

from the cumulative frequency (less than type)

column of the frequency distribution table.

2. Identify the lower class boundary (Xl), class

width (CI), and the frequency ( fm) of the

median class.

3. Identify the cumulative frequency (less than

type) of the class preceding the median class

(Fme�1) and the frequency of the median

class, i.e., fme.

4. Use the above values in the formula for median.

Example 3.14

Once again let us take the classified data for body

weight of 60 poultry birds. Find out the median

value of body weights from following frequency

distribution table.

Body weight (g) Mid-value (xi) Frequency ( f ) CF<

1118.5–1319.5 1219 8 8

1319.5–1520.5 1420 10 18

1520.5–1721.5 1621 9 27

1721.5–1922.5 1822 10 37

1922.5–2123.5 2023 4 41

2123.5–2324.5 2224 9 50

2324.5–2525.5 2425 10 60

Solution From the above table, we have total

number of observation, 60, an even number.

Therefore, the median would be the average of
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the values of the two middlemost observations

(viz., 30th and 31st observations). From the col-

umn of cumulative frequency, one can find that

30th and 31st observations are lying in class

1721.5–1922.5.

Lower boundary (Xl) of the median

class ¼ 1721.5.

Frequency of the median class ¼ 10.

Cumulative frequency of the class preceding

the median class ¼ 27.

Class interval/width ¼ 201.

Therefore the median Me ¼ Xlþ
N
2
�Fme�1

f me
:

CI ¼ 1721:5þ 60
2
�27

10
� 201 ¼ 1721:5þ 60:3 ¼

1781:8g.

Note

1. For even number of observations in classified

data, two middlemost observations may lie

in two consecutive classes. In that case, one

would have two median classes, and two

medians are to be worked out using the above

procedure as usual. Ultimately the median of

the set of given data would be the average of

the two median values worked out.

2. Median can also be worked from the intersec-

tion point of the two cumulative frequency

(less than and more that type) curves.

Merits and Demerits of Median Median is

easy to calculate and understand; it can also be

used for qualitative data. But median is not

defined rigidly as one could find for AM, GM,

or HM. The median is also not based on all

observation, to the median, one needs to have

information on middlemost observations/classes.

The median cannot be put under mathematical

treatment easily. The median is comparatively

more affected by sampling fluctuations.

Uses of the Median The median has got various

uses in agriculture and allied fields as well as in

industry. As this is basically a partition value,

divide the whole population into two equal parts;

it is used as an indicator stratifying the popula-

tion. Most important use of median is found in

qualitative data sets where the numerical

measures of central tendency may not work

suitably. The formula for median can very well

be improvised in getting different partition

values.

3.1.6 Partition Values (Percentiles,
Deciles, and Quartiles)

Sometimes it becomes of interest to partition the

whole population into different parts. For exam-

ple, one may be interested to know the income

level below which there are 90 % or 3/4th or

60 % of the people in a particular area. One

may be interested in knowing the number of

insects per plant below which 25 % or 1/4th,

70 %, or 90 % of the plants exist in a particular

field. Thus, we are interested in partitioning the

whole population into different quarters, differ-

ent deciles, different percentiles, etc. Knowing

these values one can take decision on different

aspects of practical utility. The economic injury

level population of different pests in different

crops have been identified by the scientists.

Knowledge of the percentage or deciles of plant

populating below or above the corresponding

economic injury level population will help the

farmers in taking decision whether to go for

chemical control measure or otherwise. It has

already been discussed that median divides the

whole population into two equal halves; below

and above which there are 50 % observations;

thus median can be thought of as fifth decile or

second quartile in any set of data. One can work

out different percentiles, deciles, or quartiles

from the frequency distribution improvising the

formula of median. The formula for median can

be modified to work out different percentile/dec-

ile/quartile values by substituting “Np/100,”

“Nd/10,” or “Nq/4” and the corresponding cumu-

lative frequencies (less than type) in place of “N/

2” in median formula; where “p,” “d,” and “q”
denote for p-th percentile, d-th decile, and q-th

quartile, respectively.

Thus, the formulae for percentiles, deciles, or

quartiles are as follows:

30th percentile or P30 ¼ Xl þ
30N
100

� Fp30�1

f p30
:CI
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Xl ¼ is the lower class boundary of the 30th

percentile class.

N ¼ total frequency.

Fp30�1 ¼ cumulative frequency (less than type) of

the class preceding the 30th percentile class.

fp30 ¼ frequency of the 30th percentile class.

CI ¼ width of the 30th percentile class.

6th decile or D6 ¼ Xl þ
6N
10
� Fd6�1

f d6
:CI

Xl ¼ is the lower class boundary of the sixth

decile class.

N ¼ total frequency.

Fd
6�1

¼ cumulative frequency (less than type) of

the class preceding the sixth deciles class.

fd6 ¼ frequency of the sixth decile class.

CI ¼ width of the sixth decile class.

3rd quartile or Q3 ¼ Xl þ
3N
4
� Fq3�1

f q3
:CI

Xl ¼ is the lower boundary of the third quartile

class.

n ¼ total frequency.

Fq3�1 ¼ cumulative frequency (less than type) of

the class preceding the third quartile class.

fq3 ¼ frequency of the third quartile class.

CI ¼ width of the third quartile class.

Example 3.15

Let us take the example of body weight of

60 poultry birds once again and try to find out

the body weights below which 40 %, 8/10 parts,

and 3/4th birds exist. We have the following

frequency distribution table:

Body weight (g) Mid-value (xi) Frequency ( f ) CF<

1118.5–1319.5 1219 8 8

1319.5–1520.5 1420 10 18

1520.5–1721.5 1621 9 27

1721.5–1922.5 1822 10 37

1922.5–2123.5 2023 4 41

2123.5–2324.5 2224 9 50

2324.5–2525.5 2425 10 60

Solution Thus the problem is to find out 40th

percentile, eighth decile, and third quartile values

for body weight of 60 poultry birds.

(a) Calculation of 40th percentile value, i.e., P40

We haveN ¼ 60,P40 is the value of the
60�40
100

¼
24th observation, and the 24th observation is lying

in the third class, i.e., in 1520.5–1721.5 class.

∴P40 ¼ Xl þ
40N

100
� FP40�1

f P40

:CI

¼ 1520:5þ
40:60

100
� 18

9
:201

¼ 1520:5þ 134 ¼ 1654:5g

∴There are 40 % (¼24) poultry birds out of total

60 birds which have body weight 1654.5 g or

less, and 60 % (¼36) birds are having body

weight above 1654.5 g.

(b) Calculation of eighth decile value, i.e., D8

We have N ¼ 60, D8 is the value of the
60�8
10

¼
48th observation and the 48th observation is

lying in sixth class, i.e., in 2123.5–2324.5 class.

D8 ¼ Xl þ
8N

10
� Fd8�1

f d8
:CI

¼ 2123:5þ
8:60

10
� 41

9
:201

¼ 2123:5þ 156:33 ¼ 2279:83g

∴ There are 8/10 parts(¼48) poultry birds out of

total 60 birds which have body weight 2279.83 g

or less, and 2/8th (¼12) birds are having body

weight above 2279.83 g

(c) Calculation of third quartile value, i.e., Q3

We have N ¼ 60, Q3 is the value of the 60�3
4

¼ 45th observation, and the 45th observation

is lying in sixth class, i.e., in 2123.5–2324.5

class.
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Q3 ¼Xl þ
3N
4
� Fq3�1

f q3
:CI ¼ 2123:5

þ
3:60
4

� 41

9
:201 ¼ 2123:5þ 89:33

¼ 2212:83g

Thus, there are 3/4th(¼45) poultry birds out of

total 60 birds which have body weight 2212.83 g

or less, and 1/4th (¼15) birds are having body

weight above 2212.83 g.

3.1.7 Mode

It is not necessary that all the observations or all

the classes in a given set of data have got equal

frequency. One might be interested in knowing

the observation or the value which is having

maximum occurrence in a given data set, for

the purpose mode is defined. Mode of a set of

given data is defined as the value of the observa-

tion having maximum frequency.

Example 3.16

Let us suppose the following data are pertaining

to the of panicle per plant (hill) in a paddy field:

12, 13, 15, 8, 6, 9, 15, 12, 10, 8, 7, 15, 10, 10, 8, 9,

10, 9, 13, and 10. Find out the mode of the

number of panicle per plant.

No. of panicle/plant 6 7 8 9 10 12 13 15

Frequency 1 1 3 3 5 2 2 3

Thus, modal value of number of panicle per

plant of paddy from the above data is found to be

10, as this value has maximum (5) frequency

among all other values.

For grouped data mode of a set of N number of

observations X1, X2, X3,. . .,XN for variable X is

grouped into “n” number of classes as follows:

Class Mid-value (xi’) Frequency ( fi)

x1-x2 x1’ f1
X2-x3 x2’ f2
X3-x4 x3’ f3
: : :

: : :

Xn-xn+1 xn’ fn

Now mode of the above data set is given as

Mo ¼ Xl þ f mo � f mo�1

f mo � f mo�1ð Þ þ f mo � f moþ1

� � :CI
where Xl ¼ the lower class boundary of the

modal class.

fmo�1 ¼ frequency of the class preceding the

modal class.

fmo ¼ frequency of the modal class.

fmo+1 ¼ frequency of the class following the

modal class.

CI ¼ width of the modal class.

The first step for getting modal value from a

classified data is to find out the modal class from

the frequency column of frequency distribution

table; that means to identify the class in which

maximum number of observations is lying. Then

one can use the above formula to get modal

value. Step by step procedure of getting mode

from classified data is presented below:

Steps in Calculation of Mode from Grouped Data

1. Identify the modal class, i.e., the class having

maximum frequency.

2. Identify the lower class boundary (Xl), class

width (CI), and the frequency ( fm) of the

modal class.

3. Identify the frequencies of the class preceding

and following the modal classes, respectively

(i.e., fmo�1 and fmo+1).
4. Use the above values in the formula for mode.

Example 3.17

Let us take the example of body weight of

60 poultry birds once again to find out the mode

of body weights birds. We have the following

frequency distribution table:

Body weight (g) Mid-value (xi) Frequency ( f )

1118.5–1319.5 1219 8

1319.5–1520.5 1420 10

1520.5–1721.5 1621 9

1721.5–1922.5 1822 10

1922.5–2123.5 2023 4

2123.5–2324.5 2224 9

2324.5–2525.5 2425 10
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Solution Total number of observation

(birds) ¼ 60

From the frequency distribution table one can

find that there are three classes, viz., second

(1319.5–1520.5), fourth (1721.5–1922.5), and

seventh (2324.5–2525.5), having same highest

frequency, i.e., 10. Thus we are coming across

with multimodal frequency distribution. A criti-

cal examination reveals that there is no problem

in working out the modal values from the second

and fourth classes, but getting a modal value

from the seventh class, the last class of the fre-

quency distribution, is not possible using the

above formula for calculation of mode.

Let us try to find out the mode from the second

class:

1. Modal class is 1319.5–1520.5.

2. Lower class boundary (Xl) ¼1319.5, class

width (CI) ¼ 201, and the frequency

( fm) ¼ 10 of the modal class.

3. Frequency of the class preceding the modal

class ( fm-1) ¼ 8 and frequency of the class

following the modal class ( fm+1) ¼ 9.

So the mode

Mo ¼ Xl þ f mo � f mo�1

fmo� fmo� 1ð Þ þ f mo� fmoþ 1ð Þ :CI

¼ 1319:5þ 10� 8

10� 9ð Þ þ 10� 8ð Þ :201
¼ 1319:5þ 134:00 ¼ 1453:50g

Similarly one can also find out the mode

corresponding to the fourth class.

Merits and Demerits of Mode Mode is easy to

calculate and understand; it can also be used

qualitative data. But mode is not defined rigidly

like AM, GM, or HM. For a given set of data, one

can have only one AM, GM, HM, and median

values, respectively, but there might be more

than one mode for some distributions like in

Example 3.17. Mode is also not based on all

observations, like median; to know the mode

one need not know the information on

observations at the beginning or at the end of

the data set; one needs to have information on

modal class and its preceding and following

classes; information on rest of the classes are of

least importance as far as calculation of modal

value is concerned. If mode happens to lie in the

last class of the frequency distribution, then it

poses problem in its calculation. Mode cannot

be put under mathematical treatment easily.

Like median, mode also is comparatively more

affected by sampling fluctuations.

Uses of Mode Mode has got various uses in

agriculture and allied fields as well as in industry.

As this is basically gives importance on concen-

tration of observations, it plays vital role in qual-

itative data analysis. Mode is best used when

number of observations is huge.

Relationship of the Mean, Median, and

Mode No exact relationship among the arithme-

tic mean, median, and mode could be found. But

for a moderately skewed (a dispersion property

discussed in the next chapter) unimodal distribu-

tion, the following approximate relation holds

good: Mean – Mode ¼ 3(Mean – Median). This

can be used for approximate value of any one of

the three if the other two are given. Moreover for

symmetric distributions like normal distribution,

Mean ¼ Median ¼ Mode.

3.1.8 Midpoint Range

Midpoint range of a set of “N” number of

observations X1, X2, X3,. . .,XN for variable X is

defined as the average of the maximum and min-

imum values of a given set of data. If “M” and

“m” are the maximum and minimum values of a

given set of data, respectively, the midpoint

range is (M + m)/2. Thus, to get midpoint range

of given set of data, may it be ungrouped or

grouped data, one needs to know only the maxi-

mum and minimum values of the data set.

Though very simple and easy to understand, as

this measure is based on only two extreme

values, it does not satisfy the criteria of good

measure. As such it is affected by the extreme

values in the data set and also by the sampling

fluctuation.
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3.1.9 Selection of Proper Measure
of Central Tendency

From the above discussions on different

measures of central tendency, it is clear that all

measures are not suitable to be used in every set

of data. Selection of a particular measure mainly

depends on the (a) type of data, (b) objective of

the study, and (c) merits and demerits of the

measures on hand. Though three types of means

are based on all observation, these have their own

merits and demerits and restrictive nature in use.

Moreover, median and mode, though are useful

measure for qualitative data, are not based on all

observation for quantitative data. If the objective

of the study is to find out the point or region of

highest concentration of occurrence of the

observations, then one can very well use mode.

On the other hand, if one is interested in dissec-

tion of the population, then partition values may

provide useful information. Thus, while selecting

a measure, one should be very careful and should

have thorough knowledge about the measures.

Trimmed Mean In many cases the arithmetic

mean is affected by the presence of outlier

(values are supposed to be different from the

rest of the values of a given data set; thus outliers

are generally high or low values compared to

other values in a data set). On the other hand,

the median is least affected by the presence of

outlier in a data set compared to arithmetic mean.

But arithmetic mean has got other advantages

over median. To overcome the drawback of

arithmetic mean in presence of outlier, trimmed

mean has been advocated. Trimmed mean is the

arithmetic mean of the ordered data set after

deleting a percentage of data points from both
the ends of the ordered data set. On the other

hand, trimming percentage is the percentage of

data points at each end not considered for calcu-
lation of arithmetic mean. Thus 10 % trimmed

mean means 10 % data points from each end is

not considered for calculation of mean; that

means altogether 80 % middle observation are

being included during calculation of

trimmed mean.

Example 3.18

The following data are pertaining to the milk

yield (kg/day) of ten different cows of particular

breed. Find out the arithmetic mean and the 10%

trimmed mean from the data, and conclude the

arithmetic mean, trimmed mean, and median in

describing the central tendency of the data.

Solution The arithmetic mean is calculated to

be 5.6 + 15.6 + . . .13.4 + 15.9/10 ¼ 15.92 kg/

day.

The ordered data would be:

5.6 12.5 13.4 14.5 14.6 15 15.6 15.9 16.5 35.6

We have ten observations; hence, 10 %

trimmed means were calculated, the mean leaving

aside one observation at each end. Thus the arith-

metic mean of 12.5, 13.4,.......16.5 would

12.5 + 13.4 +. . . + 15.9 + 16.5/8 ¼ 14.75 kg/day

Now the median calculated from ordered data

would be the average value of 14.6 and 15, i.e.,

14.8 kg/day. Clearly due to the presence of two

too low(5.6) and too high (35.6), the arithmetic

mean was overestimated. On the other hand, the

10 % trimmed mean and the median result in

same average of 14.75 and 14.8 kg/day, respec-

tively. Thus, one can conclude that median and

10 % trimmed means are the better measure

(least affected by the presence of outlier) of cen-

tral tendency.

5.6 15.6 35.6 12.5 14.5 14.6 15 16.5 13.4 15.9
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3.2 Dispersion and Its Measures

We have already defined that tendencies of the
values of the observations in a given data set to

remain scattered or dispersed from a particular

value(observation) are known as dispersion.

Example 3.19

Let us suppose that the run scored by two

batsmen in ten different innings are:

A critical analysis reveals that both the

batsmen have scored equal total runs, viz.,

480 in ten innings, but the run scored by the

batsman A varies between 0 and 120 while that

of the batsman B is in between 35 and 65. Thus

the scoring patterns of the two batsmen are not

same; the batsman A has the tendency to score

around the 48, the average score, whereas the

batsman B has the tendency of scoring pattern

to remain scattered from the average value 48.

Thus, the run scored by the batsmen in different

innings has same central tendency, but they dif-

fer in dispersion. So to know the nature of the

data, or to explain the information hidden within

a set of data, measure of central tendency only is

not sufficient: one should explore the measure of

dispersion also.

In this chapter we have seen that there are two

types of measures of dispersions, viz., the abso-

lute measures of dispersions and the relative

measures of dispersion. Now the question is

whether all the measures are applicable in every

situation or are equally effective. To get answers

to these queries, one should have clear-cut idea

about the characteristics of good measures of

dispersion. Ideally a good measure of dispersion

should have the following characteristics:

(a) A good measure of dispersion should be
rigidly defined-,there should not be any

ambiguity in defining the measure.

(b) A good measure of dispersion should be
based on all observations.

(c) A good measure of dispersion should be
easy to calculate.

(d) A good measure of dispersion should be

easy to understand.
(e) A good measure of dispersion should be

least affected by sampling fluctuations

(f) A good measure of dispersion should be
readily acceptable for mathematical

treatments.

(g) A good measure of dispersion should be
least affected by the extreme values.

In order to reflect the true nature of the data, a

good measure should be based on all

observations and must be defined without any

ambiguity. To be applicable by varied range of

users, a good measure of dispersion should be

easy to understand and explain. For further appli-

cation of a measure, it should be responsive to

mathematical treatments and must be least

affected either by sampling fluctuations or by

extreme values in the data set.

With the above knowledge, let us now exam-

ine the different measures and their important

properties:

3.2.1 Absolute Measures of Dispersion

The range, mean deviation, variance, standard

deviation, quartile deviation, and moments are

the prominent absolute measures. In the follow-

ing sections, we shall discuss the measures:

3.2.1.1 Range
Range of a set of N observations X1, X2, X3,. . .,XN

is defined as the difference between the

Batsman A: 10 60 0 5 120 98 15 75 85 12

Batsman B: 35 45 52 47 62 56 37 40 65 41
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maximum value and the minimum value of a set

of data, i.e., Xmax�Xmin. This is the simplest of all

the measures of dispersion. Thus, to get range in

a set of data, one need not to put the data under

any rigorous processing, excepting to find out the

two extreme values (the maximum and the mini-

mum) in the given data set.

Example 3.20

Find out the range of egg-laying capacity of

100 birds from the following data.

Bird no Egg/Year Bird no Egg/Year Bird no Egg/Year Bird no Egg/Year
1 170 26 173 51 164 76 122
2 182 27 185 52 168 77 154
3 224 28 212 53 148 78 158
4 243 29 182 54 212 79 169
5 243 30 168 55 157 80 144
6 218 31 130 56 130 81 158
7 245 32 240 57 205 82 253
8 252 33 157 58 144 83 261
9 192 34 121 59 187 84 222

10 171 35 187 60 117 85 154
11 212 36 179 61 198 86 202
12 205 37 212 62 130 87 151
13 185 38 182 63 144 88 253
14 221 39 243 64 130 89 222
15 118 40 168 65 144 90 250
16 138 41 218 66 159 91 259
17 158 42 223 67 174 92 268
18 178 43 228 68 189 93 277
19 198 44 233 69 204 94 286
20 218 45 238 70 219 95 295
21 238 46 243 71 234 96 304
22 258 47 248 72 249 97 313
23 278 48 253 73 264 98 322
24 298 49 258 74 279 99 331
25 318 50 263 75 294 100 340

From the above data, it is clear that the vari-

able egg-laying capacity (X) has maximum value

340 (Xmax) and minimum value 117 (Xmin).

Therefore, the range of egg-laying capacity of

100 poultry birds is (Xmax�Xmin) ¼ 340–117

¼ 223 eggs/year.

Example 3.21

Following table gives the milk yield (kilogram/

month) of 100 cows in certain village. Find out
the range of monthly milk yield from the given

data.
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Cow no MM* Cow no MM* Cow no MM* Cow no MM*

1 275 26 250 51 256 76 224
2 287 27 262 52 260 77 256
3 329 28 289 53 240 78 260
4 348 29 259 54 304 79 271
5 348 30 245 55 249 80 246
6 323 31 207 56 222 81 260
7 350 32 317 57 297 82 355
8 357 33 234 58 236 83 363
9 297 34 200 59 279 84 324
10 276 35 264 60 213 85 256
11 317 36 256 61 290 86 304
12 310 37 289 62 222 87 253
13 290 38 259 63 236 88 355
14 326 39 320 64 222 89 324
15 223 40 245 65 236 90 352
16 243 41 295 66 251 91 361
17 263 42 300 67 266 92 370
18 283 43 305 68 281 93 379
19 303 44 310 69 296 94 388
20 323 45 315 70 311 95 397
21 343 46 320 71 326 96 406
22 363 47 325 72 341 97 315
23 383 48 330 73 356 98 325
24 403 49 335 74 371 99 285
25 424 50 340 75 386 100 242

Note: MM*= Milk yield(kg) per month

Milk yield among the given 100 cows has the

maximum (Xmax) and minimum (Xmin) values

424kgand200kg, respectively.Therefore, the range

of monthly milk yield of 100 cows is Rx ¼ Xmax –

Xmin ¼ 424 – 200 ¼ 224 kg per month.

Merits and Demerits of Range

1. Range is rigidly defined and can be calculated

easily.

2. It is easy to understand and also convincing.

3. Though, to find out range in a given data set,

all the observations are required to be exam-

ined, its calculation is based on only two

values in the given entire data set.

4. Range cannot be worked out if there are miss-

ing value(s).

5. Range is difference between the two extreme

values in a given data set, so it is very much

affected by sampling fluctuation.
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Uses of Range In spite of all these drawbacks,

range is being used in many occasions only

because of its simplicity and to have a firsthand

information on variation of the data. Range can

be used in any type of continuous or discrete

variables. It is easy to calculate so an ordinary

person can also use it. It is hard to find any

field of study where range has not been used

to get firsthand information about a given

data set.

3.2.1.2 Mean Deviation
Mean deviation of a set of N observations X1, X2,
X3,. . .,XN of a variable “X” about any arbitrary

point “A” is defined as the mean of the absolute

deviation of different values of the variable from

the arbitrary point “A” and may be denoted as

MDA ¼ 1
N

XN
i¼1

Xi � Aj j

For grouped data mean deviation about an

arbitrary point A of a set of N number of

observations X1, X2, X3,. . .,XN, of the variable

X grouped into “n” number of classes with

mid-values and frequencies of different classes

given as below:

Mid-

values(xi)
x1 x2 x3. . .,xi,. . .xn�2 xn�1 xn

Frequency f1 f2 f3. . .,fi,. . .fn�2 fn�1 fn

MDA ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � Aj j

The deviation from arbitrary point can suitably

be replaced by the arithmetic mean ( X ),

median (Me), or mode (Mo) to get mean deviation

from arithmetic mean or median or mode,

respectively, and the respective formula is given

below:

Mean

deviation

from Ungrouped data Grouped data

AM 1

N

XN
i¼1

Xi� X


 

 1Xn

i¼1

f i

Xn
i¼1

f i xi� X


 



Median 1

N

XN
i¼1

Xi�Mej j 1Xn
i¼1

f i

Xn
i¼1

f i xi�Mej j

Mode 1

N

XN
i¼1

Xi�Moj j 1Xn
i¼1

f i

Xn
i¼1

f i xi�Moj j

Example 3.22

Following table gives the average meat weight

(kg) from ten different Indian breeds of sheep.

Find out the mean deviations from arbitrary

value 18 kg, arithmetic mean, median, and mode.

Breed of sheep Meat (kg) at 12 month age

Gaddi 14

Rampur Bushair 18

Chokla 18

Nali 18

Marwari 21

Magra 28

Malpura 21

Sonadi 19

Patanwadi 22

Muzaffarnagari 25

As we are dealing with ungrouped data, there

would be no change in arithmetic mean and

mode if we arrange the data in order. On the

other hand, this arrangement will facilitate to

find out the median. Thus, using the arranged

data, one can find that the (a) arithmetic mean

of the given data set isX ¼ 1
10

14þ 18þ 18þ½ . . .

þ 25þ 28� ¼ 20kg; (b) median is average value

of the fifth and sixth observations, i.e., (19 + 21)/

2 ¼ 20 kg, and (c) mode of the given data set is

18 kg. Now using these information, one can

frame the following table:

Breed of sheep Meat (kg) at 12 month age (Xi) Xi � 18j j Xi � X


 

 Xi �Mej j Xi �Moj j

Gaddi 14 4 6 6 4

Nali 18 0 2 2 0

Rampur Bushair 18 0 2 2 0

Chokla 18 0 2 2 0

Sonadi 19 1 1 1 1

(continued)
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Thus, we have

MD18 ¼ 1

10

�
14� 18j j þ 18� 18j j þ . . . . . .

þ 25� 18j j þ 28� 18j j�
¼ 1

10
4þ 0þ . . . . . .þ 7þ 10½ �

¼ 32

10
¼ 3:2kg:

MD ¼ 1

10
14� 20j j þ 18� 20j j þ . . . . . .½
þ 25� 20j j þ 28� 20j j�

¼ 1

10
6þ 2þ . . . . . .þ 5þ 8½ �

¼ 30

10
¼ 3:0kg:

MDMe ¼ 1

10
14� 20j j þ 18� 20j j þ . . . . . .½
þ 25� 20j j þ 28� 20j j�

¼ 1

10
6þ 2þ . . . . . .þ 5þ 8½ �

¼ 30

10
¼ 3:0kg:

MDMo ¼ 1

10
14� 18j j þ 18� 18j j þ . . . . . .½
þ 25� 18j j þ 28� 18j j�

¼ 1

10
4þ 0þ . . . . . .þ 7þ 10½ �

¼ 32

10
¼ 3:2kg:

For a frequency distribution, the above

formulae for calculation of mean deviation from

an arbitrary point “A,” mean, median, and

mode may be calculated using the following

formulae:

1. MDA ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � Aj j

2. MD ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � X


 



3. MDMe ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi �Mej j

4. MDMo ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi �Moj j

For a grouped frequency, distribution xi is

taken as the mid-value of the i-th class.

Example 3.23

Following table gives the frequency distribution

for 100 poultry birds with respect to their

egg-laying capacity per year. Using the data,

find out the mean deviation from 200, mean,

median, and mode.

Breed of sheep Meat (kg) at 12 month age (Xi) Xi � 18j j Xi � X


 

 Xi �Mej j Xi �Moj j

Malpura 21 3 1 1 3

Marwari 21 3 1 1 3

Patanwadi 22 4 2 2 4

Muzaffarnagari 25 7 5 5 7

Magra 28 10 8 8 10

Average 20 3.2 3 3 3.2

Egg class 117–144 145–172 173–200 201–228 229–256 257–284 285–312 313–340

Frequency 5 10 14 31 20 10 7 3
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From the above information, let us make fol-

lowing frequency table:

The arithmetic mean is calculated as per the

formula given in and found to be 221.22.

From the cumulative frequency (less than

type), it is found that the median class is the

fourth class, i.e., the class 201–228. Using the

formula for calculation of median from grouped

data (vido Example 3.14), the median of the

distribution is calculated to be 219.29.

Mode of the distribution is lying within the

class 201–228 and using the formula for calcula-

tion of mode from grouped data (vido Example

3.17), we have mode of the distribution as

217.39.

Using the above values for mean, median, and

mode, respective mean deviations are worked out.

MD200 ¼ 1Xn

i¼1
f i

Xn
i¼1

f i xi � 200j j

¼ 1

100
5� 130:5� 200j j þ 15� 130:5� 200j j½

þ . . .þ 7� 298:5� 200j j þ 3� 326:5� 200j j�
¼ 4025

100
¼ 40:25no

1. MD ¼ 1X n

i¼1
f i

Xn
i¼1

f i xi � X


 



¼ 1

100
5� 130:5� 221:22j j þ 15½

� 130:5� 221:22j j þ . . .þ 7

� 298:5� 221:22j j þ 3� 326:5� 221:22j j�
¼ 3550:45

100
¼ 35:504no:

2. MDMe

MDMe ¼ 1Xn

i¼1
f i

Xn
i¼1

xi �Mej j

¼ 1

100
5� 130:5� 219:29j j þ 15½

� 130:5� 219:29j j þ . . .þ 7

� 298:5� 219:29j j þ 3� 326:5� 219:29j j�
¼ 3511:80

100
¼ 35:118no:

3. MDMo

MDMo ¼ 1Xn
i¼1

f i

Xn
i¼1

xi �Moj j

¼ 1

100
5� 130:5� 217:39j j þ 15½

� 130:5� 217:39j j þ . . .þ 7

� 298:5� 217:39j j þ 3� 326:5� 217:39j j�
¼ 3473:80

100
¼ 34:738no:

Mean deviations are good measures of disper-

sion, but these are defined only for absolute

values of the deviations. In fact, because of

wide acceptability and easy comprehension,

mean deviation from mean is widely used over

other measures.

Example 3.24

Let us take the problem of milk yield per month

for 100 cows as given in the following table. Find

Class Frequency ( f ) xi CF< fixi xi � 200j j f i xi � 200j j xi � X


 

 f i xi � X



 

 xi �Mej j f i xi �Mej j xi �Moj j f i xi �Moj j
117–144 5 130.5 5 652.5 69.5 347.5 90.72 453.60 88.79 443.95 86.89 434.45

145–172 10 158.5 15 1585.0 41.5 415.0 62.72 627.20 60.79 607.90 58.89 588.90

173–200 14 186.5 29 2611.0 13.5 189.0 34.72 486.08 32.79 459.06 30.89 432.46

201–228 31 214.5 60 6649.5 14.5 449.5 6.72 208.32 4.79 148.49 2.89 89.59

229–256 20 242.5 80 4850.0 42.5 850.0 21.28 425.60 23.21 464.20 25.11 502.20

257–284 10 270.5 90 2705.0 70.5 705.0 49.28 492.80 51.21 512.10 53.11 531.10

285–312 7 298.5 97 2089.5 98.5 689.5 77.28 540.96 79.21 554.47 81.11 567.77

313–340 3 326.5 100 979.5 126.5 379.5 105.28 315.84 107.21 321.63 109.11 327.33

Total 1828 22,122 4025 3550.40 3511.80 3473.80

Average 221.22 40.25 35.50 35.12 34.74

56 3 Summary Statistics



out the mean deviation from arbitrary point

300, arithmetic mean, median, and mode.

Solution This is an example of continuous var-

iable, milk yield per month in kilogram. From the

given information and using the formulae for

calculation of arithmetic mean, median, and

mode, one can have the following measures:

AM ¼ 298.84 kg, median ¼ 294.889 kg, and

mode ¼ 275.6 kg.

Using the above values for mean, median, and

mode, respective mean deviations are worked out.

MD300 ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � 300j j

¼ 1

100
8� 214� 300j j þ 14�½

242� 300j j þ . . .þ 7� 382� 300j j
þ 3� 410� 300j j�

¼ 4216

100
¼ 42:16kg

4. MD ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � X


 



¼ 1

100
8� 214� 298:84j j þ 14�½

242� 298:84j j þ . . .þ 7�
382� 298:84j j þ 3� 410� 298:84j j�

¼ 4190:48

100
¼ 41:90kg

5. MDMe

MDMe ¼ 1Xn

i¼1
f i

Xn
i¼1

f i xi �Mej j

¼ 1

100
8� 214� 294:89j j þ 14�½

242� 294:89j j þ . . .þ 7�
382� 294:89j j þ 3� 410� 294:89j j�

¼ 4214

100
¼ 42:14kg

MDMo ¼ 1X n

i¼1
f i

Xn
i¼1

f i xi �Moj j

¼ 1

100
8� 214� 275:60j j þ 14½

� 242� 275:60j j þ � � � þ 7�
382� 275:60j j þ 3� 410� 275:60j j�

¼ 4480

100
¼ 44:80kg

3.2.1.3 Standard Deviation
To avoid the criticism of taking only absolute

values of the deviations in case of mean

Class Frequency ( f ) xi CF< fixi xi � 300j j fi xi � 300j j xi � X


 

 f i xi � X



 

 xi �Mej j fi xi �Mej j xi �Moj j f i xi �Moj j
220–228 8 214 8 1712 86 688 84.84 678.72 81 648 62 496

228–256 14 242 22 3388 58 812 56.84 795.76 53 742 34 476

256–284 21 270 43 5670 30 630 28.84 605.64 25 525 6 126

284–312 18 298 61 5364 2 36 0.84 15.12 3 54 22 396

312–340 16 326 77 5216 26 416 27.16 434.56 31 496 50 800

340–368 13 354 90 4602 54 702 55.16 717.08 59 767 78 1014

368–396 6 382 96 2292 82 492 83.16 498.96 87 522 106 636

396–424 4 410 100 1640 110 440 111.16 444.64 115 460 134 536

Total 100 29,884 4216 4190.48 4214 4480

Average 298.84 42.16 41.90 42.14 44.80

Milk class 220–228 228–256 256–284 284–312 312–340 340–368 368–396 396–424

Frequency 8 14 21 18 16 13 6 4
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deviation, a measure known as variance has been
proposed by taking mean of the squared

deviations from arithmetic mean. And the posi-

tive square root of the variance is termed as

standard deviation. Thus we have for N number

of observations X1, X2, X3,. . .,XN for variable

X the variance as σ2X ¼ 1
N

PN
i¼1

Xi � X
� �2

, where X

is the arithmetic mean of the variable X based on

X1, X2, X3,. . .,XN. Therefore, standard deviation

is given as σX ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

Xi � X
� �2s

For grouped data variance is defined as

follows:

For a set of N number of observations X1, X2,
X3,. . .,XN, grouped in “n” number of classes with

mid-values and frequencies of different classes

as given below

Mid-values(xi) x1 x2 x3. . .,xi,. . .xn�2 xn�1 xn
Frequency f1 f2 f3. . .,fi,. . .fn�2 fn�1 fn

Variance is given as σ2X ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � X
� �2

and the standard deviation as

σX ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Xn

i¼1

f i

Xn
i¼1

f i xi � X
� �2vuuuut

Variance can also be written as:

1. Ungrouped data

σ2X ¼ 1

N

XN
i¼1

Xi�X
� �2 ¼ 1

N

XN
i¼1

Xi
2þX

2� 2Xi:X
� 	

¼ 1

N

XN
i¼1

Xi
2� 2X

1

N

XN
i¼1

Xiþ 1

N

XN
i¼1

X
2

¼ 1

N

XN
i¼1

X2
i �2X

2þX
2 ¼ 1

N

XN
i¼1

X2
i �X

2

2. Similarly for grouped data

σ2X ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � X
� �2 ¼ 1Xn

i¼1

f i

Xn
i¼1

f i xi
2 þ X

2 � 2xi:X
� 	

¼ 1Xn
i¼1

f i

Xn
i¼1

f ixi
2 � 2X

1Xn
i¼1

f i

Xn
i¼1

f ixi þ
1Xn

i¼1

f i

Xn
i¼1

f iX
2

¼ 1Xn
i¼1

f i

Xn
i¼1

f ixi
2 � 2X

2 þ X
2 ¼ 1Xn

i¼1

f i

Xn
i¼1

f ixi
2 � X

2

where fi and xi are the frequency and mid-value

of the i-th class.

Example 3.25

Find the variance of meat weight (kg) of ten

different breeds of sheep from the following data.

Method 1: Using the σ2X ¼ 1

N

XN
i¼1

Xi � X
� �2

Let us construct the following table and

get the totals and average of each column. From

the first column we get arithmetic mean as

20.4 kg.

Breed of sheep

Meat (kg) at

12 month age (xi) Xi � X
� �2

Gaddi 14 40.96

Rampur Bushair 18 5.76

Chokla 18 5.76

Nali 18 5.76

(continued)

Breed of

sheep Gaddi
Rampur
Bushair Chokla Nali Marwari Magra Malpura Sonadi Patanwadi Muzaffarnagari

Meat (kg) at

12 month age

14 18 18 18 21 28 21 19 22 25
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Breed of sheep

Meat (kg) at

12 month age (xi) Xi � X
� �2

Marwari 21 0.36

Magra 28 57.76

Malpura 21 0.36

Sonadi 19 1.96

Patanwadi 22 2.56

Muzaffarnagari 25 21.16

Total 204 142.4

Mean 20.4 14.24

Now using this value of arithmetic mean,

one can have σ2X ¼ 1

N

XN
i¼1

xi � X
� �2 ¼ 142:4

10
¼

14:24kg2

Method 2 Using the formula σ2X ¼ 1
N

XN
i¼1

X2
i � X

2

Let us construct the following table and get

the totals and average of each column. Using the

arithmetic mean from first column in the above

formula for variance, we have:

Breed of Sheep

Meat (kg) at

12 month age (xi) Xi
2

Gaddi 14 196

Rampur Bushair 18 324

Chokla 18 324

Nali 18 324

Marwari 21 441

Magra 28 784

Malpura 21 441

Sonadi 19 361

Patanwadi 22 484

Muzaffarnagari 25 625

Total 204 4304

Mean 20.4 430.4

σ2X ¼ 1

N

XN
i¼1

X2
i � X

2 ¼ 430:4� 20:42 ¼ 14:24kg2

For calculation of variance from frequency dis-

tribution, let us take the following example:

Example 3.26

Using the table of frequency distribution for

100 poultry birds with respect to their egg-laying

capacity per year, find out the variance.

Class Frequency xi fixi xi-AM (xi-AM)2 fi(xi-AM)2

117–144 5 130.50 652.50 90.72 8230.1184 41150.59

145–172 10 158.50 1585.00 62.72 3933.7984 39337.98

173–200 14 186.50 2611.00 34.72 1205.4784 16876.70

201–228 31 214.50 6650.00 6.72 45.1584 1399.91

229–256 20 242.50 4850.00 21.28 452.8384 9056.77

257–284 10 270.50 2705.00 49.28 2428.5184 24285.18

285–312 7 298.50 2090.00 77.28 5972.1984 41805.39

313–340 3 326.50 979.50 105.28 11083.8784 33251.64

Total 1828.00 22122.00 207164.20

Average 221.20 2071.642

Egg class 117–144 145–172 173–200 201–228 229–256 257–284 285–312 313–340

Frequency 5 10 14 31 20 10 7 3
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From the above data, mean is calculated to be

27.585 cm, and using method 1 σ2X ¼ 1Pn
i¼1 f iXn

i¼1

f i xi � X
� �2 ¼ 1

100
� 207164:2 ¼ 2071:64

and using method 2σ2X ¼ 1Pn
i¼1 f i

Xn
i¼1

f ixi
2� X

2 ¼

51009:93� 221:222 ¼ 2071:64

Thus, both the methods’ result same variance.

Standard deviation worked out from the vari-

ance is þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p ¼ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2071:64

p ¼ 45:52no:
Variance is the squared quantity of standard

deviation, as such properties of standard devia-

tion and variance are same; moreover variance is

easier to handle than standard deviation because

of no question of taking square root. In the fol-

lowing sections, we shall discuss the important

merits and demerits of variance.

Merits and Demerits of Variance

Variance is a good measure of dispersion as it is

defined clearly, is based on all observations, is

easy to understand, is easy to put under mathe-

matical treatments, ranges between zero to infin-

ity, and is least affected by sampling fluctuations

or extreme values. Let us examine some of the

important properties of variance.

(i) Variance for a set of constant is zero.

Intuitively, variance measures the variability

among the values of the observations; if there is

no variability among the values of the

observations (as all are same), question of mea-

suring the variability does not arise at al.

Mathematically,σ2X ¼ 1Pn
i¼1 f i

Xn
i¼1

f i xi � X
� �2

;

now for the present situation, xi ¼ c (say) for all

observations, and as a result the arithmetic mean

of the constants “c” is also “c,” i.e., σ2X ¼
1Pn

i¼1

f i

Xn
i¼1

f i c� cð Þ2 ¼ 1Pn
i¼1

f i

Xn
i¼1

f i0
2 ¼ 0

(ii) Variance does not depend on change of ori-
gin but depends on change of scale.

Let us suppose a variable Q is changed to P,
such that P ¼ a + bQ, where a and b are

constants. If Q and σ2Q are the arithmetic mean

and variance, respectively, for the variable Q,

then what could be the variance for P?

We know that σ2P ¼ 1Pn
i¼1

f i

Xn
i¼1

f i Pi � P
� �2

¼ 1Pn
i¼1

f i

Xn
i¼1

f i aþ bQi � a� bQ
� �2

¼ 1Pn
i¼1

f i

Xn
i¼1

b2f i Qi � Q
� �2 ¼ b2σ2Q

Class Frequency xi fixi xi
2 fixi

2

117–144 5 130.5 652.5 17030.25 85151.25

145–172 10 158.5 1585 25122.25 251222.5

173–200 14 186.5 2611 34782.25 486951.5

201–228 31 214.5 6649.5 46010.25 1426317.75

229–256 20 242.5 4850 58806.25 1,176,125

257–284 10 270.5 2705 73170.25 731702.5

285–312 7 298.5 2089.5 89102.25 623715.75

313–340 3 326.5 979.5 106602.25 319806.75

Total 100 1828 22,122 5100993.000

Average 221.22 51009.93
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Thus, the variance of P depends only on

change in scale “b,” not on change in origin.

Similarly, σy ¼ s:d Pð Þ ¼ bj jσQ ¼ bj js:d: Qð Þ

Example 3.27

If the relation between weight (Y ) and length (X)

of fish is given as Y ¼ 5 + 0.5X and the σX
2 ¼

10.2 then find the standard deviation of Y.

Solution We know that σ2Y ¼ b2σ2X ; here

b ¼ 0.5, so σ2Y ¼ 0:5ð Þ2 � 10:2 ¼ 2:55.

Standard deviation σY ¼ þ√ 2:55ð Þ ¼ 1:596

(iii) Composite variance of “k” number of

samples having arithmetic means

x1, x2, x3, . . . , xk, variances σ1
2 σ2

2 σ3
2.......

σi
2.... σk

2 with n1, n2, n3,. . ., nk number of

observations, respectively, is

Samples 1 2 3 4. . . i . . . K

No. of

observations

n1 n2 n3 n4 ni . . . Nk

AM x1 x2 x3 x4 xi xk
Variance σ1

2 σ2
2 σ3

2 σ4
2 σi

2 σk
2

σ2 ¼ 1Pk
i¼1

ni

Xk
i¼1

niσ
2
i þ

Xk
i¼1

nid
2
i

" #
, where σi

2 is

the variance of i-th sample with “ni”

observations, and di ¼ xi � X, where X is the

combined arithmetic mean of all the samples.

Let us put k ¼ 2, the composite variance

σ2 ¼ 1

n1 þ n2
n1σ

2
1 þ n2σ

2
2 þ n1 x1 � xð Þ2 þ n2 x2 � xð Þ2

h i
, where, x ¼ n1x1 þ n2x2

n1 þ n2

¼ 1

n1 þ n2

�
n1σ

2
1 þ n2σ

2
2 þ n1 x1 � n1x1 þ n2x2

n1 þ n2

� �2

þ n2 x2 � n1x1 þ n2x2
n1 þ n2

� �2

¼ 1

n1 þ n2

�
n1σ

2
1 þ n2σ

2
2 þ n1

n1x1 þ n2x1 � n1x1 � n2x2
n1 þ n2

� �2

þ n2
n1x2 þ n2x2 � n1x1 � n2x2

n1 þ n2

� �2

¼ 1

n1 þ n2
n1σ

2
1 þ n2σ

2
2 þ n1

n2x1 � n2x2
n1 þ n2

� �2

þ n2
n1x2 � n1x1
n1 þ n2

� �2
" #

¼ 1

n1 þ n2
n1σ

2
1 þ n2σ

2
2 þ n1n

2
2

x1 � x2
n1 þ n2

� �2

þ n2
1
n2

x2 � x1
n1 þ n2

� �2
" #

¼ 1

n1 þ n2
n1σ

2
1 þ n2σ

2
2 þ

n1n2
x1 � x2ð Þ2 n

2
þ n1ð Þ

n1 þ n2ð Þ2
" #

¼ 1

n1 þ n2
n1σ

2
1 þ n2σ

2
2 þ

n1n2
x1 � x2ð Þ2

n1 þ n2ð Þ

" #

Thus, for two samples, one need not to calcu-

late composite mean also to get composite

variance.

Example 3.28

Following data gives the no. of cobs per plant in

two samples of maize. Find out the composite

variance of maize plants.

Characteristics Sample 1 Sample 2

Sample size 40 45

Average number of cobs/plant 12 15

Sample variance 4.2 2.5

Solution Combined variance of two sample is

given as
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σ2 ¼ 1

n1 þ n2
n1σ

2
1 þ n2σ

2
2 þ

n1n2
x1 � x2ð Þ2

n1 þ n2ð Þ

" #

¼ 1

40þ 45
40� 4:2þ 45� 2:5þ 40� 45 12� 15ð Þ2

40þ 45ð Þ

" #

¼ 1

85
168þ 112:5þ 1800 �3ð Þ2

85

" #

¼ 1

85
168þ 112:5þ 190:588½ �

¼ 1

85
471:088½ �

¼ 5:542

3.2.1.4 Quartile Deviation
Quartile deviation is defined as the half of the

difference between the third and first quartile

values of a given set of data; as such it is also

known as semi-interquartile range and is calcu-

lated as QD ¼ Q3�Q1

2
. The usual procedure is to

calculate the quartile values from the given raw

data or frequency distribution and get the quartile

deviation value. It is clear from the definitions

of quartiles as well as the quartile deviation that

this measure may not be based on all obser-

vations; rather a few observations or groups are

considered during calculation of quartile devia-

tion. But it is easy to understand and better than

the range.

3.2.2 Moments

A more general type of measures to describe the

nature of a given set of data is given bymoments. It

can be easily verified that the measures like arith-

metic mean, mean deviations, variances, etc. can

very well be expressed in terms of moments. The

r-th moment of a set of N number of observations

X1, X2, X3,. . .,XN for variable X about an arbitrary

point A is defined as the mean of the r-th power of

the deviations of the observations from the arbi-

trary point A and is expressed as

μr Að Þ ¼ 1

N

XN
i¼1

Xi � Að Þr, r ¼ 0,1,2,3. . .

For grouped data the r-th moment of a set of

N number of observations X1, X2, X3,. . .,XN for

variable X grouped into “n” number of classes

with mid-values and frequencies of different

classes as given below

Mid-values(xi) x1 x2 x3. . .,xi,. . .xn�2 xn�1 xn
Frequency f1 f2 f3. . .,fi,. . .fn�2 fn�1 fn

about an arbitrary point A is given as

μr Að Þ ¼ 1Pn
i¼1

f i

Xn
i¼1

f i xi � Að Þr.

Let us take A ¼ 0, then we have

μr 0ð Þ ¼ 1Pn
i¼1

f i

Xn
i¼1

f ix
r
i and in particular

μ1 0ð Þ ¼ 1Xn

i¼1
f i

Xn
i¼1

f ixi ¼ AM

putting A ¼ X, we have

1Pn
i¼1

f i

Xn
i¼1

f i xi � X
� �r

, the rthmoment about

mean, known as rth central moment and is

denoted as mr.

Henceforth, we shall denote the raw moments

and central moments with “μ” and “m,”
respectively.

It can be noted that

μ0 Að Þ ¼ m0 ¼ 1 and μ1 0ð Þ ¼ X, m1 ¼ 0,

m2 ¼ σ2
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Now putting r ¼ 1,2.3.4 we have

Similarly for central moments,

Central Moment Does Not Depend on Change

of Origin but on Scale

Let us suppose a variable Q is changed to P, such

that P ¼ a + bQ, where a and b are constants.

mr Pð Þ ¼ 1Xn
i¼1

f i

Xn
i¼1

f i Pi � P
� �r

¼ 1Xn
i¼1

f i

Xn
i¼1

f i a þ bQi � a� bQ
� �r ¼ 1Xn

i¼1

f i

Xn
i¼1

f i bQi � bQ
� �r

1Xn
i¼1

f i

Xn
i¼1

brf i Qi � Q
� �r ¼ br

1Xn
i¼1

f i

Xn
i¼1

f i Qi � Q
� �r ¼ brmr Qð Þ

Raw data Grouped data

μ1 Að Þ ¼ 1

N

XN
i¼1

Xi � Að Þ ¼ 1

N

XN
i¼1

Xi � A ¼ X � A

μ2 Að Þ ¼ 1

N

XN
i¼1

Xi � Að Þ2

μ3 Að Þ ¼ 1

N

XN
i¼1

Xi � Að Þ3

μ4 Að Þ ¼ 1

N

XN
i¼1

Xi � Að Þ4

μ1 Að Þ ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � Að Þ ¼ 1Xn
i¼1

f i

Xn
i¼1

f ixi � A ¼ x� A

μ2 Að Þ ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � Að Þ2

μ3 Að Þ ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � Að Þ3

μ4 Að Þ ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � Að Þ4

Raw data Grouped data

m1 ¼ 1

N

XN
i¼1

Xi � X
� � ¼ 1

N

XN
i¼1

Xi � X ¼ X � X ¼ 0

m2 ¼ 1

N

XN
i¼1

Xi � X
� �2 ¼ Variance

m3 ¼ 1

N

XN
i¼1

Xi � X
� �3

m4 ¼ 1

N

XN
i¼1

Xi � X
� �4

m1 ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � X
� � ¼ 1Xn

i¼1

f i

Xn
i¼1

f ixi � X ¼ X � X ¼ 0

m2 ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � X
� �2 ¼ Variance

m3 ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � X
� �3

m4 ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � X
� �4
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Conversion of Moments

1. Conversion of central moments to raw
moments about an arbitrary origin.

Let us suppose we have the mid-values of

different classes of the variable X denoted by xi
and that the mean of variable is denoted by x; the

arbitrary origin is “A.”

∴ mr ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � xð Þr ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � A� xþ Að Þr

¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � Að Þ � x� Að Þð Þr

¼ 1Xn
i¼1

f i

Xn
i¼1

f i
�
xi � Að Þr �

r

1

 !
xi � Að Þr�1 x� Að Þ þ

r

2

 !
xi � Að Þr�2 x� Að Þ2 � . . .

þ �1ð Þr�1
r

r � 1

 !
xi � Að Þ x� Að Þr�1 þ �1ð Þr

r

r

 !
xi � Að Þ0 x� Að Þr�

¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � Að Þr �
r

1

 !
1Xn

i¼1

f i

Xn
i¼1

f i xi � Að Þr�1 x� Að Þ þ
r

2

 !
1Xn

i¼1

f i

Xn
i¼1

f i xi � Að Þr�2 x� Að Þ2 � . . .

þ �1ð Þr�1
r

r � 1

 !
1Xn

i¼1

f i

Xn
i¼1

f i xi � Að Þ x� Að Þr�1 þ �1ð Þr
r

r

 !
1Xn

i¼1

f i

Xn
i¼1

f i x� Að Þr

¼ μr �
r

1

 !
μr�1μ1 þ

r

2

 !
μr�2μ

2
1
þ . . .þ �1ð Þr�1

r

r � 1

 !
μ1μ

r�1
1

þ �1ð Þr
r

r

 !
μ r

1

, μ1 ¼
1

N

Xn
i¼1

f i xi � Að Þ

¼ 1

N

Xn
i¼1

f i xi � Að Þ

¼ x� A

2
66666664

3
77777775

Using the above relationship and putting

r ¼1,2,3,4, one can find out

m1 ¼ 0

m2 ¼ μ2 � 2

1

� �
μ2�1μ1 þ 2

2

� �
μ2�2μ

2
1

¼ μ2 � 2μ1μ1 þ μ2
1

¼ μ2 � μ2
1

m3 ¼ μ3 � 3

1

� �
μ3�1μ1 þ 3

2

� �
μ3�2μ

2
1
� 3

3

� �
μ3�3μ

3
1

¼ μ3 � 3μ2μ1 þ 3μ1μ
2
1
� μ3

1

¼ μ3 � 3μ2μ1 þ 2μ3
1

m4 ¼ μ4 � 4

1

� �
μ4�1μ1 þ 4

2

� �
μ4�2μ

2
1
� 4

3

� �
μ4�3μ

3
1
þ 4

4

� �
μ4�4μ

4
1

¼ μ4 � 4μ3μ1 þ 6μ2μ
2
1
� 4μ1μ

3
1
þ μ4

1

¼ μ4 � 4μ3μ1 þ 6μ2μ
2
1
� 3μ4

1
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2. Conversion of raw moments about an arbi-

trary origin to central moments.

Let us suppose we have the mid-values of

different classes of the variable X denoted by xi

and that the mean of variable is denoted by x; also

the arbitrary origin is “A.”
Let us suppose the arbitrary origin is “A.”

∴μr ¼
1Xn

i¼1

f i

Xn
i¼1

f i xi � Að Þr ¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � x� Aþ xð Þr

¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � xð Þ þ x� Að Þð Þr

¼ 1Xn
i¼1

f i

Xn
i¼1

f i
�
xi � xð Þr þ

r

1

 !
xi � xð Þr�1 x� Að Þ

þ
r

2

 !
xi � xð Þr�2 x� Að Þ2 � . . .þ

r

r � 1

 !
xi � xð Þ x� Að Þ þ

r

r

 !
xi � xð Þ0 x� Að Þr�

¼ 1Xn
i¼1

f i

Xn
i¼1

f i xi � xð Þr þ
r

1

 !
1Xn

i¼1

f i

Xn
i¼1

f i xi � xð Þr�1 x� Að Þ

þ
r

2

 !
1Xn

i¼1

f i

Xn
i¼1

f i xi � xð Þr�2 x� Að Þ2 þ . . .þ
r

r � 1

 !
1Xn

i¼1

f i

Xn
i¼1

f i xi � xð Þ x� Að Þr�1 þ
r

r

 !
1Xn

i¼1

f i

Xn
i¼1

f i x� Að Þr

¼ mr þ
r

1

 !
mr�1μ1 þ

r

2

 !
mr�2μ2

1
þ . . .þ

r

r � 1

 !
m1μr�1

1
þ

r

r

 !
μ r

1
, μ1 ¼ x� A½ �

Using the above relationship and putting r ¼1,

2, 3, 4, one can find out

μ1 ¼ m1 þ 2

1

� �
m1�1μ1 ¼ 0þ μ1

μ2 ¼ m2 þ 2

1

� �
m2�1μ1 þ 2

2

� �
m2�2μ21

¼ m2 þ 2m1μ1 þ μ2
1

¼ m2 þ μ2
1

μ3 ¼ m3 þ 3

1

� �
m3�1μ1 þ 3

2

� �
m3�2μ21 þ

3

3

� �
m3�3μ31

¼ m3 þ 3m2μ1 þ 3m1μ21 þ μ3
1

¼ m3 þ 3m2μ1 þ 3� 0μ2
1
þ μ3

1

¼ m3 þ 3m2μ1 þ μ3
1

μ4 ¼ m3 þ 4

1

� �
m4�1μ1 þ 4

2

� �
m4�2μ2

1

þ 4

3

� �
m4�3μ31 þ

4

4

� �
m4�4μ41

¼ m3 þ 4m3μ1 þ 6m2μ21 þ 4m1μ31 þ μ4
1

¼ m3 þ 4m3μ1 þ 6m2μ21 þ μ4
1

,m1 ¼ 0½ �

Sheppard’s Correction for Moments

During calculation of moments from grouped

data, we assume that in any class, all the

observations are equal to the mid-value (class

mark) of the particular class. Actually, this may

not be true; the values within a class also vary

among themselves. Because of this assumption,

error is automatically introduced; this error is

known as error due to grouping. To correct

these errors due to grouping for different

moments, Sheppard’s correction is introduced.

Corrections adopted for first four raw and central

moments are given below:
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where “h” is the class width.

Sheppard’s correction should be used when

(i) total frequency should be very large, prefera-

bly > 1000; (ii) no. of classes is not too many,

preferably <20; (iii) only the frequency at both

the ends of the distribution approaches to zero

values; and (iv) the frequency distribution is

moderately skewed (discussed later in this

chapter).

Merits and Demerits of Moments

Moments are clearly defined and based on

all observations. Moments are more general

class of measures than the measures of central

tendency and dispersion; these take care of both

the central tendency and dispersion. In the

subsequent section, we shall see that moments

have got further uses in measuring the horizontal

as well as vertical departure of the frequency

distributions.

Example 3.29

Compute the first four raw moments about the

value 20 and the four central moments from the

following data on fruits per plant from 1045

plants of ladies’ finger (okra/bhindi). Use

Sheppard’s correction for moments for the fol-

lowing distribution.

(a) Method 1: Let us make the following table:

Raw moments Central moments

μ1 correctedð Þ ¼ No correction needed m1 ¼ 0

μ2 correctedð Þ ¼ μ2 uncorrectedð Þ � h2

12
m2 correctedð Þ ¼ m2 uncorrectedð Þ � h2

12

μ3 correctedð Þ ¼ μ3 uncorrectedð Þ � h2

4
μ1 m3 ¼ no correction needed

μ4 correctedð Þ ¼ μ4 uncorrectedð Þ � h2

2
μ2 uncorrectedð Þ þ 7

240
h4 m4 correctedð Þ ¼ m4 uncorrectedð Þ � h2

2
m2 uncorrectedð Þ þ 7

240
h4

Fruit

no./plant 4–6 7–9 10–12 13–15 16–18 19–21 22–24 25–27 28–30 31–33 34–36 37–39 40–42 43–45

Frequency 54 67 83 94 111 157 104 91 74 66 52 45 32 15

Fruit

no./plant

Frequency

( fi)

Class

mark

xi xi � 20ð Þ f i xi � 20ð Þ xi � 20ð Þ2 f i xi � 20ð Þ2 xi � 20ð Þ3 f i xi � 20ð Þ3 xi � 20ð Þ4 f i xi � 20ð Þ4
4–6 54 5 �15 �810 225.00 12,150 �3375.00 �182250.00 50625.00 2733750.00

7–9 67 8 �12 �804 144.00 9648 �1728.00 �115776.00 20736.00 1389312.00

10–12 83 11 �9 �747 81.00 6723 �729.00 �60507.00 6561.00 544563.00

13–15 94 14 �6 �564 36.00 3384 �216.00 �20304.00 1296.00 121824.00

16–18 111 17 �3 �333 9.00 999 �27.00 �2997.00 81.00 8991.00

19–21 157 20 0 0 0.00 0 0.00 0.00 0.00 0.00

22–24 104 23 3 312 9.00 936 27.00 2808.00 81.00 8424.00

25–27 91 26 6 546 36.00 3276 216.00 19656.00 1296.00 117936.00

28–30 74 29 9 666 81.00 5994 729.00 53946.00 6561.00 485514.00

31–33 66 32 12 792 144.00 9504 1728.00 114048.00 20736.00 1368576.00

34–36 52 35 15 780 225.00 11,700 3375.00 175500.00 50625.00 2632500.00

37–39 45 38 18 810 324.00 14,580 5832.00 262440.00 104976.00 4723920.00

40–42 32 41 21 672 441.00 14,112 9261.00 296352.00 194481.00 6223392.00

43–45 15 44 24 360 576.00 8640 13824.00 207360.00 331776.00 4976640.00

Total 1045 1680 101,646 750,276 25,335,342

Average 1.608 97.269 717.967 24244.346
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Thus, from the above table, we have the raw

moments about 20 as

μ1 ¼ 1:608
μ2 ¼ 97:269
μ3 ¼ 717:967
μ4 ¼ 24244:346

Using the above raw moments and the rela-

tionship for conversions of raw moments to cen-

tral moments, one can have the following central

moments:

m1 ¼ 0

m2 ¼ μ2 � μ2
1
¼ 97:269� 1:6082 ¼ 97:269� 2:586 ¼ 94:683

m3 ¼ μ3 � 3μ2μ1 þ 2μ3
1
¼ 717:967� 3x97:269x1:608þ 2x1:6083

¼ 717:967� 469:226þ 8:315
¼ 1195:508

m4 ¼ μ4 � 4μ3μ1 þ 6μ2μ
2
1
� 3μ4

1

¼ 24244:346� 4x717:967� 1:608þ 6x97:269� 1:6082 � 3x1:6084

¼ 24244:346� 4617:964þ 1509:0297� 20:0057
¼ 21115:406

So the arithmetic mean and standard deviation

of the number of fruits per plant are:

We have μ1 ¼ x� A ) x ¼ μ1 þ A

Arithmetic mean x ¼ 20þ μ1 ¼ 20 þ 1:608

¼ 21:608 and

Standard deviation sd ¼ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
94:683

p ¼ 9:7305

(b) Method 2: Instead of using this relationship

between raw and central moments, one can

directly use the formulae for calculation of

different central moments. For the purpose,

let us make the following table:
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From the above table, one can easily verify that

AM¼ 21.608,m1 ¼ 0, andm2 ¼ 94.684, and these

are exactly the same as what we got using the

relationship between the central and raw moments.

Now using the formulae for correction of

moments as per Sheppard’s correction, one can

have the following corrected moments:

3.2.3 Relative Measures of Dispersion

The absolute measures discussed in the previous

section are not unit-free; as such if one wants to

compare the dispersions of different variables, it

is not possible because different variables are

measured in different units. Relative measures

of dispersions are mainly the coefficients based

on the absolute measures. As such these do not

have any definite units; these can be used to

compare the dispersions of different variables

measured in different units. In literature, based

on almost all the absolute measures of dispersion,

one can find different coefficients of dispersions

developed. In the following section, let us dis-

cuss those coefficients of dispersion.

(i) Based on range: Coefficient of dispersion

based on range is defined as Xmax�Xmin

XmaxþXmin
, where

Xmax and Xmin are the maximum and mini-

mum values of the variable “X.”

(ii) Based on quartile deviation: Coefficient of

dispersion based on quartiles is defined as
Q3�Q1

2
Q3þQ1

2

¼ Q3�Q1

Q3þQ1

(iii) Based on mean deviation: Coefficient of

dispersion based on mean deviation

from mean/median/mode is given by
MD mean=median=mode etc:

Mean=Median=Mode

(iv) Based on standard deviation: Coefficient of

dispersion based on standard deviation is

defined as σX
X
, where σX and X are, respec-

tively, the standard deviation and arithmetic

mean of the variable “X.” This measure

takes care of two most widely used absolute

measures of central tendency (arithmetic

mean) and dispersion (standard deviation)

and is termed as “coefficient of variation

(CV).” Most widely used form of coeffi-

cient of variation is to express it in percent-

age form, i.e., σX
X
� 100:

Example 3.30

Let us take the problem of milk yield per

month for 100 cows as given in the following

table. Find out the different relative measures of

dispersion.

Raw moments Central moments

μ1 correctedð Þ ¼ No correction needed ¼ 1:608 m1 ¼ 0

μ2 correctedð Þ ¼ μ2 uncorrectedð Þ � h2

12

¼ 97:269� 22

12
¼ 96:936

m2 correctedð Þ ¼ m2 uncorrectedð Þ � h2

12

¼ 94:684� 22

12
¼ 94:351

μ3 correctedð Þ ¼ μ3 uncorrectedð Þ � h2

4
μ1

¼ 717:967� 1:608 ¼ 716:359

m3 ¼ no correction needed

μ4 correctedð Þ ¼ μ4 uncorrectedð Þ � h2

2
μ2 uncorrectedð Þ þ 7

240
h4

¼ 24244:346� 2� 97:269þ 0:029� 16

¼ 24244:813� 194:538
¼ 24050:275

m4 correctedð Þ ¼ m4 uncorrectedð Þ � h2

2
m2 uncorrectedð Þ þ 7

240
h4

¼ 21115:357� 2� 94:684þ 0:029� 16

¼ 21115:357� 189:368þ 0:464
¼ 20926:453

Milk class 200–228 228–256 256–284 284–312 312–340 340–368 368–396 396–424

Frequency 8 14 21 18 16 13 6 4
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Solution From the given information, the fol-

lowing table is prepared, and using the formulae

for calculation of arithmetic mean, median,

mode, and standard deviations are calculated.

AM ¼ 298.84 kg, median ¼ 294.889 kg,

mode ¼ 275.6 kg, Q1 ¼ 260, Q3 ¼ 336.5, and

standard deviation ¼ 51.24 kg

From the above table, we have MD

(300) ¼ 42.16, MD ¼ 41.90, MDMe ¼ 42.14,

and MDMo ¼ 44.80.

Thus, the Coefficient of Dispersion Is Based on

(a) Range:
Xmax � Xmin

Xmax þ Xmin

¼ 424� 220

424þ 220
¼ 204

644
¼

0:3167

(b) Quartile deviation:

Q3�Q1

2
Q3þQ1

2

¼ Q3 � Q1

Q3 þ Q1

¼
336:5� 260

336:5þ 260
¼ 76:5

596:5
¼ 0:128

(c) Mean deviation about:

(i) MD mean

Mean
¼ 41:90

298:84
¼ 0:140

(ii) MD median

Median
¼ 42:14

294:889
¼ 0:143

(iii) MD mode

Mode
¼ 44:80

275:6
¼ 0:163

(d) Standard deviation ¼ coefficient of variation

CVð Þ ¼ SDX

X
¼ 51:24

298:84 ¼ 0:1714 or in percent-

age form CV% ¼ SDX

X
x100 ¼ 51:24

298:84 x100 ¼
17:14%

3.3 Skewness and Kurtosis

With the introduction of relative measures of

dispersion in the previous section, it is now

clear that neither the measure of central ten-

dency nor the measure of dispersion alone is

sufficient to extract the inherent characteristics

of a given set of data. We need to combine

both these measures together. We can come

across with a situation where two frequency

distributions have same measures of central

tendency as well as measure of dispersion, but

they differ widely in their nature. Let us take

the following example where we can see that

both the frequency distributions have almost

same arithmetic mean and standard deviation,

yet the nature of these two distributions is

different.

Example 3.31

Given below are the two frequency distributions

for panicle length (mm) of 175 panicles in each

case. Calculation of data indicates that the two

distributions have got means (AM1 ¼ 127.371

and AM2 ¼ 127.171) and standard deviations

(sd1 ¼ 34.234 and sd2 ¼ 34.428) almost same.

Thus, both the distributions have almost same

measure of central tendency as well as measure

of dispersion. But a close look at the graphs,

drawn for two frequency distributions, shows

that they differ widely in nature.

Frequency

distribution

(A)

Frequency

distribution

(B)

Class Frequency Class Frequency

112.5–117.5 9 112.5–117.5 9

117.5–122.5 25 117.5–122.5 23

(continued)

Class
Frequency
( f ) xi CF< fixi fixi

2 xi � X


 

 f i xi � X



 

 xi �Mej j fi xi �Mej j xi �Moj j f i xi �Moj j
200–228 8 214 8 1712 366,368 84.84 678.72 81 648 62 496

228–256 14 242 22 3388 819,896 56.84 795.76 53 742 34 476

256–284 21 270 43 5670 1,530,900 28.84 605.64 25 525 6 126

284–312 18 298 61 5364 1,598,472 0.84 15.12 3 54 22 396

312–340 16 326 77 5216 1,700,416 27.16 434.56 31 496 50 800

340–368 13 354 90 4602 1,629,108 55.16 717.08 59 767 78 1014

368–396 6 382 96 2292 875,544 83.16 498.96 87 522 106 636

396–424 4 410 100 1640 672,400 111.16 444.64 115 460 134 536

Total 100 – – 29,884 9,193,104 4190.48 – 4214 – 4480

Average – – – 298.84 91,931 41.90 – 42.14 – 44.80
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Frequency

distribution

(A)

Frequency

distribution

(B)

Class Frequency Class Frequency

122.5–127.5 55 122.5–127.5 69

127.5–132.5 52 127.5–132.5 37

132.5–137.5 28 132.5–137.5 31

137.5–142.5 6 137.5–142.5 6

AM 127.371 AM 127.171

Variance 34.234 Variance 34.428

Thus, either the measure of central tendency

or the measure of dispersion in isolation or in

combination may not always speak about the

nature of the data. So, along with the measures

of dispersion and central tendency, one needs to

have other techniques/measures to extract the

original nature of the given set of data. Skewness

and kurtosis provide additional information

about the nature of the data set in this regard.

3.3.1 Skewness

Skewness of a frequency distribution is the

departure of the frequency distribution from

symmetry. Based on the skewness, a distribution

is either symmetric or asymmetric. A frequency

distribution of a discrete variable X is said to be

symmetric about X’, a value of the variable if the
frequency of the variable in X0 � δ is same as the

frequency of the variable in X0 + δ, for different
values of δ. Similarly a frequency distribution of

a continuous variable X is said to be symmetric

about X0, a value of the variable, if the frequency
density of the variable in X0 � δ is same as the

frequency density of the variable in X0 + δ, for
different values of δ.

Again an asymmetric/skewed distribution

may be positively skewed or negatively skewed

depending upon the longer tail on higher or lower

values, respectively.
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Given a frequency distribution, how should

one know whether it is symmetric or asymmetric

distribution? In fact in literature, there are differ-

ent measures of skewness; among these

Pearsonian measures, Bowley’s measure,

measures based on moments, etc. are widely

used.

Measures of Skewness

(a) Based on the relative position of mean,

median, and mode, the frequency distribu-

tion is

(i) Symmetric if mean ¼ median ¼
mode.

(ii) Positively skewed if mean > median

> mode.

(iii) Negatively skewed if mean < median

< mode.Problem with this measure is

that if uniform trend is not found

among the AM, median, and mode,

then it is difficult to use the same

measure.

(b) Pearsonian type I measure: According to

this measure Skewness ¼ Mean�Modeð Þ
Standard deviation

,

This measure assumes that there exists

only one mode for the frequency distribu-

tion. But in a frequency distribution, mode

may not exist or may have more than one

mode, in these cases this definition does not

work properly. To overcome these

problems, Pearsonian type II measure has

been proposed.

(c) Pearsonian type II measure: According to

this measure Skewness ¼ 3 Mean�Medianð Þ
Standard deviation

.

In this measure instead of using mode like

in type I measure, median has been used

based on the empirical relationship (mean-

mode)¼ 3(mean-median). But this relation-

ship is true for moderately skewed dis-

tribution, so moderate skewness of the

distribution is assumed, which may not

always hold true.

(d) Bowley’s measure: According to this mea-

sure, Skewness ¼ Q3�Q2ð Þ� Q2�Q1ð Þ
Q3�Q2ð Þþ Q2�Q1ð Þ, thus the

measure is entirely dependent on quartile

values and as such criticized for not consid-

ering all the values/observations of a given

data set.

(e) Measure based on moments: According

to this measure skewness γ1 ¼
ffiffiffi
β

p
1 ¼

m3ffiffiffiffiffiffi
m3

2

p ¼ m3

sd3
, where m3 and m2 are the third

and second central moments, respectively.

This type of measure is widely used. The

sign of
ffiffiffi
β

p
1 depends on the sign of m3.

Limiting value of the above measure is the-

oretically �1 to + 1. It may be noted

that all the measures of skewness have no

units; these are pure numbers and equal to

zero when the distribution is symmetric.

Frequency distribution

Symmetric
(similar tails at both the
lower and higher values)

Asymmetric/Skewed

Positively skewed
(Longer tail at higher values)

Negatively skewed
(Longer tail at lower values)

+ve skewed

-ve skewed
Symmetric
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3.3.2 Kurtosis

Inspite of having same measure of central ten-

dency (AM), dispersion (variance), and skew-

ness, two frequency distributions may vary in

their nature; these may differ in peakedness.

Peakedness of frequency distribution is termed
as kurtosis. Kurtosis is measured in terms of

β2 � 3 ¼ m4

m2
2
� 3 ¼ γ2, where m4 and m2 are

the fourth and second central moments, respec-

tively. Depending upon the value γ2, a frequency
distribution is termed leptokurtic γ2 > 0ð Þ,
platykurtic γ2 < 0ð Þ, or mesokurtic γ2 ¼ 0ð Þ.

Leptokurtic

Mesokurtic

Platykurtic

-3 -2 -1 0 1 2 3

Both the skewness and kurtosis have got great
practical significance. These two picturize the

concentration of the observation in different
ranges for a given set of data.

Thus, to know the nature of data, measures of

central tendency and measures of dispersion

along with skewness and kurtosis of the fre-

quency distribution are essential.

Calculation of Descriptive Statistics Through

MS Excel

Step 1: Go to Data Analysis submenu of Data in

MS Excel. Select the Descriptive Statistics as

shown below:
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Step 2: Provide the input range and the output

range (where the output is to be placed upon

analysis), and tick on to Summary Statistics as

show below:

Step 3: Click on OK to get the windows as given

below containing the output.
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Calculation of Descriptive Statistics Through

SPSS

Step 1: When these data are transformed to

SPSS. Data editor, either copying from the

sources or importing, looks like the following

slide.

Step 2: Go to analysis menu followed by Descrip-

tive Statistics and Descriptive as shown below.
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Step 3: Select the variable for which one wants

the Descriptive statistics and then click on to

Option menu as shown below.

Step 4: From the options, select the required

measures as shown below, and click on to

continue and then OK to get output as below.
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Probability Theory and Its Application 4

4.1 Introduction

In our daily life, we are experienced about the

fact that occurrence or nonoccurrence of any

event/phenomenon is associated with a chance/

uncertainty factor. We are always in search of

likelihood of happening or nonhappening of

event/phenomenon. The farmers who want to

have plant protectional spray on a particular day

will be interested to know the likelihood of

raining before and after spray so that the effect

of spray is not washed out by the occurrence rain.

A fish farm will be interested to spend money on

a particular type of feed only knowing after like-

lihood of increasing body weight of fishes by the

new feed. In statistics, the likelihood of happen-

ing or nonhappening of an event is generally

known as probability. Probability is a mathemat-

ical construction that determines the likelihood

of occurrence or nonoccurrence of events that are

subjected to chance factor. Thus the farmers are

interested to know the probability of occurrence

rain before and after spraying. As we have

already discussed, the subject matter of statistics

is concerned with drawing inference about the

population based on observations recorded,

mostly from sample. In this regard probability

plays a great role. Noting a particular character

(say percentage of cancer patients or percentage

of disease affected area in a field), in a sample the

experimenter wants to infer about the (percent-

age of cancer) population or percentage of

disease-affected area as a whole, with a probabil-

ity. Greater is the probability of drawing accurate

inference about the population; better is the infer-

ence about the population.

Before dealing with the theory of probability,

it is useful to have some knowledge of set theory.

Knowledge of set theory and its laws will help us

in understanding probability theory. In the next

section, we shall discuss the set theory in brief.

Set A set is accumulation or aggregation of

well-defined objects/entities having some specific
and common characteristics. For example, the

fishes in a pond, fishes of weight greater than

1 lb in a pond, fishes with scales in a pond, and

fishes without scales in a pond, all these consti-

tute set of fishes in the pond, set fishes greater

1 lb in the pond, set of scaled fishes in the pond,

and set fishes without scales in the pond, respec-

tively. The individual member of set is called

its element/member/point of the set. If x is a

member of a set “X,” then we denote it as x 2
X that means x belongs to or is an element of

the set X, and if x does not belong to a set X or

x is not a member of the set, then it is denoted as

x =2 X.
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4.2 Types of Set

Finite Set Finite set is a set having finite number

of elements/members, e.g., ripe mangoes in a

tree, integers beween 1 and 100, etc.

Infinite Set A set consisting of infinite number

of elements/member/units is called infinite set.

Infinite set again is of two types: (a) countably

infinite and (b) uncountably infinite. A set

consists of infinite number of elements but

these can be ordered and is known as countably

infinite set, e.g., the set of all integers, i.e.,

X ¼ {x: all integers} ¼ {1, 2, 3, 4, 5,. . .}. On
the other hand, an uncountably infinite set is a set

of elements which can neither be counted nor be

ordered, e.g., the set of numbers in between 0 and

1, i.e., A ¼ {x: 0 < x <1}.

Equal Set Two sets “A” and “B” are said to be

equal if every element of the set “A” is also an

element of the set “B” and vice versa and is

denoted as A ¼ B. Thus, if A ¼ {1,2,3} and

B ¼ {2,3,1}, A ¼ B.

Null Set A set having no element is called

an empty set or null set and is denoted by ϕ.
The set of negative integers between 2 and

3, i.e., A ¼ {x:2 < all negative numbers < 3}.

The set A ¼ {0} is not a null set as it contains an

element zero. Null set is a subset of every set.

Subset A set “A” is said to be a subset of a set

“B” if all the elements of the set A are included in

the set B and we write A � B.

Suppose we have two sets A ¼ {x: 0 < x

(integer) � 3} ¼ {1,2,3} and B ¼ {x: 0 �
x (all numbers) � 3} ¼ {0, 0.1,

0.2,. . .1,. . .2,. . .,3}, then A � B.

It is to be noted that if a set has n elements,

then it has 2n subsets.

Mainly there are three types of fertilizers, viz.,

inorganic, organic, and bio-fertilizers. So each of

the set of inorganic, organic, or bio-fertilizers are

individually the subsets of the set of fertilizers.

Power Set A set of all the subset of a set

A including the null set is called the power set

of A. In tossing a coin, the set of outcomes

would be {H, T}, {H}, and {T}, then the set

[[ϕ, {H}, {T}, {H, T}] is the power set A.

Universal Set Suppose all the sets under con-

sideration are the subsets of a certain set A, then

this set A is called the universal set or the whole

set, and it is generally denoted by U.

If A ¼ {x: all the fertilizers}

B ¼ {x: all inorganic fertilizers}
C ¼ {x: all the organic fertilizers}

D ¼ {x: all the bio-fertilizers}

Therefore, A is the universal set for all the sets B,

C, and D.

Union Set A set A is said to be the union of two

sets B and C if it contains all the elements

belonging to either set B or set C or both, but

no repetition is allowed and is denoted as

A ¼ B [ C. The idea of union can very well be

extended to more than two sets also. Thus,

B [ C ¼ x : x 2 Bor x 2 Cf g. Similarly for

more than two sets Bi (i ¼1, 2, 3. . .n),

[n
i¼1

Bi ¼ x : x2 Bi, for at least one i, i ¼ 1,

2, 3. . .n}.

Example 4.1 In throwing a dice, let A be the set

of all odd faces and B be the set of all even faces.

Find out the union set for A and B.

Solution Thus,

A ¼ {x: all odd faces of the dice} ¼ {1,3,5}

B ¼ {x: all even faces of the dice} ¼ {2,4,6}

A [ B ¼ {x: all faces of the dice} ¼ {1, 2, 3,

4, 5, 6}

Complement The complement of a set A is the

set containing the elements except the elements

of the set A and is denoted by A 0/Ac /Ā. Thus, a

set and its complement divide the universal set
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into two distinct sets. In throwing a dice, the set

of odd faces of the dice is the complement of

the set of all even faces. All elements belonging

to the universal set U but not belonging to

A constitute Ac. Thus a set A 0/Ac /Ā is the com-

plement of the set A if it is constituted of all

the elements of the universal set which are not

members of the set A.

Example 4.2

U ¼ {x: all faces of dice} ¼ {1, 2, 3, 4, 5, 6}.

Now if A ¼ {x: all odd faces of dice} ¼ {1, 3, 5}

then

) Ac ¼ {x: all even faces of dice} ¼ {2, 4, 6}

Example 4.3 If the universal set U ¼ {x: all

fertilizers} and

if A ¼ {x: all inorganic fertilizers}, then
A 0/Ac /Ā¼ {x: all fertilizers excepting inorganic

fertilizers}

Intersection The intersection set of two or more

sets is the set of all elements common to all the

component sets. Thus the intersection of two sets

A and B is the set of all elements contained in

both the sets and is denoted as A \ B. Similarly,

for more than two sets Ai (i ¼ 1, 2,3. . .n), \n
i¼1

Ai

¼ x : x 2Ai; for all i, i ¼ 1, 2, 3. . .n}.

If there is no common element in both the sets,

then A \ B ¼ ϕ (null set).

Example 4.4 In throwing a dice, let A be set of

all faces multiple of three, i.e.,

A ¼ {x: all faces multiple of three of dice}

¼ {3,6}, and B be a set of all even faces, i.e.,

B ¼ {x: all even faces of dice} ¼ {2,4,6}

∴A \ B ¼ 6f g:
Disjoint Set When there exists no common

element among two or more sets, then the sets

are known as disjoint; as such \n
i¼1

Ai ¼ ϕ, where

Ai denotes i-th set.

Example 4.5 Let A ¼ {x: all inorganic

fertilizers}, B ¼ {x: all organic fertilizers}, then
A \ B ¼ ϕ and we call set A and set B as disjoint.

Difference A set consisting of all elements

contained in set A but not in set B is said to be

the difference set of A and B and is denoted as

A�B.

A� B ¼ x : x 2A, butx =2Bf g
Similarly B� A ¼ x : x 2 B, butx =2 Af g is the

set of all elements belonging to the set B but not in

A. It may be noted that a difference set is the subset

of the set from which difference of other set is

being taken, i.e., A� B � A,B� A � B. More-

over, it should also be noted that A�B 6¼ B�A

Example 4.6 Let

A ¼ {x: all fertilizers, i.e., inorganic, organic,

and bio-fertilizers}

B ¼ {x: all inorganic and organic fertilizers}

) A�B ¼ {x: all bio-fertilizers}

4.3 Properties of Sets

The above mentioned sets follow some important

properties. Let us state some of the important

properties without going into those details.

(i) Commutative law for union: If A and B are

two sets, then A [ B ¼ B [ A

(ii) Commutative law for intersection: If A and

B are two sets, then A \ B ¼ B \ A:
(iii) Distributive law of union: If A, B, and

C are three sets, then A [ B \ Cð Þ ¼
A [ Bð Þ \ A [ Cð Þ:

(iv) Distributive law of intersection: If A, B,

and C are three sets, then A \ B [ Cð Þ ¼
A \ Bð Þ [ A \ Cð Þ:

(v) Associative law: If A, B, and C are three

sets, then A [ B [ Cð Þ ¼ A [ Bð Þ [ C

and A \ B \ Cð Þ ¼ A \ Bð Þ \ C:
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(vi) Difference law: If A and B are two

sets, then (i) A� B ¼ A \ Bc and (ii)

A� B ¼ A� A \ Bð Þ ¼ A [ Bð Þ � B:

(vii) Complementary laws: (a) Uc ¼ ϕ and

ϕc ¼ U, (b) A [ U ¼ U, (c) A \ U ¼ A,
(d)A \ Ac ¼ ϕ, (e)A [ ϕ ¼ A, (f)A \ ϕ ¼
ϕ, (g) A [ Ac ¼ U, and (h) Acð Þc ¼ A.

(viii) De Morgan’s law: (a) A [ Bð Þc ¼ Ac \ Bc,

(b) A \ Bð Þc ¼ Ac [ Bc:

4.4 Experiment

So long we have tried to establish probability in

terms of chances or likelihood of occurrence of

events. Such events may be thought of as out-

come of experiments. Now the question is what

do we mean by an experiment? What are its

types? What are its components? In the following

section, we shall try to discuss in brief about

experiment and related terminologies.

(i) Experiment and random experiment: An

experiment is a systematic process or activ-

ity which leads to collection of information

and its analysis on certain objects to answer

to the objectives that the researcher has

already in mind. An experiment may be

regarded as an act which can be repeated

essentially under the same condition. A ran-

dom experiment is an experiment whose

results cannot be predicted in advance or

whose results depend on chance factor. For

example, in throwing a dice, any one face

out of six faces, viz., 1, 2, 3, 4, 5, and 6, can

appear, but nobody knows which face will

appear in any particular throw. The results of

any random experiment are called outcome

of the experiment. In throwing a dice having

six faces, the possible outcomes are 1, 2,

3, 4, 5, or 6. Thus any outcome of any

random experiment is always associated

with chance factor. For an unbiased dice,

each face has got 1/6 chance to appear in

any draw.

(ii) Event: One or more outcomes of a random

experiment constitute event. Event is almost

synonymous to outcome of a random exper-

iment; actually events are set of certain

specified outcomes of random experiment;

on the other hand, outcomes or the elemen-

tary events are the ultimate results of any

random experiment which cannot be

disaggregated further.

Example 4.7 In the experiment of throwing a

dice, appearance of 1, 2, 3, 4, 5, or 6 in any

throw is the outcome of the experiment, but the

three outcomes 1, 3, and 5 or 2, 4, and 6 constitute

two events, viz., event of odd faces and event of

even faces, respectively. Both the events of odd

faces and the even faces can further be

disaggregated into the outcomes of 1, 3, and

5 or 2, 4, and 6, respectively. Again take the

example of tossing an unbiased coin: the

outcomes are head (H) or tail (T). Thus head

and tail both are outcomes as well as elementary

events for the experiment of throwing an

unbiased coin.

(iii) Compound event: When an event is

obtained by combining together two or

more events, then it is known as com-

pound event. For example, in throwing

dice getting multiple of three is a com-

pound event because this will occur if

either or both of the elementary events

3 and 6 occur.

(iv) Trial: When an experiment is repeated

essentially under the same/identical condi-

tion, instead of providing unique result,

provide one of the possible outcomes,

then it is called a trial. In other words,

each performance of a random experiment

is called a trial, and all the trials conducted

under the same condition form a random

experiment. In the example of throwing

coins, each time we throw the coin, it

results in one of the outcomes, head or

tail – thus it is known as trial. When this

trial of throwing coin is repeated, and
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other conditions remain constant, then

these constitute a random experiment of

throwing coin. Take another example:

before releasing any variety, the same is

put under experimentation along with

some check varieties at different situations

(may be locations) under the same experi-

mental protocol; we call these as multi-

locational trials. All these multilocational

trials constitute the varietal experiment.

(v) Mutually exclusive events: Two events are

mutually exclusive or incompatible if the

occurrence or nonoccurrence of one event

precludes the occurrence or nonoccur-

rence of the other event. Let us take the

example of throwing an unbiased coin: if

head appears in any throw, this means tail

cannot appear and vice versa. Thus

appearance of head in any throw

precludes/cancels the appearance of tail

and vice versa. More than two events

may also be mutually exclusive. For exam-

ple, in throwing a dice, any one of the six

faces will appear and other five faces can-

not appear. Thus appearance of one face

precludes/nullifies/cancels the occurrence

of other faces.

(vi) Exhaustive events: Exhaustive event is the
set of all possible outcomes of any random

experiment. For example, in case of

throwing a dice, the set of all the possible

outcomes, viz., 1, 2, 3, 4, 5, and

6, constitutes exhaustive events for the

experiment.

(vii) Independent events: Two or more events

are said to be independent if the occur-

rence or nonoccurrence of an event is not

affected by the occurrence or nonoccur-

rence of other events. In throwing an unbi-

ased coin, the outcome does not have

anything to do with the outcomes of its

previous or subsequent throws. Similarly

in throwing a dice, the result of the second

throw does not depend on the result of the

first, third, fourth, or subsequent throws.

(viii) Equally likely events: Two or more events

of any random experiment are equally

likely when one cannot have any reason

to prefer one event rather than the others.

In tossing coin, there is no reason to prefer

head over tail, because both the faces of

the coin have same chances to appear in

any throw. So the events head and tail are

equally likely.

(ix) Sample space: A sample space is related

with an experiment; more specifically it is

related with the outcomes of the experi-

ment. Actually a sample space is the set of

all possible outcomes of any random

experiment, and each element of the sam-

ple space is known as the sample point or

simply point. Sample space may be finite

or infinite. For example, in throwing dice

the sample space is S ¼ {1,2,3,4,5,6},

a finite sample space. Now if we are

conducting an experiment in the form of

tossing a coin such that the coin is tossed

till a head appears or a specific number of

head appears; in this case the sample space

may be S ¼ [{H}, {T,H},{T,T,H},{T,T,T,

H}. . .]. Thus the time or duration of tele-

phonic talk per day from a particular num-

ber in a particular telephone exchange is

also an example of infinite continuous

sample space, which may be written as

S ¼ {x:0 < t < 24 h}.

(x) Favorable event: By favorable event we

mean the number of outcomes or events,

which entails the happening of an event in

a trial. For example, in throwing an unbi-

ased coin, the number of cases/event

favorable of getting head out of two

alternatives H/T is one, as such either

head or tail is the favorable event.

(xi) Œ (sigma) field: It is the class of events or

set of all subsets of sample space “S.”

4.5 Probability Defined

In its simplest form, probability is a way to

measure the chances of uncertainty. Probability

can be a priori or a posteriori. If a day is cloudy,
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our general knowledge says that there might be

rain. If the weather conditions are cloudy and

humid, then there is probability of late blight of

potato. Thus, such probabilities come from the

logical deduction of the past experience and are

known as a priori probability. On the other hand,

an a posteriori probability is to be ascertained by

conducting planned experiment. For example,

tuition helps in getting better grade by the

students can be established only after placing a

group of students under tuition and recording

their grades with certain probability.

Probability can be explained and defined in

different approaches: (i) the classical or mathe-

matical approach, (ii) the statistical/empirical
approach, and (iii) the axiomatic approach.

According to mathematical or classical

approach, probability of an event A is defined

as P Að Þ ¼ Number of favourable cases for A
Total number of cases

¼ m
n where

the random experiment has resulted in “n”
exhaustive, mutually exclusive, equally likely

events and out of which “m” is favorable to a

particular event “A” with m � 0, n > 0, and

m � n. Thus, according to the conditions above,

0 � P Að Þ � 1. In spite of its simplicity and easy

to understand nature, this definition suffers from

the fact that in many cases, the cases or event

may not be equally likely. Moreover when the

sample space or the number of exhaustive cases

is not finite, then it is difficult to define the

probability.

Example 4.8 Suppose in a throwing coin exper-

iment, out of ten tosses, head has appeared six

times. Hence the probability of the event head in

the above experiment is 6/10 ¼ 0.6.

According to statistical approach probability

of an event, A is defined as P Að Þ ¼ limn!1m
n ,

under the condition that the experiment has been

repeated a great number of times under the same

condition where “m” is the number of times in

which the event A happens in a series of “n” trials
and the above limit exists. This definition also

suffers from the fact that it is not easy to get the

limit always and sometimes limit does not pro-

vide a unique value; also as we increase the

number trials to a great number, it is very diffi-

cult to maintain the identical experimental

condition.

The axiomatic approach of probability has an

intention to overcome the limitations of the other

two definitions. In this approach any function

“P” defined on a Œ (sigma) field satisfying the

following axioms is called probability function

or simply probability.

Axiom I: For any event P Að Þ � 0;A 2Œ
Axiom II: P(S) ¼ 1 (S ¼ sample space)

Axiom III: For any countably infinite number of

mutually exclusive events A1, A2. . . each

belonging to Œ-field P A1 [ A2 [ A3 . . . :ð Þ ¼
P A1ð Þþ P A2ð Þþ P A3ð Þþ . . . :, i.e., P [1

i¼1Ai

� �¼X1
i¼1

P Aið Þ

In the following section, we shall state some

of the important results of probability without

going details in to their proofs.

4.5.1 Important Results in Probability

(i) P ϕð Þ ¼ 0

(ii) If A1, A2, A3, . . .An are n disjoint events each

belonging to Œ-field, then

Example 4.9 In throwing a coin, there two

mutually exclusive equally likely outcomes/

events, head and tail, each with probability 1/2

and 1/2. Hence, P H [ Tð Þ ¼ P Hð Þ þ P Tð Þ ¼ 1=2

þ 1=2 ¼ 1:

(iii) If A is an event in Œ-field, then P(Ac) ¼ 1�
P(A).
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Example 4.10 In the above Example 4.9,

the complement of head is the tail. Hence

P(T ) ¼ 1�P(H ) ¼ 1/2.

(iv) If A1 and A2 are two events in Œ-field and

A1 � A2, then P A1ð Þ � P A2ð Þ:

Example 4.11 Suppose there are two events, A:
{x:1,2,3,4,5}, and B:{2,3,4}, in a sample space S:

{1,2,3,4,5,6}, clearly B � A. Now P(A) ¼ 5/6

and P(B) ¼ 3/6, so P(B) < P(A).
(v) For any two events A and B in the Œ-field,

P A [ Bð Þ ¼ P Að Þ þ P Bð Þ � P A \ Bð Þ:

The above result can also be extended for any “n”

events as follows:

P
[n
i¼1

Ai

!
¼
Xn
i¼1

P Aið Þ �
X

1�i∠j�n

X
P
�
Ai

\
Aj

 !
þ

X
1�i<j<k�n

XX�
Ai

\
Aj

\
Ak

�� . . . . . .

. . . . . .þ �1ð Þ n�1ð ÞP A1
\

A2
\

A3:::::::::
\

An
� �

Example 4.12 In an examination out of

100 students, 70 passed in statistics, 80 in math-

ematics, and 60 in both. Then how many students

passed either in statistics or mathematics or both?

Thus we have P(S) ¼ probability of passing

in statistics ¼ 70/100 ¼ 0.70,

P(M ) ¼ probability of passing in mathemat-

ics ¼ 80/100 ¼ 0.80, and

P S \Mð Þ ¼ probability of passing both the

subjects ¼ 60/100 ¼ 0.60 S SM    M .

∴P S [Mð Þ ¼ P Sð Þ þ P Mð Þ � P S \Mð Þ
¼ 0:70þ 0:80� 0:60 ¼ 0:90

(vi) Boole’s inequality: For any three events A1,

A2, and A3:

(a) P A1 [ A2 [ A3ð Þ �
X3
i¼1

P Aið Þ

(b) P A1 \ A2 \ A3ð Þ �
X3
i¼1

P Aið Þ
X3
i¼1

P Aið Þ � 2

(vii) Conditional probability: Two events A1

and A2 are such that neither P(A1) nor

P(A2) equals to zero, then probability

of happening “A1” fully knowing that

“B” has already happened is known as the

conditional probability of “A1” given

that “A2” has already occurred and is

given as P A1=A2ð Þ ¼ P A1 \ A2ð Þ=P A2ð Þ:
Similarly, the conditional probability

of “A2” given that “A1” has already

occurred is given by P A2=A1ð Þ ¼
P A1 \ A2ð Þ=P A1ð Þ.

Example 4.13 In a paddy field, 50 % is affected

by BPH (brown plant hopper), 70 % by GLH

(green leafhopper), and 40 % by both BPH and

GLH. Find the probability of (i) area affected by

either of the pests, and (ii) find the probability of

any area affected by BPH when it is already

affected by GLH and vice versa.

The first problem is related with union

of probabilities (fifth important results in prob-

ability 4.5.1.V) and the second one is with

the conditional probability of one happening

even when the other event has already occurred

(i.e., 4.5.1.VII). Let us first find out the

probabilities:

Probability of an area affected by BPH ¼ P

(BPH) ¼ 50/100 ¼ 0.50.

Probability of an area affected by GLH ¼ P

(GLH) ¼ 70/100 ¼ 0.70.

Probability of an area affected by both BPH

and GLH

GLH ¼ P BPH \ GLHð Þ ¼ 40=100 ¼ 0:40:

(i) So the probability of an area affected by

either BPH/GLH/both is the union of the

two probabilities

∴P BPH [ GLHð Þ ¼ P BPHð Þ þ P GLHð Þ
�P BPH \ GLHð Þ

¼ 0:50þ 0:70� 0:40
¼ 0:80
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(ii) Conditional probability of an area affected

by GLH when the area is already affected

by

BPH is P GLH=BPHð Þ ¼ P BPH \ GLHð Þ
P BPHð Þ

¼ 0:40

0:50
¼ 0:80

and the conditional probability of an area

affected by BPH when the area is already

affected by BPH is P BPH=GLHð Þ ¼
P BPH \ GLHð Þ

P GLHð Þ ¼ 0:40

0:70
¼ 0:57.

(ix) Independent events: Two events A and B are

said to be independent if the probability of

happening of the event A does not depend

on the happening or nonhappening of the

other event B. Thus using the formula of

conditional probability of two events A and

B, for two independent events A and B, we

have P (A/B) ¼ P (A) and P(B/A) ¼ P(B).

So when two events A and B are independent,

then using compound law of probability, we have

P A \ Bð Þ ¼ P Að ÞP Bð Þ.
For three or more events A1, A2, A3. . .An to be

independent, we have

P A1 \ A2ð Þ ¼ P A1ð Þ:P A2ð Þ
P A1 \ A3ð Þ ¼ P A1ð Þ:P A3ð Þ
P A2 \ A3ð Þ ¼ P A2ð ÞP A3ð Þ

9>=>;::::::::: 1ð Þ

P A1 \ A2 \ A3ð Þ ¼ P A1ð Þ:P A2ð Þ:P A3ð Þ
If only the condition (1) is satisfied, then A1,

A2, and A3 are pair-wise independent. The idea of

three events can be extended to n events A1, A2,

A3,. . ., An and, we shall have

P A1 \ A4ð Þ ¼ P A1ð Þ:P A4ð Þ
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
P A1 \ A2 \ ::::::::::::: \ Anð Þ ¼ P A1ð Þ:P A2ð Þ:P A3ð Þ::::::::::::::::::P Anð Þ

(x) Bayes’ theorem: Suppose E is an arbitrary

event such that P Eð Þ 6¼ 0 and also suppose

that let A1,A2,. . .,An are “n” mutually exclu-

sive events whose union is the sample space

S such that P(Ai) > 0 for each I, then

P Ai=Eð Þ ¼ P Aið ÞP E=Aið ÞXn
i¼1

P Aið ÞP E=Aið Þ
, i ¼ 1, 2, 3, ::::::n

In this context one should note that (i) P(Ai)

s are the priori probabilities, (ii) P(Ai/E)s are

posterior probabilities, and (iii) P(E/Ai)s are like-

lihood probabilities.

Example 4.14 In an experiment of fruit setting

in pointed gourd, three different methods of pol-

lination were used in 30 %, 40 %, and 30 %

plots, respectively, knowing fully that the suc-

cess rates of three types of pollination are 50 %,

85 %, and 90 %, respectively. What is the prob-

ability that a particular plot has been pollinated

by the method two?

Solution Let A1, A2, and A3 denote the three

methods of pollination, respectively, and E be

the event of pollination. Now as per the informa-

tion P(A1) ¼ 0.3, P(A2) ¼ 0.4, and P(A3) ¼ 0.3,

also P(E/A1) ¼ 0.5, P(E/A2) ¼0.85, and P(E/
A3) ¼ 0.90.

∴ P A2=Eð Þ ¼ P A2 \ Eð Þ
P Eð Þ ¼ P A2ð ÞP E=A2ð Þ

P A1ð ÞP E=A1ð Þ þ P A2ð ÞP E=A2ð Þ þ P A3ð ÞP E=A3ð Þ

¼ 0:4ð Þ 0:85ð Þ
0:3ð Þ 0:5ð Þ þ 0:4ð Þ 0:85ð Þ þ 0:3ð Þ 0:9ð Þ ¼

0:340

0:15þ 0:34þ 0:27
¼ 0:34

0:76
¼ 0:447
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Thus the probability of the plants of a particular

plot being pollinated by method two is 0.447.

Similarly the probability of the plants of a

particular plot being pollinated by the method

one will be

∴P A1=Eð Þ ¼ P A1 \ Eð Þ
P Eð Þ ¼ P A1ð ÞP E=A1ð Þ

P A1ð ÞP E=A1ð Þ þ P A2ð ÞP E=A2ð Þ þ P A3ð ÞP E=A3ð Þ

¼ 0:3ð Þ 0:5ð Þ
0:3ð Þ 0:5ð Þ þ 0:4ð Þ 0:85ð Þ þ 0:3ð Þ 0:9ð Þ ¼

0:15

0:15þ 0:34þ 0:27
¼ 0:15

0:76
¼ 0:197

and the probability of the plants of a particular

plot being pollinated by the method three will be

∴ P A3=Eð Þ ¼ P A3 \ Eð Þ
P Eð Þ ¼ P A3ð ÞP E=A3ð Þ

P A1ð ÞP E=A1ð Þ þ P A2ð ÞP E=A2ð Þ þ P A3ð ÞP E=A3ð Þ

¼ 0:3ð Þ 0:9ð Þ
0:3ð Þ 0:5ð Þ þ 0:4ð Þ 0:85ð Þ þ 0:3ð Þ 0:9ð Þ ¼

0:27

0:15þ 0:34þ 0:27
¼ 0:27

0:76
¼ 0:355

4.6 Random Variables and Their
Probability Distributions

We have described the random experiment and

the events arising out of the random experiment.

In this section we shall define random variable and

its properties. For each elementary event in the

sample space of a random experiment, one can

associate a real number or a range of real numbers

according to certain rule or following certain func-

tional form. Here we define a random variable as a

rule or function that assigns numerical values

which varies randomly to observations. Thus, it

takes different values for different observations at

random in a random experiment. Given a random

experiment with sample space S, a function X

which assigns to each element w2S one and
only one real number X(w) ¼ x is called a ran-

dom variable. The space of X is the set of real

numbers R ¼ x : x ¼f X wð Þ,w2Sg:
Suppose X is a random variable and x1, x2,

x3. . .. . ... are the values which it assumes, the

aggregate of all sample points on which

X assumes the fixed values xi forms the event that

X ¼ xi; its probability is denoted by P[X ¼ xi] ¼

f(xi), where i ¼ 1,2,3, . . .is called the probability

distribution of the random variableX. Clearly, f xið Þ
� 0 and

X
i

f xið Þ ¼ 1:

Example 4.15 Suppose a coin is tossed two

times, then its sample space will be HH, HT,

TH, and TT. Thus, the number of heads (X) to
be observed in tossing the unbiased coin two

times, we have

X ¼ x : 2 1 0

Events favorable : 1 2 1

P(X ¼ x) : 1/4 2/4 1/8

This is the probability distribution of the ran-

dom variable X (number of heads)

Distribution Function Random variables can

be discrete or continuous. A continuous random

variable can take any value in an interval of real

numbers, whereas a discrete random variable
can take particular values, mostly the integer

values, in the given interval. For example, plant

height of paddy at particular growth stage can

take any value within the interval [h1,h2], where
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h1 and h2 are the shortest and tallest height

values of the interval, respectively; so paddy

plant height is an example of continuous random

variable. On the other hand, the number of grains

per panicle of particular paddy variety is an

example of discrete random variable. Thus each

value of the random variable or the each range

of the random variable can be treated as event

and as such occurs with certain probability fol-

lowing certain probability law. Presentation of
probabilities corresponding to different values of

the discrete random variable or corresponding to

the ranges of values of the random variable can
be presented in the form of table/graph/formula

which is known as probability distribution.When

the cases are finite, for a discrete random variable

the probability distribution corresponds to the

frequency distribution as per the classical defini-

tion of probability. Function that provide the
probability distribution corresponding to a ran-

dom variable is known as probability function.

The discrete probability function is known as
probability mass function (pmf), whereas the

continuous probability function is known as

probability density function (pdf). If a function

“P” is the pmf for a random variable X within a

range of [a, b], then P X ¼ xð Þ � 0 andXb

a
P xð Þ ¼ 1. On the other hand, if a function

“f” is the pdf of the random variable X within a

range [a, b], then f X ¼ xð Þ � 0 andZ b

a

f xð Þdx ¼ 1:

4.7 Mean, Variance, and Moments
of Random Variable

Analogous to that of measures of central ten-

dency, dispersion as discussed for variables, for

random variables also these can be worked out

using its probability distribution. In this section

we shall discuss the mean, variance, and

moments of random variables.

Expectation of Random Variables

We have already discussed that the measure of

central tendency particularly the average value of

any phenomenon is of utmost importance in our

daily life. Given a data set, we always want to

know mean/average so that we can have an idea

about its expected value in the population. Thus,

in all sphere of data handling, the major aim is to

have an expected value of the random variable.

Given the probability distribution of a random

variable, its expectation is given as follows:

(i) For discrete random variable X, if P(x) is

the probability mass function, then E Xð Þ ¼X
x

xP xð Þ:
(ii) For a continuous random variable “X”

within a range a � x � b with pdf f(x), E Xð Þ

¼
Zb
a

xf xð Þdx (provided the integration is

convergent).

Example 4.16 Suppose an experiment is

conducted with two unbiased coins. Now the

experiment is repeated 50 times, and the number

of times of occurrence of each event is given as

follows. Find out the expected occurrence of

head.

HH HT TH TT

12 15 14 9

Solution The favorable event for the above

experiment is occurrence of head.

So the probability distribution of occurrence

of head is:

Event HH HT TH TT

Prob. 1/4 1/4 1/4 1/4

)
Event 2H 1H 2 T

Prob. 1/4 1/2 1/4

Two heads – 1/4, one head ¼ 1/4 + 1/4 ¼
2/4 ¼ 1/2, and 0 head ¼ 1/4. So the occurrence

of head in the above experiment of tossing two

coins is a random variable, and it takes the values

0, 1, and 2 with probabilities 1/4, 1/2, and 1/4

respectively.
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No. of heads 0 1 2

Probability 0.25 0.5 0.25

Frequency 9 29 12

So for getting the expected value of head out

50 trial is 1/4�9 + 1/2�29 + 1/4�12 ¼ 19.75

Properties of Expectation

(a) Expectation of a constant “c” is E(c) ¼ c.

(b) If Y ¼ a + X then E(Y ) ¼ a + E(X), where
a is a constant.

(c) If Y ¼ a + bX, then E(Y ) ¼ a + b E(X),

where both a and b are constants.

(d) E(X + Y ) ¼ E(X) + E(Y ), where both

X and Y are random variables.

(e) If “X” is random variable such that X � 0,

then E Xð Þ � 0:

(f) Expectation of a random variable serves as

the average or the arithmetic mean of the

random variable.

The geometric mean, harmonic mean,

median, mode quartile values, percentile value,

etc. of discrete random variable can be calculated

from the probability distribution of the random

variable using the following formulae,

respectively:

Geometric

mean Log Gð Þ ¼
Xn
i¼1

log xið Þ:P xið Þ, where n is number

of observations

Harmonic

mean

Xn
i¼1

1

xi
P xið Þ, where n is number of observations

Median Xm
i¼1

P xið Þ ¼
Xn
i¼mþ1

P xið Þ ¼ 1

2
, where n is number

of observations and m is the halfway point

Mode P r � 1ð Þ � P rð Þ � P r þ 1ð Þ, where r is the r-th
event

Q1 and Q3
Q1 ¼

XQ1
i¼1

P xið Þ ¼ 1

4
and Q3 ¼

XQ3
i¼1

P xið Þ ¼ 3

4

i-th
percentile pi ¼

Xpi
i¼1

P xið Þ ¼ i

100

If the random variable X is continuous, then

the corresponding expectation, geometric mean,

harmonic mean, median, mode quartile values,

percentile value, etc. of the random variable can

be calculated from the probability distribution of

the random variable using the following

formulae, respectively:

Expectation Zb
a

xf xð Þdx

Geometric

mean log Gð Þ ¼
Zb
a

logx:f xð Þdx

Harmonic

mean

Zb
a

1

x
f xð Þdx

Median Zm
a

f xð Þdx ¼
Zb
m

f xð Þdx ¼ 1

2

Mode For mode f 0(x) ¼ 0 and f00(x) < 0 within the

range of x ¼ [a,b]

Variance of a Random Variable

One of the of the most important measures of

dispersion is the variance, and variance of a

random variable is a measure of the variation/

dispersion of the random variable about its

expectation (mean). The variance of a random

variable is given as V Xð Þ ¼ E X � E Xð Þf g2

¼ E X2 þ E Xð Þf g2 � 2X:E Xð Þ
h i

¼ E X2
� � þ E Xð Þf g2 � 2 E Xð Þ:E Xð Þ

¼ E X2
� � � E Xð Þf g2

Properties of Variance of Random Variable

Most of the properties of variance for a variable

discussed in Chap. 3 hold good for variance of

random variable. Thus,

(a) V(c) ¼ 0, where “c” is a constant.

(b) Variance of random variable does not

depend on change of origin but depends on

change of scale. Thus V cþ Xð Þ ¼ V Xð Þ,V
cXð Þ ¼ c2V Xð Þ and V bþ cXð Þ ¼ c2V Xð Þ.

(c) V X þ Yð Þ ¼ V Xð Þ þ V Yð Þ þ 2Cov X; Yð Þ;
where X and Y are two random variables.

(d) Cov X; Yð Þ ¼ E XYð Þ � E Xð ÞE Yð Þ:

Moments

(a) If X is a discrete random variable, then:

(i) The r-th raw moment about origin is

defined by υr ¼ E Xrð Þ
Xn
i¼1

xri P xið Þ;
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provided E Xrj j < 1. Clearly, υ1 ¼
E(X) ¼ μ and υ0 ¼ 1:

(ii) The r-th central moment about its

expectation is defined as

mr ¼ E X � E Xð Þð Þr ¼
Xn
i¼1

Xi � E Xð Þð ÞrP xið Þ

provided it exists.

The other measures of dispersion like mean

deviation about mean, r-th raw moment about

any arbitrary point A are given as follows:

Mean deviation about the mean
X
x

x� E Xð Þj jP xð Þ

μr
’ (about point A) Xn

i¼1

xi � Að ÞrP xið Þ

(b) If X is continuous random variable, then the

mean deviation about mean, r-th moment

about origin, r-th moment about any arbi-

trary point A, and r-th moment about mean,

quartiles, and percentiles can be calculated

using the following formulae, respectively:

Mean deviation

about the mean
Zb
a

x� E Xð Þj jf xð Þdx

υr (about origin) Zb
a

xrf xð Þdx

μr
0
(about point A) Zb

a

x� Að Þrf xð Þdx

mr (about mean) Zb
a

x� E Xð Þð Þrf xð Þdx

Q1 and Q3 ZQ1
a

f xð Þdx ¼ 1

4
and

ZQ3
a

f xð Þdx ¼ 3

4

i-th percentile

pi ¼
Zpi
a

f xð Þdx ¼ i

100

Distribution Function If X is a random variable

defined on (S, Œ, P) then the function Fx(x) ¼ P

(X � x) ¼ P(w:X(w) � x) is known as the

distribution function of the random variable X. It

should be noted that F �1ð Þ ¼ 0,F þ1ð Þ ¼ 1,

and 0 � F xð Þ � 1:

Example 4.17 The fish length of certain breed

of fish at the age of 6 months is supposed to be

within the range of 12–24inches. If the probabil-

ity density function of length of fish is given as k

(x�3x + 2):

(a) Find the value of “k.”

(b) Work out the cumulative distribution func-

tion of the variable fish length (X).
(c) Find the probability of fishes having length

less than 1.50 and 1.750.

Solution

(a) We know that a function f is a density func-

tion of certain continuous random variableZ
R

f xð Þdx ¼ 1. For this function to be a den-

sity function

Z2
1k x2 � 3xþ 2
� �

dx ¼ 1

∴x3

3
� 3 x2

2
þ 2x

i2
1
¼ 1=k

Or,
23

3
� 3

22

2
þ 2:2

� �
� 13

3
� 3

12

2
þ 2:1

� �
¼ 1=k

Or, 8=3� 6þ 4ð Þ � 1=3� 3=2þ 2ð Þ ¼ 1=k
Or, 2=3� 5=6 ¼ 1=k
Or, � 1=6 ¼ 1=k
or, k ¼ �6:

So the pdf. of the random variable plant height

(X) is

k(x2�3x + 2) ¼ (�6)x2�3(�6)x + 2 ¼ �6 x2

+ 18x � 12.

(b) The cumulative density function F(x) is

given by
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F xð Þ ¼
Zx
1

�6t2 þ 18t� 12ð Þdt

¼�6t3

3
þ 18

t2

2
þ 2t

�				 x
1

¼�6x3

3
þ 9x2 � 2x� �2þ 9� 12ð Þ

¼ �2x3 þ 9x2 � 12xþ 5

(c) The probability of fishes having length

less than 1:50 ¼ P X < 1:50ð Þ ¼ P X � 1:50ð Þ
¼ F 1:50ð Þ

F xð Þ ¼ � 2x3 þ 9x2 � 12xþ 5

∴F xð Þ ¼ 5� 12� 1:5þ 9� 1:52 � 2� 1:53

¼ 5� 18þ 20:25� 6:75
¼ 0:50

Similarly the probability of fish length less

than 1.75 m is given by P X � 1:75ð Þ:
Now P X � 1:75ð Þ ¼ F 1:75ð Þ
F xð Þ ¼ �2x3 þ 9x2 � 12xþ 5

∴F xð Þ ¼ 5� 12�1:75þ 9�1:752 � 2�1:753

¼ 5� 21þ 27:56� 10:72
¼ 32:56� 31:72
¼ 0:84

So the probability that the fish length lies

between 1.50 and 1.750 is given by

P 1:5 � X � 1:75ð Þ ¼ F 1:75ð Þ � F 1:5ð Þ ¼ 0:84

�0:50 ¼ 0:34

4.8 Moment-Generating Function

Already we have come to know that with the help

of moments, important characteristics like mean,

median, mode, variance, skewness, kurtosis, etc.

can be presented. Thus with the help of the

moments, one can characterize distribution of a

random variable also. In this section, we are

interested to know whether there exists any func-

tion like probability function which can provide

different moments. In fact in literature, one can

find such functions called moment generating

function (mgf) which generates different

moments corresponding to probability function

of random variables.

The moment generating function (mgf) of a

random variable “X” is defined byMx tð Þ ¼ E etx½ �
¼
Z
R

etxf xð Þdx, for continuous random variableX
etxP xð Þ, for discrete random variable

Thus, Mx tð Þ ¼ E etx½ �
¼ E 1þ t xð Þ þ t2

j2 xð Þ2 þ ::::::::::::þ trjr xð Þr þ ::::::::::


 �
¼ 1þ tE xð Þ þ t2

j2E xð Þ2
n o

þ ::::::::: þ tr

jr E xð Þrf g þ :::::::

¼ 1þ tυ1 þ t2

j2 υ2 þ ::::::::::þ tr

jr υr þ :::::::::,

where υr is the moment of ored r about the origin

or simply rth raw moment.

Thus, the coefficient of t
r

jr inMx (t) gives υr the

r-th moment about origin. The function Mx(t) is

called the mgf since it generates the moments.

When a distribution is specified by its mgf, then

its r-th raw moment can be obtained by taking r-
th derivative with respect to t, i.e.,

υr ¼ drMx tð Þ
dtr

				
t¼0

¼ drE etx½ �
dtr

¼
drE 1þ t xð Þ þ t2

j2 xð Þ2 þ ::::::::::::þ tr

jr xð Þr þ ::::::::::
h i

dtr
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Thus,

υ1 ¼ dMx tð Þ
dt

�
t¼0

¼ E Xð Þ

υ2 ¼ d2Mx tð Þ
dt2

�
t¼0

¼ E X2
� �

υ3 ¼ d3Mx tð Þ
dt3

�
t¼0

¼ E X3
� �

υ4 ¼ d4Mx tð Þ
dt4

�
t¼0

¼ E X4
� �

:::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::::::::

Similarly the central moments can be obtained

by taking deviations from mean (μ) of the distri-
bution, i.e.,

Thus, Mx�μ tð Þ ¼ E et x�μð Þ� �
¼ E 1þ t x� μð Þ þ t2

j2 x� μð Þ2 þ ::::::::::::þ tr

jr x� μð Þr þ ::::::::::


 �
¼ 1þ tE x� μð Þ þ t2

j2E x� μð Þ2
n o

þ ::::::::: þ tr

jr E x� μð Þrf g þ :::::::

¼ 1þ tm1 þ t2

j2m2 þ ::::::::::þ tr

jr mr þ :::::::::;

where, mr is the central moment of order r or

simply rth central moment.

Central moments can also be worked out by

differentiating the mgf about AM of different

orders and equating to zero as follows:

mr ¼ drMx‐μ tð Þ
dtr

				
t¼0

¼ drE et x�μð Þ� �
dtr

¼
drE 1þ t x� μð Þ þ t2

j2 x� μð Þ2 þ :::::::::::: þ tr

jr x� μð Þr þ ::::::::::
h i

dtr

Thus

m1 ¼ dMx�μ tð Þ
dt

�
t¼0

¼ E X � μð Þ ¼ E Xð Þ � μ

¼ μ� μ ¼ 0

m2 ¼ d2Mx�μ tð Þ
dt2

�
t¼0

¼ E X � μð Þ2

m3 ¼ d3Mx�μ tð Þ
dt3

�
t¼0

¼ E X � μð Þ3

m4 ¼ d4Mx�μ tð Þ
dt4

�
t¼0

¼ E X � μð Þ4
:::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::::::::

Properties of Moment Generating Function

(i) For a random variable X, ifMx(t) is its mgf,

then the mgf of the random variable bX is

Mbx(t) ¼ Mx(bt).

(ii) Let Y ¼ a + bX where both X and Y are

random variables and the mgf of X is Mx
(t), then the mgf of Y isMY tð Þ ¼ eat:MX btð Þ,
a and b being constants.

(iii) Let X1, X2, X3,. . .Xn be n independent ran-

dom variables with Mx1(t), Mx2(t),

Mx3(t). . .Mxn(t) being their respective

moment generating functions. If Y ¼Xn
i¼1

Xi then
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MY tð Þ ¼
Yn
i¼1

Mxi tð Þ

¼ Mx1 tð Þ:Mx2 tð Þ:Mx3 tð Þ::::::Mxn tð Þ:

(iv) Let two random variables X1 and X2 having

respective mgf Mx1(t) and Mx2(t) such that

Mx1(t) ¼ Mx2(t), then the two random

variables have got the same probability

distribution.

4.9 Theoretical Probability
Distributions

The probability distributions of random variables

play great roles in our daily lives. Many of our

real-life activities can be presented by some well-

known theoretical probability distribution, hence

the importance of studying the probability

distributions of random variables. Depending

upon the involvement of number of variables,

probability distributions are univariate, bivariate,

or multivariate. In the following sections, we

shall consider some of the widely used univariate

probability distributions like binomial, Poisson,

normal, χ2, t, and F distribution. Among these

theoretical distributions, the first two are discrete

while the rest are continuous probability

distributions.

4.9.1 Binomial Distribution

Before discussing this distribution, let us have

some discussion about the Bernoulli trial. A

Bernoulli trial is a trial where one can expect

either of only two possible outcomes. For exam-

ple, in tossing a coin, either head or tail will

appear in any tossing, so tossing of coin can be

regarded as Bernoulli trial. Similarly, while

spraying insecticide in a field of crop, one can

expect that either the insect will be controlled or

continue to infest the field. Thus in Bernoulli

trial, the probability of occurrence of either of

the events is 1/2.

Let a random experiment be conducted with

“n” (fixed) independent Bernoulli trials each hav-

ing “success” or “failure” with respective

probabilities “p” and “q” in any trial. Then the

random variable X, number of successes out of

“n” trials, is said to follow binomial distribution

if its pmf is given by

P X ¼ xð Þ ¼ P xð Þ ¼ n

x

 !
pxqn�x

( )
,

x ¼ 0, 1, 2, . . . , n; q ¼ 1� p:

¼ 0 otherwise

where “n” and “p” are the two parameters of the

distribution and the distribution is denoted as

X ~ b(n, p), i.e., the random variable follows

binomial distribution with parameters “n” and

“p.”

Thus, P xð Þ � 0 and
Xn
x¼0

P xð Þ ¼ qn þ n
1

� �
qn�1

pþ n
2

� �
qn�2p2 þ :::::þ pn ¼ qþ pð Þn ¼ 1.

Moment Generating Function of Binomial

Distribution

Moment generating function is given as

Mx tð Þ ¼ E etxð Þ ¼
Xn
x¼0

etxP xð Þ

¼
Xn
x¼0

etx
n
x

� �
pxqn�x

¼
Xn
x¼0

n
x

� �
petð Þxqn�x ¼ pet þ qð Þn

Moments of Binomial Distribution

(a) From moment generating function

We know that υr ¼ drMx tð Þ
dtr

			
t¼0

¼ drE etx½ �
dtr ¼

drE 1þ t xð Þ þt2

j2 xð Þ2þ::::::::::::þtr

jr xð Þrþ::::::::::

h i
dtr
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Thus,

υ1 ¼ dMx tð Þ
dt

i
t¼0

¼ npet pet þ qð Þn�1
i
t¼0

¼ np

υ2 ¼ d2Mx tð Þ
dt2

i
t¼0

¼ n n� 1ð Þp2e2t pet þ qð Þn�2 þ npet pet þ qð Þn�1
i
t¼0

¼ n n� 1ð Þp2 þ np

υ3 ¼ d3Mx tð Þ
dt3

i
t¼0

¼ n n� 1ð Þ n� 2ð Þp3e3t pet þ qð Þn�3 þ 2n n� 1ð Þp2e2t pet þ qð Þn�2

þ n n� 1ð Þp2e2t pet þ qð Þn�2 þ npet pet þ qð Þn�1
i
t¼0

¼ n n� 1ð Þ n� 2ð Þp3 þ 2n n� 1ð Þp2 þ np

υ4 ¼ d4Mx tð Þ
dt4

i
t¼0

¼ n n� 1ð Þ n� 2ð Þ n� 3ð Þp4 þ 6n n� 1ð Þ n� 2ð Þp3 þ 7n n� 1ð Þp2 þ np

(b) Without using moment generating function

As we know that r-th order raw moment

about the origin is given by υr ¼ E Xrð Þ ¼

Xn
x¼0

xr
n
x

� �
pxqn�x; putting r ¼1, 2, 3,. . ... . .we

shall get different moments about origin.

Thus,

υ1 ¼
Xn
x¼0

x
n

x

 !
pxqn�x

¼
Xn
x¼0

x
n!

x! n� xð Þ! p
xqn�x

¼ np
Xn
x¼1

n� 1ð Þ!
x� 1ð Þ! n� 1ð Þ � x� 1ð Þf g!p

x�1:q n�1ð Þ� x�1ð Þf g

¼ np
Xn
x¼1

n� 1

x� 1

 !
px�1q n�1ð Þ� x�1ð Þ ¼ np

Xn�1

y¼0

n� 1

y

 !
pyq n�1�yð Þ where, y ¼ x� 1½ �

¼ np qþ pð Þn�1 ¼ np
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Similarity,

υ2 ¼ E X2
� � ¼ E X X � 1ð Þ þ X½ � ¼ E X X � 1ð Þ½ � þ E X½ �

¼
Xn
x¼0

x x� 1ð Þð Þ n n� 1ð Þ n� 2ð Þ!
x x� 1ð Þ x� 2ð Þ! n� xð Þ! p

xqn�x þ E X½ �

¼
Xn
x¼2

n n� 1ð Þ n� 2ð Þ!
x� 2ð Þ! n� xð Þ! :p

xqn�x þ np

¼ n n� 1ð Þp2
Xn
x¼2

n� 2ð Þ!
x� 2ð Þ! n� xð Þ! :p

x�2qn�x þ np

¼ n n� 1ð Þp2 qþ pð Þn�2 þ np

¼ n n� 1ð Þp2 þ np

υ3 ¼ E X3
� � ¼ E X X � 1ð Þ X � 2ð Þ þ 3X X � 1ð Þ þ X½ �

¼ E X X � 1ð Þ X � 2ð Þ½ � þ 3E X X � 1ð Þ½ � þ E X½ �

¼
Xm
x¼0

x x� 1ð Þ x� 2ð Þ n

y

 !
pxqn�x þ 3n n� 1ð Þp2 þ np

¼ n n� 1ð Þ n� 2ð Þp3
Xn
x¼3

n� 3

x� 3

 !
px�3qn�x þ 3n n� 1ð Þp2 þ np

¼ n n� 1ð Þ n� 2ð Þp3 þ 3n n� 1ð Þp2 þ np

υ4 ¼ E X4
� � ¼ E X X � 1ð Þ X � 2ð Þ X � 3ð Þ þ 6X X � 1ð Þ X � 2ð Þ þ 7X X � 1ð Þ þ X½ �

¼ n n� 1ð Þ n� 2ð Þ n� 3ð Þp4 þ 6n n� 1ð Þ n� 2ð Þp3 þ 7n n� 1ð Þp2 þ np

Thus, mean of the binomial distribution is E

(X) ¼ np.
The second central moment is

m2 ¼ υ2 � υ12

¼ n n� 1ð Þp2 þ np� npð Þ2
¼ n2p2 � np2 þ np� n2p2 ¼ np 1� pð Þ
¼ npq ¼ variance

The third central moment is

m3 ¼ υ3 � 3υ2υ1 þ 2υ13

¼ n n� 1ð Þ n� 2ð Þp3 þ 3n n� 1ð Þp2 þ np

� 3 n n� 1ð Þp2 þ np

 �

npþ 2 npð Þ3
¼ npq qþ p� 2pð Þ
¼ npq q� pð Þ

The fourth central moment is

m4 ¼ υ4 � 4υ3υ1 þ 6υ2υ12 � 3υ14

¼ n n� 1ð Þ n� 2ð Þ n� 3ð Þp4 þ 6n n� 1ð Þ n� 2ð Þp3
þ 7n n� 1ð Þp2 þ np

� 4 n n� 1ð Þ n� 2ð Þp3 þ 2n n� 1ð Þp2 þ np½ �np
þ 6 n n� 1ð Þp2 þ np½ � npð Þ2 � 3 npð Þ4

¼ npq 1þ 3 n� 2ð Þpq½ �

The coefficient of skewness and kurtosis as

measured through β1 and β2, respectively, is

given as follows:

β1 ¼
m2

3

m3
2

¼ 1� 2pð Þ2
npq

Thus the skewness is positive for p < 1
2
; negative

for p > 1
2
and zero for p ¼ 1

2
:
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β2 ¼
m4

m2
¼ 3þ 1� 6pq

npq
:

Thus, the distribution is leptokurtic or

platykurtic depending upon the value of p.

Recurrence Relation for the Probabilities

of Binomial Distribution

We know that

P xð Þ
P x� 1ð Þ ¼

nCxp
xqn�x

nC x�1ð Þpx�1qn�xþ1
¼ n� xþ 1

x
:
p

q

) P xð Þ ¼ p

q

n� xþ 1

x
P x� 1ð Þ, x ¼ 1, 2, 3::::::n

Using the above recursion relationship, the

probabilities of the individual terms of the bino-

mial distribution can be calculated.

Properties of Binomial Distribution

(i) For a random variable X ~ b(n,p), its mean

and variance are np and npq, respectively.

As p and q both are fractions (generally),

mean is always greater than variance.

(ii) The variance of binomial distribution is

maximum when p ¼ ½, and the maximum

variance is n/4.

PROOF: V xð Þ ¼ npq ¼ np 1� pð Þ

¼�n p2 � 2
1

2

� �
pþ 1

4
� 1

4


 �
¼�n p� 1

2

� �2

� 1

4

" #

¼ n
1

4
� p� 1

2

� �2
" #

Thus the variance is maximum when

p � 1
2

� �2
is zero, and it is possible only when p

¼ 1

2
and at p ¼ 1

2
, V Xð Þ ¼ n

4
:

(iii) If X1, X2,......... Xk be k independent

binormal varietes with parameter (ni, p)

then
Pk
i¼1

Xi 	 b
Pk
i¼1

; ni; p

� �
:

The mgf of the binomial distribution is

Mx tð Þ ¼ q þ petð Þn:
Now the mgf of Y ¼ X1+ X2 + . . . + Xk is

MY tð Þ ¼ E etY½ �
¼ E et

X
1
þ X

2
þ





þX

kð Þ
h i

¼ E etX1½ �:E etX2½ �::::::::::E etXk½ �
 
 

 
 
 , X1:X2::::::::::Xk are independent½ �
¼MX1

tð ÞMX2
tð Þ::::::::::MXk

tð Þ
¼ q þ petð Þn1 : q þ petð Þn2 ::::::::::: q þ petð Þnk
¼ q þ petð Þn1þn2þ:::::þnk

which is the mgf of the binomial distribu-

tion with parameter

 
n1 þ n2þ . . .þ nk

n1 þ n2þ . . . þ nk ¼
Xk
i¼1

ni

 !!
and p.

Example 4.18 It is claimed that 70 % insects

will die upon spraying a particular insecticide

on cauliflower. Five insects in a jar were

subjected to particular insecticide: find out the

probability distribution of the number of insect

that responded. Also find out the probability

(i) that at least three insects will respond and

(ii) more than three insects will respond.

Solution Given that the probability of

responding to the insecticide is 70/100 ¼ 0.7

and we assume that the response to the insecti-

cide by the individual insect is independent of

other insects; we have n ¼ 5.

According to Binomial law of probability, the

probability of x insects die is
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P xð Þ ¼ P X ¼ xð Þ¼5Cx:pxq5�x¼5Cx: 0:7ð Þx 0:3ð Þ5�x
,

where p ¼ 0:7, q ¼ 0:3, x ¼ 0, 1, 2, ::, 5

With the help of the above pmf, let us find out

the probabilities for different values of X and the

cumulative probability distribution as follows:

x P(x) F(x)

0 0.0024 0.0024

1 0.0284 0.0308

2 0.1323 0.1631

3 0.3087 0.4718

4 0.3602 0.8319

5 0.1681 1.0000

Alternatively the probabilities for different

values of X could be worked out using the recur-

rence relationship of Binomial probability, i.e.,

P xð Þ ¼ p
q
n�xþ1

x P x� 1ð Þ, x ¼ 1, 2, 3::::::n

The initial probability, i.e., (X ¼ 0) is worked

out as P xð Þ ¼ P X ¼ 0ð Þ¼5C0:p0q5�0¼5C0: 0:7ð Þ0
0:3ð Þ5�0 ¼ 1:1:0:00243 ¼ 0:00243. Now using

this initial probability, following probabilities

are worked out as follows:

x P(x ¼ 0)

P xð Þ ¼ p
q
n�xþ1

x P x� 1ð Þ,
x ¼ 1, 2, 3, 4, 5 F(x)

0 0.0024 – 0.0024

1 – 0.0284 0.0308

2 – 0.1323 0.1631

3 – 0.3087 0.4718

4 – 0.3602 0.8319

5 – 0.1681 1.0000

(i) To find out the probability that at least three

insects will die means we are to addP x ¼ 3ð Þ

þ P x ¼ 4ð Þ þ P x ¼ 5ð Þ ¼ 1� F x ¼ 2ð Þ ¼
1� 0:1631 ¼ 0:8369:

(ii) Probability of responding more than three

insects, i.e., P x ¼ 4ð Þ þ P x ¼ 5ð Þ ¼ 0:3602

þ 0:1681 ¼ 0:5283.

Example 4.19 An experiment was conducted to

know the effect of rotenone chemical to remove

the undesirable fishes from the small tank. Rote-

none was sprayed to 120 tanks containing seven

undesirable fishes each. The following table

gives the frequency distribution of number of

fishes that died in 120 tanks.

No. of unwanted

fishes died

0 1 2 3 4 5 6 7

No. of tanks 0 3 14 24 47 21 7 3

1. Fit binomial distribution with equal probabil-

ity of dying and living after spraying.

2. With unknown probability of dying or living

per tank.

Solution There are two mutually exclusive

outcomes of the above experiment:

1. That is, either the fish will die or not die. So

this can be treated as Bernoulli trial having

binomial distribution. The two events “die” or

“not die” have the same probability of 1/2.

Given that, n ¼ 7,N ¼ 120, and the probability

p ¼ 0.5

Let us try to construct the following table.

Frequency No. of insects dead (x) (m�x + 1)/x Col.2 x p/q P(x) ¼ P(x�1) � Col.3 Exp. frequency

f (1) (2) (3) (4) f* ¼ N � col.4

0 0 – – 0.00781 1

3 1 7.00000 7.00000 0.05469 7

14 2 3.00000 3.00000 0.16406 20

25 3 1.66667 1.66667 0.27344 33

47 4 1.00000 1.00000 0.27344 33

21 5 0.60000 0.60000 0.16406 20

7 6 0.33333 0.33333 0.05469 7

3 7 0.14286 0.14286 0.00781 1

* Nearest whole number

4.9 Theoretical Probability Distributions 95



With equal probability of dying and living,

a fish sprayed with the rotenone, the ratio of

p/q ¼ 0.5/0.5 ¼ 1. We have P(0): the probabil-

ity of zero fish dying per tank is
n
x

� �
pxqn�x ¼ 7

0

� �
p0q7�0 ¼ q7 ¼ 1

2

� �7 ¼ 0:00781.

From the recursion relation of binomial

probabilities, we have P xð Þ ¼ n�xþ1
x :pq :P x� 1ð Þ

for x ¼ 1,2,3,. . .,7. Using the above relation, the

probabilities are calculated and placed in the col.

4 of the above table. Expected frequencies are

obtained by multiplying the total frequency (N )

with respective probabilities.

2. In this problem to fit binomial distribution, p,
the probability of success has to be estimated

from the observed distribution.

We know that the mean of the binomial

distribution is given by “np.” For the given

distribution mean is calculated as

1Pk
i¼1

f i

Pk
i¼1

f ixi ¼ 1P8
i¼1

f i

P8
i¼1

f ixi ¼ 3:85 where k is the

number of classes.

Thus np ¼ 3.85.

∴p̂ ¼ 3:85
8

¼ 0:48. So q̂ ¼ 1� 0:48 ¼ 0:52:

Thus, p̂q̂ ¼ 0:923 and P(0) ¼ (0.52)7 ¼ 0.010.

Using the same procedure used in (1), we

make the following table:

4.9.2 Poisson Distribution

There are certain events which occur rarely, for

example, the number of accidents at a particular

place of highway at a specific interval of time,

number of spastic child born per year in a particu-

lar hospital, number of mistakes per pages of a

book, number of telephone calls received by a

person per unit time, number of defective items

per lot of item, etc. The probability distribution of

such events was discovered by S D Poisson, a

French mathematician in 1837. This distribution

is applicable when the number of trials is very

large but the chances of occurrence of the event is

rare, as such the average number of occurrence of

the event is moderate. A discrete random variable

X is said to have Poisson distribution if its proba-

bility mass function is given by

P xð Þ ¼ e�λλx

x!
, x ¼ 0, 1, 2, 3, ::::::::::; λ > 0

Obviously, P xð Þ � 0, 8x and
X1
0

P xð Þ ¼ e�λ 1þ λþ λ2

2!
þ λ3

3!
þ λ4

4!
þ λ5

5!
þ ::::::::::


 �
¼ e�λeλ ¼ e0 ¼ 1

λ is known as a parameter of the distribution and

the distribution is denoted as X e P λð Þ:

Assumptions

(a) Probability of occurrence of an event at any

interval is the same.

(b) The occurrence of the event in any interval

is independent of its occurrences in other

interval.

Frequency No. of insects dead (x) (m�x + 1)/x Col.2 xp̂
q̂ P(x) ¼ P(x�1)�Col3 Exp. frequency

f 1 2 3 4 f* ¼ n � Col. 4

0 0 – – 0.01028 1

3 1 7.00000 6.46154 0.06643 8

14 2 3.00000 2.76923 0.18396 22

25 3 1.66667 1.53846 0.28301 34

47 4 1.00000 0.92308 0.26124 31

21 5 0.60000 0.55385 0.14469 17

7 6 0.33333 0.30769 0.04452 5

3 7 0.14286 0.13187 0.00587 1

* Nearest whole number

Note:With the change in probability of success and failure, the probabilities aswell as the expected frequencies have changed.
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Moment Generating Function

The mgf of the Poisson distribution is given by

Mx tð Þ ¼ E etx½ � ¼
X1
x¼0

e�λλx

x!
etx

¼ e�λ
X1
x¼0

etλð Þx
x!

¼ e�λ:eλe
t ¼ eλ et�1ð Þ

Differentiating Mx(t) once, twice etc. with

respect to ‘t’ and putting t ¼ 0 we can get the

raw moments.

Moments of Poisson Distribution from

Moment Generating Function

We know that υr ¼ drMx tð Þ
dtr

			
t¼0

¼ drE etx½ �
dtr

υ1 ¼ dMx tð Þ
dt

i
t¼0

¼ λeteλ et�1ð Þ�
t¼0

¼ λ

υ2 ¼ d2Mx tð Þ
dt2

i
t¼0

¼ λetð Þ2eλ et�1ð Þ þ λeteλ et�1ð Þ
i
t¼0

¼ λ2 þ λ

υ3 ¼ d3Mx tð Þ
dt3

i
t¼0

¼ λ3e�λeλ þ 3λ2 þ λ

¼ λ3 þ 3λ2 þ λ

υ4 ¼ d4Mx tð Þ
dt4

i
t¼0

¼ λ4e�λeλ þ 6λ3 þ 7λ2 þ λ

¼ λ4 þ 6λ3 þ 7λ2 þ λ

Moments of Poisson Distribution Without

Using mgf

υ1 ¼ E Xð Þ ¼
X1
x¼0

xP xð Þ ¼
X1
x¼0

x
e�λλx

x!

¼ λe�λ
X1
x¼1

λx�1

x� 1ð Þ!

( )

¼ λe�λ 1þ λþ λ2

2!
þ ::::::::::::::

� �
¼ λe�λeλ ¼ λ

Hence the mean of the Poisson distribution

is λ.

υ2 ¼ E X2
� � ¼ E X X � 1ð Þ½ � þ E X½ �

¼ e�λ
X1
x¼0

x x� 1ð Þ λ
x

x!
þ λ

¼ λ2e�λ
X1
x¼2

λx�2

x� 2ð Þ!

( )
þ λ

¼ λ2e�λeλ þ λ ¼ λ2 þ λ

υ3 ¼ E X3
� � ¼ E X X � 1ð Þ X � 2ð Þ½ � þ 3E X X � 1ð Þ½ � þ E X½ �

¼ e�λ
X1
x¼0

x x� 1ð Þ x� 2ð Þ e
�λλx

x!
þ 3λ2 þ λ

¼ λ3e�λ
X1
x¼3

λx�3

x� 3ð Þ!

( )
þ 3λ2 þ λ

¼ λ3e�λeλ þ 3λ2 þ λ ¼ λ3 þ 3λ2 þ λ

υ4 ¼ E X4
� � ¼ E X X � 1ð Þ X � 2ð Þ X � 3ð Þ½ � þ 6E X X � 1ð Þ X � 2ð Þ½ � þ 7E X X � 1ð Þ½ � þ E X½ �

¼ λ4e�λ
X1
x¼4

λx�4

x� 4ð Þ!

( )
þ 6λ3

X1
x¼3

λx�3

x� 3ð Þ!

( )
þ 7λ2 þ λ

¼ λ4e�λeλ þ 6λ3 þ 7λ2 þ λ ¼ λ4 þ 6λ3 þ 7λ2 þ λ
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The four central moments of the distribution are

as follows:

m1 ¼ υ1 ¼ λ

m2 ¼ υ2 � υ1
2 ¼ λ2 þ λ

� �� λ2 ¼ λ

m3 ¼ υ3 � 3υ2υ1 þ 2υ13

¼ λ3 þ 3λ2 þ λ
� �� 3λ λ2 þ λ

� �þ 2λ3

¼ 3λ3 þ 3λ2 þ λ� 3λ3 � 3λ2

¼ λ
m4 ¼ υ4 � 4υ3υ1 þ 6υ2υ12 � 3υ14

¼ λ4 þ 6λ3 þ 7λ2 þ λ
� �� 4λ λ3 þ 3λ2 þ λ

� �
þ 6λ2 λ2 þ λ

� �� 3λ4

¼ λ4 þ 6λ3 þ 7λ2 þ λ� 4λ4 � 12λ3 � 4λ2

þ 6λ4 þ 6λ3 � 3λ4

¼ 3λ2 þ λ

Coefficient of skewness and kurtosis is given by

β1 ¼
m3

2

m2
3
¼ λ2

λ3
¼ 1

λ

and

β2 ¼
m4

m2
2
¼ 3þ 1

λ

γ1 ¼
ffiffiffiffiffi
β1

p
¼ 1ffiffiffi

λ
p

and

γ2 ¼ β2 � 3 ¼ 1

λ

Thus, Poisson distribution is positively

skewed and leptokurtic in nature.

Recurrence Relation for Probability of

Poisson Distribution

P xþ 1ð Þ ¼ e�λλxþ1

xþ 1ð Þ!
and

P xð Þ ¼ e�λλx

x!

We have

P xþ 1ð Þ
P xð Þ ¼

e�λλxþ1

xþ 1ð Þ!
e�λλx

x!

¼
λ

xþ 1

� �
:P xð Þ

P xð Þ ¼ λ

xþ 1

� �
:

∴P xþ 1ð Þ ¼ λ

xþ 1

� �
:P xð Þ, x ¼ 0, 1, 2:::::::

Properties of Poisson Distribution

1. Poisson distribution may be looked upon as

the limiting form of binomial distribution. If

n, the number of trials, tends to be infinitely

large, i.e., n ! 1, with constant probability

of success, p in each trial is very small i.e.,

p ! 0 and np ¼ λ (say) is finite.
2. If X1, X2........, Xk be k independent Poisson

variates with λ1, λ2.........., λk parameters,

respectively, then
Xk
i¼1

Xi 	 P
Xk
i¼1

λi

 !
.

Example 4.20 A number of swine death in a

rearing yard of equal dimension and capacity

are given below.

No. of swine death

per yard

0 1 2 3 4 5 6 7

Frequency 6 14 24 28 19 11 3 1

(i) Find out the average swine death per

rearing yard.

(ii) Find the probability of having death less

than four.

(iii) Find the number of yards having death more

than four.

Solution Death in rearing yard may be treated

as rare event, and as such it is assumed to follow

Poisson distribution. We know that the Poisson

distribution is characterized by its only parame-

ter λ ¼ mean ¼ variance and the Poisson

probabilities are calculated from its probability

mass function, given asP xð Þ ¼ e�λλx

x! . So to get the

probabilities corresponding to different values of

“x” (no. of swine death per yard), first we are to

get the mean of the distribution.

No. of swine

death per yard (xi)
0 1 2 3 4 5 6 7

Frequency ( fi) 6 14 24 28 19 11 3 1

fixi 0 14 48 84 76 55 18 7

(i) Mean ¼ 1X
i

f i

X
i

f ixi ¼ 302=106 ¼ 2:849 ¼ λ.

Thus the average swine death per yard is

2.849. From the pmf we have
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P 0ð Þ ¼ e�2:8492:8490

0!
¼ e�2:849 ¼ 0:0579,P 1ð Þ ¼ e�2:8492:8491

1!
¼ 0:1650,P 2ð Þ ¼ e�2:8492:8492

2!
¼ 0:2350

P 3ð Þ ¼ e�2:8492:8493

3!
¼ 0:2232,P 4ð Þ ¼ e�2:8492:8494

4!
¼ 0:1590,P 5ð Þ ¼ e�2:8492:8495

5!
¼ 0:0906

P 6ð Þ ¼ e�2:8492:8496

6!
¼ 0:0430,P 7ð Þ ¼ e�2:8492:8497

7!
¼ 0:0175

Readers may note that the sum of the

probabilities worked out using the pmf in this

procedure is not unity, rather it is 0.009 less

than the unity. This happens because of approxi-

mation in decimal places throughout the calcula-

tion. As a customary, the probability of last

outcome is taken as 1-sum of the all other previ-

ous probabilities. As such the probability of

seven deaths per yard should be

1–0.9735 ¼ 0.0265.

Using the recurrence relationship of Poisson

probabilities, other probabilities and

corresponding cumulative probabilities (F(x))
can be worked out as given in the following

table:

x P(x) P xþ 1ð Þ ¼ 2:849
xþ1ð ÞP xð Þ F(x)

0 0.0579 0.0579

1 0.1650 0.2229

2 0.2350 0.4578

3 0.2232 0.6810

4 0.1589 0.8399

5 0.0906 0.9305

6 0.0430 0.9735

7 0.0265* 1.0000

* This has been calculated as 1-sum of all

other probabilities, i.e., 1–0.9735, as total proba-

bility must be equal to unity.

(ii) So the probability that a farm yard has less

than four swine deaths is given by P(0) + P

(1) + P(2) + P(3) ¼ 0.0579 + 0.1650 +

0.2350 + 0.2232 ¼ 0.6810, or F(X ¼ 3)

¼ 0.6810.

(iii) The number of yards having more

than four swine deaths is given by N:P 5ð Þ
þ N:P 6ð Þ þ N:P 7ð Þ ¼ 106 0:0906 þ½
0:0430 þ 0:0265� ¼ 106 � 0:1601 ¼
16:97 ’ 17 (as the number of yards cannot

be fraction), where N is the total frequency.

Example 4.21 The number of cow death per

month within a distance of 1 km due to accident

in particular highway is as given below. Fit

Poisson distribution to the given data.

No. of cow death per

month

0 1 2 3 4 5 6

Frequency 6 17 19 14 13 9 5

Solution We know that the only parameter for

the Poisson distribution is λ ¼ mean. In order to

fit the data in Poisson distribution, we are to

estimate the λ ¼ E xð Þ by 1X
i

f i

X
i

f ixi ¼ 2:698.

We know that for Poisson distribution, the prob-

ability is given byP xð Þ ¼ e�λλx

x! . So the probability

of (x ¼ 0) is given by

P 0ð Þ ¼ e�2:698λ0

0! ¼ e�2:698 ¼ 0:067. The rest of

the probabilities are obtained with the help of

the recursion relation for Poisson probabilities,

i.e., P xþ 1ð Þ ¼ λ
xþ1

� �
:P xð Þ, x ¼ 0, 1, 2, 3, 4, 5, 6:

Expected frequencies corresponding to different

values of number of cow death per month are

obtained by multiplying n ¼83 with the respec-

tive probabilities. The following table

summarizes the result of Poisson fitting of the

above data with P(x ¼ 0) ¼ 0.067.

4.9 Theoretical Probability Distributions 99



4.9.3 Normal Distribution

Most probably in the history of statistics, formu-

lation of normal distribution is a landmark.

Names of three scientists, viz., de Moivre, a

French mathematician; P Laplace of France,

and Gauss of Germany, are associated with the

discovery and applications of this distribution.

Most of the data in different fields like agricul-

ture, medical, engineering, economics, social,

business, etc. can reasonably be approximated

to normal distribution. Discrete distributions

like binomial distribution can very well be

approximated to normal distribution for large

number of observations.

A random variable X is said to follow the

normal probability distribution with parameter

μ (mean) and σ (standard deviation) if its proba-

bility density function is given by the probability

law

f xð Þ ¼ 1ffiffiffiffi
2π

p
σ
e �1

2
x�μ
σð Þ2


 �
�1 < x < 1, σ > 0, π;

and e have their usual values
and is denoted as X ~ N(μ, σ2).

Clearly, f xð Þ > 08x

Proof To prove that f xð Þ ¼ 1ffiffiffiffi
2π

p
σ

Z1
�1

e�
1

2σ2
x�μð Þ2dx

is a pdf

Z1
�1

f xð Þdx ¼ 1ffiffiffiffiffi
2π

p
σ

Z1
�1

e�
1
2σ2

x�μð Þ2
dx, putting z ¼ x� μ

σ
) dz ¼ dx

σ


 �

¼ 1ffiffiffiffiffi
2π

p
Z1
�1

e�
1
2
z2dz, putting t ¼ 1

2
z2 ) dt ¼ zdz


 �

¼ 2ffiffiffiffiffi
2π

p
Z1
0

e�t dtffiffiffiffi
2t

p

¼ 1ffiffiffi
π

p
Z1
0

e�tt
1
2
� 1dt,

"
,
Z1
0

e�xxn�1dx ¼ Γn ¼ n� 1ð Þ! and Γ 1

2

� �
¼ ffiffiffi

π
p

¼ 1ffiffiffi
π

p Γ
1

2

� �
¼ 1

No. death (x) Frequency ( f )
λ

xþ1
P xþ 1ð Þ ¼ λ

xþ1
P xð Þ Expected freq.* ¼ NP xð Þ

0 6 2.6988 5:5610 	 06

1 17 1.3494 0.1816 15:0728 	 15

2 19 0.8996 0.2450 20:3350 	 20

3 14 0.6747 0.2204 18:2932 	 18

4 13 0.5398 0.1487 12:3421 	 12

5 9 0.4498 0.0903 7:4949 	 08

6 5 0.3855 0.0470 3:9010 	 04

83 82
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If X ~ N(μ, σ2) then Z ¼ X�μ
σ is known as

standardized normal variate.

Now, E Zð Þ ¼ E X�μ
σ

� � ¼ E Xð Þ�E μð Þ
E σð Þ ¼ μ�μ

σ ¼ 0

and

Var Zð Þ ¼ E Z2
� � ¼ E X�μ

σ

� �2 ¼ E X�μð Þ2
E σ2ð Þ ¼ σ2

σ2 ¼ 1

Thus, Z follows a normal distribution with

mean 0 and variance 1, i.e., Z ~ N(0,1).

The pdf of the standard normal distribution

can be written as

ϕ zð Þ ¼ 1ffiffiffi
2

p
π
e�

1
2
z2 
 
 

 
 
 �1 < z < 1

Subsequently the distribution function is

written as

Φ zð Þ ¼ P Z � zð Þ ¼
Zz
�1

ϕ uð Þdu

¼ 1ffiffiffi
2

p
π

ZZ
�1

e�
u2

2 du

Properties of Normal Distribution:

1. Φ �zð Þ ¼ P Z � �zð Þ ¼ P Z � zð Þ ¼ 1� P
Z � zð Þ ¼ 1�Φ zð Þ

2. P a � x � bð Þ
¼ P

a� μ

σ
� z � b� μ

σ

� �
, z ¼ x� μ

σ

¼ P z � b� μ

σ

� �
� P z � a� μ

σ

� �
¼ Φ

b� μ

σ

� �
�Φ

a� μ

σ

� �
3. The mean of normal distribution is given by

E(X)

¼
Z1
�1

xf xð Þdx ¼ 1ffiffiffiffiffi
2π

p
σ

Z1
�1

xe�
1
2σ2 x� μð Þ2dx let z ¼ x� μ

σ
, we have dz ¼ dx

σ


 �

¼ 1ffiffiffiffiffi
2π

p
Z1
�1

μþ σzð Þe�1
2
zð Þ2dz

¼ μffiffiffiffiffi
2π

p
Z1
�1

e�
1
2
zð Þ2dz þ σffiffiffiffiffi

2π
p

Z1
�1

ze�
1
2
zð Þ2dz

¼ μþ 0 ¼ μ

"
,

1ffiffiffiffiffi
2π

p
Z1
�1

e�
1
2
zð Þ2dz ¼ 1, because Z is standard normal variate

and the 2nd term is zero because it is an odd function

#
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4. Moment generating function:

The moment generating function of the nor-

mal distribution is given by

M0 tð Þ ¼ E etxð Þ ¼
Z1
�1

etxf xð Þdx

¼ 1ffiffiffiffiffiffiffiffi
2πσ

p
Z1
�1

etxe�
1 x�μð Þ2
2σ2 dx, putting z ¼ x� μð Þ

σ
, we have dz ¼ dx

σ

¼ 1ffiffiffiffiffi
2π

p
Z1
�1

et μþσzð Þe�
1z2

2 dz

¼ etμffiffiffiffiffi
2π

p
Z1
�1

e
�1
2
z2 � 2zσtþ σtð Þ2 � σtð Þ2
h i

dz

¼ etμþ
1
2
t2σ2ffiffiffiffiffi
2π

p
Z1
�1

e�
1
2
z� σtð Þ2dz

¼ etμþ
1
2
t2σ2ffiffiffiffiffi
2π

p
Z1
�1

e�
1
2
y2dy, putting y ¼ z� σt, thus dz ¼ dy½ �

¼ etμþ
1
2
t2σ2

Differentiating once, twice, etc. with respect

to t and putting t ¼ 0, one can get raw moments.

5. Central moment of normal distribution:

The odd-order central moments of the normal

distribution about the mean (μ) is given by

m2rþ1 ¼
Z1
�1

x� μð Þ2rþ1f xð Þdx ¼ 1ffiffiffi
2

p
πσ

Z1
�1

x� μð Þ2rþ1e�
1
2

x�μ
σ

� �2
dx

¼ 1ffiffiffi
2

p
π

Z1
�1

σzð Þ2rþ1e�
z2

2 dz, since z ¼ x� μ

σ

h i

¼ σ2rþ1ffiffiffi
2

p
π

Z1
�1

z2rþ1e�
z2

2 dz

Now z2rþ1e�
z2

2 dz is an odd function of z so

Z1
�1

z2rþ1e�
z2

2 dz ¼ 0

∴ m2rþ1 ¼ 0

Thus all odd-order central moments of normal

distribution are zero. The even-order central

moment of this distribution is
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m2r ¼
Z1
�1

x� μð Þ2rf xð Þdx

¼ 1ffiffiffiffiffi
2π

p
Z1
�1

σzð Þ2re� z2=2ð Þdz

¼ σ2rffiffiffiffiffi
2π

p
Z1
�1

zð Þ2re� z2=2ð Þdz

¼ σ2rffiffiffiffiffi
2π

p 2

Z1
0

zð Þ2re� z2=2ð Þdz

¼ 2
σ2rffiffiffiffiffi
2π

p
Z1
0

2tð Þre�t dtffiffiffiffi
2t

p , t ¼ z2

2

� �

∴m2r ¼ 2rσ2rffiffiffi
π

p
Z1
0

e�tt rþ1
2ð Þ�1dt

) m2r ¼ 2rσ2rffiffiffi
π

p Γ r þ 1

2

� �

Changing r to (r�1), we get

m2r�2 ¼ 2r�1σ2 r�1ð Þffiffiffi
π

p Γ r � 1

2

� �

∴
m2r

m2r�2

¼ 2σ2
Γ r þ 1

2

� �
Γ r � 1

2

� � ¼ 2σ2 r � 1

2

� �

¼ σ2 2r � 1ð Þ, since �Γr ¼ r � 1ð ÞΓ r � 1ð Þ�
) m2r ¼ σ2 2r � 1ð Þm2r�2

This gives the recurrence relation for the

moments of normal distribution. Putting

r ¼ 1,2 we have m2 ¼ σ2 ¼ Variance and

m4 ¼ 3σ4. Thus β1 ¼ 0 and β2 ¼ 3:

6. Median of the normal distribution is

μ ¼ Mean.

Let M be the median of the normal distribu-

tion, then

ZM
�1

f xð Þdx ¼
Z1
M

f xð Þdx ¼ 1

2

Now,
1ffiffiffiffiffi
2π

p
σ

Z1
M

e�
1
2σ2 x� μð Þ2dx ¼ 1

2
,

putting z ¼ x� μð Þ
σ

, we have dz ¼ dx

σ


 �
¼ 1ffiffiffiffiffi

2π
p

Z1
M�μ
σ

e�
1
2
z2dz ¼ 1

2
ð1Þ

We know that 1ffiffiffiffi
2π

p
Z1
�1

e�
1
2
z2dz ¼ 1

) 1ffiffiffiffiffi
2π

p
Z1
0

e�
1
2
z2dz ¼ 1

2
: ð2Þ

Comparing (1) and (2) we have
M�μ
σ ¼ 0 ) M ¼ μ

∴ The median of the normal distribution is μ

7. Mode of the normal distribution is μ ¼ Mean.

The mode is the value of X for which f(x) is
maximum, i.e., the mode is the solution of

f’(x) ¼ 0 and f’ < 0. Mode of the normal distri-

bution is obtained as follows:

f 0 xð Þ ¼ df xð Þ
dx

¼ 1ffiffiffiffiffi
2π

p
σ
e�

1
2

x�μ
σ

� �2
�2

2

x� μ

σ2

� �
 �
¼ x� μ

σ3
ffiffiffiffiffi
2π

p e�
1
2

x�μ
σ

� �2
¼ 0

It is possible only when x ¼ μ ,f xð Þ 6¼ 0ð Þ

f
00
xð Þ ¼ d2f xð Þ

dx2

¼ x� μð Þ2
σ5

ffiffiffiffiffi
2π

p e�
1
2

x�μ
σð Þ2 � 1

σ3
ffiffiffiffiffi
2π

p e�
1
2

x�μ
σð Þ2
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Now,
d2f xð Þ
dx2

			
x¼μ

< 0

∴ f xð Þ is maximum at x ¼ μ. So mode of the

normal distribution is μ.
Thus, mean ¼ median ¼ mode ¼ μ. The nor-

mal distribution is symmetrical about the point

x ¼ μ, since f μþ uð Þ ¼ f μ� uð Þ ¼ 1ffiffiffiffi
2π

p
σ
e�

1
2
u2 ,

whatever u may be.

8. The linear combination of independent nor-

mal variate is also a normal variate.

Let X1, X2,. . .,Xn be n independent normal

variates with (μ1, σ1
2), (μ2, σ2

2), (μ3, σ3
2)

........... (μn, σn
2), i.e., if then

Xn
i¼1

aiXi 	

N
Xn
i¼1

aiμi,
Xn
i¼1

ai
2σi2

" #

9. Area under normal distribution.

If X 	 N μ; σ2ð Þ, then the

P μ < X < x1ð Þ ¼
Zx1
μ

f xð Þdx ¼ 1ffiffiffiffiffi
2π

p
σ

Zx1
μ

e�
1
2

x�μ
σ

� �2
dx

Putting
x� μ

σ

� �
¼ z

P μ < X < x1ð Þ ¼ P 0 < Z < z1ð Þ ¼ 1ffiffiffiffiffi
2π

p
Zz1
0

e�
1
2
zð Þ2dz

¼
Zz1
0

ϕ zð Þdz ¼
Zz1
�1

ϕ zð Þdz�
Z0
�1

ϕ zð Þdz ¼ Φ z1ð Þ � 0:5

where ϕ(z) is the probability function of standard
normal variate.Zz1

0

ϕ zð Þdz gives the area under standard

normal curve between z ¼ 0 and z ¼ z1.

The area under standard normal curve is

shown below

Example 4.22 Fit a normal distribution to the

frequency distribution for body weight (kg) of

chicks reared in a poultry farm.

Probability Curve of Standard Normal Distribution
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distribution
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Solution The first step in fitting any distribution

is to estimate the parameters of the concerned

distribution. In case of normal distribution, the

parameters are the mean μ and the standard devi-

ation σ. The method of moments can give us the

estimates x and s from the given data for popula-

tion parameters μ and σ, respectively. From the

above data, we have n ¼ 205, mean ¼ 2.50 kg,

and standard deviation s ¼ 0.222 kg.

Having worked out these estimates, we can

calculate the expected frequencies by using the

tables of the standard normal variate given in

Table 1 of Chap. 6. The expected frequency of

the standard normal variate within an interval

[a,b] is given by

n

Zb
a

1ffiffiffiffiffi
2π

p
s
e�

1
2s2 x� xð Þ2dx ¼ n

Zb�x
s

a�x
s

ϕ τð Þdτ, where, τ ¼ x� x

s


 �

¼ n

Zb�x
s

�1
ϕ τð Þdτ �

Za�x
s

�1
ϕ τð Þdτ

264
375 ¼ n Φ

b� x

s

� �
�Φ

a� x

s

� �
 �

In order to draw the fitted normal curve over the

histogram, one should compute the ordinates for

different values of x, and x’s are taken as class

boundaries. The ordinates are computed as follows:

n 1ffiffiffiffi
2π

p
s
e�

1

2s2
x�xð Þ2 ¼ n

s ϕ τð Þ where, τ ¼ x�x
s

� �
. The

values of φ(τ) and Φ(τ) are given in the

(Table 6.1) in Chap. 6 corresponding to different

values of τ.
With the help of the above information and

Table 6.2 given in Chap. 6, we prepare the fol-

lowing table:

Class

Height

(cm) (x) τ ¼ x�x
s Φ(τ)

probability

¼ ΔΦ(τ)

Expected

frequency

n.ΔΦ(τ) ϕ(τ)

ordinate ¼
n
s ϕ τð Þ

<2.00 2.00 �2.25225 0.01215 0.01215 2 0.031740 29.30918

2.00–2.10 2.10 �1.80180 0.03579 0.02364 5 0.078950 72.90446

2.10–2.20 2.20 �1.35135 0.08829 0.05250 11 0.160383 148.1017

2.20–2.30 2.30 �0.90090 0.18382 0.09553 20 0.266085 245.7093

2.30–2.40 2.40 �0.45045 0.32619 0.14237 29 0.360527 332.9191

2.40–2.50 2.50 0.00000 0.50000 0.17381 36 0.398942 368.3927

2.50–2.60 2.60 0.45045 0.67381 0.17381 36 0.360527 332.9191

2.60–2.70 2.70 0.90090 0.81618 0.14237 29 0.266085 245.7093

2.70–2.80 2.80 1.35135 0.91171 0.09553 20 0.160383 148.1017

2.80–2.90 2.90 1.80180 0.96421 0.05250 11 0.078950 72.90446

2.90–3.00 3.00 2.25225 0.98785 0.02364 5 0.031740 29.30918

>3.00 1 1 1.00000 0.01215 2 0.000000 0
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Example 4.23 Egg weight of particularly chick

breed is known to follow normal distribution

with mean 56 g and sd 5.65 g. Find the probabil-

ity that (i) P(X > 60 g), (ii) P(X � 60 g), and

(iii) P(40 � X � 70 g).

Solution Given that μ ¼ 56 g and σ ¼ 5.65 g,

i.e., X ~ N(56,31.92).

For X ¼ 60, we have Z ¼ 60�56
5:65 ¼ 0:70

(i) P X > 60ð Þ ¼ P Z � 0:70ð Þ
¼ 0:50� P 0 � Z � 0:70ð Þ
¼ 0:5� 0:2580
¼ 0:242

(ii) P X � 60ð Þ ¼ 1� P X > 60ð Þ
¼ 1� P Z � 0:70ð Þ
¼ 1 � 0:242
¼ 0:758

(iii) P 40 � X � 70ð Þ
¼ P

40� 56

5:65
� X � 56

5:65
� 70� 56

5:65

� �
¼ P �2:83 � Z � 2:477ð Þ
¼ P Z � 2:83ð Þ � P Z � �2:477ð Þ
¼ P Z � 2:83ð Þ � 1� P Z � 2:477ð Þð Þ
¼ 0:9976� 1� 0:9932ð Þ
¼ 0:9976� 0:0068
¼ 0:9908

4.10 Central Limit Theorem

Central limit theorem is one of the landmarks in

the history of statistics. In majority of the cases,

we study the population or infer about the popu-

lation with its mean μ. In doing so on the basis of
the samples, sample mean x is taken as estimate

of population mean. So one needs to study the

sampling behavior of sample mean, i.e., we must

study the sampling distribution of sample mean

arising out of different samples for different pop-

ulation distributions. It may be noted that not

necessarily all the distributions will follow nor-

mal distribution and its characteristics. So the

means arising out of different types of

distributions and different samples need to be

studied before it is taken as estimator of popula-

tion mean. To tackle these varied situations, cen-

tral limit theorem plays a very important role.

Though the central limit theorem (CLT) has been

put forwarded in different ways, the simplest one

is as follows: under the sufficiently large n (the

number of observations), the distribution of x is

approximately normal with mean μ and standard

deviation σ=
ffiffiffi
n

p
irrespective of the nature of

population distribution, i.e., x 	 N μ, σ=
ffiffiffi
n

pð Þ as

n ! 1.
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4.11 Sampling Distribution

The main objective of studying statistics is to char-

acterize population, particularly with respect to its

different parameters. In doing so, we examine the

sample characteristics and try to infer about the

population on the basis of the knowledge of sample

properties. The process of knowing population

characteristics from the knowledge of sample char-

acteristic is known as the statistical inference. Sam-

pling distribution plays an important role in

statistical inference. Generally we construct differ-

ent statistics from sample observations to estimate

population parameters. Depending upon the

parameter(s) and the form of the parameters of

the parent population, the statistics are developed.

In the following sections, we shall discuss some of

the important distributions, used in day-to-day

activities in agricultural and allied fields.

4.11.1 x2-Distribution

Statistical theory mostly deals with quantitative

data, but there are certain tests based on χ2 distri-
bution which can effectively be used for qualita-

tive data. Tests based on χ2 distribution have

got its application both in parametric and

nonparametric statistical inference. χ2 test is

used to test goodness of fit, to test the hypotheti-

cal value of population variance, to test the

homogeneity of variances, to test the indepen-

dence of attributes, etc.

Let X1, X2, X3....... Xn be “n” independent

standard normal variates with mean zero and

variance unity, then the statistic
Pn
i¼1

Xi
2 is called

a chi-square (χ2) variate with “n” degrees

of freedom and is denoted as χn
2. The pdf of χ2

distribution is given by

f χ2ð Þ ¼ 1

2n=2Γ n
2

e�
1
2
X2

χ2ð Þn2�1
, 0 � χ2 < 1

If X1, X2, X3....... Xn be independent normal

variates, instead of standard normal variate, with

mean μi and variance σ2i i ¼ 1, 2, 3, . . . , nð Þ, then
χ2 ¼

Xn
i¼1

Xi � μið Þ2
σi2

is χ2� variate with n degrees

of freedom.

Properties of χ2 Distribution
1. The moment generating function of the χ2

distribution is given by

Mχ2 tð Þ ¼ 1� 2tð Þ�n=2
, 2tj j < 1.

2. The first four raw moments are

υ1 ¼ dMχ2 tð Þ
dt

i
t¼0

¼ n

υ2¼ d2Mχ2 tð Þ
dt2

i
t¼0

¼ n � n
2
þ 1

� �� �
1� 2tð Þ� n=2þ2ð Þ �2ð Þ

i
t¼0

¼ 2n n
2
þ 1

� �
1� 2tð Þ� n=2þ2ð Þ

i
t¼0

¼ n nþ 2ð Þ 1� 2tð Þ� n=2þ2ð Þ
i
t¼0¼ n nþ 2ð Þ

υ3 ¼ d3Mχ2 tð Þ
dt3

i
t¼0

¼ n nþ 2ð Þ � n
2
þ 2

� �� �
1� 2tð Þ� n=2þ3ð Þ �2ð Þ

i
t¼0

¼ 2n nþ 2ð Þ n
2
þ 2

� �
1� 2tð Þ� n=2þ3ð Þ

i
t¼0

¼ n nþ 2ð Þ nþ 4ð Þ 1� 2tð Þ� n=2þ3ð Þ
i
t¼0¼ n nþ 2ð Þ nþ 4ð Þ

υ4 ¼ d4Mχ2 tð Þ
dt4

i
t¼0

¼ n nþ 2ð Þ nþ 4ð Þ � n
2
þ 3

� �� �
1� 2tð Þ� n=2þ4ð Þ �2ð Þ

i
t¼0

¼ 2n nþ 2ð Þ nþ 4ð Þ n
2
þ 3

� �
1� 2tð Þ� n=2þ4ð Þ

i
t¼0

¼ n nþ 2ð Þ nþ 4ð Þ nþ 6ð Þ 1� 2tð Þ� n=2þ4ð Þ
i
t¼0¼ n nþ 2ð Þ nþ 4ð Þ nþ 6ð Þ
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3. The first four central moments of χ2 distribu-
tion are:

m1 ¼ υ1 ¼ n
m2 ¼ υ2 � υ2

1
¼ n nþ 2ð Þ � n2

¼ n2 þ 2n� nf g2
¼ 2n

m3 ¼ υ3 � 3υ1υ2 þ 2υ3
1

¼ n nþ 2ð Þ nþ 4ð Þ � 3n2 nþ 2ð Þ þ 2n3

¼ n3 þ 6n2 þ 8n� 3n3 � 6n2 þ 2n3

¼ 8n

m4 ¼ υ4 � 4υ3υ1 þ 6υ2
1
υ2 � 3υ4

1¼ n nþ 2ð Þ nþ 4ð Þ nþ 6ð Þ � 4n nþ 2ð Þ nþ 4ð Þn
þ6n2n nþ 2ð Þ � 3n4

¼ n4 þ 12n3 þ 44n2 þ 48n� 4n4 � 24n3

�32n2 þ 6n4 þ 12n3 � 3n4

¼ 12n2 þ 48n
¼ 12n nþ 4ð Þ

4. β1 ¼
m3

2

m2
3
¼ 8

n
, β2 ¼

m4

m2
2
¼ 12

n
þ 3

Therefore, n being positive number, χ2 distri-
bution is positively skewed and leptokurtic in

nature.

5. Both skewness and kurtosis are inversely pro-

portional to the degrees of freedom. So as the

degrees of freedom increase, the distribution

tends to be symmetric.

That means n ! 1, χ2�nffiffiffiffi
2n

p ! N 0; 1ð Þ.
6. Mode of the χn

2 distribution is (n�2).

7. If χ1
2 and χ2

2 are independent χ2 variates with
n1 and n2 df, then (χ1

2 + χ2
2) is also a χ2

variate with (n1 + n2) df. This is known as

the additive property of the χ2 distribution.

4.11.2 t-Distribution

In statistics sometimes we want to test the sig-

nificant difference between the sample mean

and the hypothetical population mean, between

two sample means, to test the significance

of observed correlation coefficient, regression

coefficient, partial correlation coefficient, etc.,

and in these regards the tests based on t-distribu-

tion play a vital role. The above tests have been

discussed in detail in Chap. 6 of this book. In this

section we shall define and examine the

properties of t-distribution.

Let X be a standard normal variate; now we

define t statistic as the ratio of the standard nor-

mal variate to the square root of a χ2 variate

divided by its degrees of freedom. Thus t ¼ x ffiffiffi
χ2

n

p
with n degrees of freedom where x is a standard

normal variate and χ2 is independent of X. The

pdf of t-distribution is given as

f tð Þ ¼ 1ffiffi
n

p
β 1

2;
n
2ð Þ :

1

1þt2

nð Þnþ1
2

, �1 < t < 1.

2
1-a ,nc 2

,nac
2c

( )2f c

Fig. Percentage points of χ2 distribution with n d.f.

( )2f c

n=2

n=4
n=8

2c

Fig. Shape of the density curve of χ2
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Properties of t-Distribution

1. Likewise to that of normal distribution, t-dis-
tribution is a continuous, symmetric distribu-

tion about zero.

2. All odd-order moments about the origin

are zero, i.e., υ2rþ1 ¼ 0; r ¼ 0, 1, 2, 3::::::::::

As central moments coincide with the

moments about origin, m2rþ1 ¼ 0; r ¼ 0, 1,

2, 3::::::::::.

3. The 2r-th order central moment, i.e., the even-

order moment of t-distribution is given by

m2r ¼ nr 2r�1ð Þ 2r�3ð Þ:::::::::::5:3:1
n�2ð Þ n�4ð Þ n�6ð Þ:::::: n�2rð Þ , n > 2r,

where n is the degrees of freedom.

Thus

m2 ¼ n

n� 2
, n > 2,

m4 ¼ 3n2

n� 2ð Þ n� 4ð Þ , n > 4:

4. β1 ¼ m3
2

m2
3 ¼ 0, β2 ¼ m4

m2
2 ¼ 3 n�2

n�4
. Thus t-distri-

bution is symmetric and leptokurtic. Again as

n ! 1, limn!13
1�2

n

1�4
n

� �
¼ 3, thereby the dis-

tribution tends to be mesokurtic. As n ! 1,

the t-distribution approaches to the distribu-

tion of standard normal variate.

5. P t > tα,n½ � ¼ α and P t < t1�α,n½ � ¼ α; then

tα,n and t1�α,n are the upper and lower

α-points, respectively, of t-distribution

with n degrees of freedom. By symmetry,

t1�α,n ¼ �tα,n.

6. Using student’s t-distribution one can work out

the Fisher’s t-distribution also (Ref 4.11.5).

4.11.3 F Distribution

Another important sampling distribution is the

F distribution. Tests based on F distribution

have varied range of application in statistics,

e.g., test for significances of equality of two

population variances, multiple correlations, cor-

relation ratio, etc. Tests based on F distribution

have been discussed in Chap. 6. Another impor-

tant use of this distribution has been made in

comparing several means at a time through the

technique of analysis of variance as discussed in

Chap. 9.

An F statistic is defined as the ratio of two

independent χ2 variates divided by their respec-

tive degrees of freedom. Thus, F ¼ χ1
2=n1

χ22=n2
, where

Probability Density Function Curve of t- distribution(10)

0.000

0.125

0.250

0.375

0.500

-3.50 -1.75 0.00 1.75 3.50

0.05 0.05

4.11 Sampling Distribution 109

http://dx.doi.org/10.1007/978-81-322-2831-8_6
http://dx.doi.org/10.1007/978-81-322-2831-8_9


χ1
2 and χ2

2 are two independent χ2 variates with
n1 and n2 degrees of freedom, respectively, i.e.,

an F variate with (n1,n2) degrees of freedom.

The pdf of F distribution is given by

f Fð Þ ¼
n1
n2

� �n1=2

β n1=2, n2=2ð Þ :
F

n1
2
�1ð Þ

1þ
n1
n2

F

� �n1þn2
2

, 0 � F < 1

Properties of F Distribution

1. Unlike normal and t-distribution,
F distribution is a continuous but asymmetric

distribution.

2. The r-th moment about origin of

F distribution is given by

υr ¼ E Frð Þ ¼
Z1
0

Frf Fð ÞdF ¼ n2
n1

� �r β r þ n1
2
,
n2
2
� r

� �
β

n1
2
;
n2
2

� � , n2 > 2r

¼ n2
n1

� �rΓ r þ n1
2

� �
Γ

n2
2
� r

� �
Γ
n1
2
:Γ

n2
2

, n2 > 2r

Thus mean, υ1 ¼ n2
n2�2

, n2 > 2, mean depends

only on the d.f. of the numerator χ2 and mean

is always greater than unity.

υ2 ¼ n2
2

n1

n1 þ 2

n2 � 2ð Þ n2 � 4ð Þ , n2 > 4

∴m2 ¼ 2n2
2 n1 þ n2 � 2ð Þ

n1 n2 � 2ð Þ2 n2 � 4ð Þ ; n2 > 4:

3. The mode of F distribution is given by

n2
n1

n1�2
n2þ2

� �
. Thus mode exists only when n1 > 2.

4. The distribution is positively skewed.

5.

F n1; n2ð Þ ¼ 1

F n2; n1ð Þ :

6. If P F > Fα;n1,n2

� �¼ α and P F < F1�α;n1,n2

� �
¼ α then Fα;n1,n2 and F1‐α;n1,n2 are the upper

and lower α -point of F distribution with

(n1, n2) d.f. respectively and F1�α;n1,n2 ¼
1

Fα;n2,n1
. As such only upper α -point of F-distri-

bution for different degrees of freedom are

given in most of the statistical tables.

7. In casen1 ¼ 1, thenF ¼ χ2
1

χ2
2
=n2

, where χ12 is just

the square of a standard normal variate. Hence

F1,n2 ¼ t2 where t has the t distribution with

n2 d.f.

8. If n2 ! 1, then χ2 ¼ n1F distribution with n1
degrees of freedom.

f(F)

FF'
F ;(k-1),(n-k)a

F''

4.11.4 Sampling Distribution of Sample
Mean and Sample Mean Square

Let x1,x2,x3,. . .xn be a random sample drawn

from N(μ, σ2). Then the sample mean

x ¼ 1
n

Pn
i¼1

xi also follows normal distribution

with mean μ and variance (σ2/n). Thus the pdf

of x is given by

f xð Þ ¼
ffiffiffi
n

p

σ
ffiffiffiffiffi
2π

p e�
n

2σ2
x�μð Þ2

, �1 < x < 1
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We knoen thst χ2n ¼

Xn
i¼1

xi � μð Þ2

σ2 ¼

Xn
i¼1

xi � xð Þ2

σ2

þ n x� μð Þ2
σ2

¼ n� 1ð Þs2
σ2

þ n x� μð Þ2
σ2

Since
x� μð Þ
σ=

ffiffiffi
n

p 	 N 0; 1ð Þ

∴
n x� μð Þ2

σ2
	 χ21

By additive property of χ2, we have
n�1ð Þs2
σ2 	 χ2n�1

Hence the distribution of the sample mean

square (s2) is 1

2
n�1
2 Γn�1

2

e
� n�1ð Þs2

2σ2 : n�1ð Þs2
σ2

� �n�1
2

�1

d n�1ð Þs2
σ2

� �
i:e:f s2ð Þ n� 1ð Þ

n�1
2

2σ2ð Þn�1
2 Γ

n� 1

2

e�
n�1ð Þs2
2σ2 : s2ð Þ

n�3
2

ds2,

0 < s2 < 1

4.11.5 Fisher’s t-Distribution
and Student’s t-Distribution

We have sample mean and s2 are distributed

independently and since x 	 N μ, σ2=nð Þ
∴z ¼ x�μ

σ=
ffiffi
n

p 	 N 0; 1ð Þ and χ2 ¼ n�1ð Þs2
σ2 	 χ2n�1

z and χ2, both are indepenedent.

Then according to the definition of t, we have

t ¼ zffiffiffiffiffiffiffiffiffiffiffi
χ2=n�1

p ¼
x�μ
σ=
ffiffi
n

pffiffiffiffiffiffiffiffiffi
n�1ð Þs2
σ2 n�1ð Þ

q ¼ x�μ
s=
ffiffi
n

p With (n-1) d.f.;

this is known as student’s t statistic.
Let us suppose two independent samples of

sizes n1 and n2 are drawn randomly from two

normal populations and we assume that

σ21 ¼ σ22 ¼ σ2.

Thus, x1, x2, x3, :::::::::xn1 	 N μ1; σ
2
1

� �)
x 	 N μ1, σ

2=n1ð Þ and
y1, y2, y3, :::::::::yn2 	 N μ2; σ

2
2

� �)
y 	 N μ2, σ

2=n2ð Þ

Thus, x� y 	 N μ1 � μ2,
σ2

n1
þ σ2

n2

� �
) z ¼ x� y� μ1 � μ2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
n1
þ σ2

n2

q 	 N 0; 1ð Þ

Again,

Pn
i¼1

xi�xð Þ2

σ2 ¼ n1�1ð Þs2x
σ2 	 χ2n�1 andPm

i¼1

yi�yð Þ2

σ2 ¼ n2�1ð Þs2y
σ2 	 χ2m�1

Thus, χ2n1�1 þ χ2n2�1 ¼ χ2n1þn2�2 ¼ n1�1ð Þs2x
σ2 þ

n2�1ð Þs2y
σ2

and t ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þs2x

σ2
þ n2 � 1ð Þs2y

σ2

( )
= n1 þ n2 � 2ð Þ

vuut
¼ x� y� μ1 � μ2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 � 1ð Þs2x þ n2 � 1ð Þs2y
n1 þ n2 � 2ð Þ

( )vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r ¼ x� y� μ1 � μ2ð Þ
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r ,

known as Fisher0s t statistic with n1 þ n2 � 2ð Þ d:f:
where s2 ¼ n1 � 1ð Þs2x þ n2 � 1ð Þs2y

n1 þ n2 � 2
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Population and Sample 5

5.1 Population

The main objective of studying statistics is to

characterize population, defined as the collection

of well-defined entities having some common

characteristics. The observations or entities

could refer to anything like persons, plants,

animals, and objects (books, pens, pencils,

medicines, engines, etc.), and a character is

defined on the population. Population may be

constituted of persons living in a country, popu-

lation of goats in a country, population of books

in a library, population of fishes in a particular

pond, population of farmers in a country,

populations of students in a country/state/univer-

sity, etc. Individual member of the population is

known as element or unit of the population. Pop-

ulation size refers to the number of observations

in the population. Depending upon the size of the

population, a population may be finite or infinite.

A finite population is a population having fixed

number of observations/units/elements, e.g.,

population of students in a university,

germplasms of mango in a mango garden,

books in a particular library, population of cattle

in a province, and so on. On the other hand, an

infinite population is a population having infinite

number of observations/units/element. For

example, fishes in a particular river, stars in a

galaxy, population of hairs on a person’s head,

etc. An infinite population may be infinite or

countably infinite.

5.2 Sample

From the above definition and examples of pop-

ulation, it is quite clear that to study a particular

population, one has to study each and every

element/unit of the population (the census or

complete enumeration method). But, it may not

be possible/feasible to study each and every ele-

ment/unit of population for various reasons. To

study each and every element of a population

may not be possible/feasible because of time,

labor, and cost involvement. Sometimes, it may

not be possible also to identify each and every

unit of the population (infinite population). As

such in our daily, life we are quite familiar with

the word sample and sample survey method of

data collection. A sample is a representative part

of the population. If we go to market to buy any

commodity, we ask the retailer to show the sam-

ple. The retailer shows a handful of the commod-

ity from a stock of huge amount. We check the

sample for its quality assuming that the quality of

the commodity from which we are supposed to

buy (the population) a certain amount of that

commodity will be of the same quality as that

of the sample shown to us. If the sample shown to

the buyer is not a proper representative part of the

population, then it may lead to wrong decision

with regard to buying of the commodity. In sta-

tistics, one studies the sample characteristics and

verifies how far the sample behaviors are

# Springer India 2016

P.K. Sahu, Applied Statistics for Agriculture, Veterinary, Fishery, Dairy and Allied Fields,
DOI 10.1007/978-81-322-2831-8_5

113



acceptable for the whole population (inference

about the population without studying all the

elements of particular population), with the help

of appropriate statistical theories. The sample and

the inference about the population based on its

characteristics play important role particularly dur-

ing the time of disasters, natural calamities, etc. in

quick estimating the quantum of losses incurred

and thereby helping the policy-makers in taking

immediate measures. Sampling technique has

been, in fact, use in every sphere of our daily life.

The branch of statistical science, in which the

technique of sampling for various types of

populations and study of the characteristics are

dealt with, is coming under sampling theory.

Sampling theory mainly has three major

components: (a) how to select proper sample,

(b) collection of information from the samples,
and (c) analysis of sample information to be

utilised during drawing of inferences about the

population as a whole. If the sample fails to

represent the population adequately, then there

is every chance of drawing wrong inference

about the population based on such sample

because of the fact that it may overestimate or

underestimate population characteristics. In fact,

one of the major areas of sampling theory is to

decide appropriate technique of drawing samples

which clearly reflects the nature of the popula-

tion; in doing so, variability and the nature of the

population play a vital role. Before drawing sam-

ple from any population, we should have a sam-

pling frame. A list of all the units in the
population to be sampled constitutes sampling

frame. A list of all the blocks in India may

constitute the sampling frame in a survey over

India. Let us suppose that we want to know the

average height of the students of a college. If the

college is coeducation college and one draws

(i) a sample of either boys or girls only, or

(ii) from a particular class, then the sample fails

to represent the whole population, i.e., the

students of that particular college vis-à-vis the

average height obtained from the sample may fail

to picturize the true average height of the

students of the college (the population). Suppose

we want to know the productivity of milking

cows in a particular block. While selecting

sampling units, one must take into considerations

that the milk yield varies depending upon the

breed of the cows in the concerned block, age

of the cows, rearing conditions of the cows, and

so on. All these are to be provided due impor-

tance so that each and every category is

represented in the sample, and thereby the sam-

ple becomes in true to the sense a representative

part of the milking cows in the particular block.

This will lead to efficient estimation of average

productivity of the milking cows in the block;

otherwise, this will be misleading. A sample, if

fails to represent the parent population, is known

biased sample, whereas an unbiased sample is

statistically almost similar to its parent popula-

tion, and thus inference about population based

on this type of sample is more reliable and

acceptable than from biased sample. A clear

specification of all possible samples of a given

type with their corresponding probabilities is said

to constitute a sample design.
Size (n) of a sample is defined as the number

of elements/units with which the sample is

constituted of. There is no hard and fast rule,

but generally a sample is recognized as large

sample if the sample size n � 30, otherwise

small sample.
Before discussing the sampling techniques in

details, let us have a comparative study of the

two methods of data/information collection, viz.,

the census and the sample survey method.

A comparative account of the two methods of

collection of data is given below:

Sample survey method

Sl

no. Census method

Only a representative

part of the population

(sample) comes under

investigation

1 Every element of the

population comes under

investigation

Comparatively less

accurate, if not done

properly

2 Accurate

Economical 3 Costly

Lesser time and

resource consuming

4 Time- and resource

consuming

Helpful in case of

infinite population

5 Not possible for infinite

population

(continued)
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5.3 Parameter and Statistic

Let us suppose, we have a population Y1, Y2,

Y3,. . .,YN of size N. Now a parameter is defined
as a real-valued function of the population

values.

For example, population mean ¼ Y ¼
1

N

XN
i¼1

Yi, Population variance ¼ σ2Y ¼

1

N

XN
i¼1

Yi � Y
� �2

; Population coefficient of varia-

tion ¼ CY ¼ σY
Y

Let us suppose, we have selected a sample y1,
y2, y3,. . .,yn of size n from a population of size N.

Now a statistic is defined as a real-valued func-

tion of the sample values only. For example:

sample mean ¼ y ¼ 1

n

Xn
i¼1

yi,

sample variance ¼ s02y ¼
1

n

Xn
i¼1

yi � yð Þ2;

sample coefficient of variation ¼ cy ¼
s0y
y
.

5.4 Estimator

An estimator is a statistic when it is used to

estimate the population parameter. From each

and every sample, estimator(s) can be worked

out, as such estimators for a particular population

parameter behave like a random variable. The

particular value, which the estimator takes for a

given sample, is known as an estimate. Let the
probability of getting the ith sample be pi, and let

ti (i ¼1, 2, 3 . . ...N0) be the estimate, i.e., the

value of estimator t based on this sample for the

parameter θ, N0 being the total number of possi-

ble samples for the specified probability scheme.

The expected value or the average value of the

estimator t is given by E tð Þ ¼
XN0

i¼1

tipi. The esti-

mator t is said to be an unbiased estimator of

the parameter θ if E tð Þ ¼ θ. In case E(t) is not

equal to θ, the estimator is said to be biased

estimator of parameter θ, and the bias of t is

given as B tð Þ ¼ E tð Þ � θ. The difference

between the estimate ti based on the ith sample

and the parameter θ, i.e., (ti � θ), may be called

the error of the estimate. A commonly used loss

function is the squared error ti � θð Þ2, and the

expected loss function is known as mean square

error (MSE). The MSE of an estimator t of θ is

M tð Þ ¼ E t� θð Þ2 ¼
XMo

i¼1

pi ti � θð Þ2. The vari-

ance of t is defined by V tð Þ ¼ E t� E tð Þ½ �2 ¼XMo

i¼1

pi ti � E tð Þ½ �2

We have M tð Þ ¼ E t� θð Þ2
¼ E t� E tð Þ þ E tð Þ � θ½ �2
¼ E t� E tð Þ½ �2 þ E tð Þ � θ½ �2

þ 2E t� E tð Þ½ � E tð Þ � θ½ �
¼ V tð Þ þ B tð Þ½ �2, since E t� E tð Þf g ¼ 0ð Þ:

Efficient Estimator Given two estimators t1
and t2 for the population parameter θ, the estima-

tor t1 is said to be more efficient than t2 if MSE

(t1) < MSE(t2).

5.5 Subject Matter of Sampling

Whole subject matter of sampling is directed

toward (a) selection of proper method to obtain
a representative sample, (b) to determine the size

of the sample, (c) to ensure good quality of

Sample survey method

Sl

no. Census method

Helpful for large

population

6 Difficult for large

population

Having both sampling

and non-sampling errors

7 Sampling errors are

absent

Nonresponse errors can

be solved

8 Difficult to solve

nonresponse problem

Parameters are to be

estimated and tested

9 Parameters are directly

worked out

Used frequently 10 Not used frequently

(e.g., human population

census, livestock

census, etc. are not

done frequently)
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information, and (d) to estimate parameters,
minimizing errors toward valid inferences about

the population.
Once the purpose and objective of the study is

fixed, one has to prepare a suitable sampling plan

to fulfill the objective of the study. An ideal

sampling plan should be concerned about:

(a) Definition of population and sampling units

(b) Scope of study area or domain (i.e., crop,

animals, forest plants, human beings, eco-

nomic parameters, etc.) to be covered

(c) Preparation of sampling frame

(d) Time period allowed

(e) Amount of cost permissible

(f) Coverage, i.e., type of information (qualita-

tive or quantitative) to be collected

(g) Type of parameters to be estimated and type

of inference to be made about the

population

(h) Sampling design

(i) Selection of sample and collection of data

through trained investigators

(j) Analysis of sampled data to arrive at the

population figures to fulfill the objective of

the study

All the above steps aim at reducing the sam-

pling error at a given cost within limited

resources toward drawing efficient inference

about the population under consideration.

A good sampling plan is “essential” for draw-

ing an efficient sample. Along with a good sam-

pling plan, its execution is also the most

important. It is necessary to have a “good” sam-

pling plan followed by its “efficient execution” to

get good estimates of the population parameters.

A “good” sampling plan, if not executed prop-

erly, may give “bad” (unreliable, inaccurate)

results leading to wastage of time, energy, and

money used. For efficient execution of the sam-

pling plan, the investigators responsible for the

data collection must possess necessary

qualifications. The investigators must be prop-

erly trained before the data collection. They

must be taught how to handle the equipments

and make correct observations and

measurements and note them down carefully. A

proper supervision of the fieldwork must be

followed by scrutiny and editing of the collected

data. Sincere attempts are needed to identify the

sample units, in specifying the units (s) of

measurements at every stage and to minimize

the error in recording of the data. Initially, a

pilot survey may be undertaken to select the

suitable sampling plan among the alternative

plans. An efficient execution of sampling plan

cannot only reduce both the sampling and

non-sampling errors but also helps in reducing

the cost of study.

5.6 Errors in Sample Survey

In every sphere of scientific endeavor, there are

possibilities of error. In sampling, also mainly

there are two types of errors associated with

estimates worked out from the sample:

(i) sampling error and (ii) non-sampling error.

Sampling Error The error due to differences in

samples is generally termed as sampling error. It

is our common experience that even if we use

different samples, drawn exactly the same way

from the same population, the estimates from

each sample may differ from the other in spite

of using the same questionnaires, instructions,

and facilities that are provided for selection of

all the samples. This difference is termed as

sampling error.

Non-sampling Error Non-sampling errors on

the other hand are mainly due to differential

behavior of respondents as well as interviewers/

supervisors. Thus, difference in response,

difficulties in defining, difference in

interpretations and inability in recalling informa-

tion, and so on are the major sources of

non-sampling errors.

5.7 Sample Size

The number of units to be taken into consider-

ation while recording information from the pop-

ulation, i.e., sample size, plays an important role.
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A number of factors govern the size of the sam-

ple to be drawn for a specific purpose.

(i) Objective and scope of the study, (ii) nature

of population and sampling unit, (iii) the sam-

pling technique and estimation procedure to be

used, (iv) structure of variability in the popula-

tion, (v) structure of time and cost component,

(vi) size of the population, etc. are the major

decisive factors in fixing the size of the sample

for a particular study. An efficient and optimum

sample either minimizes the mean squared error

of the estimator for a fixed cost or minimizes the

cost for a fixed value of mean squared error.

Fixing of optimum sample size becomes compli-

cated when more than one parameter is to be

estimated or more than one variable is under

study. In fact, it is very difficult to have a fixed

rule for getting sample size. However, based on

past information or information gathered through

pilot study conducted before the main study and

giving due consideration to the above decisive

factors, sample sizes are fixed for specific stud-

ies. Krejcie and Morgan (1970) have provided

the following formula guiding the determination

of sample size from a finite population:

S ¼ χ2NP 1� Pð Þ
d2 N � 1ð Þ þ χ2P 1� Pð Þ

where

S ¼ required sample size

χ2 ¼ the table value of χ2 for one degree of

freedom at the desired confidence level

N ¼ the population size

P ¼ the population proportion (assumed to be

0.50 since this would provide the maximum

sample size)

d ¼ the degree of accuracy expressed as a pro-

portion (0.05)

Example 5.1 Let us find out the sample size for

drawing sample from a population of 100 units

(N ). If we select 5 % level of significance

(d ¼ 0.05) and P ¼ 0.5, then the sample size

would be

S ¼ χ2NP 1� Pð Þ
d2 N � 1ð Þ þ χ2P 1� Pð Þ

¼ 3:841 � 100� 0:5 1� 0:5ð Þ
0:052 100� 1ð Þ þ 3:841� 0:5 1� 0:5ð Þ

¼ 96:025

1:20775
¼ 79:5073 � 80

The following table gives an idea about the sam-

ple size in accordance with the above formula for

different population size:

Determination of Sample Size When Popula-

tion Size Is Unknown

Some information are essential about the popula-

tion on hand; also the nature of the sample one

wants to draw is essential before drawing the

sample from a population of unknown size. It is

very difficult to draw a perfect sample which can

mimic the population, so one needs to fix the

allowable error limit and also the confidence

interval with respect to the parameter. Com-

monly used confidence levels are 90 %, 95 %,

99 %, etc. Also, one should have an idea about

Population

size (N )

10 25 50 100 150 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Sample

size (n)
10 24 44 80 108 132 169 196 217 234 248 260 269 278 285 291 297 302 306 310 313 317

% of

elements

100 96 89 80 72 66 56 49 43 39 35 32 30 28 26 24 23 22 20 19 18 18

Population

size (N )

1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

Sample

size (n)
320 322 325 327 329 331 333 335 336 338 339 341 342 343 344 345 346 347 348 349 350 351

% of

elements

17 16 15 15 14 14 13 13 12 12 12 11 11 11 10 10 10 10 9 9 9 9
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the quantum of variance one expects in

responses. Mostly, 0.5 is used to have a large

sample with the expectation of minimization of

error. Incorporating the above information in the

following formula, required sample size is deter-

mined for unknown population size.

S ¼ Z‐score2� Sd 1�Sdð Þ
Margin of error2

Z score for different

confidence interval is 1.645, 1.96, and 2.326 for

90 %, 95 %, and 99 %, respectively.

Let us suppose that we have 95 % confidence

interval with 0.5 Sd and 5 % being the margin of

error, then the sample size would be

S ¼ Z‐score2 � Sd 1� Sdð Þ
Margin of error2

¼ 1:96ð Þ2 � 0:5 0:5ð Þ
0:05ð Þ2 ¼ 3:8416� 0:25ð Þ

0:0025

¼ 0:9604

0:0025
¼ 384:16 ¼ 384

Instead of 95 %, if we take 90 % confidence

interval with the same Sd and level of error,

then the required sample size would be

S ¼ Z‐score2 � Sd 1� Sdð Þ
Margin of error2

¼ 1:645ð Þ2 � 0:5 0:5ð Þ
0:05ð Þ2 ¼ 2:706� 0:25ð Þ

0:0025

¼ 0:67651

0:0025
¼ 270:603 � 271

Again instead of 0.5 Sd, if we take 0.4 Sd with

same confidence level and level of error, then the

required sample size would be

S ¼ Z‐score2 � Sd 1� Sdð Þ
Margin of error2

¼ 1:645ð Þ2 � 0:4 0:6ð Þ
0:05ð Þ2 ¼ 2:706� 0:24ð Þ

0:0025

¼ 0:64945

0:0025
¼ 259:776 � 260

Thus, depending upon the desired level of accu-

racy and confidence level, the sample size is

fixed. Moreover, unknown population size does

not create acute problem because of the fact that

the population size is irreverent unless the size of

the sample exceeds a few percent of the total

population. Thus, a sample of 500 elements is

equivalently useful in examining a population of

either 1,500,000 or 100,000. As such, the survey

system ignores population size when the popula-

tion is either large or unknown.

5.8 Selection of Sample (Sampling
Technique)

Depending upon the nature and scope of the

investigation and situations under which the

study is being carried out, appropriate sampling

technique is being chosen. Available sampling

techniques can broadly be categorized in to two

categories (a) probability sampling and (b) non-

probability sampling. When the units in the sam-
ple are selected using some probability mecha-

nism, such a procedure is called probability

sampling. The procedure of selecting a sample
without using any probability mechanism is

termed as non-probability sampling:

Probability sampling

Non-probability

sampling

(1) Simple random sampling (1) Quota sampling

(2) Varying probability

sampling

(2) Judgment

sampling

(3) Stratified sampling (3) Purposive

sampling

(4) Systematic sampling

(5) Cluster sampling

(6) Multistage sampling

(7) Multiphase and double

sampling

(8) Sampling on two occasions

(9) Inverse sampling

Besides the above, some complex and mixed

sampling techniques like (a) two-stage or three-

stage sampling with stratification, (b) double

sampling for stratification, (c) sampling on suc-

cessive occasions are useful in studies related

with socioeconomic, agronomic, and animal hus-

bandry aspects.
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5.9 Different Sampling Techniques

5.9.1 Probability Sampling

In this type of sampling scheme, sampling units

are selected with definite probability rule; sam-

pling units cannot be selected as per the whims of

the investigator or user. Depending upon the

nature of the population and objective of the

study, different sampling techniques have been

developed to fit the respective situation following

definite probability rule. In the following

sections, let us discuss in brief some of the useful

and widely used sampling techniques.

5.9.1.1 Simple Random Sampling
The basic assumption in simple random sampling

is that the population is assumed to be homoge-

nous in nature. Units are drawn into the sample

from the population with the condition that each

and every element in the population has got equal

probability to be included in the sample. There

are two methods of selecting sampling units

using simple random sampling technique from a

population, viz., simple random sampling with
replacement (SRSWR) and simple random sam-

ple without replacement (SRSWOR).

In simple random sampling with replacement

(SRSWR), if there are “N” units in the popu-

lation, then every unit has got 1/N probability

to be included in the sample. After selecting a

unit, it is noted and returned to the population,

before the second unit is selected from the

population and the process is continued till

n (the sample size) number of units is selected

from the population. Thus, from a population

of N units, we select each and every unit by

giving equal probability 1/N to all units with

the help of random numbers.

On the other hand, in simple random sampling

without replacement (SRSWOR) after selec-

tion of the first unit from N number of unit in

the population with 1/N probability, the

selected unit is not returned in to the population

before drawing of the second unit. Thus, the

second unit is selected with 1/(N�1) probabil-

ity from (N�1) units. Subsequent units are

selected accordingly from the rest (N�2),

(N�3), (N�4)....... respectively units at each

stage. The beauty of this method is that in spite

of reduced number of elements in the popula-

tion after each draw, it can be shown that the

probability of drawing selecting a unit in the

sample remains same. We shall demonstrate

the same as follows.

Let us suppose we are to draw a sample of

n units from a population of N units using

SRSWOR. Under the given conditions, the proba-

bility of drawing any unit in the first drawing out

of N units is 1/N and that of second unit from the

remaining (N�1) units is 1/(N�1), third unit from

(N�2) remaining units is 1/(N�2), and so on. IfMr

be an event such that a specific unit is selected at

the rth draw, then the probability ofMr is given as

P(Mr) ¼ the probability of the specific unit

being not selected in r�1 previous draws and

has been selected only during the rth draw is

Yr�1

i¼1

P that the element is not selected at ith drawð Þ

� P that the element is selected at ith drawð Þ

¼
Yr�1

i¼1

1� 1

N� i� 1ð Þ
� �

� 1

N� r� 1ð Þ

¼
Yr�1

i¼1

N� i

N� iþ 1
� 1

N� r� 1ð Þ
¼ N� 1

N
�N� 2

N� 1
�N� 3

N� 2

�N� 4

N� 3
::::::::::::::

N� rþ 1

N� rþ 2
� 1

N� rþ 1

¼ 1

N

∴P Mrð Þ ¼ P M1ð Þ ¼ 1

N

Let us illustrate how to use random number from

a random number table for drawing a random

sample from a finite population.

Example 5.2 The number of calves in lifetime

per adult for 50 different goats is given below.

The problem is to find out the average no. of

calves per goat from a sample of 10 breeds

(i) with replacement and (ii) without replacement

from the population:
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The sampling units are the goat number,

which varies from 1 to 50. Thus N, the population

size is 50, a two-digit number:

(a) Method-1 (direct approach)

Consider only two-digit random numbers from

01 to 50 and reject the numbers greater than 50 and

00. One can start at any point of the random num-

ber table arranged in row and column; one can

move in any random way; and it can be vertically

downward or upward, to the right or to the left. Let

us start at random from a number vertically down-

ward. The numbers selected from the random num-

ber table are given in the following table:

The random samples of size 10 with replace-

ment and without replacement consist of the unit

numbers 12, 4, 36, 36, 32, 18, 11, 45, 15, and

32 and 12, 4, 36, 32, 18, 11, 45, 15, 27, and

33, respectively. It can be seen from the above

table that we have discarded the random numbers

above 50, viz., 80, 95, 63, 78, 94, and 87. While

selecting the random numbers according the

SRSWR, we have kept some random numbers,

viz., 36 and 32, more than once because these

units after selection are returned to the population

before selecting the next unit. But no repetition of

random number is found in SRSWOR method.

Demerit of the direct approach is that a large

number of random numbers are rejected simply

because these are more than the population size.

Now, from the selected samples (using

SRSWR and SRSWOR), respectively, one can

find out the average number of calves per goat:

SRSWR method SRSWOR method

Goat Calves Goat Calves

12 5 12 5

4 8 4 8

36 8 36 8

36 8 32 8

32 8 18 10

18 10 11 4

11 4 45 11

45 11 15 14

15 14 27 8

32 8 33 9

Using the above calve data, one find that the

average number of calves per goat for two

methods is coming out to be:

SRSWR: (5 + 8 + 8 + . . . . . . . . . + 11 + 14 + 8)/

10 ¼ 8.4

Random numbers found

from the table

Selected random numbers

SRSWR SRSWOR

12 12 12

4 04 4

36 36 36

80 - -

36 36 -

32 32 32

95 — —

63 - -

78 — —

18 18 18

94 — —

11 11 11

87 — —

45 45 45

15 15 15

32 32 -

71 — —

77 - -

55 - -

95 - –

27 - 27

33 - 33

Goat no. Calves Goat no. Calves Goat no. Calves Goat no. Calves Goat no. Calves

1 8 11 4 21 14 31 10 41 6

2 12 12 5 22 15 32 8 42 7

3 10 13 7 23 2 33 9 43 8

4 8 14 12 24 5 34 11 44 12

5 9 15 14 25 15 35 3 45 11

6 11 16 8 26 17 36 8 46 9

7 3 17 10 27 8 37 10 47 12

8 8 18 10 28 9 38 12 48 15

9 10 19 5 29 12 39 7 49 18

10 12 20 6 30 13 40 9 50 16
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SRSWOR: (5 + 8 + 8 + . . . . . . . . . + 8 + 9)/

10 ¼ 8.5

(b) Method-II (using random number generated
through MS Excel)

In MS Excel, one can generate random num-

bers within a given range. For the above exam-

ple, random numbers are to be generated

between 01 and 50. Ten random numbers are

to be generated using SRSWR and SRSWOR.

This can be accomplished using following

steps:

Step1: Select any cell and write¼rand between

01 and 50 to get the first random number

between 01 and 50. Then, copy the formula

to subsequent cells in column or row to get as

many random numbers as one wants.
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The random numbers, thus, generated
changes with every operation, so by using copy

and paste special option, these are required to be
fixed, as given below:

Step 2: Copy the cells containing random num-

bers, and then using paste special value com-
mand, fix the random numbers; otherwise,

these will change every time the cell is

activated.
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Step 3: From the random number generated,

select the random numbers with repetition
and without repetition for SRSWR and

SRSWOR, respectively.

Simple random sampling is the most simple

and easy method of drawing sample. It is also

very easy to estimate the parameters through this

technique. But the only problem with this tech-

nique is that if the population is not homoge-

neous, then it will fail to produce a

representative part of the population, and subse-

quently the estimates of the population

parameters will not be accurate.

If a sample(y1, y2, y3. . .. . .yn) of n units are

drawn from a population of N units adopting

SRSWR, then the sample mean y ¼ 1
n

Xn
i¼1

yi is

an unbiased estimator of the population mean

Y E yð Þ ¼ Y
� �

, and the sampling variance of the

sample mean, i.e.,

V yð Þ is given as σ2

n where σ2 is the population

variance. But unlike sample mean sample vari-

ance is not an unbiased estimator of population

variance. On the other hand mean square ( s2) is

an unbiased estimator of the population variance

i.e. E s2ð Þ ¼ σ2 where, s2 ¼ 1
n�1

Xn
i¼1

yi � yð Þ2.

As such the standard error of the sample mean

is given by SE yð Þ ¼ σffiffi
n

p and the estimated

S:E: yð Þ ¼ sffiffi
n

p . For SRSWOR E yð Þ ¼ Y, V yð Þ ¼
N�n
N�1

σ2

n ¼ N�n
N

S2

n ¼ 1� fð Þ S2n , E s2ð Þ ¼ S2 where

S2 ¼ 1
N�1

Xn
i¼1

Yi � Y
� �2

is the population mean

square, an unbised estimator of population vari-

ance and f ¼ n
N ¼ sampling fraction.

The factor N�n
N ¼ 1� fð Þ is correction factor

for the finite population.

Readers may please note that VWOR yð Þ ¼ N�n
N�1

σ2

n ¼ 1� n�1
N�1

� �
σ2

n approaches to σ2

n as N ! 1.

Thus V yð Þ ¼ VWOR yð Þ when N ! 1.

5.9.1.2 Varying Probability Sampling
(Probability Proportional to Size
Sampling)

While selecting farmers for any study, we fre-

quently come across with the situation that the

farm size varies among the farmers and it will not

be wise to select farmers for drawing a sample

assigning equal probability to each farmer having

differences in their farm sizes. Let us suppose

there are N number of units in a population with

X1, X2, X3 ---------Xi------------–,XN as their

respective farm sizes. Using SRS, we would

have selected units with probability of being

selected as 1/N, providing equal weightage to

all the farms varying in sizes. But in this proba-

bility proportional to size sampling, the probabil-

ity of selecting ith unit is Xi

X , with X ¼
XN
i¼1

Xi.

Probability proportional to size sampling

method considers both heterogeneity in the popu-

lation and the varying size of the population units/

elements. Thus, this method uses auxiliary infor-

mation (unit size), which helps in getting more

efficient estimator of the population parameter.

If a sample of n units is drawn from a popula-

tion of N units with PPSWR, then an unbiased

estimator of the population total Y is given by

Ŷ PPS ¼ 1
n

Xn
i¼1

yi
pi

with its estimated sampling

variance

V̂ Ŷ PPS

� � ¼ 1
n n�1ð Þ

Xn
i¼1

yi
pi
� Ŷ PPS

� �2

, where

pi ¼ yi
Y

Selection of Sample

There are two methods, (i) cumulative total
method and (ii) Lahiri’s method, to select a sam-

ple according to this PPS method. Let us discuss

the methods in brief:

(a) Cumulative total method. Let Xi (i ¼ 1,2,3,

. . .. . ., N ) be the size of the ith unit in the
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population, and suppose that these are

integers. Then in the first step, we assign

1 to X1 number to the first unit having X1

size, (X1 + 1) to (X1 + X2) to the second unit

having size X2, (X1 + X2 + 1) to

(X1 + X2 + X3) to the third unit having

size X3, and so on. In the second step,

we are to select a random number from

1 to X ¼
XN
i¼1

Xi

 !
using any of the method

described above, and the unit in whose

range the random number falls is taken in

the sample. The above steps are repeated

n times to get a sample of size n with proba-
bility proportional to size with replacement.

Example 5.3 To estimate the average milking

capacity of a particular breed of cow, informa-

tion from 25 herds were collected. The following

table gives the herd number and herd size. The

procedure to select five herds using PPS sam-

pling cumulative total method is delimited

below:

We are to select five farms with probability

proportional to size with replacement.

Solution

Here in this example, the herd size is taken as the

criteria. With the above data, let us frame the

following:

We shall select five random numbers from

1 to 1000 from the random number table, and

suppose the random numbers selected from the

random number are 502, 648, 902, 91, and 440.

The herds associated with these numbers are

17th, 19th, 23rd, 5th, and 15th, respectively.

Thus, according to PPS with replacement, the

sample should contain 5th, 15th, 17th, 19th, and

23rd herd from the 25 herds at random.

(ii) Lahiri’s method

Lahiri’s (1951) method of PPS sampling uses

only two values, i.e., the population size (N ) and

the highest size of the population elements; it

does not accumulate the sizes of the elements of

the population. A random number from 1 to N is

selected and noted to the corresponding unit of

the population. Another random number from

1 to M (the maximum or any convenient number

greater than the maximum size among the

elements of the population) is drawn. If the

Herd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Herd size (no.) 10 15 20 30 25 30 12 18 28 42 55 50 60 20 34 38 45 55 70 80 55 65 85 42 16

Herd

Herd

size

(no.)

Cumulative

herd size total

Numbers

associated PPSWR

1 10 10 01–10

2 15 25 11–25

3 20 45 26–45

4 30 75 46–75

5 25 100 76–100 √
6 30 130 101–130

7 12 142 131–142

8 18 160 143–160

9 28 188 161–188

10 42 230 189–230

11 55 285 231–285

12 50 335 286–335

13 60 395 336–395

14 20 415 396–415

15 34 449 416–449 √
16 38 487 450–487

17 45 532 488–532 √
18 55 587 533–587

19 70 657 588–657 √
20 80 737 658–737

(continued)

Herd

Herd

size

(no.)

Cumulative

herd size total

Numbers

associated PPSWR

21 55 792 738–792

22 65 857 793–857

23 85 942 858–942 √
24 42 984 943–984

25 16 1000 985–1000
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second random number is smaller or equal to the

size of the unit provisionally marked

corresponding to the first random number, the

unit is selected into the sample. If not, the entire

procedure is repeated until a unit is finally

selected, and the whole process is repeated until

sample of desired size is achieved.

Example 5.4 To demonstrate the process let us

take the same example in 5.3. To estimate the

average milking capacity of a particular breed of

cow, information from 25 herds were collected.

The following table gives the herd number and

herd size. The procedure to select five herds

using PPS sampling cumulative total method is

delimited below:

We are to select five farms with probability

proportional to size with replacement using

Lahiri’s method.

In this example, we have N ¼ 25 and

M ¼ 85. First, we are to select a random number

from 1 to 25 and a second random number from

1 to 85. Referring to the random number table,

the pair is (10, 40). Here 40 < X10 ¼ 42. Hence,

the tenth unit is selected in the sample. Suppose

we choose another pair (19, 80). Here 80 > X19

¼ 70. So the 19th unit is rejected. We choose

another pair (7, 55). Here 55 > X7 ¼ 12. Thus,

the seventh unit is also rejected. Let the fourth

pair of random numbers be (3,12); 12 < X3

¼ 20. So the third unit is selected in the sample.

The process is continued till we have sample of

desired size (5) here.

5.9.1.3 Stratified Sampling
Both the simple random sampling and the proba-

bility proportional to size methods of sampling

are mostly used in homogenous population situ-

ation. Under the heterogeneous population situa-

tion, these methods result in lesser efficient

samples. Moreover, these two methods are com-

paratively costly. Stratified random sampling is

one of the methods of tackling the heterogeneous

population. The essence of stratified random

sampling method lies on dividing the whole het-

erogeneous population of size N in to small

groups (known as strata) of comparative homo-

geneous elements/units. Thus, the strata are

homogeneous within and heterogeneous among

themselves as much as possible; random samples

are drawn from each of the homogeneous stra-

tum. A suitable stratifying factor like age, sex,

educational or income level, geographical area,

economic status, soil fertility pattern, stress level,

tiller size, sex of fish, different species of fish,

and so on is used for the purpose of stratification.

Efficiency in stratification leads to the efficient

stratified random sampling.

In stratified sampling method, we come across

two types of problems, (i) how many strata

should one form with a given population and

(ii) how many units from each stratum should

be selected for the sample? The basic principle

followed during stratification is that stratification

can be done to the extent which produces lesser

variance and such that only one unit is selected

from each stratum. Moreover, it is not always

true that too many numbers of strata always

lead to lesser variance. The second problem of

allocation of number of units to be selected from

different strata is being dealt with different

method like (a) equal allocation,
(b) proportional allocation, (c) optimum alloca-

tion, (d) Neyman’s allocation. Before discussing

all these methods, let us first discuss the unbiased

estimator of population mean and total from

stratified population.

Suppose we have a population with popula-

tion mean Y and variance σ2. The population is

stratified into L strata with Nh be the sizes of hth

stratum having mean Yh and variance σ2h
(h ¼ 1,2,3,. . ..L).

Therefore, N ¼ N1,+N2 + . . .. . .. + NL.

Herd 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Herd size

(no.)

10 15 20 30 25 30 12 18 28 42 55 50 60 20 34 38 45 55 70 80 55 65 85 42 16
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We may write, Y ¼
XL
h¼1

WhYh , σ2 ¼
XL
h¼1

Whσ2h

þ
XL
h¼1

Wh Yh � Y
� �2

,

where, Wh ¼ Nh

N

Let us take a random sample of size n by

selecting nh units from hth stratum such thatXL
h¼1

nh ¼ n. Let yh and sh
2 be the sample mean

and sample mean square for the nth stratum

where, yh ¼ 1
nh

Xnh
j¼1

yhj and sh
2 ¼ 1

nh�1

Xnh
j¼1

yhj � yh

	 
2
.

Unbiased estimator for the population mean Y
and the population total Y are given by Ŷ ¼ yst

¼
XL
h¼1

Whyh and Ŷ ¼ Nyst and their estimated

variances are given by

V̂ ystð Þ ¼
XL
h¼1

Wh
2 1� f hð Þ sn2nh

V̂ N ystð Þ ¼ N2V̂ ystð Þ, where, f h ¼ nh
Nh

With this idea, let us now discuss the methods

of allocation of number of units to be selected

from different strata.

(a) Equal allocation: Total sample size is

divided equally among the strata, i.e., sam-

ple nh to be selected from hth stratum such

that nh ¼ n/L.
(b) Proportional allocation: In proportional

allocation, nh 1 (proportional to) Nh, i.e.,

Nh ¼ nWh; h ¼ 1, 2, 3,. . .. . ..., L.

(c) Optimum allocation: The simplest cost

function is of the form C ¼ C0 +
XL
n¼1

Chnh,

where C0 is an overhead cost, Ch is the cost

of sampling a unit from the hth stratum,

and C is the total cost. We have to find nh
such that V ystð Þ is minimum for specified

cost C ¼ C0. To solve this problem, we

have nh ¼ (C0�C0)
WhSh=

ffiffiffiffi
Ch

p

XL
h¼1

WhSh
ffiffiffiffiffiffi
Ch

p , h ¼ 1,

2, 3,. . .. . .. . ..L, where Sh
2 is the population

mean square for the hth stratum.

This is known as optimum allocation.

(d) Neyman allocation: A special case arises

when the Ch ¼ C00, i.e., if the cost per unit

is the same in all the strata. In this case,

nh ¼ n WhShXL
h¼1

WhSh

¼ n NhShXL
h¼1

NhSh

. This alloca-

tion is known as Neyman allocation, after

the name of Neyman (1934). In particular, if

S1 ¼ S2 ¼ . . . ¼ SL, one can see that

Neyman allocation reduces to proportional

allocation.

5.9.1.4 Cluster Sampling
While dealing with huge population, simple ran-

dom sampling becomes not so easy because of

the nature of the population and the cost and time

involvement in the process. As such, subsection

or grouping of the population is needed for effi-

cient sampling. In stratified sampling, discussed

in previous section, the strata are the subsection

of the population and which are formed in such a

way that there are homogeneity among the units

of the stratum and heterogeneity among the

strata. As such, these strata fail to picturize the
nature of the population individually; individu-

ally, each of these is subsection of the popula-

tion. On the other hand in cluster sampling,

clusters are thought of as a typical part of popu-

lation rather than subsection. We need to select

larger units/clusters instead of units directly from

the population. For example, in a large country

wide survey, one can have list of blocks or

villages, which can be used as cluster having all

the properties of the population not the subsec-

tion of the population for probability sampling.

In cluster sampling, the whole population is

divided into a number of clusters each consisting

of several units and continues to hold the nature

of the population from which these are formed.

Cluster size may vary from cluster to cluster. The
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best size of cluster depends on the cost of

collecting information from the clusters and the

resulting variance. Our aim is to reduce both the

cost and variance, and for that we can have a pilot

survey also, if felt necessary. Then some clusters

are selected at random out of all the clusters. The

advantages of cluster sampling from the point of

view of cost arise mainly due to the fact that

collection of data for nearby units is easier,

faster, cheaper, and more convenient than

observing units scattered over a region, as in the

case of simple random sampling.

Suppose we have a population divided into

N clusters having M units each, i.e., the size

of the population is NM. Let Xij be the value

of the character X under study for jth obser-

vation corresponding to ith cluster (i ¼1,

2, 3,. . .. . .N and j ¼ 1, 2, 3, . . .. . .M ). The

population mean X is defined as

X ¼ 1
NM

XN
i

XM
j

Xij ¼ 1
N

XN
i¼1

Xi , where, Xi is the

ith cluster mean. A sample of n clusters is

drawn with SRSWOR, and all the units in the

selected clusters should be surveyed. An

unbiased estimator of the population mean X

is given by

X̂ c ¼ 1
n

Xn
i¼1

xi and its estimated variance is

V̂ X̂c

	 

¼ N�n

N
sb

2

n , where, xi ¼ 1
M

XM
j¼1

xij ¼

mean for the ith selected cluster and

sb
2 ¼ 1

n�1

Xn
i¼1

xi � X̂c

	 
2
The cluster sampling is useful when the study

area is very big, and listing of population units is

not available or possible under the given

conditions of resources and time, but the same

may be available for small segments of the pop-

ulation. The problem with cluster sampling arises

when the clusters fail to represent the true nature

of the population.

5.9.1.5 Multistage Sampling
For study in larger area, we have suggested for

cluster sampling method. This cluster sampling

method can be made more efficient by forming

clusters at different stages. Suppose in a house-

hold survey of farmers, as per cluster sampling

method, the whole country can be visualized as

composed of number blocks, and from blocks,

the farmers could be selected. The process can be

made more efficient, instead of taking blocks as

the clusters, if we select some districts at random,

followed by sum blocks from each of the selected

districts at random, followed by some villages

from each of the selected blocks at random and

ultimately some households at random from the

selected villages. Thus, there are different stages

of clustering, and in each stage, units are selected

at random. In this case, selected districts, blocks,

and villages form the first-stage, second-stage,

and third-stage units, respectively, with farmers

as the ultimate sampling units. The whole pro-

cess of such sampling is known as multistage

sampling method.

Multistage sampling is a very flexible sam-

pling technique. It is useful especially for an

underdeveloped condition where sampling

frame is not available. But it is less accurate

than single-stage sampling and is tedious when

the number of stages is more. The whole process

depends on the expertise of the supervisor.

Suppose we have a population, which is

divided into N first-stage units (fsu) having

M second-stage units (ssu) each. The population

mean X ¼ 1
NM

XN
i

XM
j

Xij ¼ 1
N

XN
i¼1

Xi.

If a sample of N first-stage units (fsu) is

selected from N first-stage units (fsu) with

SRSWOR and a sample of M second-stage units

(ssu) is selected from each selected fsu with

SRSWOR, then an unbiased estimator for Y is

given by

X̂ t ¼ 1
n

Xn
i¼1

xi with its estimated variance

V̂ X̂ t

	 

¼ 1� f 1ð Þ sb2n þ f 1 1�f 2ð Þ

nm s2
2, where

xi ¼ 1
m

Xm
j¼1

yij, s
2
b ¼ 1

n�1

Xn
i¼1

xi � X̂ t

	 
2
and

s22 ¼ 1
n m�1ð Þ

Xn
i¼1

Xm
j¼1

xij � xi
� �2

, f 1 ¼ n
N, f 2 ¼ m

M
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Multistage sampling is a very useful and flex-

ible sampling technique especially under the sit-

uation of nonavailability of sampling frame. The

efficiency of the sampling process depends on

the expertise of the supervisor. Moreover, it is

comparatively less accurate than single-stage

sampling, and as the number of stages increases,

the process becomes very tedious, and the esti-

mation procedure becomes complicated.

5.9.1.6 Multiphase and Double
(Two-Phase) Sampling

A variant form of tackling large population is

multiphase sampling, i.e., to carry out sampling

in two or more phases. With the help of auxiliary

information collected and used in subsequent

subsampling stages, sampling procedure is

accomplished. Two-phase or double sampling is

the simplest procedure in multiphase sampling.

The usual procedure is to take a large sample of

size m from the population of N units to observe

the x-values of the auxiliary character and to

estimate the population parameter (say mean),

while a subsample of size n is drawn from m to

study the character under consideration.

Suppose we want to select a sample of farmers

with probability proportional to size of farm for a

country. It is very difficult to have information on

farm size from each of the farmers for a huge

country. The multiphase sampling, here

two-phase sampling (say), starts with an initial

random sample of families having varied farm

sizes, and information on their farm sizes are

collected; then a subsample is taken from the

initial sample with probability proportional to

size of the farms. This will serve as the test

sample for the character under study from a

selected sample on the basis of farm size. Thus,

in multiphase sampling, every sample is obtained

from previous sample.

The difference in between multiphase sam-

pling and the multistage sampling is that in mul-

tistage sampling, the sampling units at each stage

are the clusters of units of the next stage and the

ultimate observable units are selected in stages,

sampling at each stage being done from each of

the sampling units or clusters selected in the

previous stage. On the other hand, in multiphase

sampling, information are collected initially

from a wider sample of the population, and

subsequent information are collected from

subsequent samples.

5.9.1.7 Systematic Sampling
Systematic sampling is simple and convenient to

apply. The basic idea of systematic sampling is to

select units for sample in a systematic way, as

such not fully in random manner. In systematic

random sampling, only the first unit is selected at

random, and the rest units of the sample get

selected automatically according to some

predesigned pattern. Suppose we have a popula-

tion of N units and the N units of the population

are numbered from 1 to N in some order. Let

N ¼ nk, where n is the sample size and k is an

integer, and a random number less than or equal

to k is selected first, and every kth unit thereafter

is selected in systematic manner. There are two

methods of systematic selection of sample

according to this method, (a) as linear systematic
sampling and (b) circular systematic sampling.

Let us now discuss the methods in brief:

(a) Linear systematic sampling (LSS): As has

already been stated, a population of size N is

numbered, and to select a sample of size n,
we select number k such that N ¼ nk where

k is an integer. At first, a random number

r in between 1 to k is selected. We start with

rth unit, and thereafter every unit at every

kth interval is selected for the desired sam-

ple. Thus, in this procedure, the sample

comprises the units r, r + k, r + 2k,. . ..,

and r + (n�1)k. The selected random num-

ber r is known as the random start, and k is
called the sampling interval.

(b) Circular systematic sampling: The problem

with linear systematic sampling is if N 6¼
nk. To counter the problem, the circular

systematic sampling will be useful. In this

method, the sampling interval k is taken as

an integer nearest to N/n; a random number

is chosen from 1 to k, and every kth unit is

drawn in the sample. Under this condition,

the sample size will be n or one less than n.

Some workers suggest that one should
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continue to draw units until one gets a sam-

ple of size n.

It is also economical and requires less time

than simple random sampling. But it does not

give a right representation of the population and

also may not give efficient result if the popula-

tion is not in a systematic manner. It can also be

shown that in case of circular systematic sam-

pling, though the sample mean is an unbiased

estimator of the population mean, an unbiased

estimate of the variance is not available for a

systematic sample with one random start because

a systematic sample is regarded as a random

sample of one unit. Some biased estimators are

possible on the basis of a systematic sample. If

two or more systematic samples are available, an

unbiased estimate of the variance of the

estimated mean can be made.

Systematic sampling is simple, and it is

widely used in various types of surveys, i.e., in

census work, forest surveys, in milk yield

surveys, in fisheries, etc., because in many

situations, it provides estimates more efficient

than simple random sampling.

5.9.1.8 Inverse Sampling
So far the methods of sampling discussed are to

draw sample of desired size, but we may come

across a situation where we do not know the

exact size of the sample to be drawn. Suppose

we want to draw a sample of plants in which

there must be at least k mutant plants (in which

rare mutation has taken place). Thus, in this

process of sampling, drawing of sample units

should continue at random until k number mutant

plants have been selected in the sample. The

drawing will continue and the sample size will

go on increasing. Such a sampling procedure is

known as inverse sampling. Thus, though costly,

time-consuming, and labor consuming, this sam-

pling gives due weightage to rare elements in the

population. Inverse sampling is generally used

for the estimation of a rare population parameter.

For example, inverse sampling designs have

been used to populations in which the variable

of interest tends to be at or near zero for many of

population units and distinctly different from

zero for a few population units.

Suppose p denotes the proportion of units in

the population possessing the rare attribute under

study. Evidently, Np number of units in the pop-

ulation will possess the rare attributes. To esti-

mate p, units are drawn one by one with

SRSWOR. Sampling is discontinued as soon as

the number of units in the sample possessing the

rare attribute (a predetermined number, m) is

reached. Let us denote by n the number of units

required to be drawn in the sample to obtain

m units possessing the rare attribute. An unbiased

estimator of p is given by p̂ ¼ m�1
n�1

, and an unbi-

ased estimator of the variance of p̂ is

V̂ p̂ð Þ ¼ p̂ 1�p̂ð Þ
n�2ð Þ 1� n�1

N

� �

5.9.1.9 Bootstrap Sampling
The main idea of sampling from population is to

handle lesser number of elements instead of a

population that consists of huge number of

elements and to use the sample statistic to esti-

mate the population parameter in a befitting man-

ner. Thus, the sampling distribution of sample

statistic is important in this aspect. One way to

achieve the same is to draw number of samples

from the population, but the procedure does not

make any sense as it would be too costly and

against the principle of sampling theory as such.

Here lies the importance of bootstrap sampling.

In order to get idea about the sampling distribu-

tion of the sample statistic, we use repeated

samples of same size from the original sample

drawn from the population. If the number of

resample (with replacement) be very large, then

one would get good idea about the sampling

distribution of a particular statistic from the col-

lection of its values arising out of these repeated

samples. In literature, one can find the

terminologies, surrogate population and phan-

tom samples, corresponding to original random

sample drawn from the population and resamples

of the same size with replacement from the sur-

rogate sample, respectively. The sample sum-

mary/statistic is then computed from each of the

bootstrap samples (generally a few thousands).

At the elementary application stage of bootstrap,
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one produces a large number of “copies” of a

sample statistic, computed from these phantom

bootstrap samples. A histogram of the set of

these computed values is referred to as the boot-

strap distribution of the statistic. Then, a confi-

dence interval 100(1�α)% is set corresponding

to unknown population parameter of interest; the

value of α is decided by the experimenter

according to the situation.

5.9.2 Non-probability Sampling

5.9.2.1 Quota Sampling
In this method of non-probability sampling, defi-

nite number of sampling units is selected from

different subsections of the population. Selection

of units for sampling is left to the expertise/con-

venience of the sampler, and an interviewer

selects the respondents in nonrandom manner.

The greatest weakness of the procedure is non-

random selection of the units for sampling pur-

pose. In most of the cases, each interviewer/

sampler is assigned to record information from

a fixed number of respondents (quota) that are

taken as representation of whole sample.

As such, this procedure of sampling is less

costly and convenient, does not require any sam-

pling frame, and provides quick response. The

success of the entire exercise depends on the skill

and the efficiency of the interviewer/sampler.

5.9.2.2 Judgment Sampling
In this method of sampling, most emphasis is

provided to the purpose or objective of the

sampling. As such, those units are only selected

which can serve the purpose of sampling. Thus,

in judgment sampling, the basic idea is to select a

sample of desired size giving full judgment to the

purpose of the study, and the elements of the

sample is selected in such a way so as to fulfill

the objective of the study. Though the method is

very simple, it may lead to biased and inefficient

sample depending upon the efficiency of the

supervisor.

5.9.2.3 Purposive Sampling
The choice of the supervisor is the most impor-

tant parameter in selecting a unit into the sample.

As such, purposive sampling does not follow the

basic theories of sampling. Selection of element

to be included in the sample is entirely made on

the basis of the choice of the supervisor. Like-

wise to that of judgment sampling, the purposive

sampling is very easy to handle, but it provides

rarely a representative part of the population.

Thus, the results from purposive sampling are

mostly biased and inefficient.

Besides the above, there are various sampling

schemes depending up on the nature of the popu-

lation in hand and the situations. In many cases,

combinations of more than one method are used,

e.g., in estimation of marine fish landing in India,

a multistage stratified in combination of system-

atic sampling is adopted. For getting an immedi-

ate idea about any phenomenon under

consideration (like crop loss due to sudden out-

break of pest/disease, damage of life due to tsu-

nami, etc.), sampling technique for rapid

assessment (STRA) is also used.
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Random number table

00–04 05–09 10–14 15–19 20–24 25–29 30–34 35–39 40–44 45–49

00 54,463 22,662 65,905 70,639 79,365 67,382 29,085 69,831 47,058 08,186

01 15,389 85,205 18,850 39,226 42,249 90,669 96,325 23,248 60,933 26,927

02 85,941 40,756 82,414 02,015 13,858 78,030 16,269 65,978 01,385 15,345

03 61,149 69,440 11,286 88,218 58,925 03,638 52,862 62,733 33,451 77,455

04 05,219 81,619 10,651 67,079 92,511 59,888 84,502 72,095 83,463 75,577

05 41,417 98,326 87,719 92,294 46,614 50,948 64,886 20,002 97,365 30,976

06 28,357 94,070 20,652 35,774 16,249 75,019 21,145 05,217 47,286 76,305

07 17,783 00,015 10,806 83,091 91,530 36,466 39,981 62,481 49,177 75,779

08 40,950 84,820 29,881 85,966 62,800 70,326 84,740 62,660 77,379 90,279

09 82,995 64,157 66,164 41,180 10,089 41,757 78,258 96,488 88,629 37,231

10 96,754 17,676 55,659 44,105 47,361 34,833 86,679 23,930 53,249 27,083

11 34,357 88,040 53,364 71,726 45,690 66,334 60,332 22,554 90,600 71,113

12 06,318 37,403 49,927 57,715 50,423 67,372 63,116 48,888 21,505 80,182

13 62,111 52,820 07,243 79,931 89,292 84,767 85,693 73,947 22,278 11,551

14 47,534 09,243 67,879 00,544 23,410 12,740 02,540 54,440 32,949 13,491

15 98,614 75,993 84,460 62,846 59,844 14,922 48,730 73,443 48,167 34,770

16 24,856 03,648 44,898 09,351 98,795 18,644 39,765 71,058 90,368 44,104

17 96,887 12,479 80,621 66,223 86,085 78,285 02,432 53,342 42,846 94,771

18 90,801 21,472 42,815 77,408 37,390 76,766 52,615 32,141 30,268 18,106

19 55,165 77,312 83,666 36,028 28,420 70,219 81,369 41,943 47,366 41,067

20 75,884 12,952 84,318 95,108 72,305 64,620 91,318 89,872 45,375 85,436

21 16,777 37,116 58,550 42,958 21,460 43,910 01,175 87,894 81,378 10,620

22 46,230 43,877 80,207 88,877 89,380 32,992 91,380 03,164 98,656 59,337

23 42,902 66,892 46,134 01,432 94,710 23,474 20,423 60,137 60,609 13,119

24 81,007 00,333 39,693 28,039 10,154 95,425 39,220 19,774 31,782 49,037

25 68,089 01,122 51,111 72,373 06,902 74,373 96,199 97,017 41,273 21,546

26 20,411 67,081 89,950 16,944 93,054 87,687 96,693 87,236 77,054 33,848

27 58,212 13,160 06,468 15,718 82,627 76,999 05,999 58,680 96,739 63,700

28 70,577 42,866 24,969 61,210 76,046 67,699 42,054 12,696 93,758 03,283

29 94,522 74,358 71,659 62,038 79,643 79,169 44,741 05,437 39,038 13,163

30 42,626 86,819 85,651 88,678 17,401 03,252 99,547 32,404 17,918 62,880

31 16,051 33,763 57,194 16,752 54,450 19,031 58,580 47,629 54,132 60,631

32 08,244 27,647 33,851 44,705 94,211 46,716 11,738 55,784 95,374 72,655

33 59,497 04,392 09,419 89,964 51,211 04,894 72,882 17,805 21,896 83,864

34 97,155 13,428 40,293 09,985 58,434 01,412 69,124 82,171 59,058 82,859

35 98,409 66,162 95,763 47,420 20,792 61,527 20,441 39,435 11,859 41,567

36 45,476 84,882 65,109 96,597 25,930 66,790 65,706 61,203 53,634 22,557

37 89,300 69,700 50,741 30,329 11,658 23,166 05,400 66,669 48,708 03,887

38 50,051 95,137 91,631 66,315 91,428 12,275 24,816 68,091 71,710 33,258

39 31,753 85,178 31,310 89,642 98,364 02,306 24,617 09,609 83,942 22,716

40 79,152 53,829 77,250 20,190 56,535 18,760 69,942 77,448 33,278 48,805

(continued)
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00–04 05–09 10–14 15–19 20–24 25–29 30–34 35–39 40–44 45–49

41 44,560 38,750 83,635 56,540 64,900 42,912 13,953 79,149 18,710 68,318

42 68,328 83,378 63,369 71,381 39,564 05,615 42,451 64,559 97,501 65,747

43 46,939 38,689 58,625 08,342 30,459 85,863 20,781 09,284 26,333 91,777

44 83,544 86,141 15,707 96,256 23,068 13,782 08,467 89,469 93,842 55,349

45 91,621 00,881 04,900 54,224 46,177 55,309 17,852 27,491 89,415 23,466

46 91,896 67,126 04,151 03,795 59,077 11,848 12,630 98,375 52,068 60,142

47 55,751 62,515 21,108 80,830 02,263 29,303 37,204 96,926 30,506 09,808

48 85,156 87,689 95,493 88,842 00,664 55,017 55,539 17,771 69,448 87,530

49 07,521 56,898 12,236 60,277 39,102 62,315 12,239 07,105 11,844 01,117
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Statistical Inference 6

6.1 Introduction

As has already been discussed, the objective of

statistics is to study the population behavior. And

in the process generally we are provided with the

samples parts of the population. The experi-

menter or the researchers are to infer about the

population behavior based on the sample

observations. Here lies the importance of accu-

racy and efficiency. The whole process of study-

ing the population behavior from the sample

characteristics is dealt in statistical inference.

Statistical inference mainly has two components,

viz., estimation and testing of hypothesis. In esti-
mation part, we are generally concerned with

estimating/identifying measures or to have an

idea about the measures which can be used for

measuring population characters efficiently. On

the other hand, in testing of hypothesis, we are

concerned about testing/deciding how far the

information based on sample observations could

be used for population. In this context, one must

have idea about the parameter and the statistic. A

parameter is the real-valued function of the pop-

ulation observations, whereas a statistics is the

valued function of the sample observations. For
example, the population mean

μ ¼ 1
N

PN
i¼1

Xi is a population parameter, where

as sample mean x ¼ 1
n

Pn
i¼1

xi is sample statistic.

There may be more than one statistic to esti-

mate a particular parameter; now the question is

which statistic can effectively estimate the popu-

lation parameter? All these are answered in esti-

mation part. On the other hand, after selecting a

best estimator corresponding to a particular pop-

ulation parameter and working out its value from

the sample observations, how far the value is

acceptable or, otherwise, for the population is

being dealt in testing of hypothesis. Sometimes,

hypothetical value about the population parame-

ter, based on preconception or previous knowl-

edge, is also being tested through testing of

hypothesis to ascertain the acceptability of such

value for the population.

Statistical Inference
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Point Estimation   Interval estimation Parametric Non Parametric
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6.1.1 Estimation

Estimation is the process of knowing the

unknown population parameter with the help of

population observations. Suppose x1, x2,

x3,........., xn be a random sample from a popula-

tion, in which θ be a parameter. Now estimation

problem lies in estimating the θ with the help of

the above sample values x1, x2, x3,........., xn.
Any statistic which is used to estimate (or to

guess) ψ(θ), a function of parameter θ, is said to

be an estimator of ψ(θ). The experimentally

determined value (i.e., from sample) of an esti-

mator is called its estimate. In order to estimate

the population parameter θ, one can draw a num-

ber of samples from the population and can pro-

pose number of statistic to estimate the parameter

θ. Suppose, x1, x2, x3,........., xn be a sample

drawn from N(μ, σ2), then one can have statistic

like
P

xi and
P

x2i for the population parameter.

Now the question is among the statistic(s), which

one is the best one to estimate the population

parameter under question. So there must be cer-

tain criteria to judge a good estimator. According

to R. A. Fisher, an estimator which is unbiased,
consistent, efficient, and sufficient is known as a

good estimator. In the next sections, we would

discuss about the unbiasedness, consistency, effi-

ciency, and sufficiency properties of the

estimators.

Unbiased Estimator: An estimator t of param-

eter θ is said to be unbiased estimator of θ if

E(t)�θ ¼ 0. On the other hand, E(t) � θ 6¼
0 indicates that t is a biased estimator.

Consistent Estimator: An estimator t is said to

be a consistent estimator of the parameter θ if the
probabilistic value of the estimator t approaches
toward θ as the sample size increases, i.e.,

P
Lt t� θj j ¼ 0

n ! 1
� �

¼ 0 where n is the sample

size. Thus, consistency is a large sample

property.

Efficient Estimator: Already we have come to

know that there might be more than one

estimators to estimate a particular population

parameter. Now among the estimators, the esti-

mator having minimum variance is known as the

efficient estimator for the corresponding popula-

tion parameter. Suppose we have t, t1, t2, t3.....

estimators to estimate the population parameter

θ, now among these estimator t would be called

as efficient estimator if V(t) < V(ti),
i ¼ 1,2,3,....... In comparison to any other esti-

mator ti, t is said to be efficient if
V tð Þ
V tið Þ < 1 and the

value of this ratio of two variances is termed as

efficiency.

Sufficient Estimator: If f(X/θ) be the density

function of a random variable X, θ is the

unknown fixed parameter, and θ belongs to

parametric space, then the necessary and suffi-

cient condition for an estimator t to be sufficient
for θ is that the joint probability density function

of x1, x2, x3 .... xn should be of the form f

(x1, x2, x3.... xn|θ) ¼ g(t/θ) h (x1, x2, x3 ..... xn),
where g(t/ θ) is the marginal density of t for

fixed θ and h (x1, x2, x3..xn) does not depend on θ.
It has been noticed that not all the good

estimators posses all the above good properties.

For example, if we have a sample from

normal population N(μ, σ2), then sample mean

ðx ¼ 1
n

Pn
i¼1

xiÞ as well as the sample median (md);

both are the consistent estimator for population

mean. Similarly, the sample variance Sx
2 and the

sample mean square (sx
2) are both consistent

estimators for population variance σ2, but sx
2 is

an unbiased estimator for σ2, and Sx
2 is a biased

estimator for σ2. Thus, one should prefer sample

mean square as an estimator of population vari-

ance instead of sample variance. Any estimator

which is characterized by unbiasedness and

having minimum variance is known as
“minimum variance unbiased estimator”

(MVUE). There are different methods of estima-

tion of parameters viz. (a) method of maximum
likelihood, (b) method of moments, (c) method of

minimum variance, (d) method of least squares,

(e) method of minimum χ2, (f) method of inverse
probability; which are generally used depending

upon the situation. We shall skip the details of

these procedures at this level of study.
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Sampling Distribution: By this time, we have

come to know that a number of samples can be

drawn from a population and there are different

sample statistic(s) to estimate and test a particu-

lar parameter of the population. A statistic is a

function of sample observations; as such, there is

every possibility that it will vary from sample to

sample and it will behave like a random variable.

So the knowledge of probability distribution of

such statistic, i.e., sampling distribution, plays a

great role in inferring about the population param-

eter based on such statistic. In this context, the idea

of central limit theorem is most important in sta-

tistical inference. In its simplest form, according to

the central limit theorem, when samples of size n

are drawn from some population with meanμand
varianceσ2, the distribution of mean can be

represented with a normal probability distribution

with mean μ and standard deviation σ=
ffiffiffi
n

p
, if n is

sufficiently large. Thus, for large samples, the

mean is supposed to be distributed normally.

Degrees of Freedom: In statistical inference,

degrees of freedom is a very important concept.

Let us suppose that to promote rearing of hybrid

cattle, the government has taken a plan to distrib-

ute n number of such cattles among selected

farmers; cattles are kept in a place, and the farmers

in queue are going there and selecting one cattle

each. In the process, each farmer can enjoy the

freedom of selecting cattle from the group of cattle

excepting the last farmer, because he/she has no

other option but to take the last cattle. In the

process, out of n farmers (n�1), farmers can exer-

cise their freedom of selecting cattle. Thus, by

degrees of freedom, we simply mean the number

of free observations. Suppose we are calculating

the arithmetic mean from n number of

observations. Now arithmetic mean being fixed

for a given sample, n�1 number of observations

can vary, but rest one cannot vary because it has to

take only that value which keeps the arithmetic

mean for the given observations constant. As such,

the degree of freedom in this case is also n�1.

Instead of taking one variable at a time, if we

consider two variables at a time for

n observations, then the degrees of freedom

would be n�2. Thus, degree of freedom is actually

the number of observations less the number of

restrictions. Degree of freedom is actually the

number of independent observations associated

with the estimation of variance. Depending upon

the number of restrictions, the degree of freedom is

worked out, e.g., in regression analysis the degrees

of freedom associated with mean sum of squares

due to regression is n�k, where k is the number of

variables/parameters involved in the regression

analysis.

Statistical Hypothesis: We all know about

Avogadro’s hypothesis, and likewise in statistics,

a statistical hypothesis is an assertion/statement
about the probability distribution of population

characteristic(s) which is (are) to be verified on

the basis of sample information. For example, the

statement about the students of particular univer-

sity is that the IQ of the students is 0.9 in 1.0

point scale or the average milk yield of a partic-

ular breed of cow is 3500 / for liter per lactation.

Now on the basis of sample observations, we are

to verify the statements that the IQ of the students

0.9 in 1.0 point scale or not, and average milk

yield of a particular breed of cow is 3500 / for

liter per lactation or not.

Null Hypothesis and Alternative Hypothesis:

Statistical hypothesis can broadly be categorized

into (a) null hypothesis and (b) alternative hypothe-

sis. Initial, unbiased/unmotivated statistical hypo-

thesis whose validity is to be verified for possible
acceptance or rejection on the basis of sample

observations is called null hypothesis. And the sta-

tistical hypothesis which differs from the null
hypothesis is called the alternative hypothesis. In

the above two examples, the statements that (a) the

students of a particular university has the IQ 0.9 in

1.0 point scale and (b) the average milk yield of

the particular breed of cow is 3500 / of liter per

lactation are null hypotheses, whereas any hypoth-

esis like (c) IQ of the students is not 0.9 in 1.0 point

scale or (d) the average milk yield of the particular

breed of cow is not 3500 / of liter per lactation or the

average milk yield of the particular breed of cow is

less than 3500 / of liter per lactation or the average

milk yield of the particular breed of cow is more

3500 / of liter per lactation etc. are the examples of

alternative hypothesis. In fact to every null hypoth-

esis, there exists at least one alternative hypothesis.
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Simple and Composite Hypothesis: Depen-

ding upon the amount of information provided in

a hypothesis, a statistical hypothesis can be

categorized into (a) simple hypothesis and

(b) composite hypothesis. Let us consider the fol-

lowing two hypotheses, (i) the average milk yield

of the particular breed of cow is 3500 / of liter per

lactation with standard deviation 25 / of liter and

given that the milk yield follows a normal distribu-

tion and (ii) the average milk yield of the particular

breed of cow is 3500 / of liter per lactation, and it

follows a normal distribution. Simple hypothesis

specifies all the parameters of the probability dis-

tribution of the random variable; on the other hand,

in a composite hypothesis, information about one or

more parameters of the population remains miss-

ing. Thus, the first hypothesis is a simple hypothe-

sis, because it provides complete information about

the population. On the other hand, the second

hypothesis is composite hypothesis because it

does not completely specify the population.

Parametric or Nonparametric Hypothesis: It is

not necessary that every statistical hypothesis

will be related to the parameter of the population.

Suppose we want to verify the hypothesis that the

freshwater fish production in India has changed

randomly since independence. This hypothesis

does not involve any parameter, as such is

known as nonparametric hypothesis. On the

other hand, if we want to verify that the average

freshwater fish production in India since inde-

pendence has remained μ0 million tons per year

with s.d. σ tons following a normal distribution;

in this example, parameters of the population

distribution are involved; hence, this is a

parametric hypothesis. Thus, depending upon

the involvement or noninvolvement of the popu-

lation parameter in a statistical hypothesis, it is

either parametric or nonparametric hypothesis.

Critical Region: The critical region for a par-

ticular hypothesis test is a subset of sample space
defined in such a way that it leads to rejection or

acceptance of a null hypothesis depending upon

whether the value of the statistic falls within the
zone or otherwise. Suppose a random sample x1,

x2, x3, . . ...xn be represented by a point x
˜
in n-

dimensional sample space Ω and ω being a sub-

set of the sample space, defined such that it leads

to the rejection of the null hypothesis on the basis

of given sample if the corresponding sample

point x
˜
falls in the subset ω. This subset ω is

known as the critical region of the test, and as it

rejects the null hypothesis, it is also known as the

zone of rejection. The complementary region to

the critical region of the sample space, i.e., ω0 or
ω, is known as the zone of acceptance. Two

boundary values of the critical region are also

included in the region of acceptance:
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The area beyond the � 2.576 values (critical

values) (shaded area) is known as the zone of

rejection, and the rest of the area is known as

zone of acceptance. If the calculated value of the

test statistic falls beyond the critical values of the

corresponding critical region of the tests, then

null hypothesis is rejected; otherwise, the null

hypothesis cannot be rejected.

Errors in Decision: While drawing inference

about the population based on sample observa-

tion, there are different steps like drawing of

appropriate sample, collection of appropriate

information about the population as well as

recording of sample characteristics, tabulation,

processing of raw information from sample,

application of appropriate statistical tool, and

ultimately drawing inference about the popula-

tion using inferential methods on sample values.

In any or all these steps, there are possibilities of

committing error. In fact, the following table

presents the situation which could arise during

the inferential procedure:

Null hypothesis

(Ho)

Decision taken

Reject Ho Not to reject Ho

True Incorrect

decision

Correct

decision

False Correct

decision

Incorrect

decision

Thus, from the above table, it is clear that the

conclusion drawn about the population parame-

ter based on sample observation may not be

always true; we may reject true null hypothesis,

or we may accept a false null hypothesis.

Thus, out of four possibilities, there are two

possibilities in which we can commit error.

Rejection of null hypothesis when it is really

true is known as the type I error, and acceptance

of a false null hypothesis is known as type II

error. The probability of type 1 error is known

as the level of significance and denoted by α , and

that of type II error is generally denoted by β. We

always try to keep α and β as small as possible.

But there exists an inverse relationship between

the α and β, i.e., a test that minimizes α, in fact

maximises β. That is why we fix α, at desired

level, and minimize β. The probability of deci-

sion of rejecting a false null hypothesis (correct

decision) is known as the power of the test and is

denoted by 1� β. In practice, α is taken to a

number very close to zero.

Level of Significance: The probability of com-

mitting type I error, i.e., α, is called the level of

significance. The level of significance is also

known as the size of the critical region. If the
calculated value of a test statistic lies in the

critical region, the null hypothesis is said to be

rejected at α level of significance. Generally, the

level of significance depends on the objective of

the study. Sometimes we may have to opt for

0.01 % or 0.001 % level of significance, particu-

larly in relation to medical studies. A researcher

has the freedom to select his or her level of

significance depending upon the objective of

the study.

6.1.1.1 Point Estimation
As the name suggest, in point estimation, we are

in search of a value of the estimator from the

sample values which is used to estimate the pop-

ulation parameter. Let x1, x2, x3 . . ...xn be a ran-

dom sample from a density f(X/θ), where θ is an

unknown parameter, and “t” be a function of x1,

x2, x3 . . ...xn so that t is a statistic and hence a

random variable; and if t is used to estimate θ,
then t is called a point estimator of θ. Again if the
realized value of t from the sample is used for θ,
then t is called a point estimate of θ.

6.1.1.2 Interval Estimation
As the name suggests, in contrast to the proce-

dure of point estimation, in interval estimation

method, we are in search of an interval, from the

sample observations, within which the unknown

population parameter is supposed to lie with

greatest probability. That is, we are in search of

a probability statement, from the sample values,

about the parameter θ of the population from

which the sample has been drawn. Let x1, x2,
x3 . . ...xn be a random sample drawn from a

population, we are in search of two functions
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“u1” and “u2,” so that the probability of θ lying in
the interval (u1, u2) is given by a value say 1� α,

that means P( u1 � θ � u2
� ¼ 1� α. Thus, the

interval (u1, u2), for which P( u1 � θ � u2
� ¼

1� α, if exists, is known as confidence inter-

val for the parameter θ; “u1” and “u2” are

known as lower and upper confidence limits,
respectively, and 1� α is called the confidence

coefficient.

Steps in Construction of Confidence Interval

(i) The first step in the construction of confi-

dence interval is to decide the most appro-

priate estimator of the population parameter

(say θ).
(ii) In the second step, ascertain the sampling

distribution of the estimate θ̂ of θ.
(iii) In the next step, one has to find out the

estimate (i.e., the value of the estimator)

from the given sample.

(iv) Next we are to work out a function Φ θ̂; θ
� �

,

sayð Þ for which sampling distribution is not

dependent on θ.
iv) Next we are to fix the confidence coefficient

and select Φα/2 and Φ
1�α

2ð Þ such that

P Φ�Φα=2

� �¼ α=2 and P Φ�Φ
1�α

2ð Þ
� �

¼
α=2 where, Φα/2 and Φ

1�α
2ð Þ are the upper

and lower 100(α/2) % point of the distribu-

tion of Φ respectively.

Thus, P Φ
1�α

2ð Þ � Φ θ, θð Þ � Φα
2

� �
¼ 1� α

Example 6.1

Average milk yield per lactation for a sample

of 100 cows is found to be 3750 kg with stan-

dard deviation 700 kg. Find out the 95 % confi-

dence interval for population average milk

yield μ.

Solution Let X denotes the milk yield of cows.

Since the sample size is large and under the

assumption of random and independent

observations, 95 % confidence interval of the

population mean μ is given by x� τ0:025 σ̂ffiffi
n

p .

Given that x¼ 3750 kg and σ̂ ¼700 kg, so the

95 % confidence interval is given as x� τ0:025 σ̂ffiffi
n

p ,

where τ is a standard normal variate and as per

the standard normal distribution P(τ0.025)¼ 1.96.

Hence, the 95 % confidence interval for this

problem is given as

x� τ0:025
σ̂ffiffiffi
n

p � μ � xþ τ0:025
σ̂ffiffiffi
n

p

) 3750� 1:96� 700=
ffiffiffiffiffiffiffiffi
100

p
� μ

� 3750þ 1:96� 700=
ffiffiffiffiffiffiffiffi
100

p

) 3750� 137:2 � μ � 3750þ 137:2

) 3612:8 � μ � 3887:2

Readers may note that as per central limit

theorem, we have taken the sample of size 100

as large sample, and hence its mean is supposed

to behave like a normal probability distribution.

So the average milk yield will vary in between

3612.8 kg and 887.2 kg at 5 % level of

significance.

Example 6.2

The following figures are pertaining to the daily

milk yield (kg) provided by ten randomly

selected cows of a particular breed. Find out the

95 % confidence interval of average daily milk

yield of the particular breed of cows assuming

that the milk per day follows normal distribution

with unknown mean and variance. Milk yield

(kg/day) is 5,6,8,10,5,9,8,7,8,9.

Solution Let X denotes the milk yield (kg) per

day per cow. Given that the population is nor-

mally distributed with unknown mean μ and σ as

standard deviation, our problem is to find confi-

dence limits for the population mean μ of X.

Under the assumption, the 95 % confidence

limits of μ should be as follows:

x� t0:025,n�1
sffiffi
n

p � μ � xþ t0:025,n�1
sffiffi
n

p ,

where x and s are, respectively, the

sample mean and square root of the sample

mean square. To get the values of these two

quantities, let us make the following table:
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Now using the values of mean, mean square,

and t0.025,9 from table t-distribution, we have

x� t0:025,n�1

sffiffiffi
n

p � μ � xþ t0:025,n�1

sffiffiffi
n

p ,

) 7:5‐2:262� 1:716=
ffiffiffiffiffi
10

p � μ � 7:5þ 2:262x1:716=
ffiffiffiffiffi
10

p

) 6:273 � μ � 8:727

6.1.2 Testing of Hypothesis

As mentioned already, in testing of hypothesis

part, we generally discuss the acceptability or

otherwise of the statistical hypothesis related to

population based on the sample observation.

Generally, a set of rules is specified in taking

decision with respect to the acceptance or

rejection of the statistical hypothesis under

consideration. In the process, a test statistic is

framed based on the sampling distribution of

the best estimator of the population parameter,

i.e., to decide the probability distribution; the

statistic should follow under the given

circumstances, as there are number of probabil-

ity distribution specifically suited for different

situations. More specifically, a test statistic is a

function of sample observations whose

computed value when compared with the prob-

ability distribution it follow leads us to take

final decision with regard to acceptance or

rejection of null hypothesis.

Types of Test: We have already mentioned that

for each and every null hypothesis, there exists

one or more alternative hypotheses. Depending

upon the nature of alternative hypothesis, a test
is one sided (one tailed) or both sided (two

tailed). Let us suppose we are to test Ho:

μ ¼ μ
0
, a specific value of μ in the population.

To this null hypothesis, we can have the follow-

ing three alternative hypotheses H1:

ið Þ μ 6¼ μ0, iið Þ μ > μ0, iiið Þ μ < μ0

When the test is framed to test the null hypothesis

against the alternative hypothesis μ 6¼ μ0, then we

are interested to test only μ ¼ μ0 ; the test is both-
sided (or two-tailed) test, and we are to consult the

both-sided tables of the probability distribution; the

test statistic follows. If the test is significant, the

calculated value of the test statistic based on sample

observation will be greater than the corresponding

table value; Ho is rejected and infer that μ 6¼ μ0; it
may bemore than or less than μ0. But if we consider
the alternative hypothesis either (ii) or (iii), then we

are to consult the critical value corresponding to

upper α probability or lower α probability value,

respectively. On rejection of the Ho, i.e., if the

calculated value of the test statistic be greater than

the critical value corresponding to upper α probabil-

ity or less than the critical value corresponding to

lower α probability value, respectively, we infer that
μ > μ0 or μ < μ0 accordingly. In both the cases, the
test is one-sided or one-tailed test.

Steps in Testing of Statistical Hypothesis

Likewise to that of steps in interval estimation, in

this section, we shall discuss about the steps to be

followed during the testing of hypothesis. As testing

of hypothesis is an important part of statistical infer-

ence, sincere approach is required in each and every

step so that inference about the population could be

drawnwith accuracy asmuch as possible. Testing of

hypothesis is mainly accomplished through the fol-

lowing steps: (1) defining the objective of the study;

(2) knowing/gathering information about the popu-

lation; (3) framing the appropriate statistical hypoth-

esis to be tested; (4) selection of appropriate test

statistic and its sampling distribution; (5) fixing the

level of significance; (6) deciding upon the criti-

cal value of the test statistic depending upon its

sampling distribution, degrees of freedom, and

type of test (both sided or one sided);

(7) calculation of test statistic from sample

information; (8) comparing the calculated

value of the test statistic with that of the critical

value(s) decided previously step (6); (9) decision

with respect to rejection or acceptance of the null

xi 5 6 8 10 5 9 8 7 8 9

(xi�x)2 6.25 2.25 0.25 6.25 6.25 2.25 0.25 0.25 0.25 2.25

Mean 7.5

Mean square 2.944
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hypothesis; and ultimately (10) drawing the

inference about the population in the line of the

objectives.

One should not have any confusion in fixing

the objective of the study, i.e., whether to test the

equality of two population means from two dif-

ferent samples drawn from same parent popula-

tion or from two different populations or to test

whether population mean can be taken as μo
(a specified value) or not and so on. Information

or knowledge about the population and its distri-

bution from which the parameters understudy

have been taken help the process. Depending

upon the objective of the study and available

knowledge about the population from which the

parameter understudy, we should frame the

appropriate null hypothesis and corresponding

alternative hypothesis(es). This step is very

important because selection of null hypothesis

and corresponding alternative hypothesis will

lead us to the type of test (i.e., one sided or two

sided) to be performed. One should be very care-

ful to select such a statistic whose sampling dis-

tribution will best reflect the distribution of

population from which the samples have been

drawn and parameter to be tested. It has been

mentioned earlier that selection of appropriate

level of significance depends on so many factors

like objective of the study, type of parameter,

type of study object and precision required, etc.

Though in modern computer, oriented statistical

softwares provide exact probability at which the

test is significant, it is important that the experi-

menter should have a prefixed level of signifi-

cance guided by the objective of the study, type

of parameter, and type of study object and pre-

cision required, and he or she should stick onto

this level of significance. The type of test (one

sided or both sided), test statistic and its distri-

bution, etc. decide the critical value(s) for a

particular test under the given setup. A test is

significant (i.e., rejection of null hypothesis) or

nonsignificant (acceptance of null hypothesis)

depending upon the values of the calculated

value of the test statistic and the table value of

the statistic at prefixed level of significance. The

fault in selection of the critical values may lead

to wrong conclusion about the population

understudy.

6.2 Testing of Hypothesis

It has already been mentioned that the testing

of hypotheses can broadly be classified into two

categories, (i) parametric and (ii) nonparametric.

In parametric hypothesis testing, we are concerned

about the population parameters, its value, and so

on. But in nonparametric testing of hypotheses, we

are in the mood of judging the nature of the popu-

lation like how the observation changes in a popu-

lation randomly or following a definite pattern etc.

Nonparametric tests are very useful for qualitative

characters of the population.

Parametric tests are mostly based on certain

assumptions about the parent population and its

parameters, e.g., the assumptions of normality,

independence, and homoscedasticity (mean con-

stant variance). In statistics, a method is said to be

“robust” if the inferencesmade by using themethod

is valid even if one ormore of these assumptions are

violated. In practical situations, sometimes it is hard

to have typical normal population. We come

across with population in which one or more

characteristics of normal distribution are violated,

and as a remedial measure, we take help of the

transformation technique tomake the variables nor-

mally distributed. As a result, in almost all the exact

tests, the parent population is assumed to be normal,

and we estimate and/or test the parameters under

different situations. Another way of assuming nor-

mality behavior of the variable is by taking large

samples and using the central limit theorem. On the

other hand, in nonparametric tests, instead of the

normality assumption or taking a large sample,

continuity of the distribution function is assumed.

Nonparametricmethods should not be confused

with “distribution-free” methods. A statistical

method is nonparametric if the parent distribution

is dependent on some general assumption like

continuity. On the other hand, a distribution-free

method depends neither on the form nor on the

parameters of the parent distribution, as is the case

of parametric method, which depends on number

of parameters. Thus, a nonparametric test is a

statistical testwhere the information on parameters

of the parent population from which sample

(s) have been drawn random need be known.

In the following section, let us discuss merits

and demerits of the nonparametric methods.
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Merits of the Nonparametric Methods

(i) Nonparametric methods are useful for those

data which are classificatory in nature, i.e.,

measured in nominal scales. That’s why

nonparametric tests found their wide range

of use in socioeconomic studies along with

other studies.

(ii) Nonparametric tests are also useful for

qualitative characters which can be ranked

only as well as for the data which can be

ranked from numerical figures.

(iii) Irrespective of the nature of the population

distribution, nonparametric statistical tests

are exact.

(iv) Nonparametric tests are useful even under

unknown population distribution, for very

small sample size, and are

comparatively easy.

(v) Sample made up of observations from dif-

ferent populations can also be put under

nonparametric tests

Demerits of the Nonparametric Methods

(i) Probability of committing type II error ismore

in nonparametric method than in parametric

method. As a result, when assumptions are

valid, parametric test is superior over the com-

parable nonparametric method, because we

know that the power of a test is given by one

probability of type II error.

(ii) For estimation of population parameters,

nonparametric method cannot be used.

(iii) Mostly, the nonparametric methods do not

take into consideration the actual scale ofmea-

surement and substitute either ranks or grade.

(iv) Suitable nonparametric method is lacking

for testing interaction effects in analysis of

variance.

6.2.1 Parametric Tests

Parametric tests can be categorized into (i) tests

based normal population, (ii) tests based on large

samples and utilizing the properties of central

limit theorem, and (iii) other tests. In the first

place, we shall discuss the parametric statistical

tests.

6.2.1.1 Statistical Test of Population
Parameters Based on Normal
Population

For a variable distributed normally, the

P τ��τα=2
	 
 ¼ P τ� τα=2

	 
 ¼ α=2 and P τ�f
�τα=2gþP τ� τα=2

	 
¼ α the zone of rejection

and the rest zone under standard normal proba-

bility curve is 1�α the zone of acceptance. Here,
τ is the standard normal variate and defined as

τ¼ X�μ
σ , whereX,μ,σ are the random variable,

its mean, and standard deviation, respectively.

Depending upon the type of test (i.e., one sided

or both sided) and the level of significance, the

upper and lower value of the critical zone (i.e.,

the zone of acceptance and the zone of rejec-

tion) under standard normal probability curve is

determined. The table below presents the criti-

cal values’ 5 % and 1 % level of significance:

Type of test

Level of

significance

α ¼ 0.05

Level of

significance

α ¼ 0.01

Both-sided test

(two-tailed test)

1.96 2.576

One-sided (left tailed) �1.645 �2.33

One-sided (right

tailed)

1.645 2.33

In the following section, we shall discuss some of

the mostly used tests based on normal population:

(i) Test for specified values of population mean

In this type of testing of hypotheses, we come

across two situations, (a) population variance

is known or (b) population variance is

unknown. The test procedures are different

for two different situations; in the first situa-

tion, the test statistic follows like a standard

normal variate, whereas in the second

situation, i.e., under unknown population

variance situation, the test statistic follows

t-distribution. Let us discuss both the tests

along with examples (Tables 6.1 and 6.2).

(a) Test for specified values of population mean

with known population variance

Let x1, x2, x3,. . .. . .. . ..xn be a random sample

drawn from a normal population N(μ, σ2). Vari-
ance σ2 is known. Now we have to test H0:
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Table 6.1 Table of ordinate and area of the standard normal deviate

τ ϕ(τ) Φ(τ) τ ϕ(τ) Φ(τ) τ ϕ(τ) Φ(τ)

0.00 0.3989423 0.5000000 0.50 0.3520653 0.6914625 1.00 0.2419707 0.8413447

0.01 0.3989223 0.5039894 0.51 0.3502919 0.6949743 1.01 0.2395511 0.8437524

0.02 0.3988625 0.5079783 0.52 0.3484925 0.6984682 1.02 0.2371320 0.8461358

0.03 0.3987628 0.5119665 0.53 0.3466677 0.7019440 1.03 0.2347138 0.8484950

0.04 0.3986233 0.5159534 0.54 0.3448180 0.7054015 1.04 0.2322970 0.8508300

0.05 0.3984439 0.5199388 0.55 0.3429439 0.7088403 1.05 0.2298821 0.8531409

0.06 0.3982248 0.5239222 0.56 0.3410458 0.7122603 1.06 0.2274696 0.8554277

0.07 0.3979661 0.5279032 0.57 0.3391243 0.7156612 1.07 0.2250599 0.8576903

0.08 0.3976677 0.5318814 0.58 0.3371799 0.7190427 1.08 0.2226535 0.8599289

0.09 0.3973298 0.5358564 0.59 0.3352132 0.7224047 1.09 0.2202508 0.8621434

0.10 0.3969525 0.5398278 0.60 0.3332246 0.7257469 1.10 0.2178522 0.8643339

0.11 0.3965360 0.5437953 0.61 0.3312147 0.7290691 1.11 0.2154582 0.8665005

0.12 0.3960802 0.5477584 0.62 0.3291840 0.7323711 1.12 0.2130691 0.8686431

0.13 0.3955854 0.5517168 0.63 0.3271330 0.7356527 1.13 0.2106856 0.8707619

0.14 0.3950517 0.5556700 0.64 0.3250623 0.7389137 1.14 0.2083078 0.8728568

0.15 0.3944793 0.5596177 0.65 0.3229724 0.7421539 1.15 0.2059363 0.8749281

0.16 0.3938684 0.5635595 0.66 0.3208638 0.7453731 1.16 0.2035714 0.8769756

0.17 0.3932190 0.5674949 0.67 0.3187371 0.7485711 1.17 0.2012135 0.8789995

0.18 0.3925315 0.5714237 0.68 0.3165929 0.7517478 1.18 0.1988631 0.8809999

0.19 0.3918060 0.5753454 0.69 0.3144317 0.7549029 1.19 0.1965205 0.8829768

0.20 0.3910427 0.5792597 0.70 0.3122539 0.7580363 1.20 0.1941861 0.8849303

0.21 0.3902419 0.5831662 0.71 0.3100603 0.7611479 1.21 0.1918602 0.8868606

0.22 0.3894038 0.5870644 0.72 0.3078513 0.7642375 1.22 0.1895432 0.8887676

0.23 0.3885286 0.5909541 0.73 0.3056274 0.7673049 1.23 0.1872354 0.8906514

0.24 0.3876166 0.5948349 0.74 0.3033893 0.7703500 1.24 0.1849373 0.8925123

0.25 0.3866681 0.5987063 0.75 0.3011374 0.7733726 1.25 0.1826491 0.8943502

0.26 0.3856834 0.6025681 0.76 0.2988724 0.7763727 1.26 0.1803712 0.8961653

0.27 0.3846627 0.6064199 0.77 0.2965948 0.7793501 1.27 0.1781038 0.8979577

0.28 0.3836063 0.6102612 0.78 0.2943050 0.7823046 1.28 0.1758474 0.8997274

0.29 0.3825146 0.6140919 0.79 0.2920038 0.7852361 1.29 0.1736022 0.9014747

0.30 0.3813878 0.6179114 0.80 0.2896916 0.7881446 1.30 0.1713686 0.9031995

0.31 0.3802264 0.6217195 0.81 0.2873689 0.7910299 1.31 0.1691468 0.9049021

0.32 0.3790305 0.6255158 0.82 0.2850364 0.7938919 1.32 0.1669370 0.9065825

0.33 0.3778007 0.6293000 0.83 0.2826945 0.7967306 1.33 0.1647397 0.9082409

0.34 0.3765372 0.6330717 0.84 0.2803438 0.7995458 1.34 0.1625551 0.9098773

0.35 0.3752403 0.6368307 0.85 0.2779849 0.8023375 1.35 0.1603833 0.9114920

0.36 0.3739106 0.6405764 0.86 0.2756182 0.8051055 1.36 0.1582248 0.9130850

0.37 0.3725483 0.6443088 0.87 0.2732444 0.8078498 1.37 0.1560797 0.9146565

0.38 0.3711539 0.6480273 0.88 0.2708640 0.8105703 1.38 0.1539483 0.9162067

0.39 0.3697277 0.6517317 0.89 0.2684774 0.8132671 1.39 0.1518308 0.9177356

0.40 0.3682701 0.6554217 0.90 0.2660852 0.8159399 1.40 0.1497275 0.9192433

0.41 0.3667817 0.6590970 0.91 0.2636880 0.8185887 1.41 0.1476385 0.9207302

0.42 0.3652627 0.6627573 0.92 0.2612863 0.8212136 1.42 0.1455641 0.9221962

0.43 0.3637136 0.6664022 0.93 0.2588805 0.8238145 1.43 0.1435046 0.9236415

0.44 0.3621349 0.6700314 0.94 0.2564713 0.8263912 1.44 0.1414600 0.9250663

0.45 0.3605270 0.6736448 0.95 0.2540591 0.8289439 1.45 0.1394306 0.9264707

0.46 0.3588903 0.6772419 0.96 0.2516443 0.8314724 1.46 0.1374165 0.9278550

0.47 0.3572253 0.6808225 0.97 0.2492277 0.8339768 1.47 0.1354181 0.9292191

0.48 0.3555325 0.6843863 0.98 0.2468095 0.8364569 1.48 0.1334353 0.9305634

0.49 0.3538124 0.6879331 0.99 0.2443904 0.8389129 1.49 0.1314684 0.9318879

(continued)
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Table 6.1 (continued)

τ ϕ(τ) Φ(τ) τ ϕ(τ) Φ(τ) τ ϕ(τ) Φ(τ)

1.50 0.1295176 0.9331928 2.00 0.0539910 0.9772499 2.50 0.0175283 0.9937903

1.51 0.1275830 0.9344783 2.01 0.0529192 0.9777844 2.51 0.0170947 0.9939634

1.52 0.1256646 0.9357445 2.02 0.0518636 0.9783083 2.52 0.0166701 0.9941323

1.53 0.1237628 0.9369916 2.03 0.0508239 0.9788217 2.53 0.0162545 0.9942969

1.54 0.1218775 0.9382198 2.04 0.0498001 0.9793248 2.54 0.0158476 0.9944574

1.55 0.1200090 0.9394292 2.05 0.0487920 0.9798178 2.55 0.0154493 0.9946139

1.56 0.1181573 0.9406201 2.06 0.0477996 0.9803007 2.56 0.0150596 0.9947664

1.57 0.1163225 0.9417924 2.07 0.0468226 0.9807738 2.57 0.0146782 0.9949151

1.58 0.1145048 0.9429466 2.08 0.0458611 0.9812372 2.58 0.0143051 0.9950600

1.59 0.1127042 0.9440826 2.09 0.0449148 0.9816911 2.59 0.0139401 0.9952012

1.60 0.1109208 0.9452007 2.10 0.0439836 0.9821356 2.60 0.0135830 0.9953388

1.61 0.1091548 0.9463011 2.11 0.0430674 0.9825708 2.61 0.0132337 0.9954729

1.62 0.1074061 0.9473839 2.12 0.0421661 0.9829970 2.62 0.0128921 0.9956035

1.63 0.1056748 0.9484493 2.13 0.0412795 0.9834142 2.63 0.0125581 0.9957308

1.64 0.1039611 0.9494974 2.14 0.0404076 0.9838226 2.64 0.0122315 0.9958547

1.65 0.1022649 0.9505285 2.15 0.0395500 0.9842224 2.65 0.0119122 0.9959754

1.66 0.1005864 0.9515428 2.16 0.0387069 0.9846137 2.66 0.0116001 0.9960930

1.67 0.0989255 0.9525403 2.17 0.0378779 0.9849966 2.67 0.0112951 0.9962074

1.68 0.0972823 0.9535213 2.18 0.0370629 0.9853713 2.68 0.0109969 0.9963189

1.69 0.0956568 0.9544860 2.19 0.0362619 0.9857379 2.69 0.0107056 0.9964274

1.70 0.0940491 0.9554345 2.20 0.0354746 0.9860966 2.70 0.0104209 0.9965330

1.71 0.0924591 0.9563671 2.21 0.0347009 0.9864474 2.71 0.0101428 0.9966358

1.72 0.0908870 0.9572838 2.22 0.0339408 0.9867906 2.72 0.0098712 0.9967359

1.73 0.0893326 0.9581849 2.23 0.0331939 0.9871263 2.73 0.0096058 0.9968333

1.74 0.0877961 0.9590705 2.24 0.0324603 0.9874545 2.74 0.0093466 0.9969280

1.75 0.0862773 0.9599408 2.25 0.0317397 0.9877755 2.75 0.0090936 0.9970202

1.76 0.0847764 0.9607961 2.26 0.0310319 0.9880894 2.76 0.0088465 0.9971099

1.77 0.0832932 0.9616364 2.27 0.0303370 0.9883962 2.77 0.0086052 0.9971972

1.78 0.0818278 0.9624620 2.28 0.0296546 0.9886962 2.78 0.0083697 0.9972821

1.79 0.0803801 0.9632730 2.29 0.0289847 0.9889893 2.79 0.0081398 0.9973646

1.80 0.0789502 0.9640697 2.30 0.0283270 0.9892759 2.80 0.0079155 0.9974449

1.81 0.0775379 0.9648521 2.31 0.0276816 0.9895559 2.81 0.0076965 0.9975229

1.82 0.0761433 0.9656205 2.32 0.0270481 0.9898296 2.82 0.0074829 0.9975988

1.83 0.0747663 0.9663750 2.33 0.0264265 0.9900969 2.83 0.0072744 0.9976726

1.84 0.0734068 0.9671159 2.34 0.0258166 0.9903581 2.84 0.0070711 0.9977443

1.85 0.0720649 0.9678432 2.35 0.0252182 0.9906133 2.85 0.0068728 0.9978140

1.86 0.0707404 0.9685572 2.36 0.0246313 0.9908625 2.86 0.0066793 0.9978818

1.87 0.0694333 0.9692581 2.37 0.0240556 0.9911060 2.87 0.0064907 0.9979476

1.88 0.0681436 0.9699460 2.38 0.0234910 0.9913437 2.88 0.0063067 0.9980116

1.89 0.0668711 0.9706210 2.39 0.0229374 0.9915758 2.89 0.0061274 0.9980738

1.90 0.0656158 0.9712834 2.40 0.0223945 0.9918025 2.90 0.0059525 0.9981342

1.91 0.0643777 0.9719334 2.41 0.0218624 0.9920237 2.91 0.0057821 0.9981929

1.92 0.0631566 0.9725711 2.42 0.0213407 0.9922397 2.92 0.0056160 0.9982498

1.93 0.0619524 0.9731966 2.43 0.0208294 0.9924506 2.93 0.0054541 0.9983052

1.94 0.0607652 0.9738102 2.44 0.0203284 0.9926564 2.94 0.0052963 0.9983589

1.95 0.0595947 0.9744119 2.45 0.0198374 0.9928572 2.95 0.0051426 0.9984111

1.96 0.0584409 0.9750021 2.46 0.0193563 0.9930531 2.96 0.0049929 0.9984618

1.97 0.0573038 0.9755808 2.47 0.0188850 0.9932443 2.97 0.0048470 0.9985110

1.98 0.0561831 0.9761482 2.48 0.0184233 0.9934309 2.98 0.0047050 0.9985588

1.99 0.0550789 0.9767045 2.49 0.0179711 0.9936128 2.99 0.0045666 0.9986051

(continued)
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μ ¼ μ0. The alternative hypotheses may be H1:

i
�
μ 6¼ μ0, ii

�
μ > μ0, iii

�
μ < μ0.

The test statistic under the given null hypoth-

esis is τ ¼ x�μ0
σ=

ffiffi
n

p , where x is the sample mean, n is

the number of observations in the sample, and

this τ follows a standard normal distribution.

Inference:

(a) For H1: μ 6¼ μ0, i.e., for both-sided test,

reject H0 if calculated value of τj j < τα=2,

where τα/2 is the table value of τ at upper α/
2 level of significance, i.e., 1.96 and 2.576,

respectively, for 5 % and1 % level of sig-

nificance; otherwise, do not reject the null

hypothesis (Table 6.3).

(b) If we have the alternative hypothesis H1:

μ > μ0, i.e., for right-sided test, reject H0 if

calculated value of τ > τα, where τα is the

table value of τ at upper α level of

Table 6.1 (continued)

τ ϕ(τ) Φ(τ) τ ϕ(τ) Φ(τ) τ ϕ(τ) Φ(τ)

3.00 0.0044318 0.9986501 3.34 0.0015084 0.9995811 3.68 0.0004573 0.9998834

3.01 0.0043007 0.9986938 3.35 0.0014587 0.9995959 3.69 0.0004408 0.9998879

3.02 0.0041729 0.9987361 3.36 0.0014106 0.9996103 3.70 0.0004248 0.9998922

3.03 0.0040486 0.9987772 3.37 0.0013639 0.9996242 3.71 0.0004093 0.9998964

3.04 0.0039276 0.9988171 3.38 0.0013187 0.9996376 3.72 0.0003944 0.9999004

3.05 0.0038098 0.9988558 3.39 0.0012748 0.9996505 3.73 0.0003800 0.9999043

3.06 0.0036951 0.9988933 3.40 0.0012322 0.9996631 3.74 0.0003661 0.9999080

3.07 0.0035836 0.9989297 3.41 0.0011910 0.9996752 3.75 0.0003526 0.9999116

3.08 0.0034751 0.9989650 3.42 0.0011510 0.9996869 3.76 0.0003396 0.9999150

3.09 0.0033695 0.9989992 3.43 0.0011122 0.9996982 3.77 0.0003271 0.9999184

3.10 0.0032668 0.9990324 3.44 0.0010747 0.9997091 3.78 0.0003149 0.9999216

3.11 0.0031669 0.9990646 3.45 0.0010383 0.9997197 3.79 0.0003032 0.9999247

3.12 0.0030698 0.9990957 3.46 0.0010030 0.9997299 3.80 0.0002919 0.9999277

3.13 0.0029754 0.9991260 3.47 0.0009689 0.9997398 3.81 0.0002810 0.9999305

3.14 0.0028835 0.9991553 3.48 0.0009358 0.9997493 3.82 0.0002705 0.9999333

3.15 0.0027943 0.9991836 3.49 0.0009037 0.9997585 3.83 0.0002604 0.9999359

3.16 0.0027075 0.9992112 3.50 0.0008727 0.9997674 3.84 0.0002506 0.9999385

3.17 0.0026231 0.9992378 3.51 0.0008426 0.9997759 3.85 0.0002411 0.9999409

3.18 0.0025412 0.9992636 3.52 0.0008135 0.9997842 3.86 0.0002320 0.9999433

3.19 0.0024615 0.9992886 3.53 0.0007853 0.9997922 3.87 0.0002232 0.9999456

3.20 0.0023841 0.9993129 3.54 0.0007581 0.9997999 3.88 0.0002147 0.9999478

3.21 0.0023089 0.9993363 3.55 0.0007317 0.9998074 3.89 0.0002065 0.9999499

3.22 0.0022358 0.9993590 3.56 0.0007061 0.9998146 3.90 0.0001987 0.9999519

3.23 0.0021649 0.9993810 3.57 0.0006814 0.9998215 3.91 0.0001910 0.9999539

3.24 0.0020960 0.9994024 3.58 0.0006575 0.9998282 3.92 0.0001837 0.9999557

3.25 0.0020290 0.9994230 3.59 0.0006343 0.9998347 3.93 0.0001766 0.9999575

3.26 0.0019641 0.9994429 3.60 0.0006119 0.9998409 3.94 0.0001698 0.9999593

3.27 0.0019010 0.9994623 3.61 0.0005902 0.9998469 3.95 0.0001633 0.9999609

3.28 0.0018397 0.9994810 3.62 0.0005693 0.9998527 3.96 0.0001569 0.9999625

3.29 0.0017803 0.9994991 3.63 0.0005490 0.9998583 3.97 0.0001508 0.9999641

3.30 0.0017226 0.9995166 3.64 0.0005294 0.9998637 3.98 0.0001449 0.9999655

3.31 0.0016666 0.9995335 3.65 0.0005105 0.9998689 3.99 0.0001393 0.9999670

3.32 0.0016122 0.9995499 3.66 0.0004921 0.9998739

3.33 0.0015595 0.9995658 3.67 0.0004744 0.9998787

Table 6.2 Value of the standard normal deviate (t) at a
level

α 0.05 0.025 0.01 0.05

τ 1.645 1.960 2.326 2.576
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significance, i.e., 1.645 and 2.33, respec-

tively, for 5 % and1 % level of significance;

otherwise, do not reject the null hypothesis.

(c) If we have the alternative hypothesis H1:

μ < μ0, i.e., for left-sided test, reject H0 if

calculated value of τ > τ1�α, where τ1�α is

the table value of τ at lower α level of

Table 6.3 Values of t statistic at different degrees of freedom and level of significance

Degree of freedom

Probability of a larger value, sign ignored

0.500 0.400 0.200 0.100 0.05 0.025 0.01 0.005 0.001

1 1.000 1.376 3.078 6.314 12.706 25.452 63.657 127.321 636.619

2 0.816 1.061 1.886 2.920 4.303 6.205 9.925 14.089 31.599

3 0.765 0.978 1.638 2.353 3.182 4.177 5.841 7.453 12.924

4 0.741 0.941 1.533 2.132 2.776 3.495 4.604 5.598 8.610

5 0.727 0.920 1.476 2.015 2.571 3.163 4.032 4.773 6.869

6 0.718 0.906 1.440 1.943 2.447 2.969 3.707 4.317 5.959

7 0.711 0.896 1.415 1.895 2.365 2.841 3.499 4.029 5.408

8 0.706 0.889 1.397 1.860 2.306 2.752 3.355 3.833 5.041

9 0.703 0.883 1.383 1.833 2.262 2.685 3.250 3.690 4.781

10 0.700 0.879 1.372 1.812 2.228 2.634 3.169 3.581 4.587

11 0.697 0.876 1.363 1.796 2.201 2.593 3.106 3.497 4.437

12 0.695 0.873 1.356 1.782 2.179 2.560 3.055 3.428 4.318

13 0.694 0.870 1.350 1.771 2.160 2.533 3.012 3.372 4.221

14 0.692 0.868 1.345 1.761 2.145 2.510 2.977 3.326 4.140

15 0.691 0.866 1.341 1.753 2.131 2.490 2.947 3.286 4.073

16 0.690 0.865 1.337 1.746 2.120 2.473 2.921 3.252 4.015

17 0.689 0.863 1.333 1.740 2.110 2.458 2.898 3.222 3.965

18 0.688 0.862 1.330 1.734 2.101 2.445 2.878 3.197 3.922

19 0.688 0.861 1.328 1.729 2.093 2.433 2.861 3.174 3.883

20 0.687 0.860 1.325 1.725 2.086 2.423 2.845 3.153 3.850

21 0.686 0.859 1.323 1.721 2.080 2.414 2.831 3.135 3.819

22 0.686 0.858 1.321 1.717 2.074 2.405 2.819 3.119 3.792

23 0.685 0.858 1.319 1.714 2.069 2.398 2.807 3.104 3.768

24 0.685 0.857 1.318 1.711 2.064 2.391 2.797 3.091 3.745

25 0.684 0.856 1.316 1.708 2.060 2.385 2.787 3.078 3.725

26 0.684 0.856 1.315 1.706 2.056 2.379 2.779 3.067 3.707

27 0.684 0.855 1.314 1.703 2.052 2.373 2.771 3.057 3.690

28 0.683 0.855 1.313 1.701 2.048 2.368 2.763 3.047 3.674

29 0.683 0.854 1.311 1.699 2.045 2.364 2.756 3.038 3.659

30 0.683 0.854 1.310 1.697 2.042 2.360 2.750 3.030 3.646

35 0.682 0.852 1.306 1.690 2.030 2.342 2.724 2.996 3.591

40 0.681 0.851 1.303 1.684 2.021 2.329 2.704 2.971 3.551

45 0.680 0.850 1.301 1.679 2.014 2.319 2.690 2.952 3.520

50 0.679 0.849 1.299 1.676 2.009 2.311 2.678 2.937 3.496

55 0.679 0.848 1.297 1.673 2.004 2.304 2.668 2.925 3.476

60 0.679 0.848 1.296 1.671 2.000 2.299 2.660 2.915 3.460

70 0.678 0.847 1.294 1.667 1.994 2.291 2.648 2.899 3.435

80 0.678 0.846 1.292 1.664 1.990 2.284 2.639 2.887 3.416

90 0.677 0.846 1.291 1.662 1.987 2.280 2.632 2.878 3.402

100 0.677 0.845 1.290 1.660 1.984 2.276 2.626 2.871 3.390

120 0.677 0.845 1.289 1.658 1.980 2.270 2.617 2.860 3.373

Infinity 0.675 0.842 1.282 1.645 1.960 2.241 2.576 2.807 3.291

Note: Values for both-sided test
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significance; otherwise, do not reject the

null hypothesis.

Example 6.3

A random sample of ten eggs is drawn from a

huge lot of eggs of a particular breed of chick and

found that the average weight of egg is 65 g. Test

whether the average weight of egg is taken as

70 g at 5 % level of significance. The weight per

egg is assumed to follow normal distribution

with variance 7.

Solution To test H0: population mean μ ¼65

against H1 : μ 6¼ 65.

This is both-sided test. As the sample has

been drawn from normal population with

known variance, the appropriate test statistic

will be τ ¼ x�μ0
σ=

ffiffi
n

p . For this problem, τ ¼ 65�70
7=

ffiffiffiffi
10

p ¼
�5
2:21 ¼ 2:25:

From the table of the standard normal variate,

we have τ0.01 (¼2.576) > |τ|cal (¼2.25). So the

test is nonsignificant at 1 % level of significance.

Hence, we accept the null hypothesis, i.e.,

H0 : μ ¼ μ0. So the average egg weight for the

given sample can be taken as 70 g.

(b) Test for specified value of population mean
with unknown population variance.

Let x1, x2, x3,. . .. . .. . ..xn be a random sample

drawn from a normal population N (μ, σ2). Vari-
ance σ2 is unknown. Now we have to test H0:

μ ¼ μ0. The alternative hypotheses may be H1:

ið Þ μ 6¼ μ0, iið Þ μ > μ0, iiið Þ μ < μ0.
The test statistic under the given null hypoth-

esis is t ¼ x�μ0
s=

ffiffi
n

p , with (n�1) degrees of freedom;

x and s2 are the sample mean and sample mean

square, respectively. Sample mean square

s2 ¼ 1
n�1

Xn
i¼1

�
xi � x

�
2

Inference

(a) If we consider the first alternative hypothe-

sisH1:μ 6¼ μ0, i.e., for both-sided test, reject
H0 if calculated value of t > tα=2, n�1, or cal

t < t1�α=2,n�1 ¼ �tα=2,n�1 i:e: cal tj j > tα
2
,n�1

where tα=2,n�1 is the table value of t at upper

α/2 level of significance with (n�1) d.f.;

otherwise, do not reject the null hypothesis.

(b) If we have the alternative hypothesis H1:

μ > μ0, i.e., for right-sided test, reject H0 if

calculated value of t > tα,n�1, where τα,n�1

is the table value of t at upper α level of

significance with (n–1) d.f.; otherwise, do

not reject the null hypothesis.

(c) If we have the alternative hypothesis H1:

μ < μ0, i.e., for left-sided test, reject H0 if

calculated value of t < t1�α,n�1, where

t1�α,n�1 is the table value of t at lower α
level of significance with (n�1) d.f.; other-

wise, do not reject the null hypothesis.

Example 6.4

Given bellow are the milk yield per cow per day of

ten randomly selected Jersey cows. Milk yield is

assumed to follow normal distribution with

unknown variance. Canwe assume that the average

milk per cow per day for the Jersey cow be 20/day.

Milk yield per day: 14, 16, 19, 21, 22, 17,

18, 22, 25, 19.

Solution Given that (i) milk yield per day

follows a normal distribution with unknown var-

iance and (ii) population hypothetical mean is

20 /day.

To test H0, population mean μ ¼ 20 against

H1 : μ 6¼ 20. The test statistic under the null

hypothesis is t ¼ x�μ0
s=

ffiffi
n

p with n� 1ð Þ d.f., and the

test is a both-sided test. We have sample mean

x¼ 1
n

Xn
i¼1

xi¼ 1
n 14þ16þ19: : : : : þ19½ �¼ 19:30

and s2¼ 1

n�1

Xn
i¼1

xi�xð Þ2

¼ 1

9

X10
1

x2i �10: 19:30ð Þ2
" #

¼ 10:67

So, t ¼ 19:30�20
10:67=

ffiffiffiffi
10

p ¼ �0:70
3:37 ¼ �0:20.

The table value of “t” at 9 d.f. at 2.5 % level

of significance is 2.262 which is greater than the

absolute value of the calculated value of “t,” i.e.,
tj j < t0:025,9. So the test is nonsignificant and the

null hypothesis cannot be rejected. That means

the milk yield per cow per day for the Jersey cow

breed may be taken as 20/day.
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(ii) Test for significance for specified population

variance
In this type of testing of hypotheses also,

we come across with two situations, (a) popula-

tion mean is known or (b) population mean is

unknown. The test procedures are different for

two different situations; in both situations, the

test statistic follows like χ2 variate but in the

first situation with n degrees of freedom,

whereas in the second situation, i.e., under

unknown population mean situation with

n�1degrees of freedom, one degree of freedom

is less due to estimation of population mean

from the sample observation. Let us discuss

both the tests along with examples.

(a) Test for significance for specified popula-

tion variance with known population mean: Sup-

pose we have x1, x2, x3,. . .. . .. . ..xn be a random

sample drawn from a normal population with

mean μ and variance σ2, i.e., N (μ, σ2). We want

to test H0 : σ2 ¼ σ20 where σ0
2 is any specified

value for the population variance and the popula-

tion mean is known. Under the given condition,

we can have the following alternative hypotheses:

ið ÞH1 : σ2 6¼ σ20, iið ÞH1 : σ2 > σ20,

iiið ÞH1 : σ2 < σ20

Under the given null hypothesis H0: σ
2 ¼ σ20,

the test statistic is χ2n ¼

Xn
i¼1

xi � μð Þ2

σ2
0

with n d.f.

(i) When we consider H1 : σ2 6¼ σ20, i.e., a

both-sided test, the null hypothesis is

rejected if the calculated value of χn
2 is

greater than the table value of χ2 at upper

α/2 level of significance and at “n” degrees

of freedom, i.e., Cal χ2n > tab χ2α=2,n or cal-

culated χn
2 < tabulated χα/2,n

2; otherwise,

do not reject the null hypothesis.

(ii) If we considerH1 : σ2 > σ2
0
, i.e., a right-sided

test, the null hypothesis is rejected if calcu-

lated value of χ2 is greater than the table value
of χ2 at upper α level of significance and at

“n” degrees of freedom, i.e., cal χn
2> tab χn

2;

otherwise, do not reject the null hypothesis.

(iii) If we consider H1 : σ2 < σ2
0
, i.e., left-sided

test, the null hypothesis is rejected if calcu-

lated value of χn
2 is less than the table value

of χ2 at lower α level of significance and at

“n” degrees of freedom, i.e., cal χn
2 < tab

χ21�α,n ; otherwise, do not reject the null

hypothesis (Table 6.4).

Example 6.5

The following data are from random sample of

ten layer of particular breed of chicks for

counting the number of eggs laid per months.

Do these data support that the variance of num-

ber of eggs laid per month be 7. Given that the

mean number of eggs laid per layer chicken is 26.

No. of eggs per month: 24, 26, 27, 30, 25, 29,

22, 19, 28, 27.

Solution Given that (i) the population mean is

29, (ii) the same has been drawn from a normal

population, and (iii) sample size is 10.

To test H0: σ
2 ¼7 against σ2 6¼ 7.

Under the H0, the test statistic is

χ210 ¼

Xn
i¼1

xi � μð Þ2

σ20

¼ 4þ 0þ 1þ 16þ 1þ 9þ 16þ 49þ 4þ 1½ �
7

¼ 101

7
¼ 14:42

From the table, we have the value of

χ20:025, 10 ¼ 20:483 and χ20:975, 10 ¼ 3:25. The

calculated value of χ2, i.e., 14.42, lies between

these two values. So the null hypothesis cannot

be rejected. That means we can conclude that the

population variance can be taken as 7.

(b) Test of significance for hypothetical popula-
tion variance when population mean (μ) is
unknown

Suppose we have x1, x2, x3,. . .. . .. . ..xn be a ran-

dom sample drawn from a normal population with

mean μ and variance σ2, i.e., N (μ, σ2). We want to

test H0 : σ2 ¼ σ20 where σ0
2 is any specified value

for the population variance and the populationmean
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is known. Under the given condition, we can have

the following alternative hypotheses:

ið ÞH1 : σ
2 6¼ σ20, iið ÞH1 : σ

2 > σ20, iiið ÞH1 : σ
2 < σ20

Under the null hypothesis H0: σ
2 ¼ σ20 with

unknown population mean, the test statistic is

χ2n�1ð Þ ¼
Pn
i¼1

xi�xð Þ2

σ2
0

with (n�1) degrees of free-

dom where x is the sample mean ¼ 1

n

Xn
i¼1

xi

(i) When we considerH1: σ2 6¼ σ20, i.e., a both-
sided test, the null hypothesis is rejected if

the calculated value of χ2n�1 is greater than

the table value of χ2 at upper α/2 level of

significance and at “n�1” degrees of free-

dom, i.e., cal χ2n�1 > tab χ2α=2,n�1 or calcu-

lated χ2n�1 < tabulated χ2α=2,n�1; otherwise,

do not reject the null hypothesis.

(ii) If we consider H1 : σ2 > σ2
0
, i.e., a right-

sided test, the null hypothesis is rejected if

calculated value of χ2 is greater than the

table value of χ2 at upper α level of signifi-

cance and at “n�1” degrees of freedom, i.e.,

cal χ2n�1 > tab χ21�α,n�1 ; otherwise, do not

reject the null hypothesis.

(iii) If we consider H1 : σ2 < σ2
0
, i.e., left-sided

test, the null hypothesis is rejected if calcu-

lated value of χ2n�1 is less than the table

value of χ2 at lower α level of significance

and at “n�1” degrees of freedom, i.e., cal

χ2n�1 < tab χ21�α,n�1; otherwise, do not reject

the null hypothesis.

Example 6.6

A random sample of 30 broiler chicks at the age

of 40 days gives an average weight per chicks as

1.80 kg with variance 0.08 from a normal popu-

lation. Test at 5 % level of significance whether

the variance of the chicks can be taken as 0.10.

The population mean is unknown.

Solution Given that:

(i) Sample size “n” ¼ 30

(ii) Sample mean xð Þ ¼1.80

(iii) Sample variance ¼ 0.08

(iv) The sample has been drawn from normal

population with unknown mean.

To test H0 : σ2 ¼ 0:10 against H1 : σ2 6¼ 0:10,

the test is both-sided test, and under the null

hypothesis, the test statistic is χ229 ¼
Pn
i¼1

xi�xð Þ2

σ2
0

¼
30 � 0:08

0:10 ¼ 24,

From the table, we have χ20:95,29 ¼ 17:708 and

χ20:05,29 ¼ 42:557. Since 17.708 < Cal χ2 <

42.557, H0 cannot be rejected. That means we

can accept that the variance of weight of broiler

chicken may be 0.10.

(iii) Test of equality of two population variances

Sometimes, it is required to test whether the

two populations are the same or not with

respect to their variabilities. Suppose we have

two independent random samples x11, x12,
x13,....... x1m and x21, x22, x23,....... x2n drawn

from two normal populations N (μ1, σ1
2) and

N (μ2, σ2
2), respectively. Now we want to test

whether these two populations differ in

variability or not, i.e., to test H0: σ21 ¼ σ22. In
testing this hypothesis, we may come across

with two different situations, (a) population

means μ1 and μ2 are known and (b) population
means μ1 and μ2 are unknown but equal.

(a) Test of equality of two population variances

when population means are known: Under
the given null hypothesis with knownmeans

of the population means μ1 and μ2 are

known against the alternative hypotheses

(i) H1: σ21 6¼ σ22, iið Þ H1 : σ21 > σ22, iiið Þ H1 :

σ21 < σ22; the test statistic is

Fα;m,n ¼
Pm
i¼1

x1i�μ1ð Þ2=mPn
i¼1

x2i�μ2ð Þ2=n
with m and n d.f.;

and α is the level of significance.

(i) If we are going to test theH0: σ1
2 ¼ σ2

2

against the alternative hypothesis

H1 : σ21 6¼ σ22, we reject H0 if Cal F >

tab Fα/2, (m,n) or Cal F< F(1 � α/2), (m,n ).

(ii) If we are going to test the H0: σ1
2 ¼ σ2

2

against the alternative hypothesisH1 : σ21
> σ22,we rejectH0 ifCalF > tabFα, (m,n).
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(iii) If we are going to test theH0: σ1
2 ¼ σ2

2

against the alternative hypothesis

H1 : σ21 < σ22, we reject the H0 if Cal

F< F 1�αð Þ, m;nð Þ

(b) Test of equality of two population variances

when population means are unknown:

Under the given null hypothesis with

unknown means of the two populations,

the test statistic will be Fm�1,n�1 ¼ s2
1

s2
2

with

(m�1, n�1) d.f., where s1
2 and s2

2 are the

sample mean squares of the samples of sizes

m and n, respectively.

(i) If we are going to test theH0: σ1
2 ¼ σ2

2

against the alternative hypothesis

H1 : σ21 6¼ σ22, we reject H0 if Cal F >

tab Fα=2, m�1,n�1ð Þ or Cal F <

F 1�α=2ð Þ, m�1,n�1ð Þ:
(ii) If we are going to test theH0: σ1

2 ¼ σ2
2

against the alternative hypothesis

H1 : σ21 > σ22, we reject H0 if Cal F >

tab Fα, m�1,n�1ð Þ.
(iii) If we are going to test theH0: σ1

2 ¼ σ2
2

against the alternative hypothesis

H1 : σ21 < σ22, we reject the H0 if Cal

F < F 1�αð Þ, m�1,n�1ð Þ (Tables 6.5 and

6.6).

Example 6.7

Two random samples of male Sirohi goat breed

are drawn as follows. It is assumed that the parent

populations are normal with N(μ1, σ1
2) and N

(μ2, σ2
2) and the respective mean weights are

45.34 and 47.74 kg. Can we assume from the

data that both populations have the same

variability, measured in terms of variance at

5 % level of significance?

Solution Null hypothesis H0 : σ21 ¼ σ22 against

the alternative hypothesis H1 : σ21 6¼ σ22. Given
that the populations are normal with mean

45.34 and 47.47 kg, respectively; under the

given circumstance, the test statistic will be

F ¼

Xn1
i¼1

xi � μ1ð Þ2
.

n1

Xn2
i¼1

xi � μ2ð Þ2
.

n2

with n1 and n2

d.f. Under the given alternative hypothesis, the

test is two-sided test. Given that n1 ¼ 7, n2 ¼ 8,

μ1 ¼ 45:34kg, andμ2 ¼ 47:74kg; from the given

information, we haveX7
i¼1

xi � μ1ð Þ2
.
n1 ¼ 7:01;

X8
i¼1

xi � μ2ð Þ2
.
n2 ¼ 4:80

The test is both sided; we are to compare

the calculated value of F with table value of

F0.025;7,8

Cal F ¼ 1.45; from the table we have,

F0:025;7,8 ¼ 4:52 and F0:975;7,8 ¼ 0:20.

Since 0.20 < Cal F < 4.52, so the test is

nonsignificant, and the null hypothesis cannot

be rejected, that means we can conclude that

both populations have the same variance.

Example 6.8

Two random samples of large white Yorkshire

swine breed are drawn from two normal

populations which were fed with same feed.

Body weights at maturity are recorded. Test

whether the variability in body weight of both

Sample Body weight in kg

Sirohi 1 43.56 48.34 43.43 46.56 48.43 42.45 41.42

Sirohi 2 47.32 49.43 47.43 51.23 50.77 52.43 47.72 53.34
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populations can be taken equal or not at 5 %

level of significance:

Solution Given that (i) the populations are nor-

mal and the means of the populations are

unknown, (ii) sample sizes in each sample is

10, i.e., n1 ¼ n2 ¼ 10.

To test, H0 : σ21 ¼ σ22 against H1 : σ21 6¼ σ22.
Under the given conditions, the test statistic is

F ¼ s2
1

s2
2

with (n1�1) and (n2�1) d.f, where s1
2 and

s2
2 are the sample mean squares.

We have s21 ¼ 1
n1�1

P10
i¼1

x1i � x1ð Þ2; s22 ¼

1
n2�1

P10
i¼1

x2i � x2ð Þ2; x1 ¼ 1
n1

P10
i¼1

x1i; and

x2 ¼ 1
n2

P10
i¼1

x2i.

From the given data, we havex1 ¼ 372:99 kg:,

x2 ¼ 355:53 kg:, s21 ¼ 1584:59, s22 ¼ 738:80, and

F ¼ s2
1

s2
2

¼ 2:14. As the test is both sided, we are

compare the calculated value of F with Fα/2,9,9

i. e. F0.025,9,9 and F1�α=2;9,9 i:e: F0:975;9,9. From

the table we have, F0:025;9,9 ¼ 4:03 and

F0:975;9,9 ¼ 0:2481.

Since 0.2481 < Cal F < 4.03, the test is non-

significant, and the null hypothesis cannot be

rejected, that means we can conclude that both

the populations have the same variance.

(iv) Test for equality of two population means

Sometimes, it is required to test whether the

two populations are the same or not with respect

to their arithmetic means. Suppose we have two

independent random samples x11, x12, x13,.......
x1m and x21, x22, x23,....... x2n drawn from two

normal populations N (μ1, σ1
2) and N (μ2, σ2

2),

respectively. Now we want to test whether these

two populations differ in their central tendencies

measured in terms of arithmetic mean or not, i.e.,

to test H0: μ1 ¼ μ2. In testing this hypothesis, we

may come across two different situations,

(a) population variances σ21 and σ22 are known

and (b) population variances σ21 and σ22 are

unknown but equal σ21 ¼ σ22 ¼ σ2.

(a) Test of equality of two population means
when population variances are known:

Under the given null hypothesis H0:

μ1 ¼ μ2 with known population variances

σ21 and σ22 against the alternative hypoth-

esis H1 : μ1 6¼ μ2, the test statistic would

be τ ¼ x1�x2ffiffiffiffiffiffiffiffiffi
σ2
1

n1
þσ2

2
n2

q , which follows a standard

normal distribution, and x1 and x2 are

the arithmetic means of the first and

second samples, respectively. As the

test is both sided, we are to compare the

calculated value of τ with that of the

table value under standard normal value

at α/2 level of significance for taking

decision.

(b) Test of equality of two population means

when population variances are unknown

but equal (two sample t test or Fisher t test)
Before performing this test, one should

ascertain that first H0 : σ21 ¼ σ22 by F-test

statistic discussed in test iii (b). If it is

accepted, then we perform t test statistic;

otherwise, we are to opt for Cochran’s

approximation to Fisher-Behrens problem

as discussed latter on. For the first time, let

us suppose that the test concerning σ21 ¼ σ22
has been accepted.

So to test H0: μ1 ¼ μ2 against H1: μ1 6¼ μ2
under the given condition that σ21 ¼ σ22 ¼ σ2

Sample Body weight in kg

1. 318.32 454.32 370.54 399.43 391.43 317.32 365.34 354.53 375.32 383.43

2. 312.44 343.77 398.32 377.32 327.34 345.98 347.42 367.43 345.78 389.59
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(unknown), the test statistic is no longer τ rather

it would be t ¼ x�y

s
ffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

p with (n1 + n2�2) degrees

of freedom, where s2 ¼ n1�1ð Þs2
1
þ n2�1ð Þs2

2

n1þn2�2
and s1

2

and s2
2 are the sample mean squares for two

samples, respectively.

The sample mean square for any variable X is

defined as s2 ¼ 1
n�1

Pn
i¼1

xi � xð Þ2. According to

the alternative hypothesis, the test would be a

both-sided test, and we are to compare the table

value of t at α
2
level of significance at (n1 + n2�2)

d.f.

If the calculated absolute value of “t” is

greater than the table value of “t” at upper α
2

level of significance and at ( n1 þ n2 � 2 ) d.f.,

then the test is significant, and the null hypothesis

is rejected, that means the two population means

are unequal; otherwise, these are equal.

Cochran’s Approximation to the Fisher-

Behrens Problem The problem of testing the

significance of equality of two population

means under unknown and unequal population

variances (i.e., σ21 6¼ σ22 ) is known as Fisher-

Behrens problem. In case testing, the significance
of equality of two population means under

unknown and unequal population variances

(i.e., σ21 6¼ σ22 ), i.e., in case of existence of

Fisher-Behrens problem, we are to opt for

Cochran’s approximation. Cochran’s approxima-

tion is applicable for the null hypothesis H0:

μ1 ¼ μ2 against H1: μ1 > μ2. According this

approximation, the test statistic t ¼ x�y

s
ffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

p as

used in previous case does not follow t-distribu-

tion, and as such ordinary t-table value will not

be sufficient for comparing. According to

Cochran’s approximation, the calculated value

of above t statistic is to be compared with

t* ¼ t1s
2
1
=n1þt2s

2
2
=n2

s2
1
=nþs2

2
=n2

, where t1 and t2 are the table

values of t-distribution at (n1�1) and (n2�1)

degrees of freedom, respectively, with upper α
level of significance. Other decisions will be as

usual, but one should note that this is not a both-

sided test rather one-sided (right) test.

Example 6.9

The following data give the body weight at

7 weeks of two sample breeds, Caribro Vishal

and Caribro Dhanraja chicken, under same feed-

ing condition. It is also known that the variability

measures in terms of variance of two breeds are

0.02 and 0.05, respectively. Test whether these

two breeds differ significantly with respect to

body weight (kg). Given that the weight of chicks

follows normal distribution:

Solution Let the level of significance be 0.05.

So the null hypothesis H0 : μV ¼ μD (under

known population variance) is to be tested

against the alternative hypothesis H1 : μV 6¼ μD,
a both-sided test.

Under the given condition, the test statistic is

τ ¼ V�Dj jffiffiffiffiffiffiffiffiffi
σ2
V
n1
þσ2

D
n2

q which follows a standard normal

variate.

From the sample observation, we have

nV ¼ 10; nD ¼ 9 and V ¼ 2:06; D ¼ 2:02

τ ¼ 2:06� 2:02j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:02
10

þ 0:05
9

¼ 0:04ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:002þ0:005

p ¼ 0:04ffiffiffiffiffiffiffiffi
0:007

p ¼ 0:49
q

We know that at α¼0.05, the value of τα/2¼1.96,

as the calculated |τ| < 1.96, so the test is nonsig-

nificant, and we cannot reject the null hypothesis.

We conclude the breeds do not differ signifi-

cantly with respect to body weight.

Breed Body weight at 7 weeks in kg

Caribro Vishal 2.02 2.15 1.93 2.03 2.11 1.95 2.13 1.89 2.20 2.16

Caribro Dhanarja 2.13 1.89 2.02 1.88 2.10 2.14 1.98 2.03 1.96
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Example 6.10 Given below are the two samples

of body weights of two broiler breeds. Is it possi-

ble to draw inference that the body weight of

breed Cornish Crosses is more than that of Dela-

ware broilers, assuming that the body weight

follows normal population:

Broiler breed

Sample

size

Mean

weight (kg)

Sample mean

square

Cornish

crosses(X)

13 4.80 1.20

Delaware

broilers(Y)

12 3.78 0.83

Solution H0: Both the breeds of broiler have the

same body weight, i.e., H0 : μ1 ¼ μ2, against the
alternative hypothesis, H1: Cornish Crosses has

more body weight than Delaware broiler, i.e.,

H1 : μ1 > μ2. Let us select the level of signifi-

cance, α ¼0.05. According to H1, the test is a

one-sided test. We assume that σ2X ¼ σ2Y ¼ σ2.
The test statistic, under the given null hypothesis

and unknown variance but equal, is t ¼ x�y

s
ffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

p ,

with n1 þ n2 � 2ð Þ d.f. where x and y are the

sample mean body weight of two breeds Cornish

Crosses and Delaware broilers, respectively, and

s2 is the composite sample mean square and

given by s2 ¼ n1�1ð Þs2xþ n2�1ð Þs2y
n1þn2�2

, sx
2, and sy

2 by the

sample mean squares as usual.

First, we test H0 : σ2X ¼ σ2Y by F ¼ s2x
s2y

with

n1 � 1, n2 � 1ð Þ d.f. against H0 : σ2X 6¼ σ2Y .

Thus, F ¼ 1:20
0:83 ¼ 1:44 with (12, 11) d.f. From

the table we have, F0:025,12,11 ¼ 3:32 and

F0:975,11,12 ¼ 0:30. Since 0:30 < cal F < 3:22,

H0 : σ2X ¼ σ2Y cannot be rejected. So we can per-

form t test to test H0 : μ1 ¼ μ2.We have s2 ¼
n1�1ð Þs2xþ n2�1ð Þs2y

n1þn2�2
¼ s2 ¼ 13�1ð Þ1:202þ 12�1ð Þ0:842

13þ12�2
¼

17:82þ7:63
23

¼ 1:08

∴t ¼ x�y

s
ffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

p ¼ 4:80‐3:78
1:04

ffiffiffiffiffiffiffiffi
1
13
þ 1

12

p ¼ 1:02
1:04

ffiffiffiffiffiffi
0:16

p ¼ 2:45.

As per the alternative hypothesis, the test is one

sided (right sided), so we are to compare table

value of t at upper 5 % level of significance.

From the table, we have t0:05,23 ¼ 1:71. Since

Cal t > 1.71, the test is significant, and we reject

the null hypothesis, i.e., we accept μ1 > μ2. That
means the body weight of Cornish Crosses is

more than that of the body weight of Delaware

broilers.

Example 6.11 Given bellow are the samples

about egg weight of two duck breeds. Is it possi-

ble to draw inference that the egg weight of breed

Khaki is more than that of Khaki Campbell,

assuming that the egg weight follows normal

population?

Duck breed

No. of

egg

Mean

weight (g)

Sample mean

square

Khaki (K) 15 67.5 3.94

Khaki

Campbell(C)

17 64 7.4

Solution We are to test the null hypothesis

H0: μK ¼ μC (under unknown and unequal pop-

ulation variances) against alternative hypothesis

H1 : μK > μC. This is a typical Fisher-Behrens

problem.

Let the level of significance α ¼0.05. Under

the given conditions, we apply Cochran’s

approximation to Fisher-Behrens problem.

Thus, the test statistic is given by

t ¼ K�Cffiffiffiffiffiffiffiffiffi
s2
K
nK
þs2

C
nC

q , which is then compared with the

value of t* ¼ tKs
2
K=nKþtCs

2
C=nC

s2K=nKþs2
C
=nC

, and appropriate deci-

sion is taken.

We have t ¼ 67:5�64ffiffiffiffiffiffiffiffiffiffi
3:94
15
þ7:4

17

p ¼ 3:5
0:83 ¼ 4:18.

The table value of t at upper 5 % level of

significance with (nK�1) ¼ 14 d.f. and (nC�1)

¼ 16 d.f. is 1.76 and 1.74, respectively. Hence,

t* ¼ 1:76 � 3:94=15þ 1:74 � 7:40=17

3:94=15þ 7:40=17

¼ 1:21

0:69
¼ 1:74:

Now the Cal t > t*; hence, we can reject the null

hypothesis, i.e., H1 is accepted. That means we

can conclude that the egg weight of the Khaki

duck is greater than that of Khaki Campbell

breed of duck.
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(v) Test for parameters of bivariate normal

population

So far we have discussed about the tests tak-

ing one variable at a time, but as we know in

population, variables tend to move together;

bivariate normal distribution comes into play

when we consider two variables at a time. Here,

in this section, we shall discuss some of the tests

based on bivariate normal distribution.

(a) To test equality of two population means

with unknown population parameters
The test, we are going to discuss now is

known as paired t test.

Suppose (x1,y1), (x2,y2), (x3,y3) . . .. . .. . ..
(xn,yn) be n pairs of observations in a ran-

dom sample drawn from a bivariate normal

distribution with parameters μX, μy, σX
2, σy

2

and ρwhere μXand μy are the means and σX
2,

σy
2 are the variances and ρ is the population

correlation coefficient between X and Y. We

want to test the null hypothesisH0 : μX ¼ μy

i:e: H0: μX � μy ¼ μd ¼ 0 i.e., the differ-

ence between the two population means is

equal to zeroThe test statistic under H0 will

be t ¼ d
sdffiffi
n

p with n� 1ð Þ d:f:; where d ¼
1
n

Pn
i¼1

di ¼ 1
n

Pn
i¼1

xi � yið Þ and sd
2 ¼ 1

n�1

Pn
i¼1�

di � d
�
2.

The table value of “t” at (n�1) d.f. for α
level of significance will be compared with

the calculated value of “t” to test the signifi-

cance of the test according to the nature of

alternative hypothesis.

Example 6.12

An experiment was conducted to know the effect

of feeding of cotton cake on milk yield of Borgou

cattle breed. A sample of ten cattle was taken.

Initial milking capacity and yield after feeding

for 15 days were recorded. Test whether feeding

cotton cake has an effect on milking capacity or

not:

Solution Let x represent the initial yielding

capacity, and y is the final yielding capacity. So

x� y ¼ d. Assuming that X and Y follow a bivar-

iate normal distribution with parameters μx, μy,

σx, σy and ρxy, we want to test H0 : μx ¼ μy
against H1 : μx < μy.

The test statistic under H0 is t ¼ d
sd=

ffiffi
n

p with

(n�1) d.f.:

So d ¼ � 0.72 and sd¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10�1ð Þ
P

d2i �10d
2

h ir
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10�1ð Þ
P

d2i �10d
2

h ir

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
9
6:55�10 � 0:51½ �

q
¼ 0:39

t ¼ �0:72

0:39=
ffiffiffiffiffi
10

p ¼ �0:72

0:12
¼ �5:83:

Conclusion From the table values, we have

t0:05,9 ¼ 2:26 and t0:01,9 ¼ 3:24. The calculated

value of t is less than the table value at both the

levels of significance. Hence, the test is signifi-

cant at 1 % level of significance. So we reject the

null hypothesis H0 : μx ¼ μy and accept the

H1 : μx < μy, i.e., there was significant effect of

cotton cake on cattle milk yield.

Initial yield (liters) 1.38 1.35 1.36 1.40 1.42 1.37 1.39 1.41 1.34 1.37

Final yield (liters) 2.11 1.87 2.15 2.34 2.95 1.67 1.76 2.45 1.56 2.11

Initial yield (liters) 1.38 1.35 1.36 1.40 1.42 1.37 1.39 1.41 1.34 1.37

Final yield (liters) 2.11 1.87 2.15 2.34 2.95 1.67 1.76 2.45 1.56 2.11

X�Y (d) �0.73 �0.52 �0.79 �0.94 �1.53 �0.30 �0.37 �1.04 �0.22 �0.74
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(b) To test for significance of population corre-

lation coefficient

As usual, suppose (x1,y1), (x2,y2), (x3,y3)
. . .. . .. . ..(xn,yn) be n pairs of observations in a

random sample drawn from a bivariate normal

distribution with parameters μX, μy, σX
2, σy

2and

ρ where μX and μy are the means and σX
2, σy

2 are

the variances and ρ is the population correlation

coefficient between X and Y.
Here, we want to test, i.e., H0: ρ ¼ 0 against

H1 : ρ 6¼ 0. This test is also used to test the sig-

nificance of the sample correlation coefficient

“r” to the population correlation coefficient.

The test statistic under H0 will be t ¼ r
ffiffiffiffiffiffi
n�2

pffiffiffiffiffiffiffiffi
1�r2

p at

(n�2) d.f. where “r” is the sample correlation

coefficient between X and Y.
If the calculated value of |t| is less than the

tabulated value of “t” at (n�2) d.f. for upper α
2

level of significance, we cannot reject the null

hypothesis, i.e., sample correlation coefficient can-

not be taken as zero, or the variables are uncorre-

lated. Otherwise, we reject the null hypothesis, and

sample correlation coefficient is significant to the

population correlation coefficient, and the variables

have significant correlation between them.

Example 6.13

The correlation coefficient between the age and

weight of 25 Caribro Tropicana broiler is found

to be 0.92. Test for the existence of correlation

between these two characters using 1 % level of

significance.

Solution Under the given information, we want

to test H0 : ρ ¼ 0 against H1 : ρ 6¼ 0. The test

statistic is given by t ¼ r
ffiffiffiffiffiffiffiffiffi
n�2ð Þ

pffiffiffiffiffiffiffiffi
1�r2

p with (n�2) d.f.

Given that r ¼ 0.92, n ¼ 25, so

t ¼ 0:92
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 2ð Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:922

p ¼ 0:92 � ffiffiffiffiffi
23

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1536

p ¼ 11:257

The table value of t0:01,23 ¼ 2:807. Since calcu-

lated t value is more than table t value at 23 d.f.,

the null hypothesis H0 : ρ ¼ 0 is rejected. So we

can conclude that the age and weight of Caribro

Tropicana broiler chicken are correlated.

(c) Test for equality of two population variances
from a bivariate normal distribution

Let (x1,y1), (x2,y2), (x3,y3) . . .. . .. . ..(xn,yn) be

n pairs of observations in a random sample drawn

from a bivariate normal distribution with

parameters μX, μy, σX
2, σy

2and ρ where μX and

μy are the means and σX
2, σy

2 are the variances

and ρ is the population correlation coefficient

between X and Y.

The null hypothesis for testing the equality of

two variances is H0 : σ2X ¼ σ2y .

Let us derive two new variables U and V such

that U ¼ X + Y and V ¼ X�Y. So the Cov(U,

V ) ¼ Cov(X + Y, X�Y) ¼ σ2X � σ2y . Under the

null hypothesisH0 : σ2X ¼ σ2y , Cov(U,V ) ¼ 0 and

thus U and V are two normal variates with corre-

lation coefficient ρUV ¼ 0 when H0 is true.

Hence, H0: σ2X ¼ σ2y is equivalent to test H0:

ρUV ¼0.

So the test statistic is given by t ¼ ruv
ffiffiffiffiffiffiffiffiffi
n�2ð Þ

pffiffiffiffiffiffiffiffiffiffi
1�ruv2

p
with n� 2ð Þd:f; where ruv is the sample correla-

tion coefficient between “u” and “v” and is a

both-sided test, and the inference will be

accordingly.

Example 6.14

To know the effect of light regime on the weight

of egg, an experiment is conducted; 15 layers are

selected randomly and egg weight is recorded

before applying light regime and after 1 month

of applying light regime. Work out the signifi-

cant difference in variability of egg weight

before and after light regime:

Particulars Egg weight (g)

Before (x) 38.35 36.81 39.39 43.40 36.40 39.63 40.58 37.21 41.98 38.08 37.58 38.10 41.39 39.90 38.02

After ( y) 39.23 39.81 41.10 44.70 38.40 40.12 41.12 37.98 42.12 39.56 39.52 39.12 42.90 42.20 39.10
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Solution The null hypothesis to test is H0 : σx
¼ σy against H1 : σx 6¼ σy. This is equivalent to
test ρuv ¼ 0, where u and v are x + y and x�y,

respectively. The test statistic for the same will

be

t ¼ ruvffiffiffiffiffiffiffiffiffi
1�r2uv

p ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
with (n�2) d.f.

We have

ruv ¼
X

uv� n uvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
u2 � nu2

� � X
v2 � nv2

� �r ¼ 0:30

Thus, t ¼ 0:30ffiffiffiffiffiffiffiffiffiffiffiffi
1�0:302

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 2

p ¼ 1:13.

From the table, we get t0:025,13 ¼ 2:16. Thus,

the calculated value of |t| is less than the table

value. So we cannot reject the null hypothesis of

equality of variances. So there exists no differ-

ence in egg weight due to application of light

regime.

(d) Test for specified values of intercept and

regression coefficient in a simple linear
regression

Let us suppose we have a regression equation

Y ¼ α þ βX. In regression analysis, we may be

interested to know whether both the coefficients

or either of the coefficients α and β have the

specified values α0 and β0 in the population or

not. Now we can have the following three types

of null hypotheses to test:

(i)H0 : α ¼ α0; only α is specified but unspec-

ified value for β
(ii) H0 : β ¼ β0; only β is specified but

unspecified value for α
(iii) H0 : α ¼ α0, β ¼ β0 both α and β are

specified

Under the given conditions the standard errors

of α̂ ¼ a and β̂ ¼ b are given by

sα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n þ x2

SSxx

� �
ResSS
n�2

r
and sb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ResSS
n�2

SSxx

� �r
respectively and

ResSS ¼
Xn
i¼1

yi � yð Þ2 � b
Xn
i¼1

xi � xð Þ yi � yð Þ
¼ SS yð Þ � b2SS xxð Þ

Let us now discuss the testing procedure of the

above mentioned three null hypotheses:

(i) To test H0: α ¼ α0 against H1 : α 6¼ α0

t ¼ a�α0
estSE α̂ð Þ ¼ a�α0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nþ x2

SSxx

� �
ResSS
n�2

q with n� 2ð Þd.f.

If the calculated value of |t| � tα/2,(n-2), the

null hypothesis is rejected; otherwise, we cannot

reject the null hypothesis.

(ii) To test H0 : β ¼ β0
t ¼ b�β0

estSE β̂ð Þ ¼
b�β0ffiffiffiffiffiffiffiffiffiffiffiffi

ResSS
n�2
SSxx

� �r with n� 2ð Þ d.f.

If the calculated value of
��t�� � tα=2, n�2ð Þ, the

null hypothesis is rejected, otherwise we can not

reject the null hypothesis.

(iii) To test H0 : α ¼ α0, β ¼ β0; this is equiv-
alent to testing the overall significance of the

regression equation.

F ¼
Pn
i¼1

yi�α0�β0xið Þ2�ResSS

� �
=2

ResSS= n�2ð Þ with 2, n� 2ð Þ d.f.
If the calculated value of F � Fα;2,n�2, the

null hypothesis is rejected, otherwise we can

not reject the null hypothesis.

Example 6.15 The following table gives the

information on energy supplied by 100 g of poul-

try feed and its protein content in gram. Find out

the regression equation of energy on protein

Before (x) 38.35 36.81 39.39 43.40 36.40 39.63 40.58 37.21 41.98 38.08 37.58 38.10 41.39 39.90 38.02

After ( y) 39.23 39.81 41.10 44.70 38.40 40.12 41.12 37.98 42.12 39.56 39.52 39.12 42.90 42.20 39.10

u ¼ (x + y) 77.58 76.63 80.49 88.10 74.80 79.75 81.70 75.19 84.10 77.64 77.11 77.22 84.29 81.10 77.12

v ¼ (x�y) �0.88 �3.00 �1.71 �1.30 �2.00 �0.49 �0.54 �0.77 �0.14 �1.48 �1.94 �1.02 �1.51 �1.30 �1.08
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content of the feed. Test for (i) the significance of

specified intercept value of 95, (ii) the signifi-

cance of specified slope coefficient of 25, and

(iii) overall significance of the regression

equation:

Solution Let the level of significance be 0.05.

From the given information, let us frame the

following table:

bx1x2 ¼ rx1x2
Sx2
Sx1

¼ 0:809
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
95:048
0:155 ¼ 20:043

q
and

the intercept a ¼ x1 � 20:043x2 ¼
174:05� 20:043� 13:37 ¼ �93:97

So the regression equation of X1 on X2 is given

as X1 ¼ �93:97þ 20:043X2.

(i) According to the given condition t0 testH0 :
α ¼ α0 ¼ 95ð Þ against H1 : α 6¼ α0 95ð Þ

t ¼ a� α0
estSE α̂ð Þ

¼ a� α0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ x2

SSxx

� 

ResSS

n� 2

s with n� 2ð Þ d:f:

t ¼ a� α0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ x2

2

SSxx

� 

ResSS

n� 2

s

¼ �93:97� 95ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

20
þ 13:372

20� 0:155

� 

656:867

18

s ¼ �188:97

45:892

¼ 4:118

Now the calculated value of
��t�� � tα=2, n�2ð Þ

i.e. t0:025,18 ¼ 2:101,

∴ The null hypothesis is rejected i.e. in popu-

lation α 6¼ 95.

Observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Energy

(K cal)

163 191 185 170 170 161 170 173 178 167 182 184 174 168 162 182 191 161 164 185

Protein (g) 12.9 13.3 13.9 13.5 13.8 13.1 13.1 13.2 13.6 12.97 13.76 13.77 13.34 12.98 12.77 13.77 13.98 12.87 12.99 13.87

Observation Energy (K cal) X1 Protein X2 X1
2 X2

2 X1 X2 Est X1 e e2 X1 � 95þ 25X2ð Þf g2
1. 163 12.9 26569 166.41 2102.70 164.561 �1.561 2.435 152490.3

2. 191 13.3 36481 176.89 2540.30 172.577 18.423 339.408 183612.3

3. 185 13.9 34225 193.21 2571.50 184.602 0.398 0.159 191406.3

4. 170 13.5 28900 182.25 2295.00 176.585 �6.585 43.365 170156.3

5. 170 13.8 28900 190.44 2346.00 182.598 �12.598 158.698 176400

6. 161 13.1 25921 171.61 2109.10 168.569 �7.569 57.286 154842.3

7. 170 13.1 28900 171.61 2227.00 168.569 1.431 2.048 162006.3

8. 173 13.2 29929 174.24 2283.60 170.573 2.427 5.891 166464

9. 178 13.6 31684 184.96 2420.80 178.589 �0.589 0.347 178929

10. 167 12.97 27889 168.22 2165.99 165.963 1.037 1.075 157014.1

11. 182 13.76 33124 189.34 2504.32 181.796 0.204 0.042 185761

12. 184 13.77 33856 189.61 2533.68 181.996 2.004 4.015 187705.6

13. 174 13.34 30276 177.96 2321.16 173.379 0.621 0.386 170156.3

14. 168 12.98 28224 168.48 2180.64 166.164 1.836 3.372 158006.3

15. 162 12.77 26244 163.07 2068.74 161.955 0.045 0.002 149189.1

16. 182 13.77 33124 189.61 2506.14 181.996 0.004 0.000 185976.6

17. 191 13.98 36481 195.44 2670.18 186.205 4.795 22.993 198470.3

18. 161 12.87 25921 165.64 2072.07 163.959 �2.959 8.757 150350.1

19. 164 12.99 26896 168.74 2130.36 166.364 �2.364 5.590 155039.1

20. 185 13.87 34225 192.38 2565.95 184.000 1.000 0.999 190750.6

Sum 3481 267.47 607769 3580.11 46615.23 3481 0.000 656.867 3424725

Mean 174.05 13.37 30388.45 179.00 2330.76

Var(X1) ¼ 95.048 Var(X2) ¼ 0.155 Cov(X1,X2) ¼3.103 rx1x2 ¼ 0.809
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(ii) According to the given condition to test

H0 : β ¼ β0 ¼ 25ð Þ, against H1 : β 6¼ β0 ¼ 25ð Þ
t ¼ b�β0

estSE β̂ð Þ ¼
b�β0ffiffiffiffiffiffiffiffiffiffiffiffi

ResSS
n�2
SSxx

� �r with n� 2ð Þ d.f.

t ¼ b� β0ffiffiffiffiffiffiffiffiffiffiffiffiffi
ResSS
n�2

SSxx

� �r ¼ 20:043� 25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
656:867

18

20�0:155

� �r ¼ �4:957

3:431

¼ �1:445

The calculated value of
��t�� < tα=2, n�2ð Þ i.e.

t0:025,18 ¼ 2:018, the null hypothesis can not be

rejected,

So one can conclude that at 5 % level of

significance the slope coefficient may be taken

as 25.

(iii) According to the given condition to

test H0 : α ¼ α0, β ¼ β0
we have the test statistic F ¼Pn

i¼1

yi�α0�β0xið Þ2�ResSS

� �
=2

ResSS= n�2ð Þ with 2, n� 2ð Þd.f.

F ¼
Pn
i¼1

yi � α0 � β0xið Þ2 � ResSS

� �
=2

ResSS= n� 2ð Þ

¼ 3424725� 656:867½ �=2
656:867= 18ð Þ ¼ 46914:543

The calculated value of F > F0.05;2,18(¼3.55), so

the null hypotheses are rejected, i.e., in popula-

tion we cannot expect the regression of energy on

protein content as energy ¼ 95 + 25 protein.

Example 6.16

The following data are pertaining to weight of

eggs and number of eggs laid per cycle by certain

poultry bird, and the regression equation worked

for weight of eggs (Y) on number of eggs hatched

(X) is Y ¼ 52:29þ 0:0182X. Test for the regres-

sion coefficients:

Solution In order to test the significance of

regression coefficient, we have the following

null and alternative hypotheses, respectively:

H0 : β1 ¼ 0

H1 : β1 6¼ 0

Assuming that the dependent variable follows

normal distribution, we have the following test

statistic under the given hypotheses:

t ¼ b1�0
SE b1ð Þ ¼ b1ffiffiffiffiffi

S2

SSxx

p ¼ b1
S

ffiffiffiffiffiffiffiffiffi
SSxx

p
with n�2

degrees of freedom, where s is the standard devi-

ation of the model and an estimate of the popula-

tion variance and is worked out as the square root

of the residual mean sum of square.

Let the level of significance be α ¼0.05.

Using the above information, let us frame the

following table:

Observation Y X Ŷ Residual (e) e2

1. 45 80 53.74 �8.74 76.422

2. 48 80 53.74 �5.74 32.970

3. 49 85 53.83 �4.83 23.356

4. 50 88 53.89 �3.89 15.111

5. 51 92 53.96 �2.96 8.761

6. 52 92 53.96 �1.96 3.841

7. 53 90 53.92 �0.92 0.853

8. 54 91 53.94 0.06 0.003

9. 55 92 53.96 1.04 1.082

10. 56 92 53.96 2.04 4.162

11. 57 89 53.91 3.09 9.577

12. 58 86 53.85 4.15 17.215

13. 59 84 53.81 5.19 26.888

14. 60 82 53.78 6.22 38.710

15. 61 80 53.74 7.26 52.679

Sum 808.00 1303.00 808.00 0.00 311.63

Res SS¼311.63

S2 ¼ ResMS ¼ ResSS/(n�2) ¼ 311.63/13 ¼ 23.95

Also from the above, we have the SSxx ¼Xn
i¼1

xi � xð Þ2 ¼ 315.73

Weight of egg(s) (g) 45 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Hatching 80 80 85 88 92 92 90 91 92 92 89 86 84 82 80
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Thus, we have t ¼ b1�0
SE b1ð Þ ¼ b1ffiffiffiffiffi

S2

SSxx

p ¼
b1
S

ffiffiffiffiffiffiffiffiffi
SSxx

p ¼ 0:018ffiffiffiffiffiffiffiffi
23:95

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
315:73

p ¼ 0:065.

Now the calculated value of |t| < tα/2,(n�2) ¼
t
0.025,13

¼ 2.16, so the test is nonsignificant, and

the null hypothesis cannot be rejected. Thus, one

should conclude that at 5 % level of significance

on the population regression coefficient of egg

weight on number of eggs laid per hatching cycle

cannot be taken different from zero.

(vii) Test for significance of the population mul-

tiple correlation coefficient

As has been discussed in Chap. 8 of this book,

multiple correlation coefficient is the correlation

coefficient between the dependent variable and

the estimated values of the dependent variable

from the line of regression of the dependent

variable on other variables. Suppose we have

p variables X1, X2,............. Xp and following a

p-variate normal distribution, then the multiple

correlation of X1 on X2, X3,............ Xp is given

by ρ1.2,3,....... p, and the corresponding sample

multiple correlation coefficient can be written

as R1.2,3,...... p from a random sample of size

n. In this section of inference, we are interested

to test whether the population multiple correla-

tion is zero or not, i.e., to testH0 : ρ1:2,3, :::::::,p ¼ 0

against the alternative hypothesis H1 :

ρ1: 2, 3, :::::::,p > 0. Under H0, the appropriate test

statistic will be F ¼ R2
1:23::::::::::p= p�1ð Þ

1�R2
1:23::::::::::pð Þ= n�pð Þ with

p� 1, n� pð Þ d:f: According to the given alter-

native hypothesis, the test is right-sided test; this

is because of the fact that the multiple correlation

coefficient is the ratio of two variances and can-

not be negative. If the calculated value of F be

greater than the table value of F at specified level

of significance and appropriate degrees of free-

dom, then the null hypothesis is rejected; other-

wise, one cannot reject the null hypothesis.

Example 6.17

Thirty Jersey cows were tested for dependence of

their milking capacity (X1) on weight of the cows

(X2), number of lactation (X3), and age (X4). The

multiple correlation coefficient of milking

capacity (X1) on all other three variables was

found to be 0.898. Test for significance of multi-

ple correlation coefficient at 5 % level of

significance.

Solution Assuming that all the variables under

consideration behave like normal variables, under

the given condition, i.e., H0 : ρ1:234 ¼ 0 against

H1 : ρ1:234 > 0, the test statistic under is given by

F¼ R2
1:234= p�1ð Þ

1�R2
1:234

� �
= n�pð Þ¼

R2
1:234= 4�1ð Þ

1�R2
1:234

� �
= 30�4ð Þ

∴F¼ R2
1:234= p�1ð Þ

1�R2
1:234

� �
= n�pð Þ¼

0:898ð Þ2=3
1�0:8982
� �

=26

¼ 0:268

0:028
¼ 9:571

The calculated value of F is greater than the table

value of F0:05,3,26 ¼ 2:98, so the test is signifi-

cant, and null hypothesis is rejected. That means

population multiple correlation coefficient

differs significantly from zero.

(viii) Test for significance of population partial

correlation coefficient

As has been discussed in Chap. 8 of this book,

partial correlation coefficient is the correlation

coefficient between the dependent variable and

one of the independent variables after

eliminating the effects of other variables on

both the variables. Suppose we have p variables

X1, X2,............. Xp and following a p-variate nor-

mal distribution, then the partial correlation coef-

ficient of X1 and X2 after eliminating the effects

of X3,. . .. . .. . .. . .. . .. . .Xp from both X1 and X2 is

given by ρ12.3,4...... p, and the corresponding

sample partial correlation coefficient from a ran-

dom sample of size “n” is given by r12.34.......... p.

Under the given conditions, the test statistic for

H0 : ρ12.34.......... p ¼ 0 against H0 : ρ12:34::::::::::p 6¼
0 is

t ¼ r12:34:::::::::::::p
ffiffiffiffiffiffiffiffiffiffiffi
n� p

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r212:34::::::::::::p

p with n� pð Þ d:f:

If the calculated value of |t| be greater than the

table value of t at specified level of significance
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and n�2 degrees of freedom, then the null

hypothesis is rejected; otherwise, there is no rea-

son to reject the null hypothesis.

Example 6.18

Thirty Jersey cows were tested for dependence of

their milking capacity (X1) on weight of the cows

(X2), number of lactation (X3), and age (X4). The

partial correlation coefficient of milking capacity

(X1) of Jersey cow with the no. of lactation (X3)

by eliminating the effect of weight (X2) and age

of cow (X4) is found to be 0.777. Test for signifi-

cance of partial correlation coefficient at 5 %

level of significance.

Solution Assuming that the variables behave

like normal variables, we have the test statistic

t ¼ r13:24
ffiffiffiffiffiffi
n�p

pffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

13:24

p at α ¼ 0:05 and n� p d:f: for H0 :

ρ13:24 ¼ 0 against H1 : ρ13:24 6¼ 0.

From the given information, we have

t ¼ r13:24
ffiffiffiffiffiffi
n�p

pffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

13:24

p ¼ 0:777
ffiffiffiffiffiffiffiffi
30�4

pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�0:7772

p ¼ 3:961
0:629 ¼ 6:297 with

(30�4) ¼ 26 d.f.

From the table, we have t0:05,26 ¼ 2:055.

Since the calculated |t| >2.055, the null hypothe-

sis of zero partial correlation coefficient between

milking capacity and no. of lactation is rejected.

6.2.1.2 Statistical Test of Population
Parameters for Large Samples

As has already been discussed, if a large random
sample of size n is drawn from an arbitrary popu-

lation with mean μ and variance σ2 and any sta-

tistic be “t” with mean E(t) and variance V(t), then
t is asymptotically normally distributed with

mean E(t) and variance V(t), i.e., t ~ N(E(t),V(t))

as n! 1. Any sample having sample size 30 or

more is treated as a large sample. A test procedure

where the null hypotheses are tested against the

alternative hypothesis based on large sample is

known as the large sample test. Corresponding

estimator is supposed to follow like a standard

normal variate τ ¼ t�E tð Þffiffiffiffiffiffi
V tð Þ

p � N 0; 1ð Þ.
In the following section, we shall discuss

some of the important and mostly used large

sample tests.

(i) Test for specified value of population mean

Let x1, x2, x3,. . .. . .. . ..xn be a random sample

drawn from a population with mean μ and vari-

ance σ2 and given that the size of the sample is n
� 30. Now we have to test H0: μ ¼ μ0. From the

given sample, one can calculate the sample mean

x. According to large sample theory

x � N μ; σ
2

n

� �
as n ! 1:, under the given situa-

tion, our null hypothesis would be μ ¼ μ0, a

specified value. Here we come across with two

situations, (i) the population variance σ2 is

known (ii) the population variance σ2 is not

known. Like parametric setup, here also we

have two approximate test statistics under two

situations to test the H0: μ ¼ μ0 and are given by

τ ¼ x� μ0
σ=

ffiffiffi
n

p ,when σ2is known and

τ ¼ x� μ0
sn=

ffiffiffi
n

p , when σ2 is unknown,

where s2n ¼
1

n

Xn
i¼1

xi � xð Þ2 is the sample variance:

Depending upon the nature of the alternative

hypothesis and level of significance, the table

value of the standard normal variate τ is to be

decided. If the calculated value of τ falls in the

zone of rejection, the null hypothesis is to be

rejected; otherwise, one cannot reject the null

hypothesis at the specified level of significance.

Example 6.19

A fishing community in Uganda claims that the

average amount of fish catch per day is 33.12 kg

using motorized boat with a variance of 4.72.

Information from 30 boats were collected and

found that the average fish catch per day is

37.62 kg per boat with s.d. of 2.45. Conclude

whether the claims are justified or not.

Solution Let us suppose that we are to test the

null hypothesis at 5 % level of significance.

Given that (i) population mean (μ) ¼33.12 kg

and variance (σ2) ¼ 4.72.

(ii) Sample size (n) ¼ 30, x ¼ 37.62, and

sn ¼ 2.45.

6.2 Testing of Hypothesis 163



Thus, under the given condition, the null

hypothesisH0 : μ ¼ 33:12 kg against the alterna-

tive hypothesis H1 : μ 6¼ 33:12 kg, the test statis-

tic would be τ ¼ x�μ0
σ=

ffiffi
n

p which follows a standard

normal distribution. As per the alternative

hypothesis, the test is a both-sided test:

∴τ ¼ 37:62� 33:12

2:17=
ffiffiffiffiffi
30

p ¼ 4:5

0:40
¼ 11:25

The calculated value of |τ|¼ 11.25 is greater than

τ0:025 ¼ 1:96. So the test is significant and the

null hypothesis is rejected. Thus, we reject the

claim that a fishing community in Uganda

catches 33.12 kg fish using motorized boat.

In fact, instead of taking alternative hypothe-

sis as H1 : μ 6¼ 33:12 kg, if we take alternative

hypothesis as H1 : μ > 33:12 kg to test the null

hypothesis H0 : μ ¼ 33:12 kg, we would have

rejected the null hypothesis in favor of the alter-

native hypothesis. Let us examine.

We want to test the null hypothesis H0 : μ ¼
33:12 kg against the alternative hypothesis

H1 : μ > 33:12 kg, a right-sided test.

Under the given condition, the test statistic

will remain the same, but we are to compare the

calculated value of the test statistic with upper

table value of the test statistic at 5 % level of

significance.

Thus, τ ¼ x�μ0
σ=

ffiffi
n

p ¼ 37:62�33:12
2:17=

ffiffiffiffi
30

p ¼ 4:5
0:40 ¼ 11:25

The calculated value of τ ¼ 11.25 is greater

than τ0:05 ¼ 1:645. So the test is significant and

the null hypothesis is rejected. Thus, we reject

the claim and conclude that the average fish

weight caught by the fishers of Uganda is more

than the claimed 33.12 kg/day.

Example 6.20

A particular hatchery of broiler chicks claims

that the average weight of chicks of his hatchery

would be 2.24 kg at 42 days of age. A sample of

77 chicks were tested and found that the average

weight was 2.16 kg with variance 0.014. Using

5 % level of significance, test whether the claim

is justified or not.

Solution Given that (i) the sample is large

n (¼77 > 30),

(ii) Sample mean ( x ) ¼ 2.16, sample

variance ¼ 0.014

(iii) Population variance is unknown

We want to test H0 : μ ¼ 2:24 kg against

H1 : μ 6¼ 2:24

The approximate test statistic under the given

condition is

τ ¼ x� μ0
sn=

ffiffiffi
n

p ¼ 2:16� 2:24

0:014=
ffiffiffiffiffi
77

p ¼ �0:08

0:0015
¼ �53:33

Thus, the calculated value of |τ|, i.e., 53.33, is
greater than the table value of τ0:025 ¼ 1:96.

Hence, the test is significant and the null hypoth-

esis is rejected. So we conclude that the claim of

the company is not justified.

(ii) Test for significance of specified population

standard deviation

Suppose x1, x2, x3,. . .. . .. . ..xn be a large ran-

dom sample of size n drawn from a population

with mean μ and variance σ2. We want to test H0:

σ ¼ σ0 where σ20 is any specified value for the

population variance.

When the sample size n is large, then the

sampling distribution of the sample standard

deviation sn follows approximately normal distri-

bution with mean E(sn)¼ σ and variance V(sn)¼
σ2/2n, i.e., as n ! 1, sn � N σ; σ

2

2n

� �
To test the above null hypothesis, we have the

following approximate test statistic:

τ ¼ sn�σ0ffiffiffi
σ2
0
2n

q � N 0; 1ð Þ

For acceptance or rejection of H0, we have to

compare the calculated value of τ with the appro-
priate tabulated value keeping in view the alter-

native hypothesis.

Example 6.21

To test the variability in size of eggs, a sample of

50 eggs was examined and found that the vari-

ance of the size of egg was 64. But the concerned

poultry farm claims that the variability in size of

egg was 25 only. Based on the information

provided, can we conclude that the claim of the

poultry farm is justified or not?
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Solution The sample size is large with n ¼ 50.

The population variance of egg size is assumed

to be 25. Under the given condition, we are to test

the null hypothesis

H0 : σ ¼ 5, against the alternative hypothesis

H1 : σ 6¼ 5.

The test statistic is a both-sided test with a

given sample variance being 64. For the above

null hypothesis, the appropriate test statistic

would be τ ¼ sn�σ0ffiffiffi
σ2
0
2n

q ; Sn and σ0 are the sample

and population standard deviation respectively.

Let the level of significance be 0.05:

τ ¼ sn � σ0ffiffiffiffi
σ2
0

2n

q ¼ 8:0� 5:0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25= 2� 50ð Þp ¼ 3:0

0:50
¼ 6:00

The calculated value of |τ| > tabulated value of

τ0.05 (1.96). The test is significant and the null

hypothesis is rejected. So the population variance

of the size of eggs cannot be taken as 25. Hence,

the claim of the poultry farm is not justified.

(iv) Test for significant difference between two

standard deviations

Suppose we have drawn two independent

samples, (x11, x12,.........., x1m) and (x21,

x22,.........., x2n), of sizes m and n with means x1,
x2 and variance Sm

2, Sn
2 from two populations

with variances σ1
2 and σ2

2, respectively. We

want to test for the equality of two standard

deviations σ1 and σ2. Thus, the null hypothesis

is H0 : σ1 ¼ σ2.
According to large sample criteria, both Sm

2,

Sn
2 are distributed as Sm � N σ1;

σ2
1

2m

� �
and

Sn � N σ2;
σ2
2

2n

� �
.

Now E Sm � Snð Þ ¼ E Smð Þ � E Snð Þ ¼ σ1 � σ2
and

SE Sm � Snð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Sm � Snð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ12

2m
þ σ22

2n

r

As the samples are large, so Sm � Snð Þ �
N σ1 � σ2,

σ12

2m þ σ22

2n

� �
.

The test statistic under H0 would be

τ ¼ sm�snð Þffiffiffiffiffiffiffiffiffiffiffi
σ1

2

2mþ
σ2

2

2n

q .

In most of the cases, population variances σ1
2

and σ2
2 remain unknown, and for large samples,

σ1
2 and σ2

2 are replaced by the corresponding

sample variances, and the test statistic reduces to

τ ¼ Sm�Snð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2m
2mþ

S2n
2n

� �r � N 0; 1ð Þ.

Example 6.22 The following table gives the egg

production features of two independent random

samples from a poultry farm in Bihar state of

India. Test whether the variability of two

samples are the same or not:

Sample Sample size Wt of egg(cg) S.D

Sample 1 48 6548.26 1027.34

Sample 2 37 6786.73 2343.23

Solution: Let the variability be measured in

terms of standard deviation. So under the given

condition, we are to test:

H0: the standard deviations of both the

samples are equal against

H1: the standard deviations of the samples are

not equal.

That is, H0 : σ1 ¼ σ2 against H1 : σ1 6¼ σ2
Let the level of significance be α ¼ 0:05.

Under the above null hypothesis, the test sta-

tistic is

τ ¼ Sm�Snð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2m
2mþ

S2n
2n

� �r � N 0; 1ð Þ;

∴τ ¼ Sm � Snð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2m
2m þ S2n

2n

� �r ¼ 1027:34� 2343:23ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1027:342

2�48
þ 2343:232

2�37

� �r

¼ �1315:89ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10994:0362þ 74199:01ð Þp ¼ �1315:89

291:878

¼ �4:508

The calculated value of |τ| > tabulated value of

τ0.05 (1.96). The test is significant and the null

hypothesis is rejected. So the population variance

of weight of eggs is not same. Hence, the poultry
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farm has got different variabilities in weights of

eggs.

(iii) Test of significance between two means

Analogous to that of testing of equality of two

sample means from two normal populations, in

large sample case also, sometimes, it is required

to test whether the two populations are same or

not with respect to their arithmetic means. Sup-

pose we have two independent random large

samples x11, x12, x13,....... x1m and x21, x22,
x23,....... x2n drawn from two populations (μ1, σ1

2)

and (μ2, σ2
2), respectively. Now we want to

test whether these two populations differ in

their central tendencies measured in terms of

arithmetic mean or not, i.e., to test H0: μ1 ¼ μ2.
As two large samples are drawn independently

from two population, so x1 � N μ1, σ
2
1=n1

� �
and

x2 � N μ2, σ2
2=n2ð Þ.

Therefore,

E x1 � x2ð Þ ¼ E x1ð Þ � E x2ð Þ ¼ μ1 � μ2 and

V x1 � x2ð Þ ¼ V x1ð Þ þ V x2ð Þ ¼ σ12

n1
þ σ22

n2

∴x1 � x2 � N μ1 � μ2,
σ21
n1

þ σ22
n2

� 


The standard normal variate corresponding to the

difference between the two means, d ¼ x1 � x2
would be

τ ¼ d � E d
� �

SE d
� � ¼ x1 � x2ð Þ � E x1 � x2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V x1 � x2ð Þp
¼ x1 � x2ð Þ � μ1 � μ2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ12

n1
þ σ22

n2

q
Thus, to testH0 : μ1 ¼ μ2 and the test statistic is

τ ¼ x1�x2ð Þffiffiffiffiffiffiffiffiffiffiffi
σ1

2

n1
þσ2

2

n2

q , In testing this hypothesis, we may

come across two different situations,

(a) population variances σ21 and σ22 are known

and (b) population variances σ21 and σ22 ¼ σ21
are unknown but equal σ21 ¼ σ22 ¼ σ2.

(a) Test of equality of two population means

when population variances are known:
Under the given null hypothesis H0:

μ1 ¼ μ2 with known population variances

σ21 and σ22 against the alternative

hypotheses H1 : μ1 6¼ μ2, the test statistic

would be τ ¼ x1�x2ffiffiffiffiffiffiffiffiffi
σ2
1

n1
þσ2

2
n2

q , which follows a stan-

dard normal distribution, and x1 and x2 are

the arithmetic means of the first and second

samples, respectively. As the test is both

sided, we are to compare the calculated

value of τ with that of the table value

under standard normal value at α/2 level of

significance for taking decision.

(b) Test of equality of two population means

when population variances are unknown

but equal: Before performing this test, one

should ascertain that first H0 : σ21 ¼ σ22 by

F-test statistic discussed in test iii(b). If

it is accepted then, we perform the test using

τ ¼ x1�x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂ 2 1

n1
þ 1

n2

� �q where σ̂ 2 ¼ n1sn1
2þn2sn2

2

n1þn2
is the

estimate of common population variance.

Thus, the test statistic under σ12 ¼ σ22 ¼ σ2

(unknown) comes out to be

τ ¼ x1�x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂ 2 1

n1
þ 1

n2

� �q which follows N (0, 1).

When population variance is unknown, then

these are replaced by respective sample

variances s2
n1
and s2

n2
.

For acceptance or rejection of H0, we have to

compare the calculated value of τ with the appro-
priate tabulated value keeping in view the alter-

native hypotheses.

Example 6.23

To compare the shelf life of milk from two large

samples, sample of 50 each was selected and

found that the average shelf life of first sample

milk was 36 h and that of second sample was 42 h
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with a standard deviation of 6 and 5 h, respec-

tively. Assuming that both the milk samples have

same variability, test whether the shelf life sec-

ond sample is more than the first sample or not.

Solution Given that:

Mean SD Sample size

First sample 36 6 50

Second sample 42 5 50

Under the given condition of σ21 6¼ σ22 and both
being unknown, the null hypothesis and the alter-

native hypothesis remain same. That is, H0: aver-

age shelf life of milk of first sample and second

sample are equal against H1: average shelf life of

milk of second sample > first sample.

Let the level of significance be α ¼ 0:05,

being a one-sided test the critical value is 1.645

for standard normal variate τ. The test statistic is

τ ¼ x1 � x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2n1
n1
þ s2n2

n2

� �r � N 0; 1ð Þ

Thus, τ ¼ 42�36ffiffiffiffiffiffiffiffiffiffiffiffi
36
50
þ25

50ð Þp ¼ 6ffiffiffi
61
50

p ¼ 6ffiffiffiffiffiffi
1:22

p ¼ 5:43

Since Cal τ > τ0.05 ¼ 1.645, the test is signifi-

cant; we reject the null hypothesis and accept the

alternative hypothesis, i.e., average shelf life of

milk of second sample > first sample.

Example 6.24

To compare the vase life of flower from two large

samples, samples of 50 each were selected and

found that the average vase life of first sample of

flower was 36 h and that of second sample was

42 h with a standard deviation of 6 and 5 h,

respectively. Assuming that the samples have

different variability, test whether the vase life

of flower of second sample > first sample.

Solution Given that:

Mean SD Sample size

First sample 36 6 50

Second sample 42 5 50

Under the given condition σ21 ¼ σ22 ¼ σ2

(unknown), and the null hypothesis is H0: aver-

age vase life of flower of both the samples are

equal against H1: average vase life of second

sample > first sample. Also suppose that the

equality of variances hold good. So the test sta-

tistic under H0 is

τ ¼ x1 � x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ
_
2 1

n1
þ 1

n2

� �r � N 0; 1ð Þ

Where

σ
_2 ¼ n1s

2
n1
þn2s

2
n2

n1þn2
¼ 50 � 62þ50 � 52

50þ50
¼ 50 36þ25ð Þ

100
¼ 61

2

So τ ¼ 42�36ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
61
2

1
50
þ 1

50ð Þp ¼ 6ffiffiffiffiffiffi
1:22

p ¼ 5:43

Let the level of significance be α ¼ 0:05. This

is a one-tailed test. Since the Cal τ > τ0.05
¼1.645, the test is significant; we reject the null

hypothesis and accept the alternative hypothesis,

i.e., average vase life of flower of second sample

> first sample.

(v) Test for significance of specified population

proportion

In our daily life, often we want to test the

proportion of a particular characteristic of the

population with the help of the sample drawn

from the population. Likewise to that of testing

the specific mean or standard deviation value for

the population as discussed in Sect. 6.2.1.2 (iii)

and (iv) here in this section, we are interested in

testing the specific value of the proportion for a

particular characteristic of the population based

on sample observations.

Suppose a random large sample of size n is

drawn from a population. If we denote

P (unknown) as the population proportion of

individual units having a particular characte-

ristic, our objective is to test the null hypothesis

H0: P ¼ P0 where P0 is the specified value. Let

n1 be the number of units in the sample on size

n having the particular characteristic under con-

sideration, so ( p ¼ n1/n) is the sample propor-

tion possessing the characteristic. This n1 is

supposed to be distributed as binomial with
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parameters n and P. Under large sample assump-

tion, the binomial distribution tends to normal

with mean nP and variance nP (1�P), i.e., as

n ! 1, n1 ~ N(nP, nP(1�P)). The standard

normal variate corresponding to n1 is

τ ¼ n1�nPffiffiffiffiffiffiffiffiffiffiffiffiffi
nP 1�Pð Þ

p � N 0; 1ð Þ. Now E( p) ¼ E(n1/n) ¼
nP
n ¼ P and V( p) ¼ V(n1/n) ¼ 1

n2 nP 1� Pð Þ ¼
P 1�Pð Þ

n . For large n, p ~ N(P, P 1�Pð Þ
n ). The standard

normal variate corresponding to p is τ ¼ p�Pffiffiffiffiffiffiffiffi
P 1�Pð Þ

n

p .

So the test statistic under H0 is

τ ¼ p�P0ffiffiffiffiffiffiffiffiffiffiffiffi
P0 1�P0ð Þ

n

q � N 0; 1ð Þ.

Example 6.25

A retailer purchase a huge quantity of fish from a

wholesaler knowing that 7 % of the fish are rot-

ten. To test the claim of the wholesaler, he ran-

domly selects a sample of 70 fish and found that

60 of these are good. Test whether the claim by

the wholesaler is justified or not at 5 % level of

significance.

Solution The null hypothesis will be that

the proportion of good fish in the lot is 0.93.,

i.e., H0: P ¼ 0:93 against the alternative hypoth-

esis H1 : P 6¼ 0:93. The test statistic under the

given null hypothesis would be

τ ¼ p�P0ffiffiffiffiffiffiffiffiffiffiffiffi
P0 1�P0ð Þ

n

q , which is a both sided test.

∴τ ¼ p� P0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0 1�P0ð Þ

n

q ¼ 0:85� 0:93ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:93 0:07ð Þ

70

q ¼ �2:62

The calculated value of |τ| is greater than the

tabulated value of τ at 5 % level of significance,

i.e., 1.96. So the test is significant and we reject

the null hypothesis. That means we conclude that

the claim of wholesaler is not justified.

Example 6.26

A sample of 120 chicks from poultry was

selected at random. It is found that 37 % of

the chicks are suffering from gout problem.

Can we conclude that in population, there are

45 % of the chicks that are suffering from gout

problem?

Solution Given that 37 % chicks in the sample

are suffering from gout, i.e., p ¼ 0.37. Under

the given conditions, the null hypothesis is the

equality of proportion of gout and non-gout, i.e.,

H0 : P ¼ 0:45 against H1 : P 6¼ 0:45

Let the level of significance be α ¼ 0:05. The

test statistic for the above null hypothesis will be

τ ¼ p� P0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0 1�P0ð Þ

n

q

So τ ¼ 0:37� 0:45ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
045 0:55ð Þ

120

q ¼ �1:76

This is a two-sided test. Since Cal |τ| < τ0.025
¼ 1.96, so the test is nonsignificant; we cannot

reject the null hypothesis. Hence, we conclude

that the proportion of gout and non-gout chicks in

the population is 45:55.

(vi) Test for equality of two population

proportions

Likewise to that two sample mean tests, one

can also be interested to test equality of two

proportions. Let us have two independent ran-

dom large samples of sizes n1 and n2 from two

populations, where P1 and P2 are the proportions

of possessing a particular characteristic in two

populations, respectively, and p1 and p2 be the

proportions possessing that characteristic in the

samples, respectively. For large sample sizes,

p1 and p2 tend to distribute normally:

p1 � N P1;
P1 1�P1ð Þ

n1

� �
and p2 � N P2;

P2 1�P2ð Þ
n2

� �
E p1ð Þ ¼ P1, E p2ð Þ ¼ P2;E p1 � p2ð Þ ¼ P1 � P2

[as the samples are in dependent] V p1 � p2ð Þ ¼
V p1ð Þ þ V p2ð Þ � 2cov p1; p2ð Þ ¼ V p1ð Þ þ V p2ð Þ
[as the samples are independent]

∴p1 � p2 � N P1 � P2,
P1 1�P1ð Þ

n1
þ P2 1�P2ð Þ

n2

� �
.

The standard normal variate corresponding to

p1 � p2ð Þ is τ ¼ p1�p2ð Þ� P1�P2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 1�P1ð Þ

n1
þP2 1�P2ð Þ

n2

q
We are interested to test the equality of two

population proportions, i.e., H0 : P1 ¼ P2 ¼ P

(say).

Under the null hypothesis, the appropriate test

statistic under H0 is τ ¼ p1�p2ð Þ� P1‐P2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P 1�Pð Þ

n1
þP 1�Pð Þ

n2

q
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If the population proportion value of P is

unknown, one can use its unbiased estimator

P
^ ¼ n1p1þn2p2

n1þn2
based on both the samples. Under

the unknown equal variance condition, the test

statistic becomes

τ ¼ p1 � p2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
^

1� P
^

� 

1
n1
þ 1

n2

� �s

Example 6.27

From two large samples of 700 and900 chicks, 10%

and 14 % are found to be suffering from a particular

disease. Can we conclude that the proportions of

diseased chicks are equal in both the lots?

Solution Under the given condition, the null

hypothesis is H0 : P1 ¼ P2 against the alternative

hypothesis H1 : P1 6¼ P2. That means there exists

no significant difference between the two

proportions against the existence of significant

difference.

Let the level of significance be α ¼ 0:05..
The appropriate test statistic for the above null

hypothesis is

τ ¼ p1�p2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
_

1�P
_� �

1
n1
þ 1

n2

� �r , where P
_ ¼ n1p1þn1p1

n1þn2

P
_ ¼ 700 � 0:1 þ 900 � 0:14

700þ 900
¼ 0:122

∴τ ¼ p1 � p2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
_

1� P
_� �

1
n1
þ 1

n2

� �r

¼ 0:1� 0:14ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:122 1� 0:122ð Þ 1

700
þ 1

900

� �q ¼

�0:04

0:016
¼ �2:5

Since the calculated value of |τ| is greater than the
tabulated value of τ (1.96) at 5 % level of signifi-

cance, so the null hypothesis is rejected and

concludes that a proportion of diseased chicks

are not equal in both the lots.

6.2.1.3 Other Tests
(vii) χ2 – Test for goodness of fit

In testing of hypothesis, often we are inter-

ested in testing whether the observed values in

the samples are in tune with the expected values

in the population or not. Based on the frequency

distribution, we try to match the probability

distribution which a particular characteristic

follows. Suppose with a given frequency distri-

bution, we have tried to fit a normal distribution.

Now according to normal probability law,

there should be some expected frequencies

corresponding to each and every class of the

frequency distribution. How far the observed

frequencies are matching with the expected

frequencies is required to be ascertained or

tested. In breeding experiments, we know that

the progenies at different generations should

follow particular ratios among the different

types; now the question is whether the observed

ratios are in tune with the expected ratios or

not. The answer to all these is possible with the

help of the χ2 test for goodness of fit. This is

essentially a test of frequencies as such also

known as frequency χ2. There are other

examples where χ2 test for goodness of fit has
been used.

If a population is grouped into n mutually

exclusive groups based on nominal or interval

categories such that the probability of individual

units belonging to the ith class is Pi, i ¼
1,2,3,4. . .n and

Xn
i¼1

Pi, a random sample of m

individuals drawn from the population and the

respective observed class frequencies are O1, O2,

O3. . ...On where
Xn
i¼1

Oi ¼ m. Then the random

variableUn ¼
Xn
i¼1

Oi � mPið Þ2
mPi

is asymptotically

distributed as a χ2 with (n�1) d.f. This χ2 is

known as frequency χ2 or Pearsonian

chi-square. Karl Pearson proved that the limiting

distribution of this χ2 is the ordinary χ2

distribution.

6.2 Testing of Hypothesis 169



In doing so, we come across with two

situations, (a) the population completely specified

or (b) the population is not completely specified.

In the first case, our problem is to test H0 : P1

¼ P0
1,P2 ¼ P0

2,P3 ¼ P0
3::::::::::,Pn ¼ P0

n where

P0
i i ¼ 1, 2, 3, :::::nð Þ are specified values. The

test under H0 is χ2 ¼
Xn
i¼1

Oi � mP0
i

� �2
mP0

i

¼
Xn
i¼1

Oi � eið Þ2
ei

¼
Xn
i¼1

Oið Þ2
mP0

i

� m which is

distributed as χ2 with (n�1) d.f. as m ! 1 and

ei¼ expected frequency of the ith class ¼
mP0

i i ¼ 1, 2, 3, ::::, nð Þ. It should be noted thatXn
i¼1

Oi ¼
Xn
i¼1

ei ¼ m: It is assumed that the

quantities Pi
0 are given by Ho and are not

estimated from the sample.

Usually, the parameters of this distribution

may not be known but will have to be estimated

from the sample, i.e., when the population is not

completely specified. The test statistic under H0 is

χ2 ¼
Xn
i¼1

Oi � eið Þ2
ei

¼
Xn
i¼1

Oi � mP̂ i

� �2
mP̂ 0

which

is χ2 distribution with (n�s�1) d.f. where s

(<n�1) is the number of parameters of this distri-

bution to be estimated from the sample and P̂ i is

the estimated probability that a single item in the

sample falls in the ith class which is a function of

the estimated parameters.

The value of calculated χ2 will be greater if

the differences between the observed frequencies

(Oi) and the expected frequencies (ei) are greater.

Hence, it would appear that a very high value of

calculated χ2 should indicate falsity of the given

hypothesis. If α be the level of significance, then

we reject H0 if Cal χ2 > χα,d. f
2; otherwise, we

cannot reject it.

Example 6.28

In a breeding trial of two different types of peas

(colored and white) breeds were crossed. In F1

generation, the following three types of peas

were produced. Do the data agree with the

theoretical expectation of 1:2:1 ratio? Colored,

24; white, 30; and mixed, 56.

Solution Total frequency ¼ 24 + 30 + 56 ¼ 110.

The expected frequencies are as follows:

Colored ¼ 110
4

� 1 ¼ 27:5

White ¼ 110
4

� 1 ¼ 27:5

Intermediate ¼ 110
4

� 2 ¼ 55

H0: The observed frequencies support the the-

oretical proportions, i.e.,

P1 ¼ 1
4
, P2 ¼ 2

4
, and P3 ¼ 1

4

Against

H1: The observed frequencies do not follow

the theoretical frequencies, i.e.,

P1 6¼ 1
4
, P2 6¼ 2

4
, and P3 6¼ 1

4

Under H0, the test statistic is

χ2 ¼
Xk
i¼1

oi � eið Þ2
ei

with k � 1 d.f.

Let the level of significance be 0.05.

∴χ2 ¼
Xk
i¼1

oi� eið Þ2
ei

¼ 24�27:5ð Þ2
28

þ 56�55ð Þ2
55

þ 30�27:5ð Þ2
28

¼ 12:25

28
þ 1

55
þ 6:25

28

¼ 0:4374þ 0:0181þ 0:2232 ¼ 0:6788

From the table we have χ0.05,2
2 ¼5.991. So the

calculated value of χ2 is less than the table value

of χ2. Hence, we cannot reject the null hypothe-

sis. That means the data agree with the theoreti-

cal ratio.

Example 6.29

In a trial with specific fish feed, the following

frequency distribution of fish weight was formed.

Examine whether the fish weight data fit well

with normal distribution with 3000 g mean

weight and s.d. of 560 g.
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Solution The problem is to test whether the data

fit well with the normal distribution or not.

H0 : The data fits well against

H1 : The data do not fit well

In normal population, there are two parameters,

i.e., μ and σ2. These are estimated from the given

sample frequency distribution. Then P̂ i

probabilities for each class interval are calcu-

lated, and expected frequency for each class

interval is calculated by Ei ¼ n P̂ i

Let the level of significance be α ¼0.05.

The test statistic is given by

χ2 ¼
Xn
i¼1

Oi � Eið Þ2
Ei

at ð k � 2� 1Þ d:f: ¼
at 5 d:f:

From the table, we have χ20:05,5 ¼ 11:07, i.e.,

the calculated value of χ2 is less than the table

value of χ2. So the test is nonsignificant, and

there is no reason to reject the null hypothesis.

So we conclude that the data do not fit well with

the normal distribution.

(viii) χ2 Test for independence of attributes

The degree of linear associationship has been

discussed for numerical data. The

associationship or independence of qualitative

characters could be assessed through χ2 test for
independence. If two qualitative characters “A”

and “B” are categorized in to m and n groups,

respectively, and their frequency distribution is

as provided in the table below, then indepen-

dence of two characters can be judged through

this test.

Fish

weight

(g) class

750–1250 1250–1750 1750–2250 2250–2750 2750–3250 3250–3750 3750–4250 4250–4750

Observed

frequency

2 3 26 60 62 29 4 4

Fish

weight

(g) class

Observed

frequency

Expected

frequency

(Obs.�
Exp.)2

Obs:�Exp:ð Þ2
Exp:

750–1250 2 2 0.00 0.0000

1250–1750 3 3 0.00 0.0000

1750–2250 26 28 4.00 0.1428

2250–2750 60 63 9.00 0.1428

2750–3250 62 58 16.00 0.2758

3250–3750 29 28 1.00 0.0357

(continued)

B

A

B 1 B 2 … B j … Bn Total

A1 f11 f12 f1j f1n f1.

A2 f21 f22 f2j f2n f2.

…

A i fi1 fi2 fij fin fi.

…

A m fm1 fm2 fmj fmn fm.

Total f.1 f.2 f.j f.n N

Fish

weight

(g) class

Observed

frequency

Expected

frequency

(Obs.�
Exp.)2

Obs:�Exp:ð Þ2
Exp:

3750–4250 4 5 1.00 0.2000

4250–4750 4 3 1.00 0.3333

Total 190 1.13
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From the above table, the expected cell

frequencies are obtained by multiplying the

respective row and column frequency and divid-

ing the same by the total frequency. For example,

the expected frequency corresponding to AiBj cell

is
f i:� f :j

N
. It may be noted that the total of row

frequencies and the total of column frequencies

for both the observed and expected frequencies

must be equal to the total frequency. Thus,Xm
i¼1

f i: ¼
Xn
j¼1

f :j ¼ N and
Xm
i¼1

f̂ i: ¼
Xn
j¼1

f̂ :j ¼ N.

Under the null hypothesis of independence of

attributes, the approximate test statistic for the

test of independence of attributes is derived from

the χ2 test for goodness of fit as given below

χ2m�1,n�1 ¼
Xm
i¼1

Xn
j¼1

f ij � eij
� �2

eij

where

fij ¼ observed frequency for contingency table

category in i row and column j ,

eij ¼ expected frequency for contingency table

category in i row and column j,

which is distributed as a χ2 variate with (m�1)

(n�1) d.f.

Note None of the expected cell frequency

should less than five.

The special case m�n contingency table is the

“2 � 2” contingency table in which both the

attributes are categorized in two groups each as
given below:

Attribute A Attribute B Total

B1 B2

A1 a b a + b

A2 c d c + d

Total a + c b + d a + b + c + d ¼ N

The formula for calculating χ2 value is

χ2 ¼ N ad�bcð Þ2
aþcð Þ bþdð Þ aþbð Þ cþdð Þ. Obviously, as there are

only two rows and two columns, then the

degrees of freedom for the above χ2 will be

(2–1)(2–1) ¼ 1.

The calculated value of χ2 is to be compared

with the table value of χ2 at specified level of

significance and at (m�1), (n�1), or (2–1)(2–1)

degrees of freedom, respectively, for m � n and

2 � 2 contingency χ2 table.

Yates Correction The above χ2 test is valid only
when the expected frequency in each cell should

be sufficiently large, at least five. This condition

gives rise to a problem when the expected fre-

quency of cell(s) is less than five. By merging two

adjacent rows or column having cell frequency

less than five, this problem could be overcome in

case ofm�n tables, but this creates a real problem

in case of 2 � 2 contingency table. In 2 � 2

table, the possibility of merging cell frequencies

is ruled out. Yates has given a rule to overcome

this problem of 2 � 2 tables, which is popularly

known as Yates’ correction for the formula of χ2.
The formula for adjusted χ2 is given as

χ2c ¼
N ad�bcj j�N

2ð Þ2
aþbð Þ cþdð Þ aþcð Þ bþdð Þ with 1 d.f.

Example 6.30

In a study to facilitate augmentation of education

across the race/cast, information were collected to

know whether education is independent of cast/

race or not. The following table gives the frequency

distribution of education standard among different

community in a village of 300 families. Test

whether the education is independent of cast/race.

General

SC/

ST OBC Others

Preschool 25 5 5 6

Primary 35 25 7 5

Secondary 25 35 8 5

Graduation 45 15 10 6

Postgraduation

and above

25 6 5 2

Solution We are to test for independence of two

attributes, i.e., category family and the education

standard. Under the given condition, we have the

null hypothesis:

H0: educational standard and category of family

are independent against

H1: educational standard and category of family

are not independent.
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Let the level of significance be 0.05.

Under the given H0, the test statistic is χ2 ¼

¼
Xm
i¼1

Xn
j¼1

f ij � eij
� �2

eij

For the calculation purpose, let us frame the

following table.

Table of observed frequencies:

General

SC/

ST OBC Others Total

Preschool 25 5 5 6 41

Primary 35 25 7 5 72

Secondary 25 35 8 5 73

Graduation 45 15 10 6 76

Postgraduation

and above

25 6 5 2 38

Total 155 86 35 24 300

Using the row totals and column totals

corresponding to each cell, expected frequencies

are calculated as
f i:� f :j

N ¼ RiCj

N , where Ri and Cj are

the ith row and jth column total respectively.

With the help of the calculated expected

frequencies, let us construct the following table.

Table of expected frequencies:

General

SC/

ST OBC Others Total

Preschool 21.18 11.75 4.78 3.28 41

Primary 37.20 20.64 8.40 5.76 72

Secondary 37.72 20.93 8.52 5.84 73

Graduation 39.27 21.79 8.87 6.08 76

Postgraduation

and above

19.63 10.89 4.43 3.04 38

Total 155 86 35 24 300

Using the observed and expected frequencies

from the above tables, we find out the
f ij�eijð Þ2

eij
for

each cell χ2 value for each cell and frame the

following table:

General

SC/

ST OBC Others

Preschool 0.69 3.88 0.01 2.26

Primary 0.13 0.92 0.23 0.10

Secondary 4.29 9.46 0.03 0.12

Graduation 0.84 2.11 0.14 0.00

Postgraduation and

above

1.47 2.20 0.07 0.36

From the above table, we calculate χ2 ¼
X5
i¼1

X4
j¼1

f ij � eij
� �2

eij
¼ 29:3128 at (5–1)(4–1)

¼ 12 d.f.

The table value of χ20:05,12 ¼ 21:026 is less

than the calculated value of χ2. Hence, the test is
significant and the null hypothesis is rejected.

We can conclude that the two attributes educa-

tional standard and the categories of family are

not independent to each other.

Example 6.31

The following table gives the frequency distribu-

tion of scent and color of 200 roses in a garden.

Test whether scent is independent of color of

flower or not.

Solution Under the given condition, we are to

test whether the color of flower and intensity of

fragrance are independent of each other or not.

Thus, we are to test H0: color of flower and

intensity of fragrance are independent of

each other against the alternative hypothesis

Color

Scent

Pink Red

Intense 35 75

Light 55 35
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H1: color of flower and intensity of fragrance are

not independent of each other. Let us set the level

of significance at 0.05.

The test statistic follows a χ2 distribution with
1 d.f. Let the level of significance be 0.05.

χ2 ¼ ad�bcð Þ2N
aþbð Þ cþdð Þ aþcð Þ bþdð Þwhere a, b, c, and d are

the cell frequencies for first, second, third, and

fourth cells in the given frequency distribution

table, respectively. As none of the frequencies

has value lesser than five, we don’t have to go for

Yates’ correction.

So χ2 ¼ ad�bcð Þ2N
aþbð Þ cþdð Þ aþcð Þ bþdð Þ ¼ 35�35�75�55ð Þ2�200

110�90�90�110

¼ 17:1615.

The table value of χ20:05,1 ¼ 3:841 is less than

the calculated value of χ2. Hence, the test is

significant and the null hypothesis is rejected.

We can conclude that the two attributes color of

flower and intensity of fragrance are not indepen-

dent of each other.

Example 6.32 The following 2 � 2 table gives

the frequency distribution of body shape and test

of 100 Hilsa fishes. Test whether the two

attributes shape and test are independent or not.

Fish type Test

Beautiful Moderate

Flattened 45 15

Elongated 3 37

Solution Under the given condition, we are to

test whether the two attributes, viz., body shape

and test of fishes, are independent of each other

or not. That means the null and alternative

hypotheses are, respectively,

H0: body shape and test are independent of each

other, against

H1: body shape and test are not independent of

each other.

Let the level of significance be 0.05.

The test statistic for the problem will be χ2

with 1 d.f. It is expected that a cell frequency will

be less than five, so we are to adopt the formula

for χ2 with Yates correction. Thus, χc
2¼

ad�bcj j�N
2ð Þ2N

aþbð Þ cþdð Þ aþcð Þ bþdð Þ ¼ 45�37�15�3j j�100
2ð Þ2100

45þ15ð Þ 37þ3ð Þ 3þ45ð Þ 15þ37ð Þ
¼41:1475

At 0.05 level of significance and the

corresponding table value at 1d.f. are 3.84. So

the calculated value of χc
2 is more than the table

value of χ2 at 1d.f. at 5 % level of significance.

Hence, the test is significant and the null hypoth-

esis is rejected. We can conclude that the two

attributes are not independent to each other.

(ix) Bartlett’s test for homogeneity of variances

In breeding trials, the parents are selected

based on their performance to particular charac-

ter or characters. So characterization and evalua-

tion is a process needed before taking up the

breeding program. In characterization and evalu-

ation trial, a huge number of progenies/varieties/

breeds are put under evaluation over different

climatic situations, i.e., over different seasons/

locations/management practices etc. So pooling

of data becomes necessary to have an overall

idea about the materials put under evaluation.

For pooling of data, test for homogeneity of

variance is necessary of such experiments. If

homogeneity of variances is accepted, then one

can go for pooling data. Otherwise, there are

different methods for analysis of combining

such data. Readers may consult Applied and

Agricultural Statistics – II by Sahu and Das for

the purpose. The F-test can serve the purpose of

testing homogeneity of two variances. When

more than two experimental data are required to

be pooled, then homogeneity of variance test

through F statistic does not serve the purpose.

Bartlett’s test for homogeneity gives a way out to

solve the problem. Bartlett’s test for homogene-

ity of variances is essentially based on χ2 test. Let
us suppose we have k independent samples

drawn from k normal populations, with means

μ1, μ1, μ1,........, μk; and variances σ1
2, σ2

2, σ3
2,

........, σk
2; each of size ni (n1,n2,n3. . .ni. . ..nk),

the observed values are xij (x11,x12,x13. . ..x1n1;
x21,x22,x23,. . .. . .,x2n2; . . .. . ...; xk1,xk2,xk3,. . .. . ..,

xknk). The problem that is related in testing the

null hypothesis is H0 : σ21 ¼ σ22 ¼ :::::::::::: ¼ σ2k
¼ σ2, sayð Þ against the alternative hypothesis H1
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that these variances are not all equal. The approx-

imate test statistic under H0 is

χ2
k�1

¼

Xk
i¼1

ni � 1ð Þloge
s2

si2

" #

1þ 1
3 k�1ð Þ

Xk
i¼1

1

ni � 1ð Þ �
1Xk

i¼1

ni � 1ð Þ

8>><
>>:

9>>=
>>;

where,

si
2 ¼ 1

ni�1

Xni
j¼1

�
xij � xi

�
2 ¼ sample mean

square for the ith sample, i ¼ 1, 2, 3, . . . kð Þ.

and s2 ¼

Xk
i¼1

ni � 1ð ÞðsiÞ2

Xk
i¼1

ðni�1Þ

If the calculated value of χ2 > χ2α,k�1,H0 is

rejected.

Example 6.34

An experiment with different feeding for a par-

ticular breed of swine is conducted in three sea-

son, viz., summer, rainy, and spring seasons; the

same experimental protocol was followed in all

the seasons. Three seasons data were analyzed

separately, and the respective error mean square

along with the degrees of freedom is given

below. Test whether pooling of data from the

three experiments can be done or not:

Season d.f. Error mean square

Summer 17 477

Rainy 15 387

Spring 15 377

Solution For the purpose of pooling data of three

seasons, testing of homogeneity of variances of the

experiments is required. We know that the error

mean squares are the estimates of the variances. So

the null hypothesis for the present problem is

H0: Variances of the three experiments

conducted in three seasons are homogenous

in nature, against the alternative hypothesis

H1: Variances of the three experiments

conducted in three seasons are not homoge-

nous in nature.

The test statistic is

χ2k�1¼

Xk
i¼1

ni�1ð Þlogs
2

s2i

" #

1þ 1
3 k�1ð Þ

Xk
i¼1

1

ni�1ð Þ�
1Xk

i¼1

ni�1ð Þ

8>><
>>:

9>>=
>>;

2
664

3
775

For the present problem,

χ22 ¼

X3
i¼1

ni� 1ð Þlog s
2

s2i

" #

1þ 1
3 3�1ð Þ

X3
i¼1

1

ni� 1ð Þ�
1X3

i¼1

ni� 1ð Þ

8>><
>>:

9>>=
>>;

2
664

3
775

at 2 d.f

Let the level of significance α ¼ 0:05:

s2 ¼ 1X3
i¼1

ni � 1ð Þ

X3
i¼1

ni � 1ð Þ sið Þ2

¼ 18, 328

44
¼ 416:545

For this example, we have following table:

ni � 1ð Þ si
2 ni � 1ð Þs2i ni � 1ð Þlog s2

s2i

1
ni�1ð Þ

16 477 7632 �2.168 0.063

14 387 5418 1.030 0.071

14 377 5278 1.396 0.071

Total 18328 0.258 0.205

∴χ22 ¼ 0:258
1þ1

6
0:205� 1

44f g½ � ¼
0:258
1:030¼ 0:250 with 2 d.f.

From the table, we have χ20:05,2 ¼ 5:99.

The calculated value of χ2 (0.250) is less than
the table value of χ20:05,2; hence, we cannot reject

the null hypothesis. That means the variances are

homogeneous in nature. So we can pool the

information of three experiments.

6.2 Testing of Hypothesis 175



(x) Test for significance of specified population

correlation coefficient

Under large sample setup, let (x1,y1), (x2,y2)

.......(xn,yn) be a random sample drawn from a

bivariate normal population with population cor-

relation coefficient ρ. Under ρ 6¼ 0, the distribu-

tion of sample correlation coefficient r is complex.

But R. A. Fisher has proved that the statistic Ζ
defined as Z ¼ 1

2
loge

1þr
1�r is distributed approxi-

mately as normal variate with mean ξ ¼ 1
2
loge

1þρ
1�ρ

and V Zð Þ ¼ 1
n�3

. Our objective is to test H0 : ρ

¼ ρ0 6¼ 0ð ÞThe approximate test statistic under H0

is given by The approximate test statistic under is

given by τ ¼ Z�ξ0ffiffiffiffiffi
1

n�3

p
�N 0;1ð Þand ξ0 ¼ 1

2
loge

1þρ0
1�ρ0

If the calculated absolute value of the τ be

greater than the table value at specified level of

significance, the test is significant, and the null

hypothesis is rejected; otherwise, there is no rea-

son to reject the null hypothesis at the specific

level of significance.

Example 6.35

The correlation coefficient between the age and the

milking capacity of a randomly selected 50 cattle of

a particular breed is found to be 0.76. Test whether

the sample has come from a bivariate normal pop-

ulation with correlation coefficient between age

and milking capacity of cattle as 0.67 or not.

Solution Under the given condition, the null

hypothesis is H0 : ρ ¼ 0:67 against the alterna-

tive H1 : ρ 6¼ 0:67.

Given that r ¼ 0.76. and n ¼ 50.

Under H0 the test statistic is

τ ¼ Z � ξ0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
where

Z ¼ 1

2
loge

1þ r

1� r
¼ 1

2
loge

1þ 0:76

1� 0:76
¼ 0:996

ξ0 ¼
1

2
loge

1þ ρ0
1� ρ0

¼ 1

2
loge

1þ 0:67

1� 0:67
¼ 0:810

τ ¼ 0:996� 0:810ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50� 3

p
¼ 1:275

Thus, the calculated value of |τ| is less than 1.96

the critical value of the standard normal variate.

So we cannot reject the null hypothesis.

6.3 Nonparametric Method

In biostatistics, nonparametric tests are of much

importance. In the following section, we discuss

some of the nonparametric tests useful in agricul-

ture, veterinary, fishery, and allied fields.

6.3.1 One Sample Test

(i) Sign test for specified value of median

Likewise to that mean test in parametric method,

here we want to test the specified value for

median. Suppose, we have a random sample x1,

x2, x3,.......xn of size “n” drawn from a population

for which median θ is unknown. We want to test

H0: θ ¼ θ0, a specified value of θ against the

alternative hypotheses (i) θ 6¼ θ0, iið Þ θ >

θ0, iiið Þ θ < θ0.
We know that median divides the whole distri-

bution in two equal halves and there will be equal

number of observations below and above the

value θ0, if θ0 be the median of the distribution.

Let us denote the observations greater than θ0 with
plus (+) signs and the observations smaller than

θ0 with minus (�) signs, ignoring the values

equals to the median. Suppose we have r plus

(+) signs and s minus (�) signs.

Thus, r + s ¼ m � n. The distribution of

r given r + s ¼ m is binomial with probability

½. This “r” can be taken to test H0. The null

hypothesis H0: θ ¼ θ0 is equivalent to testing H0:

P¼1/2, where P is the probability of�> θ0. Here
we come across with three types of situations:

(a) For testing the null hypothesis H0: P ¼ 1/2

against the alternative hypothesis,H1:θ 6¼ θ0, the
critical region for α level of significance is given

by r � r0α=2 and r � rα=2where rα/2
0
and rα/2 are

the largest and smallest integer such that

Xr0α=2
r¼0

m
r

� 

1

2

� 
m

� α

2
and

Xm
r¼α=2

m
r

� 

1

2

� 
m

� α

2
.

(b) For testing the null hypothesis H0: P¼1/2

against the alternative hypothesis H1: θ > θ0,
the critical region for αlevel of significance

is given by r � rα, where rα is the smallest

integer. such that
Xm
r ¼ rα

m
r

� 

1

2

� 
m

� α:

176 6 Statistical Inference



(c) For testing the null hypothesis H0: P ¼ 1/2

against the alternative hypothesis H1: θ < θ0, the
critical region for α level of significance is given

by r � r0α where rα
0
is the larger integer such thatXm

r¼0

m
r

� 

1

2

� 

� α.

Example 6.36

The following data are pertaining to the length of

tiger prawn in a particular pond. Justify whether

the median length of prawn can be taken as

25 cm or not.

22.2, 26.5, 30.0, 18.0, 15.6, 20.0, 22.0, 19.5,

26.7, 28.5, 20.0, 24.6, 22.0, 32.5, 32.0

Solution In the first step, we have to assign the

signs to each of the given observation as follows:

Length

of tiger

prawn

22.20 26.50 30.00 18.00 15.60 20.00 22.00

Sign � + + � � � �
Length

of tiger

prawn

19.50 26.70 28.50 20.00 24.60 22.00 32.50 32.00

Sign � + + � � � + +

There are 5 (¼r) plus (+) signs and 9 (¼s)

minus (�) signs, and one observation is equal to

the median value and discarded. This r follows

binomial distribution with parameter (m ¼ r + s

¼ 5 + 9 ¼ 14) and p (¼1/2). Thus, testing ofH0:

θ ¼ 25 cm againstH1 : θ 6¼ 25 cm is equivalent

to testing of H0 : p ¼ 1=2 against H1 : p 6¼ 1=2.

The critical region for α ¼ 0:05 (two-sided

test) is r � rα=2 and r � r0α=2 where r is the

number of plus signs and rα/2 and r0α=2 are the

smallest and largest integer, respectively, such

that
X14
rα=2

14

x

� 

1

2

� 
14

� α=2 and
Xr0 α=2
0

14

x

� 

1

2

� 
14

� α=2.

From the table, we get r0:025 ¼ 3 and r00:025 ¼
11 for 14 distinct observation at p ¼ 1=2. For this

example, we have 3 < r ¼ 5 < 11, so we cannot

reject the null hypothesis at 5 % level of

significance, i.e., we conclude that the median

of the length of prawn length can be taken as

25 cm.

(ii) Test of randomness

(a) One sample run test: To judge the behavior

of a series of observation, one sample run

test is used. This test helps us to decide

whether a given sequence/arrangements

are random or not.

Here we define a run as a sequence of letters

(signs) of the same kind delimited by letters

(signs) of other kind at both ends. Let m be the

number of elements of one kind and n be the

number of element of other kind. That is,

m might be the number of heads and n might be

the number of tails, or m might be the number of

pluses and n might be the number of minuses;

also, suppose that N be the total number of two

different kinds mentioned above. So N � m + n.
The occurrence of sequence of two different

kinds is noted first and determines the number

of runs in total taking runs in both kinds. Let x1,
x2, x3, . . .xn be a sample drawn from a single

population. At the first instance, we find out the

median of the sample and denote observations

below the median by a minus sign and

observations above the median by plus signs.

The value equal to the median need not be con-

sidered. Then we count the number of runs (r) of

plus and minus signs. If both the m and n are

equal to or less than 20, then the following

Tables 6.7a and 6.7b gives the critical value

corresponding to m and n. If the observed value

of r falls within the critical value, we accept H0.

If m or n or both are large, the number

of runs below and above the sample median

value is a random variable with mean

E rð Þ ¼ Nþ2
2

and variance Var rð Þ ¼ N N�2ð Þ
4 N�1ð Þ. This

formula is exact when the “N” is even. Under

large sample setup, “r” is normally distributed

with above expectation and variance. Thus, the

appropriate test statistic is a standard normal

variate: τ ¼ r�E rð Þffiffiffiffiffiffiffiffiffiffi
Var rð Þ

p � N 0; 1ð Þ.
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Example 6.37

A batch of 20 agriculture students are randomly

inquired about their family background, i.e.,

whether they are coming from Below Poverty

Level (BPL-B) or Above Poverty Level

(APL-A) group. The following is the statement

Table 6.7a Lower critical values of “r” in the run test

n1/n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 2 2 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3

4 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4

5 2 2 3 3 3 3 4 4 4 4 4 4 4 5 5 5

6 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6

7 2 2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6

8 2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7

9 2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8

10 2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9

11 2 3 4 4 6 5 6 6 7 7 7 8 8 8 9 9 9 9

12 2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10

13 2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10

14 2 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10 10 11 11

15 2 3 3 4 5 6 6 7 7 8 8 9 9 10 10 11 11 11 12

16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12

17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 12 12 13

18 2 3 4 6 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13

19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 13

20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14

Table 6.7b Upper critical values of “r” in the run test

n1/n2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

3

4 9 9

5 9 10 10 11 11

6 9 10 11 12 12 13 13 13 13

7 11 12 13 13 14 14 14 14 15 15 15

8 11 12 13 14 14 15 15 16 16 16 16 17 17 17 17 17 17

9 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18 18

10 13 14 15 16 16 17 17 18 18 18 19 19 19 20 20 20

11 13 14 15 16 17 17 18 19 19 19 20 20 20 21 21 21

12 13 14 16 16 17 18 19 19 20 20 21 21 21 22 22 22

13 15 16 17 18 19 19 20 20 21 21 22 22 23 23 23

14 15 16 17 18 19 20 20 21 22 22 23 23 23 24 24

15 15 16 18 18 19 20 21 22 22 23 23 24 24 25 25

16 17 18 19 20 21 21 22 23 23 24 25 25 25 25

17 17 18 19 20 21 22 23 23 24 25 25 26 26 26

18 17 18 19 20 21 22 23 24 25 25 26 26 27 27

19 17 18 20 21 22 23 23 24 25 26 26 27 27 27

20 17 18 20 21 22 23 24 25 25 26 27 27 28 28

Any value of r equal to or smaller than the value shown in lower critical value of r and greater than or equals to the upper

critical value shown in table is significant at 0.05 level of significance.
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in terms of A and B for APL and BPL groups,

respectively. Test whether the students inquired

appeared for inquiry in random manner or not.

A,B,A,B,A,A,A,B,B,A,B,A,A,B,A,A,A,B,B,A

Solution

H0: The order of APL and BPL student enquired

was random against

H1: The order of APL and BPL student enquired

was not random.

Let the level of significance be 0.05.

Now from the given information, we have

A ¼ 12(m) and B ¼ 8(n).
The number of runs formed by the students of

their turn in facing the enquiry is as follows:

A, B, A, B, A,A,A, B,B, A, B, A,A, B, A,A,A, B,

B, A

Thus, we have 13 runs. For 12 and 8, the

critical values from above Tables 6.7a and 6.7b

are 6 and 16, respectively. That is, a random

sample should have number of runs in between

6 and 16. In this problem, we have 13, which is

well within the desired range. So we conclude

that the null hypothesis of APL and BPL student

inquired at random cannot be ruled out.

Example 6.38

The following figures give the production (mil-

lion tons) of cat fish production of India for the

year 1951 through 2010. Test whether the cat fish

production has changed randomly or followed a

definite trend:

Solution We are to test the null hypothesis.

H0: The series is random against the alterna-

tive hypothesis.

H1: The series is not random.

Let the level of significance be α ¼0.05.

Let us first calculate the median and assign

positive signs to those values which are greater

than the median value and minus signs to those

values which are less than the median value; the

information are provided in the table given

below.

Median ¼ 44.30 (thousand tones)

Year 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

Production 17.35 18.75 23.32 21.70 18.68 23.31 27.38 29.87 20.27 25.04

Year 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

Production 10.93 19.31 17.57 22.73 18.91 22.56 24.30 23.78 26.89 50.62

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

Production 48.84 42.43 52.63 76.18 68.67 43.52 53.48 39.20 48.76 43.71

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Production 59.37 67.63 60.64 57.26 44.50 52.93 44.77 64.41 49.79 38.23

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Production 39.34 36.53 43.26 45.45 38.49 35.50 44.09 52.12 46.53 57.06

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Production 49.14 57.61 53.47 52.14 45.42 56.54 65.34 92.36 107.57 85.67
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As the sample size is large, one should apply

randomness test through normality test of the

number of runs, r. Here, the number of runs is

found to be 14, i.e., r ¼14.

E rð Þ ¼ Nþ2
2

¼ 60þ2
2

¼ 31 and

Var rð Þ ¼ N N � 2ð Þ
4 N � 1ð Þ ¼ 60 60� 2ð Þ

4 60� 1ð Þ

¼ 2480

236
¼ 14:74

τ ¼ r � E rð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
Var rð Þp ¼ 14� 31ffiffiffiffiffiffiffiffiffiffiffi

14:74
p ¼ �17

3:84
¼ �4:42

Thus, |τ| ¼ 4.42 > 1.96 (the critical value at α ¼
0.05; hence, the null hypothesis of randomness is

rejected. We can conclude that the cat fish pro-

duction of India has not changed in random man-

ner but followed a definite pattern.

(b) Test of turning points

Another large sample nonparametric test for

randomness is the test of turning points. The pro-

cess is to record the departure from trends in a

given data set. Precisely, the technique involved

in counting peaks and troughs in the series. A

“peak” is defined as a value greater than its two

neighboring values, and a “trough” is defined as a

value which is lower than of its two neighbors.

Both the peaks and troughs are treated as turning

points of the series. At least three consecutive

observations are required to define a turning

point. Suppose we have three consecutive points

U1, U2, U3, of which either U1 > U2 < U3 or U1

< U2 > U3; thenU2 is termed as a turning point in

both the cases. In general form, if the series is

random, then these three values could have

occurred in any order, viz., in six ways. But in

only four of these ways would there be a turning

point. Hence, the probability of turning points in a

set of three values is 4/6 ¼ 2/3.

Let us generalize the three point case into n

point case; let U1, U2, U3. . .. . .. . .. . .. . .. . .. Un be

a set of observations, and let us define a marker

variable Xi by

Xi ¼1whenUi < Uiþ1> Uiþ2 and

Ui > Uiþ1 < Uiþ2

¼ 0;otherwise,8, i ¼ 1,2,3. . . . . . :: n�2ð Þ:
Hence, the number of turning points “p” is then

p ¼
Xn�2

i¼1

xi, and we have E( p) ¼
Xn�2

i¼1

E
�
xi
� ¼

Year 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

Production 17.35 18.75 23.32 21.70 18.68 23.31 27.38 29.87 20.27 25.04

Signs � � � � � � � � � �
Year 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

Production 10.93 19.31 17.57 22.73 18.91 22.56 24.30 23.78 26.89 50.62

Signs � � � � � � � � � +

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

Production 48.84 42.43 52.63 76.18 68.67 43.52 53.48 39.20 48.76 43.71

Signs + � + + + � + � + �
Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Production 59.37 67.63 60.64 57.26 44.50 52.93 44.77 64.41 49.79 38.23

Signs + + + + + + + + + �
Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Production 39.34 36.53 43.26 45.45 38.49 35.50 44.09 52.12 46.53 57.06

Signs � � � + � � � + + +

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Production 49.14 57.61 53.47 52.14 45.42 56.54 65.34 92.36 107.57 85.67

Sign + + + + + + + + + +
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2
3
n� 2ð Þ and E( p2) ¼ E

Xn�2

i¼1

�
xi
�
2 ¼

40n2 � 144nþ 131

90
Var( p) ¼ E( p2)�(E( p))2 ¼ 16n�29

90
. It can eas-

ily be verified that as “n,” the number of

observations, increases, the distribution of “p”
tends to normality. Thus, for testing the null

hypothesis, H0: series is random, we have the

test statistic τ ¼ p�E pð Þffiffiffiffiffiffiffiffiffiffi
Var pð Þ

p ~ N(0,1).

Example 6.39

The fresh milk production (million tons) of a

country since 1961 is given bellow. Test whether

the milk production of the country has changed

randomly or not:

Solution From the given information, one can

have (1) number of observation ¼ 50 and

(2) number of turning point p ¼ 9 (bold and

underlined values).

The null hypothesis is to test H0: The series is

random.

We have the expectation of turning point ( p)

E pð Þ ¼ 2
3
n� 2ð Þ ¼ 2

3
50� 2ð Þ ¼ 92

3
¼ 30:67 and

the variance Var pð Þ ¼ 16n�29
90

¼ 16*50�29
90

¼ 711
90

¼ 8:56

Thus, the test statistic

τ ¼ p� E pð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var pð Þp ¼ 9� 30:67ffiffiffiffiffiffiffiffiffi

8:56
p ¼ �21:67

2:92
¼ �7:42

We know that the τ is the standard normal

variate, and the value of standard normal variate

at P ¼ 0.05 is 1.96. as the calculated value of |τ|
¼ 7.42 > 1.96, so the test is significant; we

reject the null hypothesis. We can conclude that

Year 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

Production (m. t) 5.23 5.46 5.55 6.34 6.77 6.89 6.90 7.24 7.25 7.35

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

Production (m. t) 7.35 7.32 7.76 9.02 9.97 10.67 9.86 10.09 10.50 11.96

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Production (m. t) 11.68 11.82 11.82 12.30 12.45 12.88 13.40 13.94 14.53 14.93

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Production (m. t) 15.55 16.27 16.07 16.27 16.99 19.09 19.24 19.27 19.66 20.38

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Production (m. t) 21.15 22.31 22.94 24.20 25.38 26.19 26.14 28.44 29.09 30.72

Year 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

Production (mt) 5.23 5.46 5.55 6.34 6.77 6.89 6.90 7.24 7.25 7.35

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

Production (mt) 7.35 7.32 7.76 9.02 9.97 10.67 9.86 10.09 10.50 11.96

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

Production (mt) 11.68 11.82 11.82 12.30 12.45 12.88 13.40 13.94 14.53 14.93

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Production (mt) 15.55 16.27 16.07 16.27 16.99 19.09 19.24 19.27 19.66 20.38

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Production (mt) 21.15 22.31 22.94 24.20 25.38 26.19 26.14 28.44 29.09 30.72
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at 5 % level of significance, there is no reason to

take that the milk production of the country has

changed randomly since 1961.

(iii) Kolmogorov-Smirnov one sample test

χ2 test for goodness of fit is valid under

certain assumptions like large sample size

etc. The parallel test to the abovementioned

χ2 tests which can also be used under small

sample conditions is Kolmogorov-Smirnov

one sample test. In this one sample test for

goodness of fit, we test the null hypothesis

that the sample of observations x1, x2, x3,

. . ...xn has come from a specified population

distribution against the alternative hypothe-

sis that the sample has come from other

distribution. Suppose x0, x2, x3, . . ...xn be a

random sample from a population of distri-

bution function F(x) and the sample cumu-

lative distribution function is given as Fn(x)

where Fn(x) is defined as Fn(x) ¼ k
n where

k is the number of observations equal to or

less than x. Now for fixed value of x, Fn(x) is
a statistic following binomial distribution

with parameter (n, F(x)). To test both-

sided goodness of fit for H0: F(x) ¼ F0(x)
for all x against the alternative hypothesis

H1: F xð Þ 6¼ F0 xð Þ, the test statistic is Dn ¼
Sup
x

Fn xð Þ � F0 xð Þj j½ �. The distribution Dn

does not depend on F0 as long as F0 is

continuous. Now if F0 represents the actual

distribution function of x, then the value of

Dn is expected to be small; on the other

hand, a large value of Dn is an indication

of the deviation of distribution function

from F0.

Example 6.40 A die is thrown 90 times, and the

frequency distribution of appearance of different

faces of die is given as follows. Examine whether

the dies were unbiased or not.

Faces of die 1 2 3 4 5 6

Frequency 10 15 20 10 15 20

Solution If the die is unbiased, then the appear-

ance of different faces of die should follow a

rectangular distribution. Let F0(x) be the

distribution function of a rectangular distribution

over the range [0,1], then H0 : F xð Þ ¼ F0 xð Þ. We

know that

F0 xð Þ ¼ 0 if x < 0

¼ x if 0 � x � 1 for a rectangular distributions:
¼ 1 if x > 1

We make following table:

x f F0(x) Fn(x)
jFn xð Þ�
F0 xð Þj

1. 10 1/6 ¼ 0.166 10/90 ¼ 0.111 0.055

2. 15 2/6 ¼ 0.333 25/90 ¼ 0.277 0.055

3. 20 3/6 ¼ 0.500 45/90 ¼ 0.500 0.000

4. 10 4/6 ¼ 0.667 55/90 ¼ 0.611 0.055

5. 15 5/6 ¼ 0.833 70/90 ¼ 0.777 0.055

6. 20 6/6 ¼ 1.000 90/90 ¼ 1.000 0.055

Let the level of significance be α ¼ 0:05. From

tables, we get for n ¼ 6 the critical value of K-S

statistic Dn at 5 % level of significance is 0.519.

Thus, the calculated value of Dn ¼ Sup
x

Fn xð Þ � F0 xð Þj j½ � ¼ 0:055 < the table value

(0.519). That means we conclude that the given

sample is from the rectangular parent distribu-

tion; hence, the die is unbiased (Table 6.8).

6.3.2 Two Sample Test

(i) Paired sample sign test: For bivariate popula-
tion, the idea of one sample sign test can very

well be extended by introducing a transformed

variable equals to the difference between the

values of the pair of observation. Suppose we

have a randompaired sample of n observations

(x1,y1), (x2,y2), (x3,y3),. . .. . .. . .. . .(xn,yn) be

drawn from a bivariate population. Thus, we

are not measuring two variables for n observa-

tions, but n observations are measured twice;

that’s why these are related and paired. Let us

define di ¼ xi�yi (i ¼1,2,3, ..n). It is assumed

that the distribution function of difference di, is
also continuous.

Our problem is to test the median of the

differences Med(d) equals to zero, i.e., H0:

Med(d) ¼ 0, i.e., Prob.(d > 0) ¼ Prob.

(d < 0) ¼ 1
2
. Readers may please note

that Med(d) is not necessarily equal to Med
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(x)–Med(y), so that H0 is not that

Med(x) ¼ Med(y) but the Med(d) ¼ 0. Like

the one sample sign test, we assign plus (+) and

minus (�) signs to the difference values (di)
which are greater and lesser than zero, respec-

tively. We perform the one sample sign test as

given in the previous section and conclude

accordingly.

Example 6.41

Ten cows of particular breed were subjected to

hormonal treatment. Weight of milk per day

before and 3 weeks after the treatment was

recorded and are given below. Test whether

there is any significant effect of hormonal treat-

ment on milk yield of the cows or not.

Solution Let di (i ¼ 1,2,3. . .10) be the change

in weight of milk yield by ten cows due to hor-

monal treatment. The null hypothesis under the

given condition is H0 : θ ¼ 0 against the

alternative hypothesis H1 : θ > 0 where θ is the

median of the distribution of the differences:

We have eight minus signs and two plus signs,

and we know that under the null hypothesis, the

Table 6.8 Critical values of K-S one sample test statistic at different level of significance (a) for both one-sided and

two-sided test

One-sided test

α ¼ .10 .05 .025 .01 .005 α ¼ .10 .05 .025 .01 .005

Two-sided test

α ¼ .20 .10 .50 .02 .01 α ¼ .20 .10 .50 .02 .01

n ¼ 1 0.900 0.950 0.975 0.990 0.995 n ¼ 21 0.226 0.259 0.287 0.321 0.344

2 0.684 0.776 0.842 0.900 0.929 22 0.221 0.253 0.281 0.314 0.337

3 0.565 0.636 0.708 0.785 0.829 23 0.216 0.247 0.275 0.307 0.330

4 0.493 0.565 0.624 0.689 0.734 24 0.212 0.242 0.269 0.301 0.323

5 0.447 0.510 0.563 0.627 0.669 25 0.208 0.238 0.264 0.295 0.317

6 0.410 0.468 0.519 0.577 0.617 26 0.204 0.233 0.259 0.291 0.311

7 0.381 0.436 0.483 0.538 0.576 27 0.200 0.229 0.254 0.284 0.305

8 0.358 0.410 0.454 0.507 0.542 28 0.197 0.225 0.250 0.277 0.300

9 0.339 0.387 0.430 0.480 0.513 29 0.193 0.221 0.246 0.275 0.295

10 0.323 0.369 0.409 0.457 0.489 30 0.190 0.218 0.242 0.700 0.290

11 0.308 0.352 0.391 0.437 0.468 31 0.187 0.214 0.238 0.266 0.285

12 0.296 0.338 0.375 0.419 0.450 32 0.184 0.211 0.234 0.262 0.281

13 0.285 0.325 0.361 0.404 0.432 33 0.182 0.208 0.231 0.258 0.277

14 0.275 0.314 0.349 0.390 0.418 34 0.179 0.205 0.227 0.254 0.273

15 0.266 0.304 0.338 0.377 0.404 35 0.177 0.202 0.224 0.251 0.269

16 0.258 0.295 0.327 0.366 0.392 36 0.740 0.199 0.221 0.247 0.265

17 0.250 0.286 0.318 0.355 0.381 37 0.172 0.196 0.218 0.244 0.262

18 0.244 0.279 0.309 0.346 0.371 38 0.170 0.194 0.215 0.241 0.258

19 0.237 0.271 0.301 0.337 0.361 39 0.168 0.191 2.130 0.238 0.255

20 0.232 0.265 0.294 0.329 0.352 40 0.165 0.189 0.210 0.235 0.252

1 2 3 4 5 6 7 8 9 10

Milk weight (kg) Before 5.5 4.8 4.5 6.2 4.8 5.9 3.7 4.0 4.8 5.2

After 5.6 5.1 4.8 6.0 5.2 5.7 4.5 4.6 4.9 5.5
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number of plus signs follows a binomial distri-

bution with parameter n and p. In this case, the

parameters are n ¼ 10 and p ¼ ½. The critical

region ω is given by

r� rα,where rα is the smallest integer value such

that

P r� rα=Hoð Þ¼
X10
x¼0

10

x

� 

1

2

� 
10

� α

¼ 0:05i:e:1�
Xrα�1

x¼r0

10

x

� 

1

2

� 
10

� 0:05

)
Xrα�1

x¼0

10

x

� 

1

2

� 
10

� 1�0:05¼ 0:95

From the table, we have r α¼ 9, corresponding to

n ¼10 at 5 % level of significance, but for this

example, we got r ¼ 8 which is less than the

table value. So we cannot reject the null

hypothesis.

(ii) Two sample run test: Similar to that of the

one sample run test, sometimes we want to

test the null hypothesis that whether two

independent samples drawn at random have

come from the same population distribution

or not. In testing the above hypothesis, we

assume that the population distributions are

continuous. The procedure is as follows.

Suppose we have two random and independent

samples x1, x2, x3,. . .. . ...xn1 and y1, y2, y3,. . .. . ...yn2
of sizes n1 and n2, respectively. This n1 + n2 ¼
N number of values are then arranged either in

ascending or descending order which (may) give

rise to the following sequence: x x y x x x y y x x y

y y y. . .. . .. Now we count the “runs.” A run is a

sequence of values coming from one sample

surrounded by the values from the other sample.

Let the number of runs in total n1+ n2 ¼ N

arranged observations be “r.” The number of

runs “r” is expected to be very high if the two

samples are thoroughly mixed that means the

two samples are coming from the identical

distributions; otherwise, the number of runs

will be very small. Table for critical values of

r for given values of n1 and n2 is provided for

both n1 and n2 less than 20. If the calculated “r”

value is greater than the critical value of run for a

given set of n1 and n2, then we cannot reject the

null hypothesis; otherwise, any value of calcu-

lated “r” is less than or equal to the critical value

of “r” for a given set n1 and n2; the test is

significant and the null hypothesis are rejected.

For large n1 and n2 (say >10) or any one of

them is greater than 20, the distribution of r is

asymptotically normal with E(r) ¼
2n1n2
N þ 1 and Var rð Þ ¼ 2n1n2 2n1n2�Nð Þ

N2 N�1ð Þ , and we can

perform an approximate test statistic as

τ ¼ r�E rð Þffiffiffiffiffiffiffiffiffiffi
Var rð Þ

p � N 0; 1ð Þ.

Example 6.42

Two independent batches of Black Bengal goat

of sample size 9, each were selected randomly,

and the number of calves per bearing was

recorded. On the basis of number of calves per

bearing, can we say whether the two batches

came from the same population or not?

1 2 3 4 5 6 7 8 9 10

Milk weight (kg) Before (X) 5.5 4.8 4.5 6.2 4.8 5.9 3.7 4.0 4.8 5.2

After (Y ) 5.6 5.1 4.8 6.0 5.2 5.7 4.5 4.6 4.9 5.5

Difference in weight (x�y) �0.1 �0.3 �0.3 0.2 �0.4 0.2 �0.8 �0.6 �0.1 �0.3
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Solution Null hypothesis is H0: Samples have

come from identical distribution against the

alternative hypothesis that they have come from

different populations.

We arrange the observations as follows:

No. of calves 2 2 2 2 2 2 2 2 2

Sample 1 1 1 1 2 2 2 2 2

No. of calves 3 3 3 3 3 3 3 3 3

Sample 1 1 1 1 1 2 2 2 2

The value of “r” counted from the above table is

4, and the table value of “r” (Tables 6.7a and 6.7b)

corresponding to 9 and 9 is 5 and 16. Thus, we are

to reject the null hypothesis of equality of

distributions. Hence, we conclude that the two

samples have not been drawn from the same

population.

(iii) Two sample median test: In parametric setup,

we have test procedure for testing equality of

two means, i.e., whether the means arising

out of two samples drawn at random have

come from the same population or not. In

nonparametric setup, we have a parallel test

in the form of two sample median test. The

objective of this test is to test that the two

independent random samples drawn are from

identical distributions or not; thus, to test

whether the two samples drawn are differing

in population with different location

parameters (median) or not.

Let us draw two random independent samples

of sizes m and n from two populations. Make an

ordered combined sample of size m + n ¼ N,

and get the median (θ̂ ) of the combined sample.

Next, we count the number of observations

below and above the estimated median value θ̂
for all the two samples, which can be presented

as follows:

Number of observations

Total< θ̂ � θ̂

Sample 1 m1 m2 m

Sample 2 n1 n2 n

Total m n N

If m and n are small, the exact probability of

the above table with fixed marginal frequencies

is given as P ¼ m!n!m!n!

m1!n1!m2!n2!N!
. On the other

hand, if the fixed marginal frequencies are mod-

erately large, we can use the χ2 statistic for 2 � 2

contingency table using the formula χ1
2 ¼

m1n2 � m2n1ð Þ2N
m:n:m:n

.

Example 6.43

The following table gives the nuts per bunch of

areca nut in two different samples. Test whether

the two samples have been drawn from the same

variety or not:

Sample Goat 1 Goat 2 Goat 3 Goat 4 Goat 5 Goat 6 Goat 7 Goat 8 Goat 9

Sample 1 2 2 3 3 3 2 2 3 3

Sample2 2 3 2 3 3 3 2 2 2

Sample

Bunch

1

Bunch

2

Bunch

3

Bunch

4

Bunch

5

Bunch

6

Bunch

7

Bunch

8

Bunch

9

Bunch

10

Bunch

11

Bunch

12

Bunch

13

Sample 1 489 506 170 168 278 289 294 289 310 394 361 256 252

Sample 2 478 346 171 218 249 285 281 291 282 283 249 180 300
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Solution Under the given condition, we can go for

median test to test the equality of medians of two

samples with respect to number of nuts per bunch.

Taking both the groups as one can have the

following arrangement:

From the above arrangements, we have the

median score as the average of 12th and 13th

ordered observation, that is, 283þ 285ð Þ=2 ¼
284.

Now a 2 � 2 contingency table is prepared as

follows:

Below median Above median Total

Sample 1 5(m1) 8(m2) 13(m)

Sample 2 8(n1) 5(n2) 13(n)

Total 13 13 26(N )

χ21 ¼ m1n2 � m2n1ð Þ2N
m:n:m:n

¼ 5:5� 8:8ð Þ2:26
13:13:13:13

¼ 39ð Þ2:26
28561

¼ 39546

28561
¼ 1:384

For this 2 � 2 contingency table using the

formula, the calculated value of χ2¼1.384 < the

table value of χ2 ¼3.841 at 5 % level of signifi-

cance. So we cannot reject the null hypothesis

that the two samples have come from the differ-

ent population, that is, the two samples are drawn

from two different varieties.

(iv) Kolmogorov-Smirnov two samples test: Par-
allel to the χ2 test for the homogeneity of two

distributions is the Kolmogorov-Smirnov

two sample test that is the test for homogene-

ity of two populations. χ2 test is valid under

certain assumptions and also a large sample

test. Kolmogorov-Smirnov two sample test

can also be used under small sample

conditions. Suppose we have two random

independent samples (x1, x2, x3, . . .. . ..xm)
and (x21, x22, x23, . . .. . ..x2n) from two con-

tinuous cumulative distribution functions

“F” and “G,” respectively. The empirical

distribution functions of the variable are

given by

Fm x1ð Þ ¼ 0 if x1 < x ið Þ
¼ i=m if x 1ið Þ � x1 < x1 iþ1ð Þ
¼ 1 if x1 � x1 mð Þ and

Gn x2ð Þ ¼ 0 if x < x2 ið Þ
¼ i=n if x2 ið Þ � x2 < x2 iþ1ð Þ
¼ 1 if x2 � x2 nð Þ

where x1(i) and x2(i) are the ordered values of the

two samples, respectively. Combined values of

x1 and x2 are ordered. In combined ordered

arrangements of m number of x1 values and n

number of x2 values, Fm and Gn represent the

respective proportions of x1 and x2 values that

do not exceed x1. Thus, we are interested to test

whether the two distribution functions are identi-

cal or not, i.e., to test H0: F(x1) ¼ G(x2) against
the alternative hypothesis H1:F x1ð Þ 6¼ G x2ð Þ, the
test statistic is Dm,n ¼ Sup

x1

Fm x1ð Þ � Gn x2ð Þj j½ �.
Under the null hypothesis, one would expect

very small value of Dm,n; on the other hand, a

large value of Dm,n is an indication of the parent

distributions that are not identical. From

Table 6.9, given below are the critical values of

D for different sample sizes (n1,n2) at different

level of significance. If the calculated value of

D < critical value Dm,n, α we accept H0, i.e., the

parent distributions are identical, otherwise not.

Example 6.44 Two samples of four each are

taken independently at random for the number

of panicle per plant in paddy. Test whether the

two samples belong to identical parent popula-

tion distribution or not:

Sample 1 2 3 4 5

S1 20 24 22 20

S2 18 10 15 24 26

168 170 171 180 218 249 249 252 256 278 281 282 283 285 289 289 291 300 294 310 346 361 394 478 489 506
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Solution Here the problem is to test whether the

two samples have come from the same parent

population or not, that is, H0 : Fm ¼ Gn against

the alternative hypothesis H1 : Fm 6¼ Gn where

F and G are the two distribution from which the

above samples have been drawn independently

at random; also m and n are the sample sizes,

respectively. For this example,m ¼ 4 and n ¼ 5.

Under the given null hypothesis, we apply

K-S two sample test having the statistic

Dm,n ¼ Supx Fm xð Þ � Gn xð Þj j½ �.
We make a cumulative frequency distribu-

tion for each sample of observations using the

same intervals for both distributions. For the

calculation of Dm,n, we construct the following

table:

Table 6.9 Critical values of K-S two sample test statistic at different level of significance (a) for both one-tailed and

two-tailed test

One-sided test α ¼ 0.10 0.05 0.025 0.01 0.05 α ¼ 0.10 0.05 0.025 0.01 0.05

Two-sided test α ¼ 0.20 0.10 0.05 0.02 0.01 α ¼ 0.20 0.10 0.05 0.02 0.01

N1 ¼ 1 N2 ¼ 9 17/18 N1 ¼ 6 N2 ¼ 7 23/42 4/7 29/42 5/7 5/6

10 9/10 8 1/2 7/12 2/3 3/4 3/4

N1 ¼ 2 N2 ¼ 3 5/6 9 1/2 5/9 2/3 13/18 7/9

4 3/4 10 1/2 17/30 19/30 7/10 11/15

5 4/5 4/5 12 1/2 7/12 7/12 2/3 3/4

6 5/6 5/6 18 4/9 5/9 11/18 2/3 2/3

7 5/7 6/7 24 11/24 1/2 7/12 5/8 2/3

8 3/4 7/4 7/8 N1 ¼ 7 N2 ¼ 8 27/56 33/56 5/8 41/56 3/4

9 7/9 8/9 8/9 9 31/63 5/9 40/63 5/7 47/63

10 7/10 4/5 9/10 10 33/70 39/70 43/70 7/10 5/7

N1 ¼ 3 N2 ¼ 4 3/4 3/4 14 3/7 1/2 4/7 9/14 5/7

5 2/3 4/5 4/5 28 3/7 13/28 15/28 17/28 9/14

6 2/3 2/3 5/6 N1 ¼ 8 N2 ¼ 9 4/9 13/24 5/8 2/3 3/4

7 2/3 5/7 6/7 6/7 10 19/40 21/40 13/40 17/40 7/10

8 5/8 3/4 3/4 7/8 12 11/24 1/2 7/12 5/8 2/3

9 2/3 2/3 7/9 8/9 8/9 16 7/16 1/2 9/16 5/8 5/8

10 3/5 7/10 4/5 9/10 9/10 32 13/32 7/16 1/2 9/16 19/32

12 7/12 2/3 3/4 5/6 11/12 N1 ¼ 9 N2 ¼ 10 7/15 1/2 26/45 2/3 31/45

N1 ¼ 4 N2 ¼ 5 3/5 3/4 4/5 4/5 12 4/9 1/2 5/9 11/18 2/3

6 7/12 2/3 3/4 5/6 5/6 15 19/45 22/45 8/15 3/5 29/45

7 17/28 5/7 3/4 6/7 6/7 18 7/18 4/9 1/2 5/9 11/18

8 5/8 5/8 3/4 7/8 7/8 36 13/36 5/12 17/36 19/36 5/9

9 5/9 2/3 3/4 7/9 8/9 N1 ¼ 10 N2 ¼ 15 2/5 7/15 1/2 17/30 19/30

10 11/20 13/20 7/10 4/5 4/5 20 2/5 9/20 1/2 11/20 3/5

12 7/12 2/3 2/3 3/4 5/6 40 7/20 2/5 9/20 1/2

16 9/1 5/8 11/16 3/4 13/16 N1 ¼ 12 N2 ¼ 15 23/60 9/20 1/2 11/20 7/12

N1 ¼ 5 N2 ¼ 6 3/5 2/3 2/3 5/6 5/6 16 3/8 7/16 23/48 13/24 7/12

7 4/7 23/35 5/7 29/35 6/7 18 13/36 5/12 17/36 19/36 5/9

8 11/20 5/8 27/40 4/5 4/5 20 11/30 5/12 7/15 31/60 17/30

9 5/9 3/5 31/45 7/9 4/5 N1 ¼ 15 N2 ¼ 20 7/20 2/5 13/30 29/60 31/60

10 1/2 3/5 7/10 7/10 4/5 N1 ¼ 16 N2 ¼ 20 27/80 31/80 17/40 19/40 41/40

15 8/15 3/5 2/3 11/15 11/15

20 1/2 11/20 3/5 7/10 3/4

Larger sample approximation 0.10 0.05 0.025 0.01 0.05

1:07
ffiffiffiffiffiffiffi
mþn
mn

q
1:22

ffiffiffiffiffiffiffi
mþn
mn

q
1:36

ffiffiffiffiffiffiffi
mþn
mn

q
1:52

ffiffiffiffiffiffiffi
mþn
mn

q
1:63

ffiffiffiffiffiffiffi
mþn
mn

q
This table gives the values of Dþ

m,n,α and D�
m,n,α for which α � P Dþ

m,n > Dþ
m,n,α

	 

selected values of N1 ¼ smaller

sample size, N2 ¼ larger sample size, and α.
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Let the level of significance be α ¼ 0:05.

From the Table 6.9, we get for m ¼ 4 and n ¼5

the critical value of K-S statistic; Dm,n at 5 %

level of significance is 0.80.

Thus, the calculated value of Dn ¼
Sup
x

Fn xð Þ � F0 xð Þj j½ � ¼ 0:60 < the table value

of 0.80. That means we conclude that the parent

distribution is identical.

The Kruskal-Wallis test (one-way ANOVA):

Parallel to one-way analysis of variance is the

Kruskal-Wallis test. In this test, we compare the

means of number of treatments at a time, likewise

to that of parametric one-way analysis of variance,

but in this case, we need not to follow the

assumptions of the parametric analysis of variance.

The main objective of such test is to whether the

sample means have come from the same popula-

tion or from different population.

Group-1 G11 G12 ................................................................ G1n1

Group-2 G21 G22 ............................................... G2n2

Group-3 G31 G32 ............................... G3n3

: ........................................................................................
: ........................................................................................

Group-K Gk1 Gk2 .................................................. Gknk

Let there are K groups (samples) with n1,n2,

........nk with the same or different sizes, and Gij

is the ith observation of jth group or sample. The

method starts with arrangements of combined

values in order (increasing or decreasing); then

these values are ranked; if tied values are

there, the mean of the possible ranks for the

tied values are provided. Rank sum (R) of each
of the groups is worked out. The test statistic is

H ¼ 12
n nþ1ð Þ

Xk
j¼1

R2
j

nj
� 3 nþ 1ð Þwhere Rj and nj are

the rank sum and size of the jth group/sample.

This H follows a χ2 distribution with K � 1

degrees of freedom when the size of each group

is more than five; otherwise, we are to consult the

table for critical values forH. The decision rule is

as usual, i.e., the null hypothesis of equal means

is rejected when Hcal exceeds the corresponding

critical value (Table 6.10).

Example 6.45

The following table gives the no. of eggs per

month corresponding to six groups of chicks.

Using Kruskal-Wallis test, test whether six

groups could be taken as one or not.

No. of eggs/month

Group 1 29 28 31 27 26 29 30

Group 2 17 18 19 21 20

Group 3 25 26 27 27 28 25

Group 4 30 29 29 31 30 31 30

Group 5 23 22 24 22 24 24 23

Group 6 27 28 26 25 27 27

Solution

H ¼ 12

n nþ 1ð Þ
Xk
j¼1

R2
j

nj
� 3 nþ 1ð Þ Table of ordered ranks are provided below

¼ 12

38 38þ 1ð Þ 5376:571þ 45:00þ 2166:00þ 7788:893þ 567þ 2460:375½ � � 3 38þ 1ð Þ

¼ 12

38 39ð Þ 18403:84½ � � 3 39ð Þ ¼ 149:018� 117:000 ¼ 32:018

x Sample Fm(x) Gn(x) Fm xð Þ � Gn xð Þj j
10 2 0 ¼ 0.00 1/5 ¼ 0.20 0.20

15 2 0 ¼ 0.00 2/5 ¼ 0.40 0.40

18 2 0 ¼ 0.00 3/5 ¼ 0.60 0.60

20 1 1/4 ¼ 0.25 3/4 ¼ 0.60 0.35

20 1 2/4 ¼ 0.50 3/4 ¼ 0.60 0.10

22 1 3/4 ¼ 0.75 3/4 ¼ 0.60 0.15

24 1 4/4 ¼ 1.00 4/4 ¼ 0.60 0.40

25 2 4/5 ¼ 0.80 4/5 ¼ 0.80 0.20

26 2 5/5 ¼ 1.00 5/5 ¼ 1.00 0.00
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As all the groups have five or more

observations, H is distributed as χ2 with

(6–1) ¼ 5 d.f. The table value of χ2 at 5 %

level of significance and 5 d.f. is 11.0705 which

is less than the calculated value, so we accept the

alternative hypothesis, i.e., all the six groups are

different, i.e., these have come from different

populations. Different groups have different

egg-laying capacity per month.

Table 6.10 The Kruskal-Wallis test critical region: H � tabulated value

K = 3 K = 4 K = 5

Sample
sizes

α = 0.05 α = 0.01 Sample
sizes

α = 0.05 α = 0.01 Sample
sizes

α = 0.05 α = 0.01

2 2 2 – – 2 2 1 1 – – 2 2 1 1 1 – –
2 2 2 1 5.679 – 2 2 2 1 1 6.750 –

3 2 1 – – 2 2 2 2 6.167 6.667 2 2 2 2 1 7.133 7.533
3 2 2 4.714 – 2 2 2 2 2 7.418 8.291
3 3 1 5.143 – 3 1 1 1 – –
3 3 2 5.361 – 3 2 1 1 – – 3 1 1 1 1 – –
3 3 3 5.600 7.200 3 2 2 1 5.833 – 3 2 1 1 1 6.583 –

3 2 2 2 6.333 7.133 3 2 2 1 1 6.800 7.600
4 2 1 – – 3 3 1 1 6.333 – 3 2 2 2 1 7.309 8.127
4 2 2 5.333 – 3 3 2 1 6.244 7.200 3 2 2 2 2 7.682 8.682
4 3 1 5.208 – 3 3 2 2 6.527 7.636 3 3 1 1 1 7.111 –
4 3 2 5.444 6.444 3 3 3 1 6.600 7.400 3 3 2 1 1 7.200 8.073
4 3 3 5.791 6.745 3 3 3 2 6.727 8.015 3 3 2 2 1 7.591 8.576
4 4 1 4.967 6.667 3 3 3 3 7.000 8.538 3 3 2 2 2 7.910 9.115
4 4 2 5.455 7.036 3 3 3 1 1 7.576 8.424
4 4 3 5.598 7.144 4 1 1 1 – – 3 3 3 2 1 7.769 9.051
4 4 4 5.692 7.654 4 2 1 1 5.833 – 3 3 3 2 2 8.044 9.505

4 2 2 1 6.133 7.000 3 3 3 3 1 8.000 9.451
5 2 1 5.000 – 4 2 2 2 6.545 7.391 3 3 3 3 2 8.200 9.876
5 2 2 5.160 6.533 4 3 1 1 6.178 7.067 3 3 3 3 3 8.333 10.20
5 3 1 4.960 – 4 3 2 1 6.309 7.455
5 3 2 5.251 6.909 4 3 2 2 6.621 7.871
5 3 3 5.648 7.079 4 3 3 1 6.545 7.758
5 4 1 4.985 6.955 4 3 3 2 6.795 8.333
5 4 2 5.273 7.205 4 3 3 3 6.984 8.659
5 4 3 5.656 7.445 4 4 1 1 5.945 7.909
5 4 4 5.657 7.760 4 4 2 1 6.386 7.909
5 5 1 5.127 7.309 4 4 2 2 6.731 8.346
5 5 2 5.338 7.338 4 4 3 1 6.635 8.231
5 5 3 5.705 7.578 4 4 3 2 6.874 8.621
5 5 4 5.666 7.823 4 4 3 3 7.038 8.876
5 5 5 5.780 8.000 4 4 4 1 6.725 8.588

4 4 4 2 6.957 8.871
6 1 1 – – 4 4 4 3 7.142 9.075
6 2 1 4.822 – 4 4 4 4 7.235 9.287
6 2 2 5.345 6.655

Source: Neave, 19786 3 1 4.855 6.873
6 3 2 5.348 6.970
6 3 3 5.615 7.410
6 4 1 4.947 7.106
6 4 2 5.340 7.340
6 4 3 5.610 7.500
6 4 4 5.681 7.795
6 5 1 4.990 7.182
6 5 2 5.338 7.376
6 5 3 5.602 7.590
6 5 4 5.661 7.936
6 5 5 5.729 8.028
6 6 1 4.945 7.121
6 6 2 5.410 7.467
6 6 3 5.625 7.725
6 6 4 5.724 8.000
6 6 5 5.765 8.124
6 6 6 5.801 8.222

7 7 7 5.819 8.378

8 8 8 5.805 8.465
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Original scores Ordered score Rank

Group Score Group Score Unified rank Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

1 29 2 17 1 1

1 28 2 18 2 2

1 31 2 19 3 3

1 27 2 20 4 4

1 26 2 21 5 5

1 29 5 22 6.5 6.5

1 30 5 22 6.5 6.5

2 17 5 23 8.5 8.5

2 18 5 23 8.5 8.5

2 19 5 24 11 11

2 21 5 24 11 11

2 20 5 24 11 11

3 25 3 25 14 14

3 26 3 25 14 14

3 27 6 25 14 14

3 27 1 26 17 17

3 28 3 26 17 17

3 25 6 26 17 17

4 30 1 27 21.5 21.5

4 29 3 27 21.5 21.5

4 29 3 27 21.5 21.5

4 31 6 27 21.5 21.5

4 30 6 27 21.5 21.5

4 31 6 27 21.5 21.5

4 30 1 28 26 26

5 23 3 28 26 26

5 22 6 28 26 26

5 24 1 29 29.5 29.5

5 22 1 29 29.5 29.5

5 24 4 29 29.5 29.5

5 24 4 29 29.5 29.5

5 23 1 30 33.5 33.5

6 27 4 30 33.5 33.5

6 28 4 30 33.5 33.5

6 26 4 30 33.5 33.5

6 25 1 31 37 37

6 27 4 31 37 37

6 27 4 31 37 37

Rj 194 15 114 233.5 63 121.5

nj 7 5 6 7 7 6

R2
j

nj

5376.571 45 2166 7788.893 567 2460.375
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(iv) Friedman’s test for multiple treatments on a

series of subjects (two-way ANOVA): In this
test, we are interested to test the significance

of the differences in response for

k treatments applied to n subjects. It is

assumed that the response of a subject to a

treatment is not being influenced by its

response to another treatment.

The procedure is to arrange the whole data set

into a two-way table with n rows and k columns

corresponding subjects and treatments. In each

row, each subject is ranked of increasing order.

For each of the k columns, the rank sums (Rj

0
s)

are calculated. The test statistic used is given as

χ2k�1 ¼
12

nk k þ 1ð Þ
Xk
j¼1

R2
j � 3n k þ 1ð Þ

Now, if the calculated value of χ2 exceeds the
corresponding critical value, then the null

hypothesis of equality of treatments is rejected.

Example 6.46 A study was conducted to know

the effect of three seasons on egg-laying capacity

of particular breed of chick. The average eggs

laid per season was recorded and given in the

following table. Is there any significant effect of

season on egg-laying capacity?

Chick number

Season 1 2 3 4 5 6 7 8 9 10

Summer 20 20 21 18 17 25 24 20 19 20

Rainy 20 25 25 22 22 20 22 24 19 24

Winter 25 30 22 20 19 25 28 27 22 26

Solution Here we have to test H0: season has no

effect on egg-laying capacity of particular breed

of chick against H1 season has a effect on

egg-laying capacity of particular breed of chick.

We are given with b¼10 (Blocks); k ¼ 3

(Treatments).

Rank order the egg-laying capacity for each

chick with the smallest score getting a value of

1. If there are times each receives the average

rank, they would have received as bellow:

Test statistic is given by

χ2r ¼
12

3� 10� 3þ 1ð Þ � 13:5ð Þ2 þ 20ð Þ2 þ 26:5ð Þ2
h i

� 3� 10� 3þ 1ð Þ ¼ 8:45

Conclusion From the χ2 table, we have

χ20:05, k�1ð Þ ¼ χ20:05,2 ¼ 5:991. Hence, we reject

H0, and we can conclude that the egg-laying

capacity will differ for different seasons

(Tables 6.11, 6.12, and 6.13).

Season

Chick number

1 2 3 4 5 6 7 8 9 10 Total

Summer No. of egg 20 20 21 18 17 25 24 20 19 20

Rank 1.5 1 1 1 1 2.5 2 1 1.5 1 13.5

Rainy No of egg 20 25 25 22 22 20 22 24 19 24

Rank 1.5 2 3 3 3 1 1 2 1.5 2 20

Winter No of egg 25 30 22 20 19 25 28 27 22 26

Rank 3 3 2 2 2 2.5 3 3 3 3 26.5
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Correlation Analysis 7

7.1 Introduction

Every individual element in any population is

composed of several quantitative as well as qual-

itative characters. A poultry breed is being

characterized by its size, shape, color, body

weight, egg-laying capacity, etc. A variety of

paddy is known by its growth, yield, and other

characters like plant height, number of tillers per

hill, panicle length, grain size and shape, grain

weight, resistance to different pest and diseases,

stress tolerance, etc. Most of these characters are

related with each other; for example, the body

weight of poultry bird varies with that of the age

and the egg-laying capacity also varies with the

type breed as well as the age of the birds. Simi-

larly, the number tillers per hill and number of

effective tiller per hill, panicle length, and num-

ber of grains per panicle are associated with each

other. In statistics, we study the population

characters, and in population, many characters

are associated with each other. While studying

the population in terms of its characteristics, one

may study the characters taking one at a time and

can find out different measures of central ten-

dency, dispersion, etc. for individual characters

separately. But as we have just discussed, a close

look in to the characters will clearly suggest that

none of the characters vary in isolation; rather,

these have a tendency to vary together. Hence,

the importance of studying the characters

together are felt. If we study many number of

variables at a time, then we call it multivariate

study, and when we study two variables at a time,

it is known as the bivariate study. Thus, the

simplest case in multivariate study is the bivari-

ate study.

The associationship between the variables

can be linear or nonlinear. In the Figs. 7.1

through 7.3, one can find three different types

of associationships. In Fig. 7.1, as the values of

X1 increase, the values of X2 also increase and

vice versa (a positive associationship between

the variables), but in Fig. 7.2, one can find

that as the values of X1 increase, the values

of X2 decrease and vice versa (a negative

associationship between the variables). Thus,

Figs. 7.1 and 7.2 present two opposite associatio-

nships. While in Fig. 7.3, one can find that there

is hardly any change in the values of X2 with the

change in values of X1. Figures 7.1 and 7.2 rep-

resent linear relationship between the variables,

while Fig. 7.3 fails to present any relationship.

But in Fig. 7.4, one finds different type of rela-

tionship – a nonlinear relationship between the

variables X1 and X2.

In this chapter, we are concerned about the

strength of the linear associationship between

two variables, while in the next chapter, we

would try to find out the exact linear relationship

between the variables. As we have already men-

tioned that the characters tend to move together,

now the question is which pair of characters has

stronger tendency to move together compared to

# Springer India 2016

P.K. Sahu, Applied Statistics for Agriculture, Veterinary, Fishery, Dairy and Allied Fields,
DOI 10.1007/978-81-322-2831-8_7

195



other pairs in the population? Thus, we need to

measure the strength of linear associationship

between the variables. In fact, the degree of lin-

ear associationship is being measured with the

help of the correlation coefficient.

7.2 Correlation Coefficient

It is defined as the measure of degree of linear

associationship between any two given variables.

Suppose we have n pairs of observations (x11,
x21), (x12, x22), (x13, x23),. . .. . .. . ... (x1n, x2n) for

two variables X1 and X2, then correlation coeffi-

cient between X1 and X2 is given as

rx1x2 ¼ Cov x1; x2ð Þ
sx1 :sx2

¼

1

n

Xn
i¼1

x1i � x1ð Þ x2i � x2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

x1i � x1ð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn
i¼1

x2i � x2ð Þ2
s

¼

Xn
i¼1

x1i � x1ð Þ x2i � x2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

x1i � x1ð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

x2i � x2ð Þ2
s

¼ SP x1; x2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SS x1ð Þ:SS x2ð Þp

We know

Fig. 7.1 Positive associationship

Fig. 7.2 Negative associationship

Fig. 7.3 No associationship

Fig. 7.4 Nonlinear associationship
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1.

Cov x1; x2ð Þ ¼ 1

n
SP x1; x2ð Þ

¼ 1

n

Xn
i¼1

x1i � x1ð Þ x2i � x2ð Þ

¼ 1

n

Xn
i¼1

x1ix2i � 1

n
x1
Xn
i¼1

x2i � 1

n
x2
Xn
i¼1

x1i

þ 1

n

Xn
i¼1

x1 x2

¼ 1

n

Xn
i¼1

x1ix2i�2x1 x2 þ 1

n

Xn
i¼1

x1 x2

¼ 1

n

Xn
i¼1

x1ix2i � x1 x2 ¼ Sx1x2

2.

Var x1ð Þ ¼ 1

n
SS x1ð Þ ¼ 1

n
s2x1 ¼

1

n

Xn
i¼1

x1i � x1ð Þ2

¼ 1

n

Xn
i¼1

x21i � x1
2

3.

Var x2ð Þ ¼ 1

n
SS x2ð Þ ¼ 1

n
s2x2 ¼

1

n

Xn
i¼1

x2i � x2ð Þ2

¼ 1

n

Xn
i¼1

x22i � x2
2

rx1x2 ¼

1

n

Xn
i¼1

x1i � x1ð Þ x2i � x2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

x1i � x1ð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn
i¼1

x2i � x2ð Þ2
s

¼

1

n

Xn
i¼1

x1ix2i � x1x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

x2
1i
� x2

1

 !
1

n

Xn
i¼1

x2
2 i
� x2

2

 !vuut

¼

Xn
i¼1

x1ix2i � nx1x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

x1i
2 � nx1

2

 ! Xn
i¼1

x2i
2 � nx2

2

 !vuut
,

Example 7.1 The following table is related to

birds per pen and area (square feet) for four differ-

ent poultry farms. Calculate the correlation coeffi-

cient between area and the number of birds per pen:

Birds/pen 25 100 200 500

Area (sq. ft) 88 300 500 1000

Solution With the help of the above informa-

tion, let us construct the following table:

Farms

Area

(sq. ft) (Y )

Birds/

pen (X) Yi � Y
� �2

Xi � X
� �2 Xi � X

� �
Yi � Y
� �

1 88 25 147456.00 32851.56 69600.00

2 300 100 29584.00 11289.06 18275.00

3 500 200 784.00 39.06 �175.00

4 1000 500 278784.00 86289.06 155100.00

Sum (∑) 1888.00 825.00 456608.00 130468.75 242800.00

Average 472.00 206.25

Cov X; Yð Þ ¼ 1

n
Sxy ¼

Xn
i¼1

Xi � X
� �

Yi � Y
� �

n

¼ 242800

4
¼ 60700

S2x ¼

Xn
i¼1

Xi � X
� �2
n

¼ 130468:75

4
¼ 32617:19

S2y ¼
X

Yi � Y
� �2
n

¼ 456608

4
¼ 114152

∴rxy ¼ Cov X; Yð Þ
SXSy

¼ 60700ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32671:19� 114152ð Þp ¼ 0:994

7.3 Properties

1. Correlation coefficient is worked out

irrespective of the dependency, i.e., rxy ¼ ryx.

2. Correlation coefficient is a unit free measure;

as such, this can be used to compare the

degree of linear associationship between any

pair of variables measured in different units.
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Example 7.2 Covariance between weight of egg

and number of eggs laid per hatching is 0.38 with

variances of egg weight and number of eggs

being 21.05 and 20.78, respectively. Find out

the correlation coefficient between egg weight

and egg number.

Solution Let egg weight is denoted as X and the

number of eggs be denoted as Y. As per given

information, we have Cov(X, Y) ¼ 0.38;

S2x ¼ 21:05 and S2y ¼ 20:78

∴rxy ¼ Cov X; Yð Þ
SXSy

¼ 0:38ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:05� 20:78ð Þp ¼ 0:0183

∴Hardly, there is any correlation between egg

weight and number of eggs laid per hatching.

3. Correlation coefficient rxy lies between �1

and +1, i.e., �1 � rxy � þ1.

Proof Let (x11, x21), (x12, x22), (x13,
x23),. . .. . .. . ... (x1n, x2n) be n pairs of

observations for two variables X1 and X2 having

means x1 and x2 and variances S1
2 and S2

2,

respectively.

One can define two variables p and q such that

p ¼ x1 � x1
S1

and q ¼ x2 � x2
S2

∴pi ¼
x1i � x1

S1
and qi ¼

x2i � x2
S2

,

for ith observation

Or,
Xn
i¼1

pi
2 ¼

Xn
i¼1

x1i � x1ð Þ2
S2

1

and
Xn
i¼1

qi
2

¼
Xn
i¼1

x2i � x2ð Þ2
S2

2

Or,
Xn
i¼1

pi
2 ¼ nS1

2

S1
2

and
Xn
i¼1

qi
2 ¼ nS2

2

S2
2

Or,
Xn
i¼1

pi
2 ¼ n and

Xn
i¼1

qi
2 ¼ n

Similarly,

Xn
i¼1

piqi ¼

Xn
i¼1

x1i � x1ð Þ x2i � x2ð Þ

S1:S2

¼ n � S12
S1:S2

¼ n
Cov X1;X2ð Þ

SD X1ð Þ:SD X2ð Þ
¼ nrx1x2

We know that

pi � qið Þ2 � 0

∴
Xn
i¼1

pi � qið Þ2 � 0

or,
Xn
i¼1

p2ii � 2
Xn
i¼1

piqi þ
Xn
i¼1

q2i � 0

or, n� 2nrx1x2 þ n � 0

or, 2n 1� rx1x2ð Þ � 0

since n is a positive number:

1� rx1x2 � 0

So, rx1x2 � 1 ðiÞ
Similarly,

Xn
i¼1

pi þ qið Þ2 � 0

or,
Xn
i¼1

p2i þ 2
Xn
i¼1

piqi þ
Xn
i¼1

q2i � 0

or, nþ 2nrx1x2 þ n � 0

or, 2n 1þ rx1x2ð Þ � 0

since n is a positive number:

1þ rx1x2ð Þ � 0

or, rx1x2 � �1 ðiiÞ
Combining (i) and (ii), we get

�1 � rx1x2 � þ1.

4. Correlation coefficient is independent of

change of origin and scale.

Let us consider (x11, x21), (x12, x22), (x13,

x23),. . .. . .. . ... (x1n, x2n) as n pairs of

observations for two variables X1 and X2 having

means x1 and x2 and variances S1
2 and S2

2,

respectively. Let us define another two variables,

so that ui ¼ x1i�a
b and vi ¼ x2i�c

d ; i ¼ 1, 2, 3 . . ...n
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and a, b, c, and d are constants; and a, c are

changes in origins; and b, d are changes in scales

for two variables X1 and X2, respectively. So,

x1i ¼ aþ bui and x2i ¼ cþ dvi

∴
1

n

Xn
i¼1

x1i ¼ 1

n

Xn
i¼1

aþ buið Þ

or, x1 ¼ 1

n

Xn
i¼1

aþ 1

n

Xn
i¼1

bui

or, x1 ¼ aþ bu

Similarly, x2 ¼ cþ du

Again we have,

S2x1 ¼ S21 ¼
1

n

Xn
i¼1

�
x1i � x1

�
2

¼ 1

n

Xn
i¼1

�
aþ bui � a� bu

�
2

¼ 1

n

Xn
i¼1

�
bui � bu

�
2 ¼ 1

n

Xn
i¼1

b2
�
ui � u

�
2

¼ b2
1

n

Xn
i¼1

�
ui � u

�
2 ¼ b2S2u

Similarly, S2x2 ¼ S22 ¼ d2S2v
We know that

Cov x1; x2ð Þ ¼ 1

n

X
i

x1i � x1ð Þ x2i � x2ð Þ

¼ 1

n

Xn
i¼1

aþ bui � a� buð Þf g

� cþ dvi � c� dvð Þf g

¼ bd
1

n

Xn
i¼1

�
ui�u

�
vi � vð Þ

¼ bdCov u; vð Þ ¼ bdSuv

Thus, using the above formulae, we can

have the correlation coefficient between X1 and

X2 as

rx1x2 ¼
Cov x1; x2ð Þffiffiffiffiffiffiffiffiffiffi

S21:S
2
2

q ¼ S12
S1S2

¼ b:d:Cov u; vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2S2u
� �

d2S2v
� �q

¼ b:d:Suv
bj j: dj j:Su:Sv

¼ b:d

bj j: dj j :ruv ¼ �ruv

Thus, the numerical value of correlation coef-

ficient between X1 and X2 and between the

transformed variables u and v remains the same,

but the sign of ruv depends on the sign of b and d,
the changes in scales of the two variables X1 and

X2. When b and d both are having same sign, then

rxy ¼ ruv, but if these two have different signs

then rxy ¼ �ruv.

Example 7.3 The number of tillers per hill and

yield of wheat in kilogram per hectare for nine

varieties is given below. (a) Find out the correla-

tion coefficient between number of tillers per hill

and yield of wheat, and (b) by changing origin

and scale for both, the variables show that corre-

lation coefficient remains the same:

Tillers

per hill

5 15 67 30 10 20 50 40 60

Yield

(kg)

1050 3250 7880 5270 2100 4280 7100 6460 7610

Solution

(a) With the help of the above information, let

us construct the following table:

Tillers

per hill

(X)

Yield

(kg) (Y ) X2 Y2 XY

5 1050 25 1,102,500 5250

15 3250 225 10,562,500 48,750

67 7880 4489 62,094,400 527,960

30 5270 900 27,772,900 158,100

10 2100 100 4,410,000 21,000

20 4280 400 18,318,400 85,600

50 7100 2500 50,410,000 355,000

40 6460 1600 41,731,600 258,400

60 7610 3600 57,912,100 456,600

Sum 297 45,000 13,839 274,314,400 1,916,660

Average 33 5000 1537.667 30479377.78 212962.2

Variance 448.6667 5,479,378 47962.22
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For calculation of correlation coefficient from

original data, let us calculate the following

quantitative:

1. Average number of tillers per hill

(5 + 10 + 15 + . . . + 60)/9 ¼ 33no

2. Average yield (1050 + 2100 +. . . + 7610)/

9 ¼ 5000 kg

3. Variance of number of tillers per hill {(52

+ 152 +. . . + 602)/9 � (33)2} ¼ 448.667no2

4. Variance of body weight of lamb as {(10502

+ 32502 +. . . + 76102)/9 � (5000)2} ¼
5,479,378 kg2

5. Covariance of number of tillers per hill and

yield {5 � 1050 +. . . + 60 � 7610)/9 �
(33)(5000)}no kg ¼ 47962.22no.kg

∴rxy ¼

1

n

Xn
i¼1

xi � xð Þ yi � yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

xi � xð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn
i¼1

yi � yð Þ2
s

¼

1

n

Xn
i¼1

xiyi � x y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

xi
2 � x2

 !
1

n

Xn
i¼1

yi
2 � y2

 !vuut
¼ 47962:22

21:18175x 2340:807
¼ 0:967

(b) For calculation of correlation coefficient

from changed data (change of origin and

scale), let us transform both the tiller per

hill and yield of wheat as:

ui ¼ xi�a
b and vi ¼ yi�c

d where, xi, yi, a, b, c, and

d are age, body weight, “5,” ”4,” “1000,” and

“1000,” respectively. Thus, we have

ui ¼ xi�a
b ¼ xi�5

4
and vi ¼ yi�c

d ¼ yi�1000

1000
, and

with the help of the transformed variables, let

us construct the following table and from the

transformed table calculate the following

quantities:

(i) Average of transformed number of tiller per

hill (0 + 2.5 +. . . + 13.75)/9 ¼ 7 no

(ii) Average of transformed yield (0.05 +

2.25 + . . . + 6.61)/9 ¼ 4tn

(iii) Variance of transformed number of tiller

per hill {(02 + 2.52 + . . . + 13.752)/9 � (7)2

} ¼ 28.0417 no2

(iv) Variance of transformed yield {(0.052 +

2.252 + . . . + 6.612)/9 � (4)2} ¼ 5.4794tn2

(v) Covariance of transformed number of tillers

per hill and yield {0 � 0.050 + 2.5 � 2.25

+ � � � + 13.75 � 6.61)/9 � (7)(4)}Wk.g

¼ 11.9906no tn

∴rxy ¼

1

n

Xn
i¼1

xi � xð Þ yi � yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

xi � xð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn
i¼1

yi � yð Þ2
s

¼

1

n

Xn
i¼1

xiyi � x y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

xi
2 � x2

 !
1

n

Xn
i¼1

yi
2 � y2

 !vuut
,

¼ 11:9906

5:2954� 2:3408
¼ 0:9673

which is exactly as that was found in previous

analysis without changing the origins and scales

of the variables.

5. Correlation coefficient between X1 and X2 is
same as the correlation coefficient between X2

and X1.

We know that

rx1x2 ¼
Cov x1; x2ð Þ
Sx1 :Sx2

¼

1

n

Xn
i¼1

x1x2ð Þ � x1 :x2

Sx1 :Sx2

¼ Cov x2; x1ð Þ
Sx2Sx1

¼ rx2x1
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6. Two independent variables are uncorrelated,
but the converse may not be true.

Let us consider the following two variables:

X1 �3 �2 0 2 3
X

x1 ¼ 0

X2 9 4 0 4 9
X

x2 ¼ 26

X1X2 �27 �8 0 8 27
X

x1x2 ¼ 0

Therefore,

rx1x2 ¼
Cov x1; x2ð Þ
Sx1 :Sx2

¼

1

n

Xn
i¼1

x1x2ð Þ � x1 :x2

Sx1 :Sx2

¼
1

5
:0� 0:

26

5
Sx1 :Sx2¼ 0

Thus, though two variables are uncorrelated

(as r ¼0), one can find that there exists a relation-

ship X2 ¼ X1
2 between X1 and X2. Thus, zero

correlation coefficient between two variables does

not alwaysmean that the variables are independent.

7. Correlation coefficient between two random

variables X1 and X2 can be written as

rx1x2 ¼
σ2x1þσ2x2�σ2x1�x2

2σx1 σx2

Proof Let Y ¼ X1-X2.

Or,

Y � E Yð Þ ¼ X1 � X2 � E X1ð Þ þ E X2ð Þ
¼ X1 � E X1ð Þ½ � � X2 � E X2ð Þ½ �

squaring both sides and taking expectations, we

have

σ2Y ¼ σ2x1 þ σ2x2 � 2cov X1;X2ð Þ
¼ σ2x1 þ σ2x2 � 2rx1x2σx1σx2

rx1x2 ¼
σ2x1 þ σ2x2 � σ2x1�x2

2σx1σx2

Example 7.4 The difference between upper face

length (Y ) and nasal length (X) both measured in

millimeter is given for 20 Indian adult males:

14, 15, 13, 16, 21, 19, 13, 15, 19, 20, 17, 18,

17, 18, 10, 11, 12, 10, 11, and 10. Calculate the

correlation coefficient of X and Y, given

sx ¼ 3:57mm and sy ¼ 4:47mm.

Solution

We know that rxy ¼ σ2xþσ2y�σ2D
2σxσy

, so first we need

to calculate the σD
2 which is given by the

formula:

Tillers per hill (X) Yield (kg) (Y ) u ¼ x�5
4 v ¼ y�1000

1000 u2 v2 uv

5 1050 0.0000 0.0500 0.0000 0.0025 0.0000

15 3250 2.5000 2.2500 6.2500 5.0625 5.6250

67 7880 15.5000 6.8800 240.2500 47.3344 106.6400

30 5270 6.2500 4.2700 39.0625 18.2329 26.6875

10 2100 1.2500 1.1000 1.5625 1.2100 1.3750

20 4280 3.7500 3.2800 14.0625 10.7584 12.3000

50 7100 11.2500 6.1000 126.5625 37.2100 68.6250

40 6460 8.7500 5.4600 76.5625 29.8116 47.7750

60 7610 13.7500 6.6100 189.0625 43.6921 90.8875

Sum 297 45,000 63.0000 36.0000 693.3750 193.3144 359.9150

Average 33 5000 7.0000 4.0000 77.0417 21.4794 39.9906

Variance 448.6667 5,479,378 28.0417 5.4794 11.9906
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σ2D ¼ 1

n

Xn
i¼1

Di � D
� �2 ¼ 12:89mm

rxy ¼
σ2x þ σ2y � σ2D

2σxσy
¼ 3:572 þ 4:472 � 12:89

2 x 3:57 � 4:47

¼ 0:62:

Examples 7.5 Given below are the plant height

(cm) and number of nodes of 10 mulberry

varieties. Find out the correlation coefficient

between height and number of nodes:

Height

(X)

185 186 188 187 189 187 190 192 205 198

No. of

nodes

(Y)

69 70 74 67 74 70 71 73 76 72

Solution Let us frame the following table:

So the correlation coefficient between height

and number of nodes per plant is 0.672.

Problem 7.1

The following information is pertaining to height

(cm) and body weight (kg) of eight students. Find

out the correlation coefficient between height

and body weight. Using the same information,

solve the problem by changing the origin of

height and weight to 178 cm and 66 kg, respec-

tively, to find out whether there is any change in

the correlation coefficient or not:

Height

(X)

177 175 188 185 190 167 170 172

Weight

(Y)

60 62 70 63 71 66 67 69

Example 7.6 The following table gives the

number of panicle (X) per hill and the

corresponding yield (Y ) (t/ha) of paddy. Find

out the correlation coefficient between the num-

ber of panicle and the yield of paddy:

Panicle/

hill (X)
27 24 30 28 37 18 20 38 18 16

Yield

(t/ha)

(Y )

2.00 1.70 2.20 1.90 2.40 1.20 1.40 1.90 1.30 1.20

Solution

Panicle/

hill (X)
Yield

(q/ha) (Y ) X2 Y2 XY

27 2.00 729 4.00 54

24 1.70 576 2.89 40.8

30 2.20 900 4.84 66

28 1.90 784 3.61 53.2

37 2.40 1369 5.76 88.8

18 1.20 324 1.44 21.6

20 1.40 400 1.96 28

38 1.90 1444 3.61 72.2

18 1.30 324 1.69 23.4

16 1.20 256 1.44 19.2

Total 256 17.2 7106 31.24 467.2

Average 25.6 1.72 710.6 3.124 46.72

Var

(X) ¼
s2x ¼

1

n

Xn
i¼1

xi � xð Þ2 ¼ 1

10

Xn
i¼1

xi
2 � x2

 !

¼ 710:6� 25:62 ¼ 55:24

Var

(Y) ¼
s2y ¼

1

n

Xn
i¼1

yi � yð Þ2 ¼ 1

10

X10
i¼1

yi
2 � y2

3:124� 1:722 ¼ 0:1656

Cov(X,

Y) ¼
s x; yð Þ ¼ 1

n

Xn
i¼1

xi � xð Þ yi � yð Þ ¼ 1

n

Xn
i¼1

xiyi � xy

¼ 46:72� 25:6� 1:72 ¼ 2:688

r ¼
Cov x;yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xð Þ:Var yð Þ

p ¼ 2:688ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
55:24�0:1656

p ¼ 0:889

Height

(X)

No. of

nodes

(Y ) X2 Y2 XY

185 69 34,225 4761 12,765

186 70 34,596 4900 13,020

188 74 35,344 5476 13,912

187 67 34,969 4489 12,529

189 74 35,721 5476 13,986

187 70 34,969 4900 13,090

190 71 36,100 5041 13,490

192 73 36,864 5329 14,016

205 76 42,025 5776 15,580

198 72 39,204 5184 14,256

Total 1907 716 364,017 51,332 136,644

Average 190.70 71.60 36401.70 5133.20 13664.40

Var

(X) ¼
s2x ¼

1

n

Xn
i¼1

xi � xð Þ2 ¼ 1

10

Xn
i¼1

xi
2 � x2

 !

¼ 36401:7� 190:702 ¼ 35:21

Var

(Y) ¼
s2y ¼

1

n

Xn
i¼1

yi � yð Þ2 ¼ 1

10

X10
i¼1

yi
2 � y2

5133:20� 71:602 ¼ 6:64

Cov(X,

Y) ¼
s x; yð Þ ¼ 1

n

Xn
i¼1

xi � xð Þ yi � yð Þ ¼ 1

n

Xn
i¼1

xiyi � xy

¼ 13664:40� 190� 71:60 ¼ 10:28

r ¼
Cov x;yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var xð Þ:Var yð Þ

p ¼ 10:28ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
35:21�6:64

p ¼ 0:672
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Example 7.7 Find out the correlation coefficient

between DCP (%) and TDN (%) from the follow-

ing table:

Feed

Green roughages

DCP (%) TDN (%)

Berseem 2.8 12

Lucerne 3.5 12.5

Cowpea 3.2 10.8

Maize 1.2 16.5

Napier 1.5 15.8

Sorghum 1 16

Pea 2.5 12.5

Para grass 1.5 11.4

Oat 2.6 16.7

Solution Let DCP (%) and TDN (%) are

denoted by X1 and X2, respectively:

There are nine different types of forages, and

we have to find correlation between DCP (%) and

TDN (%). First, we need to calculate variances

and covariance from the above table:

Cov X1;X2ð Þ ¼ Sx1x2 ¼

Xn
1

X1 � X1

� �
X2 � X2

� �
n

¼ �10:06

9
¼ �1:12

S2x1 ¼

Xn
1

X1 � X1

� �2
n

¼ 6:72

9
¼ 5:10

S2x2 ¼

Xn
1

X2 � X2

� �2
n

¼ 45:92

9
¼ 0:75

∴rx1x2 ¼
Cov X1;X2ð Þ

Sx1Sx2
¼ �1:12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5:10� 0:75ð Þp
¼ �0:57

Hence, correlation between DCP (%) and TDN

(%) is �0:57.

Problem 7.2 Body weight and length of ten

different cows were measured. Using the follow-

ing figures, find out the correlation coefficient

between body weight and length of cows:

Weight

(Kg)

586 672 598 625 640 705 690 595 645 685

Length

(m)

1.95 2.38 2.02 2.20 2.30 2.38 2.42 2.05 2.25 2.35

7.4 Significance of Correlation
Coefficients

1. Significance of the sign of correlation coeffi-
cient: If two variables X1 and X2 are positively

correlated, then increase/decrease in one

X1 X2 X1 � X1 X2 � X2 X1 � X1

� �2
X2 � X2

� �2
X1 � X1

� �
X2 � X2

� �
2.8 12 0.60 �1.80 0.36 3.24 �1.08

3.5 12.5 1.30 �1.30 1.69 1.69 �1.69

3.2 10.8 1.00 �3.00 1.00 9.00 �3.00

1.2 16.5 �1.00 2.70 1.00 7.29 �2.70

1.5 15.8 �0.70 2.00 0.49 4.00 �1.40

1 16 �1.20 2.20 1.44 4.84 �2.64

2.5 12.5 0.30 �1.30 0.09 1.69 �0.39

1.5 11.4 �0.70 �2.40 0.49 5.76 1.68

2.6 16.7 0.40 2.90 0.16 8.41 1.16

Total 19.80 124.20 0.00 0.00 6.72 45.92 �10.06

Average 2.20 13.80
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variable is associated with increase/decrease

in other variables also. On the other hand, if

two variables are negatively correlated, then

increase/decrease in one variable is associated

with decrease/increase in other variable.

2. Significance of the value of the correlation

coefficient: We have already come to know

that �1 � r � þ1 and the significance of the

sign of the coefficient. The value of the corre-

lation coefficient actually depicts the degree/

strength/intensity of linear associationship;

the higher the value, the higher is the strength

of the associationship.

7.5 Correlation Coefficient
of Bivariate Frequency
Distribution

Joint variabilities of two variables at a time are

represented with the help of a bivariate frequency

distribution. Likewise to that of a univariate fre-

quency distribution, bivariate frequency distribu-

tion expresses the joint frequency distribution of

two variables considered at the same time. In this

section, let us discuss the procedure of working

out the correlation coefficient from such bivari-

ate frequency distribution. Bivariate frequency

distribution of two variables, X1 and X2, may be

presented in the following form:

It is to be noted that
Xm
i¼

Xn
j¼1

f ij ¼

Xm
i¼1

f i: ¼
Xn
j¼1

f :j ¼ N.

From the above bivariate frequency distribu-

tion, table one can very well frame the univariate

frequency distribution tables for the individual

variables X and Y as follows:

Frequency distribution of X1 Frequency distribution of X2

Class
Mid-
value Frequency Class Mid-value Frequency

x10 � x
0
11

x11 f1. x20 � x
0
21

x21 f.1

x
0
11 � x

0
12

x12 f2. x21 � x
0
22

x22 f.2

x
0
12 � x

0
13

x3 f3. x22 � x
0
23

x23 f.3

– – – – –

x
0
1, i�1 � x

0
1i

x1i fi. x
0
2j�1 � x

0
2j

x2j fj.

– – – – –

x
0
1,m�1 � x

0
1m

x1m fm. x
0
2n�1 � x

0
2n x

0
2n�1 � x

0
2n

fn.

Using the univariate frequency distribution

tables, one can very well calculate the univariate

measures of central tendency and dispersion for

both the variables separately as follows:

x1 ¼ 1

N

Xm
i¼1

f i::x1ið Þ

Similarly,

x2 ¼ 1

N

Xn
j¼1

f :j:x2j

� �

S2x1 ¼
1

N

Xm
i¼1

f i::x
2
1i � x1

2

X2

Class !
X1

Class #
Mid-value

(x)

x20 � x
0
21 x21 � x

0
22 x

0
22 � x

0
23 – x

0
2j�1 � x

0
2j – x

0
2n�1 � x

0
2n

Total

Mid-value ( y)

x21 x22 x23 – x2j – x2n

x10 � x
0
11

x11 f11 f12 f13 – – – f1n f1.

x
0
11 � x

0
12

x12 f21 f22 f23 – – – f2n f2.

x
0
12 � x

0
13

x3 f31 f32 f33 – – – f3n f3.

– – – – – – – – – –

x
0
1, i�1 � x

0
1i

x1i – – – – fij – fin fi.

– – – – – – – – – –

x
0
1,m�1 � x

0
1m

x1m fm1 fm2 fm3 – – – fmn fm.

Total f.1 f.2 f.3 – f.j – f.n
X
i

X
j

f ij ¼ N
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S2x2 ¼
1

N

Xn
j¼1

f :j:x
2
2j � x2

2

And from the bivariate frequency distribution

table, one can find out the covariance between

the two variables as follows:

Cov x1; x2ð Þ ¼ 1

N

Xm
i

Xn
j

f ij
�
x1i � x1

�
x2j � x2
� �

¼ 1

N

X
i, j

f ijx1ix2j � x1 :x2

rx1,x2 ¼

1

N

Xm
i

Xn
j

f ij
�
x1i � x1

�
x2j � x2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xm
i¼1

f i::x
2
1i � x1

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn
j¼1

f :j:x
2
2j � x2

2

s

¼

1

N

X
i, j

f ijx1ix2j � x1 :x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xm
i¼1

f i::x
2
1i � x1

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn
j¼1

f :j:x
2
2j � x2

2

s

Example 7.8 The following table gives fre-

quency distribution of plant height (m) and the

stick yield per hectare of jute. Using the data, find

out the correlation coefficient plant height and

the stick yield:

Height

(m)

Stick yield (t/ha)

2.3–2.4 2.4–2.5 2.5–2.6 2.6–2.7 2.7–2.8 2.8–2.9 2.9–3.0

2.10–2.20 3 1 1 2 3 3 1

2.20–2.30 3 5 3 2 3 3 1

2.30–2.40 7 5 4 6 2 1 2

2.40–2.50 1 0 2 4 2 2 2

2.50–2.60 3 0 1 0 2 2 2

2.60–2.70 2 1 0 3 3 2 0

2.70–2.80 1 0 2 0 0 2 0

Solution Using the above information, let us

frame the following tables:

Height

(m)

Stick yield (t/ha)

2.3–2.4 2.4–2.5 2.5–2.6 2.6–2.7

2.7–

2.8

2.8–

2.9 2.9–3.0 Total

2.10–2.20 3 1 1 2 3 3 1 14

2.20–2.30 3 5 3 2 3 3 1 20

2.30–2.40 7 5 4 6 2 1 2 27

2.40–2.50 1 0 2 4 2 2 2 13

2.50–2.60 3 0 1 0 2 2 2 10

2.60–2.70 2 1 0 3 3 2 0 11

2.70–2.80 1 0 2 0 0 2 0 5

Total 20 12 13 17 15 15 8 100

Frequency distribution of height(m) (X)

Height (m) Mid-value (xi) Frequency ( fi) fixi
2

2.10–2.20 2.15 14 64.72

2.20–2.30 2.25 20 101.25

2.30–2.40 2.35 27 149.11

2.40–2.50 2.45 13 78.03

2.50–2.60 2.55 10 65.03

2.60–2.70 2.65 11 77.25

2.70–2.80 2.75 5 37.81

Frequency distribution of stick yield (t/ha) (Y )

Yield class Mid-value (yj) Frequency ( fj) fjyj
2

2.3–2.4 2.35 20 110.45

2.4–2.5 2.45 12 72.03

2.5–2.6 2.55 13 84.53

2.6–2.7 2.65 17 119.38

2.7–2.8 2.75 15 113.44

2.8–2.9 2.85 15 121.84

2.9–3.0 2.95 8 69.62

x ¼ 1

N

Xm
i¼1

f i::xið Þ

¼ 1

100
2:15� 14þ 2:25� 20½

þ:::::::::: þ 2:75� 5� ¼ 2:388m

y ¼ 1

N

Xn
j¼1

f :j:yj

� �

¼ 1

100
2:35� 20þ 2:45� 12þ 2:55½

�13þ . . .þ 2:95� 8� ¼ 2:622 t

S2x ¼ 1

N

Xm
i¼1

f i::x
2
i � x2

¼ 1

100
64:72þ 101:25þ :::::::þ 31:81½ �

�2:3882 ¼ 0:0293m2

S2y ¼ 1

N

Xn
j¼1

f :j:y
2
j � y2

¼ 110:45þ 72:03þ :::::::þ 121:84½

þ 69:62� 1

100
� 2:6222 ¼ 0:038 t2

From this table, we shall find out the covari-

ance between the variables as follows:

7.5 Correlation Coefficient of Bivariate Frequency Distribution 205



Cov x; yð Þ ¼ 1

N

Xm
i

Xn
j

f ij
�
xi � x

�
yj � y
� �

¼ 1

N

X
i, j

f ijxiyj � x:y

¼ 1

100

�
2:15 � 2:35� 3þ 2:45� 1þ 2:55� 1ð

þ 2:65� 2þ 2:75� 3þ 2:85� 3þ 2:95� 1Þ
þ 2:25 2:35� 3þ 2:45� 5þ 2:55� 3þ 2:65ð
� 2þ 2:75� 3þ 2:85� 3þ 2:95� 1Þþ2:35

� 2:35� 7þ 2:45� 5þ 2:55� 4þ 2:65� 6ð
þ 2:75� 2þ 2:85� 1þ 2:95� 2Þ þ 2:45

� ::::::::::::::ð Þ þ 2:55� ::::::::::ð Þ þ 2:65

� :::::::::ð Þ þ 2:75� :::::::ð Þ�� 2:388� 2:622

¼ 0:0024

∴rxy ¼ Cov X; Yð Þ
SXSy

¼ 0:0024ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0293� 0:038ð Þp ¼ 0:071

Problem 7.3 Plant height (cm) and number of

cobs per plant in 80 maize plants were studied for

the associationship between plant height (X) and

number of cobs per plant (Y ). Using the informa-

tion provided in the following table, find out the

correlation coefficient between the characters:

Plant ht

(X)

Number of cobs per plant (Y )

5–7 7–9 9–11 11–13 13–15 15–17

125–135 2 1 0 0 0 0

135–145 1 2 0 0 0 0

145–155 0 3 2 1 0 0

155–1

65

1 3 2 1 1 0

165–175 2 2 3 1 0 0

175–1

85

0 1 2 2 2 0

185–195 0 2 3 3 1 0

195–205 0 1 4 3 2 1

205–215 0 0 5 4 3 1

215–225 0 2 5 3 2 0

Problem 7.4 The following table gives the

number of panicle-bearing tillers per hill and

the number of grains per panicle in certain exper-

iment with rice. Find out the correlation coeffi-

cient between the grains per panicle and the

number of effective tiller per hill:

Number of
effective
tiller/hill
(x)

Class

No of grains/panicle (y)

30–35 35–40 40–45 45–50

10–12 10 8 7 6

13–15 12 16 18 7

16–18 10 25 18 15

19–21 8 13 11 10

22–24 10 13 16 8

7.6 Limitations

1. Correlation coefficient can only measure the

degree of linear associationship; it fails to

adequately measure the associationship when

the associationship is nonlinear; for nonlinear

Height (m) Mid-value (xi)

Stick yield (t/ha)

Frequency

2.3–2.4 2.4–2.5 2.5–2.6 2.6–2.7 2.7–2.8 2.8–2.9 2.9–3.0

2.35 2.45 2.55 2.65 2.75 2.85 2.95

2.10–2.20 2.15 3 1 1 2 3 3 1 14

2.20–2.30 2.25 3 5 3 2 3 3 1 20

2.30–2.40 2.35 7 5 4 6 2 1 2 27

2.40–2.50 2.45 1 0 2 4 2 2 2 13

2.50–2.60 2.55 3 0 1 0 2 2 2 10

2.60–2.70 2.65 2 1 0 3 3 2 0 11

2.70–2.80 2.75 1 0 2 0 0 2 0 5

Frequency 20 12 13 17 15 15 8 100
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relationship between the variables, correlation

ratio is of use.

2. When more than two variables are operating

in a system, then in most of the cases, a simple

correlation coefficient fails to measure the

actual degree of associationship between the

variables. Under multivariate (more than two)

situation, a high/low correlation coefficient

between two variables in the system does not

mean high/low direct associationship between

the variables; influences of other variables on

both variables are to be taken into consider-

ation. Under such situation, partial correlation

coefficient or path coefficient analysis will be

more pertinent.

3. Given any two sets of values for two

variables, one can work out the correlation

coefficient between the variables. One can

find out the correlation between year-wise

fish production in India and the number of

fisheries per year in United States of America.

But hardly one can find any logical under-

standing of such correlation coefficient. This

type of correlation is often called as nonsense

or spurious correlation. Thus, it is essential to

have clear logical understanding about the

variables between which the correlation is to

be worked out.

4. Sometimes it is found that two variables (say

X and Y ) are showing high degree of linear

associationship, as measured through correla-

tion coefficient, not because they are highly

correlated but because of the influence of

another variable (say Z ) on both variables

under consideration. Such a variable (Z ) is

called lurking variable. So one must ascertain

the presence or absence of any lurking vari-

able before working out the correlation coef-

ficient between any two variables.

7.7 Rank Correlation

Correlation coefficient discussed so far deals

with quantitative characters. But in real-life situ-

ation, we are to deal with both quantitative as

well as qualitative variables. Unlike quantitative

variables, qualitative variables are not measur-

able; on the contrary, they can be grouped or

ranked into different groups or ranks. For exam-

ple, a student is graded or ranked according to his

or her performance in an examination, the aroma

of tea is graded or ranked, and color can be

categorized in to blue, black, white, etc. If we

want to get a correlation between the color and

aroma of tea, then simple correlation coefficient

as mentioned in the previous section fails to

answer. Similarly, the tolerance of a particular

crop to stress may be ranked. Different breeds of

cows can be ranked according to their resistance

toward diseases and pests and at the same time

according to their milk-producing capacity. In all

these cases, correlation between two qualitative

characters (attributes) can be worked out using

Spearman’s rank correlation coefficient.

Let us suppose n individuals are ranked based

on two characters, X and Y, as given in the fol-

lowing table:

Element 1 2 3 4 5 . . . n�2 n�1 n

Rank
for X

2 4 6 n-
3

7 . . . n�1 10 12

Rank
for Y

5 3 n 7 4 . . . 2 n�1 n�2

Assuming that no two individuals are tied in

ranks for either in X or Y, the Spearman’s rank

correlation coefficient is given as

rR ¼ 1� 6
X

d2i

n n2 � 1ð Þ , where di i ¼ 1, 2, :::::, nð Þ

are the difference between the ranks (xi and yi,
respectively) obtained in two different characters

by the ith individual, i.e., (xi-yi) ¼ di.

If more than one individual have the same

ranks, i.e., when the ranks are tied, then the

above formula is modified as follows:

rR ¼ 1�
6
X

d2i þ p p2 � 1ð Þ
12

þ q q2 � 1ð Þ
12

	 

n n2 � 1ð Þ ,

where p and q are the number of individuals

involved in tied ranks for the characters X and

Y, respectively.
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Rank correlation coefficient also �1 � rR �
þ1; the proof is left for the readers.

Rank correlation coefficient also does not

have any unit.

Example 7.9 Ten varieties of tea were examined

for flavor as well as for color. The ranks are shown

in the table provided below; to find out the degree

of linear associationship between flavor and color:

Quality

Variety

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Flavor 6 1 7 3 5 4 2 8 9 10

Color 10 2 9 6 7 5 1 4 8 3

The differences between ranking in aroma and

susceptibility are �3, �1, �3, �3, 4, �1, 1, �2,

1, and 7, and there exists no tied rank.

So,
Xn
i¼1

d2i ¼ 16 + 1 + 4 + 9 + 4 + 1 + 1

+ 16 + 1 + 49 ¼ 102

) rR ¼ 1�
6:
X10
i¼1

d2i

10 10� 1ð Þ

¼ 1� 6:102

10:99
¼ 1� 0:618 ¼ 0:382

Thus, there is low associationship between the

flavor and color of tea.

Example 7.10 Farmers are ranked for their edu-

cational index and knowledge index as follows.

Find out the associationship between the stan-

dard of education and knowledge of the farmers:

Farmers

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Education 9 10 3 5 6 3 2 1 7 8

Knowledge 6 9 7 4 2 1 4 3 8 10

In education, there are two-tied rank 3 and in

awareness also two-tied rank 4. So the correction

in education series is
2 22�1ð Þ

12
¼ 2 4�1ð Þ

12
¼ 1

2
and that

in awareness series is also 1
2
.

Now, the above table can be written as

Farmers

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Education 9 10 3.5 5 6 3.5 2 1 7 8

Knowledge 6 9 7 4.5 2 1 4.5 3 8 10

∴di ¼ 3, 1, � 3:5, 0:5, 4, 2:5, � 2:5, � 2,
� 1, � 2

)
X10
i¼1

d2i ¼ 32 þ 12 þ �3:5ð Þ2 þ 0:5ð Þ2 þ 42

þ 2:5ð Þ2 þ �2:5ð Þ2 þ �2ð Þ2 þ �1ð Þ2 þ �2ð Þ2
¼ 9þ 1þ 12:25þ 0:25þ 16þ 6:25þ 6:25

þ 4þ 1þ 4

¼ 60

rR ¼ 1�
6
X

d2i þ p p2 � 1ð Þ
12

þ q q2 � 1ð Þ
12

	 

n n2 � 1ð Þ

¼ 1�
6: 60þ 1

2
þ 1

2

� �
10� 99¼ 1� 0:3697

¼ 0:630

So the education and knowledge of the farmers

are substantially associated.

Problem 7.5 The following figures give the fish

landing of two different types of sardines for ten

landing stations. Using the data, find out the

correlation between two types of fish landing:

Problem 7.6 Ten scented varieties of rice were

ranked for aroma and shape of grain by two

experts separately. The following data show the

rank given by the experts to each variety. Find

Oil sardine 115,744 221,026 205,294 183,706 188,832 120,587 77,849 100,456 130,832 278,869

Other sardines 66,810 61,717 54,525 75,990 66,472 60,556 69,808 92,542 77,188 83,167
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out the degree of linear associationship between

the two experts:

Expert

Varieties

1 2 3 4 5 6 7 8 9 10

Expert A 9 10 8 5 6 3 2 1 7 4

Expert B 7 10 9 2 8 4 1 3 6 5

Problem 7.7 Find out the correlation coefficient

between the marks obtained in fishery extension

and fishery economics for 100 students from the

following frequency distribution table:

Marks

scored in

fishery

economics

Marks scored in fishery extension

50–60 60–70 70–80 80–90 90–100

50–60 1 5 5 4 1

60–70 3 5 9 7 5

70–80 2 8 9 7 7

80–90 2 2 5 6 4

90–100 0 1 1 1 0

7.8 Correlation Ratio

Experience of our daily life says that hardly one

can find the relationship between two variables

changing at a constant rate, i.e., hardly one can

find the relationship between two variables as

linear. In most of the cases, there exists nonlinear

relationship between the variables. For example,

if a farmer changes the doses of nitrogen, how the

yield of the crop will change? Definitely, one

cannot expect the yield to go on increasing with

the increase in the dose of nitrogen. Actually,

yield of the crop will increase upto certain dose

of nitrogenous fertilizer, reaches to a maximum,

and will start declining after there. That means

there will be curvilinear path in between the dose

of nitrogen and the corresponding yield. The

graph may be as given below or some other form.

Correlation coefficients can only measure the

degree of linear associationship between two

variables. But under the above nonlinear

situation, it fails to actually picturize the degree

of associationship. Under such situation, a mea-

sure called correlation ratio is used to measure

the degree of associationship. Correlation ratio,

generally denoted as η(Eta), is the appropriate

measure of degree of nonlinear relationship

between two variables.

The basic idea of nonlinear relationship is that

one assumes more than one values of a variable to

each value of the other variable. So we assume

that to each of the n values of a variable, there

exists one array of values of the other variable.

Suppose X is a variable taking the values x1, x2,. . .
xn and corresponding to each observation of the

variable X, we have an array for the other variable

Y. Thus, yijs are the values of the variable

Y corresponding to xi value of the variable X, and

j(1,2,. . .m) is the length of the ith array, and sup-

pose each of these values occurs with frequency fij.
Thus, the frequency distribution of two variables

X and Y can be arranged as given below:
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From the above table, we have

yi ¼ Si
ni
and y ¼ S

N that are the means of ith array

and the overall mean, respectively.

Correlation ratio (η) of Y on X is defined as

η2yx ¼ 1� s2ey
s2y

¼ s2my
s2y

where s2ey ¼ 1
N

X
i

X
j

f ij yij � yi

� �2
;

s2my ¼ 1

N

X
i

X
j

f ij yi � yð Þ2 and

s2y ¼ 1

N

X
i

X
j

f ij yij � y
� �2

:

Example 7.11 An experiment was conducted to

know the effect of transplanting age on fruit per

plant at early harvest of tomato, and the follow-

ing results were obtained. Find out the correla-

tion ratio of yield on age of plant.

Transplanting

age (age) (X)

Fruit per plant (no.) (Y )

15–18 19–22 23–26 27–30 31–34 35–38

1–5 2 - - - - -

6–10 3 6 6 1 - -

11–15 3 7 10 5 - -

16–20 - 8 15 10 10 -

21–25 - - 12 19 15 5

26–30 - - 2 4 10 4

Solution From the given information, we frame

the following table:

One can get η2yx ¼ 1� s2ey
s2y
¼ s2my

s2y
.

We have

xi
yij

x1 x2 – xi – xn Total

yi1 f11 f21 – fi1 – fn1 f.1

yi2 f12 f22 – fi2 – fn2 f.2

yi3 f13 f23 – fi3 – fn3 f.3

– – – – – – – –

yij f1j – – fij – fnj f.j

– – – – – – – –

yim f1m f2m – fim – fnm f.m

ni ¼
Xm
j¼1

f ij
n1 n2 – ni – nn Xn

i

Xm
j

f ij ¼
Xn
i¼1

ni ¼ N

Si ¼
Xm
j¼1

f ijyij
S1 S2 – Si – Sn Xn

i

Xm
j

f ijyij ¼
Xn
i¼1

Si ¼ S

yi ¼ Si
ni

y1 ¼ S1
n1

y2 ¼ S2
n2

– yi ¼ Si
ni

– yn ¼ Sn
nn

y ¼ S
N

y

x1 x2 x3 x4 x5 x6

3 8 13 18 23 28 Total

16.50 2 3 3 0 0 0 8

20.50 0 3 7 8 0 0 21

24.50 0 6 10 15 12 2 45

28.50 0 1 5 10 19 4 39

32.50 0 0 0 10 15 10 35

36.50 0 0 0 0 5 4 9

ni ¼
X6
j¼1

f i j

2 16 25 43 51 20 154

Si ¼
X6
j¼1

f ijyij
33.00 286.50 580.50 1141.50 1505.50 634.00 4181.00

S2i
ni

544.50 6314.02 13479.21 30302.84 44441.77 20097.80 115180.14

X6
j¼1

f ijy
2
ij

544.50 6491.25 13822.25 31050.75 45140.75 20341.00 117390.50
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Ns2y ¼
X
i

X
j

f ij
�
yij � y

�
2

¼
X
i

X
j

f ijy
2
ij � Ny2 ¼

X
i

X
j

f ijy
2
ij �

S2

N

¼ 117390:50� 4181:00ð Þ2
154

¼ 117390:50� 113511:40 ¼ 3879:06

Ns2my ¼
X
i

X
j

f ij
�
yi � y

�
2 ¼

X S2i
ni

� S2

N

¼ 115180:14� 113511:40 ¼ 1668:70

So, η2yx ¼ S2my
S2y

¼ 1668:70
3879:06 ¼ 0:430.

Problem 7.8 An experiment was conducted to

know the effect of age of a particular breed of cow

on daily milking capacity (liters), and the follow-

ing results were obtained. Find out the correlation

ratio of milking capacity on age of cow.

Age of

cow (X)
in year

Milking capacity in liters (Y )

1–3 4–6 7–9 10–12 13–15 16–18

2–3 - - 5 2 1 -

4–5 - 2 12 13 1 5

6–7 - 4 10 14 15 2

8–9 2 3 7 8 7 -

10–11 6 2 1 - - -

12–13 8 1 - - 0 -

7.9 Properties of Correlation Ratio

1.
r2 � η2yx � 1:

2. η2yx is independent of change of origin and

scale.

3. rxy ¼ ryx but ηyx
2 may or may not be equal to

ηxy
2.

7.10 Coefficient of Concurrent
Deviation

Another measure of degree of linear

associationship between any two variables, X1

and X2, is given through coefficient of concurrent

deviation. Unlike the original values or the grade

of the two variables under consideration, it

considers only the sign of the change in values

of each variable from its previous values. Gener-

ally, this is used for time series data. Correlation

coefficient is calculated as rc ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2c

n � 1
� �q

,

where c is the number of positive signs of the

products of the signs of deviations of the

variables and n is the number of deviations. The

sign of the correlation coefficient will be the sign

of 2c
n � 1
� �

.

Example 7.12 Let us have two variables, the

number of boy and girl students passing out of

class in each year. We are to find out the correla-

tion coefficient between the pass out of boy and

girl students. We shall use the following data:

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Boys 120 115 117 119 125 130 110 125 122 118

Girls 85 87 89 100 95 102 97 99 105 110

Solution

Year (t) 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Boys

(X1)
120 115 117 119 125 130 110 125 122 118

Girls

(X2)
85 87 89 100 95 102 97 99 105 110

Sign of the

deviation (X1t-

X1t-1)¼ ΔX1t

� + + + + � + � �

Sign of the

deviation (X2t-

X2t-1) ¼ ΔX2t

+ + + � + � + + +

Product of

signs of

deviations¼
ΔX1t � ΔX2t

� + + � + + + � �

Here, c ¼ number of positive signs in

products of sign ¼5 and

N ¼ number of deviations ¼ number of pairs

of observations �1 ¼ 10-1 ¼ 9.

So the coefficient of concurrent deviation is

rc ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2c

n
� 1


 �s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2:5

9
� 1


 �s

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1:11� 1ð Þ

p
¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
þ 0:11ð Þ

p
¼ þ

ffiffiffiffiffiffiffiffiffi
0:11

p
¼ 0:332
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7.11 Calculation of Correlation
Coefficient Using MS Excel,
SPSS, and SAS

Let us take the following information on energy

(K cal) with different combinations of moisture,

protein, lipid, and carbohydrate. With the help this

example, we shall demonstrate how correlation

coefficients could be calculated following

(a) usual procedure of calculation, (b) using MS

Excel, (c) using SPSS, and (d) using SAS software:

Observation

Energy

(K cal) Moisture Protein Lipid Carbohydrate

y x1 x2 x3 x4

1 163 73.70 12.90 11.50 0.90

2 191 70.40 13.30 14.50 0.70

3 185 70.40 13.90 13.30 1.50

4 170 72.80 13.50 12.00 0.80

5 170 72.80 13.80 12.00 0.80

6 161 73.70 13.10 11.10 1.00

7 170 72.60 13.10 11.80 1.70

8 173 70.12 13.20 12.46 0.90

9 178 71.23 13.60 12.76 0.87

10 167 73.21 12.97 11.97 0.77

11 182 70.02 13.76 13.78 1.34

12 184 69.12 13.77 13.98 1.23

13 174 70.07 13.34 12.45 0.45

14 168 73.23 12.98 11.77 0.77

15 162 74.12 12.77 11.34 0.87

16 182 69.77 13.77 13.57 1.45

17 191 68.12 13.98 14.54 1.77

18 161 74.77 12.87 11.22 0.95

19 164 74.27 12.99 12.34 0.97

20 185 71.23 13.87 13.65 1.17

Solution

(a) From the given table, we can frame the

following table in the next page, and the

following quantities could be calculated:

y ¼ 1

20

X20
i¼1

yi ¼
1

20
� 3481:000 ¼ 174:050, x1

¼ 1

20

X20
i¼1

x1i ¼ 1

20
� 1435:680 ¼ 71:784

x3 ¼ 1

20

X20
i¼1

x3i ¼ 1

20
� 252:030 ¼ 12:602,

x4 ¼ 1

20

X20
i¼1

x4i ¼ 1

20
� 20:910 ¼ 1:046

s2y ¼
1

n

Xn
i¼1

yi � yð Þ
2

¼ 1

n

Xn
i¼1

yi
2 � y2

¼ 1

20
:607769:00� 174:0502 ¼ 95:048

s2x1 ¼
1

n

Xn
i¼1

x1i � x1ð Þ2 ¼ 1

n

Xn
i¼1

x21i � x1
2

¼ 1

20
:103131:44� 71:7842 ¼ 3:630

s2x2 ¼
1

n

Xn
i¼1

x2i � x2ð Þ2 ¼ 1

n

Xn
i¼1

x22i � x2
2

¼ 1

20
:3580:11� 13:3742 ¼ 0:155

s2x3 ¼
1

n

Xn
i¼1

x3i � x3ð Þ2 ¼ 1

n

Xn
i¼1

x23i � x3
2

¼ 1

20
:3198:69� 12:6022 ¼ 1:137

s2x4 ¼
1

n

Xn
i¼1

x4i � x4ð Þ2 ¼ 1

n

Xn
i¼1

x24i � x4
2

¼ 1

20
:24:19� 1:0462 ¼ 0:116

Cov x; yð Þ ¼ 1

n

Xn
i¼1

xi � xð Þ yi � yð Þ

Cov x1; yð Þ ¼ 1

n

Xn
i¼1

x1i � xð Þ yi � yð Þ

¼ 1

20

Xn
i¼1

x1iyi � x1y ¼ 1

20
:249547:81� 71:784

� 174:050 ¼ �16:615

Cov x2; yð Þ ¼ 1

n

Xn
i¼1

x2i � xð Þ yi � yð Þ

¼ 1

20

Xn
i¼1

x2iyi � x2y ¼ 1

20
:46615:23� 13:374

� 174:050 ¼ 3:104

Cov x3; yð Þ ¼ 1

n

Xn
i¼1

x3i � xð Þ yi � yð Þ

¼ 1

20

Xn
i¼1

x3iyi � x3y ¼ 1

20
:44066:78� 12:602

� 174:050 ¼ 10:048

Cov x4; yð Þ ¼ 1

n

Xn
i¼1

x4i � xð Þ yi � yð Þ

¼ 1

20

Xn
i¼1

x4iyi � x4y ¼ 1

20
:3668:30� 1:046

� 174:050 ¼ 1:446
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Now, we know that

rxy ¼ Cov x; yð Þffiffiffiffiffiffiffiffiffiffiffi
sxx sy

p

∴rx1y ¼
Cov x1; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx1 � sy

p ¼ �16:615ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:630 � 95:048

p

¼ �0:895

rx2y ¼
Cov x2; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx2 � sy

p ¼ 3:104ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:155 � 95:048

p

¼ 0:809

rx3y ¼
Cov x3; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx3 � sy

p ¼ 10:048ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:137 � 95:048

p

¼ 0:967

rx4y ¼
Cov x4; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx4 � sy

p ¼ 1:446ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:116 � 95:048

p ¼ 0:435

(b) Correlation analysis using MS Excel:

Step-1: Go to data followed by data analysis.
Select correlation from Analysis tool.

Slide 1: Showing the entered or transferred

data and selection of Correlation Analysis

menu from data analysis tool pack in MS

Excel work book

214 7 Correlation Analysis



Step-2: Select input range and fill up other

options as shown in slide 2.

Slide 2: Showing the entered or transferred

data and selection of data range and other

required entries in Correlation Analysis

menu in MS Excel

Step 3: The output will be as given below:

Variable Y X1 X2 X3 X4

Y 1.000

X1 �0.895 1.000

X2 0.809 �0.770 1.000

X3 0.967 �0.868 0.755 1.000

X4 0.435 �0.411 0.480 0.419 1.000
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(c) Correlation analysis using SPSS:

Step 1: Either enter the data in SPSS data file or

import from the MS EXCEL file to get the

following slide.

Slide 3: SPSS data editor showing the data

for correlation analysis
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Step 2: Go to Analysis Correlate Click on bivari-

ate as shown below.

Step 3: Pass the required variables to variable

selection panel as shown below in slide

5, and click onto OK.

Slide 4: Data analysis menu in SPSS
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Slide 5: Selection of required options in

SPSS Analysis tool.

Step 4: SPSS output will be as given below:

Slide 6: SPSS output of correlation analysis

Correlations

Y X1 X2 X3 X4

Y Pearson correlation 1 -.895a .809a .967a .435

Sig. (two-tailed) .000 .000 .000 .055

N 20 20 20 20 20

X1 Pearson correlation -.895a 1 -.770a -.868a -.411

Sig. (two-tailed) .000 .000 .000 .072

N 20 20 20 20 20

X2 Pearson correlation .809a -.770a 1 .755a .480b

Sig. (two-tailed) .000 .000 .000 .032

N 20 20 20 20 20

X3 Pearson correlation .967a -.868a .755a 1 .419

Sig. (two-tailed) .000 .000 .000 .066

N 20 20 20 20 20

X4 Pearson correlation .435 -.411 .480b .419 1

Sig. (two-tailed) .055 .072 .032 .066

N 20 20 20 20 20
aCorrelation is significant at the 0.01 level (two-tailed)
bCorrelation is significant at the 0.05 level (two-tailed)
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(d) Correlation analysis using SAS:

Using the SAS, the same analysis can be done

as follows:

Step1: Enter the data or import data in SAS data

editor as shown below.

Slide 7: Showing the data input for correla-

tion analysis using the SAS.
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Step 2: Complete the data editor as shown in the

slide 8.

Slide 8: Data ready for analysis as below

Step3: Click on the submit button to have output.

Slide 9: Correlation output using SAS
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Readers may please note that all the four

processes have resulted in the same correlation

coefficient between Y variable and X1, X2, X3, X4

separately. Additionally, through MS Excel,

SPSS, or SAS, one can have correlation

coefficients between any pair of variables. Also

one can get the significant levels of the

correlation coefficients through analysis either

in SPSS or SAS directly, because of inbuilt

nature of these two softwares, which were not

possible either through manual calculation or

calculation through MS Excel. Thus, the statisti-

cal softwares have these own advantages.
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Regression Analysis 8

8.1 Introduction

During correlation analysis the relationship

between the variables was assumed to be

linear. Correlation analysis has its focal point of

interest on measuring the strength of the linear

associationship; it has no intention in finding the

actual linear relationship between the variables.

But in all practical purposes, we need to know

the exact linear relationship; we want to know

how the change in one variable affects the other

variable(s). In nature, population characteristics

are interrelated, and thereby change in one

variable is associated with change in other

variables also. As such unless and otherwise we

know the relationship among the variables, it

is very difficult to quantify the nature of changes

in variables associated with the changes in

other variables. Regression analysis facilitate

in knowing the linear relationship among the

variables.

Regression analysis may broadly be

categorized into two categories: (a) simple linear

regression analysis and (b) multiple linear

regression analysis. In simple linear regression

analysis, we are interested in finding the linear

relationship between two variables. Thus, if X1

and X2 are two variables, in simple regression

analysis, we are interested in finding the func-

tional form of the relationship X1 ¼ f(X2, u) or

X2 ¼ g(X1,v), where “u” and “v” are the respec-

tive random components. On the other hand, in

multiple regression analysis, we are in search of

the linear relationship of the form X1 ¼ f(X2, X3,

...., Xk, u) among the variables X1, X2, X3,...., Xk.

Thus, in simple linear regression analysis, only

two variables are involved, whereas in multiple

linear regression analysis, more than two

variables are involved.

Readers may please note that unlike correla-

tion analysis, in this regression analysis, we are

in search of the relationship between a variable

and other variables. In fact in regression analysis,

we are having two groups of variables:

(a) dependent variable and (b) independent vari-

able. Dependent variables are those variables

whose values depend on the values of other

variables, i.e., independent variables. In correla-

tion analysis there was no such dependency; all

variables are treated alike. Thus, regression anal-

ysis is the study of linear dependence of one

variable (the dependent variable) on one or

more independent (explanatory) variables.

Usefulness of Regression Analysis Let us take

the example of academic performance of

students. Academic performance of a student

depends on various factors like age, weight, phy-

sique, mental strength, economic condition,

social condition, and other factors. Regression

analysis helps in getting the relationship between

the academic performance and all other factors

mentioned above; it helps in finding out the rela-

tive role of the individual factors toward
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academic performance; it also helps in predicting

the academic performance for a given set of

values for the factors of academic performance

from the fitted regression line. One can have such

innumerable examples of regression analysis

from different fields of our daily life.

Does Regression Indicate Cause and Effect

Relationship? Through regression analysis one

can comment on the likely change in the depen-

dent variable for the change in a particular inde-

pendent variable keeping other variables at

constant level, but definitely one cannot com-

ment that the cause of such change in the depen-

dent variable is due to the change in a particular

independent variable. Precisely, we are not

analyzing the cause and effect relationship

through regression analysis; we are just getting

the linear relationship among the variables. To

have an idea about the cause and effect relation-

ship, one must go for Granger’s causality test

among the variables.

8.2 Explanation of the Regression
Equation

(a) Simple linear regression equation:

Suppose we have a linear regression equation

X1 ¼ 15 + 1.2X2. We shall now examine what

are the information we can have from the above

relationship:

(i) The relationship between X1 and X2 is lin-

ear, and it is an example of simple linear

regression equation with two variables in

the equation.

(ii) X1 and X2 are the dependent and indepen-

dent variables, respectively, in the

relationship.

(iii) The intercept constant is 15 and it is the

mean value of X1 under the given condition;

the line of regression starts at 15 scale of the

X1 axis.

(iv) The regression coefficient is 1.2; it indicates

that there would be a 1.2 unit change in the

value of the dependent variable X1 with a

unit change in the independent variable X2.

It is also the slope of the regression line.

(b) Multiple linear regression equation:

Suppose we have a multiple linear regress-

ion equation X1 ¼ 10 + 1.2X2�0.8X3 + 1.7X4 +

0.096X5. From this relationship one can have the

following information:

(i) The relationship between the variable X1

and the variables X2, X3, X4, and X5 is linear.

(ii) In the relationship X1 is the dependent andX2,

X3, X4, and X5 are the independent variables.

(iii) For the given set of values for the variables,

the line of regression touches the Y axis at 10.

(iv) The parameters of the regression equation

are 1.2 (the coefficient of X2), 0.8 (the coef-

ficient of X3), 1.7 (the coefficient of X4), and

0.096 (the coefficient of X5) along with the

intercept 10 and excepting the intercept 10,

the other parameters are also known as

the partial regression coefficients of the

variables X2, X3, X4, and X5, respectively.

(v) From the partial regression coefficient, one

can infer that excepting X3 all other inde-

pendent variables are positively correlated

with the dependent variable X1.

(vi) One unit change in X2 variable keeping

other variables at constant level will result

in a 1.2 unit change (in the same direction)

in the dependent variable X1, whereas one

unit change in the variable X3 will result

in a 0.8 unit change in the dependent vari-

able X1 in opposite direction; i.e. one unit

increase in X3 will result in a 0.8 unit

decrease in X1. Other regression coefficients

can also be interpreted in similar way.

8.3 Assumption of Linear
Regression Model

The linear regression equation is based on certain

assumptions, some of which are quite obvious,

but some are needed for better statistical treat-

ment during further analysis toward drawing
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meaningful interpretation about the population

under investigation:

1. The regression equation is linear in a param-

eter, i.e., X1 ¼ β1 þ β2X2þ β3X3 þ β4X4 þ
β5X5 þ β6X6 þ ::::::::þ βk Xk þ u.

2. Independent variables are non-stochastic,

i.e., values taken by X2, X3, X4, X5, ....., Xk

are fixed in repeated samples.

3. For a given set of values of X2, X3, X4, X5,

....., Xk, the expected value of the random

variable u is zero, i.e., E(ui) ¼ 0.

4. Var uið Þ ¼ E u2i
� �� E uð Þð Þ2 ¼ E u2i

� � ¼ σ2

,E uð Þ ¼ 0 by assumption ið Þ½ � ¼ σ 2

)Var (ui/X1) ¼ Var (ui/X2) ¼ Var (ui/X3)

. . .. . ... ¼ σ 2

5. There should not be any autocorrelation

between the disturbances.

Cov ui, uj=Xi,Xi0
� � ¼ 0 i 6¼ j

6. The nonexistence of the correlation between

disturbances and independent variables, i.e.,

rui,Xi ¼ 0¼ > Cov (ui, Xi)

¼ E ui � E uið Þ½ � Xi � E Xið Þ½ �
¼ E ui Xi � E Xið Þð �;½ ½E E Uið Þ½ ½Xi � E Xið Þ�,

vanishes, because E Uið Þ ¼ 0

¼ E ui:Xið Þ � E uið Þ E Xið Þ
¼ E uiXið Þ must be equal to zero

i:e:,E uiXið Þ ¼ 0:

7. Multicollinearity should not exist among the

independent variables, i.e., rxjxj’ ¼ 0; other-

wise there will be a problem of estimation of

the regression parameters.

8. The number of observations (n) must be

greater than the number of parameters ( j)

(number of variables in the regression equa-

tion) to be estimated, i.e., n > j (¼ l. . .. . .k).

9. In a given sample the independent variables

(Xs) should be the variable in the true sense,

i.e., the values of Xs must not be constant,

i.e., Var (Xj) > 0.

10. Correct specification of the regression model

is an essential condition, i.e., the model

should clearly spell out (i) the functional

form of the model (linear in this case),

(ii) the variables and the number of variables

to be included, and (iii) the probabilistic

assumption about the variables.

8.4 Simple Linear Regression
Analysis

The simplest formof the linear regression equation

is known as the simple linear regression equation

in which only two variables (one dependent and

another independent) are involved. Let us suppose

we are providedwith n sets of observations for two

variables X1 (the dependent variable) and X2 (the

independent variable) as follows:

Observation X1values X2values
1 x11 x21
2 x12 x22
3 x13 x23
4 x14 x24
5 x15 x25
:
:
:
:
:

:
:
:
:
:

:
:
:
:
:

n x1n x2n

Now, the problem is to frame a regression equa-

tion of the form X1 ¼ αþ βX2 þ ε, where X1 is

the dependent variable, X2 is the independent vari-

able, and ε is the random error component and is

normally distributed with mean zero and variance

σ2; for both the variables, we are provided with n

pairs of observations. The sample regression equa-

tion of the form x1 ¼ a + bx2 is to be framed from

the given sample values for both the variables; that

means we are to find out the values of a and b.

The above equation is true for every set of

observations; that means

x11 ¼ aþ bx21
x11 ¼ aþ bx21
x12 ¼ aþ bx22
x13 ¼ aþ bx23
x14 ¼ aþ bx24
: : :
: : :
: : :
x1n ¼ aþ bx2n

Thus, we can haveXn
i¼1

x1i ¼
Xn
i¼1

a þ bx2ið Þ
) x1 ¼ a þ bx2
) a ¼ x1 � bx2 8:1ð Þ
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Similarly,

Xn
i¼1

x1ix2i ¼
Xn
i¼1

x2i a þ bx2ið Þ

¼ a
Xn
i¼1

x2i þ b
Xn
i¼1

x22i ¼ a: nx2 þ b
Xn
i¼1

x22i

¼ x1 � bx2ð Þnx2 þ b
Xn
i¼1

x22i ¼ nx1x2 � nbx2
2 þ b

Xn
i¼1

x22i

¼ nx1x2 þ b
Xn
i¼1

x22i � nx2
2

 !
8:2ð Þ

or b
Xn
i¼1

x22i � nx2
2

 !
¼
Xn
i¼1

x1ix2i � nx1x2

or b ¼

Xn
i¼1

x1ix2i � nx1x2

Xn
i¼1

x22i � nx2
2

 ! ¼ SP x1; x2ð Þ
SS x2ð Þ ¼ rx1x2Sx1

Sx2
8:3ð Þ

where SP is the sum of products of the two

variables and SS is the sum of squares of the

variable, i.e., SP(x1,x2) ¼ n Cov(x1,x2) and SS

(x1 or x2) ¼ n Var(x1or x2)
Thus,

x1 ¼ a þ bx2
¼ x1 � bx2 þ bx2
¼ x1 þ b x2 � x2ð Þ
¼ x1 þ rx1x2

Sx1
Sx2

x2 � x2ð Þ

A more convenient form is x1 � x1 ¼
rx1x2

Sx1
Sx2

x2 � x2ð Þ.
Similarly, if one wants to form a regression

line of X2 on X1, it would be x2 � x2 ¼

rx1x2
Sx2
Sx1

x1 � x1ð Þ where X1 is the independent

and X2 is the dependent variable. In Sect. 8.9

we shall demonstrate how the parameters of the

simple regression equation could be estimated

using the technique of ordinary least square

(OLS). In the following section, let us discuss

the properties of the regression coefficients.

Example 8.1

Find out the correlation between weight of eggs

and number of eggs laid per cycle in a certain

poultry bird, and find the regression of the weight

of eggs on hatching:

Weight of egg(s) (g) 45 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Hatching 80 80 85 88 92 92 90 91 92 92 89 86 84 82 80
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Solution From the given problem, we are to

calculate the correlation coefficient between the

weights of eggs (Y ) and the hatching (X); also we

are to find out the regression equation of Y on X.

Now from the above information, let us construct

the following table:

Cov X; Yð Þ ¼ Sxy ¼
X

X � X
� �

Y � Y
� �

n

¼ 5:73

15
¼ 0:38

S2x ¼
X

X � X
� �2
n

¼ 315:73

15
¼ 21:05

S2y ¼
X

Y � Y
� �2
n

¼ 311:73

15
¼ 20:78

∴rxy ¼ Cov X; Yð Þ
SXSy

¼ 0:38ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:05� 20:78ð Þp ¼ 0:0183

So there is a very small correlation between the

two variables.

Regression Analysis Parameter estimation:

byx ¼ Sxy
S2x

¼ 0:38
21:05 ¼ 0:0182

Intercept b0ð Þ ¼ Y � bX
¼ 53:87� 0:0185� 86:87
¼ 52:29

Hence the regression equation of the weight of

eggs on hatching is Y ¼ 52:29þ 0:0182X

Example 8.2

From the following data, find out the simple

linear regression for X1 on X2 and X1 on X3

using the usual procedure:

X1 1.83 1.56 1.85 1.9 1.7 1.8 1.85 1.73 1.95 1.67 1.82 1.84 1.74 1.68 1.62 1.82 1.91 1.61 1.64 1.85

X2 13 10 12 14 12 13 12 10 14 13 16 14 11 12 11 15 15 12 13 15

X3 12 10 11 11 12 11 11 10 11 12 14 14 9 8 9 13 13 9 10 13

Observations Weight of eggs (Y ) Hatching (X) (Y � Y) (X � X) Y � Y
� �2

X � X
� �2

X � X
� �

Y � Y
� �

1. 45 80 �8.87 �6.87 78.62 47.15 60.88

2. 48 80 �5.87 �6.87 34.42 47.15 40.28

3. 49 85 �4.87 �1.87 23.68 3.48 9.08

4. 50 88 �3.87 1.13 14.95 1.28 �4.38

5. 51 92 �2.87 5.13 8.22 26.35 �14.72

6. 52 92 �1.87 5.13 3.48 26.35 �9.58

7. 53 90 �0.87 3.13 0.75 9.82 �2.72

8. 54 91 0.13 4.13 0.02 17.08 0.55

9. 55 92 1.13 5.13 1.28 26.35 5.82

10. 56 92 2.13 5.13 4.55 26.35 10.95

11. 57 89 3.13 2.13 9.82 4.55 6.68

12. 58 86 4.13 �0.87 17.08 0.75 �3.58

13. 59 84 5.13 �2.87 26.35 8.22 �14.72

14. 60 82 6.13 �4.87 37.62 23.68 �29.85

15. 61 80 7.13 �6.87 50.88 47.15 �48.98

Sum 808.00 1303.00 0.00 0.00 311.73 315.73 5.73

Average 53.87 86.87
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Solution We have no. of observations n ¼ 20.

Let us construct the following table from the

above data:

s2X2
¼ 1

n

Xn
i¼1

X2i � X2

� �
2 ¼ 1

n

Xn
i¼1

X2
2i � X2

2 ¼ 1

20
� 3357:000� 12:8502 ¼ 2:727

s2X3
¼ 1

n

Xn
i¼1

X3i � X3

� �
2 ¼ 1

n

Xn
i¼1

X2
3i � X3

2 ¼ 1

20
� 2543:000� 11:1502 ¼ 2:827

Cov X2;X1ð Þ ¼ 1

n

Xn
i¼1

X2i � X2

� �
X1i � X1

� � ¼ 1

20

Xn
i¼1

X2iX1i � X2X1

¼ 1

20
� 456:840� 12:850 � 1:769 ¼ 0:116

Cov X3;X1ð Þ ¼ 1

n

Xn
i¼1

X3i � X3

� �
X1i � X1

� � ¼ 1

20

Xn
i¼1

X3iX1i � X3X1

¼ 1

20
� 396:500� 11:150 � 1:769 ¼ 0:106

Observation X1 X2 X3 X1
2 X2

2 X3
2 X1X2 X1X3

1. 1.83 13.00 12.00 3.35 169.00 144.00 23.79 21.96

2. 1.56 10.00 10.00 2.43 100.00 100.00 15.60 15.60

3. 1.85 12.00 11.00 3.42 144.00 121.00 22.20 20.35

4. 1.90 14.00 11.00 3.61 196.00 121.00 26.60 20.90

5. 1.70 12.00 12.00 2.89 144.00 144.00 20.40 20.40

6. 1.80 13.00 11.00 3.24 169.00 121.00 23.40 19.80

7. 1.85 12.00 11.00 3.42 144.00 121.00 22.20 20.35

8. 1.73 10.00 10.00 2.99 100.00 100.00 17.30 17.30

9. 1.95 14.00 11.00 3.80 196.00 121.00 27.30 21.45

10. 1.67 13.00 12.00 2.79 169.00 144.00 21.71 20.04

11. 1.82 16.00 14.00 3.31 256.00 196.00 29.12 25.48

12. 1.84 14.00 14.00 3.39 196.00 196.00 25.76 25.76

13. 1.74 11.00 9.00 3.03 121.00 81.00 19.14 15.66

14. 1.68 12.00 8.00 2.82 144.00 64.00 20.16 13.44

15. 1.62 11.00 9.00 2.62 121.00 81.00 17.82 14.58

16. 1.82 15.00 13.00 3.31 225.00 169.00 27.30 23.66

17. 1.91 15.00 13.00 3.65 225.00 169.00 28.65 24.83

18. 1.61 12.00 9.00 2.59 144.00 81.00 19.32 14.49

19. 1.64 13.00 10.00 2.69 169.00 100.00 21.32 16.40

20. 1.85 15.00 13.00 3.42 225.00 169.00 27.75 24.05

Total 35.370 257.000 223.000 62.789 3357.000 2543.000 456.840 396.500

Mean 1.769 12.850 11.150
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(a) Now the regression equation of X1 on X2 is

given by

X1 � X1

� � ¼ bx1x2 X2 � X2

� �
) X1 � 1:769ð Þ ¼ Cov X2;X1ð Þ

s2x2
X2 � 12:850ð Þ

¼ 0:116

2:727
X2 � 12:850ð Þ ¼ 0:042 X2 � 12:850ð Þ

¼ 0:042X2 � 0:539

) X1 ¼ 1:769þ 0:042X2 � 0:539

) X1 ¼ 1:230þ 0:042X2

(b) Now the regression equation of X1 on X3

is given by

X1 � X1

� � ¼ bx1x3 X3 � X3

� �
) X1 � 1:769ð Þ ¼ Cov X3;X1ð Þ

s2x3
X3 � 11:150ð Þ

¼ 0:106

2:827
X3 � 11:150ð Þ ¼ 0:037 X3 � 11:150ð Þ

¼ 0:037X3 � 0:412

) X1 ¼ 1:769þ 0:037X3 � 0:412

) X1 ¼ 1:357þ 0:037X3

Example 8.3

Find out the correlation between age (X) and

brooding temperature (Y ), and find out the

regression of the brooding temperature on the

age of chicks (Wk):

Age of chicks

(Wk)
0.5 1.5 2.5 3.5 4.5 5.5

Brooding

temperature

34.5 29 28.5 26 24 21

Solution From the above table, let us construct

the following table:

Cov X; Yð Þ ¼ Sxy ¼
X

X � X
� �

Y � Y
� �

n

¼ �42:50

6
¼ �7:083

Sx
2 ¼

X
X � X
� �2
n

¼ 17:50

6
¼ 2:91

Sy
2 ¼

X
Y � Y
� �2
n

¼ 108:33

6
¼ 18:056

∴rxy ¼ Cov X; Yð Þ
SXSy

¼ 0:38ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21:05� 20:78ð Þp ¼ 0:0183

No. of

observations

Brooding

temperature (Y )
Age of

chicks (X) (Y � Y) (X � X) Y � Y
� �2

X � X
� �2

X � X
� �

Y � Y
� �

1. 34.5 0.5 7.33 �2.50 53.78 6.25 �18.33

2. 29.0 1.5 1.83 �1.50 3.36 2.25 �2.75

3. 28.5 2.5 1.33 �0.50 1.78 0.25 �0.67

4. 26.0 3.5 �1.17 0.50 1.36 0.25 �0.58

5. 24.0 4.5 �3.17 1.50 10.03 2.25 �4.75

6. 21.0 5.5 �6.17 2.50 38.03 6.25 �15.42

Sum 163.00 18.00 0.00 0.00 108.33 17.50 �42.50

Average 27.17 3.00
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Estimation of regression parameters:

byx ¼ Sxy

S2x
¼ �7:083

2:91
¼ �2:429

b1 ¼ �2:429

Intercept b0ð Þ ¼ Y � bX
¼ 27:17� �2:429ð Þ � 3

¼ 34:452

b0 ¼ 34:452

Hence, the regression equation of the brooding

temperature on the age of chicks is

Y ¼ 34:452� 2:429X

Example 8.4

The following table gives the information on the

number of birds per pen and area of the pen. Find

out the relationship of area with the birds per pen:

Birds/pen 25 100 200 500

Area (sq. ft) 88 300 500 1000

Solution From the given data, let us construct

the following table:

No. of

obser-

vations

Area

(sq. ft)

(Y )

Birds/

pen

(X) X � X
� �2

X � X
� �

Y � Y
� �

1. 88 25 32851.56 69600.00

2. 300 100 11289.06 18275.00

3. 500 200 39.06 �175.00

4. 1000 500 86289.06 155100.00

Sum 1888.00 825.00 130468.75 242800.00

Average 472.00 206.25

Cov X; Yð Þ ¼ Sxy ¼
X

X � X
� �

Y � Y
� �

n

¼ 242800

4
¼ 60700

S2x ¼
X

X � X
� �2
n

¼ 130468:75

4
¼ 32617:19

byx ¼ Sxy

S2x
¼ 60700

34617:19
¼ 1:86

b1 ¼ 1:86

Intercept b0ð Þ ¼ Y � bX
¼ 472:0� 1:86� 206:25 ¼ 88:17

b0 ¼ 88:17

Hence, the regression equation of the area on

birds/pen of chicks is

Y ¼ 88:17þ 1:86X

8.5 Properties of Regression
Coefficient

8.5.1 Regression Coefficient

Regression coefficient measures the amount of

change expected in the dependent variable due

to a unit change in the independent variable.

Thus, for the above two regression equations of

X1 on X2,

i.e., x1 � x1ð Þ ¼ rx1x2
Sx1
Sx2

x2 � x2ð Þ or

x1 ¼ x1 þ rx1x2
Sx1
Sx2

x2 � x2ð Þ

¼ x1 � rx1x2
Sx1
Sx2

x2

� �
þ rx1x2

Sx1
Sx2

x2

¼ a1 þ b1x2

ð8:4Þ

and X2 on X1,

i.e., x2 � x2ð Þ ¼ rx1x2
Sx2
Sx1

x1 � x1ð Þ
or

x2 ¼ x2 þ rx1x2
Sx2
Sx1

x1 � x1ð Þ

¼ x2 � rx1x2
Sx2
Sx1

x1

� �
þ rx1x2

Sx2
Sx1

x1

¼ a2 þ b2x1

ð8:5Þ

b1 and b2 are the two regression coefficients

of X1 on X2 and X2 on X1, respectively. The

regression coefficients b1 and b2 are also written

as b1 ¼ rx1x2
Sx1
Sx2

¼ bx1x2 and b2 ¼ rx1x2
Sx2
Sx1

¼ bx2x1 ,

respectively.
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8.5.2 The Sign of the Regression
Coefficient

We know that rx1x2
Sx1
Sx2

¼ bx1x2 .

BothSx1 andSx2 are positive quantities, being the

standard deviations, so the sign of bx1x2 depends on

the sign of rx1x2 . Again the sign of the correlation

coefficient depends on the sign of the covariance

between the variables. Thus, the sign of the covari-

ance will be the sign of the regression coefficient.

8.5.3 Relation Between Correlation
Coefficient and the Regression
Coefficients

We have x1 ¼ x1 þ rx1x2
Sx1
Sx2

x2 � x2ð Þ ¼
x1 � rx1x2

Sx1
Sx2
x2

� 	
þ rx1x2

Sx1
Sx2

x2 ¼ a1 þ b1x2 and

x2 ¼ x2 þ rx1x2
Sx2
Sx1

x1 � x1ð Þ ¼ x2 � rx1x2
Sx2
Sx1
x1

� 	
þ

rx1x2
Sx2
Sx1

x1 ¼ a2 þ b2x1. Thus two regression

coefficients b1 and b2 and their product would be

b1:b2 ¼ rx1x2
Sx1
Sx2

x2:rx1x2
Sx2
Sx1

x1 ¼ r2
x1x2

) ffiffiffiffiffiffiffiffiffiffi
b1:b2

p ¼
ffiffiffiffiffiffiffiffi
r2
x1x2

q
¼ rx1x2

We have already proved that the correlation

coefficient and the regression coefficient will

have the same sign.

Therefore, r is the geometric mean of the two

regression coefficients.

8.5.4 Relation Between Regression
Coefficients

We have

b1b2 ¼ r2x1x2 � 1

) b2 � 1

b1
or, b1 � 1

b2

Thus if one of the regression coefficients is

greater than the unity, then the other one must be

less than the unity.

8.5.5 AM and GM of Regression
Coefficients

We know,

ffiffiffiffiffi
b1

p � ffiffiffiffiffi
b2

p� �2 � 0
b1 þ b2

2
�

ffiffiffiffiffiffiffiffiffi
b1b2

p
� r

The arithmetic mean of the two

regression coefficients is greater than or

equal to the correlation coefficient between

the variables.

8.5.6 Range of Regression
Coefficient

The regression coefficient of X1 on X2 is given as

rx1x2
sx1
sx2
.

We know 1 � rxy � �1,1 � Sx � 0 and

1 � Sy �0.

bx1x2 ¼ rx1x2
Sx1
Sx2

¼ �1
1 � Sx1 � 0

1 � Sx2 � 0
∴1 � bx1x2 � �1

8.5.7 Effect of Change of Origin
and Scale on Regression
Coefficient

For two variables X1 and X2 having means,

variances, and covariance X1, X2 and S2x1 ,

S2x2 and Sx1x2 , respectively, one can construct

two more variables such that

U
i
¼ X1i � p

m
) X1i ¼ pþ mUi

and

Vi ¼ X2i � q

n
) X2i ¼ qþ nVi

where m, n, p, and q are constants.
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Now from 7.3 (iii), we know that

Cov X1;X2ð Þ ¼ mn:Cov U;Vð Þ
and

S2X1
¼ m2S2U

Similarly

S2X2
¼ n2S2V

∴bx1x2 ¼
Cov X1;X2ð Þ

S2X2

¼ mnCov U;Vð Þ
n2S2V

¼ m

n
bUV

Similarly, bx2x1 ¼
Cov X1;X2ð Þ

S2X1

¼ mnCov U;Vð Þ
m2S2U

¼ n

m
bVU

So, regression coefficient does not depend on

change of origin but depends on change of scales

of the variables concerned.

8.5.8 Angle Between Two Lines
of Regression

For two variables X1 and X2, we have two

regression lines

x1 ¼ x1 þ rx1x2
Sx1
Sx2

x2 � x2ð Þ

or x1 � x1ð Þ ¼ rx1x2
Sx1
Sx2

x2 � x2ð Þ

and

x2 ¼ x2 þ rx1x2
Sx2
Sx1

x1 � x1ð Þ

or x2 � x2ð Þ ¼ rx1x2
Sx2
Sx1

x1 � x1ð Þ

or x1 � x1ð Þ ¼ Sx1
rx1x2Sx2

x2 � x2ð Þ

So the gradient of the regression line of X1 on X2

is b1 ¼ rx1x2
sx1
sx2
, and the gradient for the regression

line of X2 on X1 is b2 ¼ sx2
rx1x2 sx1

.

Let us suppose the angle between the two

lines is θ, so

tan θ ¼ b2 � b1
1þ b1b2

¼
sx2

rx1x2sx1
� rx1x2

sx2
sx1

1þ sx2
sx1

sx2
sx1

¼

sx2 � r2
x1x2

sx2

rx1x2sx1
s2
x1
þ s2

x2

s2
x1

¼

sx2 1�r2
x1x2

� 	
rx1x2sx1
s2
x1
þ s2

x2

s2
x1

¼
sx2sx1 1�r2

x1x2

� 	
s2
x1
þ s2

x2

� 	
rx1x2

∴θ ¼ tan �1
1�r2

x1x2

� 	
rx1x2

sx2sx1

s2
x1
þ s2

x2

� 	
2
4

3
5

Putting r ¼ � 1, we have θ ¼0, i.e., the two
regression lines coincide with each other, and

when r ¼ 0, θ ¼90
	
, i.e., the regression lines

are perpendicular to each other.
Thus as the value of the correlation coefficient

between the variables approaches to � 1, the

angle between them gets reduced.

8.5.9 Regression with Zero Intercept

If the variables are measured from their respec-

tive means, then the regression equation

passes through the origin. We have the regres-

sion equation of X1 on X2 as

x1 ¼ x1 þ rx1x2
Sx1
Sx2

x2 � x2ð Þ

Or x1 � x1ð Þ ¼ rx1x2
Sx1
Sx2

x2 � x2ð Þ
Or x01bx1x2x

0
2 where x01 ¼ x1 � x1 and x02 ¼ x2 � x2
� �

Thus, by measuring the variables from their

respective means, the intercept term from the

regression equation can be removed.
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Example 8.5

Using the same information provided in

Example 8.2, find out the regression equations

measuring the variables from their respective

means:

Solution Using the deviations of the variables

from their respective means, let us construct the

following table.

From the table above, we haveP
x22 ¼ 54:550;

P
x23 ¼ 56:550;

P
x1x2 ¼

2:336;
P

x1x3 ¼ 2:125

In the deviation form, we have

bx1x2 ¼
X

x2x1X
x22

¼ 2:336

54:550
¼ 0:042

Hence the regression line of X1 on X2 is given by

x1 ¼ 0:042x2 ; transforming back to original

variables, we have

X1 � X1

� � ¼ X2 � X2

� �
0:042

or X1 � 1:769ð Þ ¼ X2 � 12:850ð Þ0:042
¼ 0:042X2 � 0:539

or X1 ¼ 1:769þ 0:042X2 � 0:539

∴ X1 ¼ 1:230þ 0:042X2

bx1x3 ¼
X

x3x1X
x23

¼ 2:125

56:550
¼ 0:037

Hence the regression line of X1 on X3 is given by

X1 1.83 1.56 1.85 1.9 1.7 1.8 1.85 1.73 1.95 1.67 1.82 1.84 1.74 1.68 1.62 1.82 1.91 1.61 1.64 1.85

X2 13 10 12 14 12 13 12 10 14 13 16 14 11 12 11 15 15 12 13 15

X3 12 10 11 11 12 11 11 10 11 12 14 14 9 8 9 13 13 9 10 13

Observation X1 X2 X3 x1 ¼ X1i � X1 x2 ¼ X2i � X2 x3 ¼ X3i � X3 x2
2 x3

2 x1x2 x1x3

1. 1.83 13.00 12.00 0.061 0.150 0.850 0.023 0.722 0.009 0.052

2. 1.56 10.00 10.00 �0.209 �2.850 �1.150 8.123 1.323 0.596 0.240

3. 1.85 12.00 11.00 0.081 �0.850 �0.150 0.722 0.023 �0.069 �0.012

4. 1.90 14.00 11.00 0.131 1.150 �0.150 1.323 0.023 0.151 �0.020

5. 1.70 12.00 12.00 �0.069 �0.850 0.850 0.722 0.722 0.059 �0.059

6. 1.80 13.00 11.00 0.031 0.150 �0.150 0.023 0.023 0.005 �0.005

7. 1.85 12.00 11.00 0.081 �0.850 �0.150 0.722 0.023 �0.069 �0.012

8. 1.73 10.00 10.00 �0.039 �2.850 �1.150 8.123 1.323 0.111 0.045

9. 1.95 14.00 11.00 0.181 1.150 �0.150 1.323 0.023 0.208 �0.027

10. 1.67 13.00 12.00 �0.099 0.150 0.850 0.023 0.722 �0.015 �0.084

11. 1.82 16.00 14.00 0.051 3.150 2.850 9.923 8.123 0.161 0.145

12. 1.84 14.00 14.00 0.071 1.150 2.850 1.323 8.123 0.082 0.202

13. 1.74 11.00 9.00 �0.029 �1.850 �2.150 3.423 4.623 0.054 0.062

14. 1.68 12.00 8.00 �0.089 �0.850 �3.150 0.722 9.923 0.076 0.280

15. 1.62 11.00 9.00 �0.149 �1.850 �2.150 3.423 4.623 0.276 0.320

16. 1.82 15.00 13.00 0.051 2.150 1.850 4.623 3.423 0.110 0.094

17. 1.91 15.00 13.00 0.141 2.150 1.850 4.623 3.423 0.303 0.261

18. 1.61 12.00 9.00 �0.159 �0.850 �2.150 0.722 4.623 0.135 0.342

19. 1.64 13.00 10.00 �0.129 0.150 �1.150 0.023 1.323 �0.019 0.148

20. 1.85 15.00 13.00 0.081 2.150 1.850 4.623 3.423 0.174 0.150

Total 35.37 257 223 54.550 56.550 2.336 2.125

Average 1.769 12.850 11.150
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x1 ¼ 0:039x3 ; transforming back to original

variables, we have

X1 � X1

� � ¼ X3 � X3

� �
0:037

or X1 � 1:769ð Þ ¼ X3 � 11:150ð Þ0:037
¼ 0:037X3 � 0:412

or X1 ¼ 1:769þ 0:037X3 � 0:412

∴ X1 ¼ 1:357þ 0:037X3

Example 8.6

The following table gives the information on the

number of birds per pen and area of the pen. Find

out the relationship of area with the birds per pen

and vice versa. Also find out the angle between

the two lines of regression:

Birds/pen 25 100 200 500

Area (sq. ft) 88 300 500 1000

Solution From the given data, let us construct

the following table:

Cov X; Yð Þ ¼ Sxy ¼
X

X � X
� �

Y � Y
� �

n

¼ 242800

4
¼ 60700

S2x ¼
X

X � X
� �2
n

¼ 130468:75

4
¼ 32617:19

S2y ¼
X

Y � Y
� �2
n

¼ 456608

4
¼ 114152

byx ¼ Sxy

S2x
¼ 60700

34617:19
¼ 1:86

b1 ¼ 1:86

bxy ¼ Sxy

S2x
¼ 60700

114152
¼ 0:5317 b1

0 ¼ 0.5317

Intercept b0ð Þ ¼ Y � bX
¼ 472:0� 1:86� 206:25 ¼ 88:17

b0 ¼ 88:17

Intercept b0
0

� 	
¼ X � b01Y

¼ 206:25� 0:5317� 472:0
¼ �44:7124

Hence the regression equations are

Y ¼ 88:17þ 1:86X and

X ¼ �44:7124þ 0:5317Y

tan θ ¼ b1 � b0
1

1þ b1b
0
1

∴θ ¼ tan �1 1:86� 0:5317

1þ 1:86� 0:5317
¼ 0:6678 ¼ 0:58

8.6 Identification
of the Regression Equations

Sometimes it becomes very difficult to identify

the dependent and independent variables from

the given relationship. But to know the structure

of dependency is one of the most important

objectives of the regression analysis. One can

find out the dependent and independent variables

following the steps given below:

Step1: Express the equations in terms of two

different dependent variables as per your

own conception or choice.

Step 2: Identify the regression coefficients (say

b1 and b2) from the two equations noted in the

previous step.

No. of observations Area (sq. ft) (Y ) Birds/pen (X) X � X
� �2

Y � Y
� �2

X � X
� �

Y � Y
� �

1. 88 25 32851.56 147456 69600.00

2. 300 100 11289.06 29584 18275.00

3. 500 200 39.06 784 �175.00

4. 1000 500 86289.06 278784 155100.00

Sum 1888.00 825.00 130468.75 456608 242800.00

Average 472.00 206.25 32617.19 114152 60700
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Step 3: Check whether b1 � b2 � 1 or not; (i) if

b1 � b2 � 1, then the two equations have

been identified correctly, because we have

noted that (Sect. 8.5.4) b1 � b2 ¼ r212 � 1 ;

(ii) if b1� b2 > 1, then the regression equations

are not correctly assumed; one has to reverse the

process once again.

Example 8.7

Suppose two regression equations are given

as follows: 2X1�1.2X2�20 ¼ 0 and

1.6X1�0.8X2 + 10 ¼ 0. The problem is to iden-

tify the regression equations, i.e., the regression

equation of X1 on X2 and that of X2 on X1.

Solution Let 2X1�1.2X2�20 ¼ 0 be the regres-

sion equation of X1 on X2. So we can write

X1 ¼ 10þ 0:6X2 ð8:1Þ
and let

1.6X1�0.8X2 + 10 ¼ 0 be the regression

equation of X2 on X1. So

X2 ¼ 10=0:8þ 1:6=0:8X1 ¼ 1:25þ 2X1 ð8:2Þ
Thus from (1) we have b12 ¼ 0.6 and from

(2) b21 ¼ 2.

We know that b12 � b21 ¼ r2 � 1.

For our example, b12 � b21 ¼ 0.6 � 2 ¼
1.2 > 1, not satisfying the relationship of regres-

sion coefficients and the correlation coefficient.

Therefore, we have not assumed the regres-

sion equations correctly.

Now let us assume the reverses.

Let 2X1�1.2X2�20 ¼ 0 be the regression

equation of X2 on X1:

∴X2 ¼ 2

1:2
X1 � 20

1:2
¼ 1:67X1 � 1:67

ð8:3Þ

and 1.6X1�0.8X2 + 10 ¼ 0 be the regression

equation of X1 on X2:

∴ X1 ¼ 0:8

1:6
X2 � 10

1:6
¼ 0:5X2 � 6:25

ð8:4Þ

Thus, we have b21 ¼ 1.67 and b12 ¼ 0.5.

So, b12 � b21 ¼ 1.67 � 0.5 ¼ 0.835 < 1,

satisfying the relationship of regression

coefficients and the correlation coefficient.

So this time the assumptions of the regression

equation were correct. Thus we conclude that

1.6X1�0.8X2 + 10 ¼ 0 is the regression equa-

tion of X1 on X2 and 2X1�1.2X2�20 ¼ 0 is the

regression equation of X2 on X1.

8.7 Expectations and Variances
of the Regression Parameters

As we are dealing with samples and are to infer

about the population based on the sample on hand,

so the inferences are based on estimators b0, the

intercept and b1, the regression coefficient. As

such one should know the properties of the

estimators and their expectations and variances.

Let us assume that X1 and X2 are the dependent

and independent variables respectively. The

expectations of b0 and b1 are given as E

(b0) ¼ β0 and E(b1) ¼ β1. Then corresponding

variances of the estimators are given as

Var b0ð Þ ¼ σ2b0 ¼ σ2 1
n þ x2

ssx2

� 	
, and Var b1ð Þ ¼

σ2b1 ¼ σ2

ssx2
where σ2 is the error variance of the

regression model.

Under the normality assumptionof the dependent

variable and as both the regression estimators are

linear functions of the dependent variable, so these

are also assumed to behave like a normal variate. As

the estimator of σ2 is s2, thus, by replacing σ2 in the
above variance estimates, we have

Var b0ð Þ ¼ σ2b0 ¼ σ2 1
n þ x2

ssx2

� 	
¼ s2 1

n þ x2
ssx2

� 	
and Var b1ð Þ ¼ σ2b1 ¼ σ2

ssx2
¼ s2

ssx2
, and the corres-

ponding standard errors are the square roots of

the variances. Here S2 is the residual mean sum

of squares and is given as

Xn
i¼1

x1i � x̂ 1ð Þ2

d:f : , and x1

is the dependent variable; d.f. is the number of

observations – no. of parameters estimated in the

model – for simple regression equation model,

d.f. would be n�2.

It should be noted that the variance of

residuals is not equal to the error variance, Var

(ei) 6¼ σ2. The residual variance depends on the

independent variable x2. But when the sample

size is large, Var(ei) 
 σ2, which is estimated

by s2, that is, E(s2) ¼ σ2.
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8.8 Test of Significance
for the Regression Coefficient

When there are changes in the dependent variable

due to the change in the independent variable, then

we assume that the regression line has a slope; that

means the slope coefficient is different from zero.

In order to test the same, we have the following

null and alternative hypotheses, respectively:

H0: β1 ¼ 0

H1: β1 6¼ 0

Assuming that the dependent variable follows

normal distribution, we have the following test

statistic under the given hypotheses:

t ¼ b1�0
SE b1ð Þ ¼ b1ffiffiffiffiffiffi

S2

SSx2

q ¼ b1
S

ffiffiffiffiffiffiffiffi
SSx2

p
with (n�2)

degrees of freedom. At α level of significance,

the null hypothesis H0 is rejected if the computed

value of |t| � tα/2,(n�2), where tα/2,(n�2) is a criti-

cal value of t-distribution with (n�2) degrees of

freedom under H0.

8.9 Multiple Linear Regression
Analysis

As has already been mentioned that in multiple

regression analysis, we presume that the depen-

dent variable is no longer dependent on only one

independent variable, rather it is dependent on

many independent variables. The production of a

crop in a country is dependent on the area under

crop and per hectare productivity of the crop for

constituting states of the country. Thus one can

have the regression equation production of a crop

in a country on the area and productivity of the

crop, taking different states under a country.

Again the productivity of any crop (say paddy)

is influenced by many yield components like

number of hills per square meter, number of effec-

tive tillers per hill, length of panicle, number of

grains per panicle, number of chaffy grains per

panicle, weight of 100 grains, etc. So one can very

well frame a multiple regression equation of yield

on such yield components. Thus, multiple linear

regression equation is a more general case in

regression analysis, and simple linear regression

equation may be considered as a particular case of

multiple linear regression equation in which only

two variables are considered at a time.

Extending our idea of simple linear regression

problem explained in Sect. 8.4 to more than one

independent variable, one can estimate the

parameters of the regression equation. Suppose

we have k number of variables X1, X2, . . .. . ..., Xk

of which X1 is the dependent variable and others

are independent variables. So we are to frame an

equation X1 ¼ β1 þ β2X2 þ :::::::::::::: þ βkXk.

But instead of the population, we are provided

with a sample, so from sample observations we

are to work out a linear regression equation of the

form X1 ¼ b1 þ b2X2 þ ::::::::::::::þ bkXk using

the sets of values for X1, X2, ........, XK. We have

also seen that if the variables are measured from

their respective means, then the intercept term b1
does not appear in the regression equation. Let

the above regression equation with variables

measured from their respective means be denoted

as x1 ¼ b2x2 þ ::::::::::::::þ bkxk. This equation is

also true for all sets of observation where

variables are measured from their respective

means; that means

Observtion x1 x2 x3 xK
1 x11 x21 x31:::::::::::::::::::::::::::::::::::xk1
2 x12 x22 x32:::::::::::::::::::::::::::::::::::xk2
3 x13 x23 x33:::::::::::::::::::::::::::::::::::xk3

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
i x1i x2i x3i::::::::::::::::::::::::::::::::::::xki

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
n x1n x2n x3n:::::::::::::::::::::::::::::::::::xkn

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð8:6Þ
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Now multiplying both sides of the above equa-

tion x1 ¼ b2x2 þ :::::::::::::: þ bkxk by x2, x3,

..........., xk, respectively, and taking the sum, we

get the following k equations, known as normal

equations:

X
x1x2 ¼ b2

X
x2
2
þ b3

X
x2x3 þ b4

X
x2x4:::::::::::::::::::::: þ bk

X
x2xkX

x1x3 ¼ b2
X

x2x3 þ b3
X

x2
3

þ b4
X

x3x4:::::::::::::::::::::: þ bk
X

x3xkX
x1x4 ¼ b2

X
x2x4 þ b3

X
x3x4 þ b4

X
x2
4
:::::::::::::::::::::::: þ bk

X
x4xk

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::X

x1xk ¼ b2
X

x2xk þ b3
X

x3xk þ b4
X

x4xk:::::::::::::::::::: þ bk
X

x2
k

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð8:7Þ

Now these b2, b3, . . .. . .. . .. . ..., bk are the

estimates of the β2, βk,........., βk.
Solving the above k�1 equations, k�1 regres-

sion coefficients can be obtained.

8.10 Multiple Linear Regression
Equation Taking Three
Variables

In multiple linear regression analysis with three

variables at a time, one is dependent variable (say

X1) and two independent variables (say X2 and

X3). From the above sets normal equations for a

particular case of three variables, the normal

equations would be

X
x1x2 ¼ b2

X
x2
2

þ b3
X

x3x2X
x1x3 ¼ b2

X
x1x3 þ b3

X
x2
3

)
ð8:8Þ

Solving the above two Eq. in (8.8), we shall getX
x23
X

x1x2 �
X

x2x3
X

x1x3X
x22
X

x23 �
X

x2x3
¼ b2 andX

x22
X

x1x3 �
X

x2x3
X

x1x2X
x22
X

x23 �
X

x2x3
¼ b3

Example 8.8

The following table gives data pertaining to
20 units for three variables X1, X2, and X3. Find

out the linear regression equation of X1 on X2

and X3:

Observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

X1 1.83 1.56 1.85 1.9 1.7 1.8 1.85 1.73 1.95 1.67 1.82 1.84 1.74 1.68 1.62 1.82 1.91 1.61 1.64 1.85

X2 13 10 12 14 12 13 12 10 14 13 16 14 11 12 11 15 15 12 13 15

X3 12 10 11 11 12 11 11 10 11 12 14 14 9 8 9 13 13 9 10 13
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Solution

From the above table, we haveX
x21 ¼ 0:237;

X
x22 ¼ 54:550;

X
x23 ¼

56:550;
X

x1x2 ¼ 2:336;
X

x1x3 ¼ 2:125;X
x2x3 ¼ 42:450;

X
x2x3

� 	2
¼ 1802:003

We Know that

b1 ¼
X

x23
X

x2x1 �
X

x2x3
X

x3x1X
x22
X

x23 �
X

x2x3

� 	2
¼ 56:550 � 2:336� 42:450 � 2:125

54:550 � 56:550� 1802:003

¼ 132:100� 90:206

3084:803� 1802:003
¼ 41:894

1282:799
¼ 0:032

b2 ¼
X

x22
X

x3x1 �
X

x2x3
X

x2x1X
x22
X

x23�
X

x2x3

� 	2
¼ 54:550 � 2:125� 42:450 � 2:336

54:550 � 56:550� 1802:003

¼ 115:918� 99:163

3084:803� 1802:003
¼ 16:755

1282:799
¼ 0:013

Hence the linear regression of x1 on x2 and x3 will
be x1 ¼ 0:032x2 þ 0:013x3 ; transforming back to

original variables, we have

X1 � X1

� � ¼ X2 � X2

� �
0:032þ X3 � X3

� �
0:013; putting the value of X1, X2, and X3, we

have

X1 � 1:769ð Þ ¼ X2 � 12:850ð Þ0:032
þ X3 � 11:150ð Þ0:013

X1 ¼ 1:769þ 0:032X2 � 0:411þ 0:013X3 � 0:144

X1 ¼ 1:214þ 0:032X2 þ 0:013X3

8.11 Estimation of the Parameters
of Linear Regression Model
Using OLS Technique
in the Matrix Form

General linear regression equation of X1 on X2,

X3, ......, Xk in their deviation form is given as

Obser-

vation X1 X2 X3 x1 ¼ X1i � X1 x2 ¼ X2i � X2 x3 ¼ X3i � X3 x1
2 x2

2 x3
2 x1x2 x1x3 x2x3

1. 1.83 13.00 12.00 0.061 0.150 0.850 0.004 0.023 0.722 0.009 0.052 0.128

2. 1.56 10.00 10.00 �0.209 �2.850 �1.150 0.044 8.123 1.323 0.596 0.240 3.278

3. 1.85 12.00 11.00 0.081 �0.850 �0.150 0.007 0.722 0.023 �0.069 �0.012 0.128

4. 1.90 14.00 11.00 0.131 1.150 �0.150 0.017 1.323 0.023 0.151 �0.020 �0.173

5. 1.70 12.00 12.00 �0.069 �0.850 0.850 0.005 0.722 0.722 0.059 �0.059 �0.722

6. 1.80 13.00 11.00 0.031 0.150 �0.150 0.001 0.023 0.023 0.005 �0.005 �0.023

7. 1.85 12.00 11.00 0.081 �0.850 �0.150 0.007 0.722 0.023 �0.069 �0.012 0.128

8. 1.73 10.00 10.00 �0.039 �2.850 �1.150 0.002 8.123 1.323 0.111 0.045 3.278

9. 1.95 14.00 11.00 0.181 1.150 �0.150 0.033 1.323 0.023 0.208 �0.027 �0.173

10. 1.67 13.00 12.00 �0.099 0.150 0.850 0.010 0.023 0.722 �0.015 �0.084 0.128

11. 1.82 16.00 14.00 0.051 3.150 2.850 0.003 9.923 8.123 0.161 0.145 8.978

12. 1.84 14.00 14.00 0.071 1.150 2.850 0.005 1.323 8.123 0.082 0.202 3.278

13. 1.74 11.00 9.00 �0.029 �1.850 �2.150 0.001 3.423 4.623 0.054 0.062 3.978

14. 1.68 12.00 8.00 �0.089 �0.850 �3.150 0.008 0.722 9.923 0.076 0.280 2.678

15. 1.62 11.00 9.00 �0.149 �1.850 �2.150 0.022 3.423 4.623 0.276 0.320 3.978

16. 1.82 15.00 13.00 0.051 2.150 1.850 0.003 4.623 3.423 0.110 0.094 3.978

17. 1.91 15.00 13.00 0.141 2.150 1.850 0.020 4.623 3.423 0.303 0.261 3.978

18. 1.61 12.00 9.00 �0.159 �0.850 �2.150 0.025 0.722 4.623 0.135 0.342 1.828

19. 1.64 13.00 10.00 �0.129 0.150 �1.150 0.017 0.023 1.323 �0.019 0.148 �0.173

20. 1.85 15.00 13.00 0.081 2.150 1.850 0.007 4.623 3.423 0.174 0.150 3.978

Total 35.37 257 223 0.237 54.550 56.550 2.336 2.125 42.450

Average 1.769 12.850 11.150
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X1i ¼ β2X2i þ β3X3i þ ::::::::: þ βkXki þ εi,
(i ¼ 1, 2, 3, ........, n � 1, n; number of

observation). For each set of observations on

X1, X2, X3, ........, Xk, we have

Observation x1 x2 x3 xK u

1 x11 x21 x31::::::::::::::::::::::::xk1 u1
2 x12 x22 x32::::::::::::::::::::::::xk2 u2
3 x13 x23 x33::::::::::::::::::::::::xk3 u3

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
i x1i x2i x3i:::::::::::::::::::::::::::xki ui

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
n x1n x2n x3n::::::::::::::::::::::::::xkn un

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð8:9Þ

i.e.,

1 x11 ¼ β2x21 þ β3x31 þ ::::::::::::::::::::::::þ βkxk1 þ u1
2 x12 ¼ β2x22 þ β3x32 þ ::::::::::::::::::::::::þ βkxk2 þ u2
3 x13 ¼ β2x23 þ β3x33 þ ::::::::::::::::::::::::þ βkxk3 þ u3
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
i x1i ¼ β2x2i þ β3x3i þ ::::::::::::::::::::::::::þ βkxki þ ui
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
n x1n ¼ β2x2n þ β3x3n þ :::::::::::::::::::::::::þ βkxkn þ un

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð8:10Þ

where uis are the error terms associated with each

set of observations.

In matrix notation the above can be written as

x11
x12
x13

x1i

x1n

2
66666666664

3
77777777775
¼

x21 x31 x41 ::::::::::::::::: xk1
x22 x32 x42 ::::::::::::::::: xk2
x23 x33 x43 ::::::::::::::::: xk3
::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::
x2i x3i x4i ::::::::::::::::: xki
:::::::::::::::::::::::::::::::::::::::::::
x2n x3n x4n ::::::::::::::::: xkn

2
66666666664

3
77777777775

β2
β3
β4

βj

βk

2
66666666664

3
77777777775
þ

u2
u3
u4

ui

un

2
66666666664

3
77777777775

X
˜ 1

X
˜

β
˜

U
˜

n� 1 n� k � 1 k � 1 � 1 n� 1

ð8:11Þ

Thus, one can write X
˜ 1

¼ X
˜
β
˜
þ u

˜
.
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The basic idea of ordinary least square tech-

nique is to minimize the sum of squares due to

errors, (us). So we want to minimize

L ¼ u
˜

0u
˜
¼ X

˜ 1
� X

˜
β
˜

� �0
X
˜ 1

� X
˜
β
˜

� �

¼ X
˜ 1

0X
˜ 1

� 2 β
˜

0X
˜

0X
˜ 1

þ β
˜

0 X
˜

0X
˜
β
˜

ð8:12Þ

if b
˜
be the least square estimates of β

˜
, then

∂L
∂β

˜

¼ 0, and writing b
˜
for

β
˜
, we have2X

˜

0X
˜ 1

� 2X
˜

0X
˜
b
˜
¼ 0or X

˜

0X
˜
b
˜
¼ X

˜

0X
˜ 1

or b
˜
¼ X

˜

0X
˜

� ��1

X
˜

0X
˜ 1
, if X

˜

0X
˜

� ��1

exists;

where X
˜

0X
˜

� �
¼X

x22i
X

x2ix3i ::::::::::
X

x2ixKiX
x2ix3i

X
x23i ::::::::::

X
x3ixKi

::::::::: :::::::::: :::::::::: ::::::::::::X
x2ixKi

X
x3ixKi ::::::::::

X
x2Ki

0
BBB@

1
CCCA

and X
˜

0X
˜ 1

¼
x21 x22 :::::::::: x2n
x31 x32 :::::::::: x3n
:::::::::: :::::::::: :::::::::: ::::::::::
xk1 xk2 :::::::::: xkn

0
BB@

1
CCA

x11
x12
:
x1n

0
BB@

1
CCA

¼

X
x2ix1iX
x3ix1i

X
xkix1i

0
BBBBB@

1
CCCCCA

b
˜
¼

b2
b3
:
bk

0
BB@

1
CCA

8.12 Estimation of Regression
Coefficients from Correlation
Coefficients

Readers may please note that ðX
˜

0X
˜
Þ and X

˜

0X
˜ 1

are

nothing but the variance–covariance matrix of

the independent variables and the covariance

matrix between the dependent variable and the

independent variable, respectively. Thus, using

the formula for the correlation coefficient, the

above two matrices can very well be presented

in the form of correlation matrices. That’s why, if

correlation matrices are known, one can find out

the regression equation also. In fact by knowing

the correlation coefficients and variance–covari-

ance, one can find out the regression coefficients.

In the following section, we would show the

calculation regression coefficients from the cor-

relation matrix without going details into the

derivation.

Let R be the correlation matrix for k number

of variables X1, X2, X3, X4, .........., Xk:

R ¼

r11 r12 r13 r14 : ::::::::::::::::::::: r1k
r21 r22 r23 r24 : :::::::::::::::::::::r2k
r31 r32 r33 r34: ::::::::::::::::::::: r3k
::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::
rk1 rk2 rk3 : ::::::::::::::::::::::::: rkk

2
6666664

3
7777775

¼

1 r12 r13 r14 : ::::::::::::::::::::: r1k
r21 1 r23 r24 : :::::::::::::::::::::r2k
r31 r32 1 r34: ::::::::::::::::::::: r3k
::::::::::::::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::::::::::::::::::
rk1 rk2 rk3 : :::::::::::::::::::::::::1

2
6666664

3
7777775

So the minor of any element of the above

matrix is the determinant of the above square

matrix after deleting the row and column of the

concerned element of the matrix, and the cofactor

of the same element is the (�1)r+c minor of the

element. Thus, if one wants to know the cofactor

(Aij) of the (i,j) element from the above square

matrix, then it is the (�1)i+j Mij, where Mij is the

determinant of the above matrix after eliminating

the ith row and jth column from the matrix. Given

the above correlation matrix, the regression

coefficients can be worked out using the formula

bii0 ¼ �Si
Si0

ωii0

ωii
, where ωii and ωii0 are the cofactors

of ii and ii0 elements, respectively, and Si and Si0

are the standard deviationof ith and i0th variables,

respectively:

Thus, for k variable regression equation of X1

on X2, X3, ......., Xk, we have the regression equa-

tion X1 ¼ �S1
S2

ω12

ω11
X2 � S1

S3
ω13

ω11
X3 � ::::::::::::::::::::
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�S1
Sk

ω1k

ω11
Xk. In particular, the regression equation

of X1 on X2 and X3 will be X1 ¼ �S1
S2

ω12

ω11
X2�

S1
S3

ω13

ω11
X3. One can easily find out the ω0s from

the correlation matrix:

R ¼
1 r12 r13
r21 1 r23
r31 r32 1

2
4

3
5

∴ω11 ¼ �1ð Þ1þ1 1 r23
r23 1










 ¼ �1ð Þ1þ1

1� r2
23

� 	
¼ 1� r2

23

� 	
∴ω12 ¼ �1ð Þ1þ2 r21 r23

r31 1










 ¼ �1ð Þ1þ2 r21 � r23:r31ð Þ ¼ � r21 � r23:r31ð Þ

∴ω13 ¼ �1ð Þ1þ3 r21 1

r31 r32










 ¼ �1ð Þ1þ3 r21:r32 � r

31
ð Þ ¼ r21:r32 � r

31
ð Þ

∴ X1 ¼ �S1

S2

ω12

ω11

X2 � S1

S3

ω13

ω11

X3 ¼ �S1

S2

� r21 � r23:r31ð Þ
1� r2

23

� 	 X2 � S1

S3

r21:r32 � r
31

ð Þ
1� r2

23

� 	 X3

¼ S1

S2

r21 � r23:r31ð Þ
1� r2

23

� 	 X2 þ S1

S3

r
31
� r21:r32ð Þ
1� r2

23

� 	 X3

Now replacing the values of S1, S2, S3, r12, r13,

and r23 in the above relationship, one can very

well work out the regression equation.

Example 8.9

Find the correlation coefficients for all possible

combinations of the variables. Hence find out the

correlation matrix of the variables, and work out

the regression equation of body weight (Y ) on

feed intake X1 and age (X2) using the correlation

matrix:

Body

weight (kg)

(Y ) 453 481 580 640 720 820 860 900 1000 1040 1090 1130 1180 1220 1270 1320 1360

Feed (kg) (X1) 3.85 4.5 4.5 4.6 4.6 4.6 4.9 5 5.4 5.7 5.7 5.9 5.9 6.1 6.1 6.3 6.5

Age

(fortnight)

(X2) 39 43.5 53 60 67 74 81 88 95 102 109 116 123 130 137 144 151
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Solution Let us construct the following tables

so as to facilitate the calculation of correlation

coefficients:

Cov X1; Yð Þ ¼ Sx1y ¼
X

x1y

n

¼ 3589:103

17
¼ 211:1237

S2x1 ¼
X

x21
n

¼ 9:8723

17
¼ 0:5807; Sx1 ¼ 0:762

S2y ¼
X

y2

n
¼ 1375734:941

17

¼ 80925:5847; Sy ¼ 284:474,

∴rx1y ¼
Cov X1; Yð Þ

Sx1Sy

¼ 211:1237ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5807� 80925:5847ð Þp ¼ 0:973908

The correlation between body weight and feed is

0.973908:

Cov X2; Yð Þ ¼ Sx2y ¼
X

x2y

n

¼ 165932:85

17
¼ 9760:756

S2x2 ¼
X

x22
n

¼ 2242:88

17
¼ 1190:757; Sx2 ¼ 34:507

∴ rx2y ¼
Cov X2; Yð Þ

Sx2Sy

¼ 9760:7561ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1190:757� 80925:58ð Þp ¼ 0:994326

The correlation between body weight and age is

0.994:

Cov X1;X2ð Þ ¼ Sx1x2 ¼
X

x1x2

n

¼ 438:11

17
¼ 25:77102

∴rx1x2 ¼
Cov X1;X2ð Þ

Sx1Sx2

¼ 25:77102ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5807� 1190:758ð Þp ¼ 0:980018

The correlation between feed and age is 0.980018.

Sn Y X1 X2

(x1 ¼
X1 � X1)

(x2 ¼
X2 � X2)

(y ¼
Y � Y) x1y x2y x1x2 x1

2 x2
2 y2

1. 453.00 3.85 39.00 �1.45294 �55.8529 �491.941 714.7616 27476.36 150.15 2.111038 3119.551 242006.1

2. 481.00 4.50 43.50 �0.80294 �51.3529 �463.941 372.5175 23824.74 195.75 0.644715 2637.125 215241.4

3. 580.00 4.50 53.00 �0.80294 �41.8529 �364.941 293.0263 15273.86 238.5 0.644715 1751.669 133182.1

4. 640.00 4.60 60.00 �0.70294 �34.8529 �304.941 214.3557 10628.1 276 0.494126 1214.728 92989.12

5. 720.00 4.60 67.00 �0.70294 �27.8529 �224.941 158.1204 6265.273 308.2 0.494126 775.7863 50598.53

6. 820.00 4.60 74.00 �0.70294 �20.8529 �124.941 87.8263 2605.391 340.4 0.494126 434.8452 15610.3

7. 860.00 4.90 81.00 �0.40294 �13.8529 �84.9412 34.2263 1176.685 396.9 0.162362 191.904 7215.003

8. 900.00 5.00 88.00 �0.30294 �6.85294 �44.9412 13.61453 307.9792 440 0.091773 46.9628 2019.709

9. 1000.00 5.40 95.00 0.097059 0.147059 55.05882 5.343945 8.096886 513 0.00942 0.021626 3031.474

10. 1040.00 5.70 102.00 0.397059 7.147059 95.05882 37.74394 679.391 581.4 0.157656 51.08045 9036.18

11. 1090.00 5.70 109.00 0.397059 14.14706 145.0588 57.59689 2052.156 621.3 0.157656 200.1393 21042.06

12. 1130.00 5.90 116.00 0.597059 21.14706 185.0588 110.491 3913.45 684.4 0.356479 447.1981 34246.77

13. 1180.00 5.90 123.00 0.597059 28.14706 235.0588 140.3439 6616.215 725.7 0.356479 792.2569 55252.65

14. 1220.00 6.10 130.00 0.797059 35.14706 275.0588 219.2381 9667.509 793 0.635303 1235.316 75657.36

15. 1270.00 6.10 137.00 0.797059 42.14706 325.0588 259.091 13700.27 835.7 0.635303 1776.375 105663.2

16. 1320.00 6.30 144.00 0.997059 49.14706 375.0588 373.9557 18433.04 907.2 0.994126 2415.433 140669.1

17. 1360.00 6.50 151.00 1.197059 56.14706 415.0588 496.8498 23304.33 981.5 1.43295 3152.492 172273.8

Sum 16064.00 90.15 1612.50 3589.103 165932.9 8989.1 9.872353 20242.88 1375735

Avg 944.94 5.30 94.85
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From the above, let us construct the following

correlation matrix:

R ¼
1 ryx1 ryx2
ryx1 1 rx1x2
ryx2 rx1x2 1

2
4

3
5 ¼

1:000000 0:973908 0:994326
0:973908 1:000000 0:980018
0:994326 0:980018 1:000000

2
4

3
5

∴ωyy ¼ �1ð Þ1þ1 1 rx1x2
rx1x2 1










 ¼ �1ð Þ1þ1

1� r2x1x2

� 	
¼ 1� r2x1x2

� 	
¼ 1� 0:9800182 ¼ 0:039564

∴ωyx1 ¼ �1ð Þ1þ2 ryx1 rx1x2

ryx2 1










 ¼ �1ð Þ1þ2 ryx1 � rx1x2 :ryx2

� � ¼ � ryx1 � rx1x2 :ryx2
� �

¼ � 0:973908� 0:980018� 0:994326ð Þ ¼ � �0:000549ð Þ ¼ 0:000549

∴ωyx2 ¼ �1ð Þ1þ3 ryx1 1

ryx2 rx1x2










 ¼ �1ð Þ1þ3 ryx1 :rx1x2 � r

31

� � ¼ ryx1 :rx1x2 � ryx2
� �

¼ 0:973908 � 0:980018� 0:994326ð Þ ¼ �0:039878

∴ y ¼ �Sy

Sx1

ωyx1

ωyy
x1 � Sy

Sx2

ωyx2

ωyy
x2 ¼ �Sy

Sx1

0:000549ð Þ
0:039564

x1 � Sy

Sx2

�0:039878ð Þ
0:039564

x2

¼ �284:474

0:761

0:000549ð Þ
0:039564

x1 � 284:474

34:507

�0:039878ð Þ
0:039564

x2

¼ �5:18350x1 þ 8:30928x2

∴Transforming back to original variables, we

Y � Y ¼ �5:18350 X1 � X1

� �þ 8:30928 X2 � X2ð Þ
or Y ¼ 944:94� 5:18350 X1 � 5:30ð Þ þ 8:30928 X2 � 94:85ð Þ

¼ 944:94� 5:18350 X1 þ 5:18350� 5:30þ 8:30928X2 � 8:309288� 94:85

¼ 944:94þ 27:47255 � 788:1359668� 5:18350X1 þ 8:038X2

¼ 184:27658‐5:18350X1 þ 8:038X2

Example 8.10

Using the same three-variable data set as given in

example 8.2, find out the multiple linear regres-

sion equation of X1 on X2 and X3:

X1 1.83 1.56 1.85 1.9 1.7 1.8 1.85 1.73 1.95 1.67 1.82 1.84 1.74 1.68 1.62 1.82 1.91 1.61 1.64 1.85

X2 13 10 12 14 12 13 12 10 14 13 16 14 11 12 11 15 15 12 13 15

X3 12 10 11 11 12 11 11 10 11 12 14 14 9 8 9 13 13 9 10 13
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Solution The dependent variable is X1 and X2

and X3 are the two independent variables. We

want to construct the regression equation of the

form X1 ¼ b1 + b2X2 + b3X3. From the above

information, the following matrices are

constructed.

The X
˜
and X

˜ 1
matrices for the data can be

obtained as

X
˜
¼

1 13:00 12:00
1 10:00 10:00
: : :
: : :
1 15:00 13:00

2
66664

3
77775 and X

˜ 1
¼

1:83
1:53
:
:
1:85

2
66664

3
77775

We know that

β
_

¼
b1
b2
b3

2
4

3
5 ¼ X

˜

1X
˜

� ��1

X
˜

1X
1̃

� �

¼
1 1 : : 1

13:00 10:00 : : 15:00
12:00 10:00 : : 13:00

2
4

3
5 �

1 13:00 12:00
1 10:00 10:00
: : :
: : :
1 15:00 13:00

2
66664

3
77775

2
66664

3
77775

�1

�
1 1 : : 1

13:00 10:00 : : 15:00
12:00 10:00 : : 13:00

2
4

3
5 �

1:83
1:53
:
:
1:85

2
66664

3
77775

2
66664

3
77775

¼
20 257 223

257 3357 2908

223 2908 2543

2
4

3
5
�1

35:37
456:84
396:50

2
4

3
5

β
_

˜ ¼
1:203
0:032
0:013

2
4

3
5 ¼

b1
b2
b3

2
4

3
5

Hence the required regression equation is

X1 ¼ 1:203þ 0:032X2 þ 0:013X3

8.13 Multiple Correlations

Under multiple-variable situation, the correlation

coefficient between the dependent variable and

the joint effect of the independent variables is

known as the multiple correlation coefficient.

Suppose we have k variables X1, X2,........ Xk’ of

which X1 is the dependent variable and others are

independent variables. The joint effects of the

independent variables X2, X3, X4,........, Xk on X1

is the estimated value of the dependent variable

X1, i.e., X̂ 1, from the regression equation

X1 ¼ b1 þ b2X2 þ b3X3 þ :::::::þ bkXk ,

where b1, b2, b3, :::::::::, bk are the estimates of

the population regression coefficients β1, β2,
β3, ::::::, βk, respectively:
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Following the usual formula for the calculation

of the correlation coefficient, the multiple corre-

lation coefficient can be written as

RX1:X2X3X4::::Xk
¼ Cov X1; X̂1

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
V X1ð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V X̂ 1

� �q
We know that Cov X1; X̂1

� � ¼ Cov X̂ 1 þ u, X̂ 1

� �
, X1 ¼ X̂ 1 þ u and u is the error
� �

¼ V X̂ 1

� �þ Cov X̂1; e
� �

,Cov X̂1; e
� � ¼ 0, by assumption

� �
¼ V X̂ 1

� �
∴RX1:X2X3X4::::Xk

¼ Cov X1; X̂1

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
V X1ð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V X̂ 1

� �q ¼ V X̂ 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
V X1ð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V X̂ 1

� �q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V X̂ 1

� �
V X1ð Þ

s

Squaring both the sides, we get R2
X1 :X2X3X4 ::::Xk

¼
V X̂ 1ð Þ
V X1ð Þ , which is known as the coefficient of

determination. From the formula it is clear that

it is nothing but the ratio of the explained vari-

ance to that of the total variance in the dependent

variable of the regression analysis. Thus, the

coefficient of determination is a measure of the
proportion of variance of the dependent variable

explained by the joint effects of the independent

variables, i.e., by the regression equation framed.

In the following section, we shall discuss more

about the coefficient of determination.

Example 8.11

Using the following data on observed and

expected values from a multiple regression anal-

ysis, find out the multiple correlation coefficient:

n Var X̂ 1

� � ¼X X̂ 1 � X1

� �2 ¼ 0:106036

n Var X1ð Þ ¼
X

X1 � X1

� �2 ¼ 0:249532

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V X̂ 1

� �
V X1ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:106036

0:249532

r
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:4249
p

R2 ¼ 0:6518

8.14 The Coefficient
of Determination (R2)

Suppose we are dealing with k variables,

X1, X2,........, Xk situation, where X1 is the depen-

dent variable and others, i.e., X2, X3, X4,........, Xk

are independent variables; that means we have

framed a regression equation of X1 on X2, X3,

X4,........, Xk. e know that the total variation in X1

X1 1.83 1.56 1.85 1.9 1.7 1.8 1.85 1.73 1.95 1.67 1.82 1.84 1.74 1.68 1.62 1.82 1.91 1.61 1.64 1.85

X̂ 1 1.78 1.65 1.73 1.79 1.74 1.76 1.73 1.65 1.79 1.78 1.90 1.83 1.67 1.69 1.67 1.85 1.85 1.70 1.75 1.85
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can be represented as 1
n

Xn
i¼1

�
X1i�X1

�
2. Thus, the

total sum of squares due to X1 is given asXn
i¼1

�
X1i�X1

�
2:

So,

TSS ¼
Xn
i¼1

�
X1i�X1

�
2

¼
Xn
i¼1

�
X1i � X̂ 1i þ X̂ 1i�X1

�
2

¼
Xn
i¼1

�
X1i � X̂ 1i

� �þ �X̂ 1i�X1

��
2

¼
Xn
i¼1

X1i � X̂ 1i

� �2 þXn
i¼1

X̂ 1i � X1

� �
2

þ2
X

X1i � X̂ 1i

� �
X̂ 1i � X1

� �
¼ RSSþ RgSSþ 2

Xn
i¼1

ui X̂ 1i � X1

� �
where RgSS and RSS are sums of squares due to

regression and residual, respectively

¼ RSSþ RgSSþ 2
Xn
i¼1

uiX̂ 1i � 2X1

Xn
i¼1

ui

¼ RSSþ RgSS þ 0þ 0 by assumptionsð Þ
¼ RSSþ RgSS

∴ TSS ¼ RgSSþ RSS

or
TSS

TSS
¼ RgSS

TSS
þ RSS

TSS

or

Xn
i¼1

�
X1i�X1

�
2

Xn
i¼1

�
X1i�X1

�
2

¼

Xn
i¼1

X̂ 1i � X1

� �
2

Xn
i¼1

�
X1i�X1

�
2

þ

Xn
i¼1

X1i � X̂ 1i

� �2
Xn
i¼1

�
X1i�X1

�
2

or 1 ¼ V X̂ 1

� �
V X1ð Þ þ V uð Þ

V X1ð Þ

¼ R2 þ V uð Þ
V X1ð Þ∴ R2 ¼ 1� V uð Þ

V X1ð Þ

¼ 1� RSS

TSS

The RSS being the sum of squares, it can take

only the positive value including zero, i.e., RSS�

0. Moreover as TSS ¼ RgSS + RSS, so RSS can

have a maximum value equal to TSS. Thus, TSS

� RSS � 0

∴ When RSS ¼ 0, then R2 ¼ 1; again when

RSS ¼ TSS, then R2 ¼ 0

∴ 1 � R2 � 0.

When R2 ¼ 1, then it implies perfect fittings

that total variation of the dependent variable has

been explained by its linear relationship with the

independent variables. Again, when R2 ¼ 0, then

it implies no fittings; that means zero percent of

the total variation of the dependent variable has

been explained by its linear relationship with the

independent variables.

8.14.1 Interpretation of R2

Suppose, after framing a regression equation of

X1 on X2, X3, X4, ...., Xk, we have calculated R2

¼ 0.9; this means 90 % of the variations in the

dependent variable have been explained by its

linear relationship with the independent

variables, leaving 10 % unexplained.

Note Readers may note that as simple linear

regression equation is a special case of multiple

linear regression equation, so the properties of R2

also hold good for simple linear regression equa-

tion. Also, in simple linear regression case, the R2,

the coefficient of determination, is equivalent to

the square of the correlation coefficient between

the variables.

Thus the value of R2 measures the explaining

power of the linear regression equation.

An experimenter is always in search of a rela-

tionship which can explain the dependent variable

to the greatest possible extent. As such the experi-

menter tries to include more and more number of

variables in the linear regression equation with an

aim to get as much R2 as possible, so that the

relationship could explain more and more varia-

tion in the dependent variable. Sometimes, with

the aim of maximizing R2, the experimenter

includes such variables which might not have sig-

nificant contribution toward the objective of the

study. Thus, the process of maximizing R2 by
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including more and more number of variables in

the regression model is known as “game of maxi-

mization of R2.” As we have already pointed out

that the number of variables and the variables to be

included in the regression equation is not guided

by the statistical theory but by the subject on hand

and relevance of the variables under given

conditions, it does not matter how much is the

value of the R2, in the process!

8.14.2 Adjusted R2

Scientists were in search of a better measure,

which should not be the non-decreasing function

of number of variables in the regression equation,

like R2. Adjusted R2 is such a measure developed,

which is not a non-decreasing function of

number of variables in the regression equation,

like R2. Adjusted R2 is defined as

R
2

X1:X2X3X4:::::Xk
¼ 1� RMS

TMS

¼ 1� TSS� RgSSð Þ= n� kð Þ
TSS= n� 1ð Þ ¼ 1� n� 1ð Þ

n� kð Þ þ
n� 1ð Þ
n� kð Þ

RgSS

TSS

¼ 1� n� 1ð Þ
n� kð Þ 1� R2

� �

Thus adjusted R2 is taking into consideration

the associated degrees of freedom.

In any regression model, we have K � 2

thereby indicating that R 2 < R2; that means

as the number of independent variables increases,

R2 increases lesser than R2.

Again when R2 ¼ 1,R
2¼1�n�1

n�k 1�R2
� �¼1.

When R2 ¼ 0, then R
2 ¼ 1� n�1

n�k 1� 0ð Þ ¼
n�k�nþ1

n�k ¼ 1�k
n�k

Now, k � 2, so R
2
is negative.

Thus though R2 � 0, R
2
can be less than zero.

Example 8.12

Using the following information, the regression

equation of X1 on X2 and X3 was worked out as

X1 ¼ 1:203þ 0:032X2 þ 0:013X3:

Using the above information, find out the

multiple correlation coefficient, the coefficient

of determination, and also the adjusted coeffi-

cient of determination.

Solution Using the given regression equation

and the values of the variable, let us first con-

struct the expected value of the dependent

variables corresponding to each and every set of

values of the variables. The expected values of

the dependent variable are as follows:

Expected X1 values:

1.775 1.653 1.73 1.794 1.743 1.762 1.73 1.653 1.794 1.775 1.897 1.833 1.672 1.691 1.672 1.852 1.852 1.704 1.749 1.852

X1 1.83 1.56 1.85 1.9 1.7 1.8 1.85 1.73 1.95 1.67 1.82 1.84 1.74 1.68 1.62 1.82 1.91 1.61 1.64 1.85

X2 13 10 12 14 12 13 12 10 14 13 16 14 11 12 11 15 15 12 13 15

X3 12 10 11 11 12 11 11 10 11 12 14 14 9 8 9 13 13 9 10 13
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Now find out the variances from both the

observed and expected values of the dependent

variable X1.

The Var(X1) ¼ 0.0125 and the VarðX̂ 1Þ
¼ 0:0005:

∴R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V X̂ 1

� �
V X1ð Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0005

0:0125

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4249

p

¼ 0:6518

R2 ¼ 0.4249 and

R
2

X1:X2X3
¼ 1� n� 1ð Þ

n� kð Þ 1� 0:4249ð Þ

¼ 1� 20� 1ð Þ
20� 3ð Þ 0:5751ð Þ ¼ 1� 19

17
0:5751ð Þ

¼ 0:3572

8.15 Partial Correlation

In Chap. 7 we have discussed about the correla-

tion coefficient between two variables, taking

two variables at a time. Now the question is,

will the correlation coefficient between two

variables remain the same under more than

two-variable situation? To answer this query,

we are to examine the relationships among the

variables under the given situation. If the

variables are interrelated with each other, defi-

nitely the correlation coefficient between the two

variables will be subjected by the relationship of

other variables with both these variables. Thus,

under multiple-variable situation, simple correla-

tion coefficient may not provide the actual pic-

ture. A better measure for the degree of linear

associationship under such situation would be the

partial correlation coefficient. The partial corre-

lation coefficient measures the degree of linear
associationship between the two variables after

eliminating the effects of the other variables on

both these variables. If we are dealing with a

k variable X1, X2, X3, . . .. . .. . .., Xk situation and

we want to know the degrees of linear

relationship between X1 and X2, simple correlation

coefficient between X1 and X2 may not provide a

good picture of the strength of their linear

associationship, because both X1 and X2 may be

individually linearly related with other variables.

As such these X3, . . .. . .. . .., Xk variables may have

a certain degree of influence on both of these two

variables. So, instead of finding the simple linear

relationship between X1 and X2, it will be better

to have the partial correlation coefficient

between these two after eliminating the effects

of other variables on both these variables.

Suppose we are considering the correlation

coefficient between height and weight of

students under the known situation of ages of

the students. As we know, both height and

weight depends on the age of the students, as

such age might have influenced the degree of

linear associationship between height and

weight. So one should be interested in getting

the correlation coefficient between height and

weight after eliminating the effect of age on

both height and weight.

Suppose there are k number of variables X1, X2,

X3, . . .. . .. . .., Xk in the system; we want to find out

the partial correlation coefficient between X1 and

X2. The linear relationship of X1 and X2 separately

with X3, X4, . . .. . .. . .., Xk can be written as

X1 ¼ b13X3 þ b14X4 þ :::::::::::::::: þ b1kXk and

X2 ¼ b23X3 þ b24X4 þ ::::::::::::::::þ b2kXk:

Thus after eliminating the joint effects of X3,

X4, . . .. . .. . .. Xk variables from both the

variables, we have

X1 � b13X3 þ b14X4 þ ::::::::::::::::þ b1kXkð Þ
i:e: X1 � X̂ 1 ¼ u1:3,4, 5, ::::k and

X2� b23X3 þ b24X4 þ ::::::::::::::::þ b2kXkð Þ
i:e: X2 � X̂ 2 ¼ u2:3,4, 5, ::::k

Now, according to the definition of the partial

correlation coefficient, the partial correlation

coefficient between X1 and X2 is actually the

simple correlation coefficient between u1.3,4,....,k
and u2.3,4,....,k. Thus, the partial correlation coeffi-

cient between X1 and X2 is given as

248 8 Regression Analysis

http://dx.doi.org/10.1007/978-81-322-2831-8_7


r12:3,4, ::::,k ¼ Cov u1:3,4,5, ::::k; u2:3,4,5, ::::kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var u1:3,4,5, ::::kð ÞVar u2:3,4,5, ::::kð Þp

Now, from the properties of the regression

coefficients, we know that the correlation coeffi-

cient is the geometric mean of the two regression

coefficients b12.3,4,......,k and b21.3,4,......,k. Again we

know that

b12:3,4,::::::,k ¼ �ð Þ1þ2S1
S2

ω12

ω11

and

b21:3,4,::::::,k ¼ �ð Þ2þ1S2
S1

ω21

ω22

∴r212:3,4,:::::,k¼b12:3,4,::::::,k � b21:3,4,::::::,k

¼ �S1
S2

ω12

ω11

� �
�S2
S1

ω21

ω22

� �
¼ ω2

12

ω11ω22

∴r12:3,4,:::::,k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
12

ω11ω22

s

¼� ω12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω11ω22

p negative sign isð

becauseof the signofω12Þ
Generalizing the above one can write

rij:i0j0 ¼ �1ð Þiþj ωijffiffiffiffiffiffiffiffi
ωiiωjj

p .

It may be noted that being a simple correlation

coefficient, the partial correlation coefficient also

ranges between �1.

Depending upon the number of variables for
which effects are eliminated during the calcula-

tion of partial correlation coefficients, partial
correlation coefficients are of first order, i.e.,

r12.3 (the effect of one variable is eliminated

from both the variables); second order, i.e.,
r12.34 (the effect of two variables is eliminated

from both the variables); third order, i.e., r12.345
(the effect of three variables is eliminated from
both the variables); and so on.

In this context readers may note that the

variables which strongly influence the correla-

tion between other two variables are known as

lurking variable. It is our common experience

that two variables may be highly correlated, but

may not be because of the existence of true linear

associationship between them but because of the

strong influence of other variables on both the

variables. Such a variable which influences the

degree of associationship between other two

variables is known as lurking variable.

Example 8.13

The following table gives the milk yield per

lactation (y), age at the first calving (x1), and
weight at the first calving (x2) for six different

types of milch cows. Find out the first-order

partial correlation coefficients of the variables,

eliminating the effect of other variables from

both the variables:

Milk

yield/

lactation

Age at the

first calving

Weight at the

first calving

Sindhi 1600 43 320

Sahiwal 1900 42 380

Gin 1900 47.3 350

Haryana 1600 46.7 331

Tharparkar 1600 43.8 367

Ongole 1200 36.8 400

Solution Using the above information, let us

first construct the following table:

Cov x1; yð Þ ¼ Sx1y ¼
X

x1y

n
¼ 3416:67

6
¼ 569:44

S2x1 ¼
X

x21
n

¼ 71:83

6
¼ 11:97

S2y ¼
X

y2

n
¼ 333333:33

6
¼ 55555:56

∴rx1y ¼
Cov X1; Yð Þ

Sx1Sy

¼ 569:44ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11:97� 55555:56ð Þp ¼ 0:698

The correlation between milk yield per lactation

and age at the first calving is 0.698:

Cov x2; yð Þ ¼ Sx2y ¼
X

x2y

n
¼ �12600

6

¼ �2100

S2x2 ¼
X

x22
n

¼ 4566:00

6
¼ 761
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∴rx2y ¼
Cov X2; Yð Þ

Sx2Sy
¼ �2100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

761� 55555:56ð Þp
¼ �0:330

The correlation between milk yield per lactation

and weight at the first calving is �0.323:

Cov x1; x2ð Þ ¼ Sx1x2 ¼
X

x1x2

n
¼ �409:50

6

¼ �68:25

∴rx1x2 ¼
Cov X1;X2ð Þ

Sx1Sx2
¼ �68:25ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11:972� 761ð Þp
¼ �0:715

The correlation between age and water intake is

�0.715.

Partial Correlation

1. The partial correlation between milk yield

per lactation (Y ) and age at the first calving

(X1) ¼ ryx1:x2 ¼ � ωyx1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωyyωx1x1

p ryx1�ryx2 rx1x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2yx2ð Þ 1�r2x1x2ð Þp ¼

0:698� �0:323ð Þ� �0:715ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �0:323ð Þ2

��
1� �0:715ð Þ2

� �q ¼ 0:706

2. The partial correlation between milk yield per

lactation (Y ) and weight at the first calving

(X2) ¼ ryx2:x1 ¼ �1ð Þ1þ2 ω12ffiffiffiffiffiffiffiffiffiffi
ω11ω22

p ¼ ryx2�ry1rx1x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

yx2

� 	
1�r2x1x2ð Þ

r
¼ �0:323�0:698� �0:715ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�0:6982ð Þ 1� �0:715ð Þ2ð Þp ¼ 0:352

3. The partial correlation between age at the first

calving (X1) and weight at the first calving

(X2) ¼

rx1x2:y ¼ �1ð Þ2þ3 ωx1x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωx1x1ωx2x2

p

¼ rx1x2 � rx1yrx2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

x1y

� 	
1� r2

x2 y

� 	r

¼ �0:715� 0:698� �0:323ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:6982
� �

1� 0:3232
� �q ¼ �0:723

8.16 Some Other Measures
of Association

8.16.1 Biserial Correlation

Biserial correlation is defined as the correlation

between a continuous and a dichotomous but

assumed to represent a continuous normal variable.

Milk

yield/

lactation

Y

Age at

the

first

calving

X1

Weight

at the

first

calving

X2

x1 ¼
X1 � X1

x2 ¼
X2 � X2

y ¼
Y � Y

x1y x2y x1x2 x1
2 x2

2 y2

1600 43 320 �0.27 �38.00 �33.33 �426.67 �60800.00 10.13 0.07 1444.00 1111.11

1900 42 380 �1.27 22.00 266.67 �2406.67 41800.00 �27.87 1.60 484.00 71111.11

1900 47.3 350 4.03 �8.00 266.67 7663.33 �15200.00 �32.27 16.27 64.00 71111.11

1600 46.7 331 3.43 �27.00 �33.33 5493.33 �43200.00 �92.70 11.79 729.00 1111.11

1600 43.8 367 0.53 9.00 �33.33 853.33 14400.00 4.80 0.28 81.00 1111.11

1200 36.8 400 �6.47 42.00 �433.33 �7760.00 50400.00 �271.60 41.82 1764.00 187777.78

Sum 9800.00 259.60 2148.00 0.00 0.00 0.00 3416.67 �12600.00 �409.50 71.83 4566.00 333333.33

Avg 1633.33 43.27 358.00
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Thus, the ingredient of biserial correlation is the 2�
m contingency table of one qualitative and a quanti-

tative variate. Let p ¼ probability of the qualitative

variable taking level 1 and q ¼ 1 – p ¼ probability

of the qualitative variable taking level 0. Let zp ¼
the normal ordinate of the z score associated with p.

Then,rbi ¼ pqð Þðy2�y1Þ
zpSy

, wherey2 and y1 are themean

level 1 and level 0, respectively.

8.16.2 Tetrachoric Correlation

Tetrachoric correlation is a special case of

polychoric correlation worked out from an mxn

table of frequencies. In both the cases, the

assumption is that the ratings are continuous and

the underlying distribution is bivariate normal.

8.16.3 Part Correlation

The partial correlation, defined in earlier section, is

the correlation coefficient between the two

variables after eliminating the effects of other

variables from both of the variables. But in many

cases, both the variables may not be influenced by

the other variables. So the correlation coefficient

between the variables is worked out after

eliminating the effect of other variables from the

variable being influenced by the other variables.

Suppose in a set of k variables X1, X2, X3, . . .. . .,
Xk, the variable X2 is being influenced by the

variables X3, . . .. . ., Xk but not the variable X1. Let

the regression equation ofX2 onX3,X4, . . .. . .,Xk be

X2 ¼ b3X3 þ b4X4 þ ::::::: þ BkXk

Soafter eliminating theeffect ofX3,X4::::Xk onX2,

wehaveX2�b3X3þb4X4þ :::::::þBkXk

¼X2� X̂ 2¼u2:3,4,5,...,k sayð Þ

Now, the correlation between X1 and u2.3,4,5,. . ...k
is termed as the part correlation between X1 and

X2 and is denoted as r1(2.3,4,....,k).

8.17 Worked-Out Example Using
the Usual Method
of Calculation and with
the Help of the Software
Packages

The following table gives the energy per 100 gm of

the food and the percentage of moisture, protein,

and lipid and carbohydrate content. Find out (a) all

possible simple correlation coefficients among the

variables, and (b) find out the relationship of

energy content with the constituent of food:

Observation

Energy

(K cal)

Y
Moisture

X1

Protein

X2

Lipid

X3

Carbohydrate

X4

1. 163 73.70 12.90 11.50 0.90

2. 191 70.40 13.30 14.50 0.70

3. 185 70.40 13.90 13.30 1.50

4. 170 72.80 13.50 12.00 0.80

5. 170 72.80 13.80 12.00 0.80

6. 161 73.70 13.10 11.10 1.00

7. 170 72.60 13.10 11.80 1.70

8. 173 70.12 13.20 12.46 0.90

9. 178 71.23 13.60 12.76 0.87

10. 167 73.21 12.97 11.97 0.77

11. 182 70.02 13.76 13.78 1.34

12. 184 69.12 13.77 13.98 1.23

13. 174 70.07 13.34 12.45 0.45

14. 168 73.23 12.98 11.77 0.77

15. 162 74.12 12.77 11.34 0.87

16. 182 69.77 13.77 13.57 1.45

17. 191 68.12 13.98 14.54 1.77

18. 161 74.77 12.87 11.22 0.95

19. 164 74.27 12.99 12.34 0.97

20. 185 71.23 13.87 13.65 1.17
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8.17.1 Calculation of All Possible
Correlation Coefficients

(a) Calculation of correlation coefficients fol-
lowing the usual method of calculation:

From the given table, we can have the follow-

ing calculation:

Y ¼ 1

20

X20
i¼1

Yi ¼ 1

20
� 3481:000 ¼ 174:050

X1 ¼ 1

20

X20
i¼1

X1i ¼ 1

20
� 1435:680 ¼ 71:784

X2 ¼ 1

20

X20
i¼1

X2i ¼ 1

20
� 267:470 ¼ 13:374

X3 ¼ 1

20

X20
i¼1

X3i ¼ 1

20
� 252:030 ¼ 12:602

X4 ¼ 1

20

X20
i¼1

X4i ¼ 1

20
� 20:910 ¼ 1:046

s2Y ¼ 1

n

Xn
i¼1

Yi � Y
� �2 ¼ 1

n

Xn
i¼1

Yi
2 � Y

2

¼ 1

20
� 607769:00� 174:0502 ¼ 95:048

s2X1
¼ 1

n

Xn
i¼1

X1i � X1

� �2 ¼ 1

n

Xn
i¼1

X2
1i � X1

2

¼ 1

20
� 103131:44� 71:7842 ¼ 3:630

Obs. Y X1 X2 X3 X4 Y2 X1
2 X2

2 X3
2 X4

2 X1Y X2Y X3Y X4Y

1. 163.00 73.70 12.90 11.50 0.90 26569.00 5431.69 166.41 132.25 0.81 12013.10 2102.70 1874.50 146.70

2. 191.00 70.40 13.30 14.50 0.70 36481.00 4956.16 176.89 210.25 0.49 13446.40 2540.30 2769.50 133.70

3. 185.00 70.40 13.90 13.30 1.50 34225.00 4956.16 193.21 176.89 2.25 13024.00 2571.50 2460.50 277.50

4. 170.00 72.80 13.50 12.00 0.80 28900.00 5299.84 182.25 144.00 0.64 12376.00 2295.00 2040.00 136.00

5. 170.00 72.80 13.80 12.00 0.80 28900.00 5299.84 190.44 144.00 0.64 12376.00 2346.00 2040.00 136.00

6. 161.00 73.70 13.10 11.10 1.00 25921.00 5431.69 171.61 123.21 1.00 11865.70 2109.10 1787.10 161.00

7. 170.00 72.60 13.10 11.80 1.70 28900.00 5270.76 171.61 139.24 2.89 12342.00 2227.00 2006.00 289.00

8. 173.00 70.12 13.20 12.46 0.90 29929.00 4916.81 174.24 155.25 0.81 12130.76 2283.60 2155.58 155.70

9. 178.00 71.23 13.60 12.76 0.87 31684.00 5073.71 184.96 162.82 0.76 12678.94 2420.80 2271.28 154.86

10. 167.00 73.21 12.97 11.97 0.77 27889.0.0 5359.70 168.22 143.28 0.59 12226.07 2165.99 1998.99 128.59

11. 182.00 70.02 13.76 13.78 1.34 33124.00 4902.80 189.34 189.89 1.80 12743.64 2504.32 2507.96 243.88

12 184.00 69.12 13.77 13.98 1.23 33856.00 4777.57 189.61 195.44 1.51 12718.08 2533.68 2572.32 226.32

13. 174.00 70.07 13.34 12.45 0.45 30276.00 4909.80 177.96 155.00 0.20 12192.18 2321.16 2166.30 78.30

14. 168.00 73.23 12.98 11.77 0.77 28224.00 5362.63 168.48 138.53 0.59 12302.64 2180.64 1977.36 129.36

15. 162.00 74.12 12.77 11.34 0.87 26244.00 5493.77 163.07 128.60 0.76 12007.44 2068.74 1837.08 140.94

16. 182.00 69.77 13.77 13.57 1.45 33124.00 4867.85 189.61 184.14 2.10 12698.14 2506.14 2469.74 263.90

17. 191.00 68.12 13.98 14.54 1.77 36481.00 4640.33 195.44 211.41 3.13 13010.92 2670.18 2777.14 338.07

18. 161.00 74.77 12.87 11.22 0.95 25921.00 5590.55 165.64 125.89 0.90 12037.97 2072.07 1806.42 152.95

19. 164.00 74.27 12.99 12.34 0.97 26896.00 5516.03 168.74 152.28 0.94 12180.28 2130.36 2023.76 159.08

20. 185.00 71.23 13.87 13.65 1.17 34225.00 5073.71 192.38 186.32 1.37 13177.55 2565.95 2525.25 216.45

Total 3481.000 1435.680 267.470 252.030 20.910 607769.00 103131.44 3580.11 3198.69 24.19 249547.81 46615.23 44066.78 3668.30

Mean 174.050 71.784 13.374 12.602 1.046
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s2X2
¼ 1

n

Xn
i¼1

X2i � X2

� �2 ¼ 1

n

Xn
i¼1

X2
2i � X2

2

¼ 1

20
� 3580:11� 13:3742 ¼ 0:155

s2X3
¼ 1

n

Xn
i¼1

X3i � X3

� �2 ¼ 1

n

Xn
i¼1

X2
3i � X3

2

¼ 1

20
� 3198:69� 12:6022 ¼ 1:137

s2X4
¼ 1

n

Xn
i¼1

X4i � X4

� �2 ¼ 1

n

Xn
i¼1

X2
4i � X4

2

¼ 1

20
� 24:19� 1:0462 ¼ 0:116

Cov X; Yð Þ ¼ 1

n

Xn
i¼1

Xi � X
� �

Yi � Y
� �

Cov X1; Yð Þ ¼ 1

n

Xn
i¼1

X1i � X
� �

Yi � Y
� �

¼ 1

20

Xn
i¼1

X1iYi � X1Y

¼ 1

20
� 249547:81� 71:784

� 174:050¼ �16:615

Cov X2; Yð Þ ¼ 1

n

Xn
i¼1

X2i � X
� �

Yi � Y
� �

¼ 1

20

Xn
i¼1

X2iYi � X2Y

¼ 1

20
� 46615:23� 13:374

� 174:050¼ 3:104

Cov X3; Yð Þ ¼ 1

n

Xn
i¼1

X3i � X
� �

Yi � Y
� �

¼ 1

20

Xn
i¼1

X3iYi � X3Y

¼ 1

20
� 44066:78� 12:602

� 174:050¼ 10:048

Cov X4; Yð Þ ¼ 1

n

Xn
i¼1

X4i � X
� �

Yi � Y
� �

¼ 1

20

Xn
i¼1

X4iYi � X4Y

¼ 1

20
� 3668:30� 1:046

� 174:050¼ 1:446

Now, we know that

rXY ¼ Cov X; Yð Þffiffiffiffiffiffiffiffiffiffi
SXSY

p

∴rX1Y¼
Cov X1;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sX1
� sY

p ¼ �16:615ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:630� 95:048

p ¼�0:895

rX2Y¼
Cov X2;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sX2
� sY

p ¼ 3:104ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:155� 95:048

p ¼0:809

rX3Y¼
Cov X3;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sX3
� sY

p ¼ 10:048ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:137� 95:048

p ¼0:967

rX4Y¼
Cov X4;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sX4
� sY

p ¼ 1:446ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:116� 95:048

p ¼0:435

(b) Calculation of correlation coefficients using

MS Excel:

Step 1: Showing the entered or transferred data

and selection of Correlation Analysis menu from

theDataAnalysis tool pack inMSExcelworkbook.
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Step 2: Showing the entered or transferred

data and selection of data range and other

required commands in Correlation Analysis
menu in MS Excel.
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Step 3: Showing the output from Correlation

Analysis menu in MS Excel:

Y X1 X2 X3 X4

Y 1.000

X1 �0.895 1.000

X2 0.809 �0.770 1.000

X3 0.967 �0.868 0.755 1.000

X4 0.435 �0.411 0.480 0.419 1.000

(c) Calculation of correlation coefficients using

SPSS:

Step 1: Using the usual procedure of import,

transfer the data to SPSS from Excel, or copy and

paste the data into the SPSS data editor. Data

imported for correlation analysis through SPSS

will be as below.

Step 2: Go to Analysis ! Correlate ! Click

on Bivariate as shown below.
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Step 3: Select the required variables, and

move these to the right-hand panel as shown

below and then click on OK.

Step 4: SPSS output will be displayed as given

below:

Correlations

Y X1 X2 X3 X4

Y Pearson correlation 1 �.895a .809a .967a .435

Sig. (two tailed) .000 .000 .000 .055

N 20 20 20 20 20

X1 Pearson correlation �.895a 1 �.770a �.868a �.411

Sig. (two tailed) .000 .000 .000 .072

N 20 20 20 20 20

X2 Pearson correlation .809a �.770a 1 .755a .480b

Sig. (two tailed) .000 .000 .000 .032

N 20 20 20 20 20

X3 Pearson correlation .967a �.868a .755a 1 .419

Sig. (two tailed) .000 .000 .000 .066

N 20 20 20 20 20

X4 Pearson correlation .435 �.411 .480b .419 1

Sig. (two tailed) .055 .072 .032 .066

N 20 20 20 20 20
aThe correlation is significant at the 0.01 level (two tailed)
bThe correlation is significant at the 0.05 level (two tailed)
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(d) Calculation of correlation coefficients using

SAS:

Using the SAS, the same analysis can be done

as follows:

Step 1: Showing the data input for correlation

analysis using the SAS.

Step 2: Showing the data and the command to

perform the correlation analysis using SAS.
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Step 3: Click on the submit button to have the

output as below.

Readers may note the differences among the

outputs from different software. Additional

outputs like the mean, SD of the variables, and

probability level at which the correlation

coefficients are significant are given in the output

through SPSS and SAS, but these were not avail-

able either through manual calculation or

through MS Excel.
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8.17.2 Calculation of Partial Correlation
Coefficients

Observation

Energy

(K cal) Moisture Protein Lipid

Y X1 X2 X3

1. 163 73.70 12.90 11.50

2. 191 70.40 13.30 14.50

3. 185 70.40 13.90 13.30

4. 170 72.80 13.50 12.00

5. 170 72.80 13.80 12.00

6. 161 73.70 13.10 11.10

7. 170 72.60 13.10 11.80

8. 173 70.12 13.20 12.46

9. 178 71.23 13.60 12.76

10. 167 73.21 12.97 11.97

11. 182 70.02 13.76 13.78

12. 184 69.12 13.77 13.98

13. 174 70.07 13.34 12.45

14. 168 73.23 12.98 11.77

15. 162 74.12 12.77 11.34

16. 182 69.77 13.77 13.57

17. 191 68.12 13.98 14.54

18. 161 74.77 12.87 11.22

19. 164 74.27 12.99 12.34

20. 185 71.23 13.87 13.65

To calculate the partial correlation, first we need

to calculate the correlation coefficient between all

the given variables using the usual procedure.

For the above example, the correlation matrix

will be as given below:

Y X1 X2 X3

Y 1

X1 �0.895 1

X2 0.809 �0.770 1

X3 0.967 �0.868 0.755 1

(a) Calculation of partial correlation
coefficients following the usual method of

calculation:

The partial correlation between energy (Y )

and moisture (X1) by eliminating the effects of

all the other variables (X2 and X3) from both the

variables X1 and Y can be calculated using the

formula

rYX1:X2X3
¼ rYX1:X3

� rYX2:X3
rX1X2:X3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2YX2:X3

� 	
1� r2X1X2:X3

� 	r

So, we need to calculate the first-order partial

correlation between Y and X1 by eliminating the

effect of X3 and Y and X2 and X1 and X2 by

eliminating the effect of X3 in both the cases,

which can be calculated by using the formula as

below:

rYX1:X3
¼ rYX1

� rYX3
rX1X3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2YX3

� 	
1� r2X1X3

� 	r

¼ �0:0556ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01600

p ¼ �0:439

rYX2:X3
¼ rYX2

� rYX3
rX2X3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2YX3

� 	
1� r2X2X3

� 	r

¼ 0:0789ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0160

p ¼ 0:472

rX1X2:X3
¼ rX1X2

� rX1X3
rX2X3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2X1X3

� 	
1� r2X2X3

� 	r

¼ �0:1146ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3256

p ¼ �0:352

∴ rYX1:X2X3
¼ rYX1:X3

� rYX2:X3
rX1X2:X3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2YX2:X3

� 	
1� r2X1X2:X3

� 	r

¼ �0:2734

0:8249
¼ �0:331

In similar way we can calculate the partial

correlation for the following combinations:

rYX2:X1X3
¼ rYX2:X3

� rYX1:X3
rX1X2:X3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2YX1:X3

� 	
1� r2X1X2:X3

� 	r

¼ 0:378

rYX3:X1X2
¼ rYX3:X2

� rYX1:X2
rX1X3:X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2YX1:X2

� �
1� r2X1X3:X2

� 	r

¼ 0:850
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(b) Calculation of partial correlation

coefficients using the SPSS:

For the problem given above, calculate the

partial correlation coefficient between Y and X1

by eliminating the effect of X2 and X3 using

SPSS:

Step 1: After importing the data to the SPSS

editor, go to Analysis, followed by Correlate and

then to Partial, as shown below.

Step 2: Select the variables for which the

partial correlation is to be calculated and the

variables for which effects are to be eliminated

as shown below.
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Step 3: Click onOK to get the following output:

Correlations

Control variables y x1

x2 and
x3

y Correlation 1.000 �.328

Significance

(two tailed)

. .184

d.f. 0 16

x1 Correlation �.328 1.000

Significance

(two tailed)

.184 .

d.f. 16 0

In similar way, by changing the variables as in

step 2, one can have different combinations of

partial correlation coefficients among the

variables.

(c) Calculation of partial correlation
coefficients using SAS:

Step 1: Showing the data input for partial

correlation analysis using the SAS.
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Step 2: Showing the data and the command to

perform the partial correlation analysis using SAS.

Step 3: Click on the submit button to have the

output as below.
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In similar way we can perform the partial

correlation analysis for other combinations of

variables by changing the variable name in code.

8.17.3 Estimation of Simple Linear
Regression

For the following data, find the regression equa-

tion for Y on X1:

Observation Energy (K cal) Moisture

Y X1

1. 163 73.70

2. 191 70.40

3. 185 70.40

4. 170 72.80

5. 170 72.80

6. 161 73.70

7. 170 72.60

8. 173 70.12

9. 178 71.23

10. 167 73.21

11. 182 70.02

12. 184 69.12

13. 174 70.07

14. 168 73.23

15. 162 74.12

16. 182 69.77

17. 191 68.12

18. 161 74.77

19. 164 74.27

20. 185 71.23

Solution

(a) Estimation of simple linear regression
equation following the usual method of

calculation:

We have no. of observations “n” ¼ 20, and

the mean, variances, and covariance can be cal-

culated as elaborated in the previous section:

Y ¼ 174:050; X1 ¼ 71:784; S2Y ¼ 95:048;

s2X1
¼ 3:630; Cov X1; Yð Þ ¼ �16:615, and

rX1Y ¼ �0:895

Now the regression equation of Y on X1 is

given by

Y�Y
� �¼byx X1�X1

� �
) Y�174:050ð Þ¼Cov X1;Yð Þ

S2x1
X1�71:784ð Þ

¼�16:615

3:630
X1�71:784ð Þ¼�4:577 X1�71:784ð Þ

¼�4:577X1þ328:555

)Y¼174:050�4:577X1þ328:555

)Y¼502:605�4:577X1
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(b) Estimation of simple linear regression equa-

tion using MS Excel:

Step 1: Showing the data entry and the selection

of the Regression Analysis menu using MS Excel.

Step 2: Showing the data and the selection of

data range and other submenus in regression

analysis using MS Excel.
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Step 3: Showing the output generated for

regression analysis using MS Excel.

(c) Estimation of simple linear regression equa-

tion using SPSS:

Step 1: After importing the data to the SPSS

editor, go to Analysis menu, followed by Regres-

sion and then to Linear, as shown below.

8.17 Worked-Out Example Using the Usual Method of Calculation and with the Help. . . 265



Step 2: Select the dependent and independent

variables for which regression analysis is to be

performed as shown below.

Step 3: Click on OK in Liner Regression menu

to get the output as below.
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(d) Estimation of simple linear regression equa-

tion using SAS:

Step 1: Showing the data input to perform the

regression analysis using the SAS.

Step 2: Showing the data and the command to

perform the regression analysis using SAS.
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Step 3: Click on the submit button to have the

output as below.
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8.17.4 Estimation of Multiple Linear
Regression Equation

(a) Estimation of multiple linear regression

equation using MS Excel

Step 1: Showing the data structure and selection

of Regression submenu from the Data Analysis

toolbar in MS Excel.
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Step 2: Showing the data structure and selec-

tion of data range and other options in Regression

submenu from the Data Analysis toolbar of MS

Excel.

Step 3: Click on the OK button in Regression

submenu to get the output as below.
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Thus, the above regression equation is found
to be

y ¼ 102:199� 0:814x1 þ 3:533x2 þ 6:596x3
� 0:041x4

(b) Estimation of multiple linear regression

equation using SPSS:

Step 1: Showing the data structure to perform

the regression analysis in data editor menu of

SPSS.
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Step 2: Showing the data structure and selec-

tion of appropriate options in analysis menu of

SPSS.

Step 3: Showing the data structure and vari-

able selection of regression analysis using SPSS.
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Step 4: Click on OK button; out of regression

analysis will be displayed in the output window

of SPSS:

Model summary

Model R

R

square

Adjusted R

square

Std. error

of the

estimate

1 .977a .954 .942 2.40175
aPredictors: (constant) X4, X1, X2, X3

Variables entered/removedb

Model

Variables

entered

Variables

removed Method

1 X4, X1, X2, X3
a Enter

aAll requested variables entered
bDependent variable: Y

ANOVAb

Model Sum of squares d.f. Mean square F Sig.

1 Regression 1814.424 4 453.606 78.636 .000a

Residual 86.526 15 5.768

Total 1900.950 19
aPredictors: (constant) X4, X1, X2, X3
bDependent variable: Y

Coefficientsa

Model

Unstandardized coefficients Standardized coefficients

t Sig.B Std. error Beta

1. (Constant) 102.200 66.966 1.526 .148

X1 �.815 .606 �.159 �1.343 .199

X2 3.533 2.299 .143 1.537 .145

X3 6.596 1.056 .721 6.244 .000

X4 �.041 1.803 �.001 �.023 .982
aDependent variable: Y
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(c) Estimation of multiple linear regression

equation using SAS:

Step 1: Showing the data input to perform

multiple regression analysis using the SAS.

Step 2: Showing the data and the command to

perform the regression analysis using SAS.
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Step 3: Click on the submit button to have the

output as below.

8.17 Worked-Out Example Using the Usual Method of Calculation and with the Help. . . 275



Analysis of Variance 9

9.1 Introduction

One of the many uses of statistics in agriculture

and allied sciences is its use in testing the hypoth-

esis of differences between two or more popula-

tion means or variances. Generally, one tries to

infer about the differences among two or more

categorical or quantitative treatment groups. For

example, by applying three vitamins to three

distinct groups of animals or by applying five

different doses of nitrogen to a particular variety

of paddy or by applying three different health

drinks to three groups of students of the same

age, three, five, or three populations are defined,

respectively. In the first case, each population is

made up of those animals that will be subjected

to those three types of vitamins. Similarly, the

five populations of paddy are constituted of

plants of plots subjected to five different doses

of nitrogen. Three populations of students are

administered with three different health drinks

that constitute the three populations.

Now if we want to compare the means of three

groups in the first example, then we are to per-

form 3C2 ¼ 3 sets of mean tests using either

Z tests or t tests depending upon the situations.

Similarly, for five populations in the second

example and again three population means in

the third example, we are to perform 5C2 ¼ 10

and 3C2 ¼ 3 sets of mean tests, respectively.

Analysis of variance is used to determine

whether these three animal populations in the

first example differ with respect to some

response characteristics like gain in body weight,

resistance to diseases or stress tolerance, etc.

Similarly, with the help of analysis of variance,

one can ascertain whether the five doses of nitro-

gen are equally effective in growth or grain yield

of paddy. In the third example, one can conclude

whether three health drinks are equally effective

in developing body composition, stress toler-

ance, disease resistance, etc.

In statistical studies, variability and measures

of variability are the major focal points of atten-

tion. Analysis of variance is a systematic

approach towards partitioning the variance of a

variable into assignable and non-assignable
parts. The analysis of variance partitions the

total variability to different sources, viz., among

the groups versus that remaining within groups,

and analyzes the significance of the explained

variability. Analysis of variance is used for test-

ing differences among group means by compar-

ing explained variability due to differences

among groups (populations), with the variability

measured among the units within groups. If

explained variability is much greater than the

variability measured among the units within

groups, then it is concluded that the treatments

or groups have significantly influenced the

variability and the population means are signifi-

cantly different from each other.

In testing differences among populations,

models are used to describe measurements or
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observations with a dependent variable and the

way of grouping by an independent variable. As

already discussed, the independent variable may

be qualitative, categorical, classification variable

or quantitative and is often called a factor.

Depending upon the nature, type of data and

classification of data, analysis of variance is

developed for one-way classified data, two-way

classified data with one observation per cell,

two-way classified data with more than one

observation per cell, etc. Before taking up the

analysis of variance in detail, let us discuss

about linear model which is mostly being used

in analysis of variance.

9.2 Linear Analysis of Variance
Model

It has already been mentioned that the analysis of

variance partitions the total variability to its

sources, viz., among the groups versus that

remaining within groups. Each value of the

response variables can be assumed to be com-

posed of two parts, viz., its true value and the

error part which may be because of chance fac-

tor. The true part is because of assignable

sources, whereas the error part is due to non-

assignable part, which cannot be ascribed to any

cause. Thus, if y be a particular value of the

response variable Y, then it can be decomposed

as y ¼ β þ e, where β is the true value of the

variable Y (i.e., due to assignable causes) and e is

the error (i.e., due to non-assignable cause).

This β again may be a linear combination of

“k” sources of variations having α1, α2,........, αk
effects, respectively. Thus, β ¼ a1α1 þ a2α2þ
:::::::: þ akαk. Where aj j ¼ 1, 2, . . . . . . , kð Þ are

the constants and take the value 0 or 1. Thus, for

ith observation of the dependent variable Y, we
have the linear model yi ¼ ai1α1 þ ai2α2þ
:::::::: þ aikαk þ ei

A linear model in which all the αjs are

unknown constants (known as parameters) is

termed as fixed effect model. The effects of

groups are said to be fixed because they are

specifically chosen or defined by some

nonrandom process. The effect of the particular

group is fixed for all observations in that group.

Differences among observations within group are

random. These inferences about the populations

are made based on random samples drawn from

those populations. On the contrary, a linear

model in which αjs are random variables except-

ing the general mean or general effect is known

as variance component model or random effect
model.A linear model in which at least one αj is a
random variable and at least one αj is a constant
(other than general effect or general mean) is

called a mixed effect model. Let the number of

groups be m, and in each group there are

n number of subjects put under experimentation,

thereby a total of N ¼ (m n) subjects divided into

m groups of size n. A model that has an equal

number of observations in each group is called

balanced, while in unbalancedmodel, there is an

unequal number of observations per group, ni
denotes the number of observations in group i,
and then the total number of observations is

N ¼
Xm
i¼1

ni i ¼ 1, . . . ,mð Þ.

9.3 Assumptions in Analysis
Variance

The analysis of variance is based on the follow-

ing assumptions:

(i) The effects are additive in nature. Two

independent factors are said to be additive

in nature if the effect of one factor remains

constant over the levels of other factor. On

the contrary, when effects of one factor

remains constant by certain percentage

over the levels of other factors, then the

factors are multiplicative or nonadditive in

nature:

yij ¼ μþ αi þ βj þ eij (additive model)

yij ¼ μþ αi þ βj þ αβð Þij þ eij (multiplica-

tive model)

(ii) The observations are independent.

(iii) The variable concerned must be normally

distributed.
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(iv) Variances of all populations from which

samples have been drawn must be the
same. In other words, all samples should

be drawn from normal populations having

common variance with the same or different

means.

The interpretation of analysis of variance is

valid only when the assumptions are met. A

larger deviation from these assumptions affects

the level of significance and the sensitivity of

F and t test.

9.4 One-Way Classified Data

Let us suppose there are n ¼
Xk
i¼1

ni observations

grouped into k classes with yij (i ¼1,2,3,. . ..k;
j ¼ 1, 2,3,3. . ...ni) that are given as follows:

1 2 ………..i………. k
y11 y21 yi1 yk1
y12 y22 yi2 yk2
: : : :
: : : :

y1n1 y2n2 yini yknk

The fixed effect model can be written as

yij ¼ μi þ eij, where μi is fixed effect due to ith

group and eijs are the error component associated

with jth observation of ith group and are indepen-

dently distributed as N(0, σ2). This μi can be

regarded as the sum of two components, viz., μ,
the overallmean across the groups and a component

due to the ith specific group. Thus we can write

μi ¼ μþ μi � μð Þ
or, μi ¼ μþ αi

Thus the mathematical model will be:

yij ¼ μþ αi þ eij

where

μ ¼ general mean across all observations

αi ¼ additional effect due to ith group

eij ¼ error components associated with jth obser-

vation of ith group and eij � iidN 0; σ2ð Þ andXk
i¼1

niαi ¼ 0

We want to test the equality of the additional

population means, i.e.,

H0 : α1 ¼ α2 ¼ α3 ¼ :::::::: ¼ αk ¼ 0 against

the alternative hypothesis.

H0 : αi 6¼ αi0 for at least one pair of (i, i0) the
additional means are not equal

The least square estimators of μ and αi
are obtained by minimising

S ¼
Xk
i¼1

Xni
j¼1

�
yij � μ� αi

�
2

The normal equations are:

∂S
∂μ

¼ �2
X
i

X
j

�
yij � μ� αi

� ¼ 0 and

∂S
∂αi

¼ �2
X
i

X
j

�
yij � μ� αi

� ¼ 0

From these equations, we haveX
i, j

yij ¼ nμþ
X
i

niαi

or, μ̂ ¼ y:: ,
X
i

niαi ¼ 0

" #
andX

j

yij ¼ niμþ niαi

or, α̂ i ¼ yi: � y::

where,

y:: ¼
1

n

X
i

X
j

yij is the mean of all

n observations and yi: ¼
1

ni

X
j

yij is the mean of

all observations for ith class
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Thus, the linear model becomes

yij ¼ y:: þ yi: � y::ð Þ þ ðyij � yi:Þ.
The error terms eij being so chosen that both

sides are equal.

∴yij � y:: ¼ yi: � y::ð Þ þ ðyij � yi:Þ

Squaring and taking sum for both the sides over

i and j we have

X
i

X
j

yij � y::

� �2

¼
X
i

X
j

�
yi: � y::ð Þ þ ðyij � yi:Þ

�
2

¼
X
i

X
j

yi: � y::ð Þ2 þ
X
i

X
j

ðyij � yi:Þ2 þ 2
X
i

X
j

yi: � y::ð Þðyij � yi:Þ

¼
X
i

X
j

yi0 � y00ð Þ2 þ
X
i

X
j

ðyij � yi:Þ2 þ 2
X
i

yi: � y::ð Þ
X
j

ðyij � yi:Þ

¼
X
i

ni yi0 � y00ð Þ2 þ
X
i

X
j

ðyij � yi:Þ2
�
,

X
j

ðyij � yi:Þ ¼ 0
�

SS Totalð Þ ¼ SS groupð Þ þ SS resð Þ
SSTot ¼ SSGr þ SSEr

Thus, the total sum of squares is partitioned into

sum of squares due to groups and sum of squares

due to error.

Similarly, the degrees of freedom can be

partitioned into:

Total ¼ Group or treatment þ Residual or Error

n� 1ð Þ ¼ k � 1ð Þ þ n� kð Þ

where

n ¼ the total number of observations

k ¼ the number of groups or treatments

Sums of squares can be calculated using a

shortcut calculation presented here in five steps:

1. Total sum ¼ sum of all observations:

Xk
i¼1

Xnk
j¼n1

yij ¼ GT

2. Correction for the mean:

Xk
i¼1

Xnk
j¼n1

yij

" #2

Xk
i¼1

ni

¼ GTð Þ2
n

¼ CF Correction factorð Þ

3. Total (corrected) sum of squares:

SSTot ¼
Xk
i¼1

Xnk
j¼n1

y2
ij

" #
� CF

4. Group or treatment sum of squares:

SSGr ¼

Xk
i¼1

y2
i:

ni
� CF

5. Residual/error sum of squares:

SSEr ¼ SSTot � SSGr

Mean sum of squares due to different sources of

variations can be obtained by dividing SSs by the

respective d.f.

Thus, MSGr ¼ SSGr
k � 1

¼ Mean sum of squares

due to groups

MSEr ¼ SSEr
n� k

¼ Mean sum of squares due to

error:
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The test statistic under H0 is given by F ¼ MSGr
MSEr

with (k�1) and (n�k) d.f. If the calculated value

of F > Fα;k�1,n�k, then H0 is rejected, otherwise

it cannot be rejected. In the following figure, if

the calculated value of F ¼ F0, thenH0 cannot be

rejected.

F' F'' F
F

f(F)

a;(k-1),(n-k)

The estimates of population means μi0s are

the respective means of the groups or treatments,

i.e., yi.
Now taking help of the central limit theorem,

we can assume that estimators of the means are

normally distributed with mean μi and

syi ¼
ffiffiffiffiffiffiffiffi
MSEr
ni

q
; MSEr is the error mean square,

which is an estimate of the population variance;

and ni is the number of observations in

i treatment/group. Generally, the standard devia-

tion of estimators of the mean is called the stan-

dard error of the mean. Confidence intervals at

100( 1� α )% for the means are calculated by

using a student t-distribution with n–k degrees

of freedom and is given by yi: �
ffiffiffiffiffiffiffiffi
MSEr
ni

q
t
α=2,Err:d:f :

In the event of rejection of null hypothesis,

that means if the equality population means are

rejected against at least one pair of unequal pop-

ulation means, we are to find out the pairs of

population means from the sampled data, which

are significantly different from each other, and

which population is the best population with

respect to the characteristic under consideration.

That means we are to compare multiple number

of means, i.e., multiple comparison of means.

There are a few tests like least significant differ-

ence (LSD) or critical difference (CD) method,

Bonferroni, Newman-Keuls, Duncan, Dunnet,

Tukeys test, etc. found in literature. Here we

shall discus LSD or CD to accomplish this task.

If the difference between any pair of means is

greater than the critical difference value at

specified level of significance, then the means

under comparison differ significantly. The criti-

cal difference (CD) or least significant differ-

ence (LSD) value is calculated using the

following formula for one-way analysis of

variance:

LSDα or CDα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr

1

ri
� 1

ri0

	 
s
t
α=2,Err:d:f :

where, ri and ri0 are the number of observations

under i and i0th treatments respectively and

t
α=2,Err:d:f : is the table value of t distribution at α

level of siginificance (for both sided test) at error

degrees of freedom.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr

1
ri
� 1

ri0

� �r
is known as

standard error of difference (SED) between pair

of means. The advantage of the CD/LSD is that it

has a low level of type II error and will most

likely detect a difference if a difference really

exists. A disadvantage of this procedure is that it

has a high level of type I error.

Example 9.1

An experiment was conducted to investigate the

effects of four different diets D1, D2, D3, and D4

on daily gains (g) in weight of six chicks of

6 weeks old. The following data are related to

gain in weights. Analyze the data and test

whether all the four diet treatments are equally

efficient and if not which diet is the best:

D1 D2 D3 D4

30 32 34 36

27 28 25 30

23 27 26 28

25 29 27 33

23 26 25 32

26 29 29 30

Solution This is a fixed effect model and can be

written as yij ¼ μþ αi þ eij
Thus, null hypothesis is

H0 : α1 ¼ α2 ¼ α3 ¼ α4 ¼ 0 against the H1 :

α0sare not equal;

where αi is the effect of ith (i ¼1,2, 3,4) diet

Let the level of significance be 0.05.
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We calculate the following quantities from the

given information:

D1 D2 D3 D4

30 32 34 36

27 28 25 30

23 27 26 28

25 29 27 33

23 26 25 32

26 29 29 30

Total 154 171 166 189

Average 25.67 28.50 27.67 31.50

GT ¼ 30þ 27þ . . . . . . . . . . . .þ 29þ 30 ¼ 680

CF ¼ GT2=n ¼ 6802=24 ¼ 19266:67

TSS ¼ 302 þ 272 þ . . . . . . . . .þ 292 þ 302 � CF
¼ 261:333

SS dDietð Þ ¼ 1542 þ 1712 þ 1662 þ 1892
� �

=
6� CF ¼ 105:667

ErSS ¼ TSS� SS dDietð Þ ¼ 155:667

ANOVA table

Source

of

variation d.f. SS MS F

Tab

F

Diet 3 105.667 35.22222 4.525339 3.10

Error 20 155.667 7.783333

Total 23 261.333

The table value of F0.05;3,20 ¼ 3.10, i.e., Fcal >

Ftab. So the test is significant at 5 % level of

significance, and we reject the null hypothesis.

Thus, we can conclude that the all four diets are

not equally efficient.

Now we are to find out which diet is the best

among four diets given. To compare the diets, we

calculate the mean (yi) of the observations of four
diets, and the means are arranged in decreasing

order. Thus, we get:

Diet no. 4 2 3 1

Mean 31.50 28.50 27.67 25.67

Now we find the critical difference value

which is given by

LSD=CD 0:05ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1

ri
þ 1

ri

	 
s
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:783

2

ri

	 
s
� t0:025,20:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:783

2

6

	 
s
� 2:086 ¼ 3:359

where ri is the number of observations of the ith

diet in comparison; here all the diets are repeated

six number of times. Thus, for comparing the

diets, we have the following critical difference

and mean difference values.

Conclusion

Mean difference Remarks Conclusion

Diet 4 and

diet 2

3 <CD

(0.05)

Diet 4 and diet 2 are at

per

Diet 4 and

diet 3

3.83 >CD

(0.05)

Diet 4 is significantly

greater than diet 3

Diet 4 and

diet 1

5.83 >CD

(0.05)

Diet 4 is significantly

greater than diet 1

Diet 2 and

diet 3

0.83 <CD

(0.05)

Diet 2 and diet 3 are at

per

Diet 2 and

diet 1

2.83 <CD

(0.05)

Diet 2 and diet 1 are at

per

Diet 3 and

diet 1

2.00 <CD

(0.05)

Diet 3 and diet 1 are at

per

It is found from the above table that though

diet 4 and diet 2 are statistically at par, diet 4 is

having higher gain in body weight. As such, we

conclude that diet 4 is the best diet, so far about

the increase in body weight of chicks is

concerned.

Example 9.2

Thirty-two animals were fed with four different

feeds. The following figures give the gain in

body weight after 2 months. Analyze the data

and draw your conclusion: (i) whether all the
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four feeds are equally efficient and which feed is

the best feed:

Feed 1 Feed 2 Feed 3 Feed 4

12.5 13.7 11.6 14.8

12 13.8 11.8 14.5

12.3 13.9 11.9 14.9

13.4 13.8 12.2 15

13.5 14 11.8 14.7

13.6 12.9 12.1 14.5

11.9 13.5 12.4 14.9

12.7 11.9 14.8

12.8 11.9

12.4

13.2

Solution This is a fixed effect model and can be

written as

yij ¼ μþ αi þ eij

The null hypothesis is

H0 : α1 ¼ α2 ¼ α3 ¼ α4 ¼ 0 against the H1 : α0s
are not all equal, where, αi is the effect of ith

(i ¼ 1,2,3,4) feed.

From the above information, we are to test the

null hypothesis.

From the above information, let us construct

the following table:

Feed 1 Feed 2 Feed 3 Feed 4 Total

12.50 13.70 11.60 14.80

12.00 13.80 11.80 14.50

12.30 13.90 11.90 14.90

13.40 13.80 12.20 15.00

13.50 14.00 11.80 14.70

13.60 12.90 12.10 14.50

11.90 13.50 12.40 14.90

12.70 11.90 14.80

12.80 11.90

12.40

13.20

GT¼ 140.30 95.60 107.60 118.10 461.60

Means 12.75 13.66 11.96 14.76

CF ¼ 6087.84

SSTot ¼ 42.22

SSF ¼ 37.11

SSEr ¼ 5.11

GT ¼ 12:5þ 12:0þ 12:3þ . . . . . . . . . ::
þ14:5þ 14:9þ 14:8 ¼ 461:60

CF ¼ GT2=n ¼ 461:602=35 ¼ 6087:84

SSTot ¼ 12:52 þ 12:02 þ 12:32 þ . . . . . . ::
þ14:52 þ 14:92 þ 14:82 � CF ¼ 42:22

SS Feedð Þ ¼ 140:302

11
þ 95:602

7

þ 107:60

9

2

þ 118:1

8

2

� CF ¼ 37:11

SSEr ¼ TSS� FSS ¼ 5:11

ANOVA for one-way analysis of variance

SOV d.f. SS MSS F ratio

Feed 3 37.11 12.37 75.11

Error 31 5.11 0.16

Total 34 42.22

The table value of F0.05;3,31 ¼ 2.91, i.e., FCal

> FTab. So the test is significant at 5 % level of

significance, and we reject the null hypothesis.

Thus, we can conclude that the feeds are not

equally efficient.

Next task is to find out which pair of feeds

differ significantly and which is the best feed. To

compare the feeds, we calculate the means (yi) of

the observations of four schools, and the means

are arranged in decreasing order. Thus, we get

Feed 4 2 1 3

Mean (yi) 14.76 13.66 12.75 11.96

Now we find the critical difference value

which is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1

ri
þ 1

ri0

	 
s
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:16

1

ri
þ 1

ri0

	 
s
� t0:025,31:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:16

1

ri
þ 1

ri0

	 
s
� 2:04

where ri and rj are the number of observations of

the two diets in comparison. Thus, for comparing

the diets, we have the following critical
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difference and mean difference values among the

feeds:

CD values Mean difference

LSD/CD(0.05)

(feed 1–feed 2)

0.395 Difference between

feed 1 and feed 2

0.9026

LSD/CD (0.05)

(feed 1–feed 3)

0.367 Difference between

feed 1 and feed 3

0.7990

LSD/CD (0.05)

(feed 1–feed 4)

0.379 Difference between

feed 1 and feed 4

2.0080

LSD/CD (0.05)

(feed 2–feed 3)

0.411 Difference between

feed 2 and feed 3

1.7016

LSD/CD (0.05)

(feed 2–feed 4)

0.422 Difference between

feed 2 and feed 4

1.1054

LSD/CD (0.05)

(feed 3–feed 4)

0.397 Difference between

feed 3 and feed 4

2.8069

It is found from the above table that all the

values of the mean differences are greater than

the respective LSD/CD values at 5 % level of

significance. So all the four feeds differ among

themselves with respect to change in body

weight. Among the four feeds, the feed 4 has

increased the body weight most; as such, the

feed 4 is the best feed.

9.4.1 Analysis of One-Way Classified
Data Using MS Excel

Example 9.3

Hay was stored using four different methods, and

its nutritional value (kcal) was measured. Are

there significant differences among different

storage methods?

TR1 TR2 TR3 TR4

14.3 18 18 22

13 15.9 19.2 18

13.8 17.9 17.8 17.5

11.2 16.8 18.6 18.2

12.2 13.2 14.1 19.4

15.4 17.2 19.2

16.1 20.1

(i) Enter the data as given above in MS Excel

work sheet.

(ii) Go to Data Analysis menu under Data.
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(iii) Select “Anova Single Factor” option.

(iii) Select the input range including the labels

in the first row of the data.

(iv) Select the level of significance alpha (α) at
desired level (generally, 0.05 or 0.01).

(v) Select the output range i.e. the starting cell

for writing output of the analysis.
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(vi) Get the above results as shown in the

figure.

(vii) If the P-value given in the ANOVA is less

than the desired level of significance, then

the test is significant, and we can reject the

null hypothesis of equality of effect of

different types of storage conditions. That

means all the storage methods are not

equally effective for maintaining

nutritional value.

(viii) If the probability (P level) given in the

ANOVA is less than the desired level of

significance, then the test is significant,

and there exists significant differences

among the groups. Hence arises the need

for finding the groups or treatments (here

storage types) which are significantly dif-

ferent from each other and also the best

treatment or group (storage type). For that

one has worked out the CD/LSD value at

desired level of significance. For the above

example, CD is calculated with the help of

the following formula, and conclusion is

drawn accordingly:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1

r1
þ 1

r2

	 
s
� t0:05, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:02

1

r1
þ 1

r2

	 
s
� t0:05,21:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:02

1

r1
þ 1

r2

	 
s
� 2:07

where r1 and r2 are the replications of the two

groups or treatments under consideration.

Thus, to compare storage method 1 and stor-

age method 2, we have CD (0.05)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:02

1

7
þ 1

5

	 
s
� 2:07 ¼ 2:11

The difference between the means of storage

method 1 and storage method 2, 16.76-

13.71 ¼ 2.65 is more than CD (0.05) ¼ 2.11.

So these two feeds are different, and storage

method 2 is better than storage method 1. Like-

wise, we are to calculate other CD values for

comparing means of different storage method

having different observation:

Difference between

Mean

difference

CD

value

Storage method 1 and storage

method 2

2.65 2.12

Storage method 1 and storage

method 3

3.77 2.19

Storage method 1 and storage

method4

5.49 1.93

Storage method 2 and storage

method 3

1.12 2.19

Storage method 2 and storage

method 4

2.84 2.19

Storage method 3 and storage

method 4

1.72 2.01

In this example, storage method 3 and

4 and storage method 2 and 3 are equally effi-

cient as mean difference between treatment

means are less than corresponding calculated

CD values. Overall, storage method 4 is more

efficient for maintaining nutritional value

of feed.

9.5 Two-Way Classified Data

The problem with one-way analysis of variance

is that one can accommodate one factor at a time,

but in many practical cases, we need to accom-

modate more than one factor at a time. Subjects

are required to be classified on the basis of two

grouping characteristics simultaneously. In this

type of classification, each of the grouping

factors may have different levels, and each

level may have one or more observations. Let

us take an example, suppose an experimenter

wants to test the efficacy of three different feeds

(F1, F2, F3) on two different types of fish Catla

catla (viz., local and hybrid). Thus, we have two

factors, viz., feed and type of fish; for the first

factor, i.e., feed, we have three levels, viz., F1,

F2, and F3, and for the second factor type of fish,

we have two levels, viz., local and hybrid. So we

have different levels for the two factors, but the

level of factors may be the same also. Thus,

altogether we have 3 � 2 ¼ 6 treatment

combinations as follows:
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Type

Feed

F1 F2 F3

Local(L) (F1L) (F2L) (F3L)

Hybrid(H) (F1H) (F2H) (F3H)

This idea that can be generalized using two

factors has A and B having i and j levels (i and

j can take different or same values) with i.j treat-
ment combinations, and the treatment

combinations will be as follows:

A B
B1 B2 …………… Bj …………

A1 (A1B1) (A1B2) …………… (A1Bj) …………
A2 (A2B1) (A2B2) …………… (A2Bj) …………
: ……. ……. …………… : …………
: : …………
Ai (AiB1) (AiB2) …………… (AiBj) …………
: : : ………… : …………
: : : ………… : …………

Two way classification with one observation per cell

In the above arrangement, if all the treatment

combinations are repeated more than once, then

the shape of the above table will be as follows:

A B
B1 B2 …………… Bj …………

A1

(A1B1)1
(A1B1)2
(A1B1)3
……….
……….

(A1B2)1
(A1B2)2
(A1B2)3
……….
……….

……………
……………
……………
……………
……………

(A1Bj)1
(A1Bj)2
(A1Bj)3
……….
……….

…………
…………
…………
…………
…………

A2

(A2B1)1
(A2B1)2
(A2B1)3
……….
……….

(A2B2)1
(A2B2)2
(A2B2)3
……….
……….

……………
……………
……………
……………
……………
……………

(A2Bj)1
(A2Bj)2
(A2Bj)3
……….
……….

…………
…………
…………
…………
…………

: ……. ……. …………… : …………
: : …………

Ai

(AiB1)1
(AiB1)2
(AiB1)3
……….
……….

(AiB2)1
(AiB2)2
(AiB2)3
……….
……….

……………
…………
…………
…………
…………

(AiBj)1
(AiBj)2
(AiBj)3
……….
……….

…………
…………
…………
…………
…………

: : : ………… : …………
: : : ………… : …………

Two way classification with more than one observation per cell
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Number of repetition may or may not vary

from treatment to treatment combination.

9.5.1 Two-Way Classified Data
with One Observation per Cell

Let us consider fixed effect models for

two-way classified data for two factors, A

and B, with m and n levels, respectively, and

no repetition of any of the treatment

combinations. If yij be the response recorded

corresponding to ith level of the factor A and

jth level of the factor B, the observations can

be presented as follows:

B1 B2 …… Bj …… Bn

A1 y11 y12 …… y1j …… y1n

A2 y21 y22 …… y2j …… y2n

: : : : :
: : : : :

Ai yi1 yi2 …… yij …… yin

: : : : :
: : : : :

Am ym1 ym2 …… ymj …… ymn

If we consider a fixed effect model, then fol-

lowing the same procedure of one-way classified

data, we can have

yij ¼ μij þ eij
¼ μþ μi0 � μð Þ þ μ0j � μ

� �
þ μij � μi0 � μ0j þ μ
� �þ eij

¼ αi þ μþ βj þ γij þ eij
¼ μþ αi þ βj þ eij

[The interaction effect γij can not be estmated by

a single value, since there is only one value per

cell. So we take γij ¼ 0 and hence the model],

where i ¼ 1, 2, . . .. . ., m; j ¼ 1, 2, . . ..., n:

yij ¼ value of the observation corresponding to

the ith level of the factor A and jth level of the

factor B.

μ ¼ general effect.

αi ¼ additional effect due to ith level of factor A.

βj ¼ additional effect due to jth level of factor B.

eij ¼ errors associated with ith level of the

factor A and jth level of the factor B and are

i.i.d N(0, σ2) and
Xm
i¼1

αi ¼
Xn
j¼1

βj ¼ 0

It may be noted that in case of two-way clas-

sified data only, one observation per cell interac-

tion effect cannot be estimated.

The least square estimates μ, αi and βj are
obtained by minimizing the sum of squares due

to error:

S ¼
X
i

X
j

e2ij ¼
X
i

X
j

yij � μ� αi � βj

� �2

The normal equations obtained are

∂S
∂μ

¼ �2
Xm
i

Xn
j

yij � μ� αi � βj

� �
¼ 0

∂S
∂αi

¼ �2
Xn
j¼1

yij � μ� αi � βj

� �
¼ 0

∂S
∂αi

¼ �2
Xm
i¼1

yij � μ� αi � βj

� �
¼ 0

Solving the above equations, we have

μ̂ ¼ y::
α̂ i ¼ yi: � y::
β̂ j ¼ y:j � y::
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where, y:: ¼
1

mn

X
i, j

yij, yi: ¼
1

n

X
j

yij, y:j

¼ 1

m

X
i

yij

Thus,

yij ¼ y:: þ yi: � y::ð Þ þ ðy:j � y::Þ
þðyij � yi: � y:j þ y::Þ

or

X
i

X
j

y2ij ¼ mny2:: þ n
X
i

yi: � y::ð Þ2

þ m
X
j

ðy:j � y::Þ2

þ
X
i

X
j

ðyij � yi: � y:j þ y::Þ
2

[Note: All product terms vanish because

of the fact
X
i

yi: � y::ð Þ ¼
X
j

ðy:j � y::Þ

¼
X
i

X
j

ðyij � yi: � y:j þ y::Þ ¼ 0
�

orX
i

X
j

ðyij � y::Þ ¼ n
X
i

yi: � y::ð Þ2 þ m
X
j

ðy:j � y::Þ

þ
X
i

X
j

ðyij � yi: � y:j þ y::Þ2

Or SSTot ¼ SS Að Þ þ SS Bð Þ þ SSEr
The corresponding partitioning of the total

d.f. is as follows:

Total d:f: ¼ d:f: due to Factor A

þ d:f: due to Factor B

þ d:f: due to Error

mn� 1 ¼ m� 1ð Þ þ n� 1ð Þ
þ m� 1ð Þ n� 1ð Þ

Our objective is to test the following two

hypotheses:

H01 : α1 ¼ α2 ¼ α3 ¼ :::::::::αm ¼ 0 and

H02 : β1 ¼ β2 ¼ β3 ¼ :::::::::βn ¼ 0

For practical purposes, the various sums of

squares are calculated from the following table

and using the following formulae:

B1 B2 …… Bj …… Bn Total Mean

A1 y11 y12 …… y1j …… y1n y1. 1.y

A2 y21 y22 …… y2j …… y2n y2. 2.y
: : : : : : :
: : : : : : :

Ai yi1 yi2 …… yij …… yin yi. .iy
: : : : : : :
: : : : : : :

Am ym1 ym2 …… ymj …… ymn ym. .my
Total y.1 y.2 …… y.j …… y.n y..

Mean .1y .2y …… . jy …… .ny ..y

Step 1: G ¼ Grand total ¼ Pm
i¼1

Pn
j¼1

yij

Step 2: Correction factor CFð Þ ¼ G2

mn ;

Step 3: Total Sum of Squares SSTotð Þ
¼ P

i

P
j

ðyij � y::Þ2

¼ P
i

P
j

y2ij � CF
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Step 4: Sum of Squares Að Þ ¼ SSA

¼ n
X
i

yi: � y::ð Þ2

¼ n
X
i

y2
i:
� my2::

" #

¼ n
X
i

Xn
j¼1

y
ij

n

0
BBBB@

1
CCCCA

2

� nmy2
00

¼ 1

n

X
i

y2i0 � CF, where, yi0 ¼
Xn
j¼1

yij is the

sum of observations for ith level of the factor A.

Step 5: Sum of Squares Bð Þ ¼ SSB

¼ m
X
j

ðy:j � y::Þ2

¼ 1

m

X
j

y2:j � CF, where, y0j ¼
Xm
i¼1

yij is the

sum of observations for jth level of the factor B.

Step 6: ErSS ¼ SSTot � SSA � SSB

Dividing these sums of squares by their

respective degrees of freedom, we will get the

mean sum of square, i.e., mean sum of square due

to factor A, factor B, and error mean sum of

square.

We have the following ANOVA table for

two-way classification with one observation per

cell:

SOV d.f. SS MS F

Factor

A

m�1 SSA MSA ¼ SSA/
m�1)

MSA/
MSEr

Factor

B

n�1 SSB MSB ¼ SSB/
(n�1)

MSB/
MSEr

Error (m�1)

(n�1)

SSEr MSEr ¼ SSEr/
(m�1)(n�1)

Total mn�1 SSTot

In the event of rejection of any or both null

hypotheses, that means if the equality of popula-

tion means are rejected against at least one pair

of unequal population means, we are to find out

the pairs of population means from the sampled

data, which are significantly different from each

other, and which population is the best popula-

tion with respect to the characteristic under con-

sideration. That means we are to compare

multiple number of means, i.e., multiple compar-

ison of means. This is followed as per the for-

mula given in for one-way ANOVA, but there

will be two corrections:

(a) A number of observations are equal for all

treatment combinations.

(b) Corresponding to rejection of each null

hypothesis, there would be one LSD or CD

value to be calculated.

Thus, we are to get two CD values

corresponding to factor A and factor B, respec-

tively, using the formulae given below:

LSD=CD 0:05ð Þ for factor A

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MSE

levels of factor B

r
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
� t0:025, err:d:f :

LSD=CD 0:05ð Þ for factor B

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MSE

levels of factor A

r
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

m

r
� t0:025, err:d:f :

Example 9.3

Four different breeds of cows were treated with five

vitamins for improving milk production. Type of

breed was criteria for assigning cows in four differ-

ent blocks. Each block is assigned with four cows.

The effect of these vitamins onmilk productionwas

tested by weekly milk production (liter) after treat-

ment. Analyze the data using two-way ANOVA:

Vitamin Breed 1 Breed 2 Breed 3 Breed 4

V1 42 54 72 88

V2 44 57 76 92

V3 45 52 78 86

V4 42 60 73 93

V5 41 61 78 92

V6 46 65 82 99
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This is a fixed effect model

yij ¼ μþ αi þ βj þ eij, where i ¼ 1, 2, . . .. . .,

6; j ¼ 1, 2,3, 4:

yij ¼ value of the observation corresponding to

the ith vitamin and jth type of breed.

μ ¼ general mean effect

αi ¼ additional effect due to ith vitamin.

βj ¼ additional effect due to jth type of breed.

eij ¼ errors with associated with ith vitamin and

jth type of breed.

Under the given condition, the null

hypotheses are

H01 : α1 ¼ α2 ¼ α3 ¼ α4 ¼ α5 ¼ α6 ¼ 0

against

H11 : α0s are not equal and
H02 : β1 ¼ β2 ¼ β3 ¼ β4 ¼ 0 against

H12 : β0s are not equal
This is a problem of two-way analysis of

variance with one observation per cell.

We calculate the following quantities:

Total number of observations ¼ N ¼ mn ¼ 24

ðm ¼ no: of vitamins and n ¼ no: of breedsÞ
G ¼ 42þ 44þ . . . . . . . . .þ 92þ 99 ¼ 1618

CF ¼ G2=N ¼ 16182=24 ¼ 109080:17

TSS ¼ 422 þ 442 þ 452 þ . . . . . . ::þ 932 þ 922

þ 992 � CF
¼ 8319:83

Tr SS ¼ SS Vitaminð Þ ¼ 2562

4
þ 2692

4
þ 261

4

2

þ268

4

2

þ 272

4

2

þ 292

4

2

� CF ¼ 192:33

Ty SS ¼ SS Breedð Þ ¼ 2602

6
þ 3492

6

þ 459

6

2

þ550

6

2

� CF ¼ 8016:83

Er SS ¼ SSEr ¼ TSS� SSV � SSBr ¼ 110:66

ANOVA table

Source

of

variation d.f. SS MS F Table F

Breed 3 8016.83 2672.28 362.21 2.90

Vitamin 5 192.33 38.47 5.21 3.29

Error 15 110.67 7.38

Total 23 8319.83

Let the level of significance α ¼ 0.05.

The table value corresponding to the effect of

breed, i.e.,F0.05;3,15 ¼ 2.90. From the analysis, we

have FCal > FTab; so the test is significant, and the

hypothesis of equality of breeds is rejected.

On the other hand, the table value

corresponding to the effect of vitamin, i.e.,

F0.05;5,15 ¼ 3.29, From the analysis, we have

FCal > FTab; so the test is significant, and the

hypothesis of equality vitamins is also rejected.

We conclude that there exists significant differ-

ence among the effects of breeds as well as

vitamins with respect to milk production (liter).

Vitamin Breed 1 Breed 2 Breed 3 Breed 4 Total
X

yi: Mean yi:

V1 42 54 72 88 256 64.00

V2 44 57 76 92 269 67.25

V3 45 52 78 86 261 65.25

V4 42 60 73 93 268 67.00

V5 41 61 78 92 272 68.00

V6 46 65 82 99 292 73.00

Total
X

y:j 260 349 459 550 1618

Mean y:j

� �
43.33 58.17 76.50 91.67
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Thus, the next task is to find out the best breed

and the best vitamin to produce maximum milk

per cow. For this, we calculate critical

differences for both breeds and vitamins sepa-

rately and then compare the respective mean

effects using the following formulae:

LSD=CD 0:05ð Þ for Breed LSD=CD 0:05ð Þ for Vitamin

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

V

r
� t0:025,err:df : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

B

r
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 7:38

6

r
� t0:025,15: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 7:38

4

r
� t0:025,15:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 7:38

6

r
� 2:13 ¼ 3:34 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 7:38

4

r
� 2:13 ¼ 4:09

Ordered breed mean milk yield

B4 B3 B2 B1

91.67 76.50 58.17 43.33

Comparison of breeds with respect to per day

milk production

Mean

difference Remarks Conclusion

Breed

4 and

breed 3

15.17 >CD

(0.05) ¼ 3.34

Breed 4 and breed

3 are significantly

different from each

other

Breed

4 and

breed 2

33.50 >CD

(0.05) ¼ 3.34

Breed 4 and breed

2 are significantly

different from each

other

Breed

4 and

breed 1

48.33 >CD

(0.05) ¼ 3.34

Breed 4 and breed

1 are significantly

different from each

other

Breed

3 and

breed 2

18.33 >CD

(0.05) ¼ 3.34

Breed 3 and breed

2 are significantly

different from each

other

Breed

3 and

breed 1

33.17 >CD

(0.05) ¼ 3.34

Breed 3 and breed

1 are significantly

different from each

other

Breed

2 and

breed 1

14.8 >CD

(0.05) ¼ 3.34

Breed 2 and breed

1 are significantly

different from each

other

From the above table, it is clear that all the

breeds differ significantly among themselves

with respect to milk production per day. Among

the breeds, breed 4 is the significantly higher

yielder than other breeds.

Comparison of vitamins with respect to per

day milk production

Ordered vitamin mean milk yield (l)

V6 V5 V2 V4 V3 V1

73 68 67.25 67 65.25 64

The mean comparison as followed for breeds

will be laborious and clumsy as the number of

levels increases. As such for the purpose of com-

paring the mean differences among the vitamins

w.r.t. milk yield per day, let us construct the

following mean difference matrix w.r.t. milk

yield per day as given below from the above-

ordered means:

Mean difference matrix w.r.t. milk yield per day (l )

V5 V2 V4 V3 V1

V6 5.0 5.8 6.0 7.8 9.0

V5 0.8 1.0 2.8 4.0

V2 0.3 2.0 3.3

V4 1.8 3.0

V3 1.3

It is clear from the above two tables that the

highest milk yielder per day is vitamin six and
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the difference of milk yield due to application of

vitamin six with that of the milk yield from any

other vitamin is greater than the LSD value at

5 % level of significance (i.e., 4.09).Thus, vita-

min six is the best vitamin compared to other

vitamin w.r.t. milk yield per day (l )

9.5.2 Analysis of Two-Way Classified
Data with One Observation per
Cell Using MS Excel

Example 9.4

An experiment was conducted to see the effect of

four treatments on ovulation (no. of eggs

produced/fish in thousands) in rohu (Labeo

rohita) fish. Four different categories of rohu

fish was formed considering weight and treat-

ment. The treatments were randomly assigned

to the fish of different breeds. Test whether

these treatments significantly differ or not:

Cat1 Cat2 Cat3 Cat4

T1 80 100 140 180

T2 85 120 160 200

T3 82 125 170 190

T4 86 140 175 220

9.5 Two-Way Classified Data 293



Step 1: Go to data analysis of Tools menu.

Step 2: Select Anova – two factor without

replication.
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Step 3: Select the options as given above.

Step 4: Get the results as given above. Here rows

are the treatments, and columns are the

categories.

Step 5: From the above table, we see that both the

factors (treatment and categories of rohu fish)

are significant at p ¼ 0.05. So we need to

calculate the CD/LSD values to identify the

pair of category of fish means and pairs of

treatment means which are significantly dif-

ferent from each other and also to identify the

best method of treatment as well as the cate-

gory of fish weight to have high ovulation. CD

values are calculated as follows:

CD0:05 treatmentsð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

r

r
� t0:025,err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 66:346

4

r
� t0:025,9:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 66:34

4

r
� 2:26 ¼ 13:02

and

CD0:05 categoryð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

m

r
� t0:025,err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 66:34

4

r
� t0:025,9:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 66:34

4

r
� 2:26 ¼ 13:02

Where r and m are the categories of fish used as

block and number of treatments, respectively.

From the values of CD, it is clear that (i) all the

categories of fish and treatments are significantly

different with respect to ovulation and T4 treat-

ment is the best method for increasing ovulation

in rohu fish. Treatment 2 and treatment 3 are

statistically at par (ii). All categories of fish

with respect to weight are statistically different

in ovulation, while weight of category 4 fish

found best to increase ovulation in rohu.
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9.6 Two-Way Classified Data
with More Than One
Observation per Cell

Let us consider fixed effect models for two-way

classified data for two factors, A and B, with

m and n levels, respectively, and l repetitions of
the treatment combination. If yijk be the response

recorded corresponding to kth observation of ith
level of the factor A and jth level of the factor B,

the observations can be presented as follows:

B1 B2 …… Bj …… Bn

A1

y111

y112

:

:

y11l

y121

y122

:

:

y12l

……

……

……

……

……

y1j1

y1j2

:

:

y1jl

……

……

……

……

……

y1n1

y1n2

:

:

y1nl

A2

y211

y212

:

:

y21l

y221

y222

:

:

y22l

……

……

……

……

……

y2j1

y2j2

:

:

y2jl

……

……

……

……

……

y2n1

y2n2

:

:

y2nl

: : : : :

: : : : :

Ai

yi11

yi12

:

:

yi1l

yi21

yi22

:

:

yi2l

……

……

……

……

……

yij1

yij2

:

:

yijl

……

……

……

……

……

yin1

yin2

:

:

yinl

: : : : : : :

: : : : : : :

Am

ym11

ym12

:

:

ym1l

ym21

ym21

:

:

ym21

……

……

……

……

……

ymj1

ymj1

:

:

ymj1

……

……

……

……

……

ymn1

ymn1

:

:

ymn1
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In the above analysis of variance for two-way

classified data with one observation per cell, it was

not possible to estimate the interaction effect of the

factors. In the present case with two-way classified

data having l observations per cell, one can work

out the interaction effects. The model will be

yijk ¼ μþ αi þ βj þ γij þ eijk,

where i ¼ 1, 2, . . .. . ., m; j ¼ 1, 2, . . ..., n;

k ¼ 1, 2, . . ..., l

μ ¼ general effect.

αi ¼ additional effect due to ith group of

factor A.

βj¼ additional effect due to jth group of factor B.
γij ¼ interaction effect due to ith group of factor

A and jth group of factor B.

eijk ¼ errors with associated with kth observa-

tion of ith group of factor A and jth group

of factor B and are i.i.d N(0, σ2);X
i

αi ¼
X
j

βj ¼
X
i

γij ¼ 0

The least square estimates are obtained by

minimizingX
i

X
j

X
k

yijk � μ� αi � βj � γij

� �2

for all

i and j

To get

μ̂ ¼ y...
α̂ i ¼ yi:: � y...
β̂ j ¼ y:j: � y...
γ̂ ij ¼ yij: � yi:: � y:j: þ y...

where, y... ¼
1

mnl

X
i

X
j

X
k

yijk ¼ mean of all

observations

yi:: ¼
1

nl

X
j

X
k

yijk ¼ mean of ith level of A

y:j: ¼
1

ml

X
i

X
k

yijk ¼ mean of jth level of B

yij: ¼
1

l

X
k

yijk ¼ mean of the observations for

ith level of A and jth level of B

γ̂ ij ¼ yij: � yi:: � y:j: þ y...

Thus, the linear model becomes

yijk ¼ y... þ yi:: � y...ð Þ þ ðy:j: � y...Þ þ ðyij: � yi::

� y:j: þ y...Þ þ ðyijk � yij:Þ

Transferring y. . . to the left, squaring both the

sides and summing over i,j,k, we get

Xm
i

Xn
j

Xl

k

yijk � y...

� �2

¼

nl
X
i

yi:: � y...ð Þ2 þ ml
X
j

y:j: � y...

� �2

þ l
X
i

X
j

yij: � yi:: � y:j: þ y...

� �2

þ
X
i

X
j

X
k

yijk � yij:

� �2

[product terms vanishes as usual]

or SSTot ¼ SSA þ SSB þ SSAB þ SSEr:

Corresponding partitioning of the total d.f. is as

follows:

d:f: for SSTot ¼ d:f: for SSA þ d:f: for SSB
þ d:f: for SSAB þ d:f: for SSEr

lmn� 1 ¼ m� 1ð Þ þ n� 1ð Þ þ m� 1ð Þ n� 1ð Þ
þ mn l� 1ð Þ

Hypotheses to be tested are as follows:

H01 : α1 ¼ α2 ¼ α3 ¼ :::::::::αm ¼ 0,

H02 : β1 ¼ β2 ¼ β3 ¼ :::::::::βn ¼ 0 and

H03 : γij ¼ 08i, j for all i and jð Þ

Against the alternative hypotheses,

H11: All α ’s are not equal,

H12: All β ’ s are not equal and

H13: All γij0 s are not equal,8 i, j(for all i and j)

Dividing the sum of squares by their corres-

ponding d.f. will result in corresponding MSs, and
the ANOVA table structure will be as follows:

ANOVA table for two-way classified data with

m l(>1) observations per cell

SOV d.f. SS MS F

Factor A m�1 SSA MSA ¼ SSA/
(m�1)

MSA/
MSEr

Factor B n�1 SSB MSB ¼ SSB/
(n�1)

MSB/
MSEr

Interaction

(A � B)

(m�1)(n�1) SSAB MSAB ¼ SSAB/
(m�1)(n�1)

MSAB/
MSEr

Error By

subtraction ¼
mn(l� 1)

SSEr MSEr ¼ SSEr /
mn(l� 1)

Total mn l� 1 SSTot

9.6 Two-Way Classified Data with More Than One Observation per Cell 297



For practical purposes, different sums of squares

are calculated by using the following formulae:

Step 1: Grand Total ¼ G ¼
Xm
i

Xn
j

Xl

k

yijk

Step 2: Correction Factor ¼ CF ¼ G2

mnl
Step 3: Treatment Sum of Squares ¼ SSTr ¼Xm

i

Xn
j

Xl

k

yijk � y...

� �2

¼
Xm
i

Xn
j

Xl

k

yijk

� �2

�CF

Step 4: Sum of Squares due to A ¼ SSA

¼ nl
X
i

yi:: � y...ð Þ2 ¼ nl
X
i

y2
i::
� my...

2

" #

¼ nl
X
i

X
j

X
k

yijk

nl

0
BB@

1
CCA

2

� CF

¼ 1

nl

X
i

y2
i::
� CF

Step 5: Sum of Squares due to B ¼ SSB ¼
ml

X
j

y:j: � y...

� �2

¼ 1

ml

X
i

y2:j: � CF

Step 6: Sum of Squares due to AB ¼ l
X
iX

j

yij: � yi:: � y:j: þ y...

� �2

¼ l
X
i

X
j

yij: � y... � yi:: � y...ð Þ � y:j: � y...

� �� �2

¼ l
hX

i

X
j

yij: � y...

� �2

� n
X
i

yi:: � y...ð Þ2

�m
X
j

y:j: � y...

� �2

¼ l
X
i

X
j

yij: � y...

� �2

� SSA � SSB

¼ l
Xm
i

Xn
j

y2ij: � mny2...

" #
� SSA � SSB

¼
Xm
i

Xn
j

y2ij:
l
� CF� SSA � SSB

¼ SSTr � SSA � SSB

∴ErSS ¼ SSTot � SSTr
¼ SSTot � SSA þ SSB þ SSABð Þ
¼ SSTot � SSA � SSB � SSAB

In the event of rejection of any or all the null

hypotheses, that means if the equality of population

means are rejected against at least one pair of

unequal population means, we are to find out the

pairs of population means from the sampled data,

which are significantly different from each other,

and which population considering all the factors

separately and their interaction is the best population

with respect to the characteristic under consider-

ation. That means we are to compare multiple num-

ber of means, i.e., multiple comparison of means.

This is followed as per the formula given in for

one-wayANOVA, but therewill be two corrections:

(a) Number of observations are equal for all

treatment combinations.

(b) Corresponding to rejection of each null

hypothesis, there would one LSD or CD

value to be calculated.

Thus, we are to get three CD values corres-

ponding to factor A, factor B, and their interaction,

respectively, using the formulae given below:

1ð Þ LSD=CD 0:05ð Þ for factor A

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MSE

No of repetition� levels of factor B

r
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

l:n

r
� t0:025, err:d:f :

2ð Þ LSD=CD 0:05ð Þ for factor B

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MSE

No of repetition� levels of factor A

r
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

l:m

r
� t0:025, err:d:f :

3ð Þ LSD=CD 0:05ð Þ for interaction of factor A and B

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MSE

No of repetition

r
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

l

r
� t0:025, err:d:f :

Example 9.5

An experiment was conducted to determine the

effect of three diet treatments (T1, T2, and T3) on
daily gain in body weight (g/d) of pigs. Pigs of

five different breeds were selected. In each breed,

there were six animals to which each treatment

was randomly assigned to two animals. There-
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fore, a total of 30 animals were used. Analyze the

data and draw conclusions on whether:

(a) There exists significant difference between

three different breeds of pigs with respect to

weight gain.

(b) Three different treatments significantly dif-

fer with respect to weight gain.

(c) There exists any interaction effect between

the breed and diet or not:

Pig

breed 1

Pig

breed 2

Pig

breed 3

Pig

breed 4

Pig

breed 5

T1 240 290 510 320 420

250 275 520 340 410

T2 170 265 470 330 375

180 260 480 300 380

T3 190 255 500 310 390

210 265 490 290 395

The problem can be visualized as the problem

of two-way analysis of variance with two

observations per cell. The linear model is

yijk ¼ μþ αi þ βj þ γij þ eijk

where,

yijk is the gain in weight associated with kth
observation of ith level of treatment(diet)

and jth level of breed

αi is the effect of ith level of treatment(diet);

i¼1,2,3

βj is the effect of jth level of breed; j¼1,2,3,4,5

γij is the interaction effect of ith level of treat-

ment(diet) and jth level of breed

eijk is the error component associated with

kthobservation of iith level of treatment(diet)

and jth level of breed

We want to test the following null hypotheses:

H01 : α1 ¼ α2 ¼ α3 ¼ 0 against H11: α0 s are not
equal

H02 : β1 ¼ β2 ¼ β3 ¼ β4 ¼ β5 ¼ 0 against H12:

β0 s are not equal
H03 : γij

0s ¼ 0 for all i, j against H13: γij0 s are not
equal

Let us construct the following table of totals

(yij.):

Total number of observations ¼ mnl

¼ 3� 5� 2 ¼ 30 ¼ N sayð Þ

G ¼ 240þ 250þ 170þ 180þ . . . . . . . . . :

þ 330þ 300þ 310 ¼ 10080

CF ¼ GT2=N ¼ 100802=30 ¼ 3386880

TSS ¼ 2402 þ 2502 þ . . . . . . . . . ::þ 3302

þ 3002 þ 3102 � CF
¼ 314170

TrSS ¼ 35752

10
þ 32102

10
þ 3295

10

2

� CF ¼ 7295

BSS ¼ 12402

6
þ 16102

6
þ 2970

6

2

þ 18902

6

� CF ¼ 303053:33

Table SS ¼ 1=2 4902 þ 3502 þ :::::þ 7552 þ 7852
� �

� CF ¼ 312620

SS Tr � Bð Þ ¼ Table SS� TrSS ��BSS
¼ 312, 620� 7295� 303053:33
¼ 2271:67

Er SS ¼ TSS� Tr SS� BSS� SS Tr � xBð Þ
¼ 314170� 7295� 303053:33

� 2271:67
¼ 1550

Pig breed 1 Pig breed 2 Pig breed 3 Pig breed 4 Pig breed 5 Total (yi..) Mean yi::ð Þ
T1 490 565 1030 660 830 3575 715

T2 350 525 950 630 755 3210 642

T3 400 520 990 600 785 3295 659

Total (y. j.) 1240 1610 2970 1890 2370 10,080

Mean y:j:

� �
413.33 536.67 990.00 630.00 790.00
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Let the level of significance α ¼ 0.05.

The table value of F0.05;4,15 ¼ 3.06,

F0.05;2,15 ¼ 3.68, and F0.05;8,15 ¼ 2.64, i.e.,

FCal > FTab, in all the cases, i.e., breed, diet,

and breed � diet interaction are having signifi-

cant effects on gain in body weights of pig. So

the tests are significant, and we reject the null

hypotheses and conclude that there exists signifi-

cant difference among the effects of diet, breeds,

and their interactions with respect to the

weight gain.

Now, we are interested to identify the best

diet, best breed, and the breed � diet combina-

tion providing best weight gain.

To accomplish this task, we calculate critical

difference values for diet, breed, and interaction

separately as follows:

LSD0:05=CD0:05 Dietð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

l� n

r
� t0:025,err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 103:33

2� 5

r
� t0:025,15:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 103:33

2� 5

r
� 2:131

¼ 9:687

Ordered diet effect on gain in body weight

T1 T3 T2

715 659 642

It is clear from the above table that T1 diet has

resulted in maximum gain in body weight and

which is also significantly different from the effects

of other two diets. Thus, diet one is the best diet:

LSD0:05=CD0:05 Breedð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

l� m

r
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 103:33

2� 3

r
� t0:025,15:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 103:33

2� 3

r
� 2:131

¼ 12:506

Ordered breed effect on gain in body weight

B3 B5 B4 B2 B1

990.00 790.00 630.00 536.67 413.33

Comparing the mean differences among the

breeds from the above table with the

corresponding LSD value of breed, it is clear

that all the breeds significantly differ from each

other w.r.t. gain in body weight of pigs. From the

above table, it is also clear that breed 3 is the best

breed w.r.t. gain in body weight of pigs:

LSD0:05=CD0:05 D� Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

l

r
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 103:33

2

r
� t0:025,15:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 103:33

2

r
� 2:131

¼ 21:662

ANOVA table for two-way analysis of variance

with three observations per cell

ANOVA table

Source of

variation d.f. SS MS Cal F Tab F

Breed 4 303053.33 75763.33 733.19 3.06

Diet 2 7295.00 3647.50 35.30 3.68

Breed �
diet

8 2271.67 283.96 2.75 2.64

Error 15 1550.00 103.33

Total 29 314170.00

Ordered treatment combination effect towards gain in body weight of pigs

T1B3 T3B3 T2B3 T1B5 T3B5 T2B5 T1B4 T2B4 T3B4 T1B2 T2B2 T3B2 T1B1 T3B1 T2B1

1030 990 950 830 785 755 660 630 600 565 525 520 490 400 350

Mean differences among the treatment combinations w.r.t. gain in body weight of pigs

T3B3 T2B3 T1B5 T3B5 T2B5 T1B4 T2B4 T3B4 T1B2 T2B2 T3B2 T1B1 T3B1 T2B1

T1B3 40 80 200 245 275 370 400 430 465 505 510 540 630 680

T3B3 40 160 205 235 330 360 390 425 465 470 500 590 640

T2B3 120 165 195 290 320 350 385 425 430 460 550 600

(continued)
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From the above table, it can be seen that

difference between any pair of treatment combi-

nation means is greater than the LSD value for

interaction effects excepting the difference

between T2B2 and T3B2 combinations. Among

the treatment combinations, T1B3 is resulting in

significantly higher gain in body weight than any

other treatment combination. Therefore, one can

conclude that breed 3 with diet 1 can produce

maximum gain in body weight of pigs under

experimentation.

Thus, from the analysis, we draw conclusions

that:

1. The diets differ significantly among them-

selves, and the best diet is T1.

2. The breeds differ significantly among them-

selves, and the best breed is the B3.

3. The diet T1 along with breed B3 produces

significantly higher weight gain than any

other combination.

9.6.1 Analysis of Two-Way Classified
Data with More than One
Observation per Cell Using MS
Excel

Example 9.6

The yield (q/ha) of three different varieties of

forage sorghum with application of three nitro-

gen doses is given below. Analyze the data to

show whether:

(a) There exists significant differences in yield

of three varieties of forage sorghum.

(b) Nitrogen doses are significantly different

with respect to production.

(c) The varieties have performed equally under

different doses of nitrogen or not:

Treatment Variety 1 Variety 2 Variety 3

T1 8.90 9.00 12.00

9.20 10.20 11.50

9.70 11.10 11.80

T2 8.50 9.10 10.50

9.00 8.50 11.80

9.20 8.80 12.00

T3 11.70 12.20 14.50

11.55 12.50 14.20

11.50 12.80 15.00

T1B5 45 75 170 200 230 265 305 310 340 430 480

T3B5 30 125 155 185 220 260 265 295 385 435

T2B5 95 125 155 190 230 235 265 355 405

T1B4 30 60 95 135 140 170 260 310

T2B4 30 65 105 110 140 230 280

T3B4 35 75 80 110 200 250

T1B2 40 45 75 165 215

T2B2 5 35 125 175

T3B2 30 120 170

T1B1 90 140

T3B1 50
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Step 1: Go to data analysis of Tools menu. Step 2: Select ANOVA – two factor with repli-

cation
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Step 3: Select the options as given above.
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Step 4: Get the result as given above. Here,

samples are the types and columns are the

seasons.

Step 5: From the above table, we see that both the

factors are significant at p ¼ 0.05 and their

interaction effects are nonsignificant at 5 %

level. So we need to calculate the CD/LSD
values to identify the pair of varieties of for-

age sorghum means and pair of nitrogen dose

means which are significantly different from

each other. Corresponding CD values are cal-

culated as follows:

LSD0:05=CD0:05 Varietiesð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

r � s

r
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:276

3� 3

r
� t0:025,26:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:276

3� 3

r
� 2:10

¼ 1:56

LSD0:05=CD0:05 Fertilizerð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

r � s

r
� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:276

3� 3

r
� t0:025,26:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:276

3� 3

r
� 2:10

¼ 1:56

Comparing calculated CD value with difference

in means of varieties and treatment, variety 3 is

the best variety, and treatment 3 is the best treat-

ment for increasing forage sorghum yield.

Problem 9.1

Following information are pertaining to the gain

in weight (g) per month of five groups of fishes

administered with five different feeds. Analyze

the data and test whether there exists any differ-

ence in effects of feeds on body weight of fishes

or not. If yes, then find out the best feed:

Feed 1 Feed 2 Feed 3 Feed 4 Feed 5

109 94 160 110 75

104 87 155 125 78

111 81 135 117 70

117 81 142 18 75

105 95 155 120 80

135 105 155 132 80

142 105 135 55

(continued)

Feed 1 Feed 2 Feed 3 Feed 4 Feed 5

115 60

Problem 9.2 The following data gives number

of fruits per plant under four types of growth

regulator treatments in 3 years. Analyze the

data to show which growth regulator and which

year have resulted maximum fruits per plant:

Method Year 1 Year 2 Year 3

GR1 145 135 150

GR2 195 200 210

GR3 355 375 385

GR4 240 225 275

Problem 9.3 The following data give the weight

(q) of mango per plant for four different types of

mango in 3 different years. Analyze the data, and

comment (i) which type of mango is the best,

(ii) which year has produced maximum mango

per plant, and (iii) which type-year combination

has produced highest fruit per plant:

Method Year 1 Year 2 Year 3

V 1 4.52 5.46 4.75

4.61 5.65 4.66

4.45 5.50 4.85

V 2 8.55 10.0 7.50

8.05 9.50 7.48

8.10 8.75 7.12

V 3 3.56 6.58 4.15

4.08 6.66 4.65

4.25 6.00 4.65

V 4 5.65 5.08 4.01

6.05 5.20 4.20

5.59 5.40 4.35

9.7 Violation of Assumptions in
ANOVA

The results from analysis of variance are accept-

able so long the assumptions of the ANOVA are

maintained properly. Failure to meet the assump-

tion that the effects (treatments and the environ-

mental) additive in nature and experimental

errors are i.i.d. N (0, σ2) adversely affects both

the sensitivity of F and t test as well as the level

of significance. So, before analysis data needs to

be checked, data which are suspected to be
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deviated from one or more of the assumptions

required to be corrected before taking up the

analysis of variance. The violations of additivity

can be detected by the fact that the effects of two

or more factors are additive only when these are

expressed in percentage. The multiplicative

effect is common in case of design of experiment

relating to the incidence of diseased pests. The

normality assumption is needed only during the

process of estimation and inference phase. The

estimator and their variances remain valid even

under nonnormality conditions. The indepen-

dence of error assumptions is maintained with

the use of proper randomization technique.

Heteroscedasticity does not make the estimator

biased. The remedial measure for handling the

heterogeneous variance is either through con-

struction of a new model to which the available

data could be fit or through correction of avail-

able data in such a way that corrected data follow

the assumptions of the analysis of variance.

Development of new model is the task of the

statisticians. But for a practitioner, transforma-

tion of data is the most commonly used practice

to overcome the problems of violations of

assumptions in analysis of variance.

Though there are certain nonparametric

methods to bypass the problems of violation or

assumption in analysis of variance, but for each

and every analysis of variance model, we may

not have the appropriate nonparametric proce-

dure. Moreover, the parametric methods are the

superior over the nonparametric method, if avail-

able and applied properly. Thus, data transforma-

tion is by far the most widely used procedure for

the data violating the assumptions of analysis of

variance.

Data Transformation Depending upon the

nature of the data, different types of transforma-

tion are generally used to make the data corrected

for analysis of variance, viz., logarithmic trans-

formation, square root transformation, angular

transformation, etc.

9.7.1 Logarithmic Transformation

Logarithmic transformation is used when the

data are having multiplicative effects, i.e., when

the variance/range is proportional to the mean.

The number of parasitic insects per animal, num-

ber of egg mass per unit area, number of larvae

per unit area, etc. are the typical examples where

logarithmic transformation can be used effec-

tively. The procedure is to take simply the loga-

rithm of each and every observation and carry

out the analysis of variance following usual pro-

cedure with the transformed data. However, if in

the data set small values (less than 10) are

recorded, then instead of taking log(x), it will

be better take log(x + 1). The final results or

inference should be drawn on the basis of

transformed mean values and on the basis of

calculations made through transformed data.

While presenting the mean table, it will be appro-

priate to recalculate the means by taking the

antilog of the transform data. In practice, the

treatment means are calculated from the original

data because of simplicity of calculations, but

statistically the procedure of converting

transformed mean to original form is more

appropriate. If there is a mismatch in the two

procedures, the procedure of converting the

transformed mean with the help of antilogarithm

is preferred over the other procedure.

Example 9.7

In fish breeding improvement program, five

chemical treatments are given to four varieties

of fish and tested for number of eggs viable

(lakh). Verify the relationship between the

mean effects of the treatments and the respective

variance to use suitable transformation and ana-

lyze the data:

C. catla C. rohita C. mrigala C. carpio

T1 2.2 1.4 1.8 2.1

T2 2.9 1.9 2.1 2.4

T3 2.5 1.5 1.8 2.2

T4 2.4 1.8 1.9 2.2

T5 2.3 1.4 1.7 1.9

9.7 Violation of Assumptions in ANOVA 305



Solution As because this experiment is related

with count data, so violation of the assumption of

ANOVA is suspected. So from the above table,

we first make the following table to get an idea

about the relationship between the mean of the

treatments and the ranges:

0
0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

Mean

R
an
ge

y = 0.101x+0.553
R2 = 0.972

By plotting the treatment means with range, it

is found that there exists a linear relationship

between the range and the mean; range increases

proportionately with mean. Thus, a logarithmic

transformation is necessary before taking up the

analysis.

The following table presents the transformed

data. It may be noted that as all observations are

below 10, we apply log(X + 1) transformation

instead of log(X).

C. catla C. rohita C. mrigala C. carpio

T1 0.5021 0.3844 0.4452 0.4882

T2 0.5873 0.4658 0.4878 0.5301

T3 0.5454 0.3912 0.4491 0.4991

T4 0.5371 0.4483 0.4680 0.5111

T5 0.5141 0.3732 0.4374 0.4690

Using the MS Excel program (as described in

Example 9.5) with the transformed data, we ana-

lyze the above data to get the following ANOVA

table:

ANOVA

Source of variation d.f. SS MS F P-value F crit

Treatments 4 0.012789 0.003197 16.96906 7.01E-05 3.259167

Types 3 0.043310 0.014437 76.62135 4.28E-08 3.490295

Error 12 0.002261 0.000188

Total 19 0.058360

C. catla C. rohita C. mrigala C. carpio Total Average Range

T1 2.2 1.4 1.8 2.1 7.47 1.87 0.75

T2 2.9 1.9 2.1 2.4 9.25 2.31 0.94

T3 2.5 1.5 1.8 2.2 7.94 1.99 1.05

T4 2.4 1.8 1.9 2.2 8.43 2.11 0.64

T5 2.3 1.4 1.7 1.9 7.31 1.83 0.91
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The LSD value at 5 % level of significance is

given by

LSD 0:05ð Þ Treat:ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

Type

r
� t0:025,12

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:000188

4

r
� 2:179

¼ 0:021

LSD 0:05ð Þ Type:ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

Treat:

r
� t0:025,12

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:000188

5

r
� 2:179

¼ 0:019

From the LSD values, it is clear that all the

treatments as well as the types are significantly

different from each other with respect to egg

viability.

By arranging the treatment means in

descending order, we find that treatment 2 is the

best treatment with respect to egg viability:

Treatment means

Transformed Original

T5 0.448414 1.83

T1 0.454986 1.87

T3 0.471205 1.99

T4 0.491147 2.11

T2 0.51777 2.31

By arranging the type means in descending

order, we find that treatment 2 is the best treat-

ment with respect to egg viability:

Type means

Transformed Original

C. rohita 0.4126 1.60

C. mrigala 0.4575 1.86

C. carpio 0.4995 2.16

C. catla 0.5372 2.46

Problem 9.4 The following data gives the num-

ber of panicle per hill as a result of application of

seven different flower initiating regulator in a

field trial. Verify the relationship between the

mean effect of the treatments and the respective

variances to use suitable transformation, and ana-

lyze the data using suitable model:

Growth regulator R 1 R 2 R 3

GR1 3 12 14

GR 2 4 5 6

GR 3 5 7 13

GR 4 3 10 4

GR 5 9 18 15

GR 6 2 16 25

GR 7 5 1 2

9.7.2 Square Root Transformation

When count data are consisting of small whole

numbers and the percentage data arising out of

count data where the data ranges either between

0 and 30 % or between 70 and 100 %, then

square root transformation is used. This type of

data generally follows a Poison distribution in

which the variance/range tends to be proportional

to the mean. Data obtained from counting the

rare events like number of death per unit time,

number of infested leaf per plant, number of call

received in a telephone exchange, or the percent-

age of infestation (disease or pest) in a plot

(either 0–30 % or 70–100 %) are the examples

where square root transformation can be useful

before taking up analysis of variance to draw a

meaningful conclusion or inference. If most of

the values in a data set are small (less than 10)

coupled with the presence of 0 values, instead of

using
ffiffiffi
x

p
transformation, it is better to useffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ 0:5ð Þp
. The analysis of variance to be

conducted with the transformed data and the

mean table should be made from the transformed

data instead of taking the mean from

original data.

Example 9.8

The following information is pertaining to the

number of insects per plot after application of

six different insecticides in forage maize. Ana-

lyze the data to work out the most efficient

herbicide:
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Solution The information given in this problem

is in the form of small whole numbers, and plot-

ting the data, one can find a relationship between

the range and the treatment means:

0
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

1 2 3 4
Means

R
an

ge

5 6

y = 0.485x+1.133
R2=0.854

Hence, a square root transformation will be

appropriate before taking up the analysis of

variance.

So from the given data table, we first make the

following table by taking square roots of the

given observations. It may be noted that the

data set contains small whole number (<10);

instead of
ffiffiffiffi
X

p
, we have taken

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X þ 0:5ð Þp

:

R 1 R 2 R 3 R 4

I1 1.581139 1.870829 2.54951 1.870829

I2 2.12132 2.12132 1.870829 2.345208

I3 2.345208 2.738613 2.54951 2.345208

I4 3.535534 3.082207 3.24037 3.391165

I5 2.738613 2.915476 3.082207 2.915476

I6 0.707107 2.345208 1.870829 1.870829

Using the MS Excel program with the

transformed data, we analyze the above data to

get the following ANOVA table:

Insecticides Replication 1 Replication 2 Replication 3 Replication 4 Average Range

I1 2 3 6 3 3.50 4.00

I2 4 4 3 5 4.00 2.00

I3 5 7 6 5 5.75 2.00

I4 12 9 10 11 10.50 3.00

I5 7 8 9 8 8.00 2.00

I6 0 5 3 3 2.75 5.00

Pesticides Replication 1 Replication 2 Replication 3 Replication 4

I1 2 3 6 3

I2 4 4 3 5

I3 5 7 6 5

I4 12 9 10 11

I5 7 8 9 8

I6 0 5 3 3
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The LSD value at 5 % level of significance is

given by

LSD 0:05ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r

r
� t0:05,15

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:1241

4

r
� 2:489 ¼ 0:6203

Arranging the treatment means in ascending

order, we find that insecticide 4 one is the best

treatment recording minimum number of insects

per plot:

Treatment means

Transformed Original

I6 1.698493 2.75

I1 1.968076 3.50

I2 2.114669 4.00

I3 2.494635 5.75

I5 2.912943 8.00

I4 3.312319 10.50

Problem 9.5 The following information is

pertaining to the number of insects per plant in

six different treatment in an insecticidal trial.

Analyze the data to work out the most efficient

insecticide:

9.7.3 Angular Transformation

Proportion or percentage data arising out of count
data are subjected to angular transformation or

arcsine transformation before taking up analysis

of variance. But the percentage data like percent-

age of carbohydrate, protein, sugar etc., percent-

age of marks, percentage of infections etc. which

are not arising out of count data (mn � 100) should

not be put under arcsine transformation. Again,
not all percentage data arising out of count data

are to be subjected to arcsine transformation

before analysis of variance, for example:

(i) Percentage data arising out of count data

and ranging between either 0 and 30 % or

70–100 % but not both, square root trans-

formation should be used.

(ii) Percentage data arising out of count data

and ranging between 30 and 70 %, no trans-

formation is required.

(iii) Percentage data arising out of count data

and which overlaps both the above two

situations should only be put under arcsine

transformation before taking up analysis of

variance.

Thus, a percentage data set arising out of
count data and having range (i) 0 to more than

30 %, (ii) less than 70–100 %, and (iii) 0–100 %

should be put under arcsine transformation.

ANOVA

Source of variation d.f. SS MS F P-value F crit

Replication 3 0.49834 0.166113 1.338214 0.29932 3.287382

Insecticide 5 7.451084 1.490217 12.00524 8.3E-05 2.901295

Error 15 1.861958 0.124131

Total 23 9.811382

Insecticides Replication 1 Replication 2 Replication 3 Replication 4

I1 3 4 3 3

I2 2 4 6 4

I3 4 7 5 5

I4 4 4 4 5

I5 7 7 10 9

I6 10 10 9 10
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The actual procedures is to convert the per-

centage data into proportions and transformed it

into sin �1 ffiffiffi
p

p
, where p ¼ proportions ¼ m

n; m is

the number in favor of an event, and n is the total

number. If the data set contains zero value, it

should be substituted by 1
4n, and the values of

100 % are changed to 100� 1
4n, where n is the

total number of counts on which proportions or

percentages are work out. The principle of arc-

sine transformation is to convert the percentage

data into angles measured in degrees meaning

transformation 0–100 % data into 0 to 90
�

angles. Ready-made tables are available for dif-

ferent percentage values with their

corresponding transformed values. However, in

MS Excel using the following functional form

“¼ degrees (asin(sqrt(p/100))),” where p is the

percentage data, arcsine transformation of data

could be made.

Analysis of variance is to be taken up on the

transformed data, and inferences are made

accordingly. However, to get the original mean

retransformation of transformed means is pre-

ferred over the means from original data.

Example 9.9

The following table gives the percent fertiliza-

tion rate for six breeds of fish in breeding

improvement program. Analyze the data to find

out the best breed with respect to fertilization

rate:

Replication 1 Replication 2 Replication 3

F1 55 60 58

F2 61 68 80

F3 73 78 85

F4 86 88 85

F5 90 95 92

F6 60 67 72

Solution From the given information, it is clear

that (a) the data can be analyzed as per the

analysis of two-way classified data and (b) the

data relates to percentage data arising out of

count data and the percentage ranges from 55 to

95 %. Thus, there is a chance of heterogeneous

variance. In fact, by plotting the range values

against the mean data, we get the picture of

heterogeneous variance as shown below.

R
an

ge
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So we opt for arcsine transformation before

taking up the analysis of variance.

The transformed data are presented in the

following table:

Variety Replication 1 Replication 2 Replication 3

F1 47.86959 50.76848 49.60345

F2 51.35452 55.5501 63.43495

F3 58.69355 62.0279 67.2135

F4 68.02724 69.7321 67.2135

F5 71.56505 77.07903 73.57006

F6 50.76848 54.93844 58.05194
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Next, we take up the analysis of variance with

these transformed data as per the analysis of two

classified data.

The analysis of variance table is as follows:

Thus, as the calculated value of F (32.22)

exceeds the table value (3.32) of F statistic at

5 % level of significance, the test is significant,

and the null hypothesis of equality of breed effect

w.r.t. fertilization rate is rejected. That means the

breeds differ significantly among themselves

w.r.t. germination rate.

Now the problem lies in identifying the best

fish breed w.r.t. fertilization rate. For the same,

we work out the LSD (CD) value at 5 % level of

significance as given below:

LSD 0:05ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r

r
� t0:025,10

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 7:8282

3

r
� 2:28 ¼ 5:090

We arrange the breed means in ascending order

and compare with them in relation to the above

CD value, as presented below:

Treatment means

Transformed Original

F1 49.4138 57.67

F6 54.5863 66.33

F2 56.7799 69.67

F3 62.6450 78.67

F4 68.3243 86.33

F5 74.0714 92.33

Thus, from the above table, it is clear that all

the breeds significantly differ from each other

with respect to fertilization rate excepting breed

6 and breed 2 which are statistically at par,

because the mean difference of these two breeds

is less than the CD value. Breed five is the best

breed having 92 % fertilization rate followed by

breed 4, breed 3, and so on. On the other hand,

the lowest fertilization rate of only 57.67 % is

recorded in breed 1. Hence, fish breed 5 is the

best breed with respect to fertilization rate.

Problem 9.6 The following table gives the per-

centage grains per panicle affected by grain pest

in seven different varieties of wheat in field trial.

Analyze the data to find out the best variety of

wheat against stored grain pest:

Variety Replication 1 Replication 2 Replication 3

W1 75 72 70

W2 55 48 62

W3 86 88 85

W4 23 12 18

W5 65 66 68

W6 90 95 92

W7 16 28 20

9.8 Effect of Change in Origin
and Scale on Analysis
of Variance

In real-life situation, the experimenter

encounters varied range of data sets; for exam-

ple, some data are measured in part of million

and some data are measured in million units,

thereby posing a real problem in handling such

data. Before analyzing such data, these are

required to be transformed into suitable manage-

able units. Thus, the need for change in origin/

scale/origin and scale both is felt necessary. Now

ANOVA

Source of variation d.f. SS MS Cal F Tab F

Replication 2 83.66922 41.83461 5.344039 4.102821

Breeds 5 1261.174 252.2347 32.22099 3.325835

Error 10 78.28275 7.828275

Total 17 1423.126
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the question is what are the impacts of such

changes on analysis of variance? Analysis of

variance, as has been mentioned earlier, is noth-

ing but the partitioning of variance due to assign-

able causes and non-assignable causes. As such

ANOVA is essentially an exercise with variance.

We know that variance does not depend on

change of origin but depends on change of

scale. So if we add or subtract a constant quantity

to each and every observation of the data set, the

analysis of variance should not be affected by

such mathematical exercise of origin. But we

know that variance depends on change of scale,

so one can expect an effect on analysis of vari-

ance due to change of scale. Let us take an

example and examine how the change in origin

and scale is affecting the analysis of variance

vis-à-vis general conclusion from it.

Example 9.10 The following table gives

monthly milk yield (liter) of four breeds of

cows. We shall analyze the data (i) with original

data, (ii) by changing origin to 120, (iii) by

changing scale to 1/10 of the original data, and

(iv) by changing both origin and scale to 120 and

1/10, respectively, with the help of MS Excel:

Breed 1 Breed 2 Breed 3 Breed 4

174 200 210 120

177 202 209 135

175 203 212 125

195 212 229 141

217 250 253 155

193 215 230 140

194 213 227 142

218 245 252 145

216 252 254 152

i) Anova: Single Factor with original data
Breed 1 Breed 2 Breed 3 Breed 4

174 200 210 120
177 202 209 135
175 203 212 125
195 212 229 141
217 250 253 155
193 215 230 140
194 213 227 142
218 245 252 145
216 252 254 152

SUMMARY
Groups Count Sum Average Variance
Breed 1 9 1759 195.4444 327.7778
Breed 2 9 1992 221.3333 460.5000
Breed 3 9 2076 230.6667 345.0000
Breed 4 9 1255 139.4444 130.7778

ANOVA
SOV SS df MS F P-value F crit

Breeds 45362.78 3 15120.93 47.84893 6.25E-12 2.90112
Error 10112.44 32 316.0139

Total 55475.22 35
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ii) Anova: Single Factor with change of origin to 100 (X ' = X – 100)

Breed 1 Breed 2 Breed 3 Breed 4
74 100 110 20
77 102 109 35
75 103 112 25
95 112 129 41

117 150 153 55
93 115 130 40
94 113 127 42

118 145 152 45
116 152 154 52

SUMMARY
Groups Count Sum Average Variance

Breed 1 9 859 95.444 327.778
Breed 2 9 1092 121.333 460.500
Breed 3 9 1176 130.667 345.000
Breed 4 9 355 39.444 130.778

ANOVA
SOV SS df MS F P-value F crit

Breeds 45362.78 3 15120.9259 47.8489 0.0000 2.9011
Error 10112.44 32 316.0139

Total 55475.22 35

iii) Anova: Single Factor with change of  scale to 1/10, '
10
XX =

Breed 1 Breed 2 Breed 3 Breed 4
17.40 20.00 21.00 12.00
17.70 20.20 20.90 13.50
17.50 20.30 21.20 12.50
19.50 21.20 22.90 14.10
21.70 25.00 25.30 15.50

SUMMARY
Groups Count Sum Average Variance

Breed 1 9 175.900 19.544 3.278
Breed 2 9 199.200 22.133 4.605
Breed 3 9 207.600 23.067 3.450
Breed 4 9 125.500 13.944 1.308

ANOVA
SOV SS df MS F P-value F crit

Breeds 453.6278 3 151.2093 47.8489 0.0000 2.9011
Error 101.1244 32 3.1601

Total 554.7522 35

)(
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iv) Anova: Single Factor with change of origin and scale both, 
100'

10
XX –=

Breed 1 Breed 2 Breed 3 Breed 4
7.40 10.00 11.00 2.00
7.70 10.20 10.90 3.50
7.50 10.30 11.20 2.50
9.50 11.20 12.90 4.10
11.70 15.00 15.30 5.50
9.30 11.50 13.00 4.00
9.40 11.30 12.70 4.20
11.80 14.50 15.20 4.50
11.60 15.20 15.40 5.20

SUMMARY
Groups Count Sum Average Variance

Breed 1 9 85.900 9.544 3.278
Breed 2 9 109.200 12.133 4.605
Breed 3 9 117.600 13.067 3.450
Breed 4 9 35.500 3.944 1.308

ANOVA
SOV SS df MS F P-value F crit

Breeds 453.6278 3 151.2093 47.8489 0.0000 2.9011
Error 101.1244 32 3.1601

Total 554.7522 35

From the above analyses, the following points

are noted:

1. Mean values change in all the cases with

change of origin or scale or both.

2. Sum of squares and mean sum of squares

values are different with transformation.

3. Error mean square remains the same in the

first and second cases but differs in the third

and fourth cases.

4. F ratios and the significance level do not

change under any case.

Thus, with the change of origin and or scale,

the basic conclusion from ANOVA does not

change. But due to changes in means and mean
squares under different transformation situation,

while comparing the means, care should be taken
to adjust the mean values and the critical differ-

ence values accordingly.

Table for transformed values of percentages as arcsine
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Percentage

p

Percent

(%)

Trans-

formed

Percent

(%)

Trans-

formed

Percent

(%)

Trans-

formed

Percent

(%)

Trans-

formed

Percent

(%)

Trans-

formed

0.0 0.00 4.1 11.68 8.2 16.64 12.3 20.53 16.4 23.89

0.1 1.81 4.2 11.83 8.3 16.74 12.4 20.62 16.5 23.97

0.2 2.56 4.3 11.97 8.4 16.85 12.5 20.70 16.6 24.04

0.3 3.14 4.4 12.11 8.5 16.95 12.6 20.79 16.7 24.12

0.4 3.63 4.5 12.25 8.6 17.05 12.7 20.88 16.8 24.20

0.5 4.05 4.6 12.38 8.7 17.15 12.8 20.96 16.9 24.27

(continued)
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Percent

(%)

Trans-

formed

Percent

(%)

Trans-

formed

Percent

(%)

Trans-

formed

Percent

(%)

Trans-

formed

Percent

(%)

Trans-

formed

0.6 4.44 4.7 12.52 8.8 17.26 12.9 21.05 17.0 24.35

0.7 4.80 4.8 12.66 8.9 17.36 13 21.13 17.1 24.43

0.8 5.13 4.9 12.79 9.0 17.46 13.1 21.22 17.2 24.50

0.9 5.44 5.0 12.92 9.1 17.56 13.2 21.30 17.3 24.58

1.0 5.74 5.1 13.05 9.2 17.66 13.3 21.39 17.4 24.65

1.1 6.02 5.2 13.18 9.3 17.76 13.4 21.47 17.5 24.73

1.2 6.29 5.3 13.31 9.4 17.85 13.5 21.56 17.6 24.80

1.3 6.55 5.4 13.44 9.5 17.95 13.6 21.64 17.7 24.88

1.4 6.80 5.5 13.56 9.6 18.05 13.7 21.72 17.8 24.95

1.5 7.03 5.6 13.69 9.7 18.15 13.8 21.81 17.9 25.03

1.6 7.27 5.7 13.81 9.8 18.24 13.9 21.89 18 25.10

1.7 7.49 5.8 13.94 9.9 18.34 14 21.97 18.1 25.18

1.8 7.71 5.9 14.06 10.0 18.43 14.1 22.06 18.2 25.25

1.9 7.92 6.0 14.18 10.1 18.53 14.2 22.14 18.3 25.33

2.0 8.13 6.1 14.30 10.2 18.63 14.3 22.22 18.4 25.40

2.1 8.33 6.2 14.42 10.3 18.72 14.4 22.30 18.5 25.47

2.2 8.53 6.3 14.54 10.4 18.81 14.5 22.38 18.6 25.55

2.3 8.72 6.4 14.65 10.5 18.91 14.6 22.46 18.7 25.62

2.4 8.91 6.5 14.77 10.6 19.00 14.7 22.54 18.8 25.70

2.5 9.10 6.6 14.89 10.7 19.09 14.8 22.63 18.9 25.77

2.6 9.28 6.7 15.00 10.8 19.19 14.9 22.71 19.0 25.84

2.7 9.46 6.8 15.12 10.9 19.28 15.0 22.79 19.1 25.91

2.8 9.63 6.9 15.23 11.0 19.37 15.1 22.87 19.2 25.99

2.9 9.80 7.0 15.34 11.1 19.46 15.2 22.95 19.3 26.06

3.0 9.97 7.1 15.45 11.2 19.55 15.3 23.03 19.4 26.13

3.1 10.14 7.2 15.56 11.3 19.64 15.4 23.11 19.5 26.21

3.2 10.30 7.3 15.68 11.4 19.73 15.5 23.18 19.6 26.28

3.3 10.47 7.4 15.79 11.5 19.82 15.6 23.26 19.7 26.35

3.4 10.63 7.5 15.89 11.6 19.91 15.7 23.34 19.8 26.42

3.5 10.78 7.6 16.00 11.7 20.00 15.8 23.42 19.9 26.49

3.6 10.94 7.7 16.11 11.8 20.09 15.9 23.50 20.0 26.57

3.7 11.09 7.8 16.22 11.9 20.18 16.0 23.58 20.1 26.64

3.8 11.24 7.9 16.32 12.0 20.27 16.1 23.66 20.2 26.71

3.9 11.39 8.0 16.43 12.1 20.36 16.2 23.73 20.3 26.78

4.0 11.54 8.1 16.54 12.2 20.44 16.3 23.81 20.4 26.85

20.5 26.92 24.6 29.73 28.7 32.39 32.8 34.94 36.9 37.41

20.6 26.99 24.7 29.80 28.8 32.46 32.9 35.00 37.0 37.46

20.7 27.06 24.8 29.87 28.9 32.52 33.0 35.06 37.1 37.52

20.8 27.13 24.9 29.93 29.0 32.58 33.1 35.12 37.2 37.58

20.9 27.20 25.0 30.00 29.1 32.65 33.2 35.18 37.3 37.64

21.0 27.27 25.1 30.07 29.2 32.71 33.3 35.24 37.4 37.70

21.1 27.35 25.2 30.13 29.3 32.77 33.4 35.30 37.5 37.76

21.2 27.42 25.3 30.20 29.4 32.83 33.5 35.37 37.6 37.82

21.3 27.49 25.4 30.26 29.5 32.90 33.6 35.43 37.7 37.88

21.4 27.56 25.5 30.33 29.6 32.96 33.7 35.49 37.8 37.94

21.5 27.62 25.6 30.40 29.7 33.02 33.8 35.55 37.9 38.00

22.0 27.69 25.7 30.46 29.8 33.09 33.9 35.61 38.0 38.06

21.7 27.76 25.8 30.53 29.9 33.15 34.0 35.67 38.1 38.12

21.8 27.83 25.9 30.59 30.0 33.21 34.1 35.73 38.2 38.17

21.9 27.90 26.0 30.66 30.1 33.27 34.2 35.79 38.3 38.23
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22.0 27.97 26.1 30.72 30.2 33.34 34.3 35.85 38.4 38.29

22.1 28.04 26.2 30.79 30.3 33.40 34.4 35.91 38.5 38.35

22.2 28.11 26.3 30.85 30.4 33.46 34.5 35.97 38.6 38.41

22.3 28.18 26.4 30.92 30.5 33.52 34.6 36.03 38.7 38.47

22.4 28.25 26.5 30.98 30.6 33.58 34.7 36.09 38.8 38.53

22.5 28.32 26.6 31.05 30.7 33.65 34.8 36.15 38.9 38.59

22.6 28.39 26.7 31.11 30.8 33.71 34.9 36.21 39.0 38.65

22.7 28.45 26.8 31.18 30.9 33.77 35.0 36.27 39.1 38.70

22.8 28.52 26.9 31.24 31.0 33.83 35.1 36.33 39.2 38.76

22.9 28.59 27.0 31.31 31.1 33.90 35.2 36.39 39.3 38.82

23.0 28.66 27.1 31.37 31.2 33.96 35.3 36.45 39.4 38.88

23.1 28.73 27.2 31.44 31.3 34.02 35.4 36.51 39.5 38.94

23.2 28.79 27.3 31.50 31.4 34.08 35.5 36.57 39.6 39.00

23.3 28.86 27.4 31.56 31.5 34.14 35.6 36.63 39.7 39.06

23.4 28.93 27.5 31.63 31.6 34.20 35.7 36.69 39.8 39.11

23.5 29.00 27.6 31.69 31.7 34.27 35.8 36.75 39.9 39.17

23.6 29.06 27.7 31.76 31.8 34.33 35.9 36.81 40.0 39.23

23.7 29.13 27.8 31.82 31.9 34.39 36.0 36.87 40.1 39.29

23.8 29.20 27.9 31.88 32.0 34.45 36.1 36.93 40.2 39.35

23.9 29.27 28.0 31.95 32.1 34.51 36.2 36.99 40.3 39.41

24.0 29.33 28.1 32.01 32.2 34.57 36.3 37.05 40.4 39.47

24.1 29.40 28.2 32.08 32.3 34.63 36.4 37.11 40.5 39.52

24.2 29.47 28.3 32.14 32.4 34.70 36.5 37.17 40.6 39.58

24.3 29.53 28.4 32.20 32.5 34.76 36.6 37.23 40.7 39.64

24.4 29.60 28.5 32.27 32.6 34.82 36.7 37.29 40.8 39.70

24.5 29.67 28.6 32.33 32.7 34.88 36.8 37.35 40.9 39.76

41.0 39.82 45.1 42.19 49.2 44.54 53.3 46.89 57.4 49.26

41.1 39.87 45.2 42.25 49.3 44.60 53.4 46.95 57.5 49.31

41.2 39.93 45.3 42.30 49.4 44.66 53.5 47.01 57.6 49.37

41.3 39.99 45.4 42.36 49.5 44.71 53.6 47.06 57.7 49.43

41.4 40.05 45.5 42.42 49.6 44.77 53.7 47.12 57.8 49.49

41.5 40.11 45.6 42.48 49.7 44.83 53.8 47.18 57.9 49.55

41.6 40.16 45.7 42.53 49.8 44.89 53.9 47.24 58.0 49.60

41.7 40.22 45.8 42.59 49.9 44.94 54.0 47.29 58.1 49.66

41.8 40.28 45.9 42.65 50.0 45.00 54.1 47.35 58.2 49.72

41.9 40.34 46.0 42.71 50.1 45.06 54.2 47.41 58.3 49.78

42.0 40.40 46.1 42.76 50.2 45.11 54.3 47.47 58.4 49.84

42.1 40.45 46.2 42.82 50.3 45.17 54.4 47.52 58.5 49.89

42.2 40.51 46.3 42.88 50.4 45.23 54.5 47.58 58.6 49.95

42.3 40.57 46.4 42.94 50.5 45.29 54.6 47.64 58.7 50.01

42.4 40.63 46.5 42.99 50.6 45.34 54.7 47.70 58.8 50.07

42.5 40.69 46.6 43.05 50.7 45.40 54.8 47.75 58.9 50.13

42.6 40.74 46.7 43.11 50.8 45.46 54.9 47.81 59.0 50.18

42.7 40.80 46.8 43.17 50.9 45.52 55.0 47.87 59.1 50.24

42.8 40.86 46.9 43.22 51.0 45.57 55.1 47.93 59.2 50.30

42.9 40.92 47.0 43.28 51.1 45.63 55.2 47.98 59.3 50.36

43.0 40.98 47.1 43.34 51.2 45.69 55.3 48.04 59.4 50.42

43.1 41.03 47.2 43.39 51.3 45.74 55.4 48.10 59.5 50.48

43.2 41.09 47.3 43.45 51.4 45.80 55.5 48.16 59.6 50.53

43.3 41.15 47.4 43.51 51.5 45.86 55.6 48.22 59.7 50.59
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43.4 41.21 47.5 43.57 51.6 45.92 55.7 48.27 59.8 50.65

43.5 41.27 47.6 43.62 51.7 45.97 55.8 48.33 59.9 50.71

43.6 41.32 47.7 43.68 51.8 46.03 55.9 48.39 60.0 50.77

43.7 41.38 47.8 43.74 51.9 46.09 56.0 48.45 60.1 50.83

43.8 41.44 47.9 43.80 52.0 46.15 56.1 48.50 60.2 50.89

43.9 41.50 48.0 43.85 52.1 46.20 56.2 48.56 60.3 50.94

44.0 41.55 48.1 43.91 52.2 46.26 56.3 48.62 60.4 51.00

44.1 41.61 48.2 43.97 52.3 46.32 56.4 48.68 60.5 51.06

44.2 41.67 48.3 44.03 52.4 46.38 56.5 48.73 60.6 51.12

44.3 41.73 48.4 44.08 52.5 46.43 56.6 48.79 60.7 51.18

44.4 41.78 48.5 44.14 52.6 46.49 56.7 48.85 60.8 51.24

44.5 41.84 48.6 44.20 52.7 46.55 56.8 48.91 60.9 51.30

44.6 41.90 48.7 44.26 52.8 46.61 56.9 48.97 61.0 51.35

44.7 41.96 48.8 44.31 52.9 46.66 57.0 49.02 61.1 51.41

44.8 42.02 48.9 44.37 53.0 46.72 57.1 49.08 61.2 51.47

44.9 42.07 49.0 44.43 53.1 46.78 57.2 49.14 61.3 51.53

45.0 42.13 49.1 44.48 53.2 46.83 57.3 49.20 61.4 51.59

61.5 51.65 65.6 54.09 69.7 56.60 73.8 59.21 77.9 61.96

61.6 51.71 65.7 54.15 69.8 56.66 73.9 59.28 78.0 62.03

61.7 51.77 65.8 54.21 69.9 56.73 74.0 59.34 78.1 62.10

61.8 51.83 65.9 54.27 70.0 56.79 74.1 59.41 78.2 62.17

61.9 51.88 66.0 54.33 70.1 56.85 74.2 59.47 78.3 62.24

62.0 51.94 66.1 54.39 70.2 56.91 74.3 59.54 78.4 62.31

62.1 52.00 66.2 54.45 70.3 56.98 74.4 59.60 78.5 62.38

62.2 52.06 66.3 54.51 70.4 57.04 74.5 59.67 78.6 62.44

62.3 52.12 66.4 54.57 70.5 57.10 74.6 59.74 78.7 62.51

62.4 52.18 66.5 54.63 70.6 57.17 74.7 59.80 78.8 62.58

62.5 52.24 66.6 54.70 70.7 57.23 74.8 59.87 78.9 62.65

62.6 52.30 66.7 54.76 70.8 57.29 74.9 59.93 79.0 62.73

62.7 52.36 66.8 54.82 70.9 57.35 75.0 60.00 79.1 62.80

62.8 52.42 66.9 54.88 71.0 57.42 75.1 60.07 79.2 62.87

62.9 52.48 67.0 54.94 71.1 57.48 75.2 60.13 79.3 62.94

63.0 52.54 67.1 55.00 71.2 57.54 75.3 60.20 79.4 63.01

63.1 52.59 67.2 55.06 71.3 57.61 75.4 60.27 79.5 63.08

63.2 52.65 67.3 55.12 71.4 57.67 75.5 60.33 79.6 63.15

63.3 52.71 67.4 55.18 71.5 57.73 75.6 60.40 79.7 63.22

63.4 52.77 67.5 55.24 71.6 57.80 75.7 60.47 79.8 63.29

63.5 52.83 67.6 55.30 71.7 57.86 75.8 60.53 79.9 63.36

63.6 52.89 67.7 55.37 71.8 57.92 75.9 60.60 80.0 63.43

63.7 52.95 67.8 55.43 71.9 57.99 76.0 60.67 80.1 63.51

63.8 53.01 67.9 55.49 72.0 58.05 76.1 60.73 80.2 63.58

63.9 53.07 68.0 55.55 72.1 58.12 76.2 60.80 80.3 63.65

64.0 53.13 68.1 55.61 72.2 58.18 76.3 60.87 80.4 63.72

64.1 53.19 68.2 55.67 72.3 58.24 76.4 60.94 80.5 63.79

64.2 53.25 68.3 55.73 72.4 58.31 76.5 61.00 80.6 63.87

64.3 53.31 68.4 55.80 72.5 58.37 76.6 61.07 80.7 63.94

64.4 53.37 68.5 55.86 72.6 58.44 76.7 61.14 80.8 64.01

64.5 53.43 68.6 55.92 72.7 58.50 76.8 61.21 80.9 64.09

64.6 53.49 68.7 55.98 72.8 58.56 76.9 61.27 81.0 64.16

64.7 53.55 68.8 56.04 72.9 58.63 77.0 61.34 81.1 64.23
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64.8 53.61 68.9 56.10 73.0 58.69 77.1 61.41 81.2 64.30

64.9 53.67 69.0 56.17 73.1 58.76 77.2 61.48 81.3 64.38

65.0 53.73 69.1 56.23 73.2 58.82 77.3 61.55 81.4 64.45

65.1 53.79 69.2 56.29 73.3 58.89 77.4 61.61 81.5 64.53

65.2 53.85 69.3 56.35 73.4 58.95 77.5 61.68 81.6 64.60

65.3 53.91 69.4 56.42 73.5 59.02 77.6 61.75 81.7 64.67

65.4 53.97 69.5 56.48 73.6 59.08 77.7 61.82 81.8 64.75

65.5 54.03 69.6 56.54 73.7 59.15 77.8 61.89 81.9 64.82

82.0 64.90 86.1 68.11 90.2 71.76 94.3 76.19 98.4 82.73

82.1 64.97 86.2 68.19 90.3 71.85 94.4 76.31 98.5 82.97

82.2 65.05 86.3 68.28 90.4 71.95 94.5 76.44 98.6 83.20

82.3 65.12 86.4 68.36 90.5 72.05 94.6 76.56 98.7 83.45

82.4 65.20 86.5 68.44 90.6 72.15 94.7 76.69 98.8 83.71

82.5 65.27 86.6 68.53 90.7 72.24 94.8 76.82 98.9 83.98

82.6 65.35 86.7 68.61 90.8 72.34 94.9 76.95 99 84.26

82.7 65.42 86.8 68.70 90.9 72.44 95.0 77.08 99.1 84.56

82.8 65.50 86.9 68.78 91.0 72.54 95.1 77.21 99.2 84.87

82.9 65.57 87.0 68.87 91.1 72.64 95.2 77.34 99.3 85.20

83.0 65.65 87.1 68.95 91.2 72.74 95.3 77.48 99.4 85.56

83.1 65.73 87.2 69.04 91.3 72.85 95.4 77.62 99.5 85.95

83.2 65.80 87.3 69.12 91.4 72.95 95.5 77.75 99.6 86.37

83.3 65.88 87.4 69.21 91.5 73.05 95.6 77.89 99.7 86.86

83.4 65.96 87.5 69.30 91.6 73.15 95.7 78.03 99.8 87.44

83.5 66.03 87.6 69.38 91.7 73.26 95.8 78.17 99.9 88.19

83.6 66.11 87.7 69.47 91.8 73.36 95.9 78.32 100 90.00

83.7 66.19 87.8 69.56 91.9 73.46 96.0 78.46

83.8 66.27 87.9 69.64 92.0 73.57 96.1 78.61

83.9 66.34 88.0 69.73 92.1 73.68 96.2 78.76

84.0 66.42 88.1 69.82 92.2 73.78 96.3 78.91

84.1 66.50 88.2 69.91 92.3 73.89 96.4 79.06

84.2 66.58 88.3 70.00 92.4 74.00 96.5 79.22

84.3 66.66 88.4 70.09 92.5 74.11 96.6 79.37

84.4 66.74 88.5 70.18 92.6 74.21 96.7 79.53

84.5 66.82 88.6 70.27 92.7 74.32 96.8 79.70

84.6 66.89 88.7 70.36 92.8 74.44 96.9 79.86

84.7 66.97 88.8 70.45 92.9 74.55 97.0 80.03

84.8 67.05 88.9 70.54 93.0 74.66 97.1 80.20

84.9 67.13 89.0 70.63 93.1 74.77 97.2 80.37

85.0 67.21 89.1 70.72 93.2 74.88 97.3 80.54

85.1 67.29 89.2 70.81 93.3 75.00 97.4 80.72

85.2 67.37 89.3 70.91 93.4 75.11 97.5 80.90

85.3 67.46 89.4 71.00 93.5 75.23 97.6 81.09

85.4 67.54 89.5 71.09 93.6 75.35 97.7 81.28

85.5 67.62 89.6 71.19 93.7 75.46 97.8 81.47

85.6 67.70 89.7 71.28 93.8 75.58 97.9 81.67

85.7 67.78 89.8 71.37 93.9 75.70 98.0 81.87

85.8 67.86 89.9 71.47 94.0 75.82 98.1 82.08

85.9 67.94 90.0 71.57 94.1 75.94 98.2 82.29

86.0 68.03 90.1 71.66 94.2 76.06 98.3 82.51
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Basic Experimental Designs 10

10.1 Introduction

Statistical tolls or techniques are used to extract

information, which otherwise remain hidden,

from a set of data. As has been mentioned earlier,

data can be gathered/collected from existing pop-

ulation (through sample survey technique/census

method) or can be collected by conducting exper-

iment as per the objective of the experimenter. In

the first case, the researcher has little choice of

controlling the external factors while collecting

information from the existing population; the

maximum the researcher can do is to orient the

collected data from a befitting sample so as to

explain the objective in mind. This type of data

collection is mostly used in social, economical,

political, and other fields. On the other hand, in

the second option, the researcher has greater

control over the data to be collected for specific

purpose through experimentation. The

researchers can exercise control to the extraneous

factors to some extent allowing the desirable

factors to vary. To examine the performance of

different varieties of paddy with respect to yield,

the experimenter can select the varieties as per

the objective of the program and put all the

varieties essentially under the same protocol so

that only the source of variation can be the

varieties. In this chapter we are concerned

about such experimental procedure, collection

of data and their analyses toward meaningful

inference about the objectives the experimenter

has in mind. In the experimental procedure, a

researcher designs a set of activities keeping in

mind the objectives and tries to measure the

variations on different response variables/

entities/objects keeping other variations at mini-

mum level. Let us now try to formalize the defi-

nition of experiment or what do we mean by an

experiment. An experiment is a systematic pro-

cess or series of activities which lead to collec-
tion of information on certain aspects to reply

to the objectives that the researcher has already

in mind.
Experiments may be conducted to know some

absolute measures of the populations like the

measures of central tendency, the measures of

dispersion (Chap. 3), the measures of

associationships, etc. (Chap. 7). Experiments

may also be conducted to compare the yields of

a set of paddy varieties under a given manage-

ment protocol, experiments may be conducted

for screening of breeds of cattle against a partic-

ular disease, and experiments may be conducted

to know the relationship between the age of calv-

ing and milk yield per calving, to know the

degree of linear associationship between the

number of hills per square meter and yield, and

so on. All these experiments can broadly be

classified into two categories, viz., absolute

experiments and comparative experiments. An
absolute experiment is an experiment in which

the experimenter is in search of certain absolute

measures like average, variance, median, mode,
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correlation coefficient, etc. to infer about the
population. On the other hand, in comparative

experiments the researcher compares the effects
of different objects/entities (treatments) under

consideration. In a comparative experiment, an

experimental design is formulated in such a way

that the experimenter can compare the objects or

entities (treatments) under identical conditions

keeping the other sources of variations as mini-

mum as possible. Whatever may be the objective

of the study either comparative or absolute, it is

generally designed meticulously, and the area of

subject statistics which deals with such

objectives is known as the design of experiments.

The design of experiments mainly has three

components, viz., (a) planning of experiment,

(b) obtaining the relevant information, and

(c) statistical analysis of information and draw-

ing the inference.

An experiment is to be planned in such a way

that the future activities could be performed

meticulously depending upon the objectives of

the experiment. Knowledge about the objective

of the experiment, nature of the experiment,

experimental place, materials, observations to

be recorded, etc. are the most essential feature

during the formulation of experiment. Informa-

tion/observations to be recorded could be

subjected to statistical analysis to draw

inferences so that the objectives of the study are

the major considerations one experimenter

should keep in mind. A good, reliable data/infor-

mation with the help of appropriate statistical

tool helps in drawing accurate inference about

the population, while faulty/inaccurate informa-

tion may lead to inaccurate and/or fallacious

conclusion, whatever good or accurate statistical

theories are applied to it. Thus, along with get-

ting good relevant information, knowledge and

application of appropriate statistical theory are

most warranted. In the following section, let us

discuss about the different terminologies used in

the design of experiment:

(i) Treatment:

Treatments are mainly associated with com-

parative experiments. Different objects under

comparison in a comparative experiment are

known as treatment. Thus the varieties/breeds

under comparison may constitute different

treatments in the respective experiment. An

experiment conducted with different doses to

find out the most effective dose of a particular

nitrogenous fertilizer in getting maximum yield

of a crop forms the treatments. Thus treatments

may be qualitative (varieties/breeds) as well as

quantitative (doses) in nature.

(ii) Experimental unit:

The objects or the units in which treatments

are applied are known as subjects. The smallest

part/unit of the experimental area/subjects (e.g.,

plots in field experiment, pots, test tubes, etc. in

laboratory experiment, trees in plantation crop

experiments, animal, individual students, etc.)

in which one applies treatments and from which

observations/responses are recorded is called

experimental unit.

(ii) Block:

The idea of block came into existence to

group the homogenous experimental units and

is mainly associated with field experiment but

can very well be extended to non-field

experiments. Experimental units/subjects in a

particular experimental field/experiment may

vary with respect to fertility, soil structure, tex-

ture, age of the plants, nature of animals, etc.

(or in other conditions). Thus, there is a need to

identify or group the experimental units similar

in nature. Blocking is the technique by virtue of

which the whole experimental area/units are

subdivided into a number of small parts, each

having homogeneous experimental units.

Thus, a block is consisted of homogeneous

experimental units. Experimental units within

a block are homogeneous in nature but units

among the blocks are heterogeneous. In

experiments conducted with animals, blocking

may be done according to the age, weight, sex,

etc. group of animals, where animals of the

same age or similar weight or same sex may

form the blocks.
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(iii) Experimental error:

Experimental information is generally

analyzed using the analysis of variance technique

as discussed in Chap. 9. The variations in response

due to various sources of variations among differ-

ent experimental units may be ascribed due to:

(i) A systematic part (assignable part)

(ii) A nonsystematic part(non-assignable part)

Systematic variation part is consisting of that

part of the variations caused due to known

sources of variations like differences in

treatments, blocks, etc. But the part of the varia-

tion which cannot be assigned to specific reasons

or causes, i.e., the nonsystematic part, is termed

as the experimental error. Often it is found the

homogenous experimental units receiving the

same treatments and experimental protocol but

providing differential responses. This type of

nonsystematic variations in response may be

due to extraneous factor and is known as experi-

mental error. So the variation in responses due to

these extraneous factors is termed as experimen-
tal error. While designing and planning of any

experiment, a researcher always intends to mini-

mize the experimental error.

(iv) Precision:

Often it is of most important point in design-

ing experiments how precisely one is estimating

the effects. As such the precision of an experi-
ment is defined as the reciprocal of the variance

of mean. We know that the sampling distribution

of a sample mean has a variance σ2/n so the

precision of the experimental design is
1

V xð Þ ¼ 1
σ2=n ¼ n

σ2 where X is the variable under

consideration, with n and σ2 as the observations

and variance, respectively. The higher the preci-

sion, the better is the design.

(v) Efficiency:

To fulfill the same objectives, experiments

can be conducted in different ways; hence,

measuring the efficiency of designs comes into

play in comparing the designs framed to fulfill

the same objectives. Efficiency is the ratio of the

variances of the difference between two treat-

ment means in two different experiments. If we

have two designs D1 and D2 with error variances

σ1
2 and σ2

2 and observations r1 and r2, respec-

tively, therefore, the variance of the difference

between two treatment means is given by
2σ2

1

r1
and

2σ2
2

r2
, respectively. So the efficiency of D1 with

respect to D2 is
r1
2σ2

1

� r2
2σ2

2

¼ σ2
2

r2
:r1
σ2
1

¼ r1
r2
:
σ2
2

σ2
1

.

(vi) Experimental reliability:

Reliability of an experimental procedure/out-

come can be measured with the help of the coef-

ficient of variation. The coefficient of variation is

defined as

CV ¼ SD

grand mean
� 100

For all practical purposes, the positive square

root of error mean square in the analysis of vari-

ance is taken as an estimate of the standard devi-

ation. Thus, from the ANOVA table of the

analysis of variance, one can work out the CV%

as follows.

CV ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSEr

p
grand mean

� 100

The range of the CV for reliability of an

experiment is one of the important points. In

fact there is no silver line to determine the cut

of value of CV% for an experiment to be reliable;

it depends on the condition of experiment (labo-

ratory condition, field condition, etc.), type of

materials/treatments tested in the experiment,

desired level of precision from the experiment,

etc. Generally lesser CV% is expected for

experiments conducted under laboratory

conditions compared to the field experiments.

Similarly CV% also depends on the type of

field crop, size and shape of experimental units,

etc. As a thumb rule, a CV% less than 20 % is

regarded as an indication for reliability of the
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field experiments, whereas that should be still

less for laboratory experiments. If the CV value

is more than 20 %, there is a need to verify the

experimental procedure and the observations

based on which the CV has been calculated;

there is a need for emphasis on the reduction of

experimental error.

10.2 Principles of Design

As has already been mentioned, an experiment is

conducted to answer specific objectives of the

experiment. As such it is formulated and

performed in such a way to have valid estimation

of the mean and variances of the assignable and

non-assignable sources of variation in valid, effi-

cient, economical way, providing due consider-

ation to the constraints and situations provided

for the experiment. All these could be achieved

by following some basic principles of designing

experiments. In the following paragraphs, we

shall discuss these principles of the design of

experiments. The principles are (a) replication,

(b) randomization, and (c) local control.

(a) Replication:

To have valid and accurate estimation of

means and variances due to different sources of

variations, one needs to apply the treatments into

more than one experimental unit. Thus, repeated

application of treatments under investigation in

experimental units is termed as replication. (i) A
treatment is repeated to have a more reliable

estimate than what would be possible from a

single observation. Thus the average perfor-

mance (mean) recorded from a number of exper-

imental units is more reliable than the recording

from only one experimental unit. Moreover,

(ii) replication along with the other principle

randomization helps in unbiased estimation of

the experimental errors, and (iii) replication

along with local control helps in the reduction

of experimental error. So providing due impor-

tance to the role of replication in the design of

experiment, the question is how many

replications one should have in a particular

experiment? Depending upon the objective of

the experiment, the cost involvement in the

experiment, the type and variability of the test

materials, the size of mean differences, the

desired level of accuracy expected, the size of

error variance, etc., the number of replications to

be adopted in a particular experiment is decided.

Required number of replications can be worked

out with the help of the following formula:

r ¼ 2t2s2

d2

where

t ¼ table value of t-distribution at the desired

level of significance at error degrees of

freedom

d ¼ difference between the means of two

treatments

s2 ¼ error variance taken from the past experi-

ence or conducting similar experiment

r ¼ number of replications to be determined

At a given level of significance and with a

given coefficient of variation percent, one can

find out the number of replications required for

a specific percent difference between two means

to be significant with the help of the following

formula:

Difference %

c
ffiffiffiffiffiffiffi
2=r

p ¼ 1:96

where

c ¼ coefficient of variation among the plots

r ¼ number of replicates

The value of area under normal curve at 5 %

level of significance is 1.96.

For example, with CV% of 15 and mean dif-

ference of 20 %,

we have 20

15
ffiffiffiffiffi
2=r

p ¼ 1:96

or
ffiffiffiffiffiffiffi
2=r

p ¼ 20
15�1:96

or 2
r ¼ 20

15�1:96

� �2
or r ¼ 2

20
15�1:96ð Þ2 ¼ 4:32 � 5
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(b) Randomization:

One of the mottos in designing experiment is

to provide equal opportunity to each and every

treatment to exhibit their respective

performances that means all the treatments

should be put under equal experimental condi-

tion. In doing so, treatments are required to be

applied unbiasedly among the experimental

units. Moreover valid and unbiased estimation

of different treatment effects as well as for

experimental error is required to be done; the

principle of randomization helps in this regard.

Randomization is a technique to achieve the

independence of errors in experimental design.

Unbiased random allocation of the treatments
among the experimental units is known as ran-

domization. Randomization provides equal

opportunity to each and every experimental

unit to receive any treatment. Through the adop-

tion of the technique randomization, human

biasedness/error is reduced. It not only helps

in (i) valid estimation of experimental error,

(ii) independence of errors in normality assump-

tion is also achieved. (iii) Randomization also

makes the experiment free from systematic

errors. In the subsequent sections, we shall see

that the process of randomization, i.e., random

allocation of treatments among the experimental

units, is not same for all types of designs. It

should be noted that randomization, by itself, is

not sufficient for valid estimation of errors; for

valid estimation of error along with randomization,

replication is needed.

(c) Local control:

Local control is a principle, mostly applicable

for field experiments. As the name suggests,

local situations for different experiments vary,

and one needs to take care of such variation

during experimentation so as to minimize the

error. Local control, simply, is the technique
which helps in the reduction of experimental

error, providing due consideration to the infor-

mation available under the local conditions
where the actual experiment is conducted.

Using the locally available information like

shape of the experimental plot, direction of the

field, its fertility gradient, slope, and other

conditions nearby the plot designs are to be

framed in such a way so as to reduce the experi-

mental error.

Thus replication, randomization, and local

control are the three main principles in guiding

an experimenter for the conduction of a valid and

efficient experiment. R. A. Fisher has diagram-

matically presented the importance of these

principles as follows.

Replication
+ +

Randomization Local Control

Valid estimation of error Reduction of error

10.3 Uniformity Trial

An efficient experimental design aims at valid

estimation of different effects along with the

reduction in experimental error. To achieve

these, particularly under field conditions, the

experimenter should have clear idea about the

area where the experiment is to be conducted.

In order to have an idea about the conditions of

the proposed experimental area, a trial known as

uniformity trial is conducted. Generally a short-

duration crop is grown with uniform package of

practices (cultivation technique) by dividing the

whole area into the smallest units. Sometimes the

division of plot into the smallest units is also

done before recording the response. Responses

are recorded from the basic unit plots. The over-

all mean response is also worked out. All the

experimental units are then grouped into of

more or less homogenous units; these groups

may be of unit plots bellow and above the spe-

cific percentage of mean responses, and a

response contour map is drawn by joining the

unit plots having under the same group. Thus a

fertility contour may be drawn as shown below.
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Thus, uniformity trial not only helps us in
identifying the nature of the experimental field

but also in making blocks of homogenous experi-

mental units, as can be seen that we can make six

blocks of homogenous experimental units in the

above experimental field.

10.4 Optimum Size and Shape
of Experimental Units

The size and shape of the experimental units play

a vital role on the accuracy of the experimental

results. Laboratory experiments, where pots,

petri dishes, beakers, etc. form the experimental

unit, do not pose a serious problem in experimen-

tal accuracy. Selection of optimum size and

shape of experimental units has varied responses,

particularly in field experiments. Generally with

the increase in plot size, precision of single-plot

response increases, but an increase in plot size

results in enlarged blocks and/or experimental

area which subsequently increases the variability

among plots. Thus there is a need to optimize the

size of experimental units. Optimum plot size may

not be uniform for all crops under all experimental

conditions. It required to be estimated for a partic-

ular crop, for a particular experimental situation

for a defined objective in mind. Optimum plot size

is ascertained through maximum curvature

method or Fairfield Smith method. Ascertaining
optimum plot size is by itself an area of research

for specific crops under different situations.

Unit-wise basic information from uniformity

trial experiment is used in maximum curvature

method. In this method basic units from uniformity

trial are joined, row-wise, column-wise, or both, to

form experimental units of different sizes. The

coefficient of variations corresponding to different

sizes of experimental units is computed, and a

curve is drawn by plotting the sizes of the experi-

mental units on the x-axis and corresponding coef-

ficient of variations on the y-axis.

At the point of maximum curvature, one can

get the optimum plot size. With the help of the

mini-max theory of the calculus, the optimum

plot size for which the curvature is maximum

can also be worked out from the relationship

(nonlinear) between the plot size and the coeffi-

cient of variation. H. Fairfield Smith proposed a

variance law by taking the results from the uni-

formity trial experiment. Generally according to

this law, an increase in plot size increases the

precision of the experiment provided the number

of plot remains the same.

m − s m − 2s

m − 3s m + 3s

m + 2s

m + s

Fertility contour map

Plot size   

CV%

Selection of optimum plot size by maximum curvature

method
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The size and shape of the plots are determined

on the basis of the experimental area provided,

the type of materials to be tested, the type of

precision required, etc.; if the plot size is small,

the shape may have little or no effect on experi-

mental precision, whereas for large plot sizes, the

effects of shape may be considerable. Various

experiments have been conducted to fix the opti-

mum size and shape of the plot. By and large

long and narrow plots have been found to be

relatively more precise. In fact if fertility gradi-

ent is known, then arrangement of experimental

units is to be made by forming block of homoge-

nous plots. As such the freedom of taking deci-

sion on the shape of the experimental units is

reduced. In the absence of all these, it is better

to have square-shaped plots.

10.5 Layout

Experimental layout forms a very important com-

ponent in designing and analysis of experimental

data. In fact layout varies from design to design

and type of experiments. Systematic arrangement

of experimental units in the experimental field and
allocation of treatments in experimental units

according to the requirement of the specific design

is called layout. Thus layout is mainly concerned

in field experimentation. For example, if the whole

experimental field is homogeneous in nature, then

it is divided into as many numbers of experimental

units as the total number of plots required to allot

all the treatments with respective number of repli-

cation. On the other hand, if the experimental units

are heterogeneous in nature, then at the first step of

layout, blocks are required to be framed, and then

treatments are to be allocated. Above all, each and

every experimental design has its own layout as

well as analytical procedure.

10.6 Steps in Designing
of Experiments

Likewise to that of any statistical procedure, the

designing of experiment is also based on certain

steps which are to be followed meticulously to

fulfill the objectives of the experiments. In the

following section, let us discuss these steps in

brief, but it should be noted that neither the steps

discussed below are exclusive nor are essential

and exhaustive in all experiments:

(i) Identification and statement of the problem

and objectives: What for the experiment?

The problem which the experimenter is

going to address required be stated,

delineating clearly the specific objectives.

(ii) Formulations of statistical hypothesis:

Hypotheses under the given situation and

based on the objectives of the experiment

are required to be framed. Careful exami-

nation is required in regard to the feasibil-

ity of getting necessary information to test

the hypothesis from the experiment.

(iii) Selection of experimental technique

vis-à-vis experimental designs: Depending
upon the objective of the study, hypothesis

to be tested, etc., it requires to be decided

which experimental design is befitting for

the purpose.

(iv) To examine the possible outcomes from the

experiment: From the past records and

review, the experimenter should have an

idea about the nature of the information

that can be obtained from the experiment

and whether these are sufficient to fulfill

the objective. He has to examine whether

the information would be available from

the experiment that are sufficient to draw

meaningful conclusion with respect to

objective or not.

(v) To settle the statistical tools: Among the

hosts of available statistical tools, the

appropriate tools to be used in testing the

hypothesis with the help of the informa-

tion from the experiment to fulfill the

objective are to be ascertained.

(vi) Conducting the experiments: Following

the experimental procedure and protocol

and keeping in mind the objective of the

study, experiment is to be conducted. A

list is prepared for which information are

to be collected during the experimental

period. In doing so the experimenters
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make it sure that the conditions for neces-

sary statistical procedure to be taken up on

these information (data) are satisfied.

(vii) Scrutiny and processing of information:

Before taking up any statistical analysis,

data are required to be thoroughly checked

for their reliability and authenticity.

(viii) Applications of statistical technique: The

type of statistical technique to be applied

is fixed, and now with the scrutinized data,

analysis is taken up toward drawing valid

conclusion about the objectives of the study.

(ix) Evaluation of the whole procedure: An

overall evaluation of the whole process is

required to facilitate the same type of

experiments in the future, so that the

problems and difficulties could be

minimized.

10.7 Completely Randomized
Design (CRD)

One of the most important and simple experi-

mental designs is the completely randomized

design (CRD). When the whole experimental

area or all the experimental units are homoge-

nous in nature, then one can think of such

design. In this design out of the three basic

principles of the design of experiments, only

two principles, viz., replication and randomiza-

tion, have been used. The third principle, i.e.,

the principle of local control, is not used; as

such the minimization of error is not there.

The whole experimental area to be divided or

the number of experimental units is to be such

that there are as many numbers of experimental

units as the sum of the number of replications of

all the treatments. Suppose we are to test five

new varieties (viz., M1, M2, M3, M4, M5) of

mustard along with a traditional check (Mt) for

their applicability under a particular local situa-

tion. Moreover the amount of materials avail-

able for each of the new varieties is not

sufficient to be replicated equal number of

times. Suppose we are provided with material

such that there could be 5, 4, 4, 3, 3, and

5 replications for M1, M2, M3, M4, M5, and

Mt, respectively. Then the experimental field is

required to be divided into

24 (¼5 + 4 + 4 + 3 + 3 + 5) experimental

plots of equal size and preferably of equal

shape. If the experiment is to be conducted in a

laboratory condition, then one needs to have

24 experimental units. In general if there be

t treatments replicated r1, r2, . . .. . ., rt times,

respectively, then to accommodate these we

need to have n ¼
Xt

i¼1

ri number of homoge-

neous experimental units/plots of equal size.

10.7.1 Randomization and Layout

Randomization and layout of the completely

randomized design are demonstrated with the

help of the following example and in the follow-

ing steps. Suppose we have t treatments each

replicated ri times (i ¼ 1, 2, . . .. . ., t). The prob-
lem is to allocate these t treatments each

replicated ri times among the n ¼
Xt

i¼1

ri number

of experimental units:

Step 1: Divide the whole experimental area into

n experimental plots of equal size and prefer-

ably of the same shape. For other than field

experiment, take n experimental units of

homogenous in nature.

Step 2: Number the experimental units 1 to n.
Step 3: Arrange the treatments along with their

replications as follows:

Treatment T1 T2 Tt-1 Tt
Replication r1 r2 rt-1 rt
Sl No 1,2,…….r1 r1+1,r1+2…….r2 ……….. r(t-2)+1, r(t-2)+2,.. r(t-1) r(t-1)+1, r(t-1)+2, …,rt

1,2,3,4,5,6,………………………………………………………………….n
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Step 4: Select n random numbers less than or

equal to n, without replacement, from the

random number table; these random numbers

will indicate the plot numbers.

Step 5: Allocate the first treatment the first time

to the first random numbered plot, i.e.,T1r1,

and then the first treatment the second time to

the second random numbered, and continue

the process till all the n plots are allotted

with one treatment each in such random

manner.

Example Let us take an example of experiment

with five newly developed varieties of mustard

along with standard variety as discussed earlier.

So we have six varieties altogether, M1, M2,

M3, M4, M5, and Mt replicated 5, 4, 4, 3, 3, and

5 times, respectively:

Step 1: We need to divide the whole experimen-

tal area into 24 experimental plots of equal

size and preferably of the same shape.

Step 2: Number the experimental units 1–24:

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

Step 3: Arrange the treatments along with their

replications as follows:

Step 4: Selected 24 random numbers less than or

equal to 24, without replacement, from the

random number table are

Step 5: The first variety M1 for the first time is

allocated to the first random numbered plot,

i.e., M1 to experimental unit 22, and then the

first treatment M1 the second time to the sec-

ond random numbered plot, i.e., experimental

unit 17, and continue the process till all the

24 plots are allotted with one treatment each

in such random manner, and the ultimate lay-

out is as follows:

Treatment M1 M1 M1 M1 M1 M2 M2 M2 M2 M3 M3 M3 M3 M4 M4 M4 M5 M5 M5 M6 M6 M6 M6 M6

S1 no 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

22 17 14 21 4 11 9 18 6 7 19 24 16 1 13 5 12 15 2 23 10 8 3 20

Plot No 22 17 14 21 4 11 9 18 6 7 19 24 16 1 13 5 12 15 2 23 10 8 3 20
Treatment M1 M1 M1 M1 M1 M2 M2 M2 M2 M3 M3 M3 M3 M4 M4 M4 M5 M5 M5 Mt Mt Mt Mt Mt
Sl No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
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Thus, the ultimate layout would be

1 M4 2 M5 3 Mt 4 M1 5 M4 6 M2 7 M3 8 Mt

9 M2 10 Mt 11 M2 12 M5 13 M4 14 M1 15 M5 16 M3

17 M1 18 M2 19 M3 20 Mt 21 M1 22 M1 23 Mt 24 M3

The same procedure could be followed for

laboratory experiments with homogenous exper-

imental units.

10.7.2 Statistical Model and Analysis

One can clearly find that the data arrangement is

analogous to one-way classified data discussed in

Chap. 9. So the model and the analysis will

follow exactly as that for one-way classified

data. Suppose there are t treatments with r1, r2,
r3. . .., rt replications, respectively, to be tested in

a completely randomized design. So the model

for the experiment will be yij ¼ μþ αi þ eij, i ¼
1, 2, 3, . . . :, t and j ¼ 1, 2, . . . :, ri.

where

yij ¼ response due to jth observation of the ith

treatment

μ ¼ general effect

αi ¼ additional effect due to ith treatment andX
riαi ¼ 0

eij ¼ error associated with jth observation of ith
treatment and are i.i.d. N(0, σ2)

Assumption of the Model

(i) Additive model assumed.

(ii) eij
0s ~ i.i.d. N(0, σ2).

Hypothesis to Be Tested

H0 : α1 ¼ α2 ¼ α3 ¼ :::::::::¼ αi ¼ :::::::¼ αt ¼ 0

against

H1: all α are not equal

Let the level of significance be α. So the total

number of observations is n ¼
Xt

i¼1

ri:

Let us arrange the responses recorded from

experimental units as follows:

The analysis for this type of data is the same

as that of one-way classified data discussed in

Chap. 9 Sect. (9.4). From the above table, we

calculate the following quantities:

Grand total ¼
Xt

i¼1

Xri
j

observationð Þ

¼ y11 þ y21 þ y31 þ ::::::::þ ytrt

¼
Xt

i¼1

Xrt
j¼1

yij ¼ G

Correction factor ¼ G2

n
¼ CF

Replication Treatment
1 2 ………. i ………. t

1 y11 y21 ……….. yi1 ………. yt1
2 y12 y22 ………. yi2 ………. yt2
:
:
:

:
:
:

:
:

y2r2

………

……….

:
:
:

……….

……….

:
:
:

ri ………. ………. yiri ………. :
:
:

y1r1 :

ttry
Total y1. y2. ………. yi. ……….. yt.
Mean

1.y 2.y i.y t.y
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Treatment sum of squares SSTrð Þ

¼
Xt

i¼1

yi:
2

ri
� CF, where yi:

¼
Xri
j¼1

yij

¼ sum of the observations for the ith treatment

¼ y2
1:

r1
þ y2

2:

r2
þ y2

3:

r3
þ :::::::

y2
i:

ri
þ :::::::

y2
t:

rt
� CF

Error sum of squares by subtractionð Þ
¼ T SS � Tr SS ¼ SSEr:

The null hypothesis is rejected at α level of

significance if the calculated value of F ratio

corresponding to the treatment be greater than

the table value at the same level of significance

with (t�1),(n�t) degrees of freedom that means

we reject Ho if Fcal > Ftab α; t�1ð Þ, n�tð Þ ; other-
wise, one cannot reject the null hypothesis. When

the test is nonsignificant, we conclude that there

exist no significant differences among the

treatments which means with respect to the par-

ticular characters under consideration, all

treatments are statistically at par.

In the event of the test being significant, i.e.,

when the null hypothesis is rejected, then one

should find out which pair of treatments is sig-

nificantly different from each other and which

treatment is the best.

For this we need to calculate the least signifi-

cant difference (LSD) value at specified level of

significance using the following formula:

LSDα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ErMS 1

ri
þ 1

ri0

� �r
� tα=2, n�tð Þ where

i and i0 are the treatments involved in comparison

and t is the table value of t-distribution at α level

of significance with (n�t) d.f. Here the table

value of t is to be considered at α
2
level of signifi-

cance as we are concerned with a both-sided test.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ErMS 1

ri
þ 1

ri0

� �r
is the standard error of dif-

ference (SEd) between the means for treatments

i and i0. If the absolute value of the difference

between the pair of treatment means exceeds the

corresponding LSD value, then the two

treatments are significantly different, and the

better treatment is the treatment having better

value over the other one.

10.7.3 Merits and Demerits of CRD

Merits

(i) CRD is the most simple among all experi-

mental designs.

(ii) CRD is the only basic design where one can

have flexibility of adopting different num-

bers of replications for different treatments.

When the experimenter comes across with

the problem of varied availability of exper-

imental materials, the flexibility of different

replications for different treatments

becomes very useful.

(iii) Missing data does not provide potential

threat so long there are a few observations

corresponding to each and every treatment.

This is possible only because of the design

flexibility to handle different replications

for different treatments.

(iv) Compared to other basic designs, CRD

can be used in irregular shaped experimental

plot.

ANOVA table for completely randomized design

SOV d.f. SS MS Tab F

Treatment t�1 SSTr MSTr ¼ TrSS
t�1

MSTr
MSEr

Error n�t SSEr MSEr ¼ ErSS
n�t

Total n�1 TSS

Total sum of squares SSTotð Þ ¼
Xt

i¼1

Xri
j

observationð Þ2 � CF ¼
Xt

i¼1

Xrt
j¼1

y2ij � CF

¼ y211 þ y221 þ y231 þ ::::::::þ y2trt � CF
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Demerits

(i) Though CRD is most suitable for laboratory

or greenhouse experimental condition

because of homogenous experimental

units, it is very difficult to have homoge-

nous experimental units in large number

under field condition.

(ii) InCRDonly twobasic principles of the design

of experiment are used. The principle of “local

control” is not used in this design which is

very efficient in reducing the experimental

error. As experimental error ismore compared

to other basic experimental designs.

(iii) With the increase in number of treatments

and/or replications, especially under field con-

dition, it becomes very difficult to get more

number of homogeneous experimental units.

Example 10.1: (CRD with Unequal

Replications)

An experiment was carried out at the research

farm of the BCKV, Mohanpur, India, to know the

effect of different levels of mushroom waste

feeding on body weight in broiler chickens. The

following results were obtained:

Analyze the data and draw the necessary

conclusion.

Solution

This is a problem of completely randomized

design with unequal replications. This is a fixed

effect model yij ¼ μþ αi þ eij, where αi is the

effect of the ith level, i ¼ 1, 2, 3, 4, 5. That

means the problem is to test

H0 : α1 ¼ α2 ¼ . . . ¼ α5 against H1 : αi 0 s
that are not equal.

Let the level of significance be α ¼ 0:01ð Þ:

Mushroom waste

1 % 3 % 5 % 7 % 9 %

1802.30 1912.23 2143.23 2423.55 2013.22

1799.49 1934.12 2143.77 2453.78 2076.23

1834.98 1985.23 2143.23 2477.45 2098.23

1723.12 1954.31 2193.34 2412.54 2043.77

1811.45 1987.53 2188.23 2423.43

1977.23

Sum (yi0) 8971.34 11750.65 10811.80 12190.75 8231.45

Average

(yi0)
1794.27 1958.44 2162.36 2438.15 2057.86

The number of replications for mushroom waste

1 %, 5 %, and 7 % is 5, for 3 % is 6, and for 9 %

is 4 so the total number of observations is

n ¼3�5 + 6 + 4 ¼ 25.

GrandtTotal GTð Þ :
¼ 1802:30 þ 1799:49 þ 1934:98

þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

þ 2098:23 þ 2043:77 ¼ 51955:99

Correction factor CFð Þ ¼ GT2

n
¼ 51955:992

25

¼ 107976995:90

Total sum of squares SSTotð Þ
¼ 1802:302 þ 1799:492 þ 1934:982 þ . . . : :

þ 2098:232 þ 2043:772 � CF
¼ 1195535:07

Treatment sum of squares SSTrð Þ

¼ 8971:342

5
þ 11750:652

6
þ 10811:802

5

þ 12190:752

5
þ 12190:752

4

¼ 1174028:21

Error sum of squares SSErð Þ ¼ SSTot � SSTr

¼ 1195535:07� 1174028:21 ¼ 21506:86

Mushroom waste (%) Body weight after 40 days (in grams)

1 1802.30 1799.49 1834.98 1723.12 1811.45

3 1912.23 1934.12 1985.23 1954.31 1987.53 1977.23

5 2143.23 2143.77 2143.23 2193.34 2188.23

7 2423.55 2453.78 2477.45 2412.54 2423.43

9 2013.22 2076.23 2098.23 2043.77
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The table value of F0.01,4,20 ¼ 4.43.

Thus F(Cal) > F(Tab)0.01,4,20, so the test is

significant, and we reject the null hypothesis of

equality. We conclude that there exist significant

differences among the different levels of mush-

room waste feeding on body weight of broiler

chicken.

So, the next objective is to find out the level at

which the body weight differs significantly or the

level/levels give significantly the highest body

weight.

To compare the levels, we calculate the criti-

cal difference value, which is given as

LSD=CD 0:01ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1

ri
þ 1

r‘i

� �s

� t0:01,error:df

LSD=CD 0:01ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1075:34

1

ri
þ 1

r‘i

� �s
� 2:845

where ri and ri
0
are the number of observations of

the two levels of mushroom wastes under com-

parison. Thus for comparing the levels of mush-

room waste feeding, we have the following

critical difference and mean difference values

among the levels of mushroom feedings:

ANOVA table

SOV d.f. SS MS F

Mushroom
waste

4 1174028.21 293507.05 272.94

Error 20 21506.86 1075.34

Total 24 1195535.07

Example 10.1: (Using MS Excel)

Mushroom waste (%) Body weight after 40 days (in grams)

1 1802.30 1799.49 1834.98 1723.12 1811.45

3 1912.23 1934.12 1985.23 1954.31 1987.53 1977.23

5 2143.23 2143.77 2143.23 2193.34 2188.23

7 2423.55 2453.78 2477.45 2412.54 2423.43

9 2013.22 2076.23 2098.23 2043.77

Comparison (%) CD (0.01) values Mean difference yi0 � yi00j j Inference

1–3 56.490 164.174 Levels of mushroom waste feeding are

results in significantly different broiler

body weights in all the pairs
1–5 59.012 368.092

1–7 59.012 643.882

1–9 62.591 263.595

3–5 56.499 203.918

3–7 56.499 479.708

3–9 62.591 99.420

5–7 59.012 275.790

5–9 62.591 104.497

7–9 62.591 380.290
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Step 1: Enter the data in the Excel as below.

Step 2: Go to Data ! click on Data Analysis
toolbar.
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Step 3: Search for the option “Anova: Single”

! click on OK.

Step 4: Select the input–output ranges, label etc.,

and select group by rows as shown below in
the figure.
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Step 5: Click on OK; then results will appear as

shown below.

Step 1: Enter the data in SPSS data view as

below; change the variable names.

Example 10.1 (Using SPSS)

Mushroom waste (%) Body weight after 40 days (in grams)

1 1802.30 1799.49 1834.98 1723.12 1811.45

3 1912.23 1934.12 1985.23 1954.31 1987.53 1977.23

5 2143.23 2143.77 2143.23 2193.34 2188.23

7 2423.55 2453.78 2477.45 2412.54 2423.43

9 2013.22 2076.23 2098.23 2043.77
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Step 2: Go to Analysis ! generalize linear

model ! click on Univariate as below.

Step 3: Copy the dependent variable (in our case

Body weight) into the Dependent variable

option and fixed variable into the Fixed vari-

able (in our case Treatment) as below.
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Step 4: Click on Model ! change the option to

custom ! pass the Treatment into the Model

! change the Type option to Main effect as

below.

Step 5: Now click on Post Hoc; select any one of

the Post Hoc options to perform a multiple

pairwise comparison procedure as below.

(We have to stick onto the LSD.)
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Click on Continue and then OK to get the output

as below.

Example 10.2: (CRD with an Equal Number

of Replications)

In fish breeding improvement program, fishes are

subjected to five different light intensities. The

following table gives the fish weight (in kg) at the

harvest after 90 days. Test whether the different

light intensities differ significantly with respect

to fish weight:

T1 T2 T3 T4 T5

2.22 1.54 1.8 2.12 2.26

2.32 1.57 1.91 2.41 2.37

2.27 1.65 1.84 2.34 2.43

2.32 1.63 1.97 2.42 2.46

2.24 1.61 1.88 2.33 2.31

Solution The statement shows that the experi-

ment was laid out in completely randomized

design with five different light intensities each

replicated five times, so the analysis of data will

follow one-way analysis of variance.

The model for the purpose is yij ¼ μþ αi þ eij
where

i ¼ 1,2,3,4,5; j ¼ 1,2,3,4,5

yij ¼ j th observation for the ith light intensity

μ ¼ general effect

αi ¼ additional effect due to ith light intensity

eij ¼ errors associated with jth observation in

ith light intensity and are i.i.d N(0, σ2)

H0 : α1 ¼ α2 ¼ . . . ¼ α5 against H1 : All αi0s
are not equal.

Let the level of significance be αð Þ ¼ 0:01 :

T1 T2 T3 T4 T5

2.22 1.54 1.80 2.12 2.26

2.32 1.57 1.91 2.41 2.37

2.27 1.65 1.84 2.34 2.43

2.32 1.63 1.97 2.42 2.46

2.24 1.61 1.88 2.33 2.31

Total (yi0) 11.37 8.00 9.40 11.62 11.82

Average (yi0) 2.27 1.60 1.88 2.32 2.36

Grand total GTð Þ ¼ 2:22þ 2:32þ 2:27
þ ::::::::::::::::: þ 2:43
þ 2:46þ 2:31

¼ 52:20

Correction factor CFð Þ ¼ GT2

n
¼ 52:202

25

¼ 109:024
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Total sum of squares SSTotð Þ
¼ 2:222 þ 2:322 þ 2:272 þ ::::::::::::þ 2:432

þ 2:462 þ 2:312 � CF
¼ 2:35

Treatment sum of squares SSTrð Þ

¼ 11:372 þ 8:002 þ 9:402 þ 11:622 þ 11:822

5

� CF

¼ 2:23

Error sum of squares SSErð Þ ¼ TSS� TrSS
¼ 2:35� 2:23 ¼ 0:12

The table value of F0.01,4,20 ¼ 4.43.

Thus, F(Cal) > F(Tab)0.01,4,20, so the test is

significant and we reject the null hypothesis of

equality of fish weight.

So, the next objective is to find out the light

intensity which differs significantly among them-

selves and the light intensity having significantly

the highest average fish weight.

To compare the light intensity, we calculate

the critical difference value, which is given as

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1

ri
þ 1

r‘i

� �s
� t0:01, error:df

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:006

1

r
þ 1

r

� �s
� t0:01,20

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:006

2

5

� �s
� 2:84 ¼ 0:31

where ri and ri
0
are the number of observations of

the two light intensities under comparison, and

for this problem all are equal to 5.

We arrange the mean values corresponding to

different light intensities in ascending order and

compare the differences with CD value as follows:

Treatments (Light intensity) Mean fish weight (kg)
T2 1.60
T3 1.88
T1 2.27
T4 2.32
T5 2.36

Treatments (light intensity) joined by the same

line are statistically at par, i.e., they are not signif-

icantly different among themselves. Thus, the

light intensities T2 and T3, T1, T4, and T5 are

statistically at par. For the above table, it is clear

that the T5 is by far the best light intensity giving

the highest fish weight followed by T4, which is

statistically at par with T1, and the light intensity

T2 is the lowest yielder.

This type of problem can also be solved in MS

Excel and SPSS following the steps discussed in

Example 10.1.

10.8 Randomized Block Design/
Randomized Complete Block
Design (RBD/RCBD)

Randomized complete block design or simply

randomized block design is the simplest of all

field designs which uses all the basic principles,

viz., (i) replication, (ii) randomization, and (iii)

local control, of designs of experiment. This is

the most basic design which takes care of the soil

heterogeneity and hence the variability among

the experimental units. In fact randomized

block design takes care of soil heterogeneity in

one direction; it is useful when the experimental

units vary in nature in one way. Blocking is done

across the fertility gradient, and each block

should contain as many experimental units as

the number of treatments in the experiment. As

each and every block contains all the treatments,

the blocks are known to be complete, and as such

the design is also known as randomized complete

block design (RCBD).

10.8.1 Experimental Layout

Step 1: Depending upon the heterogeneity among

the experimental units and the number of

treatments to be included in the experiment,

ANOVA table

SOV d.f. SS MS F

Treatment 4 2.238 0.559 94.662

Error 20 0.118 0.006

Total 24 2.356
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the whole experimental field is divided into

number of blocks, perpendicular to the

direction of heterogeneity, equal to the

types/group of experimental units taking

information from the uniformity trial or

previous experience, e.g.,

Gradient                                              Blocking

In most of the cases, the number decides the

number of replications in the experiment. That

means the number of replications and the number

of blocks are equal (synonymous) in this type of

design. Thus each and every block contains as

many numbers of experimental units as the num-

ber of treatments in the experiment so that each

treatment is repeated equal number of times

(equal to the number of blocks/replications) in

the whole experiment:

Step 2: Each block is divided into number of

experimental units equal to the number of

treatments (say t) across the fertility gradient

as shown below:

1st experimental unit
2nd experimental unit

:
:
:
:

t-1th experimental unit
t th experimental unit

Step 3: In each block consisting of t experimental

units, allocate t treatments randomly so that

no treatment is repeated more than once in any

block.

Example Let us suppose we are to conduct an

experiment taking six (A, B, C, D, E, F)

treatments in three replications (R1, R2, R3).

The step-by-step layout is as follows:

Step 1: Fertility gradient:

Step 1: Fertility gradient
Whole experimental area

Step 2: Blocks are made across the fertility gra-

dient as follows:

R1 R2 R3

Step 3: Each replication/block is divided into six

experimental units of equal size:

R1 R2 R3

Step 4: Six treatments are to be allocated ran-

domly among the six experimental units of

each block separately. Let us draw six random

numbers 1–6 without repetition and suppose

the random numbers are 5, 3, 2, 4, 1, and 6. So

the treatment A is allotted to the fifth experi-

mental unit, treatment C is allotted to the third

experimental unit, and so on. Thus the distri-

bution of treatments among the experimental

units of the first replication/block will be as

follows:

R1: Replication 1
E
C
B
D
A
F
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Step 5: Repeat step 4 with fresh sets of random

numbers for other two blocks separately to get

the following layout of the design:

R1: Replication 1 R2: Replication 2 R3: Replication 3
E B C
C C E
B E F
D D A
A F D
F A B

10.8.2 Statistical Model and Analysis

From the design and its layout, it is quite

evident that the randomized block design is

almost similar to that of two-way classification

of data with one observation per cell. As such the

statistical model and analysis would be similar.

Suppose we have a RBD experiment with

t treatments, each being replicated r number of

times. The appropriate statistical model for RBD

will be

yij ¼ μþ αi þ βj þ eij, i ¼ 1, 2, 3, . . . . . . :, t; j

¼ 1, 2, . . . :r

where

yij ¼ response due to jth replication/block of the

ith treatment

μ ¼ general effect

αi ¼ additional effect due to ith treatment andX
αi ¼ 0

βj ¼ additional effect due to jth replication/block

and
X

βj ¼ 0

eij ¼ error associated with jth replication/block

of ith treatment and

eij
0s � i:i:d: N 0, σ2ð Þ

Assumptions of the Model

(i) Additive model assumed.

(ii) eij
0s � i:i:d: N 0, σ2ð Þ.

Let the level of significance be α.

Hypothesis to Be Tested

The null hypotheses to be tested are

H01 : α1 ¼ α2 ¼ :::::: ¼ αi ¼ :::::: ¼ αt ¼ 0

H02 : β1 ¼ β2 ¼ :::::: ¼ βj ¼ :::::: ¼ βr ¼ 0

Against the alternative hypotheses,

H11: all α0s are not equal
H12: all β0s are not equal
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In total we have n ¼ r.t. number of plots in

the experiment:

Replications/Blocks
Treatments 1 2 …. j …. r Total Mean

1 y11 y12 …. y1j …. y1r y1.
1.y

2 y21 y22 …. y2j …. y2r y2.
2.y

: : : : : : : : :
i yi1 yi2 …. yij …. yir yi.

.iy
: : : : : : : : :
t yt1 yt2 …. ytj …. ytr yt.

.ty
Total y.1 y.2 …. y.j …. y.r y..
Mean

.1y .2y ….
. jy ….

.ry

From the above table, we calculate the follow-

ing quantities:

Grand total ¼
X
i, j

yij

¼ y11 þ y21 þ y31 þ :::::::: þ ytr
¼ G

Correction factor ¼ CF ¼ G2

rt

Total sum of squares SSTotð Þ ¼
X
i, j

yij
2 � CF

¼ y211 þ y221 þ y231 þ ::::::::þ y2tr � CF

Treatment sum of squares SSTrð Þ

¼

Xt

i¼1

yi:
2

r
� CF

¼ y2
1:

r
þ y2

2:

r
þ y2

3:

r
þ :::::::

y2i:
r
þ :::::::

y2t:
r
� CF

Replication sum of squares SSRð Þ

¼

Xr

j¼1

y:j
2

t
� CF

¼ y2
:1

t
þ y2

:2

t
þ y2

:3

t
þ :::::::

y2
:j

t
þ :::::::

y2
:r

t
� CF

Error sum of squares by subtractionð Þ ¼ SSEr
¼ T SS � TrSS � RSS

If the calculated values of F corresponding to

treatment and replication be greater than the

corresponding table values at the α level of sig-

nificance with (t�1), (t�1)(r�1) and (r�1),

(t�1)(r�1) degrees of freedom, respectively,

then the null hypotheses are rejected at α level

of significance; otherwise one cannot reject the

null hypothesis. When the test(s) is or are non-

significant, we conclude that there exist no sig-

nificant differences among the treatments and

among the replications with respect to the partic-

ular character under consideration; all treatments

are statistically at par so also the replications.

In the event of significance test(s), one rejects

the null hypothesis (hypotheses), resulting in the

decision that there exist significant differences

among the treatments and also among the

replications. Thus there is a need to find out

which pairs of the treatments are significantly dif-

ferent from each other and which treatment is the

best treatment or what is the order of the

treatments w.r.t. the particular character under

consideration. Similarly there is a need to find

ANOVA table for RBD

SOV d.f. SS MS Cal F

Treatment t�1 SSTr MSTr ¼ SSTr
t�1

FTr ¼ MSTr
MSEr

Replication

(block)

r�1 SSR MSR ¼ SSR
r�1

FR ¼ MSR
MSEr

Error (t�1)

(r�1)

SSEr MSEr ¼ SSEr
t�1ð Þ r�1ð Þ

Total rt�1 SSTot
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out which pair of replications differs significantly

among themselves. For the purpose we need to

find out the least significant difference (critical

difference) value for treatments and replications

separately using the following formulae, respec-

tively, and compare the treatment/replicationmean

differences with the respective LSD/CD values.

LSD/CD for Replication

LSD=CDα Rep:ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr

t

r
� tα=2; t�1ð Þ r�1ð Þ

where t is the number of treatments and

tα=2; t�1ð Þ r�1ð Þ is the table value of t at α level of

significance and (t�1)(r�1) degrees of freedom

for both-sided test.

The absolute value of difference between any

pair of replication means is compared against the

above LSD value; if the difference is more than

the critical value (LSD/CD value), then the rep-

lication means is significantly different from

each other, otherwise not.

Note: There are different schools of thought

about the effect of the significant tests for

replications. The significance of replication test

does not hamper the estimation procedure and as

such does not pose any serious problem in the

inference. There is an argument that the replica-

tion(s) which are significantly different from the

other should be discarded from the analysis. A

counterargument is that if you discard the informa-

tion from significant replications, then there exist

no differences among the replications; then one

should analyze the data as per the one-way analysis

of variance, CRD, which design has got compara-

tively more error mean square than the competitive

simple designs. And in that case, the basic parame-

ter of adopting RBD that there exists one-way

heterogeneity among the experimental units is put

under question. Moreover, if one discards one or

more replications from the analysis, there may be a

shortfall in the minimum required degrees of free-

dom for error, and the sensitivity of F test and t test

will be under question. So it is always better to

have more number of replications while planning

the experimental design.

LSD/CD for Treatment

LSD=CDα ¼
ffiffiffiffiffiffiffiffiffi
2MSEr

r

q
� tα=2; t�1ð Þ r�1ð Þ,

where r is the number of replications and

tα=2; t�1ð Þ r�1ð Þ is the table value of t at α level of

significance and (t�1)(r�1) degrees of freedom

for both-sided test.

The absolute value of difference between

any pair of treatment means is compared against

the above LSD value; if the difference is more

than the critical value (LSD/CD value), then

the treatment means are significantly different

from each other; otherwise, they are statistically

at par.

10.8.3 Merits and Demerits of RBD

Merits

(i) RBD is the simplest of all block design.

(ii) RBD uses all the three principles of the

design of experiments.

(iii) RBD takes care of soil heterogeneity.

(iv) The layout is very simple.

(v) It is more efficient compared to CRD.

Demerits

(i) RBD is a complete block design; each and

every block contains all the treatments.

Now if the number of treatments increases

to a great extent, block size also increases

simultaneously. It becomes very difficult to

have a greater homogeneous block to

accommodate more number of treatments.

In practice, the number of treatments in

RBD should not exceed 12.

(ii) Each and every treatment is repeated equal

number of times in RBD. As such like CRD,

the flexibility of using different replications

for different treatments is not possible

in RBD.

(iii) The missing observation, if any, is to be

estimated first and then analysis of data to

be taken.

(iv) RBD takes care of heterogeneity of experi-

mental area in only one direction.
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Example 10.3 A field experiment was

conducted at Central Research Farm, Gayeshpur,

Nadia, West Bengal, to study the effect of eight

different herbicides on the total weed density (no.m
�2) in transplanted rice on weed management in

rice–lathyrus cropping system. The following are

the layout and data pertaining to weed density at

60 days after transplanting. Analyze the data and

find out the best herbicide for weed management:

Rep-1 Rep-2 Rep-3

T4 (96) T1 (180.45) T6 (197.76)

T3 (145.33) T3 (140.77) T8 (339.375)

T5 (196.99) T8 (335.89) T3 (147.37)

T7 (79.99) T4 (95.29) T5 (196.585)

T6 (197.01) T6 (193.87) T4 (98.875)

T2 (169.67) T2 (174.67) T7 (87.895)

T8 (338.00) T7 (86.26) T2 (174.17)

T1 (182.34) T5 (187.32) T1 (184.395)

Solution

It appears from the information that the experi-

ment has been laid out in randomized block

design with eight different herbicides in three

replications.

So the model for RBD is given by

yij ¼ μþ αi þ βj þ eij
where

i ¼ 1,2,.. . ., 6; j ¼1,2,3.

yij ¼ effect due to the ith herbicide in jth
replication

μ ¼general effect

αi ¼additional effect due to ith herbicide

βj ¼additional effect due to jth replication

eij ¼errors associated with ith herbicide in jth

replication and are i.i.d. N(0, σ2)

The hypotheses to be tested are

H01 : α1 ¼ α2 ¼ . . . ¼ α8 against H11; all α0s are
not equal

H02 : β1 ¼ β2 ¼ β3 against H12; all β0s are not

equal

Let the level of significance be 0.05.

We shall analyze the data in the following

steps:

Step.1: Make the following table from the given

information:

Step.2: Calculate the following quantities:

Grand total GTð Þ ¼ 182:34þ 169:67þ 145:33
þ :::::::::::::::::þ 197:76
þ 87:90þ 339:38

¼ 4226:28

Correction factor CFð Þ ¼ GT2

n
¼ 4226:282

24

¼ 744225:01

Total sum of squares SSTotð Þ ¼
X

Obs:2 � CF

¼ 182:342 þ 169:672 þ 145:332

þ ::::::::::::::::: þ 197:762 þ 87:902

þ 339:382 � CF
¼ 127799:89

Replication T1 T2 T3 T4 T5 T6 T7 T8 Total Mean

R1 182.34 169.67 145.33 96.00 196.99 197.01 79.99 338.00 1405.33 175.67

R2 180.45 174.67 140.77 95.29 187.32 193.87 86.26 335.89 1394.52 174.32

R3 184.40 174.17 147.37 98.88 196.59 197.76 87.90 339.38 1426.43 178.30

Total 547.19 518.51 433.47 290.17 580.90 588.64 254.15 1013.27 4226.28

Mean 182.40 172.84 144.49 96.72 193.63 196.21 84.72 337.76
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Treatment sum of squares SSTrð Þ ¼ 1

3

X3
i¼1

y2i0 � CF

¼ 547:192 þ 518:512 þ 433:472 þ 290:172 þ 580:902 þ 588:642 þ 254:152 þ 1013:272

3
� CF ¼ 127637:55

Replication sum of squares SSRð Þ
¼ 1

8

X3
j¼1

y20j � CF ¼ 1405:332 þ 1394:522 þ 1426:432

8
� 744225:01 ¼ 65:82

Error sum of squares (ErSS) ¼ TSS�TrSS�RSS
¼ 127799.89�127637.55�65.82 ¼ 96.51

Step.3: Construct the ANPVA table as given

below:

SV d.f. SS MS F

Replication 2 65.82 32.91 4.78

Treatment 7 127637.55 18233.94 2644.79

Error 14 96.52 6.89

Total 23 127799.89

Step.4: The table value of F0.05,2,14 ¼ 3.75 and

F0.05,7,14 ¼ 2.76. Thus, we find that the test

corresponding to the replication and effect of

different herbicides is significant. So the null

hypothesis of equality of both replications and

herbicidal effect is rejected; that means there

exist significant differences among the

replications as well as herbicides. But we are

interested in the effects of herbicides. So we

are to identify the herbicides, which are sig-

nificantly different from each other and the

best herbicide.

Step 5: Calculate the critical difference value

using the following formula:

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

r

r
� t0:025, error:df

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 6:89

3

r
� 2:14 ¼ 4:598

Arrange the weed density mean values in

descending order, and compare the difference

between any two treatment mean differences

with that of the critical difference value. If the

critical difference value be greater than the differ-

ence of two varietal means, then the treatments are

statistically at par; there exists no significant dif-

ference among the means under comparison:

Treatment

Mean weed density

(no. m�2)

T8 337.76

T6 196.21

T5 193.63

T1 182.40

T2 172.84

T3 144.49

T4 96.72

T7 84.72

From the above one can find that herbicide 7 is

the best herbicide having less weed density foll-

owed by 4th, 3rd, and 2nd herbicides and herbicide

numbers 6 and 5 are at par with each other.

344 10 Basic Experimental Designs



Example 10.3: (Using MS Excel)

Step 1: Enter the data in the Excel sheet as
below.

Step 2: Go to Data ! click on the Data Analysis
toolbar as below.
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Step 3: Select the “Anova: Two Factor Without

Replication” ! click on OK as below.

Step 4: Select the input-output ranges, label etc.,

and enter the desired level of significance

(we stick onto 0.05) as shown below in the

figure.
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Step 5: Click on OK to get the output as below.

Here rows are the replications and columns

are the herbicides. It can be seen that the results

are exactly the same as what is found in manual

calculation. But here the calculations of CD

values are to be done manually.

Example 10.3: (Using SPSS)

Step 1: Enter the data in SPSS data view as

below; change the variable names.

10.8 Randomized Block Design/Randomized Complete Block Design (RBD/RCBD) 347



Step 2: Go to Analysis ! generalize linear

model ! click on Univariate as below.

Step 3: Copy the dependent variable (in this
example WD) into the Dependent variable

option and fixed variables into the Fixed

variable (in our case Replication and Treat-
ment) as below.
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Step 4: Click on Model ! change the option

to custom ! pass the Treatment and

Replication into the Model ! change the

Type option to Main effect as below.

Step 5: Now click on Continue ! click on Post

Hoc, pass the Treatment variable into “Post

Hoc test for” ! select any one of the Post

Hoc option to perform multiple pairwise com-

parison procedures as below. (We have

sticked onto the LSD.)
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Step 6: Click on Continue and then OK to get the

output as below.

Example 10.4 The following table gives the test

weight (in gram) from a yield trail of sorghum

with nine treatments in a RBD. Analyze the data

and find out the best treatment:

R1 R2 R3

T1 28.00 27.30 31.70

T2 29.50 29.50 29.20

T3 30.60 29.70 30.90

T4 30.50 31.50 29.80

T5 28.40 29.10 30.80

T6 28.23 26.21 27.23

T7 32.50 29.90 30.50

T8 32.40 31.20 29.90

T9 27.50 29.50 29.00

Solution From the given information, it is clear

that the appropriate statistical model will be

yij ¼ μþ αi þ βj þ eij

where

i ¼1,2,.. . ., 9;j ¼1,2,3.

yij¼effect due to the ith treatment in jth replication

μ ¼general effect

αi ¼additional effect due to ith treatment

βj ¼additional effect due to jth replication

eij ¼errors associated with ith treatment in jth
replicate and are i.i.d. N(0, σ2)

The above model is based on the assumptions

that the effects are additive in nature and the

error components are identically independently

distributed as normal variate with mean zero and

constant variance.

Let the level of significance be 0.05.

The hypotheses to be tested are

H01 : α1 ¼ α2 ¼ . . . ¼ α8 ¼ α9 againstH11;all

α 0s are not equal
H02 : β1 ¼ β2 ¼ β3 againstH12; all β 0s are not

equal

First we make the following table:

R1 R2 R3 Total Mean

T1 28.00 27.30 31.70 87.00 29.00

T2 29.50 29.50 29.20 88.20 29.40

T3 30.60 29.70 30.90 91.20 30.40

T4 30.50 31.50 29.80 91.80 30.60

T5 28.40 29.10 30.80 88.30 29.43

T6 28.23 26.21 27.23 81.67 27.22

T7 32.50 29.90 30.50 92.90 30.96

T8 32.40 31.20 29.90 93.50 31.16

T9 27.50 29.50 29.00 86.00 28.66

Total 267.63 263.91 269.03 800.57 –
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From the above table, we calculate the follow-

ing quantities:

Grand total GTð Þ ¼ 28:00þ 29:50þ :::::::::::::
þ 29:90þ 29:00 ¼ 800:57

Correction factor CFð Þ ¼ GT2

n
¼ 800:572

27

¼ 23737:49

Total sum of squares SSTotð Þ ¼
X

Obs:2 � CF

¼ 28:002 þ 29:502 þ :::::::::::::þ 29:902

þ29:002 � 23737:49 ¼ 66:22

Treatment sum of squares SSTrð Þ ¼ 1

3

X3
i¼1

y2i0 � CF

¼ 87:002 þ 88:20þ ::::::::::::þ 86:00

3
� CF

¼ 38:65

Replication sum of squares SSRð Þ ¼ 1

8

X3
j¼1

y20j � CF

¼ 267:632 þ 263:912 þ 269:032

8
� 23737:49 ¼ 1:55

Error sum of squares SSErð Þ
¼ SSTot

�� SSTr � SSR
¼ 66:22� 38:65� 1:55 ¼ 26:01

The table value of F0.05,2,16 ¼ 3.63 and

F0.05,8,16 ¼ 2.59. Thus, we find that the test

corresponding to the effect of different

treatments is significant. So the null hypothesis

of equality of treatment effect is rejected; that

means there exist significant differences among

the treatments. So we are to identify the treat-

ment, which is significantly different from each

other and the best treatment.

Calculate the critical difference value using

the following formula:

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

r

r
� t0:05, error:df

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:63

3

r
� 2:11 ¼ 2:20

Arrange the mean of test weight in descending

order, and compare the difference between any

two treatment mean differences with that of the

critical difference value. If the critical difference

value be greater than the difference of two varie-

tal means, then the treatments are statistically at

par; there exists no significant difference among

the means under comparison:

Treatment Mean
T8 31.17
T7 30.97
T4 30.60
T3 30.40
T5 29.43
T2 29.40
T1 29.00
T9 28.67
T6 27.22

From the above one can find that treatment

number 8 is the best treatment having the highest

seed test weight and it is at par with treatment

numbers 7, 4, 3, 5, and 2; the treatment number

6 is with the lowest test weight.

Example 10.5 The following table gives the pod

yield data (q/ha) from a yield trial of pea with ten

varieties in a RBD. Analyze the data and find out

the best variety:

Pod yield of pea (q/ha)

Varieties Block 1 Block 2 Block 3 Block 4

P1 6.2 8.0 7.2 7.1

P2 9.5 10.3 10.5 10.1

P3 8.3 8.3 8.1 8.2

P4 9.6 9.4 9.9 9.6

P5 9.0 9.6 9.8 9.5

P6 8.1 7.97 7.3 7.8

P7 8.3 8.3 8.8 8.5

P8 9 7.3 8.7 8.3

P9 7.9 8.2 7.8 7.6

P10 11.6 11.2 11.5 11.3

Construct the ANOVA table as given below

SOV d.f. SS MS F

Replication 2 1.56 0.78 0.478

Treatment 8 38.66 4.83 2.97

Error 16 26.01 1.63 –

Total 26 66.23 – –
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From the given information, it is clear that the

appropriate statistical model will be

yij ¼ μþ αi þ βj þ eij, i ¼ 10 and j ¼ 4

where

yij ¼ response corresponding to jth replication of

the ith variety

μ ¼ general effect

αi ¼ additional effect due to ith variety andX
αi ¼ 0

βj ¼ additional effect due to jth replication andX
βj ¼ 0

eij ¼ error associated with jth replication of ith

variety and are i.i.d. N(0, σ2).

The above model is based on the assumptions

that the effects are additive in nature.

Let the level of significance be α ¼ 0:05:

Hypothesis to be tested:

H01 : α1 ¼ α2 ¼ :::::::::: ¼ α10 ¼ 0 against all

α 0s are not equal
H02 : β1 ¼ β2 ¼ β3 ¼ 0against all β 0s are not

equal

First of all we make the following table:

From the above table, we calculate the follow-

ing quantities:

CF ¼ GT2

n
¼ 353:732

10� 4
¼ 3128:064

SSTot¼
X

Obs:2 � CF ¼ 6:22 þ 9:52 þ ::::::::

þ 7:62 þ 11:32 � 3128:064¼ 64:65113

SSR ¼ 1

10

X4
j ¼1

R2
j
� CF

¼ 1

10
87:52 þ 88:572 þ 89:62 þ 88:0572
	 


� 3128:064¼ 0:239277

SSV ¼ 1

4

X10
i¼1

V2
i
� CF

¼ 1

4
28:532 þ 40:402 þ :::::::þ 45:602
	 


� 3128:064 ¼ 59:495

SSEr ¼ SSTot � SSR � SSV ¼ 4:9168

Construct the ANOVA table as given below:

ANOVA

SOV d.f. SS MS F

Replication 3 0.239 0.078 0.428

Variety 9 59.495 6.611 36.301

Error 27 4.917 0.182 –

Total 39 64.651 – –

Pod yield (q/ha)

Varieties Block 1 Block 2 Block 3 Block 4 Total Average

P1 6.2 8 7.2 7.1 28.53 7.13

P2 9.5 10.3 10.5 10.1 40.40 10.10

P3 8.3 8.3 8.1 8.2 32.93 8.23

P4 9.6 9.4 9.9 9.6 38.53 9.63

P5 9 9.6 9.8 9.5 37.87 9.47

P6 8.1 7.97 7.3 7.8 31.16 7.79

P7 8.3 8.3 8.8 8.5 33.87 8.47

P8 9 7.3 8.7 8.3 33.33 8.33

P9 7.9 8.2 7.8 7.6 31.50 7.88

P10 11.6 11.2 11.5 11.3 45.60 11.40

Total 87.5 88.57 89.6 88.05667 353.7267
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The table values corresponding to replication

and variety are F0.05;3,27 ¼ 2.965 and

F0.05;9,27 ¼ 2.255, respectively. Thus, only the

test corresponding to variety is significant but

the test corresponding to replication is not. So

the null hypothesis of equality of replication

effects cannot be rejected; that means the repli-

cation effects are statistically at par. On the other

hand, the null hypothesis of equality of varietal

effect is rejected; that means there exist signifi-

cant differences among the varieties. So we are to

identify the varieties, which are significantly dif-

ferent from each other and the best variety.

Calculate the critical difference value atα ¼
0:05 using the following formula:

CD0:05 varietyð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

r

r
� t0:05,err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:1821

4

r
� t0:05,27

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:1821

4

r
� 2:052

¼ 0:619

Arrange the varietal mean values in

descending order, and compare the difference

between any two treatment mean differences

with that of the critical difference value. If the

critical difference value be less than the differ-

ence of two varietal means, then the treatments

are statistically at par; there exists no significant

difference among the means under comparison:

Variety
Average pod 

length
P10 11.40
P2 10.10
P4 9.63
P5 9.47
P7 8.47
P8 8.33
P3 8.23
P9 7.88
P6 7.79
P1 7.13

From the above one can find that variety 10 is

the best variety having the highest yield and

variety 1 the lowest pod yield producers among

the varieties of pea.

10.9 Latin Square Design (LSD)

In many practical situations, it is found that the

fertility gradient or soil heterogeneity varies not

only in one direction but also in two perpendicu-

lar directions. Randomized complete block

design takes care of soil heterogeneity in one

direction. Thus, there is a need for experimental

design which can take care of heterogeneity

among experimental units in two perpendicular

directions. Latin square design (LSD) is such a

design which takes care of two perpendicular

sources of variations among the experimental

units. As per the principle of blocking, blocking

is to be done in perpendicular direction of soil

heterogeneity. Thus to take care of soil heteroge-

neity in two perpendicular directions, we need to

frame blocks in two perpendicular directions inde-

pendently. And as per characteristics of blocking,

each block should contain each treatment once in

each block. Thus in Latin square design, each

block in perpendicular directions, i.e., each row

block and column block, should contain each and

every treatment once and only once. This arrange-

ment has resulted in row and column blocks of

equal size, thereby resulting in the requirement of

t2 number of experimental units to accommodate

t number of treatments in a Latin square design.

This type of allocation of treatments helps in

estimating the variation among row blocks as

well as column blocks. Subsequently the total

variations among the experimental units are

partitioned into different sources, viz., row, col-

umn, treatments, and errors.

Though applications of this type of designs

are rare in laboratory condition, it can be

conducted and is useful in field conditions

or greenhouse conditions. The two major perpen-

dicular sources of variations in greenhouse may be
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the difference among the rows of the plot and their

distances from the wall of the greenhouses.

10.9.1 Randomization and Layout

LSD is a design where the number of treatments

equals the number of rows equals the number of

columns. Because of such stringent relationship,

the layout of the design is more complicated com-

pared to the other two basic designs discussed,

viz., RBD and CRD. The layout of the Latin

square design starts with a standard Latin square.

A standard Latin square is an arrangement in
which the treatments are arranged in natural/

alphabetical order or systematically. Then in the

next step, columns are randomized, and in the last

step keeping the first row intact, the rest of the

rows are randomized. As such we shall get the

layout of Latin square of different orders. Let us

demonstrate the steps of the layout of Latin square

design taking five treatments in the experiment:

Step 1: Suppose the treatments are A, B C, D, and

E. So there would be 5 � 5 ¼ 25 experimen-

tal units arranged in five rows and five

columns. Now distribute the five treatments

in alphabetical order as shown below to get

the standard Latin square:

Rows Columns

A B C D E

B C D E A

C D E A B

D E A B C

E A B C D

Step 2: Randomize the columns to get the fol-

lowing layout (for example):

Step 3: Keeping the first row intact, randomize

the rest of the rows as follows:

Layout of 5 � 5 Latin square design

10.9.2 Statistical Model and Analysis

From the design and its layout, it is quite evident

that the LSD is almost similar to incomplete

three-way classification of data. Let there be

t treatments, so there should be t rows and

t columns, and we need a field of t� t ¼ t2

experimental units. The triplet, i.e., (i, j, k),

takes only t2 of the possible t3 values of a selected

Latin square.

As such the statistical model and analysis

would be as follows:

Model ¼ yijk ¼ μþ αi þ βj þ υk þ eijk
where

i ¼ 1, 2, . . .., t; j ¼ 1, 2, . . ..., t; and k ¼ 1, 2, . . ., t

μ ¼ general effect

αi ¼ additional effect due to ith treatment andX
αi ¼ 0

βj ¼ additional effect due to jth row andX
rj ¼ 0

υk ¼ additional effect due to kth treatment andX
ck ¼ 0

eijk ¼ error associated with ith treatment in jth
row and kth column and

eijk � i:i:d: N 0, σ2ð Þ.

The triplet, i.e., (i, j, k), takes only t2 of the

possible t3 values of a selected Latin square.

B D A E C
C E B A D
D A C B E
E B D C A
A C E D B

B D A E C
D A C B E
E B D C A
A C E D B
C E B A D
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Hypothesis to Be Tested

The null hypotheses to be tested are

H01 : α1 ¼ α2 ¼ :::::: ¼ αi ¼ :::::: ¼ αt ¼ 0

H02 : β1 ¼ β2 ¼ :::::: ¼ βj ¼ :::::: ¼ βt ¼ 0

H03 : γ1 ¼ γ2 ¼ ::::::: ¼ γk ¼ ::::::: ¼ γt ¼ 0

Against the alternative hypothesis,

H11: all α 0 s are not equal
H12: all β 0 s are not equal
H13: all γ 0 s are not equal

Analysis

SSTot ¼ SSTr þ RSS þ CSS þ SSEr

where SSTot ¼
X
i

X
j

X
k

yijk � y...

� �2

¼ total sum of squares

SSTr ¼ t
X
i

yi:: � y...ð Þ2

¼ treatment sum of squares

RSS ¼ t
X
j

�
y:j:�y...

�
2 ¼ row sum of squares

CSS ¼ t
X
k

y::k � y...ð Þ2

¼ column sum of squares

SSEr ¼
X
i, j, k

yijk � yi:: � y:j: � y::k þ 2y...

� �2

Various sums of squares are calculated by using

the following formulae:

Grand total ¼
X
i;j;kð Þ

yijk ¼ G

Correction factor ¼ Gð Þ2
t2 ¼ CF

Total sum of squares (SSTot) ¼
X
i;j;kð Þ

yijk
2 � CF

Treatment sum of squares (SSTr)

¼

Xt

i¼1

yi::
2

t

� CF ¼ y2
1::

t
þ y2

2::

t
þ y2

3::

t
þ :::::::

y2
i::

t

þ :::::::þ y2
t::

t
� CF

Row sum of squares (RSS)

¼

Xt

j¼1

yojo
2

t

� CF ¼ y2
:1:

t
þ y2

:2:

t
þ y2

:3:

t
þ :::::::

y2
:j:

t

þ ::::::: þ y2
:t:

t
� CF

Column sum of squares (CSS)

¼

Xt

k¼1

y::k
2

t

� CF ¼ y2
::1

t
þ y2

::2

t
þ y2

::3

t
þ :::::::

y2
::k

t

þ :::::::þ y2
::t

t
� CF

Error sum of squares (by subtraction) ¼ T SS–

TrSS–RSS–CSS

Thus corresponding to three null hypotheses,

we have three calculated values of F. If any of the

value of F be greater than the corresponding

table value of F at specified level of significance,

then the corresponding test is to be declared as

significant, and the null hypothesis is to be

rejected; otherwise the null hypothesis cannot

be rejected. When the test is nonsignificant, we

conclude that there exist no significant

differences among the treatments/rows/columns

with respect to the particular characters under

consideration; all treatments are statistically at

par. In the event of rejection of any of the null

hypotheses, LSD value is to be calculated to

compare the mean differences. The formula for

calculation of LSD value is same for

row/column/treatment because all these degrees

ANOVA table for LSD

SOV d.f. SS MS Cal F

Treatment t�1 SSTr MSTr ¼ SSTr
t�1

FTr ¼ MSTr
MSEr

Row t�1 RSS RMS ¼ RSS
t�1

FR ¼ RMS
MSEr

Column t�1 CSS RMS ¼ CSS
t�1

FC ¼ CMS
MSEr

Error (t�1)

(t�2)

SSEr MSEr ¼ SSEr
t�1ð Þ t�2ð Þ –

Total t2�1 SSTot – –
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of freedom are same. The critical difference for

rows/columns/treatments at α level of signifi-

cance is given by
ffiffiffiffiffiffiffiffiffiffi
2ErMS

t

q
� tα=2; t�1ð Þ t�2ð Þ, where

tα=2; t�1ð Þ t�2ð Þ is the table value of t at α level of

significance with (t�1)(t�2) degrees of freedom

for both-sided test.

If the absolute value of the difference between

any pair of means of row/column/treatment be

more than the critical difference value, as calcu-

lated above, then the row/column/treatment

means are significantly different from each

other; otherwise these are statistically at par.

10.9.3 Merits and Demerits of Latin
Square Design

In comparison to other two basic designs, viz.,

CRD and RBD, Latin square design is improved

since it takes care of the heterogeneity or the

variations in two perpendicular directions. In

the absence of any proper idea about the soil

heterogeneity among the experimental units and

if sufficient time is not allowed to check the soil

heterogeneity, then one can opt for LSD design.

The condition for the appearance of a treatment

once and only once in each row and in each

column can be achieved only if the number of

replications is equal to the number of treatments.

While selecting a LSD design, an experimenter

faces twine problems of maintaining minimum

replication as well as accommodating maximum

number of treatments in the experiment. This

makes the LSD design applicable in limited

field experimentations. The number of treatments

in LSD design should generally lie in between

4 and 8. All these limitations have resulted in

limited use of Latin square design, in spite of its

high potentiality for controlling experimental

errors. Thus in nut shell, the merits and demerits

of LSD are as follows:

Merits

(i) Takes care of soil heterogeneity in two per-

pendicular directions.

(ii) In the absence of any knowledge about the

experimental site, it is better to have LSD.

(iii) Among the three basic designs, LSD is the

most efficient design, particularly toward

error minimization.

Demerits

(i) The number of replications equals to the

number of treatments; thereby an increased

number of experimental units are required

for conduction of an experiment compared

to other two basic designs, viz., CRD and

RBD.

(ii) The layout of the design is not so simple as

was in the case of CRD or RBD.

(iii) This design requires square number plots.

Example 10.6 In a digestion trail carried out

with five cows of a particular breed, each animal

received of five different feeds (given in the

parentheses) in five successive periods, the

experimental design being a Latin square.

Coefficients of digestibility of nitrogen were cal-

culated as follows:

Cow

Period

1 2 3 4 5

1 60.12

(B)

67.23

(D)

63.23

(E)

54.23

(A)

62.32

(C)

2 54.23

(C)

64.27

(A)

63.23

(B)

64.23

(E)

71.23

(D)

3 65.60

(D)

63.11

(C)

60.12

(A)

65.12

(B)

63.77

(E)

4 65.23

(E)

66.26

(B)

64.15

(C)

70.32

(D)

51.98

(A)

5 66.78

(A)

64.89

(E)

73.23

(D)

52.87

(C)

60.32

(B)

Analyze the data and find out the best feed.

Solution The model for LSD is

yijk ¼ μþ αi þ βj þ γk þ eijk
where

i ¼1,2,. . ., 5; j ¼1,2,3. . ., 5; k ¼1,2,. . .,5
yijk ¼effect due to the ith feed in jth row and kth

column
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μ ¼general effect

αi ¼additional effect due to ith feed,
X
i

αi ¼ 0

βj ¼additional effect due to jth row,
X
j

βj ¼ 0

γk ¼additional effect due to kth coloumn,X
k

γk ¼ 0

eijk ¼errors associated with ith feed in jth row

and kth column and are i.i.d. N(0, σ2)

The hypotheses to be tested are

H0 : α1 ¼ α2 ¼ α3 ¼ α4 ¼ α5
β1 ¼ β2 ¼ β3 ¼ β4 ¼ β5
γ1 ¼ γ2 ¼ γ3 ¼ γ4 ¼ γ5

against

H1 : αi 0s are not equal
βj 0s are not equal
γk 0 s are not equal
Let the level of significance (α) be 0.05:

Step 1: Make the following two tables from the

given information:

Step 2: Calculate the following quantities:

CF ¼ G2

t � t
¼ 1578:072

5 � 5
¼ 99612:19

SSTot ¼
X

Obs:2 � CF¼ 66:782 þ 60:122

þ : : : : : þ 63:772 � 99612:197

¼ 695:47

SSRow ¼ 1

5

X
y:j:

2 � CF

¼ 1

5
307:132 þ 317:192 þ 317:722
	

þ 317:942 þ 318:092� � 99612:197

¼ 18:08

SSCol ¼ 1

5

X
y::k

2 � CF

¼ 1

5
311:962 þ 325:762 þ 323:962
	

þ 306:772 þ 309:622� � 99612:197

¼ 60:018

SSFeed ¼ 1

5

X
yi::

2 � CF

¼ 1

5
297:382 þ 315:052 þ 296:682
	

þ 347:612 þ 321:352� � 99612:197

¼ 349:587

SSEr ¼ SSTot � SSRow � SSCol � SSFeed

¼ 695:47� 18:08� 60:01� 349:58

¼ 267:78

Step 3: Construct the ANOVA table as given

below:

SOV d.f. SS MS F

Row 4 18.09 4.52 0.20

Column 4 60.02 15.00 0.67

Feed 4 349.59 87.40 3.92

Error 12 267.78 22.32 –

Total 24 – – –

Table of row and column

C1 C2 C3 C4 C5 Total Average

R1 60.12 67.23 63.23 54.23 62.32 307.13 61.43

R2 54.23 64.27 63.23 64.23 71.23 317.19 63.44

R3 65.6 63.11 60.12 65.12 63.77 317.72 63.54

R4 65.23 66.26 64.15 70.32 51.98 317.94 63.59

R5 66.78 64.89 73.23 52.87 60.32 318.09 63.62

Total 311.96 325.76 323.96 306.77 309.62 1578.07 –

Average 62.39 65.15 64.79 61.35 61.92 – –

Table of feeds

Feed

A B C D E

66.78 60.12 54.23 65.60 65.23

64.27 66.26 63.11 67.23 64.89

60.12 63.23 64.15 73.23 63.23

54.23 65.12 52.87 70.32 64.23

51.98 60.32 62.32 71.23 63.77

Total 297.38 315.05 296.68 347.61 321.35

Average 59.48 63.01 59.34 69.52 64.27
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Step 4: The table value of F0.05,4,12 ¼ 3.26 is

greater than both the calculated values of

F corresponding to row and column, but the

table value of F0.05,4,12 ¼ 3.26 is less than the

calculated value of F for feed so the tests for

effects of feeds are significant. So we are to

identify the best feed.

Step 5: Calculate the CD (0.05) using the follow-

ing formula:

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

t

r
� t0:025, error:df

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 22:32

5

r
� 2:179 ¼ 6:50

Arrange the feed mean values in descending

order, and compare the difference between any

two treatment mean differences with that of the

critical difference value. If the critical difference

value be greater than difference of two varietal

means, then the treatments are statistically at par;

there exists no significant difference among the

means under comparison:

Feed Mean
D 69.52
E 64.27
B 63.01
A 59.48
C 59.34

From the above one can find that the feed D is

the best feed having the highest coefficients of

digestibility of nitrogen which is at par with feed

E. Feeds E, B, A, and C are at par with each

other. Feed C is having the lowest coefficients of

digestibility of nitrogen among the feed.

10.10 Missing Plot Technique

It is our common experience that in many of the

field experiments, information from one or more

experimental unit(s) is missing because of some

reasons or otherwise. Crops of a particular

experimental unit may be destroyed, animals

under a particular treatment may die because of

some reason, fruits/flowers from a particular

experimental unit may be stolen, and errors on

the part of the data recorder during recording

time, etc. may result in missing data. If the

information from the whole experiments is to

be discarded because of one or two missing

values, it will be a great loss of time, resources,

and other factors. In order to avoid and over-

come the situations, missing plot technique has

been developed. The least square procedure can

be applied to the observations recorded leaving

the missing observations. The calculation has to

be modified accordingly. But the simplicity, the

generality, and the symmetry of the analysis of

the variance are sacrificed to some extent in the

process. The missing observation can however

be estimated following the least square tech-

nique, and application of the analysis of variance

with some modification can be used for practical

purposes to provide reasonably correct result.

We shall discuss the technique of estimating

the missing observation(s) and modified analysis

of variance thereof while discussing the specific

Treatments Replications (Blocks) Total
1 2 …. j …. r

1 y11 y12 …. y1j …. y1r y1.
2 y21 y22 …. y2j …. y2r y2.
: : : : : : : :
i yi1 yi2 …. - …. yir y'i.
: : : : : : : :
t yt1 yt2 …. ytj …. ytr yt.

Total y.1 y.2 …. y'.j …. y.r y'..
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experimental design in the following sections.

It must be noted clearly that the missing obser-

vation is not the same as the zero observation,

e.g., in an insecticidal trial, a plot may record

zero pest count but that does not mean the par-

ticular observation is missing. On the other

hand, if the crop record of a particular plot is

not available, then it should not be substituted by

zero value.

10.10.1 Missing Plot Technique in CRD

In CRD, the missing plot technique is of little use

because of the fact that in CRD, the analysis of

variance is possible with variable number of

replications for treatments. Thus if one observa-

tion from a particular treatment is missing, then

the analysis of variance is to be taken up with

(r�1) replication for the corresponding treatment

and total (n�1) number of observations for the

experiments. But the effect of missing

observations on the surrounding experimental

units should be noted carefully.

10.10.2 Missing Plot Technique in RBD

Let us have RBD with t treatments in r replications

and information on y* that is missing:

The missing observation y* can be estimated

using the following formula: y* ¼ ty0i0þry0
0j�y0

00

r�1ð Þ t�1ð Þ
where yi0

0
is the total of known observations in

the ith treatment

y0j
0
is the total of known observations in jth

replication (block)

y00
0
is the total of all known observations

Once the estimated value for the missing obser-

vation is worked out, the usual analysis of vari-

ance is taken up with the estimated value of the

missing observation. The treatment sum of square

is corrected by subtracting the upward biased

B ¼
y00j � t� 1ð Þy
h i2

t t� 1ð Þ
The degrees of freedom for both total and error

sum of square are reduced by 1 in each case. The

treatment means are compared with the mean hav-

ing the missing value and no missing value using

the formula for standard error of difference as

SEd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr
r 2þ t

r�1ð Þ t�1ð Þ
h ir

and

SEd ¼
ffiffiffiffiffiffiffiffiffiffi
2ErMS

r

q
, respectively.

Example 10.7 (Missing Plot in RBD)

An experiment was conducted to know the effect

of five treatments on average daily weight gain of

a particular breed of goat. Goats were weighed

and assigned to four blocks according to initial

weight. In each block there were five animals to

which treatments were randomly allocated. The

layout of the experiment along with daily weight

gain of a goat is given below. Analyze the data

and find out the best treatment:

Rep-1 Rep-2 Rep-3 Rep-4

T2 (732) T2 (745) T5 (749) T2 (717)

T3 (832) T4 (977) T4 (985) T1 (873)

T1 T3 (837) T2 (713) T5 (777)

T4 (943) T5 (745) T1 (856) T3 (840)

T5 (754) T1 (855) T3 (848) T4 (967)

Solution It appears from the information that

the experiment has been laid out in randomized

block design with five treatments in four

replications and one of the values for treatment

one in replication one is missing.

So the model for RBD is given by

yij ¼ μþ αi þ βj þ eij
where

i ¼ 1,2,. . ., 6; j ¼1,2,3.

yij ¼effect due to the ith treatment in jth

replication

μ ¼general effect

αi ¼additional effect due to ith treatment

βj ¼additional effect due to jth replication

eij ¼errors associated with ith treatment in jth

replicate and are i.i.d. N(0, σ2)

The hypotheses to be tested are

H0 : α1 ¼ α2 ¼ . . . ¼ α5
β1 ¼ β2 ¼ β3 ¼ β4

against
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H1 : αi 0s are not equal
: βj 0s are not equal.
Let the level of significance be 0.05.

We shall analyze the data in the following

steps:

Step 1: Make the following table from the given

information:

Rep-1 Rep-2 Rep-3 Rep-4 Total

T1 X 855 856 873 2584

T2 732 745 713 717 2907

T3 832 837 848 840 3357

T4 943 977 985 967 3872

T5 754 745 749 777 3025

Total 3261 4159 4151 4174 15,745

The estimate of the missing value is given by

ŷ ij ¼ X ¼ rR0 þ tT0 � G0

r � 1ð Þ t� 1ð Þ

where

X ¼ estimate of the missing value

R0 ¼ total of available goat weights of the block

having the missing observation

T0 ¼ total of available goat weights of the treat-

ment having the missing observation

G0 ¼ total of available goat weights in the whole

experiment

For this problem X ¼ rR0 þ tT0 � G0

r � 1ð Þ t� 1ð Þ ¼
4� 3261þ 5� 2584� 15745

4� 1ð Þ 5� 1ð Þ ¼ 851:58

Now, G ¼ G0 + X ¼ 15,745+ 851.58 ¼
16596.58.

Total of treatment 1 (T1) ¼ 2584+ X ¼ 3435.583.

Total of replication 1 (R1) ¼ 3261+

X ¼ 4112.583.

Now we proceed for the usual analysis of

variance with the estimated value of the missing

observation:

C:F: ¼ GT2

n
¼ 16596:582

5� 4
¼ 13772328:92

SSTOT ¼
X

Obs:2 � CF ¼ 851:582 þ 7322

þ ::::::::þ 9672 þ 7772 � 13772328:92
¼ 146922:25

SSR ¼ 1

5

X4
j¼1

R2
j
� CF

¼ 1

6
4112:582 þ 41592 þ 41512 þ 41742
	 


� 13772328:92 ¼ 411:01

SSTr ¼ 1

4

X5
i¼1

V2
i
� CF

¼ 1

4
3435:582 þ 29072 þ 33572 þ 38722 þ 30252
	 


� 13772328:92 ¼ 144256:04

The SSTr is an overestimate and has to be

corrected by subtracting a quantity (bias) B ¼
R0 � t� 1ð ÞX½ �2

t t� 1ð Þ ¼ 3261� 5�1ð Þ851:58½ �2
5 5� 1ð Þ ¼ 1056:08

Corrected SSTr ¼ SSTr � B
¼ 144256:04 � 1056:08 ¼ 143199:95

SSEr ¼ SSTOT � SSR � SSTr correctedð Þ
¼ 146922:3� 411:0177� 143199:95
¼ 3311:28

SEd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ErMS

r
2þ t

r � 1ð Þ t� 1ð Þ
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
301:03

4
2þ 5

4� 1ð Þ 5� 1ð Þ
� �

¼ 13:01

svuut
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where SSTOT, SSR, SSTr, and SSEr are the total,

replication, treatment, and error sum of squares,

respectively:

SOV d.f. SS MS Cal. F

Tab

F at

5 %

Replication 3 411.02 137.01 0.46 3.59

Treatment 4 144256.04 36064.01 119.80 3.36

Error

(corrected)

11 3311.28 301.03

Treatment

(corrected)

4 143199.95 35799.99 118.93 3.36

Total 18 146922.26

Note while calculating F values, we have used

corrected error MS.

Thus, one can find that the treatment effect

differs significantly among themselves. So we

are to calculate the CD values for comparing

the treatment means.

The treatment means for treatments having no

missing value are compared by usual CD values

given as

CD0:05 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r

r
� t0:025,error df

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 301:03

4

r
� 2:20 ¼ 38:10

The treatment means having one missing value in

one of the treatments are compared using the

formula for standard error of difference as

Thus to compare the treatment having themissing

value (T1)with the other treatment having nomissing

value is SEd � t0.025,11 ¼ 13.01 � 2.20 ¼ 28.64:

Treatment Average weight gained

T4 968.00

T1* 861.33

T3 839.25

T5 756.25

T2 726.75

From the table of means, it is clear that treat-

ment 4 is the highest body weight gainer

followed by T1 and T3, which are statistically

at par. Again in treatment T2, we have recorded

the lowest gain in body weight and which is

statistically at par withT5. Thus, we have three

groups of responses (i) treatment 4 the best one;

(ii) treatment 1 and treatment 3, the medium

group; and (iii) treatment 5 and treatment 2 the

lowest group with respect to increase in body

weight.

10.10.3 Missing Plot Technique in LSD

Let a missing observation in t � t Latin square

be denoted by yijk, and let T
0, R0, C0, and G0 be the

total of available observations (excluding the

missing value) of ith treatment, jth row, and kth
column and of all available observations,

respectively.

Let y* be the value of the missing observation;

then

y* ¼ t T0þR0þC0ð Þ�2G0

t�1ð Þ t�2ð Þ , the estimate of the miss-

ing value

Once the estimated value for the missing

observation is worked out, the usual analysis of

variance is taken up with the estimated value of

the missing observation. The treatment sum of

square is to be corrected by subtracting the

upward biased

B ¼ t� 1ð ÞT0 þ R0 þ C0 � G0½ �2
t� 1ð Þ t� 2ð Þ½ �2

The degrees of freedom for both total and error

sum of square are reduced by 1 in each case. The

treatment means are compared with the mean

having the missing value using the formula for

standard error of difference as

SEd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr
t

2þ t

t� 1ð Þ t� 2ð Þ
� �s

Example 10.8 (Missing Plot in LSD)

The aim of this experiment was to test the effect

of four different supplements (A, B, C, and D) on

hay intake in Jersey cow. The experiment was

conducted using Latin square with four animals

in four periods of 20 days. The cows were housed

individually. Each period consists of 10 days of

adaptations and 10 days of measuring. The data

in the following table are the 10 days means of
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milking capacity per day. Estimate the missing

value and analyze the data to find out the best hay

supplement:

Periods

Cows

1 2 3 4

1 17 (B) 29 (D) 27 (C) 38 (A)

2 24 (C) 37 (A) 31 (D) 19 (B)

3 27 (D) 19 (B) 36 (A) 26 (C)

4 35 (A) X (C) 21 (B) 30 (D)

Solution

The model for LSD is yijk ¼ μþ αi þ βjþ γk þ eijk
where i ¼ 1, 2, . . .. . ., 4; j ¼ 1, 2, 3, 4; and k ¼ 1,

2, 3, 4

yijk ¼ effect due to the ith supplements in jth row
and kth column

μ ¼ general effect

αi ¼ additional effect due to ith supplements,X
i

αi ¼ 0

βj ¼ additional effect due to jth row
X
j

βj ¼ 0

γk ¼ additional effect due to kth columnX
k

γk ¼ 0

eijk ¼ error associated with ith supplements in jth

row and kth column and are i.i.d. N(0, σ2).

The hypotheses to be tested are

H0 : α1 ¼ α2 ¼ α3 ¼ α4
β1 ¼ β2 ¼ β3 ¼ β4
γ1 ¼ γ2 ¼ γ3 ¼ γ4

against

H1 : αi 0s are not all equal
βj 0s are not all equal
γk 0s are not all equal

Let the level of significance be α ¼ 0:05.

We shall analyze the data in the following steps:

Step 1: Make the following tables from the given

information:

Let us first estimate the missing value using

the following formula:

ŷ ¼ X ¼ t R0 þ C0 þ T 0ð Þ � 2G0

t� 1ð Þ t� 2ð Þ

¼ 4 86þ 85þ 77ð Þ � 2� 416

4� 1ð Þ 4� 2ð Þ ¼ 26:66

where

X ¼ estimate of the missing value

R0 ¼ total of available supplements of the row

having the missing observation

T0 ¼ total of available supplements of the supple-

ment C having the missing observation

C0 ¼ total of available supplements of the col-

umn having the missing observation

G0 ¼ total of available supplements in the whole

experiment

Now, G ¼ G0 + X ¼ 311 + 26.66 ¼ 442.66.

Total of supplement C ¼ 77 + X ¼ 103.66.

Total of row 4 having supplement C ¼ 86+ X ¼
112.66.

Total of column 2 having supplement C ¼ 85+

X ¼ 111.66.

Now we proceed for the usual analysis of

variance that is with the estimated value of the

missing observation.

Table of information

C1 C2 C3 C4 Total Mean

R1 17 29 27 38 111 27.75

R2 24 37 31 19 111 27.75

R3 27 19 36 26 108 27.00

R4 35 X (C) 21 30 86 28.67

Total 103 85 115 113 416 –

Mean 25.75 28.33 28.75 28.25 – –

Table of supplement totals

S1 S2 S3 S4

35 17 27 29

37 19 24 31

36 19 26 27

38 21 X (C) 30

Total 146 76 77 117

Mean 36.50 19.00 25.67 29.25
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Step 2: Calculate the following quantities:

CF ¼ G2

t� t
¼ 442:662

4� 4
¼ 12247:11

SSTot ¼
X

Obs:2�CF

¼ 172þ 242þ :::::::þ 262þ 302

� 12247:11
¼ 662

SSR ¼ 1

4

X4
j¼1

y2
:j:
� CF ¼ 1

5
1032 þ 111:662
	

þ1152 þ 1132� � 12247:11 ¼ 21

SSC ¼ 1

4

X4
k¼1

y2::k � CF ¼ 1

5
1112 þ 1112
	

þ1082 þ 112:662� � 12247:11 ¼ 2:83

SSSUP ¼ 1

4

X4
i¼1

y2i:: � CF ¼ 1

4
1462 þ 762
	

þ103:662 þ 1172� � 12247:11 ¼ 634:83

SSEr ¼ SS� RSS� CSS� VSS ¼ 662

�21� 2:83� 634:83 ¼ 3:33

where, SSTot, SSR, SSC, SSSUP, and SSEr are the

total, row, column, supplement, and error sum of

squares, respectively.

The upward bias is calculated as follows:

B ¼ G0 � R0 � C0 � t� 1ð ÞT 0ð Þ2
t� 1ð Þ t� 2ð Þ½ �2

¼ 416� 86� 85� 4� 1ð Þ77ð Þ2
4� 1ð Þ 4� 2ð Þ½ �2 ¼ 5:44

Step 3: Construct the ANOVA table as given

below:

ANOVA

SOV d.f. SS MS F

Row 3 21 7.00 3.99

Column 3 2.83 0.94 0.54

Supplements 3 634.83 – –

Error 5 3.33 – –

Total 14 662 – –

Supplements

(corrected)

– 629.38 209.79 119.61

Error (corrected) – 8.77 1.75 –

Step 4: The table value of F0.05;3,5 ¼ 5.04. Thus

we find that the calculated values of F are less

than the corresponding table value, excepting

for supplements. So the tests for row and

columns are nonsignificant. We conclude that

neither the row effects nor the column effects

are significant. But the effects of hay

supplements are significant. So we are to iden-

tify the best hay supplement.

Step 5: To compare the supplement means

involving no missing value, the CD (0.05) is

calculated using the following formula:

CD0:05 supplementð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�MSE

t

r
� t0:025,err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�MSE

4

r
� t0:025,5

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:75

4

r
� 2:57

¼ 2:40

and to compare the hay supplement means with

supplement C, having the missing value, the CD

(0.05) is calculated using the following formula:

CD0:05 varietyð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

t

�
2þ t

t� 1ð Þ t� 2ð Þ
r �� t0:025, err:df :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

t

�
2þ t

t� 1ð Þ t� 2ð Þ
r �� t0:025,5

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:75

4

�
2þ 4

3� 2

r �� 2:57

¼ 2:77

Supplements Mean milk yield

A 36.50

D 29.25

C 25.91

B 19.00

Comparing the supplement differences with

appropriate CD values, it can be inferred that

all the supplements are significantly different

from each other. Supplement A is the best milk

yielder, while supplement B is the lowest yielder.
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Factorial Experiment 11

11.1 Introduction

Basic experimental designs, what we have

discussed in the previous chapter take care of

one type/group of treatments at a time. If an

experimenter wants to test more than one type/

group of treatments, then more than one set of

experiments are required to be set, thereby

requiring a huge amount of resources (land,

money, other inputs) and time. Even with ample

resources and time, desirable information may

not be obtained from simple experiments. Sup-

pose an experimenter wants to know not only the

best treatment from each of the two sets of

treatments but also wants to know the interaction

effects of the two sets of treatments. This infor-

mation cannot be obtained by conducting two

separate sets of simple experiments with two

groups/types of treatments. Let us suppose an

experimenter wants to know (i) the best varieties

among five newly developed varieties of a crop,

(ii) the best dose of nitrogenous fertilizer for the

best yield of the same crop and (iii) also wants to

know which variety among the five varieties

under which dose of nitrogen provides the best

yield (i.e., variety and dose interaction effect).

The first two objectives (i.e., the best variety and

best dose of nitrogen) can be accomplished by

framing two separate simple experiments (one

with five varieties and the other one with differ-

ent doses of nitrogen with a single variety), but

the third objective, i.e., interaction of varieties

with different doses of nitrogen, cannot be

obtained from these two experiments. For this

purpose we are to think for an experiment

which can accommodate both the groups of

treatments together. Thus, in agriculture and

other experiments, the response of different

doses/levels of one group of treatments (factor)

is supposed to vary over the different doses or

levels of other set(s) of treatments (factor(s)). In

our daily life, we have the experience that a

particular poultry bird is responding differen-

tially under different diets and diet schedule.

That means diet and diet schedule have got dif-

ferent interaction effects. Factorial experiments

are such a mechanism in which more than one

group (factor) of treatments can be

accommodated in one experiment, and from the

experiment, not only the best treatment in each

group of treatments could be identified but also

the interaction effects among the treatments in

different groups could also be estimated. It may
be noted in this context that the factorial concept

is nothing but a technique of combining two or

more groups of treatments in one experiment so
that group-wise treatments and the combination of

intergroup treatment effects could be estimated
and compared. But the experimental design to be

followed remains one of the basic designs, i.e.,

completely randomized design, randomized block
design, and Latin square design. Thus, a factorial

experiment is known as factorial CRD/factorial

RBD/factorial LSD depending upon the basic
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design adopted during experimentation with fac-
torial combinations of treatments. Before

discussing the different factorial experiments in

details, let us define the related terminologies

associated with the factorial experiments.

11.1.1 Factor and Its Levels

In its simplest form, a factor in factorial

experiments, is a concept used to denote a

group of treatments. For example, different

breeds of cattle, different diets, different

varieties, different doses of nitrogen, different

methods of irrigation, etc. may form different

factors in factorial experiments. In factorial

experiment, conducted with different breeds of

cattle and different types of feed, two factors

(viz. breed and feed) are constituted in the facto-

rial experiment. If five varieties of wheat are

tested with four doses of nitrogen, then the

varieties and the doses of nitrogen are the two

factors considered in the experiment. Different

breeds of cattle and different types of feed are

known as the levels of the factors breed and diet,

respectively. Similarly five varieties of wheat and

four doses of nitrogen constitute the levels of the

factors variety and dose of nitrogen, respectively.

Different components of a factor are known as

the levels of the factor. Both the factors and their

levels may be quantitative (doses of nitrogen) as

well as qualitative (different breeds, different

diets, different varieties) in nature.

11.1.2 Type of Factorial Experiment

Factorial experiments are of different types. (a) -

Depending upon the number of factors included

in the experiment, a factorial experiment is a

two-factor factorial experiment (when two sets

of treatments, i.e., two factors), three-factor fac-

torial experiment (when three sets of treatments,

i.e., three factors). . .. . .., or p-factor factorial

experiment (when “p” sets of treatments, i.e.,

p number of factors). (b) Whether all the factors

included in the experiment are having the same

levels or different levels, a factorial experiment

is either symmetrical (the same levels for all the

factor) or asymmetrical (different levels for dif-

ferent factors), respectively. A factorial experi-

ment is symmetrical, if the numbers of levels for

all the factors are the same, e.g., a two-factor

factorial experiment with five breeds and five

different diets is a symmetrical factorial experi-

ment. On the other hand, a two-factor factorial

experiment with five varieties and other than five

doses of nitrogen (doses of nitrogen not equal to

5) is an asymmetrical factorial experiment.

Generally a symmetrical factorial experiment
with “n” factors each at “m” levels is denoted as

mn factorial experiment. Thus, a 23 factorial

experiment is a symmetrical factorial experiment

with three factors each at two levels. An asym-

metrical two-factorial experiment with p levels

for the first factor and q levels for the second
factor is denoted as p� q factorial experiment.

Thus a 2 � 3 asymmetrical factorial experiment

means there are two factors in the experiment

with the first factor having two levels and the

second factor having three levels. So asymmetri-

cal factorial experiments cannot be presented in

the form of mn; rather these can be presented in

the form of m� n� p� q� :::::::, where the

levels of the first, second, third, fourth, . . . factors
are m, n, p, q, . . ., respectively.

11.1.3 Effects and Notations
in Factorial Experiment

Main effects and interaction effects are the two

types of effects found in factorial experiments.

The main effect of a factor is the effect of the

factor concerned irrespective of the levels of
other factors, while the interaction effects are

the effects of one factor with the change in levels

of the other factor and vice versa. When the

factors are independent of one another, one

would expect the same effect of one factor at

various levels of the other factors resulting in

the zero interaction effect. Thus interaction

effects come into picture when the factors are

not independent and the effects of different

factors will not be the same in magnitude and

order over the different levels of other factors.

366 11 Factorial Experiment



Depending upon the number of factors involved
in the factorial experiment, the interaction effects

would be the first-order interaction, second-
order interaction, third-order interaction, and

so on when the number of factors in the experi-

ment is 2, 3, 4, and so on.
When two factors are involved in a factorial

experiment, then we are concerned about the

interaction effects of two factors, known as the

first-order interaction. But when more than two

factors are involved, then the interaction will be

pairwise as well as overall. That means for a three

factor factorial experiment we shall have

two-factor interaction, i.e., first-order interaction,

as well as the three-factor interaction, i.e.,

second-order interaction. Therefore, as we go on

increasing the number of factors in any factorial

experiment, then the type of interaction increases.

In factorial experiments general levels of

qualitative factors are denoted by the numbers

1, 2, 3, etc. suffixed to the symbol of a particular

factor, e.g., if four varieties are there in a facto-

rial experiment, then these are denoted as V1, V2,

V3, and V4. On the other hand, general levels of

quantitative factors are denoted by the numbers

0, 1, 2, 3, etc. suffixed to the symbol of a particu-

lar factor, e.g., if nitrogen be a factor having four

levels, then these are denoted by n0, n1, n2, and n3
where n0 is the lowest level of nitrogen generally

denoted for no nitrogen or zero nitrogen level

and n3 is the highest level of nitrogen.

11.1.4 Merits of Factorial Experiment

(i) Factorial experiments can accommodate

more than one set of treatments (factors) in

one experiment.

(ii) Interaction effect could be worked out from

factorial experiments.

(iii) Factorial experiments are resource and time

saving.

(iv) The required minimum degrees of freedom

for error components in the analysis of var-

iance can easily be achieved in factorial

experiments compared to single factorial

experiments.

11.1.5 Demerits of Factorial
Experiment

(i) With the increase in number of factors or

the levels of the factors or both the number

and levels of factors are more, the number

of treatment combinations will be more,

resulting in the requirement of bigger

experimental area and bigger block size.

As the block size increases, it is very diffi-

cult under field condition to maintain homo-

geneity among the plots within the block.

Thus, there is a possibility of increasing the

experimental error vis-à-vis decrease in the

precision of experiment.

(ii) The layout of the factorial experiment is com-

paratively difficult than simple experiments.

(iii) Statistical procedure and calculation of fac-

torial experiments are more complicated

than the single factor experiments.

(iv) With the increase in the number of factors

or the levels of the factor or both, the

number of effects, including the interaction

effects, also increases. Sometimes it

becomes very difficult to explain the infor-

mation from interactions, particularly the

higher-order interaction effects.

(v) The risk is high. Failure in one experiment

may result in greater loss of information com-

pared to single-factor simple experiments.

In spite of all these demerits, factorial

experiments, if planned properly and executed

meticulously, are more informative and useful

than single factor experiments.

11.2 Two-Factor Factorial
Experiments

11.2.1 22 Factorial Experiment

The most initial factorial experiment is

comprised of two factors each at two levels,

i.e., 22 factorial experiment. In a 22 factorial

experiment with two factors A and B and each

having two levels, viz., A1, A2 and B1, B2,
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respectively, the total number of treatment

combinations will be 4, i.e., A1B1, A1B2, A2B1,

and A2B2.

B1 B2

A1 A1B1 A1B2

A2 A2B1 A2B2

Each of the treatment combinations would be

repeated k number of times. Again these four

treatment combinations can be put under experi-

mentation in basic CRD/RBD/LSD design

depending upon the situation and requirement

of the experimentation. As usual when blocking

is not required or possible in that case, factorial

CRD is to be conducted. If filed experiment is

conducted and blocking is essential, then either

factorial RBD or factorial LSD with four treat-

ment combinations is to be conducted. The lay-

out will follow the identical procedure as

discussed for the layout of basic CRD/RBD/

LSD in Chap. 10 with these four treatment

combinations. However, during analysis

partitioning of the total variance is to be taken

up as per the statistical model concerned.

The data set for 22 factorial experiment with n

observations per treatment would be as follows:

A1 A2

B1 B2 B1 B2

y111 y121 y211 y221
y112 y122 y212 y222
y113 y123 y213 y223
: : : :

: : : :

y11r y12r y21r y21r

The statistical model and analyses of the vari-

ance for the above 22 factorial experiment in

CRD and RBD are discussed separately in the

following sections.

11.2.1.1 Model and Analysis of 22

Factorial CRD Experiment
Let us suppose we have a 22 factorial CRD

experiment conducted for two factors A and B

each having two levels and repeated r number of

times. Then the appropriate statistical model

would be

yijk ¼ μþ αi þ βj þ αβð Þij þ eijk where i ¼ 1, 2;

j ¼ 1, 2; and k ¼ 1, 2, . . ..., r

yijk ¼ response for observation due to kth repeti-

tion of ith level of the first fact or A and jth
level of the second factor B

μ ¼ general effect

αi ¼ additional effect due to ith level of the first

factor A,
X

αi ¼ 0

βj ¼ additional effect due to jth level of the

second factor B,
X

βj ¼ 0

(αβ)ij ¼ interaction effect of the ith level of the

first factor A and jth level of the second factor,

B with
X
i

αβð Þij ¼
X
j

αβð Þij ¼ 0

eijk ¼ error component associated with ith level

of the first factor A, jth level of the second

factor B in kth repetition, and eijk ~ i.i.d.

N(0, σ2)

Hypotheses to be tested are

H01 : α1 ¼ α2 ¼ 0 against the alternative hypothesis H11 : α1 6¼ α2
H02 : β1 ¼ β2 ¼ 0 against the alternative hypothesis H12 : β1 6¼ β2
H03 : α1β1 ¼ α1β2 ¼ α2β1 ¼ α2β2 ¼ 0 against the alternative hypothesis

H13 : all interaction effects are not equal

Let the level of significance be α.

Analysis All together there would be 4r number

of observations. The total sum of squares is

partitioned into the sum of squares due to factor

A and due to factor B and sum of squares due to

interaction of factors A and B and due to

residuals, i.e.,
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SSTot ¼ SSA þ SSB þ SSAB þ SSEr, and the

corresponding degrees of freedom would be

4r � 1 ¼ 2� 1 2� 1 1 � 1 4r � 1� 1� 1ð Þ
For practical purposes, different sums of squares

are calculated by using the following formulae:

Step 1 : Grand total ¼ G ¼
X2
i

X2
j

Xr

k

yijk

Step 2 : Correction factor ¼ CF ¼ G2

4r

Step 3 : Treatment sum of squares ¼ SSTr

¼
X2
i

X2
j

Xr

k

ðyijk�y...Þ2

¼
X2
i

X2
j

Xr

k

ðyijkÞ2�CF

Step 4 : Sum of squares due to A¼ SSA

¼ 2�2
X
i

yi::� y...ð Þ2

¼ 2�2
X
i

y2
i::
�2y...

2

" #

¼ 2�2
X
i

X
j

X
k

yijk

2�2

0BB@
1CCA

2

�CF

¼ 1

2� r

X
i

y2
i::
�CF

Step 5 : Sum of squares due to B ¼ SSB

¼ 2� r
X
j

y:j:� y...

� �2

¼ 1

2� r

X
i

y2:j:�CF

Step 6 : Sum of squares due to AB

¼ r
X
i

X
j

ðyij:� yi::� y:j:þ y...Þ2

¼ r
X
i

X
j

ðyij:�y...� yi::� y...ð Þ�ðy:j:�y...Þ�2

¼ r

�X
i

X
j

ðyij:� y...Þ2

�2
X
i

yi::�y...ð Þ2�2
X
j

ðy:j:�y...Þ2

¼ r
X
i

X
j

ðyij:�y...Þ2�SSA�SSB

¼ r
Xm
i

Xn
j

y2ij:�2�2y2...

" #
�SSA�SSB

¼
X

~i
mXn

j

y2ij:
r
�CF�SSA�SSB

¼ SSTr�SSA�SSB

∴ ErSS ¼ SSTot � SSTr
¼ SSTot � SSA þ SSB þ SSABð Þ
¼ SSTot � SSA � SSB � SSAB

The ANOVA table is given by

Sources

of

variation d.f. SS MS F ratio

A 1 SSA MSA ¼ SSA
1

FA ¼ MSA
MSEr

B 1 SSB MSB ¼ SSB
1

FB ¼ MSB
MSEr

AB 1 SSAB MSAB ¼ SSAB
1

FAB ¼ MSAB
MSEr

Error 3(r�1) SSEr MSEr¼ SSEr
3 r�1ð Þ

Total 4r�1 SSTot

There are different methods for the calcula-

tion of these sums of squares like Yates method

and tabular method. But for its relative simplicity

and wider use, we should adopt the latter one,

i.e., the tabular method.

The hypothesis of the absence of a main fac-

torial effect due to either A or B is rejected at the

α level if the corresponding Cal F > Fα;1,3(r�1);

otherwise, it cannot be rejected. As there are only
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two levels for each of the factors A and B, in the

event of rejection of null hypotheses

corresponding to main effects of these two

factors, the best treatment would be the level of

each factor having high or low value, depending

upon the parameter under study.

If the Cal F > Fα;1,3(r�1), corresponding to

interaction effect, then we need to find out the

LSD or CD value at specified level of significance

and error degrees of freedom using the following

formula: LSD=CD αð Þ ¼
ffiffiffiffiffiffiffiffiffi
2MSEr

r

q
tα=2,error d:f:

Example 11.1 (22 CRD)

To know the effect of two dietary protein

levels (15 and 20) and two energy contents

(3000 and 3200 ME kcal/kg) on broiler

chicken, an experiment with 5 replications

was conducted. From the following

information, find out (i) which of the two die-

tary protein levels, (ii) which of the two energy

contents, and (iii) the combination of two die-

tary protein levels and two energy contents

having maximum food conversion ratio (FCR):

Solution As the experiment has been conducted

under controlled condition, so we can assume

that all the experimental units were homoge-

neous in nature except for the treatment condi-

tion; hence CRD should be the appropriate basic

design for the analysis. Thus from the given

conditions, it is clear that the information can

be analyzed in a two-factor factorial CRD,

where both the factors have the same levels,

i.e., 2.

So the appropriate statistical model for the

analysis will be

yijk ¼ μþ αi þ βj þ αβð Þij þ eijk where i ¼ 1, 2;

j ¼ 1, 2; and k ¼ 1, 2, . . ..., 5

yijk ¼ response in kth observation due to ith level
of the first factor (i.e., dietary protein) and jth

level of the second factor (i.e., energy content)

μ ¼ general effect

αi ¼ additional effect due to ith level of the first

factor (i.e., dietary protein),
P

αi ¼ 0

βj ¼ additional effect due to jth level of the

second factor (i.e., energy content),
P

βj ¼ 0

(αβ)ij ¼ interaction effect of the ith level of

dietary protein and jth level energy content,P
i

αβð Þij ¼
P
j

αβð Þij ¼ 0

eijk ¼ error component associated with ith

level of dietary protein, jth level of energy

content, and kth replicates and eijk ~

i.i.d. N(0, σ2)

Hypothesis to be tested:

H01 : α1 ¼ α2 ¼ 0

H02 : β1 ¼ β2 ¼ 0

H03: all interaction effects are equal and equal to

zero against

H11 : all α0s are not equal to zero
H12 : All β

0s are not equal to zero
H13 : all interaction effects are not equal to zero

Let the level of significance be α ¼ 0.05.

FCR

R1 R2 R3 R4 R5

15 %

CP (b0)

20%

CP

(b1)

15 %

CP (b0)

20 %

CP (b1)

15 %

CP (b0)

20 %

CP (b1)

15 %

CP (b0)

20 %

CP (b1)

15 %

CP (b0)

20 %

CP

(b1)

3000 ME

Kcal/Kg(a0)

4.04 3.32 4.16 3.414 4.21 3.32 4.07 3.34 4.18 3.33

3200 ME

Kcal/Kg (a1)

4.01 3.26 4.19 3.43 4.07 3.37 3.97 3.27 4.04 3.27
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From the given information, first let us form

the following table:

Thus we have grand total ¼ G ¼ 74.264.

Correction factor ¼ CF ¼ GT2

n
¼ 74:2642

20
¼

275:757

SSTot ¼ 4:042þ 4:162þ : : : : : : þ 3:342

þ 3:272�CF¼ 2:995

SSTr ¼ 20:662þ 20:282þ 16:722þ 16:602

5
�CF

¼ 2:916

SSEr ¼ SSTot � SSTr ¼ 2:995� 2:916 ¼ 0:079

Now the calculations for different sums of

squares (i.e., SSA, SSB, and SSAB) can be made

with the help of the following table for totals:

Energy

contents

Dietary protein

Total Average

15 %

CP (b0)
20 %

CP (b1)

3000 ME

Kcal/Kg (a0)

20.660 16.724 37.384 3.738

3200 ME

Kcal/Kg (a1)

20.280 16.600 36.880 3.688

Total 40.940 33.324

Average 4.094 3.332

From the above table, let us calculate the

following quantities:

SSEC ¼ 1

2� 10

X2
i¼1

y2i:: � CF ¼ 37:3842 þ 36:8802

2� 10
� 275:757 ¼ 0:0127

SSDP ¼ 1

2� 10

X2
i¼1

y2:j: � CF ¼ 40:9402 þ 33:3242

2� 10
� 275:757 ¼ 2:900

SSEC�DP ¼ 1

5

X2
i¼1

X2
j¼1

y2ij: � CF� SS ECð Þ � SS DPð Þ ¼ 2:916� 0:0127� 2:900 ¼ 0:003

Replication a0b0 ¼ (1) a1b0 ¼ (a) a0b1 ¼ b a1b1 ¼ ab

R1 4.04 4.01 3.32 3.26

R2 4.16 4.19 3.414 3.43

R3 4.21 4.07 3.32 3.37

R4 4.07 3.97 3.34 3.27

R5 4.18 4.04 3.33 3.27

Total 20.66 20.28 16.724 16.6
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Now we make the following analysis of variance

table with the help of the above quantities:

It is clear from the above table that only die-

tary protein level is significant at 5 % level of

significance, while energy content levels and

combination are statistically at par with each

other.

As the mean for dietary protein at 15 % CP is

more than 20 % CP, 15 % CP is the best level

compared to 20 % CP.

Example 11.1 (22 CRD) Using MS Excel

Step 1: Enter the data in the Excel as below.

ANOVA

SOV d.f. SS MS Cal F Tab F

Treatment 4�1 ¼ 3 2.916 0.972 197.218 5.29

Energy content (A) 2�1 ¼ 1 0.013 0.004 0.859 8.53

Dietary protein levels (B) 2�1 ¼ 1 2.900 0.967 196.138 8.53

AB 1 � 1 ¼ 1 0.003 0.001 0.222 8.53

Error 19�3 ¼ 16 0.079 0.005

Total 20�1 ¼ 19 2.995
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Step 2: Go to Data ! Click on the Data

Analysis toolbar.

Step 3: Search for the option “Anova: Two

Factor With Replication” ! Click on OK.
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Step 4: Select the input-output ranges, label

etc., and select group by rows as shown below in

the figure.

Step 5: Click on OK; then results will appear

as shown below.
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Example 11.1 (22 CRD) Using SPSS

Step 1: Enter the data in SPSS data view as

below; change the variable names.

Step 2: Go to Analysis ! Generalized linear

model ! Click on Univariate as below.
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Step 3: Pass the dependent variable (in our

case FCR) to Dependent variable option and

fixed variables into the Fixed variable (in our

case DP and EC) as below.

Step 4: Click on Model ! Change the option

to custom ! Pass the DP, EC, and DP*EC

(by selecting DP and EC with shift) into the

Model as below.
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Step 5: Click on Continue and then OK to get

the output as below.

11.2.1.2 Model and Analysis of 22

Factorial RBD Experiment
Let us suppose we have a 22 factorial RBD

experiment conducted for two factors A and B

each having two levels and replicated r number

of times. Then the appropriate statistical model

would be

yijk ¼ μþ αi þ βj þ αβð Þij þ γk þ eijk

where i ¼ 1, 2; j ¼ 1, 2; and k ¼ 1, 2, . . ..., r

yijk ¼ response for observation due to kth repli-

cation of ith level of the first factor A and jth

level of the second factor B

μ ¼ general effect

αi ¼ additional effect due to ith level of the first

factor A,
P

αi ¼ 0

βj ¼ additional effect due to jth level of the

second factor B,
P

βj ¼ 0

γk ¼ additional effect due to kth replication,P
γk ¼ 0

(αβ)ij ¼ interaction effect of the ith level of the

first factor A and jth level of the second factor
B with

P
i

αβð Þij ¼
P
j

αβð Þij ¼ 0

eijk ¼ error component associated with ith level

of the first factor A, jth level of the second

factor B in kth replication, and eijk ~ i.i.d.

N(0, σ2)

Hypotheses to be tested are

H01 : α1 ¼ α2 ¼ 0 against the alternative

hypothesis H11 : α1 6¼ α2
H02 : β1 ¼ β2 ¼ 0 against the alternative

hypothesis H12 : β1 6¼ β2
H02 : γ1 ¼ γ2 ¼ ::::::: ¼ γk ¼ 0 against the

alternative hypothesis

H12 : γ1 6¼ γ2¼: ::::::: 6¼ γk
H03 : α1β1 ¼ α1β2 ¼ α2β1 ¼ α2β2 ¼ 0 against

the alternative hypothesis

H13 : all interaction effects are not equal

Let the level of significance be α.
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Analysis All together there would be 4r number

observations. The total sum of squares is

partitioned into the sum of squares due to factor

A and due to factor B and sum of squares due to

interaction of factors A and B and due to

residuals, i.e.,

SSTot ¼ SSA þ SSB þ SSAB þ SSR þ SSEr, and

the corresponding degrees of freedom would be

4r � 1 ¼ 2� 1 2� 1 1 � 1 r � 1

4r � 1� 1� 1� r þ 1ð Þ

For practical purposes, different sums of squares

are calculated by using the following formulae:

Step 1 : Grand total ¼ G ¼
X2
i

X2
j

Xr

k

yijk

Step 2 : Correction factor ¼ CF ¼ G2

4r

Step 3 : Treatment sum of squares ¼ SSTr

¼
X2
i

X2
j

Xr

k

yijk � y...

� �2

¼
X2
i

X2
j

Xr

k

yijk

� �2

�CF

Step 4 : Sum of squares due to A ¼ SSA

¼ 2� 2
X
i

yi:: � y...ð Þ2

¼ 2� 2
X
i

y2
i::
� 2y...

2

" #

¼ 2� 2
X
i

X
j

X
k

yijk

2� 2

0@ 1A2

�CF

¼ 1

2� r

X
i

y2
i::
�CF

Step 5 : Sum of squares due to B¼ SSB

¼ 2� r
X
j

y:j: � y...

� �2

¼ 1

2� r

X
i

y2:j: �CF

Step 6 : Sum of squares due to AB

¼ r
X
i

X
j

yij:� yi::� y:j:þ y...

� �2

¼ r
X
i

X
j

yij:� y...� yi::� y...ð Þ� y:j:� y...

� �� i2
¼ r

hX
i

X
j

yij:� y...

� �2

� 2
X
i

yi::� y...ð Þ2� 2
X
j

y:j:� y...

� �2

¼ r
X
i

X
j

yij:� y...

� �2

� SSA� SSB

¼ r
Xm
i

Xn
j

y2ij:� 2� 2y2...

" #
� SSA� SSB

¼
Xm
i

Xn
j

y2ij:

r
�CF� SSA� SSB

¼ SSTr � SSA� SSB

SSR ¼ 1

2� 2

X
k

y2::k � CF

∴ ErSS ¼ SSTot � SSTr
¼ SSTot � SSA þ SSB þ SSABð Þ
¼ SSTot � SSA � SSB � SSAB

The ANOVA table is given by

Sources of

variation d.f. SS MS F ratio

Replication r�1 SSR MSR¼ SSR
r�1

FR ¼ MSR
MSEr

A 1 SSA MSA ¼
SSA
1

FA ¼ MSA
MSEr

B 1 SSB MSB ¼ SSB
1

FB ¼ MSB
MSEr

AB 1 SSAB MSAB ¼ SSAB
1

FAB ¼ MSAB
MSEr

Error 3(r�1) SSEr MSEr ¼ SSEr
3 r�1ð Þ

Total 4r�1 SSTot

If the calculated value of F be greater than the

table value of F at α level of significance and at

(r�1),3(r�1) d.f., then the null hypothesis of

equality of replications is rejected, and we need

to find out the replication which differs signifi-

cantly from others using the following:

LSD=CD αð Þ ¼
ffiffiffiffiffiffiffiffiffi
2MSEr
2�2

q
tα=2, error d:f:

The hypothesis of the absence of a main fac-

torial effect due to either A or B is rejected at the

α level if the corresponding Cal F > Fα;1,3(r�1);

otherwise, it cannot be rejected. As there are
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only two levels for each of the factors A and B, in

the event of rejection of null hypotheses

corresponding to main effects of these two

factors, the best treatment would be the level of

each factor having high or low value, depending

upon the parameter under study.

If the Cal F > Fα;1,3(r�1), corresponding to

interaction effect, then we need to find out the

LSD or CD value at specified level of significance

and error degrees of freedom using the following

formula: LSD=CD αð Þ ¼
ffiffiffiffiffiffiffiffiffi
2MSEr

r

q
tα=2,error d:f:

Example 11.2 (22 RBD)

To know the effect of different levels of sulfur

and nitrogen on garlic yield, an experiment with

two levels of sulfur (20 and 40 kg ha�1) and two

levels of nitrogen (50 and 100 kg ha�1) was laid

out in RBD design with five replications. The

following table gives the plot yield in kg per

3 sq. m of garlic. Analyze the data to find out

(i) the best dose of sulfur, (ii) the best dose of

nitrogen, and (iii) the combination of sulfur and

nitrogen dose for the best yield of garlic:

Solution From the given information, it is clear

that it is a case of a two-factorial RBD, where

both the factors have the same levels, i.e., 2. So

the appropriate statistical model for the analysis

will be

yijk ¼ μþ αi þ βj þ αβð Þij þ γk þ eijk

where i ¼ 1, 2; j ¼ 1, 2; and k ¼ 1, 2, . . ..., 5

yijk ¼ response in kth replicate due to ith level

of the first factor sulfurð Þ and jth level of the

second factor nitrogenð Þ
μ ¼ general effect

αi ¼ additional effect due to ith level of the

first factor sulfurð Þ, P
αi ¼ 0

βj ¼ additional effect due to jth level of the

second factor nitrogenð Þ, P
βj ¼ 0

αβð Þij ¼ interaction effect of the ith level of the

first factor sulfurð Þ and jth level

of the second factor nitrogenð Þ,X
i

αβð Þij ¼
X
j

αβð Þij ¼ 0

γk ¼ additional effect due to kth replicate,P
γk ¼ 0

eijk ¼ error component associated with ith level

of the first factor sulfurð Þ, jth level of the
second factor nitrogenð Þ, and kth

replicates andeijk e i:i:d: N 0; σ2ð Þ
Hypothesis to be tested:

H0 : α1 ¼ α2 ¼ 0

β1 ¼ β2 ¼ 0

γ1 ¼ γ2 ¼ γ3 ¼ γ4 ¼ γ5 ¼ 0

All αβð Þij ¼ 0

against

H1 : All α0s are not equal
All β0s are not equal
All γ0s are not equal
All αβð Þijare not equal

Let the level of significance be 0.01.

From the given information, first let us form

the following table and from the table get the

following quantities.

Sulfur dose

Yield (kg/3 m2)

R1 R2 R3 R4 R5

N1 N2 N1 N2 N1 N2 N1 N2 N1 N2

S1 (20 kg/ha) 1.81 1.97 1.78 1.95 1.83 1.99 1.87 1.96 1.77 1.93

S2 (40 kg/ha) 2.17 2.42 2.19 2.37 2.22 2.4 2.07 2.47 2.15 2.41

N1 (50 kg/ha) and N2 (100 kg/ha) and S1 (20 kg/ha) and S2 (40 kg/ha)
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Table of arranged field data:

Grand total ¼
X2
i¼1

X2
j¼1

X5
k¼1

yijk ¼ 41:730

Correction factor ¼ GT2

2� 2� 5
¼ 41:7302

20

¼ 87:069

SSTOT ¼
X2
i¼1

X2
j¼1

X5
k¼1

y2ijk � CF

¼ 88:116� 87:069 ¼ 1:046

SSR¼1

ij

X5
k¼1

y2
00k
�CF

¼8:372þ8:292þ8:442þ8:372þ8:262

2�2
�87:069

¼0:005

From the data table, let us calculate the table of

totals:

N1 N2 Total Average

S1 9.06 9.8 18.86 1.886

S2 10.8 12.07 22.87 2.286

Total 19.86 21.87 41.73

Average 1.986 2.187 2.085

From the above table of totals, we have

SS Tab=Treat:ð Þ ¼ 1

r

X2
i¼1

X2
j¼1

y2ijo � CF ¼ 9:062 þ 9:802 þ 10:802 þ 12:072

5
� 87:069 ¼ 1:02

SS sulfurð Þ ¼ 1

2� 5

X2
i¼1

y2i:: � CF ¼ 18:862 þ 22:872

10
� 87:069 ¼ 0:804:

SS nitrogenð Þ ¼ 1

2� 5

X2
j¼1

y2:j: � CF ¼ 19:862 þ 21:872

10
� 87:069 ¼ 0:202

SS S � Nð Þ ¼ SS Tab:=Treat:ð Þ � SSR � SS Sulfurð Þ � SS Nitrogenð Þ ¼ 0:014

SSEr ¼ SSTOT � SSTr � SSR ¼ 1:046� 1:02� 0:005 ¼ 0:021

R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

N1 (b0) N1 (b0) N1 (b0) N1 (b0) N1 (b0) N2 (b1) N2 (b1) N2 (b1) N2 (b1) N2 (b1)

S1 (a0) 1.81 1.78 1.83 1.87 1.77 1.97 1.95 1.99 1.96 1.93

S2 (a1) 2.17 2.19 2.22 2.07 2.15 2.42 2.37 2.4 2.47 2.41
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Now the analysis of variance table is made

according with the help of the above quantities:

SOV d.f. SS MS Cal F Tab F

Replication 4 0.005 0.001 0.717 5.412

Sulfur 1 0.804 0.804 449.374 9.330

Nitrogen 1 0.202 0.202 112.905 9.330

Sulfur � nitrogen 1 0.014 0.014 7.850 9.330

Error 12 0.021 0.002

Total 19

It is clear from the above table that all the

effects are significant at 1 % level of significance

except the replication and interaction effects,

which are nonsignificant at 1 % level of signifi-

cance. From the average values, we have that S2

and N2 are the best dose of sulfur and nitrogen,

respectively. As interaction effects are not signif-

icant, so we cannot fix any combination as better

over the other combination of sulfur and

nitrogen.

Example 11.2 (22 RBD) Using SPSS

Step 1: Enter the data in SPSS data view as

below; change the variable names.
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Step 2: Go to Analysis ! Generalized linear

model ! Click on Univariate as below.

Step 3: Pass the dependent variable (in our

case Yield) into the Dependent variable option

and fixed variable into the Fixed variable (in our

case Replication, Sulfur, and Nitrogen) as below.
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Step 4: Click on Model ! Change the

option to custom ! Pass the Sulfur, Nitrogen,

Replication, and Nitrogen*Sulfur (by selecting

Nitrogen and Sulfur with shift) into the Model

as below.

Step 5: Click on Continue and then OK to get

the output as below.
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Step 6: Click on Continue and then OK to get

the output as below.

Example 11.3 (32 Factorial CRD Experiment)

An experiment was conducted to determine the

effect of adding a vitamin (A) in three different

types of feed on average daily weight gain of

swine. Three levels of vitamin A (0, 3, and

6 mg) and three levels of feeds, viz., F1, F2,

and F3, were used. The total sample size was

27 pigs, on which the nine combinations of vita-

min A and feeds were randomly assigned. The

following daily gains were measured:

Feed

Vitamin

A1 A2 A3

F1 0.585 0.567 0.473

0.613 0.557 0.477

0.623 0.553 0.482

F2 0.536 0.545 0.450

0.538 0.548 0.457

0.537 0.550 0.540

F3 0.458 0.589 0.869

0.459 0.597 0.913

0.477 0.597 0.937

Find out the best level of vitamin A, feed, and

combination of vitamin A and feed.

Solution As the experiment has been conducted

under controlled condition, so we can assume

that all the experimental units were homoge-

neous in nature except for the treatment condi-

tion; hence, CRD should be the appropriate basic

design for the analysis.

Thus from the given conditions, it is clear that

the information can be analyzed in a two-factor

factorial CRD, where both the factors have the

same levels, i.e., 3. So the appropriate statistical

model for the analysis will be

yijk ¼ μþ αi þ βj þ αβð Þij þ eijk

where i ¼ 1, 2,3; j ¼ 1, 2,3; and k ¼ 1, 2, 3

yijk ¼ response in kth observation due to ith level

of the first factor (vitamin A) and jth level of

the second factor (feed)

μ ¼ general effect

αi ¼ additional effect due to ith level of the first

factor (vitamin A),
X

αi ¼ 0

βj ¼ additional effect due to jth level of the

second factor (feed),
X

βj ¼ 0
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(αβ)ij ¼ interaction effect of the ith level

of the first factor (vitamin A) and jth
level of the second factor (feed) andX
i

αβð Þij ¼ 0,
X
j

αβð Þij ¼ 0

eijk ¼ error component associated with ith level

of the first factor (vitamin A), jth level of the

second factor (feed), and kth replicates and

eijk ~ N(0, σ2)

Hypothesis to be tested:

H0 : α1 ¼ α2 ¼ α3 ¼ 0

β1 ¼ β2 ¼ β3 ¼ 0

All αβð Þij0s ¼ 0

against

H1: αi0s are not all equal

βj
0s are not all equal

αβð Þij0s are not all equal

Let the level of significance be 0.01.

From the given data, first let us form the

following table and from the table get the follow-

ing quantities:

Feed

Vitamin A

A1 A2 A3 Total Mean

F1 1.821 1.677 1.432 4.930 1.643

F2 1.611 1.643 1.447 4.701 1.567

F3 1.394 1.783 2.719 5.896 1.965

Total 4.826 5.103 5.598 15.527

Mean 1.609 1.701 1.866

Grand total (GT) ¼
X3
i¼1

X3
j¼1

X3
k¼1

yijk ¼ 15:527

Correction factor (CF) ¼ GT2

3� 3� 3
¼

15:5272

27
¼ 8:929

SSTot ¼
X3
i¼1

X3
j¼1

X3
k¼1

y2ijk � CF ¼ 9:369� 8:929

¼ 0:4403

SSTr ¼ 1

3

X3
i¼1

X3
j¼1

y2ij: � CF ¼ 1:8212 þ 1:6112 þ 1:3942 þ :::::::::: þ 1:4472 þ 2:7192

3
� 8:929

¼ 0:431

ErSS ¼ TSS� TrSS ¼ 0:440� 0:431 ¼ 0:009

SSA ¼ 1

3� 3

X3
i¼1

y2i:: � CF

¼ 4:8262 þ 5:1032 þ 5:598

9
� 8:929

¼ 0:033:

SSF ¼ 1

3� 3

X3
j¼1

y2:j: � CF

¼ 4:9302 þ 4:7012 þ 5:8962

9
� 8:929

¼ 0:089

SS A � Fð Þ ¼ 1

3

X3
i¼1

X3
j¼1

y2ij: � CF� SSA � SSB

¼ 0:431� 0:033� 0:089 ¼ 0:308

The main effects will be based on 2 d.f. which

can further be split in to two components, viz.,

linear contrast and quadratic contrast.

Now we make the following analysis of vari-

ance table with the help of the above quantities:

ANOVA

SOV d.f. SS MS Cal F

Tab F

at 1 %

Vitamin A 2 0.0340 0.0170 35.5795 6.0129

Feed 2 0.0894 0.0447 93.5730 6.0129

Vit. � feed 4 0.3084 0.0771 161.4066 4.5790

Error 18 0.0086 0.0005

Total 26 0.4404
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It is clear from the above table that

all the effects are significant at 1 % level of

significance.

Now the question is which level of vitamin A,

feed, and combination of vitamin A and feed has

maximumweight gain. To answer these we are to

calculate the critical difference values for vita-

min A and feed and interaction effects separately

using the following formulae:

CD0:01 vitamin Að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r:f

s
t0:005,err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:0005

3� 3

r
� 2:878

¼ 0:029

CD0:01 feedð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r:a

r
t0:005, err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:0005

3� 3

r
� 2:878 ¼ 0:029

CD0:01 vitamin A � feedð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r

r
t0:005, err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:0005

3

r
� 2:878 ¼ 0:051

Vitamin A Gain in weight Feed Gain in weight

A3 0.622 B3 0.655

A2 0.567 B1 0.547

A1 0.536 B2 0.522

A � F Gain in weight

A3F3 0.906

A1F1 0.607

A2F3 0.594

A2F1 0.559

A2F2 0.548

A1F2 0.537

A3F2 0.482

A3F1 0.477

A1F3 0.465

It is clear from the above tables that all the

levels of vitamin A are significantly different

from each other and vitamin A at level 3 has

recorded significantly the highest gain in weight

compared to other levels of vitamin A. On the

other hand, feed 3 is the best for getting maxi-

mum weight gain in swine. So far as the interac-

tion effect of vitamin A and feed is concerned,

A3F3 followed by A1F1 is the best combination.

Example 11.4 (32 Factorial RBD Experiment)

An experiment was conducted to assess the best

nitrogen and potash fertilizer in chickpea to get

maximum yield in a randomized block design.

The following data gives the yield in quintal per

hectare in response to different doses of N and

K. Analyze the data to estimate the best dose of

both nitrogen and potash along with the best

combination of N and K dose to provide maxi-

mum yield:

K1

N1 N2 N3

R1 R2 R3 R1 R2 R3 R1 R2 R3

12.43 12.45 12.54 12.84 12.88 12.92 12.67 12.73 12.77

K2

N1 N2 N3

R1 R2 R3 R1 R2 R3 R1 R2 R3

14.71 14.86 14.84 14.87 14.96 14.91 14.98 15.06 15.05

K3

N1 N2 N3

R1 R2 R3 R1 R2 R3 R1 R2 R3

16.93 16.99 16.87 17.24 17.33 17.45 17.34 17.37 17.45
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Solution From the given information, it is clear

that the information is to be analyzed in a

two-factor factorial RBD, where both the factors

have the same levels, i.e., 3. So the appropriate

statistical model for the analysis will be

yijk ¼ μþ αi þ βj þ γk þ αβð Þij þ eijk

where i ¼ 1, 2, 3; j ¼ 1, 2,3; and k ¼ 1, 2, 3

yijk¼ response in kth replicate due to the ith level

of the first factor (doses of nitrogen) and jth

level of the second factor (doses of potash)

μ ¼ general effect

αi ¼ additional effect due to the ith level of the

first factor (doses of nitrogen),
X

αi ¼ 0

βj ¼ additional effect due to the jth level of the

second factor (doses of potash),
X

βj ¼ 0

γk ¼ additional effect due to kth replicate,X
γk ¼ 0

(αβ)ij ¼ interaction effect of the ith level of the

first factor (doses of nitrogen) and jth level of

the second factor (doses of potash)

eijk ¼ error component associated with the ith

level of the first factor (doses of nitrogen),

the jth level of the second factor (doses of

potash), and kth replicates and eijk ~ i.i.d. N

(0, σ2)

Hypothesis to be tested:

H01 : α1 ¼ α2 ¼ α3 ¼ 0

H02 : β1 ¼ β2 ¼ β3 ¼ 0

H03 : γ1 ¼ γ2 ¼ γ3 ¼ 0

H04 : all αβð Þij0s are equal

against

H11 : α
0
is are not all equal

H12 : βj
0s are not all equal

H13 : γ
0s are not all equal

H14 : all αβð Þij0s are not equal

Let the level of significance be 0.05.

From the given data table, let us calculate the

following quantities:

Grand total GTð Þ ¼
X3
i¼1

X3
j¼1

X3
k¼1

yijk

¼ 12:43þ 12:45þ ::::::
þ 17:37þ 17:45

¼ 403:36

Correction factor CFð Þ ¼ GT2

3� 3� 3

¼ 403:362

27
¼ 6025:8

SSTOT ¼
X3
i¼1

X3
j¼1

X3
k¼1

y2ijk � CF

¼ 12:432 þ 12:452 þ ::::::þ 17:372

þ 17:452 � 6025:89
¼ 93:35

SSR ¼ 1

mn

X3
i¼1

y2
::k
� CF ¼ 134:012 þ 122:182 þ 134:82

9
� 6025:89 ¼ 0:033

From the above raw data table, let us form the

following table and from the table get the follow-

ing quantities:

N1 N2 N3 Total Mean

K1 37.47 38.64 38.17 114.15 38.05

K2 44.41 44.74 45.09 134.24 44.75

K3 50.79 52.02 52.16 154.97 51.66

Total 132.62 135.40 135.42 390.99

Mean 44.26 45.13 45.14
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SSTr ¼ 1

3

X3
i¼1

X3
j¼1

y2ij: � CF ¼ 24:972 þ 38:642 þ ::::::::::þ 135:40þ2135:422

3
� 6025:89 ¼ 93:28

SSEr ¼ SSTOT � SSTr � SSR ¼ 93:35� 93:28� 0:03 ¼ 0:03

SSN ¼ 1

3� 3

X3
i¼1

y2i:: � CF ¼ 132:622 þ 135:402 þ 135:422

9
� 6025:89 ¼ 0:56:

SSK ¼ 1

3� 3

X3
j¼1

y2:j: � CF ¼ 114:152 þ 134:242 þ 154:972

9
� 6025:89 ¼ 92:57

SS N�Pð Þ ¼ SSTr � SS Nð Þ � SS Kð Þ ¼ 93:28� 0:56� 92:57 ¼ 0:14

Now we make the following analysis of variance

table with the help of the above quantities:

ANOVA table

SOV d.f. SS MS Cal F

Tab F

at 5 %

Replication 2 0.03 0.02 7.44 3.63

N 2 0.56 0.28 125.49 3.63

K 2 92.58 46.29 20730.78 3.63

N � K 4 0.14 0.04 16.17 3.01

Error 16 0.04 0.002

Total 26 93.35

From the above table, it is clear that all the

null hypotheses are rejected at the desired 5 %

level of significance. So we are to find out the

best dose of nitrogen and potash separately with

the help of critical difference values. Significant

interaction between levels of nitrogen and potash

shows that a given dose of nitrogen has different

effects over different doses of potash, and simi-

larly a given dose of potash has different effects

over different doses of nitrogen. Main effects due

to nitrogen as well as potash are not equal to zero.

Now our task is to find out the best dose of

N and K as well as their combination:

CD0:05 Nitrogenð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r:k

r
t0:025,err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:002

3� 3
�

r
2:12 ¼ 0:05

CD0:05 Potashð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r:n

r
t0:025,err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:002

3� 3

r
� 2:12 ¼ 0:05

CD0:05, N�Kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r

r
t0:025,err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:002

3

r
� 2:12 ¼ 0:08

Table of averages:

Nitrogen level Mean yield

N2 45.13

N3 45.11

N1 44.21

Potash level Mean yield

K3 51.66

K2 44.75

K1 38.05

Interaction effect Mean yield

N3K3 17.39

N2K3 17.34

N1K3 16.93

N3K2 15.03

N2K2 14.91

N1K2 14.80

N2K1 12.88

N3K1 12.70

N1K1 12.47

It is clear from the above tables that N2 dose

of nitrogen has recorded significantly the highest
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yield compared to other doses. On the other hand,

K3 is the best dose of potash for getting maxi-

mum yield. So far as the interaction effect of

nitrogen and potash is concerned, N3K3 combi-

nation is found to be the best nitrogen potash

dose followed by N2K3 and so on.

11.2.2 Two-Factor Asymmetrical
(m � n, m 6¼ n) Factorial
Experiment

As has already been mentioned that in a factorial

experiment, if the levels of the factors are differ-

ent, it is known as asymmetrical factorial experi-

ment, in this section we shall discuss about

two-factor asymmetrical factorial experiment.

As the name suggests, this type of experiment

is having two factors, each having different

levels.

11.2.2.1 Two-Factor Asymmetrical (m� n,
m 6¼ n) Factorial CRD Experiment

Let us consider an m � n factorial experiment;

that means an experiment with two factors A and

B (say) having m and n levels, respectively, is

conducted with r repetitions for each treatment

combination. It is not necessary that each treat-

ment combination is to be repeated an equal

number of times, but for the sake of simplicity

and easy explanation and understanding, let us

have an equal number of repetitions for all the

treatment combinations. So there would bem� n
treatment combinations. Thus the model for the

design can be presented as follows:

yijk ¼ μþ αi þ βj þ αβð Þij þ eijk

where i ¼ 1, 2, . . ., m; j ¼ 1, 2, . . ., n; and

k ¼ 1, 2, . . ..., r

yijk ¼ response in kth observation due to ith level

of the first factor A and jth level of the second
factor B

μ ¼ general effect

αi ¼ additional effect due to ith level of the first

factor A,
X

αi ¼ 0

βj ¼ additional effect due to jth level of the

second factor B,
X

βj ¼ 0

(αβ)ij ¼ interaction effect of the ith level of the

first factor A and jth level of the second

factor B,
X
i

αβð Þij ¼
X
j

αβð Þij ¼ 0

eijk ¼ error component associated with the ith

level of the first factor, the jth level of the

second factor in kth replicate, and eijk ~

i.i.d. N(0, σ2)

Randomization and Layout

In total there will be m� n number of treatments

each being repeated r times. That means we

require to have m � n � r number of experi-

mental units in the whole experiment. m� n

number of treatments are to be allotted randomly

among mnr experimental units as per the proce-

dure discussed during the layout of CRD design

in Chap. 10.7.1.

Hypothesis to be tested in m � n factorial
RBD experiment:

H01 : α1 ¼ α2 ¼ � � � ¼ αi ¼ � � � ¼ αm ¼ 0

H02 : β1 ¼ β2 ¼ � � � ¼ βj ¼ � � � ¼ βn ¼ 0

H03 : all αβð Þijs are equal

against the alternative hypotheses

H11 : all α0s are not equal
H12 : all β

0s are not equal

H13 : all αβð Þ0s are not equal
Let the level of significance be α.

Analysis The following table gives the

plot-wise information recorded on response

variable yijk s:
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B1 B2 …Bj… Bn

A1 y111
y112

:
y11r

y121
y122

:
y12r

...........y1j1..........
...........y1j2............

:
........... y1jr...............

y1n1
y1n2

:
y1nr

A2 y211
y212

:
y21r

y221
y222

:
y22r

.........y2j1................
.........y2j2.................

:
.........y2jr................

y2n1
y2n2

:
y2nr

.
:
:
:

.
:
:
:

.
:
:
:

…………
…………
…………

.
:
:
:

Ai yi11
yi12

:
yi1r

yi21
yi22

:
yi2r

...........yij1............

..........yij2.............

:
............yijr.............

yin1
yin2

:
yinr

.
:
:
:

.
:
:
:

.
:

…………
…………
…………

.
:
:
:

Am ym11
ym12

:
ym1r

ym21 
ym22

:
ym2r

...........ymj1............
...........ymj2...........

:
...........ymjr............

ymn1
ymn2

:
ymnr

We calculate the following quantities from the

table:

Grand total (G) ¼
Xm
i¼1

Xn
j¼1

Xr

k¼1

yijk.

Correction factor (CF) ¼ G2

mnr
.

SSTot ¼
Xm
i¼1

Xn
j¼1

Xr

k¼1

y2ijk � CF.

Let us make the following table for calculat-

ing other sums of squares.
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Table of treatment totals:

SSTr ¼ 1

r

Xm
i¼1

Xn
j¼1

y2ij: � CF, where yij: ¼
Xr

k¼1

yijk

SSEr ¼ TSS – TrSS.

SS(A) ¼ 1

nr

Xm
i¼1

y2i:: � CF.

SS(B) ¼ 1

mr

Xn
j¼1

y2:j: � CF.

SS(AB) ¼ SSTr � SS Að Þ � SS Bð Þ.

Analysis of Variance The structure of analysis

of variance table is as follows:

SOV d.f. SS MS F

Factor A m�1 SS(A) MS(A) ¼ SS(A)/
(m�1)

MS(A)/
MSEr

Factor B n�1 SS(B) MS(B) ¼ SS(B)/
(n�1)

MS(B)/
MSEr

Interaction

(A � B)

(m�1)

(n�1)

SS(AB) MS(AB) ¼ SS(AB)/
(m�1)(n�1)

MS(AB)/
MSEr

Error mnr�m�n
+1

SSEr MSEr ¼ SSEr/
(mnr�m�n+1)

Total mnr�1 SSTot

The hypothesis with respect to the main effect

of A, main effect of B, and interaction effect

ofA and B will be rejected at the α level of

significance if the Cal F > Fα; m�1ð Þ, mnr�m�nþ1ð Þ,
Cal F > Fα; n�1ð Þ, mnr�m�nþ1ð Þ, Cal F >

Fα; m�1ð Þ n�1ð Þ, mnr�m�nþ1ð Þ, respectively; otherwise

the corresponding null hypothesis cannot be

rejected. In the event of rejection of the null

hypothesis, the best level corresponding to the

main or interaction effect is to be worked out

using the respective LSD/CD formula as given

below:

LSD=CD αð ÞA ¼
ffiffiffiffiffiffiffiffiffi
2MSEr
nr

q
tα=2,error d:f: for factor A

LSD=CD αð ÞB ¼
ffiffiffiffiffiffiffiffiffi
2MSEr
mr

q
tα=2,error d:f: for factor B

LSD=CD αð ÞAB ¼
ffiffiffiffiffiffiffiffiffi
2MSEr

r

q
tα=2, error d:f: for inter-

action of factors A and B

The best levels of the main effect or interac-

tion effect are worked out by comparing the

treatment mean difference with respective

LSD/CD values. If the difference between any

pair of level/interaction means is more than

corresponding LSD/CD values, then these two

levels/interactions under comparison are

declared significantly different, and the best

level/interaction is selected on the basis of the

mean of the levels/interaction under comparison.

On the other hand, if the difference between any

pair of level/interaction means is equal to or less

than the corresponding LSD/CD value, then these

two levels/interactions under comparison are

declared statistically at par.

B1 B2 . . . . . . . . .Bj. . . . . . Bn Total

A1 Xr

k¼1

y11k
Xr

k¼1

y12k
Xr

k¼1

y1jk

Xr

k¼1

y1nk
y1..

A2 Xr

k¼1

y21k
Xr

k¼1

y22k
Xr

k¼1

y2jk
Xr

k¼1

y2nk
y2..

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

Ai Xr

k¼1

yi1k
Xr

k¼1

yi2k
Xr

k¼1

y2jk
Xr

k¼1

y2nk
yi..

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

Am Xr

k¼1

ym1k
Xr

k¼1

ym2k
Xr

k¼1

ymjk
Xr

k¼1

ymnk
ym..

Total y.1. y.2. y.j. y.n. y. . .
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Example 11.5 (3 � 4 Two-Factor Asymmetrical

Factorial CRD)

A laboratory experiment was conducted to find

out the role of four different media (soil, com-

post, coco peat, and river sand) and three

bio-regulators (GA3, borax, and thiourea) on

seed germination of papaya in three replications.

Analyze the data to find out the best media and

the best bio-regulator and the best interaction

effects among the factors to have good seed

germination percentage:

Solution From the given information, it is clear

that the experiment was an asymmetrical (3 � 4)

factorial CRD experiment; so the appropriate

statistical model will be

yijk ¼ μþ αi þ βj þ αβð Þij þ eijk

where i ¼ 1, 2; j ¼ 1, 2; and k ¼ 1, 2, . . ..., 5

yijk ¼ response in kth observation due to the ith
level of the first factor (i.e., bio-regulator) and

the jth level of the second factor (i.e., media)

μ ¼ general effect

αi ¼ additional effect due to ith level of the first

factor (i.e., bio-regulator),
X

αi ¼ 0

βj ¼ additional effect due to jth level of the

second factor (i.e., media),
X

βj ¼ 0

(αβ)ij ¼ interaction effect of the ith level of

bio-regulator and jth level of media,X
i

αβð Þij ¼
X
j

αβð Þij ¼ 0

eijk ¼ error component associated with the ith
level of bio-regulator, the jth level of media,

and the kth replication and eijk ~ i.i.d. N(0, σ2)

Hypothesis to be tested:

H01 : α1 ¼ α2 ¼ α3 ¼ 0

H02 : β1 ¼ β2 ¼ β3 ¼ β4 ¼ 0

H03 : all interaction effects are equal to zero

against

H11 : all α0s are not equal to zero
H12 : all β0s are not equal to zero
H13 : all interaction effects are not equal to zero

Let the level of significance be α ¼ 0.01.

Grand total GTð Þ ¼ 83:33þ 83:63þ : : : : : : :
þ 74:13þ 74:73

¼ 2765:059

Correction factor CFð Þ ¼ GT2

mnr
¼ 2765:0592

3� 4� 3

¼ 212376:424

Total sum of square SSTotð Þ ¼ 83:332 þ 83:632 þ : : : : : : : þ 74:132 þ 74:732 � 212376:424
¼ 330:487

Treatment sum of square SSTð Þ ¼ 250:492 þ 229:712 þ 238:092 þ : : : : : :þ 235:512 þ 223:092

3

�212376:424

¼ 321:714

Error sum of square SSEr:ð Þ ¼ SSTOT � SST ¼ 330:487� 321:714 ¼ 8:773

Bio-regulator B1 B2 B3

Media M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

R1 83.33 76.67 79.33 75.65 77.23 73.33 77.67 71.223 77.67 76.45 78.67 74.23

R2 83.63 76.17 78.53 74.95 76.43 72.43 77.57 70.623 77.57 75.75 77.67 74.13

R3 83.53 76.87 80.23 76.55 78.03 73.83 77.97 72.023 78.37 76.85 79.17 74.73
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From the given information, let us construct the

following table totals:

Medium

Bio-regulator

Total MeanB1 B2 B3

M1 250.49 231.69 233.61 715.79 79.53

M2 229.71 219.59 229.05 678.35 75.37

M3 238.09 233.21 235.51 706.81 78.53

M4 227.15 213.87 223.09 664.11 73.79

Total 945.44 898.36 921.26 2765.06

Mean 78.79 74.86 76.77

SS Bioð Þ ¼ 1

3� 4

X3
i¼1

y2i:: � CF ¼ 945:442 þ 898:362 þ 921:262

12
� 212376:424 ¼ 92:38

SS Medð Þ ¼ 1

3� 3

X4
j¼1

y2:j: � CF ¼ 715:792 þ 678:352 þ 706:812 þ 664:112

9
� 212376:42 ¼ 194:152

SS BioxMedð Þ ¼ 1

3

X3
i¼1

X4
j¼1

y2ij: � CF� SS Bioð Þ � SS Medð Þ ¼ 321:714� 92:381� 194:152 ¼ 35:180

Now we make the following analysis of variance

table with the help of the above quantities:

ANOVA Table

value of FSOV d.f. SS MS Cal F

Treatment 11 321.714 29.247 80.006 3.094

Bio-regulator 2 92.382 46.191 17.251 5.614

Media 3 194.152 64.717 185.128 4.718

Bio-regulator

� media

6 35.180 5.863 4.615 3.667

Error 24 8.773 0.366

Total 35 330.487

As all the calculated values of F are greater

than the corresponding table values of F, so it is

clear from the above table that all the effects are

significant at 1 % level of significance. Now the

question is which bio-regulator, which media,

and which combination of bio-regulator and

media will result in maximum germination. To

answer these we are to calculate the critical dif-

ference values for bio-regulator and media and

their interaction effects separately using the fol-

lowing formulae:

CD0:01 bio‐regulatorð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
r:n

r
t0:005, err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:366

3� 4

r
2:796

¼ 0:690

CD0:01 mediað Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
r:m

r
t0:005, err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:366

3� 3

r
2:796 ¼ 0:797

CD0:01 bio‐regulator � mediað Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr

r

r
t0:005,err:d:f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:366

3

r
2:796

¼ 1:380

Our next task is to calculate the mean of all

the effect to compare their difference with the

calculated CD.
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Bio Regulator Mean CD
B1 78.787 0.690
B3 76.772
B2 74.863
Media Mean CD
M1 79.532 0.797
M3 78.534
M2 75.372
M4 73.790
Interaction Mean CD
B1M1 83.497 1.380
B1M3 79.363
B3M3 78.503
B3M1 77.870
B2M3 77.737
B2M1 77.230
B1M2 76.570
B3M2 76.350
B1M4 75.717
B3M4 74.363
B2M2 73.197
B2M4 71.290 *

* line joining the treatment means are statistically at par

Thus, from the above mean comparisons, it

can be inferred that (i) among the three

bio-regulators, B1, i.e., GA3, is the best followed

by thiourea and borax; (ii) among the four media,

M1, i.e., soil, is significantly better than the

other three media, followed by coco peat; and

(iii) among the 12 bio-regulator and media

combinations, the best germination could be

with soil–GA3 combination.

11.2.2.2 Two-Factor Asymmetrical (m� n,
m 6¼ n) Factorial RBD Experiment

Let us consider an m � n factorial experiment;

that means an experiment with two factors A and

B (say) having m and n levels, respectively, is

conducted with r replications. So there would be

m� n treatment combinations in each replica-

tion. Thus the model for the design can be

presented as

yijk ¼ μþ γk þ αi þ βj þ αβð Þij þ eijk

where i ¼ 1, 2, . . .,m; j ¼ 1, 2, . . ., n; and k ¼ 1,

2, . . ..., r

yijk ¼ response in kth observation due to ith level

of the first factor A and jth level of the second
factor B

μ ¼ general effect

γk ¼ additional effect due to kth replicate,X
γk ¼ 0

αi ¼ additional effect due to the ith level of the

first factor A,
X

αi ¼ 0

βj ¼ additional effect due to the jth level of the

second factor B,
X

βj ¼ 0

(αβ)ij ¼ interaction effect of the ith level of the

first factor A and jth level of the second

factor B,
X
i

αβð Þij ¼
X
j

αβð Þij ¼ 0

eijk ¼ error component associated with the ith
level of the first factor, the jth level of the

second factor in kth replicate, and eijk ~

i.i.d. N(0, σ2)

Randomization and Layout In total there will

be an m� n number of treatments in each and

every replication. That means we require to have

an m� n number of experimental units per repli-

cation. Them� nnumbers of treatments are to be

allotted randomly as per the procedure discussed

during the layout of RBD design in Chap. 10.8.1.

Hypothesis to be tested in m � n factorial

RBD experiment:

H01 : α1 ¼ α2 ¼ . . . ¼ αi ¼ . . . ¼ αm ¼ 0

H02 : β1 ¼ β2 ¼ . . . ¼ βj ¼ . . . ¼ βn ¼ 0

H03 : γ1 ¼ γ2 ¼ . . . ¼ γk ¼ . . . ¼ γr ¼ 0

H04 : all αβð Þijs are equal

against the alternative hypotheses

H11 : all α0s are not equal
H12 : all β

0s are not equal
H13 : all γ

0s are not equal

H14 : all αβð Þ0s are not equal
Let the level of significance be 0.05.

394 11 Factorial Experiment

http://dx.doi.org/10.1007/978-81-322-2831-8_10


Analysis The following table gives the plot-

wise information recorded on response variable

yijk s:

B
A

R1 R2
……

……

……

Rr
B1 B2 …Bj

…
Bn B1 B2 …Bj… Bn B1 B2 …Bj… Bn

A1 y111 y121 y1j1 y1n1 y112 y122 y1j2 y1n2 y11r y12r y1jr y1nr

A2 y211 y221 y2j1 y2n1 y212 y222 y2j2 y2n2 y21r y22r y2jr y2nr

.
:
:

.
:
:

.
:
:

……
……
……

Ai yi11 yi21 yij1 yin1 yi12 yi22 yij2 yin2 yi1r yi2r yijr yinr

: : : :
: : : :

Am ym11 ym21 ymj1 ymn1 ym12 ym22 ymj2 ymn2 ym1r ym2r ymjr ymnr

We calculate the following quantities from the

table:

Grand total (G) ¼
Xm
i¼1

Xn
j¼1

Xr

k¼1

yijk

Correction factor (CF) ¼ G2

mnr
.

SSTot ¼
Xm
i¼1

Xn
j¼1

Xr

k¼1

y2ijk � CF.

SSR ¼ 1

mn

Xr

k¼1

y2::k � CF where, y..k ¼
Xm
i

Xn
j

yijk

¼ kth replication total.

Let us make the following table for calculat-

ing other sums of squares.

Table of treatment totals:

B1 B2 . . .. . .. . .Bj. . .. . .. Bn Total

A1 Xr

k¼1

y11k
Xr

k¼1

y12k
Xr

k¼1

y1jk
Xr

k¼1

y1nk
y1..

A2 Xr

k¼1

y21k
Xr

k¼1

y22k
Xr

k¼1

y2jk
Xr

k¼1

y2nk
y2..

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

Ai Xr

k¼1

yi1k
Xr

k¼1

yi2k
Xr

k¼1

y2jk
Xr

k¼1

y2nk
yi..

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

Am Xr

k¼1

ym1k
Xr

k¼1

ym2k
Xr

k¼1

ymjk
Xr

k¼1

ymnk
ym..

Total y.1. y.2. y.j. y.n. y. . .
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SSTr ¼ 1

r

Xm
i¼1

Xn
j¼1

y2ij: � CF, where yij: ¼
Xr

k¼1

yijk.

SSEr ¼ TSS – RSS – TrSS.

SS(A) ¼ 1

nr

Xm
i¼1

y2i:: � CF.

SS(B) ¼ 1

mr

Xn
j¼1

y2:j: � CF.

SS(AB) ¼ SSTr � SS Að Þ � SS Bð Þ.

Analysis of Variance The structure of analysis

of variance table is as follows:

SOV d.f. SS MS F

Replication r�1 SSR MSR ¼ SSR/(r�1) MSR/
MSEr

Factor A m�1 SS(A) MS(A) ¼ SS(A)/
(m�1)

MS(A)/
MSEr

Factor B n�1 SS(B) MS(B) ¼ SS(B)/
(n�1)

MS(B)/
MSEr

Interaction

(A � B)

(m�1)

(n�1)

SS(AB) MS(AB) ¼ SS(AB)/
(m�1)(n�1)

MS(AB)/
MSEr

Error (r�1)

(mn�1)

SSEr MSEr ¼ SSEr/(r�1)

(mn�1)

Total mnr�1 SSTot

The hypothesis with respect to the replication,

main effect of A, main effect of B, and interac-

tion effect of A and B will be rejected at

the α level of significance if the Cal F >

Fα; r�1ð Þ, r�1ð Þ mn�1ð Þ, Cal F > Fα; m�1ð Þ, r�1ð Þ mn�1ð Þ,
Cal F > Fα; n�1ð Þ, r�1ð Þ mn�1ð Þ, Cal F >

Fα; m�1ð Þ n�1ð Þ, r�1ð Þ mn�1ð Þ, respectively; otherwise,
the corresponding null hypothesis cannot be

rejected. In the event of rejection of the null

hypothesis, the best level corresponding to the

main or interaction effect is to be worked out

using the respective LSD/CD formula as given

below:

LSD=CD αð ÞR ¼
ffiffiffiffiffiffiffiffiffi
2MSEr
mn

q
tα=2,error d:f: for replication

LSD=CD αð ÞA ¼
ffiffiffiffiffiffiffiffiffi
2MSEr
nr

q
tα=2,error d:f: for factor A

LSD=CD αð ÞB ¼
ffiffiffiffiffiffiffiffiffi
2MSEr
mr

q
tα=2,error d:f: for factor B

LSD=CD αð ÞAB ¼
ffiffiffiffiffiffiffiffiffi
2MSEr

r

q
tα=2,error d:f: for interac-

tion of factors A and B

The best levels of the main effect or interac-

tion effect are worked out by comparing the

treatment mean difference with respective LSD/

CD values. If the difference between any pair of

level means is more than corresponding LSD/CD

values, then these two levels under comparison

are declared significantly different, and the best

level is selected on the basis of the mean of the

levels under comparison. On the other hand, if

the difference between any pair of level means is

equal to or less than the corresponding LSD/CD

value, then these two levels under comparison

are declared statistically at par.

Example 11.6 (Two-Factor Asymmetrical

Factorial RBD)

An experiment was conducted in order to inves-

tigate four feeds (F) and a vitamin (V) supple-

ment at three levels on milk yield. The following

table gives the information conducted in three

replications in a randomized block design. Ana-

lyze the data and draw your conclusion:

R1 R2 R3

Feed V1 V2 V3 V1 V2 V3 V1 V2 V3

F1 25 26 28 24 27 27 25 28 29

F2 22 23 25 22 24 26 23 23 26

F3 25 26 27 26 27 29 25 26 28

F4 28 30 31 27 29 30 28 30 31

Solution From the given information, it is clear

that the experiment is an asymmetrical (4 � 3)

factorial experiment conducted in randomized

block design, so the appropriate statistical

model for the analysis will be

yijk ¼ μþ αi þ βj þ γk þ αβð Þij þ eijk

where i ¼ 1, 2, 3,4; j ¼ 1, 2,3; and k ¼ 1, 2, 3

yijk ¼ response in kth replicate due to ith level of

the first factor (feed) and jth level of the sec-

ond factor (vitamin)

μ ¼ general effect

αi ¼ additional effect due to the ith level of the

first factor (feed),
X

αi ¼ 0

βj ¼ additional effect due to the jth level of the

second factor (vitamin),
X

βj ¼ 0
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γk ¼ additional effect due to kth replicate,X
γk ¼ 0

(αβ)ij ¼ interaction effect of the ith level of the

first factor (feed) and jth level of the second

factor (vitamin),
X
i

αβð Þij ¼
X
j

αβð Þij ¼ 0

eijk ¼ error component associated with the ith

level of the first factor (feed), the jth level of

the second factor (vitamin), and kth replicates

and eijk ~ N(0, σ2)

Hypothesis to be tested:

H0 : α1 ¼ α2 ¼ α3 ¼ α4 ¼ 0

β1 ¼ β2 ¼ β3 ¼ 0

γ1 ¼ γ2 ¼ γ3 ¼ 0

All αβð Þij0s are equal

against

α0s are not all equal
βj

0s are not all equal
γ0s are not all equal
All αβð Þij0s are not equal

Let the level of significance be 0.05.

From the given data table, let us calculate the

following quantities:

GT ¼
X4
i¼1

X3
j¼1

X3
k¼1

yijk ¼ 956

Correction factor CFð Þ ¼ GT2

4� 3� 3
¼ 9562

36
¼ 25387:111

SSTOT ¼
X4
i¼1

X3
j¼1

X3
k¼1

y2ijk � CF ¼ 25598� 25387:111

¼ 210:888

SSR ¼ 1

f � v

X3
k¼1

y2
ijk
� CF ¼ 3162 þ 3182 þ 3222

12

� 25387:111 ¼ 1:555

Table of totals:

Feed

Vitamin supplements

V1 V2 V3 Total Average

F1 74 81 84 239 79.67

F2 67 70 77 214 71.33

F3 76 79 84 239 79.67

F4 83 89 92 264 88.00

Total 300 319 337

Average 75.00 79.75 84.25

From the above table, first let us form the

following table and from the table get the follow-

ing quantities:

SSTr ¼ 1

3

X4
i¼1

X3
j¼1

y2ijo � CF

¼ 742 þ 672 þ 762 þ :::::::::: þ 842 þ 922

3

�25387:111 ¼ 198:888

SSEr ¼ SSTOT � SSTr � SSR

¼ 210:888� 198:888� 1:555 ¼ 10:444

SSFeed ¼ 1

3� 3

X4
i¼1

y2ioo � CF

¼ 2392 þ 2142 þ 2392 þ 2642

9

�25387:1111 ¼ 138:888

SSVit ¼ 1

4� 3

X3
j¼1

y2ojo � CF

¼ 3002 þ 3192 þ 3372

12
� 25387:111

¼ 57:055

SS FVð Þ ¼ SSTr � SS Feedð Þ � SS Vitð Þ

¼ 198:888� 138:888� 57:055 ¼ 2:944

Now we make the following analysis of variance

table with the help of the above quantities:
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It is clear from the above table that all the

effects of feed as well as the vitamin are signifi-

cant at 1 % level of significance. But the interac-

tion effects of feed and vitamin are not

significant even at 5 % (desired level of signifi-

cance) level of significance.

Now the question is which feed and which level

of vitamin havemaximummilking potentiality. To

answer these we are to calculate the critical differ-

ence values for feed and vitamin effects separately

using the following formulae:

CD0:01 Feedð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r� v

r
t0:005,err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:475

3� 3

r
2:819 ¼ 0:915

CD0:01 Vitaminð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS

r� f

r
t0:005, err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:475

3� 4

r
� 2:819 ¼ 0:792

Feed Average Milk (liter)
F4 88.00
F1 79.67
F3 79.67
F2 71.33
Vitamin Average milk yield(l)
V3 84.25
V2 79.75
V1 75.00

It is clear from the above table that feed

at level F4 has recorded significantly the

highest milking capacity compared to other

feeds. The difference of means between F1

and F3 is zero, i.e., not greater than the critical

difference value; they are statistically at par.

On the other hand, the vitamin at level V3

is the best for getting maximum milk followed

by V2 and V1. So far as the interaction effect

of feed and vitamin is concerned, no significant

difference is recorded among the different treat-

ment combinations.

11.3 Three-Factor Factorial
Experiments

11.3.1 23 Factorial Experiment

As the name suggests, three-factor factorial

experiments are having three factors, each

having different or the same levels. The most

initial three-factor factorial experiment is

comprised of three factors each of two levels,

i.e., 23 factorial experiment. In a 23 factorial

experiment with three factors A, B, and C each

having two levels, viz., A1, A2; B1, B2; and C1,

C2, respectively, the total number of treatment

combinations will be 8, i.e., A1B1C1, A1B1C2,

A1B2C1, A1B2C2, A2B1C1, A2B2C1, A2B1C2,

and A2B2C2:

C1 C2

B1 B2 B1 B2

A1 A1B1C1 A1B2C1 A1B1C2 A1B2C2

A2 A2B1C1 A2B2C1 A2B1C2 A2B2C2

Each of treatment combinations would be

repeated k number of times. Again these eight

treatment combinations can be put under

ANOVA

Table value of FSOV d.f. MS MS F ratio

Replication 3�1 ¼ 2 1.556 0.778 1.638 F0.05;2,22 ¼3.44 F0.01;2,22 ¼ 5.72

Treatment 12�1 ¼ 11 198.889 18.081 38.085 F0.05;11,22 ¼ 2.27 F0.01;11,22 ¼ 3.19

Feed (F) 4�1 ¼ 3 138.889 46.296 97.518 F0.05;3,22 ¼ 3.05 F0.01;3,22 ¼ 4.82

Vitamin (V) 3�1 ¼ 2 57.056 28.528 60.090 F0.05;2,22 ¼ 3.44 F0.01;2,22 ¼ 5.72

F�V 3 � 2 ¼ 6 2.944 0.491 1.034 F0.05;6,22 ¼ 2.55 F0.01;6,22 ¼ 3.76

Error 35�2�11 ¼ 22 10.444 0.475

Total 36�1 ¼ 35 210.889
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experimentation in basic CRD/RBD/LSD design

depending upon the situation and requirement of

the experimentation. As usual when blocking is

not required or possible in that case, factorial

CRD is to be conducted. If filed experiment

is conducted and blocking is essential, then

either factorial RBD or factorial LSD with

eight treatment combinations is to be conducted.

The layout will follow the identical procedure

as discussed for the layout of basic CRD/RBD/

LSD in Chap. 10 with these eight treatment

combinations. However, during analysis partiti-

oning of the total variance is to be taken up as per

the statistical model concerned.

11.3.1.1 23 Factorial CRD Experiment
The data set for 23 factorial CRD experiment with

n observations per treatment would be as follows:

C1 C2

B1 B2 B1 B2

A1 A2 A1 A2 A1 A2 A1 A2

y1111 y2111 y1211 y2211 y1121 y2121 y1221 y2221

y1112 y2112 y1212 y2212 y1122 y2122 y1222 y2222

y1113 y2113 y1213 y2213 y1123 y2123 y1223 y2223

: : : : : : : :

: : : : : : : :

y111n y211n y121n y221n y112n y212n y122n y222n

The statistical model and analyses of the vari-

ance for the above 23 factorial experiment in

CRD are discussed in the following section.

Model for 23 Factorial CRD Experiment

yijkl ¼ μþ αi þ βj þ γk þ αβð Þij þ αγð Þik
þ βγð Þjk þ αβγð Þijk þ δl þ eijkl

where i ¼ 1, 2; j ¼ 1, 2; and k ¼ 1, 2; l ¼ 1,

2, 3, . . .., n

yijkl ¼ response in lth observation due to the ith

level of the first factor A and the jth level of

the second factor B and kth level of the third

factor C

μ ¼ general effect

αi ¼ additional effect due to the ith level of the

first factor A,
X

αi ¼ 0

βj ¼ additional effect due to the jth level of

second factor B,
X

βj ¼ 0.

γk ¼ additional effect due to the kth level of the

third factor C,
X

γk ¼ 0

(αβ)ij ¼ interaction effect of the ith level of the

first factor A and jth level of the second

factor B,
X
i

αβð Þij ¼
X
j

αβð Þij ¼ 0

(αγ)ik ¼ interaction effect of the ith level of the

first factor A and kth level of the third

factor C,
X
i

αγð Þik ¼
X
k

αγð Þik ¼ 0

(βγ)jk ¼ interaction effect of the jth level of the

second factor B and kth level of the third

factor C,
X
j

βγð Þjk ¼
X
k

βγð Þjk ¼ 0

(αβγ)ijk ¼ interaction effect of the ith level of the

first factor A, jth level of the second factor B,

and kth level of the third factor C,X
i

αβγð Þijk ¼
X
j

αβγð Þijk ¼
X
k

αβγð Þijk ¼ 0

eijkl ¼ error component associated with lth obser-

vation due to ith level of the first factor A and

jth level of the second factor B and kth level of
the third factor C and eijkl ~ i.i.d. N(0, σ2)

Hypothesis to be tested:

H01 : α1 ¼ α2 against H11 : α1 6¼ α2
H02 : β1 ¼ β2 against H12 : β1 6¼ β2
H03 : γ1 ¼ γ2 against H13 : γ1 6¼ γ2
H04 : α1β1 ¼ α1β2 ¼ α2β1 ¼ α2β2 against H14;

all αβð Þij0s are not equal
H05 : α1γ1 ¼ α1γ2 ¼ α2γ1 ¼ α2γ2 against H15;

all αγð Þik 0s are not equal
H06 : β1γ1 ¼ β1γ2 ¼ β2γ1 ¼ β2γ2 against H16;

all βγð Þjk 0s are not equal
H07 : all αβγð Þijk 0s are equal against H17;

all αβγð Þijk 0s are not equal

Let the level of significance be α.
Now we calculate the following quantities:

G ¼
X
i, j, k, l

yijkl and CF ¼ G2

23n

SSTot ¼
X
i, j, k, l

y2ijkl � CF
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SSEr ¼ SSTot � SS Að Þ � SS Bð Þ � SS ABð Þ � SS Cð Þ�
SS ACð Þ � SS BCð Þ � SS ABCð Þ

The first-order interaction sum of squares is

worked out from the two-way table of totals of

the factors involved, and the third-way interac-

tion effects are worked out by framing three-way

table of all the eight treatment combinations

totaled over n observations.

Table of two-way interaction totals A and B:

B1 B2 Total (TAi)

A1 A1B1 A1B2
X
j, k, l

A1...

A2 A2B1 A2B2
X
j, k, l

A1...

Total (TBj)
X
i, k, l

B:1::

X
i, k, l

B:2::

AiBjs are totals of 2n observations in which

AiBj has occurred:

SS Að Þ ¼

X
i

TAið Þ2

2� 2� n
� CF,

SS Bð Þ ¼

X
j

TBj

� �2
2� 2� n

� CF, and

SS ABð Þ ¼

X
i

X
j

AiBj

� �2
2n

� CF

Table of two-way interaction totals A and C:

C1 C2 Total (TAi)

A1 A1C1 A1C2
X
j, k, l

A1...

A2 A2C1 A2C2
X
j, k, l

A2...

Total (TCk)
X
i, j, l

C::1:

X
i, j, l

C::2:

AiCk’s are totals of 2n observations in which
AiCk has occurred:

SS Cð Þ ¼

X
k

TCkð Þ2

2� 2� n
� CF and

SS ACð Þ ¼

X
i

X
j

AiCkð Þ2

2n
� CF

Table of two-way interaction totals B and C:

B1 B2 Total (TCk)

C1 C1B1 C1B2
X
i, j, l

C::1:

C2 C2B1 C2B2
X
i, j, l

C::2:

Total (TBj)
X
i, k, l

B:1::

X
i, k, l

B:2::

BjCk’s are totals of 2n observations in which

BjCk has occurred:

SS BCð Þ ¼

X
i

X
j

BjCk

� �2
2n

� CF

Table of three-way interaction totals:

Treatment combinations R1 R2............................. Rn Treatment total (Tm; m ¼ 1, 2, . . ., 8)

A1B1C1 A1B1C1R1 A1B1C1R2................... A1B1C1Rk Xn
l ¼1

A1B1 C1ð Þl
A1B1C2 A1B1C2R1 A1B1C2R2.................... A1B1C2Rk Xn

l¼1

A1B1C2ð Þl
A1B2C1 A1B2C1R1 A1B2C1R2................. A1B2C1Rk Xn

l¼1

A1B2 C1ð Þl
A1B2C2 A1B2C2R1 A1B2C2R2................. A1B2C2Rk Xn

l¼1

A1B2C2ð Þl
A2B1C1 A2B1C1R1 A2B1C1R2................. A2B1C1Rk Xn

l¼1

A2B1 C1ð Þl
A2B1C2 A2B1C2R1 A2B1C2R2................. A2B1C2Rk Xn

l¼1

A2B1 C2ð Þl
A2B2C1 A2B2C1R1 A2B2C1R2................. A2B2C1Rk Xn

l¼1

A2B2 C1ð Þl
A2B2C2 A2B2C2R1 A2B2C2R2................. A2B2C2Rk Xn

l¼1

A2B2 C2ð Þl

400 11 Factorial Experiment



SS ABCð Þ ¼

X8
m¼1

T2
m

n
� CF

The structure of the analysis of variance for 23

factorial experiment in a randomized complete

design is given as follows:

SOV d.f. SS MS Cal F

A 1 SS(A) MS(A) ¼ SS(A)/1 MS(A)/
MSEr

B 1 SS(B) MS(B) ¼ SS(B)/1 MS(B)/
MSEr

AB 1 SS(AB) MS(AB) ¼ SS(AB)/1 MS(AB)/
MSEr

C 1 SS(C) MS(C) ¼ SS(C)/1 MS(C)/
MSEr

AC 1 SS(AC) MS(AC) ¼ SS(AC)/1 MS(AC)/
MSEr

BC 1 SS(BC) MS(BC) ¼ SS(BC)/1 MS(BC)/
MSEr

ABC 1 SS(ABC) MS(ABC) ¼ SS(ABC)/
1

MS(ABC)/
MSEr

Error (n�1)(23�1) SSEr MSEr ¼ SSEr/
(n�1)(23�1)

Total 23.n�1 SSTot

If calculated value of F for any effect be

greater than the corresponding tabulated value

of F at α level of significance and specific

degrees of freedom, then the corresponding fac-

torial effect is significant, and the respective null

hypothesis of equality is rejected; otherwise the

test is nonsignificant and the respective null

hypothesis cannot be rejected. In the event of

significance of any one of the seven F tests, we

are to follow as given below:

1. If any one of the three F tests corresponds to

main effects of three factors, the higher mean

value corresponding to the level of the factor

is declared the best level for that particular

factor.

2. For first-order interactions (i.e., (αβ)ij or

(αγ)ikor(βγ)jk), we are to calculate the LSD/

CD value as follows:

LSD=CD αð Þ for A=B=C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

2� n

r
tα=2;err d:f :

If the difference between means of any pair of

treatment combination be greater than the

corresponding CD value, then these two

means under comparison are declared signifi-

cantly different from each other, and the treat-

ment combination having better value is

treated as the better one.

3. If the F test corresponding to second-order

interactions (i.e., (αβγ)ijk) be significant, we

are to calculate the LSD/CD value as follows:

LSD=CD αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

n

r
tα=2;err d:f :

If the difference between means of any pair of

treatment combination be greater than the

corresponding CD value, then these two

means under comparison are declared signifi-

cantly different from each other, and the treat-

ment combination having better value is

treated as the better one.

Example 11.7 (23 Three-Factor Symmetrical

Factorial CRD)

A laboratory experiment was conducted to find

out the change in reducing sugar (RS) content

of guava jelly bar made from two varieties kept

in two different packing materials under two

different temperatures for 45 days. The following

table gives the RS under different treatment

combinations. Analyze the data to find out the

best variety, best packing material, best tempera-

ture, and best interaction effects among the

factors to maintain the RS content in guava:

Variety V1 V2

Packing material P1 P2 P1 P2

Temperature T1 T2 T1 T2 T1 T2 T1 T2

26.35 27.29 26.82 27.87 27.43 27.82 28.32 29.21

26.43 27.41 26.92 27.91 27.53 27.88 28.36 29.29

26.49 27.41 26.88 27.99 27.57 27.94 28.46 29.35
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Solution From the given information, it is clear

that the experiment is a three-factorial (23) CRD

experiment each factor with two levels and three

repetitions, so the appropriate statistical model for

the analysis will be

yijkl ¼ μþ αi þ βj þ αβð Þij þ γk þ αγð Þik
þ βγð Þjk þ αβγð Þijk þ eijkl

where i ¼ 1, 2; j ¼ 1, 2; k ¼ 1, 2; and l ¼ 1,2,3

yijkl ¼ response in lth observation due to the ith

level of the first factor (i.e., variety), jth level of

the second factor (i.e., packing material), and

kth level of the third factor (i.e., temperature)

μ ¼ general effect

αi ¼ additional effect due to ith level of the

first factor (i.e., variety),
X

αi ¼ 0

βj ¼ additional effect due to jth level

of the second factor (i.e., packing material),X
βj ¼ 0

γk ¼ additional effect due to kth level of the third

factor (i.e., temperature)
X

γk ¼ 0

(αβ)ij ¼ interaction effect of the ith variety

and jth packing material,
X
i

αβð Þij ¼X
j

αβð Þij ¼ 0

(αγ)ik ¼ interaction effect of the ith variety and

kth temperature,
X
i

αγð Þik ¼
X
k

αγð Þik ¼ 0

(βγ)jk ¼ interaction effect of the jth packing

material and kth level of temperature,X
j

βγð Þjk ¼
X
k

βγð Þjk ¼ 0

(αβγ)ijk ¼ interaction effect of the ith variety, jth
packing material, and kth temperature,X
i

αβγð Þijk ¼
X
j

αβγð Þijk ¼
X
k

αβγð Þijk ¼ 0

eijkl ¼ error component associated with lth obser-

vation of ith variety, jth packing material, and

kth temperature and eijkl ~ i.i.d. N(0, σ2)

Hypothesis to be tested:

H01 : α1 ¼ α2 ¼ 0

H02 : β1 ¼ β2 ¼ 0

H03 : γ1 ¼ γ2 ¼ 0

H04 : all αβð Þij are equal to zero

H05 : all αγð Þik are equal to zero
H06 : all βγð Þjk are equal to zero
H06 : all αβγð Þijk are equal to zero

against

H11 : all α0s are not equal to zero
H12 : all β0s are not equal to zero
H13 : all γ0s are not equal to zero
H14 : all αβð Þij are not equal to zero
H15 : all αγð Þik are not equal to zero

H16 : all βγð Þjk are not equal to zero

H17 : all αβγð Þijk are not equal to zero

Let the level of significance be α ¼ 0.01.

From the given table, let us calculate the

following quantities:

Grand total GTð Þ ¼ 26:35þ 26:43þ : : : : : : :

þ29:29þ 29:35 ¼ 664:93

Correction factor CFð Þ ¼ GT2

mnpr
¼ 664:932

2� 2� 2� 3

¼ 18422:162

Total sum of squares SSTotð Þ ¼ 26:352 þ 26:432

þ: : : : : : : þ 29:292 þ 29:352 � 18422:162

¼ 16:598

Treatment sum of squares SSTð Þ ¼
79:272 þ 82:112 þ :::::::::::: þ 85:142 þ 87:852

3

�18422:1627 ¼ 16:528

Error sum of squares SSEr:ð Þ ¼ SSTot � SST

¼ 16:598� 16:528 ¼ 0:070

From the given data, let us construct the follow-

ing tables of totals and from the tables get the

following quantities:

Packing material

Variety

Total MeanV1 V2

P1 161.38 166.17 327.55 27.30

P2 164.39 172.99 337.38 28.12

Total 325.77 339.16

Mean 27.15 28.26
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SS Varð Þ ¼ 1

npr

X2
i¼1

y2i... � CF ¼ 325:772 þ 339:162

12

�18422:1627 ¼ 7:470

SS PMð Þ ¼ 1

mpr

X2
j¼1

y2:j:: � CF ¼ 327:552 þ 337:382

12

�18422:1627 ¼ 4:026

SS Var � PMð Þ ¼ 1

pr

X2
i¼1

X2
j¼1

y2ij:: �CF� SSVar � SSPM

¼ 161:382 þ 164:392 þ 166:172 þ 172:992

6

�18422:162� 7:470� 4:026¼ 0:604

Packing material

Total MeanTemperature P1 P2

T1 161.8 165.76 327.56 27.30

T2 165.75 171.62 337.37 28.11

Total 327.55 337.38

Mean 27.30 28.12

SS Tempð Þ ¼
1

mnr

X2
j¼1

y2::k: � CF

¼ 327:562 þ 337:372

12
� 18422:162 ¼ 4:009

SS PM � Tempð Þ ¼ 1

mr

X2
i¼1

X2
k¼1

y2i:k:

�CF� SSPM � SSTemp

¼ 161:82 þ 165:762 þ 165:752 þ 171:622

6

�18422:162� 7:470� 4:009

¼ 0:1520

Variety

Total MeanTemperature V1 V2

T1 159.89 167.67 327.56 27.30

T2 165.88 171.49 337.37 28.11

Total 325.77 339.16

Mean 27.15 28.26

SS Var�Tempð Þ¼ 1

nr

X2
j¼1

X2
k¼1

y2:jk:

�CF�SSVar�SSTemp

¼159:892þ165:882þ167:672þ171:492

6

�18422:162�7:470�4:009¼0:1962

V1 V2

Total MeanP1 P2 P1 P2

T1 79.27 80.62 82.53 85.14 327.56 27.30

T2 82.11 83.77 83.64 87.85 337.37 28.11

Total 161.38 164.39 166.17 172.99

Mean 26.90 27.40 27.70 28.83

SS Var�PM�Tempð Þ ¼ 1

r

X2
i¼1

X2
j¼1

X2
k¼1

y2ijk: � CF

�SSVar � SSPM � SSTemp � SSVar�PM

� SSVar�Temp � SSPM�Temp

¼ 79:272 þ 82:112 þ :::::::::þ 85:142 þ 87:852

3

� 18422:162� 7:470� 4:026
� 4:009�0:604� 0:196� 0:152 ¼ 0:0693

ANOVA table

SOV d.f. SS MS Cal F

Tab F

at 1 %

Treatment 7 16.529 2.361 540.750 4.026

Variety 1 7.471 7.471 1710.802 8.531

Packing material 1 0.605 0.605 138.512 8.531

Var � PM 1 0.605 0.605 138.512 8.531

Temperature 1 4.010 4.010 918.283 8.531

Var � temp 1 0.196 0.196 44.932 8.531

PM � temp 1 0.152 0.152 34.810 8.531

Var� PM� temp 1 0.069 0.069 15.879 8.531

Error 16 0.070 0.004

Total 23 16.599

As all the calculated values of F are greater

than the corresponding table values of F, so it is

clear from the above table that all the effects are

significant at 1 % level of significance. So our

next task is to find out the best level of these

effects. For the purpose we are to calculate the

critical difference values for variety, packing
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material, temperature, and interaction effects of

different factors using the following formulae:

CD0:01 varietyð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
r:np

s
t0:005,err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:004

3� 2� 2

r
2:920 ¼ 0:078

CD0:01 PMð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
r:mp

s
t0:005, err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:004

3� 2� 2

r
2:920 ¼ 0:078

CD0:01 var � PMð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
rp

s
t0:005, err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:004

6

r
2:920

¼ 0:111

CD0:01 tempð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
r:mn

r
t0:005,err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:004

3� 2� 2

r
2:920 ¼ 0:078

CD0:01 var � tempð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
rn

r
t0:005,err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:004

6

r
2:920

¼ 0:111

CD0:01 PM � tempð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
rm

r
t0:005, err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:004

6

r
2:920

¼ 0:111

CD0:01 var � PM � tempð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr

r

r
t0:005,err:d:f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:004

3

r
2:920

¼ 0:157

Now let us make the mean tables for comparison.

Variety Mean CD
V2 28.263 0.078
V1 27.148
Packing 
Material
P2 28.115 0.078
P1 27.296
Var X PM
V2P2 28.832 0.078
V2P1 27.695
V1P2 27.398
V1P1 26.897
Temperature
T2 28.114 0.111
T1 27.297
PM X Temp
P2T2 28.603 0.111
P2T1 27.627
P1T2 27.625
P1T1 26.967
Var X Temp
V2T2 28.582 0.111
V2T1 27.945
V1T2 27.647
V1T1 26.648
Var X PM X 
Temp
V2P2T2 29.283 0.157
V2P2T1 28.380
V1P2T2 27.923
V2P1T2 27.880
V2P1T1 27.510
V1P1T2 27.370
V1P2T1 26.873
V1P1T1 26.423

From the above tables after comparison

of pairwise differences of means with corres-

ponding CD values, one can conclude that

(i) variety V2 is the best between the two

varieties, (ii) packaging material 2 is the best

in between the packaging materials, (iii)
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temperature T2 is the best temperature in

maintaining the reducing sugar in papaya bar,

(iv) combinations of variety 2 and packaging

material 2 are the best among four combinations,

(v) similarly the combination of P2T2 and V2T2

is the best in maintaining reducing sugar, and

(vi) combinations of variety 2, packaging mate-

rial 2, and temperature 2 are the best combination

to maintain reducing sugar in papaya jelly bar

after 45 days of storing.

11.3.1.2 Model for 23 Factorial RBD
Experiment

Let us suppose a 23 factorial experiment is

conducted in an RBD with r blocks with three

factors A, B, and C each at two levels. Then there

would be eight treatment combinations A1B1C1,

A1B1C2, A1B2C1, A1B2C2, A2B1C1, A2B2C1,

A2B1C2, and A2B2C2, and the data structure for

the same experiment would be as follows:

Replication

C1 C2

B1 B2 B1 B2

A1 A2 A1 A2 A1 A2 A1 A2

R1 y1111 y2111 y1211 y2211 y1121 y2121 y1221 y2221
R2 y1112 y2112 y1212 y2212 y1122 y2122 y1222 y2222
: : : : : : : : :

: : : : : : : : :

Rr y111n y211n y121n y221n y112n y212n y122n y222n

Corresponding model is given as follows:

yijkl ¼ μþ αi þ βj þ γk þ αβð Þij þ αγð Þik
þ βγð Þjk þ αβγð Þijk þ δl þ eijkl

where i ¼ 1, 2; j ¼ 1, 2; k ¼ 1, 2; and l ¼ 1,

2, 3, . . .., r
yijkl ¼ response in lth replicate due to ith level of

the first factor A and jth level of the second

factor B and kth level of the third factor C

μ ¼ general effect

αi ¼ additional effect due to ith level of the first

factor A,
X

αi ¼ 0

βj ¼ additional effect due to jth level of the

second factor B,
X

βj ¼ 0

γk ¼ additional effect due to kth level of the third

factor C,
X

γk ¼ 0

(αβ)ij ¼ interaction effect of the ith level of the

first factor A and jth level of the second

factor B,
X
i

αβð Þij ¼
X
j

αβð Þij ¼ 0

(αγ)ik ¼ interaction effect of the ith level of the

first factor A and kth level of the third

factor C,
X
i

αγð Þik ¼
X
k

αγð Þik ¼ 0

(βγ)jk ¼ interaction effect of the jth level of the

second factor B and kth level of the third

factor C,
X
j

βγð Þjk ¼
X
k

βγð Þjk ¼ 0

(αβγ)ijk ¼ interaction effect of the ith level of the

first factor A, jth level of the second factor B,

and kth level of the third factor C,
X
i

αβγð Þijk
¼

X
j

αβγð Þijk ¼
X
k

αβγð Þijk ¼ 0

δl ¼ additional effect due to lth replicationX
l

δl ¼ 0

eijkl ¼ error component associated with lth repli-

cate due to ith level of the first factor A and jth

level of the second factor B and kth level of

the third factor C and eijkl ~ i.i.d. N(0, σ2)

Hypothesis to be tested:

H01 : δ1 ¼ δ2 ¼ ::::::: ¼ δl against
H11 : δ1 6¼ δ2 6¼ ::::::: 6¼ δl

H02 : α1 ¼ α2 against H12 : α1 6¼ α2
H03 : β1 ¼ β2 against H13 : β1 6¼ β2
H04 : γ1 ¼ γ2 against H14 : γ1 6¼ γ2
H05 : α1β1 ¼ α1β2 ¼ α2β1 ¼ α2β2 against H15;

all αβð Þij0s are not equal
H06 : α1γ1 ¼ α1γ2 ¼ α2γ1 ¼ α2γ2 against H16;

all αγð Þik 0s are not equal
H07 : β1γ1 ¼ β1γ2 ¼ β2γ1 ¼ β2γ2 against H17;

all βγð Þjk 0s are not equal
H08 : All αβγð Þijk 0s are equal against H18;

all αβγð Þijk 0s are not equal

Let the level of significance be α.
Now we calculate the following quantities:

G ¼
X
i, j, k, l

yijkl and CF ¼ G2

23r
.

SSTot ¼
X
i, j, k, l

y2ijkl � CF.
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SSR¼
Xr

l¼1

R2
l

23
� CFwhere Rl is the total of all the

observations in the lth block.

SSEr ¼ SSTot – SSR – SS(A) – SS(B) – SS(AB) – SS(C)
– SS(AC) – SS(BC) – SS(ABC).

The first-order interaction sums of squares are

worked out from the two-way table of totals of

the factors involved, and the third-way interac-

tion effects are worked out by framing three-way

table of all the eight treatment combinations

totaled over r replications.

Table of two-way interaction totals (A and B):

B1 B2 Total (TAi)

A1 A1B1 A1B2
X
j, k, l

A1...

A2 A2B1 A2B2
X
j, k, l

A2...

Total (TBj)
X
i, k, l

B:1::

X
i, k, l

B:2::

AiBjs are totals of 2r observations in which
AiBj has occurred:

SS Að Þ ¼

X
i

TAið Þ2

2� 2� r � CF;

SS Bð Þ ¼

X
j

TBj

� �2

2� 2� r � CF, and

Table of two-way interaction totals (A and C):

C1 C2 Total (TAi)

A1 A1C1 A1C2
X
j, k, l

A1...

A2 A2C1 A2C2
X
j, k, l

A2...

Total (TCk)
X
i, j, l

C::1:

X
i, j, l

C::2:

AiCk’s are totals of 2r observations in which

AiCk has occurred:

SS Cð Þ ¼

X
k

TCkð Þ2

2� 2� r � CF and

SS ACð Þ ¼

X
i

X
j

AiCkð Þ2

2r
� CF

Table of two-way interaction totals (B and C):

B1 B2 Total (TCk)

C1 C1B1 C1B2
X
i, j, l

C::1:

C2 C2B1 C2B2
X
i, j, l

C::2:

Total (TBj)
X
i, k, l

B:1::

X
i, k, l

B:2::

BjCk’s are totals of 2r observations in which
BjCk has occurred:

SS BCð Þ ¼

X
i

X
j

BjCk

� �2
2r

� CF

Table of three-way interaction totals (A, B and C):

Treatment combinations R1 R2............................. Rk Treatment total (Tm; m ¼ 1, 2, . . ., 8)

A1B1C1 A1B1C1R1 A1B1C1R2................... A1B1C1Rk Xr

l ¼1

A1B1 C1ð Þl
A1B1C2 A1B1C2R1 A1B1C2R2.................... A1B1C2Rk Xr

l¼1

A1B1C2ð Þl
A1B2C1 A1B2C1R1 A1B2C1R2................. A1B2C1Rk Xr

l¼1

A1B2 C1ð Þl
A1B2C2 A1B2C2R1 A1B2C2R2................. A1B2C2Rk Xr

l¼1

A1B2C2ð Þl
A2B1C1 A2B1C1R1 A2B1C1R2................. A2B1C1Rk Xr

l¼1

A2B1 C1ð Þl
A2B1C2 A2B1C2R1 A2B1C2R2................. A2B1C2Rk Xr

l¼1

A2B1 C2ð Þl
A2B2 C1 A2B2 C1 R1 A2B2 C1 R2................. A2B2 C1 Rk Xr

l¼1

A2B2 C1ð Þl
A2B2C2 A2B2C2R1 A2B2C2R2................. A2B2C2Rk Xr

l¼1

A2B2 C2ð Þl

SS ABð Þ ¼

X
i

X
j

AiBj

� �2
2r

� CF
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SS ABCð Þ ¼

X8
m¼1

T2
m

r
� CF

The structure of the analysis of variance for 23

factorial experiment in a randomized complete

block design is given as follows:

SOV d.f. SS MS F

Replication r�1 SS(R) MSR ¼ SS(R)/(r�1) MSR/
MSEr

A 1 SS(A) MS(A) ¼ SS(A)/1 MS(A)/
MSEr

B 1 SS(B) MS(B) ¼ SS(B)/1 MS(B)/
MSEr

AB 1 SS(AB) MS(AB) ¼ SS(AB)/1 MS(AB)/
MSEr

C 1 SS(C) MS(C) ¼ SS(C)/1 MS(C)/
MSEr

AC 1 SS(AC) MS(AC) ¼ SS(AC)/1 MS(AC)/
MSEr

BC 1 SS(BC) MS(BC) ¼ SS(BC)/1 MS(BC)/
MSEr

ABC 1 SS(ABC) MS(ABC) ¼ SS(ABC)/
1

MS(ABC)/
MSEr

Error (r�1)

(23�1)

SSEr MSEr ¼ SSEr/(r�1)

(23�1)

Total 23.r�1 SSTot.

If the calculated value of F for any effect

be greater than the corresponding tabulated

value of F at α level of significance and

specific degrees of freedom, then the corres-

ponding factorial effect is significant, and

the respective null hypothesis of equality is

rejected; otherwise, the test is nonsignificant

and the respective null hypothesis cannot be

rejected. In the event of significance of any one

of the seven F tests, we are to follow as given

below:

1. If the F test corresponding to the replication

be significant, then we are to calculate the

LSD/CD value for identifying which are the

replications significantly different from each

other using the following formula: LSD=CD

αð Þ for replication ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MSE
2�2�2

q
tα=2;err d:f :

2. If any one of the three F tests corresponding to

main effects of three factors be significant at

specified level of significance, the higher

mean value corresponding to the level of the

factor is declared the best level for that partic-

ular factor.

3. For first-order interactions (i.e., (αβ)ij or

(αγ)ikor(βγ)jk), we are to calculate the LSD/

CD value as follows:

LSD=CD αð Þ for A=B=C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

2� r

r
tα=2;err d:f :

If the difference between means of any pair of

treatment combination be greater than the

corresponding CD value, then these two

means under comparison are declared signifi-

cantly different from each other, and the treat-

ment combination having better value is

treated as the better one.

4. If the F test corresponding to second-order

interactions (i.e., (αβγ)ijk) be significant, we

are to calculate the LSD/CD value as follows:

LSD=CD αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2MSE

r

r
tα=2;err d:f :

If the difference between means of any pair of

treatment combination be greater than the

corresponding CD value, then these two

means under comparison are declared signifi-

cantly different from each other, and the treat-

ment combination having better value is

treated as the better one.

Example 11.8 (Three-Factor Symmetrical 23

Factorial RBD)

In a field trial of lentil with two varieties

(PL639 and B77), two sowing times and two

doses of potash were assessed to find out

the best variety under the best sowing time and

best dose of potash. The experiment was

conducted in a randomized block design with

three replications. The following table gives the

ten seed weights (g) in response to different
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treatments. Analyze the information and draw

your conclusion:

Solution From the given information, it appears

that the experiment was conducted with three

treatments variety, sowing time, and potassium

fertilizer, each at two levels; hence it can be

treated as a 23 factorial experiment conducted

in a randomized block design with three

replications.

So the appropriate model will be

yijkl ¼ μþ αi þ βj þ γk þ αβð Þij þ αγð Þik
þ βγð Þjk þ αβγð Þijk þ δl þ eijkl

where i ¼ 1, 2; j ¼ 1, 2; k ¼ 1, 2; and l ¼ 1, 2, 3

yijkl ¼ response in lth replicate due to ith variety

and jth sowing time and kth dose of potash

μ ¼ general effect

αi ¼ additional effect due to ith variety,X
αi ¼ 0

βj ¼ additional effect due to jth sowing time,X
βj ¼ 0

γk ¼ additional effect due to kth dose of potash,X
γk ¼ 0

(αβ)ij ¼ interaction effect due to ith variety and

jth sowing time,
X
i

αβð Þij ¼
X
j

αβð Þij ¼ 0

(αγ)ik ¼ interaction effect due to ith variety and

kth potash,
X
i

αγð Þik ¼
X
k

αγð Þik ¼ 0

(βγ)jk ¼ interaction effect of the jth sowing time

and lth dose of potash,X
j

βγð Þjk ¼
X
k

βγð Þjk ¼ 0

(αβγ)ijk ¼ interaction effect due ith variety, jth

sowing time, and kth dose of potash,X
i

αβγð Þijk ¼
X
j

αβγð Þijk ¼
X
k

αβγð Þijk ¼ 0

δl ¼ additional effect due to lth replication,X
l

δl ¼ 0

eijkl ¼ error component associated with lth repli-

cate due to ith variety and jth sowing time and

kth dose potash and eijkl ~ i.i.d. N(0, σ2)

Hypothesis to be tested:

H01 : δ1 ¼ δ2 ¼ δ3 against H11 : δ1 6¼ δ2 6¼ δ3
H02 : α1 ¼ α2 against H12 : α1 6¼ α2
H03 : β1 ¼ β2 against H13 : β1 6¼ β2
H04 : γ1 ¼ γ2 against H14 : γ1 6¼ γ2
H05 : α1β1 ¼ α1β2 ¼ α2β1 ¼ α2β2 against H15 :

all αβð Þij0s are not equal
H06 : α1γ1 ¼ α1γ2 ¼ α2γ1 ¼ α2γ2 against H16 :

all αγð Þik 0s are not equal
H07 : β1γ1 ¼ β1γ2 ¼ β2γ1 ¼ β2γ2 against H17 :

all βγð Þjk 0s are not equal
H08 : all αβγð Þijk 0s are equal against H18 :

all αβγð Þijk 0s are not equal

Let the level of significance be α ¼ 0.05.

Now we calculate the following quantities:

G ¼
X
i, j, k, l

yijkl ¼ 1:95þ 2:07þ 2:07þ :::::

þ 1:69þ 2:45þ 2:17 ¼ 48:2

and

CF ¼ G2

23r
¼ 48:22

23:3
¼ 96:80

SSTOT ¼
X
i, j, k, l

y2ijkl � CF

¼ 1:952 þ 2:072 þ 2:072 þ :::::þ 1:692

þ 2:452 þ 2:172 � 96:80
¼ 1:342

Variety PL639 B77

Sowing time S1 S2 S1 S2

Potash K1 K2 K1 K2 K1 K2 K1 K2

Ten seed weights (g)

Rep-1 1.95 2.07 2.07 1.88 1.73 1.65 2.47 2.11

Rep-2 1.97 2.09 2.1 1.9 1.75 1.67 2.5 2.15

Rep-3 1.92 2.07 2.14 1.93 1.77 1.69 2.45 2.17
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SSR ¼
Xr

l¼1

R2
l

23
� CF ¼

X3
l¼1

R2
l

23
� CF

¼ 15:932 þ 16:132 þ 16:142

8
� 96:80

¼ 0:003

Rl is the total of all the observations in the lth

block.

From the above table, first let us form the

following tables of totals and from the tables

get the following quantities:

Table of totals for variety � sowing time:

Sowing time

Variety

V1 V2 Total Mean

S1 12.070 10.260 22.330 1.396

S2 12.020 13.850 25.870 1.617

Total 24.090 24.110

Mean 1.506 1.507

SS Varð Þ ¼ 1

m� p� r

X2
j¼1

y2
:j::
� CF

¼ 24:0902 þ 24:1102

2� 2� 3
� 96:80

¼ 0:00002

SS STð Þ ¼ 1

n� p� r

X2
i¼1

y2
i...
� CF

¼ 22:3302 þ 25:8702

2� 2� 3
� 96:80

¼ 0:52215

SS Var�STð Þ¼
1

n�r

XX
y2
ij::
�CF�SS Varð Þ�SS STð Þ

¼12:0702þ12:0202þ10:2602þ13:8502

2�3

�90:80�0:00002�0:52215¼0:55206

Table of totals for sowing time � potassium:

Potassium

Sowing time

S1 S2 Total Mean

K1 11.09 13.73 24.820 1.551

K2 11.24 12.14 23.380 1.461

Total 22.330 25.870

Mean 1.396 1.617

SS Potð Þ ¼ 1

m� n� r

X2
k¼1

y2
::k:
� CF

¼ 24:8202 þ 23:3802

2� 2� 3
� 90:80 ¼ 0:08640

SS ST�Potð Þ ¼ 1

n�r

X2
i¼1

X2
k¼1

y2
i:k:
�CF�SS STð Þ�SS Potð Þ

¼11:092þ11:242þ13:732þ12:142

2�3

�90:80�0:52215�0:08640¼0:12615

Table of totals for variety � potassium:

Potassium

Variety

V1 V2 Total Mean

K1 12.15 11.94 24.090 1.506

K2 12.67 11.44 24.110 1.507

Total 24.820 23.380

Mean 1.551 1.461

SS Var � Potð Þ ¼ 1

m� r

X2
j¼1

X2
k¼1

y2
:jk:
� CF� SS Varð Þ

�SS Potð Þ ¼ 12:152 þ 12:672 þ 11:942 þ 11:442

2� 3

�90:80� 0:00002� 0:08640 ¼ 0:04335

Table totals for variety � sowing time x potas-
sium (treatments):

V1 V2

S1 S2 S1 S2 Total Mean

K1 5.84 6.31 5.25 7.42 12.670 2.068

K2 6.23 5.71 5.01 6.43 11.440 1.948

Total 12.070 12.020 10.260 13.850

Mean 2.012 2.003 1.710 2.308

SS Var�ST�Potð Þ ¼ 1

r

X2
i¼1

X2
j¼1

X2
k¼1

y2
:jk:
� CF� SS Varð Þ

�SS STð Þ � SS Potð Þ � SS ST�Varð Þ � SS ST�Potð Þ

� SS Var�Potð Þ

¼ 5:842 þ 6:232 þ : : : : : : : þ 7:422 þ 6:432

3

� 90:80� 0:00002� 0:52215� 0:08640

�0:55207� 0:12615� 0:04335 ¼ 0:00240

Each SS has 1 d.f.:
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SSEr ¼ SSTOT � SSR � SSV � SSS � SSVS
� SSK � SSVK � SSSK � SSVSK

¼ 1:3425� 0:0035� 0:000017� 0:522
� 0:552� 0:0864� 0:043� 0:126� 0:0024
¼ 0:0064

The structure of the analysis of variance for this

factorial experiment in a randomized complete

block design is given as follows:

SOV s SS MS F
Tab
F

Replication r�1 ¼ 2 0.00351 0.00175 3.783 3.739

V 1 0.00002 0.00002 0.036 NS 4.600

S 1 0.52215 0.52215 1126.074 4.600

VS 1 0.55207 0.55207 1190.593 4.600

K 1 0.08640 0.08640 186.331 4.600

VK 1 0.04335 0.04335 93.489 4.600

SK 1 0.12615 0.12615 272.056 4.600

VSK 1 0.00240 0.00240 5.176 4.600

Error (r�1)

(23�1) ¼ 14

0.00649 0.00046

Total 23.r�1 ¼ 23 1.34253

From the above ANOVA table, it is clear

that all the effects are significant, except the

main effect of variety. Thus there is no varietal

effect on seed weight of lentil. So far as the

best sowing time and dose of potassium are

concerned, the dose having higher mean values

in respective cases would be preferred. So S2

and K1 would be preferred over S1 and K2,

respectively.

Now we are to find out the interaction

effects of different factors which are significantly

different from others. For the purpose we are

to calculate the critical difference values for

all the three first-order and the second-order

interactions using the following formulae:

CD 0:05ð Þ for variety � sowing time ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

pr

s
�

tα=2 ;error d:f :
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00046

2� 3

r
� t0:025;14:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00046

2� 3

r
� 2:144 ¼ 0:0265

CD 0:05ð Þ for sowing time � potassium

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

mr

r
� tα=2;error d:f :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00046

2� 3

r
� t0:025;14: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00046

2� 3

r
� 2:144

¼ 0:0265CD 0:05ð Þ for variety � potassium

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

nr

r
� tα=2;error d:f :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00046

2� 3

r
� t0:025;14: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00046

2� 3

r
� 2:144

¼ 0:0265CD 0:05ð Þ for variety � sowing time

� potassium

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

r

r
� tα=2;error d:f :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00046

2� 3

r
� t0:025;14: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00046

2� 3

r
� 2:144

¼ 0:037
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Our next step is to construct the mean table.

Yield
CD 
(0.05)

Variety X Sowing time
V2S2 2.308 0.0265
V1S1 2.012
V1S2 2.003
V2S1 1.710
Variety X Potassium
V1K2 2.112 0.0265
V1K1 2.025
V2K1 1.990
V2K2 1.907
Sowing Time X Potassium
S2K1 2.288 0.0265
S2K2 2.023
S1K2 1.873
S1K1 1.848
Variety X Sowing Time X Potassium
V2S2K1 2.473 0.037
V2S2K2 2.143
V1S2K1 2.103
V1S1K2 2.077
V1S1K1 1.947
V1S2K2 1.903
V2S1K1 1.750
V2S1K2 1.670

Hence from the analyses, we can conclude

that:

1. Two varieties are equally effective w.r.t seed

wt.

2. Sowing time (S2) is better than S1.

3. Potassium level K1 is better than K2.

4. In the case of interaction effect variety �
sowing time, V2S2 is superior over others.

5. All the interaction effects of variety � potas-

sium are giving different effects. Treatment

combination V1K2 is best among them.

6. Among the sowing time � potassium

interactions, S2K1 is better than reaming.

7. In the case of the second-order interaction,

i.e., variety � sowing time � potassium,

V2S2K1 is giving significantly higher yield

over reaming all the interactions, whereas

V2S1K2 is giving less yield.
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Example 11.8 Now let us demonstrate how this

23 analysis can be done using SPSS.

Step 1: Enter data as shown above.

Step 2: Select the General Linear Model

followed by Univariate option.
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Step 3: Select the variables in the appropriate

box.

Step 4: Specify the model.
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Step 5: Select appropriate options to get the

desired output.

Step 6: Select Continue and go to get the

following output.

Univariate analysis of variance:

Between-Subjects Factors
N

R 1 8
2 8
3 8

V 1 12
2 12

S 1 12
2 12

K 1 12
2 12
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Dependent Variable:Y
R V S K Mean Std. Deviation N
1 1 1 1 1.9500 . 1

2 2.0700 . 1
Total 2.0100 .08485 2

2 1 2.0700 . 1
2 1.8800 . 1
Total 1.9750 .13435 2

Total 1 2.0100 .08485 2
2 1.9750 .13435 2
Total 1.9925 .09394 4

2 1 1 1.7300 . 1
2 1.6500 . 1
Total 1.6900 .05657 2

2 1 2.4700 . 1
2 2.1100 . 1
Total 2.2900 .25456 2

Total 1 2.1000 .52326 2
2 1.8800 .32527 2
Total 1.9900 .37771 4

Total 1 1 1.8400 .15556 2
2 1.8600 .29698 2
Total 1.8500 .19391 4

2 1 2.2700 .28284 2
2 1.9950 .16263 2
Total 2.1325 .24636 4

Total 1 2.0550 .31043 4
2 1.9275 .21046 4
Total 1.9912 .25481 8

2 1 1 1 1.9700 . 1
2 2.0900 . 1
Total 2.0300 .08485 2

2 1 2.1000 . 1
2 1.9000 . 1
Total 2.0000 .14142 2

Total 1 2.0350 .09192 2
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2 1.9950 .13435 2
Total 2.0150 .09678 4

2 1 1 1.7500 . 1
2 1.6700 . 1
Total 1.7100 .05657 2

2 1 2.5000 . 1
2 2.1500 . 1
Total 2.3250 .24749 2

Total 1 2.1250 .53033 2
2 1.9100 .33941 2
Total 2.0175 .38413 4

Total 1 1 1.8600 .15556 2
2 1.8800 .29698 2
Total 1.8700 .19391 4

2 1 2.3000 .28284 2
2 2.0250 .17678 2
Total 2.1625 .24958 4

Total 1 2.0800 .31507 4
2 1.9525 .21639 4
Total 2.0162 .25934 8

3 1 1 1 1.9200 . 1
2 2.0700 . 1
Total 1.9950 .10607 2

2 1 2.1400 . 1
2 1.9300 . 1
Total 2.0350 .14849 2

Total 1 2.0300 .15556 2
2 2.0000 .09899 2
Total 2.0150 .10786 4

2 1 1 1.7700 . 1
2 1.6900 . 1
Total 1.7300 .05657 2

2 1 2.4500 . 1
2 2.1700 . 1
Total 2.3100 .19799 2

Total 1 2.1100 .48083 2
2 1.9300 .33941 2
Total 2.0200 .35534 4

Total 1 1 1.8450 .10607 2

416 11 Factorial Experiment



2 1.8800 .26870 2
Total 1.8625 .16800 4

2 1 2.2950 .21920 2
2 2.0500 .16971 2
Total 2.1725 .21360 4

Total 1 2.0700 .29541 4
2 1.9650 .20809 4
Total 2.0175 .24312 8

Total 1 1 1 1.9467 .02517 3
2 2.0767 .01155 3
Total 2.0117 .07333 6

2 1 2.1033 .03512 3
2 1.9033 .02517 3
Total 2.0033 .11290 6

Total 1 2.0250 .09006 6
2 1.9900 .09654 6
Total 2.0075 .09087 12

2 1 1 1.7500 .02000 3
2 1.6700 .02000 3
Total 1.7100 .04733 6

2 1 2.4733 .02517 3
2 2.1433 .03055 3
Total 2.3083 .18247 6

Total 1 2.1117 .39671 6
2 1.9067 .26028 6
Total 2.0092 .33733 12

Total 1 1 1.8483 .10962 6
2 1.8733 .22322 6
Total 1.8608 .16817 12

2 1 2.2883 .20449 6
2 2.0233 .13382 6
Total 2.1558 .21517 12

Total 1 2.0683 .27797 12
2 1.9483 .19216 12
Total 2.0083 .24160 24
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Tests of Between-Subjects Effects
Dependent Variable:Y

Source
Type III Sum 

of Squares df Mean Square F Sig.
Corrected Model 1.336a 9 .148 320.147 .000
Intercept 96.802 1 96.802 2.088E5 .000
R .004 2 .002 3.783 .049
V 1.667E-5 1 1.667E-5 .036 .852
S .522 1 .522 1.126E3 .000
V * S .552 1 .552 1.191E3 .000
K .086 1 .086 186.331 .000
V * K .043 1 .043 93.489 .000
S * K .126 1 .126 272.056 .000
V * S * K .002 1 .002 5.176 .039
Error .006 14 .000
Total 98.144 24
Corrected Total 1.343 23
a. R Squared = .995 (Adjusted R Squared = .992)

Multiple Comparisons
Y
LSD

(I) R (J) R
Mean 

Difference (I-J) Std. Error Sig.
95% Confidence Interval

Lower Bound Upper Bound
1 2 -.0250* .01077 .036 -.0481 -.0019

3 -.0263* .01077 .029 -.0493 -.0032
2 1 .0250* .01077 .036 .0019 .0481

3 -.0013 .01077 .909 -.0243 .0218
3 1 .0263* .01077 .029 .0032 .0493

2 .0013 .01077 .909 -.0218 .0243
Based on observed means.
The error term is Mean Square(Error) = .000.

*. The mean difference is significant at the .05 level.

4. S * V
Dependent Variable:Y

S V Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 1 2.012 .009 1.993 2.031

2 1.710 .009 1.691 1.729
2 1 2.003 .009 1.984 2.022

2 2.308 .009 2.289 2.327
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6. K * V
Dependent Variable:Y

K V Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 1 2.025 .009 2.006 2.044

2 2.112 .009 2.093 2.131
2 1 1.990 .009 1.971 2.009

2 1.907 .009 1.888 1.926

7. K * S
Dependent Variable:Y

K S Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 1 1.848 .009 1.829 1.867

2 2.288 .009 2.269 2.307
2 1 1.873 .009 1.854 1.892

2 2.023 .009 2.004 2.042

8. K * S * V
Dependent Variable:Y

K S V Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 1 1 1.947 .012 1.920 1.973

2 1.750 .012 1.723 1.777
2 1 2.103 .012 2.077 2.130

2 2.473 .012 2.447 2.500
2 1 1 2.077 .012 2.050 2.103

2 1.670 .012 1.643 1.697
2 1 1.903 .012 1.877 1.930

2 2.143 .012 2.117 2.170

Estimates
Dependent Variable:Y

K Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 2.068 .006 2.055 2.082
2 1.948 .006 1.935 1.962
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Pairwise Comparisons
Dependent Variable:Y

(I) K (J) K
Mean 

Difference (I-J) Std. Error Sig.a

95% Confidence Interval for 
Differencea

Lower Bound Upper Bound
1 2 .120* .009 .000 .101 .139
2 1 -.120* .009 .000 -.139 -.101
Based on estimated marginal means
*. The mean difference is significant at the .05 level.
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments).

Univariate Tests
Dependent Variable:Y

Sum of Squares df Mean Square F Sig.
Contrast .086 1 .086 186.331 .000
Error .006 14 .000

Estimates
Dependent Variable:Y

S Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 1.861 .006 1.848 1.874
2 2.156 .006 2.143 2.169

Pairwise Comparisons
Dependent Variable:Y

(I) S (J) S
Mean 

Difference (I-J) Std. Error Sig.a

95% Confidence Interval for 
Differencea

Lower Bound Upper Bound
1 2 -.295* .009 .000 -.314 -.276
2 1 .295* .009 .000 .276 .314
Based on estimated marginal means
*. The mean difference is significant at the .05 level.
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments).

Sum of Squares df Mean Square F Sig.
Contrast .522 1 .522 1.126E3 .000
Error .006 14 .000
The F tests the effect of S. This test is based on the linearly independent 
pairwise comparisons among the estimated marginal means.
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Estimates
Dependent Variable:Y

V Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 2.008 .006 1.994 2.021
2 2.009 .006 1.996 2.022

Pairwise Comparisons
Dependent Variable:Y

(I) V (J) V
Mean 

Difference (I-J) Std. Error Sig.a

95% Confidence Interval for 
Differencea

Lower Bound Upper Bound
1 2 -.002 .009 .852 -.021 .017
2 1 .002 .009 .852 -.017 .021
Based on estimated marginal means
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments).

Univariate Tests
Dependent Variable:Y

Sum of Squares df Mean Square F Sig.
Contrast 1.667E-5 1 1.667E-5 .036 .852
Error .006 14 .000
The F tests the effect of V. This test is based on the linearly independent 
pairwise comparisons among the estimated marginal means.

Dependent Variable:Y

R Mean Std. Error
95% Confidence Interval

Lower Bound Upper Bound
1 1.991 .008 1.975 2.008
2 2.016 .008 2.000 2.033
3 2.018 .008 2.001 2.034

Pairwise Comparisons
Dependent Variable:Y

(I) R (J) R
Mean

Difference (I-J) Std. Error Sig.a

95% Confidence Interval for 
Differencea

Lower Bound Upper Bound
1 2 -.025* .011 .036 -.048 -.002

3 -.026* .011 .029 -.049 -.003
2 1 .025* .011 .036 .002 .048

3 -.001 .011 .909 -.024 .022
3 1 .026* .011 .029 .003 .049

2 .001 .011 .909 -.022 .024
Based on estimated marginal means
*. The mean difference is significant at the .05 level.
a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no 
adjustments).
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Univariate Tests
Dependent Variable:Y

Sum of Squares df Mean Square F Sig.
Contrast .004 2 .002 3.783 .049
Error .006 14 .000
It is to be noted that the output, not only through SPSS, but from any 
statistical software depends on programme concerned and the instruction fed 
to the programme during execution. The experimenter, must have clear idea 
about the particular type of analysis required and the corresponding 
instruction to be provided during analysis using a particular software, 
otherwise interpretation of the results would be difficult as well as may be 
misleading.  

11.3.2 m � n � p Asymmetrical
Factorial Experiment

The more general class of three-factor factorial

experiments is the m � n � p factorial

experiments, in which three factors are included

in the experiment, each having different levels,

viz., m, n, and p levels. Thus, we are talking

about three-factor asymmetrical factorial experi-

ments. In three-factor asymmetrical factorial

experiment, at least one factor will have a differ-

ent level than the other two factors. Three-factor

symmetrical factorial experiments are the special

case of three-factor factorial experiments in

which all the three factors have the same level.

A three-factor factorial experiment can be

conducted using basic CRD, RBD, or LSD

design. But the problem with LSD is that even

at the lowest level of three-factor symmetrical

factorial experiment, i.e., 23 factorial experi-

ment, we require an experimental plot of at

least 8 � 8 experimental unit and for the lowest

three-factor asymmetrical factorial experiment,

i.e., 2 � 2 � 3 factor asymmetrical factorial

experiment, require at least a plot of 12� 12

number of experimental units. In reality the num-

ber of experimental units required to conduct a

factorial experiment under LSD setup is much

higher compared to either CRD or RBD design.

As such three-factor and more than three-factor

factorial experiments are generally conducted in

CRD or RBD design.

The analysis of three-factor asymmetrical fac-

torial experiment will be similar to that of the

three-factor symmetrical factorial experiment
with different levels of the factors under experi-

mentation. As such the calculation procedure to

get different sums of squares would be the same
as we have discussed in three-factor symmetrical

factorial experiments. We shall demonstrate the

analysis of three-factor asymmetrical factorial

experiment using practical problem.

Example 11.9 (3 � 3 � 4 Three-Factor Asym-

metrical Factorial CRD)

An experiment was conducted with 108 cows of

almost similar nature to know the fat content of

milk from three breeds of cows feed with three

different concentrates from four localities. Three

cows were subjected to each of the 36 treatment

combinations. Analyze the data to find out the

best cow breed, best feed, best locality, and best

interaction effects among the factors with high

milk fat content:
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Solution From the given information, it is clear

that the response data from the experiment could

be analyzed using the procedure of asymmetrical

(3 � 3 � 4) factorial experiment conducted

with three replications under laboratory condi-

tion. So the data can be analyzed as per the

analysis of three-factor factorial completely

randomized design, and the appropriate statisti-

cal model for the analysis will be

yijkl ¼ μþ αi þ βj þ αβð Þij þ γk þ αγð Þik
þ βγð Þjk þ αβγð Þijk þ eijkl

where i ¼ 3, j ¼ 3, k ¼ 4, and l ¼ 3

yijkl ¼ response in lth cow of ith breed feeding

with jth concentrates from kth locality

μ ¼ general effect

αi ¼ additional effect due to ith breed,
P

αi ¼ 0

βj ¼ additional effect due to jth concentrates,P
βj ¼ 0

γk ¼ additional effect due to kth locality,P
γk ¼ 0

(αβ)ij ¼ interaction effect of the ith breed and jth
concentrate,

P
i

αβð Þij ¼
P
j

αβð Þij ¼ 0

(αγ)ik ¼ interaction effect of the ith breed and kth

of locality,
P
i

αγð Þik ¼
P
k

αγð Þik ¼ 0

(βγ)jk ¼ interaction effect of the jth concentrate

and kth locality,
P
j

βγð Þjk ¼
P
k

βγð Þjk ¼ 0

(αβγ)ijk ¼ interaction effect of the ith breed feed-

ing with jth concentrates in kth locality,P
i

αβγð Þijk ¼
P
j

αβγð Þijk ¼
P
k

αβγð Þijk ¼ 0

eijkl ¼ error component associated with lth cow

of ith breed feeding with jth concentrates from

kth locality and eijkl ~ i.i.d. N(0, σ2)

Hypothesis to be tested:

H01 : α1 ¼ α2 ¼ α3 ¼ 0

H02 : β1 ¼ β2 ¼ β3 ¼ 0

H03 : γ1 ¼ γ2 ¼ γ3 ¼ γ4 ¼ 0

H04 : all interaction first‐ and second‐orderð Þ
effects are equal to zero

against

H11 : all α0s are not equal to zero
H12 : all β0s are not equal to zero
H13 : all γ0s are not equal to zero
H14 : all interaction first‐ and second‐orderð Þ

effects are not equal to zero

Breed B1

Feed F1 F2 F3

Locality L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

Cow1 5.12 5.21 5.14 5.16 5.23 5.22 5.14 5.2 5.21 5.12 5.18 5.27

Cow2 5.07 5.20 5.13 5.11 5.19 5.16 5.13 5.15 5.17 5.06 5.14 5.24

Cow3 5.18 5.23 5.16 5.22 5.28 5.30 5.16 5.26 5.26 5.20 5.23 5.30

Breed B2

Feed F1 F2 F3

Locality L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

Cow1 5.32 5.51 5.64 5.46 5.63 5.32 5.64 5.5 5.31 5.52 5.28 5.37

Cow2 5.37 5.46 5.55 5.48 5.61 5.41 5.55 5.52 5.36 5.54 5.33 5.39

Cow3 5.27 5.50 5.63 5.41 5.59 5.26 5.63 5.45 5.27 5.46 5.24 5.35

Breed B3

Feed F1 F2 F3

Locality L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

Cow1 5.21 5.34 5.36 5.29 5.40 5.26 5.36 5.33 5.25 5.29 5.22 5.31

Cow2 5.26 5.38 5.41 5.36 5.47 5.32 5.41 5.40 5.29 5.38 5.26 5.34

Cow3 5.18 5.33 5.35 5.26 5.38 5.23 5.35 5.30 5.23 5.26 5.20 5.30

11.3 Three-Factor Factorial Experiments 423



Let the level of significance be α ¼ 0.01.

Grand total GTð Þ ¼ 5:12þ 5:07þ : : : : : : : þ 5:34

þ 5:30¼ 574:13

Correction factor CFð Þ ¼ GT2

mnpr
¼ 574:132

3� 3� 4� 3
¼ 3052:085

Total sum of square SSTotð Þ ¼ 5:122 þ 5:072 þ : : : : : : : þ 5:342 þ 5:302 � 3052:085

¼ 2:062

Treatment sum of square SSTð Þ ¼ 46:982 þ 48:162 þ :::::::::::: þ 47:082 þ 47:872

3
� 3052:085

¼ 1:9229

Error sum of square SSEr:ð Þ ¼ SSTot � SST ¼ 2:0625� 1:9229 ¼ 0:1396

From the given data, let us construct the follow-

ing tables of totals and from the tables get the

following quantities:

Feed

Breed Total Mean

B1 B2 B3

F1 61.93 65.60 63.73 191.26 5.31

F2 62.42 66.11 64.21 192.74 5.35

F3 62.38 64.42 63.33 190.13 5.28

Total 186.73 196.13 191.27

Mean 5.19 5.45 5.31

SS Breedð Þ ¼ 1

npr

X3
i¼1

y2i... � CF ¼ 186:732 þ 196:132 þ 191:272

36
� 3052:085

¼ 1:227

SS Feedð Þ ¼
1

mpr

X3
j¼1

y2:j:: � CF ¼ 191:262 þ 192:742 þ 190:132

36
� 3052:085

¼ 0:0951
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SS Breed � Feedð Þ ¼ 1

pr

X3
i¼1

X3
j¼1

y2ij:: � CF� SSBreed � SSFeed

¼ 61:932 þ 62:422 þ ::::::::::::::::þ 64:212 þ 63:332

12
� 3052:085� 1:227� 0:0951

¼ 0:0747

Location

Breed

Total MeanB1 B2 B3

L1 46.71 48.73 47.67 143.11 5.30

L2 46.70 48.98 47.79 143.47 5.31

L3 46.41 49.49 47.92 143.82 5.33

L4 46.91 48.93 47.89 143.73 5.32

Total 186.73 196.13 191.27

Mean 5.19 5.45 5.31

SS Loc:ð Þ ¼ 1

mnr

X4
j¼1

y2::k: � CF ¼ 143:112 þ 143:472 þ 143:822 þ 143:732

9
� 3052:0857

¼ 0:0112

SS Breed�Locð Þ ¼ 1

mr

X3
i¼1

X4
k¼1

y2i:k: � CF� SSBreed � SSLoc

¼ 46:712 þ 46:702 þ ::::::::þ 47:922 þ 47:892

9
� 3052:0857� 1:2276� 0:0951

¼ 0:0420

Location

Feed

Total MeanF1 F2 F3

L1 46.98 48.78 47.35 143.11 5.30

L2 48.16 47.48 47.83 143.47 5.31

L3 48.37 48.37 47.08 143.82 5.33

L4 47.75 48.11 47.87 143.73 5.32

Total 191.26 192.74 190.13

Mean 5.31 5.35 5.28
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SS Feed�Locð Þ ¼ 1

nr

X3
j¼1

X4
k¼1

y2:jk: � CF� SSFeed � SSLoc

¼ 46:982 þ 48:162 þ :::::::::::þ 47:082 þ 47:872

9
� 3052:0857� 0:0951� 0:0112

¼ 0:2620

SS Breed�Feed�Locð Þ ¼ 1

r

X3
i¼1

X3
j¼1

X4
k¼1

y2ijk: � CF� SSBreed � SSFeed � SSLoc

�SSBreed�Feed � SSBreed�Loc � SSFeed�Loc

¼ 15:372 þ 15:642 þ ::::::::: þ 15:682 þ 15:952

3
� 3052:085� 1:227

�0:0951� 0:0112� 0:0747� 0:0420� 0:2620

¼ 0:2099

Feed

Breed

B1 B2 B3

Total MeanF1 F2 F3 F1 F2 F3 F1 F2 F3

Location L1 15.37 15.70 15.64 15.96 16.83 15.94 15.65 16.25 15.77 143.11 5.30

L2 15.64 15.68 15.38 16.47 15.99 16.52 16.05 15.81 15.93 143.47 5.31

L3 15.43 15.43 15.55 16.82 16.82 15.85 16.12 16.12 15.68 143.82 5.33

L4 15.49 15.61 15.81 16.35 16.47 16.11 15.91 16.03 15.95 143.73 5.32

Total 61.93 62.42 62.38 65.60 66.11 64.42 63.73 64.21 63.33

Mean 5.16 5.20 5.20 5.47 5.51 5.37 5.31 5.35 5.28
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ANOVA table

SOV d.f. SS MS Cal F

Tab

F at

1 %

Treatment 35 1.9229 0.0549 28.323 1.919

Breed 2 1.2277 0.6138 316.447 4.913

Feed 2 0.0952 0.0476 24.533 4.913

Breed �
feed

4 0.0748 0.0187 9.634 3.591

Location 3 0.0113 0.0038 1.935 NS 4.066

Breed �
location

6 0.0420 0.0070 3.609 3.063

Feed �
location

6 0.2621 0.0437 22.516 3.063

Breed �
feed �
location

12 0.2100 0.0175 9.020 2.442

Error 72 0.1397 0.0019

Total 107 2.0626

It is clear from the above table that levels of

all the factors, viz., breed, feed, and location,

including all interaction effects except the loca-

tion effect are significantly different from each

other. So our next task is to find out the best

level of these factors and their combinations.

For the purpose we are to calculate the critical

difference values for different factors and their

combinations using the following formulae:

CD0:01 breedð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
r:np

s
t0:005,err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:0019

3� 3� 4

r
2:645 ¼ 0:027

CD0:01 feedð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
r:mp

s
t0:005,err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:0019

3� 3� 4

r
2:645 ¼ 0:027

CD0:01 breed � feedð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
rp

s
t0:005, err:d:f

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:0019

3� 4

r
2:645 ¼ 0:047

CD0:01 breed � locationð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
rn

r
t0:005,err:d:f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:0019

3� 3

r
2:645

¼ 0:054

CD0:01 feed � locationð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
rm

r
t0:005,err:d:f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:0019

3� 3

r
2:645

¼ 0:054

CD0:01 breed � feed � locationð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr

r

r
t0:005, err:d:f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:0019

3

r
2:645 ¼ 0:095

Now our next task is to make the mean tables for

comparison.
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Example 11.10 (Three-Factor Asymmetrical

Factorial RBD)

A field experiment with three varieties of potato

and four levels of potassium on potato was tested

in two spacings in a randomized block design.

Yields (q/ha) for different treatment comb-

inations are given below for three replications.

Analyze the data to find out the best variety, best

dose of potassium, best spacing, and best inter-

action effects among the factors:

Breed Mean CD
Breed X Feed X 
Loca Mean CD

B2 5.448 0.027 B2F2L1 5.610 0.095
B3 5.313 B2F1L3 5.607
B1 5.187 B2F2L3 5.607
Feed Mean CD B2F3L2 5.507
F2 5.354 0.027 B2F1L2 5.490
F1 5.313 B2F2L4 5.490
F3 5.281 B2F1L4 5.450
Breed X Feed Mean CD B3F2L1 5.417
B2F2 5.509 0.047 B3F1L3 5.373
B2F1 5.467 B3F2L3 5.373
B2F3 5.368 B2F3L4 5.370
B3F2 5.351 B3F1L2 5.350
B3F1 5.311 B3F2L4 5.343
B3F3 5.278 B2F2L2 5.330
B1F2 5.202 B2F1L1 5.320
B1F3 5.198 B3F3L4 5.317
B1F1 5.161 B2F3L1 5.313
Breed X 
Location Mean CD B3F3L2 5.310
B2L3 5.499 0.054 B3F1L4 5.303
B2L2 5.442 B2F3L3 5.283
B2L4 5.437 B3F2L2 5.270
B2L1 5.414 B1F3L4 5.270
B3L3 5.324 B3F3L1 5.257
B3L4 5.321 B1F2L1 5.233
B3L2 5.310 B1F2L2 5.227
B3L1 5.297 B3F3L3 5.227
B1L4 5.212 B3F1L1 5.217
B1L1 5.190 B1F1L2 5.213
B1L2 5.189 B1F3L1 5.213
B1L3 5.157 B1F2L4 5.203
Feed X Location Mean CD B1F3L3 5.183
F2L1 5.420 0.054 B1F1L4 5.163
F1L3 5.374 B1F1L3 5.143
F2L3 5.374 B1F2L3 5.143
F1L2 5.351 B1F3L2 5.127
F2L4 5.346 B1F1L1 5.123
F3L4 5.319
F3L2 5.314
F1L4 5.306
F2L2 5.276
F3L1 5.261
F3L3 5.231
F1L1 5.220
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Solution From the given information, it is clear

that the experiment was an asymmetrical

(2 � 3 � 4) factorial experiment conducted in

randomized block design, so the appropriate sta-

tistical model for the analysis will be

yijkl ¼ μþ αi þ βj þ αβð Þij þ γk þ αγð Þik
þ βγð Þjk þ αβγð Þijk þ δl þ eijkl

where i ¼ 2, j ¼ 3, k ¼ 4, and l ¼ 3

yijkl ¼ response in lth replicate due to ith level of

the first factor (spacing) and jth level of the

second factor (variety) and kth level of the

third factor (potassium)

μ ¼ general effect

αi ¼ additional effect due to the ith level of the

first factor (spacing),
X

αi ¼ 0

βj ¼ additional effect due to the jth level of the

second factor (variety),
X

βj ¼ 0

γk ¼ additional effect due to the kth level of the

third factor (potassium),
X

γk ¼ 0

(αβ)ij ¼ interaction effect of the ith level of

the first factor (spacing) and jth level of

the second factor (variety),
X
i

αβð Þij ¼X
j

αβð Þij ¼ 0

(αγ)ik ¼ interaction effect of the ith level of

the first factor (spacing) and kth level of

the third factor (potassium),
X
i

αγð Þik ¼X
k

αγð Þik ¼ 0

(βγ)jk ¼ interaction effect of the jth level of

the second factor (variety) and kth level

of the third factor (potassium),
X
j

βγð Þjk ¼X
k

βγð Þjk ¼ 0

(αβλ)ijk ¼ interaction effect of the ith level of the

first factor (spacing), jth level of the second

factor (variety), and kth level of the third factor

(potassium),
X
i

αβλð Þijk ¼
X
j

αβλð Þijk ¼X
k

αβλð Þijk ¼ 0

δl ¼ additional effect due to lth replication,X
δl ¼ 0

eijkl ¼ error component associated with lth repli-

cate due to the ith level of the first factor

(spacing) and jth level of the second factor

(variety) and kth level of the third factor

(potassium) and eijkl ~ i.i.d. N(0, σ2)

Hypothesis to be tested:

H0 : α1 ¼ α2 ¼ 0

β1 ¼ β2 ¼ β3 ¼ 0

γ1 ¼ γ2 ¼ γ3 ¼ γ4 ¼ 0

δ1 ¼ δ2 ¼ δ3 ¼ 0

All interaction effects ¼ 0 against

H1 : allα0s are not equal
allβ0s are not equal
allγ0s are not equal
allδ0s are not equal

All interaction effects are not equal

Let the level of significance be 0.05.

From the given data table, let us calculate the

following quantities:

Grand total GTð Þ ¼
X2
i¼1

X3
j¼1

X4
k¼1

X3
l¼1

yijkl ¼ 14650

Correction factor CFð Þ ¼ GT2

2� 3� 4� 3

¼ 146502

72
¼ 2980868:056

SSTOT ¼
X2
i¼1

X3
j¼1

X4
k¼1

X3
l¼1

y2
ijkl
� CF ¼ 901:944

SSR ¼ 1

m:n:p

X3
l¼1

y2
oool

� CF

¼ 48352 þ 49102 þ 49052

24
� 2980868:056

¼ 146:527

From the above table, first let us form the follow-

ing tables and from the table get the following

quantities:

Table of totals for spacing � variety:

Variety

Spacing

S1 S2 Total Mean

V1 2424 2441 4865 202.708

V2 2422 2468 4890 203.750

V3 2434 2461 4895 203.958

Total 7280 7370

Mean 202.222 204.722
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SS Spað Þ ¼ 1

n�p�r

X2
i¼1

y2
iooo

�CF¼72802þ73702

3�4�3
�2980868:056¼ 112:5

SS Varð Þ ¼ 1

m� p� r

X3
j¼1

y2
ojoo

� CF ¼ 48652 þ 48902 þ 48952

2� 4� 3
� 2980868:056

¼ 21:527

SS Spa �Varð Þ ¼ 1

n� r

XX
y2
ijoo

�CF� SS Varð Þ � SS Spað Þ

¼ 24242 þ 24412 þ 24222 þ 24682 þ 24342 þ 24612

4� 3
� 2980868:056� 112:500� 21:527

¼ 18:083

Table of totals for spacing � potassium:

Potassium

Spacing

S1 S2 Total Mean

K0 1786 1815 3601 200.056

K1 1798 1841 3639 202.167

K2 1840 1848 3688 204.889

K3 1856 1866 3722 206.778

Total 7280 7370

Mean 202.222 204.722

SS Potð Þ ¼ 1

m� n� r

X4
k¼1

y2
ooko

� CF ¼ 36012 þ 36392 þ 36882 þ 37222

2� 3� 3
� 2980868:056

¼ 473:611

SS Spa � Potð Þ ¼ 1

n� r

X2
i¼1

X4
k¼1

y2
ioko

� CF� SS Spað Þ � SS Potð Þ

¼ 17862 þ 18152 þ :::::::::::þ 18562 þ 18662

3� 3
� 2980868:056� 112:500� 473:611

¼ 46:055
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Table of totals for variety � potassium:

SS Var � Potð Þ ¼ 1

m� r

X3
j¼1

X4
k¼1

y2
0jko

�CF� SS Varð Þ � SS Potð Þ

¼ 12002 þ 12022 þ 11992 þ : : : : : : :þ 12412 þ 12462

2� 3
� 2980868:056� 21:527� 473:611

¼ 15:805

Table of totals for spacing � variety � potas-

sium (treatments):

SS Spa�Var�Potð Þ ¼ 1

r

X2
i¼1

X3
j¼1

X4
k¼1

y2
0jko

� CF� SS Spað Þ � SS Varð Þ � SS Potð Þ � SS Spa�Varð Þ

�SS Spa�Potð Þ � SS Var�Potð Þ

¼ 5952 þ 5962 þ 5952 þ : : : : : : : þ 6252 þ 6262

3
� 2980868:056

� 112:500� 225:505� 21:527� 18:083� 46:055� 15:805

¼ 17:694

SS Erð Þ ¼ SSTOT � SSR � SS Spað Þ � SS Varð Þ � SS Potð Þ � SS Spa�Varð Þ � SS Spa�Potð Þ � SS Var�Potð Þ
�SS Spa�Var�Potð Þ

¼ 901:944� 146:527� 112:500� 21:527� 473:611� 18:083� 46:055� 15:805� 17:694

¼ 50:138

Potassium

Variety

V1 V2 V3 Total Mean

K0 1200 1202 1199 3601 200.055

K1 1210 1212 1217 3639 202.166

K2 1220 1235 1233 3688 204.888

K3 1235 1241 1246 3722 206.777

Total 4865 4890 4895 14650

Average 202.708 203.75 203.958 610.417

S1 S2

Total MeanV1 V2 V3 V1 V2 V3

K0 595 596 595 605 606 604 3601 200.056

K1 599 595 604 611 617 613 3639 202.167

K2 610 615 615 610 620 618 3688 204.889

K3 620 616 620 615 625 626 3722 206.778

Total 2424 2422 2434 2441 2468 2461

Mean 202.000 201.833 202.833 203.417 205.667 205.083
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Now using the above values, we frame the fol-

lowing ANOVA table:

It is clear from the above table that all the

effects are significant at 5 % level of signifi-

cance, while all the effects except the V � K

and S � V � K are significant at 1 %

level also. But as we have fixed the level of

significance at 5% all the null hypotheses are

rejected.

Now we are to find out the levels of different

factors which are significantly different from

others and also the best level of each factor. For

the purpose we are to calculate the critical differ-

ence values for spacing, variety, potassium, and all

the interaction effects using the following formula:

CD 0:05ð Þ for spacing

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

npr

s
� tα=2;error d:f :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

3� 4� 3

r
� t0:025;46:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

3� 4� 3

r
� 2:016 ¼ 0:495

CD 0:05ð Þ for variety

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

mpr

s
� tα=2;error d:f :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

2� 4� 3

r
� t0:025;46:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

2� 4� 3

r
2:016 ¼ 0:606

CD 0:05ð Þ for potassium

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

mnr

r
� tα=2;error d:f :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

2� 3� 3

r
� t0:025;46:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

2� 3� 3

r
2:016 ¼ 0:700

SOV d.f. SS MS F ratio

Table value of F at

p ¼ 0.05 p ¼ 0.01

Replication 2 146.528 73.264 67.216 3.21 5.12

Spacing 1 112.500 112.500 103.213 4.07 7.25

Variety 2 21.528 10.764 9.875 3.21 5.12

S � V 2 18.083 9.042 8.295 3.21 5.12

Potassium 3 473.611 157.870 144.838 2.83 4.26

S � K 3 46.056 15.352 14.085 2.83 4.26

V � K 6 15.806 2.634 2.417 2.22 3.23

S � V � K 6 17.694 2.949 2.706 2.22 3.23

Error 46 50.139 1.090

Total 71 901.944
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CD 0:05ð Þ for spacing � variety

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

pr

s
� tα=2;error d:f :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

4� 3

r
� t0:025;46:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

4� 3

r
� 2:016 ¼ 0:857

CD 0:05ð Þ for spacing � potassium

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

nr

r
� tα=2;error d:f :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

3� 3

r
� t0:025;46:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

3� 3

r
� 2:016 ¼ 0:990

CD 0:05ð Þ for variety � potassium

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

mr

r
� tα=2;error d:f :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

2� 3

r
� t0:025;46:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

2� 3

r
2:016 ¼ 1:213

CD 0:05ð Þ for spacing � variety � potassium

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� ErMS

r

r
� tα=2;error d:f : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

3

r
� t0:025;46:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:090

3

r
2:016 ¼ 1:715
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Table of means:

Spacing Yield(q/ha) CD(0.05)
S2 204.722 0.495
S1 202.222
Variety
V3 203.958

0.607V2 203.750
V1 202.708
Potassium
K3 206.778

0.701K2 204.889
K1 202.167
K0 200.056
Spacing x Variety (S x V)
S2V2 205.667

0.858

S2V3 205.083
S2V1 203.417
S1V3 202.833
S1V1 202.000
S1V2 201.833
Spacing× Potassium(S×N)
S2K3 207.333

0.991

S1K3 206.222
S2K2 205.333
S2K1 204.556
S1K2 204.444
S2K0 201.667
S1K1 199.778
S1K0 198.444
Variety × Potassium (V x N)
V3K3 207.667

1.213

V2K3 206.833
V1K3 205.833
V2K2 205.833
V3K2 205.500
V1K2 203.333
V3K1 202.833
V2K1 202.000
V1K1 201.667
V2K0 200.333
V1K0 200.000
V3K0 199.833
Spacing x Variety x Potassium (S x V x P)
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From the above table, we have the following

conclusions:

(i) S2 spacing is significantly better than the

S1 spacing.

(ii) Variety V3 is the best variety which is on

par with V2.

(iii) All the doses of potassium are significantly

different from each other and the best dose

of potassium is K3.

(iv) Among the interaction effects of spacing

and varieties, S2V2 is the best which is at

par with S2V3 and so on.

(v) Among the interaction effects of spacing

and potassium, S2K3 is the best followed

by S1K3, S2K2, and so on.

(vi) Among the interaction effects of varieties

and potassium, V3K3 and V2K3 are the

best followed by V1K3, V2K3, and so on.

(vii) Among the three-factor interactions,

S2V3K3 and S2V2K3 are the best interac-

tion effect followed by S1V1K3, S1V3K3,

S2V2K2, and so on.

Example 11.10

In the following few slides, we shall demonstrate

how the above analysis could be done using

SPSS:

Step 1: Enter the data in SPSS data view as

below; change the variable names.

S2V3K3 208.667

1.716

S2V2K3 208.333
S1V1K3 206.667
S1V3K3 206.667
S2V2K2 206.667
S2V3K2 206.000
S2V2K1 205.667
S1V2K3 205.333
S1V2K2 205.000
S1V3K2 205.000
S2V1K3 205.000
S2V3K1 204.333
S2V1K1 203.667
S1V1K2 203.333
S2V1K2 203.333
S2V2K0 202.000
S2V1K0 201.667
S1V3K1 201.333
S2V3K0 201.333
S1V1K1 199.667
S1V2K0 198.667
S1V1K0 198.333
S1V2K1 198.333
S1V3K0 198.333
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Step 2: Go to Analysis ! Generalized linear

model ! Click on Univariate as below.

Step 3: Pass the dependent variable (in our

case Yield) into the Dependent variable option

and fixed variable into the Fixed variable (in our

case Rep, Spa, Var, and Pot) as below.
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Step 4: Click on Model ! Change the option

to custom ! Pass the Rep, Spa, Var, Pot,

Spa*Var, Spa*Pot, Var*Pot, and Pot*Spa*Var

(by selecting Nitrogen and Sulfur with shift)

into the Model as below.
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Step 5: Click on Continue and then OK to get

the output as below.

11.4 Incomplete Block Design

As we go on increasing the number of treatments

in simple experiments or number of factors and/or

their levels in factorial experiments and following

the basic randomized block design, one has to

accommodate a large number of treatments in

each replication of a single block. Replications

and blocks have so long been used synonymously.

In practice, it is very difficult to obtain a complete

block which can accommodate relatively large

number of treatments. It becomes very difficult

to accommodate such huge number of treatments

in a complete block, as we do it with a randomized

complete block design (randomized block

design). For example, in 33 factorial experiment,

we need to accommodate 27 treatment

combinations in one block/replication. If one

wants to conduct the same experiment using

LSD, then he needs 27 � 27 numbers of experi-

mental units which are to be homogenous in per-

pendicular way. The problem of getting such huge

blocks of homogenous experimental units

becomes more and more difficult as we further

increase the number of treatments. Moreover, in

factorial experiments using RBD, we test the sig-

nificance of replication, main effects, and the

interaction effects of different orders against

only one error variance, which means all the

effects are measured with equal precision. Thus

this type of experimental setup should be used

only when all the factors/treatment combinations

are of equal importance and we require equal

precision for all the factors/treatment

combinations. On the other hand, if the factors

are of unequal importance and are required to be

estimated with differential precision, we are to

think for some other setup of experimental design.

Moreover for the sake of meticulous conduction

of experimental protocol, one may require experi-

mental units of different sizes for practical feasi-

bility under field condition; for example, if one

wants to accommodate different types of irriga-

tion and different doses of nitrogen to be

accommodated in one factorial experiment, it is

quite usual that the irrigation treatment required

larger plot size compared to the nitrogen factor.

There are many instances in practical fields for

such requirement. In all these cases, the conven-

tional factorial experiment with RCB design will
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not serve the purpose. With this backdrop includ-

ing many other points, the idea of incomplete

blocks came under consideration. According to

this idea, each replication is no longer constituted

of a single block of size equal to the huge number

of treatments included in the experiment rather
each replication is being constituted of a number

of small blocks of homogenous experimental units

which can accommodate a part of the total
treatments. Thus, the blocks are incomplete in

the sense that these are not constituted of or are

not accommodating all the treatments of the

experiment. In doing so the idea of a complete

block equivalent to a replication changes to a

replication constituted of number of incomplete

blocks. As usual, the experimental units within a

block are homogeneous compared to the experi-

mental units among the blocks. In the process, the

blocks are becoming one more source of variation

in the analysis of variance. In this section, we are

mainly concerned with initial experimental

designs with incomplete blocks depending upon

the need of the situations, and mainly we shall

discuss the split plot and strip plot designs.

11.4.1 Split Plot Design

While accommodating different factors in a sin-

gle experiment, particularly under field condition,

the experimenter may have differential precision

requirement for different factors or combinations.

Moreover factors like types of irrigation, types of

tillage, types of pest management, drainage man-

agement, weed management, etc. require compar-

atively larger size of plots for convenience

compared to the factors like variety, fertilizer,

dose, etc. To an experimenter conducting experi-

ment with irrigation and the variety or doses of

nitrogen, the varietal effect or the doses of nitro-

gen or the combination may be more important

than the irrigation types; for irrigation treatments

the experimenter may need comparatively larger

plots than for variety/fertilizer. Thus in such

experiments, we are to handle two situations,

viz., requirement of differential plot size and dif-

ferential precision for different treatments. In

such cases we opt for split plot designs.

Each and every replication in split plot design

is constituted of number of blocks equal to the

number of levels of the factor requiring higher

plot size and lesser precision, known as the main

plot factor. Again each and every block should

be constituted of as many numbers of homoge-

nous experimental units as the levels of the other

factor which require lesser plot size compared to

the main plot factor and higher precision, known

as the subplot factor.

Layout and Randomization

Let there be two factors A and B at p and q levels,

respectively, included in a split plot experiment

and the factor A is the main plot factor, while the

factor B is the subplot factor. The step-by-step

procedure of the layout for a p� q split plot

design with r replications is as follows:

Whole experimental area

Step 1: The whole experimental area is

divided into r replications across the fertility

gradient of the field.

R1 ……………   Rr

Step 2: Each and every replication should be

subdivided into p number of blocks (main plot)

of equal size as shown below.

1    2 ………….. p-1,p
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Step 3: Each and every main plot should be

constituted of q number of homogenous experi-

mental units of equal size.

1
2

q

Step 4: The p levels of the main plot factor are

randomly distributed among p blocks in each and

every replication separately.

Step 5: The q levels of the subplot factor are

randomly allocated to q subplots of each and

every p main plot factor separately.

Separate sets of random numbers are to be

used in each and every step of randomization.

Statistical model and analysis:

yijk ¼ μþ γi þ αj þ eij þ βk þ υjk þ e
0
ijk

where i ¼ 1, 2, . . ., r; j ¼ 1, 2, . . ., p; and k ¼ 1,

2, . . .., q

μ ¼ general effect

γi ¼ additional effect due to the ith replication

αj ¼ additional effect due to the jth level of the

main plot factor A and
Xp
j¼1

αj ¼ 0

βk ¼ additional effect due to the kth level of the

subplot factor B and
Xq
k¼1

βk ¼ 0

υjk ¼ interaction effect due to the jth level of the

main plot factor A and kth level of the subplot

factor B and

X
j

υjk ¼
X
k

υjk ¼ 0

for all k for all j

eij (error I) ¼ error associated with the ith repli-

cation and jth level of the main plot factor.

e0
ijk
(error II) ¼ error associated with the ith rep-

lication, jth level of the main plot factor, and

kth level of the subplot factor and eijk
0
~

i.i.d. N(0, σs
2)

Hypothesis to be tested:

H0 : γ1 ¼ γ2 ¼ :::::::: ¼ γi ¼ :::::::: ¼ γr ¼ 0

α1 ¼ α2 ¼ ::::::: ¼ αj ¼ ::::::: ¼ αp ¼ 0

β1 ¼ β2 ¼ ::::::: ¼ βk ¼ ::::::: ¼ βq ¼ 0

υ11 ¼ υ12 ¼ :::::: ¼ υjk ¼ :::::: ¼ υpq ¼ 0

H1 : γ0s are not all equal
α0s are not all equal
β0s are not all equal
υ0s are not all equal

Let the level of significance be 0.05.

ANOVA for split plot design

SOV d.f. SS MS Cal. F

Replication r�1 SSR MSR MSR/
MS(Er I)

Main plot

factor (A)

p�1 SS(A) MS(A) MS(A)/
MS(Er I)

Error I (r�1)

( p�1)

SS(Er I) MS(Er I)

Subplot

factor (B)

(q�1) SS(B) MS(B) MS(B)/
MS(Er II)

Interaction

(A � B)

( p�1)

(q�1)

SS(AB) MS(AB) MS(AB)/
MS(Er II)

Error II p (q�1)

(r�1)

SS(Er II) MS(Er II)

Total pqr�1

Different sums of squares and mean sum of

squares are calculated as follows:

1. Grand total ¼ GT ¼
Xr

i¼1

Xp
j¼1

Xq
k¼1

yijk.

2. Correction factor ¼ CF ¼ GT2

pqr
.

3. SSTot ¼
Xr

i¼1

Xp
j¼1

Xp
k¼1

y2ijk � CF.

4. Work out the sum of square due to the main

plot factor and the replication. For the purpose
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the following table of totals is required to be

framed (Table 11.1).

where yij. ¼
Xq
k¼1

yijk

SS (Table 11.1) ¼ 1

q

Xr

i

Xp
j

y2ij: � CF

SSR ¼ 1

pq

Xr

i¼1

y2i:: � CF

SS(A) ¼ 1

qr

Xp
j¼1

y2:j: � CF

SS Error I ¼ SS Table Ið Þ � SSR � SS Að Þ

5. Work out the sum of squares due to the sub-

plot factor and interaction. For the purpose,

the following table of totals is required to be

formed (Table 11.2):

Check: In both the tables, the totals for the
main factor A at different levels are the same:

SS Table 11:2ð Þ ¼ 1

r

Xp
j¼1

Xq
k¼1

y2:jk � CF

SS(B) ¼ 1

pr

Xq
k¼1

y2::k � CF

SS(AB) ¼ SS Table 11:2ð Þ � SS Að Þ � SS Bð Þ
SS(Error II) ¼ SSTot�SSR�SS(A)�SS(Error I)

�SS(B)�SS(AB)

Mean sums of squares are calculated dividing

the sum of squares by corresponding degrees of

freedom.

6. F ratios for replication and main plot factors

are compared to the respective mean sum of

squares against mean sum of squares due to

error I, while the F ratios corresponding to the

subplot factor and the interaction effects are

worked out by comparing the respective mean

sum of squares against the mean sum of

squares due to error II.

Table 11.1 Totals of the main plot � replication

A1 A2 . . .. . . Aj . . .. . . Ap Total Average

R1 y11. y12. . . .. . . y1j. . . .. . . y1p. ∑y1.. y100
R2 y21. y22. . . .. . . y2j. . . .. . . y2p. ∑y2.. y200
: : : : : : : :

Ri yi1. yi2. . . .. . . yij. . . .. . . yip. ∑yi.. yi00
: : : : : : : :

Rr yr1. Yr2. . . .. . . yrj. . . .. . . yrp. ∑yr.. yr00
Total ∑y.1. ∑y.2. . . .. . . ∑y.j. . . .. . . ∑y.p. ∑y. . . y000
Average y:1: y:2: y:j: y:p:

Table 11.2 Totals of the main plot � subplot factors

B1 B2 . . .. . . Bk . . .. . . Bn Total Average

A1 y.11 y.12 . . .. . . y.1k . . .. . . y.1q ∑y.1. y:1:
A2 y.21 y.22 . . .. . . y.2k . . .. . . y.2q ∑y.2. y:2:
: : : : : : : :

Aj y.j1 y.j2 . . .. . . y.jk . . .. . . y.jq ∑y.j. y:j:

: : : : : : : :

Ap y.p1 y.p2 . . .. . . y.pk . . .. . . y.pq ∑y.p. y:m:
Total ∑y..1 ∑y..2 . . .. . . ∑y..k . . .. . . ∑y..q ∑y. . . y...
Average y::1 y::2 y::k y::q
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7. Calculated F ratios are compared with the

tabulated value of F at appropriate level of

significance and degrees of freedom.

8. In the event of significance of F test, one needs

to estimate the standard errors (SEs) for differ-

ent types of mean comparison as follows:

(a) The CD to compare two replication

means value will be CDα ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MS Er Ið Þ

pq

q
� tα=2;error�I d:f :.

(b) The CD to compare two main plot treat-

ment means will be CDα ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MS Er Ið Þ

rq

q
� tα=2;error�I d:f :.

(c) The SE for the difference between two

subplot treatment means ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS�II

rm

q
,

and the corresponding CD value will be

CDα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MS Er IIð Þ

rp

q
� tα=2;error�II d:f :.

(d) The CD value to compare two subplot

treatment means at the same level of the

main plot treatment will be

CDα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MS Er IIð Þ

r

q
� tα=2;errorII d:f :.

(e) The CD value to compare two main plot

treatment means at the same or different

levels of the subplot treatment ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 q�1ð ÞMS Er IIð ÞþMS Er Ið Þ½ �

rq

r
t*, where approx-

imate value of t is calculated as

t* ¼ t1MS Er Ið Þþt2 n�1ð ÞMS Er IIð Þ
MS Er Ið Þþ n�1ð ÞMS Er IIð Þ

where t1 and

t2 are tabulated values at error I and error

II degrees of freedom, respectively, at the

chosen significance level.

Advantages and disadvantages:
Advantages:

(i) The advantage of managing different factors

as per the requirement without sacrificing

the information from the design is the main

advantage.

(ii) Different factor effects are estimated at dif-

ferent precision levels which was not possi-

ble in simple experiments. In split plot

designs, the subplot factor and its interaction

with the main plot factor are estimated more

precisely than the main plot factor effect.

Disadvantages:

(i) The factor to be assigned as the main plot

factor or subplot factor is of extremely

importance.

(ii) Randomization and layout along with the

analysis are somewhat complicated com-

pared to other simple experiments.

(iii) The comparison of the main plot treatment

means at the same or different levels of the

subplot treatment (CD e) is somewhat

approximately 1.

(iv) When both the factors require larger plot

size, then split plot design is not suitable.

Example 11.11 (Split Plot Experiment)

To know the effect of three different feeds and

four doses of trilostane on the weight of broiler

chicken, an experiment was conducted. The

experiment was conducted in nine net houses

comprised of three blocks each having three net

houses. Each net house was then partitioned into

four big cages. Three different feeds were ran-

domly allocated to each of the three net houses

separately in each and every block. Among the

four cages of each and every net house, four

doses of trilostane were allocated randomly.

Chick weights are recorded at the age of

40 days. Analyze the data and draw your

conclusion:

Feed Feed 1 Feed 2 Feed 3

Trilostane T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

Block 1 1.83 1.88 1.92 2.01 1.85 1.91 1.94 2.05 1.86 1.93 1.97 2.22

Block 2 1.84 1.89 1.93 2.03 1.86 1.92 1.95 2.09 1.86 1.93 1.96 2.17

Block 3 1.81 1.88 1.93 2.05 1.87 1.91 1.95 2.07 1.85 1.94 1.97 2.19
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Solution Here in this experimenteach net house

in each block can be treated as the main plot in

split plot design and four cages in each net house

as the subplots. Thus we have three main plot

factors and four subplot factors. Main plot and

subplot factors are feed and doses of trilostane,

respectively. The experiment is repeated three

times, i.e., in three blocks.

Thus for the above experiment, we have three

levels of main plot factors and four levels of

subplot factors in three replications. The appro-

priate statistical model is

yijk ¼ μþ γi þ αj þ eij þ βk þ υjk þ eijk

where i ¼ 1, 2, 3; j ¼ 1, 2, 3; and k ¼ 1, 2, 3, 4

μ ¼ general effect

γi ¼ additional effect due to ith replication

αj ¼ additional effect due to jth level of the main

plot factor, i.e., feed, and
X3
j¼1

αj ¼ 0

βk ¼ additional effect due to kth level of the

subplot factor, i.e., trilostane, and
X4
k¼1

βk ¼ 0

υjk ¼ interaction effect due to jth level of the

main plot factor (feed) and kth level of

the subplot factor (trilostane) and
X3
j¼1

υjk ¼

X4
k¼1

υjk ¼ 0

eij (error I) ¼ error associated with ith replica-

tion and jth level of the main plot factor and

eij ~ i.i.d. N(0, σm
2)

e0
ijk
(error II) ¼ error associated with ith replica-

tion, jth level of the main plot factor (feed),

and kth level of the subplot factor (trilostane)

and eijk ~ i.i.d. N(0, σs
2)

Hypothesis to be tested:

H0 : γ1 ¼ γ2 ¼ γ3 ¼ 0

α1 ¼ α2 ¼ α3 ¼ 0

β1 ¼ β2 ¼ β3 ¼ β4 ¼ 0

υ0s are all equal to zero

against

H1 : α0s are not all equal
γ0s are not all equal
β0s are not all equal
υ0s are not all equal

Let the level of significance be 0.05.

The step-by-step procedure for the computa-

tion of different sums of square and mean sum of

squares is given as follows:

Step 1: From raw data we have

GT ¼
X3
i¼1

X3
j¼1

X4
k¼1

yijk ¼ GT ¼ 1:83þ 1:88þ

::::::þ 1:97þ 2:19 ¼ 73:95.

Correction factor CFð Þ ¼ GT2

mnr
¼ 73:952

3� 4� 3
¼

136:9680.

SSTOT ¼
X3
i¼1

X3
j¼1

X4
k¼1

y2ijk �CF¼ 1:832þ 1:882

þ::::::þ 1:972þ 2:192� 136:968

¼ 0:3607.

Step 2:Work out the sum of square due to the

main plot factor and the replication. The follow-

ing table of totals is required to be framed

(Table 11.3):

SS Table 11:3ð Þ ¼ 1

q

Xr

i¼1

Xp
j¼1

y2ij: � CF ¼ 16:0939

SSR ¼ 1

pq

Xr

i¼1

y2i:: � CF ¼ 1

3� 4

X3
i¼1

y2i:: � CF

¼ 23:372 þ 23:432 þ 23:422

12
�136:9680 ¼ 0:00017.

Table 11.3 Table of totals for feed � replication

Feed

Replication

TotalR1 R2 R3

F1 7.64 9.55 9.54 26.73

F2 7.75 7.82 7.80 23.37

F3 7.98 7.92 7.95 23.85

Total 23.37 25.29 25.29 73.95

Average 36.33 36.43 36.63
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SS Feedð Þ ¼ 1

qr

Xp
j¼1

y2:j:�CF

¼ 1

4� 3

X3
j¼1

y2:j:

�CF¼ 23:002þ 23:372þ 23:852

12
�

136:9680¼ 0:03027

SS Error Ið Þ ¼ TSS Table Ið Þ � SSR � SS Fð Þ
¼ 0:031688� 0:000172� 0:030272

¼ 0:00124

Step 3:Work out the sum of square due to the

subplot factor and interaction. The following

table of totals is required to be formed

(Table 11.4):

SS Table 11:4ð Þ ¼ 1

3

Xp
j¼1

X4
k¼1

y:jk�CF

¼1

3
5:482þ5:652::::::::::::þ5:902
�

þ6:582��136:9680 ¼0:35678

SS Trilostaneð Þ ¼ 1

pr

Xn
k¼1

y2::k�CF¼ 1

3�3

X4
k¼1

y2::k�CF

¼16:632þ17:192þ17:522þ18:882

3�3

�136:9680¼0:30507

SS F�Tð Þ ¼SS tableIIð Þ �SS Fð Þ �SS Tð Þ

¼0:35670�0:03027�0:305077

¼0:021438

SSEr:II ¼ SST � SSR � SS Fð Þ � SSErI � SS Tð Þ
�SS F� Tð Þ ¼ 0:36078� 0:000172

�0:030272� 0:00124� 0:30507

�0:0214 ¼ 0:0025833

Step 4: Mean sums of squares are calculated by

dividing the sum of square by corresponding

degrees of freedom.

Step 5: F ratios for the replication and main plot

are obtained by comparing the respective

mean sum of squares against the mean sum

of square due to error I. On the other hand, the

F ratios corresponding to the subplot factor

and the interaction effects are worked out by

comparing the respective mean sum of

squares against the mean sum of square due

to error II:

Table 11.4 Table of totals for feed � trilostane

Feed

Trilostane

T1 T2 T3 T4 Total Average

F1 5.48 5.65 5.78 6.09 23.00 1.92

F2 5.58 5.74 5.84 6.21 23.37 1.95

F3 5.57 5.80 5.90 6.58 23.85 1.99

Total 16.63 17.19 17.52 18.88

Average 1.85 1.91 1.95 2.10

ANOVA table for 3 � 4 split plot experiment

Tab. F

SOV d.f. MS MS F ratio p ¼0.05

Replication 3�1 ¼ 2 0.000172 0.00009 0.27679 6.94

Main Plot Factor(Feed) 3�1 ¼ 2 0.030272 0.01514 48.65179 6.94

Error I (3–1) (3–1) ¼4 0.001244 0.00031

Subplot factor (Trilostane) (4–1) ¼ 3 0.305078 0.10169 708.56774 3.16

Interaction (F � T) (3–1) (4–1) ¼ 6 0.021439 0.00357 24.89677 2.66

Error II 3 (4–1) (3–1) ¼ 18 0.002583 0.00014

Total 3.3.4�1 ¼ 35 0.360789
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Calculated F ratios are compared with the

tabulated value of F at α ¼ 0:05 and α ¼ 0:01

levels of significance and at appropriate degrees

of freedom. It is found that the effects of feed,

trilostane, and their interaction are significant at

both 5 % and 1 % level of significance.

Our next task will be to estimate the SE’s for

different types of comparison as given below:

(i) The standard error for the difference between

two feed means¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS�I

rq

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0:00031ð Þ

3�4

q
¼

0:00720, and the corresponding CD

value could be CD 0:05ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS�I

rq

q
t 0:025ð Þ;error�I d:f : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0:00031ð Þ

3�4

q
�

2:776 ¼ 0:0199.

(ii) The standard error for the difference

between two subplot trilostane means ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr�II

rp

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0:00014ð Þ

3�3

q
, and the

corresponding CD value could be CD 0:05ð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr�II

rp

q
t0:025;error�II d:f : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0:00014ð Þ

3�3

q
�

2:101 ¼ 0:01186.

(iii) The standard error for the difference

between two feed means at the same or

different levels of the subplot treatment

trilostane ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 q�1ð ÞMSEr�IIþMSEr�I½ �

rq

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 4�1ð Þ0:00014þ0:00031½ �
3:4

q
¼ 0:0032095, but

the ratio of the treatment mean difference

and the above SE does not follow

t-distribution, and approximately the value

of t is given by

t calð Þ ¼ t1MSEr�I þ t2 q� 1ð ÞMSEr�II

MSEr�I þ q� 1ð ÞMSEr�II
¼

2:776ð Þ 0:00031ð Þ þ 2:101ð Þ 4� 1ð Þ0:00014
0:00031ð Þ þ 4� 1ð Þ 0:00014ð Þ ¼ 2:3841

where t1 ¼ t0.025,4 value and t2 ¼ t0.025,18 value

and the corresponding CD value could be

CD 0:05ð Þ ¼ SEd � t calð Þ ¼ 0:003209 � 2:38414 ¼
0:00765:

Feed Average CD (0.05)

F3 1.988 0.01990

F2 1.948

F1 1.917

Trilostane

T4 2.098 0.01186

T3 1.947

T2 1.910

T1 1.848

F � T

F3T4 2.193 0.00765

F2T4 2.070

F1T4 2.030

F3T3 1.967

F2T3 1.947

F3T2 1.933

F1T3 1.927

F2T2 1.913

F1T2 1.883

F2T1 1.860

F3T1 1.857

F1T1 1.827

From the table mean comparison given below,

it is clear that feed 3 is the best feed, followed by

F2 and F1. All the feeds are significantly differ-

ent from each other. So far as the effect of

trilostane is concerned, maximum weight of

chicks is obtained from T4 followed by T3, T2,

and T1. All the levels of trilostane are signifi-

cantly different from each other with respect to

the weight of chicks at 40 days of age. The

interaction of the feed and the trilostane has

significantly different effects from each other;

F3T4 interaction is the best.

Example 11.11 (Split Plot in SPSS Using

the Syntax)

In SPSS split plot analysis can be done by using

the syntax, and in the following section, we shall

demonstrate the analysis of the above example

using the syntax in SPSS.

Syntax for the example taken:
UNIANOVA

MILKYLD BY REP FEED TREAT

/METHOD ¼ SSTYPE(3)

/INTERCEPT ¼ INCLUDE

/CRITERIA ¼ ALPHA(.05)
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/DESIGN ¼ REP FEED REP*FEED TREAT

FEED*TREAT

/TEST FEED VS REP*FEED.

Step 1: Enter the data in SPSS data view as

shown below.

Step 2: Go to File ! New ! Click on “Syn-

tax” as below.
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Step 3: Write the syntax as below.

Step 4: Select all the syntax lines and then

press “Run Current” as mentioned below.
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Step 5: The output will appear in the output

window.

Note: Custom Hypothesis is for the main plot

error.
CD values and the mean comparison can be

taken as usual.

Example 11.12 (Split Plot Design)

A field experiment was conducted to identify the

best spacing and date of sowing in rabi arhar.

Three different spacings were randomly

allocated to three main plots in each replication

separately, and in each main plot, four dates of

sowing were allocated randomly among the four

plots in each main plot. Grain yields (t/ha) are

recorded from the individual plots and given

below. Analyze the data and draw your

conclusion:

For the above experiment with three levels of

main plot factors and four levels of subplot

factors in three replications, the appropriate sta-

tistical model is

yijk ¼ μþ γi þ αj þ eij þ βk þ υjk þ eijk

where i ¼ 1, 2, 3; j ¼ 1, 2, 3; and k ¼ 1, 2, 3, 4

μ ¼ general effect

γi ¼ additional effect due to ith replication

αj ¼ additional effect due to jth level of the main

plot factor, i.e., spacing, and
X3
j¼1

αj ¼ 0

βk ¼ additional effect due to kth level of the sub-

plot factor, i.e., date of sowing, and
X4
k¼1

βk ¼ 0

Spacing Spacing-1 Spacing-2 Spacing-3

DOS D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

Rep-1 17.42 11.89 8.62 7.74 11.89 10.07 3.92 3.26 9.77 4.13 2.96 2.24

Rep-2 17.45 11.93 8.67 7.78 11.95 10.10 3.96 3.32 9.82 4.18 3.04 2.29

Rep-3 17.45 11.94 8.65 7.77 11.93 10.09 3.94 3.30 9.79 4.16 2.98 2.26
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υjk ¼ interaction effect due to jth level of the

main plot factor (spacing) and kth level of

the subplot factor (date of sowing) andX3
j¼1

υjk ¼
X4
k¼1

υjk ¼ 0

eij (error I) ¼ error associated with ith replica-

tion and jth level of the main plot factor and

eij ~ i.i.d. N(0, σm
2)

eijk (error II) ¼ error associated with ith replica-

tion, jth level of the main plot factor (spacing),

and kth level of the subplot factor (date of

sowing) and eijk ~ i.i.d. N(0, σs
2)

Hypothesis to be tested:

H0 : γ1 ¼ γ2 ¼ γ3 ¼ 0

α1 ¼ α2 ¼ α3 ¼ 0

β1 ¼ β2 ¼ β3 ¼ β4 ¼ 0

All interaction effects υjk 0s are equal to zero

H1 : α0s are not all equal
γ0s are not all equal
β0s are not all equal
All interaction effects υjk 0s are not equal

Let the level of significance be 0.05.

The step-by-step procedure for the computa-

tion of different sums of square and mean sum of

squares are given as follows:

Step 1: From raw data we have

Grand total GTð Þ ¼
X3
i¼1

X
j¼

13
X4
k¼1

yijk ¼

17:42þ 17:45þ ::::::þ 2:29þ 2:26 ¼ 282:66.

Correction factor CFð Þ ¼ GT2 mnr ¼ 282:662

3� 4� 3
¼ 2219:352.

SSTot ¼
X3
i¼1

X3
j¼1

X
k¼

14y2ijk � CF ¼ 17:422þ

17:452 þ ::::::þ 2:292þ
2:262 � 2219:352 ¼ 717:125.

Step 2:Work out the sum of square due to the

main plot factor and the replication. The follow-

ing table of totals is required to be framed

(Table 11.5):

SS Table 11:5ð Þ ¼ 1

n

Xr

i¼1

Xm
j¼1

y2ij: � CF

¼ 269:884

SSR ¼ 1

mn

Xr

i¼1

y2i00 � CF ¼ 1

3� 4

X3
i¼1

y2i:: � CF

¼ 93:912 þ 94:492 þ 94:262

12
�2219:352 ¼ 0:0142

SS Spað Þ ¼ 1

nr

Xm
j¼1

y2:j: � CF ¼ 1

4� 3X3
j¼1

y2:j: � CF ¼ 137:312 þ 87:732 þ 57:622

12

�2219:352 ¼ 269:869

SS Error Ið Þ ¼ SS Table Ið Þ � SSR � SS Spað Þ

¼ 269:884� 0:0142� 269:869 ¼ 0:0009

Step 3: Work out the sum of square due to the

subplot factor and interaction. The following

table of totals is required to be formed

(Table 11.6):

SS Table 11:6ð Þ ¼ 1

3

Xm
j¼1

X4
k¼1

y:jk � CF

¼ 1

3
52:322 þ 35:772 þ ::::::þ 6:792
� 	� CF

¼ 717:109

Table 11.5 Table of totals for spacing � replication

Spacing

Replication

Total MeanR1 R2 R3

S1 45.67 45.83 45.81 137.31 11.4425

S2 29.14 29.33 29.26 87.73 7.310833

S3 19.1 19.33 19.19 57.62 4.801667

Total 93.91 94.49 94.26

Table 11.6 Table of totals for spacing � date of sowing

Spacing

Date of sowing

D1 D2 D3 D4 Total Mean

S1 52.32 35.76 25.94 23.29 137.31 11.44

S2 35.77 30.26 11.82 9.88 87.73 7.31

S3 29.38 12.47 8.98 6.79 57.62 4.80

Total 117.47 78.49 46.74 39.96

Mean 13.05 8.72 5.19 4.44
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SS DOSð Þ ¼ 1

mr

Xn
k¼1

y2::k � CF ¼ 1

3� 3

X4
k¼1

y2::k � CF

¼ 117:472 þ 78:492 þ 46:742 þ 39:962

3� 3� 2219:352 ¼ 418:5713

SS P�Vð Þ ¼ SS TableIIð Þ � SS Spað Þ � SS DOSð Þ
¼ 717:109� 269:869� 418:571 ¼ 28:6692

SSEr: II ¼ SSTot � SSR � SS Spað Þ � SSEr:I � SS DOSð Þ
� SS Spa � DOSð Þ ¼ 717:12� 0:014
� 269:869� 0:0009� 418:571� 28:669
¼ 0:0013

Step 4: Mean sums of squares are calculated by

dividing the sum of square by corresponding

degrees of freedom.

Step 5: F ratios for the replication and main

plot are obtained by comparing the respective

mean sum of squares against the mean sum of

square due to error I. On the other hand, the F

ratios corresponding to the subplot factor and the

interaction effects are worked out by comparing

the respective mean sum of squares against the

mean sum of square due to error II:

Calculated F ratios are compared with the

tabulated value of F at α ¼ 0:05 level of signifi-

cance and at appropriate degrees of freedom. It is

found that the effects of spacing, date of sowing,

and their interaction are significant at 5 % level

of significance.

Our next task will be to calculate the critical

difference values for different types of mean

comparison as given below:

(i) The CD to compare the difference between

two main plot treatment means ¼ CD 0:05ð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr�I

rn

q
t 0:025ð Þ;error�I d:f :

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0:0002ð Þ

3�4

q
� 2:776 ¼ 0:1715.

(ii) The CD to compare the difference between

two subplot treatment means ¼ CD 0:05ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr�II

r:m

q
t0:025;error�II d:f : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0:0001ð Þ

3�3

q
�

2:101 ¼ 0:0083.

(iii) The CD to compare the difference between

two main plot treatment means at the same

or different levels of the subplot treatment¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n�1ð ÞMSErIIþMSErI½ �

rn

q
t* ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 4�1ð Þ0:0002þ0:0001½ �
3�4

q
t* ¼ 0:01123t*

where

t* ¼ t1MSEr I þ t2 n� 1ð ÞMSEr II

MSEr I þ n� 1ð ÞMSEr II
¼

2:776ð Þ 0:0002ð Þ þ 2:101ð Þ 4� 1ð Þ0:0001
0:0002ð Þ þ 4� 1ð Þ 0:0001ð Þ ¼ 2:371

where t1 ¼ t0.025,4 value and t2 ¼ t0.025,18 value

and the corresponding CD value could be

CD 0:05ð Þ ¼ 0:01123t* ¼ 0:01123

� 2:371 ¼ 0:0266.

ANOVA table for 3 � 4 split plot experiment

SOV d.f. MS MS Cal. F Tab. F(p ¼ 0.05)

Replication 3�1 ¼ 2 0.0142 0.0071 31.02 6.94

Main plot factor (Spa) 3�1 ¼ 2 269.8690 134.9345 588805.13 6.94

Error I (3–1) (3–1) ¼ 4 0.0009 0.0002

Subplot factor (DOS) (4–1) ¼ 3 418.5713 139.5238 1982705.95 3.16

Interaction (Spa � DOS) (3–1) (4–1) ¼ 6 28.6692 4.7782 67900.80 2.66

Error II 3 (4–1) (3–1) ¼ 18 0.0013 0.0001

Total 3.3.4�1 ¼ 35 717.1259
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From the table mean comparison given below,

it is clear that first spacing method is the best

method, which is significantly superior to other

two spacings. So far as the effect of date of

sowing is concerned, maximum yield of arhar is

obtained from the date of sowing 1 (D1) followed

by D2, D3, and D4. All the sowing dates are

significantly different from each other with

respect to the yield of arhar. The interaction of

the spacing method and the sowing data has

significantly different effects from each other;

the interaction effects which are not significantly

different have been put under the same lines.

Thus it is clear that spacing method 1 in combi-

nation with sowing date 1 has produced signifi-

cantly higher yield than any other combination.

11.5 Strip Plot Design

Split plot design can accommodate one factor in

larger plots (main plots), but while conducting

experiments, sometimes the benefit of using

large plot size may be required for more than

one factor. In two-factor factorial experiment, if

both the factors require large plots, then it is not

possible through split plot design. Strip plot

design is such a design where two factors can

be accommodated in larger plots. Experiments

with factors like methods of plowing, types of

irrigation, methods of mulching, etc. require

larger plot size for convenience of management.

Moreover, sometimes the interaction effects are

of much importance than that of the main effects

of the factors. In strip plot design, the interaction

effects between the two factors are measured

with higher precision than either of the two

factors. The basic idea of dividing each replica-

tion into blocks (main plots) in one direction is

also extended to perpendicular direction, i.e.,

blocking is done in perpendicular directions in

each replication. Thus if we are conducting a

field experiment with two factors A and B having

p and q levels, respectively, in r replication, then

each replication is divided into p rows (horizon-

tal rows) and q columns (vertical rows) to accom-

modate p levels of factor A in p horizontal rows

randomly and q levels of the factor B in q vertical

rows (columns) randomly or vice versa. In the

process each row and each column of a replicate

receive a particular level of factors A and

factor B, respectively. The factor assigned to

the horizontal rows is called horizontal factor,
and the factor assigned to the columns (vertical

rows) is called the vertical factor. The smallest

plot in strip plot design is the intersection plot.

Layout and randomization:

Let there be two factors A and B at p and q

levels, respectively, included in a strip plot

experiment of which factor A is the horizontal

plot factor, while the factor B is the vertical plot

factor. The step-by-step procedure of the layout

for a p� q strip plot design with r replications is

as follows:

Step 1: The whole experimental area is divided

into r replications across the fertility gradient

of the field.

Step 2: Each and every replication should be

constituted of p number of blocks (horizontal

blocks) of equal size.

Spacing Mean CD
S1 11.443 0.1715
S2 7.311
S3 4.802
DOS Mean CD
D1 13.052 0.0083
D2 8.721
D3 5.193
D4 4.440
Spa X 
DOS Mean CD
S1D1 17.440 0.0266
S2D1 11.923
S1D2 11.920
S2D2 10.087
S3D1 9.793
S1D3 8.647
S1D4 7.763
S3D2 4.157
S2D3 3.940
S2D4 3.293
S3D3 2.993
S3D4 2.263
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Step 3: Each and every replication should be

constituted of q number of blocks (vertical

blocks) of equal size.

Step 4: The p levels of horizontal plot factor are

randomly distributed among p blocks in each

and every replication separately.

Step 5: The q levels of vertical plot factor are

randomly allocated to q vertical plots of each

and every replication separately.

Separate sets of random numbers are to be
used in each and every step of randomization.

Statistical model:

yijk ¼ μþ γi þ αj þ eij þ βk þ e
0
ik þ αβð Þjk þ e

00
ijk

where i ¼ 1, 2, . . ., r; j ¼ 1, 2, . . ., p; and k ¼ 1,

2, . . .., q
μ ¼ general effect

γi ¼ additional effect due to ith replication

αj ¼ additional effect due to jth level of vertical

factor A and
Xp
j¼1

αj ¼ 0

βk ¼ additional effect due to kth level of horizon-

tal factor B and
Xq
k¼1

βk ¼ 0

(αβ)jk ¼ interaction effect due to jth level of

factor A and kth level of factor B andX
j

αβð Þjk ¼
X
k

αβð Þjk ¼ 0

eij (error I) ¼ error associated with ith replica-

tion and jth level of vertical factor A and

eik ~ i.i.d. N(0, σ1
2)

e
0
ik
(error II) ¼ error associated with ith level of

replication and kth level of horizontal factor B

and e
0
ij
~ i.i.d. N(0, σ22 )

e}
ijk
(error III) ¼ error associated with ith replica-

tion, jth level of vertical factor A, and kth

level of horizontal factor B and eijk ~ i.i.d.

N(0, σ23 )

1) Whole experimental area
2) Experimental area 
divided in r replication         

R1……………….  Rr     

1    2   .……….. q-1   q

4) Each replication divided
into q vertical blocks 5) Each replication divided into

p x q – horizontal-vertical plots

1
2
:
:
:
:
p

1   2  ….....………..q-1 q

1
2
:
:
:
:
P

3)Each replication divided in p   
horizontal  plots                                  
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Hypothesis to be tested:

H0 : γ1 ¼ γ2 ¼ :::::::: ¼ γi ¼ :::::::: ¼ γr ¼ 0

α1 ¼ α2 ¼ ::::::: ¼ αj ¼ ::::::: ¼ αp ¼ 0

β1 ¼ β2 ¼ ::::::: ¼ βk ¼ ::::::: ¼ βq ¼ 0

αβð Þ11 ¼ αβð Þ12 ¼ :::::::: ¼ αβð Þjk ¼ ::::::::

¼ αβð Þpq ¼ 0

H1 : γ0s are not all equal
α0s are not all equal
β0s are not all equal
αβð Þ0s are not all equal

Let the level of significance be 0.05.

Analysis The analysis of strip plot design is

performed in three steps: (a) analysis of horizon-

tal factor effects, (b) analysis of vertical factor

effects, and (c) analysis of interaction factor

effects.

First we construct the three two-way tables of

totals of (a) replication � horizontal factor,

(b) replication � vertical factor, and

(c) horizontal � vertical factor. The step-by-

step procedure for the computation of different

sums of square and mean sum of square is given

as follows:

(i) Grand total ¼ G ¼
Xr

i¼1

Xp
j¼1

Xq
k¼1

yijk.

(ii) Correction factor (CF) ¼ G2

pqr
.

(iii) SSTot ¼
Xr

i¼1

Xp
j¼1

Xq
k¼1

y2ijk � CF.

(iv) Work out the sum of squares due to the

horizontal factor A and the replication.

The following table of totals is required to

be framed (Table 11.7).

where yij. ¼
Xq
k¼1

yijk

SS (Table 11.7) ¼ 1

q

Xr

i¼1

Xp
j¼1

y2ij: � CF

SSR ¼ 1

pq

Xr

i¼1

y2i:: � CF

SS(A) ¼ 1

qr

Xp
j¼1

y2:j: � CF

SS (Error I) ¼ SS Table11:7ð Þ � SSR � SS Að Þ

(v) Work out the sum of square due to the hori-

zontal factor B and the replication. The fol-

lowing table of totals is required to be framed

(Table 11.8).

Table 11.7 Totals for replication � factor A

A1 A2 . . .. . . Aj . . .. . . Ap Total Mean

R1 y11. y12. . . .. . . y1j. . . .. . . y1p. y1.. y1::
R2 y21. y22. . . .. . . y2j. . . .. . . y2p. y2.. y2::
: : : : : : : :

Ri yi1. yi2. . . .. . . yij. . . .. . . yip. yi.. yi::
: : : : : : : :

Rr yr1. Yr2. . . .. . . yrj. . . .. . . yrp. yr.. yr::
Total ∑y.1. ∑y.2. . . .. . . ∑y.j. . . .. . . ∑y.p. ∑y. . . y...
Mean y:1: y:2: y:j: y:p:
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SS Table 11:8ð Þ ¼ 1

p

Xr

i¼1

Xq
k¼1

y2i:k � CF

SS(B) ¼ 1
pr

Xq
k¼1

y2::k � CF

SS (Error II) ¼ SS Table 11:8ð Þ � SSR � SS Bð Þ

(vi) Work out the sum of square due to the verti-

cal factor and horizontal factor interaction;

the following table of totals is required to be

formed (Table 11.9).

SS(Table 11.9) ¼ 1
r

Xp
j¼1

Xq
k¼1

y2:jk � CF

SS(AB) ¼ ¼ SS Table 11:9ð Þ � SS Að Þ � SS Bð Þ

SS (Error III) ¼ SSTot –SSR – SS(A) – SS(B) – SS(AB)
– SSEr I –SS ErII

Mean sums of squares are calculated by divid-

ing the sum of square by corresponding degrees

of freedom:

ANOVA table for m � n strip plot design in r replication

SOV d.f. SS MS F ratio

Replication r�1 SSR MSR MSR/
MSErI

Factor (A) p�1 SS(A) MS(A) MS(A)/
MSErI

Error I (r�1)

( p�1)

SSErI MSErI

Factor (B) (q�1) SS(B) MS(B) MS(B)/
MSErII

Error II (r�1)

(q�1)

SSErII MSErII

Interaction

(A x B)

( p�1)

(q�1)

SS(AB) MS(AB) MS(AB)/

MSErIII

Error III ( p�1)

(q�1)

(r�1)

SSErIII MSErIII

Total pqr�1 SSTot

Table 11.8 Totals for replication � factor B

B1 B2 . . .. . . Bk . . .. . . Bn Total Mean

R1 y1.1 y1.2 . . .. . . y1.k . . .. . . y1.q ∑y1.. y1::
R2 y2.1 y2.2 . . .. . . y2.k . . .. . . y2.q ∑y2.. y2::
: : : : : : : :

Ri yi.1 yi.2 . . .. . . yi.k . . .. . . yi.q ∑yi.. yi::
: : : : : : : :

Rr yr.1 Yr.2 . . .. . . yr.k . . .. . . yr.q ∑yr.. yr::
Total ∑y..1 ∑y..2 . . .. . . ∑y..kj . . .. . . ∑y..qp ∑y. . . y...
Mean y::1 y::2 y::k y::q

Table 11.9 Totals for factor A � factor B

B1 B2 . . .. . . Bk . . .. . . Bn Total Mean

A1 y.11 y.12 . . .. . . y.1k . . .. . . y.1q ∑y.1. y:1:
A2 y.21 y.22 . . .. . . y.2k . . .. . . y.2q ∑y.2. y:2:
: : : : : : : :

Aj y.j1 y.j2 . . .. . . y.jk . . .. . . y.jq ∑y.j. y:j:

: : : : : : : :

Am y.m1 y.m2 . . .. . . y.mk . . .. . . y.mq ∑y.m. y:m:
Total ∑y..1 ∑y..2 . . .. . . ∑y..k . . .. . . ∑y..q ∑y. . . y...
Mean y::1 y::2 y::k y::n

11.5 Strip Plot Design 455



(vii) Calculated F ratios are compared with the

tabulated value of F at appropriate level of

significance and degrees of freedom.

(viii) In the event of the significance of the F

test, the next task will be to estimate the

CD values for different types of compari-

son as given below:

(a) To compare the difference between two

replication means, the CD value will be

CDα ¼
ffiffiffiffiffiffiffiffiffiffi
2MSErI
pq

q
� tα=2;error‐I d:f:.

(b) To compare the difference between two

horizontal plot treatment means, the CD

value will be CDα ¼
ffiffiffiffiffiffiffiffiffiffi
2MSErI
rq

q
� tα=2;error‐I d:f:.

(c) To compare the difference between two

vertical plot treatment means, the CD

value will beCDα ¼
ffiffiffiffiffiffiffiffiffiffiffi
2MSErII

rp

q
� tα=2;error‐II d:f:.

(d) To compare the difference between two

horizontal plot treatment means at the

same or different levels of vertical plots,

the CD value will be

CDα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 q�1ð ÞMSErIIIþMSErI½ �

rq

q
� t*α=2;errorII d:f:.

where t* ¼ q�1ð ÞMSErIII � tIII



þ MSErI � tIð Þ

� 

n�1ð ÞMSErIIIþMSErIf g

(e) To compare the difference between two

vertical plot treatment means at the same

or different levels of horizontal plot treat-

ment, the CD value will be

CDα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p�1ð ÞMSErIIIþMSErII½ �

rp

q
t**α=2;errorII d:f:,

where t** ¼ p�1ð ÞMSErIII � tIIIþMSErII � tII½ �
p�1ð ÞMSErIIIþMSErII

.

Here tI ¼ t value at error I degrees of free-

dom, tII ¼ t value at error II degrees of

freedom, and tIII ¼ t value at error III

d.f. with specified level of significance.

Advantages and disadvantages:

Two different factors requiring larger plot

sizes for the feasibility of management can be

accommodated in this type of design. More-

over the effects of both the factors are

estimated with equal precision, whereas inter-

action effects of the factors are estimated more

precisely than the two main factor effects.

But the process of randomization and layout

is complicated than the designs discussed

so far.

Example 11.13

To know the effect of number of baths (F)

taken (once, twice, and thrice in a day) and

hygiene (H) level of cattle shed (25 %, 50 %,

75 %, and 100 %) on milk yield capacity of

the crossbreed cows, an experiment was

conducted in strip plot design with three

replications. Given below are the average

milk yield data per day for different treatment

combinations. Analyze the information to

identify the best bathing frequency and

hygiene level along with their combination

toward the production of milk:

Statistical model:

yijk ¼ μþ γi þ αj þ eij þ βk þ e
0
jk
þ αβð Þjk þ e

00
ijk

where i ¼ 3, j ¼ 3, and k ¼ 4

μ ¼ general effect

Ri ¼ additional effect due to ith replication

αj ¼ additional effect due to jth level of vertical

factor A (bathing frequency) and
X3
j¼1

αj ¼ 0

βk ¼ additional effect due to kth level of horizon-

tal factor B (hygiene level) and
X4
k¼1

βk ¼ 0

Vertical plot (bathing frequency)

F1 F2 F3

Horizontal plot / Hygiene Level H1 H2 H3 H4 H1 H2 H3 H4 H1 H2 H3 H4

Rep-1 13.1 14.5 14.5 16.2 13.7 16.2 17.4 19.4 13.3 15.8 16.8 17.3

Rep-2 13.3 14.6 14.6 16.3 13.8 16.5 17.8 18.3 13.6 15.6 17.1 16.9

Rep-3 13.8 14.2 14.2 16.7 14.1 16.6 16.9 18.7 13.9 15.5 16.7 17
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(αβ)jk ¼ interaction effect due to jth level of

bathing frequency and kth level of hygiene

level and
X
j

αβð Þjk ¼
X
k

αβð Þjk ¼ 0

eij (error I) ¼ error associated with ith replica-

tion and jth level of vertical factor A and eij ~

i.i.d. N(0, σ1
2)

e2
jk
(error II) ¼ error associated with jth level of

vertical factor A (bathing frequency) and kth

level of horizontal factor B (hygiene level)

and ejk ~ i.i.d. N(0, σ22 )

e
00
ijk
(error III) ¼ error associated with ith replica-

tion, jth level of vertical factor A, and kth level

of horizontal factor B and eijk ~ i.i.d. N(0, σ23 )

Hypothesis to be tested:

H0 : γ1 ¼ γ2 ¼ γ3 ¼ 0

α1 ¼ α2 ¼ α3 ¼ 0

β1 ¼ β2 ¼ β3 ¼ β4 ¼ 0

αβð Þ11 ¼ αβð Þ12 ¼ :::::::: ¼ αβð Þjk
¼ :::::::: ¼ αβð Þ34 ¼ 0

against

H1 : γ0s are not all equal
α0s are not all equal
β0s are not all equal
αβð Þ0s are not all equal

Let the level of significance be 0.05.

First we construct the three two-way tables of

the total of replication � bathing frequency,

replication � hygiene level, and bathing fre-

quency � hygiene level. The step-by-step proce-

dure for the computation of different sums of

square and mean sum of square is given as

follows:

Grand total GTð Þ ¼
X3
i¼1

X3
i¼1

X4
k¼1

yijk ¼

13:1þ 13:3þ 13:8þ 14:5::::::::

þ16:9þ 17:0 ¼ 564:90

Correction factor CFð Þ ¼ GT2

3� 4� 3
¼

564:902

36
¼ 8864:222

Work out the sum of squares due to the verti-

cal factor A and the replication. The following

table of totals is required to be framed

(Table 11.10):

SS Table 11:10ð Þ ¼ 1

4

X3
i¼1

X3
j¼1

y2ij: � CF

¼ 8887:292� 8864:222 ¼ 23:07

SSR ¼ 1
3�4

X3
i¼1

y2i:: � CF ¼ 188:22 þ 188:42 þ 188:32

12
� 8864:222 ¼

0:00166.

SS Að Þ ¼ 1

4� 3

X3
j¼1

y2:j: � CF ¼ 176:02 þ 199:42 þ 189:52

12

�8864:222 ¼ 22:995.

SS Error Ið Þ ¼ SS TableIð Þ � SS Rð Þ � SS Að Þ

¼ 23:07� 0:00166� 22:995 ¼ 0:073

Work out the sum of square due to the horizontal

factor B and the replication; the following table of

totals is required to be framed (Table 11.11):

Table 11.10 Table of totals for replication � bathing frequency

Replication

Vertical Plot (bathing frequency)

F1 F2 F3 Total Mean

Rep-1 58.3 66.7 63.2 188.2 15.683

Rep-2 58.8 66.4 63.2 188.4 15.700

Rep-3 58.9 66.3 63.1 188.3 15.692

Total 176.0 199.4 189.5

Mean 14.667 16.617 15.792
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SS Table11:11ð Þ ¼ 1

3

X3
i¼1

X4
k¼1

y2i:k�CF

¼40:12þ40:72þ:::::::þ51:52þ52:42

3

�8864:222¼69:700

SS Bð Þ ¼ 1

3� 3

X4
k¼1

y2::k � CF ¼ 122:62 þ 139:52 þ 146:02 þ 156:82

9

� 8864:222 ¼ 68:360.

SS Er:IIð Þ ¼ SS Table 11:11ð Þ � SS Bð Þ ¼ 69:700

�68:360 ¼ 1:340

Work out the sum of square due to the vertical

factor and horizontal factor interaction. The fol-

lowing table of totals is required to be formed

(Table 11.12):

SS A�Bð Þ ¼ 1

r

Xm
j¼1

Xn
k¼1

y2:jk � CF� SS Að Þ � SS Bð Þ

¼ 40:22 þ 43:32 þ 43:32 þ ::::::: þ 50:62 þ 51:22

3

�8864:222� 22:995� 68:360 ¼ 7:398

SS Er: IIIð Þ ¼ SS Totð Þ � SS Rð Þ � SS Að Þ � SS Bð Þ � SS ABð Þ
� SS Er:Ið Þ � SS Er:IIð Þ ¼ 100:927� 0:0016
� 22:995� 68:360� 7:398� 0:0733� 1:340
¼ 0:758

Mean sums of squares are calculated by dividing

the sum of square by corresponding degrees of

freedom:

Table 11.12 Table of totals for hygiene level � bathing frequency

Vertical plot (bathing frequency)

Horizontal plot (hygiene level) F1 F2 F3 Total Mean

H1 40.2 41.6 40.8 122.6 13.622

H2 43.3 49.3 46.9 139.5 15.500

H3 43.3 52.1 50.6 146.0 16.222

H4 49.2 56.4 51.2 156.8 17.422

Total 176.0 199.4 189.5

Mean 14.667 16.617 15.792

Table 11.11 Table of totals for replication � hygiene level

Replication

Horizontal plot (hygiene level)

H1 H2 H3 H4 Total Mean

Rep-1 40.1 46.5 48.7 52.9 188.2 15.683

Rep-2 40.7 46.7 49.5 51.5 188.4 15.700

Rep-3 41.8 46.3 47.8 52.4 188.3 15.692

Total 122.6 139.5 146.0 156.8

Mean 13.622 15.500 16.222 17.422

SOV d.f. SS MS F Value

Table value of F

( p ¼ 0.05) ( p ¼ 0.01)

Replication 2 0.00167 0.00083 0.04545 6.944 18.000

Vertical factor (bathing frequency) 2 22.995 11.4975 627.136 6.940 18.000

Error I 4 0.07333 0.01833

Horizontal factor (hygiene) 3 68.3608 22.7869 102.031 4.757 9.780

Error II 6 1.34 0.22333

F � H 6 7.39833 1.23306 19.5121 2.996 4.821

Error III 12 0.75833 0.06319

Total 35 100.927
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(i) F ratios for replication and vertical factor

effects are obtained by comparing the

respective mean sum of squares against the

mean sum of square due to error I. On the

other hand, the F ratios corresponding to the

horizontal factor and interaction between

horizontal and vertical factor are worked

out by comparing the respective mean sum

of squares against the mean sum of square

due to error II and error III, respectively.

(ii) Calculated F ratios are compared with the

tabulated value ofF at appropriate level of sig-

nificance and degrees of freedom. It is found

from the above table that except for replica-

tion effect, all other effects are significant

both at 5 % and 1 % levels of significance.

(iii) Once the F test becomes significant, our

next task is to estimate the SEs for different

types of comparison as given below:

(a) The standard error for the difference

between two vertical plot treatment

means ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS:I

rn

q
, and the

corresponding CD value could be

CDα ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS:I

rn

q
� tα=2;error�I d:f : ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0:01833

3�4

q
�

2:776 ¼ 0:153.

(b) The standard error for the difference

between two horizontal plot treatment

means ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS:II

rm

q
, and the

corresponding CD value could be

CD 0:05ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ErMS:II

3�3

q
� tα=2;error�II d:f : ¼ffiffiffiffiffiffiffiffiffiffiffiffi

2�0:223
3�3

q
� 2:447 ¼ 0:545.

(c) The standard error for the difference

between two vertical plot treatment

means at the same level of horizontal

plot treatment

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n� 1ð ÞErMS:III þ ErMS:I½ �

rn

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 4� 1ð Þ0:063þ 0:018

3� 4

r
¼ 0:182

(d) The standard error for the difference

between two horizontal plot treatment

means at the same level of vertical plot

treatment ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 m�1ð ÞErMS:IIIþErMS:II½ �

rm

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3�1ð Þ0:063þ0:223½ �

3�3

q
¼ 0:278:

But the ratio of the treatment difference and

the above SE in (c) and (d) does not follow the

t-distribution, and the approximate weighted t is

calculated as follows:

¼ n� 1ð ÞErMS:III � tIIIf g þ ErMS:I � tIð Þ
n� 1ð ÞErMS:III þ ErMS:If g

¼ 4� 1ð Þ0:063 � 2:179f g þ 0:0183 � 2:776ð Þ
4� 1ð Þ � 0:063þ 0:0183f g

¼ 2:187

and

m� 1ð ÞErMS:III � tIII þ ErMS:II x tII½ �
m� 1ð ÞErMS:III þ ErMS:II

¼ 3� 1ð Þ�0:063 � 2:179þ 0:223 � 2:447½ �
3� 1ð Þ � 0:063þ 0:223

¼ 2:350

where tI ¼ t0.025,4 ¼ 2.776, tII ¼ t0.025,6
¼ 2.447, and tIII ¼ t0.025,12 ¼ 2.179.

Corresponding CD values could be

CD 0:05ð Þ ¼ SEd � t calð Þ.
Thus, the critical difference value to compare

two vertical plot treatment means at the same

level of horizontal plot treatment is CD 0:05ð Þ ¼
SEd � t calð Þ ¼ 0:182� 2:187 ¼ 0:398, and

the critical difference value to compare two hori-

zontal plot treatment means at the same level of

vertical plot treatment is CD 0:05ð Þ ¼ SEd�
t calð Þ ¼ 0:278� 2:350 ¼ 0:653.

Now our next task is to compare the treatment

means:

Bathing frequency Means

F2 16.617

F3 15.792

F1 14.667

Hygiene level

H4 17.422

H3 16.222

H2 15.500

H1 13.622

Comparing the treatment means, it can be

concluded that all the levels of both the factors

are significantly different from each other and

bathing frequency 2 is the best among the bathing

frequencies and hygiene level 4 is the best

hygiene level schedule. Similarly by using appro-

priate critical difference values as mentioned

above, one can find out the best bathing frequency

at particular hygiene level and vice versa.
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Example 11.13 (Using Customized Syntax

in SPSS)

UNIANOVA

MLKYLD BY REP BF HYG

/METHOD ¼ SSTYPE(3)

/INTERCEPT ¼ INCLUDE

/CRITERIA ¼ ALPHA(.05)

/DESIGN ¼ REP BF BF*REP HYG

HYG*REP BF*HYG

/TEST BF VS REP*BF.

Step 1: Enter the data in SPSS data view as

below; change the variable names.

Step 2: Go to File ! New ! Click on “Syn-

tax” as below.
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Step 3: Write the syntax as below.

Step 4: Select all the syntax; then press “Run

Current” as mentioned below.
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Step 5: The output will appear in the output

window.

Note: The sum of squares that corresponds to
REP*BF is the error I, REP*HYG is the error II,

and Error is the error III.

Example 11.14 (Strip Plot Design)

To find the efficacy of three different times

of N application and four irrigation schedules

in semidry rice, an experiment was conducted

in strip plot design with three replications.

Given below are the yield (q/ha) data for

different treatments. Analyze the information

to identify the best time of application of

nitrogen and irrigation schedule along with

their combination:

Statistical model:

yijk ¼ μþ γi þ αj þ eij þ βk þ e
0
jk
þ αβð Þjk þ e

00
ijk

where i ¼ 1, 2, 3; j ¼ 1, 2,3; and k ¼ 1, 2, 3, 4

μ ¼ general effect

γi ¼ additional effect due to ith replication

αj ¼ additional effect due to jth level of vertical

factor A (time of N application) andX3
j¼1

αj ¼ 0

Vertical plot (time of N application)

Horizontal plot

(irrigation) T1 T2 T3

I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4

Rep-1 30.30 31.41 32.13 31.95 28.54 30.58 31.72 28.86 31.94 33.87 34.30 33.57

Rep-2 28.00 31.77 33.15 31.12 27.87 29.47 31.07 28.57 31.51 33.76 34.23 32.44

Rep-3 29.20 31.64 32.68 31.57 28.24 30.06 31.45 28.76 31.77 33.87 34.32 33.04
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βk ¼ additional effect due to kth level of

horizontal factor B (irrigation) and
X4
k¼1

βk ¼ 0

(αβ)jk ¼ interaction effect due to jth time of N

application and kth level of irrigation andX
j

αβð Þjk ¼
X
k

αβð Þjk ¼ 0

eij (error I) ¼ error associated with ith
replication and jth level of vertical factor A

and eij ~ i.i.d. N(0, σ1
2)

e2
jk
(error II) ¼ error associated with jth level of

vertical factor A (time of N application) and

kth level of horizontal factor B (irrigation) and

ejk ~ i.i.d. N(0, σ22 )

eijk (error III) ¼ error associated with ith

replication jth level of vertical factor A, and

kth level of horizontal factor B and eijk ~

i.i.d. N(0, σ23 )

Hypothesis to be tested:

H0 : γ1 ¼ γ2 ¼ γ3 ¼ 0

α1 ¼ α2 ¼ α3 ¼ 0

β1 ¼ β2 ¼ β3 ¼ β4 ¼ 0

αβð Þ11 ¼ αβð Þ12 ¼ :::::::: ¼ αβð Þjk
¼ :::::::: ¼ αβð Þ34 ¼ 0

H1 : γ0s are not all equal
α0s are not all equal
β0s are not all equal
αβð Þ0s are not all equal

Let the level of significance be 0.05.

First we construct the three two-way tables

of the total of replication � time of N appli-

cation, replication � irrigation, and time of N

application � irrigation. The step-by-step pro-

cedure for the computation of different sums

of square and mean sum of square is given as

follows:

Grand total GTð Þ ¼
X3
i¼1

X3
j¼1

X4
k¼1

yijk ¼ 30:30þ

28:00þ ::::::::þ 32:44þ 33:04 ¼ 1128:73

Correction factor CFð Þ ¼ GT2

3� 4� 3
¼ 1128:732

36

¼ 35389:761

From the following table of totals, let us work out

the sum of squares due to the vertical factor A

and the replication (Table 11.13).

SS Table11:13ð Þ¼
1

4

X3
i¼1

X3
j¼1

y2ij:�CF¼125:792þ124:042þ:::::::::::þ131:942þ133:002

4
�35389:761¼80:511

SS Rð Þ ¼ 1

3� 4

X3
i¼1

y2i00 � CF ¼ 379:172 þ 372:962 þ 376:602

12

� 35389:761 ¼ 1:6227

SS Nð Þ ¼ 1

4� 3

X3
j¼1

y2:j: � CF ¼ 374:922 þ 355:192 þ 398:622

12

�35389:761 ¼ 78:809

SS Error Ið Þ ¼ SS Table 11:13ð Þ � SSR � SS Nð Þ

¼ 80:511� 1:622� 78:809 ¼ 0:079

From the following table of totals, let us work out

the sum of squares due to the vertical factor A

and the replication (Table 11.14).

Table 11.13 Table of totals for replication � manure

Replication

Vertical plot (time of N application)

T1 T2 T3 Total Average

Rep-1 125.79 119.70 133.68 379.17 31.60

Rep-2 124.04 116.98 131.94 372.96 31.08

Rep-3 125.09 118.51 133.00 376.60 31.38

Total 374.92 355.19 398.62

Average 31.24 29.60 33.22

11.5 Strip Plot Design 463



SS Table:11:14ð Þ¼1

3

X3
i¼1

X4
k¼1

y2i:k�CF

¼90:782þ87:382þ:::::::þ92:132þ93:372

3

�35389:761¼48:294

SS Irrig:ð Þ ¼ 1

3� 3

X4
k¼1

y2::k � CF ¼ 267:372 þ 286:432 þ 295:052 þ 279:882

9

� 35389:761 ¼ 45:369

SS Er:IIð Þ ¼ 1

3

X3
i¼1

X4
k¼1

y2i:k�CF�SS Irrg:ð Þ

¼90:782þ87:382þ :::::::þ92:132þ93:372

3

�35389:761�45:369¼2:924

From the following table of totals, let us work out

the sum of squares due to the vertical factor A

and the horizontal factor B (Table 11.15).

SS N�I:ð Þ ¼ 1

r

Xm
j¼1

Xn
k¼1

y2:jk � CF� SS Nð Þ � SS I:ð Þ

¼ 87:502 þ 94:822 þ 97:962 þ ::::::: þ 102:852 þ 99:052

3

� 35389:761�78:809�45:369 ¼ 3:868

SS Er: IIIð Þ ¼ SSTot�SSR�SS Nð Þ �SS I:ð Þ �SS

N� I:ð Þ�SS Er:Ið Þ �SS Er:IIð Þ ¼ 133:471�1:622

�78:809�45:369�3:868�0:079�2:924¼
0:797 Mean sums of squares are calculated by

dividing the sum of square by corresponding

degrees of freedom:

Table 11.14 Table of totals for replication � irrigation

Replication

Horizontal plot (irrigation)

Irrg.1 Irrg.2 Irrg.3 Irrg.4 Total Average

Rep-1 90.78 95.86 98.15 94.38 379.17 31.60

Rep-2 87.38 95.00 98.45 92.13 372.96 31.08

Rep-3 89.21 95.57 98.45 93.37 376.60 31.38

Total 267.37 286.43 295.05 279.88

Average 29.71 31.83 32.78 31.10

Table 11.15 Table of totals for time of application � irrigation

Vertical plot (time of N application)

T1 T2 T3 Total Average

Irrg.1 87.50 84.65 95.22 267.37 29.71

Irrg.2 94.82 90.11 101.50 286.43 31.83

Irrg.3 97.96 94.24 102.85 295.05 32.78

Irrg.4 94.64 86.19 99.05 279.88 31.10

Total 374.92 355.19 398.62

ANOVA table

SOV d.f. SS MS Cal. F Tab. F ( p ¼ 0.05)

Replication 2 1.623 0.811 40.947 6.940

Vertical factor (time of N application) 2 78.809 39.405 1988.595 6.940

Error I 4 0.079 0.020

Horizontal factor (irrigation) 3 45.369 15.123 31.025 4.760

Error II 6 2.925 0.487

Time of N application � irrigation 6 3.868 0.645 9.703 3.000

Error III 12 0.797 0.066

Total 35 133.471
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(i) F ratios for replication and vertical factor

effects are obtained by comparing the

respective mean sum of squares against the

mean sum of square due to error I. On the

other hand, the F ratios corresponding to the

horizontal factor and interaction between

horizontal and vertical factor are worked

out by comparing the respective mean sum

of squares against the mean sum of square

due to error II and error III, respectively.

(ii) Calculated F ratios are compared with the

tabulated value of F at appropriate level of

significance and degrees of freedom. It is

found from the above table that all effects

are significant both at 5 % and 1 % levels of

significance.

(iii) Once the F test becomes significant, our

next task is to estimate the CD for different

types of comparison as given below:

The CD for the difference between two

vertical plot treatment means ¼ CDα ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr�I

rn

q
� tα=2;error�I d:f: ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2�0:020
3�4

q
� 2:776 ¼ 0:1595.

The CD for the difference between two hori-

zontal plot treatment means ¼ CD 0:05ð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr�II

3:3

q
� tα=2;error�II d:f: ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2�0:487

3:3

q
� 2:447 ¼ 0:805.

The CD for the difference between two verti-

cal plot treatment means at the same level of

horizontal plot treatment

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n� 1ð ÞMSEr � IIIþMSEr � I½ �

rn

r
t*

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 4� 1ð Þ0:066þ 0:0:20

3:4

r
t* ¼ 0:186t*

where t* is calculated as follows:

n� 1ð ÞMSEr � III � tIII

þ �

MSEr � I � tI
� �

n� 1ð ÞMSEr � IIIþMSEr � If g

¼ 4� 1ð Þ0:066 � 2:179

þ �

0:020 � 2:776
� �

4� 1ð Þ� 0:066þ 0:020f g
¼ 2:244

Thus, the critical difference value to compare two

vertical plot treatment means at the same level of

horizontal plot treatment is CD 0:05ð Þ ¼ 0:186

�2:244 ¼ 0:419.

The CD for the difference between two hori-

zontal plot treatment means at the same level of

vertical plot treatment ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 m�1ð ÞMSErIIIþMSErII½ �

rm

q
t*

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3�1ð Þ0:066þ0:487½ �

3�3

q
t* ¼ 0:289t* ¼ 0:289

�2:392 ¼ 0:692

where t* is calculated as follows:

m� 1ð ÞMSErIII � tIII þMSEr � tII½ �
m� 1ð ÞMSEr þMSEr

¼ 3� 1ð Þ � 0:066 � 2:179þ 0:487� 2:447½ �
3� 1ð Þ � 0:066þ 0:487

¼ 2:392

In both cases tI ¼ t0.025,4 ¼ 2.776, tII ¼ t0.025,6
¼ 2.447, and tIII ¼ t0.025,12 ¼ 2.179.
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Comparing the treatment means, it can be

concluded that nitrogen application at time 3 is

the best among the times of N application and

irrigation schedule 3 is the best irrigation

schedule. Similarly by using appropriate critical

difference values as mentioned above, one can

find out the best time of N application at a partic-

ular irrigation level and vice versa.

Time of Application of Nitrogen Mean CD
T3 33.22 0.1595
T1 31.24
T2 29.60
Irrigation Level Mean
I3 32.78 0.805
I2 31.83
I4 31.10
I1 29.71
Time of N App X Irrig. Mean
T3I3 34.283 0.419 

and 
0.692

T3I2 33.833
T3I4 33.017
T1I3 32.653
T3I1 31.740
T1I2 31.607
T1I4 31.547
T2I3 31.413
T2I2 30.037
T1I1 29.167
T2I4 28.730
T2I1 28.217
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Special Experiments and Designs 12

12.1 Introduction

Throughout Chaps. 10 and 11, we have discussed

different standard experimental designs. To con-

duct such experiments, one needs to have design-

specific requirements/conditions to be fulfilled.

But under practical situations, there are varieties

of problems such as the dearth of experimental

material, dearth of experimental plots, etc.

Suppose an experimenter is conducting an

experiment with four doses of nitrogen (N1, N2,

N3, N4) and three doses of potassium (K1, K2,

K3). So under standard factorial setup, there will

be 12 treatment combinations (N1K1, N1K2,

N1K3, N2K1, N2K2, N2K3, N3K1, N3K2,

N3K3, N4K1, N4K2, and N4K3), and these can

be repeated/replicated as per the requirement. So

the experimenter needs 12 experimental unit

plots in each replication. Now in many practical

situations, a question raised how far the doses of

nitrogen or the doses of potassium or their

combinations are superior over the standard

ones, popularly known as control/check? To

answer this question, one needs to introduce con-

trol as one of the treatments. In most of the cases,

the checks are generally constituted of zero doses

of both the factors. That means we need to intro-

duce zero dose in both the cases, i.e., there

would be five doses of nitrogen and four doses

of potassium. So altogether there would be

20 treatment combinations, thereby requiring

(+8) 20 experimental plots in each replication.

So the experimenter is to accommodate 20 exper-

imental units in each replication, thereby increas-

ing the requirement of huge number of

experimental units. In many practical situations,

this increase in experimental units to such a great

extent may not be feasible under the given exper-

imental condition. So the question is how to

tackle such situation without compromising the

objective of the experimentation?

When a plant breeder is in the process of

developing varieties, at the initial stage, the

experimenter may not have enough material to

repeat the newly developed variety more than

once. Our conventional designs require each

and every treatment to be repeated at least

once. So the question is how to adjust such a

situation?

Again one of the prerequisites of conventional

breeding is to evaluate the available germplasm

before these are put under breeding experiments

for exploitation of potential germplasms. A large

number of germplasms/lines are required to be

evaluated at a time under the uniform evaluation

protocol. It becomes very difficult to accommo-

date a huge number of germplasms under the

uniform evaluation protocol using CRD setup

or a RBD. This problem becomes more acute

when we consider RBD setup because we are

to form blocks which can accommodate such

a huge number of germplasms or lines, thus
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making it very difficult to evaluate the

germplasms, particularly under RBD setup.

Augmentation of the standard designs is

required to be done to cope with the above

situations. In fact the idea of augmented design

was formulated by Federer (1956). Appropriate

adjustment is made in the analysis of variance to

tackle the problem of comparing treatments over

the factorial treatments in the form of control

treatments. Thus in the above example of facto-

rial experiment with control treatment instead

of using 20 treatments, one can set an experi-

ment with 4 � 3 + 1(control ¼ N0K0) ¼ 13

treatments in each replication and by adjusting

the sum of squares accordingly can compare the

treatment effects against the control to examine

the difference between the control and the treat-

ment effects and also among treatments.

The designs which are developed by

adjusting/modifying the basic designs to over-

come the above problems are called augmented

designs. To accommodate the experimental

treatments, having material scares in nature,

along with the other treatments, is given by

Federer, 1956. Mostly these are used in germ-

plasm evaluation experiments, plant breeding

trials, etc. but can also be used in the field exper-

iment of entomology, pathology, agronomy, etc.

The problem of evaluating huge number of

germplasms at a place and at a time could be

overcome by augmenting the basic CRD or RBD.

The basic idea behind such design consists of

forming one set of treatments (mostly with the

check varieties) against which the other set of

treatments (mostly the new varieties) is tested/

compared. The check varieties are available in

good amount for repetition but the new varieties

may not have easy availability. The check

varieties are repeated number of times, but the

new varieties may not be applied more than once

because of scarcity. In this type of design, the

check varieties are repeated and randomly

allocated in each block, and a number of new

varieties are placed in each block. The block size

may vary, but the homogeneity among the exper-

imental units within a block should be ensured.

The adjustment for new variety total depends

upon the standard design used and their

placements in the design. The major advantage

of this type of design is that the new varieties, no

matter how discrepant their values recorded

may be, do not contribute to experimental error

of experiment. The total sum of squares is

partitioned into sources for comparing the

means of check varieties, the means of new

varieties in the same or different blocks, and the

means of check and new varieties. It may be

noted that unwise choice of any extreme treat-

ment in replicated experiment may result in

higher experimental error, thereby making the

tests nonsignificant and sometimes may spoil

the whole experiment.

12.2 Comparison of Factorial Effects
vs. Single Control Treatment

Let us suppose we have m � n factorial

experiments to be conducted using RBD with a

control. Thus we are talking about two-factor

(A and B say) factorial experiments along with

a control treatment conducted in RBD with r

replications. Altogether we have m � n + 1

treatment to be used in r replications. The layout

of the mn + 1 number of treatments will be as

usual as per the layout of the simple RBD design.

But the analysis of the responses recorded from

the experiment is taken up in two stages. In the

first step of analysis, the data are analyzed as per

the analysis of simple RBD with m� nþ 1ð Þ
treatments in r blocks. In the second step, the m

�n factorial treatment effects are partitioned into

different components as per the analysis of

two-factor factorial analysis using RBD. The

control treatment is compared with the factorial

treatment by using the sum of squares calculated

as follows:

SS CvsTð Þ ¼ Control totalð Þ2
r þ m�n treatment totalð Þ2

m�n�r

h i
�CF

The corresponding analysis of variance table

for the above analysis will be as follows:
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The calculated values of F are compared with

the respective table values of F at appropriate

level of significance and degrees of freedom. In

the event of significance of any one or all the

F tests, the corresponding critical difference or

least significant difference values are to be

worked out to compare the treatment means.

While comparing the treatment means

concerning the factorial treatments, the usual

procedure is to be adopted during the calculation

of CD/LSD values, i.e.,

LSD=CD αð ÞR¼
ffiffiffiffiffiffiffiffiffi
2MSEr
mnþ1

q
tα=2,error d:f: for replication

LSD=CD αð ÞA¼
ffiffiffiffiffiffiffiffiffi
2MSEr
nr

q
tα=2,error d:f: for factor A

LSD=CD αð ÞB¼
ffiffiffiffiffiffiffiffiffi
2MSEr
mr

q
tα=2,error d:f: for factor B

LSD=CD αð ÞAB¼
ffiffiffiffiffiffiffiffiffi
2MSEr

r

q
tα=2,error d:f: for interac-

tion of factors A and B

The best levels of main effect or interaction

effect are worked out by comparing the treatment

mean difference with respective LSD/CD values.

If the difference between any pair of level means

is more than the corresponding LSD/CD values,

then these two levels under comparison are

declared significantly different, and the best

level is selected on the basis of mean of the levels

under comparison. On the other hand, if the dif-

ference between any pair of level means is equal

to or less than the corresponding LSD/CD value,

then these two levels under comparison are

declared statistically at par.

To compare the means of control versus the

rest of the treatments, we are to use the LSD
value as follows:

LSD=CD αð ÞAB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr

1

rc
þ 1

rt

� �s
tα=2, error d:f:

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr

1

r
þ 1

mnr

� �s
tα=2,error d:f:

where rc and rt are the number of observations for

control and factorial (t ¼ mn) treatments,

respectively.

Example 12.1

The following information is pertaining to a fac-

torial experiment of potato conducted with four

doses of nitrogen and three seed rates along with

a control (i.e., conventional seed rate and dose of

nitrogen) in randomized block design with three

replications. Analyze the data to examine

whether there exists any significant difference

(a) between the control treatment and the other

treatments, (b) among the doses of nitrogen,

(c) among the seed rates, and (d) to find out the

best dose of nitrogen and seed rate combination

for the highest yield:

Nitrogen Seed rate R1 R2 R3

N0 S1 27.77 27.81 27.71

N0 S2 28.34 28.39 28.31

N0 S3 27.37 27.40 27.29

N1 S1 29.67 29.75 29.62

N1 S2 23.34 23.40 23.32

N1 S3 23.8 23.84 23.72

N2 S1 22.66 22.72 22.60

N2 S2 25.47 25.50 25.44

N2 S3 26.31 26.36 26.25

N3 S1 26.76 26.82 26.71

N3 S2 25.79 25.83 25.73

N3 S3 27.65 27.68 27.57

Control 22.31 22.36 22.26

Solution According to the given problem, we

are to test the hypotheses:

(a) The effect of the control treatment and the

factorial treatment is the same.

(b) Different doses of nitrogen are equal.

(c) Different seed rates are equal in response.

(d) Different combinations of doses of nitrogen

and seed rates are equal in response.

SOV d.f. SS MSS Cal F

Replication r�1 SSR MSR MSR/MSEr

Treatments mn�1 SSTr MSTr MSTr/MSEr

SS(A) m�1 SS(A) MS(A) MS(A)/MSEr

SS(B) n�1 SS(B) MS(B) MS(B)/MSEr

SS(AB) (m�1)(n�1) SS(AB) MS(AB) MS(AB)/MSEr

Control

vs. other

treatments

SS(CvsT)

1 SS(CvsT) MS(CvsT) MS(CvsT)/MSEr

Error By subtraction SSEr MSEr

Total (mn + 1)r�1 SSTot
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Let the level of significance be α ¼ 0.05.

Total analysis of the above problem is done in

two steps: in the first step, analysis of data takes

place taking 13 (4 � 3 + 1 ¼ 13) treatments as

per the analysis of RBD in three replications. For

the purpose we frame the following table and

calculate the following quantities:

Step 1:

Grand total GTð Þ¼27:77þ28:34þ : : : : :

þ27:57þ22:26¼1011:63

Correction factor CFð Þ ¼ GT2

v� r
¼ 1011:632

13� 3
¼ 26240:904

Total sum of squares SSTOTð Þ¼27:772þ28:342

þ:::::þ27:572þ22:262�CF ¼192:941

Treatment Nitrogen

Seed

rate R1 R2 R3 Total

T1 N0 S1 27.77 27.81 27.71 83.29

T2 N0 S2 28.34 28.39 28.31 85.04

T3 N0 S3 27.37 27.40 27.29 82.06

T4 N1 S1 29.67 29.75 29.62 89.04

T5 N1 S2 23.34 23.40 23.32 70.06

T6 N1 S3 23.80 23.84 23.72 71.36

T7 N2 S1 22.66 22.72 22.60 67.98

T8 N2 S2 25.47 25.50 25.44 76.41

T9 N2 S3 26.31 26.36 26.25 78.92

T10 N3 S1 26.76 26.82 26.71 80.29

T11 N3 S2 25.79 25.83 25.73 77.35

T12 N3 S3 27.65 27.68 27.57 82.90

T13 Control 22.31 22.36 22.26 66.93

Total 337.24 337.86 336.53 1011.63

Sum of squares due to block SSBlockð Þ¼
1

13
337:242þ337:862þ336:532
� ��CF¼0:0681:

Sum of squares due to treatment SSTrð Þ¼
1

3
83:292þ85:042þ:::::::::þ66:932Þ�CF
�

¼192:869

Sum of squares due to error SSErð Þ¼SSTOT�
SSBlock�SSTr ¼192:941�0:068�192:869¼0:0038

To compare the factorial treatments (12 in

number) with control, we work out the sum of

squares due to control vs. the rest as follows:

Sum of squares due to control vs: the rest

¼ 1

3
66:93ð Þ2 þ 1

36
83:29þ 85:04þ ::::::::ð

þ82:90Þ2 � CF ¼ 42:806

Step 2:

In the second stage of analysis, the factorial

treatment effects are partitioned into main effects

and interaction effects due to factors as per the

standard analysis of factorial experiments. For

the purpose the following table of factorial treat-

ment totals is framed, and the following

quantities are worked out:

Table of totals for S � N factorial treatments:

N0 N1 N2 N3 Total

S1 83.29 85.04 82.06 89.04 339.43

S2 70.06 71.36 67.98 76.41 285.81

S3 78.92 80.29 77.35 82.90 319.46

Total 232.27 236.69 227.39 248.35 944.70

Grandtotal‐2 GT2ð Þ ¼ 83:29þ70:06þ : : : : : :

þ76:41þ82:90¼944:70

Correctionfactor‐2 CF2ð Þ ¼ 944:70

12�3
¼24790:502

Tablesumof squares SSTabð Þ ¼ 1

3
83:292þ 70:062
�

þ :::::::::þ76:412þ82:902Þ�CF2¼150:062

Sumof squaresduetonitrogen SSNð Þ ¼1

9
232:272
�

þ236:692þ227:392þ248:352Þ�CF2¼26:769
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Sum of squares due to seed rate SSSð Þ ¼
1

12
339:432 þ 285:812 þ 319:462Þ � CF2
�

¼ 122:395

Sum of squares due to interaction SSNSð Þ
¼ SSTab � SS Nð Þ � SS Sð Þ

¼ 150:062� 26:769� 122:395 ¼ 0:898

With the help of the information and sum

of squares worked out in step 1 and step 2,

the following analysis of variance table is

framed.

Analysis of variance table for 3 � 4 + 1

experiment in RBD:

SOV d.f. SS MSS F ratio

Blocks 3�1 ¼ 2 0.06814 0.03407 211.7450

Treatments (3 � 4 + 1)�1 ¼ 12 192.86948 16.07246 99892.5577

Seed rate (S) 3�1 ¼ 2 122.39522 61.19761 380351.6689

Nitrogen (N) 4�1 ¼ 3 26.76901 8.92300 55457.7122

SN (3–1)(4–1) ¼ 6 0.89847 0.14975 930.6884

Control vs.

others

1 42.80678 42.80678 266050.0874

Error 24 0.00386 0.00016

Total (3 � 4 + 1)3�1

¼ 38

192.94148

For the above analysis, we have the table

values

F0:05;2,24 ¼ 3:40, F0:05;3,24 ¼ 3:01, F0:05;6,24 ¼
2:51;andF0:05;1,24 ¼ 4:26:Thus, all the treatment

effects are significant at 5 % level of signifi-

cance. As the test corresponding to control

vs. the rest effect is significant, so one can con-

clude that the factorial effect has significantly

different responses than the control treatment.

In order to work out the best dose of nitrogen,

best seed rate, and combination of seed rate and

nitrogen, we calculate the following critical dif-

ference values:

CD0:05 seed rateð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
r � n

r
� t0:025;error df

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00016

3� 4

r
� 2:064

¼ 0:0106

CD0:05 nitrogenð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr
r � s

r
� t0:025;error df

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00016

3� 3

r
� 2:064

¼ 0:0123

CD0:05 interactionð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr

r

r
� t0:025;error df

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 0:00016

3

r
� 2:064

¼ 0:0213

In order to find out the best seed rate, best dose of

nitrogen, and best combination, the average

yields corresponding to three seed rates, four

doses of nitrogen, and 12 interaction effects are

arranged in descending order separately and are

presented below:

Seed rate Mean CD

S1 28.286 0.0106

S3 26.622

S2 23.818

Nitrogen Mean CD

N3 27.594 0.0123

N1 26.299

N0 25.808

N2 25.266

Seed rate � nitrogen Mean CD

S1N3 29.680 0.0213

S1N1 28.347

S1N0 27.763

S3N3 27.633

S1N2 27.353

S3N1 26.763

S3N0 26.307

S3N2 25.783

S2N3 25.470

S2N1 23.787

S2N0 23.353

S2N2 22.660

From the above table, one can find that all the

three seed rates are significantly different from

each other (as the difference between the mean

responses of any two seed rates is greater than the

corresponding critical difference value). Thus,

the best seed rate is the S1 seed rate producing

the highest yield.

Similarly, the difference between the effects

of any two doses of nitrogen is greater than the
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corresponding critical difference value. Hence

the effects of different doses of nitrogen signifi-

cantly differ from each other, and the best dose of

nitrogen is N3 producing the highest yield.

So far as the interaction effects are concerned,

all the combinations are significantly different

from each other; the combination S1N3 is

found to be the best yielder.

12.3 Augmented Designs
for the Evaluation of Plant
Germplasms

As has already been discussed about the problem

of evaluating huge number of germplasms at a

time and/or at a place; augmentation of basic

CRD, RBD, and LSD can be made for the pur-

pose. But because of drawbacks of requiring

more number of experimental units compared to

other two basic designs, the possibility of using

LSD is not considered in this section. We shall

consider augmented CRD and RBD for the

purpose.

12.3.1 Augmented Completely
Randomized Design

If we can have the whole experimental area

constituted of a number of homogeneous experi-

mental plots, then one can think for augmented

CRD for the evaluation of germplasms. The basic

experimental design used here is a completely

randomized design. Let us suppose we have “t”

number of test genotypes which cannot be

repeated because of scarcity of material and “c”
number of checks which can be repeated “r”

number of times. Thus the total number of plots

required is N ¼ t + rc.
The whole experimental area is divided into

N number of homogeneous experimental units.

N number of experimental plots are randomly

allotted to t + c number of entries such that c

number of check varieties are replicated r number

of times. There shall be t + c ¼ e entries. The sum

of squares is calculated as follows:

Grand total Gð Þ ¼
Xt
i¼1

Ti þ
Xc
j¼1

Xr
k¼1

Cjk;where Ti

is the value corresponding to ith (i ¼ 1,

2, . . ..., t) genotype and Cjk is the value

corresponding to jth ( j ¼ 1, 2, . . ., c) check

and kth (k ¼ 1, 2, . . ., r) replicate.

Correction factor CFð Þ ¼ G2

N

Total sum of squares SSTotð Þ¼
Xt
i¼1

T2
i þ
Xc
j¼1

Xr
k¼1

C2
jk�CF

Sum of squares due to entries SSeð Þ ¼
Xt
i¼1

T2
i

þ 1
r

Xc
j¼1

Xr
k¼1

C2
jk � CF

Correction factor for checks CFcð Þ ¼
Xc
j¼1

Xr
k¼1

Cjk

 !2

c�r

Sumof squares due to checks SScð Þ
¼1

r

Xc
j¼1

Xr
k¼1

c2:j�CFc

Correction factor for genotypes CFtð Þ

¼
Pt
i¼1

Ti

� �2

t

Sum of squares due to genotypes SStð Þ ¼Xt
i¼1

T2
i �CFt

Sum of squares due to check vs: genotype SScg
� � ¼

SSe � SSc � SSt

Error sum of squares SSErð Þ ¼ SSTOT � SSe

As such the analysis of variance table will be

as follows:

SOV d.f SS MS F ratio

Entries (e) e�1 SSe MSe MSe/MSEr
Checks (c) c�1 SSc MSc MSc/MSEr
Genotypes (t) t�1 SSt MSt MSt/MSEr
Check vs. genotype 1 SSct MSct MSct/MSEr
Error c(r�1) SSEr MSEr
Total N�1 SSTot
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The calculated values of F are compared with

the respective table values of F at appropriate

level of significance and degrees of freedom. In

the event of significance of any one or all the

F tests, the corresponding critical difference or

least significant difference values are to be

worked out to compare the treatment means.

LSD/CD (α) to compare mean difference:

(a) Between two checks:

ffiffiffiffiffiffiffiffiffi
2MSEr

r

q
tα=2,err:d:f

(b) Between a check and a genotype:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr 1þ 1

r

� �q
tα=2,err:d:f

Example 12.2 (Augmented CRD)

The following table gives the field layout and the

responses in 25 experimental units in an evalua-

tion trial with three checks (c) and ten test

genotypes (g) in a homogenous experimental

area where the checks are repeated five times

each and test varieties are not repeated at all.

Analyze the data to examine (a) whether the

test genotypes are superior over the checks,

(b) which of the check genotypes is superior,

and (c) which of the test genotypes is superior.

Layout and response for each plot of an aug-

mented CRD with ten test genotypes and three
checks each replicated five times:

c-1, 13 g-10, 19 g-8, 36 c-1, 13 c-3, 14 g-3, 45
g-6, 13 c-1,14 g-9, 18 c-2, 16 c-3,  13
c-2, 15 c-3, 13 g-5, 27 c-2, 19 c-1, 16
c-3, 12 g-2, 27 c-2 16 c-1, 15 g-1, 19
g-7, 22 c-3,11 c-2, 18 g-4, 24

Solution From the given information, it appears

that the experiment has been conducted follow-

ing augmented completely randomized design,

where a number of checks ¼ 3 and are repeated

five times each. A number of test

genotypes ¼ 10.

Let the level of significance be α ¼ 0.05.

To facilitate the analysis, first we make the

following tables:

Genotypes Response

g�1 19

g�2 27

g�3 45

g�4 24

g�5 27

g�6 13

g�7 22

g�8 36

g�9 18

g�10 19

Total 250

Mean 25

Check R1 R2 R3 R4 R5 Total Mean

c�1 13 14 13 15 16 71 14.20

c�2 15 16 18 16 19 84 16.80

c�3 12 13 11 14 13 63 12.60

218 14.533

Grandtotal GTð Þ ¼
Xv
i¼1

giþ
Xr
k¼1

Xc
j¼1

ckj

¼
X10
i¼1

giþ
X5
k¼1

X3
j¼1

ckj¼250þ218¼468;

where gi is the value corresponding to ith (i ¼ 1,

2, ....., 10) genotype and ckj is the value

corresponding to jth ( j ¼ 1, 2, 3) check and kth
(k ¼ 1, 2, ..., 5) replicate.

Correction factor CFð Þ ¼ GT2

N
¼ 4182

25

¼ 8760:96
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Totalsumof squares SSTotð Þ ¼
Xv
i¼1

g2i þ
Xr
k¼1

Xc
j¼1

c2kj�CF¼
X10
i¼1

g2i þ
X5
k¼1

X3
j¼1

c2kj�CF

¼ 192þ252þ ::::::::::192
� �þ 132þ142þ :::::::::þ142þ132

� ��8760:96¼1529:04

Sum of squares due to entries SS eð Þ
� � ¼

Xv
i¼1

g2i þ
1

r

Xc
j¼1

c2:j � CF ¼
X10
i¼1

g2i þ
1

5

X3
j¼1

c2:j � CF

¼ 192 þ 272 þ :::::::::::þ 192
� �þ 1

5
712 þ 842 þ 632
� �� 8760:96 ¼ 1506:24

Correctionfactorforchecks CFcð Þ¼ 1

c�r

Xr
k¼1

Xc
j¼1

ckj

 !2

¼ 1

3�5

X5
k¼1

X3
j¼1

ckj

 !2

¼ 1

15
�2182¼3168:266

Sum of squares due to checks SScð Þ ¼ 1

r

Xc
j¼1

Xr
k¼1

c2:j � CFc ¼ 1

5

X3
j¼1

X5
k¼1

c2:j � 3168:266

¼ 1

5
712 þ 842 þ 632
� �� 3168:266 ¼ 44:933

Correction factor for genotypes CFg

� � ¼ 1

v

Xv
i¼1

gi

 !2

¼ 1

10

X10
i¼1

gi

 !2

¼ 1

10
� 2502 ¼ 6250

Sum of squares due to genotypes SS gð Þ
� � ¼

Xv
i¼1

g2i � CFg ¼ 192 þ 272 þ :::::::::::þ 192
� �� 6250

¼ 7054� 6250 ¼ 804

Sum of square due to check vs: genotype SScg
� � ¼ SSe � SSc � SSg
¼ 1506:24� 44:93� 804:00
¼ 657:306

Error sum of squares SSErð Þ ¼ SSTot � SSe ¼ 1529:04� 1506:24 ¼ 22:80

Thus, the ANOVA table corresponding to the

above analysis will be as follows:

ANOVA table

SOV d.f. SS MS Cal F Tab F (0.05)

Entries 12 1506.240 125.520 66.063 2.690

Checks 2 44.933 22.467 11.825 3.890

Genotypes 9 804.000 89.333 47.018 2.800

C � G 1 657.307 657.307 345.951 4.750

Error 12 22.800 1.900

Total 24 1529.040

From the above table, it is clear that the tabulated

F value corresponding to each and every test at

desired level of significance (0.05) and respective

degrees of freedom is less than the respective cal-

culated values. Hence we conclude that:

(i) There remain significant differences among

the 14 entries (check plus test genotypes).

(ii) There remain significant differences among

the three checks.
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(iii) There remain significant differences among

the ten test genotypes.

So our next objectives will be to compare the

checks among themselves, among the genotypes,

and among the checks and the genotypes. For

that we need to calculate the critical difference

values corresponding to the above comparisons.

Standard errors of mean difference for:

Between two checks:
ffiffiffiffiffiffiffiffiffi
2MSEr

r

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2�1:900

5

q
¼

0:871 and corresponding

CD 0:05ð Þ ¼ SEd � t0:025,error df
¼ 0:871 � 2:179 ¼ 1:899

Between two test genotypes:
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1:033

p ¼ 1:437 and corresponding

CD 0:05ð Þ ¼ SEd � t0:025,error df
¼ 1:949 � 2:179 ¼ 4:247

Between a check and a genotype:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ErMS 1þ 1

r

� �q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:900� 1þ 1

5

� �q
¼ 1:509

and corresponding

CD 0:05ð Þ ¼ SEd � t0:025,error df
¼ 1:509 � 2:179 ¼ 3:290

Checks Mean response CD
c-2 16.80 1.899
c-1 14.20
c-3 12.60

Check x Genotypes
Genotypes 25.00 3.29

Checks 14.53
Genotypes

g-3 45.00 4.247
g-8 36.00
g-2 27.00
g-5 27.00
g-4 24.00
g-7 22.00
g-1 19.00
g-10 19.00
g-9 18.00
g-6 13.00

From the above table, we conclude that:

(i) Among the checks, the check c�2 is having

significantly higher response compared to

other two checks.

(ii) The average performance of test genotypes

is significantly higher than the checks.

(iii) Among the test genotypes, g�3 is the best

performer followed by g�8 which is at par

with g�2 and g�5.

12.3.2 Augmented Randomized Block
Design

Analogous to that of simple RBD, in aug-

mented RBD also the whole experimental

field is divided into number of blocks, each

consisting of homogenous experimental units.

The difference between the simple RBD and

augmented RBD is that in simple RBD the

same treatments are applied in all the blocks,
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but in augmented RBD the same check

varieties are included in each block along

with different test varieties. That means check

varieties are repeated all blocks, but new sets of

varieties appear in different blocks. Thus, in

augmented randomized block design, the

whole experimental area is divided into “r”

number of distinct blocks such that kth block

contains (nk + c) number of homogeneous

experimental units. Here “nk” is the number of

test genotypes in kth block, and “c” is the

number of check varieties repeated in each of

the “r” blocks. Thus, for r number of blocks,

we can have
Xr
k¼1

nk ¼ n number of new

varieties; altogether n + c ¼ e number of

entries are there in the experiment. It may be

noted that the size of the blocks may vary in

augmented RBD, whereas the block size

remains fixed in simple RBD.

The randomization is taken up in such a way

that all the checks and the nk number of test

genotypes occur only once in kth block. Thus

the total number of experimental units in this

design will be (n1 + c) + (n2 + c) + . . .. . .. +

(nr + c) ¼ n + rc ¼ N (say).

Randomization and Layout

1. kth block is divided into nk þ cð Þ number of

plots.

2. Randomly allocate the c number of checks

among nk þ cð Þ number of plots in kth block.

3. Randomly allocate the total
Xr
k¼1

nk ¼ n test

genotypes with “nk” test genotypes in kth
block. Thus, it may be noted that randomiza-

tion technique of test genotypes is just like

that of allocation of treatments in CRD.

While allocating the test genotypes, we are

left with N�rc ¼ n number of experimental

units spread over r blocks, and we are to

allocate these n test genotypes in n experi-

mental unit like the allocation in CRD.

Sometimes the check varieties are placed in a

systematic manner, i.e., the check varieties are

placed after a fixed number of plots. But the

analysis with random allocation of check

varieties and with systematic allocation of

check varieties will be different. The layout of

the augmented RBD with two check varieties c1

and c2 may look like as given below:

Blocks Experimental units 
B1 g4 g15 g10 c1 c2 g9
B2 c2 g1 g8 c2 g11
B3 g12 c1 g19 g14 c2 g6 g22

....................................................................................................................................................

....................................................................................

..................................................................................................................

................................................................
Br-1 g21 g5 c2 g3 g17 c1
Br c1 c2 g16 g13 g7

The structure of analysis of variance-

augmented RBD conducted with n genotypes

with random allocation of c check varieties in

r blocks will be as follows:
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ANOVA table

SOV d.f. SS MS F ratio

Blocks r�1 SSB MSB MSB/MSEr
Entries (e) e�1 SSe MSe MSe/MSEr
Checks (c) c�1 SSc MSc MSc/MSEr
Genotypes (g) n�1 SSg MSg MSg/MSEr
Check

vs. genotype

1 SScg MScg MScg/
MSEr

Error (c�1)

(r�1)

SSEr MSEr

Total N�1 SSTot

As only the checks are replicated but not the

test genotypes, before calculating the different

components of the analysis of variance, we are

to adjust the effects of test genotypes:

(i) Block effects rk ¼ 1
c

Xc
j¼1

cjk�c

 !
, where c

¼ 1
r

Xc
j¼1

Xr
k¼1

cjk and cjk is the value

corresponding to jth ( j ¼ 1, 2, . . .., c)

check in kth (k ¼ 1, 2, . . ., r) block. It

may be noted that the sum of the block

effects must be equal to zero, i.e.,Xr
k¼1

rk ¼ 0:

(ii) Mean effect mð Þ ¼ 1
e G� r � 1ð Þc½

�
Xr
k¼1

nkrk�; where nk is the number of test

genotypes in the kth block (we have taken

nk ¼ v for all the blocks). Thus, the mean

effect for equal number test genotype in

each block is
1

e
G� r � 1ð Þc�

Xr
k¼1

nkrk

" #

�
where

X
nk ¼ n, then n

Xr
k¼1

rk ¼ n� 0

¼ 0
�

(iii) Check effects cj
� � ¼ cj�m, j¼ 1,2, ::::,cð Þ

where cj ¼ 1
r

Xr
k¼1

cjk ¼ mean for jth check

(iv) Adjustment for genotypic responses

g0i
� � ¼ gi � rik, where gi is the response of

the ith test genotype and rik is the block

effect of the block in which the ith genotype
occurs.

Corresponding effects of the ith test

genotype is obtained by subtracting the

mean effect (m) from the above adjusted

effect of genotype (gi
0
), i.e., gi ¼ g0i � m

Grand total Gð Þ ¼
Xn
i¼1

gi þ
Xr
k¼1

Xc
j¼1

ckj;where

gi is the value corresponding to ith (i ¼ 1, 2, . . ., n)
genotype and ckj is the value corresponding to jth

(j ¼ 1, 2, . . ., c) check and kth (k ¼ 1, 2, . . ., r)

replicate.

Correction factor CFð Þ ¼ G2

N

Total sum of squares SSTotð Þ ¼
Xn
i¼1

g2iþ
Xr
k¼1

Xc
j¼1

c2kj � CF

Sum of squares due to block

SSBð Þ ¼
Xr
k¼1

R2
k

nk þ c

� �
� CF where Rk is the

sum of the observations in kth block.

Sum of squares due to entries SSeð Þ ¼

m�Gð Þþ
Xr
k¼1

rkRk þ
Xc
j¼1

cj
Xr
k¼1

cjk

 !
þ
Xn
i¼1

gig
00
i

�
Xr
k¼1

R2
k

nk þ cð Þ
Correction factor for checks CFcð Þ

¼ 1

c� r

Xr
k¼1

Xc
j¼1

ckj

 !2

Sum of squares due to checks SScð Þ

¼ 1

r

Xr
k¼1

Xc
j¼1

ckj

 !2

� CFc

Correction factor for genotypes CFgð Þ

¼ 1

n

Xn
i¼1

gi

 !2

Sum of squares due to genotypes SSgð Þ
¼
Xn
i¼1

g2i � CFg

Sum of squares for check vs. genotype

(cgSS) ¼ SSe–SSc–SSg

Error sum of squares (SSEr) ¼ SSTot–SSB–SSe

The standard errors of difference for

testing the different varietal means are given

bellow:
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(i) For two check means ¼
ffiffiffiffiffiffiffiffiffi
2MSEr

r

q
(ii) For two test genotype means in the same

blocks ¼ ffiffiffiffiffiffiffiffiffi
2MS

p
Er

(iii) For any two entries means in the same block

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr � 1þ 1

c

� �q
(iv) For means between a check and a test

genotypes ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr � 1þ 1

r þ 1
c þ 1

rc

� �q

Merits and Demerits Augmented designs are

applied only when no other designs fit best for

the purpose. Experimenter should take every care

to control the experimental error during experi-

mentation. For the reason the plots in each and

every block should be kept to their highest possi-

ble homogeneous condition, and the number of

test genotype in each and every block should be

kept the same to facilitate statistical analysis.

Added advantage of this type of design is that

inclusions of any number of blocks at any point

of time are possible if other conditions satisfy.

Example 12.3 (Augmented RBD)

In a germplasm evaluation trial, 20 test genotypes

were tested in five blocks along with three stan-

dard check varieties. Given below is the layout

and responses of total 23(20 + 3) genotypes. Ana-

lyze the data to examine (a) whether the test

genotypes are superior over the checks,

(b) which of the check varieties is superior, and

(c) which of the test genotypes is superior. Note

that in the given layout, g stands for test genotypes

and c stands for check varieties:

Block 1 Block 2 Block 3 Block 4 Block 5
g20, 40 C1, 9 g1,14 g4,16 C3, 8
C3, 7 g7,17 C2, 6 C2, 8 g18, 27
g3, 19 C3, 9 C3, 9 g19, 23 C2, 7
g2, 25 g15, 28 g17, 47 C1,8 g13, 12
C2, 7 g6, 13 g5, 29 g9, 44 C1, 8
C1, 9 C2, 8 C1, 9 C3,7 g10, 19
g14, 37 g12, 47 g11, 21
g8, 33 g16, 26

Solution From the given information, it is clear

that the above experiment has been conducted in

an augmented randomized block design with

three checks, each being replicated in each of

the five blocks; there are 20 test genotypes ran-

domly allocated among the five blocks. The

block size is varying from 6 in block 3 and 5 to

8 in block 1 and block 2.

Thus,

c ¼ number of checks ¼ 3.

v ¼ number of test genotypes in different

blocks ¼ 5, 5, 3, 4, and 3, respectively,

in block 1, block 2, block 3, block 4, and

block 5.

r ¼ number of blocks ¼ 5.

And n ¼ number of test genotypes ¼ 18.

Let the level of significance be α ¼ 0.05.

Only the checks are replicated five times but

not the test genotypes, so we are to adjust the

effects of test genotypes as follows.

We make the following table and the follow-

ing quantities are worked out:

Checks R1 R2 R3 R4 R5 Total Mean
C1 9 9 9 8 8 43 8.6
C2 7 8 6 8 7 36 7.2
C3 7 9 9 7 8 40 8

Total 23 26 24 23 23 119

Genotypes 40 17 14 16 27
19 28 47 23 12
25 13 29 44 19
37 47 21
33 26

Total 154 131 90 104 58 537
Rep Total 177 157 114 127 81 656

Block effects rk ¼ 1

c

Xc
j¼1

cjk�c

 !
¼ 1

3

X3
j¼1

cjk�c

 !
;

where c ¼ 1

r

Xc
j¼1

Xr
k¼1

cjk ¼ 1

5

X3
j¼1

X5
k¼1

cjk ¼ 1

5
� 119

¼ 23:8: Thus, we have

r1 ¼ 1

c

Xc
j¼1

cj1�c

 !
¼ 1

3

X3
j¼1

cj1�c

 !
¼ 1

3
23:0ð

�23:8Þ¼�0:267
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r2 ¼ 1

c

Xc
j¼1

cj2�c

 !
¼ 1

3

X3
j¼1

cj2�c

 !
¼ 1

3
26:0ð

�23:8Þ ¼ 0:733

r3 ¼ 1

c

Xc
j¼1

cj3�c

 !
¼ 1

3

X3
j¼1

cj3�c

 !
¼ 1

3
24:0ð

�23:8Þ ¼ 0:066

r4 ¼ 1

c

Xc
j¼1

cj4�c

 !
¼ 1

3

X3
j¼1

cj4�c

 !
¼ 1

3
23:0ð

�23:8Þ ¼ �0:267

r5 ¼ 1

c

Xc
j¼1

cj5�c

 !
¼ 1

3

X3
j¼1

cj5�c

 !
¼ 1

3
23:0ð

�23:8Þ ¼ �0:267

It may be noted that sum of the block effects

must be equal to zero, i.e.,
Xr
k¼1

rk ¼ �0:267�

0:733� 0:066� 0:267 �0:267 ¼ 0:

Mean effect mð Þ

¼ 1

e
G� r � 1ð Þc�

Xr
k¼1

nkrk

" #

¼ 1

23
656� 5� 1ð Þ23:8� 5� �0:267ð Þf½

þ5� 0:733ð Þ þ 3� 0:066ð Þ þ 4

� �0:267ð Þ þ 3� �0:267ð Þg�

¼ 1

23
656� 95:2þ 0:666½ � ¼ 24:353

Check effects cj
� � ¼ cj � m, j ¼ 1, 2, 3ð Þ. Thus

we have

c1 ¼ c1 � m ¼ 8:6� 24:353 ¼ �15:753

c2 ¼ c2 � m ¼ 7:2� 24:353 ¼ �17:153

c3 ¼ c3 � m ¼ 8:0� 24:353 ¼ �16:353

Adjustment for genotypic responses g0i
� � ¼ gi �

rik; where gi is the response of the ith test geno-

type and rik is the block effect of the block in

which the ith genotype occurs.

Corresponding effects of the ith test genotype

is obtained by subtracting the grand mean (m)
from the above adjusted effect of genotype ðg0iÞ,
i.e., g00i ¼ g0i � m:

Genotypes

Genotypic

response

(gi)
Block

(k)

Block

effect

(rik)

Adjusted

response

g0i ¼
�
gi � rikÞ

Adjusted

genotype

effects

g00i ¼�
g0i � mÞ

g1 14 3 0.0667 �10.420 �145.875

g2 25 1 �0.2667 0.914 22.842

g3 19 1 �0.2667 �5.086 �96.640

g4 16 4 �0.2667 �8.086 �129.381

g5 29 3 0.0667 4.580 132.830

g6 13 2 0.7333 �12.086 �157.122

g7 17 2 0.7333 �8.086 �137.468

g8 33 1 �0.2667 8.914 294.151

g9 44 4 �0.2667 19.914 876.201

g10 19 5 �0.2667 �5.086 �96.640

g11 21 4 �0.2667 �3.086 �64.813

g12 47 2 0.7333 21.914 1029.942

g13 12 5 �0.2667 �12.086 �145.036

g14 37 1 �0.2667 12.914 477.806

g15 28 2 0.7333 2.914 81.583

g16 26 2 0.7333 0.914 23.755

g17 47 3 0.0667 22.580 1061.276

g18 27 5 �0.2667 2.914 78.669

g19 23 4 �0.2667 �1.086 �24.986

g20 40 1 �0.2667 15.914 636.547

Grand total (G) ¼ grand total GTð Þ ¼
Xn
i¼1

gi

þ
Xr
k¼1

Xc
j¼1

ckj ¼ 537þ 119 ¼ 656;where gi is the

value corresponding to ith (i ¼ 1, 2, . . ..., 20) geno-
type and ckj is the value corresponding to jth ( j ¼ 1,

2, 3) check and kth (k ¼ 1, 2, . . ., 5) replicate.

Correction factor CFð Þ ¼ G2

N
¼ 6562

35

¼ 12295:314

Total sum of squares SSTotð Þ

¼
Xn
i¼1

g2i þ
Xr
k¼1

Xc
j¼1

c2kj � CF

¼
X20
i¼1

g2i þ
X5
k¼1

X3
j¼1

c2kj � CF

¼ 202 þ 192 þ :::::::: þ 122 þ 192
� �
þ 92 þ 72 þ ::::::þ 72 þ 82
� �� 12295:314

¼ 5474:685
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Sum of squares due to block SSBð Þ

¼
Xr
k¼1

r2k
vk þ c

� CF

¼ 1

5þ 3ð Þ 1772
� �þ 1

5þ 3ð Þ 1572
� �

þ 1

3þ 3ð Þ 1142
� �þ 1

4þ 3ð Þ 1272
� �

þ 1

3þ 3ð Þ 812
� �� 12295:31

¼ 3916:125þ 3081:125þ 2166:00þ 2304:14
þ 1093:5� 12295:31

¼ 265:578

Sum of squares due to entries SSeð Þ

¼ m� Gð Þ þ
Xr
k¼1

rk
Xv
i¼1

Xc
j¼1

yijk

 !

þ
Xc
j¼1

cj
Xr
k¼1

cjk

 !
þ
Xn
i¼1

gig
00
i �

Xr
k¼1

r2k
cþ vk

¼ 24:353� 656½ � þ 117� �0:267ð Þ þ 157½
� 0:733ð Þ þ 114� 0:066ð Þ þ 127

� �0:267ð Þ þ 81� �0:267ð Þ�

þ 43� �24:0899ð Þ þ 36� �25:489ð Þ½
þ40� �24:689ð Þ�

þ 14� �145:875ð Þ þ 25� �22:842ð Þ þ 19½
� �96:640ð Þ þ :::::::::þ 40� 636:547ð Þ�

� 1

5þ 3ð Þ 1772
� �þ 1

5þ 3ð Þ 1572
� �	

þ 1

3þ 3ð Þ 1142
� �þ 1

4þ 3ð Þ 1272
� �

þ 1

3þ 3ð Þ 812
� �#

¼ 15975:976þ 20:066þ �1949:081ð Þ
þ 3717:63ð Þ � 12560:892

¼ 5203:373

Correction factor for checks CFcð Þ

¼ 1

c� r

Xr
k¼1

Xc
j¼1

ckj

 !2

¼ 1

3�5
1192
� �¼944:066

Sum of squares due to checks SScð Þ

¼ 1

r

Xr
k¼1

Xc
j¼1

ckj

 !2

� CFc

¼ 1

5
432 þ 362 þ 402
� �� 944:066

¼ 4:933

Correction factor for genotypes CFg

� �
¼ 1

n

Xn
i¼1

gi

 !2

¼ 1

20
� 5362 ¼ 14418:45

Sum of squares due to genotypes SSg
� �

¼
Xn
i¼1

g2i � CFg

¼ 402 þ 192 þ 252 þ :::::::: þ 122 þ 192
� �
�14418:45

¼ 16813� 14418:45 ¼ 2394:55

Sum of squares check vs: genotype SScg
� �

¼ SSe � SSc � SSg

¼ 7556:707� 4:933� 2394:55

¼ 5157:223

Error sum of squares SSErð Þ
¼ SSTot � SSB � SSe
¼ 5474:685� 265:678� 5203:373 ¼ 5:398

SOV d.f. SS MSS Cal F Tab F

Blocks 4 265.578 66.3945 135.298 3.84

Entries (e) 22 5203.373 236.51695 481.972 3.18

Checks (c) 2 4.933 2.4665 5.026 4.46

Genotypes (g) 19 2394.55 126.02895 256.821 3.22

C vs. G 1 5157.223 5157.223 10509.347 5.32

Error 11 5.398 0.4907273

Total 34 5474.685

From the above ANOVA table, it is clear that

the calculated F values are greater than the

corresponding tabulated F values at 5 % level

of significance and respective degrees of free-

dom. So, one can infer that:

(i) There remain significant differences among

the 20 entries (check plus test genotypes).

(ii) There remain significant differences among

the three checks.

(iii) There remain significant differences among

the 16 test genotypes.

480 12 Special Experiments and Designs



So our next objectives will be to compare the

checks among themselves, among the genotypes,

and among the checks and the genotypes.

For that we need to calculate the critical dif-

ference values corresponding to the above

comparisons.

Standard errors of mean difference for:

Between two checks:

ffiffiffiffiffiffiffiffiffi
2MSEr

r

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2�0:490

5

q
¼

0:443 and corresponding CD(0.05) ¼ SEd �
t0.025,error df ¼ 0.443 � 2.200 ¼ 0.975

Between any two entries in the same block:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr 1þ 1

r

� �q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:490� 1þ 1

5

� �q
¼ 0:767

and corresponding CD(0.05) ¼ SEd � t0.025,error

df ¼ 0.767 � 2.200 ¼ 1.688

(c) Between two test genotypes:
ffiffiffiffiffiffiffiffiffi
2MS

p
Er ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 0:490
p ¼ 0:990 and corresponding CD

(0.05) ¼ SEd � t0.025,error df¼0:990� 2:200

¼ 2:180 ¼ 5.391

(d) Between means of a check and a test

genotypes ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEr � 1þ 1

r þ 1
c þ 1

rc

� �q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:490� 1þ 1

5
þ 1

3
þ 1

15

� �q
¼ 0:886 and

corresponding CD(0.05) ¼ SEd � t0.025,error df
0.886 � 2.200 ¼ 1.950

Conclusion Using the below mean tables and

corresponding CD values, one can compare the

genotypes among themselves as well as with the

checks, and one can conclude that:

(i) C1 and C3 and C3 and C2 are at par with each

other. Among the three c1 is the best check.

(ii) Among the test genotypes, g12 and g17 are

the best one having significantly higher

response than any other genotype followed

by g9, g20, g14, and so on.

(iii) Among the entries g20 in block 1, g12 in block

2, g17 in block 3, g44 in block 4, and g18 in

block 5 are the best entries, respectively.

(iv) Irrespective of the block, g12 and g17 are

found to be the best and the better performer

compared to other test and check genotypes:

Among the checks
Checks Mean
C1 8.6
C3 8.0
C2 7.2

CD(0.05) 0.975
Among the genotypes

g12 g17 g9 g20 g14 g8 g5 g15 g18 g16 g2 g19 g11 g3 g10 g7 g4 g1 g6 g13
47 47 44 40 37 33 29 28 27 26 25 23 21 19 19 17 16 14 13 12

CD(0.05) 5.391
Entries in the same block

B1 B2 B3 B4 B5

Checks

9 9 9 8 8
7 8 6 8 7
7 9 9 7 8

Genotypes

40 17 14 16 27
19 28 47 23 12
25 13 29 44 19
37 47 21
33 26

CD(0.05) 1.688
Among the entries

g12 g17 g9 g20 g14 g8 g5 g15 g18 g16 g2 g19 g11 g3 g10 g7 g4 g1 g6 g13 C1 C3 C2
47 47 44 40 37 33 29 28 27 26 25 23 21 19 19 17 16 14 13 12 8.6 8 7.2

CD (0.05) 1.950
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12.4 Combine Experiment

Experiments, particularly the field experiments,

are required to be repeated for their consistency

or otherwise in results. Agricultural experiments,

experiments with living objects, are not only

subjected to the treatments under investigation

but also are subjected to varied range of

agroclimatic situations. So the performance of

the treatments is required to be assessed over

the varied situations. For example, yield perfor-

mance of a set of varieties/breeds is required to

be assessed under different abiotic and biotic

conditions for consistency before these are

released for wide adoption by the farmers. A

breed/variety is put under multilocational trial

or experimented over different seasons/years for

their consistency or otherwise in performance. In

doing so the experimental treatments come

across with a varied range of abiotic and/or biotic

conditions. At the same time, such repetitions of

the experiments open up the scopes of the exper-

iment with respect to its applicability over the

situations. Moreover the presence and

estimations of the treatment � situation interac-

tion effects are needed to be worked out. A

treatment or a set of treatments having nonsignif-

icant interaction effects will imply consistency of

the treatment(s) over different situations. On the

other hand, if the treatment � situation interac-

tion be significant, then the best place where a

particular treatment is of much adoptability

could be identified and exploited.

In the process, a particular experiment is

repeated under different situations, viz., seasons,

years, locations, etc., essentially under the same

experimental protocol. Now to have the overall

effect of a treatment or treatments, the experi-

menter needs to combine the responses of the

experiments conducted under different

situations. Such type of analysis which combines

the analysis of the same experiment conducted in
different situations is known as combined analy-

sis. Essentially, combined analysis is performed

in two phases: in the first phase, it includes
situation-wise analyses of the experiment sepa-

rately and then to combine the results of all the

situations to have a comprehensive idea about
the treatments.

Let us discuss the step-by-step analytical pro-

cedure of multilocational trial conducted with

t treatments using RBD with r replications in

each of the l locations:

Step 1:

We are provided with the information of an

experiment conducted with t treatments in RBD

with r replications from each of the l locations.

Following the usual procedure of RBD analysis,

let us analyze the data from each of the

l locations separately and summarize the same

as follows.

The location-wise mean sum of squares for

different sources of variations is as follows:

Location (L)
SOV                   d.f.                             L1 L2 ………….            Ll

Replication            r-1 MSR-1 MSR-2 ………….     MSR-l
Treatment              t-1                         MSTr-1 MSTr-2 ………….      MSTr- l
Error                (r-1)(t-1)                     MSEr -1 MSEr -2 …………. MSEr - l

Step 2:

The combined analysis starts with the testing

of homogeneity of the error mean squares from

different locations. This is because of the fact

that in the event of acceptance of homogeneity

of the error mean squares, further analysis will be

different from that of in the presence of hetero-

geneity among the error mean squares. We know

that error mean square is nothing but the

estimated variance. So if the homogeneity of

variances is established, then one should go for
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unweighted combined analysis of variance other-
wise weighted combined analysis of variance. So

the test for homogeneity of error mean squares

(variance) is necessary before taking up the com-

bined analysis of variance. Bartlett’s test or

Hartley’s test for homogeneity variance can be

adopted for the purpose:

(i) Bartlett’s test for homogeneity of variances

can be performed following the procedure

described in Chap. 6.2.1.2.ix. Bartlett’s test

for homogeneity of variance can be

performed even when error mean squares

are arising out of experiments having differ-

ent replications.

(ii) But the combined analysis of variance is taken

up generally for the experiments conducted

under the same protocol, i.e., the number of

replications used in all the sets is equal. In that

case Hartley’s test becomes more useful and

simple. Hartley’s test is given as

Fmax

¼ Largest error mean square among the situations

Smallest error mean square among the situations

¼ MxMSEr
MnMSEr

For different treatments (t) and replication

combinations, the value of Fmax statistics has

been tabulated by Hartley. If the observed value

of Fmax is less than or equal to the table value at

specified level of significance, then the error

mean squares (variances) are declared homoge-

neous; otherwise these are heterogeneous. As a

rule of thumb, if the above ratio be less than
3, then the variances are generally taken as

homogeneous otherwise not. That means

Fmax

¼ Largest error mean square among the situations

Smallest error mean square among the situations

¼ MxMSEr
MnMSEr

< 3:

Step 3:

Appropriate model for the combined analysis

would be as follows:

yijk ¼ μþ αi þ βk þ γik þ δjk þ eijk

where i ¼ 1, 2, . . ., t; j ¼ 1, 2, . . .. . .., r; and

k ¼ 1, 2, . . .. . ., l

yijk ¼ response of ith treatment in jth replication

of kth location

μ ¼ general effect

αi ¼ additional effect due to ith treatment andXt
i¼1

αi ¼ 0

βk ¼ additional effect due to kth location andXr
k¼1

βk ¼ 0

γik ¼ interaction effect due to ith treatment in kth
location and γik ~ i.i.d. N(0, σ2)

δjk ¼ effect of the jth replication in the kth loca-

tion and
Xr
j¼1

Xl
k¼1

δjk ¼ 0

eijk ¼ error component associated with ith treat-

ment and jth replication and kth location and

eijk ~ i.i.d. N(0, σ2)

The combined analysis of variance table

would be as follows:

SOV

Degrees of

freedom S.S.

Location l�1 SSL
Replication within

locations

l(r�1) SSR

Treatments (t�1) SSTr
Treatment � location (t�1)(l�1) SS(LT)
Error l(r�1)(t�1) SSEr

Step 4:

(a) Unweighted analysis:

When the error mean squares are homoge-

neous, one should adopt unweighted analysis,

and the different steps for unweighted analysis

of variances are as follows:

(i) Correction factor CFð Þ ¼ 1
ltr

Xt
i¼1

Xr
j¼1

Xl
k¼1

yijk

 !2

:

(ii) Total sum of square TSSð Þ ¼Pt
i¼1

Pr
j¼1

Pl
k¼1

y2
ijk

�C:F:
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(iii) Replication within location sum of square

¼
Xl
k¼1

RkSS

where RkSS is the sum of square due to

replication in kth location.

(iv) A treatment � location table of totals is

formed and from which the treatment sum

of square, location sum of square, and treat-

ment � location sum of square are

computed as per the methods used in facto-

rial experiments.

(v) Error sum of square SSErð Þ ¼
Xl
k¼1

SSErk ,

where SSErk is the error sum of square in

kth location.

(vi) The significance of treatment � location is

tested first using

F ¼ Treatment � location MS

MSEr
:

(vii) If the above interaction effect be signifi-

cant, then the significance of treatment

effect is worked out using

F ¼ Treatment MS

Interaction MS
:

If the interaction effect is not significant, then

interactionMS is added toMSEr for a single F test.

(b) Weighted analysis:

In the case of heterogeneous error mean square,

the weighted analysis of variance is taken up:

(i) The weight for different locations is calcu-

lated asWk ¼ rk
MSErk

andW ¼
Xl
k¼1

Wk. One

thing should be remembered that for Wk
0s

to be sufficiently accurate, the degrees of

freedom for error components in individ-

ual experiments should be 15 or more.

(ii) The grand total is calculated using the

formula
Xl
k¼1

WkLk, where Lk is the grand

total for the location k andCF ¼ 1
tW GTð Þ2.

(iii) The total sumof square ¼Xl
k¼1

Wk

Xt
i¼1

T2
ik

 !

� CF

(iv) Location sumof square ¼ 1
t

Xl
k¼1

Wk

Xl
k¼1

Lk

 !2

� C:F:

(v) Treatment sum of square ¼ 1
W

Xt
i¼1

WkL
2
k

� �
� CF

(vi) Location � treatment sum of square ¼
total SS – location SS – treatment SS.

(vii) In the case of heterogeneous MSEr, the

significance of interaction effects is

worked out using

x2 ¼ m� 4ð Þ m� 2ð Þ
m þt� 3ð Þ � interactionMS:

(viii) The appropriate degrees of freedom for

χ2 are calculated as

l� 1ð Þ t� 1ð Þ m� 4ð Þ
mþ t� 3ð Þ :

(ix) The treatment means are computed as

Ti ¼ 1

W

Xl
k¼1

WkLki:

(x) The critical difference value for compari-

son of different treatment effects is given

byCD αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�interaction MS

W

q
tα=2, interaction df .

On the other hand, if the error mean

squares are heterogeneous, the interaction

effect is nonsignificant. The analysis of

variance may be carried out as per RBD

using mean values for different treatments,

and in that case the standard error for

comparison of treatment mean is given
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by CD αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�interaction MS

l

q
tα=2, interaction df ,

where l is the number of locations.

Example 12.4 Unweighted Combined RBD

Analysis

An experiment was conducted with 18 different

treatment combinations to study the effect of

various weed controlling measures on growth

attributed in 0 till wheat for three consecutive

years during the same seasons. The following

data gives the replication-wise dry matter pro-

duction (gm�2) for different treatments during

the three years of experimentation. Analyze the

data to identify the best treatment with respect to

dry matter production:

Treatment

Year 1 Year 2 Year 3

R1 R2 R3 R1 R2 R3 R1 R2 R3
T1 801.00 803.01 803.86 801.13 803.21 803.91 801.25 803.64 804.19
T2 856.50 858.62 859.44 856.61 858.95 859.58 856.72 858.93 859.59
T3 822.50 824.81 825.53 822.63 824.93 825.59 822.74 824.76 825.61
T4 755.30 757.61 758.30 755.40 757.79 758.35 755.53 757.78 758.39
T5 761.50 763.58 764.44 761.62 763.65 764.41 761.74 763.86 764.68
T6 723.50 725.66 726.33 723.60 725.82 726.54 723.72 725.77 726.52
T7 745.50 747.54 748.44 745.63 747.89 748.64 745.74 747.91 748.62
T8 771.00 773.27 773.91 771.11 773.32 774.10 771.22 773.22 773.96
T9 746.90 749.17 749.86 747.00 749.23 749.93 747.10 749.22 750.02
T10 750.40 752.59 753.21 750.51 752.55 753.38 750.62 752.87 753.57
T11 756.70 758.81 759.51 756.80 758.97 759.73 756.92 759.07 759.72
T12 848.43 850.74 851.35 848.56 850.91 851.60 848.66 850.86 851.51
T13 880.90 883.10 883.78 881.01 883.34 884.05 881.11 883.49 884.12
T14 798.95 801.06 801.76 799.07 801.07 801.99 799.19 801.50 802.09
T15 796.67 798.70 799.43 796.79 798.89 799.64 796.90 798.90 799.73
T16 753.45 755.64 756.25 753.55 755.82 756.55 753.65 755.87 756.50
T17 749.68 752.02 752.65 749.78 752.17 752.71 749.89 752.13 752.87
T18 786.90 789.10 789.75 787.03 789.19 789.84 787.14 789.28 790.05
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Solution According to the given information,

the experiment has been conducted for three

consecutive years following the same

18 treatments in randomized block design. So

we are to perform the combined analysis of

variance for randomized block design. The step-

by-step procedure is given below:

Step 1:

Year-wise analysis of variance for RBD:

Treatment

Year 1

Total

Year 2

Total

Year 3

TotalR1 R2 R3 R1 R2 R3 R1 R2 R3
T1 801.00 803.01 803.86 2407.87 801.13 803.21 803.91 2408.25 801.25 803.64 804.19 2409.08
T2 856.50 858.62 859.44 2574.56 856.61 858.95 859.58 2575.15 856.72 858.93 859.59 2575.25
T3 822.50 824.81 825.53 2472.84 822.63 824.93 825.59 2473.15 822.74 824.76 825.61 2473.11
T4 755.30 757.61 758.30 2271.21 755.40 757.79 758.35 2271.55 755.53 757.78 758.39 2271.71
T5 761.50 763.58 764.44 2289.52 761.62 763.65 764.41 2289.68 761.74 763.86 764.68 2290.29
T6 723.50 725.66 726.33 2175.49 723.60 725.82 726.54 2175.96 723.72 725.77 726.52 2176.00
T7 745.50 747.54 748.44 2241.48 745.63 747.89 748.64 2242.15 745.74 747.91 748.62 2242.27
T8 771.00 773.27 773.91 2318.18 771.11 773.32 774.10 2318.52 771.22 773.22 773.96 2318.40
T9 746.90 749.17 749.86 2245.93 747.00 749.23 749.93 2246.16 747.10 749.22 750.02 2246.34
T10 750.40 752.59 753.21 2256.20 750.51 752.55 753.38 2256.44 750.62 752.87 753.57 2257.07
T11 756.70 758.81 759.51 2275.02 756.80 758.97 759.73 2275.51 756.92 759.07 759.72 2275.71
T12 848.43 850.74 851.35 2550.52 848.56 850.91 851.60 2551.06 848.66 850.86 851.51 2551.03
T13 880.90 883.10 883.78 2647.78 881.01 883.34 884.05 2648.39 881.11 883.49 884.12 2648.71
T14 798.95 801.06 801.76 2401.77 799.07 801.07 801.99 2402.12 799.19 801.50 802.09 2402.78
T15 796.67 798.70 799.43 2394.79 796.79 798.89 799.64 2395.32 796.90 798.90 799.73 2395.54
T16 753.45 755.64 756.25 2265.34 753.55 755.82 756.55 2265.93 753.65 755.87 756.50 2266.03
T17 749.68 752.02 752.65 2254.35 749.78 752.17 752.71 2254.67 749.89 752.13 752.87 2254.88
T18 786.90 789.10 789.75 2365.74 787.03 789.19 789.84 2366.05 787.14 789.28 790.05 2366.46
Total 14105.77 14145.02 14157.80 42408.60 14107.82 14147.69 14160.55 42416.06 14109.85 14149.07 14161.72 42420.65

For year 1:

Grand total GTð Þ ¼ 42408:60

Correction factor CFð Þ ¼ GT2

r � t
¼ 42408:602

3� 18

¼ 33305352:33

Total sum of squares SSTotð Þ ¼ 801:002 þ 856:502 þ ::::::þ 752:652 þ 789:752
� �� 33305352:33

¼ 98982:60

Sum of squares due to block SSBð Þ ¼ 1

18
14105:772 þ 14145:022 þ 14157:802
� �� 33305352:33

¼ 81:676

Sum of squares due to treatments SSTrð Þ ¼ 1

3
2407:872 þ 2574:562 þ ::::::þ 2254:352 þ 2365:742
� �

�33305352:33

¼ 98900:783

Sum of squares due to error SSErð Þ ¼ SSTOT � SSB � SSTr
¼ 98982:60� 81:676� 98900:783
¼ 0:14
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ANOVA Table for year 1

SOV df SS MS F ratio
Block 2 81.6761 40.8381 9793.5250
Treatment 17 98900.7831 5817.6931 1395162.4298
Error 34 0.1418 0.0042

Total 53 98982.6010

For year 2:

Grand total GTð Þ ¼ 42416:06

Correction factor CFð Þ ¼ GT2

r � t
¼ 42416:062

3� 18

¼ 33317072:00

Total sum of squares SSTotð Þ ¼ 801:132 þ 856:612 þ ::::::þ 752:712 þ 789:842
� �� 33317072:00

¼ 99064:03

Sum of squares due to block SSBð Þ ¼ 1

18
14107:822 þ 14147:692 þ 14160:552
� �� 33317072:00

¼ 83:979

Sum of squares due to treatments SSTrð Þ ¼ 1

3
2408:252 þ 2575:152 þ ::::::þ 2254:672 þ 2366:052
� �

�33317072:00

¼ 98979:881

Sum of squares due to error SSErð Þ ¼ SSTOT � SSB � SSTr
¼ 99064:03� 83:979� 98979:881
¼ 0:17

ANOVA Table for year 2

SOV df SS MS F ratio
Block 2 83.9800 41.9900 8315.5069
Treatment 17 98979.8814 5822.3460 1153030.8005
Error 34 0.1717 0.0050

Total 53 99064.0331

For year 3:

Grand total GTð Þ ¼ 42420:65

Correction factor CFð Þ ¼ GT2

r � t
¼ 42420:652

3� 18

¼ 33324287:72

Total sum of squares SSTOTð Þ ¼ 801:252 þ 856:722 þ ::::::þ 752:872 þ 790:052
� �� 33324287:72

¼ 99056:77

Sum of squares due to block SSBð Þ ¼ 1

18
14109:852 þ 14149:072 þ 14161:722
� �� 33324287:72

¼ 81:272
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Sum of squares due to treatments SSTrð Þ ¼ 1

3
2409:082 þ 2575:252 þ ::::::þ 2254:882 þ 2366:462
� �

�33324287:72

¼ 98975:344

Sum of squares due to error SSErð Þ ¼ SSTOT � SSB � SSTr

¼ 99056:77� 81:27� 98975:344

¼ 0:15

ANOVA Table for year 3

SOV df SS MS F ratio
Block 2 1.4971 0.7485 436.6411
Treatment 17 208.4576 12.2622 7152.8643
Error 34 0.0583 0.0017

Total 53 210.0129

Step 2:

The mean squares for different analysis of

variance can be represented as follows:

SOV d.f.

MS for the years

Year 1 Year 2 Year 3

Replication 2 40.8381 41.9900 40.6362

Treatment 17 5817.6931 5822.3460 5822.0791

Error 34 0.0042 0.0050 0.0044

Step 3: (Test for homogeneity of variances)

As per Hartley’s test for homogeneity of

variance,

Fmax ¼ Largest error mean square

Smallest error mean square

¼ 0:0050

0:0042
¼ 1:210 < 3

Thus we can assume homogeneous variance and

go for unweighted analysis of variance.

Step 4:

The model for combined analysis of variance

is as follows:

yijk ¼ μþ αi þ βk þ γik þ δjk þ eijk

where i ¼ 1, 2, . . ., 18; j ¼ 1, 2, 3; and k ¼ 1, 2, 3

yijk ¼ response of ith treatments in jth blocks of

kth year

μ ¼ general effect

αi ¼ additional effect due to ith treatment andX18
i¼1

αi ¼ 0

βk ¼ additional effect due to kth year andX3
k¼1

βk ¼ 0

γik ¼ interaction effect due to ith treatment in kth
year and γik ~ i.i.d. N(0, σ2)

δjk ¼ effect of the jth block in the kth year andX3
j¼1

X3
k¼1

δjk ¼ 0

eijk ¼ error component associated with ith treat-

ment and jth block and kth year and eijk ~

i.i.d. N(0, σ2)

and the corresponding analysis of variance struc-

ture will be as follows:

SOV d.f SS

Year 3�1 ¼ 2 YSS

Block within year 3(3–1) ¼ 6 BSS

Treatment (18–1) ¼ 17 TrSS

Treatment x year (18–1)(3–1) ¼ 34 SS(YT)

Error 3(18–1)(3–1) ¼ 102 ErSS

Unweighted Analysis When the error mean

squares are homogeneous, one should adopt

unweighted analysis, and the different steps
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for unweighted analysis of variances are as

follows:

Correction factor CFð Þ ¼ 1

ytr

Xt
i¼1

Xr
j¼1

Xl
k¼1

yijk

 !2

¼ 1

3� 18� 3
42408:60þ 42416:06þ 42420:65ð Þ2

¼ 99946710:60

Total sum of square SSTotð Þ ¼
Xt
i¼1

Xr
j¼1

Xl
k¼1

y2
ijk
� C:F

¼ 801:002 þ 856:502 þ 822:502 þ :::::::þ 752:872 þ 790:052

�99946710:68

¼ 297104:770

Replication within the year sum of square ¼
Xy
k¼1

RkSS ¼
X3
k¼1

RkSS ¼ 81:676þ 83:980þ 81:272

¼ 246:928

A treatment � year table is formed and from

which the treatment sum of square, year sum of

square, and treatment � year sum of square are

computed as per the methods used in factorial

experiments and as given below:

Treatment Year 1 Year 2 Year 3 Total

T1 2407.87 2408.25 2409.08 7225.20
T2 2574.56 2575.15 2575.25 7724.95
T3 2472.84 2473.15 2473.11 7419.11
T4 2271.21 2271.55 2271.71 6814.47
T5 2289.52 2289.68 2290.29 6869.49
T6 2175.49 2175.96 2176.00 6527.45
T7 2241.48 2242.15 2242.27 6725.89
T8 2318.18 2318.52 2318.40 6955.09
T9 2245.93 2246.16 2246.34 6738.43

T10 2256.20 2256.44 2257.07 6769.71
T11 2275.02 2275.51 2275.71 6826.24
T12 2550.52 2551.06 2551.03 7652.61
T13 2647.78 2648.39 2648.71 7944.88
T14 2401.77 2402.12 2402.78 7206.67
T15 2394.79 2395.32 2395.54 7185.65
T16 2265.34 2265.93 2266.03 6797.29
T17 2254.35 2254.67 2254.88 6763.90
T18 2365.74 2366.05 2366.46 7098.26

Total 42408.60 42416.06 42420.65 127245.30
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From the above table, we have

SSTable ¼ 2407:872 þ 2574:562 þ ::::::þ 2254:882 þ 2366:462
� �

3
� 127245:302

3� 18� 3ð Þ ¼ 296857:379

SSyear ¼ 1

3� 18
42408:602 þ 42416:062 þ 42420:652
� ��CF¼ 99946712:05� 99946710:68¼ 1:370

SSTr: ¼ 1

3� 3
7225:202 þ 7724:952 þ ::::::þ 7098:262
� �� CF

¼ 100243566:40� 99946710:68 ¼ 296855:709

SSTr: �Year ¼ SSTable � SSYr � SSTr: ¼ 296857:379� 1:370� 296855:709 ¼ 0:299

Error sum of square SSEr:ð Þ ¼
Xy
k¼1

ErkSS ¼
X3
k¼1

ErkSS ¼ 0:1418þ 0:1717þ 0:1494 ¼ 0:4629;

where ErkSS is the error sum of square in

kth year.

The significance of treatment � year interac-

tion is tested first using

F ¼ Treatment � year MS

ErMS
¼ 0:299

0:0045
¼ 65:988:

At 5 % level of significance and at 34,102 d.f.,

the value of F statistic is 1.57 (approx.), so the

test is significant. Now we use the significance

test of treatment effect as follows:

F ¼ Treatment MS

Interaction MS
¼ 296855:709

0:2994
¼ 991227:24

Thus the combined analysis of variance table

will be as follows:

SOV d.f. SS MSS F ratio
Year 2 1.3707 0.6853
Block within years 6 246.9286 41.1548
Treatment 17 296855.7091 17462.1005 991227.241 
Treatment x Year 34 0.2995 0.0088 65.998
Error 102 0.4629 0.0045
Total 161 297104.7707

Our next step is to calculate the critical differ-

ence value using the following formula:

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MSEr

r:l

r
� t0:05,error:df

CD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x0:0045

3*3

r
� 1:983 ¼ 0:0629
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In the next step, calculate the treatment means to

find out the best treatment as below:

Treatment Mean CD
T13 882.76 0.0629
T2 858.33
T12 850.29
T3 824.35
T1 802.80
T14 800.74
T15 798.41
T18 788.70
T8 772.79
T5 763.28
T11 758.47
T4 757.16
T16 755.25
T10 752.19
T17 751.54
T9 748.71
T7 747.32
T6 725.27

The above analysis can very well be carried
out using SPSS using syntax as given below:

UNIANOVA

Yld BY Year Rep Treat

/METHOD ¼ SSTYPE(3)

/INTERCEPT ¼ INCLUDE

/CRITERIA ¼ ALPHA(0.05)

/DESIGN ¼ Year Rep(Year) Treat Year*Treat

/test Treat vs Year*Treat

Step 1: Conduct the individual RBD analysis in

SPSS as mentioned earlier, and obtain the

error mean sum of squares and perform the

Bartlett’s test for homogeneity of variance.

Step 2: Enter the data into the SPSS as mentioned

below.
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Step 3: File ! New ! Click on Syntax as

shown below.

Step 4: Enter the syntax as mentioned below.
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Step 5: Select all the syntax and click on run

current as below.

Step 6: The output will appear in the output

window as provided below.
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From the above output, one can find that the
results are almost the same for both the analyses.

The only thing is that because of inbuilt options,
there are more information in the output

obtained through SPSS than usual manual calcu-

lation.

Example 12.5: (Weighted Combined RBD

Analysis)

An experiment was conducted with 18 different

treatment combinations of potash fertilizer in

potato for three consecutive years during the

same seasons. The following data gives the

replication-wise yield (t/ha.) for different

treatments during the three years of experimen-

tation. Analyze the data to identify the best treat-

ment with respect to the yield of potato:

Treatment Year 1 Year 2 Year 3

R1 R2 R3 R1 R2 R3 R1 R2 R3
T1 20.07 20.28 19.86 21.76 22.01 22.17 20.31 20.53 20.64
T2 22.32 22.55 22.01 23.32 23.57 23.73 22.58 22.95 23.12
T3 20.54 20.76 20.33 20.65 20.92 21.06 20.77 21.06 21.15
T4 17.94 18.19 17.74 19.12 19.36 19.54 18.19 18.37 18.55
T5 18.12 18.31 18.33 20.23 20.49 20.60 18.35 18.54 18.67
T6 17.70 17.91 17.48 18.32 18.57 18.74 17.93 18.16 18.28
T7 21.12 21.37 20.86 23.12 23.46 23.60 21.41 21.64 21.81
T8 25.23 25.50 24.88 26.23 26.53 26.69 25.58 25.98 26.13
T9 20.78 21.02 20.55 21.71 21.98 22.21 21.05 21.36 21.53
T10 20.45 20.69 20.71 21.18 21.47 21.59 20.68 20.89 21.09
T11 18.64 18.83 18.40 19.78 20.06 20.18 18.86 19.09 19.19
T12 18.08 18.31 17.89 19.40 19.66 19.73 18.30 18.55 18.62
T13 18.30 18.53 18.11 19.58 19.89 19.96 18.49 18.72 18.88
T14 19.13 19.38 18.86 20.79 21.09 21.22 19.38 19.68 19.86
T15 21.93 22.21 21.61 23.32 23.68 23.76 22.38 22.61 22.82
T16 21.32 21.54 21.06 22.54 22.83 22.97 21.54 21.87 21.92
T17 21.61 21.90 21.39 22.55 22.90 23.06 21.88 22.12 22.28
T18 20.17 20.42 19.95 21.16 21.42 21.50 20.50 20.76 20.87
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Solution According to the given information,

the experiment has been conducted for three

consecutive years following the same

18 treatments in randomized block design. So

we are to perform the combined analysis of vari-

ance for randomized block design. The step-by-

step procedure is given below:

Step: 1

Year-wise analysis of variance for RBD:

For year 1:

Grand total GTð Þ ¼ 1091:18

Correction factor CFð Þ ¼ GT2

r � t
¼ 1091:182

3� 18

¼ 22049:36

Total sumof squares SSTotð Þ
¼ 20:072þ22:322þ ::::::þ21:392þ19:952
� �
�22049:36¼ 193:40

Sum of squares due to block SSBð Þ

¼ 1

18
363:462 þ 367:692 þ 360:032
� �

� 22049:36¼ 1:633

Sum of squares due to treatments SSTrð Þ

¼ 1

3
60:212þ 66:882þ ::::::þ 64:892þ 60:542
� �

� 22049:36¼ 191:450

Sumof squares due to error SSErð Þ
¼ SSTOT�SSB
�SSTr ¼ 193:40�1:633�191:450¼ 0:32

ANOVA Table for year 1

SOV df SS MS F ratio
Block 2 1.6336 0.8168 88.0472
Treatment 17 191.4502 11.2618 1213.9524
Error 34 0.3154 0.0093

Total 53 193.3993

Treatment
Year 1

Total
Year 2

Total
Year 3

Total
R1 R2 R3 R1 R2 R3 R1 R2 R3

T1 20.07 20.28 19.86 60.21 21.76 22.01 22.17 65.94 20.31 20.53 20.64 61.48
T2 22.32 22.55 22.01 66.88 23.32 23.57 23.73 70.62 22.58 22.95 23.12 68.65
T3 20.54 20.76 20.33 61.63 20.65 20.92 21.06 62.64 20.77 21.06 21.15 62.97
T4 17.94 18.19 17.74 53.87 19.12 19.36 19.54 58.01 18.19 18.37 18.55 55.11
T5 18.12 18.31 18.33 54.76 20.23 20.49 20.60 61.32 18.35 18.54 18.67 55.56
T6 17.70 17.91 17.48 53.09 18.32 18.57 18.74 55.63 17.93 18.16 18.28 54.36
T7 21.12 21.37 20.86 63.35 23.12 23.46 23.60 70.17 21.41 21.64 21.81 64.86
T8 25.23 25.50 24.88 75.61 26.23 26.53 26.69 79.45 25.58 25.98 26.13 77.69
T9 20.78 21.02 20.55 62.35 21.71 21.98 22.21 65.89 21.05 21.36 21.53 63.94

T10 20.45 20.69 20.71 61.84 21.18 21.47 21.59 64.25 20.68 20.89 21.09 62.67
T11 18.64 18.83 18.40 55.88 19.78 20.06 20.18 60.02 18.86 19.09 19.19 57.13
T12 18.08 18.31 17.89 54.28 19.40 19.66 19.73 58.80 18.30 18.55 18.62 55.46
T13 18.30 18.53 18.11 54.95 19.58 19.89 19.96 59.43 18.49 18.72 18.88 56.09
T14 19.13 19.38 18.86 57.37 20.79 21.09 21.22 63.10 19.38 19.68 19.86 58.91
T15 21.93 22.21 21.61 65.75 23.32 23.68 23.76 70.76 22.38 22.61 22.82 67.81
T16 21.32 21.54 21.06 63.93 22.54 22.83 22.97 68.33 21.54 21.87 21.92 65.33
T17 21.61 21.90 21.39 64.89 22.55 22.90 23.06 68.52 21.88 22.12 22.28 66.27
T18 20.17 20.42 19.95 60.54 21.16 21.42 21.50 64.09 20.50 20.76 20.87 62.12

Total 363.46 367.69 360.03 1091.18 384.77 389.89 392.32 1166.98 368.16 372.85 375.40 1116.41
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For year 2:

Grand total GTð Þ ¼ 1166:98

Correction factor CFð Þ ¼ GT2

r � t
¼ 1166:982

3� 18

¼ 25219:26

Total sum of squares SSTOTð Þ
¼ 21:762þ23:322þ ::::::þ23:062þ21:502
� �
� 25219:26¼ 195:00

Sum of squares due to block SSBð Þ

¼ 1

18
384:772 þ 389:892 þ 392:322
� �

� 25219:26¼ 1:650

Sumof squares due to treatments SSTrð Þ

¼ 1

3
65:942þ70:622þ ::::::þ68:522þ64:092
� �

�25219:26¼ 193:316

Sum of squares due to error SSErð Þ
¼ SSTOT � SSB � SSTr
¼ 195:00�1:650�193:316 ¼ 0:03

ANOVA Table for year 2

SOV df SS MS F ratio
Block 2 1.6500 0.8250 960.1994
Treatment 17 193.3164 11.3716 13234.9976
Error 34 0.0292 0.0009

Total 53 194.9956

For year 3:

Grand total GTð Þ ¼ 1116:41

Correction factor CFð Þ ¼ GT2

r � t
¼ 1116:412

3� 18

¼ 23080:91

Total sum of squares SSTOTð Þ
¼ 20:312 þ 22:582 þ ::::::þ 22:282 þ 20:872
� �
� 23080:91¼ 210:01

Sum of squares due to block SSBð Þ

¼ 1

18
368:162 þ 372:852 þ 375:402
� �

� 23080:91¼ 1:497

Sumof squares due to treatments SSTrð Þ

¼ 1

3
61:482þ68:652þ ::::::þ66:272þ62:122
� �

�23080:91¼ 208:457

Sumof squares due to error SSErð Þ
¼ SSTOT�SSB�SSTr ¼ 210:01�1:497
�208:457¼ 0:06

ANOVA Table for year 3

SOV df SS MS F ratio
Block 2 1.4971 0.7485 436.6411
Treatment 17 208.4576 12.2622 7152.8643
Error 34 0.0583 0.0017

Total 53 210.0129

Step 2:

The mean squares for different analyses of

variance can be represented as follows:

SOV d.f.

MS for the years

Year 1 Year 2 Year 3

Replication 2 0.8168 0.8250 0.7485

Treatment 17 11.2618 11.3716 12.2622

Error 34 0.0093 0.0009 0.0017

Step 3: (Test for homogeneity of variances)

As per Hartley’s test for homogeneity of

variance,

Fmax ¼ Largest error mean square

Smallest error mean square

¼ 0:0093

0:0009
¼ 10:797 > 3

Thus we can assume heterogeneous variance and

go for weighted analysis of variance.
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Step 4:

The model for combined analysis of variance

is as follows:

yijk ¼ μþ αi þ βk þ γik þ δjk þ eijk

where i ¼ 1, 2, . . ., 18; j ¼ 1, 2, 3; and

k ¼ 1, 2, 3

yijk ¼ response of ith treatments in jth blocks of

kth year

μ ¼ general effect

αi ¼ additional effect due to ith treatment andX18
i¼1

αi ¼ 0

βk ¼ additional effect due to kth year andX3
k¼1

βk ¼ 0

γik ¼ interaction effect due to ith treatment in kth

year and γik ~ i.i.d. N(0, σ2)
δjk ¼ effect of the jth block in the kth year andX3

j¼1

X3
k¼1

δjk ¼ 0

eijk ¼ error component associated with ith treat-

ment and jth block and kth year and eijk ~

i.i.d. N(0, σ2)

and the corresponding analysis of variance struc-

ture will be as follows:

SOV d.f. SS

Year 3�1 ¼ 2 YSS

Block within year 3(3–1) ¼ 6 BSS

Treatment (18–1) ¼ 17 TrSS

Treatment � year (18–1)(3–1) ¼ 34 SS(YT)

Error 3(18–1)(3–1) ¼ 102 ErSS

In the case of heterogeneous error mean

square, the weighted analysis of variance is

taken up:

(i) The weight for different locations is calcu-

lated as Wk ¼ rk
ErkMS and W ¼

Xl
k¼1

Wk.

Thus

W1 ¼ r1
MSEr1

¼ 3

0:0093
¼ 323:382

W2 ¼ r2
MSEr2

¼ 3

0:0009
¼ 3491:607

W3 ¼ r3
MSEr3

¼ 3

0:0017
¼ 1749:977
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The grand total is calculated using the formulaXy
k¼1

Wk

X18
i¼1

Yki ¼
X3
k¼1

WkYk ¼ 6381190:274,

where Yk is the grand total for the year k.

CF ¼ 1
tW GTð Þ2 ¼ 1

18� 5564:967
6381190:2742
� �

¼ 406507250:90:

Total sum of square SSTOTð Þ ¼
Xl
k¼1

Wk

Xt
i¼1

y2ik

 !
� C:F ¼

X3
k¼1

Wkskð Þ � C:F

¼ 323:382� 66722:444þ 3491:607� 76237:730þ 1749:978�69868:116Þ � 406507250:90ð
¼ 3529438:546

Year sum of square SSYearð Þ ¼ 1

t

Xl
k¼1

Wk

Xl
k¼1

Yk

 !2

� C:F

¼ 1

18
323:382� 1091:182 þ 3491:607� 1166:982 þ 1749:978� 1116:412
� �� 406507250:90

¼ 224360:957

Treatment Year 1
(Y1)

Year 2
(Y2)

Year 3
(Y3) 3

1
k ki

i
W Y

=
S

3

1

1
k ki

i

T

W Y
W =

=

S

2
iT

2
1iy

Year 1 
(Y1)

2
2iy

Year 2 
(Y2)

2
3iy

Year 3 
(Y3)

T1 60.21 65.94 61.48 357296.057 64.205 3624.976 4348.365 3779.319
T2 66.88 70.62 68.65 388357.866 69.786 4472.785 4987.754 4713.065
T3 61.63 62.64 62.97 348836.936 62.684 3798.113 3923.346 3965.848
T4 53.87 58.01 55.11 316421.993 56.860 2902.134 3365.488 3037.217
T5 54.76 61.32 55.56 329057.209 59.130 2998.752 3760.746 3086.737
T6 53.09 55.63 54.36 306529.021 55.082 2818.531 3094.389 2955.226
T7 63.35 70.17 64.86 378991.562 68.103 4013.352 4923.952 4206.248
T8 75.61 79.45 77.69 437796.521 78.670 5716.316 6311.618 6035.548
T9 62.35 65.89 63.94 362132.370 65.074 3887.761 4342.133 4088.055

T10 61.84 64.25 62.67 354007.125 63.614 3824.579 4128.157 3927.437
T11 55.88 60.02 57.13 327622.199 58.872 3122.229 3602.675 3263.976
T12 54.28 58.80 55.46 319904.445 57.485 2946.461 3457.008 3076.027
T13 54.95 59.43 56.09 323430.951 58.119 3019.283 3532.193 3145.538
T14 57.37 63.10 58.91 341960.551 61.449 3291.572 3981.414 3470.471
T15 65.75 70.76 67.81 387007.550 69.544 4322.500 5007.409 4598.492
T16 63.93 68.33 65.33 373589.409 67.132 4086.421 4669.377 4267.986
T17 64.89 68.52 66.27 376195.282 67.601 4211.300 4694.535 4392.108
T18 60.54 64.09 62.12 352053.229 63.262 3665.379 4107.172 3858.817

Total ( kY ) 1091.18 1166.98 1116.41 6381190.27 66722.444 76237.730 69868.116

kW 323.382 3491.607 1749.978 5564.967kW =S

k kW Y 352866.835 4074632.5 1953690.936 6381190.274k kW Y =S
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Treatment sum of square SSTrð Þ ¼ 1

W

Xt
i¼1

Xl
k¼1

WkYki

 !2

� C:F ¼ 1

5564:967

X18
i¼1

X3
k¼1

WkYki

 !2

� 406507250:90

¼ 1

5564:967
357296:0572 þ 388357:8662 þ ::::::: þ 376195:2822 þ 352053:2292� � 406507250:90
�

¼ 1

5564:967
� 2280320386463:640

� �
�406507250:90 ¼ 3256260:115

Year x treatment sum of square SSY�Tð Þ ¼ SSTot � SSYear � SSTr

¼ 3529438:546� 224360:957� 3256260:11
¼ 48817:474

In the case of heterogeneous error mean squares,

the significance of interaction effects is worked

out using

χ2 ¼ m� 4ð Þ m� 2ð Þ
m mþ t� 3ð Þ � interaction MS

¼ 34� 4ð Þ 34� 2ð Þ
34 34þ 18� 3ð Þ � 1435:808

¼ 827:356

where m ¼ average error degrees of

freedom ¼ 34.

The appropriate degrees of freedom for χ2 are
calculated as

l� 1ð Þ t� 1ð Þ m� 4ð Þ
mþ t� 3ð Þ

¼ 3� 1ð Þ 18� 1ð Þ 34� 4ð Þ
34þ 18� 3ð Þ ¼ 20:816

’ 21

At 5 % level of significance with 20.82� of free-
dom, the calculated value of χ2 (827.356) is

highly significant. Hence the interaction is sig-

nificant. The analysis of variance table for com-

bined analysis of the given problem is as follows.

Weighted ANOVA for combined analysis:

SOV d f S.S. M.S.
Year 3-1  = 2 224360.9571 112180.5
Treatments (18-1) = 17 3256260.115 191544.7
Treatment 
× year

(18-1)(3-1) = 
34 48817.474 1435.808

Total (18)(3)-1=53 3529438.546

The treatment means are computed as Ti ¼

1
W

Xl
k¼1

WkYki.

The standard error of difference for

comparison of different treatment effects is

given by SEd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�interaction MS

W

q
, and the

corresponding critical difference is given as CD

¼ SEd � tα=2, interaction df ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 1435:808

5564:967

r
�

2:034 ¼ 1:461.

Treatment Mean CD

T8 78.670 1.461

T2 69.786

T15 69.544

T7 68.103

T17 67.601

T16 67.132

T9 65.074

T1 64.205

T10 63.614

T18 63.262

T3 62.684

T14 61.449

T5 59.130

T11 58.872

T13 58.119

T12 57.485

T4 56.860

T6 55.082
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The treatment effects are arranged in

descending order and are compared with the crit-

ical difference value as calculated above. It is

found that the treatment T8 is having a maximum

yield of potato followed by T2 and T15 which are

statistically at par. The treatment T6 is showing

the significant lowest yield of potato.

12.5 Analysis of Experimental Data
Measured Over Time

There are certain parameters which vary during

the period of experimentation when

measurements are taken on the same unit at differ-

ent points of time. Growth parameters (like num-

ber of tillers, plant height, number of branches,

etc.), blood sugar/hormone content, milk yield of

cow during lactation, intensity of diseases, and

pest etc. are measured at different points of time

over the periods. The main problem in this type of

measurement is that the consecutivemeasurements

on the same units are not independent. So there

exist treatment x period interactions in such

measurements. The objective of such experiments

is not only to study the effects of different

treatments but also to study the pattern of interac-

tion between the treatment and the stages of

growth or time intervals. The analysis of variance

obtained separately at different growth stages or

durations for the characters will not serve the pur-

pose. Instead a common approach is to combine

data from all times of observations into a single

analysis of variance.

By taking time as a factor in the analysis, such

situations could be explained in the analysis of

variance. Combined analysis of variance with

time or stages as one of the factors is considered.

Another way to tackle such situation is to use split

plot analysis with the inclusion of stage as a fac-

tor. The basic structure of analysis of variance

remains the same with the inclusion of time as

additional subplot factor for single-factor or fac-

torial experiments, sub-subplot factor for split plot

experiments, and so on. Before pooling the data

from observations recorded at different time

periods for combined analysis of variance, homo-

geneity of error variance is required to be verified

as per the methods described in 12.4. Depending

upon the nature of the variance, either unweighted

or weighted analysis of variance is required to be

performed. We shall not deal with details of step-

by-step procedure of analysis, but rather just dis-

cuss a sketch of the analyses under different

experimental setups, in the following sections.

12.5.1 Observations Taken Over Time
in RBD

Let us suppose there are “t” treatments tested

following RBD with “r” replications and the

character recorded over “n” number of times.

The analysis of variance for each of the time

period is required to be taken up at first, and

then the homogeneity of error mean squares

from all these time periods is tested for homoge-

neity, and combined analysis is taken up with the

inclusion of time as one of the factors in the

analysis either through unweighted or weighted

method. The combined analysis of variance

structure will be as follows:

SOV d.f. SS MSS

F

ratio

Replication r�1

Treatment (T) t�1

Error(I) (r�1) (t�1)

Time of

observation (N)

(n�1)

Interaction

(T x N)

(t�1)(n�1)

Error (II) t(r�1)(n�1)

Total rnt�1

Conclusion is to be drawn accordingly. It may

be noted that treatments, time, and interactions

are tested with different precisions. In fact time

and interaction between time and treatment are

estimated more precisely than the treatments.

12.5.2 Observations Taken Over Time
in Two-Factor RBD

Let there be “B” breeds of cows tested forming

blocks of r cows in each for the efficacy of “f”
feeds toward milk yield during lactation over “n”
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number of times. The analysis of variance

structure would be as follows:

SOV d.f. SS MSS

F

ratio

Replication r�1

Breed(B) b�1

Feed (F) f�1

Interaction

(B x F)

(b�1) ( f�1)

Error(I) b(r�1) ( f�1)

Time of

observation

(N)

(n�1)

Interaction

(B � N)

(b�1)(n�1)

Interaction

(F � N)

( f�1)(n�1)

Interaction

(B � F � N)

(b�1)(n�1)( f�1)

Error (II) bf(r�1)(n�1)

Total rbfn�1

12.5.3 Observations Taken Over Time
in Split Plot Design

Suppose we are testing t varieties of paddy in

subplots tested in a split plot design for the effi-

cacy of “p” levels of plowing in main plots with

“r” replications and the character recorded over

“n” number of times. The analysis of variance

structure will be as follows:

SOV d.f. SS MSS

F

ratio

Replication r�1

Irrigation (I) p�1

Error (I) (r�1)( p�1)

Variety (t) (t�1)

Interaction (T � P) (t�1) ( p�1)

Error (II) p(r�1)(t�1)

Time of

observation (N)

(n�1)

Interaction (P � N) ( p�1)(n�1)

Interaction (T�N) (t�1)(n�1)

Interaction (P � T

� N)

( p�1)(t�1)

(n�1)

Error (II) pt(r�1)

(n�1)

Total rptn�1

12.6 Experiments at Farmers’ Field

One of the major areas of activity of rural devel-

opment, particularly in agriculture and allied

sectors, is Lab-to-Land program. Experimental

results/findings/recommendations/better

technologies/management practices generated at

the research stations, mostly under ideal experi-

mental conditions, are required to be tested for

their wide applicability under the stakeholder

conditions. Farmers are the main stakeholders

in such rural development program. Farmers or

the targeted users vary in their socioeconomic

conditions, skills, educations, cultures, manage-

rial abilities, climatic conditions, availability of

inputs and disposal of outputs, etc. which ulti-

mately affect their pragmatism in adopting

experimental results/findings/recommendations/

better technologies/management practices. So it

becomes necessary to test these experimental

results/findings/recommendations/technologies/

management practices under the biophysical

constraints encountered by the users and the real-

istic situations prevailing at the ground level

before the extension personals take up these for

dissemination at the field level. The idea of

on-farm research or farmer field demonstration
came into practice as such.

On farm trials are mainly objected toward

situation-specific technology generation/modifi-

cation or toward technology verification. How-

ever, majority of the trials fall on the second

category. On farm researches are carried out

mainly:

(i) To identify the location-/region-/zone-spe-

cific constraints

(ii) To study the gap between the existing tech-

nology at the farm level and the anticipated

outcome as a result of innovation at the

experimental station

(iii) To identify the major components in

boosting the adoption of new technology/

recommendation (innovation)

(iv) To modify the innovation in the light of the

availability of local conditions
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(v) To study the adoptability/suitability of the

innovated technology under varied

conditions

(vi) To demonstrate the utility/superiority of the

innovated technology

Steps in On-Farm Research

In spite of situation-specific variations, by and

large the whole process of on-farm research may

be thought of comprising three major steps, viz.:

(a) Diagnostic survey

(b) Planning and designing of experiment at

farmers’ field

(c) Experimentation at farmers’ field

Survey helps in characterizing the ground

truth with respect to socioeconomic conditions,

biophysical conditions, constraints faced by the

users, and of course the state of technology in

practice compared to the innovated technologies.

In the second phase, providing due consideration

to the available information of diagnostic survey

modification/refinement of the innovation under

local condition is attempted to. Planning and

designing of experiments are made accordingly.

In the third stage, experiments at the farmers’

field are conducted with active participation of

the farmers. As the experiments at the farmers’

field progress, the dissemination of the technol-

ogy starts gaining momentum. Extension

personals start their activities to propagate the

success of the experimental results/findings/

recommendations/better technologies/manage-

ment practices.

12.6.1 Major Considerations During
Experimentations at Farmers’
Fields

Farmers, particularly under Indian context, vary

with respect to their biophysical resources,

managements, and other conditions. Most of the

farmers, particularly in the populous countries,

are having small and marginal land holdings

compared to developed countries. Till today the

main objective of the farmers is to maximize

return using limited resources at their disposal.

Farmers at the initial stage are mostly reluctant to

such experimentations at their farms. So to win

over the confidence of the farmers is a major task

before starting experimentation. As such selec-

tion of farmers to demonstrate the importance or

superiority of technology developed plays a vital

role. However, though not a unique one, the

following points are to be kept in mind before

finalizing the experimentation at farmers’ fields:

(i) The experiment should be kept as simple as

possible; treatments should be such that

the probability of loss due to any treatment

should be as minimum as possible, that

treatment must have demonstrative

effect, and that there should be scope for

compensating the loss to the farmer due to

treatment(s).

(ii) Selection of farms: Farmers/farmers’ field

should be selected in such a way that these

actually represent the targeted population of

farms. Unbiased selection of farms is nec-

essary to have valid estimation of the farm

responses. Sometimes it is advocated for

selection of farms based on personal judg-

ment. But in spite of the advantages like

minimization of cost, accessibility, feasibil-

ity, etc., nonrandom sampling even by the

experts fails to provide adequate represen-

tation of the population, thereby leading to

biased estimation for the population

parameters. As such, random sampling,

especially the stratified random sampling,

would be the most likely option for selec-

tion of farms, and stratification may be

taken up at different levels followed by

random sampling.

(iii) The experimental design: Farmers’ field

experiments should be framed with mini-

mum number of treatments having

promising demonstrative effects. Adoption

of simple experimental design will help in

overall management of the experiments.

The simplest experimental design is the

randomized block design; it is very difficult
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to provide replication for the treatments at a

particular farm. However, by repeating the

experiment at different farmers’ fields,

repeated observations on a particular treat-

ment may be obtained and, of course due

adjustments, are to be made during the anal-

ysis of experimental data. The whole exper-

imental area at a particular farmer’s field is

divided into number of plots of equal sizes

as the number of treatments, including the

treatment with farmers’ practice. In each

farmer’s field, the treatments are allotted

to the plots at random separately; the same

randomization scheme should not be

adopted for all farmers’ fields. The principle

of local control should be followed as much

as possible under the given situation.

Strictly speaking, this is also not important

from the objective point of view of the

experiment; we are interested in estimating

the average response of the treatments over

the situation as a whole not for a specified

field. Analysis of the experiment will be as

per the analysis of combined experiments

and the scheme of stratification. Depending

upon the number of stages of stratification,

the analysis of variance may be partitioned

accordingly. Generally hierarchical or

nested designs are followed.

Let us suppose we have selected three

blocks (b) from a list of blocks at random

and from each of these three blocks, three

villages (v) are selected at random, and

again from each of these three villages,

three farmers (n) are selected at random.

So the analysis of variance model may be

as follows:

Yijk ¼ μþ αi þ β αð Þij þ εijk; i ¼ 1, 2, 3; j

¼ 1, 2, 3; k ¼ 1, 2, 3

where Yijk ¼ the response due to kth farmer in ith

block and jth village

μ ¼ the overall mean

αi¼ additional effect due to ith block

β(α)ij ¼ additional effect due to jth village

within ith block

εijk ¼ is the error component due to kth

farmer in ith block and jth village and

εijk 0s � iidN 0; σ2ð Þ
And the corresponding analysis of variance

table would be as follows:

In the above example, if village effects are

taken as random, while the effects of blocks

are considered as fixed, then the error to test

the effect of blocks is MSV(B), while to test

the effect of villages, the error is MS(within).
As such, the F statistic for testing block

effects is F ¼ MS(B)/MSV(B) and to test the

effect of villages is F ¼ MSV(B)/MS(within).
Likewise, depending upon the situations, dif-

ferent effects can be estimated and tested.

(iv) Recording of ancillary information: As

farmers’ filed experimentations are

conducted under varied range of situations,

information on situation parameters like

SOV d.f. SS MS Tab F

Block b�1 ¼ 3�1 ¼ 2 SS(B) MS(B) ¼ SS(B)/(b�1) MS(B)/MSV(B)
Village with in

block

b(v�1) ¼ 3(3–1) ¼6 SSV(B) MSV(B) ¼ SSV(B)/b(v�1) MSV(B)/MS(within)

Within village b.v.(n�1) ¼ 3.3(3–1) ¼18 SS(within) MS(within) ¼ SS(within)/b.v.(n�1)

Total b.v.n�1 ¼ 3.3.3.�1 ¼ 26 SS(Tot)
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soil color, texture, structure, pH, constituent

soil nutrients before and after experimenta-

tion, weather parameters (like temperature,

relative humidity, rainfall, wind speed, sun-

shine hours), land topography, etc. may help

in getting unbiased and precise estimation of

the population parameters toward better

explanation of the experimental results and

its subsequent impact on agriculture and

rural development.

Example 12.6

To determine the effects of different levels of

nitrogen in wheat crop, a nested design was

used: four places were randomly chosen with

three farmers per places and six varieties. The

following data gives the information on wheat

yield at harvest. Analyze the data and then draw

the conclusion:

Solution

GT ¼ 12:24þ 12:24þ 12:24:::::::: þ 14:60þ 14:50

¼ 995:52

CF ¼ GT2

Total no: of obs:
¼ 995:522

72

¼ 13764:723

SSTot ¼ 12:242 þ 12:242 þ 12:242 þ ::::::::

þ 14:602 þ 14:502 � 13764:723
¼ 168:355

From the given information, construct the fol-

lowing tables and obtain the following quantities:

Place

TotalV 1 2 3 4

1 36.72 41.82 45.02 41.50 165.06

2 36.72 44.88 44.10 41.60 167.30

3 36.72 40.80 46.04 42.40 165.96

4 38.76 46.92 48.36 43.80 177.84

5 35.70 40.80 43.92 41.50 161.92

6 35.70 38.76 42.88 40.10 157.44

Total 220.32 253.98 270.32 250.90

Sum of square for place ¼ SSPlace

¼ 220:322 þ 253:982 þ 270:322 þ 250:902
� �

18
� CF

¼ 72:524

Place 1 1 1 2 2 2 3 3 3 4 4 4

Farmer 1 2 3 4 5 6 7 8 9 10 11 12

Variety Yield (q/ha)

V1 12.24 12.24 12.24 13.26 14.28 14.28 15.30 16.32 13.40 13.40 13.50 14.60

V 2 12.24 12.24 12.24 13.26 15.30 16.32 13.26 17.34 13.50 13.60 13.30 14.70

V 3 12.24 11.22 13.26 14.28 14.28 12.24 15.30 17.34 13.40 12.20 14.50 15.70

V 4 13.26 12.24 13.26 14.28 17.34 15.30 16.32 17.34 14.70 13.50 14.60 15.70

V 5 11.22 12.24 12.24 13.26 13.26 14.28 15.30 16.32 12.30 13.40 13.50 14.60

V 6 12.24 11.22 12.24 13.26 13.26 12.24 14.28 15.30 13.30 12.20 13.40 14.50
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Sum of square for place within farmer

¼ SSPlace Farmerð Þ

¼ 73:442 þ 71:402 þ ::::::::::: þ 82:802 þ 89:802
� �

6

� SSPlace � CF ¼ 46:967

Sum of square within the variety

¼ SSVariety Farmerð Þ
¼ SSTOT � SSPlace � SSFarmer Placeð Þ
¼ 168:355� 72:524� 46:967 ¼ 48:863

From the above quantities, the following

ANOVA table is constructed:

SOV df SS MS F Tab. F at 5 %
Place 3 72.524 24.175 4.118 4.066
Farmer within 
place 8 46.967 5.871 7.209 2.097
Variety within 
farmer 60 48.864 0.814
Total 71 168.355

It was assumed that the effects of place and

farmer are random. The experimental error for

place is the mean square for farmer within place,

and the experimental error for farmer is the mean

square for variety within farmer. The critical

value for place is F0.05,3,8 ¼ 4.07, and the critical

value for farmer within place is

F0.05,8,60 ¼ 2.097. The calculated F values are

greater than the critical values and thus the

effects of place and farmer are significant.

Place 1 1 1 2 2 2 3 3 3 4 4 4

TotalFarmer 1 2 3 4 5 6 7 8 9 10 11 12

Variety Yield (q/ha)

1 12.24 12.24 12.24 13.26 14.28 14.28 15.30 16.32 13.40 13.40 13.50 14.60 165.06

2 12.24 12.24 12.24 13.26 15.30 16.32 13.26 17.34 13.50 13.60 13.30 14.70 167.30

3 12.24 11.22 13.26 14.28 14.28 12.24 15.30 17.34 13.40 12.20 14.50 15.70 165.96

4 13.26 12.24 13.26 14.28 17.34 15.30 16.32 17.34 14.70 13.50 14.60 15.70 177.84

5 11.22 12.24 12.24 13.26 13.26 14.28 15.30 16.32 12.30 13.40 13.50 14.60 161.92

6 12.24 11.22 12.24 13.26 13.26 12.24 14.28 15.30 13.30 12.20 13.40 14.50 157.44

Total 73.44 71.40 75.48 81.60 87.72 84.66 89.76 99.96 80.60 78.30 82.80 89.80 995.52
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Use-Misuse of Statistical Packages 13

Since time immemorial statistics is being used

knowingly or unknowingly. In this modern sci-

entific era, one can hardly find any area where

statistics is not playing a vital role. Statistics

deals with the study of population as a whole

rather than the individual unit of the population.

Statistics is concerned with aggregated informa-

tion on a particular subject in a population

providing due importance to each and every ele-

ment of the population. Wide range of applica-

tion of statistics is found in the field of

agriculture, biology, education, economics, busi-

ness, management, medical, engineering, psy-

chology, environment, and space; even in the

management of war, statistics is playing a vital

role. One can hardly find any human activity

where statistics is not used. Statistical theories

are applied on set of data to extract the inner

meaning, to unearth the so long hidden informa-

tion embedded within a particular data set and

make it more and more informative for the bet-

terment of the human civilization.

Statistics has developed itself along with the

development of human civilization. Because of

the need of the society and inquisitiveness of

human beings, science has developed in every

sphere so also the subject statistics. Various

branches/disciplines of science have emerged,

and in each of this development usefulness

of statistics has been felt ever increasing.

“Necessity is the mother of invention.” To cater

these necessities, a number of theories and areas

of statistics have been developed due to the

demand of other disciplines of science. As a

result, in every sphere of human civilization,

statistics has become an indispensable part.

For quite a long period, in spite of its tremen-

dous development as an indispensible disci-

pline, its application was restricted mainly

because of the fact that many of the statistical

theories require knowledge of mathematics and

require extensive calculation. The quick and

continued increase in computing facilities par-

ticularly after the second half of the twentieth

century has tremendous impact on the use of

statistical tools. Instead of almost linear models,

nonlinear and multivariate statistical tools have

been used to a greater extent. With the advance-

ment in computing facilities, the use of statistics

has increased manifold. Starting from the era

of manual Facit to modern supercomputers

through desk/pocket/scientific calculators and

different generations of computers, the comput-

ing facilities have increased tremendously. With

the ever increasing facility, the use of different

statistical theories in various fields which were

not feasible earlier has become possible nowa-

days. Statistical theories are more extensively

used nowadays to make the data more and more

informative.
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Like a coin having two faces, the develop-

ment of statistics and computing facilities is

also not unidirectional or flawless. Statistical

theories and the set of data are best informative

at the hands of a good statistician with an

appropriate computing facility. The knowledge

of both statistics, the subject concern where

statistics is to be used, the data, and the com-

puting facility available are the important

contributory factors to unearth the hidden infor-

mation in a set of data. The absence of any one

of these will lead to misinformation. A set of

data can be analyzed in numerous ways, but a

very few of these possible ways can only

deliver the actual information. For effective

use of data, knowledge of statistical tools avail-

able, knowledge of generation of data, and

objective of the analysis of data are the main

points to be kept in mind. A number of

instances are there where calculations have

been made with the help of the computer

packages, without understanding the theories

and situations where actually the specific calcu-

lation are required to be taken up, the nature of

data and its limitations, and also the objective.

In brief, statistical analyses have been taken up

without knowing the logic and utilities in these

cases. Statistical theories are used best by the

subject matter specialists in consultation with

an efficient statistician under the given knowl-

edge base about the software to be used for the

purpose of calculation. Understanding of both

the specialists toward the field of each other to a

certain degree is essential for efficient use of

statistical theories toward advancement of

human civilization. Misuse of statistics has

become a greater concern particularly with the

development of softwares.

This has been clearly stated by Marino 2014,

with particular reference to the biomedical

research. The author has stated that “descriptive,

exploratory, and inferential statistics are neces-

sary components of hypothesis-driven biomedi-

cal research. Despite the ubiquitous need for

these tools, the emphasis on statistical methods

in pharmacology has become dominated by

inferential methods often chosen more by the

availability of user-friendly software than by

any understanding of the data set or the critical

assumptions of the statistical tests. Such frank

misuse of statistical methodology and the quest

to reach the mystical α < 0.05 criteria have ham-

pered research via the publication of incorrect

analysis driven by rudimentary statistical train-

ing. Perhaps more critically, a poor understand-

ing of statistical tools limits the conclusions that

may be drawn from a study by divorcing the

investigator from their own data. The net result

is a decrease in quality and confidence in

research findings, fueling recent controversies

over the reproducibility of high profile findings

and effects that appear to diminish over time.”

Even when statistical techniques are correctly

applied, the results can be difficult to interpret

for those lacking expertise, so interpretation of

results emerging out of statistical analysis

through computer packages is a must. Misuse

can occur when conclusions are overgeneralized

and claimed to be representative of more than

they really are, often by either deliberately or

unconsciously overlooking sampling bias. To

make data gathered from statistics believable

and accurate, the sample taken must be represen-

tative of the whole.

Softwares developed for statistical

calculations have their advantages and

limitations. One needs to be very much selective

in finalizing the use of a particular module of

particular software to be used for a specific pur-

pose. Statistical softwares are multipurpose in

nature; these are developed in such a way that a

varied range of user can use the software and for

the purpose one must have a clear idea about the

different commands to answer during execution

of software. One must have a clear idea about

what are the requirements, what input to be fed to

the computer, whether it is feasible to get the

information fed to the computer using statistical

theories, what should be the directions to the

computer, and what are the output generated by

the computer and how to interpret the output. Let

us demonstrate the same by taking one example

on regression analysis using MS Excel and SPSS

as follows:
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Data entered in to the MS Excel spreadsheet.

From Data Analysis tool, Regression menu

has been activated.
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Dependent and independent variables range,

output range, and other options have been

selected in the proper dialogue box to get the

following output:

Note that in the previous selections, residual

box was left blank as such there was no residual

or predicted value in the output above. But if one

selects residual dialogue box, then we would

expect the following output:

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.845928
R Square 0.715594
Adjusted R 
Square 0.54495
Standard 
Error 9352.489
Observations 25

ANOVA

df SS MS F
Significance 
F

Regression 9 3.3E+09 3.67E+08 4.193495 0.00719
Residual 15 1.31E+09 87469057
Total 24 4.61E+09

Coefficients
Standard 
Error t Stat P-value Lower 95%

Upper 
95%

Intercept 31080.11 43562.31 0.713463 0.486512 -61770.8 123931
X1 0.440054 378.9411 0.001161 0.999089 -807.254 808.134
X2 -190.143 598.963 -0.31745 0.755276 -1466.8 1086.517
X3 -157.755 1282.193 -0.12303 0.903713 -2890.68 2575.175
X4 -88.7728 1712.524 -0.05184 0.959342 -3738.93 3561.387
X5 -2749.45 2561.26 -1.07348 0.300024 -8208.65 2709.746
X6 -2497.02 3875.447 -0.64432 0.5291 -10757.3 5763.301
X7 51.80299 37.28408 1.389413 0.184988 -27.6661 131.2721
X8 19587.13 4653.429 4.209182 0.000759 9668.581 29505.68
X9 -139.831 486.211 -0.28759 0.777594 -1176.16 896.5035
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SUMMARY OUTPUT

Regression Statistics
Multiple R 0.845928
R Square 0.715594
Adjusted R Square 0.54495
Standard Error 9352.489
Observations 25

ANOVA
df SS MS F Significance F

Regression 9 3.3E+09 3.67E+08 4.193495 0.00719
Residual 15 1.31E+09 87469057
Total 24 4.61E+09

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 31080.11 43562.31 0.713463 0.486512 -61770.8 123931
X1 0.440054 378.9411 0.001161 0.999089 -807.254 808.134
X2 -190.143 598.963 -0.31745 0.755276 -1466.8 1086.517
X3 -157.755 1282.193 -0.12303 0.903713 -2890.68 2575.175
X4 -88.7728 1712.524 -0.05184 0.959342 -3738.93 3561.387
X5 -2749.45 2561.26 -1.07348 0.300024 -8208.65 2709.746
X6 -2497.02 3875.447 -0.64432 0.5291 -10757.3 5763.301
X7 51.80299 37.28408 1.389413 0.184988 -27.6661 131.2721
X8 19587.13 4653.429 4.209182 0.000759 9668.581 29505.68
X9 -139.831 486.211 -0.28759 0.777594 -1176.16 896.5035
RESIDUAL OUTPUT

Observation Predicted Y Residuals
1 26783.91 5616.089
2 27715.76 2284.236
3 78474.49 -6474.49
4 32185.8 -7185.8
5 43761.61 -13761.6
6 31580.94 -1580.94
7 37791.36 2208.64
8 30384.89 2615.113
9 29574.88 425.1152
10 29034.27 965.7268
11 40500.21 -7500.21
12 39913.98 -4913.98
13 25906.55 93.44523
14 43119.41 -3119.41
15 38314.04 -5314.04
16 28717.75 -3717.75
17 28709.43 -4709.43
18 58581.99 24418.01
19 36443.01 1056.987
20 39097.22 -6097.22
21 29387.06 8112.94
22 47750.19 2249.813
23 35960.65 1539.351
24 29539.33 10460.67
25 47671.27 2328.732
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Now we shall use the same example to be
worked out using SPSS as follows:

Data entered in SPSS data editor.
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Linear Regression in Analysis tool has been

activated.

About to select the dependent and the inde-

pendent set of variables.
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Dependent variable selected, independent

variables ready to be selected.

Dependent and independent set of variables

have been selected.

Statistics required during analysis are to be

specified. Note, there are many options; one needs

to know all these and select the desired one(s).
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There are different methods of getting linear

regression equation, viz., simple multiple regres-

sion, stepwise regression, backward, forward,

etc., but one needs to have a clear idea about

the differences in these methods and the

situations where these can be applied before

selecting a particular method.

The level of significance plays an important

role in statistical inference, so also in regression

analysis. The probability at which the different

estimates are required to be significant is

dependent on the nature of the analysis and type

of data being handled. As such, specific level of

significance is required to be entered as per the

requirement of the analysis.
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There are options for X-plotting; required plot-

ting must be specified in the specific dialogue box.

There are options for saving various variables

generated through analysis. One should be selec-

tive in choosing the actual variables/measures to

be saved and insert the same in the appropriate

dialogue box. One can see that there are compar-

atively many options than what we used to get in
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usual regression analysis using MS Excel. Once

after fulfilling the above dialogue box, the output

what we get is reproduced below. While going

through the analytical steps as well as output, one

can find that there are more options in SPSS

compared to MS Excel. Thus, not only the anal-

ysis but also the information generated through

different analyses varies across the statistical

packages; each statistical package has their

advantages as well as disadvantages.

Regression

[Data set0]

Descriptive Statistics
Mean Std. Deviation N

Y 3.75E4 13864.291 25
X1 5.10000E1 6.763875 25
X2 6.92000 4.222164 25
X3 1.22000E1 1.755942 25
X4 4.08000 1.605200 25
X5 1.16000 1.027943 25
X6 5.64000 .568624 25
X7 2.09200E1 5.908468 25
X8 .76000 .723418 25
X9 2.89200E1 5.081994 25

Correlations
Y X1 X2 X3 X4 X5 X6 X7 X8 X9

Pearson 
Correlation

Y 1.000 .075 -.118 .036 -.458 -.042 -.321 .176 .669 .323
X1 .075 1.000 -.620 .172 .249 -.114 -.043 -.176 .102 -.005
X2 -.118 -.620 1.000 -.284 -.214 .147 .092 .048 -.007 -.105
X3 .036 .172 -.284 1.000 .127 .120 -.050 .114 .039 .329
X4 -.458 .249 -.214 .127 1.000 -.311 .307 -.017 -.665 -.295
X5 -.042 -.114 .147 .120 -.311 1.000 -.182 -.293 .278 -.125
X6 -.321 -.043 .092 -.050 .307 -.182 1.000 .065 -.421 -.328
X7 .176 -.176 .048 .114 -.017 -.293 .065 1.000 -.180 .320
X8 .669 .102 -.007 .039 -.665 .278 -.421 -.180 1.000 .267
X9 .323 -.005 -.105 .329 -.295 -.125 -.328 .320 .267 1.000

Sig. (1-tailed) Y . .361 .287 .433 .011 .421 .059 .200 .000 .058
X1 .361 . .000 .206 .115 .294 .419 .200 .313 .491
X2 .287 .000 . .084 .152 .241 .332 .410 .488 .308
X3 .433 .206 .084 . .272 .284 .406 .294 .426 .054
X4 .011 .115 .152 .272 . .065 .068 .468 .000 .076
X5 .421 .294 .241 .284 .065 . .191 .078 .089 .276
X6 .059 .419 .332 .406 .068 .191 . .378 .018 .055
X7 .200 .200 .410 .294 .468 .078 .378 . .194 .059
X8 .000 .313 .488 .426 .000 .089 .018 .194 . .099
X9 .058 .491 .308 .054 .076 .276 .055 .059 .099 .

N Y 25 25 25 25 25 25 25 25 25 25
X1 25 25 25 25 25 25 25 25 25 25
X2 25 25 25 25 25 25 25 25 25 25
X3 25 25 25 25 25 25 25 25 25 25
X4 25 25 25 25 25 25 25 25 25 25
X5 25 25 25 25 25 25 25 25 25 25
X6 25 25 25 25 25 25 25 25 25 25
X7 25 25 25 25 25 25 25 25 25 25
X8 25 25 25 25 25 25 25 25 25 25
X9 25 25 25 25 25 25 25 25 25 25
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Variables Entered/Removedb

Model Variables Entered Variables Method
1 X9, X1, X5, X6, . Enter

a. All requested variables entered.
b. Dependent Variable: Y

Model Summaryb

Model R R Square Adjusted R Square Std. Error of the Durbin-Watson
1 .762a .581 .329 11356.378 2.047

a. Predictors: (Constant), X9, X1, X5, X6, X3, X7, X8, X2, X4
b. Dependent Variable: Y

ANOVAb

Model Sum of Squares df Mean Square F Sig.
1 Regression 2.679E9 9 2.976E8 2.308 .073a

Residual 1.935E9 15 1.290E8
Total 4.613E9 24

a. Predictors: (Constant), X9, X1, X5, X6, X3, X7, X8, X2, X4
b. Dependent Variable: Y

Coefficientsa

Model

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.

95% Confidence Interval 
for B Correlations

Collinearity 
Statistics

B Std. Error Beta
Lower 
Bound

Upper 
Bound

Zero-
order Partial Part Tolerance VIF

1 (Constant) 35124.781 45623.708 .770 .453 -62119.852 132369.413
X1 -115.629 470.951 -.056 -.246 .809 -1119.438 888.181 .075 -.063 -.041 .530 1.888
X2 -477.816 733.003 -.146 -.652 .524 -2040.175 1084.543 -.118 -.166 -.109 .561 1.782
X3 -292.465 1579.859 -.037 -.185 .856 -3659.855 3074.924 .036 -.048 -.031 .698 1.432
X4 -73.366 2312.781 -.008 -.032 .975 -5002.942 4856.209 -.458 -.008 -.005 .390 2.565
X5 -2185.980 2719.390 -.162 -.804 .434 -7982.222 3610.262 -.042 -.203 -.134 .688 1.454
X6 -1046.739 4745.050 -.043 -.221 .828 -11160.575 9067.096 -.321 -.057 -.037 .738 1.355
X7 626.659 457.114 .267 1.371 .191 -347.655 1600.974 .176 .334 .229 .737 1.357
X8 14271.662 4979.086 .745 2.866 .012 3658.991 24884.333 .669 .595 .479 .414 2.414
X9 -3.273 593.970 -.001 -.006 .996 -1269.290 1262.745 .323 -.001 .000 .590 1.696

a. Dependent Variable: Y
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Another Example In the following example,

we shall demonstrate how many types of statisti-

cal analysis can be taken up with a given set of

data. But the question is which one is the

appropriate one?

Collinearity Diagnosticsa

Model Dimension Eigenvalue
Condition 

Index
Variance Proportions

(Constant) X1 X2 X3 X4 X5 X6 X7 X8 X9
1 1 8.635 1.000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

2 .612 3.756 .00 .00 .00 .00 .01 .13 .00 .00 .16 .00
3 .347 4.990 .00 .00 .05 .00 .00 .44 .00 .00 .17 .00
4 .258 5.787 .00 .00 .43 .00 .01 .15 .00 .00 .00 .00
5 .079 10.464 .00 .00 .06 .00 .21 .04 .00 .33 .13 .01
6 .029 17.171 .00 .01 .00 .02 .41 .06 .01 .60 .37 .11
7 .020 20.873 .01 .07 .02 .06 .20 .00 .10 .03 .01 .29
8 .011 27.565 .00 .08 .00 .78 .05 .10 .02 .00 .01 .30
9 .007 34.800 .00 .57 .30 .13 .09 .02 .38 .02 .13 .11
10 .002 66.360 .99 .27 .15 .01 .01 .06 .49 .01 .02 .17

a. Dependent Variable: Y

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N
Predicted Value 23417.06 74253.70 3.75E4 10564.753 25
Residual -1.224E4 3.352E4 .000 8978.005 25
Std. Predicted Value -1.331 3.481 .000 1.000 25
Std. Residual -1.078 2.952 .000 .791 25
a. Dependent Variable: Y

F1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

F3 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5

Obs 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Ch1 148 153 157 154 162 159 149 153 150 142 167 153 160 155 163 169 149 144 146 139

F1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

F2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

F3 1 1 2 2 3 3 4 4 5 5 1 1 2 2 3 3 4 4 5 5

Obs 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Ch1 164 168 168 163 169 164 140 144 140 136 164 169 162 169 175 169 143 134 149 139
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The information is pertaining to a three factor

experiment conducted with factors F1 (2 levels),

F2 (2 levels), and F3 (5 levels), and on each

treatment combination (20 in total), there are

two observations and corresponding responses.

What type of analysis should be undertaken on

the given set of data? Before taking analysis, one
should be satisfied with the following queries:

What was (were) the objective of the study?

Where was the study undertaken? In the labora-
tory or in the field? What type of information are

needed? Only the effects of factors or their

interactions also? What type of experimental
design is followed? And so on. . .

These are required because without going

details into the experimental procedure, one can

analyze the given information as per the standard

procedure of analysis of experimental data

adopting one of the following designs among

many other possibilities taking help from statis-

tical software:

1. CRD with 20 treatments

2. RBD with 20 treatments

3. Three factor factorial (2 � 2 � 5) CRD

4. Three factor factorial (2 � 2 � 5) RBD

5. Split factorial analysis with F1 in main plots

and F2 and F3 in factorial arrangement

6. Split factorial analysis with F2 in main plots

and F1 and F3 in factorial arrangement

7. Split factorial analysis with F3 in main plots

and F2 and F3 in factorial arrangement

8. Split-split plot arrangement with F1 in main

plots, F2 in sub plots, and F3 in sub-sub plots

9. Split-split plot arrangement with F1 in main

plots, F3 in sub plots, and F2 in sub-sub plots

10. Split-split plot arrangement with F2 in main

plots F1 in sub plots and F3 in sub-sub plots

11. Split-split plot arrangement with F2 in main

plots, F3 in sub plots, and F1 in sub-sub plots

12. Split-split plot arrangement with F3 in main

plots, F1 in sub plots, and F2 in sub-sub plots

13. Split-split plot arrangement with F3 in main

plots, F2 in sub plots, and F1 in sub-sub plots

14. And other variant designs of experiment

But it must be kept in mind that each and

every above mentioned design has their own

specificity with respect to model, assumptions,

and analysis also in applicability. All are not

suitable or applicable for a specific situation.

With the help of statistical software, without

going details into the statistical principles and

or adopted method of experimentation, one can

analyze the data and draw conclusion accord-

ingly. But how far the information generated in

the process is useful is of million dollar question.

So one must be very careful in analyzing the

experimental data on hand providing due consid-

eration to all the aspects.
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