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Preface

The financial crisis of 2007–2009 swallowed billions of dollars and caused many
corporate defaults. Massive monetary intervention by the US and European central
bank stabilized the global financial system, but the long-term consequences of this
low interest rate/high government debt policy remain unclear. To avoid such crises
scenarios in the future, better regulation was called for by many politicians. The
market for portfolio credit derivatives has almost dried out in the aftermath of the
crisis and has only recently recovered. Banks are not considered default free any-
more, their CDS spreads can tell the story. This has major consequences for OTC
derivative transactions between banks and their clients, since the risk of a coun-
terparty credit default cannot be neglected anymore. Concerning interest rates, it has
become unclear if there are risk-free rates at all, and if so, how these should be
modeled. On top, we have observed negative interest rates for government bonds of
countries like Switzerland, Germany, and the US—a feature not captured by many
stochastic models.

The conference Innovations in Derivatives Markets—Fixed income modeling,
valuation adjustments, risk management, and regulation, March 30–April 1, 2015
at the Technical University of Munich shed some light on the tremendous changes
in the financial system. We gratefully acknowledge the support by the KPMG
Center of Excellence in Risk Management, which allowed us to bring together
leading experts from fixed income markets, credit modeling, banking, and financial
engineering. We thank the contributing authors to this volume for presenting the
state of the art in postcrisis financial modeling and computational tools. Their
contributions reflect the enormous efforts academia and the financial industry have
invested in adapting to a new reality.

The financial crisis made evident that changes in risk attitude are imperative. It is
therefore fortunate that postcrisis mathematical finance has immediately accepted to
go the path of critically reflecting its old paradigms, identifying new rules, and,
finally, implementing the necessary changes. This renewal process has led to a
paradigm shift characterized by a changed attitude toward—and a reappraisal of—
liquidity and counterparty risk. We are happy that we can invite the reader to gather
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insight on these changes, to learn which assumptions to trust and which ones to
replace, as well as to enter into the discussion on how to overcome the current
difficulties of a practical implementation.

Among others, the plenary speakers Damiano Brigo, Stéphane Crépey, Ernst
Eberlein, John Hull, Wolfgang Runggaldier, Luis Seco, and Wim Schoutens are
represented with articles in this book. The process of identifying and incorporating
key features of financial assets and underlying risks is still in progress, as the reader
can discover in the form of a vital panel discussion that complements the scientific
contributions of the book. The book is divided into three parts. First, the vast field
of counterparty credit risk is discussed. Second, FX markets and particularly
multi-curve interest-rate models are investigated. The third part contains innova-
tions in financial engineering with diverse topics from dependence modeling,
measuring basis spreads, to innovative fee structures for hedge funds.

We thank the KPMG Center of Excellence in Risk Management for the oppor-
tunity to publish this proceedings volume with online open access and acknowledge
the fruitful collaboration with Franz Lorenz, Matthias Mayer, and Daniel Sommer.
Moreover, we thank all speakers, visitors, the participants of the panel discussion—
Damiano Brigo, Christian Fries, John Hull, Daniel Sommer, and Ralf Werner—and
the local supporting team—Bettina Haas, Mirco Mahlstedt, Steffen Schenk, and
Thorsten Schulz—who helped to make this conference a success.

Garching-Hochbrück, Germany Kathrin Glau
Paris Cedex 13, France Zorana Grbac
Garching-Hochbrück, Germany Matthias Scherer
Garching-Hochbrück, Germany Rudi Zagst
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Foreword

The conference “Innovations in Derivatives Markets—Fixed Income Modelling,
Valuation Adjustments, Risk Management, and Regulation” was held on the
campus of Technical University of Munich in Garching-Hochbrück (Munich) from
March 30, until April 1, 2015. Thanks to the great efforts of the organizers, the
scientific committee, the keynote speakers, contributors, and all other participants,
the conference was a huge success, bringing together academics and practitioners to
learn about and to discuss state-of-the-art derivatives valuation and mathematical
finance. More than 200 participants (35 % of whom were academics, 60 % prac-
titioners, and 5 % students) had many fruitful discussions and exchanges during
three days of talks.

The conference “Innovations in Derivatives Markets” and this book are part of
an initiative that was founded in 2012 as a cooperation between the Chair of
Mathematical Finance at the Technical University of Munich and KPMG AG
Wirtschaftsprüfungsgesellschaft. This cooperation is based on three pillars: first
strengthening a scientifically challenging education of students that at the same time
addresses real-world topics, second supporting research with particular focus on
young researchers, and third, bringing together academic researchers with practi-
tioners from the financial industry in the areas of trading, treasury, financial engi-
neering, risk management, and risk controlling in order to develop trendsetting and
viable improvements in the effective management of financial risks.

The main focus of the conference was the topic of derivatives valuation which is
a subject of great importance for the financial industry, specifically the rise of new
valuation adjustments commonly referred to as “XVAs”. These XVAs have gained
significant attention ever since the financial crisis in 2008 when banks suffered
tremendous losses due to counterparty credit risk reflected in derivatives valuation
via the credit valuation adjustment, CVA. A debate on the incorporation of funding
costs in derivatives valuation starting in 2012 introduced a new letter to the XVA
alphabet, the so-called funding valuation adjustment, FVA, together with its
specific impact in banks’ profit and loss statements. With the conference, we
intended to discuss these topics in the light of market evolutions, regulatory change,
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and state-of-the-art research in financial mathematics by bringing together
renowned scientists, practitioners, and ambitious young researchers.

Over the first two days of the conference, several keynote speeches and invited
talks addressed various aspects of derivatives valuation. Topics included the fun-
damental change of moving from one interest rate curve to a multiple curve
environment, taking into account counterparty credit risk and funding into
derivatives valuation, new approaches to modeling negative interest rates, and also
presenting other advances in mathematical finance. The panel discussion on the first
day brought together the views of renowned representatives from academia and the
financial industry on the necessity, reasonableness and, to some extent, the future of
derivatives valuation and XVAs. The conference was rounded out by a day of
contributed talks, giving young researchers the opportunity to present and discuss
their results in front of a broad audience. All in all, the topics presented during the
conference covered a large spectrum, ranging from market developments and the
management of derivative valuation adjustments to theoretical advances in financial
mathematics.

We would like to thank everyone who contributed to make this event a great
success. In particular, we express our gratitude to the scientific committee, namely
Kathrin Glau, Zorana Grbac, Matthias Scherer, and Rudi Zagst, the organizational
team, namely Kathrin Glau, Bettina Haas, Mirco Mahlstedt, Matthias Scherer,
Steffen Schenk, Thorsten Schulz, and Rudi Zagst, the keynote speakers, the mod-
erator and participants of the panel discussion, all speakers of invited and contributed
talks, and, last but not least, all participants that attended the conference.

We are convinced that this book will help you to gain insights about
state-of-the-art research in the area of mathematical finance and to broaden your
horizon on the use of mathematical concepts to the fields of derivatives valuation
and risk management.

Dr. Matthias Mayer
Dr. Daniel Sommer

Franz Lorenz
KPMG AG Wirtschaftsprüfungsgesellschaft
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Nonlinearity Valuation Adjustment

Nonlinear Valuation Under Collateralization,
Credit Risk, and Funding Costs

Damiano Brigo, Qing D. Liu, Andrea Pallavicini and David Sloth

Abstract We develop a consistent, arbitrage-free framework for valuing derivative
trades with collateral, counterparty credit risk, and funding costs. Credit, debit, liq-
uidity, and funding valuation adjustments (CVA, DVA, LVA, and FVA) are simply
introduced as modifications to the payout cash flows of the trade position. The frame-
work is flexible enough to accommodate actual trading complexities such as asym-
metric collateral and funding rates, replacement close-out, and re-hypothecation of
posted collateral—all aspects which are often neglected. The generalized valuation
equation takes the form of a forward–backward SDE or semi-linear PDE. Neverthe-
less, it may be recast as a set of iterative equations which can be efficiently solved
by our proposed least-squares Monte Carlo algorithm. We implement numerically
the case of an equity option and show how its valuation changes when including
the above effects. In the paper we also discuss the financial impact of the proposed
valuation framework and of nonlinearity more generally. This is fourfold: First, the
valuation equation is only based on observable market rates, leaving the value of a
derivatives transaction invariant to any theoretical risk-free rate. Secondly, the pres-
ence of funding costs makes the valuation problem a highly recursive and nonlinear
one. Thus, credit and funding risks are non-separable in general, and despite com-
mon practice in banks, CVA, DVA, and FVA cannot be treated as purely additive
adjustments without running the risk of double counting. To quantify the valua-
tion error that can be attributed to double counting, we introduce a “nonlinearity
valuation adjustment” (NVA) and show that its magnitude can be significant under
asymmetric funding rates and replacement close-out at default. Thirdly, as trading

D. Brigo (B) · Q.D. Liu · A. Pallavicini
Department of Mathematics, Imperial College London, London, UK
e-mail: damiano.brigo@imperial.ac.uk

Q.D. Liu
e-mail: daphne.q.liu@gmail.com

A. Pallavicini
Banca IMI, largo Mattioli 3, Milan 20121, Italy
e-mail: andrea.pallavicini@imperial.ac.uk

D. Sloth
Rate Options & Inflation Trading, Danske Bank, Copenhagen, Denmark
e-mail: dap@danskebank.com

© The Author(s) 2016
K. Glau et al. (eds.), Innovations in Derivatives Markets, Springer Proceedings
in Mathematics & Statistics 165, DOI 10.1007/978-3-319-33446-2_1
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4 D. Brigo et al.

parties cannot observe each others’ liquidity policies nor their respective funding
costs, the bilateral nature of a derivative price breaks down. The value of a trade to a
counterparty will not be just the opposite of the value seen by the bank. Finally, val-
uation becomes aggregation-dependent and portfolio values cannot simply be added
up. This has operational consequences for banks, calling for a holistic, consistent
approach across trading desks and asset classes.

Keywords Nonlinear valuation ·Nonlinear valuation adjustmentNVA ·Credit risk ·
Credit valuation adjustment CVA · Funding costs · Funding valuation adjustment
FVA · Consistent valuation · Collateral

1 Introduction

Recent years have seen an unprecedented interest among banks in understanding
the risks and associated costs of running a derivatives business. The financial crisis
in 2007–2008 made banks painfully aware that derivative transactions involve a
number of risks, e.g., credit or liquidity risks that they had previously overlooked
or simply ignored. The industry practice for dealing with these issues comes in the
form of a series of price adjustments to the classic, risk-neutral price definition of a
contingent claim, often coined under mysteriously sounding acronyms such as CVA,
DVA, or FVA.1 The credit valuation adjustment (CVA) corrects the price for the
expected costs to the dealer due to the possibility that the counterparty may default,
while the so-called debit valuation adjustment (DVA) is a correction for the expected
benefits to the dealer due to his own default risk. Dealers also make adjustments due
to the costs of funding the trade. This practice is known as a liquidity and funding
valuation adjustment (LVA,FVA).Recent headlines such as J.P.Morgan taking ahit of
$1.5 billion in its 2013 fourth-quarter earnings due to funding valuation adjustments
underscores the sheer importance of accounting for FVA.

In this paper we develop an arbitrage-free valuation approach of collateralized as
well as uncollateralized trades that consistently accounts for credit risk, collateral,
and funding costs. We derive a general valuation equation where CVA, DVA, collat-
eral, and funding costs are introduced simply as modifications of payout cash flows.
This approach can also be tailored to address trading through a central clearing house
(CCP) with initial and variation margins as investigated in Brigo and Pallavicini [6].
In addition, our valuation approach does not put any restrictions on the banks’ liq-
uidity policies and hedging strategies, while accommodating asymmetric collateral
and funding rates, collateral rehypothecation, and risk-free/replacement close-out
conventions. We present an invariance theorem showing that our valuation equa-

1Recently, a new adjustment, the so-called KVA or capital valuation adjustment, has been proposed
to account for the capital cost of a derivatives transaction (see e.g. Green et al. [26]). Following the
financial crisis, banks are faced by more severe capital requirements and leverage constraints put
forth by the Basel Committee and local authorities. Despite being a key issue for the industry, we
will not consider costs of capital in this paper.
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tions do not depend on some unobservable risk-free rates; valuation is purely based
on observable market rates. The invariance theorem has appeared first implicitly in
Pallavicini et al. [33], and is studied in detail in Brigo et al. [15], a version of which
is in this same volume.

Several studies have analyzed the various valuation adjustments separately, but
few have tried to build a valuation approach that consistently takes collateralization,
counterparty credit risk, and funding costs into account. Under unilateral default risk,
i.e., when only one party is defaultable, Brigo and Masetti [4] consider valuation of
derivatives with CVA, while particular applications of their approach are given in
Brigo and Pallavicini [5], Brigo and Chourdakis [3], and Brigo et al. [8]; see Brigo et
al. [11] for a summary. Bilateral default risk appears in Bielecki and Rutkowski [1],
Brigo and Capponi [2], Brigo et al. [9] and Gregory [27] who price both the CVA and
DVA of a derivatives deal. The impact of collateralization on default risk has been
investigated in Cherubini [20] and more recently in Brigo et al. [7, 12]. Assuming no
default risk, Piterbarg [36] provides an initial analysis of collateralization and funding
risk in a stylized Black–Scholes economy. Morini and Prampolini [31], Fries [25]
and Castagna [19] consider basic implications of funding in presence of default
risk. However, the most comprehensive attempts to develop a consistent valuation
framework are those of Burgard and Kjaer [16, 17], Crépey [21–23], Crépey et al.
[24], Pallavicini et al. [33, 34], and Brigo et al. [13, 14].

We follow the works of Pallavicini et al. [34], Brigo et al. [13, 14], and Sloth [37]
and consider a general valuation framework that fully and consistently accounts for
collateralization, counterparty credit risk, and funding riskwhen pricing a derivatives
trade.Wefind that the precise patterns of funding-adjusted values dependon a number
of factors, including the asymmetry between borrowing and lending rates. Moreover,
the introduction of funding risk creates a highly recursive and nonlinear valuation
problem. The inherent nonlinearity manifests itself in the valuation equations by
taking the form of semi-linear PDEs or BSDEs.

Thus, valuation under funding risk poses a computationally challenging problem;
funding and credit costs do not split up in a purely additiveway.A consequence of this
is that valuation becomes aggregation-dependent. Portfolio values do not simply add
up,making it difficult for banks to create CVAandFVAdeskswith separate and clear-
cut responsibilities. Nevertheless, banks often make such simplifying assumptions
when accounting for the various price adjustments. This can be done, however, only
at the expense of tolerating some degree of double counting in the different valuation
adjustments.

We introduce the concept of nonlinearity valuation adjustment (NVA) to quantify
the valuation error that one makes when treating CVA, DVA, and FVA as separate,
additive terms. In particular, we examine the financial error of neglecting nonlinear-
ities such as asymmetric borrowing and lending funding rates and by substituting
replacement close-out at default by the more stylized risk-free close-out assumption.
We analyze the large scale implications of nonlinearity of the valuation equations:
non-separability of risks, aggregation dependence in valuation, and local valuation
measures as opposed to universal ones. Finally, our numerical results confirm that
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NVA and asymmetric funding rates can have a non-trivial impact on the valuation of
financial derivatives.

To summarize, the financial implications of our valuation framework are fourfold:

• Valuation is invariant to any theoretical risk-free rate and only based on observable
market rates.

• Valuation is a nonlinear problemunder asymmetric funding and replacement close-
out at default, making funding and credit risks non-separable.

• Valuation is no longer bilateral because counterparties cannot observe each others’
liquidity policies nor their respective funding costs.

• Valuation is aggregation-dependent and portfolio values can no longer simply be
added up.

The above points stress the fact that we are dealing with values rather than prices.
By this, we mean to distinguish between the unique price of an asset in a complete
marketwith a traded risk-free bank account and the value a bank ormarket participant
attributes to the particular asset. Nevertheless, in the following, we will use the terms
price and value interchangeably to mean the latter. The paper is organized as follows.
Section2 describes the general valuation framework with collateralized credit, debit,
liquidity, and funding valuation adjustments. Section3 derives an iterative solution of
the pricing equation aswell as a continuous-time approximation. Section4 introduces
the nonlinearity valuation adjustment and provides numerical results for specific
valuation examples. Finally, Sect. 5 concludes the paper.

2 Trading Under Collateralization, Close-Out Netting,
and Funding Risk

In this section we develop a general risk-neutral valuation framework for OTC deriv-
ative deals. The section clarifies how the traditional pre-crisis derivative price is
consistently adjusted to reflect the new market realities of collateralization, counter-
party credit risk, and funding risk. We refer to the two parties of a credit-risky deal
as the investor or dealer (“I”) on one side and the counterparty or client (“C”) on the
other.

We now introduce the mathematical framework we will use. We point out that
the focus here is not on mathematics but on building the valuation framework. Full
mathematical subtleties are left for other papers and may motivate slightly different
versions of the cash flows, see for example Brigo et al. [15]. More details on the
origins of the cash flows used here are in Pallavicini et al. [33, 34].

Fixing the time horizon T ∈ R+ of the deal, we define our risk-neutral valuation
model on the probability space (Ω,G , (Gt )t∈[0,T ], Q). Q is the risk-neutral proba-
bility measure ideally associated with the locally risk-free bank account numeraire
growing at the risk-free rate r . The filtration (Gt )t∈[0,T ] models the flow of informa-
tion of the whole market, including credit, such that the default times of the investor
τI and the counterparty τC are G -stopping times. We adopt the notational convention
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that Et is the risk-neutral expectation conditional on the information Gt . Moreover,
we exclude the possibility of simultaneous defaults for simplicity and define the time
of the first default event among the two parties as the stopping time

τ � (τI ∧ τC).

In the sequel we adopt the view of the investor and consider the cash flows and
consequences of the deal from her perspective. In other words, when we price the
deal we obtain the value of the position to the investor. As we will see, with funding
risk this price will not be the value of the deal to the counterparty with opposite sign,
in general.

The gist of the valuation framework is conceptually simple and rests neatly on
the classical finance disciplines of risk-neutral valuation and discounting cash flows.
When a dealer enters into a derivatives deal with a client, a number of cash flows are
exchanged, and just like valuation of any other financial claim, discounting these cash
in- or outflows gives us a price of the deal. Post-crisis market practice includes four
(or more) different types of cash flow streams occurring once a trading position has
been entered: (i) Cash flows coming directly from the derivatives contract, such as
payoffs, coupons, dividends, etc.Wedenote byπ(t, T ) the sumof the discounted cash
flows happening over the time period (t, T ] without including any credit, collateral,
and funding effects. This is where classical derivatives valuation would usually stop
and the price of a derivative contract with maturity T would be given by

Vt = Et [π(t, T )] .

This price assumes no credit risk of the parties involved and no funding risk of
the trade. However, present-day market practice requires the price to be adjusted
by taking further cash-flow transactions into account: (ii) Cash flows required by
collateral margining. If the deal is collateralized, cash flows happen in order to
maintain a collateral account that in the case of default will be used to cover any
losses. γ (t, T ;C) is the sum of the discounted margining costs over the period
(t, T ] with C denoting the collateral account. (iii) Cash flows exchanged once a
default event has occurred. We let θτ (C, ε) denote the on-default cash-flow with ε
being the residual value of the claim traded at default. Lastly, (iv) cash flows required
for funding the deal. We denote the sum of the discounted funding costs over the
period (t, T ] by ϕ(t, T ; F) with F being the cash account needed for funding the
deal. Collecting the terms we obtain a consistent price V̄ of a derivative deal taking
into account counterparty credit risk, margining costs, and funding costs

V̄t (C, F) = Et
[
π(t, T ∧ τ) + γ (t, T ∧ τ ;C) + ϕ(t, T ∧ τ ; F) (1)

+1{t<τ<T }D(t, τ )θτ (C, ε)
]
,

where D(t, τ ) = exp(− ∫ τ

t rsds) is the risk-free discount factor.
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By using a risk-neutral valuation approach, we see that only the payout needs to
be adjusted under counterparty credit and funding risk. In the following paragraphs
we expand the terms of (1) and carefully discuss how to compute them.

2.1 Collateralization

The ISDA master agreement is the most commonly used framework for full and
flexible documentation of OTC derivative transactions and is published by the Inter-
national Swaps and Derivatives Association (ISDA [29]). Once agreed between two
parties, the master agreement sets out standard terms that apply to all deals entered
into between those parties. The ISDA master agreement lists two tools to mitigate
counterparty credit risk: collateralization and close-out netting. Collateralization of
a deal means that the party which is out-of-the-money is required to post collateral—
usually cash, government securities, or highly rated bonds—corresponding to the
amount payable by that party in the case of a default event. The credit support annex
(CSA) to the ISDA master agreement defines the rules under which the collateral
is posted or transferred between counterparties. Close-out netting means that in the
case of default, all transactions with the counterparty under the ISDA master agree-
ment are consolidated into a single net obligation which then forms the basis for any
recovery settlements.

Collateralization of a deal usually happens according to a margining procedure.
Such a procedure involves that both parties post collateral amounts to or withdraw
amounts from the collateral account C according to their current exposure on pre-
fixed dates {t1, . . . , tn = T } during the life of the deal, typically daily. Let αi be
the year fraction between ti and ti+1. The terms of the margining procedure may,
furthermore, include independent amounts, minimum transfer amounts, thresholds,
etc., as described in Brigo et al. [7]. However, here we adopt a general description
of the margining procedure that does not rely on the particular terms chosen by the
parties.

We consider a collateral account C held by the investor. Moreover, we assume
that the investor is the collateral taker when Ct > 0 and the collateral provider when
Ct < 0. The CSA ensures that the collateral taker remunerates the account C at an
accrual rate. If the investor is the collateral taker, he remunerates the collateral account
by the accrual rate c+

t (T ), while if he is the collateral provider, the counterparty
remunerates the account at the rate c−

t (T ).2 The effective accrual collateral rate
c̃t (T ) is defined as

c̃t (T ) � c−
t (T )1{Ct<0} + c+

t (T )1{Ct>0}. (2)

2We stress the slight abuse of notation here: A plus and minus sign does not indicate that the rates
are positive or negative parts of some other rate, but instead it tells which rate is used to accrue
interest on the collateral according to the sign of the collateral account.
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More generally, to understand the cash flows originating from collateralization of
the deal, let us consider the consequences of the margining procedure to the investor.
At the first margin date, say t1, the investor opens the account and posts collateral
if he is out-of-the-money, i.e. if Ct1 < 0, which means that the counterparty is the
collateral taker. On each of the followingmargin dates tk , the investor posts collateral
according to his exposure as long asCtk < 0.As collateral taker, the counterparty pays
interest on the collateral at the accrual rate c−

tk (tk+1) between the following margin
dates tk and tk+1. We assume that interest accrued on the collateral is saved into the
account and thereby directly included in the margining procedure and the close-out.
Finally, ifCtn < 0 on the last margin date tn , the investor closes the collateral account,
given no default event has occurred in between. Similarly, for positive values of the
collateral account, the investor is instead the collateral taker and the counterparty
faces corresponding cash flows at each margin date. If we sum up all the discounted
margining cash flows of the investor and the counterparty, we obtain

γ (t, T ∧ τ ;C) �
n−1∑

k=1

1{t�tk<(T∧τ)}D(t, tk)Ctk

(

1 − Ptk (tk+1)

Pc̃
tk (tk+1)

)

, (3)

with the zero-coupon bond Pc̃
t (T ) � [1 + (T − t)c̃t (T )]−1, and the risk-free zero

coupon bond, related to the risk-free rate r , given by Pt (T ). If we adopt a first order
expansion (for small c and r ), we can approximate

γ (t, T ∧ τ ;C) ≈
n−1∑

k=1

1{t�tk<(T∧τ)}D(t, tk)Ctkαk
(
rtk (tk+1) − c̃tk (tk+1)

)
, (4)

where with a slight abuse of notation we call c̃t (T ) and rt (T ) the continuously (as
opposed to simple) compounded interest rates associated with the bonds Pc̃ and P .
This last expression clearly shows a cost of carry structure for collateral costs. If C
is positive to “I”, then “I” is holding collateral and will have to pay (hence the minus
sign) an interest c+, while receiving the natural growth r for cash, since we are in a
risk-neutral world. In the opposite case, if “I” posts collateral, C is negative to “I”
and “I” receives interest c− while paying the risk-free rate, as should happen when
one shorts cash in a risk-neutral world.

A crucial role in collateral procedures is played by rehypothecation. We discuss
rehypothecation and its inherent liquidity risk in the following.

Rehypothecation

Often the CSA grants the collateral taker relatively unrestricted use of the collateral
for his liquidity and trading needs until it is returned to the collateral provider.
Effectively, the practice of rehypothecation lowers the costs of remuneration of the
provided collateral. However, while without rehypothecation the collateral provider
can expect to get any excess collateral returned after honoring the amount payable on
the deal, if rehypothecation is allowed the collateral provider runs the risk of losing a
fraction or all of the excess collateral in case of default on the collateral taker’s part.
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We denote the recovery fraction on the rehypothecated collateral by R′
I when

the investor is the collateral taker and by R′
C when the counterparty is the collateral

taker. The general recovery fraction on the market value of the deal that the investor
receives in the case of default of the counterparty is denoted by RC , while RI is the
recovery fraction received by the counterparty if the investor defaults. The collateral
provider typically has precedence over other creditors of the defaulting party in
getting back any excess capital, which means RI � R′

I � 1 and RC � R′
C � 1. If

no rehypothecation is allowed and the collateral is kept safe in a segregated account,
we have that R′

I = R′
C = 1.

2.2 Close-Out Netting

In case of default, all terminated transactions under the ISDAmaster agreementwith a
given counterparty are netted and consolidated into a single claim. This also includes
any posted collateral to back the transactions. In this context the close-out amount
plays a central role in calculating the on-default cash flows. The close-out amount is
the costs or losses that the surviving party incurs when replacing the terminated deal
with an economic equivalent. Clearly, the size of these costs will depend on which
party survives so we define the close-out amount as

ετ � 1{τ=τC<τI }εI,τ + 1{τ=τI<τC }εC,τ , (5)

where εI,τ is the close-out amount on the counterparty’s default priced at time τ by
the investor and εC,τ is the close-out amount if the investor defaults. Recall that we
always consider the deal from the investor’s viewpoint in terms of the sign of the
cash flows involved. This means that if the close-out amount εI,τ as measured by the
investor is positive, the investor is a creditor of the counterpaty, while if it is negative,
the investor is a debtor of the counterparty. Analogously, if the close-out amount εC,τ

to the counterparty but viewed from the investor is positive, the investor is a creditor
of the counterparty, and if it is negative, the investor is a debtor to the counterparty.

We note that the ISDA documentation is, in fact, not very specific in terms of
how to actually calculate the close-out amount. Since 2009, ISDA has allowed for
the possibility to switch from a risk-free close-out rule to a replacement rule that
includes the DVA of the surviving party in the recoverable amount. Parker and Mc-
Garry[35] and Weeber and Robson [40] show how a wide range of values of the
close-out amount can be produced within the terms of ISDA. We refer to Brigo et al.
[7] and the references therein for further discussions on these issues. Here, we adopt
the approach of Brigo et al. [7] listing the cash flows of all the various scenarios that
can occur if default happens. We will net the exposure against the pre-default value
of the collateral Cτ− and treat any remaining collateral as an unsecured claim.

If we aggregate all these cash flows and the pre-default value of collateral account,
we reach the following expression for the on-default cash-flow
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θτ (C, ε) � 1{τ=τC<τI }
(
εI,τ − LGDC(ε+

I,τ − C+
τ−)+ − LGD′

C(ε−
I,τ − C−

τ−)+
)

(6)

+ 1{τ=τI<τC }
(
εC,τ − LGDI (ε

−
C,τ − C−

τ−)− − LGD′
I (ε

+
C,τ − C+

τ−)−
)
.

We use the short-hand notation X + := max(X , 0) and X − := min(X , 0), and
define the loss-given-default as LGDC � 1 − RC , and the collateral loss-given-
default as LGD′

C � 1 − R′
C . If both parties agree on the exposure, namely εI,τ =

εC,τ = ετ , when we take the risk-neutral expectation in (1), we see that the price of
the discounted on-default cash-flow,

Et [1{t<τ<T }D(t, τ )θτ (C, ε)] =Et [1{t<τ<T }D(t, τ ) ετ ]
− CVA(t, T ;C) + DVA(t, T ;C), (7)

is the present value of the close-out amount reduced by the positive collateralized
CVA and DVA terms

Π CVAcoll(s) = (
LGDC(ε+

I,s − C+
s−)+ + LGD′

C(ε−
I,s − C−

s−)+
) ≥ 0,

Π DVAcoll(s) = − (
LGDI (ε

−
C,s − C−

s−)− + LGD′
I (ε

+
C,s − C+

s−)−
) ≥ 0,

and

CVA(t, T ;C) � Et
[
1{τ=τC<T }D(t, τ )Π CVAcoll(τ )

]
,

DVA(t, T ;C) � Et
[
1{τ=τI<T }D(t, τ )Π DVAcoll(τ )

]
. (8)

Also, observe that if rehypothecation of the collateral is not allowed, the terms mul-
tiplied by LGD′

C and LGD′
I drop out of the CVA and DVA calculations.

2.3 Funding Risk

The hedging strategy that perfectly replicates the no-arbitrage price of a derivative
is formed by a position in cash and a position in a portfolio of hedging instruments.
Whenwe talk about a derivative deal’s funding, we essentiallymean the cash position
that is required as part of the hedging strategy, and with funding costs we refer to the
costs of maintaining this cash position. If we denote the cash account by F and the
risky asset account by H , we get

V̄t = Ft + Ht .

In the classical Black–Scholes–Merton theory, the risky part H of the hedge would
be a delta position in the underlying stock, whereas the locally risk-free (cash) part
F would be a position in the risk-free bank account. If the deal is collateralized,
the margining procedure is included in the deal definition insuring that funding of
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the collateral is automatically taken into account. Moreover, if rehypothecation is
allowed for the collateralized deal, the collateral taker can use the posted collateral
as a funding source and thereby reduce or maybe even eliminate the costs of funding
the deal. Thus, we have the following two definitions of the funding account:
If rehypothecation of the posted collateral is allowed,

Ft � V̄t − Ct − Ht , (9)

and if such rehypothecation is forbidden, we have

Ft � V̄t − Ht . (10)

By implication of (9) and (10) it is obvious that if the funding account Ft > 0,
the dealer needs to borrow cash to establish the hedging strategy at time t . Corre-
spondingly, if the funding account Ft < 0, the hedging strategy requires the dealer to
invest surplus cash. Specifically, we assume the dealer enters a funding position on a
discrete time-grid {t1, . . . , tm} during the life of the deal. Given two adjacent funding
times t j and t j+1, for 1 ≤ j ≤ m − 1, the dealer enters a position in cash equal to
Ft j at time t j . At time t j+1 the dealer redeems the position again and either returns
the cash to the funder if it was a long cash position and pays funding costs on the
borrowed cash, or he gets the cash back if it was a short cash position and receives
funding benefits as interest on the invested cash. We assume that these funding costs
and benefits are determined at the start date of each funding period and charged at
the end of the period.

Let P f̃
t (T ) represent the price of a borrowing (or lending) contract measurable

at t where the dealer pays (or receives) one unit of cash at maturity T > t . We
introduce the effective funding rate f̃t as a function: f̃t = f (t, F, H,C), assuming
that it depends on the cash account Ft , hedging account Ht , and collateral account
Ct . Moreover, the zero-coupon bond corresponding to the effective funding rate is
defined as

P f̃
t (T ) � [1 + (T − t) f̃t (T )]−1,

If we assume that the dealer hedges the derivatives position by trading in the spot
market of the underlying asset(s), and the hedging strategy is implemented on the
same time-grid as the funding procedure of the deal, the sum of discounted cash
flows from funding the hedging strategy during the life of the deal is equal to

ϕ(t, T ∧ τ ; F, H)

=
m−1∑

j=1

1{t�t j<(T∧τ)}D(t, t j )

⎛

⎝Ft j − (Ft j + Htj )
Pt j (t j+1)

P f̃
t j (t j+1)

+ Htj

Pt j (t j+1)

P f̃
t j (t j+1)

⎞

⎠

=
m−1∑

j=1

1{t�t j<(T∧τ)}D(t, t j )Ft j

⎛

⎝1 − Pt j (t j+1)

P f̃
t j (t j+1)

⎞

⎠ . (11)
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This is, strictly speaking, a discounted payout and the funding cost or benefit at time
t is obtained by taking the risk-neutral expectation of the above cash flows. For a
trading example giving more details on how the above formula for ϕ originates, see
Brigo et al. [15].

As we can see from Eq. (11), the dependence of hedging account dropped off
from the funding procedure. For modeling convenience, we can define the effective
funding rate f̃t faced by the dealer as

f̃t (T ) � f −
t (T )1{Ft<0} + f +

t (T )1{Ft>0}. (12)

A related framework would be to consider the hedging account H as being perfectly
collateralized and use the collateral to fund hedging, so that there is no funding cost
associated with the hedging account.

As with collateral costs mentioned earlier, we may rewrite the cash flows for
funding as a first order approximation in continuously compounded rates f̃ and r
associated to the relevant bonds. We obtain

ϕ(t, T ∧ τ ; F) ≈
m−1∑

j=1

1{t�t j<(T∧τ)}D(t, t j )Ft j α j

(
rt j (t j+1) − f̃t j (t j+1)

)
, (13)

We should also mention that, occasionally, we may include the effects of repo
markets or stock lending in our framework. In general, we may borrow/lend the cash
needed to establish H from/to our treasury, and we may then use the risky asset
in H for repo or stock lending/borrowing in the market. This means that we could
include the funding costs and benefits coming from this use of the risky asset. Here,
we assume that the bank’s treasury automatically recognizes this benefit or cost at
the same rate f̃ as used for cash, but for a more general analysis involving repo rate
h̃ please refer to, for example, Pallavicini et al. [34], Brigo et al. [15].

The particular positions entered by the dealer to either borrow or invest cash
according to the sign and size of the funding account depend on the bank’s liquidity
policy. In the following we discuss two possible cases: One where the dealer can
fund at rates set by the bank’s treasury department, and another where the dealer
goes to the market directly and funds his trades at the prevailing market rates. As a
result, the funding rates and therefore the funding effect on the price of a derivative
deal depends intimately on the chosen liquidity policy.

Treasury Funding

If the dealer funds the hedge through the bank’s treasury department, the treasury
determines the funding rates f ± faced by the dealer, often assuming average funding
costs and benefits across all deals. This leads to two curves as functions of maturity;
one for borrowing funds f + and one for lending funds f −. After entering a funding
position Ft j at time t j , the dealer faces the following discounted cash-flow

Φ j (t j , t j+1; F) � −Ntj D(t j , t j+1),
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with

Ntj �
F−
t j

P f −
t j (t j+1)

+ F+
t j

P f +
t j (t j+1)

.

Under this liquidity policy, the treasury—and not the dealer himself—is in charge of
debt valuation adjustments due to funding-related positions. Also, being entities of
the same institution, both the dealer and the treasury disappear in case of default of
the institution without any further cash flows being exchanged and we can neglect
the effects of funding in this case. So, when default risk is considered, this leads to
following definition of the funding cash flows

Φ̄ j (t j , t j+1; F) � 1{τ>t j }Φ j (t j , t j+1; F).

Thus, the risk-neutral price of the cash flows due to the funding positions entered at
time t j is

Et j

[
Φ̄ j (t j , t j+1; F)

] = −1{τ>t j }

(

F−
t j

Pt j (t j+1)

P f −
t j (t j+1)

+ F+
t j

Pt j (t j+1)

P f +
t j (t j+1)

)

.

If we consider a sequence of such funding operations at each time t j during the life
of the deal, we can define the sum of cash flows coming from all the borrowing and
lending positions opened by the dealer to hedge the trade up to the first-default event

ϕ(t, T ∧ τ ; F) �
m−1∑

j=1

1{t�t j<(T∧τ)}D(t, t j )
(
Ft j + Et j

[
Φ̄ j (t j , t j+1; F)

])
(14)

=
m−1∑

j=1

1{t�t j<(T∧τ)}D(t, t j )

⎛

⎝Ft j − F−
t j

Pt j (t j+1)

P f −
t j (t j+1)

− F+
t j

Pt j (t j+1)

P f +
t j (t j+1)

⎞

⎠ .

In terms of the effective funding rate, this expression collapses to (11).

Market Funding

If the dealer funds the hedging strategy in the market—and not through the bank’s
treasury—the funding rates are determined by prevailing market conditions and are
often deal-specific. This means that the rate f + the dealer can borrow funds at
may be different from the rate f − at which funds can be invested. Moreover, these
rates may differ across deals depending on the deals’ notional, maturity structures,
dealer-client relationship, and so forth. Similar to the liquidity policy of treasury
funding,we assume a deal’s funding operations are closed down in the case of default.
Furthermore, as the dealer now operates directly on the market, he needs to include
a DVA due to his funding positions when he marks-to-market his trading books. For
simplicity, we assume that the funder in the market is default-free so no funding CVA
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needs to be accounted for. The discounted cash-flow from the borrowing or lending
position between two adjacent funding times t j and t j+1 is given by

Φ̄ j (t j , t j+1; F) � 1{τ>t j }1{τI>t j+1}Φ j (t j , t j+1; F)

− 1{τ>t j }1{τI<t j+1}(LGDI ε
−
F,τI

− εF,τI )D(t j , τI ),

where εF,t is the close-out amount calculated by the funder on the dealer’s default

εF,τI � −Ntj PτI (t j+1).

To price this funding cash-flow, we take the risk-neutral expectation

Et j

[
Φ̄ j (t j , t j+1; F)

] = −1{τ>t j }

(

F−
t j

Pt j (t j+1)

P f −
t j (t j+1)

+ F+
t j

Pt j (t j+1)

P̄ f +
t j (t j+1)

)

.

Here, the zero-coupon funding bond P̄ f +
t (T ) for borrowing cash is adjusted for the

dealer’s credit risk

P̄ f +
t (T ) � P f +

t (T )

E
T
t

[
LGDI1{τI>T } + RI

] ,

where the expectation on the right-hand side is taken under the T -forward measure.
Naturally, since the seniority could be different, one might assume a different recov-
ery rate on the funding position than on the derivatives deal itself (see Crépey [21]).
Extensions to this case are straightforward.

Next, summing the discounted cash flows from the sequence of funding operations
through the life of the deal, we get a new expression for ϕ that is identical to (14)
where the P f +

t (T ) in the denominator is replaced by P̄ f +
t (T ). To avoid cumbersome

notation, we will not explicitly write P̄ f +
in the sequel, but just keep in mind that

when the dealer funds directly in themarket then P f +
needs to be adjusted for funding

DVA. Thus, in terms of the effective funding rate, we obtain (11).

3 Generalized Derivatives Valuation

In the previous section we analyzed the discounted cash flows of a derivatives trade
and we developed a framework for consistent valuation of such deals under collater-
alized counterparty credit and funding risk. The arbitrage-free valuation framework
is captured in the following theorem.

Theorem 1 (Generalized Valuation Equation)
The consistent arbitrage-free price V̄t (C, F) of a contingent claim under counter-
party credit risk and funding costs takes the form
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V̄t (C, F) = Et
[
π(t, T ∧ τ) + γ (t, T ∧ τ ;C) + ϕ(t, T ∧ τ ; F) (15)

+1{t<τ<T }D(t, τ )θτ (C, ε)
]
,

where

1. π(t, T ∧ τ) is the discounted cash flows from the contract’s payoff structure up to
the first-default event.

2. γ (t, T ∧ τ ;C) is the discounted cash flows from the collateral margining proce-
dure up to the first-default event and is defined in (3).

3. ϕ(t, T ∧ τ ; F) is the discounted cash flows from funding the hedging strategy
up to the first-default event and is defined in (11).

4. θτ (C, ε) is the on-default cash-flow with close-out amount ε and is defined in (6).

Note that in general a nonlinear funding ratemay lead to arbitrages since the choice
of themartingalemeasure depends on the funding/hedging strategy (seeRemark4.2).
One has to be careful in order to guarantee that the relevant valuation equation admits
solutions. Existence and uniqueness of solutions in the framework of this paper are
discussed from a fully mathematical point of view in Brigo et al. [15], a version of
which, from the same authors, appears in this volume.

In general, while the valuation equation is conceptually clear—we simply take
the expectation of the sum of all discounted cash flows of the trade under the risk-
neutral measure—solving the equation poses a recursive, nonlinear problem. The
future paths of the effective funding rate f̃ depend on the future signs of the funding
account F , i.e. whether we need to borrow or lend cash on each future funding
date. At the same time, through the relations (9) and (10), the future sign and size
of the funding account F depend on the adjusted price V̄ of the deal which is the
quantity we are trying to compute in the first place. One crucial implication of this
nonlinear structure of the valuation problem is the fact that FVA is generally not just
an additive adjustment term, as often assumed. More importantly, we see that the
celebrated conjecture identifying theDVAof a dealwith its funding benefit is not fully
general. Only in the unrealistic setting where the dealer can fund an uncollateralized
trade at equal borrowing and lending rates, i.e. f + = f −, do we achieve the additive
structure often assumed by practitioners. If the trade is collateralized, we need to
impose even further restrictions as to how the collateral is linked to the price of the
trade V̄ . It should be noted here that funding DVA (as referred to in the previous
section) is similar to the DVA2 in Hull and White [28] and the concept of “windfall
funding benefit at own default” in Crépey [22, 23]. In practice, however, funds
transfer pricing and similar operations conducted by banks’ treasuries clearlyweaken
the link between FVA and this source of DVA. The DVA of the funding instruments
does not regard the bank’s funding positions, but the derivatives position, and in
general it does not match the FVAmainly due to the presence of funding netting sets.

Remark 1 (The Law of One Price.)
On the theoretical side, the generalized valuation equation shakes the foundation of
the celebrated Law of One Price prevailing in classical derivatives pricing. Clearly,
if we assume no funding costs, the dealer and counterparty agree on the price of
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the deal as both parties can—at least theoretically—observe the credit risk of each
other through CDS contracts traded in the market and the relevant market risks, thus
agreeing on CVA andDVA. In contrast, introducing funding costs, theywill not agree
on the FVA for the deal due to asymmetric information. The parties cannot observe
each others’ liquidity policies nor their respective funding costs associated with a
particular deal. As a result, the value of a deal position will not generally be the same
to the counterparty as to the dealer just with opposite sign.

Finally, as we adopt a risk-neutral valuation framework, we implicitly assume
the existence of a risk-free interest rate. Indeed, since the valuation adjustments are
included as additional cash flows and not as ad-hoc spreads, all the cash flows in (15)
are discounted by the risk-free discount factor D(t, T ). Nevertheless, the risk-free
rate is merely an instrumental variable of the general valuation equation. We clearly
distinguishmarket rates from the theoretical risk-free rate avoiding the dubious claim
that the over-night rates are risk free. In fact, as we will show in continuous time, if
the dealer funds the hedging strategy of the trade through cash accounts available to
him—whether as rehypothecated collateral or funds from the treasury, repo market,
etc.—the risk-free rate vanishes from the valuation equation.

3.1 Discrete-Time Solution

Our purpose here is to turn the generalized valuation equation (15) into a set of
iterative equations that can be solved by least-squares Monte Carlo methods. These
methods are already standard in CVA and DVA calculations (Brigo and Pallavicini
[5]). To this end, we introduce the auxiliary function

π̄(t j , t j+1;C) � π(t j , t j+1 ∧ τ) + γ (t j , t j+1 ∧ τ ;C)

+ 1{t j<τ<t j+1}D(t j , τ )θτ (C, ε) (16)

which defines the cash flows of the deal occurring between time t j and t j+1 adjusted
for collateral margining costs and default risks. We stress the fact that the close-
out amount used for calculating the on-default cash flow still refers to a deal with
maturity T . If we then solve valuation equation (15) at each funding date t j in the
time-grid {t1, . . . , tn = T }, we obtain the deal price V̄ at time t j as a function of the
deal price on the next consecutive funding date t j+1

V̄t j = Et j

[
V̄t j+1D(t j , t j+1) + π̄(t j , t j+1;C)

]

+ 1{τ>t j }

(

Ft j − F−
t j

Pt j (t j+1)

P f −
t j (t j+1)

− F+
t j

Pt j (t j+1)

P f +
t j (t j+1)

)

,

where, by definition, V̄tn � 0 on the final date tn . Recall the definitions of the funding
account in (9) if no rehypothecation of collateral is allowed and in (10) if rehypothe-
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cation is permitted, we can then solve the above for the positive and negative parts of
the funding account. The outcome of this exercise is a discrete-time iterative solution
of the recursive valuation equation, provided in the following theorem.

Theorem 2 (Discrete-time Solution of the Generalized Valuation Equation)
Wemay solve the full recursive valuation equation in Theorem 1 as a set of backward-
iterative equations on the time-grid {t1, . . . , tn = T } with V̄tn � 0. For τ < t j , we
have

V̄t j = 0,

while for τ > t j , we have

(i) if rehypothecation is forbidden:

(
V̄t j − Htj

)± = P f̃
t j (t j+1)

(
E
t j+1
t j

[
V̄t j+1 + π̄(t j , t j+1;C) − Htj

D(t j , t j+1)

])±
,

(ii) if rehypothecation is allowed:

(V̄t j − Ctj −Htj )
±

= P f̃
t j (t j+1)

(
E
t j+1
t j

[
V̄t j+1 + π̄(t j , t j+1;C) − Ctj − Htj

D(t j , t j+1)

])±
,

where the expectations are taken under the Q
t j+1 -forward measure.

The ± sign in the theorem is supposed to stress the fact that the sign of the funding
account, which determines the effective funding rate, depends on the sign of the
conditional expectation. Further intuition may be gained by going to continuous
time, which is the case we will now turn to.

3.2 Continuous-Time Solution

Let us consider a continuous-time approximation of the general valuation equation.
This implies that collateral margining, funding, and hedging strategies are executed
in continuous time.Moreover, we assume that rehypothecation is allowed, but similar
results hold if this is not the case. By taking the time limit, we have the following
expressions for the discounted cash flow streams of the deal

π(t, T ∧ τ) =
∫ T∧τ

t
π(s, s + ds)D(t, s),

γ (t, T ∧ τ ;C) =
∫ T∧τ

t
(rs − c̃s)CsD(t, s)ds,
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ϕ(t, T ∧ τ ; F) =
∫ T∧τ

t
(rs − f̃s)FsD(t, s)ds,

where asmentioned earlierπ(t, t + dt) is the pay-off couponprocess of the derivative
contract and rt is the risk-free rate. These equations can also be immediately derived
by looking at the approximations given in Eqs. (4) and (13).

Then, putting all the above terms together with the on-default cash flow as in
Theorem 1, the recursive valuation equation yields

V̄t =
∫ T

t
Et

[ (
1{s<τ }π(s, s + ds) + 1{τ∈ds}θs(C, ε)

)
D(t, s)

]

+
∫ T

t
Et

[
1{s<τ }(rs − c̃s)CsD(t, s)

]
ds (17)

+
∫ T

t
Et

[
1{s<τ }(rs − f̃s)Fs

]
D(t, s)ds.

By recalling Eq. (7), we can write the following

Proposition 1 The value V̄t of the claim under credit gap risk, collateral, and fund-
ing costs can be written as

V̄t = Vt − CVAt + DVAt + LVAt + FVAt (18)

where Vt is the price of the dealwhen there is no credit risk, no collateral, and no fund-
ing costs; LVA is a liquidity valuation adjustment accounting for the costs/benefits
of collateral margining; FVA is the funding cost/benefit of the deal hedging strategy,
and CVA and DVA are the familiar credit and debit valuation adjustments after col-
lateralization. These different adjustments can be obtained by rewriting (17). One
gets

Vt =
∫ T

t
Et

{
D(t, s)1{τ>s}

[
π(s, s + ds) + 1{τ∈ds}εs

]}
(19)

and the valuation adjustments

CVAt = −
∫ T

t
E

{
D(t, s)1{τ>s}

[ − 1{s=τC<τI }Π CVAcoll(s)
]
}
du

DVAt =
∫ T

t
E

{
D(t, s)1{τ>s}

[
1{s=τI<τC }Π DVAcoll(s)

]
}
du

LVAt =
∫ T

t
Et

{
D(t, s)1{τ>s}(rs − c̃s)Cs

}
ds

FVAt =
∫ T

t
E

{
D(t, s)1{τ>s}

[
(rs − f̃s)Fs

]
}
ds
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As usual, CVA and DVA are both positive, while LVA and FVA can be either positive
or negative. Notice that if c̃ equals the risk-free rate, LVA vanishes. Similarly, FVA
vanishes if the funding rate f̃ is equal to the risk-free rate.

We note that there is no general consensus on our definition of LVA and other
authors may define it differently. For instance, Crépey [21–23] refers to LVA as the
liquidity component (i.e., net of credit) of the funding valuation adjustment.

We now take a number of heuristic steps. A more formal analysis in terms of
FBSDEs or PDEs is, for example, provided in Brigo et al. [15]. For simplicity, we
first switch to the default-free market filtration (Ft )t≥0. This step implicitly assumes
a separable structure of our complete filtration (Gt )t≥0. We are also assuming that
the basic portfolio cash flows π(0, t) areFt -measurable and that default times of all
parties are conditionally independent, given filtrationF .

Assuming the relevant technical conditions are satisfied, the Feynman–Kac the-
orem now allows us to write down the corresponding pre-default partial differential
equation (PDE) of the valuation problem (further details may be found in Brigo et
al. [13, 14], and Sloth [37]). This PDE could be solved directly as in Crépey [22].
However, if we apply the Feynman–Kac theorem again—this time going from the
pre-default PDE to the valuation expectation—and integrate by parts, we arrive at
the following result

Theorem 3 (Continuous-time Solution of the Generalized Valuation Equation)
If we assume collateral rehypothecation and delta-hedging, we can solve the iterative
equations of Theorem 2 in continuous time. We obtain

V̄t =
∫ T

t
E

f̃ {D(t, u; f̃ + λ)[πu + λuθu + ( f̃u − c̃u)Cu]|Ft }du (20)

where λt is the first-to-default intensity, πt dt is shorthand for π(t, t + dt), and the
discount factor is defined as D(t, s; ξ) � e− ∫ s

t ξudu . The expectations are taken under
the pricing measureQ

f̃ for which the underlying risk factors grow at the rate f̃ when
the underlying pays no dividend.

Theorem 3 decomposes the deal price V̄ into three intuitive terms. The first term
is the value of the deal cash flows, discounted at the funding rate plus credit. The
second term is the price of the on-default cash-flow in excess of the collateral, which
includes the CVA and DVA of the deal after collateralization. The last term collects
the cost of collateralization. At this point it is very important to appreciate once again
that f̃ depends on F , and hence on V .

Remark 2 (Deal-dependent Valuation Measure, Local Risk-neutral Measures).
Since the pricing measure depends on f̃ which in turn depends on the very value V̄
we are trying to compute, we have that the valuationmeasure becomes deal/portfolio-
dependent. Claims sharing a common set of hedging instruments can be priced under
a common measure.
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Finally, we stress once again a very important invariance result that first appeared in
Pallavicini et al. [34] and studied in detail in a more mathematical setting in Brigo
et al. [15]. The proof is immediate by inspection.

Theorem 4 (Invariance of the Valuation Equation wrt. the Short Rate rt ).
Equation (20) for valuation under credit, collateral, and funding costs is completely
governed by market rates; there is no dependence on a risk-free rate rt . Whichever
initial process is postulated for r , the final price is invariant to it.

4 Nonlinear Valuation: A Numerical Analysis

This section provides a numerical case study of the valuation framework outlined
in the previous sections. We investigate the impact of funding risk on the price of a
derivatives trade under default risk and collateralization. Also, we analyze the valua-
tion error of ignoring nonlinearties of the general valuation problem. Specifically, to
quantify this error, we introduce the concept of a nonlinearity valuation adjustment
(NVA). A generalized least-squares Monte Carlo algorithm is proposed inspired by
the simulation methods of Carriere [18], Longstaff and Schwartz [30], Tilley [38],
and Tsitsiklis and Van Roy [39] for pricing American-style options. As the purpose
is to understand the fundamental implications of funding risk and other nonlinear-
ities, we focus on trading positions in relatively simple derivatives. However, the
Monte Carlo method we propose below can be applied to more complex derivative
contracts, including derivatives with bilateral payments.

4.1 Monte Carlo Pricing

Recall the recursive structure of the general valuation: The deal price depends on
the funding decisions, while the funding strategy depends on the future price itself.
The intimate relationship among the key quantities makes the valuation problem
computationally challenging.

We consider K default scenarios during the life of the deal—either obtained by
simulation, bootstrapped from empirical data, or assumed in advance. For each first-
to-default time τ corresponding to a default scenario, we compute the price of the
deal V̄ under collateralization, close-out netting, and funding costs. The first step of
our simulation method entails simulating a large number of sample paths N of the
underlying risk factors X . We simulate these paths on the time-grid {t1, . . . , tm =
T ∗} with step size Δt = t j+1 − t j from the assumed dynamics of the risk factors.
T ∗ is equal to the final maturity T of the deal or the consecutive time-grid point
following the first-default time τ , whichever occurs first. For simplicity, we assume
the time periods for funding decisions and collateral margin payments coincide with
the simulation time grid.
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Given the set of simulated paths, we solve the funding strategy recursively in a
dynamic programming fashion. Starting one period before T ∗, we compute for each
simulated path the funding decision F and the deal price V̄ according to the set of
backward-inductive equations of Theorem2.Note thatwhile the reduced formulation
of Theorem 3may look simpler at first sight, avoiding the implicit recursive structure
of Theorem 2, it would instead give us a forward–backward SDE problem to solve
since the underlying asset now accrues at the funding rate which itself depends on V̄ .
The algorithm then proceeds recursively until time zero. Ultimately, the total price
of the deal is computed as the probability-weighted average of the individual prices
obtained in each of the K default scenarios.

The conditional expectations in the backward-inductive funding equations are
approximated by across-path regressions based on least squares estimation similar
to Longstaff and Schwartz [30]. We regress the present value of the deal price at time
t j+1, the adjusted payout cash flow between t j and t j+1, the collateral account and
funding account at time t j on basis functions ψ of realizations of the underlying risk
factors at time t j across the simulated paths. To keep notation simple, let us assume
that we are exposed to only one underlying risk factor, e.g. a stock price. Specifically,
the conditional expectations in the iterative equations of Theorem 2, taken under the
risk-neutral measure, are equal to

Et j

[
Ξt j (V̄t j+1)

] = θ ′
t j ψ(Xt j ), (21)

where we have defined Ξt j (V̄t j+1) � D(t j , t j+1)V̄t j+1 + π̄(t j , t j+1;C) − Ctj − Htj .
Note theCtj term drops out if rehypothecation is not allowed. The usual least-squares
estimator of θ is then given by

θ̂t j �
[
ψ(Xt j )ψ(Xt j )

′]−1
ψ(Xt j )Ξt j (V̄t j+1). (22)

Orthogonal polynomials such as Chebyshev, Hermite, Laguerre, and Legendre may
all be used as basis functions for evaluating the conditional expectations. We find,
however, that simple power series are quite effective and that the order of the poly-
nomials can be kept relatively small. In fact, linear or quadratic polynomials, i.e.
ψ(Xt j ) = (1, Xt j , X

2
t j )

′, are often enough.
Further complexities are added, as the dealermay—realistically—decide to hedge

the full deal price V̄ . Now, the hedge H itself depends on the funding strategy
through V̄ , while the funding decision depends on the hedging strategy. This added
recursion requires that we solve the funding and hedging strategies simultaneously.
For example, if the dealer applies a delta-hedging strategywe canwrite, heuristically,

Htj = ∂ V̄

∂X

∣
∣∣
t j
Xt j ≈ V̄t j+1 − (1 + Δt j f̃t j )V̄t j

Xt j+1 − (1 + Δt j f̃t j )Xt j

Xt j , (23)

and we obtain, in the case of rehypothecation, the following system of nonlinear
equations
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ft j − P f̃
t j

(t j+1)

Pt j (t j+1)
Et j

[
Ξt j (V̄t j+1)

] = 0,

Htj − V̄t j+1−(1+Δt j f̃t j )V̄t j

Xt j+1−(1+Δt j f̃t j )Xt j

Xt j = 0,

V̄t j = Ft j + Ctj + Htj ,

(24)

where all matrix operations are on an element-by-element basis. An analogous result
holds when rehypothecation of the posted collateral is forbidden.

Each period and for each simulated path, we find the funding and hedging deci-
sions by solving this system of equations, given the funding and hedging strategies
for all future periods until the end of the deal. We apply a simple Newton–Raphson
method to solve the system of nonlinear equations numerically, but instead of using
the exact Jacobian, we approximate it by finite differences. As initial guess, we use
the Black–Scholes delta position

H 0
t j = ΔBS

t j Xt j .

The convergence is quite fast and only a small number of iterations are needed
in practice. Finally, if the dealer decides to hedge only the risk-free price of the
deal, i.e. the classic derivative price V , the valuation problem collapses to a much
simpler one. The hedge H no longer depends on the funding decision and can be
computed separately, and the numerical solution of the nonlinear equation system
can be avoided altogether.

In the following we apply our valuation framework to the case of a stock or
equity index option. Nevertheless, the methodology extends fully to any other deriv-
atives transaction. For instance, applications to interest rate swaps can be found in
Pallavicini and Brigo [32] and Brigo and Pallavicini [6].

4.2 Case Outline

Let St denote the price of some stock or equity index and assume it evolves according
to a geometric Brownian motion dSt = r Stdt + σ StdWt where W is a standard
Brownian motion under the risk-neutral measure. The risk-free interest rate r is 100
bps, the volatility σ is 25%, and the current price of the underlying is S0 = 100.
The European call option is in-the-money and has strike K = 80. The maturity T
of the deal is 3 years and, in the full case, we assume that the investor delta-hedges
the deal according to (23). The usual default-free funding-free and collateral-free
Black–Scholes price V0 of the call option deal is given by

Vt = StΦ(d1(t)) − Ke−r(T−t)Φ(d2(t)), d1,2 = ln(St/K ) + (r ± σ 2/2)(T − t)

σ
√
T − t

,
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and for t = 0 we get
V0 = 28.9

with our choice of inputs. As usual, Φ is the cumulative distribution function of the
standard normal random variable. In the usual setting, the hedge would not be (23)
but a classical delta-hedging strategy based on Φ(d1(t)).

We consider two simple discrete probability distributions of default. Both parties
of the deal are considered default risky but can only default at year 1 or at year 2.
The localized joint default probabilities are provided in the matrices below. The rows
denote the default time of the investor, while the columns denote the default times
of the counterparty. For example, in matrix Dlow the event (τI = 2yr, τC = 1yr) has
a 3% probability and the first-to-default time is 1 year. Simultaneous defaults are
introduced as an extension of our previous assumptions, and we determine the close-
out amount by a random draw from a uniform distribution. If the random number is
above 0.5, we compute the close-out as if the counterparty defaulted first, and vice
versa.

For the first default distribution, we have a low dependence between the default
risk of the counterparty and the default risk of the investor

Dlow =
⎛

⎝

1yr 2yr n.d.

1yr 0.01 0.01 0.03
2yr 0.03 0.01 0.05
n.d. 0.07 0.09 0.70

⎞

⎠, τK (Dlow) = 0.21 (25)

where n.d. means no default and τK denotes the rank correlation as measured by
Kendall’s tau. In the second case,we have a high dependence between the two parties’
default risk

Dhigh =
⎛

⎝

1yr 2yr n.d.

1yr 0.09 0.01 0.01
2yr 0.03 0.11 0.01
n.d. 0.01 0.03 0.70

⎞

⎠, τK (Dhigh) = 0.83 (26)

Note also that the distributions are skewed in the sense that the counterparty has a
higher default probability than the investor. The loss, given default, is 50% for both
the investor and the counterparty and the loss on any posted collateral is considered
the same. The collateral rates are chosen to be equal to the risk-free rate. We assume
that the collateral account is equal to the risk-free price of the deal at each margin
date, i.e. Ct = Vt . This is reasonable as the dealer and client will be able to agree
on this price, in contrast to V̄t due to asymmetric information. Also, choosing the
collateral this way has the added advantage that the collateral account C works as a
control variate, reducing the variance of the least-squares Monte Carlo estimator of
the deal price.
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4.3 Preliminary Valuation Under Symmetric Funding
and Without Credit Risk

To provide some ball-park figures on the effect of funding risk, we first look at the
case without default risk and without collateralization of the deal. We compare our
Monte Carlo approach to the following two alternative (simplified) approaches:

(a) The Black–Scholes price where both discounting and the growth of the under-
lying happens at the symmetric funding rate

V (a)
t =

(
StΦ(g1(t)) − Ke− f̂ (T−t)Φ(g2(t))

)
,

g1,2 = ln(St/K ) + ( f̂ ± σ 2/2)(T − t)

σ
√
T − t

.

(b) Weuse the above FVA formula in Proposition 1with some approximations. Since
in a standard Black–Scholes setting Ft = −Ke−r(T−t)Φ(d2(t)), we compute

FVA(b) =(r − f̂ )
∫ T

0
E0

{
e−rs[Fs]

}
ds

=( f̂ − r)Ke−rT
∫ T

0
E0 {Φ(d2(s))} ds

We illustrate the two approaches for a long position in an equity call option.
Moreover, let the funding valuation adjustment in each case be defined by FVA(a,b) =
V (a,b) − V . Figure1 plots the resulting funding valuation adjustment with credit and
collateral switched off under both simplified approaches and under the full valuation
approach. Recall that if the funding rate is equal to the risk-free rate, the value of the
call option collapses to theBlack–Scholes price and the funding valuation adjustment
is zero.

Remark 3 (Current Market Practice for FVA).
Looking at Fig. 1, it is important to realize that at the time of writing this paper,
most market players would adopt a methodology like (a) or (b) for a simple call
option. Even if borrowing or lending rates were different, most market players would
average them and apply a common rate to borrowing and lending, in order to avoid
nonlinearities. We notice that method (b) produces the same results as the quicker
method (a) which simply replaces the risk-free rate by the funding rate. In the simple
case without credit and collateral, and with symmetric borrowing and lending rates,
we can show that this method is sound since it stems directly from (20). We also
see that both methods (a) and (b) are quite close to the full numerical method we
adopt. Overall both simplified methods (a) and (b) work well here, and there would
be no need to implement the full machinery under these simplifying assumptions.
However, once collateral, credit, and funding risks are in the picture, we have to
abandon approximations like (a) or (b) and implement the full methodology instead.
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Fig. 1 Funding valuation adjustment of a long call position as a function of symmetric funding
spreads s f := f̂ − r with f̂ := f + = f −. The adjustments are computed under the assumption of
no default risk nor collateralization

4.4 Complete Valuation Under Credit Risk, Collateral,
and Asymmetric Funding

Let us now switch on credit risk and consider the impact of asymmetric funding rates.
Due the presence of collateral as a control variate, the accuracy is quite good in our
example even for relatively small numbers of sample paths. Based on the simulation
of 1,000 paths, Tables1 and 2 report the results of a ceteris paribus analysis of funding
risk under counterparty credit risk and collateralization. Specifically, we investigate
how the value of a deal changes for different values of the borrowing (lending) rate
f + ( f −) while keeping the lending (borrowing) rate fixed to 100 bps. When both
funding rates are equal to 100 bps, the deal is funded at the risk-free rate and we are
in the classical derivatives valuation setting.

Remark 4 (Potential Arbitrage).
Note that if f + < f − arbitrage opportunities might be present, unless certain con-
straints are imposed on the funding policy of the treasury. Such constraints may look
unrealistic and may be debated themselves from the point of view of arbitrageability,
but since our point here is strictly to explore the impact of asymmetries in the funding
equations, we will still apply our framework to a few examples where f + < f −.

Table1 reports the impact of changing funding rates for a call position when the
posted collateral may not be used for funding the deal, i.e. rehypothecation is not
allowed. First, we note that increasing the lending rate for a long position has a much
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Table 1 Price impact of funding with default risk and collateralization

Fundinga (bps) Default risk, lowb Default risk, highc

Long Short Long Short

Borrowing rate f +

100 28.70 (0.15) −28.72 (0.15) 29.06 (0.21) −29.07 (0.21)

125 28.53 (0.17) −29.37 (0.18) 28.91 (0.21) −29.70 (0.20)

150 28.37 (0.18) −30.02 (0.22) 28.75 (0.22) −30.34 (0.20)

175 28.21 (0.20) −30.69 (0.27) 28.60 (0.22) −30.99 (0.21)

200 28.05 (0.21) −31.37 (0.31) 28.45 (0.22) −31.66 (0.25)

Lending rate f −

100 28.70 (0.15) −28.72 (0.15) 29.06 (0.21) −29.07 (0.21)

125 29.35 (0.18) −28.56 (0.17) 29.69 (0.20) −28.92 (0.21)

150 30.01 (0.22) −28.40 (0.18) 30.34 (0.20) −28.76 (0.22)

175 30.68 (0.27) −28.23 (0.20) 31.00 (0.21) −28.61 (0.22)

200 31.37 (0.32) −28.07 (0.39) 31.67 (0.25) −28.46 (0.22)

Standard errors of the price estimates are given in parentheses
aCeteris paribus changes in one funding rate while keeping the other fixed to 100 bps
bBased on the joint default distribution Dlow with low dependence
cBased on the joint default distribution Dhigh with high dependence

Table 2 Price impact of funding with default risk, collateralization, and rehypothecation

Fundinga (bps) Default risk, lowb Default risk, highc

Long Short Long Short

Borrowing rate f +

100 28.70 (0.15) −28.73 (0.15) 29.07 (0.22) −29.08 (0.22)

125 28.55 (0.17) −29.56 (0.19) 28.92 (0.22) −29.89 (0.20)

150 28.39 (0.18) −30.40 (0.24) 28.77 (0.22) −30.72 (0.20)

175 28.23 (0.20) −31.26 (0.30) 28.63 (0.22) −31.56 (0.23)

200 28.07 (0.22) −32.14 (0.36) 28.48 (0.22) −32.43 (0.29)

Lending rate f −

100 28.70 (0.15) −28.73 (0.15) 29.07 (0.22) −29.08 (0.22)

125 29.53 (0.19) −28.57 (0.17) 29.07 (0.22) −28.93 (0.22)

150 30.38 (0.24) −28.42 (0.18) 32.44 (0.29) −28.78 (0.22)

175 31.25 (0.30) −28.26 (0.20) 36.19 (0.61) −28.64 (0.22)

200 32.14 (0.37) −28.10 (0.22) 32.44 (0.29) −28.49 (0.22)

Standard errors of the price estimates are given in parentheses
aCeteris paribus changes in one funding rate while keeping the other fixed to 100 bps
bBased on the joint default distribution Dlow with low dependence
cBased on the joint default distribution Dhigh with high dependence
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larger impact than increasing the borrowing rate. This is due to the fact that a call
option is just a one-sided contract. Recall that F is defined as the cash account needed
as part of the derivative replication strategy or, analogously, the cash account required
to fund the hedged derivative position. To hedge a long call, the investor goes short
in a delta position of the underlying asset and invests excess cash in the treasury at
f −. Correspondingly, to hedge the short position, the investor enters a long delta
position in the stock and finances it by borrowing cash from the treasury at f +, so
changing the lending rate only has a small effect on the deal value. Finally, due to the
presence of collateral, we observe an almost similar price impact of funding under
the two different default distributions Dlow and Dhigh.

Finally, assuming cash collateral, we consider the case of rehypothecation and
allow the investor and counterparty to use any posted collateral as a funding source.
If the collateral is posted to the investor, this means it effectively reduces his costs of
funding the delta-hedging strategy. As the payoff of the call is one-sided, the investor
only receives collateral when he holds a long position in the call option. But as he
hedges this position by short-selling the underlying stock and lending the excess cash
proceeds, the collateral adds to his cash lending position and increases the funding
benefit of the deal. Analogously, if the investor has a short position, he posts collateral
to the counterparty and a higher borrowing rate would increase his costs of funding
the collateral he has to post as well as his delta-hedge position. Table2 reports the
results for the short and long positions in the call option when rehypothecation is
allowed. Figures2 and 3 plot the values of collateralized long and short positions
in the call option as a function of asymmetric funding spreads. In addition, Fig. 4

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
28.5

29

29.5

30

30.5

31

31.5

32

32.5

Funding spread

V
al

ue
 o

f d
ea

l p
os

iti
on

Collateral
Rehyp. collateral

Fig. 2 The value of a long call position for asymmetric funding spreads s−
f = f − − r , i.e. fixing

f + = r = 0.01 and varying f − ∈ (0.01, 0.0125, 0.015, 0.0175, 0.02)
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Fig. 3 The value of a short call position for asymmetric funding spreads s+
f = f + − r , i.e. fixing

f − = r = 0.01 and varying f + ∈ (0.01, 0.0125, 0.015, 0.0175, 0.02)
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Fig. 4 Funding valuation adjustment as a function of asymmetric funding spreads. The adjustments
are computed under the presence of default risk and collateralization
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reports the FVAwith respect to the magnitude of the funding spreads, where the FVA
is defined as the difference between the full funding-inclusive deal price and the full
deal price, but symmetric funding rates equal to the risk-free rate. Recall that the
collateral rates are equal to the risk-free rate, so the LVA collapses to zero in these
examples.

This shows that funding asymmetrymatters even under full collateralizationwhen
there is no repo market for the underlying stock. In practice, however, the dealer
cannot hedge a long call by shorting a stock he does not own. Instead, he would first
borrow the stock in a repo transaction and then sell it in the spot market. Similarly,
to enter the long delta position needed to hedge a short call, the dealer could finance
the purchase by lending the stock in a reverse repo transaction. Effectively, the delta
position in the underlying stock would be funded at the prevailing repo rate. Thus,
once the delta hedge has to be executed through the repo market, there is no funding
valuation adjustment (meaning anydependence on the funding rate f̃ drops out) given
the deal is fully collateralized, but the underlying asset still grows at the repo rate. If
there is no credit risk, this would leave uswith the result of Piterbarg [36]. However, if
the deal is not fully collateralized or the collateral cannot be rehypothecated, funding
costs enter the picture even when there is a repo market for the underlying stock.

4.5 Nonlinearity Valuation Adjustment

In this last section we introduce a nonlinearity valuation adjustment, and to stay
within the usual jargon of the business, we abbreviate it NVA. The NVA is defined
by the difference between the true price V̄ and a version of V̄ where nonlinearities
have been approximated away through blunt symmetrization of rates and possibly
a change in the close-out convention from replacement close-out to risk-free close-
out. This entails a degree of double counting (both positive and negative interest). In
some situations the positive and negative double counting will offset each other, but
in other cases this may not happen. Moreover, as pointed out by Brigo et al. [10],
a further source of double counting might be neglecting the first-to-default time in
bilateral CVA/DVA valuation. This is done in a number of industry approximations.

Let V̂ be the resulting price when we replace both f + and f − by f̂ := ( f + +
f −)/2 and adopt a risk-free close-out at default in our valuation framework. A further
simplification in V̂ could be to neglect the first-to-default check in the close-out. We
have the following definition

Definition 1 (Nonlinearity Valuation Adjustment, NVA)
NVA is defined as

NVAt � V̄t − V̂t

where V̄ denotes the full nonlinear deal value while V̂ denotes an approximate
linearized price of the deal.
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Fig. 5 Nonlinearity valuation adjustment (in percentage of V̂ ) for different funding spreads s+
f =

f + − f − ∈ (0, 0.005, 0.01, 0.015, 0.02) and fixed f̂ = ( f + + f −)/2 = 0.01

As an illustration, we revisit the above example of an equity call option and
analyze the NVA in a number of cases. The results are reported in Figs. 5 and 6.

In both figures, we compare NVAunder risk-free close-out and under replacement
close-out. We can see that, depending on the direction of the symmetrization, NVA
may be either positive or negative. As the funding spread increases, NVA grows in
absolute value. In addition, adopting the replacement close-out amplifies the presence
of double counting. The NVA accounts for up to 15% of the full deal price V̄
depending on the funding spread—a relevant figure in a valuation context.

Table3 reports (a) %N̂VA denoting the fraction of the approximated deal price V̂
explained by NVA, and (b) %NVA denoting the fraction of the full deal price V̄ (with
symmetric funding rates equal to the risk-free rate r ) explained by NVA. Notice that
for those cases where we adopt a risk-free close-out at default, the results primarily
highlight the double-counting error due to symmetrization of borrowing and lending
rates. We should point out that close-out nonlinearities play a limited role here, due
to absence of wrong way risk. An analysis of close-out nonlinearity under wrong
way risk is under development.

Finally, it should be noted that linearization may in fact be done in arbitrarily
many ways by playing with the discount factor, hence taking the average of two
funding rates as in our definition of NVA is not necessarily the best one. However,
we postpone further investigations into this interesting topic for future research.
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Fig. 6 Nonlinearity valuation adjustment (in percentage of V̂ ) for different funding spreads s−
f =

f − − f + ∈ (0, 0.005, 0.01, 0.015, 0.02) and fixed f̂ = ( f + + f −)/2 = 0.01

Table 3 %NVA with default risk, collateralization and rehypothecation

Funding rates Risk free Replacement

%̂NVA %NVA %̂NVA %NVA

sbf (bps) f̂ (bps)

0 100 0% 0% 0% 0%

25 112.5 1.65% 1.67% 1.79% 1.81%

50 125 3.31% 3.39% 3.58% 3.68%

75 137.5 5.02% 5.19% 5.39% 5.61%

100 150 6.70% 7.01% 7.24% 7.62%
aFunding spread s f = f − − f +
bThe prices of the call option are based on the joint default distribution Dhigh with high dependence

5 Conclusions and Financial Implications

We have developed a consistent framework for valuation of derivative trades under
collateralization, counterparty credit risk, and funding costs. Based on no arbitrage,
we derived a generalized pricing equation where CVA, DVA, LVA, and FVA are
introduced by simply modifying the payout cash flows of the trade. The framework
is flexible enough to accommodate actual trading complexities such as asymmetric
collateral and funding rates, replacement close-out, and rehypothecation of posted
collateral. Moreover, we presented an invariance theorem showing that the valuation
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framework does not depend on any theoretical risk-free rate, but is purely based on
observable market rates.

The generalized valuation equation under credit, collateral, and funding takes the
form of a forward–backward SDE or semi-linear PDE. Nevertheless, it can be recast
as a set of iterative equations which can be efficiently solved by a proposed least-
squares Monte Carlo algorithm. Our numerical results confirm that funding risk as
well as asymmetries in borrowing and lending rates have a significant impact on the
ultimate value of a derivatives transaction.

Introducing funding costs into the pricing equation makes the valuation problem
recursive and nonlinear. The price of the deal depends on the trader’s funding strategy,
while to determine the funding strategy we need to know the deal price itself. Credit
and funding risks are in general non-separable; this means that FVA is not an additive
adjustment, let alone a discounting spread. Thus, despite being common practice
among market participants, treating it as such comes at the cost of double counting.
We introduce the “nonlinearity valuation adjustment” (NVA) to quantify the effect of
double counting and we show that its magnitude can be significant under asymmetric
funding rates and replacement close-out at default.

Furthermore, valuation under funding costs is no longer bilateral as the particular
funding policy chosen by the dealer is not known to the client, and vice versa. As a
result, the value of the trade will generally be different to the two counterparties.

Finally, valuation depends on the level of aggregation; asset portfolios cannot
simply be priced separately and added up. Theoretically, valuation is conducted
under deal or portfolio-dependent risk-neutral measures. This has clear operational
consequences for financial institutions; it is difficult for banks to establish CVA and
FVA desks with separate, clear-cut responsibilities. In theory, they should adopt a
consistent valuation approach across all trading desks and asset classes. A trade
should be priced on an appropriate aggregation-level to quantify the value it actually
adds to the business. This, of course, prompts to the old distinction between price
and value: Should funding costs be charged to the client or just included internally
to determine the profitability of a particular trade? The relevance of this question is
reinforced by the fact that the client has no direct control on the funding policy of
the bank and therefore cannot influence any potential inefficiencies for which he or
she would have to pay.

While holistic trading applications may be unrealistic with current technology,
our valuation framework offers a unique understanding of the nature and presence
of nonlinearities and paves the way for developing more suitable and practical lin-
earizations. The latter topic we will leave for future research.
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Analysis of Nonlinear Valuation Equations
Under Credit and Funding Effects

Damiano Brigo, Marco Francischello and Andrea Pallavicini

Abstract We study conditions for existence, uniqueness, and invariance of the
comprehensive nonlinear valuation equations first introduced in Pallavicini et al.
(Funding valuation adjustment: a consistent framework including CVA, DVA, col-
lateral, netting rules and re-hypothecation, 2011, [11]). These equations take the
form of semi-linear PDEs and Forward–Backward Stochastic Differential Equations
(FBSDEs). After summarizing the cash flows definitions allowing us to extend valu-
ation to credit risk and default closeout, including collateral margining with possible
re-hypothecation, and treasury funding costs, we show how such cash flows, when
present-valued in an arbitrage-free setting, lead to semi-linear PDEs or more gener-
ally toFBSDEs.Weprovide conditions for existence anduniqueness of such solutions
in a classical sense, discussing the role of the hedging strategy. We show an invari-
ance theorem stating that even thoughwe start from a risk-neutral valuation approach
based on a locally risk-free bank account growing at a risk-free rate, our final valua-
tion equations do not depend on the risk-free rate. Indeed, our final semi-linear PDE
or FBSDEs and their classical solutions depend only on contractual, market or trea-
sury rates and we do not need to proxy the risk-free rate with a real market rate, since
it acts as an instrumental variable. The equations’ derivations, their numerical solu-
tions, the related XVA valuation adjustments with their overlap, and the invariance
result had been analyzed numerically and extended to central clearing and multi-
ple discount curves in a number of previous works, including Brigo and Pallavicini
(J. Financ. Eng. 1(1):1–60 (2014), [3]), Pallavicini andBrigo (Interest-ratemodelling
in collateralizedmarkets: multiple curves, credit-liquidity effects, CCPs, 2011, [10]),
Pallavicini et al. (Funding valuation adjustment: a consistent framework including
cva, dva, collateral, netting rules and re-hypothecation, 2011, [11]), Pallavicini et al.
(Funding, collateral and hedging: uncovering the mechanics and the subtleties of
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funding valuation adjustments, 2012, [12]), and Brigo et al. (Nonlinear valuation
under collateral, credit risk and funding costs: a numerical case study extending
Black–Scholes, [5]).

Keywords Counterparty credit risk · Funding valuation adjustment · Funding
costs · Collateralization · Nonlinearity valuation adjustment · Nonlinear valuation ·
Derivatives valuation · Semi-linear PDE · FBSDE · BSDE · Existence and unique-
ness of solutions

1 Introduction

This is a technical paperwherewe analyze in detail invariance, existence, and unique-
ness of solutions for nonlinear valuation equations inclusive of credit risk, collateral
margining with possible re-hypothecation, and funding costs. In particular, we study
conditions for existence, uniqueness, and invariance of the comprehensive nonlinear
valuation equations first introduced in Pallavicini et al. (2011) [11]. After briefly
summarizing the cash flows definitions allowing us to extend valuation to default
closeout, collateral margining with possible re-hypothecation and treasury funding
costs, we show how such cash flows, when present-valued in an arbitrage-free set-
ting, lead straightforwardly to semi-linear PDEs or more generally to FBSDEs. We
study conditions for existence and uniqueness of such solutions.

We formalize an invariance theorem showing that even though we start from a
risk-neutral valuation approach based on a locally risk-free bank account growing
at a risk-free rate, our final valuation equations do not depend on the risk-free rate
at all. In other words, we do not need to proxy the risk-free rate with any actual
market rate, since it acts as an instrumental variable that does not manifest itself in
our final valuation equations. Indeed, our final semi-linear PDEs or FBSDEs and
their classical solutions depend only on contractual, market or treasury rates and
contractual closeout specifications once we use a hedging strategy that is defined as
a straightforward generalization of the natural delta hedging in the classical setting.

The equations’ derivations, their numerical solutions, and the invariance result had
been analyzed numerically and extended to central clearing and multiple discount
curves in a number of previous works, including [3, 5, 10–12], and the monograph
[6], which further summarizes earlier credit and debit valuation adjustment (CVA
and DVA) results. We refer to such works and references therein for a general intro-
duction to comprehensive nonlinear valuation and to the related issues with valuation
adjustments related to credit (CVA), collateral (LVA), and funding costs (FVA). In
this paper, given the technical nature of our investigation and the emphasis on non-
linear valuation, we refrain from decomposing the nonlinear value into valuation
adjustments or XVAs. Moreover, in practice such separation is possible only under
very specific assumptions, while in general all terms depend on all risks due to nonlin-
earity. Forcing separation may lead to double counting, as initially analyzed through
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the Nonlinearity Valuation Adjustment (NVA) in [5]. Separation is discussed in the
CCP setting in [3].

The paper is structured as follows.
Section2 introduces the probabilistic setting, the cash flows analysis, and derives

a first valuation equation based on conditional expectations. Section3 derives an
FBSDE under the default-free filtration from the initial valuation equation under
assumptions of conditional independence of default times and of default-free initial
portfolio cash flows. Section4 specifies the FBSDE obtained earlier to a Markovian
setting and studies conditions for existence and uniqueness of solutions for the non-
linear valuation FBSDE and classical solutions to the associated PDE. Finally, we
present the invariance theorem: when adopting delta-hedging, the solution does not
depend on the risk-free rate.

2 Cash Flows Analysis and First Valuation Equation

We fix a filtered probability space (Ω,A ,Q), with a filtration (Gu)u≥0 representing
the evolution of all the available information on themarket.With an abuse of notation,
wewill refer to (Gu)u≥0 byG . Theobject of our investigation is a portfolio of contracts,
or “contract" for brevity, typically a netting set, with final maturity T , between two
financial entities, the investor I and the counterparty C. Both I and C are supposed
to be subject to default risk. In particular we model their default times with two
G -stopping times τI , τC . We assume that the stopping times are generated by Cox
processes of positive, stochastic intensities λI and λC . Furthermore, we describe the
default-free information by means of a filtration (Fu)u≥0 generated by the price of
the underlying St of our contract. This process has the following dynamic under the
measure Q:

dSt = rtStdt + σ(t, St)dWt

where rt is an F -adapted process, called the risk-free rate. We then suppose the
existence of a risk-free account Bt following the dynamics

dBt = rtBtdt.

We denote D(s, t, x) = e− ∫ t
s xudu, the discount factor associated to the rate xu. In the

case of the risk-free rate, we define D(s, t) := D(s, t, r).
We further assume that for all t we have Gt = Ft ∨ H I

t ∨ H C
t where

H I
t = σ(1{τI≤s}, s ≤ t),

H C
t = σ(1{τC≤s}, s ≤ t).

Again we indicate (Fu)u≥0 by F and we will write EG
t [·] := E[·|Gt] and similarly

forF . As in the classic framework of Duffie and Huang [8], we postulate the default
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times to be conditionally independent with respect to F , i.e. for any t > 0 and
t1, t2 ∈ [0, t], we assume Q{τI > t1, τC > t2|Ft} = Q{τI > t1|Ft}Q{τC > t2|Ft}.
Moreover, we indicate τ = τI ∧ τC and with these assumptions we have that τ has
intensity λu = λI

u + λC
u . For convenience of notation we use the symbol τ̄ to indicate

the minimum between τ and T .

Remark 1 We suppose that themeasureQ is the so-called risk-neutralmeasure, i.e. a
measure under which the prices of the traded non-dividend-paying assets discounted
at the risk-free rate are martingales or, in equivalent terms, the measure associated
with the numeraire Bt .

2.1 The Cash Flows

To price this portfolio we take the conditional expectation of all the cash flows of the
portfolio and discount them at the risk-free rate. An alternative to the explicit cash
flows approach adopted here is discussed in [4].

To begin with, we consider a collateralized hedged contract, so the cash flows
generated by the contract are:

• The payments due to the contract itself: modeled by anF -predictable process πt

and a final cash flow Φ(ST ) payed at maturity modeled by a Lipschitz function Φ.
At time t the cumulated discounted flows due to these components amount to

1{τ>T}D(0,T)Φ(ST ) +
∫ τ̄

t
D(t, u)πudu.

• The payments due to default: in particular we suppose that at time τ we have a
cash flow due to the default event (if it happened) modeled by a Gτ -measurable
random variable θτ . So the flows due to this component are

1{t<τ<T}D(t, τ )θτ = 1{t<τ<T}
∫ T

t
D(t, u)θud1{τ≤u}.

• The payments due to the collateral account: more precisely we model this account
by an F -predictable process Ct . We postulate that Ct > 0 if the investor is the
collateral taker, and Ct < 0 if the investor is the collateral provider. Moreover, we
assume that the collateral taker remunerates the account at a certain interest rate
(written on the CSA); in particular we may have different rates depending on who
the collateral taker is, so we introduce the rate

ct = 1{Ct>0}c+
t + 1{Ct≤0}c−

t , (1)

where c+
t , c−

t are twoF -predictable processes. We also suppose that the collateral
can be re-hypothecated, i.e. the collateral taker can use the collateral for funding
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purposes. Since the collateral taker has to remunerate the account at the rate ct ,
the discounted flows due to the collateral can be expressed as a cost of carry and
sum up to ∫ τ̄

t
D(t, u)(ru − cu)Cudu.

• We suppose that the deal we are considering is to be hedged by a position in cash
and risky assets, represented respectively by the G -adapted processes Ft and Ht ,
with the convention that Ft > 0 means that the investor is borrowing money (from
the bank’s treasury for example), while F < 0 means that I is investing money.
Also in this case to take into account different rates in the borrowing or lending
case we introduce the rate

ft = 1{Vt−Ct>0}f +
t + 1{Vt−Ct≤0}f −

t . (2)

The flows due to the funding part are

∫ τ̄

t
D(t, u)(ru − fu)Fudu.

For the flows related to the risky assets account Ht we assume that we are hedging
by means of repo contracts. We have that Ht > 0 means that we need some risky
asset, so we borrow it, while if H < 0 we lend. So, for example, if we need to
borrow the risky asset we need cash from the treasury, hence we borrow cash at a
rate ft and as soon as we have the asset we can repo lend it at a rate ht . In general
ht is defined as

ht = 1{Ht>0}h+
t + 1{Ht≤0}h−

t . (3)

Thus we have that the total discounted cash flows for the risky part of the hedge
are equal to ∫ τ̄

t
D(t, u)(hu − fu)Hudu.

The last expression could also be seen as resulting from (r − f ) − (r − h), in line
with the previous definitions. If we add all the cash flows mentioned above we obtain
that the value of the contract Vt must satisfy

Vt =EG
t

[∫ τ̄

t
D(t, u)(πu + (ru − cu)Cu + (ru − fu)Fu − (fu − hu)Hu)du

]

+ EG
t

[

1{τ>T}D(t,T)Φ(ST ) + D(t, τ )1{t<τ<T}θτ

]

.

(4)

If we further suppose that we are able to replicate the value of our contract using
the funding, the collateral (assuming re-hypothecation, otherwise C is to be omitted
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from the following equation) and the risky asset accounts, i.e.

Vu = Fu + Hu + Cu, (5)

we have, substituting for Fu:

Vt =EG
t

[∫ τ̄

t
D(t, u)(πu + (fu − cu)Cu + (ru − fu)Vu − (ru − hu)Hu)du

]

+ EG
t

[

1{τ>T}D(t,T)Φ(ST ) + D(t, τ )1{t<τ<T}θτ

]

.

(6)

Remark 2 In the classic no-arbitrage theory and in a completemarket setting,without
credit risk, the hedging process H would correspond to a delta hedging strategy
account. Here we do not enforce this interpretation yet. However, we will see that
a delta-hedging interpretation emerges from the combined effect of working under
the default-free filtrationF (valuation under partial information) and of identifying
part of the solution of the resulting BSDE, under reasonable regularity assumptions,
as a sensitivity of the value to the underlying asset price S.

2.2 Adjusted Cash Flows Under a Simple Trading Model

We now show how the adjusted cash flows originate assuming we buy a call option
on an equity asset ST with strike K . We analyze the operations a trader would enact
with the treasury and the repo market in order to fund the trade, and we map these
operations to the related cash flows. We go through the following steps in each small
interval [t, t + dt], seen from the point of view of the trader/investor buying the
option. This is written in first person for clarity and is based on conversations with
traders working with their bank treasuries.

Time t:

1. I wish to buy a call option with maturity T whose current price is Vt = V (t, St).
I need Vt cash to do that. So I borrow Vt cash from my bank treasury and buy
the call.

2. I receive the collateral amount Ct for the call, that I give to the treasury.
3. Now I wish to hedge the call option I bought. To do this, I plan to repo-borrow

Δt stock on the repo-market.
4. To do this, I borrow Ht = ΔtSt cash at time t from the treasury.
5. I repo-borrow an amount Δt of stock, posting cash Ht as a guarantee.
6. I sell the stock I just obtained from the repo to the market, getting back the price

Ht in cash.
7. I give Ht back to treasury.
8. My outstanding debt to the treasury is Vt − Ct .
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Time t + dt:

9. I need to close the repo. To do that I need to give back Δt stock. I need to buy
this stock from the market. To do that I need ΔtSt+dt cash.

10. I thus borrow ΔtSt+dt cash from the bank treasury.
11. I buy Δt stock and I give it back to close the repo and I get back the cash Ht

deposited at time t plus interest htHt .
12. I give back to the treasury the cash Ht I just obtained, so that the net value of the

repo operation has been

Ht(1 + ht dt) − ΔtSt+dt = −Δt dSt + htHt dt

Notice that this−ΔtdSt is the right amount I needed to hedge V in a classic delta
hedging setting.

13. I close the derivative position, the call option, and get Vt+dt cash.
14. I have to pay back the collateral plus interest, so I ask the treasury the amount

Ct(1 + ct dt) that I give back to the counterparty.
15. My outstanding debt plus interest (at rate f ) to the treasury is

Vt − Ct + Ct(1 + ct dt) + (Vt − Ct)ft dt = Vt(1 + ft dt) + Ct(ct − ft dt).
I then give to the treasury the cash Vt+dt I just obtained, the net effect being

Vt+dt − Vt(1 + ft dt) − Ct(ct − ft) dt = dVt − ftVt dt − Ct(ct − ft) dt

16. I now have that the total amount of flows is:

−Δt dSt + htHt dt + dVt − ftVt dt − Ct(ct − ft) dt

17. Now I present-value the above flows in t in a risk-neutral setting.

Et[−Δt dSt + htHt dt + dVt − ftVt dt − Ct(ct − ft) dt]
= −Δt(rt − ht)St dt + (rt − ft)Vt dt − Ct(ct − ft) dt − dϕ(t)

= −Ht(rt − ht) dt + (rt − ft)(Ht + Ft + Ct) dt − Ct(ct − ft) dt − dϕ(t)

= (ht − ft)Ht dt + (rt − ft)Ft dt + (rt − ct)Ct dt − dϕ(t)

This derivation holds assuming that Et[dSt] = rtSt dt and Et[dVt] = rtVt dt −
dϕ(t), where dϕ is a dividend of V in [t, t + dt) expressing the funding costs.
Setting the above expression to zero we obtain

dϕ(t) = (ht − ft)Ht dt + (rt − ft)Ft dt + (rt − ct)Ct dt

which coincides with the definition given earlier in (6).
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3 An FBSDE UnderF

We aim to switch to the default free filtrationF = (Ft)t≥0, and the following lemma
(taken from Bielecki and Rutkowski [1] Sect. 5.1) is the key in understanding how
the information expressed by G relates to the one expressed by F .

Lemma 1 For any A -measurable random variable X and any t ∈ R+, we have:

EG
t [1{t<τ≤s}X] = 1{τ>t}

EF
t [1{t<τ≤s}X]
EF
t [1{τ>t}] . (7)

In particular we have that for any Gt -measurable random variable Y there exists an
Ft -measurable random variable Z such that

1{τ>t}Y = 1{τ>t}Z.

What follows is an application of the previous lemma exploiting the fact that
we have to deal with a stochastic process structure and not only a simple random
variable. Similar results are illustrated in [2].

Lemma 2 Suppose that φu is a G -adapted process. We consider a default time τ

with intensity λu. If we denote τ̄ = τ ∧ T we have:

EG
t

[∫ τ̄

t
φudu

]

= 1{τ>t}EF
t

[∫ T

t
D(t, u, λ)φ̃udu

]

where φ̃u is an Fu measurable variable such that 1{τ>u}φ̃u = 1{τ>u}φu.

Proof

EG
t

[∫ τ̄

t
φudu

]

= EG
t

[∫ T

t
1{τ>t}1{τ>u}φudu

]

=
∫ T

t
EG
t

[
1{τ>t}1{τ>u}φu

]
du

then by using Lemma1 we have

=
∫ T

t
1{τ>t}

EF
t

[
1{τ>t}1{τ>u}φu

]

Q[τ > t |Ft] du = 1{τ>t}
∫ T

t
EF
t

[
1{τ>u}φu

]
D(0, t, λ)−1du

now we choose anFu measurable variable such that 1{τ>u}φ̃u = 1{τ>u}φu and obtain

= 1{τ>t}
∫ T

t
EFt

[
EFu

[
1{τ>u}

]
φ̃u

]
D(0, t, λ)−1du

= 1{τ>t}
∫ T

t
EFt

[
D(0, u, λ)φ̃u

]
D(0, t, λ)−1du = 1{τ>t}EFt

[∫ T

t
D(t, u, λ)φ̃udu

]
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where the penultimate equality comes from the fact that the default times are condi-
tionally independent and if we defineΛX(u) = ∫ u

0 λX
s dswith X ∈ {I,C}we have that

τX = Λ−1
X (ξX)with ξX mutually independent exponential random variables indepen-

dent from λX .1 A similar result will enable us to deal with the default cash flow term.
In fact we have the following (Lemma3.8.1 in [2])

Lemma 3 Suppose that φu is anF -predictable process. We consider two condition-
ally independent default times τI , τC generated by Cox processes with F -intensity
rates λI

t , λ
C
t . If we denote τ = τC ∧ τI we have:

EG
t

[
1{t<τ<T}1{τI<τC}φτ

] = 1{τ>t}EF
t

[∫ T

t
D(t, u, λI + λC)λI

uφudu

]

.

Now we postulate a particular form for the default cash flow, more precisely if
we indicate Ṽt theF -adapted process such that

1{τ>t}Ṽt = 1{τ>t}Vt

then we define

θt = εt − 1{τC<τI }LGDC(εt − Ct)
+ + 1{τI<τC}LGDI(εt − Ct)

−.

Where LGD indicates the loss given default, typically defined as 1 − REC, where
REC is the corresponding recovery rate and (x)+ indicates the positive part of x and
(x)− = −(−x)+. The meaning of these flows is the following, consider θτ :

• at first to default time τ we compute the close-out value ετ ;
• if the counterparty defaults and we are net debtor, i.e. ετ − Cτ ≤ 0 then we have
to pay the whole close-out value ετ to the counterparty;

• if the counterparty defaults and we are net creditor, i.e. ετ − Cτ > 0 then we
are able to recover just a fraction of our credits, namely Cτ + RECC(ετ −
Cτ ) = RECCετ + LGDCCτ = ετ − LGDC(ετ − Cτ ) where LGDC indicates the
loss given default and is equal to one minus the recovery rate RECC .

A similar reasoning applies to the case when the Investor defaults.
If we now change filtration, we obtain the following expression for Vt (where we

omitted the tilde sign over the rates, see Remark3):

1See for example Sect. 8.2.1 and Lemma 9.1.1 of [1].
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Vt =1{τ>t}EFt

[∫ T

t
D(t, u, r + λ)((fu − cu)Cu + (ru − fu)Ṽu − (ru − hu)H̃u)du

]

+ 1{τ>t}EFt

[

D(t, T , r + λ)Φ(ST ) +
∫ T

t
D(t, u, r + λ)πudu

]

+ 1{τ>t}EFt

[∫ T

t
D(t, u, r + λ)θ̃udu

]

,

(8)

where, if we suppose εt to be F -predictable, we have (using Lemma3):

θ̃u = εuλu − LGDC(εu − Cu)
+λC

u + LGDI(εu − Cu)
−λI

u. (9)

Remark 3 From now on we will omit the tilde sign over the rates fu, hu. Moreover,
we note that if a rate is of the form

xt = x+1{g(Vt ,Ht ,Ct)>0} + x−1{g(Vt ,Ht ,Ct)≤0}

then on the set {τ > t} it coincides with the rate

x̃t = x̃+1{g(Ṽt ,H̃t ,Ct)>0} + x̃−1{g(Ṽt ,H̃t ,Ct)≤0}

because 1{τ>t}x+1{g(Vt ,Ht ,Ct)>0} = x̃+1{τ>t}1{g(Vt ,Ht ,Ct)>0}, and on {τ > t} we have
Vt = Ṽt and Ht = H̃t , and hence g(Vt,Ht,Ct) > 0 ⇐⇒ g(Ṽt, H̃t,Ct) > 0.

We note that this expression is of the form Vt = 1{τ>t}ϒ meaning that Vt is zero
on {τ ≤ t} and that on the set {τ > t} it coincides with the F -measurable random
variable ϒ . But we already know a variable that coincides with Vt on {τ > t}, i.e.
Ṽt . Hence we can write the following:

Ṽt =EFt

[∫ T

t
D(t, u, r + λ)(πu + (fu − cu)Cu + (ru − fu)Ṽu − (ru − hu)H̃u)du

]

+ EFt

[

D(t, T , r + λ)Φ(ST ) +
∫ T

t
D(t, u, r + λ)θ̃udu

]

.

(10)

We now show a way to obtain a BSDE from Eq. (10), another possible approach
(without default risk) is shown for example in [9]. We introduce the process

Xt =
∫ t

0
D(0, u, r + λ)πudu +

∫ t

0
D(0, u, r + λ)θ̃udu

+
∫ t

0
D(0, u, r + λ)

[
(fu − cu)Cu + (ru − fu)Ṽu − (ru − hu)H̃u

]
du.

(11)
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Now we can construct a martingale summing up Xt and the discounted value of
the deal as in the following:

D(0, t, r + λ)Ṽt + Xt = EF
t [XT + D(0,T , r + λ)Φ(ST )].

So differentiating both sides we obtain:

− (ru + λu)D(0, u, r + λ)Ṽudu + D(0, u, r + λ)dṼu + dXu

= dEF
u [XT + D(0,T , r + λ)Φ(ST )].

If we substitute for Xt we have that the expression:

dṼu + [
πu − (ru + λu)Ṽu + θ̃u + (fu − cu)Cu + (ru − fu)Ṽu − (ru − hu)H̃u

]
du

is equal to;
dEF

u [XT + D(0,T , r + λ)Φ(ST )]
D(0, u, r + λ)

.

The process (EF
t [XT + D(0,T , r + λ)Φ(ST )])t≥0 is clearly a closedF -martingale,

and hence ∫ t

0
D(0, u, r + λ)−1dEF

u [XT + D(0,T , r + λ)Φ(ST )]

is a local F -martingale. Then, being

∫ t

0
D(0, u, r + λ)−1dEF

u [XT + D(0,T , r + λ)Φ(ST )]

adapted to the Brownian-driven filtrationF , by the martingale representation theo-
rem we have

∫ t

0
D(0, u, r + λ)−1dEF

u [XT + D(0,T , r + λ)Φ(ST )] =
∫ t

0
ZudWu

for some F -predictable process Zu. Hence we can write:

dṼu + [
πu − (fu + λu)Ṽu + θ̃u + (fu − cu)Cu − (ru − hu)H̃u

]
du = ZudWu. (12)
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4 Markovian FBSDE and PDE for ˜Vt and the Invariance
Theorem

As it is, Eq. (12) is way too general, thus wewill make some simplifying assumptions
in order to guarantee existence and uniqueness of a solution. First we assume a
Markovian setting, and hence we suppose that all the processes appearing in (12) are
deterministic functions of Su, Ṽu or Zu and time. More precisely we assume that:

• the dividend process πu is a deterministic function π(u, Su) of u and Su, Lipschitz
continuous in Su;

• the rates r, f ±, c±, λI , λC are deterministic bounded functions of time;
• the rate ht is a deterministic function of time, and does not depend on the sign of
H, namely h+ = h−, hence there is only one rate relative to the repo market of
assets;

• the collateral process is a fraction of the process Ṽu, namely Cu = αuṼu, where
0 ≤ αu ≤ 1 is a function of time;

• the close-out value εt is equal to Ṽt (this adds a source of nonlinearity with respect
to choosing a risk-free closeout, see for example [6] and [5]);

• the diffusion coefficientσ(t, St)of the underlying dynamic isLipschitz continuous,
uniformly in time, in St ;

• we consider a delta-hedging strategy, and to this extent we choose H̃t = St
Zt

σ(t,St)
;

this reasoning derives from the fact that if we suppose Ṽt = V (t, St)with V (·, ·) ∈
C1,2 applying Ito’s formula and comparing it with Eq. (12), we have that σ(t, St)
∂SV (t, St) = Zt .2

Under our assumptions, Eq. (12) becomes the following FBSDE:

dSt =rtStdt + σ(t, St)dWt

S0 =s

dṼt = −
[

πt + θ̃t − λt Ṽt + ft Ṽt(αt − 1) − ct(αt Ṽt) − (rt − ht)St
Zt

σ(t, St)

]

︸ ︷︷ ︸
B(t,St ,Ṽt ,Zt)

dt + ZtdWt

VT =Φ(ST )

(13)

Wewant to obtain existence and uniqueness of the solution to the above-mentioned
FBSDE and a related PDE. A possible choice is the following (see J. Zhang [15]
Theorem2.4.1 on page 41):

2At this stage the assumption we made on V is not properly justified, see Theorem3 and Remark4
for details.
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Theorem 1 Consider the following FBSDE on [0,T ]:

dXq,x
t = μ(t,Xq,x

t )dt + σ(t,Xq,x
t )dWt q < t ≤ T

Xt = x 0 ≤ t ≤ q

dYq,x
t = −f (t,Xq,x

t ,Yq,x
t ,Zq,x

t )dt + Zq,x
t dWt

Yq,x
T = g(Xq,x

T )

(14)

If we assume that there exists a positive constant K such that

• σ(t, x)2 ≥ 1
K ;• |f (t, x, y, z) − f (t, x′, y′, z′)| + |g(x) − g(x′)| ≤ K(|x − x′| + |y − y′| +

|z − z′|);
• |f (t, 0, 0, 0)| + |g(0)| ≤ K;

and moreover the functions μ(t, x) and σ(t, x) are C2 with bounded derivatives,
then Eq. (14) has a unique solution (Xq,x

t ,Yq,x
t ,Zq,x

t ) and u(t, x) = Yt,x
t is the unique

classical (i.e. C1,2) solution to the following semilinear PDE

∂tu(t, x) + 1

2
σ(t, x)2∂2x u(t, x) + μ(t, x)∂xu(t, x) + f (t, x, u(t, x), σ (t, x)∂xu(t, x)) = 0

u(T , x) = g(x)
(15)

We cannot directly apply Theorem1 to our FBSDE because B(t, s, v, z) is not
Lipschitz continuous in s because of the hedging term. But, since the hedging term
is linear in Zt we can move it from the drift of the backward equation to the drift of
the forward one. More precisely consider the following:

dSq,st = htS
q,s
t dt + σ(t, Sq,st )dWt q < t ≤ T

Sq = sq 0 ≤ t ≤ q

dV q,s
t = − [

πt + θt − λtV
q,s
t + ftV

q,s
t (αt − 1) − ct(αtV

q,s
t )

]

︸ ︷︷ ︸
B′(t,Sq,st ,V q,s

t )

dt + Zq,s
t dWt

V q,s
T = Φ(Sq,sT ).

(16)

Indeed, one can check that the assumptions of Theorem1 are satisfied for this
equation:

Theorem 2 If the rates λt, ft, ct, ht, rt are bounded, then |B′(t, s, v) − B′
(t, s′, v′)| ≤ K(|s − s′| + |v − v′|) and |B′(t, 0, 0)| + Φ(0) ≤ K. Hence if σ(t, s) is a
positive C2 function with bounded derivatives, then the assumptions of Theorem1 are
satisfied and so Eq. (16) has a unique solution, and moreover V t,s

t = u(t, s) ∈ C1,2

and satisfies the following semilinear PDE:
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∂tu(t, s) + 1

2
σ(t, s)2∂2

s u(t, s) + hts∂su(t, s) + B′(t, s, u(t, s)) = 0

u(T , s) = Φ(s)
(17)

Proof We start by rewriting the term

B′(t, s, v) = πt(s) + θt(v) + (ft(αt − 1) − λt − ctαt)v.

Since the sum of two Lipschitz functions is itself a Lipschitz function we can restrict
ourselves to analyzing the summands that appear in the previous formula. The term
πt is Lipschitz continuous in s by assumption. The θ term and the (ft(αt − 1) − λt −
ctαt)v term are continuous and piece-wise linear, hence Lipschitz continuous and
this concludes the proof.

Note that the S-dynamics in (16) has the repo rate h as drift. Since in general h
will depend on the future values of the deal, this is a source of nonlinearity and is at
times represented informally with an expected value Eh or a pricing measureQh, see
for example [5] and the related discussion on operational implications for the case
h = f .

We now show that a solution to Eq. (13) can be obtained by means of the classical
solution to the PDE (17). We start considering the following forward equation which
is known to have a unique solution under our assumptions about σ(t, s).

dSt = rtStdt + σ(t, St)dWt S0 = s. (18)

We define Vt = u(t, St) and Zt = σ(t, St)∂su(t, St). By Theorem2 we know that
u(t, s) ∈ C1,2 and by applying Ito’s formula and (17) we obtain:

dVt = du(t, St)

=
(

∂tu(t, St) + rtSt∂su(t, St) + 1

2
σ(t, St)

2∂2s u(t, St)

)

dt + σ(t, St)∂su(t, St)dWt

= (
(rt − ht)St∂su(t, St) − B′(t, St, u(t, St))

)
dt + σ(t, St)∂su(t, St)dWt

=
(

(rt − ht)St
Zt

σ(t, St)
− πt(St) − θt(Vt) − (ft(αt − 1) − λt − ctαt)Vt)

)

dt + ZtdWt

Hence we found the following:

Theorem 3 (Solution to the Valuation Equation) Let St be the solution to Eq. (18)
and u(t, s) the classical solution to Eq. (17). Then the process (St, u(t, St), σ (t, St)
∂su(t, St)) is the unique solution to Eq. (13).

Proof From the reasoning above we found that (St, u(t, St), σ (t, St)∂su(t, St)) solves
Eq. (13). Finally from the seminal result of [14] we know that if there exist K > 0
and p ≥ 1

2 such that:

• |μ(t, x) − μ(t, x′)| + |σ(t, x) − σ(t, x′)| ≤ K|x − x′|
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• |μ(t, x)| + |σ(t, x)| ≤ K(1 + |x|)
• |f (t, x, y, z) − f (t, x, y′, z′)| ≤ K(|y − y′| + |z − z′|)
• |g(x)| + |f (t, x, 0, 0)| ≤ K(1 + |x|p)
then the FBSDE (14) has a unique solution. Since we have to check the Lipschitz
continuity just for y and z we can verify that Eq. (13) satisfies the above-mentioned
assumptions and hence has a unique solution.

Remark 4 Since we proved that Vt = u(t, St) with u(t, s) ∈ C1,2, the reasoning we
used,when saying that H̃t = St

Zt
σ(t,St)

represented choosing a delta-hedge, it is actually
more than a heuristic argument.

Moreover, since (17) does not depend on the risk-free rate rt so we can state the
following:

Theorem 4 (Invariance Theorem) If we are under the assumptions at the beginning
of Sect.4 and we assume that we are backing our deal with a delta hedging strategy,
then the price Vt can be calculated via the semilinear PDE (17) and does not depend
on the risk-free rate r(t).

This invariance result shows that even when starting from a risk-neutral valuation
theory, the risk-free rate disappears from the nonlinear valuation equations. A discus-
sion on consequences of nonlinearity and invariance on valuation in general, on the
operational procedures of a bank, on the legitimacy of fully charging the nonlinear
value to a client, and on the related dangers of overlapping valuation adjustments is
presented elsewhere, see for example [3, 5] and references therein.
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Nonlinear Monte Carlo Schemes
for Counterparty Risk on Credit Derivatives

Stéphane Crépey and Tuyet Mai Nguyen

Abstract Two nonlinear Monte Carlo schemes, namely, the linear Monte Carlo
expansion with randomization of Fujii and Takahashi (Int J Theor Appl Financ
15(5):1250034(24), 2012 [9], Q J Financ 2(3), 1250015(24), 2012, [10]) and the
marked branching diffusion scheme of Henry-Labordère (Risk Mag 25(7), 67–73,
2012, [13]), are compared in terms of applicability and numerical behavior regarding
counterparty risk computations on credit derivatives. This is done in two dynamic
copula models of portfolio credit risk: the dynamic Gaussian copula model and
the model in which default dependence stems from joint defaults. For such high-
dimensional and nonlinear pricing problems, more standard deterministic or simu-
lation/regression schemes are ruled out by Bellman’s “curse of dimensionality” and
only purely forward Monte Carlo schemes can be used.

Keywords Counterparty risk · Funding · BSDE · Gaussian copula ·
Marshall–Olkin copula · Particles

1 Introduction

Counterparty risk is a major issue since the global credit crisis and the ongoing
European sovereign debt crisis. In a bilateral counterparty risk setup, counterparty
risk is valued as the so-called credit valuation adjustment (CVA), for the risk of
default of the counterparty, and debt valuation adjustment (DVA), for own default
risk. In such a setup, the classical assumption of a locally risk-free funding asset
used for both investing and unsecured borrowing is no longer sustainable. The proper
accounting of the funding costs of a position leads to the funding valuation adjustment
(FVA).Moreover, these adjustments are interdependent andmust be computed jointly
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through a global correction dubbed total valuation adjustment (TVA). The pricing
equation for the TVA is nonlinear due to the funding costs. It is posed over a random
time interval determined by the first default time of the two counterparties. To deal
with the corresponding backward stochastic differential equation (BSDE), a first
reduced-form modeling approach has been proposed in Crépey [3], under a rather
standard immersion hypothesis between a reference (or market) filtration and the full
model filtration progressively enlarged by the default times of the counterparties. This
basic immersion setup is fine for standard applications, such as counterparty risk on
interest rate derivatives. But it is too restrictive for situations of strong dependence
between the underlying exposure and the default risk of the two counterparties, such
as counterparty risk on credit derivatives, which involves strong adverse dependence,
called wrong-way risk (for some insights of related financial contexts, see Fujii
and Takahashi [11], Brigo et al. [2]). For this reason, an extended reduced-form
modeling approach has been recently developed in Crépey and Song [4–6]. With
credit derivatives, the problem is also very high-dimensional. From a numerical point
of view, for high-dimensional nonlinear problems, only purely forward simulation
schemes can be used. In Crépey and Song [6], the problem is addressed by the linear
Monte Carlo expansion with randomization of Fujii and Takahashi [9, 10].

In the present work, we assess another scheme, namely the marked branching
diffusion approach of Henry-Labordère [13], which we compare with the previous
one in terms of applicability and numerical behavior. This is done in two dynamic
copula models of portfolio credit risk: the dynamic Gaussian copula model and
the dynamic Marshall–Olkin model in which default dependence stems from joint
defaults.

The paper is organized as follows. Sections2 and 3 provide a summary of the
main pricing and TVA BSDEs that are derived in Crépey and Song [4–6]. Section4
exposes two nonlinear Monte Carlo schemes that can be considered for solving
these in high-dimensional models, such as the portfolio credit models of Sect. 5.
Comparative numerics in these models are presented in Sect. 6. Section7 concludes.

2 Prices

2.1 Setup

We consider a netted portfolio of OTC derivatives between two defaultable coun-
terparties, generally referred to as the contract between a bank, the perspective of
which is taken, and its counterparty. After having bought the contract from its coun-
terparty at time 0, the bank sets up a hedging, collateralization (or margining), and
funding portfolio. We call the funder of the bank a third party, possibly composed in
practice of several entities or devices, insuring funding of the bank’s strategy. The
funder, assumed default-free for simplicity, plays the role of lender/borrower of last
resort after the exhaustion of the internal sources of funding provided to the bank
through its hedge and collateral.
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For notational simplicity we assume no collateralization. All the numerical con-
siderations, our main focus in this work, can be readily extended to the case of
collateralized portfolios using the corresponding developments in Crépey and Song
[6]. Likewise, we assume hedging in the simplest sense of replication by the bank and
we consider the case of a fully securely funded hedge, so that the cost of the hedge
of the bank is exactly reflected by the wealth of its hedging and funding portfolio.

We consider a stochastic basis (Ω,GT ,G , Q), whereG = (Gt)t∈[0,T ] is interpreted
as a risk-neutral pricing model on the primary market of the instruments that are used
by the bank for hedging its TVA. The reference filtration F is a subfiltration of G
representing the counterparty risk-free filtration, not carrying any direct information
about the defaults of the two counterparties. The relation between these twofiltrations
will be pointed out in the condition (C) introduced later. We denote by:

• Et, the conditional expectation under Q given Gt ,
• r, the risk-free short rate process, with related discount factor βt = e− ∫ t0 rsds,
• T , the maturity of the contract,
• τb and τc, the default time of the bank and of the counterparty, modeled as G
stopping times with (G , Q) intensities γ b and γ c,

• τ = τb ∧ τc, the first-to-default time of the two counterparties, also a G stopping
time, with intensity γ such that max(γ b, γ c) ≤ γ ≤ γ b + γ c,

• τ̄ = τ ∧ T , the effective time horizon of our problem (there is no cashflow after
τ̄ ),

• D, the contractual dividend process,
• Δ = D − D−, the jump process of D.

2.2 Clean Price

We denote by P the reference (or clean) price of the contract ignoring counterparty
risk and assuming the position of the bank financed at the risk-free rate r, i.e. the G
conditional expectation of the future contractual cash-flows discounted at the risk-
free rate r. In particular,

βtPt = Et

[∫ τ̄

t
βsdDs + βτ̄Pτ̄

]

, ∀t ∈ [0, τ̄ ]. (1)

We also define Qt = Pt + 1{t=τ<T}Δτ , so that Qτ represents the clean value of the
contract inclusive of the promised dividend at default (if any)Δτ , which also belongs
to the “debt” of the counterparty to the bank (or vice versa depending on the sign
of Qτ ) in case of default of a party. Accordingly, at time τ (if < T ), the close-out
cash-flow of the counterparty to the bank is modeled as

R = 1{τ=τc}
(
RcQ

+
τ − Q−

τ

)− 1{τ=τb}
(
RbQ

−
τ − Q+

τ

)− 1{τb=τc}Qτ , (2)

where Rb and Rc are the recovery rates of the bank and of the counterparty to
each other.



56 S. Crépey and T.M. Nguyen

2.3 All-Inclusive Price

Let Π be the all-inclusive price of the contract for the bank, including the cost of
counterparty risk and funding costs. Since we assume a securely funded hedge (in
the sense of replication) and no collateralization, the amounts invested and funded
by the bank at time t are respectively given byΠ−

t andΠ+
t . The all-inclusive priceΠ

is the discounted conditional expectation of all effective future cash flows including
the contractual dividends before τ , the cost of funding the position prior to time τ

and the terminal cash flow at time τ . Hence,

βtΠt = Et

[∫ τ̄

t
βs1s<τdDs −

∫ τ̄

t
βsλ̄sΠ

+
s ds + βτ̄1τ<TR

]

, (3)

where λ̄ is the funding spread over r of the bank toward the external funder, i.e. the
bank borrows cash from its funder at rate r + λ̄ (and invests cash at the risk-free
rate r). Since the right hand side in (3) depends also on Π , (3) is in fact a backward
stochastic differential equation (BSDE). Consistent with the no arbitrage principle,
the gain process on the hedge is a Q martingale, which explains why it does not
appear in (3).

3 TVA BSDEs

The total valuation adjustment (TVA) process Θ is defined as

Θ = Q − Π. (4)

In this section we review the main TVA BSDEs that are derived in Crépey and Song
[4–6]. Three BSDEs are presented. These three equations are essentially equivalent
mathematically. However, depending on the underlying model, they are not always
amenable to the same numerical schemes or the numerical performance of a given
scheme may differ between them.

3.1 Full TVA BSDE

By taking the difference between (1) and (3), we obtain

βtΘt = Et

[∫ τ̄

t
βsfvas(Θs)ds + βτ̄1τ<Tξ

]

, ∀t ∈ [0, τ̄ ], (5)
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where fvat(ϑ) = λ̄t(Pt − ϑ)+ is the funding coefficient and where

ξ = Qτ − R = 1{τ=τc}(1 − Rc)(Pτ + Δτ)
+ − 1{τ=τb}(1 − Rb)(Pτ + Δτ)

− (6)

is the exposure at default of the bank. Equivalent to (5), the “full TVA BSDE” is
written as

Θt = Et

[∫ τ̄

t
fs(Θs)ds + 1τ<Tξ

]

, 0 ≤ t ≤ τ̄ , (I)

for the coefficient ft(ϑ) = fvat(ϑ) − rtϑ.

3.2 Partially Reduced TVA BSDE

Let ξ̂ be a G -predictable process, which exists by Corollary 3.23 2 in He et al. [12],
such that ξ̂τ = E[ξ |Gτ−] on τ < ∞ and let f̄ be the modified coefficient such that

f̄t(ϑ) + rtϑ = γt ξ̂t︸︷︷︸
cdvat

+ λ̄t(Pt − ϑ)+
︸ ︷︷ ︸

fvat(ϑ)

.
(7)

As easily shown (cf. [4, Lemma 2.2]), the full TVA BSDE (I) can be simplified into
the “partially reduced BSDE”

Θ̄t = Et

[∫ τ̄

t
f̄s(Θ̄s)ds

]

, 0 ≤ t ≤ τ̄ , (II)

in the sense that if Θ solves (I), then Θ̄ = Θ1[0,τ ) solves (II), while if Θ̄ solves (II),
then the process Θ defined as Θ̄ before τ̄ and Θτ̄ = 1τ<Tξ solves (I). Note that both
BSDEs (I) and (II) are (G , Q) BSDEs posed over the random time interval [0, τ̄ ],
but with the terminal condition ξ for (I) as opposed to a null terminal condition (and
a modified coefficient) for (II).

3.3 Fully Reduced TVA BSDE

Let
f̂t(ϑ) = f̄t(ϑ) − γtϑ = cdvat + fvat(ϑ) − (rt + γt)ϑ.
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Assume the following conditions, which are studied in Crépey and Song [4–6]:

Condition (C). There exist:

(C.1) a subfiltration F of G satisfying the usual conditions and such that F semi-
martingales stopped at τ are G semimartingales,

(C.2) a probability measure P equivalent to Q on FT such that any (F , P) local
martingale stopped at (τ−) is a (G , Q) local martingale on [0,T ],

(C.3) anF progressive “reduction” f̃t(ϑ) of f̂t(ϑ) such that
∫ ·
0 f̂t(ϑ)dt = ∫ ·

0 f̃t(ϑ)dt
on [0, τ̄ ].

Let Ẽt denote the conditional expectation under P given Ft . It is shown in Crépey
and Song [4–6]) that the full TVA BSDE (I) is equivalent to the following “fully
reduced BSDE”:

Θ̃t = Ẽt

[∫ T

t
f̃s(Θ̃s)ds

]

, t ∈ [0,T ], (III)

equivalent in the sense that if Θ solves (I), then the “F optional reduction” Θ̃ of Θ

(F optional process that coincides with Θ before τ ) solves (III), while if Θ̃ solves
(III), then Θ = Θ̃1[0,τ ) + 1[τ ]1τ<Tξ solves (I).

Moreover, under mild assumptions (see e.g. Crépey and Song [6, Theorem 4.1]),
one can easily check that f̄t(ϑ) in (7) (resp. f̃t(ϑ)) satisfies the classical BSDE
monotonicity assumption

(
f̄t(ϑ) − f̄t(ϑ

′)
)
(ϑ − ϑ ′) ≤ C(ϑ − ϑ ′)2

(and likewise for f̃ ), for some constant C. Hence, by classical BSDE results nicely
surveyed in Kruse and Popier [14, Sect. 2 (resp. 3)], the partially reduced TVABSDE
(II), hence the equivalent full TVA BSDE (I) (resp. the fully reduced BSDE (III)), is
well-posed in the space of (G , Q) (resp. (F , P)) square integrable solutions, where
well-posedness includes existence, uniqueness, comparison and BSDE standard esti-
mates.

3.4 Marked Default Time Setup

In order to be able to compute γ ξ̂ in f̄ , we assume that τ is endowed with a mark e
in a finite set E, in the sense that

τ = min
e∈E τe, (8)
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where each τe is a stopping time with intensity γ e
t such that Q(τe �= τe′) = 1, e �= e′,

and
Gτ = Gτ− ∨ σ(ε),

where ε = argmine∈Eτe yields the “identity” of the mark. The role of the mark is
to convey some additional information about the default, e.g. to encode wrong-way
and gap risk features. The assumption of a finite set E in (8) ensures tractability of
the setup. In fact, by Lemma 5.1 in Crépey and Song [6], there exists G -predictable
processes P̃e

t and Δ̃e
t such that

Pτ = P̃e
τ and Δτ = Δ̃e

τ on the event {τ = τe}.

Assuming further that τb = mine∈Eb τe and τc = mine∈Ec τe, where E = Eb ∪ Ec (not
necessarily a disjoint union), one can then take on [0, τ̄ ]:

γt ξ̂t = (1 − Rc)
∑

e∈Ec

γ e
t

(
P̃e
t + Δ̃e

t

)+ − (1 − Rb)
∑

e∈Eb

γ e
t

(
P̃e
t + Δ̃e

t

)−
,

where the two terms have clear respective CVA and DVA interpretation. Hence, (7)
is rewritten, on [0, τ̄ ], as

f̄t(ϑ) + rtϑ = (1 − Rc)
∑

e∈Ec

γ e
t

(
P̃e
t + Δ̃e

t

)+

︸ ︷︷ ︸
CVA coefficient (cvat)

− (1 − Rb)
∑

e∈Eb

γ e
t

(
P̃e
t + Δ̃e

t

)−

︸ ︷︷ ︸
DVA coefficient (dvat)

+ λ̄t(Pt − ϑ)+
︸ ︷︷ ︸

FVA coefficient (fvat(ϑ))

.

(9)

If the functions P̃e
t and Δ̃e

t above not only exist, but can be computed explicitly (as
will be the case in the concrete models of Sects. 5.1 and 5.2), once stated in aMarkov
setup where

f̄t(ϑ) = f̄ (t,Xt, ϑ), t ∈ [0,T ], (10)

for some (G , Q) jump diffusion X, then the partially reduced TVA BSDE (II) can be
tackled numerically. Similarly, once stated in a Markov setup where

f̃t(ϑ) = f̃ (t, X̃t, ϑ), t ∈ [0,T ], (11)

for some (F , P) jump diffusion X̃, then the fully reduced TVA BSDE (III) can be
tackled numerically.
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4 TVA Numerical Schemes

4.1 Linear Approximation

Our first TVA approximation is obtained replacing Θs by 0 in the right hand side of
(I), i.e.

Θ0 ≈ E

[∫ τ̄

0
fs(0)ds + 1τ<Tξ

]

= E

[∫ τ̄

0
λ̄sP

+
s ds + 1τ<Tξ

]

. (12)

We then approximate the TVA by standard Monte-Carlo, with randomization of
the integral to reduce the computation time (at the cost of a small increase in the
variance). Hence, introducing an exponential time ζ of parameter μ, i.e. a random
variable with density φ(s) = 1s≥0 μ e−μs, we have

E

[∫ τ̄

0
fs(0)ds

]

= E

[∫ τ̄

0
φ(s)

1

μ
eμsfs(0)ds

]

= E

[

1ζ<τ̄

eμζ

μ
fζ (0)

]

. (13)

We can use the same technic for (II) and (III), which yields:

Θ0 = Θ̄0 ≈ E

[∫ τ̄

0
f̄s(0)ds

]

= E

[

1ζ<τ̄

eμζ

μ
f̄ζ (0)

]

, (14)

Θ0 = Θ̃0 ≈ Ẽ

[∫ T

0
f̃s(0)ds

]

= Ẽ

[

1ζ<T
eμζ

μ
f̃ζ (0)

]

. (15)

4.2 Linear Expansion and Interacting Particle
Implementation

Following Fujii and Takahashi [9, 10], we can introduce a perturbation parameter ε

and the following perturbed form of the fully reduced BSDE (III):

Θ̃ε
t = Ẽt

[∫ T

t
ε̃fs(Θ̃

ε
s )ds

]

, t ∈ [0,T ], (16)

where ε = 1 corresponds to the original BSDE (III). Suppose that the solution of
(16) can be expanded in a power series of ε:

Θ̃ε
t = Θ̃

(0)
t + εΘ̃

(1)
t + ε2Θ̃

(2)
t + ε3Θ̃

(3)
t + · · · . (17)
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The Taylor expansion of f at Θ̃(0) reads

f̃t(Θ̃
ε
t ) = f̃t(Θ̃

(0)
t ) + (εΘ̃

(1)
t + ε2Θ̃

(2)
t + · · · )∂ϑ f̃t(Θ̃

(0)
t )

+ 1

2
(εΘ̃

(1)
t + ε2Θ̃

(2)
t + · · · )2∂2

ϑ 2̃ ft(Θ̃
(0)
t ) + · · ·

Collecting the terms of the same order with respect to ε in (16), we obtain Θ̃
(0)
t = 0,

due to the null terminal condition of the fully reduced BSDE (III), and

Θ̃
(1)
t = Ẽt

[∫ T

t
f̃s(Θ̃

(0)
s )ds

]

,

Θ̃
(2)
t = Ẽt

[∫ T

t
Θ̃(1)

s ∂ϑ f̃s(Θ̃
(0)
s )ds

]

,

Θ̃
(3)
t = Ẽt

[∫ T

t
Θ̃(2)

s ∂ϑ f̃s(Θ̃
(0)
s )ds

]

,

(18)

where the third order term should contain another component based on ∂2
ϑ 2̃ f . But, in

our case, ∂2
ϑ 2̃ f involves a Dirac measure via the terms (Pt − ϑ)+ in fvat(ϑ), so that

we truncate the expansion to the term Θ̃
(3)
t as above. If the nonlinearity in (III) is

sub-dominant, one can expect to obtain a reasonable approximation of the original
equation by setting ε = 1 at the end of the calculation, i.e.

Θ̃0 ≈ Θ̃
(1)
0 + Θ̃

(2)
0 + Θ̃

(3)
0 .

Carrying out a Monte Carlo simulation by an Euler scheme for every time s in a
time grid and integrating to obtain Θ̃

(1)
0 would be quite heavy. Moreover, this would

become completely unpractical for the higher order terms that involve iterated (mul-
tivariate) time integrals. For these reasons, Fujii and Takahashi [10] have introduced
a particle interpretation to randomize and compute numerically the integrals in (18),
which we call the FT scheme. Let η1 be the interaction time of a particle drawn
independently as the first jump time of a Poisson process with an arbitrary intensity
μ > 0 starting from time t ≥ 0, i.e., η1 is a random variable with density

φ(t, s) = 1s≥t μ e−μ(s−t). (19)

From the first line in (18), we have

Θ̃
(1)
t = Ẽt

[∫ T

t
φ(t, s)

eμ(s−t)

μ
f̃s(Θ̃

(0)
s )ds

]

= Ẽt

[

1η1<T
eμ(η1−t)

μ
f̃η1(Θ̃

(0)
η1

)

]

. (20)

Similarly, the particle representation is available for the higher order. By applying
the same procedure as above, we obtain
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Θ̃
(2)
t = Ẽt

[

1η1<T Θ̃(1)
η1

eμ(η1−t)

μ
∂ϑ f̃η1(Θ̃

(0)
η1

)

]

,

where Θ̃(1)
η1

can be computed by (20). Therefore, by using the tower property of
conditional expectations, we obtain

Θ̃
(2)
t = Ẽt

[

1η2<T
eμ(η2−η1)

μ
f̃η2(Θ̃

(0)
η2

)
eμ(η1−t)

μ
∂ϑ f̃η1(Θ̃

(0)
η1

)

]

, (21)

where η1, η2 are the two consecutive interaction times of a particle randomly drawn
with intensity μ starting from t. Similarly, for the third order, we get

Θ̃
(3)
t = Ẽt

[

1η3<T
eμ(η3−η2)

μ
f̃η3(Θ̃

(0)
η3

)
eμ(η2−η1)

μ
∂ϑ f̃η2(Θ̃

(0)
η2

)
eμ(η1−t)

μ
∂ϑ f̃η1(Θ̃

(0)
η1

)

]

,

(22)

where η1, η2, η3 are consecutive interaction times of a particle randomly drawn with
intensity μ starting from t. In case t = 0, (20), (21) and (22) can be simplified as

Θ̃
(1)
0 = Ẽ

[

1ζ1<T
eμζ1

μ
f̃ζ1 (Θ̃

(0)
ζ1

)

]

Θ̃
(2)
0 = Ẽ

[

1ζ1+ζ2<T
eμζ1

μ
∂ϑ f̃ζ1 (Θ̃

(0)
ζ1

)
eμζ2

μ
f̃ζ1+ζ2 (Θ̃

(0)
ζ1+ζ2

)

]

Θ̃
(3)
0 = Ẽ

[

1ζ1+ζ2+ζ3<T
eμζ1

μ
∂ϑ f̃ζ1 (Θ̃

(0)
ζ1

)
eμζ2

μ
∂ϑ f̃ζ1+ζ2 (Θ̃

(0)
ζ1+ζ2

)
eμζ3

μ
f̃ζ1+ζ2+ζ3 (Θ̃

(0)
ζ1+ζ2+ζ3

)

]

(23)

where ζ1, ζ2, ζ3 are the elapsed time from the last interaction until the next interaction,
which are independent exponential random variables with parameter μ.

Note that the pricing model is originally defined with respect to the full stochastic
basis (G , Q). Even in the case where there exists a stochastic basis (F , Q) satisfying
the condition (C), (F , Q) simulation may be nontrivial. Lemma 8.1 in Crépey and
Song [6] allows us to reformulate the Q expectations in (23) as the following Q

expectations, with Θ̄(0) = 0:

Θ̃
(1)
0 = Θ̄

(1)
0 = E

[

1ζ1<τ̄

eμζ1

μ
f̄ζ1(Θ̄

(0)
ζ1

)

]

Θ̃
(2)
0 = Θ̄

(2)
0 = E

[

1ζ1+ζ2<τ̄

eμζ1

μ
∂ϑ f̄ζ1(Θ̄

(0)
ζ1

)
eμζ2

μ
f̄ζ1+ζ2(Θ̄

(0)
ζ1+ζ2

)

]

Θ̃
(3)
0 = Θ̄

(3)
0 = E

[
1ζ1+ζ2+ζ3<τ̄

eμζ1

μ
∂ϑ f̄ζ1(Θ̄

(0)
ζ1

)
eμζ2

μ
∂ϑ f̄ζ1+ζ2(Θ̄

(0)
ζ1+ζ2

)

× eμζ3

μ
f̄ζ1+ζ2+ζ3(Θ̄

(0)
ζ1+ζ2+ζ3

)
]
,

(24)
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which is nothing but the FT scheme applied to the partially reduced BSDE (II). The
tractability of the FT schemes (23) and (24) relies on the nullity of the terminal
condition of the related BSDEs (III) and (II), which implies that Θ̄(0) = Θ̃(0) = 0.
By contrast, an FT scheme would not be practical for the full TVA BSDE (5) with
terminal condition ξ �= 0. Also note that the first order in the FT scheme (23) (resp.
(24)) is nothing but the linear approximation (15) (resp. (14)).

4.3 Marked Branching Diffusion Approach

Based on an old idea of McKean [16], the solution u(t0, x0) to a PDE

∂tu + L u + μ(F(u) − u) = 0, u(T , x) = Ψ (x), (25)

where L is the infinitesimal generator of a strong Markov process X and F(y) =∑d
k=0 aky

k is a polynomial of order d, admits a probabilistic representation in terms
of a random tree T (branching diffusion). The tree starts from a single particle
(“trunk”) born from (t0, x0). Subsequently, every particle born from a node (t, x)
evolves independently according to the generator L of X until it dies at time t′ =
(t + ζ ) in a state x′, where ζ is an independent μ-exponential time (one for each
particle). Moreover, in dying, a particle gives birth to an independent number of
k′ new particles starting from the node (t′, x′), where k′ is drawn in the finite set
{0, 1, . . . , d} with some fixed probabilities p0, p1, . . . , pd . The marked branching
diffusion probabilistic representation reads

u(t0, x0) = Et0,x0

⎡

⎣
∏

{inner nodes (t,x,k) of T }

ak
pk

∏

{states x of particles alive at T}
Ψ (x)

⎤

⎦

= Et0,x0

[
d∏

k=0

(
ak
pk

)nk ν∏

l=1

Ψ (xl)

]

, (26)

where nk is the number of branching with k descendants up on (0,T) and ν is the
number of particles alive at T , with corresponding locations x1, . . . , xν .

The marked branching diffusion method of Henry-Labordère [13] for CVA com-
putations, dubbed PHL scheme henceforth, is based on the idea that, by approximat-
ing y+ by a well-chosen polynomial F(y), the solution to the PDE

∂tu + L u + μ(u+ − u) = 0, u(T , x) = Ψ (x), (27)

can be approximated by the solution to the PDE (25), hence by (26). We want to
apply this approach to solve the TVA BSDEs (I), (II) or (III) for which, instead
of fixing the approximating polynomial F(y) once for all in the simulations, we
need a state-dependent polynomial approximation to gt(y) = (Pt − y)+ (cf. (7)) in
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a suitable range for y. Moreover, (I) and (II) are BSDEs with random terminal time
τ̄ , equivalently written in a Markov setup as Cauchy–Dirichlet PDE problems, as
opposed to the pure Cauchy problem (27). Hence, some adaptation of the method is
required. We show how to do it for (II), after which we directly give the algorithm in
the similar case of (I) and in the more classical (pure Cauchy) case of (III). Assuming
τ given in terms of a (G , Q) Markov factor process X as τ = inf{t > 0 : Xt /∈ D}
for some domainD, the Cauchy–Dirichlet PDE used for approximating the partially
reduced BSDE (II) reads:

(∂t + A )ū + μ
(
F̄(ū) − ū

) = 0 on [0,T ] × D, ū(t, x) = 0 for t = T or x /∈ D,

(28)
where A is the generator of X and F̄t,x(y) =∑d

k=0 āk(t, x)y
k is such that

μ(F̄t,x(y) − y) ≈ f̄ (t, x, y), i.e. F̄t,x(y) ≈ f̄ (t, x, y)

μ
+ y. (29)

Specifically, in view of (9), one can set

F̄t,x(y) = 1

μ

(
cdva(t, x) + λ̄pol

(
P(t, x) − y

)− ry
)+ y =

d∑

k=0

āk(t, x)y
k, (30)

where pol(r) is a d-order polynomial approximation of r+ in a suitable range
for r. The marked branching diffusion probabilistic representation of ū(t0, x0) ∈ D
involves a random treeT made of nodes and “particles” between consecutive nodes
as follows. The tree starts from a single particle (trunk) born from the root (t0, x0).
Subsequently, every particle born from a node (t, x) evolves independently accord-
ing to the generator L of X until it dies at time t′ = (t + ζ ) in a state x′, where ζ

is an independent μ-exponential time. Moreover, in dying, if its position x′ at time
t′ lies in D, the particle gives birth to an independent number of k′ new particles
starting from the node (t′, x′), where k′ is drawn in the finite set {0, 1, . . . , d} with
some fixed probabilities p0, p1, . . . , pd . Figure1 describes such a random tree in case
d = 2. The first particle starts from the root (t0, x0) and dies at time t1, generating two
new particles. The first one dies at time t11 and generates a new particle, who dies at
time t111 > T without descendant. The second one dies at time t12 and generates two
new particles, where the first one dies at time t121 without descendant and the second
one dies at time t122 outside the domainD , hence also without descendant. The blue
points represent the inner nodes, the red points the outer nodes and the green points
the exit points of the tree out of the time–space domain [0,T ] × D .

The marked branching diffusion probabilistic representation of ū is written as

ū(t0, x0) = Et0,x0

⎡

⎢
⎣1T ⊂[0,T ]×D

∏

{inner nodes (t,x,k) of T }

āk(t, x)

pk

⎤

⎥
⎦ , (t0, x0) ∈ [0,T ] × D .

(31)
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Fig. 1 PHL random tree

Note that (31) is unformal at that stage, where we did not justify whether the PDE
(28) has a solution ū and in which sense. In fact, the following result could be used
for proving that the function ū defined in the first line is a viscosity solution to (28).

Proposition 1 Denoting by ū the function defined by the right hand side in (31)
(assuming integrability of the integrand on the domain [0,T ] × D), the process Yt =
ū(t,Xt), 0 ≤ t ≤ τ̄ , solves the BSDE associated with the Cauchy–Dirichlet PDE
(28), namely

Yt = Et

[∫ τ̄

t
μ
(
F̄s,Xs(Ys) − Ys

)
ds

]

, t ∈ [0, τ̄ ] (32)

(which, in view of (29), approximates the partially reduced BSDE (II), so that Y ≈ Θ̄

provided Y is square integrable).

Proof Let (t1, x1, k1) be the first branching point in the tree rooted at (0,X0) and
let T j denote k1 independent trees of the same kind rooted at (t1, x1). By using the
independence and the strong Markov property postulated for X, we obtain

ū(t,Xt) =
d∑

k1=0

Et,Xt

[

1t1<T pk1
ak1 (t1, x1)

pk1

×
k1∏

j=1

Et1,x1

⎡

⎢
⎣1T j⊂[0,T ]×D}

∏

{inner node (s,x,k) of T j}

ak(s, x)

pk

⎤

⎥
⎦

⎤

⎥
⎦

= Et,Xt

⎡

⎢
⎣1t1<T

d∑

k1=0

ak1 (t1, x1)
k1∏

j=1

Et1,x1

⎡

⎢
⎣1T j⊂[0,T ]×D

∏

{inner node (s,x,k) of T j}

ak(s, x)

pk

⎤

⎥
⎦

⎤

⎥
⎦

= Et,Xt

⎡

⎣1t1<T

d∑

k1=0

ak1 (t1, x1)
k1∏

j=1

ū(t1, x1)

⎤

⎦
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= Et,Xt

[
1t1<T F̄t1,x1 (ū(t,X

t1,x1
t ))

]

= Et,Xt

[∫ τ̄

t
μ(s)e− ∫ st μ(u)duF̄s,Xt,x

s
(ū(s,Xt,x

s ))ds

]

, 0 ≤ t ≤ τ̄ ,

i.e. Yt = ū(t,Xt) solves (32). �

If1τ<Tξ is given as a deterministic functionΨ (τ,Xτ ), then a similar approach (using
the same treeT ) can be applied to the full BSDE (I) in terms of the Cauchy–Dirichlet
PDE

(∂t + A )u + μ (F(u) − u) = 0 on [0,T ] × D, u(t, x) = Ψ (t, x) for t = T or x /∈ D,

(33)
where Ft,x(y) =∑d

k=0 ak(t, x)yk is such that

μ(Ft,x(y) − y) ≈ f (t, x, y), i.e. Ft,x(y) ≈ f (t, x, y)

μ
+ y.

This yields the approximation formula alternative to (31):

Θ0 ≈ E

⎡

⎣
∏

{inner node (t,x,k) of T }

ak(t, x)

pk

∏

{exit point (t,x) of T }
Ψ (t, x)

⎤

⎦ , (34)

where an exit point ofT means a point where a branch of the tree leaves for the first
time the time–space domain [0,T ] × D . Last, regarding the (F , Q) reduced BSDE
(III), assuming an (F , Q) Markov factor process X̃ with generator Ã and domain
D, we can apply a similar approach in terms of the Cauchy PDE

(∂t + Ã )̃u + μ
(
F̃t,x (̃u) − ũ

) = 0 on [0,T ] × D, ũ(t, x) = 0 for t = T or x /∈ D,

(35)
where F̃t,x(y) =∑d

k=0 ãk(t, x)y
k is such that

μ(F̃t,x(y) − y) ≈ f̃ (t, x, y), i.e. F̃t,x(y) ≈ f̃ (t, x, y)

μ
+ y.

We obtain

Θ0 = Θ̃0 ≈ Ẽ

⎡

⎣1T̃ ⊂[0,T ]×D

∏

inner node (t,x,k) of T̃

ãk(t, x)

pk

⎤

⎦ , (36)

where T̃ is the branching tree associated with the Cauchy PDE (35) (similar to T̃
but for the generator Ã ).
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5 TVA Models for Credit Derivatives

Our goal is to apply the above approaches to TVA computations on credit derivatives
referencing the names inN� = {1, . . . , n}, for somepositive integern, traded between
the bank and the counterparty respectively labeled as −1 and 0. In this section we
briefly survey twomodels of the default times τi, i ∈ N = {−1, 0, 1, . . . , n}, that will
be used for that purpose with τb = τ−1 and τc = τ0, namely the dynamic Gaussian
copula (DGC) model and the dynamic Marshall–Olkin copula (DMO) model. For
more details the reader is referred to [8, Chaps. 7 and 8] and [6, Sects. 6 and 7].

5.1 Dynamic Gaussian Copula TVA Model

5.1.1 Model of Default Times

Let there be given a function ς(·) with unit L2 norm on R+ and a multivariate
Brownian motion B = (Bi)i∈N with pairwise constant correlation ρ ≥ 0 in its own
completed filtrationB = (Bt)t≥0. For each i ∈ N , let hi be a continuously differen-
tiable increasing function from R

∗+ to R, with lim0 hi(s) = −∞ and lim+∞ hi(s) =
+∞, and let

τi = h−1
i

(
εi
)
, where εi =

∫ +∞

0
ς(u)dBi

u. (37)

Thus the (τi)i∈N follow the standard Gaussian copula model of Li [15], with corre-
lation parameter ρ and with marginal survival function Φ ◦ hi of τi, where Φ is the
standard normal survival function. In particular, these τi do not intersect each other.
In order to make the model dynamic as required by counterparty risk applications,
the model filtration G is given as the Brownian filtration B progressively enlarged
by the τi, i.e.

Gt = Bt ∨
∨

i∈N

(
σ(τi ∧ t) ∨ σ({τi > t})), ∀t ≥ 0, (38)

and the reference filtration F is given as B progressively enlarged by the default
times of the reference names, i.e.

Ft = Bt ∨
∨

i∈N�

(
σ(τi ∧ t) ∨ σ({τi > t})), ∀t ≥ 0. (39)

As shown in Sect. 6.2 of Crépey and Song [6], for the filtrations G andF as above,
there exists a (unique) probability measure P equivalent to Q such that the condition
(C) holds. For every i ∈ N , let

mi
t =
∫ t

0
ς(u)dBi

u, k
i
t = τi1{τi≤t},
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and let mt = (mi
t)i∈N , kt = (kit)i∈N , k̃t = (1i∈N�kit)i∈N . The couple Xt = (mt, kt)

(resp. X̃t = (mt, k̃t)) plays the role of a (G , Q) (resp. (F , P)) Markov factor process
in the dynamic Gaussian copula (DGC) model.

5.1.2 TVA Model

A DGC setup can be used as a TVA model for credit derivatives, with mark i =
−1, 0 and Eb = {−1}, Ec = {0}. Since there are no joint defaults in this model, it is
harmless to assume that the contract promises no cash-flow at τ , i.e.,Δτ = 0, so that
Qτ = Pτ . By [8, Propositions 7.3.1 p. 178 and 7.3.3 p. 181], in the case of vanilla
credit derivatives on the reference names, namely CDS contracts and CDO tranches
(cf. (47)), there exists a continuous, explicit function P̃i such that

Pτ = P̃i(τ, mτ , kτ−), (40)

or P̃i
τ in a shorthand notation, on the event {τ = τi}. Hence, (9) yields

f̄t(ϑ) + rtϑ = (1 − Rc)γ
0
t (P̃0

t )
+ − (1 − Rb)γ

−1
t (P̃−1

t )− + λ̄t(Pt − ϑ)+, ∀t ∈ [0, τ̄ ].

Assume that the processes r and λ̄ are given before τ as continuous functions of
(t,Xt), which also holds for P in the case of vanilla credit derivatives on names in
N . Then the coefficients f̄ and in turn f̃ are deterministically given in terms of the
corresponding factor processes as

f̄t(ϑ) = f̄ (t,Xt, ϑ), f̃t(ϑ) = f̃ (t, X̃t, ϑ),

so that we are in the Markovian setup where the FT and the PHL schemes are valid
and, in principle, applicable.

5.2 Dynamic Marshall–Olkin Copula TVA Model

The above dynamic Gaussian copula model allows dealing with TVA on CDS con-
tracts. But a Gaussian copula dependence structure is not rich enough for ensuring a
proper calibration to CDS andCDOquotes at the same time. If CDO tranches are also
present in a portfolio, a possible alternative is the following dynamicMarshall–Olkin
(DMO) copula model, also known as the “common shock” model.
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5.2.1 Model of Default Times

We define a familyY of “shocks”, i.e. subsets Y ⊆ N of obligors, usually consisting
of the singletons {−1}, {0}, {1}, . . . , {n}, and a few “common shocks” I1, I2, . . . , Im
representing simultaneous defaults. For Y ∈ Y , the shock time ηY is defined as an
i.i.d. exponential random variable with parameter γY . The default time of obligor i
in the common shock model is then defined as

τi = min
Y∈Y ,i∈Y

ηY . (41)

Example 1 Figure2 shows one possible default path in a common-shock model
with n = 3 and Y = {{−1}, {0}, {1}, {2}, {3}, {2, 3}, {0, 1, 2}, {−1, 0}}. The inner
oval shows which shocks happened and caused the observed default scenarios at
successive default times.

The full model filtration G is defined as

Gt =
∨

Y∈Y

(
σ(ηY ∧ t) ∨ σ({ηY > t})), ∀t ≥ 0.

Letting Y◦ = {Y ∈ Y ; −1, 0 /∈ Y}, the reference filtrationF is given as

Ft =
∨

Y∈Y◦

(
σ(ηY ∧ t) ∨ σ({ηY > t})), t ≥ 0.

t
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Fig. 2 One possible default path in the common-shock model with n = 3 and Y =
{{−1}, {0}, {1}, {2}, {3}, {2, 3}, {0, 1, 2}, {−1, 0}}
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As shown in Sect. 7.2 of Crépey and Song [6], in the DMO model with G and F
as above, the condition (C) holds for P = Q. Let JY = 1[0,ηY ). Similar to (m, k)

(resp. (m, k̃)) in the DGC model, the process

X = (JY )Y∈Y (resp. X̃ = (1Y∈Y◦J
Y )Y∈Y ) (42)

plays the role of a (G , Q) (resp. (F , Q)) Markov factor in the DMO model.

5.2.2 TVA Model

A DMO setup can be used as a TVA model for credit derivatives, with

Eb = Yb := {Y ∈ Y ; −1 ∈ Y}, Ec = Yc := {Y ∈ Y ; 0 ∈ Y}, E = Y• := Yb ∪ Yc

and
τb = τ−1 = min

Y∈Yb

ηY , τc = τ0 = min
Y∈Yc

ηY ,

hence
τ = min

Y∈Y•
ηY , γ = 1[0,τ )γ̃ with γ̃ =

∑

Y∈Y•

γY . (43)

By [8, Proposition 8.3.1 p. 205], in the case of CDS contracts and CDO tranches,
for every shock Y ∈ Y and process U = P or Δ, there exists a continuous, explicit
function ŨY such that

Uτ = ŨY (τ,Xτ−), (44)

or ŨY
τ in a shorthand notation, on the event {τ = ηY }. The coefficient f̄t(ϑ) in (9) is

then given, for t ∈ [0, τ̄ ], by

f̄t(ϑ) + rtϑ = (1 − Rc)
∑

Y∈Yc

γ Y
t

(
P̃Y
t + Δ̃Y

t

)+ − (1 − Rb)
∑

Y∈Yb

γ Y
t

(
P̃Y
t + Δ̃Y

t

)−

+ λ̄t(Pt − ϑ)+.

(45)
Assuming that the processes r and λ̄ are given before τ as continuous functions of
(t,Xt), which also holds for P in case of vanilla credit derivatives on the reference
names, then

f̄t(ϑ) = f̄ (t,Xt, ϑ), f̃t(ϑ) = f̄t(ϑ) − γ̃ ϑ = f̃ (t, X̃t, ϑ) (46)

(cf. (43)), so that we are again in a Markovian setup where the FT and the PHL
schemes are valid and, in principle, applicable.
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5.3 Strong Versus Weak Dynamic Copula Model

However, one peculiarity of the TVA BSDEs in our credit portfolio models is that,
even though full and reduced Markov structures have been identified, which is
required for justifying the validity of the FT and/or PHL numerical schemes, and the
corresponding generators A or Ã can be written explicitly, the Markov structures
are too heavy for being of any practical use in the numerics. Instead, fast and exact
simulation and clean pricing schemes are available based on the dynamic copula
structures.

Moreover, in the case of the DGC model, we lose the Gaussian copula structure
after a branching point in the PHL scheme. In fact, as visible in [8, Formula (7.7) p.
175], theDGCconditionalmultivariate survival probability function is stated in terms
of a ratio of Gaussian survival probability functions, which is explicit but does not
simplify into a single Gaussian survival probability function. It is only in the DMO
model that the conditional multivariate survival probability function, which arises
as a ratio of exponential survival probability functions (see [8, Formula (8.11) p.
197 and Sect. 8.2.1.1]), simplifies into a genuine exponential survival probability
function. Hence, the PHL scheme is not applicable in the DGC model.

The FT scheme based on (III) is not practical either because the Gaussian copula
structure is only under Q and, again, the (full or reduced) Markov structures are not
practical. In the end, the only practical scheme in the DGC model is the FT scheme
based on the partially reduced BSDE (II). Eventually, it is only in the DMO model
that the FT and the PHL schemes are both practical and can be compared numerically.

6 Numerics

For the numerical implementation,we consider stylizedCDScontracts andprotection
legs of CDO tranches corresponding to dividend processes of the respective form,
for 0 ≤ t ≤ T :

Di
t = ((1 − Ri)1t≥τi − Si(t ∧ τi)

)
Nomi

Dt =
((

(1 − R)
∑

j∈N
1t≥τj − (n + 2)a

)+ ∧ (n + 2)(b − a)
)
Nom, (47)

where all the recoveries Ri and R (resp. nominals Nomi and Nom) are set to 40%
(resp. to 100). The contractual spreads Si of the CDS contracts are set such that
the corresponding prices are equal to 0 at time 0. Protection legs of CDO tranches,
where the attachment and detachment points a and b are such that 0 ≤ a ≤ b ≤
100%, can also be seen as CDO tranches with upfront payment. Note that credit
derivatives traded as swaps or with upfront payment coexist since the crisis. Unless
stated otherwise, the following numerical values are used:
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r = 0,Rb = 1,Rc = 40%, λ̄ = 100 bp = 0.01, μ = 2

T
,m = 104.

6.1 Numerical Results in the DGC Model

First we consider DGC random times τi defined by (37), where the function hi
is chosen so that τi follows an exponential distribution with parameter γi (which
in practice can be calibrated to a related CDS spread or a suitable proxy). More
precisely, let Φ and Ψi be the survival functions of a standard normal distribution
and an exponential distribution with intensity γi. We choose hi = Φ−1 ◦ Ψi, so that
(cf. (37))

Q(τi≥t) = Q
(
Ψ −1
i (Φ (εi)) ≥t

) = Q

(
Φ (εi) ≤ Ψi(t)

)
= Ψi(t),

for Φ (εi) has a standard uniform distribution. Moreover, we use a function ς(·) in
(37) constant before a time horizon T̄ > T and null after T̄ , so that ς(0) = 1√

T̄
(given

the constraint that ν2(0) = ∫∞
0 ς2(s)ds = 1) and, for t ≤ T̄ ,

ν2(t) =
∫ ∞

t
ς2(s)ds = T̄ − t

T̄
, mi

t =
∫ t

0
ς(u)dBi

u = 1√
T̄
Bi
t,

∫ ∞

0
ς(u)dBi

u = 1√
T̄
Bi
T̄
.

In the case of the DGC model, the only practical TVA numerical scheme is the FT
scheme (24) based on the partially reduced BSDE (II), which can be described by
the following steps:

1. Draw a time ζ1 following an exponential law of parameter μ. If ζ1 < T , then
simulatemζ1 = ( 1√

T̄
Bi

ζ1
)l∈N ∼ N (0, ζ1

T̄
In(1, ρ)), where In(1, ρ) is a n × nmatrix

with diagonal equal to 1 and all off-diagonal entries equal to ρ, and go to Step 2.
Otherwise, go to Step 4.

2. Draw a second time ζ2, independent from ζ1, following an exponential law of
parameter μ. If ζ1 + ζ2 < T , then obtain the vector mζ1+ζ2 as mζ1 + (mζ1+ζ2 −
mζ1), where mζ1+ζ2 − mζ1 = ( 1√

T̄
(Bi

ζ1+ζ2
− Bi

ζ1
))l∈N ∼ N (0, ζ2

T̄
In(1, ρ)), and go

to Step 3. Otherwise, go to Step 4.
3. Draw a third time ζ3, independent from ζ1 and ζ2, following an exponen-

tial law of parameter μ. If ζ1 + ζ2 + ζ3 < T , then obtain the vector mζ1+ζ2+ζ3

as mζ1+ζ2 + (mζ1+ζ2+ζ3 − mζ1+ζ2), where mζ1+ζ2+ζ3 − mζ1+ζ2 = ( 1√
T̄
(Bi

ζ1+ζ2+ζ3
−

Bi
ζ1+ζ2

))l∈N ∼ N (0, ζ3
T̄
In(1, ρ)). Go to Step 4.
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4. Simulate the vector mT̄ from the last simulated vector mt (t = 0 by default) as
mt + (mT̄ − mt), where mT̄ − mt = ( 1√

T̄
(Bi

T̄
− Bi

t))i∈N ∼ N (0, T̄−t
T̄
In(1, ρ)).

Deduce (Bi
T̄
)i∈N , hence τi = Ψ −1

i ◦ Φ
(

1√
T̄
Bi
T̄

)
, i ∈ N , and in turn the vectors kζ1

(if ζ1 + ζ2 + ζ3 < T ), kζ1+ζ2 (if ζ1 + ζ2 < T ) and kζ1+ζ2+ζ3 (if ζ1 + ζ2 + ζ3 < T ).
5. Compute f̄ζ1 , f̄ζ1+ζ2 , and f̄ζ1+ζ2+ζ3 for the three orders of the FT scheme.

WeperformTVAcomputations onCDScontractswithmaturityT = 10 years, choos-
ing for that matter T̄ = T + 1 = 11 years, hence ς = 1[0,11]√

11
, for ρ = 0.6 unless oth-

erwise stated. Table1 displays the contractual spreads of the CDS contracts used in
these experiments. In Fig. 3, the left graph shows the TVA on a CDS on name 1,
computed in a DGC model with n = 1 by FT scheme of order 1 to 3, for different
levels of nonlinearity represented by the value of the unsecured borrowing spread
λ̄. The right graph shows similar results regarding a portfolio comprising one CDS
contract per name i = 1, . . . , 10. The time-0 clean value of the default leg of the
CDS in case n = 1, respectively the sum of the ten default legs in case n = 10, is
4.52, respectively 40.78 (of course P0 = 0 in both cases by definition of fair contrac-
tual spreads). Hence, in relative terms, the TVA numbers visible in Fig. 3 are quite
high, much greater for instance than in the cases of counterparty risk on interest rate
derivatives considered in Crépey et al. [7]. This is explained by the wrong-way risk
feature of the DGCmodel, namely, the default intensities of the surviving names and
the value of the CDS protection spike at defaults in this model. When λ̄ increases
(for λ̄ = 0 that’s a case of linear TVA where FT higher order terms equal 0), the
second (resp. third) FT term may represent in each case up to 5–10% of the first

Table 1 Time-0 bp CDS spreads of names −1 (the bank), 0 (the counterparty) and of the reference
names 1 to n used when n = 1 (left) and n = 10 (right)
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Fig. 3 Left DGC TVA on one CDS computed by FT scheme of order 1–3, for different levels of
nonlinearity (unsecured borrowing spread λ̄). Right similar results regarding the portfolio of CDS
contracts on ten names
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Fig. 5 Left the % relative standard errors of the different orders of the expansions do not explode
with the number of names (λ̄ = 100 bp). Middle the % relative standard errors of the different
orders of the expansions do not explode with the level of nonlinearity represented by the unsecured
borrowing spread λ̄ (n = 1). Right since FT terms are computed by purely forward Monte Carlo
schemes, their computation times are linear in the number of names (λ̄ = 100 bp)

(resp. second) FT term, from which we conclude that the first FT term can be used
as a first order linear estimate of the TVA, with a nonlinear correction that can be
estimated by the second FT term.

In Fig. 4, the left graph shows the TVA on one CDS computed by FT scheme of
order 3 as a function of the DGC correlation parameter ρ, with other parameters set
as before. The right graph shows the analogous results regarding the portfolio of ten
CDS contracts. In both cases, the TVA numbers increase (roughly linearly) with ρ,

including for high values of ρ, as desirable from the financial interpretation point of
view, whereas it has been noted in Brigo and Chourdakis [1] (see the blue curve in
Fig. 1 of the ssrn version of the paper) that for high levels of the correlation between
names, other models may show some pathological behaviors.

In Fig. 5, the left graph shows that the errors, in the sense of the relative standard
errors (% rel. SE), of the different orders of the FT scheme do not explode with the
dimension (number of credit names that underlie the CDS contracts). The middle
graph, produced with n = 1, shows that the errors do not explode with the level
of nonlinearity represented by the unsecured borrowing spread λ̄. Consistent with
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the fact that the successive FT terms are computed by purely forward Monte Carlo
schemes, their computation times are essentially linear in the number of names, as
visible in the right graph.

To conclude this section,we compare the linear approximation (14) corresponding
to the first FT term in (24) (FT1 in Table2) with the linear approximations (12)–
(13) (LA in Table2). One can see from Table2 that the LA and FT1 estimates are
consistent (at least in the sense of their 95% confidence intervals, which always
intersect each other). But the LA standard errors are larger than the FT1 ones. In
fact, using the formula for the intensity γ of τ in FT1 can be viewed as a form of
variance reduction with respect to LA, where τ is simulated. Of course, for λ̄ �= 0
(case of the right tables where λ̄ = 3%), both linear approximations are biased as
compared with the complete FT estimate (with nonlinear correction, also shown in
Table2), particularly in the high dimensional case with 10 CDS contracts (see the
bottom panels in Table2). Figure6 completes these results by showing the LA, FT1

Table 2 LA, FT1 and FT estimates: 1 CDS (top) and 10 CDSs (bottom), with parameters λ̄ = 0%,
ρ = 0.8 (left) and λ̄ = 3%, ρ = 0.6 (right)
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Fig. 6 The % relative standard errors of the different schemes do not explode with the level of
nonlinearity represented by the unsecured borrowing spread λ̄. Left 1 CDS.Middle 10 CDSs. Right
the % relative standard errors of the different schemes (LA, FT1, FT in figures) do not explode with
the number of names (λ̄ = 100 bp, ρ = 0.6)
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and FT standard errors computed for different levels of nonlinearity and different
dimensions.

Summarizing, in the DGC model, the PHL is not practical. The FT scheme based
on the partially reduced TVA BSDE (II) gives an efficient way of estimating the
TVA. The nonlinear correction with respect to the linear approximations (14) or (15)
amounts up to 5% in relative terms, depending on the unsecured borrowing spread
λ̄.

6.2 Numerical Results in the DMO Model

In the DMO model, the FT scheme (18) for the fully reduced BSDE (23) can be
implemented through following steps:

1. Simulate the time ηY of each (individual or joint) shock following an independent
exponential law of parameter γY , Y ∈ Y , then retrieve the τi through the formula
(41).

2. Draw a time ζ1 following an exponential law of parameter μ. If ζ1 < T , compare
the default time of each name with ζ1 to obtain the reduced Markov factor X̃ζ1 as
of (42) and in turn f̃ζ1 as of (45)–(46), then go to Step 3. Otherwise stop.

3. Draw a second time ζ2 following an independent exponential law of parameterμ.
If ζ1 + ζ2 < T , compare the default time τi of each name with ζ1 + ζ2 to obtain
the Markov factor X̃ζ1+ζ2 and f̃ζ1+ζ2 then go to Step 4. Otherwise stop.

4. Draw a third time ζ3 following an independent exponential law of parameter μ.
If ζ1 + ζ2 + ζ3 < T , compare the default time of each name with ζ1 + ζ2 + ζ3 to
obtain the Markov factor X̃ζ1+ζ2+ζ3 and f̃ζ1+ζ2+ζ3 .

We can also consider the PHL scheme (31) based on the partially reduced BSDE
(II) with

D = {x = (xY )Y∈Y ∈ {0, 1}Y such that xY = 1 for Y ∈ Y•}.

To simulate the random treeT in (31), we follow the approach sketched before (31)
where, in order to evolveX according to the DMOgeneratorA during a time interval
ζ, a particle born from a node x = (jY )Y∈Y ∈ {0, 1}Y at time t, all one needs is, for
each Y such that jY = 1, draw an independent exponential random variable ηY of
parameter γY and then set x′ = (jY1[0,ηY )(ζ ))Y∈Y . Rephrasing in more algorithmic
terms:

1. To simulate the random tree T under the expectation in (31), we repeat the fol-
lowing step (generation of particles, or segments between consecutive nodes of
the tree) until a generation of particles dies without children:

For each node (t, x = (jY )Y∈Y , k) issued from the previous generation of particles
(starting with the root-node (0,X0, k = 1)), for each of the k new particles, indexed by
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l, issued from that node, simulate an independent exponential random variable ζl and
set

(t′l , x
′
l, k

′
l) = (t + ζl, (jY1[0,ηlY )(ζl))Y∈Y ,1x′

l∈Dνl),

where, for each l, theηlY are independent exponential-γY randomdraws and νl is an inde-
pendent draw in the finite set {0, 1, . . . , d}with some fixed probabilities p0, p1, . . . , pd .

2. To compute the random variable Φ under the expectation in (31), we loop over
the nodes of the tree T thus constructed (if T ⊂ [0,T ] × D, otherwise Φ = 0
in the first place) and we form the product in (31), where the āk(t, x) are retrieved
as in (30).

The PHL schemes (34) based on the full BSDE (I) or (36) based on the fully reduced
BSDE (III) can be implemented along similar lines.

We perform TVA computations in a DMO model with n = 120, for individual
shock intensities taken as γ{i} = 10−4 × (100 + i) (increasing from ∼100 bps to
220 bps as i increases from 1 to 120) and four nested groups of common shocks I1 ⊂
I2 ⊂ I3 ⊂ I4, respectively consisting of the riskiest 3, 9, 21 and 100% (i.e. all) names,
with respective shock intensities γI1 = 20 bp, γI2 = 10 bp, γI3 = 6.67 bp and γI4 = 5
bp. The counterparty (resp. the bank) is taken as the eleventh (resp. tenth) safest name
in the portfolio. In the model thus specified, we consider CDO tranches with upfront
payment, i.e. credit protection bought by the bank from the counterparty at time
0, with nominal 100 for each obligor, maturity T = 2 years and attachment (resp.
detachment) points are 0, 3 and 14% (resp. 3%, 14% and 100%). The respective
value of P0 (upfront payment) for the equity, mezzanine and senior tranche is 229.65,
5.68, and 2.99. Accordingly, the ranges of approximation chosen for pol(y) ≈ y+ in
the respective PHL schemes are 250, 200, and 10.We use polynomial approximation
of order d = 4 with (p0, p1, p2, p3, p4) = (0.5, 0.3, 0.1, 0.09, 0.01). We set μ = 0.1
in all PHL schemes and μ = 2/T = 0.2 in all FT schemes.
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Fig. 7 TVA on CDO tranches with 120 underlying names computed by FT scheme of order 1–3 for
different levels of nonlinearity (unsecured borrowingbasis λ̄).Left equity tranche.Middlemezzanine
tranche. Right senior tranche. Originally published in Crépey and Song [6]. Published with kind
permission of©Springer-Verlag Berlin Heidelberg 2016. All Rights Reserved. This figure is subject
to copyright protection and is not covered by a Creative Commmons License
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Table 3 FT, PHL, PHL and ˜PHL schemes applied to the equity (top), mezzanine (middle), and
senior (bottom) tranche, for the parameters λ̄ = 0%, λIj = 60bp/j (left) or λ̄ = 3%, λIj = 20bp/j
(right)

Figure7 shows the TVA computed by the FT scheme (23) based on the fully
reduced BSDE (III), for different levels of nonlinearity (unsecured borrowing
basis λ̄). We observe that, in all cases, the third order term is negligible. Hence,

30 60 90 120
0.5

1

1.5

2

2.5

3

3.5

Number of obligors

%
 r

el
 S

E

Error of TVA of mezzanine tranche
with different dimensions

1st order
2nd order
3rd order

0% 1% 2% 3%
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

λ̄

%
 r

el
 S

E

Error of TVA of mezzanine tranche
with different borrowing spreads

1st order
2nd order
3rd order

30 60 90 120
0

100

200

300

400

500

600

700

800

900

Number of obligors

C
P

U
 ti

m
e 

(s
)

CPU time with different dimensions

1st order
2nd order
3rd order
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Fig. 9 Bottom the % relative standard errors do not explode with the number of names
(λ̄ = 100 bp). Top the % relative standard errors do not explode with the level of nonlinearity
represented by the unsecured borrowing spread λ̄ (n = 120). Left FT scheme.Middle ˜PHL scheme.
Right PHL scheme

in further FT computations, we only compute the orders 1 (linear part) and 2
(nonlinear correction) (Fig. 8). Table3 compares the results of the above FT scheme
(23) based on the fully reduced BSDE (III) with those of the PHL schemes (36)
based on (III) again (P̃HL in the tables), (31) based on the partially reduced BSDE
(II) (PHL in the tables) and (34) based on the full BSDE (I) (PHL in the tables),
for the three CDO tranches and two sets of parameters. The three PHL schemes are
of course slightly biased, but the first two, based on the BSDEs with null terminal
condition (III) or (II), exhibit much less variance than the third one, based on the
full BSDE with terminal condition ξ . This is also visible in Fig. 9 (note the different
scales of the y axes going from left to right in the picture), which also shows that, for
any of these schemes, the relative standard errors do not explode with the level of
nonlinearity or the number of reference names in the CDO (the results for the PHL
scheme are not shown on the figure as very similar to those of the P̃HL scheme). In
comparing the TVA values on the left and the right hand side of Table3, we see that
the intensities of the common shocks, which play a role similar to the correlation ρ

in the DGCmodel, have a more important impact on the higher tranches (mezzanine
and senior tranche), whereas the equity tranche is more sensitive to the level of the
unsecured borrowing spread λ̄.
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7 Conclusion

Under mild assumptions, three equivalent TVA BSDEs are available. The original
“full” BSDE (I) is stated with respect to the full model filtration G and the original
pricing measure Q. It does not involve the intensity γ of the counterparty first-to-
default time τ. The partially reduced BSDE (II) is also stated with respect to (G , Q)

but it involves both τ and γ . The fully reduced BSDE (III) is stated with respect to a
smaller “reference filtration” F and it only involves γ. Hence, in principle, the full
BSDE (I) should be preferred for models with a “simple” τ whereas the fully reduced
BSDE (III) should be preferred for models with a “simple” γ . But, in nonimmersive
setups, the fully reduced BSDE (III) is stated with respect to a modified probability
measure P. Even though switching from (G , Q) to (F , P) is transparent in terms of
the generator of related Markov factor processes, this can be an issue in situations
where the Markov structure is important in the theory to guarantee the validity of the
numerical schemes, but is not really practical from an implementation point of view.
This is for instance the casewith the credit portfoliomodels thatwe use for illustrative
purposes in our numerics, where theMarkov structure that emerges from the dynamic
copula model is too heavy and it is only the copula features that can be used in the
numerics—copula features under the original stochastic basis (G , Q), which do not
necessarily hold under a reduced basis (F , P) (especially when P �= Q). As for the
partially reduced BSDE (II), as compared with the full BSDE (I), its interest is its
null terminal condition, which is key for the FT scheme as recalled below. But of
course (II) can only be used when one has an explicit formula for γ .

For nonlinear and very high-dimensional problems such as counterparty risk on
credit derivatives, the only feasible numerical schemes are purely forward simu-
lation schemes, such as the linear Monte Carlo expansion of Fujii and Takahashi
[9, 10] or the branching particles scheme of Henry–Labordère [13], respectively
dubbed “FT scheme” and “PHL scheme” in the paper. In our setup, the PHL scheme
involves a nontrivial and rather sensitive fine-tuning for finding a polynomial in ϑ

that approximates the terms (Pt − ϑ)± in fvat(ϑ) in a suitable range for ϑ . This fine-
tuning requires a preliminary knowledge on the solution obtained by running another
approximation (linear approximation or FT scheme) in the first place. Another lim-
itation of the PHL scheme in our case is that it is more demanding than the FT
scheme in terms of the structural model properties that it requires. Namely, in our
credit portfolio problems, both aMarkov structure and a dynamic copula are required
for the PHL scheme. But, whereas a “weak” dynamic copula structure in the sense
of simulation and forward pricing by copula means is sufficient for the FT scheme,
a dynamic copula in the stronger sense that the copula structure is preserved in the
future is required in the case of the PHL scheme. This strong dynamic copula prop-
erty is satisfied by our common-shock model but not in the Gaussian copula model.
In conclusion, the FT schemes applied to the partially or fully reduced BSDEs (II)
or (III) (a null terminal condition is required so that the full BSDE (I) is not eligible
for this scheme) appear as the method of choice on these problems.
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An important message of the numerics is that, even for realistically high levels
of nonlinearity, i.e. an unsecured borrowing spread λ̄ = 3%, the third order FT
correction was always found negligible and the second order FT correction less than
5–10% of the first order, linear FT term. In conclusion, a first order FT term can
be used for obtaining “the best linear approximation” to our problem, whereas a
nonlinear correction, if wished, can be computed by a second order FT term.
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Tight Semi-model-free Bounds
on (Bilateral) CVA

Jördis Helmers, Jan-J. Rückmann and Ralf Werner

Abstract In the last decade, counterparty default risk has experienced an increased
interest both by academics as well as practitioners. This was especially motivated
by the market turbulences and the financial crises over the past decade which have
highlighted the importance of counterparty default risk for uncollateralized deriv-
atives. After a succinct introduction to the topic, it is demonstrated that standard
models can be combined to derive semi-model-free tight lower and upper bounds on
bilateral CVA (BCVA). It will be shown in detail how these bounds can be easily
and efficiently calculated by the solution of two corresponding linear optimization
problems.

Keywords Counterparty credit risk · CVA · Tight bounds · Mass transportation
problem

1 Introduction

Events such asLehman’s default have drawn the attention to counterparty default risk.
At the very latest after this default, it has become obvious to all market participants
that the credit qualities of both counterparties—usually a client and an investment
bank—need to be considered in the pricing of uncollateralized OTC derivatives.
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Over the past years, several authors have been investigating the pricing of deriva-
tives based on a variety of models which take into account these default risks. Most
of these results are covered by a variety of excellent books, for example Pykhtin [16],
Gregory [12], or Brigo et al. [7] just to name a few. For a profound discussion on the
pros and cons of unilateral versus bilateral counterparty risk let us refer to the two
articles by Gregory [11, 13].

In the following exposition, we are concerned with the quantification of the small-
est and largest BCVAwhich can be obtained by any given model with predetermined
marginal laws. This takes considerations of Turnbull [21] much further, who first
derived weak bounds on CVA for certain types of products. Our approach extends
first ideas from Hull and White [15], where the hazard rate determining defaults
is coupled to the exposure or other risk factors in either deterministic or stochastic
way. Still, Hull and White rely on an explicit choice of the default model and on
an explicit coupling. More related is the work by Rosen and Saunders et al. [8, 17],
on which we prefer to comment later in Remark8. As the most related work we
note the paper by Cherubini [9] which provided the basis for this semi-model-free
approach. There, only one particular two-dimensional copula was used to couple
each individual forward swap par rate with the default time. Obviously, a more gen-
eral approach couples each forward swap par rate with each other and the default
time—which is in gist similar to Hull andWhite [15]. From there the final step to our
approach is to observe that the most general approach directly links the whole sto-
chastic evolution of the exposure with both random default times. We will illustrate
in the following that these couplings can be readily derived by linear programming.
For this purpose the BCVAwill be decomposed into three main components: the first
component is represented by the loss process, the second component consists of the
default indicators of the two counterparties and the third component is comprised of
the exposure-at-default of the OTC derivative, i.e. the risk-free present value of the
outstanding amount1 at time of default. This approach takes further early consider-
ations of Haase and Werner [14], where comparable results were obtained from the
point of view of generalized stopping problems.

In a very recent working paper by Scherer and Schulz [18], the above idea was
analyzed in more detail. It was shown that the computational complexity of the
problem is the same, no matter if only marginal distributions of defaults or the joint
distribution of defaults are known.

After submission of this paper we became aware of related results by Glasserman
and Yang, see [10]. Although the main idea of their exposition is similar in gist,
Glasserman and Yang focus on the unilateral CVA instead of bilateral CVA. Besides
an analysis of the convergence of finite samples to the continuous setup, their exposi-
tion is mainly focused on the penalization of deviation from some base distribution.
In contrast, our focus is on bilateral CVA, with special attention to numerical solution
and to the case that payoffs also depend on the credit quality.

1In accordance with the full two-way payment rule under ISDA master contracts, see e.g. Bielecki
and Rutkowski [2] (Sect. 14.4.4), we assume that the close-out value is determined by the then
prevailing risk-free present value.
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In summary, this exposition makes the following main contributions:

• First, the three main building blocks of such an adjustment are clearly identified
and separated, and it is shown how any coupling of these blocks leads to a feasible
adjustment. Unlike Cherubini, who only considered the very specific case of an
interest rate swap, all kinds of derivatives (interest rate, FX, commodity, and even
credit derivatives) are covered in a unified way—even if the payoff, and thus the
present value of the derivative, is explicitly depending on the credit quality of any
of the two counterparties.

• Second, by generalizing Cherubini’s approach, upper and lower bounds on
unilateral and bilateral counterparty value adjustments are derived. It will be
demonstrated that these bounds can be efficiently obtained by the solution of linear
optimization problems, more specifically, by the solution of balanced transporta-
tion problems. In contrast to the approaches of Turnbull [21] or Cherubini [9], both
the upper and lower bound derived here are tight bounds, i.e. there exists some
stochastic model which is consistent with all given market prices in which these
bounds are attained.

The rest of the paper is organized as follows. In Sect. 2 a succinct introduction to
bilateral counterparty risk is given, before the decomposition of the BCVA into its
building blocks is carried out in Sect. 3. In Sect. 4 the two main approaches for the
calculation of counterparty valuation adjustments are briefly reviewed. Finally, the
tight bounds on CVA are derived in Sect. 5, before the paper concludes.

2 Counterparty Default Risk

As usual, to model financial transactions with default risk, let (Ω,G ,Gt,Q) be a
probability space where Gt models the flow of information and Q denotes the risk-
neutral measure for a given risk-free numéraire process Nt > 0, see e.g. Bielecki
and Rutkowski [2] for more details. Further, let the space be endowed with a right-
continuous and complete sub-filtration Ft modeling the flow of information except
default, such thatFt ⊆ Gt := Ft ∨ Ht withHt being the right-continuous filtration
generated by the default events.

Subsequently, we consider a transaction with maturity T between a client A and
a counterparty B where both are subject to default. The respective random default
times are denoted by τA and τB. In order to take into account counterparty default
risk we distinguish three cases:

• neither A nor B defaults before T : D0 := {τA > T} ∩ {τB > T},
• A defaults before B and before T : DA := {τA ≤ T} ∩ {τA ≤ τB},
• B defaults before A and before T : DB := {τB ≤ T} ∩ {τB ≤ τA}.
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For simplicity of presentation, we assume in the following thatQ[τA = T ] = Q[τB =
T ] = Q[τA = τB] = 0. Under this assumption these sets2 yield a decomposition of
one, i.e. it holds

1D0 + 1DA + 1DB = 1 Q-almost-surely.

In the following, let us consider a transaction consisting of cash flows C(B,A,Ti)
paid by the counterpartyB at times Ti, i = 1, . . . ,mB, and cash flowsC(A,B,Tj) paid
by the client A at times Tj, j = 1, . . . ,mA. Taking into account default risk of both
counterparties, the quantification of the bilateral CVA is summarized in the following
well-known theorem, which in essence goes back to Sorensen and Bollier [19].

Theorem 1 Conditional on the event {t < min(τA, τB)}, i.e. no default has occurred
until time t, the value VD

A (t,T) of the transaction under consideration of bilateral
counterparty risk at time t is given by

VD
A (t,T) = VA(t,T) − CVAA(t,T) = −(

VB(t,T) − CVAB(t,T)
) = −VD

B (t,T)

where the risk-free present value of the transaction is given as

VA(t,T) = E

[
mB∑

i=1

Nt

NTi

· C(B,A,Ti)

∣∣∣∣∣
Ft

]

− E

⎡

⎣
mA∑

j=1

Nt

NTj

· C(A,B,Tj)

∣∣∣∣∣∣
Ft

⎤

⎦

= −VB(t,T)

and where the bilateral counterparty value adjustment CVAA(t,T) is defined as

CVAA(t,T) :=E

[
1DB · Nt

NτB

· LB
τB

· max(0, VA(τB,T)) |Gt

]

− E

[
1DA · Nt

NτA

· LA
τA

· max(0, VB(τA,T)) |Gt

]

= − CVAB(t,T). (1)

Here Li
t denotes the random loss (between 0 and 1) of counterparty i at time t.

Proof A proof of Theorem 1 can be found in Bielecki and Rutkowski [2], Formula
(14.25) or Brigo and Capponi [4], Proposition 2.1 and Appendix A, respectively.

Based on Theorem 1, the general approach for the calculation of the counterparty
risk adjusted value VD

A (t,T) is to determine first the risk-free value VA(t,T) of the
transaction. This can be done by any common valuation method for this kind of
transaction. In a second step the counterparty value adjustment CVAA(t,T) needs to
be determined. So far, two main approaches have emerged in the academic literature,
which will be briefly reviewed in Sect. 4.

2We note that Brigo et al. (in [4, 6]) use different sets to order the default times, which are in essence
reducible to the above three events.
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3 The Main Building Blocks of CVA

Subsequently, let us assume that the default times τi with i ∈ {A,B} can only take a
finite number of values {t̄1, . . . , t̄K} in the interval ]0,T [. For continuous timemodels
this assumption can be justified by the default bucketing approach, which can, for
example, be found in Brigo and Chourdakis [5], if K is chosen sufficiently large.
To be able to separate the default dynamics from the market value dynamics, let us
introduce the auxiliary time s, s ∈ [t,T ] and the discounted market value

Ṽ+
i (t, s,T) := Nt

Ns
· max(0, Vi(s,T)).

Then we can rewrite Eq. (1) as:

CVAA(t,T) = E

[
K∑

k=1

LB
t̄k

· 1DB · 1t̄k (τB) · Ṽ+
A (t, t̄k,T) |Gt

]

(2)

−E

[
K∑

k=1

LA
t̄k

· 1DA · 1t̄k (τA) · Ṽ+
B (t, t̄k,T) |Gt

]

.

Here,1M is the indicator function of the setM; ifM = {m}we simplywrite1m instead.
Now, collecting all terms relating to the default in the default indicator process δ,

δik := 1Di · 1t̄k (τi),

we can rewrite the BCVA in a more compact manner as

CVAA(t,T) = E

[
K∑

k=1

LB
t̄k

· δBk · Ṽ+
A (t, t̄k,T) |Gt

]

(3)

−E

[
K∑

k=1

LA
t̄k

· δAk · Ṽ+
B (t, t̄k,T) |Gt

]

.

From Eq. (3) we immediately see that the BCVA at time t is composed of six discrete
time3 processes:

• two default indicator processes δAs and δBs ,
• two loss processes LA

s and LB
s , and

• two discounted exposure processes Ṽ+
A (t, s,T) and Ṽ+

B (t, s,T).

In this way, we are able to separate the default dynamics δ from the loss process L
and the exposure process Ṽ . From this decomposition, it becomes obvious that the
BCVA is completely determined by the joint distribution of these six processes.

3In the following, we replace the time index t̄k with k for notational convenience.
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Remark 1 We note that in general it is even sufficient to model four processes
(loss dynamics and market value dynamics) plus a two-dimensional random variable
(τA, τB). However, in the case of finitely many default times, it is more convenient
to work with the default indicator process instead.

Remark 2 For simplicity of the subsequent exposition, we assume that the loss
process is actually constant and equals 1: Li

t = li = 1. The theory of the remainder
of this exposition is not affected by this simplifying assumption, with one notable
exception: the resulting two-dimensional transportation problems will become a
multi-dimensional transportation problemwhich renders its numerical solutionmore
complex, but still feasible.

Remark 3 As we have noted, the default indicator process can only take a finite
number of values in the bucketing approach. More exactly, it holds that the joint (i.e.
two-dimensional) default indicator process δ = (δk)k=1,...,K ∈ R2×K , defined by

δk :=
(

δAk
δBk

)
, k = 1, . . . ,K,

takes only values in the finite set

Y :=
⎧
⎨

⎩
γ ∈ R2×K | γi,k ∈ {0, 1},

∑

i,k

γi,k ≤ 1

⎫
⎬

⎭

which has exactly 2K + 1 elements. Therefore, the discrete time default indicator
process is also a process with a finite state space.

Let us further introduce the joint exposure process in analogy to the above,

Xk :=
(
Ṽ+
A (t,t̄k ,T)

Ṽ+
B (t,t̄k ,T)

)
, k = 1, . . . ,K .

Then it holds

CVAA(t,T) =
K∑

k=1

(
E

[
δBk · XA

k |Gt
] − E

[
δAk · XB

k |Gt
])

. (4)

To avoid technical considerations for brevity of presentation, we prefer to work
with discrete processes (i.e. discrete state space) in discrete time. Thus, it may be
necessary to discretize the state space of the remaining discounted exposure process.
In general, there exist (at least) two different approaches how a suitable discrete state
space version of the process X could be obtained:

• In the first approach—completely similar to the default bucketing approach—
the state space R2×K for the joint exposure process X is divided into N disjoint
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components. Then X is replaced by some representative value on this component
(usually an average value) on each of the components, and the probabilities of the
discretized process are set in accordance with the original probabilities of each
component (cf. the default bucketing approach).

• From a computational and practical point of view, a much more convenient
approach relies on Monte Carlo simulation: N different scenarios (i.e. realiza-
tions) of the process X are used instead of the original process. Each realization is
assumed to have probability 1/N .

For both approaches it is known that they converge at least4 in distribution to the
original process, which is sufficient for our purposes. For more details on the con-
vergence, let us refer to the recent working paper by Glasserman and Yang [10].

4 Models for Counterparty Risk

In the last decade two main approaches have emerged in the literature how to model
the individual, resp. joint distribution of the processes δ and X:

• The most popular approach is based on the rather strong assumption of indepen-
dence between exposure and default. Based on this independence assumption, only
individual models for δ and X need to be specified for the CVA calculation. This
kind of independence assumption is quite standard in the market, see for example
the Bloomberg CVA function (for more details on the Bloomberg model let us
refer to Stein and Lee [20]).

• Alternatively, andmore recently, amore general approach is based on a jointmodel
(also called hybrid model) for the building blocks δ and X of the CVA calculation,
see Sect. 4.3.

4.1 Independence of CVA Components

Let us assume that the exposure process X is independent of the default process δ.
Then the expectation inside the summation can be split into two parts:

K∑

k=1

E
[
δBk · XA

k |Gt
] =

K∑

k=1

E
[
δBk |Gt

] · E [
XA
k |Gt

]
. (5)

4The Monte Carlo approach converges in distribution due to the Theorem of Glivenko–Cantelli.
For state space discretization, if for example conditional expectations are used on each bucket, then
convergence is in fact almost surely and in L1 due Lévy’s 0–1 law.
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It is well known that the expected value

E
[
XA
k |Gt

] = E
[
Ṽ+
A (t, t̄k,T)

∣∣Gt
] = E

[
Nt

Nt̄k

· max(VA(t, t̄k,T), 0)

∣
∣∣∣Ft

]
(6)

matches exactly the price of a call option on the basis transaction at time t with strike
0 and exercise time t̄k . The CVA equation can hence be rewritten as

CVAA(t,T) =
K∑

k=1

(
E

[
δBk |Gt

] · E [
XA
k |Gt

] − E
[
δAk |Gt

] · E [
XB
k |Gt

])
, (7)

and thus the BCVA can be calculated without any further problems as the corre-
sponding default probabilities5 E

[
δBk |Gt

] = Q [τB ∈ Δk, τB ≤ τA|Gt] can be easily
computed from any given credit risk model: in order to calculate the probability
Q [τB ∈ Δk, τB ≤ τA|Gt], the default times τA and τB together with their dependence
structure have to be modeled. One of the most popular models for default times in
general are intensity models, as for example described in Bielecki and Rutkowsi [2],
Part III.

Remark 4 It has to be noted that a model with deterministic default intensities plus
a suitable copula is sufficient for the arbitrary specification of the joint distribution
of default times. Stochastic intensities do not add any value in this context. This is
true as long as the default risk-free discounted present value is independent of the
credit quality of each counterpart. This means that the payoff itself is not allowed to
be linked explicitly to the credit quality of any counterparty.

Remark 5 Let us point out that the intensity model is just one specific example
how default times could be modeled. The big advantage of our approach is that any
arbitrary credit risk model can be used instead, as only the distribution of the default
indicator δ finally matters. In case only marginal default models are available, we
can also take into account the remaining unknown dependence between the default
times, however, at the price of a higher dimensional transportation problem.

4.2 Modeling Options on the Basis Transaction

Since it could be observed in Eq. (6) that options on the basis transaction need to be
priced, a suitable model for this option pricing task needs to be available. Depending
on the type of derivative, any model which can be reasonably well calibrated to
the market data is sufficient. For instance, for interest rate derivatives, any model
ranging from a simple Vasicek or CIR model to sophisticated Libor market models
or two-factor Hull–White models could be applied. In case of a credit default swap,

5With Δk :=]t̄k−1, t̄k] if the default bucketing approach has been used, otherwise Δk := {t̄k}.
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any model which allows to price CDS options, i.e. any model with stochastic credit
spreadwould be feasible. However, for CVAcalculations, usually a trade-off between
accuracy of the model and efficiency of calculations needs to be made. For this
reason, usually simplermodels are applied forCVAcalculations than for other pricing
applications. It needs to be noted that since the financial market usually provides
sufficiently many prices of liquid derivatives, any reasonable model can be calibrated
to these market prices, and therefore, we can assume in the following that the market
implied distribution of the discounted exposure process is fully known and available.

4.3 Hybrid Models—An Example

Anotherway to calculate theCVA is to use a so-called hybrid approachwhichmodels
all the involved underlying risk factors. Instances of such models can for example be
found in Brigo and Capponi [4] for the case of a credit default swap, or Brigo et al. [6]
for interest rate derivatives. In Brigo et al. [6], an integrated framework is introduced,
where a two-factor Gaussian interest-rate model is set up for a variety of interest rate
derivatives6 in order to deal with the option inherent in the CVA. Further, tomodel the
possible default of the client and its counterparty their stochastic default intensities are
given as CIR processes with exponentially distributed positive jumps. The Brownian
motions driving those risk factors are assumed to be correlated. Additionally, the
defaults of the client and the counterparty are linked by a Gaussian copula.

In summary, the amount of wrong-way risk which can be modeled within such
a framework strongly depends on the model choice. If solely correlations between
default intensities (i.e. credit spreads) and interest rates are taken into account, only
a rather weak relation will emerge between default and the exposure of interest rate
derivatives, cf. Brigo et al. [6]. Figure5 in Scherer and Schulz [18] provides an
overview of potential CVA values for different models which illustrates that models
can differ quite significantly.

5 Tight Bounds on CVA

From the previous section it becomes obvious that hybrid models yield different
CVAs depending on the (model and parameter implied) degree of dependence
between default and exposure. However, it remains unclear how large the impact
of this dependence can be. In other words: Is it possible to quantify, how small or
large the CVA can get for any model, given that the marginal distributions for expo-

6Although this modeling approach is a rather general one, it has to be noted that it links the
dependence on tenors of swaption volatilities to the form of the initial yield curve. Therefore, the
limits of such an approach became apparent as the yield curve steepened in conjunction with a
movement of the volatility surface in the aftermath of the beginning of financial crisis in 2008,
when these effects could not be reproduced by such a model.
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sure and default are already given? In the following, wewant to address this question
based on our initially given decomposition of the CVA in building blocks.

As mentioned in Sect. 4.2, we can reasonably assume that the distribution of
the exposure process X is already completely determined by the available market
information. In a similar manner, we have argued that also the distribution of the
default indicator process δ can be assumed to be given by the market. Nevertheless,
let us point out that the following ideas and concepts could indeed be generalized to
the case that only the marginal distributions of the default times are known. Further,
we can even consider the case that the dependence structure between different market
risk factors is not known but remains uncertain. However, all these generalizations
come at the price that the resulting two-dimensional transportation problem will
become multi-dimensional.

For the above reasons, we argue that the following approach is indeed semi-model-
free in the sense that no model needs to be specified which links the default indicator
process with the discounted exposure processes.

5.1 Tight Bounds on CVA by Mass Transportation

Let us reconsider Eq. (4) and let us highlight the dependence of the BCVA on the
measure P.

CVAP
A(t,T) =

K∑

k=1

(
EP

[
δBk · XA

k |Gt
] − EP

[
δAk · XB

k |Gt
])

.

With some abuse of notation, the measure P denotes the joint distribution of the
default process δ and the exposure processX. Since both processes havefinite support,
P can be represented as a (2K + 1) × N matrix with entries in [0, 1]. We note that the
marginals of P, i.e. the distributions of δ and X (denoted by the probability vectors
p(X) ∈ RN and p(δ) ∈ R2K+1) are already predetermined from the market. Therefore,
P has to satisfy

1�P = p(X), and P1 = p(δ).

Remark 6 In case of independence between δ and X, P is given by the product
distribution of δ andX,whereas in hybridmodels the joint distributionP is determined
by the specification and parametrization of the hybridmodel. In the independent case,
P is hence given by the dyadic product

P = p(δ)p(X)�.
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Obviously, the smallest and largest CVA which can be obtained by any P which is
consistent with the given marginals, is given by

CVAl
A(t,T) := min

P∈P
CVAP

A(t,T),

CVAu
A(t,T) := max

P∈P
CVAP

A(t,T),

where
P := {P ∈ [0, 1](2K+1)×N | 1�P = p(X), P1 = p(δ)}.

It can be easily noted that the setP is a convex polytope. Thus, the computation of
CVAl

A(t,T) and CVAu
A(t,T) essentially requires the solution of a linear program, as

the objective functions are linear in P.

Remark 7 The structure of the above LPs coincides with the structure of so-
called balanced linear transportation problems. Transportation problems constitute
a very important subclass of linear programming problems, see for example Bazaraa
et al. [1], Chap. 10, for more details. There exist several very efficient algorithms for
the numerical solution of such transportation problems, see also Bazaraa et al. [1],
Chaps. 10, 11 and 12.

Let us summarize our results in the following theorem:

Theorem 2 Under the given prerequisites, it holds:

1. CVAl
A(t,T) ≤ CVAA(t,T) ≤ CVAu

A(t,T).
2. These bounds are tight, i.e. they represent the lowest and the highest CVA which

can be obtained by any (hybrid) model which is consistent with the market data
and there exists at least one model which reaches these bounds.

The tightness of our bounds is in contrast to Turnbull [21], where only weak bounds
were derived. Of course, bounds always represent a best-case and a worst-case esti-
mate only, which may strongly under- and overestimate the true CVA.

Remark 8 We note that a related approach of coupling default and exposure via
copulas was presented by Rosen and Saunders [17] and Crepedes et al. [8]. However,
their approach differs from ours in some significant aspects. First, exposure scenarios
are sorted by a single number (e.g. effective exposure) to be able to couple exposure
scenarios with risk factors of defaults by copulas. Second, risk factors of some credit
riskmodel are employed instead of workingwith the default indicator directly. Third,
their approach is restricted to the real-world setting and does not consider restrictions
on the marginal distributions in the coupling process, which is e.g. necessary if
stochastic credit spreads should be considered.
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5.2 An Alternative Formulation as Assignment Problem

For the above setupwehave assumed that the probabilities for all possible realizations
of the default indicator process could be precomputed from a suitable default model.
If for somedefaultmodel this should not be the case, but only scenarios (with repeated
outcomes for the default indicator) could be obtained by a simulation, an alternative
LP formulation could be obtained. In such a scenario setting, it is advisable that
for both Monte Carlo simulations, the same number N of scenarios is chosen. Then
for both given marginal distributions we have p(δ)

j = p(X)
i = 1/N . If we apply the

same arguments as above we obtain again a transportation problem, however, with
probabilites 1/N each. If we have a closer look at this problem, we see that the
optimization actually runs over all N × N permutation matrices—since each default
scenario is mapped onto exactly one exposure scenario. This means that this problem
eventually belongs to the class of assignment problems, for which very efficient
algorithms are available, cf. Bazaraa et al. [1]. Nevertheless, please note that although
assignment problems can be solved more efficiently than transportation problems, it
is still advisable to solve the transportation problemdue to its lower dimensionality, as
usually 2K + 1 � N (i.e. time discretization is usually much coarser than exposure
discretization). However, if stochastic credit spreads have to be considered, they have
to be part of the default simulation and thus assignment problems (with additional
linear constraints to guarantee consistency of exposure paths and spreads) become
unavoidable.

6 Example

6.1 Setup

To illustrate these semi-model-free CVA bounds let us give a brief example. For this
purpose let us consider a standard payer swap with a remaining lifetime of T = 4
years analyzed within a Cox–Ingersoll–Ross (CIR) model at time t = 0. The time
interval ]0, 4[ is split up into K = 8 disjoint time intervals each covering half a year.
For simplicity, the loss process is again assumed to be 1.

6.1.1 Counterparty’s Default Modeling

Tomodel the defaults we have chosen the well-known copula approach with constant
intensities using the Gaussian copula. For further analyses in this example we will
focus on the case of uncorrelated counterparties (ρ = 0) and highly correlated coun-
terparties (ρ = 0.9). Furthermore, the counterpartys’ default intensities are assumed
to be deterministic.Wewill distinguish between symmetric counterparties with iden-
tical default intensities and asymmetric counterparties. Thus, four different settings
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Fig. 1 Probabilities EQ[ δik] in % for Case 1 to Case 4

result: Fig. 1 shows the probabilities Q[ δik = 1] = EQ[ δik] in each of the four cases
under the risk-neutral measure Q implied from the market. To be in line with the
following figures, the probabilities for a default of counterparty B inΔk , i.e. EQ[ δBk ],
correspond to the positive bars and defaults of counterparty A to the negative bars.
The left plots show identical counterparties (cases 1 and 2) and the right ones the
cases, where counterparty B has a higher default intensity (cases 3 and 4). Further-
more, the upper plots correspond to uncorrelated defaults and for the ones below we
have ρ = 0.9.

Case 1: symmetric, uncorrelated λA = 150 bps λB = 150 bps ρ = 0
Case 2: symmetric, correlated λA = 150 bps λB = 150 bps ρ = 0.9
Case 3: asymmetric, uncorrelated λA = 150 bps λB = 300 bps ρ = 0
Case 4: asymmetric, correlated λA = 150 bps λB = 300 bps ρ = 0.9
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Fig. 2 Expected exposures
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Table 1 EQ
[
XA
k

]
and EQ

[
XB
k

]
in basis points

k 1 2 3 4 5 6 7 8

EQ[XA
k ] in bp 49.2 59.2 60.1 55.2 45.9 33.4 17.9 0

EQ[XB
k ] in bp 48.9 58.5 59.1 54.2 45.1 32.6 17.5 0

6.1.2 Counterparty Exposure Modeling

As already mentioned, a simple CIR model is applied for the valuation of the payer
swap. Since our focus is on the coupling of the default and the exposure model, we
have opted for such a simple model for ease of presentation. In the CIR model, the
short rate rt follows the stochastic differential equation

drt = κ(θ − rt)dt + σ
√
rtdWt

where (Wt)t≥0 denotes a standard Brownian motion. Instead of calibrating the para-
meters to market data (yield curve plus selected swaption prices) on one specific day,
we have set the parameters in the following way

κ = 0.0156, θ = 0.0311, σ = 0.0313, r0 = 0.030

to obtain an interest rate market which is typical for the last years. Considering now
the discounted exposure of each counterparty within the discrete time framework of
our example, we can easily compute EQ

[
Xi
k

]
as the average of all generated scenar-

ios from a Monte Carlo simulation. Figure2 illustrates the results of a simulation,
which are also given in Table1. Positive bars correspond toEQ

[
XA
k

]
, negative bars to

EQ
[
XB
k

]
, and the small bars correspond to EQ[ṼA(tk,T)]. Since payer and receiver

swap are not completely symmetric instruments, there remains a residual expectation,
as can be observed from Fig. 2.
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Fig. 3 Minimal and maximal CVAA, EQi

[
δBk · XA

k |Gt
]
and −EQi

[
δAk · XB

k |Gt
]
in bps

6.2 Results

In case of independence between default and exposure, the bilateral CVA is easily
obtained by multiplying the default probabilities (as shown in Fig. 1) with the cor-
responding exposures (as shown in Fig. 2) and summation. Besides the independent
CVAi, the minimal and maximal CVAl and CVAu have been calculated as well.

The results of these calculations are illustrated in Fig. 3 and Table2 for each time
intervalΔk . Analogously toFig. 1wehave for each of the four cases a separate subplot
and the left plots belong again to cases 1 and 2. The positive bars now correspond
to EQi

[
δBk · XA

k

]
and the negative ones to EQi

[
δAk · XB

k

]
. In the case of the minimal

CVA, EQl

[
δBk · XA

k

]
vanishes, meaning that for counterparty A in case of a default

of counterparty B the exposure is zero, as the present value of the swap at that time
is negative from counterparty A’s point of view. Contrarily, for the maximal CVA,
EQu

[
δAk · XB

k

]
is zero. Here, Qu, Ql, and Qi denote the optimal measures for the

maximal, the minimal, and the independent CVA, respectively. As expected there
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Table 3 Computation times for the two-dimensional transportation problem

K 10 20 20 20

N 1024 1024 2048 4096

Time in seconds 0.2 0.5 1.5 6

are large gaps between the lower and the independent CVA, as well as between
the independent CVA and the upper bound. This means that wrong-way risk (i.e.
higher exposure comes with higher default rates) can have a significant impact on
the bilateral CVA. Interestingly, this observation holds true for all four cases, of
course, with different significance depending on the specific setup. Although it is
clear that our analysis naturally shows more extreme gaps than any hybrid model, it
has to be mentioned that these bounds are indeed tight.

6.3 Computation Time, Choice of Algorithm,
and Impact of Assumptions

Theoretically, the computation of the bounds boils down to the solution of a linear
programming problem. From this it can be expected that state-of-the-art solvers like
CPLEX or Gurobi will yield the optimal solution within reasonable computation
time.UsingCPLEX,we have obtained the following computation times on a standard
workstation (Table3).

It can be observed that the problem can be solved for reasonable discretization
levels within decent time. Rather similar computation times have been obtained with
an individual implementation of the standard network simplex based on Fibonacci
heaps. However, for larger sizes, the performance of standard solvers begins to dete-
riorate. To dampen the explosion of computation time, we have resorted to a special
purpose solver for min cost network flows (which are a general case of the trans-
portation problem) for highly asymmetric problems, as in our case 2K + 1 � N .
Based on Brenner’s min cost flow algorithm, see Brenner [3], we could still solve
problems with K = 40 and N = 8192 beneath a minute.

If one has to resort to the assignment formulation (to consider credit spreads
accordingly), computation times increase due to the fact that now assignment prob-
lems have to be solved. Here, a factor 100 compared to the above computation times
cannot be avoided.

If the coupling of the twodefault times is left flexible, the problembecomes a trans-
portationproblemwith threemargins, i.e. of sizeK + 1 × K + 1 × N . For these types
of problems, no special purpose solver is available and one has to resort to CPLEX.
Scherer and Schultz [18] have exploited the structure of this three-dimensional trans-
portation problem to reduce computational complexity. They were able to reduce the
problem to a standard two-dimensional transportation problem, hence rendering the
computation of bounds similarly easy, no matter if default times are already coupled
or not.
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7 Conclusion and Outlook

In this paper we have shown how tight bounds on unilateral and bilateral counter-
party valuation adjustment can be derived by a linear programming approach. This
approach has the advantage that simulations of the uncertain loss, of the default
times and of the uncertain value of a transaction during her remaining life can be
completely separated. Although we have restricted the exposition to the case of
two counterparties and one derivative transaction, the model can easily be extended
to more counterparties and a whole netting node of trades. Further, as exposure is
simulated separately from default, all risk-mitigating components like CSAs, rating
triggers, and netting agreements can be easily included in a such a framework.

Interesting open questions for future research include the analogous treatment in
continuous time, which requiresmuchmore technically involved arguments. Further,
this approach yields a newmotivation to consider efficient algorithms for transporta-
tion or assignment problems with more than two marginals, which did not yet get
much attention so far.
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CVA with Wrong-Way Risk in the Presence
of Early Exercise

Roberto Baviera, Gaetano La Bua and Paolo Pellicioli

Abstract Hull–White approach of CVA with embedded WWR (Hull and White,
Financ. Anal. J. 68:58-69, 2012, [11]) can be easily applied also to portfolios of
derivatives with early termination features. The tree-based approach described in
Baviera et al. (Int. J. Financ. Eng. 2015, [1]) allows to deal with American or Bermu-
dan options in a straightforward way. Extensive numerical results highlight the non-
trivial impact of early exercise on CVA.

Keywords American andBermudanoptions ·Wrong-way risk ·Credit value adjust-
ment

1 Introduction

As a direct consequence of the 2008 financial turmoil, counterparty credit risk has
become substantial in OTC derivatives transactions. In particular, the credit value
adjustment (CVA) is meant to measure the impact of counterparty riskiness on a
derivative portfolio value as requested by the current Basel III regulatory framework.
Accounting standards (IFRS 13, FAS 157), moreover, require a CVA1 adjustment as
part of a consistent fair value measurement of financial instruments.

CVAis strongly affectedbyderivative transaction arrangements: exposure depends
on collateral and netting agreement between the two counterparties that have written

1Even if in this paperwe focus onCVApricing, it isworthwhile to note that accounting standards
ask also for a debt value adjustment (DVA) to take into account the own credit risk.
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the derivative contracts of interest. Despite the increased use of collateral, however, a
significant portion of OTC derivatives remains uncollateralized. This is mainly due to
the nature of the counterparties involved, such as corporates and sovereigns, without
the liquidity and operational capacity to adhere to daily collateral calls. In such cases,
an institution must consider the impact of counterparty risk on the overall portfolio
value and a correct CVA quantification acquires even more importance. Extensive
literature has been produced on the topic in recent years, as for example [5] and [9]
that give a comprehensive overview of CVA computation and the more general topic
of counterparty credit risk management. It seems, however, that attention has been
mainly paid to CVAwith respect to portfolios of European-style derivatives. Dealing
with derivatives with early exercise features is even more delicate. Indeed, as pointed
out in [3], for American- and Bermudan-style derivatives CVA computation becomes
path-dependent since we need to take into account the exercise strategy and the fact
that exposure falls to zero after the exercise.

A peculiar problem that we encounter in CVA computation is the presence of the
so-called wrong-way risk (WWR), that is the non-negligible dependency between
the value of a derivatives portfolio and counterparty default probability. In particular
we faceWWR if a deterioration in counterparty creditworthiness is more likely when
portfolio exposure increases. Several attempts have been made to deal with WWR.
From a regulatory point of view, the Basel III Committee currently requires to correct
by a multiplicative factor α = 1.4 the CVA computed under hypothesis of market-
credit independence. In this way the impact of WWR is considered equivalent to a
40% increase in standard CVA. However, the Committee leaves room for financial
institutions with approved models to apply for lower multipliers (floored at 1.2). This
opportunity opens the way for more sophisticated models in order to reach a more
efficient risk capital allocation.

Relevant contributions on alternative approaches tomanageWWRinclude copula-
based modeling as in [6], introduction of jumps at default as in [13], the backward
stochastic differential equations framework developed in [7], and the stochastic haz-
ard rate approach in [11]. In particular [11] introduces the idea to link the counterparty
hazard rate to the portfolio value by means of an arbitrary monotone function. The
dependence structure is, then, described uniquely by one parameter that controls the
impact of exposures on the hazard rate. Additionally, a deterministic time-dependent
function is introduced to match the counterparty credit term structure observed on
the market. In this framework CVA pricing in the presence of WWR involves just a
small adjustment to the pricing machinery already in place in financial institutions.
We only need to take into account the randomness incorporated into the counterparty
default probabilities by means of the stochastic hazard rate and price CVAwith stan-
dard techniques. This is probably the most relevant property of the model: as soon
as we associate a WWR parameter to a given counterparty–portfolio combination,
we are able to deal with WWR using the same pricing engine underlying standard
CVA computation. As pointed out in [14], leveraging as much as possible on existing
platforms should be one of the principles an optimal risk model should be shaped on.
However, the original approach in [11] relies on a Monte Carlo-based technique to
determine the auxiliary deterministic function in order to calibrate the model on the
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counterparty credit structure. Obtaining this auxiliary function is the trickiest part in
the calibration procedure, because it involves a “delicate” path-dependent problem
that is difficult to implement for realistic portfolios. In [1], it is shown how it is possi-
ble to overcome such a limitation by transforming the path-dependent problem into a
recursive one with a considerable reduction in the overall computational complexity.
The basic idea is to consider discrete market factor dynamics and induce a change
of probability such that the new set of (transition) probabilities are computed recur-
sively in time. We presented a straightforward implementation of our approach via
tree methods. Trees are also a straightforward and well understood tool to manage
the early termination in derivatives pricing. So combining tree-based dynamic pro-
graming and the recursive algorithm in [1] leads to a simple and effective procedure
to price CVA with WWRwhen American or Bermudan features are considered. The
paper is organized as follows: in Sect. 2 we review the Hull–White model for CVA
in the presence of WWR and the recursive approach in [1]. In Sect. 3 we analyze the
effects of early termination on CVA adjustments via numerical tests and in Sect. 4
we study the relevant case of a long position on a Bermudan swaption. Finally Sect. 5
reports some final remarks.

2 CVA Pricing and WWR

For a given derivatives portfolio we can define the unilateral CVA2 as the risk-neutral
expectation of the discounted loss that can be suffered over a given period of time

CVA = (1 − R)

∫ T

t0

B(t0, t) EE(t) PD(dt), (1)

where usually t0 is the value date (hereinafter we set t0 = 0 if not stated otherwise)
and T is the longest maturity date in the portfolio. Here R is the recovery rate, PD(dt)
is the probability density of counterparty default between t and t + dt (with no default
before t), and B(t0, t)EE(t) is the discounted expected exposure in t. If interest rates
are stochastic, the expected exposure is defined

B(t0, t) EE(t) ≡ E[D(t0, t) E(t)],

with E[·] the expectation operator given the information at value date t0, D(t0, t)
the stochastic discount, and E(t) the (stochastic) exposure at time t. The latter is
inherently defined by the collateral agreement that the parties have in place: for
example in uncollateralized transactions,E(t) is simply themaxw.r.t. zero of v(t), the
portfolio value at time t. For practical computation, the integral in (1) is approximated

2The party that carries out the valuation is thus considered default-free. Even if it is a restrictive
assumption, unilateral CVA is the only relevant quantity for regulatory and accounting purposes.
For a detailed discussion on other forms of CVA, see e.g. [9].
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by choosing a discretized set of times T = {ti}i=0,...,n with tn = T . In particular, the
Basel III standard approach for CVA valuation is

CVA = (1 − R)

n∑

i=1

Bi EEi + Bi−1 EEi−1

2
PDi, (2)

with Bi that stands for3 B(t0, ti) and

PDi ≡ SPi−1 − SPi,

where SPi is the counterparty survival probability up to ti. Assuming that the default
is modeled by means of a generic intensity-based model, we can link survival prob-
abilities to the so-called hazard rate function h(t), (see e.g. [15]):

SPi = exp

(
−

∫ ti

t0

h(t) dt

)
.

A common assumption is to consider h(t) constant between two consecutive dates
in the set T . Pricing CVA with (2) holds if there is no “market-credit” dependency.
However, in case of wrong-way risk (WWR) a new, more sophisticated, model is
needed because exposure and counterparty default probabilities are nomore indepen-
dent: exposure is conditional to default and a positive “market-credit” dependence
originates the WWR. Recently Hull and White [11] have proposed an approach to
WWR that is financially intuitive: the conditional hazard rate is modeled as a sto-
chastic quantity related to the portfolio value v(t) through a monotonic increasing
function. In the following we focus on the specific functional form

h̃(t) = exp

(
a(t) + b v(t)

)
, (3)

where b ∈ �+ is the WWR parameter. However, results still hold for an arbitrary
order-preserving function. The function a(t) is a deterministic function of time,
chosen in such a way that on each date

SPi = E

[
exp

(
−

∫ ti

t0

h̃(t) dt

)]
∀i = 1, . . . , n. (4)

Combining (3) and (4) we clearly see that function a(t) depends also on the value
specified for the parameter b.

The main advantage of this model is that once we know b and a(t), WWR can be
implemented easily by means of a simple generalization of (2):

3From now on we use the notation xi to represent a discrete-time variable while x(t) indicates its
analogous variable in continuous-time. For avoidance of doubt, any other form of dependency (·)
does not refer to the temporal one, unless stated otherwise.
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CVAW = (1 − R)

n∑

i=1

E

[
Di Ei + Di−1 Ei−1

2
P̃Di

]
, (5)

where P̃Di is the stochastic probability to default between ti−1 and ti defined in terms
of h̃i. We want to stress that expectation in (5) can be computed via any feasible
numerical method: this fact implies that, given b and a(t), taking into account WWR
just requires a slight modification in the payoff of existing algorithms used for the
calculation of CVA.

We now briefly recall the recursive approach presented in [1] that avoids the path
dependency in the determination of a(t) so that Eq. (4) is satisfied. Hereinafter we
refer to the technique to get such a function as either the calibration of a(t) or the
“calibration problem”: once the three sets of parameters (the recovery R, the default
probabilities PDs, and the WWR parameter b) for dealer’s clients are estimated
(e.g. with statistical methods) it is the most complicated issue in the calibration of
Hull–White model.

Let us assume that the market risk factors underlying the portfolio are discrete
and we indicate with ji the discrete state variable that describes the market at time ti.
In this framework market dynamics is described by a Markov chain with

qi(ji−1, ji) ∀i = 1, . . . , n

the transition probability between ji−1 at time ti−1 and ji at time ti. Typical examples
where such a discrete approach is natural are lattice models. In particular, in [1], we
applied tree methods to the pricing of CVA for linear derivatives portfolios.

Embedding the Hull–White model (3) in our setting, the stochastic survival prob-
ability between ti−1 and ti becomes

P̃i(j) ≡ exp
(
−(ti − ti−1) h̃i(j)

)
≡ Pi ηi(j) ∀i = 1, . . . , n, (6)

where

Pi ≡ SPi

SPi−1

is the forward survival probability between ti−1 and ti valued in t0. For notational
convenience, we also set P̃0(j0) = η0(j0) = 1. The η process introduced in (6) can
be seen as the driver of the stochasticity in survival probabilities and it plays a key
role in circumventing path-dependency in the calibration of a(t), as shown in the
following proposition.

Proposition

In the model with discrete market risk factors, the calibration problem (4) becomes

∑

ji

pi(ji) ηi(ji) = 1 ∀i = 1, . . . , n, (7)
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where pi(ji) are probabilities and they can be obtained via the recursive equation

pi(ji) =
∑

ji−1

qi(ji−1, ji) ηi−1(ji−1) pi−1(ji−1) ∀i = 1, . . . , n, (8)

with the initial condition p0(j0 = 0) = 1.

Proof See [1].

Thus the calibration problem (4) can be solved at each discrete date ti via (7) by
simply exploiting the fact that the process η, non-path-dependent, is a martingale
under the probability measure p. Equation (8), in addition, specifies an algorithm
to build this new probability measure recursively. In this framework P̃Di can be
readily obtained from (6). Let us mention that, although this is just one of the viable
approaches to solve (4), it turns out to be, as shown in the next section, a natural way
to handle the additional complexity induced by early exercises within theHull–White
approach to WWR modeling.

3 The Impact of Early Exercise

As already anticipated in Sect. 1, CVA when early exercise is allowed gives rise to
additional features. In this sectionwewant to highlight the differences in CVAfigures
when both European and American options are considered, implementing the tree-
based procedure described in the previous section. It is well known that backward
induction and dynamic programing applied on (recombining) trees are, probably,
the simplest and most intuitive tool to price derivatives with an early exercise as
American options. For these options, indeed, Monte Carlo techniques turn out to be
computationally intensive in case of CVA: the exercise date, after which the exposure
falls to zero, depends on the path of the underlying asset and on the exercise strategy.
In such a case we are asked to describe two random times: the optimal exercise time
and the counterparty default time.

3.1 The Pricing Problem

Since our goal is to study the effects of early exercise clauses on CVA, we focus on
the case of a dealer that enters into a long position4 on American-style derivatives
with a defaultable counterparty. That is, the dealer is the holder of the option and
she has the opportunity to choose the optimal exercise strategy in order to maximize
the option value. In particular, following [3], we would need to differentiate between
two possible assumptions depending on the effects of counterparty defaultability on

4A short option position does not produce any potential CVA exposure.
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the exercise strategy. The option holder would or would not take into account the
possibility of counterparty default when she chooses whether to exercise or not. In
the former case, the continuation value (the value of holding the option until the next
exercise date) should be adjusted for the possibility of default. However, following
the actual practice in CVA computation, we assume that counterparty defaultability
plays no role in defining the exercise strategy of the dealer. This means that the
pricing problem (before any CVA consideration) is the classical one for American
options in a default-free world.

Let us assume to have a tree for the evolution of market risk factors5 up to time
T . Hereinafter, without loss of generality, we can set a constant time step Δt and
denote the time partition on the tree by means of an index i in T = {ti}i=0,...,n with
ti = i Δt. We further introduce an arbitrary set of m exercise dates E = {ek}k=1,...,m

with E ⊆ T at which the holder can exercise her rights receiving a payoff φk that
could depend on the specific exercise date ek . In this setting we can deal indistinctly
with European (m = 1), Bermudan (m ∈ N), and American options (m → ∞). The
standard dynamic programing approach then allows us to compute the derivative
value at each node of the tree:

vi(ji) =

⎧
⎪⎨

⎪⎩

φm(ji) for i s.t. ti = em = T ,

max(ci(ji), φk(ji)) for i s.t. ti ∈ E \{em},
ci(ji) otherwise.

(9)

with ci the continuation value of the derivative defined as

ci(ji) = B(i, i + 1; ji)
∑

ji+1

qi(ji, ji+1) vi+1(ji+1), (10)

where the summust be considered over all possible ti+1-nodes connected to ji at time
ti and B(i, i + 1; ji) is the future discount factor that applies from ti and ti+1 possibly
depending on the state variable ji on the tree.

We describe in detail the simple 1-dimensional tree; however, extensions to the 2-
factor case (as, for example, the G2++model in [4] or the recent dual curve approach
in [12]) are straightforward. Once the derivative value is computed for all nodes and
the WWR parameter b is specified,6 we can calibrate the auxiliary function a(t) in
(3) by means of the recursive approach in [1]. The advantages of such an approach
are, in this case, twofold: we avoid path-dependency in the calibration of a(t), as in
any other possible application, and we deal with early exercises via (9) and (10) in
a very intuitive way.

5If we describe the dynamics of the price of a corporate stock, we assume—for the sake of
simplicity—that such entity is not subject to default risk.
6We refer the interested reader to the original paper [11] for a heuristic approach to determine the
parameter and to [14] for comprehensive numerical tests with market data.
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3.2 The Plain Vanilla Case

We nowwant to assess the impact of early termination on CVA in order to understand
the potential differences that could arise between European and American options
from a counterparty credit risk management perspective.

In the first test we study the plain vanilla option case: we assume that the dealer
buys a call option from a defaultable counterparty. Counterparty default probabilities
are described in terms of a CDS flat curve at 125 basis points as in [11]. More pre-
cisely, with a flat CDS curve we can approximate quite well the survival probability
between t0 and ti as

SPi = exp

(
− si ti
1 − R

)
,

where si is the credit spread relative to maturity ti and R the recovery rate, equal
to 40%. We further assume that trades are fully uncollateralized.7 The underlying
asset is lognormally distributed and represented by means of a Cox-Ross-Rubinstein
binomial tree. We can thus apply the dynamic programing approach described above
to price options on the tree and calibrate the function a(t) recursively via (7). This
procedure turns out to be quite fast: the Matlab coded algorithm takes less than
0.1 second to run on a 3.06 GHz desktop PC with 4 GB RAM when n = m = 500.
Figure1 showsCVAprofile8 for bothEuropean andAmerican call options as function
of WWR parameter b and for different levels of cost of carry. From standard non-
arbitrage arguments, we indeed know that the optimality of early exercise for plain
vanilla call options is related to the cost of carry (defined as the net cost of holding
positions in the underlying asset).9

As shown in Fig. 1, CVA profiles are significantly different for European and
American options when early exercise can represent the optimal strategy (black and
dark gray lines). In particular the impact ofWWR is significantly less pronounced for
American options compared to the corresponding European ones. On the other hand,
when early exercise is no more optimal, the two options are equivalent: light gray
lines in Fig. 1 are undistinguishable from each other. In addition, the upward shift in
CVA exposures is due to the fact that an increase in cost of carry (e.g. a reduction in
the dividend yield) is reflected entirely in an augmented drift of the underlying asset
dynamics that makes, ceteris paribus, the call option more valuable.

The effect of early exercise on exposure profiles is depicted in Fig. 2 where a
possible underlying asset path is displayed along with the optimal exercise boundary

7Here we are interested in analysing the full exposure profile as function of early exercise oppor-
tunities. On the other hand, more realistic collateralization schemes can be taken into account in a
straightforward manner within the described framework.
8Once b and a(t) are determined we can use whatever numerical technique to compute (5). Here we
simply implement a simulation-based scheme that uses the tree as discretization grid. The number
of generated paths is 105.
9The classical example is an option written on a dividend paying stock. This frame includes also
a call option on a commodity whose forward curve is in backwardation or on a currency pair for
which the interest rate of the base currency is higher than the one of the reference currency.
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Fig. 2 The effect of early exercise on exposures. Parameters are S0 = 100, K = 100, σ = 25%,
r = 1%, CoC = −2%, T = 1, n = m = 500. Left hand scale Asset path (black solid line) and
optimal exercise boundary (dashed line). Right hand scale European option (light gray line) and
American option (dark gray line)

(reconstructed on the binomial tree) and the corresponding value of European and
American options. Until the asset value remains within the continuation region (the
area below the dashed line), the two options have a similar value with the only differ-
ence given by the early exercise premium embedded in the American style derivative.
However, if the asset value reaches or crosses the exercise boundary, the exposure
due to the American option falls to zero while the European option remains alive
until maturity. From the definition of CVA (1), we can see that early exercise, if
optimal, reduces the exposure of the holder to the counterparty default by shorten-
ing the life of the option. The effect is even more pronounced when we introduce
the WWR: early redemption, indeed, would occur as soon as the portfolio value is
large enough with the consequence to eliminate the exposure just when counterparty
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default probabilities become more relevant. It is possible, then, to identify in the
early termination clause an important mechanism that limits CVA charges, particu-
larly when market-credit dependency is non-negligible as shown in [8] in the case
without WWR. Any change that makes early exercise more likely tends to enhance
such a mechanism. We see this effect in Fig. 3 where we display the difference in
CVA between European and American options as function of WWR parameter and
option moneyness. With a given underlying asset dynamics, potential early exercise
date is closer for more in the money options: the right of the holder is more likely
to be exercised sooner. This shortens the life of the option and reduces both CVA
charge (with respect to European options) and WWR sensitivity (with respect to the
corresponding European option and the American options with lower moneyness).
In this section we have shown that WWR can play a very different role for European
and American options. In our opinion, however,WWR should be analyzed on a case-
by-case basis in order to determine its magnitude and the adequate capital charge: a
40% increase in standard CVA could overestimate the losses for an American option
that can be optimally exercised in a short period while could be reductive in cases
where early termination is less likely.

4 The Bermudan Swaption Case

Probably the most relevant case of long position on options with early exercise
opportunities in the portfolios of financial institutions is represented by Bermudan
swaptions. Such exotic derivatives are, indeed, used by corporate entities to enhance
the financial structure related to the issue of callable bonds. Often, by selling a
Bermudan receiver swaption to a dealer, the callable bond issuer can reduce its net
borrowing cost. Usually the swaption is structured such that exercise dates match
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Table 1 Diagonal implied volatility of European ATM swaptions used to calibrate the 1-factor
Hull–White model

Swaption 1y9y 2y8y 3y7y 4y6y 5y5y 7y3y

Volatility% 40.4 37.6 35.1 32.8 30.8 27.7

Calibrated parameters are â = 0.0146 and σ̂ = 0.0089

the callability schedule of the bond.10 Let T̂ be the bond maturity date. The dealer
has the right, at any exercise date ek ∈ E \{em}, to enter into an interest rate swap
with maturity T̂ , where she receives the fixed rate K (equal to the fixed coupon rate
of the bond) and pays the floating rate to the bond issuer with first payment made
on date ek+1. In our test we use the Euro interbank market data as of September 13,
2012 as given in [2]. We assume that the dealer buys a 10-year Bermudan receiver
swaption where the underlying swap has, for simplicity, both fixed and floating
legs with semiannual payments. The swaption can be exercised semiannually and
its notional amount is Eur 100 million. We describe interest rates dynamics with a
1-factor Extended Vasicek model on a trinomial tree as in [10]. Model parameters
are calibrated to market prices of European ATM swaptions with overall contract
maturity equal to 10 years as shown in Table1. As done in the previous section, we
value the Bermudan swaption on the tree via dynamic programing and calibrate the
WWR model function a(t). Once again the combined approach on the tree allows
to perform both tasks in a negligible amount of time. Figure4 reports the WWR
impact11 for uncollateralized transactions struck at different levels of moneyness: at
the money (swaption strike set equal to the market 10 years spot swap rate) and ±50
basis points. The upper graph reports the case with no initial lockout period while
in the lower one we assume that the option cannot be exercised in the first 2 years.
When the option can be exercised with no restrictions, we observe amoderate inverse
relationship betweenmoneyness andWWR impact due to the protectionmechanism:
the opportunity to early exercise when the exposure is large limits the effect of
increased counterparty default probabilities. On the other hand, the introduction of
a lockout period intensifies the WWR impact. Intuitively, by expanding the lockout
period we move toward the limiting case of a European option. In this case the
moneyness–WWR effect is reversed: the more in the money the option is, the more
relevant theWWReffect becomes.During the lockout period the in-the-moneyoption
has a considerably higher exposure to counterparty default that cannot be mitigated
via early termination.

10Often the bond can be called at any coupon payment date after an initial lockout period.
11We define it to be the ratio CVAW /CVA as given, respectively, by (5) and (2).
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Fig. 4 Impact of WWR on Bermudan receiver swaptions as function of WWR parameter b for
several levels of moneyness. Market data as of September 13, 2012. Counterparty CDS curve flat
at 125 basis points

5 Concluding Remarks

NowadaysWWR is a crucial concern in OTC derivatives transactions. This is partic-
ularly true for uncollateralized trades that a financial institution could have in place
with medium-sized corporate clients. The presence of early termination clauses in
vulnerable derivatives portfolios makes the CVA computation even more tricky. We
have shown a simple and effective approach to deal with calibration and pricing of
CVAwithin the Hull–White framework [11] for American or Bermudan options. We
extended the procedure in [1] to the dynamic programing algorithm required to take
into account the free boundary problem inherent in the pricing of such derivatives.
Numerical tests carried out underline the importance of adequate procedures to dif-
ferentiate CVA profiles for European and American options. The possibility of early
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exercise, indeed, plays a remarkable role in mitigating theWWR: an undifferentiated
CVA pricing for contingent claims with different exercise styles would then lead to
severe misspecification of regulatory capital charges.

An interesting topic for further researchwould consider the impact of counterparty
defaultability in defining the dealer’s optimal exercise strategy. Even if intuitive, this
poses nontrivial problems mainly due to the interrelation among derivative pricing,
WWR, and calibration of function a(t). It is our opinion, however, that the described
framework could be extended in this direction.
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Simultaneous Hedging of Regulatory
and Accounting CVA

Christoph Berns

Abstract As a consequence of the recent financial crisis, Basel III introduced a new
capital charge, the CVA risk charge to cover the risk of future CVAfluctuations (CVA
volatility). Although Basel III allows for hedging the CVA risk charge, mismatches
between the regulatory (Basel III) and accounting (IFRS) rules lead to the fact that
hedging the CVA risk charge is challenging. The reason is that the hedge instruments
reducing the CVA risk charge cause additional Profit and Loss (P&L) volatility. In
the present article, we propose a solution which optimizes the CVA risk charge and
the P&L volatility from hedging.

Keywords CVA risk charge · Accounting CVA · Hedging · Optimization

1 Introduction

Counterparty credit risk is the risk that a counterparty in a derivatives transaction
will default prior to expiration of the trade and will therefore not be able to fulfill its
contractual obligations. Before the recent financial crisis many market participants
believed that some counterparties will never fail (“too big to fail”) and therefore
counterparty risk was generally considered as not significant. This view changed
due to the bankruptcy of Lehman Brothers during the financial crisis and market
participants realized that even major banks can fail. For that reason, counterparty
risk is nowadays considered to be significant for investment banks. The International
Financial Reporting Standards (IFRS) demand that the fair value of a derivative
incorporates the credit quality of the counterparty. This is achieved by a valuation
adjustment which is commonly referred to as credit valuation adjustment (CVA), see
e.g. [3–5]. The CVA is part of the IFRS P&L, i.e. losses (gains) caused by changes
of the counterparties credit quality reduce (increase) the balance sheet equity.

Basel III requires a capital charge for future changes of the credit quality of
derivatives, i.e. CVA volatility. Banks can either use a standardized approach to
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compute this capital charge or an internal model [2]. The latter charge is commonly
referred to as CVA risk charge. Many banks have implemented a CVA desk in order
to manage actively their CVA risk. CVA desks buy CDS protection on the capital
markets to hedge the counterparty credit risk of uncollateralized derivatives which
have been bought by the ordinary trading desks. Recognizing that banks actively
manage CVA positions, Basel III allows for hedging the CVA risk charge using
credit hedges such as single name CDSs and CDS indexes. However, the recognition
of hedges is different depending on whether the standardized approach or an internal
model is used [2].

Summarizing, we can look at counterparty credit risk from two different perspec-
tives: the regulatory (Basel III) and the accounting (IFRS) one. Depending whether
we consider counterparty risk from a regulatory or accounting perspective, different
valuation methods are applied for this risk. In general, the regulatory treatment of
counterparty risk ismore conservative than the accounting one, cf. [6]. The difference
between the regulatory and the accounting treatment of counterparty risk causes the
following problem in hedging the CVA risk charge: eligible hedge instruments such
as CDSs would lead to a reduction of the CVA risk charge. On the other hand, under
IFRS, a CDS is recognized as a derivative and thus accounted at fair value through
profit and loss and therefore introducing further P&L volatility.

The current accounting and regulatory rules expose banks to the situation that
they cannot achieve regulatory capital relief and low P&L volatility simultaneously.
Deutsche Bank, for instance, has largely hedged the CVA risk charge in the first half
of 2013. The hedging strategy that reduced the CVA risk charge has caused large
losses due to additional P&L volatility, cf. [7]. This example illustrates the mismatch
between the regulatory and accounting treatment of CVA.1 The mismatch demands
for a trade-off between these two regimes, cf. [8]. For this reason, we propose in this
article an approach which leads to an optimal allocation between CVA risk charge
reduction and P&L volatility. Our considerations are restricted to the standardized
CVA risk charge.

We start with an explanation of the standardized CVA risk charge, i.e. the reg-
ulatory treatment of CVA. Afterwards, we show that the standardized CVA charge
can be interpreted as a (scaled) volatility/variance of a portfolio of normally distrib-
uted positions. This interpretation reveals the modeling assumptions of the regulator
and will be crucial for the later considerations. In a next step, we explain the coun-
terparty risk modeling from an accounting perspective and we compute the impact
of the hedge instruments (used to reduce the CVA risk charge) to the overall P&L
volatility, assuming that the risk factor returns are normally distributed. Without
the mismatch between the regulatory and the accounting regime, the hedge instru-
ments would move anti-correlated to the corresponding accounting CVAs and the
resulting common volatility would be small. Due to the mismatch, the CVA and the
hedge instrument changes will not offset completely. For this reason we introduce a

1Due to the exclusion of DVA from the Basel III regulatory calculation, the mismatch potentially
intensifies.
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synthetic2 total volatility σsyn consisting basically of the sum of the additional
accounting P&L volatility σhed caused by fair value changes of the hedge instruments
(hedge P&L volatility) and the regulatory CVA volatility σCVA,reg (i.e. basically the
CVA risk charge)3:

σ 2
syn = σ 2

hed + σ 2
CVA,reg. (1)

Hence, (1) defines a steering variable describing the common effects of CVA risk
charge hedging and resulting P&L volatility. One should mention that formula (1)
may suggest statistical independence of the two quantities. However, there exists a
dependence in the following sense: both the regulatory CVA volatility and the hedge
P&L volatility depend on the hedge amount. The more we hedge, the smaller the
σCVA,reg. On the other hand, the more we hedge, the larger the σhed . The definition
of the synthetic volatility as a sum of σ 2

hed and σ 2
CVA,reg can be motivated by the

following consideration: the term σ 2
CVA,reg is related to the regulatory capital demand

for CVA risk. The other term, σ 2
hed , can be interpreted as capital demand for market

risk of the hedge instruments. Although the hedge instruments are excluded from the
regulatory capital demand computation for market risk, they potentially reduce the
balance sheet equity and therefore may reduce the available regulatory capital. The
sum in (1) is now motivated by the additivity of the total capital demand.

In the following we will consider σsyn as function of the hedge amount and search
for its minimum. The hedge amount minimizing σsyn leads to the optimal alloca-
tion between CVA risk charge relief and P&L volatility. We will derive analytical
solutions. The discussion of several special cases will provide an intuitive under-
standing of the optimal allocation. For technical reasons we exclude index hedges
in the derivation of the optimal hedge strategy. However, it is easy to generalize the
results to the case where index hedges are allowed.

2 Counterparty Risk from a Regulatory Perspective:
The Standardized CVA Risk Charge

In this sectionwe introduce the standardized CVA risk charge. A detailed explanation
of all involved parameters is given in the Basel III document [2]. The formula for the
standardized CVA risk charge is prescribed by the regulator and is used to determine
the amount of regulatory capital which banks must hold in order to absorb possible
losses caused by future deteriorations of the counterparties credit quality.Wewill see
that the standardized CVA risk charge can be interpreted as volatility (i.e. standard
deviation) of a normally distributed random variable. More precisely, we will show
that the CVA risk charge can be interpreted as the 99% quantile of a portfolio of

2We use theword synthetic since σsyn mixes a volatilitymeasured in regulatory terms and a volatility
measured in accounting terms.
3This connection will be explained later.
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positions subject to normally distributed CVA changes (i.e. CVA P&L) only. This
gives some insights into the regulators modeling assumptions for future CVA. It is
worth to mention that the regulators modeling assumptions may hold or not hold. A
detailed look at the regulators modeling assumptions can be found in [6].

In order to be prepared for later computations, we introduce in this section some
notations and recall some facts about normally distributed random variables.

The standardized CVA risk charge K is given by [2]:

K = β
√
hΦ−1(q) (2)

with

• h = 1, the 1-year time horizon,
• Φ the cumulative distribution function of the standard normal distribution
• q = 99% the confidence level and
• β defined by4

β2 =
( n∑

i=1

0.5 · ωi

(

MiEADi − Mhed
i Bi

)

− ωindMindBind

)2

+
n∑

i=1

0.75 · ω2
i

(

MiEADi − Mhed
i Bi

)2

(3)

with

• ωi a weight depending on the rating of the counterparty i, n is the number of
counterparties

• Mi, Mhed
i , and Mind the effective maturities for the ith netting set (corresponding

to counterparty i), the hedged instrument for counterparty i and the index hedge
• EADi the discounted regulatory exposure w.r.t. counterparty i
• Bi,Bind the discounted hedge notional amounts invested in the hedge instrument
(CDS) for counterparty i and the index hedge.

Formula (2) is determined by the regulator. In order to get a better understanding
of this formula, we will derive a stochastic interpretation of it. Before that, we need
to recall a fact about normal distributions: if the random vector �X has a multivariate
normal distribution, i.e. �X ∼ N (0,Σ) with mean 0 and covariance matrix Σ , then,
for a deterministic vector �a, the scalar product

〈�a, �X〉 :=
∑

i

aiXi (4)

4For simplicitywe consider only one index hedge. The results in this article can easily be generalized
to more than one index hedge.
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has a univariate normal distribution with mean 0 and variance

σ 2 = 〈�a,Σ�a〉. (5)

Now we are able to derive the stochastic interpretation of the CVA risk charge, more
precise the interpretation as volatility.

2.1 Standardized CVA Risk Charge as Volatility

In this section we will show that the regulators’ modeling assumptions behind the
standardized CVA risk charge are given by normally distributed CVA returns which
are aggregated by using a one-factor Gaussian copula model.5 We consider n coun-
terparties. By Ri, we denote the (one year) CVA P&L (i.e. those P&L effects caused
by CVA changes) w.r.t. counterparty i.

Lemma 1 If one assumes Ri ∼ N (0, σ 2
i ) and further, if one assumes that the ran-

dom vector6

�R = (R1, . . . ,Rn)
t

is distributed according to a one-factor Gaussian copula model, i.e. �R ∼ N (0, Γ )

with Γii = σ 2
i and Γij = ρσiσj with ρ independent of i and j for i �= j, then the 99%

quantile of the distribution of �R is equal to the CVA risk charge (2).

Proof Using (4) and (5), we find that the aggregated CVA return (common CVA
P&L) RCVA,reg := ∑n

i=1 Ri = 〈�1, �R〉7 has the distributionN (0, σ 2
CVA,reg) with

σ 2
CVA,reg = 〈�1, Γ �1〉 =

n∑

i,j=1

Γi,j =
(√

ρ

n∑

i=1

σi

)2

+ (1 − ρ)

n∑

i=1

σ 2
i (6)

If we compare the above expression with (3), we see that this expression is equal to
β2 (with Bind = 0, i.e. no index hedges) if we set ρ = 0.25 and σi = ωi(MiEADi −
Mhed

i Bi). The quantile interpretation of the CVA risk charge (i.e. Formula (2)) follows
from standard properties of the normal distribution.

The above lemma shows that the standardized CVA risk charge is basically the
volatility of the sum

∑
i Ri of n normally distributed random variables. The normally

distributed random variables are equicorrelated: ρ(Ri,Rj) = 0.25. Each CVA return
Ri has the volatility

σi = ωi(MiEADi − Mhed
i Bi). (7)

5This is a very strong assumption that might not be true in reality.
6By ·t we denote the transpose of a vector/matrix.
7By �1 we denote the vector (1, . . . , 1)t .
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Hence, buying credit protection on counterparty i reduces the corresponding CVA
volatility. If we assume Mi = Mhed

i , the optimal hedge w.r.t. counterparty i is given
by a CDS with notional amount Bi equals

Bi = EADi. (8)

3 Counterparty Risk from an Accounting Perspective

As explained in the introduction, counterparty risk from an accounting perspective is
quantified by a fair value adjustment called credit valuation adjustment (CVA). The
CVA reduces the present value (PV) of a derivatives portfolio in order to incorporate
counterparty risk:

PV = PVriskfree − CVA,

whereby PVriskfree denotes the market value of the portfolio without counterparty risk
and CVA is the adjustment to reflect counterparty risk. For the modeling of CVA,
banks have some degrees of freedom. Typically, the accounting CVA is computed
by means of the following formula (see e.g. [4]):

CVA =
∫ T

0
D(t)EE(t)dP(t) (9)

with T the effective maturity of the derivatives portfolio, D(t) the risk-free discount
curve, EE(t) = E[max{0,PV (t)}] the (risk-neutral) expected positive exposure at
(future time point) t, and dP(t) is the (risk-neutral) default probability of the coun-
terparty in the infinitesimal interval [t, t + dt]. For the implementation of (9), a
discretization of the integral is necessary. Many banks assume a constant EE profile
(i.e. EE(t) = EE∗ for all t). In that case, (9) simplifies to

CVA = EE∗
∫ T

0
D(t)dP(t). (10)

Further, the (risk-neutral) default probabilities are typically modeled by a hazard
rate model, i.e. one assumes that the default time is exponentially distributed with
parameter λ. Using this assumption, we can write:

CVA = λEE∗
∫ T

0
D(t)e−λtdt. (11)

The approximation (11) will be helpful in the next section, where we describe the
hedging of CVA from an accounting perspective
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3.1 CVA Hedging from an Accounting Perspective

In previous sections we have seen that the regulatory CVA hedging (i.e. CVA risk
charge hedging) can be achieved by buying credit protection. Effectively, (7) says
that the regulatory exposure is reduced by the notional amount of the bought credit
protection. At this place, we describe CVA hedging from an accounting perspective.

Let us consider a derivatives portfolio with a single counterparty. In order to hedge
the corresponding counterparty risk, one can buy, for example, a single name CDS
such that the CVA w.r.t. the counterparty together with the CDS is Delta neutral
(i.e. up to first order, CVA movements are neutralized by the CDS movements). The
condition for Delta neutrality is

ΔCVA = ΔCDS (12)

whereby Δ describes the derivative of the CVA and CDS respectively (w.r.t. the
credit spread of the counterparty). To be more precise, the default leg of the CDS
should compensate the CVA movements. Using a standard valuation model for a
CDS (see e.g. [4]) and computing the derivatives in (12), it is easy to see that (12) is
equivalent to

B = EE∗, (13)

i.e. the optimal hedge amount is given by EE∗. Typically, EE∗ is given by the average
of the expected positive exposures EE(t) at future time points t:

EE∗ = 1

T

∫ T

0
EE(t)dt. (14)

Ifwe compare (13)with (8)we see that the optimal hedgenotional amount for hedging
CVA risk from a regulatory perspective is the regulatory exposure EAD, while the
optimal hedge notional amount for hedging accounting CVA risk is given by EE∗. In
general it holdsEAD > EE∗, due to conservative assumptionsmade by the regulator8

(we refer to [6] for a detailed comparison of these two quantities). Thus, hedgingCVA
risk differs whether it is considered from an accounting or a regulatory perspective.
This mismatch causes additional P&L volatility in the accounting framework, if the
CVA risk is hedged from a regulatory perspective (i.e. if the CVA risk charge is
hedged).

Finally we remark that we can write the CVA sensitivities ΔCVA = d
dsCVA as

ΔCVA = EE∗ΔCDS, (15)

whereby ΔCDS is the sensitivity of (the default leg of) a CDS with notional amount
B = 1.

8For example, the alphamultiplier in the IMMcontext overstates the EADby a factor of 1.4. Further,
the non-decreasing constraint to the exposure profile leads to an overstatement, see [6] for details.
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4 Portfolio P&L

Asexplained above, the hedge instruments reduce the (regulatory) counterparty credit
risk. But they may cause new market risk due to additional P&L volatility. However,
although in accordance with Basel III eligible hedge instruments are excluded from
market risk RWA calculations, the additional P&L volatility of the hedge instruments
leads to fluctuations in reported equity. In order to describe the effects of hedging to
the overall P&L, we introduce in the present section the corresponding framework.
We divide the overall P&L in different parts: the P&L of the hedge instruments, the
P&L of the remaining positions, and the CVA P&L. The framework will be helpful
later on, when we want to quantify the impact of the CVA risk charge hedges to the
accounting P&L.

4.1 Portfolio P&L Without CVA

Let us assume that a bank holds derivatives with n different counterparties for which
single name CDS exists. The bank has to decide to which extent it hedges the coun-
terparty risk w.r.t. these counterparties by either single name CDS or index hedges.
By Σ we denote the correlation matrix (of dimension N × N , N > n) of all risk
factors ri, i = 1, . . . ,N the banks (trading) portfolio is exposed to. Without loss of
generality,we assume that the correlations between theCDSof the consideredn coun-
terparties are given by the first n × n components of Σ , i.e. Σi,j = ρ(CDSi,CDSj),
i, j = 1, . . . , n. Further, Σn+1,i denotes the correlation between the index hedge and
the CDS on counterparty i ∈ {1, . . . , n}. The whole portfolio Π of the bank contains
the hedge instruments (CDS and index hedge) as well as other instruments (e.g.
bonds): Π = Πhed ∪ Πrest . The sub-portfolio Πhed is driven by the credit spreads of
the counterparties. Note that Πrest may depend on some of these credit spreads as
well. In the following, we will assume the P&L of the portfolio Π is given by:

P&L =
n∑

i=1

(BiΔi + Δi,rest)dri + BindΔinddrind +
N∑

j=n+2

Δjdrj, (16)

whereby Δi denotes the sensitivity of CDSi w.r.t. the corresponding credit spread,
Δi,rest denotes the sensitivity of the remaining positions which are sensitive w.r.t. the
credit spread of counterparty i as well,9 Bi (resp. Bind) denotes the notional of CDSi
(resp. the notional of the index hedge), and dri describes the change of the risk factor
ri (the first n risk factors are the credit spreads) in the considered time period.

9For example, if Πrest contains a bond emitted by the counterparty i, then (ignoring the Bond-CDS
Basis) Δi,rest = −Δi).
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4.2 Impact with CVA

This section extends the above considerations to the case where we allow for a CVA
component. We define the total P&L as the difference between the P&L given by
(16) and the CVA P&L:

P&Ltot = P&L − P&LCVA, (17)

whereby P&LCVA is defined in a similar manner as in (16)10:

P&LCVA =
n+1∑

i=1

Δi,CVAdri. (18)

In (18), the risk factors ri are the same risk factors which appear in the first n + 1
summands of (16). This is because the CVAs are driven by the same risk factors as
the corresponding hedge instruments. Recall that in a setup where counterparty risk
is completely hedged, the P&L of the hedge instruments is canceled out by the P&L
of the CVAs. This is the case, if the corresponding sensitivity is equal. In Sect. 3.1
we have shown how one can achieve this (using the condition of Delta neutrality) by
choosing the right hedge notional amounts.

4.3 Impact of CVA Risk Charge Hedging on the Accounting
P&L Volatility

The additional P&L volatility caused by the hedge instruments is basically given by
the residual volatility of the hedge instruments which is not canceled by the CVAs.
In order to derive an expression for this volatility, we start with the derivation of the
volatility of the total portfolio P&L. The residual volatility will consist of those parts
of the total volatility which are sensitive w.r.t. the hedge instruments.

In order to proceed, we have to introduce the following notations: the vec-
tor �ΔCVA ∈ Rn+1 contains the CVA sensitivities and the return vector �dr ∈ RN

describes the changes of the N risk factors the trading book is exposed to. We
further introduce the sensitivity vectors11 �Δ = (Δ1, . . . , Δind, . . . , ΔN )t ∈ RN

10We consider only the credit spreads as risk factors. Exposure movements due to changes in market
risk factors are not considered. This is unproblematic for the considerations in this article since we
will end up with dynamic CVA hedging strategy (cf. Sect. 5) which incorporates the exposure
changes.
11The first n components of �Δ are the CDS sensitivities w.r.t. credit spread changes and the n + 1th
component is the sensitivity of the index hedge.
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and12 �Δrest = (Δ1,rest, . . . , Δn,rest)
t ∈ Rn, the notional vector �B = (B1, . . . ,Bn,Bind)

t ∈
Rn+1 and the diagonal matrix QΔ = diag(Δ1, . . . , Δn,Δind) ∈ R(n+1)×(n+1).

Lemma 2 If we assume that the portfolio P&L is given by (17) and if we further
assume �dr ∼ N (0,Σ) (for some correlation matrix Σ), then the squared volatility
(i.e. the variance) of (17) is given by13

σ 2
P&Ltot =

〈(
QΔ

�B
�0

)

Σ

(
QΔ

�B
�0

)〉

+
〈( �ΔCVA

�0
)

Σ

( �ΔCVA
�0

)〉

+
〈( �Δrest

�ΔN−n−1

)

Σ

( �Δrest
�ΔN−n−1

)〉

− 2

〈(
QΔ

�B
�0

)

Σ

( �ΔCVA
�0

)〉

+ 2

〈(
QΔ

�B
�0

)

Σ

( �Δrest
�ΔN−n−1

)〉

− 2

〈( �Δrest
�ΔN−n−1

)

Σ

( �ΔCVA
�0

)〉

. (19)

Proof With the above defined vectors, we can write:

P&Ltot = 〈QΔ
�B − �ΔCVA, �drn+1〉 + 〈 �Δrest, �drn+1〉 + 〈 �ΔN−n−1, �drN−n−1〉

=
〈(

QΔ
�B

�0N−n−1

)

−
( �ΔCVA

�0N−n−1

)

+
( �Δrest

�ΔN−n−1

)

, �dr
〉

= 〈�a − �b + �c, �dr〉 (20)

whereby �drn+1 denotes the n + 1-dimensional vector consisting of the first n + 1
components of �dr, �drN−n−1 consists of the remaining N − n − 1 components of �dr,
�ΔN−n−1 denotes the vector of the remaining N − n − 1 sensitivities, and �0N−n−1 is
the N − n − 1-dimensional vector whose components are all equal to 0.14 Clearly,
the vectors �a, �b and �c coincide with the respective summands of the left hand side of
the scalar product in (20). If we use �dr ∼ N (0,Σ), it follows from (4) to (5):

σ 2
P&Ltot = 〈�a − �b + �c,Σ(�a − �b + �c)〉

= 〈�a,Σ�a〉 + 〈�b,Σ�b〉 + 〈�c,Σ�c〉 − 2〈�a,Σ�b〉 + 2〈�a,Σ�c〉 − 2〈�c,Σ�b〉. (21)

If we plug in the expressions for �a, �b and �c, we obtain (19). �

In order to be prepared for later computations, we will further simplify Expression
(19). To this end, we introduce the following notations: by Σn+1 we denote the
(n + 1) × (n + 1) matrix consisting of the first n + 1 column and row entires of
Σ only, i.e. Σi,j, i, j = 1, . . . n + 1. The matrix ΣN,n+1 is the N × (n + 1) matrix

12The vector �Δrest contains the n sensitivities w.r.t. credit spread changes of those trading book
positions which are different from the CDSs used for hedging but are sensitive w.r.t. to the credit
spreads of the hedge instruments as well.
13The vector �ΔN−n−1 is defined in the proof.
14In the following, we will omit the index N − n − 1 and simply write �0.
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obtained from Σ by deleting the last N − n − 1 columns and Σ t
N,n+1 denotes its

transpose matrix. With this notation and using that �0 cancels many components in
(19), we can write:

σ 2
P&Ltot = 〈QΔ

�B,Σn+1QΔ
�B〉 + 〈 �ΔCVAΣn+1, �ΔCVA〉 − 2〈QΔ

�B,Σn+1 �ΔCVA〉

+ 2

〈
�B,QΔΣ t

N,n+1

( �Δrest
�ΔN−n−1

)〉

− 2

〈
�ΔCVA,Σ

t
N,n+1

( �Δrest
�ΔN−n−1

)〉

+
〈( �Δrest

�ΔN−n−1

)

Σ

( �Δrest
�ΔN−n−1

)〉

.

(22)

In (22), the first summand describes the volatility of the hedge instruments if they are
considered as isolated from the remaining positions (i.e. those positions which are
different from the hedge instruments). Analogously, the other quadratic terms (i.e.
the second and the last summand in (22)) represent the volatility of the CVA and the
remaining positions respectively. The cross terms (third, fourth, and fifth summand)
describe the interactions between the volatility of the hedge instruments, the CVA
and the remaining positions. For example, the third term describes the interaction
between the CVA and the hedge instruments.

The P&L volatility σ 2
hed caused by the hedge instruments is given by those terms

of (22) which depend on the hedge instruments, i.e. those terms which depend on �B.
These are the first, the third, and the fourth term of (22), i.e.

σ 2
hed = 〈QΔ

�B, Σn+1QΔ
�B〉 − 2〈QΔ

�B, Σn+1 �ΔCVA〉 + 2

〈
�B,QΔΣ t

N,n+1

( �Δrest
�ΔN−n−1

)〉

.

(23)

The other terms of (22) describe the volatility caused by the remaining positions.
In order to simplify the notation, we write σ 2

hed in the following way:

σ 2
hed = 〈A�B, �B〉 + 〈�B, �b〉 (24)

with

A = QΔΣn+1QΔ (25)

and

�b = QΔΣ t
N,n+1

( �Δrest
�ΔN−n−1

)

− QΔΣn+1 �ΔCVA. (26)

Note that σ 2
hed is not simply given by a quadratic form but also incorporates a linear

part. The quadratic form describes the volatility of a portfolio consisting of the hedge
instruments, while the linear part describes the correlations of the hedge instruments
with the remaining positions and with the CVAs.
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4.3.1 Definition of the Steering Variable

We now define a steering variable aiming to define a unified framework for CVA
risk charge hedging and P&L volatility. The steering variable is given by a synthetic
volatility consisting of the sum of the regulatory CVA volatility and the volatility of
the accounting P&L caused by the hedge instruments:

σ 2
syn = σ 2

CVA,reg + σ 2
hed . (27)

The synthetic volatility unifies both the regulatory and the accounting framework.
It can be considered as a function of the hedge notional amounts. The minimum
of σ 2

tot,syn describes the optimal allocation between CVA risk charge reduction and
P&L volatility. Note that σ 2

tot,syn contains now the matrices Γ and Σ , who describe
the correlations between the same risk factors. This mismatch can be resolved, if
the advanced CVA risk charge is used [2]. However, the use of different CVA sen-
sitivities cannot be resolved. The most significant differences arise due to different
exposure definitions: while the exposures EADi contained in the regulatory CVA
sensitivities are based on the effective EPE and multiplied by the alpha multiplier
(for IMM banks), this is not the case for the exposures used to compute the account-
ing CVA sensitivities. In general, these mismatches will lead to smaller accounting
CVA sensitivities. Thus, a complete hedging of the CVA risk charge leads to an
overhedged accounting CVA. See [6] for a complete description of the sources of the
mismatch. Another source of potential overhedging is the following: if accounting
CVA is already hedged by instruments which are not eligible hedge instruments in
the sense of Basel III, additional hedge instruments are necessary for the hedging
of the CVA risk charge. These hedge instruments will cause additional P&L volatil-
ity, since their offsetting counterparts (i.e. the CVAs) are not present (since they are
already hedged).

5 Determination of the Optimal Hedge Strategy

This section describes concretely how the mismatch between the regulatory regime
and the accounting regime can be mitigated. The result will be a dynamic CVA hedg-
ing strategy based on an optimization principle of the steering variable introduced
in the previous section. We will ignore index hedges but all results can easily be
generalized to the case where index hedges are included.

As opposed to the previous sections, the vector �B will not contain the compo-
nent Bind in this section. As explained before, we want to minimize the synthetic
volatility15

σ 2
syn(

�B) = σ 2
hed(

�B) + σ 2
CVA(

�B) (28)

15We ignore the index tot.
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as a function of �B. The component B∗
i of the minimum �B∗ describes the optimal

notional amounts of CDSi, used to hedge the counterparty risk w.r.t. counterparty i.
We now determine �B∗ by computing the zeros of the first derivative of σ 2

syn.

Theorem 1 Under the same assumptions as in Lemma 2, the minimum �B∗ of (28) is
given by16

�B∗ = H−1�f (29)

with
H := 2(A + QMhedΓQMhed ) (30)

and
�f := 2QMhedΓQM

−−→
EAD − �b. (31)

Proof In order to keep the display of the computations clear, we introduce the
diagonal matrices QM := diag(ω1M1, . . . , ωnMn) and QMhed := diag(ω1Mhed

1 , . . . ,

ωnMhed
n ) and the n-dimensional vector

−−→
EAD whose components are given by the

counterparty exposures. Using these definitions, we can write:

σ 2
CVA = 〈QM

−−→
EAD − QMhed �B, Γ (QM

−−→
EAD − QMhed �B)〉. (32)

whereby Γ describes the constant correlation between the CVAs (all diagonal ele-
ments given by 1). Using (32) and (24), we can write:

∂σ 2
syn

∂ �B = ∂

∂ �B (〈A�B, �B〉 + 〈�b, �B〉)

+ ∂

∂ �B 〈QMhed �B, ΓQMhed �B〉

− 2
∂

∂ �B 〈QMhed �B, ΓQM
−−→
EAD〉

= 2A�B + �b + 2QMhedΓQMhed �B − 2QMhedΓQM
−−→
EAD

= H �B − �f , (33)

where we have used the notations (30) and (31). This shows (29). Further, we note
that the matrix H is derived from correlation matrices and therefore positive semi-
definite. As a result, H is indeed invertible. Moreover, it holds

∂2σ 2
syn

∂2 �B = H.

Hence, the second derivative of σ 2
syn is positive semi-definite and B∗ is indeed a

minimum.

16All terms are introduced in the proof.
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Remark The implementation of the optimal hedge strategy works as follows: one
has to compute on a regular basis (e.g. daily, weekly, etc.) the optimal solution (29).
To do this one needs the CVA sensitivities,17 the trading book sensitivities, and the
correlation matrix of the risk factors.18 Afterwards, the CVA desk needs to buy credit
protection described by the optimal solution. This reduces the capital demand for
counterparty risk and (by construction) minimizes the accounting P&L of the bought
credit protection.

The approach presented in this article is based on many simplifying assumptions
and restricted to the standardized CVA risk charge. Obviously, one could relax these
assumptions and apply a comparable optimization principle. In such a case, it would
possibly be hard to derive an analytical solution. Instead, one would obtain a numer-
ical solution.

5.1 Special Cases

For illustration purposes, we consider the case n = 1, i.e. the special case of a single
netting set. In that case both H and �f are scalars:

H = 2Δ2Σ1,1 + 2ω2(Mhed)2

and

f = 2ω2MMhedEAD + 2ΔΔCVAΣ1,1 −
⎛

⎝ΔΣ1,1Δrest + Δ

N∑

j=2

Σ1,jΔj

⎞

⎠ , (34)

whereby Δ describes the sensitivity of the hedge instrument of the considered coun-
terparty, Δrest the sensitivity of the remaining positions (i.e. all positions without the
CDS used for hedging purposes), ΔCVA the sensitivity of accounting CVA and Δj

are the sensitivities to the risk factors of the remaining positions. Thus, the optimal
solution is

B∗ =
2ω2MMhedEAD + 2σ 2ΔΔCVA −

(
Δσ 2Δrest + Δ

∑N
j=2 Σ1,jΔj

)

2Δ2σ 2 + 2ω2(Mhed)2
(35)

where we have used that Σ1,1 is equal to the volatility σ 2 of the hedge instrument.
First, in order to get a better understanding of B∗, let us assume that the risk factor
(credit spread) of the hedge instrument is independent of the remaining positions, i.e.

17Banks which actively manage their CVA risk usually compute these sensitivities.
18Larger banks usually have these data available, e.g. for market risk management purposes.
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Δrest = 0 and Σ1,j = 0, for j = 2, . . . ,N . In that case (35) (we assume additionally
M = Mhed) becomes

B∗ = 2ω2M2EAD + 2ΔΔCVAσ
2

2ω2M2 + 2Δ2σ 2
. (36)

We see already thatB∗ is (at least from a certain volatility level) a decreasing function
inσ 2, aswewould expect it. Obviously, if we ignore the fact that the hedge instrument
introduces further volatility (i.e. we assume σ 2 = 0), it holds

B∗ = EAD.

It is easy to see that this is the optimal hedge amount if we minimize the CVA risk
charge alone. As explained above, the most significant differences between the IFRS
CVA and the regulatory CVA are the different exposure computation methodologies.
In (36), these differences are reflected in EAD and ΔCVA: while EAD is based on
the regulatory methodology, ΔCVA is based on accounting CVA methodology.19

For illustration purposes, let us assume that ΔCVA is based on the same exposure
methodology as the regulatory CVA sensitivities (and that the modeling assumptions
Sect. 3 holds). This means, that cf. (15)

ΔCVA = EADΔ, (37)

i.e. we use the regulatory exposure EAD in (15) instead of the economical exposure
EE∗. If we plug in (37) in (36), we obtain:

B∗ = (2ω2M2 + 2Δ2σ 2)EAD

2ω2M2 + 2Δ2σ 2
= EAD. (38)

Thus, if we ignore the mismatch between the accounting and the regulatory CVA,
the optimal hedge solution is given by the optimal hedge solution of the CVA risk
charge only. If we include the mismatch, we can approximate the accounting CVA
sensitivity by (cf. (15))

ΔCVA = EE∗Δ. (39)

As explained in Sect. 4.3.1, EE∗ is smaller than EAD. Using (36) and (39) yields:

B∗ = 2ω2M2EAD + 2Δσ 2EE∗

2ω2M2 + 2Δ2σ 2
<

2ω2M2EAD + 2Δσ 2EAD

2ω2M2 + 2Δ2σ 2
= EAD. (40)

Hence, the mismatch leads to a smaller optimal hedge amount than the current reg-
ulatory exposure.

19Note that ΔCVA depends on the exposure as well (while Δ is based on a unit exposure, cf.
(16)). But this exposure is computed based on accounting methodology. This is the main source of
differences between the accounting and regulatory regimes.
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We remark that it cannot be excluded that B∗ becomes negative. This is the case
if the risk factors of the remaining positions are strongly correlated to the risk factor
of the hedge instrument. In such a situation it seems to be reasonable to set B∗ = 0.
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Capital Optimization Through an Innovative
CVA Hedge

Michael Hünseler and Dirk Schubert

Abstract One of the lessons of the financial crisis as of late was the inherent credit
risk attached to the value of derivatives. Since not all derivatives can be cleared by
central counterparties, a significant amount of OTC derivatives will be subject to
increased regulatory capital charges. These charges cover both current and future
unexpected losses; the capital costs for derivatives transactions can become substan-
tial if not prohibitive. At the same time, capital optimization through CDS hedging of
counterparty risks will result in a hedge position beyond the economic risk (“over-
hedging”) required to meet Basel II/III rules. In addition, IFRS accounting rules
again differ from Basel, creating a mismatch when hedging CVA. Even worse, CVA
hedging using CDS may introduce significant profit and loss volatility while satis-
fying the conditions for capital relief. An innovative approach to hedging CVA aims
to solve these issues.

Keywords CVA ·Hedging ·CDS ·Contingent financial guarantee ·Risk charges ·
OTC derivatives

1 Preface

In the following the nexus between credit risk (counterparty risk), liquidity, and
market risk is analyzed and a solutionwith respect to CVAhedging of OTC derivative
contracts is proposed.

The starting point is the consideration of collateral and its respective recognition in
different but “basic” financial instruments like repos and (partially un-) collateralized
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OTCderivative contracts aswell as the comparison to corresponding uncollateralized
financial instruments like money market loans or uncollateralized OTC derivative
contracts. The role of collateral is analyzedwith respect to its legal basis, its treatment
in Financial Accounting (IFRS, refer to [4]) and regulatory reporting according to
Basel II/III (cf. [1, 2]).

The analysis leads to a definition of the concept of liquidity and its relation to
the use of collateral in financial markets. As will be shown, the concept of liquidity,
inherent in the legal framework related to collateral of basic financial instruments, can
be considered as a transformation of secured into unsecured financing and vice versa.
Moreover, with respect to the associated valuation and risk the liquidity transforma-
tion exhibits similarities to the concept of wrong-way risk. The transformation of
unsecured into secured financing can be used to derive new types of financial instru-
ments, e.g. in the application to CVA hedging issues of OTC derivative contracts. In
this case the hedging instrument also solves the issue of disentangling funding value
adjustments (FVA) and counterparty value adjustments (CVA), which is intensively
discussed by practitioners in context with the pricing of OTC derivatives.

2 The Role of Collateral in OTC Contracts and Its Legal
Basis

In the following the main legal basis with respect to the role of collateral is outlined.

2.1 The Role of Legal Versus Economic Ownership

There are two main properties which are of relevance in connection with the role of
collateral, the transfer of legal ownership (i.e. the possibility of “re-hypothecation”)
in contrast to the economic ownership and the value of the collateral.

By entering into a repurchase agreement the legal title to the securities is trans-
ferred to the counterparty but economically the securities stay with the selling coun-
terparty since the buying counterparty has the obligation to compensate the selling
counterparty for income (manufactured payments) associated with the securities and
to redeliver the securities. In case of an Event of Default, both obligations terminate.
The treatment in an Event of Default provides that the residual claim is settled in
cash and determined taking into account the cash side as well as the value of the
collateral. In this case the obligation to redeliver securities transferred as collateral
expires and the buying counterparty remains the legal owner. Thus the price risk of
the collateral (uncertainty of value) is entirely borne by the legal owner.

In case of (only) economic ownership, e.g. a pledge, this is not necessarily the
case, since the treatment in an Event of Default differs as e.g. this kind of “collateral”
is part of the bankrupt/legal estate and therefore underlying the insolvency procedure.
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Despite these legal differences, the regulatory rules according to Basel II/III and the
accounting rules under IFRS also require different treatment of collateral. In general
IFRS follows the economic ownership concept irrespective of the legal basis of the
collateral while Basel II/III rather follows the legal ownership concept.

2.2 Affected Market Participants

Not all market participants are affected by the same accounting and regulatory rules.
Banks have to follow IFRS and Basel II/III rules, while e.g. investment funds are not
affected by Basel II/III rules but are governed by investment fund legislation, e.g.
UCITS directive. These different legal frameworks for market participants impact
the usage of collateral in OTC contracts, e.g. the assets of an investment fund under
UCITS represent special assets and the use of repos and cash collateral is limited. In
addition, these investment funds have no access to sources of liquidity other than the
capital paidwhich limits the use of cash and the provision of cash collateral in context
of derivatives exposure. For example, cash collateral received from OTC derivative
contracts has to be kept in segregated accounts and cannot be used for any kind of
(reverse) repo transaction. Alternatively, the use of a custodian for optimizing the
provision of cash collateral can be considered.

2.3 Financial Instruments Involving Collateral and Standard
Legal Frameworks (Master Agreements)

Analyzing the legal basis of collateral facilitates the definition of liquidity and liq-
uidity transformation.

2.3.1 Derivatives Under ISDA Master Agreement

The type and use of collateral are governed in the CSA (credit support annex), which
represents an integral part of the ISDAMaster Agreement framework1 and cannot be
considered separately. The ISDA Master Agreement forms the legal framework and
is applicable for the individual derivative contracts supplemented by the CSA. For
example, default netting in theEvent ofDefault (default of a counterparty) is governed
by the ISDA Master Agreement including the netting of the collateral which in turn
is defined in the CSA. The CSA defines the type(s) of collateral and the terms of
margining/posting, while the transfer of the legal ownership is governed in the ISDA
Master Agreement. In general ISDA Master Agreements contracted under English
Law provide the legal transfer of ownership of the collateral while ISDA Master

1ISDA®, International Swaps and Derivatives Association, Inc., 2002 Master Agreement.
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Agreements contracted under New York Law do not. In the latter re-hypothecation,
i.e. the re-use of the received collateral for counterparties is prohibited.

In case of ISDA Master Agreements under English Law the derivative contracts
are terminated in case of an Event of Default and the collateral is taken into account
in order to determine the residual claim. The determination of the residual claim is
performed independently from the estate of the insolvent party.

2.3.2 Repos Under GMRA

A repo or repurchase agreement under GMRA2 can economically be seen as a collat-
eralized loan and is typically motivated by the request for cash. In case of repurchase
agreements, the legal title to the securities provided as collateral is transferred to the
counterparty (buyer) in exchange of the desired cash (purchase price). The credit risk
and liquidity of the underlying securities determine the haircut in the valuation of the
collateral. Adverse changes in the inherent credit risk of the securities are offset by an
increase in haircut and induce in terms of margining additional posting of collateral
to the counterparty. At maturity the securities are legally transferred back to original
owner (seller) in exchange for the agreed cash amount (repurchase price). In case of
a counterparty’s default the securities are not returned and the recovery risk of the
securities is borne by their legal owner (the buyer).

2.3.3 Securities Lending Under GSLMA

In contrast to a repo, a securities lending under GSLMA3 is motivated by the need for
securities but is (commonly) also a secured financing transaction since the securities
as well as the collateral are legally transferred to the respective counterparty. In the
secured case the collateral can be cash or other securities.

2.4 Credit and Counterparty Risk Related to Collateral

Consider the case that Bank 1 and Bank 2 enter into a repo transaction, where
Bank 2 receives cash from Bank 1 in return for securities. There are two features of
importance: Bank 1 needs cash funding, which requires an assumption with respect
to the sources of funding, e.g. central bank, deposits. The corresponding assumption
represents a component in determining the profitability of the repo. An additional
feature is the inherent wrong-way risk within the repo transaction. In this case the

2Sifma, Securities Industry and Financial Markets Association and ICMA, International Capital
Market Association, 2011 version Global Master Repurchase Agreement.
3ISLA, International Securities LendingAssociation,GlobalMaster Securities LendingAgreement,
Version: January 2010.
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wrong-way risk for Bank 1 is defined as an adverse correlation (positive in the
example above) between counterparty credit risk toward Bank 2 and market value
of the collateral (securities). Assuming a long position in the underlying securities
(collateral) for Bank 1, the wrong-way risk constitutes a decrease in value of the
securities (collateral) and a simultaneous decrease in credit worthiness of Bank 2. In
this case the risk for Bank 1 is the failure of Bank 2 in balancing the collateral posting.
Since in a repo transaction the legal ownership is transferred to Bank 1, the net risk
position comprises the price risk (in the Event of Default of Bank 2) associated with
the collateral (securities) including the haircut and the cash claim (cash loan). A
similar rationale holds in case of a short position in securities (collateral) since an
event of default affects the ability to post as well as to return posted collateral. Similar
considerations hold in case of a (partially) collateralized OTC derivative transaction,
e.g. an interest rate swap.

3 Terms of Liquidity and Definition of Liquidity
Transformation

Dealing with the concept of liquidity reveals that the term is not defined consistently
or not uniformly in financial regulations. A natural way is to adopt legal definitions.

3.1 Terms of Liquidity

There is a variety of definitions for the term liquidity, e.g. meeting payment oblig-
ations (liquidity of an entity), liquid marketable securities (ability to buy and sell
financial instruments), etc. The analysis above reveals the interdependence of “liq-
uidity” and counterparty credit risk, respectively credit risk. As such liquidity of an
entity can be considered as the relatively measured ability for a bank to raise cash
from a credit line or in return of collateral which in turn is dependent on the liquid-
ity of financial instruments. The collateral itself is only accepted if the price of the
collateral can be reliably determined, e.g. it is traded with sufficient frequency on an
active market.

3.2 Comparison of Secured and Unsecured Financing

The best way to illustrate the concept formation of liquidity respectively liquidity
transformation is the comparison of unsecured and secured financing in case of a
default event. Continuing the example above, the following comparison considers
Bank 1 as cash provider.
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1. Financial action

Secured: Exchange of cash versus collateral
Unsecured: Paying out cash of a loan granted

2. Prerequisite and term of liquidity

Secured: “Liquid” collateral (price of collateral can be reliably determined)
Unsecured: Credit line loan illiquid - not marketable

3. Net (relative) risk position in case of default

Secured: Market value of collateral: Default Probability (issuer of the secu-
rity received as collateral)× recovery rate of collateral× amount
of collateral (proximate representation via haircut)

Unsecured: Recovery rate of cash loan × exposure at default (EAD)

4. Relation to estate of insolvent party

Secured: Only residual claim part of the estate of the insolvent party but
amount of residual claim is determined independently of the estate
of the insolvent party

Unsecured: Entirely part of the estate of the insolvent party

5. Risk

Secured: Credit risk of collateral issuer, correlation between counterparty
risk and price of collateral (wrong-way risk in an adverse case)

Unsecured: Credit risk with respect to the borrower

Note that in the comparison above the net (relative) risk position in both cases, for
secured and unsecured financing, involves a recovery rate but the associated risk
relates to different counterparties. In case of secured financing the default risk is
coupled with the recovery risk (price risk) of the collateral and the risk position can
be settled promptly in case of a default while in case of the unsecured financing the
settlement of the recovery depends on the insolvency process.

This comparison in particular shows that the credit risk toward the counterparty
in the unsecured financing transaction being rather illiquid is opposed to the market
value risk of the received collateral which is assumed to be liquid in the secured case
plus the correlation of this risk and the credit risk of the issuer of the securities taken
as collateral. In the adverse case this risk correlation is also known as “wrong way
risk”.

3.3 Liquidity Transformation

Accordingly considering liquidity as an absolute quantity is not useful but as a relative
quantity: a relation between secured financing and unsecured financing, which we
term liquidity transformation. This transformation is not independent from credit
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respective counterparty risk, since each type of financing is associatedwith a different
type of credit risk. The liquidity transformation is dependent on the type of entity
and cannot be considered separately from its legal status. A bank has different access
and a higher degree of freedom to assign liquidity irrespective of the purpose than,
e.g. an investment fund.

4 New Approach to CVA Hedging

The new CVA hedging approach outlined below represents a response to current
challenges in banking regulation and reveals the importance of liquidity transfor-
mation. The legal-based background described above can be used to explain current
challenges of banking industry if in addition to prevailing market conditions the
regulatory and financial accounting environments are taken into account. Recent
environmental changes have immediate impact on banking business activities con-
cerning counterparty risk and can be summarized as follows:

Regulatory andAccountingAspects

• CCR (counterparty credit risk) is
under scrutiny of regulators and
financial accounting standard set-
ters.

• Increased regulatory require-
ments on bilateral collateraliza-
tion and clearing.

• Increased (regulatory) capital
requirements for banks.

• Increased P/L volatility due to
IFRS fair value accounting rules
(e.g. recognition of CVA).

Business Impact

• Increased (regulatory) capital
affects resp. limits banking busi-
ness.

• Intensified application of credit risk
mitigation by netting, collateraliza-
tion and hedging.

• Increased demand for secured (col-
lateralized) transactions

• Increased demand for (liquid / high
quality) collateral.

• Increased demand for optimization
of collateral.

4.1 Issue

During the financial crises regulators and financial accounting setters notified the
relevance of counterparty credit risk in OTC derivative contracts. In response to this
relevance several regulatory (legislative) initiatives have been undertaken like central
clearing, increased regulatory capital, etc. These impacted the business of banking
industry in several ways: intensified use of credit risk mitigation techniques and
increased demand for secured transactions (demand for collateral, cf. also [3]).
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Despite the environmental changes credit risk mitigation is and remains essential
to continue banking business. Considering equity as a scarce source, banks are forced
to tighten their credit exposure in order to offset the increase in capital charges due to
increased costs for CCR and other factors. The tightening of credit exposure limits
banking business and increases the demand for credit risk mitigation techniques
(including hedging).

Thementioned regulatory changes induce tremendous costs for the banking indus-
try. Therefore, managing credit risk by commonly used CDS hedging strategies
becomes expensive in presence of the banking regulation, so credit risk manage-
ment will be rearranged, e.g. more offsetting positions, avoiding exposures (reduc-
ing limits) or transferred (“outsourced”) outside the regulated banking sector, so e.g.
investment funds are in a favorable position to manage a bank’s risks. This also holds
for counterparty credit risk following the idea to transfer counterparty credit risk to
market participants outside the banking sector that are in the situation to manage this
risk economically at lower cost than banks.

Additionally banking industry is faced with various different regulations. With
respect to counterparty credit risk a bank is confronted with conflicting objectives
resulting from regulatory requirements, i.e. Basel II/III, and financial accounting
rules. Therefore, under current regulatory and accounting requirements banks can-
not manage counterparty credit risk (CCR) of derivatives uniformly in respect of
capital requirements and P/L volatility. This results from the fact that the hedging
of counterparty credit risk exposure (in terms of Basel II/III requirements) requires
the hedging of current and future changes of exposure, while IFRS only considers
current exposure. So a bank is required to hedge more than the current exposure
(“overhedging”) in terms of Basel II/III. But since hedging is mainly carried out by
derivatives as CDS, these CDS cause P/L volatility under IFRS, since derivatives are
recognized at fair value through P/L.

As described above secured and unsecured financing is common practice in
finance industry and can be observed in counterparty credit risk of OTC derivative
contracts. As illustrated below in an uncollateralized OTC derivative trade between
Bank A and counterparty B, the parties enter into an unsecured financing relation-
ship. If the market value of the derivative trades of Bank A against counterparty
B increases then Bank A is exposed to counterparty credit risk (CVA risk). Bank A
implicitly provides counterparty B an illiquid credit line in the sense, that the positive
exposure amount (“market value”) is recognized as an asset which becomes a legal
claim in the Event of Default. This exposure is not a tradable asset but needs to be
funded thus it could be interpreted as an illiquid asset. In comparison to standard
banking credit business, this credit line is unlimited and varies with the market value
of the underlying derivative trades, which implies also unlimited funding. The cur-
rent focus of discussions and research concentrates on measuring counterparty credit
risk by exposure and default probability modeling (CVA risk) and the assignment of
the appropriate discount rate for the OTC derivative trades reflecting the FVA. The
discussed approaches share the following assumptions:
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1. No market segmentation between collateralized and uncollateralized OTC deriv-
ative trades.

2. The application of the absence of arbitrage principle, which in particular assumes
the unlimited use of liquidity by market participants.

3. Liquidity risk and credit risk cannot be decoupled.
4. The coincidence of counterparty credit risk and credit risk, which can be both

hedged by the same type of hedging instruments (credit default swaps (CDS),
contingent credit default swaps (CCDS)).

5. The absence of transaction costs, which are represented by regulatory costs (e.g.
CVA risk charges according to Basel II/III) and reported earnings volatility under
IFRS stemming from fair value accounting of counterparty fair value adjustments
and derivative valuation.

These ideal assumptions are not necessarily met in reality, therefore alternative
approaches have to be explored.

4.2 Solution

Since banks with significant activities in derivatives markets can be affected quite
heavily by the aforementioned issues, a workable solution should solve the build-in
conflict of regulatory and accounting requirements. As a result, the solution con-
tributes to an improved competitiveness of the bank in the context of derivative risk
management, derivatives’ pricing, and support the bank in conducting derivatives
business which will ultimately benefit the economy as a whole. Consequently, a
potential solution is about developing a financial instrument (“credit risk mitigating
instrument”) which reduces the Basel II/III CCR capital requirements and CVA risk
charge without resulting in additional P/L volatility under IFRS. Such a financial
instrument represents a solution to the issues described above since it creates:

• A market for counterparty credit risk exposure
The positive exposure of an (un-) collateralized derivative portfolio can be con-
sidered as an illiquid asset in contrast, e.g. to a liquid issuance of a bank.

• A new asset type—make the derivative claim a tradable asset
The idea is to make this exposure tradable in exchange for collateral by means of
an instrument like Collateral Support Annex (CSA) which directly refers to the
possibly varying positive exposure of a derivative portfolio.

• An active market involving banks and investment funds
In order to increase liquidity and to avoid only a shift of capital charges from one
institution to another due to hedging activities for the taken credit risk a transfer
to a market participant outside the banking sector is considered.

The outline of a solution follows the liquidity transformation. The unsecured financ-
ing for OTC derivatives would be represented by uncollateralized OTC derivatives
while secured financing requires corresponding posting of collateral. Pursuing the
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Fig. 1 Secured OTC derivative transaction

aim of decoupling liquidity and counterparty risk, at least three parties are necessary
to involve as demonstrated in the analysis on repos above. Therefore, the aim could
not be achieved by cash collateralized bilateral OTC derivatives commonly used in
the interbankmarket, since there is still a one-to-one correspondence between liquid-
ity requirements (e.g. cash collateral postings) and counterparty risk. Additionally
a bilateral CSA assumes that both counterparties have unlimited access to liquidity,
which represents a difficulty if counterparty B is a corporate according to its limited
access to collateral/cash. Therefore a secured financing transaction for CVA hedging
has to be structured differently.

The secured financing transaction outlined in Fig. 1 involves a third party “Default
Risk Taker” C, who is posting collateral to Bank A on behalf of counterparty B, i.e.
whenever the value of the derivative trade is positive for Bank A. This transaction
represents a tri-party CSA andworks similar to amargining. The transaction between
“Default Risk Taker” C and Bank A is an asymmetric contract, since if the value of
the derivative trade is negative for Bank A, no collateral is provided to or by Bank A.
In case of a default of counterparty B the posted collateral is not returned to “Default
Risk Taker C”. The structure described above represents the appropriate complement
for a bilateral uncollateralized OTC derivative transaction.

The structure reveals the concept of liquidity transformation including a decou-
pling of liquidity and counterparty risk, since by using the contract the unsecured
financing transaction is transformed into a secured financing transaction. Referring
to the comparison of unsecured and secured financing described above (cf. Sect. 2.3),
the proposed structure goes one step further by linking both market segments and
transforming liquidity within one single transaction. By definition of the liquidity
transformation, the transaction exchanges different types of credit risk.

4.3 Application

The table in Fig. 2 shows the contemplation of the new CVA hedge structure (cash
collateral with contingent financial guarantee, “CCCFG”; for more detail refer to
[5]) to existing credit risk mitigation techniques applied in the banking industry. Its
main features are summarized as follows:

• The proposed structure represents a credit risk mitigating instrument, which
reduces the Basel II/III CCR capital requirements CVA risk charge, since the cash
collateral provided by a third party is permitted under Basel II/III requirements
and reduces the exposure according to Basel II/III.
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Aspects Netting
Bilateral
Collateralization

Credit Default 
Swap (CDS) 
based hedges

Contingent
CDS

Economics Reduction of the 
risk position by 
netting of 
exposures

Counterparty risk is 
reduced by posted 
(cash) collateral

Hedges of the 
counterparty
default risk

Hedges of the 
counterparty
default and 
exposure risk

Operational Legally 
enforceable
Default netting 
(ISDA 
standard)

Changes in OTC 
derivative contracts 
(CSA)
Requires liquidity (an 
issue for corporates)

Delta Hedging 
required
Liquid CDS

No Delta 
Hedging 
required
Less liquid 
than CDS

Financial 
Accounting 
(IFRS)

IAS 32 requires 
simultaneous 
payment- and 
default netting

Posted collateral 
reduces fair value 
volatility

Fair value
accounting through 
P&L

Fair value
accounting 
through P&L

Regulatory 
(Basel II/III)

Basel differs 
from IFRS due 
to default netting

Reduces derivative 
exposure (credit risk 
mitigation)

Credit risk mitiga-
tion if requirements
are met

Credit risk miti-
gation if require-
ments are met

Fig. 2 Current and new approaches for credit risk mitigation in banking industry

• Accordingly there is immediate regulatory capital relief, which results in an imme-
diate saving respectively reduction of the cost of equity.

• Theproposed structure simultaneously qualifies as a contingent financial guarantee
such that there is no additional P/L volatility under IFRS. In particular the financial
guarantee accounting under IFRS applies to the proposed structure by considering
the case of default. In case of a default of OTC derivatives contracted under ISDA
the final claim is determined. The financial guarantee under IFRS comes into effect
only at default—not before—and “guarantees” the value of the final claim, which
is recognized at amortized cost and physically transferred to counterparty C in
return for cash to Bank A. The final claim takes into account the posted collateral
until the Event of Default. For a more detailed description refer to [5].

• As becomes apparent from the table above the new CVA hedge structure is a sepa-
rate financial instrument. This cash collateral with contingent financial guarantee
(“CCCFG”) differs from a “traditional” CDS/CCDS, since the collateral postings
are directly related to the counterpartys exposure. In case of a CCDS the cash col-
lateral refers to the CCDS contract itself reflecting its value and there is no direct
legal link to the exposure subject to hedging by the CCDS. Additionally CCDS
represents derivatives in terms of IFRS and not necessarily qualify as credit risk
mitigation instrument under Basel II/III. If a CCDS qualifies as credit risk mitiga-
tion instrument it applies to the Basel II/III PD, while the CCCFG directly affects
the exposure.

• Operationally the new CVA hedging instrument is more effective and less costly
than CDS delta hedging approaches, since a constant adjustment of a hedging
position using CDS induces transaction costs and depends also on the gamma of
the risk position. Accordingly the hedge position is never “perfect”.
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• The approach is flexible with respect to counterparty risk profiles, since it applies
to linear and nonlinear exposure profiles.

• The legal framework of the approach is based on ISDA, which ensures the oper-
ational effectiveness in terms of legal certainty and the recognition in front office
IT systems in order to process the transaction.

• It has to be noticed that investment funds have to observe certain rules and reg-
ulations which come with the specific fund format and domicile. For example,
funds fulfilling the highest standards are limited to invest in eligible assets which
are characterized by sufficient liquidity in order to ensure that the fund is in a
position to meet potential redemptions. Bilateral transactions that are illiquid by
definition require a buy-and-hold investment strategy which may not be suitable
for all investment funds.

4.4 Example

In the following for the sake of simplicity only a qualitative example is provided, since
by comparing the induced costs the CVA hedge already indicates its profitability.

• Bank A holds a portfolio of uncollateralized derivatives (e.g. interest rate swaps
(IRS)) with Counterparty B (e.g. a corporate) a netting set is considered.4

• Bank A enters into a CVA hedge transaction with Investment Fund C who is
taking over credit (counterparty credit risk of B) and market risk and provides
liquidity with reference to the uncollateralized derivative transaction(s) between
Bank A and Counterparty B in terms of the cash collateral postings to Bank A. The
transaction between Investment Fund C and Bank A is a unilateral (asymmetric)
collateral contract in favour of Bank A (and on behalf of Counterparty B). The
transaction chart follows Fig. 1.

• In the following table the impact for Bank A with and without CVA hedge is
summarized:

With respect to the risk illustrated in the first line in the table above, the CVA
hedge transaction mitigates entirely the risk of Bank A by transferring the risk to
investment fund C. This results from the posted cash collateral of Investment Fund
C to Bank A on behalf of counterparty C. Comparing the induced costs (second line
in the table above) reveals that the (uncollateralized) derivative business is exposed
to regulatory and cost of equity charges as well as funding costs. In case of the CVA
hedge transaction all these costs are inapplicable, since the posted cash collateral by
Investment Fund C to Bank A on behalf of counterparty B leads to entire regulatory
capital and cost of capital relief and serves as funding to the derivative exposure
between Bank A and counterparty B. On the other hand Bank A pays a fee to
Investment Fund C for taking over the counterparty credit risk of B and also interest

4In order to keep legal and operational complexity in an event of default low one netting set is
considered.
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Fig. 3 Comparison derivatives exposure with and without CVA Hedge transaction from bank A’s
perspective

on the posted cash collateral. Describing the associated cash flow profiles the two
situations, default and non-default of the counterparty, are distinguished (third line
in the table above). While in case without CVA hedge structure the cash profiles are
straightforward, with CVA hedge transaction in addition fee and interest payments
on the collateral have to be considered in the non-default situation. In the event of
default of counterparty B, the residual claim of the transaction is physically delivered
to Investment Fund C in return for cash equal to the notional of the residual claim.
This procedure follows standard ISDA rules (Fig. 3).

5 Conclusion

The new CVA hedging instrument is used in order to transfer counterparty credit
risk to entities which are able to manage the risk on an economic basis at lower
cost. Investment funds can act as “credit risk taker” and manage counterparty credit
exposure at a lower cost than banks, since investment funds are not subject to regu-
latory capital requirements according to Basel II/III. It has to be noted though that
an implementation of the solution described above requires an intense capability and
knowledge of dealing with derivatives at the risk taking investment funds. On the
other hand, since investment funds are not subject to the same regulations as those for
banks described above they may become a natural partner for banks in this context.

The proposed structure bridges the difference between capital rules and financial
accounting standards in order to optimize capital requirements and charges for CVA.
This is achieved by its liquidity transformation property—the liquidity and credit risk
transformation of the counterparty’s exposure—and by meeting the Basel II/III and
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IFRS requirements: simultaneous CCR capital and CVA risk charge relief as well as
reduced P/L volatility in IFRS resulting from CVA accounting. While the objective
outlined herein is predominantly to provide a suitable solution for CVA issues in
context of derivatives transactions, it may also create interesting opportunities for
investors of the risk taking investment funds.

This solution also contributes to valuation and the discussion on FVA and CVA,
since it requires the pricing of the collateral between counterparties “at arm’s length”.
This price determines the discount rate by applying the absence of arbitrage principle.
As a consequence FVA is disentangled from CVA by using the proposed structure
as a mean.
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FVA and Electricity Bill Valuation
Adjustment—Much of a Difference?

Damiano Brigo, Christian P. Fries, John Hull, Matthias Scherer,
Daniel Sommer and Ralf Werner

Abstract Pricing counterparty credit risk, although being in the focus for almost a
decade by now, is far from being resolved. It is highly controversial if any valuation
adjustment besides the basic CVA should be taken into account, and if so, for what
purpose. Even today, the handling of CVA, DVA, FVA, . . . differs between the regu-
latory, the accounting, and the economic point of view. Eventually, if an agreement
is reached that CVA has to be taken into account, it remains unclear if CVA can
be modelled linearly, or if nonlinear models need to be resorted to. Finally, indus-
try practice and implementation differ in several aspects. Hence, a unified theory
and treatment of FVA and alike is not yet tangible. The conference Challenges in
Derivatives Markets, held at Technische Universität München in March/April 2015,
featured a panel discussion with panelists representing different points of view: John

D. Brigo (B)
Department of Mathematics, Imperial College London, London, UK
e-mail: damiano.brigo@imperial.ac.uk

C.P. Fries
Department of Mathematics, LMU Munich, Theresienstrasse 39,
80333 Munich, Germany
e-mail: christian.fries@math.lmu.de

J. Hull
Joseph L. Rotman School of Management, University of Toronto, 105 St George St,
Toronto, ON M5S 3E6, Canada
e-mail: hull@rotman.utoronto.ca

M. Scherer
Lehrstuhl für Finanzmathematik, Technische Universität München, Parkring 11, 85748
Garching-Hochbrück, Germany
e-mail: scherer@tum.de

D. Sommer
KPMG Financial Risk Management, The Squaire am Flughafen, 60549
Frankfurt, Germany
e-mail: dsommer@kpmg.com

R. Werner
Professur für Wirtschaftsmathematik, Universität Augsburg,
Universitätsstraße 14, 86159 Augsburg, Germany
e-mail: ralf.werner@math.uni-augsburg.de

© The Author(s) 2016
K. Glau et al. (eds.), Innovations in Derivatives Markets, Springer Proceedings
in Mathematics & Statistics 165, DOI 10.1007/978-3-319-33446-2_8

147



148 D. Brigo et al.

Hull, who argues that FVA might not exist at all; in contrast to Christian Fries, who
sees the need of all relevant costs to be covered within valuation but not within
adjustments. Damiano Brigo emphasises the nonlinearity of (most) valuation adjust-
ments and is concerned about overlapping adjustments and double-counting. Finally,
Daniel Sommer puts the exit price in the focus. The following (mildly edited) record
of the panel discussion repeats the main arguments of the discussants—ultimately
culminating in the awareness that if everybody charges an electricity bill valuation
adjustment, it has to become part of any quoted price.

Keywords Counterparty credit risk · Credit valuation adjustment · Debit valuation
adjustment ·Wrong way risk

1 Welcome

Matthias: Welcome back from the coffee break. After the many interesting talks we
already enjoyed today, we will now continue the conference with a panel discussion
on current issues in counterparty credit risk. And we are very proud to present you
such prestigious speakers on this topic—our anchorman Ralf Werner will introduce
them to you in a minute (Fig. 1).

We hope that this discussion will provide you with insights on the current discus-
sion aboutCVA,DVA,FVA, etc. that gobeyondwhat you can read in scientific papers.
Inmy personal view, these valuation adjustments are a special topic in financialmath-
ematics, because they are not simply expressed by formulas some mathematicians
invent and you implement in a spreadsheet. In contrast, these adjustments are chal-

Fig. 1 View on the panel. From left to right: Matthias, Ralf, Daniel, Christian, Damiano, and John
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lenges a whole bank has to work on as a team, because they can involve different
departments, different asset classes, different trading desks, the IT-infrastructure,
lots of data, etc. Hence, it is not something that is “done” after a scientific paper
has been published. Moreover, there is no consensus—neither in academia nor in
practice—on what adjustments should be used and how they must be computed. In
this regard, I am very happy to see representatives from the financial industry as well
as from academia gathering for this discussion.

I will now pass the microphone to Ralf Werner who will be our anchorman. Ralf
is professor for “Wirtschaftsmathematik” at Augsburg University. Prior to this he
was professor at the University of Applied Sciences in Munich, and prior to this he
worked for several financial institutions—most of which have defaulted.

Ralf: Yes, indeed. Three in total.
Matthias: In any case, he gained quite some experience—practical and

theoretical—with credit defaults that he is now sharing with you. Thank you very
much Ralf!

Ralf: Thank you, Matthias, and a warm welcome to everybody from my side. I’m
very honoured to chair this discussion. I don’t think I will need to do much because
we already had an excellent warm-up over lunchtime, andmy experience is that these
four experts in the panel won’t need much input frommy side to keep the discussions
controversial, yet fruitful.

For the unlikely event that the discussion might get stuck, we have prepared a
few additional questions. Further, any question or comment from the audience will
be addressed immediately, i.e. we will interrupt whenever possible and whenever
meaningful.

The idea is that each discussant has about tenminutes to address one ormore topics
he deems important. I’ll try to dig a bit deeper and if you like you join in asking and
eventually after 15 minutes we hand over to the next discussant. This means that in
one hour we should be able to pretty much cover everything concerning DVA, FVA,
CVA, multi-curve, whatsoever, within the scope of the conference.

Let me now introduce the participants in reverse alphabetical order. I would like
to start with Daniel Sommer to my left. Daniel is not only representing one of the
main sponsors of this conference, but he’s further representing almost 20 years of
experience in financial consulting. Daniel is a member of the financial risk man-
agement group at KPMG, and for more than ten years he’s responsible partner for
risk methodology. Daniel holds a PhD on interest-rate models from the University of
Bonn, he has published several papers, he is working for all major banks in Germany,
so in short he comes with a broad experience of what’s going on in the market. I think
this is an excellent opportunity for us to challenge his knowledge and his experience.

On the other end of the panel we have John Hull. I both asked John as well as
Damiano during the lunch break, and we agreed that re-introducing both of them
after we had such great and detailed introductions this morning prior to their talks
is saying the same thing twice over. John will hopefully talk a bit about FVA, and
I assume all of you have read his 2012 paper, see [7]. If not, my introduction may
last another 60 s, so please at least run through the abstract of this great paper. It’s an
excellent work, starting heavy discussions in the community, I’d like to say—fruitful
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discussions, raising lots of interesting questions on FVA: Is it really there? Should
it be zero or not? For me, somehow, the discussion is not yet over, so I am looking
forward to what John has to say.

Besides John, between Daniel and Damiano, we have Christian Fries, our local
panel member from the LMU. Christian was appointed professor for FinancialMath-
ematics a few years ago. I should emphasise that besides his academic duties he is
still mainly working at DZ BANK where he is responsible for model development,
heading this department. Of course, I think you all know Christian from his open-
source library and from his book, resp. on Monte Carlo methods in finance [5], and
I’m sure we will gain a lot of insight from this mixed-role in practice and academia.

And, finally, we have Damiano Brigo with us, whom I would like to start right
away without any further notice, so please, Damiano.

2 Damiano Brigo

Damiano: Okay, thank you. I made some of the points during the presentation, but
I think it’s worth summing up a little bit what’s been happening from my point of
view. I worked on what is now called CVA since, I think, 2002 or 2003 at the bank.
At the time it was called counterparty risk pricing, not CVA, and nobody was really
very interested because the spreads were small for most of the trades and so on, so
the work was recycled a few years later, especially in 2007. But as we did that it was
clear that this was only a small part of a much broader picture where we had to update
the valuation paradigms used in investment banking and not only there (Fig. 2).

The big point that seems to come out, at least methodologically, from that big
picture is nonlinearity, which shows up in a number of aspects that can or may be
neglected in many cases but not always. So one of the aspects is the close-out, what

Fig. 2 Damiano Brigo
giving his presentation on
“Nonlinear valuation under
credit gap risk, collateral
margins, funding costs, and
multiple curves”
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happens at default. What do you put in your simulation? Should you use a risk-free
close-out, where at the first default you just stop and present-value the remaining cash
flows without including any further credit, collateral, and funding liquidity effects?
Or should you rather use a replacement closeout, where those effects are all included
in the valuation at default?

This is a big question. If you go for the replacement, then the problem as we
have seen becomes recursive, if you like, or nonlinear from a different point of view.
And that’s not because we mathematicians are trying to push BSDEs or semi-linear
PDEs on you. It’s simply because of the accounting assumptions. It’s a basic fact,
an accounting rule that says that you have to value your deal at default using a
replacement value. This is a simple accounting rule, but it translates into a quite
nightmarish nonlinear constraint in the valuation. Then when borrowing and lending
rates are asymmetric in financing your hedge, if they are justified to be, then you
have another source of nonlinearity because to price these costs of carry you need to
know the future value of the hedge accounts and of the trade itself. And this induces
another component of nonlinearity (see [4] and [3]).

If it’s there or not depends on the funding model you adopt for your treasury. If
the trading desk is always net borrowing and possible liquidity bases are symmetric,
you don’t have that, and you can more or less have a symmetric problem, but if it’s
not net borrowing then you do have an asymmetry in the funding rate: one is the
credit risk of your bank, one is the credit risk of the external funder, plus liquidity
bases. So, we all know that borrowing and lending don’t happen at the same rates
usually (well, we experience it personally, at least).

So, the nonlinearity is there. The big question is Should we embrace it or keep it
at arm’s length?, because it makes things too complicated in practice. The answer
is the second one, and basically if there is any real nonlinearity in the picture, the
required methods like BSDE’s or semilinear PDE’s are very hard to implement on
large portfolios in an efficient way that ensures that you can value the book many
times during trading activity very quickly—especially because nonlinearity means
the price or the value is not obtained by adding up the values of the assets in the
portfolio, so you need to price the portfolios at all the possible aggregation levels
that you need, and if each component of such a run is slow, you can imagine what
kind of operational nightmare you get into. So I don’t think it’s realistic or feasible
at the moment that we embrace nonlinearity. We need to linearise, which means, in
the two cases I mentioned, we assume that borrowing and lending rates are the same,
which is true for some funding policies, and you also assume that you don’t use a
replacement closeout at default in the CVA calculation of the valuation adjustment
for credit.

Then the other problem I would mention is keeping all the risks in separate
boxes with a label on each box: CVA: this is credit risk, FVA: this is funding cost,
LVA: this is collateral cost and so on. This is a little misleading because these risks
interact in the way that I just described. Each cash flow involves the whole future
value which depends on all the risks together. The classification in boxes is useful
managerially because youwant to assign responsibility in an organisation; you cannot
have everyone responsible for everything unless you have a very illuminated kind of
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workplace, but if you don’t, you want to assign responsibility for credit risk to the
CVA desk, and maybe the funding costs to a different team in the CVA or XVA desk
and so on. But if these aspects are so connected as I said, it’s very hard to separate
the risks in different boxes. Wrong-way risk is another aspect of the fact that the
dependence makes the idea that you can have risk taken care of separately by the
CVA desk for credit risk and by the traditional trading desk for the trade main market
risk not very realistic. To some extent, you can do it, but it’s not precise.

So, these are labels that we apply in order to be able to work operationally in a
realistic setting, but they don’t have the amount of rigour or precision that we would
sometimes think they have in practice. So, should we, again, monitor and watch
out for manifestations of nonlinearity like overlapping adjustments? We saw that in
some set-ups DVA almost completely overlaps with the funding adjustment. And,
so, should we be aware of these and avoid the double-counting, or should we forget
it and just compute the different adjustments, add them up, and forget about all these
overlaps and analyses?

I think it’s important to have at least an initial understanding of these issues before
throwing ourselves into very difficult calculations. There are many other things I
could say. The nonlinearity makes the deal pricing very difficult—in funding costs
especially.When you don’t know the funding policy of the other institution, ormaybe
you don’t agree with the funding policy of the other institution, but you’re still asked
to pay their funding prices, you might object and go to another bank, or you might
in turn say, I also have some funding costs, and I want to charge you. And there
is no transparency in the funding model of the treasury process. How can bilateral
valuation be achieved in a transparent way? This is another problem.

So a number of authors conclude by saying the funding-adjusted value is a value;
it’s not a price. You can use it for profitability analysis internally, but you shouldn’t
charge it outright to a client because it’s hard to justify this charge fully, as we
have seen. On the other hand and this is the final point I want to raise, which is
kind of a meta-topic, I would like to talk about the self-fulfilling aspect in financial
methodology, that if two or three top banks start doing something, everybody else
follows because this becomes the new standard. Top bank A is doing this, top bank
B is doing this, so we have to do this as well. And then even if something is not
justified based on financial principles, or it is not reasonable methodologically or
even mathematically it doesn’t matter because if you don’t do it you place yourself
out of the market.

This is very frustrating for a scientist, for someonewho thinks there are underlying
sound principles behind what’s going on, but in the end you are forced to set the
problem aside, because that’s what the market is doing, and if you don’t follow, you
are automatically out.

I would like to conclude with that kind of provocative point, and I’m sure my
colleagues will have more interesting points to make on it. Thank you.
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Ralf: Thank you, Damiano. Is there anyone in the panel who wants to take up one
of these points? Or in the audience?

Christian: I’d like to ask you, Damiano: you said close-out value. This is a very
important discussion. So, from my point of view, is this an issue for the lawyers, or
is this an issue for financial mathematics? What would you say?

Damiano: I think it’s an issue for both in a sense, in that the lawyers should tell us
if it makes sense to have this close-out there or not based on legal considerations. In
the end, I don’t think we can decide this with mathematics alone. With mathematics
we can say, If you adopt this close-out, the valuation problem is like this, and if you
adopt this other, the valuation problem is like that, but the decision must be taken
based on accounting, financial, and legal principles, not based on mathematics.

I would say that the regulations should converge. We’ve had ISDA pushing a
little towards the replacement close-out, but very mildly. ISDA wrote in 2009 that
in determining a close-out amount, the determining party may consider any rele-
vant information, including quotations (either firm or indicative) for replacement
transactions supplied by one or more third parties (!) that may take into account the
creditworthiness of the determining party at the time the quotation is provided (notice
the use of may). In the end I think it’s a decision for the regulators and the policy-
makers. We discussed this earlier, but let me be more explicit. Are you thinking, with
respect to your operational model, let’s say, when the deal has defaulted do you think
to actually replace it with a new one or simply to liquidate everything and close the
position? This is the real question. If you think to replace it with another physical
deal, and you intend to re-start the trade with another contracting party, then you
should assume a replacement close-out. If you’re thinking of liquidating the posi-
tion, then it stops here, with a cash settlement, and you may use a risk-free closeout.
However, from the point of view of continuity, mathematics seems to suggest that
you should include the replacement because you value the trade, mark it to market
every day, including credit and funding costs, and all of a sudden at the default event,
you remove this. You create a discontinuity in valuation this way, which shows up
as some funny effect, which I don’t want to go into right now.

I think mathematics gives you some hint, but it’s really a regulatory / accounting /
legal discussion that we should have, and then use the maths to include the outcome
properly into the valuation. That’s my view.

Ralf: Let me exaggerate a bit, but will this lead into a situation where your line
of reasoning is also applied to mortgages or government debt? Would Greece say,
I’ll only pay 60 because I’m valued at 50 anyway, so this is the right replacement
value? Will this lead us into such kind of discussions?

Damiano: That is very hard to model because when you have such a large market
effect, then the close-out itself could change the economy basically, so I don’t think
it’s very realistic in that sense.

In fact, we found in the published paper [1] that there is no superior close-out. If
you use the replacement close-out, you have some advantages in terms of continuity
and consistency, but you’ll have some problemswhen the correlation goes up towards
the systemic risk scenario. In that case the risk-free close-out becomes more sensible
economically. There is no clear-cut case, and you cannot make a regulation that
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depends on correlation or the level of perceived systemic risk switching from one
close-out to the other. Can you imagine what happens when you are in the middle. I
don’t even want to go there (see [2]).

So I think we have to be very careful about the maths, and we have to clearly
understand which level of aggregation, of size, we’re talking about, and in the case
of a country, I think that would be quite dangerous.

Daniel: I agree.
Damiano:At the global derivatives conference a couple of years ago, I was talking

to some of the banking quants and I said, Which close-out are you using?, and they
would say We’re using the risk-free close-out because that’s the only thing we can
implement on a large portfolio.

Ralf: I agree. I’ve heard this is hidden in the recovery rate, anyway.
Christian: So maybe I’d like to comment or offer a question on this self-fulfilling

prophecy because I do not understand it. I do understand that if there is some idiot
in the market who’s trading options at the wrong price, then I can use his incorrect
pricing to have an implied volatility. Hence, I can imply his dumbness into mymodel
and that’s fine. But now you say that everybody is doing it, so we should do it. And
I believe this does not apply to FVA. For me, FVA is a real cost and, for example,
the market will now decree not to account for FVA, I still picture that I have lost, for
example, if I issue a bond at LIBOR plus spread, and just put the money to the ECB
for a zero interest rate, I have a loss, right? So, then I would say I would rather go
out of the market instead of making the loss.

Damiano: Okay, so let me ask you another question. Suppose electricity bills
become prohibitive and electricity skyrockets, will you start charging your client an
electricity bill valuation adjustment because that’s a real cost you’re having? Or will
this be embedded in the prices like in the old days.

Christian: It is.
Damiano: When you go and buy some bread from the baker, the baker doesn’t

charge you a runningwater and electricity bill valuation adjustment because he needs
some water to run his bakery, you know ...

Christian:Yeah, but if you go to the bakery, he charges you such that he is covering
all his costs.

Damiano: That’s right.
Christian: It’s just not transparent.
Damiano: That’s right.
Christian: But the cost is inside the price.
Damiano: But then if you add these valuation adjustments one by one, one after

the next, every year a new one, with the nonlinearity effects we see that they possibly
overlap, you are overcharging sometimes, and this is not good, and that’s what I feel
is happening.

KVA. Think about it. KVA is a valuation adjustment on capital requirements,
but the future CVA potential losses trigger capital requirements—so you have your
valuation adjustment on a valuation adjustment. This is getting out of hand.
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Christian: This point I understand, but that is regulatory …
Damiano: But going back to the self-fulfilling prophecy, the other thing I wanted

to say: think about base correlation. For CDOs base correlation is a model. You use a
Gaussian copula, flatten 7,750 correlations into one, apply different flat correlations
to each different tranche on the same pool. To explain a panel of 15CDOs you have 15
different and inconsistent models and then … I kid you not, once at an international
conference I met one quant from a top bank who was lecturing about base correlation
along the lines of here’s an example of calibration, this is a great model, you should
use it, CDOs are great, invest in this. And when I asked, after his talk, I have some
questions for you about this model, he’d say, Oh, I’m the marketing quant. I don’t
do models really. And I said, Take me to your leader!, meaning the real quants then,
and he said, Oh, you cannot talk to them; they don’t talk to the public. My function
is to convince people, investors and the market that this is a great model, this is a
great product, and everybody must come into this market.

However what you are saying is partly true. If the market is kind of complete in a
way, then by hedging your strategy according to the correct hedge you can prove that
your price is right against an opponent, but if the market is largely incomplete, this
is very hard to do. And this is what we look at when we look at funding costs. We
don’t know the hedging or the funding policy of another entity. It’s not transparent.
You don’t know what they’re doing, how they’re financing, their short-term/long-
term funding policy, their internal fund transfer pricing, their bases. You don’t know
many things.

Christian: This is exactly the point. The market is not complete here, and I cannot
pass this risk to someone else. This is my example with the volatility: if someone
is on the wrong volatility I can pass this risk to him, but with my funding it’s still
my risk and it’s my cost to cover it. I believe it has to be in there. If you make it
transparent, it’s something different, maybe.

Damiano: Okay, but then you have to really watch out for the overlap as you add
new risk. For example, in some formulations if you take into account the trading
DVA and also the full funding benefit, you have the same thing twice. You have to
be very careful there. So this practice of adding a new adjustment on top of the old
ones every year is very dangerous because you may miss some of the overlaps. The
banks are paying attention to it; it’s not that bad. If it develops in the fact that in ten
years we’ll have 15 new valuation adjustment, this will be out of control.

Audience member: I have a question because I really like this bakery example, so
let’s say you have one bakery who sells bread for 1.80 and who doesn’t have very
high electricity costs, and you have another bakery which sells it for 2.00 because
they have a lot higher electricity costs. So what is the market price, then? Is it 1.80?

Damiano: The price, if you look at a clean price versus an adjusted price, the price
would be the clean price without costs. But then, of course, the price is adjusted into
an operational price that takes into account the bill, but the bill is not quoted explicitly,
it’s embedded in the price, so that if you think this baker is too expensive, you’ll go to
the other one. Maybe the other one is out of town, so they have lower costs because
of that.
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But in the other industries, we always knew that the price of a good that you end
up buying depends on many circumstances that are not in a theoretical price in a way.
Somehow ironically, part of the finance industry arrived at this realisation quite late.
But that’s another matter. I took too much time and I don’t want to monopolise this
panel.

John: Don’t forget that we have bid-offer spreads in this industry. Those bid-offer
spreads are designed to cover overhead costs, so adding in costs for electricity and
other things is not really the way to do it.

Ralf: Thank you, John. Let me hand over to Christian. Christian, maybe you want
to tell us your opinion on what’s going on in financial institutions at the moment.
Maybe with some more focus on the practitioner’s point of view.

3 Christian Fries

Christian: You’ve asked me to make a few statements and I take the role of the
practitioner.

I have the same opinion as Damiano, but I’d like to make the point that I don’t like
the adjustments. And why? Maybe because the word “adjustment” already implies
that you did something wrong. If I have to adjust something, it tells me that the
original value is wrong. For example, in my car there is this small device that tells
me how long it takes to get from Frankfurt to Munich, and what would I like to see
there? With my car it takes five hours. I could also fly. It would take one hour if you
take the plane, but you have to add four hours’ adjustment. So I would prefer just to
see the five because the five is correct. The one hour is no information for me.

Then, let me give you another example. Consider a swapwhich exchanges LIBOR
against a fixed rate, and this swap is traded at a bank, usually at a swap desk, some-
times it’s called flow trading. And then we have another swap that exchanges LIBOR
capped and floored against the fixed rate; this swap is called a structured swap, and
it’s traded at a different desk. This desk is sometimes called nonlinear trading desk
because these people are doing the nonlinear stuff, but except sometimes for informa-
tion purposes, we do not express the price of the swap as the price of the linear product
plus the nonlinear trading premium. So there is no such thing as an option-valuation
adjustment, so we do not have an OVA or something like that.

Daniel: Going back a few years, people tried to calculate option-adjusted bond
spreads.

Christian: Yes, I know, and I am sometimes reminded of it. And so there is one
desk in the bank that is taking the responsibility for all this complex stuff. This desk is
also making transactions through the swap desk because the desk needs to hedge its
interest rate risk, so he’s hedging out all linear stuff to the other guys, and he keeps all
the nonlinear risks. Let me make a remark about FVA; I will come back to CVA. For
me FVA has a strong analogy to cross-currency, to multi-currencymodels—at least if
you have the same rate for borrowing and lending. Each issuer has its own currency.
So what is his currency? His currency is the bond he’s issuing. Everything has to be
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denominated in his own interest rate, his funding rate. There are even instruments on
the market which profit from this arbitrage between two banks which have different
funding. These are the total return swaps where one bank with poor funding goes
to another bank with good funding and they exchange funding and they both profit
from this deal. I mean, the market for total return swaps is currently dead because
funding is for free, but these things existed. I have a little paper with my colleague
Mark Lichtner on this (see [6]).

This currency analogy: we had this in multi-currencies for years. We know how
to value instruments in different currencies, and we have the same phenomena in
currencies. For example, the cross-currency swap exchanges a floating rate in one
currency for a floating rate in another currency. From the theory, this should be zero:
both are floaters which are at par, but cross-currency swaps trade at a premium. There
is a cross-currency basis spread. The reason is that there is a preference in the market,
that one likes to finance oneself in U.S. Dollars and not in Euros (or vice versa), so,
for example, a Euro bank would prefer to go to Euro financing instead of U.S. Dollar
financing. I believe that FVA is something very natural. Also in mathematical theory
it has been there in this currency analogy since, and it should be recognised inside the
valuation because we wouldn’t value Euro derivatives using the U.S. Dollar curve,
would we?

One more word to CVA. If I’m provocative, I would say, like Damiano already
pointed out, counterparty risk isn’t something new. We had a defaultable LIBOR
market model years ago, and counterparty risk was used years ago maybe only
for credit derivatives, but it’s not so new, and what is actually new here is that
we suddenly have to look at netting. So the big change for me in this valuation
adjustment topic is that we are talking about portfolio effects. What Damiano said
this morning: the sum of each individual product valuation doesn’t give you the value
of the portfolio. So you have portfolio effects, you have to value everything in a single
huge valuation framework, but if you define all the products of a bank as a portfolio,
as one single product—I believe that the theory to be able to do this is actually to
some extent known—the big problem is how do you implement numerically what
you do on the computational side. For me this is the main motivation for these
valuation adjustments. It is because we have computational problems, and we like
to decompose the valuations into valuations for which we can sum up the products.

Going back to FVA, I do not understand why many people still use the risk-free
interest rate as the basis for this valuation, for your reference valuation—because,
first of all, I don’t believe there’s such a thing as a risk-free interest rate; it’s just a
misnomer. And wouldn’t it be better to keep the adjustments as small as possible
such that the price which you calculate is already as close as possible to the true
price? So, for example, my navigation system in the car tells me, from Frankfurt to
Munich you need four hours and thirty minutes. Okay, when I drive you need five
hours and thirty minutes, but it gives me a good proxy. The proxy is using the average
information available.

So coming back to Damiano’s talk, maybe we should simplify things. I like to
have things simplified, and my question is how can you simplify things such that you
can implement them in a bank. For example, we can simplify and say that treasury
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uses an average funding rate which is in the middle of the bid-offer, and we use that
rate to calculate the funding costs so that we have symmetry there and so on.

Finally, I would like to have just one desk where nonlinear effects are managed.
We could have this set-up, so the question is how can we have this set-up in a
bank. We could have this set-up if we have internal transactions in the bank, and
these transactions are fully collateralised. So we have these linear traders who trade
collateralised transactions with this nonlinear trading desk, and the nonlinear trading
desk has the residual.

My conclusion is that I would like to have one formula or one model which gives
me the true price, and then we can set up internal transactions, but what is the good
way to set up these internal transactions such that we can implement this in a bank?
This is my concern.

Audience member: Talking about implementation in the bank: What can you
implement? Where is banking nowadays? CVA, we have all the data for CVA, I
assume. No clue on wrong-way risk on these correlations you need and you already
think about FVA and adjustments on adjustments but still didn’t manage to find a
decent proxy for wrong-way risk? The question is, are we looking and are we solving
the right problems? What is your impression?

Christian: The data is actually the critical thing here. We can include more and
more effects in a nonlinear trading valuation framework by improving themodel—for
example like the approaches we have seen here including wrong-way risk, copulas,
whatever, but the problem is that we actually do not have the data to calibrate the
model.

For example, going back to John’s talk this morning, I have a little comment
here: you’ll see the effect of this multi-curve switch from LIBOR to OIS, but in
this calculation there is an assumption. The assumption is that the swap, which is
LIBOR-collateralised, so we use LIBOR discounting, trades at the same swap rate
as the swap rate that is OIS-collateralised, so we use OIS discounting, so if you have
the same rates for the swap, you get different forward rates. That’s what we saw this
morning.

The problem is you do not observe the swap rate for a LIBOR-collateralised swap.
So it could even be that the swap rates are different and the forwards are the same. If
we value, for example, an uncollateralised product, we do not even know what the
correct forward rate is because we would need the uncollateralised swap to calibrate
this forward rate. Data already start at the very beginning. The problem is data.

Ralf: Do you agree, Damiano?
Damiano: I talked to one of the CVA traders at a top tier 1 bank. They told me

they have what they call zero-order risks in mind more than cross-gamma hedging.
What they don’t have for many counterparties is a healthy default-probability curve
because there’s no liquidity in the relevant CDS, so maybe they have a product with
the airport of Duckburg, and this airport hasn’t issued a liquid bond and there is no
CDS. Where do you obtain the default probability? From the rating? But that’s a
physical measure, not a risk-neutral measure. And then the wrong-way correlations:
you should use market-implied correlations because you are pricing, but then, where
do you get them? It’s almost impossible to get them for many assets, and also, finally,
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I would say that with CVA, you’re right—we talk about KVA, but CVA is still very
much a problem—and there is what I call payout risk, so depending on which close-
out you use, and whether you include the first default check or not (some banks don’t,
because by avoiding it you avoid credit correlation, which is a bad beast in many
cases), so depending on the type of CVA formula you implement—you have five,
six different definitions of CVA—and that is payout risk. With old-style exotics, you
had a very clear description of the payout, then you implemented the dynamics; you
would get a price and hedge, and that would change with the model, and that would
be model risk. Now with CVA we have payout risk. We don’t even know which
payout we are trading exactly, unless we have a very precise description of the CVA
calculation.

But it’s not like when you ask another bank, What CVA charge are you applying
to me?, they tell you It’s a first-to-default inclusive, risk-free closeout … They don’t
tell you that. … And I’m using this kind of CDS curve. Sometimes they don’t tell you
that, and you don’t know.

Ralf: Daniel, do you have the same experience?
Daniel: Absolutely. I think even as many banks are talking about FVA these days,

I think CVA is still an unresolved topic, and our observation is that even in a small
market like the German market, there are a lot of different approaches taken by the
banks to calculate CVA. The problem is becoming more difficult by the minute as
the observable CDS prices, or tradable and liquid CDS prices get fewer and fewer.
So this is an issue that gets more complicated by the minute.

And then another observation: we had a talk about wrong-way risk this morning,
and we learned about the difficulties that this involves, and not surprisingly it’s our
observation that many banks are far from including wrong-way risk in their CVA
calculations, so there’s a long way to go before even CVA is settled.

Ralf: Okay, thank you very much, Daniel.
John: Maybe I should just respond to the point that Christian made about my

presentation this morning. My swap rates were all fully collateralised swap rates,
which would today reflect OIS discounting. I think Wolfgang [Rungaldier] called
them the clean rates. As soon as you look at the uncollateralised market, any rates
you see are contaminated by CVA and DVA.

You say, Use LIBOR discounting. I would say the correct thing to do even with
uncollateralised transactions is still to use OIS discounting and calculate your CVA
and DVA using spreads relative to the OIS curve. Forget about the LIBOR curve. The
LIBOR curve is no longer appropriate for valuing derivatives. It could by chance be
that LIBOR is the correct borrowing rate for the counterparty you’re dealing with,
but in most cases the borrowing rate of an uncollateralised end user is different from
LIBOR, so LIBOR is not a relevant rate. I don’t care whether we call the OIS rate
the risk-free rate or not, but it is the best close-to-risk-free benchmark that we have.

Ralf: Thank you, John. It’s now your turn, so please continue with your statement.
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4 John Hull

John: Hard to know where to start because I have written quite a bit on FVA in the
last few years. I’ve actually consciously decided to stop doing it because I realise I
could spend the whole of the rest of my academic career writing about this, and I’d
never convince most people.

Actually, my interest in FVA has got an interesting history. In the middle of 2012,
I got a call from the editor of Risk magazine saying, We’re bringing out the 25th
anniversary edition of Risk magazine. We’d like you to write an article for it. I agreed
to write the article. (No academic ever says no to writing an article.) I asked What
would you like me to write about? He said, We don’t mind what you write about, so
long as it’s interesting to our readership. But, by the way, we need the article in three
weeks.

I went down the corridor to discuss this with my colleague Alan White. We had
a number of interesting ideas for the article. After two and a half weeks we settled
on FVA. The trouble was that we then had only three days to write the article. In
retrospect, I wish we’d had longer. So what did that article say? That article said,
you should not make an FVA adjustment. I’ll explain why in a minute. The reaction
to the article was interesting. Usually when you write these articles, nothing much
happens. You get maybe a little bit of a response from a few other academics. But in
this case we were absolutely inundated with emails from people about this article.
Two-thirds of emails were saying You’re crazy. You don’t know what you’re talking
about. Clearly there should be an FVA adjustment. We’ve been doing for a while
now … and so on.

The other one-third were a little bit more positive, and some of them even went
so far as to say, We’re glad someone’s finally said this because we were a little
uncomfortable with this FVA adjustment. And, of course, Risk magazine realised
that this was an exciting topic for them, so they started organising conferences on
FVA.

Two people from Royal Bank of Scotland wrote a rejoinder to our article, which
appeared in the next issue of Risk. And we were invited to write a rejoinder to the
rejoinder, and so it went on. It was a really crazy time.

What I very quickly found out was that: Alan and I had a different perspective
from most of the people we were corresponding with on this, and the reason was
that we’ve been trained in finance. We’ve moved from finance into derivatives, and
most of the people we were talking to had moved from physics or mathematics into
derivatives. One important idea in corporate finance is that when you’re valuing an
investment, the discount rate should be determined by the riskiness of the investment.
How you finance the investments is not important. Whether you finance it with debt
or equity, it’s the riskiness of the investment that matters. In other words, you should
separate out the funding from the valuation of the investment (Fig. 3).

That was where we were coming from. In the case of derivatives a complication is
that we can use risk-neutral valuation, so we’ve got a nice way of doing the valuation,
but that does not alter the basic argument. Expected cash flows that are directly related
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Fig. 3 John Hull giving his
presentation on “OIS
discounting, interest rate
derivatives, and the modeling
of stochastic interest rate
spreads”

to the investment should be taken into account. In the case of derivative transactions
these expected cash flows include CVA and DVA.

So that’s where we were coming from. We’ve modified our opinion a little bit
recently. I think I’m more or less in the same camp as Damiano here, judging by his
presentation. Let’s suppose that you fund at OIS plus 200 basis points. If the whole
of the 200 basis points is compensation for default risk, then you are actually getting
a benefit from that 200 basis points, in that that 200 basis points is reflecting the
losses to the lender (and benefits to you) of a possible default on your borrowings.
That is what we call DVA 2, and what Damiano called DVA(F), and other people
have called it FDA. This is not what we usually think of as DVA. What we usually
think of as DVA is the fact that as a bank you might default on your derivatives, and
that could be a gain to you. Here we are applying the same idea to the bank’s debt.

DVA 2 cancels out FVA, and that was the main argument we made in that Risk
magazine article. But if you say that the bank’s borrowing rate is OIS plus 200 basis
points where 120 basis points is for default risk, and 80 basis points is for other
things—maybe liquidity—we can argue that 80 basis points is a dead-weight cost.
It’s part of the cost of doing business, you’re not getting any benefit from that 80
basis points. You are getting benefit from the 120 basis points: a DVA-type benefit
because you can default on your funding.

So I think I am in the same camp as Damiano. I think he called it LVA. This
component of your funding cost which is not related to default risk, is arguably a
genuine FVA. The problem is, of course, that it’s very, very difficult to separate out
the bit of your funding cost that’s due to default risk and the bit of your funding cost
that’s due to other things.

And then another complication is, of course, that accountants assume—for exam-
ple when calculating CVA—the whole of your credit spread reflects default risk.

I have lots and lots of discussions with people on this. You realise very quickly
that you’re never going to convince somebody who’s in a different mindset from
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yourself on this. One important question, though, is what are we trying to do here?
With these sorts of adjustments, are we trying to calculate a price we should charge
a customer? (Obviously in this day and age, we would be talking about the price
we should charge an end user because transactions with other banks are going to be
fully collateralised.) Or are we concerned with internal accounting? Or is it financial
accounting that is our objective? I’ve always taken the view that what we’re really
talking about here is what we record in our books as the value of this derivative.
But if you take the view that what we’re trying to do is to work out what we should
charge an end user, a customer, then actually I have no problems doing whatever you
like, even trying to convince a customer that the customer should pay an ECA, an
electricity cost adjustment. We all know that what you’re trying to do is get the best
price you can and hopefully cover your costs.

What I found was when I was talking to people about FVA is you start talking
about how derivatives should be accounted for and very quickly you slip into talking
about how much the customer should be charged, which is a totally different issue.
Obviously, there’s all sorts of costs you’ve got to recover in terms of what you charge
the customer.

Where are accountants coming from? As you all know, accountants want you to
value derivatives at exit prices. The accounting bodies are quite clear, that the exit
prices have nothing to do with your own costs. Exit prices should be related to what’s
going on in the marketplace. Therefore, your own funding costs can’t possibly come
into an exit price. If other dealers are using FVA in their pricing, their funding costs
may be relevant, but your own funding costs are not relevant. An interesting question
is how should we determine exit prices in a world where all dealers are incorporating
FVA into their pricing. Should we build into our exit price an average of the funding
costs of all dealers or the funding cost of the dealer that gives the most competitive
price? You can argue about this, but it is difficult to argue that it is your own funding
costs that should be used in accounting.

What we have found is there’s a lot of confusion between DVA and FVA, and as
I said there’s really two distinct parts to DVA. There’s the DVA associated with the
fact that you may default on your derivatives. That’s what we call DVA 1. It’s the
usual DVA. Your DVA 1 is your counterparty’s CVA and vice versa. And then there’s
what we call DVA 2, which is the fact that you might default on your funding.

Banks have always beenuncomfortablewithDVA.Even though accountingbodies
have approvedDVA they dislike the idea of taking their own default risk into account.
This has led some banks to replace DVA by FVA. In this context, FVA is sometimes
divided into a funding benefit adjustment and a funding cost adjustment with the
funding benefit adjustment being regarded as a substitute for DVA.

When you look at what’s actually going on right now, banks are all over the place
in terms of how they make funding value adjustments. I agree with Damiano that
once JPMorgan announced that it is taking account of FVA, then everybody felt they
had to do it as well. The correctness of FVA becomes a self-fulfilling prophecy. A
bank’s auditors are going to say, Everybody else is doing this? Why aren’t you doing
it? Whether or not you believe the models used by everyone else are correct, you
have got to use those models to determine accounting values.
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You can have research models for trading, but for accounting you’ve just got to
do what everybody else does. When a critical mass of people move over to doing
something, whether it’s right or wrong, you’ve got to do it.

I notice from a recent article in Risk that the Basel committee is getting interested
in funding value adjustments. And U.S. regulators are getting interested in funding
value adjustments aswell. In addition, I can tell you that a fewmonths ago,AlanWhite
and I were invited to FASB to talk to them about funding value adjustments. They
have concerns about the use of FVA in accounting. They like derivatives accounting
valuations to be based on market prices not on internal costs.

I think we are in a fairly fluid situation here. When JP Morgan has said, We’re
doing it this way, and we’re taking a one-and-half billion dollar hit it is tempting
to believe that everyone else will follow suit and that is the end of the story. I don’t
think it is the end of the story because we have not yet heard from accountants and
regulators. Also, I think it is fair to say that the views of banks and the quants that
work for them are evolving.

There’s some good news. (Maybe it’s not good news if you’re a quant working for
a bank.) The good news is that we’re clearly moving to a world where all derivatives
are fully collateralised. We’re now in a situation where if you deal with another
financial institution or another systemically important entity, you’ve got to be fully
collateralised. Dealing with an end user, you don’t have to be fully collateralised.
But there’s a lot of arguments (we talked about some of them at this conference)
suggesting that end users will get a better deal if they are fully collateralised.

FVA is not going to be such a big issue going forward. Indeed, I think it’s going to
fade away as full collateralisation becomes the norm. But no doubt arguments about
some other XVAs will continue.

Ralf: Thank you, John. I take away that for PhD students it is wise not to pursue
too much research on FVA, then, it might not be worth the effort …

Audience member: Sorry, just if you’ll allow me a little comment. Since the issue
of the self-fulfilling prophecy was picked up also by John Hull, just a little comment
from a mathematical point of view. If you do mathematics for the application, you
need a model. Possibly a true model. So what is a true model? Now, if you do
applications for the natural or physical sciences, possibly there is a true model. It is
very complicated, and what you do, you choose a model that is a good compromise
between representativity and tractability, right, so you can deal with this model and
it’s still relatively good.

Now we come to social / economic sciences. What is the true model? If, at some
point, the majority sort of implicitly uses a sort of model, isn’t that all of a sudden
the true model that other people should follow, or am I wrong here?

Damiano: Like base correlation, for example?
John: Yes, I don’t see it quite that way, though. I think opinions will fluctuate

through time. Nearly all large global banks do make funding value adjustments now.
There are two or three holdouts, but most of them do.

I think FVA is going to be more of a fad than a truth. I think that in five years’
time we could be in the opposite position to today: everybody just decides they don’t
want to make these funding value adjustments. That’s just my own personal opinion.
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One thing I meant to say is that there are interactions between CVA and DVA. If
one side defaults, you don’t care about the other side defaulting later, and there are
a number of other close-out issues. I agree with what Damiano says. Those create
a lot of complications. And they are relevant because those are complications in
assessing expected cash flows arising from the derivatives portfolio that you have
with a counterparty. They’re nothing to do with funding. They’re to do with expected
future cash flows, which are the relevant things to calculate a valuation. It does make
the valuation more complicated, but to overlay that with funding adjustments I don’t
think is correct except insofar as some part of the funding value adjustment is the
dead-weight cost I was talking about.

Ralf: Thank you, John. You mentioned valuation, so maybe this is the keyword
to hand over to Daniel.

5 Daniel Sommer

Daniel: First, John, as you immediately addressed the accounting profession, I’m not
an accountant but I work for a firm that does audit and accounting as some part of its
business. Are our accountants just people who tell the banks to do what everybody
else does? The story is slightly more complicated than that because what accountants
are interested in, and I pick up this story about self-fulfilling prophecies, what they
are interested in eventually is fair value. And, indeed, for financial instruments that’s
defined as the exit price. But then the big question is: How do you find out what the
exit price actually is?

Because it’s not like for all the instruments that we’re talking about in this seminar
here, it’s not something that you can read onBloomberg or any other data provider. It’s
nothing that people will tell you in the street immediately. It’s rather a complicated
exercise to find out what fair value actually is. What would be the exit price at
which you could actually exit your position? It’s at that point where that whole
reasoning comes up with the notion of how other people are thinking about valuing
a certain position. How are my counterparties, my potential counterparties in the
market, thinking about it? And that gives a bit more sense to the statement Do what
everybody else does. Because if everybody else is taking certain aspects of a financial
instrument into consideration when valuing this asset, it’s very likely that your exit
price that you are offered will also take that into consideration. It’s for that reason
that accountants are interested in what everybody else is doing, and frankly speaking,
yes, at KPMG, that was indeed the discussion we had with many banks over the last
three/four years where wemet the banks in London on various panels to discuss FVA
with them. Those were quite open discussions. From one year to the other, we sort
of made a roll call and asked who’s going to do what next year and when do you
think you will be moving to FVA, etc., just to get a feeling for where the market was
going in order to have a better understanding of what the market thought fair value
would be. In that sense, I think that gives a bit more meaning to accountants telling
the banks to do what everybody else is doing.
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Now, coming to the current situation, indeed, I think there is no major bank
globally left who has not declared they were doing something on funding valuation
adjustments, with a lot of banks having come up with that in their 2014 year-end
accounts. So I think the pressure on those bankswho have not yet done that is actually
rising. That’s something which I think is a matter of fact.

I’m happy to comment or give my personal opinion about FVA, and perhaps talk
about it by going back to some anecdotal evidence which I came across during the
financial crisis. Before that, let me just mention a few more things.

Indeed the regulators become interested in FVA, and I think that there are at least
two big issues that will have real effects on the banks that will enter the regulatory
discussion or should enter the regulatory discussion. One thing is, indeed, the overlap
between FVA andDVA,wheremany banks are happy to scrapDVA to a certain extent
and replace it with FVA because that will have an immediate effect on their available
regulatory capital. Because as they do the calculations these days, they offset FVA
benefits and FVA costs. Thus to reduce DVA, where they need to deduct DVA from
core Tier 1 capital, has a real effect on the bank’s balance sheets and profitability
calculations regarding regulatory capital.

The other thing people mentioned and it is true: hedging FVA just as is the case
with CVA is a complicated issue and involves also hedging the related market risk.
And so the question that we have been debating for CVA for a long time already is
whether you are allowed to include the market risk hedges in your internal model
for market risk or not. We’ve seen some movements in this direction recently by
the regulators, but I think that those are two questions that at least should be quite
prominent in the regulatory debate coming up.

That’s one thing. The other thing is related to accounting. People quite leisurely
mentioned that, well, yes, we need to go from a single deal valuation to portfolio
valuation. And indeed for CVA that’s absolutely inevitable. If you do that, neverthe-
less, for an accountant that raises a few uncomfortable questions because it raises the
question: What is actually the unit of account? Apparently it’s not a single deal. It
may be the netting set as far as CVA is concerned, but when you look at funding, the
netting set may even be too small, so it may be some sort of funding set, so all the
deals that you have in one currency or so. When you look at effects on the balance
sheet, do you need to value your whole bank before you can actually value your
derivatives correctly? That’s a bit of an uncomfortable direction we’re going into.

Those are a few comments on things that people have said up to now, but on
FVA itself, let me give you a little anecdote that occurred to me during the financial
crisis. During the financial crisis, the CFO and CEO of one of our top-ten German
banks asked me: Look, all the banks have to reduce the values of their ABS and CDO
books. Actually, don’t you think that if a book is match-funded, it should be worth
more than if a book is not match-funded? And this goes back to the real fundamental
question of liquidity risk and whether liquidity should play a role in pricing. And
everybody who’s read Modigliani and Miller, would say, By no means. That would
be the standard answer. Nevertheless, when you come to think about the situation that
the banks were in during the financial crisis, actually having a match-funded book
gave you at least the option to wait. And there’s real value in that option, as the banks
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who were able to wait were able to realise this because much of the write-downs
that happened during the financial crisis actually came back as defaults were not as
heavy as would have been thought at the time and indicated through the quotes at
the peak of the crisis. It wasn’t even traded prices at the time; it was basically quotes
that banks were valuing their books on.

One might think—a very personal view at this point—one might think that if
banks go for match-funding their books, it’s like buying a very, very deep out-of-
the-money option that they can then exercise when things get really bad. So that’s
one comment I would like to make.

The other point is somewhat more disconcerting. What does being liquid mean in
a world that has had the experience of the financial crisis? Is it sufficient to say that
a bank is liquid if it can generate enough funds through the collateralised inter-bank
money market? Or does a bank have to have access to sufficient central bank money
to prove that it is liquid? At least the experience of the financial crisis showed the
vulnerability of the inter-bank market and the importance of central bank money to
keep the system afloat. In that case at least part of the liquidity costs of banks would
be due to ensuring it has enough central bank money or assets that can swiftly be
turned into the latter. But if that was so then this would change our whole valuation
paradigm, which after all is based on the general equilibrium theory and the theory
of value by Gérard Debreu and others. In this theory there is no need for a central
bank to keep the systemworking. Therefore, acknowledging the existence of funding
costs through the introduction of FVA may have far reaching consequences on the
derivatives pricing theory compared to just the calculation of some odd valuation
adjustment and quarreling about which funding curve to use to determine an exit
price.

Ralf: Thank you, Daniel. John, do you want to comment on this? Is Miller and
Modigliani still valid in such an environment?

John: Well, I think it is, but what Modigliani and Miller say is that if you cut the
pie up, the sum of the pieces is worth the same as the whole. Now, the question is,
who are the potential stakeholders you’ve got to look at when you cut the pie up.

I agree with pretty much everything that Daniel said. It makes a lot of sense.
Ralf: Christian?
Christian: I have a question maybe from the practitioner’s side, also being a little

bit of a quant with respect to the exit price, which keeps me puzzling. Just to make
that clear, for me there are two prices at least. The exit price, I can realise it only
once: by going out of business. There’s only one opportunity to realise the exit price.
There is, of course, the price which I use in calculating my risk sensitivities, my
hedge, which I use in solving my optimal control problem, in my risk management
problem.

So, for example, if the exit price would include a tax, there would be some kind of
going-out-of-business tax, the exit price would clearly include this tax, but of course
as long as I’d like to stay in business I would never charge that tax, and I would not
include it in my hedging because it would never occur to me.

What is strange for me is that I believe that the good price for doing the optimal
control problem, so how do you hedge and so on, is actually the price which is going
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to concern and not the exit price, but the balance sheet is using the exit price, and it
appears to me as if management is always looking at the balance sheet. Isn’t there
some kind of contradictions?What is the price that should be used to find the optimal
path for the company? To make the investment decisions and so on?

Daniel: First of all, it’s very clear that what the accounting standards mean by
exit price is by no means the price at which the bank would go out of business. It’s a
going concern still. Of course it’s an artificial concept in the sense that you will never
… even if you were to sell just a portfolio of your trading book, you would probably
not realise what accountants think of as the fair value because they explicitly rule
out including portfolio effects on this fair value.

What this exit price actually means is, two people meet in the market and they
agree on a certain price at which to exchange a position without changing the market
equilibrium, it has to be small relative to the market.

Christian: For example, for my own bonds, the exit price is my bond value,
which obviously includes my funding, and for uncollateralised derivatives it is the
derivative valued with some average market funding, and if I take your example of
fully matched funding, this is puzzling me because the bonds are on funding and the
uncollateralised derivatives are not on funding.

Ralf: I think this goes in the same direction as my question to Damiano about the
close-out value—what value to use. I think we probably will not solve this puzzle
today. Looking at the time, I would like to thank all of you for your attention. Thank
you very much to all panelists, and I suppose there’s plenty of time for further
discussions during the dinner tonight. Thank you!
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Multi-curve Modelling Using Trees

John Hull and Alan White

Abstract Since2008 thevaluationof derivatives has evolved so thatOISdiscounting
rather than LIBOR discounting is used. Payoffs from interest rate derivatives usually
depend on LIBOR. This means that the valuation of interest rate derivatives depends
on the evolution of two different term structures. The spread betweenOIS andLIBOR
rates is often assumed to be constant or deterministic. This paper explores how this
assumption can be relaxed. It shows how well-established methods used to represent
one-factor interest rate models in the form of a binomial or trinomial tree can be
extended so that the OIS rate and a LIBOR rate are jointly modelled in a three-
dimensional tree. The procedures are illustrated with the valuation of spread options
and Bermudan swap options. The tree is constructed so that LIBOR swap rates are
matched.

Keywords OIS · LIBOR · Interest rate trees · Multi-curve modelling

1 Introduction

Before the 2008 credit crisis, the spread between a LIBOR rate and the corresponding
OIS (overnight indexed swap) rate was typically around 10 basis points. During the
crisis this spread rose dramatically. This led practitioners to review their derivatives
valuation procedures. A result of this review was a switch from LIBOR discounting
to OIS discounting.

Finance theory argues that derivatives can be correctly valued by estimating ex-
pected cash flows in a risk-neutral world and discounting them at the risk-free rate.
The OIS rate is a better proxy for the risk-free rate than LIBOR.1 Another argument

1See for example Hull and White [15].
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(appealing to many practitioners) in favor of using the OIS rate for discounting is
that the interest paid on cash collateral is usually the overnight interbank rate and
OIS rates are longer term rates derived from these overnight rates. The use of OIS
rates therefore reflects funding costs.

Many interest rate derivatives provide payoffs dependent on LIBOR. When LI-
BOR discounting was used, only one rate needed to be modelled to value these
derivatives. Now that OIS discounting is used, more than one rate has to be consid-
ered. The spread between OIS and LIBOR rates is often assumed to be constant or
deterministic. This paper provides a way of relaxing this assumption. It describes
a way in which LIBOR with a particular tenor and OIS can be modelled using a
three-dimensional tree.2 It is an extension of ideas in the many papers that have been
written on how one-factor interest rate models can be represented in the form of a
two-dimensional tree. These papers include Ho and Lee [9], Black, Derman, and
Toy [3], Black and Karasinski [4], Kalotay, Williams, and Fabozzi [18], Hainaut and
MacGilchrist [8], and Hull and White [11, 13, 14, 16].

The balance of the paper is organized as follows. We first describe how LIBOR-
OIS spreads have evolved through time. Second,wedescribe howa three-dimensional
tree can be constructed to model both OIS rates and the LIBOR-OIS spread with a
particular tenor. We then illustrate the tree-building process using a simple three-
step tree. We investigate the convergence of the three-dimensional tree by using it
to calculate the value of options on the LIBOR-OIS spread. We then value Bermu-
dan swap options showing that in a low-interest-rate environment, the assumption
that the spread is stochastic rather than deterministic can have a non-trivial effect on
valuations.

2 The LIBOR-OIS Spread

LIBOR quotes for maturities of one-, three-, six-, and 12-months in a variety of
currencies are produced every day by the British Bankers’ Association based on
submissions from a panel of contributing banks. These are estimates of the unsecured
rates at which AA-rated banks can borrow from other banks. The T -month OIS rate
is the fixed rate paid on a T -month overnight interest rate swap. In such a swap the
payment at the end of T -months is the difference between the fixed rate and a rate
which is the geometric mean of daily overnight rates. The calculation of the payment
on the floating side is designed to replicate the aggregate interest that would be earned
from rolling over a sequence of daily loans at the overnight rate. (In U.S. dollars, the
overnight rate used is the effective federal funds rate.) The LIBOR-OIS spread is the
LIBOR rate less the corresponding OIS rate.

2At the end of Hull and White [17] we described an attempt to do this using a two-dimensional
tree. The current procedure is better. Our earlier procedure only provides an approximate answer
because the correlation between spreads at adjacent tree nodes is not fully modelled.
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LIBOR-OIS spreads were markedly different during the pre-crisis (December
2001–July 2007) and post-crisis (July 2009–April 2015) periods. This is illustrated
in Fig. 1. In the pre-crisis period, the spread term structure was quite flat with the 12-
month spread only about 4 basis points higher than the one-month spread on average.
As shown in Fig. 1a, the 12-month spreadwas sometimes higher and sometimes lower
than one-month spread. The average one-month spread was about 10 basis points
during this period. Because the term structure of spreads was on average fairly flat
and quite small, it was plausible for practitioners to assume the existence of a single
LIBOR zero curve and use it as a proxy for the risk-free zero curve. During the post-
crisis period there has been a marked term structure of spreads. As shown in Fig. 1b,
it is almost always the case that the spread curve is upward sloping. The average
one-month spread continues to be about 10 basis points, but the average 12-month
spread is about 62 basis points.

There are two factors that explain the difference between LIBOR rates and OIS
rates. The first of these may be institutional. If a regression model is used to ex-
trapolate the spread curve for shorter maturities, we find the one-day spread in the
post-crisis period is estimated to be about 5 basis points. This is consistent with the
spread between one-day LIBOR and the effective fed funds rate. Since these are both
rates that a bank would pay to borrow money for 24h, they should be the same. The
5 basis point difference must be related to institutional practices that affect the two
different markets.3

Given that institutional differences account for about 5 basis points of spread,
the balance of the spread must be attributable to credit. OIS rates are based on a
continually refreshed one-day rate whereas τ -maturity LIBOR is a continually re-
freshed τ -maturity rate.4 The difference between τ -maturity LIBOR and τ -maturity
OIS then reflects the degree to which the credit quality of the LIBOR borrower is
expected to decline over τ years.5 In the pre-crisis period the expected decline in the
borrower credit quality implied by the spreads was small but during the post-crisis
period it has been much larger.

The average hazard rate over the life of a LIBOR loan with maturity τ is approx-
imately

λ = L(τ )

1 − R

where L(τ ) is the spread of LIBOR over the risk-free rate and R is the recovery rate
in the event of default. Let h be the hazard rate for overnight loans to high quality
financial institutions (those that can borrow at the effective fed funds rate). This will
also be the average hazard rate associated with OIS rates.

3For a more detailed discussion of these issues see Hull and White [15].
4A continually refreshed τ -maturity rate is the rate realized when a loan is made to a party with a
certain specified credit rating (usually assumed in this context to be AA) for time τ . At the end of
the period a new τ -maturity loan is made to a possibly different party with the same specified credit
rating. See Collin-Dufresne and Solnik [6].
5It is well established that for high quality borrowers the expected credit quality declines with the
passage of time.
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Fig. 1 a Excess of 12-month LIBOR-OIS spread over one-month LIBOR-OIS spread December
4, 2001–July 31, 2007 period (basis points). Data Source: Bloomberg. b Post-crisis LIBOR-OIS
spread for different tenors (basis points). Data Source: Bloomberg
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Define L∗(τ ) as the spread of LIBOR over OIS for a maturity of τ and O(τ ) as the
spread of OIS over the risk-free rate for this maturity. Because L(τ ) = L∗(τ )+O(τ )

λ = L∗(τ ) + O(τ )

1 − R
= h + L∗(τ )

1 − R

This shows that when we model OIS and LIBOR we are effectively modelling OIS
and the difference between the LIBOR hazard rate and the OIS hazard rate.

One of the results of the post-crisis spread term structure is that a single LIBOR
zero curve no longer exists. LIBOR zero curves can be constructed from swap rates,
but there is a different LIBOR zero curve for each tenor. This paper shows how
OIS rates and a LIBOR rate with a particular tenor can be modelled jointly using a
three-dimensional tree.6

3 The Methodology

Suppose that we are interested in modelling OIS rates and the LIBOR rate with tenor
of τ . (Values of τ commonly used are one month, three months, six months and 12
months.) Define r as the instantaneous OIS rate. We assume that some function of
r , x(r), follows the process

dx = [θ(t) − ar x] dt + σr dzr (1)

This is an Ornstein–Uhlenbeck process with a time-dependent reversion level. The
function θ(t) is chosen to match the initial term structure of OIS rates; ar (≥0) is
the reversion rate of x ; σr (>0) is the volatility of r ; and dzr is a Wiener process.7

Define s as the spread between the LIBOR rate with tenor τ and the OIS rate with
tenor τ (both rates being measured with a compounding frequency corresponding to
the tenor). We assume that some function of s, y(s), follows the process:

dy = [φ(t) − as y] dt + σs dzs (2)

This is also an Ornstein–Uhlenbeck process with a time-dependent reversion level.
The function φ(t) is chosen to ensure that all LIBOR FRAs and swaps that can be
entered into today have a value of zero; as (≥0) is the reversion rate of y; σs (>0) is

6Extending the approach so that more than one LIBOR rate is modelled is not likely to be feasible
as it would involve using backward induction in conjunction with a four (or more)-dimensional tree.
In practice, multiple LIBOR rates are most likely to be needed for portfolios when credit and other
valuation adjustments are calculated. Monte Carlo simulation is usually used in these situations.
7This model does not allow interest rates to become negative. Negative interest have been observed
in some currencies (particularly the euro and Swiss franc). If −e is the assumed minimum interest
rate, this model can be adjusted so that x = ln(r + e). The choice of e is somewhat arbitrary, but
changes the assumptions made about the behavior of interest rates in a non-trivial way.
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the volatility of s; and dzs is a Wiener process. The correlation between dzr and dzs
will be denoted by ρ.

We will use a three-dimensional tree to model x and y. A tree is a discrete time,
discrete space approximation of a continuous stochastic process for a variable. The
tree is constructed so that the mean and standard deviation of the variable is matched
over each time step. Results in Ames [1] show that in the limit the tree converges
to the continuous time process. At each node of the tree, r and s can be calculated
using the inverse of the functions x and y.

Wewill first outline a step-by-step approach to constructing the three-dimensional
tree and then provide more details in the context of a numerical example in Sect. 4.8

The steps in the construction of the tree are as follows:

1. Model the instantaneous OIS rate using a tree. We assume that the process for r
is defined by Eq. (1) and that a trinomial tree is constructed as described in Hull
andWhite [11, 13] or Hull [10]. However, the method we describe can be used in
conjunction with other binomial and trinomial tree-building procedures such as
those in Ho and Lee [9], Black, Derman and Toy [3], Black and Karasinski [4],
Kalotay, Williams and Fabozzi [18] and Hull and White [14, 16]. Tree building
procedures are also discussed in a number of texts.9 If the tree has steps of length
Δt , the interest rate at each node of the tree is an OIS rate with maturity Δt .
We assume the tree can be constructed so that both the LIBOR tenor, τ , and all
potential payment times for the instrument being valued are multiples of Δt . If
this is not possible, a tree with varying time steps can be constructed.10

2. Use backward induction to calculate at each node of the tree the price of an OIS
zero-coupon bondwith a life of τ . For a node at time t this involves valuing a bond
that has a value of $1 at time t + τ . The value of the bond at nodes earlier than
t + τ is found by discounting through the tree. For each node at time t + τ − Δt
the price of the bond is e−rΔt where r is the (Δt-maturity) OIS rate at the node.
For each node at time t + τ −2Δt the price is e−rΔt times a probability-weighted
average of prices at the nodes at time t + τ − Δt which can be reached from that
node, and so on. The calculations are illustrated in the next section. Based on the
bond price calculated in this way, P , the τ -maturity OIS rate, expressed with a
compounding period of τ , is11

1/P − 1

τ

3. Construct a trinomial tree for the process for the spread function, y, in Eq. (2)
when the function φ(t) is set equal to zero and the initial value of y is set equal to

8Readers who have worked with interest rate trees will be able to follow our step-by-step approach.
Other readers may prefer to follow the numerical example.
9See for example Brigo and Mercurio [5] or Hull [10].
10See for example Hull and White [14].
11The r -tree shows the evolution of the Δt-maturity OIS rate. Since we are interested in modelling
the τ -maturity LIBOR-OIS spread, it is necessary to determine the evolution of the τ -maturity OIS
rate.
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zero.12 We will refer to this as the “preliminary tree”. When interest rate trees are
built, the expected value of the short rate at each time step is chosen so that the
initial term structure is matched. The adjustment to the expected rate at time t is
achieved by adding some constant, αt , to the value of x at each node at that step.13

The expected value of the spread at each step of the spread tree that is eventually
constructed will similarly be chosen to match forward LIBOR rates. The current
preliminary tree is a first step toward the construction of the final spread tree.

4. Create a three-dimensional tree from the OIS tree and the preliminary spread tree
assuming zero correlation between the OIS rate and the spread. The probabilities
on the branches of this three-dimensional tree are the product of the probabilities
on the corresponding branches of the underlying two-dimensional trees.

5. Build in correlation between the OIS rate and the spread by adjusting the prob-
abilities on the branches of the three-dimensional tree. The way of doing this is
described in Hull and White [12] and will be explained in more detail later in this
paper.

6. Using an iterative procedure, adjust the expected spread at each of the times
considered by the tree. For the nodes at time t , we consider a receive-fixed forward
rate agreement (FRA) applicable to the period between t and t + τ .14 The fixed
rate, F , equals the forward rate at time zero. The value of the FRA at a node, where
the τ -maturity OIS rate is w and the τ -maturity LIBOR-OIS spread is s, is15

F − (w + s)

1 + wτ

The value of the FRA is calculated for all nodes at time t and the values are
discounted back through the three-dimensional tree to find the present value.16

As discussed in step 3, the expected spread (i.e., the amount by which nodes are
shifted from their positions in the preliminary tree) is chosen so that this present
value is zero.

12As in the case of the tree for the interest rate function, x , the method can be generalized to
accommodate a variety of two-dimensional and three-dimensional tree-building procedures.
13This is equivalent to determining the time varying drift parameter, θ(t), that is consistent with the
current term structure.
14A forward rate agreement (FRA) is one leg of a fixed for floating interest rate swap. Typically, the
forward rates underlying some FRAs can be observed in the market. Others can be bootstrapped
from the fixed rates exchanged in interest rate swaps.
15F , w, and s are expressed with a compounding period of τ .
16Calculations are simplified by calculating Arrow–Debreu prices, first at all nodes of the two-
dimensional OIS tree and then at all nodes of the three-dimensional tree. The latter can be calculated
at the end of the fifth step as they do not depend on spread values. This is explained in more detail
and illustrated numerically in Sect. 4.
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4 A Simple Three-Step Example

We now present a simple example to illustrate the implementation of our procedure.
We assume that the LIBOR maturity of interest is 12 months (τ = 1). We assume
that x = ln(r) with x following the process in Eq. (1). Similarly we assume that
y = ln(s) with y following the process in Eq. (2). We assume that the initial OIS
zero rates and 12 month LIBOR forward rates are those shown in Table1. We will
build a 1.5-year tree where the time step, Δt , equals 0.5 years. We assume that the
reversion rate and volatility parameters are as shown in Table2.

As explained in Hull and White [11, 13] we first build a tree for x assuming that
θ(t) = 0. We set the spacing of the x nodes,Δx , equal to σr

√
3Δt = 0.3062. Define

node (i, j) as the node at time iΔt for which x = jΔx . (The middle node at each
time has j = 0.) The normal branching process in the tree is from (i, j) to one of
(i +1, j +1), (i +1, j), and (i +1, j −1). The transition probabilities to these three
nodes are pu , pm , and pd and are chosen to match the mean and standard deviation

Table 1 Percentage interest rates for the examples

Maturity
(years)

OIS zero rate Forward
12-month
LIBOR rate

Forward
12-month OIS
rate

Forward Spread:
12-month LIBOR less
12-month OIS

0 3.000 3.300 3.149 0.151

0.5 3.050 3.410 3.252 0.158

1.0 3.100 3.520 3.355 0.165

1.5 3.150 3.630 3.458 0.172

2.0 3.200 3.740 3.562 0.178

2.5 3.250 3.850 3.666 0.184

3.0 3.300 3.960 3.769 0.191

4.0 3.400 4.180 3.977 0.203

5.0 3.500 4.400 4.185 0.215

7.0 3.700

The OIS zero rates are expressed with continuous compounding while all forward and forward
spread rates are expressed with annual compounding. The OIS zero rates and LIBOR forward
rates are exact. OIS zero rates and LIBOR forward rates for maturities other than those given
are determined using linear interpolation. The rates in the final two columns are rounded values
calculated from the given OIS zero rates and LIBOR forward rates

Table 2 Reversion rates,
volatilities, and correlation
for the examples

OIS reversion rate, ar 0.22

OIS volatility, σr 0.25

Spread reversion rate, as 0.10

Spread volatility, σs 0.20

Correlation between OIS and
spread, ρ

0.05
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of changes in time Δt17

pu = 1

6
+ 1

2
(a2r j

2Δt2 − ar jΔt)

pm = 2

3
− a2r j

2Δt2

pd = 1

6
+ 1

2
(a2r j

2Δt2 + ar jΔt)

As soon as j > 0.184/(arΔt), the branching process is changed so that (i, j) leads
to one of (i + 1, j), (i + 1, j − 1), and (i + 1, j − 2). The transition probabilities
to these three nodes are

pu = 7

6
+ 1

2
(a2r j

2Δt2 − 3ar jΔt)

pm = −1

3
− a2r j

2Δt2 + 2ar jΔt

pd = 1

6
+ 1

2
(a2r j

2Δt2 − ar jΔt)

Similarly, as soon as j < −0.184/(arΔt) the branching process is changed so that
(i, j) leads to one of (i + 1, j + 2), (i + 1, j + 1), and (i + 1, j). The transition
probabilities to these three nodes are

pu = 1

6
+ 1

2
(a2r j

2Δt2 + ar jΔt)

pm = −1

3
− a2r j

2Δt2 − 2ar jΔt

pd = 7

6
+ 1

2
(a2r j

2Δt2 + 3ar jΔt)

We then use an iterative procedure to calculate in succession the amount that the
x-nodes at each time step must be shifted, α0, αΔt , α2Δt , . . . , so that the OIS term
structure is matched. The first value, α0, is chosen so that the tree correctly prices a
discount bondmaturingΔt . The second value,αΔt , is chosen so that the tree correctly
prices a discount bond maturing 2Δt , and so on.

Arrow–Debreu prices facilitate the calculation. The Arrow–Debreu price for a
node is the price of a security that pays off $1 if the node is reached and zero
otherwise. Define Ai, j as the Arrow–Debreu price for node (i, j) and define ri, j as
the Δt-maturity interest rate at node (i, j). The value of αiΔt can be calculated using
an iterative search procedure from the Ai, j and the price at time zero, Pi+1, of a bond
maturing at time (i + 1)Δt using

17See for example Hull ([10], p. 725).
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Pi+1 =
∑

j

Ai, j exp(−ri, jΔt) (3)

in conjunction with
ri, j = exp(αiΔt + jΔx) (4)

where the summation in Eq. (3) is over all j at time iΔt . The Arrow–Debreu prices
can then be updated using

Ai+1,k =
∑

j

Ai, j p j,k exp(−ri, jΔt) (5)

where p( j, k) is the probability of branching from (i, j) to (i + 1, k), and the sum-
mation is over all j at time iΔt . The Arrow–Debreu price at the base of the tree,
A0,0, is one. From this α0 can be calculated using Eqs. (3) and (4). The A1,k can then
be calculated using Eqs. (4) and (5). After that αΔt can be calculated using Eqs. (3)
and (4), and so on.

It is then necessary to calculate the value of the 12-month OIS rate at each node
(step 2 in the previous section). As the tree has six-month time steps, a two-period
roll back is required in the case of our simple example. It is necessary to build a
four-step tree. The value at the j th node at time 4Δt (= 2) of a discount bond that
pays $1 at time 5Δt (= 2.5) is exp(−r4, jΔt).

Discounting these values back to time 3Δt (= 1.5) gives the price of a one-year
discount bond at each node at 3Δt from which the bond’s yield can be determined.
This is repeated for a bond that pays $1 at time 4Δt resulting in the one-year yields at
time 2Δt , and so on. The tree constructed so far and the values calculated are shown
in Fig. 2.18

The next stage (step 3 in the previous section) is to construct a tree for the spread
assuming that the expected future spread is zero (the preliminary tree). As in the case
of the OIS tree, Δt = 0.5 and Δy = σs

√
3Δt = 0.2449. The branching process and

probabilities are calculated as for the OIS tree (with ar replaced by as).
A three-dimensional tree is then created (step 4 in the previous section) by com-

bining the spread tree and the OIS tree assuming zero correlation. We denote the
node at time iΔt where x = jΔx and y = kΔy by node (i, j, k). Consider for
example node (2,−2, 2). This corresponds to node (2,−2) in the OIS tree, node I
in Fig. 2, and node (2, 2) in the spread tree. The probabilities for the OIS tree are
pu = 0.0809, pm = 0.0583, pd = 0.8609 and the branching process is to nodes
where j = 0, j = −1, and j = −2. The probabilities for the spread tree are
pu = 0.1217, pm = 0.6567, pd = 0.2217 and the branching process is to nodes
where k = 1, k = 2, and k = 3. Denote puu as the probability of the highest move
in the OIS tree being combined with the highest move in the spread tree; pum as the
probability of the highest move in the OIS tree being combined with themiddle move
in the spread tree; and so on. The probability, puu of moving from node (2,−2, 2) to

18More details on the construction of the tree can be found in Hull [10].
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Fig. 2 Tree for OIS rates in three-step example

node (3, 0, 3) is therefore 0.0809×0.1217 or 0.0098; the probability, pum of moving
from node (2,−2, 2) to node (3, 0, 2) is 0.0809×0.6567 or 0.0531 and so on. These
(unadjusted) branching probabilities at node (2,−2, 2) are shown in Table4a.

The next stage (step 5 in the previous section) is to adjust the probabilities to build
in correlation between the OIS rate and the spread (i.e., the correlation between dzr
and dzs). As explained in Hull and White [12], probabilities are changed as indi-
cated in Table3.19 This leaves the marginal distributions unchanged. The resulting
adjusted probabilities at node (2,−2, 2) are shown in Table4b. In the example we
are currently considering the adjusted probabilities are never negative. In practice
negative probabilities do occur, but disappear as Δt tends zero. They tend to occur
only on the edges of the tree where the non-standard branching process is used and
do not interfere with convergence. Our approach when negative probabilities are en-
countered at a node is to change the correlation at that node to the greatest (positive
or negative) correlation that is consistent with non-negative probabilities.

19The procedure described in Hull and White [12] applies to trinomial trees. For binomial trees the
analogous procedure is to increase puu and pdd by ε while decreasing pud and pdu by ε where
ε = ρ/4.
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Table 3 Adjustments to probabilities to reflect correlation in a three-dimensional trinomial tree

Probability Change when ρ > 0 Change when ρ < 0

puu +5e +e

pum −4e +4e

pud −e −5e

pmu −4e +4e

pmm +8e −8e

pmd −4e +4e

pdu −e −5e

pdm −4e +4e

pdd +5e +e

(e = ρ/36 where ρ is the correlation)

Table 4 (a) The unadjusted branching probabilities at node (2,−2, 2). The probabilities on the
edge of the table are the branching probabilities at node (2,−2) of the r -tree and (2, 2) of the
s-tree. (b) The adjusted branching probabilities at node (2,−2, 2). The probabilities on the edge of
the table are the branching probabilities at node (2,−2) of the r -tree and (2, 2) of the s-tree. The
adjustment is based on a correlation of 0.05 so e = 0.00139

a

r -tree

pu pm pd
0.0809 0.0583 0.8609

s-tree pu 0.1217 0.0098 0.0071 0.1047

pm 0.6567 0.0531 0.0383 0.5653

pd 0.2217 0.0179 0.0129 0.1908

b

r -tree

pu pm pd
0.0809 0.0583 0.8609

s-tree pu 0.1217 0.0168 0.0015 0.1033

pm 0.6567 0.0475 0.0494 0.5597

pd 0.2217 0.0165 0.0074 0.1978

The tree constructed so far reflects actual OIS movements and artificial spread
movements where the initial spread and expected future spread are zero. We are now
in a position to calculateArrow–Debreu prices for each node of the three-dimensional
tree. These Arrow–Debreu prices remain the same when the positions of the spread
nodes are changed because the Arrow–Debreu price for a node depends only on OIS
rates and the probability of the node being reached. They are shown in Table5.

The final stage involves shifting the position of the spread nodes so that the prices
of all LIBOR FRAs with a fixed rate equal to the initial forward LIBOR rate are
zero. An iterative procedure is used to calculate the adjustment to the values of y
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Table 5 Arrow–Debreu prices for simple three-step example

i = 1 k = −1 k = 0 k = 1

j = 1 0.0260 0.1040 0.0342

j = 0 0.1040 0.4487 0.1040

j = −1 0.0342 0.1040 0.0260

i = 2 k = −2 k = −1 k = 0 k = 1 k = 2

j = 2 0.0004 0.0037 0.0089 0.0051 0.0008

j = 1 0.0045 0.0443 0.1064 0.0516 0.0061

j = 0 0.0112 0.1100 0.2620 0.1100 0.0112

j = −1 0.0061 0.0518 0.1070 0.0445 0.0046

j = −2 0.0008 0.0052 0.0090 0.0037 0.0004

i = 3 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3

j = 2 0.0001 0.0016 0.0085 0.0163 0.0109 0.0027 0.0002

j = 1 0.0005 0.0094 0.0496 0.0932 0.0551 0.0116 0.0007

j = 0 0.0012 0.0197 0.1016 0.1849 0.1016 0.0197 0.0012

j = −1 0.0008 0.0117 0.0557 0.0941 0.0501 0.0095 0.0005

j = −2 0.0002 0.0028 0.0111 0.0167 0.0087 0.0017 0.0001

at each node at each time step, β0, βΔt , β2Δt , . . . , so that the FRAs have a value of
zero. Given that Arrow–Debreu prices have already been calculated this is a fairly
straightforward search. When the α jΔt are determined it is necessary to first consider
j = 0, then j = 1, then j = 2, and so on because the α-value at a particular time
depends on the α-values at earlier times. The β-values however are independent of
each other and can be determined in any order, or as needed. In the case of our
example, β0 = −6.493, βΔt = −6.459, β2Δt = −6.426, β3Δt = −6.395.

5 Valuation of a Spread Option

To illustrate convergence, we use the tree to calculate the value of a European call
option that pays off 100 times max(s − 0.002, 0) at time T where s is the spread.
First, we let T = 1.5 years and use the three-step tree developed in the previous
section. At the third step of the tree we calculate the spread at each node. The spread
at node (3, j, k) is exp[φ(3Δt) + kΔy]. These values are shown in the second line
of Table6. Once the spread values have been determined the option payoffs, 100
times max(s − 0.002, 0), at each node are calculated. These values are shown in the
rest of Table6. The option value is found by multiplying each option payoff by the
correspondingArrow–Debreu price in Table5 and summing the values. The resulting
option value is 0.00670. Table7 shows how, for a 1.5- and 5-year spread option, the
value converges as the number of time steps per year is increased.
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Table 6 Spread and spread option payoff at time 1.5 years when spread option is evaluated using
a three-step tree

i = 3 k = −3 k = −2 k = −1 k = 0 k = 1 k = 2 k = 3

Spread 0.0008 0.0010 0.0013 0.0017 0.0021 0.0027 0.0035

j = 2 0.0000 0.0000 0.0000 0.0000 0.0133 0.0725 0.1482

j = 1 0.0000 0.0000 0.0000 0.0000 0.0133 0.0725 0.1482

j = 0 0.0000 0.0000 0.0000 0.0000 0.0133 0.0725 0.1482

j = −1 0.0000 0.0000 0.0000 0.0000 0.0133 0.0725 0.1482

j = −2 0.0000 0.0000 0.0000 0.0000 0.0133 0.0725 0.1482

Table 7 Value of a European spread option paying off 100 times the greater of the spread less
0.002 and zero

Time steps per year 1.5-year option 5-year option

2 0.00670 0.0310

4 0.00564 0.0312

8 0.00621 0.0313

16 0.00592 0.0313

32 0.00596 0.0313

The market data used to build the tree is given in Tables1 and 2

Table 8 Value of a five-year European spread option paying off 100 times the greater of the spread
less 0.002 and zero

Spread
volatility

Spread/OIS correlation

–0.75 –0.50 –0.25 0 0.25 0.5 0.75

0.05 0.0141 0.0142 0.0142 0.0143 0.0143 0.0144 0.0144

0.10 0.0193 0.0194 0.0195 0.0195 0.0196 0.0196 0.0197

0.15 0.0250 0.0252 0.0253 0.0254 0.0254 0.0255 0.0256

0.20 0.0308 0.0309 0.0311 0.0313 0.0314 0.0316 0.0317

0.25 0.0367 0.0369 0.0371 0.0373 0.0374 0.0376 0.0377

The market data used to build the tree are given in Tables1 and 2 except that the volatility of the
spread and the correlation between the spread and the OIS rate are as given in this table. The number
of time steps is 32 per year

Table8 shows how the spread option price is affected by the assumed correlation
and the volatility of the spread. All of the input parameters are as given in Tables1
and 2 except that correlations between −0.75 and 0.75, and spread volatilities be-
tween 0.05 and 0.25 are considered. As might be expected the spread option price
is very sensitive to the spread volatility. However, it is not very sensitive to the cor-
relation. The reason for this is that changing the correlation primarily affects the
Arrow–Debreu prices and leaves the option payoffs almost unchanged. Increasing
the correlation increases the Arrow–Debreu prices on one diagonal of the final nodes
and decreases them on the other diagonal. For example, in the three-step tree used
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to evaluate the option, the Arrow–Debreu price for nodes (3, 2, 3) and (3,−2,−3)
increase while those for nodes (3,−2, 3) and (3, 2,−3) decrease. Since the option
payoffs at nodes (3, 2, 3) and (3,−2, 3) are the same, the changes on the Arrow–
Debreu prices offset one another resulting in only a small correlation effect.

6 Bermudan Swap Option

We now consider how the valuation of a Bermudan swap option is affected by a
stochastic spread in a low-interest-rate environment such as that experienced in the
years following 2009. Bermudan swap options are popular instruments where the
holder has the right to enter into a particular swap on a number of different swap
payment dates.

The valuation procedure involves rolling back through the tree calculating both
the swap price and (where appropriate) the option price. The swap’s value is set
equal to zero at the nodes on the swap’s maturity date. The value at earlier nodes is
calculated by rolling back adding in the present value of the next payment on each
reset date. The option’s value is set equal to max(S, 0) where S is the swap value at
the option’s maturity. It is then set equal to max(S, V ) for nodes on exercise dates
where S is the swap value and V is the value of the option given by the roll back
procedure.

We assume an OIS term structure that increases linearly from 15 basis points at
time zero to 250 basis points at time 10 years. The OIS zero rate for maturity t is
therefore

0.0015 + 0.0235t

10

The process followed by the instantaneous OIS rate was similar to that derived by
Deguillaume, Rebonato and Pogodin [7], and Hull and White [16]. For short rates
between 0 and 1.5%, changes in the rate are assumed to be lognormalwith a volatility
of 100%. Between 1.5% and 6% changes in the short rate are assumed to be normal
with the standard deviation of rate moves in time Δt being 0.015

√
Δt . Above 6%

rate moves were assumed to be lognormal with volatility 25%. This pattern of the
short rate’s variability is shown in Fig. 3.

The spread between the forward 12-month OIS and the forward 12-month LIBOR
was assumed to be 50 basis points for all maturities. The process assumed for the
12-month LIBOR-OIS spread, s, is that used in the example in Sects. 4 and 5

dln(s) = as[φ(t) − ln(s)] + σs dzs
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Fig. 3 Variability assumed for short OIS rate, r , in Bermudan swap option valuation. The standard
deviation of the short rate in time Δt is s(r)

√
Δt

Table 9 (a) Value in a low-interest rate environment, of a receive-fixed Bermudan swap option on
a 5-year annual-pay swap where the notional principal is 100 and the option can be exercised at
times 1, 2, and 3 years. The swap rate is 1.5%. (b) Value in a low-interest-rate environment of a
received-fixed Bermudan swap option on a 10-year annual-pay swap where the notional principal
is 100 and the option can be exercised at times 1, 2, 3, 4, and 5 years. The swap rate is 3.0%

Spread
volatility

Spread/OIS correlation

a

–0.5 –0.25 –0.1 0 0.1 0.25 0.5

0 0.398 0.398 0.398 0.398 0.398 0.398 0.398

0.3 0.333 0.371 0.393 0.407 0.421 0.441 0.473

0.5 0.310 0.373 0.407 0.429 0.449 0.480 0.527

0.7 0.309 0.389 0.432 0.459 0.485 0.522 0.580

b

–0.5 –0.25 –0.1 0 0.1 0.25 0.5

0 2.217 2.218 2.218 2.218 2.218 2.218 2.218

0.3 2.100 2.164 2.201 2.225 2.248 2.283 2.339

0.5 2.031 2.141 2.203 2.242 2.280 2.335 2.421

0.7 1.980 2.134 2.218 2.271 2.321 2.392 2.503

Amaximum likelihood analysis of data on the 12-month LIBOR-OIS spread over
the 2012 to 2014 period indicates that the behavior of the spread can be approximately
described by a high volatility in conjunction with a high reversion rate. We set as
equal to 0.4 and considered values of σs equal to 0.30, 0.50, and 0.70. A number of
alternative correlations between the spread process and the OIS process were also
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considered. We find that correlation of about −0.1 between one month OIS and the
12-month LIBOR OIS spread is indicated by the data.20

We consider two cases:

1. A 3 × 5 swap option. The underlying swap lasts 5 years and involves 12-month
LIBOR being paid and a fixed rate of 1.5% being received. The option to enter
into the swap can be exercised at the end of years 1, 2, and 3.

2. A 5×10 swap option. The underlying swap lasts 10 years and involves 12-month
LIBOR being paid and a fixed rate of 3.0% being received. The option to enter
into the swap can be exercised at the end of years 1, 2, 3, 4, and 5.

Table9a shows results for the 3 × 5 swap option. In this case, even when the
correlation between the spread rate and the OIS rate is relatively small, a stochastic
spread is liable to change the price by 5–10%. Table9b shows results for the 5× 10
swap option. In this case, the percentage impact of a stochastic spread is smaller.
This is because the spread, as a proportion of the average of the relevant forward
OIS rates, is lower. The results in both tables are based on 32 time steps per year. As
the level of OIS rates increases the impact of a stochastic spread becomes smaller in
both Table9a, b.

Comparing Tables8 and 9, we see that the correlation between the OIS rate and
the spread has a much bigger effect on the valuation of a Bermudan swap option
than on the valuation of a spread option. For a spread option we argued that option
payoffs for high Arrow–Debreu prices tend to offset those for low Arrow–Debreu
prices. This is not the case for a Bermudan swap option because the payoff depends
on the LIBOR rate, which depends on the OIS rate as well as the spread.

7 Conclusions

For investment grade companies it is well known that the hazard rate is an increasing
function of time. This means that the credit spread applicable to borrowing by AA-
rated banks from other banks is an increasing function of maturity. Since 2008,
markets have recognized this with the result that the LIBOR-OIS spread has been an
increasing function of tenor.

Since 2008, practitioners have also switched from LIBOR discounting to OIS
discounting. This means that two zero curves have to bemodelled whenmost interest
rate derivatives are valued. Many practitioners assume that the relevant LIBOR-OIS
spread is either constant or deterministic. Our research shows that this is liable to
lead to inaccurate pricing, particularly in the current low interest rate environment.

The tree approach we have presented provides an alternative to Monte Carlo
simulation for simultaneously modelling spreads and OIS rates. It can be regarded as

20Because of the way LIBOR is calculated, daily LIBOR changes can be less volatile than the
corresponding daily OIS changes (particularly if the Fed is not targeting a particular overnight
rate). In some circumstances, it may be appropriate to consider changes over periods longer than
one day when estimating the correlation.
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an extension of the explicit finite difference method and is particularly useful when
American-style derivatives are valued. It avoids the need to use techniques such as
those suggested by Longstaff and Schwartz [19] and Andersen (2000) for handling
early exercise within a Monte Carlo simulation.

Implying all the model parameters from market data is not likely to be feasible.
One reasonable approach is to use historical data to determine the spread process
and its correlation with the OIS process so that only the parameters driving the OIS
process are implied from the market. The model can then be used in the same way
that two-dimensional tree models for LIBOR were used pre-crisis.
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Derivative Pricing for a Multi-curve
Extension of the Gaussian, Exponentially
Quadratic Short Rate Model

Zorana Grbac, Laura Meneghello and Wolfgang J. Runggaldier

Abstract The recent financial crisis has led to so-called multi-curve models for the
term structure. Here we study a multi-curve extension of short rate models where,
in addition to the short rate itself, we introduce short rate spreads. In particular,
we consider a Gaussian factor model where the short rate and the spreads are sec-
ond order polynomials of Gaussian factor processes. This leads to an exponentially
quadratic model class that is less well known than the exponentially affine class. In
the latter class the factors enter linearly and for positivity one considers square root
factor processes. While the square root factors in the affine class have more involved
distributions, in the quadratic class the factors remain Gaussian and this leads to
various advantages, in particular for derivative pricing. After some preliminaries on
martingale modeling in the multi-curve setup, we concentrate on pricing of linear
and optional derivatives. For linear derivatives, we exhibit an adjustment factor that
allows one to pass from pre-crisis single curve values to the corresponding post-crisis
multi-curve values.
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1 Introduction

The recent financial crisis has heavily impacted the financial market and the fixed
income markets in particular. Key features put forward by the crisis are counterparty
and liquidity/funding risk. In interest rate derivatives the underlying rates are typically
Libor/Euribor. These are determined by a panel of banks and thus reflect various risks
in the interbankmarket, in particular counterparty and liquidity risk. The standard no-
arbitrage relations between Libor rates of different maturities have broken down and
significant spreads have been observed betweenLibor rates of different tenors, aswell
as between Libor andOIS swap rates, where OIS stands for Overnight Indexed Swap.
For more details on this issue see Eqs. (5)–(7) and the paragraph following them, as
well as the paper by Bormetti et al. [1] and a corresponding version in this volume.
This has led practitioners and academics alike to construct multi-curvemodels where
future cash flows are generated through curves associated to the underlying rates
(typically the Libor, one for each tenor structure), but are discounted by another
curve.

For the pre-crisis single-curve setup various interest rate models have been pro-
posed. Some of the standard model classes are: the short rate models; the instan-
taneous forward rate models in an Heath–Jarrow–Morton (HJM) setup; the market
forward rate models (Libor market models). In this paper we consider a possible
multi-curve extension of the short rate model class that, with respect to the other
model classes, has in particular the advantage of leading more easily to a Markovian
structure. Other multi-curve extensions of short rate models have appeared in the
literature such as Kijima et al. [22], Kenyon [20], Filipović and Trolle [14], Morino
andRunggaldier [27]. The present paper considers an exponentially quadraticmodel,
whereas the models in the mentioned papers concern mainly the exponentially affine
framework, except for [22] in which the exponentially quadratic models are men-
tioned. More details on the difference between the exponentially affine and expo-
nentially quadratic short rate models will be provided below.

Inspired by a credit risk analogy, but also by a common practice of deriving
multi-curve quantities by adding a spread over the corresponding single-curve risk-
free quantities, we shall consider, next to the short rate itself, a short rate spread to
be added to the short rate, one for each possible tenor structure. Notice that these
spreads are added from the outset.

To discuss the basic ideas in an as simple as possible way, we consider just a two-
curve model, namely with one curve for discounting and one for generating future
cash flows; in other words, we shall consider a single tenor structure. We shall thus
concentrate on the short rate rt and a single short rate spread st and, for their dynamics,
introduce a factor model. In the pre-crisis single-curve setting there are two basic
factor model classes for the short rate: the exponentially affine and the exponentially
quadratic model classes. Here we shall concentrate on the less common quadratic
class with Gaussian factors. In the exponentially affine class where, to guarantee
positivity of rates and spreads, one considers generally square root models for the
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factors, the distribution of the factors is χ2. In the exponentially quadratic class the
factors have a more convenient Gaussian distribution.

The paper is structured as follows. In the preliminary Sect. 2 we mainly dis-
cuss issues related to martingale modeling. In Sect. 3 we introduce the multi-curve
Gaussian, exponentially quadratic model class. In Sect. 4 we deal with pricing of
linear interest rate derivatives and, finally, in Sect. 5 with nonlinear/optional interest
rate derivatives.

2 Preliminaries

2.1 Discount Curve and Collateralization

In the presence of multiple curves, the choice of the curve for discounting the future
cash flows, and a related choice of the numeraire for the standard martingale measure
used for pricing, in other words, the question of absence of arbitrage, becomes non-
trivial (see e.g. the discussion inKijima andMuromachi [21]). To avoid issues of arbi-
trage, one should possibly have a common discount curve to be applied to all future
cash flows independently of the tenor. A choice, which has been widely accepted
and became practically standard, is given by theOIS-curveT �→ p(t,T) = pOIS(t,T)

that can be stripped from OIS rates, namely the fair rates in an OIS. The arguments
justifying this choice and which are typically evoked in practice, are the fact that
the majority of the traded interest rate derivatives are nowadays being collateral-
ized and the rate used for remuneration of the collateral is exactly the overnight
rate, which is the rate the OIS are based on. Moreover, the overnight rate bears
very little risk due to its short maturity and therefore can be considered relatively
risk-free. In this context we also point out that prices, corresponding to fully col-
lateralized transactions, are considered as clean prices (this terminology was first
introduced by Crépey [6] and Crépey et al. [9]). Since collateralization is by now
applied in the majority of cases, one may thus ignore counterparty and liquidity risk
between individual parties when pricing interest rate derivatives, but cannot ignore
the counterparty and liquidity risk in the interbank market as a whole. These risks
are often jointly referred to as interbank risk and they are main drivers of the multi-
curve phenomenon, as documented in the literature (see e.g. Crépey and Douady [7],
Filipović and Trolle [14], and Gallitschke et al. [15]). We shall thus consider only
clean valuation formulas, which take into account the multi-curve issue. Possible
ways to account for counterparty risk and funding issues between individual coun-
terparties in a contract are, among others, to follow a global valuation approach that
leads to nonlinear derivative valuation (see Brigo et al. [3, 4] and other references
therein, and in particular Pallavicini and Brigo [28] for a global valuation approach
applied specifically to interest ratemodeling), or to consider various valuation adjust-
ments that are generally computed on top of the clean prices (see Crépey [6]). A fully
nonlinear valuation is preferable, but is more difficult to achieve. On the other hand,
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valuation adjustments are more consolidated and also used in practice and this gives
a further justification to still look for clean prices. Concerning the explicit role of
collateral in the pricing of interest rate derivatives, we refer to the above-mentioned
paper by Pallavicini and Brigo [28].

2.2 Martingale Measures

The fundamental theorem of asset pricing links the economic principle of absence
of arbitrage with the notion of a martingale measure. As it is well known, this is a
measure, under which the traded asset prices, expressed in units of a same numeraire,
are local martingales. Models for interest rate markets are typically incomplete so
that absence of arbitrage admits many martingale measures. A common approach
in interest rate modeling is to perform martingale modeling, namely to model the
quantities of interest directly under a generic martingale measure; one has then to
perform a calibration in order to single out the specificmartingalemeasure of interest.
The modeling under a martingale measure now imposes some conditions on the
model and, in interest rate theory, a typical such condition is the Heath–Jarrow–
Morton (HJM) drift condition.

Starting from the OIS bonds, we shall first derive a suitable numeraire and then
consider as martingale measure a measure Q under which not only the OIS bonds,
but also the FRA contracts seen as basic quantities in the bond market, are local
martingales when expressed in units of the given numeraire. To this basic market
one can then add various derivatives imposing that their prices, expressed in units of
the numeraire, are local martingales under Q.

Having made the choice of the OIS curve T �→ p(t,T) as the discount curve, con-
sider the instantaneous forward rates f (t,T) := − ∂

∂T log p(t,T) and let rt = f (t, t)
be the corresponding short rate at the generic time t. Define the OIS bank account as

Bt = exp

(∫ t

0
rsds

)

(1)

and, as usual, the standard martingale measure Q as the measure, equivalent to the
physical measure P, that is associated to the bank account Bt as numeraire. Hence
the arbitrage-free prices of all assets, discounted by Bt , have to be local martingales
with respect to Q. For derivative pricing, among them also FRA pricing, it is often
more convenient to use, equivalently, the forward measure QT associated to the OIS
bond p(t,T) as numeraire. The two measures Q and QT are related by their Radon–
Nikodym density process

d QT

d Q

∣
∣
∣
Ft

= p(t,T)

Btp(0,T)
0 ≤ t ≤ T . (2)
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As already mentioned, we shall follow the traditional martingale modeling, whereby
the model dynamics are assigned under the martingale measure Q. This leads to
defining the OIS bond prices according to

p(t,T) = EQ

{

exp

[

−
∫ T

t
rudu

]

| Ft

}

(3)

after having specified the Q−dynamics of r.
Coming now to the FRA contracts, recall that they concern a forward rate agree-

ment, established at a time t for a future interval [T ,T + Δ], where at time T + Δ

the interest corresponding to a floating rate is received in exchange for the interest
corresponding to a fixed rate R. There exist various possible conventions concern-
ing the timing of the payments. Here we choose payment in arrears, which in this
case means at time T + Δ. Typically, the floating rate is given by the Libor rate and,
having assumed payments in arrears, we also assume that the rate is fixed at the begin-
ning of the interval of interest, here at T . Recall that for expository simplicity we
had reduced ourselves to a two-curve setup involving just a single Libor for a given
tenor Δ. The floating rate received at T + Δ is therefore the rate L(T;T ,T + Δ),
fixed at the inception time T . For a unitary notional, and using the (T + Δ)-forward
measure QT+Δ as the pricing measure, the arbitrage-free price at t ≤ T of the FRA
contract is then

PFRA(t;T ,T + Δ,R) = Δp(t,T + Δ)ET+Δ {L(T;T ,T + Δ) − R | Ft} , (4)

where ET+Δ denotes the expectation with respect to the measure QT+Δ. From this
expression it follows that the value of the fixed rate R that makes the contract fair at
time t is given by

Rt = ET+Δ {L(T;T ,T + Δ) | Ft} := L(t;T ,T + Δ) (5)

and we shall call L(t;T ,T + Δ) the forward Libor rate. Note that L(·;T ,T + Δ) is
a QT+Δ−martingale by construction.

In view of developing a model for L(T;T ,T + Δ), recall that, by absence of
arbitrage arguments, the classical discrete compounding forward rate at time t for
the future time interval [T ,T + Δ] is given by

F(t;T ,T + Δ) = 1

Δ

(
p(t,T)

p(t,T + Δ)
− 1

)

,

where p(t,T) represents here the price of a risk-free zero coupon bond. This expres-
sion can be justified also by the fact that it represents the fair fixed rate in a forward
rate agreement, where the floating rate received at T + Δ is

F(T;T ,T + Δ) = 1

Δ

(
1

p(T ,T + Δ)
− 1

)

(6)
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and we have
F(t;T ,T + Δ) = ET+Δ {F(T;T ,T + Δ) | Ft} . (7)

This makes the forward rate coherent with the risk-free bond prices, where the latter
represent the expectation of the market concerning the future value of money.

Before the financial crisis, L(T;T ,T + Δ) was assumed to be equal to F(T;T ,

T + Δ), an assumption that allowed for various simplifications in the determina-
tion of derivative prices. After the crisis L(T;T ,T + Δ) is no longer equal to
F(T;T ,T + Δ) and what one considers for F(T;T ,T + Δ) is in fact the OIS
discretely compounded rate, which is based on the OIS bonds, even though the
OIS bonds are not necessarily equal to the risk-free bonds (see Sects. 1.3.1 and
1.3.2 of Grbac and Runggaldier [18] for more details on this issue). In particular,
the Libor rate L(T;T ,T + Δ) cannot be expressed by the right-hand side of (6).
The fact that L(T;T ,T + Δ) �= F(T;T ,T + Δ) implies by (5) and (7) that also
L(t;T ,T + Δ) �= F(t;T ,T + Δ) for all t ≤ T and this leads to a Libor-OIS spread
L(t;T ,T + Δ) − F(t;T ,T + Δ).

Following some of the recent literature (see e.g. Kijima et al. [22], Crépey et al.
[8], Filipović and Trolle [14]), one possibility is now to keep the classical relationship
(6) also for L(T;T ,T + Δ) thereby replacing however the bonds p(t,T) by fictitious
risky ones p̄(t,T) that are assumed to be affected by the same factors as the Libor
rates. Such a bond can be seen as an average bond issued by a representative bank
from the Libor group and it is therefore sometimes referred to in the literature as a
Libor bond. This leads to

L(T;T ,T + Δ) = 1

Δ

(
1

p̄(T ,T + Δ)
− 1

)

. (8)

Recall that, for simplicity of exposition, we consider a single Libor for a single
tenor Δ and so also a single fictitious bond. In general, one has one Libor and one
fictitious bond for each tenor, i.e. LΔ(T;T ,T + Δ) and p̄Δ(T ,T + Δ). Note that we
shall model the bond prices p̄(t,T), for all t and T with t ≤ T , even though only
the prices p̄(T ,T + Δ), for all T , are needed in relation (8). Moreover, keeping in
mind that the bonds p̄(t,T) are fictitious, they do not have to satisfy the boundary
condition p̄(T ,T) = 1, but we still assume this condition in order to simplify the
modeling.

To derive a dynamic model for L(t;T ,T + Δ), we may now derive a dynamic
model for p̄(t,T + Δ), where we have to keep in mind that the latter is not a traded
quantity. Inspired by a credit-risk analogy, but also by a common practice of deriving
multi-curve quantities by adding a spread over the corresponding single-curve (risk-
free) quantities, which in this case is the short rate rt , let us define then the Libor
(risky) bond prices as

p̄(t,T) = EQ

{

exp

[

−
∫ T

t
(ru + su)du

]

| Ft

}

, (9)
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with st representing the short rate spread. In case of default risk alone, st corresponds
to the hazard rate/default intensity, but here it corresponds more generally to all the
factors affecting the Libor rate, namely besides credit risk, also liquidity risk, etc.
Notice also that the spread is introduced here from the outset. Having for simplicity
considered a single tenor Δ and thus a single p̄(t,T), we shall also consider only a
single spread st . In general, however, one has a spread sΔt for each tenor Δ.

We need now a dynamical model for both rt and st and we shall define this model
directly under the martingale measure Q (martingale modeling).

3 Short Rate Model

3.1 The Model

As mentioned, we shall consider a dynamical model for rt and the single spread st
under the martingale measure Q that, in practice, has to be calibrated to the market.
For this purpose we shall consider a factor model with several factors driving rt
and st .

The two basic factor model classes for the short rate in the pre-crisis single-curve
setup, namely the exponentially affine and the exponentially quadratic model classes,
both allow for flexibility and analytical tractability and this in turn allows for closed
or semi-closed formulas for linear and optional interest rate derivatives. The former
class is usually better known than the latter, but the latter has its own advantages. In
fact, for the exponentially affine class onewould consider rt and st as given by a linear
combination of the factors and so, in order to obtain positivity, one has to consider a
square root model for the factors. On the other hand, in the Gaussian exponentially
quadratic class, one considers mean reverting Gaussian factor models, but at least
some of the factors in the linear combination for rt and st appear as a square. In this
way the distribution of the factors remains always Gaussian; in a square-root model it
is a non-central χ2−distribution. Notice also that the exponentially quadratic models
can be seen as dual to the square root exponentially affine models.

In the pre-crisis single-curve setting, the exponentially quadraticmodels have been
considered, e.g. in El Karoui et al. [12], Pelsser [29], Gombani and Runggaldier [17],
Leippold andWu [24], Chen et al. [5], and Gaspar [16]. However, since the pre-crisis
exponentially affinemodels aremore common, there have also beenmore attempts to
extend them to a post-crisis multi-curve setting (for an overview and details see e.g.
Grbac and Runggaldier [18]). A first extension of exponentially quadratic models
to a multi-curve setting can be found in Kijima et al. [22] and the present paper is
devoted to a possibly full extension.

Let us now present the model for rt and st , where we consider not only the short
rate rt itself, but also its spread st to be given by a linear combination of the factors,
where at least some of the factors appear as a square. To keep the presentation simple,
we shall consider a small number of factors and, in order to model also a possible
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correlation between rt and st , the minimal number of factors is three. It also follows
from some of the econometric literature that a small number of factors may suffice
to adequately model most situations (see also Duffee [10] and Duffie and Gârleanu
[11]).

Given three independent affine factor processes Ψ i
t , i = 1, 2, 3, having under Q

the Gaussian dynamics

dΨ i
t = −biΨ i

t dt + σi dwi
t, i = 1, 2, 3, (10)

with bi,σi > 0 and wi
t , i = 1, 2, 3, independent Q−Wiener processes, we let

{
rt = Ψ 1

t + (Ψ 2
t )2

st = κΨ 1
t + (Ψ 3

t )2
, (11)

where Ψ 1
t is the common systematic factor allowing for instantaneous correlation

between rt and st with correlation intensity κ and Ψ 2
t and Ψ 3

t are the idiosyncratic
factors. Other factors may be added to drive st , but the minimal model containing
common and idiosyncratic components requires three factors, as explained above.
The common factor is particularly important because we want to take into account
the realistic feature of non-zero correlation between rt and st in the model.

Remark 3.1 The zero mean-reversion level is here considered only for convenience
of simpler formulas, but can be easily taken to be positive, so that short rates and
spreads can become negative onlywith small probability (seeKijima andMuromachi
[21] for an alternative representation of the spreads in terms of Gaussian factors that
guarantee the spreads to remain nonnegative and still allows for correlation between
rt and st). Note, however, that given the current market situation where the observed
interest rates are very close to zero and sometimes also negative, even models with
negative mean-reversion level have been considered, as well as models allowing for
regime-switching in the mean reversion parameter.

Remark 3.2 For the short rate itself one could also consider the model rt = φt +
Ψ 1
t + (Ψ 2

t )2 where φt is a deterministic shift extension (see Brigo and Mercurio [2])
that allows for a good fit to the initial term structure in short rate models even with
constant model parameters.

In the model (11) we have included a linear term Ψ 1
t which may lead to negative

values of rates and spreads, although onlywith small probability in the case ofmodels
of the type (10) with a positive mean reversion level. The advantage of including this
linear term is more generality and flexibility in the model. Moreover, it allows to
express p̄(t,T) in terms of p(t,T) multiplied by a factor. This property will lead
to an adjustment factor by which one can express post-crisis quantities in terms of
corresponding pre-crisis quantities, see Morino and Runggaldier [27] in which this
idea has been first proposed in the context of exponentially affine short rate models
for multiple curves.
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3.2 Bond Prices (OIS and Libor Bonds)

In this subsection we derive explicit pricing formulas for the OIS bonds p(t,T) as
defined in (3) and the fictitious Libor bonds p̄(t,T) as defined in (9). Thereby, rt and
st are supposed to be given by (11) with the factor processes Ψ i

t evolving under the
standard martingale measure Q according to (10). Defining the matrices

F =
⎡

⎣
−b1 0 0
0 −b2 0
0 0 −b3

⎤

⎦ , D =
⎡

⎣
σ1 0 0
0 σ2 0
0 0 σ3

⎤

⎦ (12)

and considering the vector factor process Ψt := [Ψ 1
t , Ψ 2

t , Ψ 3
t ]′ as well as the mul-

tivariate Wiener process Wt := [w1
t ,w

2
t ,w

3
t ]′, where ′ denotes transposition, the

dynamics (10) can be rewritten in synthetic form as

dΨt = FΨtdt + DdWt . (13)

Using results on exponential quadratic term structures (see Gombani and
Runggaldier [17], Filipović [13]), we have

p(t,T) = EQ
{
e− ∫ T

t rudu
∣
∣
∣Ft

}
= EQ

{
e− ∫ T

t (Ψ 1
u +(Ψ 2

u )2)du
∣
∣
∣Ft

}

= exp
[
−A(t,T) − B′(t,T)Ψt − Ψ ′

t C(t,T)Ψt

]
(14)

and, setting Rt := rt + st ,

p̄(t,T) = EQ
{
e− ∫ T

t Rudu
∣
∣
∣Ft

}
= EQ

{
e− ∫ T

t ((1+κ)Ψ 1
u +(Ψ 2

u )2+(Ψ 3
u )2)du

∣
∣
∣Ft

}

= exp
[
−Ā(t,T) − B̄′(t,T)Ψt − Ψ ′

t C̄(t,T)Ψt

]
, (15)

where A(t,T), Ā(t,T), B(t,T), B̄(t,T), C(t,T) and C̄(t,T) are scalar, vector, and
matrix-valued deterministic functions to be determined.

For this purpose we recall the Heath–Jarrow–Morton (HJM) approach for the case
when p(t,T) in (14) represents the price of a risk-free zero coupon bond. The HJM
approach leads to the so-called HJM drift conditions that impose conditions on the
coefficients in (14) so that the resulting prices p(t,T) do not imply arbitrage possi-
bilities. Since the risk-free bonds are traded, the no-arbitrage condition is expressed
by requiring p(t,T)

Bt
to be a Q−martingale for Bt defined as in (1) and it is exactly this

martingality property to yield the drift condition. In our case, p(t,T) is the price of
an OIS bond that is not necessarily traded and in general does not coincide with the
price of a risk-free bond. However, whether the OIS bond is traded or not, p(t,T)

Bt
is a

Q−martingale by the very definition of p(t,T) in (14) (see the first equality in (14))
and so we can follow the same HJM approach to obtain conditions on the coefficients
in (14) also in our case.
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For what concerns, on the other hand, the coefficients in (15), recall that p̄(t,T) is
a fictitious asset that is not traded and thus is not subject to any no-arbitrage condition.
Notice, however, that by analogy to p(t,T) in (14), by its very definition given in
the first equality in (15), p̄(t,T)

B̄t
is a Q−martingale for B̄t given by B̄t := exp

∫ t
0 Rudu.

The two cases p(t,T) and p̄(t,T) can thus be treated in complete analogy provided
that we use for p̄(t,T) the numeraire B̄t .

We shall next derive from the Q−martingality of p(t,T)

Bt
and p̄(t,T)

B̄t
conditions on

the coefficients in (14) and (15) that correspond to the classical HJM drift condition
and lead thus to ODEs for these coefficients. For this purpose we shall proceed by
analogy to Sect. 2 in [17], in particular to the proof of Proposition 2.1 therein, to
which we also refer for more detail.

Introducing the “instantaneous forward rates” f (t,T) := − ∂
∂T log p(t,T) and

f̄ (t,T) := − ∂
∂T log p̄(t,T), and setting

a(t,T) := ∂

∂T
A(t,T) , b(t,T) := ∂

∂T
B(t,T) , c(t,T) := ∂

∂T
C(t,T) (16)

and analogously for ā(t,T), b̄(t,T), c̄(t,T), from (14) and (15) we obtain

f (t,T) = a(t,T) + b′(t,T)Ψt + Ψ ′
t c(t,T)Ψt, (17)

f̄ (t,T) = ā(t,T) + b̄′(t,T)Ψt + Ψ ′
t c̄(t,T)Ψt . (18)

Recalling that rt = f (t, t) and Rt = f̄ (t, t), this implies, with a(t) := a(t, t),
b(t) := b(t, t), c(t) := c(t, t) and analogously for the corresponding quantities with
a bar, that

rt = a(t) + b′(t)Ψt + Ψ ′
t c(t)Ψt (19)

and
Rt = rt + st = ā(t) + b̄′(t)Ψt + Ψ ′

t c̄(t)Ψt . (20)

Comparing (19) and (20) with (11), we obtain the following conditions where i, j =
1, 2, 3, namely

⎧
⎪⎨

⎪⎩

a(t) = 0

bi(t) = 1{i=1}
cij(t) = 1{i=j=2}

⎧
⎪⎨

⎪⎩

ā(t) = 0

b̄i(t) = (1 + κ)1{i=1}
c̄ij(t) = 1{i=j=2}∪{i=j=3}.

Using next the fact that

p(t,T) = exp

[

−
∫ T

t
f (t, s)ds

]

, p̄(t,T) = exp

[

−
∫ T

t
f̄ (t, s)ds

]

,
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and imposing p(t,T)

Bt
and p̄(t,T)

B̄t
to beQ−martingales, one obtains ordinary differential

equations to be satisfied by c(t,T), b(t,T), a(t,T) and analogously for the quantities
with a bar. Integrating these ODEs with respect to the second variable and recalling
(16) one obtains (for the details see the proof of Proposition 2.1 in [17])

{
Ct(t,T) + 2FC(t,T) − 2C(t,T)DDC(t,T) + c(t) = 0, C(T ,T) = 0

C̄t(t,T) + 2FC̄(t,T) − 2C̄(t,T)DDC̄(t,T) + c̄(t) = 0, C̄(T ,T) = 0
(21)

with

c(t) =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ c̄(t) =
⎡

⎣
0 0 0
0 1 0
0 0 1

⎤

⎦ . (22)

The special forms ofF,D, c(t) and c̄(t) togetherwith boundary conditionsC(T ,T) =
0 and C̄(T ,T) = 0 imply that only C22, C̄22, C̄33 are non-zero and satisfy

⎧
⎪⎨

⎪⎩

C22
t (t,T) − 2b2C22(t,T) − 2(σ2)2(C22(t,T))2 + 1 = 0, C22(T ,T) = 0

C̄22
t (t,T) − 2b2C̄22(t,T) − 2(σ2)2(C̄22(t,T))2 + 1 = 0, C̄22(T ,T) = 0

C̄33
t (t,T) − 2b3C̄33(t,T) − 2(σ3)2(C̄33(t,T))2 + 1 = 0, C̄33(T ,T) = 0

(23)

that can be shown to have as solution
⎧
⎨

⎩

C22(t,T) = C̄22(t,T) = 2(e(T−t)h2−1)
2h2+(2b2+h2)(e(T−t)h2−1)

C̄33(t,T) = 2(e(T−t)h3−1)
2h3+(2b3+h3)(e(T−t)h3−1)

(24)

with hi = √
4(bi)2 + 8(σi)2 > 0, i = 2, 3.

Next, always by analogy to the proof of Proposition 2.1 in [17], the vectors of
coefficients B(t,T) and B̄(t,T) of the first order terms can be seen to satisfy the
following system

{
Bt(t,T) + B(t,T)F − 2B(t,T)DDC(t,T) + b(t) = 0, B(T ,T) = 0

B̄t(t,T) + B̄(t,T)F − 2B̄(t,T)DDC̄(t,T) + b̄(t) = 0, B̄(T ,T) = 0
(25)

with
b(t) = [1, 0, 0] b̄(t) = [(1 + κ), 0, 0].

Noticing similarly as above that only B1(t,T), B̄1(t,T) are non-zero, system (25)
becomes {

B1
t (t,T) − b1B1(t,T) + 1 = 0 B1(T ,T) = 0

B̄1
t (t,T) − b1B̄1(t,T) + (1 + κ) = 0 B̄1(T ,T) = 0

(26)
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leading to the explicit solution

⎧
⎨

⎩

B1(t,T) = 1
b1

(
1 − e−b1(T−t)

)

B̄1(t,T) = 1+κ
b1

(
1 − e−b1(T−t)

)
= (1 + κ)B1(t,T).

(27)

Finally, A(t,T) and Ā(t,T) have to satisfy

{
At(t,T) + (σ2)2C22(t,T) − 1

2 (σ
1)2(B1(t,T))2 = 0,

Āt(t,T) + (σ2)2C̄22(t,T) + (σ3)2C̄33(t,T) − 1
2 (σ

1)2(B̄1(t,T))2 = 0
(28)

with boundary conditions A(T ,T) = 0, Ā(T ,T) = 0. The explicit expressions can
be obtained simply by integrating the above equations.

Summarizing, we have proved the following:

Proposition 3.1 Assume that the OIS short rate r and the spread s are given by
(11) with the factor processes Ψ i

t , i = 1, 2, 3, evolving according to (10) under the
standard martingale measure Q. The time-t price of the OIS bond p(t,T), as defined
in (3), is given by

p(t,T) = exp[−A(t,T) − B1(t,T)Ψ 1
t − C22(t,T)(Ψ 2

t )2], (29)

and the time-t price of the fictitious Libor bond p̄(t,T), as defined in (9), by

p̄(t, T) = exp[−Ā(t,T) − (κ + 1)B1(t,T)Ψ 1
t − C22(t,T)(Ψ 2

t )2 − C̄33(t, T)(Ψ 3
t )2]

= p(t, T)exp[−Ã(t,T) − κB1(t,T)Ψ 1
t − C̄33(t,T)(Ψ 3

t )2],
(30)

where Ã(t,T) := Ā(t,T) − A(t,T) with A(t,T) and Ā(t,T) given by (28),
B1(t,T) given by (27) and C22(t,T) and C33(t,T) given by (24).

In particular, expression (30) gives p̄(t,T) in terms of p(t,T). Based on this we
shall derive in the following section the announced adjustment factor allowing to
pass from pre-crisis quantities to the corresponding post-crisis quantities.

3.3 Forward Measure

The underlying factor model was defined in (10) under the standard martingale
measure Q. For derivative prices, which we shall determine in the following two
sections, it will be convenient to work under forward measures, for which, given the
single tenor Δ, we shall consider a generic (T + Δ)-forward measure. The density
process to change the measure from Q to QT+Δ is
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Lt := d QT+Δ

d Q

∣
∣
∣
Ft

= p(t,T + Δ)

p(0,T + Δ)

1

Bt
(31)

from which it follows by (29) and the martingale property of
(
p(t,T+Δ)

Bt

)

t≤T+Δ
that

dLt = Lt
(−B1(t,T + Δ)σ1dw1

t − 2C22(t,T + Δ)Ψ 2
t σ2dw2

t

)
.

This implies by Girsanov’s theorem that

⎧
⎨

⎩

dw1,T+Δ
t = dw1

t + σ1B1(t,T + Δ)dt
dw2,T+Δ

t = dw2
t + 2C22(t,T + Δ)Ψ 2

t σ2dt
dw3,T+Δ

t = dw3
t

(32)

are QT+Δ−Wiener processes. From the Q−dynamics (10) we then obtain the fol-
lowing QT+Δ−dynamics for the factors

dΨ 1
t = − [

b1Ψ 1
t + (σ1)2B1(t,T + Δ)

]
dt + σ1dw1,T+Δ

t

dΨ 2
t = − [

b2Ψ 2
t + 2(σ2)2C22(t,T + Δ)Ψ 2

t

]
dt + σ2dw2,T+Δ

t

dΨ 3
t = −b3Ψ 3

t dt + σ3dw3,T+Δ
t .

(33)

Remark 3.3 While in the dynamics (10) for Ψ i
t , (i = 1, 2, 3) under Q we had for

simplicity assumed a zero mean-reversion level, under the (T + Δ)-forward mea-
sure the mean-reversion level is for Ψ 1

t now different from zero due to the measure
transformation.

Lemma 3.1 Analogously to the case when p(t,T) represents the price of a risk-free
zero coupon bond, also for p(t,T) viewed as OIS bond we have that p(t,T)

p(t,T+Δ)
is a

QT+Δ−martingale.

Proof We have seen that also for OIS bonds as defined in (3) we have that, with Bt

as in (1), the ratio p(t,T)

Bt
is a Q−martingale. From Bayes’ formula we then have

ET+Δ
{

p(T ,T)

p(T ,T+Δ)
| Ft

}
= EQ

{
1

p(0,T+Δ)
1

BT+Δ

p(T ,T)

p(T ,T+Δ)
|Ft

}

EQ
{

1
p(0,T+Δ)

1
BT+Δ

|Ft

}

= EQ
{

p(T ,T)

p(T ,T+Δ)
EQ

{
1

BT+Δ
|FT

}
|Ft

}

p(t,T+Δ)

Bt

= BtEQ
{

p(T ,T)

p(T ,T+Δ)

p(T ,T+Δ)

BT
|Ft

}

p(t,T+Δ)

= BtEQ
{

p(T ,T)

BT
|Ft

}

p(t,T+Δ)
= p(t,T)

p(t,T+Δ)
,

thus proving the statement of the lemma. �



204 Z. Grbac et al.

We recall that we denote the expectation with respect to the measure QT+Δ by
ET+Δ{·}. The dynamics in (33) lead to Gaussian distributions forΨ i

t , i = 1, 2, 3 that,
given B1(·) and C22(·), have mean and variance

ET+Δ{Ψ i
t } = ᾱi

t = ᾱi
t(b

i,σi) , VarT+Δ{Ψ i
t } = β̄i

t = β̄i
t (b

i,σi),

which can be explicitly computed. More precisely, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ᾱ1
t = e−b1t

[
Ψ 1
0 − (σ1)2

2(b1)2 e
−b1(T+Δ)(1 − e2b

1t) − (σ1)2

(b1)2 (1 − eb
1t)
]

β̄1
t = e−2b1t(e2b

1t − 1) (σ1)2

2(b1)

ᾱ2
t = e−(b2t+2(σ2)2C̃22(t,T+Δ))Ψ 2

0

β̄2
t = e−(2b2t+4(σ2)2C̃22(t,T+Δ))

∫ t
0 e

2b2s+4(σ2)2C̃22(s,T+Δ)(σ2)2ds

ᾱ3
t = e−b3tΨ 3

0

β̄3
t = e−2b3t (σ3)2

2b3 (e2b
3t − 1),

(34)

with

C̃22(t,T + Δ) = 2(2 log(2b2(e(T+Δ−t)h2 − 1) + h2(e(T+Δ−t)h2 + 1)) + t(2b2 + h2))

(2b2 + h2)(2b2 − h2)

− 2(2 log(2b2(e(T+Δ)h2 − 1) + h2(e(T+Δ)h2 + 1))

(2b2 + h2)(2b2 − h2)
(35)

and h2 = √
(2b2)2 + 8(σ2)2, and where we have assumed deterministic initial values

Ψ 1
0 , Ψ 2

0 andΨ 3
0 .For details of the above computation see the proof of Corollary 4.1.3.

in Meneghello [25].

4 Pricing of Linear Interest Rate Derivatives

We have discussed in Sect. 3.2 the pricing of OIS and Libor bonds in the Gaussian,
exponentially quadratic short ratemodel introduced in Sect. 3.1. In the remaining part
of the paperwe shall be concernedwith the pricing of interest rate derivatives, namely
with derivatives having the Libor rate as underlying rate. In the present section we
shall deal with the basic linear derivatives, namely FRAs and interest rate swaps,
while nonlinear derivatives will then be dealt with in the following Sect. 5. For the
FRA rates discussed in the next Sect. 4.1 we shall in Sect. 4.1.1 exhibit an adjustment
factor allowing to pass from the single-curve FRA rate to the multi-curve FRA rate.
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4.1 FRAs

We start by recalling the definition of a standard forward rate agreement. We empha-
size that we use a text-book definition which differs slightly from amarket definition,
see Mercurio [26].

Definition 4.1 Given the time points 0 ≤ t ≤ T < T + Δ, a forward rate agreement
(FRA) is an OTC derivative that allows the holder to lock in at the generic date t ≤ T
the interest rate between the inception date T and the maturity T + Δ at a fixed value
R. At maturity T + Δ a payment based on the interest rate R, applied to a notional
amount of N , is made and the one based on the relevant floating rate (generally the
spot Libor rate L(T;T ,T + Δ)) is received.

Recalling that for the Libor rate we had postulated the relation (8) to hold at the
inception time T , namely

L(T;T ,T + Δ) = 1

Δ

(
1

p̄(T ,T + Δ)
− 1

)

,

the price, at t ≤ T , of the FRA with fixed rate R and notional N can be computed
under the (T + Δ)-forward measure as

PFRA(t;T ,T + Δ,R,N)

= NΔp(t,T + Δ)ET+Δ {L(T;T ,T + Δ) − R | Ft}
= Np(t,T + Δ)ET+Δ

{
1

p̄(T ,T + Δ)
− (1 + ΔR) | Ft

}

, (36)

Defining

ν̄t,T := ET+Δ

{
1

p̄(T ,T + Δ)
| Ft

}

, (37)

it is easily seen from (36) that the fair rate of the FRA, namely the FRA rate, is given
by

R̄t = 1

Δ

(
ν̄t,T − 1

)
. (38)

In the single-curve case we have instead

Rt = 1

Δ

(
νt,T − 1

)
, (39)

where, given that p(·,T)

p(·,T+Δ)
is a QT+Δ−martingale (see Lemma 3.1),

νt,T := ET+Δ

{
1

p(T ,T + Δ)
| Ft

}

= p(t,T)

p(t,T + Δ)
, (40)
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which is the classical expression for the FRA rate in the single-curve case. Notice
that, contrary to (37), the expression in (40) can be explicitly computed on the basis
of bond price data without requiring an interest rate model.

4.1.1 Adjustment Factor

We shall show here the following:

Proposition 4.1 We have the relationship

ν̄t,T = νt,T · AdT ,Δ
t · ResT ,Δ

t (41)

with

AdT ,Δ
t := EQ

{
p(T ,T + Δ)

p̄(T ,T + Δ)
| Ft

}

= EQ
{
exp

[
Ã(T ,T + Δ)

+ κB1(T ,T + Δ)Ψ 1
T + C̄33(T ,T + Δ)(Ψ 3

T )2
]

| Ft

}
(42)

and

ResT ,Δ
t = exp

[
−κ

(σ1)2

2(b1)3

(
1 − e−b1Δ

) (
1 − e−b1(T−t)

)2]
, (43)

where Ã(t,T) is defined after (30), B1(t,T) in (27) and C̄33(t,T) in (24).

Proof Firstly, from (30) we obtain

p(T ,T + Δ)

p̄(T ,T + Δ)
= eÃ(T ,T+Δ)+κB1(T ,T+Δ)Ψ 1

T +C̄33(T ,T+Δ)(Ψ 3
T )2 . (44)

In (37) we now change back from the (T + Δ)-forward measure to the standard
martingale measure using the density process Lt given in (31). Using furthermore
the above expression for the ratio of the OIS and the Libor bond prices and taking
into account the definition of the short rate rt in terms of the factor processes, we
obtain

ν̄t,T = ET+Δ

{
1

p̄(T ,T + Δ)

∣
∣Ft

}

= L −1
t EQ

{
LT

p̄(T ,T + Δ)

∣
∣Ft

}

= 1

p(t,T + Δ)
EQ

{

exp
(
−
∫ T

t
rudu

)p(T ,T + Δ)

p̄(T ,T + Δ)

∣
∣Ft

}

= 1

p(t,T + Δ)
exp[Ã(T ,T + Δ)]EQ

{
eC̄

33(T ,T+Δ)(Ψ 3
T )2
∣
∣Ft

}
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· EQ
{
e− ∫ T

t (Ψ 1
u +(Ψ 2

u )2)dueκB1(T ,T+Δ)Ψ 1
T
∣
∣Ft

}

= 1

p(t,T + Δ)
exp[Ã(T ,T + Δ)]EQ

{
eC̄

33(T ,T+Δ)(Ψ 3
T )2
∣
∣Ft

}

· EQ
{
e− ∫ T

t Ψ 1
u dueκB1(T ,T+Δ)Ψ 1

T
∣
∣Ft

}
EQ
{
e− ∫ T

t (Ψ 2
u )2du

∣
∣Ft

}
, (45)

where we have used the independence of the factors Ψ i, i = 1, 2, 3 under Q.
Recall now from the theory of affine processes (see e.g. Lemma 2.1 in Grbac and

Runggaldier [18]) that, for a process Ψ 1
t satisfying (10), we have for all δ,K ∈ R

EQ

{

exp

[

−
∫ T

t
δΨ 1

u du − KΨ 1
T

]

| Ft

}

= exp[α1(t,T) − β1(t,T)Ψ 1
t ], (46)

where {
β1(t,T) = Ke−b1(T−t) − δ

b1

(
e−b1(T−t) − 1

)

α1(t,T) = (σ1)2

2

∫ T
t (β1(u,T))2du.

Setting K = −κB1(T ,T + Δ) and δ = 1, and recalling from (27) that B1(t,T) =
1
b1

(
1 − e−b1(T−t)

)
, this leads to

EQ
{
e− ∫ T

t Ψ 1
u dueκB1(T ,T+Δ)Ψ 1

T
∣
∣Ft

}

= exp

[
(σ1)2

2
(κB1(T ,T + Δ))2

∫ T

t
e−2b1(T−u)du

− κB1(T ,T + Δ)(σ1)2
∫ T

t
B1(u,T)e−b1(T−u)du + (σ1)2

2

∫ T

t
(B1(u,T))2du

+
(
κB1(T ,T + Δ)e−b1(T−t) − B1(t,T)

)
Ψ 1
t

]

. (47)

On the other hand, from the results of Sect. 3.2 we also have that, for a process Ψ 2
t

satisfying (10),

EQ

{

exp

[

−
∫ T

t
(Ψ 2

u )2du

]

| Ft

}

= exp
[−α2(t,T) − C22(t,T)(Ψ 2

t )2
]
,

where C22(t,T) corresponds to (24) and (see (28))

α2(t,T) = (σ2)2
∫ T

t
C22(u,T)du.
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This implies that

EQ

{

exp

[

−
∫ T

t
(Ψ 2

u )2du

]

| Ft

}

= exp

[

−(σ2)2
∫ T

t
C22(u,T)du − C22(t,T)

(
Ψ 2
t

)2
]

. (48)

Replacing (47) and (48) into (45), and recalling the expression for p(t,T) in (29)
with A(·),B1(·),C22(·) according to (28), (27) and (24) respectively, we obtain

ν̄t,T = p(t,T)

p(t,T + Δ)
eÃ(T ,T+Δ)EQ

[

eC̄
33(T ,T+Δ)(Ψ 3

T )2 ∣∣Ft

]

· exp
[

(σ1)2

2
(κB1(T , T + Δ))2

∫ T

t
e−2b1(T−u)du + κB1(T , T + Δ)e−b1(T−t)Ψ 1

t

]

· exp
[

−κB1(T , T + Δ)(σ1)2
∫ T

t
B1(u, T)e−b1(T−u)du

]

. (49)

We recall the expression (44) for p(T ,T+Δ)

p̄(T ,T+Δ)
and the fact that, according to (46), we

have

EQ
{
eκB

1(T ,T+Δ)Ψ 1
T
∣
∣Ft

}

= exp

[
(σ1)2

2 (κB1(T ,T + Δ))2
∫ T

t
e−2b1(T−u)du + κB1(T ,T + Δ)e−b1(T−t)Ψ 1

t

]

.

Inserting these expressions into (49) we obtain the result, namely

ν̄t,T = p(t,T)

p(t,T+Δ)
EQ
{
p(T ,T+Δ)

p̄(T ,T+Δ)

∣
∣Ft

}

·exp
[
−κB1(T ,T + Δ)(σ1)2

∫ T

t
B1(u,T)e−b1(T−u)du

]

= p(t,T)

p(t,T+Δ)
EQ
{
p(T ,T+Δ)

p̄(T ,T+Δ)

∣
∣Ft

}

·exp
[
− κ

b1 (e
−b1Δ − 1)(σ1)2

(
1

2(b1)2 (1 − e−2b1(T−t)) − 1
(b1)2 (1 − e−b1(T−t))

)]
,

(50)

where we have also used the fact that

∫ T

t
B1(u,T)e−b1(T−u)du =

∫ T

t

1

b1

(
1 − e−b1(T−u)

)
e−b1(T−u)du

= − 1

2(b1)2

(
1 − e−2b1(T−t)

)
+ 1

(b1)2

(
1 − e−b1(T−t)

)
.

�
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Remark 4.1 The adjustment factor AdT ,Δ
t allows for some intuitive interpretations.

Here we mention only the easiest one for the case when κ = 0 (independence of rt
and st). In this case we have rt + st > rt implying that p̄(T ,T + Δ) < p(T ,T + Δ)

so that AdT ,Δ
t ≥ 1. Furthermore, always for κ = 0, the residual factor has value

ResT ,Δ
t = 1. All this in turn implies ν̄t,T ≥ νt,T and with it R̄t ≥ Rt , which is what

one would expect to be the case.

Remark 4.2 (Calibration to the initial term structure). The parameters in the model
(10) for the factors Ψ i

t and thus also in the model (11) for the short rate rt and the
spread st are the coefficients bi and σi for i = 1, 2, 3. From (14) notice that, for
i = 1, 2, these coefficients enter the expressions for the OIS bond prices p(t,T) that
can be assumed to be observable since they can be bootstrapped from the market
quotes for the OIS swap rates. We may thus assume that these coefficients, i.e. bi and
σi for i = 1, 2, can be calibrated as in the pre-crisis single-curve short rate models. It
remains to calibrate b3, σ3 and, possibly the correlation coefficient κ. Via (15) they
affect the prices of the fictitious Libor bonds p̄(t,T) that are, however, not observable.
One may observe though the FRA rates Rt and R̄t and thus also νt,T , as well as ν̄t,T .
Via (41) this would then allow one to calibrate also the remaining parameters. This
task would turn out to be even simpler if one would have access to the value of κ by
other means.

We emphasize that in order to ensure a good fit to the initial bond term structure,
a deterministic shift extension of the model or time-dependent coefficients bi could
be considered. We recall also that we have assumed the mean-reversion level equal
to zero for simplicity; in practice it would be one more coefficient to be calibrated
for each factor Ψ i

t .

4.2 Interest Rate Swaps

Wefirst recall the notion of a (payer) interest rate swap.Given a collection of dates 0 ≤
T0 < T1 < · · · < Tn with γ ≡ γk := Tk − Tk−1 (k = 1, · · · , n), as well as a notional
amountN , a payer swap is a financial contract, where a streamof interest payments on
the notionalN is made at a fixed rateR in exchange for receiving an analogous stream
corresponding to the Libor rate. Among the various possible conventions concerning
the fixing for the Libor and the payment dates, we choose here the one where, for
each interval [Tk−1,Tk], the Libor rates are fixed in advance and the payments are
made in arrears. The swap is thus initiated at T0 and the first payment is made at
T1. A receiver swap is completely symmetric with the interest at the fixed rate being
received; here we concentrate on payer swaps.

The arbitrage-free price of the swap, evaluated at t ≤ T0, is given by the following
expression where, analogously to ET+Δ{·},we denote by ETk {·} the expectation with
respect to the forward measure QTk (k = 1, · · · , n)
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PSw(t;T0,Tn,R) = γ

n∑

k=1

p(t,Tk)E
Tk {L(Tk−1;Tk−1,Tk) − R|Ft}

= γ

n∑

k=1

p(t,Tk) (L(t;Tk−1,Tk) − R) . (51)

For easier notation we have assumed the notional to be 1, i.e. N = 1.
We shall next obtain an explicit expression for PSw(t;T0,Tn,R) starting from the

first equality in (51). To this effect, recalling from (24) that C22(t,T) = C̄22(t,T),
introduce again some shorthand notation, namely

Ak := Ā(Tk−1,Tk),B
1
k := B1(Tk−1,Tk),

C22
k := C22(Tk−1,Tk) = C̄22(Tk−1,Tk), C̄33

k := C̄33(Tk−1,Tk).
(52)

The crucial quantity to be computed in (51) is the following one

ETk {γL(Tk−1;Tk−1,Tk)|Ft} = ETk
{ 1

p̄(Tk−1,Tk)
|Ft

}
− 1

= eAkETk {exp((κ + 1)B1
kΨ

1
Tk−1

+ C22
k (Ψ 2

Tk−1
)2 + C̄33

k (Ψ 3
Tk−1

)2)|Ft} − 1, (53)

where we have used the first relation on the right in (30). The expectations in (53)
have to be computed under the measures QTk , under which, by analogy to (33), the
factors have the dynamics

dΨ 1
t = − [

b1Ψ 1
t + (σ1)2B1(t,Tk)

]
dt + σ1dw1,k

t

dΨ 2
t = − [

b2Ψ 2
t + 2(σ2)2C22(t,Tk)Ψ 2

t

]
dt + σ2dw2,k

t

dΨ 3
t = −b3Ψ 3

t dt + σ3dw3,k
t .

(54)

where wi,k , i = 1, 2, 3, are independent Wiener processes with respect to QTk . A
straightforward generalization of (46) to the casewhere the factor processΨ 1

t satisfies
the following affine Hull–White model

dΨ 1
t = (a1(t) − b1Ψ 1

t )dt + σ1dwt

can be obtained as follows

EQ

{

exp

[

−
∫ T

t
δΨ 1

u du − KΨ 1
T

]

| Ft

}

= exp[α1(t,T) − β1(t,T)Ψ 1
t ], (55)

with ⎧
⎪⎨

⎪⎩

β1(t,T) = Ke−b1(T−t) − δ
b1

(
e−b1(T−t) − 1

)

α1(t,T) = (σ1)2

2

∫ T

t
(β1(u,T))2du −

∫ T

t
a1(u)β1(u,T)du.

(56)
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We apply this result to our situation where under QTk the process Ψ 1
t satisfies

the first SDE in (54) and thus corresponds to the above dynamics with a1(t) =
−(σ1)2B1(t,Tk). Furthermore, setting K = −(κ + 1)B1

k and δ = 0, we obtain for
the first expectation in the second line of (53)

ETk {exp((κ + 1)B1
kΨ

1
Tk−1

|Ft} = exp[Γ 1(t,Tk) − ρ1(t,Tk) Ψ 1
t ], (57)

with
⎧
⎨

⎩

ρ1(t,Tk) = −(κ + 1)B1
ke

−b1(Tk−t)

Γ 1(t,Tk) = (σ1)2

2

∫ Tk

t

(
ρ1(u,Tk)

)2
du + (σ1)2

∫ Tk

t
B1(u,Tk)ρ

1(u,Tk)du.
(58)

For the remaining two expectations in the second line of (53) we shall use the fol-
lowing:

Lemma 4.1 Let a generic process Ψt satisfy the dynamics

dΨt = b(t)Ψtdt + σ dwt (59)

with wt a Wiener process. Then, for all C ∈ R such that EQ
{
exp

[
C (ΨT )2

]}
< ∞,

we have
EQ

{
exp

[
C (ΨT )2

] | Ft
} = exp

[
Γ (t,T) − ρ(t,T) (Ψt)

2
]

(60)

with ρ(t,T) and Γ (t,T) satisfying

{
ρt(t,T) + 2b(t)ρ(t,T) − 2(σ)2 (ρ(t,T))2 = 0 ; ρ(T ,T) = −C
Γt(t,T) = (σ)2ρ(t,T).

(61)

Proof Anapplicationof Itô’s formula yields that the nonnegative processΦt := (Ψt)
2

satisfies the following SDE

dΦt = (
(σ)2 + 2b(t)Φt

)
dt + 2σ

√
Φt dwt .

We recall that a process Φt given in general form by

dΦt = (a + λ(t)Φt)dt + η
√

Φt dwt,

with a, η > 0 and λ(t) a deterministic function, is a CIR process. Thus, (Ψt)
2 is

equivalent in distribution to a CIR process with coefficients given by

λ(t) = 2b(t) , η = 2σ , a = (σ)2.
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From the theory of affine term structure models (see e.g. Lamberton and Lapeyre
[23], or Lemma 2.2 in Grbac and Runggaldier [18]) it now follows that

EQ
{
exp

[
C (ΨT )2

] | Ft
} = EQ {exp [C ΦT ] | Ft} = exp [Γ (t,T) − ρ(t,T)Φt]

= exp
[
Γ (t,T) − ρ(t,T) (Ψt)

2]

with ρ(t,T) and Γ (t,T) satisfying (61).

Corollary 4.1 When b(t) is constant with respect to time, i.e. b(t) ≡ b, so that also
λ(t) ≡ λ, then the equations for ρ(t,T) andΓ (t,T) in (61) admit an explicit solution
given by ⎧

⎨

⎩

ρ(t,T) = 4bhe2b(T−t)

4(σ)2he2b(T−t)−1 with h := C
4(σ)2C+4b

Γ (t,T) = −(σ)2
∫ T

t
ρ(u,T)du.

(62)

Coming now to the second expectation in the second line of (53) and using the second
equation in (54), we set

b(t) := − [
b2 + 2(σ2)2C22(t,Tk)

]
, σ := σ2, C = C22

k

and apply Lemma 4.1, provided that the parameters b2 and σ2 of the process Ψ 2 are
such that C = C22

k satisfies the assumption from the lemma. We thus obtain

ETk {exp(C22
k (Ψ 2

Tk−1
)2)|Ft} = exp[Γ 2(t,Tk) − ρ2(t,Tk)(Ψ

2
t )2], (63)

with ρ2(t,T), Γ 2(t,T) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

ρ2t (t,T) − 2
[
b2 + 2(σ2)2C22(t,Tk)

]
ρ2(t,T) − 2(σ2)2(ρ2(t,T))2 = 0

ρ2(Tk,Tk) = −C22
k

Γ 2(t,T) = −(σ2)2
∫ T

t
ρ2(u,T)du.

(64)

Finally, for the third expectation in the second line of (53), we may take advantage
of the fact that the dynamics of Ψ 3

t do not change when passing from the measure Q
to the forward measure QTk . We can then apply Lemma 4.1, this time with (see the
third equation in (54))

b(t) := −b3, σ := σ3, C = C̄33
k

and ensuring that the parameters b3 and σ3 of the process Ψ 3 are such that C = C̄33
k

satisfies the assumption from the lemma. Since b(t) is constant with respect to time,
also Corollary 4.1 applies and we obtain

ETk {exp(C̄33
k (Ψ 3

Tk−1
)2)|Ft} = exp[Γ 3(t,Tk) − ρ3(t,Tk)(Ψ

3
t )2],
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where ⎧
⎪⎨

⎪⎩

ρ3(t,Tk) = −4b3h3k e
−2b3(Tk−t)

4(σ3)2h3k e
−2b3(Tk−t)−1

with h3k = C̄33
k

4(σ3)2C̄33
k −4b3

Γ 3(t,Tk) = −(σ3)2
∫ Tk

t
ρ3(u,Tk)du.

(65)

With the use of the explicit expressions for the expectations in (53), and taking
also into account the expression for p(t,T) in (29), it follows immediately that the
arbitrage-free swap price in (51) can be expressed according to the following

Proposition 4.2 The price of a payer interest rate swap at t ≤ T0 is given by

PSw(t;T0, Tn,R) = γ

n∑

k=1

p(t,Tk)E
Tk
{
L(Tk−1; Tk−1,Tk) − R|Ft

}

=
n∑

k=1

p(t, Tk)
(
Dt,ke

−ρ1(t,Tk )Ψ
1
t −ρ2(t,Tk )(Ψ

2
t )2−ρ3(t,Tk )(Ψ

3
t )2 − (Rγ + 1)

)

=
n∑

k=1

(
Dt,ke

−At,k e
−B̃1t,kΨ

1
t −C̃22

t,k (Ψ
2
t )2−C̃33

t,k (Ψ
3
t )2

− (Rγ + 1)e−At,k e
−B1t,kΨ

1
t −C22

t,k (Ψ
2
t )2

)
, (66)

where

At,k := A(t,Tk), B1
t,k := B1(t,Tk), C22

t,k := C22(t,Tk)
B̃1
t,k := B1

t,k + ρ1(t,Tk), C̃22
t,k := C22

t,k + ρ2(t,Tk), C̃33
t,k := ρ3(t,Tk)

Dt,k := eAkexp[Γ 1(t,Tk) + Γ 2(t,Tk) + Γ 3(t,Tk)],
(67)

with ρi(t,Tk), Γ i(t,Tk) (i = 1, 2, 3) determined according to (58), (64), and (65)
respectively and with Ak as in (52).

5 Nonlinear/optional Interest Rate Derivatives

In this section we consider the main nonlinear interest rate derivatives with the Libor
rate as underlying. They are also called optional derivatives since they have the form
of an option. In Sect. 5.1 we shall consider the case of caps and, symmetrically, that of
floors. In the subsequent Sect. 5.2 we shall then concentrate on swaptions as options
on a payer swap of the type discussed in Sect. 4.2.

5.1 Caps and Floors

Since floors can be treated in a completely symmetric way to the caps simply by
interchanging the roles of the fixed rate and the Libor rate, we shall concentrate
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here on caps. Furthermore, to keep the presentation simple, we consider here just
a single caplet for the time interval [T ,T + Δ] and for a fixed rate R (recall also
that we consider just one tenor Δ). The payoff of the caplet at time T + Δ is
thus Δ(L(T;T ,T + Δ) − R)+, assuming the notional N = 1, and its time-t price
PCpl(t;T + Δ,R) is given by the following risk-neutral pricing formula under the
forward measure QT+Δ

PCpl(t;T + Δ,R) = Δ p(t,T + Δ)ET+Δ
{
(L(T;T ,T + Δ) − R)+ | Ft

}
.

In view of deriving pricing formulas, recall from Sect. 3.3 that, under the (T + Δ)−
forward measure, at time T the factors Ψ i

T have independent Gaussian distributions
(see (34)) with mean and variance given, for i = 1, 2, 3, by

ET+Δ{Ψ i
t } = ᾱi

t = ᾱi
t(b

i,σi), VarT+Δ{Ψ i
t } = β̄i

t = β̄i
t (b

i,σi).

In the formulas below we shall consider the joint probability density function of
(Ψ 1

T , Ψ 2
T , Ψ 3

T ) under the T + Δ forward measure, namely, using the independence
of the processes Ψ i

t , (i = 1, 2, 3),

f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x1, x2, x3) =

3∏

i=1

fΨ i
T
(xi) =

3∏

i=1

N (xi, ᾱ
i
T , β̄i

T ), (68)

and use the shorthand notation fi(·) for fΨ i
T
(·) in the sequel. We shall also write

Ā,B1,C22, C̄33 for the corresponding functions evaluated at (T ,T + Δ) and given
in (28), (27) and (24) respectively.

Setting R̃ := 1 + ΔR, and recalling the first equality in (30), the time-0 price of
the caplet can be expressed as

PCpl(0; T + Δ,R) = Δ p(0,T + Δ)ET+Δ
{
(L(T ; T ,T + Δ) − R)+

}

= p(0,T + Δ)ET+Δ

{(
1

p̄(T ,T + Δ)
− R̃

)+}

= p(0,T + Δ)ET+Δ

{(
eĀ+(κ+1)B1Ψ 1

T +C22(Ψ 2
T )2+C̄33(Ψ 3

T )2 − R̃
)+}

= p(0,T + Δ)

∫

R3

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z). (69)

To proceed, we extend to the multi-curve context an idea suggested in Jamshidian
[19] (where it is applied to the pricing of coupon bonds) by considering the function

g(x, y, z) := exp[Ā + (κ + 1)B1x + C22y2 + C̄33z2]. (70)
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Noticing that C̄33(T ,T + Δ) > 0 (see (24) together with the fact that h3 > 0 and
2b3 + h3 > 0), for fixed x, y the function g(x, y, z) can be seen to be continuous and
increasing for z ≥ 0 and decreasing for z < 0 with limz→±∞ g(x, y, z) = +∞. It will
now be convenient to introduce some objects according to the following:

Definition 5.1 Let a setM ⊂ R2 be given by

M := {(x, y) ∈ R2 | g(x, y, 0) ≤ R̃} (71)

and let Mc be its complement. Furthermore, for (x, y) ∈ M let

z̄1 = z̄1(x, y) , z̄2 = z̄2(x, y)

be the solutions of g(x, y, z) = R̃. They satisfy z̄1 ≤ 0 ≤ z̄2.

Notice that, for z ≤ z̄1 ≤ 0 and z ≥ z̄2 ≥ 0, we have g(x, y, z) ≥ g(x, y, z̄k) = R̃,
and for z ∈ (z̄1, z̄2), we haveg(x, y, z) < R̃. InMcwehaveg(x, y, z) ≥ g(x, y, 0) > R̃
and thus no solution of the equation g(x, y, z) = R̃.

In view of the main result of this subsection, given in Proposition 5.1 below, we
prove as a preliminary the following:

Lemma 5.1 Assuming that the (nonnegative) coefficients b3,σ3 in the dynamics
(10) of the factor Ψ 3

t satisfy the condition

b3 ≥ σ3

√
2
, (72)

we have that 1 − 2β̄3
T C̄

33 > 0, where C̄33 = C̄33(T ,T + Δ) is given by (24) and

where β̄3
T = (σ3)2

2b3 (1 − e−2b3T ) according to (34).

Proof From the definitions of β̄3
T and C̄33 we may write

1 − 2β̄3
T C̄

33 = 1 −
(
1 − e−2b3T

) 2
(
eΔ h3 − 1

)

2 b3h3
(σ3)2

+ b3
(σ3)2

(2b3 + h3)
(
eΔ h3 − 1

) . (73)

Notice next that b3 > 0 implies that 1 − e−2b3T ∈ (0, 1) and that b3h3

(σ3)2
≥ 0. From (73)

it then follows that a sufficient condition for 1 − 2β̄3
T C̄

33 > 0 to hold is that

2 ≤ b3

(σ3)2
(2b3 + h3). (74)

Given that, see definition after (24), h3 = 2
√

(b3)2 + 2(σ3)2 ≥ 2b3, the condition
(74) is satisfied under our assumption (72). �
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Proposition 5.1 Under assumption (72) we have that the time-0 price of the caplet
for the time interval [T ,T + Δ] and with fixed rate R is given by

PCpl(0; T + Δ,R) = p(0,T + Δ)

[∫

M
eĀ+(κ+1)B1x+C22(y)2

·
[
γ(ᾱ3

T , β̄3
T , C̄33)

(
Φ(d1(x, y)) + Φ(−d2(x, y))

)

− eC̄
33(z̄1(x,y))2Φ(d3(x, y)) + eC̄

33(z̄2(x,y))2Φ(−d4(x, y))
]

× f1(x)f2(y)dxdy + γ(ᾱ3
T , β̄3

T , C̄33)

∫

Mc
eĀ+(κ+1)B1x+C22(y)2

× f1(x)f2(y)dxdy − R̃ QT+Δ
{
(Ψ 1

T , Ψ 2
T ) ∈ Mc

}]

, (75)

where Φ(·) is the cumulative standard Gaussian distribution function, M and Mc

are as in Definition 5.1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1(x, y) :=
√

1−2β̄3
T C̄

33 z̄1(x,y)−(ᾱ3
T−θβ̄3

T )√
β̄3
T

d2(x, y) :=
√

1−2β̄3
T C̄

33 z̄2(x,y)−(ᾱ3
T−θβ̄3

T )√
β̄3
T

d3(x, y) := z̄1(x,y)−ᾱ3
T√

β̄3
T

d4(x, y) := z̄2(x,y)−ᾱ3
T√

β̄3
T

(76)

with θ := ᾱ3
T

(
1−1/

√
1−2β̄3

T C̄
33
)

β̄3
T

, which by Lemma 5.1 is well defined under the given

assumption (72), and with γ(ᾱ3
T , β̄3

T , C̄33) := e( 12 (θ)2 β̄3T−ᾱ3T θ)√
1−2β̄3

T C̄
33

.

Remark 5.1 Notice that, once the setM and its complementMc from Definition 5.1
are made explicit, the integrals, as well as the probability in (75), can be computed
explicitly.

Proof On the basis of the setsM and Mc we can continue (69) as

PCpl(0;T + Δ,R) = p(0,T + Δ)

∫

R3

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z)

= p(0,T + Δ)

∫

M×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z)
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+ p(0,T + Δ)

∫

Mc×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+

· f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x, y, z)d(x, y, z)

=: P1(0;T + Δ) + P2(0;T + Δ). (77)

We shall next compute separately the two terms in the last equality in (77) distin-
guishing between two cases according to whether (x, y) ∈ M or (x, y) ∈ Mc.

Case (i): For (x, y) ∈ M we have from Definition 5.1 that there exist z̄1(x, y) ≤ 0
and z̄2(x, y) ≥ 0 so that for z ∈ [z̄1, z̄2] we have g(x, y, z) ≤ g(x, y, z̄k) = R̃. For
P1(0;T + Δ) we now obtain

P1(0;T + Δ) = p(0,T + Δ)

·
∫

M
eĀ+(κ+1)B1x+C22y2

(∫ z̄1(x,y)

−∞
(eC̄

33z2 − eC̄
33(z̄1)2)f3(z)dz

+
∫ +∞

z̄2(x,y)
(eC̄

33z2 − eC̄
33(z̄2)2)f3(z)dz

)

f2(y)f1(x)dydx. (78)

Next, using the results of Sect. 3.3 concerning the Gaussian distribution f3(·) =
fΨ 3

T
(·), we obtain the calculations in (79) below, where, recalling Lemma 5.1, we

make successively the following changes of variables: ζ :=
√
1 − 2β̄3

T C̄
33z, θ :=

ᾱ3
T (1−1/

√
1−2β̄3

T C̄
33)

β̄3
T

, s := ζ−(ᾱ3
T−θβ̄3

T )√
β̄3
T

and where di(x, y), i = 1, · · · , 4 are as defined

in (76)

∫ z̄1(x,y)

−∞
eC̄

33z2 f3(z)dz =
∫ z̄1(x,y)

−∞
eC̄

33z2 1
√
2πβ̄3

T

e
− 1

2

(z−ᾱ3T )2

β̄3T dz

=
∫ z̄1(x,y)

−∞
1

√
2πβ̄3

T

e
− 1

2

(

√
1−2β̄3T C̄33z−ᾱ3T )2

β̄3T e
− ᾱ3T (

√
1−2β̄3T C̄33−1)

β̄3T
z
dz

=
∫ √

1−2β̄3
T C̄

33 z̄1(x,y)

−∞
1

√
2πβ̄3

T

e
− 1

2

(ζ−ᾱ3T )2

β̄3T e
− ᾱ3T (1−1/

√
1−2β̄3T C̄33)

β̄3T
ζ 1
√
1 − 2β̄3

T C̄
33
dζ

= 1
√
1 − 2β̄3

T C̄
33

∫ √
1−2β̄3

T C̄
33 z̄1(x,y)

−∞
1

√
2πβ̄3

T

e
− 1

2

(ζ−ᾱ3T )2

β̄3T e−θζdζ

= e( 1
2 (θ)2β̄3

T−ᾱ3
T θ)

√
1 − 2β̄3

T C̄
33

∫ d1(x,y)

−∞
1√
2π

e− s2

2 ds= e( 1
2 (θ)2β̄3

T−ᾱ3
T θ)

√
1 − 2β̄3

T C̄
33

Φ(d1(x, y)). (79)
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On the other hand, always using the results of Sect. 3.3 concerning the Gaussian

distribution f3(·) = fΨ 3
T
(·) and making this time the change of variables ζ := (z−ᾱ3

T )√
β̄3
T

,

we obtain

∫ z̄1(x,y)

−∞
eC̄

33(z̄1)2 f3(z)dz = eC̄
33(z̄1)2

∫ z̄1(x,y)

−∞
1

√
2πβ̄3

T

e
− 1

2

(z−ᾱ3T )2

β̄3T dz

= eC̄
33(z̄1)2

∫ d3(x,y)

−∞
1√
2π

e− 1
2 ζ2dζ = eC̄

33(z̄1)2Φ(d3(x, y)). (80)

Similarly, we have

∫ +∞

z̄2(x,y)
eC̄

33z2 f3(z)dz = 1
√
1 − 2β̄3

T C̄
33
e( 1

2 (θ)2β̄3
T−ᾱ3

T θ)Φ(−d2(x, y))

∫ +∞

z̄2(x,y)
eC̄

33(z̄1)2 f3(z)dz = eC̄
33(z̄2)2Φ(−d4(x, y)).

(81)

Case (ii):We comenext to the case (x, y) ∈ Mc, forwhich g(x, y, z) ≥ g(x, y, 0) > R̃.
For P2(0;T + Δ) we obtain

P2(0; T + Δ) = p(0,T + Δ)

∫

Mc×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)

· f3(z)f2(y)f1(x)dzdydx
= p(0,T + Δ)

(
eĀ
∫

Mc
e(κ+1)B1x+C22y2 f1(x)f2(y)dxdy

∫

R

eC̄
33z2 f3(z)dz

− R̃QT+Δ[(Ψ 1
T , Ψ 2

T ) ∈ Mc]
)

= p(0,T + Δ)
(
eĀ
[∫

Mc
e(κ+1)B1x+C22y2 f1(x)f2(y)dxdy

] e(
1
2 (θ3)2β̄3T−ᾱ3

T θ3)

√
1 − 2β̄3

T C̄
33

− R̃QT+Δ[(Ψ 1
T , Ψ 2

T ) ∈ Mc]
)
, (82)

where we computed the integral over R analogously to (79).
Adding the two expressions derived for Cases (i) and (ii), we obtain the statement

of the proposition. �

5.2 Swaptions

We start by recalling some of themost relevant aspects of a (payer) swaption. Consid-
ering a swap (see Sect. 4.2) for a given collection of dates 0 ≤ T0 < T1 < · · · < Tn,
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a swaption is an option to enter the swap at a pre-specified initiation date T ≤ T0,
which is thus also the maturity of the swaption and that, for simplicity of notation, we
assume to coincide with T0, i.e. T = T0. The arbitrage-free swaption price at t ≤ T0
can be computed as

PSwn(t;T0,Tn,R) = p(t,T0)E
T0
{(
PSw(T0;Tn,R)

)+ |Ft

}
, (83)

where we have used the shorthand notation PSw(T0;Tn,R) = PSw(T0;T0,Tn,R).

We first state the next Lemma, that follows immediately from the expression for
ρ3(t,Tk) and the corresponding expression for h3k in (65).

Lemma 5.2 We have the equivalence

ρ3(t,Tk) > 0 ⇔ h3k ∈
(
0,

1

4(σ3)2e−2b3(Tk−t)

)
. (84)

This lemma prompts us to split the swaption pricing problem into two cases:

Case(1) : h3k < 0 or h3k > 1
4(σ3)2e−2b3(Tk−t)

Case(2) : 0 < h3k < 1
4(σ3)2e−2b3(Tk−t)

.
(85)

Note from the definition of ρ3(t,Tk) that h3k �= 1
4(σ3)2e−2b3(Tk−t)

and that h3k = 0 would

imply C̄33
k = 0 which corresponds to a trivial case in which the factor Ψ 3 is not

present in the dynamics of the spread s, hence the inequalities in Case (1) and Case
(2) above are indeed strict.

To proceed, we shall introduce some more notation. In particular, instead of only
one function g(x, y, z) as in (70), we shall consider also a function h(x, y), more
precisely, we shall define here the continuous functions

g(x, y, z) :=
n∑

k=1

D0,ke
−A0,k e−B̃1

0,kx−C̃22
0,ky

2−C̃33
0,kz

2
(86)

h(x, y) :=
n∑

k=1

(Rγ + 1)e−A0,k e−B1
0,kx−C22

0,ky
2
, (87)

with the coefficients given by (67) for t = T0. Note that by a slight abuse of notation
we write D0,k for DT0,k and similarly for other coefficients above, always meaning
t = T0 in (67). We distinguish the two cases specified in (85):
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For Case (1) we have (see (67) and Lemma 5.2) that C̃33
0,k = ρ3(T0,Tk) < 0 for all

k = 1, · · · , n, and so the function g(x, y, z) in (86) is, for given (x, y), monotonically
increasing for z ≥ 0 and decreasing for z < 0 with

lim
z→±∞ g(x, y, z) = +∞.

For Case (2) we have instead that C̃33
0,k = ρ3(T0,Tk) > 0 for all k = 1, · · · , n

and so the nonnegative function g(x, y, z) in (86) is, for given (x, y), monotonically
decreasing for z ≥ 0 and increasing for z < 0 with

lim
z→±∞ g(x, y, z) = 0.

Analogously to Definition 5.1 we next introduce the following objects:

Definition 5.2 Let a set M̄ ⊂ R2 be given by

M̄ := {(x, y) ∈ R2 | g(x, y, 0) ≤ h(x, y)}. (88)

Since g(x, y, z) and h(x, y) are continuous, M̄ is closed, measurable and connected.
Let M̄c be its complement. Furthermore, we define two functions z̄1(x, y) and z̄2(x, y)
distinguishing between the two Cases (1) and (2) as specified in (85).

Case (1) If (x, y) ∈ M̄, we have g(x, y, 0) ≤ h(x, y) and so there exist z̄1(x, y) ≤ 0
and z̄2(x, y) ≥ 0 for which, for i = 1, 2,

g(x, y, z̄i) =
n∑

k=1

D0,ke
−A0,k e−B̃1

0,kx−C̃22
0,ky

2−C̃33
0,k(z̄

i)2

=
n∑

k=1

(Rγ + 1)e−A0,k e−B1
0,kx−C22

0,ky
2 = h(x, y) (89)

and, for z /∈ [z̄1, z̄2], one has g(x, y, z) ≥ g(x, y, z̄i).
If (x, y) ∈ M̄c, we have g(x, y, 0) > h(x, y) so that g(x, y, z) ≥
g(x, y, 0) > h(x, y) for all z andwehave nopoints corresponding to z̄1(x, y)
and z̄2(x, y) above.

Case (2) If (x, y) ∈ M̄, we have, as for Case (1), g(x, y, 0) ≤ h(x, y) and so there
exist z̄1(x, y) ≤ 0 and z̄2(x, y) ≥ 0 forwhich, for i = 1, 2, (89) holds. How-
ever, this time it is for z ∈ [z̄1, z̄2] that one has g(x, y, z) ≥ g(x, y, z̄i).
If (x, y) ∈ Mc, then we are in the same situation as for Case (1).

Starting from (83) combined with (66) and taking into account the set M̄ accord-
ing to Definition 5.2, we can obtain the following expression for the swaption
price at t = 0. As for the caps, here too we consider the joint Gaussian distribu-
tion f(Ψ 1

T0
,Ψ 2

T0
,Ψ 3

T0
)(x, y, z) of the factors under the T0−forward measure QT0 and we

have



Derivative Pricing for a Multi-curve Extension … 221

PSwn(0;T0,Tn,R) = p(0,T0)E
T0
{(
PSw(T0;Tn,R)

)+ |F0

}

= p(0,T0)
∫

R3

[ n∑

k=1

D0,ke
−A0,kexp(−B̃1

0,kx − C̃22
0,ky

2 − C̃33
0,kz

2)

−
n∑

k=1

(Rγ + 1)e−A0,kexp(−B1
0,kx − C22

0,ky
2)
]+

f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z)dxdydz

= p(0,T0)
∫

M̄×R

[ n∑

k=1

D0,ke
−A0,kexp(−B̃1

0,kx − C̃22
0,ky

2 − C̃33
0,kz

2)

−
n∑

k=1

(Rγ + 1)e−A0,kexp(−B1
0,kx − C22

0,ky
2)
]+

f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z)dxdydz

+ p(0,T0)
∫

M̄c×R

[ n∑

k=1

D0,ke
−A0,kexp(−B̃1

0,kx − C̃22
0,ky

2 − C̃33
0,kz

2)

−
n∑

k=1

(Rγ + 1)e−A0,kexp(−B1
0,kx − C22

0,ky
2)
]+

f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z)dxdydz

=: P1(0;T0,Tn,R) + P2(0;T0,Tn,R). (90)

We can now state and prove the main result of this subsection consisting in a
pricing formula for swaptions for the Gaussian exponentially quadratic model of this
paper. We have

Proposition 5.2 Assume that the parameters in themodel are such that, if h3k belongs
to Case (1) in (85) and h3k > 0, then h3k > 1

4(σ3)2e−2b3Tk
. The arbitrage-free price

at t = 0 of the swaption with payment dates T1 < · · · < Tn such that γ = γk :=
Tk − Tk−1 (k = 1, · · · , n), with a given fixed rate R and a notional N = 1, can be
computed as follows where we distinguish between the Cases (1) and (2) specified
in Definition 5.2.

Case (1) We have

PSwn(0; T0,Tn,R) = p(0,T0)

{ n∑

k=1

e−A0,k

[∫

M̄
D0,kexp(−B̃1

0,kx − C̃22
0,ky

2)

·
(
e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )

√
1 + 2β̄3

T0
C̃33
0,k

Φ(d1k (x, y)) − e−C̃33
0,k (z̄

1)2
Φ(d2k (x, y))

+ e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )

√
1 + 2β̄3

T0
C̃33
0,k

Φ(−d3k (x, y)) − e−C̃33
0,k (z̄

2)2
Φ(−d4k (x, y))

)
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× f2(y)f1(x)dydx +
∫

M̄c

(
D0,ke

−B̃10,kx−C̃22
0,ky

2 e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )

√
1 + 2β̄3

T0
C̃33
0,k

− (Rγ + 1)e−B10,kx−C22
0,ky

2
)
f2(y)f1(x)dydx

]}

. (91)

Case (2) We have

PSwn(0;T0,Tn,R) = p(0,T0)

{ n∑

k=1

e−A0,k

[∫

M̄
D0,kexp(−B̃1

0,kx − C̃22
0,ky

2)
(e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)

√
1 + 2β̄3

T0
C̃33
0,k

×
[
Φ(d3k (x, y)) − Φ(d1k (x, y))

]
− e−C̃33

0,k(z̄
1)2
[
Φ(d4k (x, y))

− Φ(d2k (x, y))
])

f2(y)f1(x)dydx

+
∫

M̄c

(
D0,ke

−B̃1
0,kx−C̃22

0,ky
2 e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)

√
1 + 2β̄3

T0
C̃33
0,k

− (Rγ + 1)e−B1
0,kx−C22

0,ky
2
)
f2(y)f1(x)dydx

]}

. (92)

The coefficients in these formulas are as specified in (67) for t = T0, f1(x), f2(x) are
the Gaussian densities corresponding to (68) for T = T0 and the functions dik(x, y),
for i = 1, . . . , 4 and k = 1, . . . , n, are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1k (x, y) :=
√
1+2β̄3

T0
C̃33
0,k z̄

1(x,y)−(ᾱ3
T0

−θk β̄
3
T0

)
√

β̄3
T0

d2k (x, y) := z̄1(x,y)−ᾱ3
T0√

β̄3
T0

d3k (x, y) :=
√
1+2β̄3

T0
C̃33
0,k z̄

2(x,y)−(ᾱ3
T0

−θk β̄
3
T0

)
√

β̄3
T0

d4k (x, y) := z̄2(x,y)−ᾱ3
T0√

β̄3
T0

(93)

with θk := ᾱ3
T0

(
1−1/

√
1+2β̄3

T0
C̃33
0,k

)

β̄3
T0

, for k = 1, . . . , n, and where z̄1 = z̄1(x, y), z̄2 =
z̄2(x, y) are solutions in z of the equation g(x, y, z) = h(x, y).

In addition, themean and variance values for theGaussian factors (Ψ 1
T0

, Ψ 2
T0

, Ψ 3
T0

)

are here given by
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ᾱ1
T0

= e−b1T0Ψ 1
0 − (σ1)2

2(b1)2 e
−b1T0(1 − e2b

1T0) − (σ1)2

(b1)2 (1 − eb
1T0)

]

β̄1
T0

= e−2b1T0(e2b
1T0 − 1) (σ1)2

2(b1)

ᾱ2
T0

= e−b2T0Ψ 2
0

β̄2
T0

= e−2b2T0

∫ T0

0
e2b

2u+4(σ2)2C̄22(u,T0)(σ2)2du

ᾱ3
T0

= e−b3T0Ψ 3
0

β̄3
T0

= e−2b3T0 (σ3)2

2b3 (e2b
3T0 − 1).

(94)

Remark 5.2 A remark analogous to Remark 5.1 applies here too concerning the sets
M̄ and M̄c.

Proof First of all notice that, when h3k < 0 or h3k > 1
4(σ3)2e−2b3Tk

in Case (1), this

implies 1 + 2β̄3
T0
C̃33
0,k ≥ 0 (in Case (2) we always have 1 + 2β̃3

T0
C̃33
0,k ≥ 0). Hence,

the square-root of the latter expression in the various formulas of the statement of the
proposition is well-defined. This can be checked, similarly as in the proof of Lemma
5.1, by direct computation taking into account the definitions of β̄3

T0
in (94) and of

C̃33
0,k in (67) and (65) for t = T0.
We come now to the statement for:

Case 1. We distinguish between whether (x, y) ∈ M̄ or (x, y) ∈ M̄c and compute
separately the two terms in the last equality in (90).

(i) For (x, y) ∈ M̄ we have from Definition 5.2 that there exist z̄1(x, y) ≤ 0 and
z̄2(x, y) ≥ 0 so that, for z /∈ [z̄1, z̄2], one has g(x, y, z) ≥ g(x, y, z̄i). Taking into
account that, under QT0 , the random variables Ψ 1

T0
, Ψ 2

T0
, Ψ 3

T0
are independent, so

that we shall write f(Ψ 1
T0

,Ψ 2
T0

,Ψ 3
T0

)(x, y, z) = f1(x)f2(y)f3(z) (see also (68) and the line
following it), we obtain

P1(0;T0,Tn,R) = p(0,T0)
[ n∑

k=1

D0,ke
−A0,k

∫

M
exp(−B̃1

0,kx − C̃22
0,ky

2)

·
(∫ z̄1(x,y)

−∞
exp(−C̃33

0,kz
2)f3(z)dz

−
∫ z̄1(x,y)

−∞
exp(−C̃33

0,k(z̄
1)2)f3(z)dz

+
∫ +∞

z̄2(x,y)
exp(−C̃33

0,kz
2)f3(z)dz

−
∫ +∞

z̄2(x,y)
exp(−C̃33

0,k(z̄
2)2)f3(z)dz

)
f2(y)f1(x)dydx

]
. (95)

By means of calculations that are completely analogous to those in the proof of
Proposition 5.1, we obtain, corresponding to (79)–(81) respectively and with the
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same meaning of the symbols, the following explicit expressions for the integrals in
the last four lines of (95), namely

∫ z̄1(x,y)

−∞
e−C̃33

0,k z
2
f3(z)dz = e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)

√
1 + 2β̄3

T0
C̃33
0,k

Φ(d1k (x, y)), (96)

∫ z̄1(x,y)

−∞
e−C̃33

0,k(z̄
1)2 f3(z)dz = e−C̃33

0,k(z̄
1)2Φ(d2k (x, y)), (97)

and, similarly,

∫ +∞

z̄2(x,y)
e−C̃33

0,k z
2
f3(z)dz = e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)

√
1 + 2β̄3

T0
C̃33
0,k

Φ(−d3k (x, y)),

∫ +∞

z̄2(x,y)
e−C̃33

0,k(z̄
2)2 f3(z)dz = e−C̃33

0,k(z̄
2)2Φ(−d4k (x, y)),

(98)

where the dik(x, y), for i = 1, . . . , 4 and k = 1, . . . , n, are as specified in (93).

(ii) If (x, y) ∈ M̄c then, according to Definition 5.2 we have g(x, y, z) ≥ g(x, y, 0) >

h(x, y) for all z. Noticing that, analogously to (96),

∫

R

e−C̃33
0,kζ

2
f3(ζ)dζ = e( 1

2 (θk)
2β̄3

T0
−ᾱ3

T0
θk)

√
1 + 2β̄3

T0
C̃33
0,k

we obtain the following expression

P2(0; T0,Tn,R) = p(0,T0)
n∑

k=1

e−A0,k
[∫

M̄c×R

(
D0,ke

−B̃10,kx−C̃22
0,ky

2−C̃33
0,k z

2

− (Rγ + 1)e−B10,kx−C22
0,ky

2
)
f3(z)f2(y)f1(x)dzdydx

]

= p(0,T0)
n∑

k=1

e−A0,k
[
D0,k

(∫

Mc
e−B̃10,kx−C̃22

0,ky
2
f2(y)f1(x)dydx

)

× e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )

√
1 + 2β̄3

T0
C̃33
0,k

− (Rγ + 1)
(∫

M̄c
e−B10,kx−C22

0,ky
2
f2(y)f1(x)dydx

)]
.

(99)

Adding the two expressions in (i) and (ii) we obtain the statement for Case 1.

Case (2).Also for this casewedistinguish betweenwhether (x, y) ∈ M̄ or (x, y) ∈ M̄c

and, again, compute separately the two terms in the last equality in (90).
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(i) For (x, y) ∈ M̄ we have that there exist z̄1(x, y) ≤ 0 and z̄2(x, y) ≥ 0 so that,
contrary to Case 1), one has g(x, y, z) ≥ g(x, y, z̄i) when z ∈ [z̄1, z̄2]. It follows that

P1(0; T0,Tn,R) = p(0,T0)

[ n∑

k=1

D0,ke
−A0,k

∫

M̄
exp(−B̃1

0,kx − C̃22
0,ky

2)

·
(∫ z̄2(x,y)

z̄1(x,y)
exp(−C̃33

0,kz
2)f3(z)dz

−
∫ z̄2(x,y)

z̄1(x,y)
exp(−C̃33

0,k(z̄
1)2)f3(z)dz

)

f2(y)f1(x)dydx

]

= p(0,T0)

[ n∑

k=1

D0,ke
−A0,k

∫

M̄
exp(−B̃1

0,kx − C̃22
0,ky

2)

·
(
e
( 12 (θk )

2β̄3
T0

−ᾱ3
T0

θk )

√
1 + 2β̄3

T0
C̃33
0,k

(
Φ(d3k (x, y)) − Φ(d1k (x, y))

)

− e−C̃33
0,k (z̄

1)2
(
Φ(d4k (x, y)) − Φ(d2k (x, y))

))

f2(y)f1(x)dydx

]

,

(100)

where we have made use of (96) and (97), (98).

(ii) For (x, y) ∈ M̄c we can conclude exactly as we did it for Case (1) and, by adding
the two expressions in (i) and (ii), we obtain the statement also for Case (2).
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Multi-curve Construction

Definition, Calibration, Implementation
and Application of Rate Curves

Christian P. Fries

Abstract In this chapter we discuss the definition, construction, interpolation and
application of curves. We will discuss discount curves, a tool for the valuation of
deterministic cash-flows and forward curves, a tool for the valuation of linear cash-
flows of an index. A curve is mainly a tool to interpolate certain basic financial
products (zero coupon bonds, FRAs) with respect to maturity date and fixing date,
such that it can be used to value products, which can be represented as linear func-
tions of possibly interpolated values of a discount or forward curve. For this, the
chosen interpolation method and interpolation entity plays an important role. Distin-
guishing forward curves from discount curves (representing the collateralization of
the forward) motivates an alternative interpolation method, namely interpolation of
the forward value (the product of the forward and the discount factor). In addition,
treating forward curves as native curves (instead of representing them by pseudo-
discount curves) will avoid other problems, like that of overlapping instruments.
Besides the interpolation, we discuss the calibration of the curves for which we give
a generic object-oriented implementation in Fries (Curve calibration.Object-oriented
reference implementation, 2010–2015, [11]).We give some numerical results, which
have been obtained using this implementation and conclude with a remark on how to
define term-structure models (analog to a LIBORmarket model) based on the defini-
tion of the performance index of an accrual account associated with a discount curve.
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1 Introduction

Dynamic multi-curve term structure models, as the one discussed in this book, often
use given interest rate curves as initial data. The classical (single curve) example is
the HJM oder LMM model, where

df (t, T) = μ(t, T)dt + Σ(t, T)dW (t), f (t0, T) = f0(T).

While research on multi-curve interest rates models was and is very active, see,
e.g., [5, 6, 15, 20–22], references therein and the other chapters of in this book,
the construction of the initial interest rate curve, here f0(T), naturally does not get a
similar strong attention. However, a good curve construction is of high importance
for practitioners, since it has a strong impact on the delta-hedge (that is, the first-order
interest rate risk).

Themarket standard of (forward) curve construction is to calibrate an interpolated
curve to given market instruments, often via an iterative procedure (bootstrapping).
With respect to the interpolation of (interest rate) forward curves, a common approach
is to represent a forward curve in terms of (pseudo-)discount factors (aka. synthetic
discount factors) and apply an interpolation scheme on these discount factors. While
this approach is in general not backed by an economic concept, it also introduces
several (self-made) problems, e.g., the interpolation of (so-called) overlapping instru-
ments, see Sect. 5.3.

In this paper we focus on the curve construction, provide an open source imple-
mentation and suggest appealing alternative interpolation schemes motivated from
themulti-curve setup: direct interpolation of the forward curve or direct interpolation
of the forward value curve, where the forward value is the product of a forward and
the associated discount factor. While linear interpolation of the forward is a common
scheme,1 the interpolation of the forward value appears to be a new approach.

Nevertheless, the paper puts both methods on a solid foundation by deriving
the schemes from the multi-curve definition of forward curves. Both interpolation
schemes ease some of the complications associated with synthetic discount factors.

Once the curves and interpolations are defined, we are considering the problem
of calibrating a set of curves to given market quotes. The value of an instrument
is in general determined by a whole collection of curves, e.g., one or two discount
curves and zero or more forward curves. To simplify the implementation, we define
a generalized swap, which allows to represent most calibration instruments (FRAs,
swaps, tenor basis swaps, cross-currency swaps, etc.) by a single class.

1Some trading systems, like Murex, do offer it as an option.
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2 Foundations, Assumptions, Notation

Under well-known assumptions the valuation of a future cash flow can be written as
an expectation,2 that is the time t0-value V (t0) is

V (t0) = N(t0) · EQ
N

(
V (T)

N(T)
| Ft0

)
for t0 ≤ T , (1)

where V (T) is the time T cash-flow, N is the value process of a traded asset (or col-
lateral account) which can serve as a numéraire andQN is the equivalent martingale
measure associated with N . Equation (1) is the starting point for curve construction
in the following sense: If the above valuation formula holds, then the value of a linear
function of future cash-flows is the linear function of the values of the single cash
flows. In other words: we can represent the valuation of so-called linear products
by a basis consisting of the values of elementary products. This basis of elementary
products is the set of curves, where “the curve” is formed by the parameter T .

Note that here and in the following, we consider the valuation for a fixed t0. We
are not concerned with the description of a dynamic model (describing t �→ V (t) as
a stochastic process).

Definition 1 Let I denote an index, that is, I(T) is anFT -measurable random vari-
able and d > 0 is some payment offset, then we define the (time t0-)valuation curve
with respect to T as the map

T �→ C(T) := N(t0) · EQ
N

(
I(T)

N(T + d)
| Ft0

)
. (2)

For I ≡ 1 and d = 0 the curve in (2) represents the curve of (synthetical) zero-
coupon bond prices T �→ P(T; t0), also known as discount curve.3 For arbitrary
indices I (with fixed payment offset d4), the curve T �→ C(T)/P(T; t0) is known as
the forward curve. Obviously both curves depend on N and t0.

Note that the specific stochastic behavior of I and N does not play a role when
looking at t0 only in the sense that we are only interested in the time t0-expectation.
That is, we could define t �→ N(t) and t �→ I(t) to be Ft0 -measurable for all times
t and still generate any given discount curve and forward curve, respectively. There

2Since we are only considering the linearity of the valuation at a fixed time t0, we just require that
some fundamental theorem of asset pricing holds, for example, assuming that the price processes
are locally bounded semi-martingales and the no free lunch with vanishing risk condition holds, [7].
3We will use the notation P(T ; t) (instead of the more common P(t, T)) for a the time-t value
of zero-coupon bond maturing in T , since we consider t = t0 as fixed. Sometimes we even drop
the argument and just write P(T). Similar for forward curves. The curves considered here are
parametrized by T for a fixed time t.
4In practice the payment offset may depend on t0 and T due to business day adjustments. Our
implementation handles this, but to ease notation we drop the dependence here.
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is no arbitrage constraint with respect to t yet, since for different t the index I(t)
represents different assets (underlyings).

Thus, with respect to the processes 1/N and I/N we just require that they fulfill
regularity assumptions such that (2) exists.5

On the other hand, the interpretation of the curve as a curve of valuations in
the sense of (2) does play a role, when we consider the construction of the curve
via interpolation of observed market prices. Here, the linearity of the expectation
operator E allows to link market prices to different points of the curve.

Curves, like discount curves and forward curves solve, among others, two impor-
tant problems:

• Valuation of linear instruments. This is performed by decomposing instruments
into the value of single cash flows (zero coupon bonds and FRAs), which then
allows to synthesize the valuation of linear functions of the individual cash flows
(e.g., swaps).

• Valuation of a time T cash-flow as interpolation of valuations of cash flows at
discrete times {Ti}n

i=0 (where Ti ≥ t0 for all i), e.g., swaps referencing cash flows
on illiquid maturities.

Thus, curves are simply a methodology to interpolate on the cash flows with respect
to their payment time.6 Apart from this, the curves also represent the initial data
for advanced term structure models (like the LIBOR market model). Hence, care-
ful construction of curves is also key to (interest rate) derivatives valuation, when
interpolated curves are the initial values of a dynamic model.

For details on the evolution of multi-curve construction see the recent book by
Henrard, [18] (citing a preprint of the present paper). A very detailed description
of multi-curve bootstrapping, which also details market conventions and convexity
adjustments of the calibration instruments, can be found in [2]. For market conven-
tions also see [17]. Here, we do not consider a possible convexity adjustment due
to different market conventions (they should be part of the valuation formulas) and
rather focus on the curves and their interpolation schemes. Also, we do not need to
consider a bootstrapping, since we set up the calibration as a system of equations
passed to a multi-dimensional optimization algorithm.

Usually (and here), the curves are used to interpolate at the fixed time t0 only. If a
curve interpolation should also be used for times t > t0 within a dynamicmulti-curve
model, then this may impose additional constraints on the admissible interpolations
schemes. For example, (2) implies that linear interpolation of time-t zero-coupon
bond prices for t > t0 implies linear interpolation of the time-t zero-coupon bond
prices, which in turn implies a special interpolation of forward rates in a LIBORmar-
ket model, see Sect. 19.5 in [10]. In this case the linear interpolation of the discount
curve and forward value curve would not introduce an arbitrage violation, given that

5For example, let 1/N and I/N be Itô stochastic processes with integrable drift and bounded
quadratic variation.
6This also applies to forward curve, see below, although in these cases there is also an associated
fixing time of an index and it is maybe more consistent to parametrize the curve w.r.t. the fixing of
the index.



Multi-curve Construction 231

the interpolation points are the same for all times. In practice term-structure models
are often constructed with their own curve interpolations, such that the interpolation
used for the initial data differs from the interpolation used for the simulated curves
(while the model is still calibrated and arbitrage-free given that the drift is specified
accordingly). In the following we focus on the interpolation of the initial data—that
is, the time-t0 curves, which is of greater importance for the deltas of interpolated
products, where only the linear part matters.

In the above valuation formula (1) it is assumed that V and N are expressed in the
same currency. If the two are in different currency, one of them has to be converted
by an exchange rate, which we will denote by FX. Let V be in currency U2 and the
numéraire N in currency U1, then the valuation formula is given by

V (t0) = FX
U2
U1 (t0) · N(t0) · EQ

N

(
V (T)

FX
U2
U1 (T) · N(T)

| Ft0

)

,

where FX
U2
U1 (t) denotes the time t exchange rate for one unit of currency U1 into one

unit of currency U2. Furthermore, FX
U1
U2 =

(
FX

U2
U1

)−1
.

As discussed in [12], the valuation of a collateralized claim can be written as
an expectation with respect to a specific numéraire, namely the collateral account
N = NC.7 We denote the currency of the collateral numéraire by [C]. Let U denote
the currency of the cash flow V (T). Assume that the cash flow V (T) is collateralized
by units of NC. In this case the Eq. (1) holds with the numéraire N = NC, U2 = U,
U1 = [C] (given that V (t) is the collateral amount in the account NC).

Remark 1 From the above we see that collateralization in a different currency can
be interpreted twofold:

1. We may consider a payment converted to collateral currency and valued with
respect to the collateral numéraire NC, or, alternatively,

2. we may consider a payment in the currency U collateralized with respect to the
collateral account NU,C := FX

U
[C] · NC.

We will adopt the latter interpretation, which will also make the valuation look more
consistent8

V (t0) = NU,C(t0) · EQ
U,NC

(
V (T)

NU,C(T)
| Ft0

)
. (3)

Note that this interpretation will then give rise to a new discount curve: the discount
curve associated with NU,C, being the discount curve of a foreign currency (U) cash
flow collateralized by a C.

7See also [8, 14].
8As has been noted in [12], the measures agree, i.e., QU,NC = Q

NC
.
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Remark 2 For an uncollateralized product the role of the collateral account is taken
by the funding account and the corresponding numéraire is the funding account.
Since the valuation formulas are identical to the case of a “special” collateral account
(agreeing with the funding account), we will consider an uncollateralized product as
a product with a different collateralization.

In the following we use the notation U for the currency unit of a cash flow, i.e.,
we may consider U = 1e or U = 1$. We will need this notation only when we
consider cross-currency basis swaps. The symbols V and N (as well as P defined
below) will denote value processes including the corresponding currency unit, e.g.,
V (t0) = 0.25e. The symbol V refers to the value of the product under consideration,
while N denotes the numéraire, e.g., the OIS accrued collateral account. The symbol
X denotes a real number while I denotes a real valued stochastic process, both can
be considered as rates, i.e., unit-less indices, e.g., X = 2.5%. For example X will
denote the fix rate in a swap, I will denote the floating rate index in a swap,U denotes
the currency unit of the two legs, N will be used to define the discount factor and the
value of the swap. The value of the swap is then denoted by V .

3 Discount Curves

Consider a fixed constant cash flow X, paid in currency U in time T , collateralized
by an account C. Since X is a constant and the expectation operator is linear, we can
express the time-t0 value V (t0) of this cash flow as

V (t0) = X · PU,C(T; t0), (4)

where

PU,C(T; t0) := NU,C(t0) · EQ
NU,C

(
1 · U

NU,C(T)
| Ft0

)
(5)

defines the value of a theoretical zero coupon bond. Note that Eq. (4) can be used in
two ways. First, for given market prices we may determine PU,C(T; t0)—that is we
calibrate the curve T �→ PU,C(T; t0). Second, for given PU,C(T; t0) we may value a
constant cash flow.

This defines the discount curve:

Definition 2 Let PU,C(T; t0) denote the time t0 value expressed in currency unit U
of a unit cash-flow of 1 unit of the currency U in T , collateralized by a collateral
account C. In this case we call T �→ PU,C(T; t0) given by (5) the discount curve for
cash flows in currency U collateralized by the account C.

Remark 3 By assumption (of a frictionless no-arbitrage market, (1)) the value of a
fixed constant future cash-flow X is a linear function of its amount. Hence, we have
that the time t0 value of a cash flow X in T and currency U, collateralized with an
account C is
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X · PU,C(T; t0).

In other words, the discount curve allows us to valuate all fixed (deterministic) cash
flows in a given currency, collateralized by a given account.

The discount factor PU,C(T; t0) represents the price of an (idealized) zero-coupon
bond. Although a zero-coupon bond is usually not a market-traded asset, we may
representmarket-traded coupon bonds as a linear combination of zero-coupon bonds,
and vice versa. If C denotes some cash-collateral account, there is no such thing as
a collateralized bond, but in that case PU,C(T; t0) has the natural interpretation of
representing the time-t value of a collateralized unit currency time-T cash flow. In
any case, PU,C(T; t0) can be considered a linear function of traded asset (within its
collateralization scheme).

4 Forward Curves

The same approach can now be applied to a payoff of a cash flow X · I(T1), paid in
currency U in time T2 (T1 ≤ T2), collateralized by account C, where X is a constant
and I is an adapted process representing index.9 Its value is

V (t0) = NU,C(t0) · EQ
NU,C

(
X · I(T1) · U

NU,C(T2)
| Ft0

)
.

We can express the value as V (t0) = X · FU,C
I (T1, T2; t0) · PU,C(T2; t0), where

FU,C
I (T1, T2; t0) = NU,C(t0) · EQ

NU,C
(

I(T1) · U

NU,C(T2)
| Ft0

) /
PU,C(T2; t0). (6)

This definition allows us to derive FU,C
I (T1, T2; t0) from given market prices.

Conversely, given PU,C(T2; t0) and FU,C
I (T1, T2; t0) we may value all linear payoff

functions of I(T1) paid in T2.
In (6) the forward depends on thefixing timeT1 and the payment timeT2.However,

the offset of the payment time from the fixing time d = T2 − T1 can be viewed
as a property of the index (a constant) and hence, the forward represents a curve
T �→ FU,C

I (T , T + d; t0).

Definition 3 Let t �→ I(t) denote an index, that is I is an adapted stochastic real
valued process. Let

V U,C
I (T , T + d; t0) := NU,C(t0) · EQ

NU,C
(

I(T) · U

NU,C(T + d)
| Ft0

)

9Examples for I are LIBOR rates or the performance of an EONIA accrual account.
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denote the time t0-value of a payment of I(T) paid in T + d in currency U, collat-
eralized by an account C (where d ≥ 0). We assume that I and N is such that the
expectation exists for all T . Then we define the forward of a payment of I(T) paid
in T + d in currency U, collateralized by an account C as

FU,C
I (T; t0) := V U,C

I (T , T + d; t0)

PU,C(T + d; t0)
.

Remark 4 The forward curve allows us to value a future payment of the index I by

V U,C
I (T , T + d; t0) = FU,C

I (T; t0) · PU,C(T + d; t0)

and by assumption (of a frictionless no-arbitrage market, (1)), the forward curve
allows us to evaluate all linear cash flows X · I (in currency U, collateralized by an
account C) by X · FU,C

I (T; t0) · PU,C(T + d; t0).
Note thatFU,C

I is not a classical single curve forward rate, related to some discount
curve. Due to our definition of the forward curve, the curve includes all valuation
effects related to the index, in particular a possible convexity adjustment. For exam-
ple: if we would consider an in-arrears index and an in-advance index we would
obtain two different forward curves which differ by the in-arrears convexity adjust-
ment!

4.1 Performance Index of a Discount Curve
(or “Self-Discounting”)

The OIS swap pays the performance of an account, accruing with the overnight rate,
that is:

Definition 4 (Overnight Index Swap) Let NC(t) denote the account accruing at the
overnight rate r(t), NC(t0) = 1U, i.e. on a given time discretization (accrual periods)
{ti}n

i=0

NC(tk) :=
k∏

i=0

(1 + r(ti)Δti) ≈ exp

(∫ tk

t0

r(s)ds

)
.

The overnight index swap pays a fix coupon and receives the performance ICi of the
accrual account, that is

ICi (Ti, Ti+1) := NC(Ti+1)

NC(Ti)
− 1.

in Ti+1 with a quarterly tenor T0, T1, . . ..
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The time-t0 linear forward of the index above is PU,C(Ti;t0)−PU,C(Ti+1;t0)
PU,C(Ti+1;t0) (and dividing

by Ti+1 − Ti this gives the linear forward rate). Hence, this is the same situation as
for single curve interest rate theory swaps.

The OIS swap is collateralized with respect to the account NC. Due to this, it is
sometimes called “self-discounted”. However, we may give an appealing alternative
view, defining the forward curve from the discount curve (and not the other way
around):

Let us consider a discount factor curve PU,C(T; t) as seen in time t. The curve
allows the definition of a special index, namely the performance rate of the collateral
account C in currency U over a period of period length d:
Let IC(Ti) := 1−PU,C(Ti+d;Ti)

PU,C(Ti+d;Ti)
, where PU,C(Ti + d; Ti) is the discount factor for the

maturity Ti + d as seen in time Ti. The index IC(Ti) is the payment we have to receive
in Ti + d collateralized with respect to the collateral accountC, such that 1 + IC(Ti)

in Ti+1 has the same value as 1 in Ti. This index has a special property, namely that
its forward can be expressed in terms of the discount factor curve PU,C too: The time
t0 forward of IC(Ti) is FU,C(Ti; t0) where

FU,C(Ti; t0) · PU,C(Ti + d; t0) = NU,C(t0) · EQ
NU,C

(
IC(Ti) · U

NU,C(Ti + d)
| Ft0

)

= PU,C(Ti; t0) − PU,C(Ti + d; t0).

Consequently this index has the special property that its forward can be expressed
by the associated discount factors evaluated at different maturities.

Definition 5 (Forward associated with a Discount Curve) Let PU,C(Ti + d; t0)
denote a discount curve. For a given period length d we define the forward
Fd,U,C(Ti; t0) as

Fd,U,C(Ti; t0) := PU,C(Ti; t0) − PU,C(Ti + d; t0)

PU,C(Ti + d; t0) · d
. (7)

Fd,U,C(Ti; t0) is the forward associated with the performance index of PU,C over a
period of length d.

Remark 5 The above definition relates a forward curve and discount factor curve.
Note however, that we define a forward from a discount factor curve and that this
definition is backed by a clear interpretation of the underlying index. Conversely,
we may define a discount curve from a forward curve “implicitly” such that the
relation (7) holds. Note however, that a generalization of this relation should be
considered with care, since the associated product may not exist.

The definition above is an idealization in the sense that we assume that interval
points over which the performance is measured correspond to the payment dates.
In practice (EONIA is an example) there might be some small deviations from this
assumption (e.g. payment offsets of a few days). In this case (7) does not hold (but
may be still considered an approximation).
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Products like the OIS swaps are sometimes called “self-discounting” since the
discounting is performed on a curve corresponding to the index they fix. From the
above, we find an alternative (and maybe more natural) interpretation, namely that
the swap pays the performance index of its collateral account, i.e., it pays the index
associated with the discount curve.

5 Interpolation of Curves

In this section we consider a discount curve PU,C and an associated forward curve
FU,C. To simplify notation we set D(T) := PU,C(T; t0) and F(T) := FU,C(T; t0).

Forwards and discount factors are linked together by Definition 3, which says
that the time-t0 value of a forward contract V (t0, T) with fixing in T is the product
of the forward F(T) and the associated discount factor D(T + d), i.e., V (t0, T) =
F(T) · D(T + d). Note that T �→ V (t0, T) and T �→ D(T) are value curves, i.e., for
a fixed T the quantities V (t0, T) and D(T) are values of financial products. However,
F(T) is a derived quantity, the forward.

Since V and D represent values of financial products, there is a natural interpre-
tation for a linear interpolation of different values V (Ti) and of different values of
D(Ti), since this would correspond to a portfolio of such products. Note that defining
an interpolationmethod for V andD implies a (possible more complex) interpolation
method of F.

On the other hand, it is common practice to define an interpolation method for a
rate curve (both forward curve and discount factor curve) via zero rates, sometimes
even regardless of the nature of the curve, which then implies the interpolation of the
value curvesD andV . Someof these interpolationswill result in natural interpolations
on the value process V , others not. Other examples for interpolations of F and D are:

• log-linear interpolation of the forward, log-linear interpolation of the discount
factor: the case is equivalent to log-linear interpolation of the value.

• linear interpolation of the forward, log-linear interpolation of the discount factor:
the case is equivalent with a linear interpolation of the value, with an interpolation
weight being a function of the discount factor ratio.

In [16] interpolations on the discount factors, on the logarithm of discount factors,
on the yield and directly on the forwards were discussed. Highlighting some disad-
vantages of cubic splines, they introduced two new interpolation methods (monotone
convex spline andminimal cubic spline) which overcomemost of the shortfalls of the
other interpolations. In [19] some issues of these methods were pointed out, favoring
a harmonic spline interpolation. In [1] a modified Bessel spline on the logarithm of
the discount factors was proposed.

Based on the formal setup presented in the present paper, the stability of cumulated
error of a dynamic hedge was considered as a criterion for the interpolation methods
and compared for a large collection of methods in [13].
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At this point, we would like to stress the importance of the interpolation entity,
that is, whether we interpolate on a forward or on a synthetic discount factor (in
the sense of Definition 5). While the interpolation method (e.g., linear compared to
spline) is often in the focus (discussing locality versus smoothness, [16]), the choice
of the interpolation entity has a strong impact on the delta hedge, see Table1.

Depending on the application, it is popular to represent a curve by a paramet-
ric curve. This is done especially for discount curves. Examples are the Nelson–
Siegel (NS) and the Nelson–Siegel–Svensson (NSS) parametrization. Our bench-
mark implementation in [11] allows to use NS or NSS in the calibration.10

5.1 Implementing the Interpolation of a Curve: Interpolation
Method and Interpolation Entities

In this paper we focus on interpolation schemes based on given interpolation points.
Implementing the interpolation of a curve that way, it is convenient to distinguish the
interpolation method, e.g., linear interpolation of interpolation points {(Ti, xi)}, and
the interpolation entity, that is, a (bijective) transformation from (T , x) to the actual
curve. For example, for discount curves one might consider a linear interpolation
of the zero rate. In this case the interpolation method is linear interpolation and
the interpolation entity is (T , x(T)) = (T ,

log(D(T))

T ) for T > 0, where D denotes
the discount curve. Given 0 < Ti ≤ T ≤ Ti+1 and discount factors D(Tj), a linear
interpolation of the zero rates would then imply the interpolation

D(T) := exp

((
T − Ti

Ti+1 − Ti

log(D(Ti+1))

Ti+1
+ Ti+1 − T

Ti+1 − Ti

log(D(Ti))

Ti

)
· T

)
.

In our benchmark implementation [11], this functionality is provided for a large
number of interpolation methods (constant, linear, Akima, spline, etc.) and interpo-
lation entities (value, log-value, log-value-per-time) by the class net.finmath.
marketdata.model.curves.Curve.11 For forward curves we provide two
additional interpolation entities: forward and synthetic discount factor (see below).

5.2 Interpolation Time

For both, parametric curves (like NSS) and non-parametric interpolation schemes, it
is important to specify the convention used to transform product maturities (dates)
to real numbers (time T ). For example, we might use a daycount convention (like

10Seehttp://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/DiscountCurve
NelsonSiegelSvensson.html.
11See http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/Curve.html.

http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/DiscountCurveNelsonSiegelSvensson.html
http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/DiscountCurveNelsonSiegelSvensson.html
http://finmath.net/finmath-lib/apidocs/net/finmath/marketdata/model/curves/Curve.html
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ACT/365) and measure T as a daycount fraction between evaluation date and matu-
rity date, that is T := dcf(evaluation date,maturity date). Clearly, a change in the
time parametrization will change the interpretation of the curve parameters (for a
parametric curve). Also, some daycount convention actually introduces non-linear
time transformations.

5.3 Interpolation of Forward Curves

5.3.1 The Classical Approach

For forward curves, a common approach is to consider an interpolation of the forward
as an independent entity (like for the discount curve). For interest rate forwards, a
popular interpolation scheme (coming from the single curve interpretation of interest
rates forwards) is to represent the forward in terms of synthetic discount factors.
That is, if d denotes a period length associated with the forward and if F(Ti) is
given forTi = i · d, then onemight consider interpolation of (pseudo-)discount factor
DF(Ti) := ∏i−1

k=0(1 + F(Tk) · d)−1, possibly considering another transformation on
DF(T) to define the actual interpolation entity. See [3] for a corresponding multi-
curves bootstrap algorithm.

It is obvious that this definition of the interpolation entity for forward curve is
complex, results in problems for non-equidistant interpolation points and is—without
further assumptions—not backed by a meaningful interpretation. First, in a multi-
curve setup this approach lacks an economic justification. Second, it may introduce
problems:

• The common approach of a linear interpolation of the logarithm of the synthetic
discount factor representing the forward curve results in an almost piecewise con-
stant interpolation of the forward, see [13]. This may result into “jumps” when
products are aging.

• The use of synthetic discount factors defines a forward with fixing time T in terms
of (interpolated) discount factors at times T and T + d (where d is the period
length). The method is a common practice (also considered in [1]). However,
considering forwards for overlapping periods, this may introduce oscillations and
result in implausible delta-hedges (see Table1).

5.3.2 Alternative Interpolation Schemes for Forward Curves

The definition of the forward curve in the multi-curve setup suggests an appealing
alternative for the creation of an interpolated forward: Like a discount factor curve,
the curve V (T) = F(T) · D(T + d) represents the value of a financial product.
Hence, we may consider the interpolation of V like we did for the curve D. For
example, if we consider linear interpolation of the value curve V , we interpolate
the forward curve F by considering the interpolation entity F(T) · D(T + d) with a
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given discount curve D, i.e., we have

F(T) := 1

D(T + d)

(
T − Ti

Ti+1 − Ti
F(Ti+1)D(Ti+1 + d) + Ti+1 − T

Ti+1 − Ti
F(Ti)D(Ti + d)

)

for Ti ≤ T ≤ Ti+1 and given points F(Tj).
Given that log-linear interpolation is a popular interpolation scheme for discount

curves one may consider log-linear interpolation of V . This interpolation scheme has
the restriction that the forward is required to be positive. Since negative interest rates
are possible, this interpolation scheme is not appropriate for interest rate curves.

5.4 Assessment of the Interpolation Method

The assessment of the quality of performance of an interpolation method is difficult.
Some basic criteria (like continuity, locality, etc.) have been reviewed in [16]. Local-
ity, i.e., how does a local change in input data affect the curve, is a desired property
from a hedging perspective. In [13] a long-term dynamic hedging is used to asses the
performance of an interpolation scheme. The results in [13] suggest that among the
local methods, linear interpolation of the forward curve and log-linear interpolation
of the discount curve were the best performing schemes when using the cumulated
dynamic hedge error as a primary criterion.

6 Implementation of the Calibration of Curves

A curve (discount curve or forward curve) is used to encode values of market instru-
ments. A forward curve together with its associated discount curve, allows to value
all linear products (linear payoffs) in the corresponding currency under the corre-
sponding collateralization.

The standard way to calibrate a curve is, hence, to obtain given market values of
(linear) instruments (e.g., swaps). For each market value a single “point” in a single
curve is calibrated. Hence the total number of calibrated curve interpolation points
(aggregated across all curves) equals the number of market instruments.

By “sorting” and combining the calibration instruments, the corresponding equa-
tions can be brought into the form of a system of equations with a triangular structure,
i.e., the value of the nth calibration instrument only depends on the first n curve points.
This allows for an iterative construction of the curve.

However, here (and in the associated reference implementation [11]) we pro-
pose the calibration of the curves using a multi-variate optimization algorithm,
like the Levenberg–Marquardt algorithm or a Differential Evolution algorithm. This
approach brings several advantages, e.g., the freedom to specify the calibration instru-
ments and the ability to extend the approach to over-determined systems of equations.
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In addition, we can handle the case of curve-interdependence, for example to cali-
brate certain discount curves from cross-currency swaps. This comes at the cost of
slower performance in terms of required calculation time.

What remains is to specify the valuation equations for the calibration instruments.
To simplify implementation,wemaygeneralize the definition of a “swap” comprising
plain swaps, tenor basis swaps and cross-currency swaps.

6.1 Generalized Definition of a Swap

Many of the following calibration instruments (from OIS swaps to cross-currency
basis-swaps) fit under a generalized definition of a swap. The swap consists of two
legs. Each leg consists of several periods [Ti, Ti+1]. To ease notation, we do not
distinguish between period start time, period end time, fixing time of the index
and payment time. We assume that for the period [Ti, Ti+1] index fixing is in Ti

and payment is in Ti+1. This is done purely to ease notation, the generalization to
distinguished times is straightforward.

Definition 6 (Swap Leg) A swap leg pays a multiple α of the index I fixed in Ti

plus some fixed payment X, both in currency unit U collateralized by the collateral
account C and paid in time Ti+1. Here α and X are constants (possibly zero). The
value of the swap leg can be expressed in terms of forwards and discount factors as

V U,C
SwapLeg(αI, X, {Ti}n

i=0) =
n−1∑

i=0

(
αFU,C(Ti) + X

) · PU,C(Ti+1),

whereFU,C denotes the forward curve of the index I paid in currencyU collateralized
with respect to C and PU,C denotes the corresponding discount curve.

A swap leg with notional exchange has the payments as in Definition 6 together
with an additional payment of −1 in Ti and +1 in Ti+1. The value of the swap leg
with notional exchange can be expressed in terms of forwards and discount factors
as

V U,C
SwapLeg(αI, X, {Ti}n

i=0) =
n−1∑

i=0

((
αFU,C(Ti) + X

) · PU,C(Ti+1)

+PU,C(Ti+1) − PU,C(Ti)
)
,

whereFU,C denotes the forward curve of the index I paid in currencyU collateralized
with respect to C and PU,C denotes the corresponding discount curve.

Definition 7 (Swap) A swap exchanges the payments of two swap legs, the receiver
leg and the payer leg. We allow that the legs have different indices, different fixed
payments, different payment times, different currency units, but are collateralized
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with respect to the same account C. The swaps receive a swap leg with value
V U1,C

SwapLeg(α1I1, X1, {T 1
i }n1

i=0) and pay a leg with value V U2,C
SwapLeg(α2I2, X2, {T 2

i }). Since
the currency unit of the two legs may be different, the value of the swap in currency
U1 is

VSwap = V U1,C
SwapLeg(α1I1, X1, {T 1

i }n1
i=0) − V U2,C

SwapLeg(α2I2, X2, {T 2
i }n2

i=0) · FX
U1
U2

Many instruments can be represented (and hence valued) in this form. We will
now list a few of them.

6.2 Calibration of Discount Curve to Swap Paying
the Collateral Rate (aka. Self-Discounted Swaps)

Discount curves can be calibrated to swaps paying the performance index of their
collateral account. For example, a swap as in Definition 7 where both legs pay in the
same currency U = U1 = U2. In a receiver swap the receiver leg pays a fixed rate
C, and the payer leg pays an index I . Thus the value of the swap can be expressed in
terms of the discount factors PU,C(Ti+1; t) only, which allows to calibrate this curve
using these swaps. Overnight index swaps are an example.

For the swap paying the performance of the collateral account we have

X1 = C = const. = given, X2 = 0,

FU1,C
1 (T 1

i ; t0) = 0, FU2,C
2 (T 2

i ; t0) = PU,C(T 2
i ; t0) − PU,C(T 2

i+1; t0)

PU,C(T 2
i+1; t0)(T 2

i+1 − T 2
i )

,

PU1,C
1 = PU,C = calibrated, PU2,C

2 = PU,C = calibrated.

In a situation where the number of interpolation points matches the number of swaps
(e.g., a bootstrapping), we calibrate the time T discount factor PU,C(T; t0) with
T = max(T 1

n , T 2
n ) being the last payment time from a given swap.

6.3 Calibration of Forward Curves

Given a calibrated discount curvePU,C weconsider a swapwith payments in currency
U collateralized with respect to the account C, paying some index I and receiving
some fixed cash flow C. An example is swaps paying the 3M LIBOR rate. For such
a swap we have
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X1 = C = const. = given, X2 = 0,
FU1,C
1 (T 1

i ) = 0, FU2,C
2 (T 2

i ) = FU,C(T 2
i ) = calibrated,

PU1,C
1 = PU,C = given, PU2,C

2 = PU,C = given.

From one such swap we calibrate the time T forward FU,C(T) of I(T)with T = T 2
n−1

(the last fixing time).
Given a calibrated discount curvePU,C and a calibrate forward curveFU,C

1 belong-
ing to the index I1, both in currency U and collateralized with respect to the account
C, we consider a swap collateralized with respect to the account C, paying some
index I2 = I in currency U, receiving the index I1 in currency U. An example is
tenor basis swaps paying the 6M LIBOR rate, receiving the 3M LIBOR rate. For
such a swap we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU1,C
1 (T 1

i ) = FU,C
1 (T 1

i ) = given, FU2,C
2 (T 2

i ) = FU,C
2 (T 2

i ) = calibrated,
PU1,C
1 = PU,C = given, PU2,C

2 = PU,C = given.

From one such swap we calibrate the time T forward FU,C
2 (T) of I(T)with T = T 2

n−1
(the last fixing time of index I2).

6.4 Calibration of Discount Curves When Payment
and Collateral Currency Differ

6.4.1 Fixed Payment in Other Currency

Given a calibrated discount curve PU1,C we consider a swap collateralized with
respect to the account C, paying some index I1 in currency U1, and receiving some
fixed cash flow C2 in currency U2. An example for such a swap is a cross-currency
swappayingfloating index I in collateral currency and receivingfixedC2 in a different
currency.12 For such a swap we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU1,C
1 (T 1

i ) = FU1,C
1 (T 1

i ) = given, FU2,C
2 (T 2

i ) = 0,
PU1,C
1 = PU1,C = given, PU2,C

2 = PU2,C = calibrated.

We calibrate the discount factor PU2,C(T; t0) with T = T 2
n (last payment time in

currency U2).

12Usually cross-currency swaps exchange two floating indices, we will consider this case below.
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6.4.2 Float Payment in Other Currency

If instead of a fixed payment we have that an index I2 is paid in an other currency
U2 we may encounter the problem that the swap has two unknowns, namely the
discount curve PU2,C for payments in currency U2 collateralized with respect to C
and the forward curve FU2,C

2 of the index I2 paid in currency U2 collateralized with
respect to C. The two curves can be obtained jointly from two different swaps: first
a fix-versus-float swaps in currency U2 collateralized by C, and second, a cross-
currency swap exchanging the index I2 with an index I1 in currency U1 for which
the forward FU1,C

1 is known. For the first instrument we denote the fixed payment by
C1, C2. For the second instrument we denote the fixed payment by s1, s2 (usually a
spread). For the first instrument we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU1,C
1 (T 1

i ) = 0, FU2,C
2 (T 2

i ) = FU2,C
2 (T 2

i ) = calibrated,
PU1,C
1 = PU2,C

2 = calibrated, PU2,C
2 = calibrated.

For the second swap we have

X1 = s1 = const. = given, X2 = s2 = const. = given,
FU1,C
1 (T 1

i ) = FU1,C
1 (T 1

i ) = given, FU2,C
2 (T 2

i ) = FU2,C
2 (T 2

i ) = calibrated,
PU1,C
1 = given, PU2,C

2 = calibrated.

We calibrate the discount factor PU2,C(T; t0) with T = T 2
n and the forward FU2,C

2 (T)
with T = T 2

n−1.

Often market data are not available to calibrate the forward FU2,C
2 , but the forward

FU2,C2
2 collateralized with respect to a different account C2 is available. The two

forwards differ by a possible convexity adjustment. One possible approximation
(which would follow from the assumption that forwards are independent of their
collateralization) is to use FU2,C

2 ≈ FU2,C2
2 .

The joint calibration of the two curves can be decomposed into two independent
calibration steps, which would then allow to re-use a traditional bootstrap algorithm,
see, e.g., [4].

Calibration of Discount Curves as Spread Curves

We consider a swap leg with notional exchange and tenor {Ti}n
i=0, paying an index

I plus some constant X = s(Tn) = const. Here s(Tn) has the interpretation of a
maturity-dependent spread. If this leg is in currency U and with respect to a col-
lateral account (here funding account) D, then its value is

V U,D
SwapLeg(αI, X, {Ti}n

i=0) =
n−1∑

i=0

((
αFU,D(Ti) + X

) · PU,D(Ti+1)

+PU,D(Ti+1) − PU,D(Ti)
)
.
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An example of such an instrument is an (uncollateralized) floating rate bond, paying
a 3M rate plus some spread. If we assume that the forward FU,D(Ti) is known, this
instrument can be used to calibrate the discount curve PU,D. In fact I + X represents
the performance of the funding account associated with PU,D.

If the forward FU,D(Ti) is not known, we encounter the same problem as for
cross-currency swaps, namely that the forward curveFU,D(Ti) and the discount curve
PU,D need to be calibrated jointly to two instruments. The first one is a swap which
is collateralized with respect to the funding account D, i.e., it is an uncollateralized
swap. The second is the funding floater.

For the first instrument, the uncollateralized swap, we have

X1 = C1 = const. = given, X2 = C2 = const. = given,
FU,D
1 (T 1

i ) = 0 = given, FU,D
2 (T 2

i ) = FU,D(T 2
i ) = calibrated,

PU,D
1 = PU,D = calibrated, PU,D

2 = PU,D.

For the second instrument, the funding floating rate bond (uncollateralized swap leg
with notional exchange) we have

X1 = S = const. = given,

FU,D
1 (T 1

i ) = FU,D(T 1
i ) = calibrated,

PU,D
1 = PU,D = calibrated.

Remark 6 The calibration of the funding curve PU,D is analog to the calibration of
the cross-currency discount curve PU2,C.

In the above, we consider the funding floater as a floating rate bond. Note however,
that bonds (in contrast to swaps) do not permit negative coupons, hence they have
an implicit floor. There are ways to solve this problem: either one has to incorporate
an option premium in the calibration procedure (which does require a model for the
volatility) or one considers only market data of fixed bonds together with uncollat-
eralized swaps (which likely requires some assumption since usually this calibration
instrument is not observed). See the following section.

6.5 Lack of Calibration Instruments (for Difference
in Collateralization)

The calibration of cross-currency curves (forward curve and discount curves for
currency U2 with collateralization in currency U1, see Sect. 6.4) and the calibration
of un-collateralized curves (forward curves and discount curves for uncollateral-
ized products, see section “Calibration of Discount Curves as Spread Curves”) may
require market data which are not available, e.g., the forward of an index I paid in
currencyU2 collateralized in a different currency or by a different account. This issue
has been pointed out by [14].
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In this case the curve can be obtained by adding additional assumptions. Two
simple examples are:

• the market rates are assumed to be independent of the type of collateralization, or
• the forward rates are assumed to be independent of the type of collateralization.

The two assumptions lead to different results, since they imply different correlations
which will lead to different (convexity) adjustments. For details on the example
see [11], where a sample calculation with assuming identical market rates for 3M
swaps collateralized in USD-OIS or EUR-OIS results in a difference of around 1 or
2 basis points (0.01%) for the forward curves.

6.6 Implementation

The definition of the various calibration instruments indicated that an iterative boot-
strapping algorithm (there the curve is built in a step-by-step process solving only
one dimensional problems in one variable) is no longer straightforward. This is due
to the interdependence of discount and forward curves. While this problem may be
solved in some cases via a pre-processing (see [4]), we suggest a different route: we
propose to solve the calibration problem via a single optimization run on the full
multi-dimensional problem. This also allows to calibrate curve in the sense of a best
fit in cases where we use more calibration instruments than curve points, resulting
in an overdetermined system.

We provide an object-oriented implementation at [11] implementing the Java
classes forCurves,DiscountCurves,ForwardCurves,Solver,SwapLeg
and Swap.

A detailed discussion of the implementation can be found in the associated
JavaDocs and is left out here to shorten the presentation.

7 Redefining Forward Rate Market Models

Having discussed the setup of curves, we would like to conclude with a remark on
how the curves are integrated into term-structure models, specifically, how the multi-
curve setup harmonizes with a classical single curve standard LIBORmarket model,
which can then be extended to a fully multi-curve model.

If NC denotes an accrual account, i.e., NC is a process with NC(t0) = 1U (e.g., a
collateral account), thenNC defines a discount curve, namely the discount curveT �→
PU,C(T; t0) =: PC(T; t0) of fixed payments made in T , valued in t and collateralized
by units of NC.

Now let {Ti} denote a given tenor discretization. As shown in Sect. 4.1 the
period-[Ti, Ti+1] performance index IC(Ti, Ti+1) of the an accrual account, i.e.,

IC(Ti, Ti+1; Ti) := NC(Ti+1)

NC(Ti)
− 1 has the property that its time t forward (of a payment
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of IC(Ti, Ti+1) made in Ti+1, collateralized in units of NC) (following the definition

of a forward from Definition 3) is given as FU,C(Ti, Ti+1; t) := PC(Ti;t)−PC(Ti+1;t)
PC(Ti+1;t0) .

This relation allows us to create a term-structure model for the curve PC which
has the same structural properties as a standard single curve (LIBOR) market model.

This model is given by a joint modeling of the processes Li(t) := FU,C(Ti,Ti+1;t)
Ti+1−Ti

, e.g.,

as log-normal processes under the measure QNC
and the additional assumption that

the process PC(Ti; t) is deterministic on its short period t ∈ (Ti−1, Ti].
From these two assumptions it follows that the processes Li have the structure of

a standard LIBOR market model and QNC
corresponds to the spot measure. Indeed

we have
∏i−1

j=0 1 + Lj(Tj) · (Tj+1 − Tj) = NC(Ti).
What we have described is how to use the standard LIBORmarket model as a term

structuremodel for the collateral accountNC (e.g., the OIS curve). Now,modeling all
other rates (including LIBOR) can be performed by modeling (possibly stochastic)
spreads over this curve. This is analog to a defaultable market model.

An alternative is to start with a stochastic model for the forward rates, where now
the forward curve defines the initial value of the model SDEs, and then define the
discount curve (numéraire) via deterministic or stochastic spreads. This approach
has a practical advantage, since for LIBOR rates implied volatilities are more liquid
than for OIS rates. See, e.g., [20] and references therein. An implementation of the
standard LMMwith a deterministic adjustment for the discount curve is provided by
the author at [9].

8 Some Numerical Results

8.1 Impact of the Interpolation Entity of a Forward Curve
on the Delta Hedge

Using our reference implementation [11], we investigate the interpolation of forward
curves using different interpolationmethods and interpolation entities.While interpo-
lation of (synthetic) discount factors is—motivated from its single curve origin—a
very popular interpolation method, it may result in very implausible deltas, if the
curve is constructed from overlapping instruments. Table1 shows the delta of an
8x11 FRA calculated on a curve constructed from 0x3, 1x4, 2x5, 3x6, 4x7, 5x8, 6x9,
7x10, 9x12 FRA (note that the 8x11 is missing in the curve construction). The plausi-
ble hedge would be to use the adjacent 7x10 and 9x12 FRAs. Using the interpolation
entity DISCOUNTFACTORwe find non-zero deltas for instruments prior to the 7x10
FRA, summing up to zero. This effect stems from the error propagation inherent in
the definition of the interpolation entity. The interpolation entity FORWARD does not
show this effect.
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Table 1 The delta of an 7Mx10M FRAwith respect to different calibration instruments, where the
7Mx10M FRA is not part of the calibration instruments, hence interpolates

Risk Factor Delta of an 7Mx10M FRA using the interpolation entity

DISCOUNTFACTOR (%) FORWARD (%)

0Dx3M 44.5 0.0

1Mx4M −95.9 0.0

2Mx5M 52.4 0.0

3Mx6M 44.0 0.0

4Mx7M −97.0 0.0

5Mx8M 52.4 0.0

6Mx9M 47.6 48.4

7Mx10M 0.0 0.0

8Mx11M 51.9 51.6

9Mx12M 0.0 0.0

Different interpolation entities result in very different delta hedges. The popular interpolation entity
of a synthetic discount factor results in counterintuitive hedges. The interpolationmethod isLINEAR
in both cases. It is the choice of the interpolation entity which introduces the effect

8.2 Impact of the Lack of Calibration Instruments
for the Case of a Foreign Swap Collateralized
in Domestic Currency

Based on the curve framework and the calibration instruments defined in this paper
and implemented at [11] we have investigated the impact of the assumptions, which
had to be made due to the lack of calibration instruments for foreign currency swaps.
Since a foreign currency swap collateralized in domestic currency is (currently) not a
liquid instrument, the foreign forward with respect to domestic collateralization can-
not be calibrated. Hence, a model assumption is required. Two possible assumptions
are: (1) the forward rate is independent from its collateralization—that is, use the
foreign forward curve derived from instruments collateralized in foreign currency,
or, (2) the market (swap) rates are independent from its collateralization—that is,
use the foreign market (par-)swap rates form foreign currency swaps collateralized
in foreign currency together with a domestic currency discount curve to calibrate a
foreign currency forward rate curve with respect to domestic collateralization. Both
approaches result in different forward curves. The impact can be assessed using
the spreadsheet available at [11]. For 2012 market data the difference for an USD
forward curve collateralized in EUR can be found to be around two basis points.
While the first assumption (re-using the forward curve) is likely the more natural
one, and maybe a market standard, the calculation shows that the assumption has a
considerable impact on the resulting curve, see Fig. 1.
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Fig. 1 Forward curve (USD-3M) calibrated from swaps with different collateralization (USD-OIS
and EUR-OIS) assuming independence of the market rates of from the type of collateralization

8.3 Impact of the Interpolation Scheme
on the Hedge Efficiency

Also based on the framework presented here, the impact of the different interpolation
schemes has been investigated in [13], where indication was found that among the
local interpolation schemes, it is indeed better to use a different interpolation scheme
for forward curves than for discount curves. For details we refer to [13].

9 Conclusion

We have presented the re-definition of discount curves and forward curves, which
clearly distinguishes the two as different objects (with some relation for the special
case ofOIScurves). This re-definition results in curves, representingvalueswithwell-
defined economic interpretations. We then discussed some interpolation schemes
for these curves, where our re-definition suggests to apply different interpolation
schemes for discount and forward curves. This stands in contrast to the classical
approach where a forward curve had been represented via synthetic discount factors,
using the same interpolation schemes for both types of curves.

We have presented the calibration, defining the calibration instruments. Based on
this, we provide an open source, object-oriented implementation at [11].13

Based on this benchmark implementation it was possible to assess the impact of
assumptions, which had to be made due to the lack of calibration instruments, e.g.,
for the case of cross-currency swaps, and the impact of the different interpolation
schemes. Indication was found that it is better to use a different interpolation scheme
for forward curves than for discount curves. With respect to delta hedges one should

13A complete description of the implementation is given at http://www.finmath.net/finmath-lib,
including source code and numerical examples. They are left out in this paper.

http://www.finmath.net/finmath-lib
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favor forward interpolation over synthetic discount factor interpolation. Among for-
ward interpolation, linear interpolation performed well with respect to the hedge
performance.
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Impact of Multiple-Curve Dynamics
in Credit Valuation Adjustments

Giacomo Bormetti, Damiano Brigo, Marco Francischello
and Andrea Pallavicini

Abstract We present a detailed analysis of interest rate derivatives valuation under
credit risk and collateral modeling. We show how the credit and collateral extended
valuation framework in Pallavicini et al. (2011) can be helpful in defining the key
market rates underlying the multiple interest rate curves that characterize current
interest rate markets. We introduce the collateralized valuation measures and for-
mulate a consistent realistic dynamics for the rates emerging from our analysis. We
point out limitations of multiple curve models with deterministic basis considering
valuation of particularly sensitive products such as basis swaps.

Keywords Multiple curves · Evaluation adjustments · Basis swaps · Collateral ·
HJM model

1 Introduction

After the onset of the crisis in 2007, all market instruments are quoted by taking
into account, more or less implicitly, credit- and collateral-related adjustments. As
a consequence, when approaching modeling problems one has to carefully check
standard theoretical assumptions which often ignore credit and liquidity issues. One
has to go back to market processes and fundamental instruments by limiting oneself
to use models based on products and quantities that are available on the market.
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Referring to market observables and processes is the only means we have to validate
our theoretical assumptions, so as to drop them if in contrast with observations. This
general recipe is what is guiding us in this paper, where we try to adapt interest rate
models for valuation to the current landscape.

A detailed analysis of the updated valuation problem one faces when including
credit risk and collateral modeling (and further funding costs) has been presented
elsewhere in this volume, see for example [6, 7]. We refer to those papers and
references therein for a detailed discussion. Here we focus our updated valuation
framework to consider the following key points: (i) focus on interest rate derivatives;
(ii) understand how the updated valuation framework can be helpful in defining the
key market rates underlying the multiple interest rate curves that characterize current
interest rate markets; (iii) define collateralized valuation measures; (iv) formulate a
consistent realistic dynamics for the rates emerging from the above analysis; (v) show
how the framework can be applied to valuation of particularly sensitive products
such as basis swaps under credit risk and collateral posting;(vi) point out limitations
in some current market practices such as explaining the multiple curves through
deterministic fudge factors or shiftswhere the option embedded in the credit valuation
adjustment (CVA) calculationwould be pricedwithout any volatility. For an extended
version of this paper we remand to [3]. This paper is an extended and refined version
of ideas originally appeared in [24].

2 Valuation Equation with Credit and Collateral

Classical interest-rate models were formulated to satisfy no-arbitrage relationships
by construction, which allowed one to price and hedge forward-rate agreements in
terms of risk-free zero-coupon bonds. Starting from summer 2007,with the spreading
of the credit crunch, market quotes of forward rates and zero-coupon bonds began
to violate usual no-arbitrage relationships. The main driver of such behavior was the
liquidity crisis reducing the credit lines along with the fear of an imminent systemic
break-down. As a result the impact of counterparty risk on market prices could not
be considered negligible any more.

This is the first of many examples of relationships that broke down with the cri-
sis. Assumptions and approximations stemming from valuation theory should be
replaced by strategies implemented with market instruments. For instance, inclu-
sion of CVA for interest-rate instruments, such as those analyzed in [8], breaks the
relationship between risk-free zero-coupon bonds and LIBOR forward rates. Also,
funding in domestic currency on different time horizons must include counterparty
risk adjustments and liquidity issues, see [15], breaking again this relationship. We
thus have, against the earlier standard theory,

L(T0,T1) �= 1

T1 − T0

(
1

PT0(T1)
− 1

)
, Ft(T0,T1) �= 1

T1 − T0

(
Pt(T0)

Pt(T1)
− 1

)
,

(1)
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where Pt(T) is a zero-coupon bond price at time t for maturity T , L is the LIBOR rate
and F is the related LIBOR forward rate. A direct consequence is the impossibility
to describe all LIBOR rates in terms of a unique zero-coupon yield curve. Indeed,
since 2009 and even earlier, we had evidence that the money market for the Euro
area was moving to a multi-curve setting. See [1, 19, 20, 27].

2.1 Valuation Framework

In order to value a financial product (for example a derivative contract), we have to
discount all the cash flows occurring after the trading position is entered. We follow
the approach of [25, 26] and we specialize it to the case of interest-rate derivatives,
where collateralization usually happens on a daily basis, and where gap risk is not
large. Hence we prefer to present such results when cash flows are modeled as
happening in a continuous time-grid, since this simplifies notation and calculations.
We refer to the two names involved in the financial contract and subject to default
risk as investor (also called name “I”) and counterparty (also called name “C”). We
denote by τI , and τC , respectively, the default times of the investor and counterparty.
We fix the portfolio time horizon T > 0, and fix the risk-neutral valuation model
(Ω,G ,Q), with a filtration (Gt)t∈[0,T ] such that τC , τI are (Gt)t∈[0,T ]-stopping times.
We denote by Et [ · ] the conditional expectation under Q given Gt , and by Eτi [ · ]
the conditional expectation under Q given the stopped filtration Gτi . We exclude the
possibility of simultaneous defaults, and define the first default event between the
two parties as the stopping time τ := τC ∧ τI .

We will also consider the market sub-filtration (Ft)t≥0 that one obtains implicitly
by assuming a separable structure for the completemarket filtration (Gt)t≥0.Gt is then
generated by the pure default-free market filtrationFt and by the filtration generated
by all the relevant default times monitored up to t (see for example [2]).

We introduce a risk-free rate r associated with the risk-neutral measure. We there-
fore need to define the related stochastic discount factorD(t, u, r) that in general will
denote the risk-neutral default-free discount factor, given by the ratio

D(t, u, r) = Bt/Bu , dBt = rtBtdt,

where B is the bank account numeraire, driven by the risk-free instantaneous interest
rate rt and associated to the risk-neutral measure Q. This rate rt is assumed to be
(Ft)t∈[0,T ] adapted and is the key variable in all pre-crisis term structure modeling.

We now want to price a collateralized derivative contract, and in particular we
assume that collateral re-hypothecation is allowed, as done in practice (see [4] for a
discussion on re-hypothecation). We thus write directly the adjustment payout terms
as carry costs cash flows, each accruing at the relevant rate, namely the price Vt of a
derivative contract, inclusive of collateralized credit and debit risk, margining costs,
can be derived by following [25, 26], and is given by:
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Vt = E

[ ∫ T

t
D(t, u; r) (

1{u<τ }dπu + 1{τ∈du}θu + (ru − cu)Cudu
) |Gt

]
(2)

where

• πu is the coupon process of the product, without credit or debit risk and without
collateral cash flows;

• Cu is the collateral process, and we use the convention that Cu > 0 while I is the
collateral receiver and Cu < 0 when I is the collateral poster. (ru − cu)Cu are the
collateral margining costs and the collateral rate is defined as ct := c+

t 1{Ct>0} +
c−
t 1{Ct<0} with c± defined in the CSA contract. In general we may assume the
processes c+, c− to be adapted to the default-free filtration Ft .

• θu = θu(C, ε) is the on-default cash flow process that depends on the collateral
process Cu and the close-out value εu.1 It is primarily this term that originates the
credit and debit valuation adjustments (CVA/DVA) terms, that may also embed
collateral and gap risk due to the jump at default of the value of the considered
deal (e.g. in a credit derivative), see for example [5].

Notice that the above valuation equation (2) is not suited for explicit numerical
evaluations, since the right-hand side is still depending on the derivative price via the
indicators within the collateral rates and possibly via the close-out term, leading to
recursive/nonlinear features. We could resort to numerical solutions, as in [11], but,
since our goal is valuing interest-rate derivatives, we prefer to further specialize the
valuation equation for such deals.

2.2 The Master Equation Under Change of Filtration

In this first work we develop our analysis without considering a dependence between
the default times if not through their spreads, or more precisely by assuming that
the default times are F -conditionally independent. Moreover, we assume that the
collateral account and the close-out processes areF -adapted. Thus, we can simplify
the valuation equation given by (2) by switching to the default-free market filtration.
By following the filtration switching formula in [2], we introduce for any Gt-adapted
process Xt a unique Ft-adapted process X̃t , defined such that 1{τ>t}Xt = 1{τ>t}X̃t .
Hence, we can write the pre-default price process as given by 1{τ>t}Ṽt = Vt where
the right-hand side is given in Eq. (2) and where Ṽt is Ft-adapted. Before changing
filtration, we have to specify the form of the close-out payoff:

θτ = ετ (τ,T) − 1{τC<τI }LGDC(ετ (τ,T) − Cτ )+ − 1{τI<τC}LGDI (ετ (τ,T) − Cτ )−

1The closeout value is the residual value of the contract at default time and the CSA specifies the
way it should be computed.
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where LGD ≤ 1 is the loss given default, (x)+ indicates the positive part of x and
(x)− = −(−x)+. For an extended discussion of the term θτ we refer to [3].Moreover,
to derive an explicit valuation formula we assume that gap risk is not present, namely
Ṽτ− = Ṽτ , and we consider a particular form for collateral and close-out prices,
namely we model the close-out value as

εs(t,T) = E

[ ∫ T

t
D(t, u, r)dπu |Gs

]
, Ct

.= αtεt(t,T)

with 0 ≤ αt ≤ 1 and where αt is Ft-adapted. This means that the close-out is the
risk-free mark to market at first default time and the collateral is a fraction αt of the
close-out value. An alternative approximation that does not impose a proportionality
between the account value processes can be found in [9]. We obtain, by switching to
the default-free market filtration F the following.2

Proposition 1 (Master equation underF -conditionally independent default times,
no gap risk and Ft measurable payout πt) Under the above assumption, Valuation
Equation (2) is further specified as Vt = 1{τ>t}Ṽt

Ṽt =εt(t,T) + E

[ ∫ T

t
D(t, u; r + λ)(ru − cu)αuεu(u,T)du |Ft

]

− E

[ ∫ T

t
D(t, u; r + λ)λC

u (1 − αu)LGDC(εu(u,T))+du |Ft

]

− E

[ ∫ T

t
D(t, u; r + λ)λI

u(1 − αu)LGDI(εu(u,T))−du |Ft

]

where we introduced the pre-default intensity λI
t of the investor and the pre-default

intensity λC
t of the counterparty as

1{τI>t}λIt dt := Q { τI ∈ dt | τI > t,Ft } , 1{τC>t}λCt dt := Q { τC ∈ dt | τC > t,Ft }

along with their sum λt and the discount factor for any rate xu, namely D(t,T , x) :=
exp{− ∫ T

t xudu}.

3 Valuing Collateralized Interest-Rate Derivatives

As we mentioned in the introduction, we will base our analysis on real market
processes. All liquid market quotes on the moneymarket (MM) correspond to instru-
ments with daily collateralization at overnight rate (et), both for the investor and the
counterparty, namely ct

.= et .

2We refer to [3] and [6] for a precise derivation of the proposition.
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Notice that the collateral accrual rate is symmetric, so that we no longer have a
dependency of the accrual rates on the collateral price, as opposed to the general
master equation case. Moreover, we further assume rt

.= et .
This makes sense because et being an overnight rate, it embeds a low counterparty

risk and can be considered a good proxy for the risk-free rate rt . We will describe
some of these MM instruments, such as OIS and Interest Rate Swaps (IRS), along
with their underlying market rates, in the following sections. For the remaining of
this section we adopt the perfect collateralization approximation of Eq. (1) to derive
the valuation equations for OIS and IRS products, hence assuming no gap-risk,
while in the numeric experiments of Sect. 4 we will consider also uncollateralized
deals. Furthermore, we assume that daily collateralization can be considered as a
continuous-dividend perfect collateralization. See [4] for a discussion on the impact
of discrete-time collateralization on interest-rate derivatives.

3.1 Overnight Rates and OIS

Among other instruments, the MM usually quotes the prices of overnight indexed
swaps (OIS). Such contracts exchange a fix-payment leg with a floating leg pay-
ing a discretely compounded rate based on the same overnight rate used for their
collateralization. Since we are going to price OIS under the assumption of perfect
collateralization, namely we are assuming that daily collateralization may be viewed
as done on a continuous basis, we approximate also daily compounding in OIS float-
ing leg with continuous compounding, which is reasonable when there is no gap
risk. Hence the discounted payoff of a one-period OIS with tenor x and maturity T
is given by

D(t,T , e)

(
1 + xK − exp

{∫ T

T−x
eudu

})

where K is the fixed rate payed by the OIS. Furthermore, we can introduce the (par)
fix rates K = Et(T , x; e) that make the one-period OIS contract fair, namely priced
0 at time t. They are implicitly defined via

ṼOIS
t (K) := E

[(
1 + xK − exp

{∫ T

T−x
eudu

})
D(t,T; e) |Ft

]

with ṼOIS
t (Et(T , x; e)) = 0 leading to

Et(T , x; e) := 1

x

(
Pt(T − x; e)
Pt(T; e) − 1

)
(3)
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where we define collateralized zero-coupon bonds3 as

Pt(T; e) := E [D(t,T; e) |Ft] . (4)

One-periodOIS ratesEt(T , x; e), alongwithmulti-period ones, are actively traded
on the market. Notice that we can bootstrap collateralized zero-coupon bond prices
from OIS quotes.

3.2 LIBOR Rates, IRS and Basis Swaps

LIBOR rates (Lt(T)) used to be linked to the term structure of default-free interlink
interest rates in a fundamental way. In the classical term structure theory, LIBOR
rates would satisfy fundamental no-arbitrage conditions with respect to zero-coupon
bonds that we no longer consider to hold, as we pointed out earlier in (1). We
now deal with a new definition of forward LIBOR rates that may take into account
collateralization. LIBOR rates are still the indices used as reference rate for many
collateralized interest-rate derivatives (IRS, basis swaps, …). IRS contracts swap a
fix-payment leg with a floating leg paying simply compounded LIBOR rates. IRS
contracts are collateralized at overnight rate et . Thus, a discounted one-period IRS
payoff with maturity T and tenor x is given by

D(t,T , e)x(K − LT−x(T))

where K is the fix rate payed by the IRS. Furthermore, we can introduce the (par) fix
rates K = Ft(T , x; e) that render the one-period IRS contract fair, i.e. priced at zero.
They are implicitly defined via

Ṽ IRS
t (K) := E

[
(xK − xLT−x(T))D(t,T; e) |Ft

]

with Ṽ IRS
t (Ft(T , x; e)) = 0, leading to the followingdefinition of forwardLIBORrate

Ft(T , x; e) := E
[
LT−x(T)D(t,T; e) |Ft

]

E [D(t,T; e) |Ft]
= E

[
LT−x(T)D(t,T; e) |Ft

]

Pt(T; e)
The above definition may be simplified by a suitable choice of the measure

under which we take the expectation. In particular, we can consider the following
Radon–Nikodym derivative, defining the collateralized T -forward measure QT ;e,

3Notice that we are only defining a price process for hypothetical collateralized zero-coupon bond.
We are not assuming that collateralized bonds are assets traded on the market.
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Zt(T; e) := dQT ;e

dQ

∣∣∣∣
Ft

:= E [D(0,T; e) |Ft]

P0(T; e) = D(0, t; e)Pt(T; e)
P0(T; e)

which is a positive Q-martingale, normalized so that Z0(T; e) = 1.
Thus, for any payoff φT , perfectly collateralized at overnight rate et , we can

express prices as expectations under the collateralized T -forward measure and in
particular, we can write LIBOR forward rates as

Ft(T , x; e) := E
[
LT−x(T)D(t,T; e) |Ft

]

E [D(t,T; e) |Ft]
= ET ;e [

LT−x(T) |Ft
]
. (5)

One-period forward rates Ft(T , x; e), along with multi-period ones (swap rates),
are actively traded on themarket. Once collateralized zero-coupon bonds are derived,
we can bootstrap forward rate curves from such quotes. See, for instance, [1] or [27]
for a discussion on bootstrapping algorithms.

Basis swaps are an interesting product that became more popular after the market
switched to a multi-curve structure. In fact, in a basis swap there are two floating
legs, one pays a LIBOR rate with a certain tenor and the other pays the LIBOR rate
with a shorter tenor plus a spread that makes the contract fair at inception. More
precisely, the payoff of a basis swap whose legs pay respectively a LIBOR rate with
tenors x < y with maturity T = nx = my is given by

n∑

i=1

D(t,T − (n − i)x, e)x(LT−(n−i−1)x(T − (n − i)x) + K)

−
m∑

j=1

D(t,T − (m − j)y, e)yLT−(m−j−1)y(T − (m − j)y).

It is clear that apart from being traded per se, this instrument is naturally present in
the banks portfolios as result of the netting of opposite swap positions with different
tenors.

3.3 Modeling Constraints

Our aim is to set up a multiple-curve dynamical model starting from collateralized
zero-coupon bonds Pt(T; e), and LIBOR forward rates Ft(T , x; e). As we have seen
we can bootstrap the initial curves for such quantities from directly observed quotes
in the market. Now, we wish to propose a dynamics that preserves the martingale
properties satisfied by such quantities. Thus, without loss of generality, we can define
collateralized zero-coupon bonds under the Q measure as

dPt(T; e) = Pt(T; e) (
et dt − σ P

t (T; e)∗ dWe
t

)
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and LIBOR forward rates under the QT ;e measure as

dFt(T , x; e) = σ F
t (T , x; e)∗ dZT ;e

t

whereWe and ZT ;e are correlated standard (column) vector4 Brownian motions with
correlation matrix ρ, and the volatility vector processes σ P and σ F may depend on
bonds and forward LIBOR rates themselves.

The following definition of ft(T , e) is not strictly necessary, and we could keep
working with bonds Pt(T; e), using their dynamics. However, as it is customary
in interest rate theory to model rates rather than bonds, we may try to formulate
quantities that are closer to the standard HJM framework. In this sense we can define
instantaneous forward rates ft(T; e), by starting from (collateralized) zero-coupon
bonds, as given by

ft(T; e) := −∂T logPt(T; e)

We can derive instantaneous forward-rate dynamics by Itô lemma, and we obtain the
following dynamics under the QT ;e measure

dft(T; e) = σt(T; e) dWT ;e
t , σt(T; e) := ∂T σ P

t (T; e)

where the WT ;es are Brownian motions and partial differentiation is meant to be
applied component-wise.

Hence, we can summarize our modeling assumptions in the following way. Since
linear products (OIS, IRS, basis swaps…) can be expressed in terms of simpler quan-
tities, namely collateralized zero-coupon bonds Pt(T; e) and LIBOR forward rates
Ft(T , x; e), we focus on their modeling. The initial term structures for collateralized
products may be bootstrapped frommarket data, and for volatility and dynamics, we
can write rates dynamics by enforcing suitable no-arbitrage martingale properties,
namely

dft(T; e) = σt(T; e) · dWT ;e
t , dFt(T , x; e) = σ F

t (T , x; e) · dZT ;e
t . (6)

As we explained in the introduction, this is where the multiple curve picture
finally shows up: we have a curve with LIBOR-based forward rates Ft(T , x; e),
that are collateral adjusted expectation of LIBOR market rates LT−x(T) we take as
primitive rates from themarket, and we have instantaneous forward rates ft(T; e) that
are OIS-based rates. OIS rates ft(T; e) are driven by collateral fees, whereas LIBOR
forward rates Ft(T , x; e) are driven both by collateral rates and by the primitive
LIBOR market rates.

4In the following we will consider N-dimensional vectors as N × 1 matrices. Moreover, given a
matrix A, we will indicate A∗ its transpose, and if B is another conformable matrix we indicate AB
the usual matrix product.
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4 Interest-Rate Modeling

We can now specialize our modeling assumptions to define a model for interest-rate
derivatives which is on one hand flexible enough to calibrate the quotes of the MM,
and on the other hand robust. Our aim is to use an HJM framework using a single
family ofMarkov processes to describe all the term structures and interest rate curves
we are interested in.

In the literature many authors proposed generalizations of the HJM framework to
include multiple yield curves. In particular, we cite the works of [12–14, 16, 20–23].
A survey of the literature can be found in [17].

In suchworks the problem is faced in a pragmaticwayby considering each forward
rate as a single asset without investigating the microscopical dynamics implied by
liquidity and credit risks.However, the hypothesis of introducing different underlying
assets may lead to over-parametrization issues that affect the calibration procedure.
Indeed, the presence of swap and basis-swap quotes on many different yield curves
is not sufficient, as the market quotes swaption premia only on few yield curves.
For instance, even if the Euro market quotes one-, three-, six- and twelve-month
swap contracts, liquidly traded swaptions are only those indexed to the three-month
(maturity one-year) and the six-month (maturities from two to thirty years) Euribor
rates. Swaptions referring to other Euribor tenors or to overnight rates are not actively
quoted.

In order to solve such problem [23] introduces a parsimonious model to describe
a multi-curve setting by starting from a limited number of (Markov) processes, so
as to extend the logic of the HJM framework to describe with a unique family of
Markov processes all the curves we are interested in.

4.1 Multiple-Curve Collateralized HJM Framework

We follow [22, 23] by reformulating their theory under theQT ;e measure. We model
only observed rates as inmarketmodel approaches andwe consider a common family
of processes for all the yield curves of a given currency, so that we are able to build
parsimonious yet flexible models. Hence let us summarize the basic requirements
the model must fulfill:

(i) existence of OIS rates, which we can describe in terms of instantaneous forward
rates ft(T; e);

(ii) existence of LIBOR rates assigned by the market, typical underlyings of traded
derivatives, with associated forwards Ft(T , x; e);

(iii) no arbitrage dynamics of the ft(T; e) and the Ft(T , x; e) (both being (T , e)-
forward measure martingales);

(iv) possibility of writing both ft(T; e) and Ft(T , x; e) as functions of a common
family of Markov processes, so that we are able to build parsimonious yet
flexible models.
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While the first two points are related to the set of financial quantities we are about to
model, the last two are conditions we impose on their dynamics, and will be granted
by the right choice of model volatilities. Hence, we choose under QT ;e measure, the
following dynamics:

dft(T; e) = σt(T)∗dWT ;e
t (7)

dFt(T , x; e) = (k(T , x) + Ft(T , x; e)) Σt(T , x)∗dWT ;e
t

where we introduce the families of (stochastic N-dimensional) volatility processes
σt(T) and Σt(T , x), the vector of N independent QT ;e-Brownian motions WT ;e

t ,

and the set of deterministic shifts k(T , x), such that limx→0 xk(T , x) = 1. This limit
condition ensures that the model approaches a standard default- and liquidity-free
HJM model when the tenor goes to zero. We bootstrap f0(T; e) and F0(T , x; e) from
market quotes.

In order to get a model with a reduced number of common driving factors in the
spirit of HJM approaches, it is sufficient to conveniently tie together the volatility
processes σt(T) and Σt(T , x) through a third volatility process σt(u,T , x).

σt(T) := σt(T;T , 0) , Σt(T , x) :=
∫ T

T−x
σt(u;T , x) du. (8)

Under this parametrization the OIS curve dynamics is the very same as the risk-
free curve in an ordinary HJM framework. Indeed, we have for linearly compounding
forward rates

dEt(T , x; e) = (1/x + Et(T , x; e))
∫ T

T−x
σt(u)

∗du dWT ;e
t .

In the generalized version of the HJM framework proposed by [23] we have an
explicit expression for both the collateralized zero-coupon bonds Pt(T; e) and the
LIBOR forward rates Ft(T , x; e). The first result is a direct consequence of modeling
the OIS curve as the risk-free curve in a standard HJM framework, while the second
result can be achieved only if a particular formof the volatilities is selected.We obtain
this if we generalize the approach of [28] by introducing the following separability
constraint

σt(u,T , x) := h(t)q(u,T , x)g(t, u),

g(t, u) := exp

{
−

∫ u

t
a(s)ds

}
, q(u; u, 0) := Id,

(9)

where ht is an N × N matrix process, q(u,T , x) is a deterministic N × N diagonal
matrix function, and a(s) is a deterministic N-dimensional vector function. The
condition on q(u;T , x) being the identity matrix, when T = u ensures that a standard
HJM framework holds for collateralized zero-coupon bonds.
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We can work out an explicit expression for the LIBOR forward rates, by plugging
the expression of the volatilities into Eq. (7). We obtain

log

(
k(T , x) + Ft(T , x; e)
k(T , x) + F0(T , x; e)

)

= G(t,T − x,T;T , x)∗
(
Xt + Yt

(
G0(t, t,T) − 1

2
G(t,T − x,T;T , x)

))
,

(10)

where the stochastic vector process Xt and the auxiliary matrix process Yt are defined
under the Q measure as in the ordinary HJM framework

Xi
t =

N∑

k=1

∫ t

0
gi(s, t)

(
hik,sdWk,s + (h∗

s hs)ik

∫ t

s
dygk(s, y) ds

)
, i = 1 . . .N

Yik
t =

∫ t

0
gi(s, t)(h

∗
s hs)ikgk(s, t)ds i, k = 1 . . .N

and

G0(t,T0,T1) =
∫ T1

T0

g(t, s)ds, G(t,T0,T1,T , x) =
∫ T1

T0

q(s,T , x)g(t, s)ds.

It is worth noting that the integral representation of forward LIBOR volatilities
given by Eq. (8), together with the common separability constraint given in Eq. (9)
are sufficient conditions to ensure the existence of a reconstruction formula for all
OIS and LIBOR forward rates based on the very same family of Markov processes
(see [3]).

We are interested in some specification of this model, in particular a variant of the
Hull and White model (HW), a variant of the Cheyette model (Ch) and the Moreni
and Pallavicini model (MP). The HWmodel [18] is the simplest one, and is obtained
choosing

h(t)
.= R , q(u,T , x)

.= Id , a(s)
.= a , κ(T , x)

.= 1

x
(11)

where a is a constant vector, and R is the Cholesky decomposition of the correlation
matrix that we want our Xt vector to have. In this case we obtain σt(u;T , x) =
R · e−a(u−t), where the exponential is intended to be component-wise. Then we note
that Xt is a mean reverting Gaussian process while the Yt process is deterministic.

In order to model implied volatility smiles, we can add a stochastic volatility
process to our model, as shown in [22]. In particular we can obtain a variant of the
Ch model ([10]), considering a common square-root process for all the entries of h,
as in [29]. More precisely we replace h(t) in (11) with h(t)

.= √
vtR. With a and R

as before and vt being a process with the following dynamic:
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dvt = η (1 − vt) dt + ν0
(
1 + (ν1 − 1)e−ν2t

) √
vt dZt , v0 = v̄ (12)

where Zt is a Brownian motion correlated to Wt . Obtaining as a volatility process
σt(u;T , x) = √

vtR · e−a(u−t).
As the last specification of the framework we consider the MP model which uses

a different shift k(T , x), and introduces a dependence on the tenor in the volatility
process.

h(t)
.= √

vtR , q(u,T , x)i,i
.= exη

i
, a(s)

.= a , κ(T , x)
.= e−γ x

x
(13)

With a and R as before and vt being defined by (12). Here we have for the volatility
σt(u;T , x) = √

vtR · eηx−a(u−t).
To better appreciate the difference between the Ch model and the MP model one

could compute the quantity

βt(x1, x2; e) := 1

x2
log

( 1
x2

+ Et(t + x2, x2; e)
1
x2

+ Ft(t + x2, x2; e)

)

− 1

x1
log

( 1
x1

+ Et(t + x1, x1; e)
1
x1

+ Ft(t + x1, x1; e)

)

which represents the time-normalized difference between two forward rates with
different tenors and thus can be used as a proxy for the value of a basis swap. We
have that in the HW and in the Ch models βt(x1, x2; e) is deterministic while in the
MP model is a stochastic quantity. This suggests that the MP model should be able
to better capture the dynamics of the basis between two rates with different tenors.
We refer the reader to [3] for a more detailed analysis of the issue, and to [23] for
calibration and valuation examples for the swaptions and cap/floor market.

4.2 Numerical Results

Weapply our framework to simple but relevant products: an IRS and a basis swap.We
analyze the impact of the choice of an interest rate model on the portfolio valuation,
in particular we measure the dependency of the price on the correlations between
interest-rates and credit spreads, the so-called wrong-way risk. We model the market
risks by simulating the following processes in a multiple-curve HJM model under
the pricing measure Q. The overnight rate et and the LIBOR forward rates Ft(T; e)
are simulated according to the dynamics given in Sect. 4.1. Maintaining the same
notation of the aforementioned section, we choose N = 2, and for our numerical
experiments we use a HW model, a Ch model and an MP model, all calibrated to
swaption at-the-money volatilities listed on the European market.

As we have already noted, the Ch model introduces a stochastic volatility and
hence has an increased number of parameters with respect to the HW model. The
MPmodel aims at bettermodeling the basis between rateswith different tenors, while
keeping the model parsimonious in terms of extra parameters with respect to the Ch
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model. In particular the HW model is able to reproduce the ATM quotes but is not
able to correctly reproduce the volatility smile. On the other hand, the introduction of
a stochastic volatility process helps in recovering the market data smile and thus the
Ch and the MP models have similar results in properly fitting the smile. The detailed
results of the calibration are available in [3].

For what concerns the credit part, the default intensities of the investor and the
counterparty are given by two CIR++ processes λi

t = yit + ψ i(t) under theQT ;e mea-
sure, i.e. they follow

dyit = γ i(μi − yit) dt + ζ i
√
yit dZ

i
t , i ∈ {I,C}

where the two Zis are Brownian motions correlated with the WT ;es, and they are
calibrated to the market data shown in [4]. In particular, two different market settings
are used in the numerical examples: the medium risk and the high risk settings. The
correlations among the risky factors are induced by correlating the Brownianmotions
as in [8].

We now analyze the impact of wrong-way risk on the bilateral adjustment, namely
CVAplusDVA, of IRS and basis swapswhen collateralization is switched off, namely
we want to evaluate Eq. (1) when αt

.= 0. For an extended analysis see [3]. Wrong-
way risk is expressed with respect to the correlation between the default intensities
and a proxy of market risk, namely the short rate et .

In Fig. 1 we show the variation of the bilateral adjustment for a ten years IRS
receiving a fix rate yearly and paying 6m Libor twice a year and for a ten years
basis swap receiving 3m Libor plus spread and paying 6m Libor. It is clear that for a
product like the IRS, not subject to the basis dynamic, we have that the big difference
among the models is the presence of a stochastic volatility. In fact we can see that
the Ch model and the MP model are almost indistinguishable while the results of
the HW model are different from the stochastic volatility ones. Moreover we can
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Fig. 1 Wrong-way risk for different models. On the horizontal axis correlation among credit and
market risks; on the vertical axis the bilateral adjustment, namely CVA+DVA, in basis points. Left
panel a 10y IRS receiving a fix rate and paying 6m Libor. Right panel a 10y basis swap receiving
3m Libor plus spread and paying 6m Libor. Montecarlo error is displayed where significant
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observe that all the models have the same trend, i.e. the bilateral adjustment grows as
correlation increase. In fact this can be explained by the fact that a higher correlation
means that the deal will be more profitable when it will be more risky (since we are
receiving the fixed rate and paying the floating one), hence the bilateral adjustment
will be bigger.

In the case of a basis swap instead, we see that, as said before, the HWmodel and
the Ch model do not have a basis dynamic and hence the curve represented is almost
flat. On the other hand the MPmodel is able to capture the dynamics of the basis and
hence we can see that the more the overnight rate is correlated with the credit risk
the smaller the bilateral adjustment becomes.

We conclude by pointing out that our analysis will be extended to partially col-
lateralized deals in future work. In such a context funding costs enter the picture in a
more comprehensive way. Some initial suggestions in this respect were given in [24].
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A Generalized Intensity-Based Framework
for Single-Name Credit Risk

Frank Gehmlich and Thorsten Schmidt

Abstract The intensity of a default time is obtainedby assuming that the default indi-
cator process has an absolutely continuous compensator. Here we drop the assump-
tion of absolute continuity with respect to the Lebesgue measure and only assume
that the compensator is absolutely continuous with respect to a general σ-finite mea-
sure. This allows for example to incorporate the Merton-model in the generalized
intensity-based framework. We propose a class of generalized Merton models and
study absence of arbitrage by a suitable modification of the forward rate approach of
Heath–Jarrow–Morton (1992). Finally, we study affine term structure models which
fit in this class. They exhibit stochastic discontinuities in contrast to the affinemodels
previously studied in the literature.

Keywords Credit risk · HJM · Forward-rate · Structural approach · Reduced-form
approach · Stochastic discontinuities

1 Introduction

The two most common approaches to credit risk modeling are the structural
approach, pioneered in the seminal work of Merton [23], and the reduced-form
approach which can be traced back to early works of Jarrow, Lando, and Turnbull
[18, 22] and to [1].

Default of a company happens when the company is not able to meet its oblig-
ations. In many cases the debt structure of a company is known to the public, such
that default happens with positive probability at times which are known a priori.
This, however, is excluded in the intensity-based framework and it is the purpose of
this article to put forward a generalization which allows to incorporate such effects.
Examples in the literature are, e.g., structural models like [13, 14, 23]. The recently
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missed coupon payment by Argentina is an example for such a credit event as well
as the default of Greece on the 1st of July 2015.1

It is a remarkable observation of [2] that it is possible to extend the reduced-form
approach beyond the class of intensity-based models. The authors study a class of
first-passage timemodels under a filtration generated by aBrownianmotion and show
its use for pricing and modeling credit risky bonds. Our goal is to start with even
weaker assumptions on the default time and to allow for jumps in the compensator
of the default time at deterministic times. From this general viewpoint it turns out,
surprisingly, that previously used HJM approaches lead to arbitrage: the whole term
structure is absolutely continuous and cannot compensate for points in time bearing a
positive default probability. We propose a suitable extension with an additional term
allowing for discontinuities in the term structure at certain random times and derive
precise drift conditions for an appropriate no-arbitrage condition. The related article
[12] only allows for the special case of finitely many risky times, an assumption
which is dropped in this article.

The structure of this article is as follows: in Sect. 2, we introduce the general
setting and study drift conditions in an extended HJM-framework which guarantee
absence of arbitrage in the bond market. In Sect. 3 we study a class of affine models
which are stochastically discontinuous. Section4 concludes.

2 A General Account on Credit Risky Bond Markets

Consider a filtered probability space (Ω,A ,G, P)with a filtrationG = (Gt )t≥0 (the
general filtration) satisfying the usual conditions, i.e. it is right-continuous and G0

contains the P-null sets N0 ofA . Throughout, the probability measure P denotes the
objective measure. As we use tools from stochastic analysis, all appearing filtrations
shall satisfy the usual conditions. We follow the notation from [17] and refer to this
work for details on stochastic processes which are not laid out here.

The filtration G contains all available information in the market. The default of a
company is public information and we therefore assume that the default time τ is a
G-stopping time. We denote the default indicator process H by

Ht = 1{t≥τ }, t ≥ 0,

such that Ht = 1�τ ,∞�(t) is a right-continuous, increasing process. We will also
make use of the survival process 1 − H = 1�0,τ�. The following remark recalls the
essentials of the well-known intensity-based approach.

1Argentina’smissed couponpayment on$29billion debtwas voted a credit event by the International
Swaps and Derivatives Association, see the announcements in [16, 24]. Regarding the failure of
1.5 Billion EUR of Greece on a scheduled debt repayment to the International Monetary fund, see
e.g. [9].
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Remark 1 (The intensity-based approach) The intensity-based approach consists
of two steps: first, denote by H = (Ht )t≥0 the filtration generated by the default
indicator,Ht = σ(Hs : 0 ≤ s ≤ t) ∨ N0, and assume that there exists a sub-filtration
F of G, i.e. Ft ⊂ Gt holds for all t ≥ 0 such that

Gt = Ft ∨ Ht , t ≥ 0. (1)

Viewed from this perspective, G is obtained from the default information H by a
progressive enlargement2 with the filtration F. This assumption opens the area for
the largely developed field of enlargements of filtration with a lot of powerful and
quite general results.

Second, the following key assumption specifies the default intensity: assume that
there is an F-progressive process λ, such that

P(τ > t |Ft ) = exp
(

−
∫ t

0
λsds

)
, t ≥ 0. (2)

It is immediate that the inclusionFt ⊂ Gt is strict under existenceof an intensity, i.e. τ
is not an F-stopping time. Arbitrage-free pricing can be achieved via the following
result: Let Y be a non-negative random variable. Then, for all t ≥ 0,

E[1{τ>t}Y |Gt ] = 1{τ>t}e
∫ t
0 λs ds E[1{τ>t}Y |Ft ].

Of course, this result holds also when a pricing measure Q is used instead of P . For
further literature and details we refer for example to [11], Chap. 12, and to [3].

2.1 The Generalized Intensity-Based Framework

The default indicator process H is a bounded, cádlág, and increasing process, hence
a submartingale of class (D), that is, the family (XT ) over all stopping times T is
uniformly integrable. By the Doob–Meyer decomposition,3 the process

Mt = Ht − Λt , t ≥ 0 (3)

is a true martingale where Λ denotes the dual F-predictable projection, also called
compensator, of H . As 1 is an absorbing state, Λt = Λt∧τ . To keep the arising
technical difficulties at a minimum, we assume that there is an increasing process A
such that

2Note that hereG is right-continuous and P-complete by assumptionwhich is a priori not guaranteed
by (1). One can, however, use the right-continuous extension and we refer to [15] for a precise
treatment and for a guide to the related literature.
3See [20], Theorem 1.4.10.
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Λt =
∫ t∧τ

0
λsd A(s), t ≥ 0, (4)

with a non-negative and predictable process λ. The process λ is called generalized
intensity and we refer to Chap.VIII.4 of [5] for a more detailed treatment of general-
ized intensities (or, equivalently, dual predictable projections) in the context of point
processes.

Note thatwithΔM ≤ 1wehave thatΔΛ = λsΔA(s) ≤ 1.WheneverλsΔA(s) >

0, there is a positive probability that the company defaults at time s. We call such
times risky times, i.e. predictable times having a positive probability of a default
occurring right at that time. Note that under our assumption (4), all risky times are
deterministic. The relationship between ΔΛ(s) and the default probability at time s
will be clarified in Example 3.

2.2 An Extension of the HJM Approach

A credit risky bond with maturity T is a contingent claim promising to pay one unit
of currency at T . The price of the bond with maturity T at time t ≤ T is denoted
by P(t, T ). If no default occurred prior to or at T we have that P(T, T ) = 1. We
will consider zero recovery, i.e. the bond loses its total value at default, such that
P(t, T ) = 0 on {t ≥ τ }. The family of stochastic processes {(P(t, T )0≤t≤T ), T ≥ 0}
describes the evolution of the term structure T �→ P(., T ) over time.

Besides the bonds there is a numéraire X0, which is a strictly positive, adapted
process. We make the weak assumption that log X0 is absolutely continuous,
i.e. X0

t = exp(
∫ t
0 rsds) with a progressively measurable process r , called the short

rate. For practical applications one would use the overnight index swap (OIS) rate
for constructing such a numéraire.

The aim of the following is to extend the HJM approach in an appropriate way
to the generalized intensity-based framework in order to obtain arbitrage-free bond
prices. First approaches in this direction were [7, 25] and a rich source of literature
is again [3]. Absence of arbitrage in such an infinite dimensional market can be
described in terms of no asymptotic free lunch (NAFL) or the more economically
meaningful no asymptotic free lunch with vanishing risk, see [6, 21].

Consider a pricing measure Q∗ ∼ P . Our intention is to find conditions which
render Q∗ an equivalent local martingale measure. In the following, only occasion-
ally the measure P will be used, such that from now on, all appearing terms (like
martingales, almost sure properties, etc.) are to be considered with respect to Q∗.

To ensure that the subsequent analysis is meaningful, we make the following
technical assumption.

Assumption 2.1 The generalized default intensity λ is non-negative, predictable,
and A-integrable on [0, T ∗]:
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∫ T ∗

0
λsd A(s) < ∞, Q∗-a.s.

Moreover, A has vanishing singular part, i.e.

A(t) = t +
∑

0<s≤t

ΔA(s). (5)

The representation (5) of A is without loss of generality: indeed, if the continuous
part Ac is absolutely continuous, i.e. Ac(t) = ∫ t

0 a(s)ds, replacingλs byλsa(s) gives
the compensator of H with respect to Ã whose continuous part is t .

Next, we aim at building an arbitrage-free framework for bond prices. In the
generalized intensity-based framework, the (HJM) approach does allow for arbitrage
opportunities at risky times. We therefore consider the following generalization:
consider a σ-finite (deterministic) measure ν. We could be general on ν, allowing
for an absolutely continuous, a singular continuous, and a pure-jump part. However,
for simplicity, we leave the singular continuous part aside and assume that

ν = νac + νd

where νac(ds) = ds and νd distributes mass only to points, i.e. νd(A) = ∑
i≥1 wi

δui (A), for 0 < u1 < u2 < · · · and positive weights wi > 0, i ≥ 1; here δu denotes
the Dirac measure at u. Moreover, we assume that defaultable bond prices are given
by

P(t, T ) = 1{τ>t} exp
(

−
∫ T

t
f (t, u)ν(du)

)

= 1{τ>t} exp
(

−
∫ T

t
f (t, u)du −

∑

i≥1

1{ui ∈(t,T ]}wi f (t, ui )

)
, 0 ≤ t ≤ T ≤ T ∗.

(6)

The sum in the last line gives the extension over the (HJM) approach which allows
us to deal with risky times in an arbitrage-free way.

The family of processes ( f (t, T ))0≤t≤T for T ∈ [0, T ∗] are assumed to be Itô
processes satisfying

f (t, T ) = f (0, T ) +
∫ t

0
a(s, T )ds +

∫ t

0
b(s, T ) · dWs (7)

with an n-dimensional Q∗-Brownian motion W .
Denote byB the Borel σ-field over R.
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Assumption 2.2 We require the following technical assumptions:

(i) the initial forward curve is measurable, and integrable on [0, T ∗]:
∫ T ∗

0
| f (0, u)| < ∞, Q∗-a.s.,

(ii) the drift parameter a(ω, s, t) is R-valued O ⊗ B-measurable and integrable
on [0, T ∗]: ∫ T ∗

0

∫ T ∗

0
|a(s, u)|ds ν(du) < ∞, Q∗-a.s.,

(iii) the volatility parameter b(ω, s, t) is Rn-valued, O ⊗ B-measurable, and

sup
s,t≤T ∗

‖ b(s, t) ‖< ∞, Q∗-a.s.

(iv) it holds that
0 ≤ λ(ui )ΔA(ui ) < wi , i ≥ 1.

Set

ā(t, T ) =
∫ T

t
a(t, u)ν(du),

b̄(t, T ) =
∫ T

t
b(t, u)ν(du),

H ′(t) =
∫ t

0
λsds −

∑

ui ≤t

log
(wi − λui ΔA(ui )

wi

)
.

(8)

The following proposition gives the desired drift condition in the generalizedMerton
models.

Theorem 1 Assume that Assumptions 2.1 and 2.2 hold. Then Q∗ is an ELMM if and
only if the following conditions hold: {s : ΔA(s) �= 0} ⊂ {u1, u2, . . . }, and

∫ t

0
f (s, s)ν(ds) =

∫ t

0
rsds + H ′(t), (9)

ā(t, T ) = 1

2
‖ b̄(t, T ) ‖2, (10)

for 0 ≤ t ≤ T ≤ T ∗ d Q∗ ⊗ dt-almost surely on {t < τ }.
The first condition, (9), can be split in the continuous and pure-jump part, such

that (9) is equivalent to
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f (t, t) = rs + λs

f (t, ui ) = log
wi

wi − λ(ui )ΔA(ui )
≥ 0.

The second relation states explicitly the connection of the forward rate at a risky time
ui to the probability Q∗(τ = ui |Fui −), given that τ ≥ ui , of course. It simplifies
moreover, if ΔA(ui ) = wi to

f (t, ui ) = − log(1 − λ(ui )). (11)

For the proof we first provide the canonical decomposition of

J (t, T ) :=
∫ T

t
f (t, u)ν(du), 0 ≤ t ≤ T .

Lemma 1 Assume that Assumption 2.2 holds. Then, for each T ∈ [0, T ∗] the process
(J (t, T ))0≤t≤T is a special semimartingale and

J (t, T ) =
∫ T

0
f (0, u)ν(du) +

∫ t

0
ā(u, T )du +

∫ t

0
b̄(u, T )dWu −

∫ t

0
f (u, u)ν(du).

Proof Using the stochastic Fubini Theorem (as in [26]), we obtain

J (t, T ) =
∫ T

t

(
f (0, u) +

∫ t

0
a(s, u)ds +

∫ t

0
b(s, u)dWs

)
ν(du)

=
∫ T

0
f (0, u)ν(du) +

∫ t

0

∫ T

s
a(s, u)ν(du)ds +

∫ t

0

∫ T

s
b(s, u)ν(du)dWs

−
∫ t

0
f (0, u)ν(du) −

∫ t

0

∫ t

s
a(s, u)ν(du)ds −

∫ t

0

∫ t

s
b(s, u)ν(du)dWs

=
∫ T

0
f (0, u)ν(du) +

∫ t

0
ā(s, T )ds +

∫ t

0
b̄(s, T )dWs

−
∫ t

0

(
f (0, u) −

∫ u

0
a(s, u)ds −

∫ u

0
b(s, u)dWs

)
ν(du),

and the claim follows.

Proof (Proof of Theorem 1) Set, E(t) = 1{τ>t}, and F(t, T ) = exp
(
− ∫ T

t f (t, u)

ν(du)
)
, such that P(t, T ) = E(t)F(t, T ). Integration by parts yields that

d P(t, T ) = F(t−, T )d E(t) + E(t−)d F(t, T ) + d[E, F(., T )]t =: (1′) + (2′) + (3′).
(12)
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In view of (1′), we obtain from (4), that

E(t) +
∫ t∧τ

0
λsd A(s) =: M1

t (13)

is a martingale. Regarding (2′), note that from Lemma 1 we obtain by Itô’s formula
that

d F(t, T )

F(t−, T )
=

(
f (t, t) − ā(t, T ) + 1

2
‖ b̄(t, T ) ‖2

)
dt

+
∑

i≥0

(
e f (t,t) − 1

)
wiδui (dt) + d M2

t , (14)

with a local martingale M2. For the remaining term (3′), note that

∑

0<s≤t

ΔE(s)ΔF(s, T ) =
∫ t

0
F(s−, T )(e f (s,s) − 1)ν({s})d E(s)

=
∫ t

0
F(s−, T )(e f (s,s) − 1)ν({s})d M1

s

−
∫ t∧τ

0
F(s−, T )(e f (s,s) − 1)ν({s})λsd A(s). (15)

Inserting (14) and (15) into (12) we obtain

d P(t, T )

P(t−, T )
= −λt d A(t)

+
(

f (t, t) − ā(t, T ) + 1

2
‖ b̄(t, T ) ‖2

)
dt

+
∑

i≥0

(
e f (t,t) − 1

)
wiδui (dt)

−
∫

R

ν({t})(e f (t,t) − 1)λt d A(t) + d M3
t

with a local martingale M3. We obtain a Q∗-local martingale if and only if the drift
vanishes. Next, we can separate between absolutely continuous and discrete part.
The absolutely continuous part yields (10) and f (t, t) = rt + λt d Q∗ ⊗ dt-almost
surely. It remains to compute the discontinuous part, which is given by

∑

i :ui ≤t

P(ui−, T )(e f (ui ,ui ) − 1)wi −
∑

0<s≤t

P(s−, T )e f (s,s)λsΔA(s),
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for 0 ≤ t ≤ T ≤ T ∗. This yields {s : ΔA(s) �= 0} ⊂ {u1, u2, . . . }. The discontinu-
ous part vanishes if and only if

1{ui ≤T ∗∧τ }e− f (ui ,ui )wi =1{ui ≤T ∗∧τ }
(

wi − λui ΔA(ui )
)
, i ≥ 1,

which is equivalent to

1{ui ≤T ∗∧τ } f (ui , ui ) = − 1{ui ≤T ∗∧τ } log
wi − λui ΔA(ui )

wi
, i ≥ 1.

We obtain (9) and the claim follows.

Example 1 (The Merton model) The paper [23] considers a simple capital structure
of a firm, consisting only of equity and a zero-coupon bond with maturity U > 0.
The firm defaults at U if the total market value of its assets is not sufficient to cover
the liabilities.

We are interested in setting up an arbitrage-free market for credit derivatives and
consider a market of defaultable bonds P(t, T ), 0 ≤ t ≤ T ≤ T ∗ with 0 < U ≤ T ∗
as basis for more complex derivatives. In a stylized form the Merton model can be
represented by aBrownianmotion W denoting the normalized logarithm of the firm’s
assets, a constant K > 0 and the default time

τ =
{

U if WU ≤ K

∞ otherwise.

Assume for simplicity a constant interest rate r and let F be the filtration generated
by W . Then P(t, T ) = e−r(T −t) whenever T < U because these bonds do not carry
default risk. On the other hand, for t < U ≤ T ,

P(t, T ) = e−r(T −t)E∗[1{τ>T }|Ft ] = e−r(T −t)E∗[1{τ=∞}|Ft ] = e−r(T −t)Φ

(
Wt − K√

U − t

)
,

where Φ denotes the cumulative distribution function of a standard normal random
variable and E∗ denotes the expectation with respect to Q∗. For t → U we recover
P(U, U ) = 1{τ=∞}. The derivation of representation (6)withν(du) := du + δU (du)

is straightforward. A simple calculation with

P(t, T ) = 1{τ>t} exp
(

−
∫ T

t
f (t, u)du − f (t, U )1{t<U≤T }

)
(16)

yields f (t, T ) = r for T �= U and

f (t, U ) = − logΦ

(
Wt − K√

U − t

)
.
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By Itô’s formula we obtain

b(t, U ) = −
ϕ

(
Wt −K√

U−t

)

Φ

(
Wt −K√

U−t

) (U − t)−1/2,

and indeed, a(t, U ) = 1
2b2(t, U ). Note that the conditions for Proposition1 hold

and, the market consisting of the bonds P(t, T ) satisfies NAFL, as expected. More
flexible models of arbitrage-free bond prices can be obtained if the market filtration
F is allowed to be more general, as we show in Sect. 3 on affine generalized Merton
models.

Example 2 (An extension of the Black–Cox model) The model suggested in [4] uses
a first-passage time approach to model credit risk. Default happens at the first time,
when the firm value falls below a pre-specified boundary, the default boundary. We
consider a stylized version of this approach and continue the Example1. Extending
the original approach,we include a zero-coupon bondwithmaturityU . The reduction
of the firm value atU is equivalent to considering a default boundary with an upward
jump at that time.Hence,we consider aBrownianmotionW and the default boundary

D(t) = D(0) + K1{U≥t}, t ≥ 0,

with D(0) < 0, and let default be the first time when W hits D, i.e.

τ = inf{t ≥ 0 : Wt ≤ D(t)}
with the usual convention that inf ∅ = ∞. The following lemmacomputes the default
probability in this setting and the forward rates are directly obtained from this result
together with (16). The filtration G = F is given by the natural filtration of the
Brownian motion W after completion. Denote the random sets

Δ1 :=
{
(x, y) ∈ R2 : x

√
T − U ≤ D(U ) −

(
y
√

U − t + Wt

)
, y

√
U − t + Wt > D(0)

}

Δ2 :=
{
(x, y) ∈ R2 : x

√
T − U ≤ D(U ) −

(
y
√

U − t + 2D(0) − Wt

)
,

y
√

U − t + D(0) − Wt > 0
}

.

Lemma 2 Let D(0) < 0, U > 0 and D(U ) ≥ D(0). For 0 ≤ t < U, it holds on
{τ > t}, that

P(τ > T |Ft ) = 1 − 2Φ

(
D(0) − Wt√

T − t

)
− 1{T ≥U }2(Φ2(Δ1) − Φ2(Δ2)), (17)

where Φ2 is the distribution of a two-dimensional standard normal distribution and
the sets Δt = Δt (D), t ≥ U are given by
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Δt =
{
(x, y) ∈ R2 : x

√
T − U + y

√
U ≤ −D(U ),

}
.

For t ≥ U it holds on {τ > t}, that

P(τ > T |Ft ) = 1 − 2Φ

(
D(U ) − Wt√

T − t

)
.

Proof The first part of (17) where T < U follows directly from the reflection prin-
ciple and the property that W has independent and stationary increments. Next,
consider 0 ≤ t < U ≤ T . Then, on {WU > D(U )},

P( inf[U,T ] W > D(U )|FU ) = 1 − 2Φ

(
D(U ) − WU√

T − U

)
. (18)

Moreover, on {Wt > D(0)} it holds for x > D(0) that

P( inf[0,U ] W > D(0), WU > x |Ft ) = P(WU > x |Ft ) − P(WU < x, inf[0,U ] W ≤ D(0)|Ft )

= Φ

(
Wt − x√

U − t

)
− Φ

(
2D(0) − x − Wt√

U − t

)
.

Hence, E[g(WU )1{inf [0,U ] W>D(0)}|Ft ] = 1{inf [0,t] W>D(0)}
∫ ∞

D(0) g(x) ft (x)dx with den-
sity

ft (x) = 1{x>D(0)}
1√

U − t

[
φ

(
Wt − x√

U − t

)
− φ

(
2D(0) − x − Wt√

U − t

)]
.

Together with (18) this yields on {inf [0,t] W > D(0)}

P( inf[0,T ](W − D) > 0|Ft ) =
∫ ∞

D(0)

[
1 − 2Φ

(
D(U ) − x√

T − U

)]
ft (x)dx

= P( inf[t,T ] W > D(0)|Ft ) − 2
∫ ∞

D(0)
Φ

(
D(U ) − x√

T − U

)
ft (x)dx .

It remains to compute the integral. Regarding the first part, letting ξ and η be inde-
pendent and standard normal, we obtain that

∫ ∞

D(0)
Φ

(
D(U ) − x√

T − U

)
1√

U − t
φ
( x − Wt√

U − t

)
dx

= Pt

(√
T − Uξ ≤ D(U ) − (

√
U − tη + Wt ),

√
U − tη + Wt > D(0)

)

= Φ2(Δ1),
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where we abbreviate Pt (·) = P(·|Ft ). In a similar way,

∫ ∞
D(0)

Φ

(
D(U ) − x√

T − U

)
1√

U − t
φ
( x − (2D(0) − Wt )√

U − t

)
dx

= Pt

(√
T − Uξ ≤ D(U ) − (

√
U − tη + 2D(0) − Wt ),

√
U − tη + D(0) − Wt > 0

)

= Φ2(Δ2)

and we conclude.

3 Affine Models in the Generalized
Intensity-Based Framework

Affine processes are a well-known tool in the financial literature and one reason for
this is their analytical tractability. In this section we closely follow [12] and shortly
state the appropriate affine models which fit the generalized intensity framework.
For proofs, we refer the reader to this paper.

The main point is that affine processes in the literature are assumed to be sto-
chastically continuous (see [8, 10]). Due to the discontinuities introduced in the
generalized intensity-based framework, we propose to consider piecewise continu-
ous affine processes.

Example 3 Consider a non-negative integrable function λ, a constant λ′ ≥ 0 and a
deterministic time u > 0. Set

K (t) =
∫ t

0
λ(s)ds + 1{t≥u}κ, t ≥ 0.

Let the default time τ be given by τ = inf{t ≥ 0 : Kt ≥ ζ} with a standard
exponential-random variable ζ. Then P(τ = u) = 1 − e−κ =: λ′. Considering
ν(ds) = ds + δu(ds) with u1 = u and w1 = 1, we are in the setup of the previous
section. The drift condition (9) holds, if

f (u, u) = − log(1 − λ′) = κ.

Note, however, that K is not the compensator of H . Indeed, the compensator of H
equals Λt = ∫ t∧τ

0 λ(s)ds + 1{t≥u}λ′, see [19] for general results in this direction.

The purpose of this section is to give a suitable extension of the above example
involving affine processes. Recall that we consider a σ-finite measure

ν(du) = du +
∑

i≥1

wiδui (du),
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as well as A(u) = u + ∑
i≥1 1{u≥ui }. The idea is to consider an affine process X and

study arbitrage-free doubly stochastic term structure models where the compensator
Λ of the default indicator process H = 1{·≤τ } is given by

Λt =
∫ t

0

(
φ0(s) + ψ0(s)

� · Xs

)
ds +

∑

i≥1

1{t≥ui }
(
1 − e−φi −ψ�

i ·Xui

)
. (19)

Note that by continuity of X , Λt (ω) < ∞ for almost all ω. To ensure that Λ is non-
decreasing we will require that φ0(s) + ψ0(s)� · Xs ≥ 0 for all s ≥ 0 and φi + ψ�

i ·
Xui ≥ 0 for all i ≥ 1.

Consider a state space in canonical form X = Rm
≥0 × Rn for integers m, n ≥ 0

with m + n = d and a d-dimensional Brownian motion W . Let μ and σ be defined
onX by

μ(x) = μ0 +
d∑

i=1

xiμi , (20)

1

2
σ(x)�σ(x) = σ0 +

d∑

i=1

xiσi , (21)

where μ0,μi ∈ Rd , σ0,σi ∈ Rd×d , for all i ∈ {1, . . . , d}. We assume that the para-
meters μi , σi , i = 0, . . . , d are admissible in the sense of Theorem 10.2 in [11].
Then the continuous, unique strong solution of the stochastic differential equation

d Xt = μ(Xt )dt + σ(Xt )dWt , X0 = x, (22)

is an affine process X on the state space X , see Chap.10 in [11] for a detailed
exposition.

We call a bond-price model affine if there exist functions A : R≥0 × R≥0 → R,
B : R≥0 × R≥0 → Rd such that

P(t, T ) = 1{τ>t}e−A(t,T )−B(t,T )�·Xt , (23)

for 0 ≤ t ≤ T ≤ T ∗.We assume that A(., T ) and B(., T ) are right-continuous.More-
over, we assume that t �→ A(t, .) and t �→ B(t, .) are differentiable from the right
and denote by ∂+

t the right derivative. For the convenience of the reader we state
the following proposition giving sufficient conditions for absence of arbitrage in an
affine generalized intensity-based setting. It extends [12] where only finitely many
risky times were treated.

Proposition 1 Assume thatφ0 : R≥0 → R,ψ0 : R≥0 → Rd are continuous,ψ0(s) +
ψ0(s)� · x ≥ 0 for all s ≥ 0 and x ∈ X and the constants φi ∈ R and ψi ∈ Rd , i ≥ 1
satisfy φi + ψ�

i · x ≥ 0 for all 1 ≤ i ≤ n and x ∈ X as well as
∑

i≥1 |wi |(|φi | +
|ψi,1| + · · · + |ψi,d |) < ∞. Moreover, let the functions A : R≥0 × R≥0 → R and
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B : R≥0 × R≥0 → Rd be the unique solutions of

A(T, T ) = 0

A(ui , T ) = A(ui−, T ) − φi wi

−∂+
t A(t, T ) = φ0(t) + μ�

0 · B(t, T ) − B(t, T )� · σ0 · B(t, T ),

(24)

and

B(T, T ) = 0

Bk(ui , T ) = Bk(ui−, T ) − ψi,kwi

−∂+
t Bk(t, T ) = ψ0,k(t) + μ�

k · B(t, T ) − B(t, T )� · σk · B(t, T ),

(25)

for 0 ≤ t ≤ T . Then, the doubly-stochastic affine model given by (19) and (23)
satisfies NAFL.

Proof By construction,

A(t, T ) =
∫ T

t
a′(t, u)du +

∑

i :ui ∈(t,T ]
φi wi

B(t, T ) =
∫ T

t
b′(t, u)du +

∑

i :ui ∈(t,T ]
ψi wi

with suitable functions a′ and b′ and a′(t, t) = φ0(t) as well as b′(t, t) = ψ0(t). A
comparison of (23) with (6) yields the following: on the one hand, for T = ui ∈ U ,
we obtain f (t, ui ) = φi + ψ�

i · Xt . Hence, the coefficients a(t, T ) and b(t, T ) in (7)
for T = ui ∈ U compute to a(t, ui ) = ψ�

i · μ(Xt ) and b(t, ui ) = ψ�
i · σ(Xt).

On the other hand, for T /∈ U we obtain that f (t, T ) = a′(t, T ) + b′(t, T )� · Xt .
Then, the coefficients a(t, T ) and b(t, T ) can be computed as follows: applying Itô’s
formula to f (t, T ) and comparing with (7) yields that

a(t, T ) = ∂t a
′(t, T ) + ∂t b

′(t, T )� · Xt + b′(t, T )� · μ(Xt )

b(t, T ) = b′(t, T )� · σ(Xt ).
(26)

Set ā′(t, T ) = ∫ T
t a′(t, u)du and b̄′(t, T ) = ∫ T

t b′(t, u)du and note that,

∫ T

t
∂t a

′(t, u)du = ∂t ā
′(t, T ) + a′(t, t).

As ∂+
t A(t, T ) = ∂t ā′(t, T ), and ∂+

t B(t, T ) = ∂t b̄′(t, T ), we obtain from (26) that
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ā(t, T ) =
∫ T

t
a(t, u)ν(du) =

∫ T

t
a(t, u)du +

∑

ui ∈(t,T ]
wiψ

�
i · μ(Xt )

= ∂+
t A(t, T ) + a′(t, t) + (

∂+
t B(t, T ) + b′(t, t)

)� · Xt + B(t, T )� · μ(Xt ),

b̄(t, T ) =
∫ T

t
b(t, u)ν(du) =

∫ T

t
b(t, u)du +

∑

ui ∈(t,T ]
wiψ

�
i · σ(Xt )

= B(t, T )� · σ(Xt )

for 0 ≤ t ≤ T ≤ T ∗. We now show that under our assumptions, the drift conditions
(9) and (10) hold: Observe that, by Eqs. (24), (25), and the affine specification (20),
and (21), the drift condition (10) holds. Moreover, from (11),

ΔH ′(ui ) = φi + ψ�
i · Xui

and λs = φ0(s) + ψ0(s)� · Xs by (19). We recover ΔΛui = 1 − exp(−φi − ψ�
i ·

Xui ) taking values in [0, 1) by assumption. Hence, (9) holds and the claim follows.

Example 4 In the one-dimensional case we consider X , given as solution of

d Xt = (μ0 + μ1Xt )dt + σ
√

Xt dWt , t ≥ 0.

Consider only one risky time u1 = 1 and let φ0 = φ1 = 0, ψ0 = 1, such that

Λ =
∫ t

0
Xsds + 1{u≥1}(1 − e−ψ1X1).

Hence the probability of having no default at time 1 just prior to 1 is given by e−ψ1X1 ,
compare Example 3.

An arbitrage-free model can be obtained by choosing A and B according to
Proposition 1 which can be immediately achieved using Lemma 10.12 from [11] (see

in particular Sect. 10.3.2.2 on the CIR short-rate model): denote θ =
√

μ2
1 + 2σ2 and

L1(t) = 2(eθt − 1),

L2(t) = θ(eθt + 1) + μ1(e
θt − 1),

L3(t) = θ(eθt + 1) − μ1(e
θt − 1),

L4(t) = σ2(eθt − 1).

Then

A0(s) = 2μ0

σ2
log

(
2θe

(σ−μ1)t
2

L3(t)

)

, B0(s) = − L1(t)

L3(t)
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are the unique solutions of the Riccati equations B ′
0 = σ2B2

0 − μ1B0 with boundary
condition B0(0) = 0 and A′

0 = −μ0B0 with boundary condition A0(0) = 0.Note that
with A(t, T ) = A0(T − t) and B(t, T ) = B0(T − t) for 0 ≤ t ≤ T < 1, the condi-
tions of Proposition 1 hold. Similarly, for 1 ≤ t ≤ T , choosing A(t, T ) = A0(T − t)
and B(t, T ) = B0(T − t) implies again the validity of (24) and (25). On the other
hand, for 0 ≤ t < 1 and T ≥ 1 we set u(T ) = B(1, T ) + ψ1 = B0(T − 1) + ψ1,
according to (25), and let

A(t, T ) = 2μ0

σ2
log

(
2θe

(σ−μ1)(1−t)
2

L3(1 − t) − L4(1 − t)u(T )

)

B(t, T ) = − L1(1 − t) − L2(1 − t)u(T )

L3(1 − t) − L4(1 − t)u(T )
.

It is easy to see that (24) and (25) are also satisfied in this case, in particular
ΔA(1, T ) = −φ1 = 0 and ΔB(1, T ) = −ψ1. Note that, while X is continuous, the
bond prices are not even stochastically continuous because they jump almost surely
at u1 = 1. We conclude by Proposition 1 that this affine model is arbitrage-free. �

4 Conclusion

In this article we studied a new class of dynamic term structure models with credit
risk where the compensator of the default time may jump at predictable times. This
framework was called generalized intensity-based framework. It extends existing
theory and allows to include Merton’s model, in a reduced-form model for pricing
credit derivatives. Finally, we studied a class of highly tractable affine models which
are only piecewise stochastically continuous.
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in the Lévy Forward Process Model

Ernst Eberlein, M’hamed Eddahbi and Sidi Mohamed Lalaoui Ben Cherif

Abstract The purpose of this article is to give a closed Fourier-based valuation for-
mula for a caplet in the framework of the Lévy forward process model which was
introduced in Eberlein and Özkan, Financ. Stochast. 9:327-348, 2005, [5]. After-
wards, we compute Greeks by two approaches which come from totally different
mathematical fields. The first is based on the integration-by-parts formula, which
lies at the core of the application of the Malliavin calculus to finance. The second
consists in using Fourier-based methods for pricing derivatives as exposed in Eber-
lein, Quantitative Energy Finance, 2014, [3]. We illustrate the results in the case
where the jump part of the underlying model is driven by a time-inhomogeneous
Gamma process and alternatively by a Variance Gamma process.
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1 Introduction

To compute expectations which arise as prices of derivative products is a key issue
in quantitative finance. The effort which is necessary to get these values depends to
a high degree on the sophistication of the model approach which is used. Simple
models such as the classical geometric Brownian motion lead to easy-to-evaluate
formulas for expectations but entail at the same time a high model risk. As has
been shown in numerous studies, the empirical return distributions which one can
observe are far from normality. This is true for all categories of financial markets:
equity, fixed income, foreign exchange as well as credit markets (see e.g. Eberlein
and Keller (1995) [4] for the analysis of stock price data and Eberlein and Kluge
(2007) [7] for data from fixed income markets). A first step to reduce model risk
and to improve the performance of the model consists in introducing volatility as a
stochastic quantity. Some of the stochastic volatility models became quite popular.
Nevertheless one must be aware that the distributions which diffusion processes with
non-deterministic coefficients generate on a given time horizon are not known. They
can only be determined approximately on the basis of simulations of process paths. In
order to get more realistic distributions, an excellent choice is to replace the driving
Brownian motion in classical models by a suitably chosen Lévy process. This can
also be interpreted in the sense that instead of making volatility stochastic one can go
over to a stochastic clock. The reason is that many Lévy processes can be obtained as
time-changed Brownian motions. For example, the Variance Gamma process results
when one replaces linear time by a Gamma process as subordinator. Of course, one
can also consider both: a more powerful driver and stochastic volatility.

Lévy processes are in a one-to-one correspondence to the rich class of infinitely
divisible distributions and at the same time analytically well tractable. Due to the
higher number of available parameters, this class of distributions is flexible enough to
allow a much better fit to empirical return distributions. The systematic error which
results from the assumption of normality is avoided. The generating distribution of a
Lévy process shows up as the distribution of increments of length one. Consequently,
any distribution which one gets by fitting a parametrized subclass to empirical return
data can be implemented not only approximately but exactly into Lévy-driven mod-
els. Suitably parametrized model classes which have been used successfully so far
are driven by generalized hyperbolic, normal inverse Gaussian (NIG), or Variance
Gamma (VG) processes, just to mention a few.

As noted above, advancedmodels with superior statistical properties require more
demanding numerical methods. Efficient and accurate algorithms are crucial in this
context, in particular for calibration purposes. For pricing of derivatives the historical
distribution, which can be derived from price data of the underlying and which is
used for risk management, is of less interest. Calibration usually means to estimate
the risk-neutral distribution parameters. In other words, one exploits price data of
derivatives. In most cases this is given in terms of volatilities. Whereas years ago
calibration was usually done overnight, many trading desks recalibrate nowadays
on an intraday basis. During a calibration procedure in each iteration step a large
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number of model prices have to be computed and compared to market prices. A
method which almost always works to get the corresponding expectations is Monte
Carlo simulation. Its disadvantage is that it is computationally intensive and therefore
too slow for many purposes. Another classical approach is to represent prices as
solutions of partial differential equations (PDEs) which in the case of Lévy processes
with jumps become partial integro–differential equations (PIDEs). This approach,
which is based on the Feynman–Kac formula, applies to a wide range of valuation
problems, in particular it allows to compute prices of American options as well.
Nevertheless, the numerical solution of PIDEs rests on sophisticated discretization
methods and corresponding programs. In this paper we concentrate on the third,
namely the Fourier-based approach.

To manage portfolios of derivatives, traders have to understand how sensitive
prices of derivative products are with respect to changes in the underlying parame-
ters. For this purpose they need to know the Greeks which are given by the partial
derivatives of the pricing functional with respect to those parameters. Usually Greeks
are estimated by means of a finite difference approximation. Two kinds of errors are
produced this way: the first one comes from the approximation of the derivative by
a finite difference and the second one results from the numerical computation of
the expectation. To eliminate one of the sources of error, Fournié et al. (1999) [9]
adopted a new approach which consists in shifting the differential operator from the
pricing functional to the diffusion kernel. This procedure results in an expectation
operator applied to the payoff multiplied by a random weight function.

In the following we focus on a discrete tenor interest rate model which has been
introduced in Eberlein and Özkan (2005) [5]. This so-called Lévy forward process
model is driven by a time-inhomogeneous Lévy process and is developed on the basis
of a backward induction that is necessary to get the LIBOR rates in a convenient
homogeneous form. A major advantage of the forward process approach is that it
is invariant under the measure change in the sense that the driving process remains
a time-inhomogeneous Lévy process. Moreover, the measure changes do not only
have the invariance property but in addition they are analytically and consequently
also numerically much simpler compared to the corresponding measure changes in
the so-called LIBOR model. The reason is that in each induction step the forward
process itself represents up to a norming constant the density process on which the
measure change is based. As a consequence, any approximation such as the ‘frozen
drift’ approximation ormore sophisticated versions of it are completely avoided. This
means that the approximation error with which one has to struggle in the LIBOR
approach does not show up in the forward process approach.

Another important aspect is that in the latter model the increments of the driving
process translate directly into increments of the LIBOR rates. This is not the case
for the LIBOR model where the increments of the LIBOR rates are proportional to
the corresponding increments of the driving process scaled with the current value of
the LIBOR rate. Expressed in terms of the terminology which will be developed in
Sects. 2 and 3 this means that in the Lévy LIBOR model
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L(t + Δt, Tk) − L(t, Tk) ∼ L(t, Tk)
(
LTk+1
t+Δt − LTk+1

t

)
, (1)

whereas in the Lévy forward process model

L(t + Δt, Tk) − L(t, Tk) ∼ δ−1
k

(
LTk+1
t+Δt − LTk+1

t

)
. (2)

The fact that the increments of the LIBOR rate process do not depend on current
LIBOR values, translates into increased flexibility and a superior model performance
of the forward process approach.

In addition to the differences in mathematical properties there is a fundamental
economic difference. The forward process approach allows for negative interest rates
as well as for negative starting values. This is of crucial importance in particular in
the current economic environment where negative rates are common. Models where
by construction interest rates stay strictly positive are not able to produce realistic
valuations for a large collection of interest rate derivatives in a deflationary or near-
deflationary environment.

As far as the calculation of Greeks in this setting is concerned, we refer to Glasser-
man andZhao (1999) [12],Glasserman (2004) [11], andFries (2007) [10]where some
treatment of this issue is given. The classical diffusion-based LIBOR market model
offers a high degree of analytical tractability. However, this model cannot reproduce
the phenomenon of changing volatility smiles along the maturity axis. In order to
gain more flexibility in a first step one can replace the driving Brownian motion by
a (time-homogeneous) Lévy process. However, one observes that the shape of the
volatility surface produced by cap and floor prices is too sophisticated in order to be
matched with sufficient accuracy by amodel which is driven by a time-homogeneous
process. To achieve a more accurate calibration of the model across different strikes
and maturities one has to use the more flexible class of time-inhomogeneous Lévy
processes (see e.g. Eberlein and Özkan (2005) [5] and Eberlein and Kluge (2006)
[6]). Graphs in the latter paper show in particular that interest rate models driven
by time-inhomogeneous Lévy processes are able to reproduce implied volatility
curves (smiles) observed in the market across all maturities with high accuracy. If
one restricts the approach to (time-homogeneous) Lévy processes as drivers, the
smiles flatten out too fast at longer maturities. Consequently, we have analytical—
the invariance under measure changes—as well as statistical reasons to choose time-
inhomogeneous Lévy processes as drivers. In implementations of the model already
a rather mild form of time-inhomogeneity turns out to be sufficient. Typically one
has to glue together three pieces of (time-homogeneous) Lévy processes in order to
cover the full range of maturities with sufficient accuracy. In terms of parameters
this means that instead of three or four one uses nine or twelve parameters.

The first goal of this paper is to give a closed Fourier-based valuation formula for
a caplet in the framework of the Lévy forward process model. The second aim is to
study sensitivities. We discuss two approaches for this purpose. The first is based
on the integration-by-parts formula, which lies at the core of the application of the
Malliavin calculus to finance as developed in Fournié et al. (1999) [9], León et al.
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(2002) [14], Petrou (2008) [17], Yablonski (2008) [19]. This approach is appropriate
if the driving process has a diffusion component. The second approach which covers
purely discontinuous drivers as well relies on Fourier-based methods for pricing
derivatives. For a survey of Fourier-based methods see Eberlein (2014) [3]. We
illustrate the result by applying the formula to the pricing of a caplet where the jump-
part of the underlying model is driven by a time-inhomogeneous Gamma process
and alternatively by a Variance Gamma process.

2 The Lévy Forward Process Model

Let 0 = T0 < T1 < · · · < Tn−1 < Tn = T ∗ denote a discrete tenor structure and set
δk = Tk+1 − Tk for all k ∈ {0, . . . , n − 1}. Because we proceed by backward induc-
tion, let us use the notation T ∗

i := Tn−i and δ∗
i = δn−i for i ∈ {1, . . . , n}. For zero-

coupon bond prices B(t, T ∗
i ) and B(t, T ∗

i−1), the forward process is defined by

F(t, T ∗
i , T ∗

i−1) = B(t, T ∗
i )

B(t, T ∗
i−1)

. (3)

Hence, modeling forward processes means specifying the dynamics of ratios of
successive bond prices. Let (Ω;F=FT ∗ ;F;PT ∗) be a complete stochastic basis
where PT ∗ should be regarded as the forward martingale measure for the settlement
date T ∗ > 0 and the filtration F= (Ft )t∈[0,T ∗] satisfies the usual conditions. Consider
a time-inhomogeneous Lévy process LT ∗

defined on (Ω;F =FT ∗ ;F;PT ∗) starting
at 0 with local characteristics (bT

∗
, c, FT ∗

) such that the drift term bT
∗

s ∈ R, the
volatility coefficient cs and the Lévy measure FT ∗

s satisfy the following conditions

∃ σ > 0, ∀ s ∈ [0, T ∗] : cs > σ, FT ∗
s ({0}) = 0 (4)

and

∫ T ∗

0

(
|bT ∗

s | + |cs | +
∫

R

(|x |2 ∧ 1
)
FT ∗
s (dx)

)
ds < ∞. (5)

We impose as usual a further integrability condition.Note that the processeswhichwe
will define later, are by construction martingales and therefore every single random
variable has to be integrable.

Assumption 2.1 (EM) There exists a constant M > 1 such that

∫ T ∗

0

∫

{|x |>1}
exp(ux)FT ∗

s (dx)ds < ∞, ∀ u ∈ [−M, M]. (6)
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Under (EM) the random variable LT ∗
t has a finite expectation and its law is given by

the characteristic function

E

[
eiuL

T∗
t

]
= exp

(∫ t

0

(
iubT

∗
s − 1

2
u2cs +

∫

R

(
eiux − 1 − iux

)
FT ∗
s (dx)

)
ds

)
. (7)

Furthermore, the process LT ∗
is a special semimartingale, and thus its canonical

representation has the simple form

LT ∗
t =

∫ t

0
bT

∗
s ds +

∫ t

0

√
csdW

T ∗
s +

∫ t

0

∫

R

xμ̃LT∗
(ds, dx), (8)

where (WT ∗
t )t≥0 is aPT ∗ -standardBrownianmotion and μ̃LT ∗ := μLT∗− νT ∗

is thePT ∗ -

compensated random measure of jumps of LT ∗
. As usual, μLT∗

denotes the random
measure of jumps of LT ∗

and νT ∗
(ds, dx) := FT ∗

s (dx)ds the PT ∗ -compensator of

μLT∗
. We denote by θs the cumulant function associated with the process LT ∗

as given
in (8) with local characteristics (bT

∗
, c, FT ∗

), that is, for appropriate z ∈ C

θs(z) = zbT
∗

s + z2

2
cs +

∫

R

(
ezx − 1 − zx

)
FT ∗
s (dx), (9)

where c and FT ∗
are free parameters, whereas the drift characteristic bT

∗
will later

be chosen to guarantee that the forward process is a martingale. The following ingre-
dients are needed.

Assumption 2.2 (LR.1) For anymaturity T ∗
i there is a bounded, deterministic func-

tion λ(·, T ∗
i ) : [0, T ∗] �−→ R which represents the volatility of the forward process

F(·, T ∗
i , T ∗

i−1). These functions satisfy

λ(s, T ∗
i ) > 0, ∀ s ∈ [0, T ∗

i ] and λ(s, T ∗
i ) = 0 for s > T ∗

i for any maturity T ∗
i ,∑n−1

i=1 λ(s, T ∗
i ) ≤ M, ∀ s ∈ [0, T ∗] where M is the constant from Assumption

(EM).

Assumption 2.3 (LR.2) The initial term structure of zero-coupon bond prices
B(0, T ∗

i ) is strictly positive for all i ∈ {1, . . . , n}.
We begin to construct the forward process with the most distant maturity and postu-
late

F(t, T ∗
1 , T ∗) = F(0, T ∗

1 , T ∗) exp
(∫ t

0
λ(s, T ∗

1 )dLT ∗
s

)
. (10)

One forces this process to become a PT ∗ -martingale by choosing bT
∗
such that
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∫ t

0
λ(s, T ∗

1 )bT
∗

s ds = −1

2

∫ t

0
csλ

2(s, T ∗
1 )ds

−
∫ t

0

∫

R

(
exλ(s,T ∗

1 ) − 1 − xλ(s, T ∗
1 )

)
νT ∗

(ds, dx). (11)

Then the forward process F(·, T ∗
1 , T ∗) can be given as a stochastic exponential

F(t, T ∗
1 , T ∗) = F(0, T ∗

1 , T ∗)Et
(
Z(·, T ∗

1 )
)

(12)

with

Z(t, T ∗
1 ) =

∫ t

0

√
csλ(s, T ∗

1 )dWT ∗
s +

∫ t

0

∫

R

(exλ(s,T ∗
1 ) − 1)μ̃LT∗

(ds, dx). (13)

Since the forward process F(·, T ∗
1 , T ∗) is aPT ∗ -martingale, we can use it as a density

process and define the forward martingale measure PT ∗
1
by setting

dPT ∗
1

dPT ∗
= F(T ∗

1 , T ∗
1 , T ∗)

F(0, T ∗
1 , T ∗)

= ET ∗
1

(
Z(·, T ∗

1 )
)
. (14)

By the semimartingale version ofGirsanov’s theorem (see Jacod and Shiryaev (1987)
[13])

W
T ∗
1

t := WT ∗
t −

∫ t

0

√
csλ(s, T ∗

1 )ds (15)

is a PT ∗
1
-standard Brownian motion and

νT ∗
1 (dt, dx) := exλ(s,T ∗

1 )νT ∗
(dt, dx) = exλ(s,T ∗

1 )FT ∗
s (dx)ds (16)

is the PT ∗
1
-compensator of μLT∗

.
Continuing this way one gets the forward processes F(·, T ∗

i , T ∗
i−1) such that for

all i ∈ {1, . . . , n}

F(t, T ∗
i , T ∗

i−1) = F(0, T ∗
i , T ∗

i−1) exp

(∫ t

0
λ(s, T ∗

i )dL
T ∗
i−1

s

)
. (17)

The drift term bT
∗
i−1 is chosen in such a way that the forward process F(·, T ∗

i , T ∗
i−1)

becomes a martingale under the forward measure PT ∗
i−1
, that is

∫ t

0
λ(s, T ∗

i )b
T ∗
i−1

s ds = −1

2

∫ t

0
csλ

2(s, T ∗
i )ds

−
∫ t

0

∫

R

(
exλ(s,T ∗

i ) − 1 − xλ(s, T ∗
i )

)
νT ∗

i−1(ds, dx). (18)
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We propose the following choice for the functions bT
∗
i−1 for all i ∈ {1, . . . , n}

⎧
⎪⎨

⎪⎩

b
T ∗
i−1

s = −cs
2

λ(s, T ∗
i ) −

∫

R

(
exλ(s,T ∗

i ) − 1

λ(s, T ∗
i )

− x

)
F

T ∗
i−1

s (dx), 0 ≤ s < T ∗
i

b
T ∗
i−1

s = 0, s ≥ T ∗
i .

(19)

The driving process LT ∗
i−1 becomes therefore

L
T ∗
i−1

t = −
∫ t

0

(
cs
2

λ(s, T ∗
i ) +

∫

R

(
exλ(s,T ∗

i ) − 1

λ(s, T ∗
i )

− x

)
F

T ∗
i−1

s (dx)

)
ds

+
∫ t

0

√
csdW

T ∗
i−1

s +
∫ t

0

∫

R

x(μT ∗ − νT ∗
i−1)(ds, dx) (20)

under the successive forward measures PT ∗
i
which are given by the recursive relation

⎧
⎪⎪⎨

⎪⎪⎩

dPT ∗
i

dPT ∗
i−1

= F(T ∗
i , T ∗

i , T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
= ET ∗

i

(
Z(·, T ∗

i )
)
, i ∈ {1, . . . , n}

PT ∗
0

= PT ∗

(21)

with

Z(t, T ∗
i ) =

∫ t

0

√
csλ(s, T ∗

i )dW
T ∗
i−1

s +
∫ t

0

∫

R

(exλ(s,T ∗
i ) − 1)μ̃LT∗

i−1
(ds, dx), (22)

where (W
T ∗
i−1

t )t≥0 is a PT ∗
i−1
-standard Brownian motion such that

⎧
⎪⎪⎨

⎪⎪⎩

W
T ∗
i

t = W
T ∗
i−1

t −
∫ t

0

√
csλ(s, T ∗

i )ds, i ∈ {1, . . . , n}

W
T ∗
0

t = WT ∗
t .

(23)

μ̃LT∗
i−1 := μLT∗ − νT ∗

i−1 is the PT ∗
i−1
-compensated randommeasure of jumps of LT ∗

and

νT ∗
i−1(ds, dx) = F

T ∗
i−1

s (dx)ds is the PT ∗
i−1
-compensator of μLT∗

such that

⎧
⎪⎨

⎪⎩

F
T ∗
i

s (dx) = exλ(s,T ∗
i )F

T ∗
i−1

s (dx), i ∈ {1, . . . , n}

F
T ∗
0

s (dx) = FT ∗
s (dx).

(24)
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Setting Λi (s) := ∑i
j=1 λ(s, T ∗

j ), we conclude that for all i ∈ {1, . . . , n}

W
T ∗
i

t = WT ∗
t −

∫ t

0

√
csΛ

i (s)ds (25)

and

F
T ∗
i

s (dx) = exp
(
xΛi (s)

)
FT ∗
s (dx). (26)

Note that the coefficients
√
csΛi (s) and exp(xΛi (s)), which appear in this measure

change, are deterministic functions and therefore the measure change is structure
preserving, i.e. the driving process is still a time-inhomogeneous Lévy process after
the measure change.

Since the forward process F(·, T ∗
i , T ∗

i−1) is by construction a PT ∗
i−1
-martingale,

the process
F(·,T ∗

i ,T ∗
i−1)

F(0,T ∗
i ,T ∗

i−1)
, which is the density process

dPT ∗
i

dPT ∗
i−1

∣∣∣
∣∣
Ft

= F(t, T ∗
i , T ∗

i−1)

F(0, T ∗
i , T ∗

i−1)
(27)

is a PT ∗
i−1
-martingale as well. By iterating the relation (21) we get on FT ∗

i−1

dPT ∗
i−1

dPT ∗
= B(0, T ∗)

B(0, T ∗
i−1)

i−1∏

j=1

F(T ∗
i−1, T

∗
j , T

∗
j−1)

= exp

⎛

⎝
i−1∑

j=1

∫ T ∗
i−1

0
λ(s, T ∗

j )dL
T ∗
j−1

s

⎞

⎠ . (28)

Applying Proposition III.3.8 of Jacod and Shiryaev (1987) [13], we see that its
restriction toFt for t ∈ [0, T ∗

i ]

dPT ∗
i

dPT ∗

∣∣
∣∣
Ft

= B(0, T ∗)
B(0, T ∗

i )

i∏

j=1

F(t, T ∗
j , T

∗
j−1) (29)

is a PT ∗ -martingale.

3 Fourier-Based Methods for Option Pricing

We will derive an explicit valuation formula for standard interest rate derivatives
such as caps and floors in the Lévy forward process model. Since floor prices can
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be derived from the corresponding put-call-parity relation we concentrate on caps.
Recall that a cap is a sequence of call options on subsequent LIBOR rates. Each
single option is called a caplet. The payoff of a caplet with strike rate K and maturity
T ∗
i is

δ∗
i

(
L(T ∗

i , T ∗
i ) − K

)+
, (30)

where the payment is made at time point T ∗
i−1. The forward LIBOR rates L(T ∗

i , T ∗
i )

are the discretely compounded, annualized interest rates which can be earned from
investment during a future interval starting at T ∗

i and ending at T ∗
i−1 considered at

the time point T ∗
i . These rates can be expressed in terms of the forward prices as

follows

L(T ∗
i , T ∗

i ) = 1

δ∗
i

(
F(T ∗

i , T ∗
i , T ∗

i−1) − 1
)
. (31)

Its time-0-price, denoted by Cplt0(T
∗
i , K ), is given by

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)δ
∗
i EPT∗

i−1

[(
L(T ∗

i , T ∗
i ) − K

)+]
. (32)

Instead of basing the pricing on the Lévy LIBORmodel one can use the Lévy forward
process approach (see Eberlein andÖzkan (2005) [5]). It is thenmore natural to write
the pricing formula (32) in the form

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)EPT∗
i−1

[(
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+]

, (33)

where K̃i := 1 + δ∗
i K . From (17), the forward process F(·, T ∗

i , T ∗
i−1) is given by

F(T ∗
i , T ∗

i , T ∗
i−1) = F(0, T ∗

i , T ∗
i−1) exp

(∫ T ∗
i

0
b
T ∗
i−1

s λ(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0

√
csλ(s, T ∗

i )dW
T ∗
i−1

s

)

× exp

(∫ T ∗
i

0

∫

R

xλ(s, T ∗
i )μ̃LT∗

i−1(ds, dx)

)
. (34)

Using the relations (25) and (26) we obtain for t ∈ [0, T ∗
i ]

F(t, T ∗
i , T ∗

i−1) = F(0, T ∗
i , T ∗

i−1) exp

(∫ t

0
λ(s, T ∗

i )dLT
∗

s + d(t, T ∗
i )

)
, (35)
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where

d(t, T ∗
i ) =

∫ t

0
λ(s, T ∗

i )
[
b
T ∗
i−1

s − bT
∗

s − Λi−1(s)cs
]
ds

−
∫ t

0
λ(s, T ∗

i )

∫

R

x
(
exΛ

i−1(s) − 1
)
FT ∗
s (dx)ds. (36)

Remember that on FT ∗
i−1

dPT ∗
i−1

dPT ∗
= exp

⎛

⎝
i−1∑

j=1

∫ T ∗
i−1

0
λ(s, T ∗

j )dL
T ∗
s +

i−1∑

j=1

d(T ∗
i−1, T

∗
j )

⎞

⎠ . (37)

Keeping in mind Assumption 2.2 (LR.1), we find

exp

⎛

⎝−
i−1∑

j=1

d(T ∗
i−1, T

∗
j )

⎞

⎠ = EPT∗

[
exp

(∫ T ∗
i−1

0
Λi−1(s)dLT ∗

s

)]
. (38)

Using Proposition 8 in Eberlein and Kluge (2006) [6], we find

exp

⎛

⎝−
i−1∑

j=1

d(T ∗
i−1, T

∗
j )

⎞

⎠ = exp

(∫ T ∗
i−1

0
θs

(
Λi−1(s)

)
ds

)
. (39)

Consequently,

dPT ∗
i−1

dPT ∗
= exp

(∫ T ∗
i−1

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i−1

0
θs

(
Λi−1(s)

)
ds

)
. (40)

Knowing that the process
(

F(·,T ∗
i ,T ∗

i−1)

F(0,T ∗
i ,T ∗

i−1)

)
is a PT ∗

i−1
-martingale, we reach

exp(−d(T ∗
i , T ∗

i )) = EPT∗
i−1

[
exp

(∫ T ∗
i

0
λ(s, T ∗

i )dLT ∗
s

)]
. (41)

Hence,

exp(−d(T ∗
i , T ∗

i ))

= exp

(
−

∫ T ∗
i

0
θs

(
Λi−1(s)

)
ds

)
EPT∗

[
exp

(∫ T ∗
i

0
Λi (s)dLT ∗

s

)]

= exp

(∫ T ∗
i

0

[
θs

(
Λi (s)

) − θs
(
Λi−1(s)

)]
ds

)
. (42)
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Thus,

d(T ∗
i , T ∗

i ) =
∫ T ∗

i

0

[−θs
(
Λi (s)

) + θs
(
Λi−1(s)

)]
ds. (43)

Define the random variable XT ∗
i
as the logarithm of F(T ∗

i , T ∗
i , T ∗

i−1). Therefore,

XT ∗
i

= ln
(
F(0, T ∗

i , T ∗
i−1)

) +
∫ T ∗

i

0
λ(s, T ∗

i )dLT ∗
s + d(T ∗

i , T ∗
i ). (44)

Proposition 3.1 Suppose there is a real number R ∈ (1, 1 + ε) such that the
moment-generating function of XT ∗

i
with respect to PT ∗

i−1
is finite at R, i.e. MXT∗

i
(R)

< ∞, then

Cplt0(T
∗
i , K ) = K̃i B(0, T ∗

i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

[(
e(R+iu)xλ(s,T ∗

i ) − 1
)

− (R + iu)
(
exλ(s,T ∗

i ) − 1
)]

FT ∗
s (dx)ds

)

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)}
du

(R + iu)(R + iu − 1)
. (45)

Proof The time-0-price of the caplet with strike rate K andmaturity T ∗
i has the form

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)EPT∗
i−1

[(
eXT∗

i − K̃i

)+]

= B(0, T ∗
i−1)EPT∗

i−1

[
f
(
XT ∗

i

)]
, (46)

where the function f : R → R+ is defined by f (x) = (ex − K̃i )
+.

Applying Theorem 2.2 in Eberlein et al. (2010) [8] (by the definition of XT ∗
i
we

have s = 0 here), we get

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)

2π

∫

R

MXT∗
i
(R + iu) f̂ (−u + iR)du, (47)

where the Fourier transform f̂ is given by

f̂ (−u + iR) = K̃ 1−R−iu
i

(R + iu)(R + iu − 1)
(48)
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and the moment-generating function MXT∗
i
is given by

MXT∗
i
(R + iu) = EPT∗

i−1

[
exp

(
(R + iu)XT ∗

i

)]

= (
F(0, T ∗

i , T ∗
i−1)

)R+iu
exp

(
(R + iu)d(T ∗

i , T ∗
i )

)

×EPT∗
i−1

[
exp

(∫ T ∗
i

0
(R + iu)λ(s, T ∗

i )dLT ∗
s

)]
. (49)

Making a change of measure, we find

MXT∗
i
(R + iu) = (

F(0, T ∗
i , T ∗

i−1)
)R+iu

exp
(
(R + iu)d(T ∗

i , T ∗
i )

)

×
EPT∗

[
exp

(∫ T ∗
i

0

(
(R + iu)λ(s, T ∗

i ) + Λi−1(s)
)
dLT ∗

s

)]

EPT∗

[
exp

(∫ T ∗
i

0 Λi−1(s)dLT ∗
s

)] . (50)

Using Proposition 8 in Eberlein and Kluge (2006) [6], we can prove easily that

MXT∗
i

(R + iu) = (
F(0, T ∗

i , T ∗
i−1)

)R+iu

× exp

(

(R + iu)

∫ T ∗
i

0

[
−θs

(
Λi (s)

)
+ θs

(
Λi−1(s)

)]
ds

)

×
exp

(∫ T ∗
i

0 θs

(
(R + iu)λ(s, T ∗

i ) + Λi−1(s)
)
ds

)

exp

(∫ T ∗
i

0 θs
(
Λi−1(s)

)
ds

)

= (
F(0, T ∗

i , T ∗
i−1)

)R+iu exp

(∫ T ∗
i

0
θs

(
(R + iu)λ(s, T ∗

i ) + Λi−1(s)
)
ds

)

× exp

(∫ T ∗
i

0

[
(−R − iu)θs

(
Λi (s)

)
− (1 − R − iu)θs

(
Λi−1(s)

)]
ds

)

. (51)

Taking into account the choice of the drift coefficient in (19), the cumulant function
θs (see (9)) and the moment-generating function MXT∗

i
, respectively, become

θs(R + iu) = (R + iu)

∫

R

(
ex(R+iu) − 1

R + iu
− (exλ(s,T ∗

1 ) − 1)

λ(s, T ∗
1 )

)
FT ∗
s (dx)

+cs
2

(R + iu)
(
R + iu − λ(s, T ∗

1 )
)

(52)

and

MXT∗
i

(R + iu) = (
F(0, T ∗

i , T ∗
i−1)

)R+iu exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)
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× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

(
e(R+iu)xλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

× exp

(

−(R + iu)

∫ T ∗
i

0

∫

R

exΛ
i−1(s)

(
exλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

. (53)

Finally, from (48) and (53) we conclude that

Cplt0(T
∗
i , K ) = K̃i B(0, T ∗

i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

[(
e(R+iu)xλ(s,T ∗

i ) − 1
)

− (R + iu)
(
exλ(s,T ∗

i ) − 1
)]

FT ∗
s (dx)ds

)

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)}
du

(R + iu)(R + iu − 1)
. (54)

4 Sensitivity Analysis

4.1 Greeks Computed by the Malliavin Approach

In this section we present an application of theMalliavin calculus to the computation
of Greeks within the Lévy forward process model. We refer to the literature, for
example Di Nunno et al. (2008) [2] as well as Nualart (2006) [15] for details on the
theoretical aspects of Malliavin calculus. Another important reference is Yablonski
(2008) [19]. See also the Appendix for a short presentation of definitions and results
used in the sequel. The forward process F(t, T ∗

i , T ∗
i−1) under the forward measures

PT ∗
i−1

can be written as stochastic exponential

F(t, T ∗
i , T ∗

i−1) = F(0, T ∗
i , T ∗

i−1)Et
(
Z(·, T ∗

i )
)

(55)

with

Z(t, T ∗
i ) =

∫ t

0

√
csλ(s, T ∗

i )dW
T ∗
i−1

s +
∫ t

0

∫

R

(exλ(s,T ∗
i ) − 1)μ̃LT∗

i−1
(ds, dx). (56)

Expressed in a differential form we get the PT ∗
i−1
-dynamics

dF(t, T ∗
i , T ∗

i−1)

F(t−, T ∗
i , T ∗

i−1)
= √

ctλ(t, T ∗
i )dW

T ∗
i−1

t +
∫

R

(exλ(t,T ∗
i ) − 1)μ̃LT∗

i−1
(dt, dx), (57)

where F(t−, T ∗
i , T ∗

i−1) is the pathwise left limit of F(·, T ∗
i , T ∗

i−1) at the point t .
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As in the classical Malliavin calculus we are able to associate the solution of
(57) with the process Y (t, T ∗

i , T ∗
i−1) := ∂F(t,T ∗

i ,T ∗
i−1)

∂F(0,T ∗
i ,T ∗

i−1)
; called the first variation process

of F(t, T ∗
i , T ∗

i−1). The following proposition provides a simpler expression for
the Malliavin derivative operator Dr,0 when applied to the forward process rates
F(t, T ∗

i , T ∗
i−1) (see Di Nunno et al. (2008) [2], Theorem 17.4 and Yablonski (2008)

[19], Definition 17. for details). We will denote the domain of the operator Dr,0

in L2(Ω) by D1,2, meaning that D1,2 is the closure of the class of smooth random
variables S (see (100) in the Appendix).

Proposition 4.1 Let F(t, T ∗
i , T ∗

i−1)t∈[0,T ∗] be the solution of (57). Then F(t, T ∗
i ,

T ∗
i−1) ∈ D1,2 and the Malliavin derivative is given by

Dr,0F(t, T ∗
i , T ∗

i−1)

= Y (t, T ∗
i , T ∗

i−1)Y (r−, T ∗
i , T ∗

i−1)
−1F(r−, T ∗

i , T ∗
i−1)λ(r, T ∗

i )
√
cr1{r≤t}. (58)

4.1.1 Variation in the Initial Forward Price

In this section, we provide an expression for the Delta, the partial derivative of the
expectation Cplt0(T

∗
i , K ) with respect to the initial condition F(0, T ∗

i , T ∗
i−1) which

is given by

Δ(F(0, T ∗
i , T ∗

i−1)) = ∂Cplt0(T
∗
i , K )

∂F(0, T ∗
i , T ∗

i−1)
. (59)

The derivative with respect to the initial LIBOR rate is then an easy consequence.

Δ(L(0, T ∗
i )) = ∂Cplt0(T

∗
i , K )

∂L(0, T ∗
i )

= Δ(F(0, T ∗
i , T ∗

i−1))
∂F(0, T ∗

i , T ∗
i−1)

∂L(0, T ∗
i )

= δ∗
i Δ(F(0, T ∗

i , T ∗
i−1)), (60)

since

L(0, T ∗
i ) = 1

δ∗
i

(
F(0, T ∗

i , T ∗
i−1) − 1

)
. (61)

Let us define the set

T̃i =
{
hi ∈ L2([0, T ∗

i ]) :
∫ T ∗

i

0
hi (u)du = 1

}
. (62)
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Proposition 4.2 For all functions hi ∈ T̃i , we have

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
EPT∗

[ (
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

× exp

(∫ T ∗
i

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i

0
θs

(
Λi−1(s)

)
ds

)

×
(∫ T ∗

i

0

hi (u)dWT ∗
u

λ(u, T ∗
i )

√
cu

−
∫ T ∗

i

0

hi (u)Λi−1(u)du

λ(u, T ∗
i )

)]
. (63)

Proof We consider a more general payoff of the form H(F(T ∗
i , T ∗

i , T ∗
i−1)) such that

H : R −→ R is a locally integrable function satisfying

EPT∗
i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))
2
]

< ∞· (64)

First, assume that H is a continuously differentiable function with compact support.
Then we can differentiate inside the expectation and get

ΔH (F(0, T ∗
i , T ∗

i−1)) :=
∂EPT∗

i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))
]

∂F(0, T ∗
i , T ∗

i−1)

= EPT∗
i−1

[
H ′(F(T ∗

i , T ∗
i , T ∗

i−1))
∂F(T ∗

i , T ∗
i , T ∗

i−1)

∂F(0, T ∗
i , T ∗

i−1)

]

= EPT∗
i−1

[
H ′(F(T ∗

i , T ∗
i , T ∗

i−1))Y (T ∗
i , T ∗

i , T ∗
i−1)

]
. (65)

Using Proposition 4.1 we find for any hi ∈ T̃i

Y (T ∗
i , T ∗

i , T ∗
i−1) =

∫ T ∗
i

0
Du,0F(T ∗

i , T ∗
i , T ∗

i−1)
hi (u)Y (u−, T ∗

i , T ∗
i−1)du

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

. (66)

From the chain rule (see Yablonski (2008) [19], Proposition 4.8) we find

ΔH (F(0, T ∗
i , T ∗

i−1)) = EPT∗
i−1

[∫ T ∗
i

0
H ′(F(T ∗

i , T ∗
i , T ∗

i−1))Du,0F(T ∗
i , T ∗

i , T ∗
i−1)

× hi (u)Y (u−, T ∗
i , T ∗

i−1)du

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]

= EPT∗
i−1

[∫ T ∗
i

0
Du,0H(F(T ∗

i , T ∗
i , T ∗

i−1))

× hi (u)Y (u−, T ∗
i , T ∗

i−1)du

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]
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= EPT∗
i−1

[∫ T ∗
i

0

∫

R

Du,x H(F(T ∗
i , T ∗

i , T ∗
i−1))

× hi (u)Y (u−, T ∗
i , T ∗

i−1)duδ0(dx)

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]
, (67)

where δ0(dx) is the Dirac measure at 0.
By the definition of the Skorohod integral δ(·) (seeYablonski (2008) [19], Sect. 5),

we reach

ΔH (F(0, T ∗
i , T ∗

i−1))

= EPT∗
i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))δ

(
hi (·)Y (·−, T ∗

i , T ∗
i−1)δ0(·)

F(·−, T ∗
i , T ∗

i−1)λ(·, T ∗
i )

√
c·

)]
. (68)

However, the stochastic process

(
hi (u)Y (u−, T ∗

i , T ∗
i−1)

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

)

0≤u≤T ∗
i

(69)

is a predictable process, thus the Skorohod integral coincides with the Itô stochastic
integral and we get

ΔH (F(0, T ∗
i , T ∗

i−1))

= EPT∗
i−1

[

H(F(T ∗
i , T ∗

i , T ∗
i−1))

∫ T ∗
i

0

hi (u)Y (u−, T ∗
i , T ∗

i−1)dW
T ∗
i−1

u

F(u−, T ∗
i , T ∗

i−1)λ(u, T ∗
i )

√
cu

]

. (70)

By Lemma 12.28. p. 208 in Di Nunno et al. (2008) [2] the result (70) holds for any
locally integrable function H such that

EPT∗
i−1

[
H(F(T ∗

i , T ∗
i , T ∗

i−1))
2
]

< ∞. (71)

In particular, if one takes

H(F(T ∗
i , T ∗

i , T ∗
i−1)) = B(0, T ∗

i−1)
(
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

, (72)

we can express the derivatives of the expectation Cplt0(T
∗
i , K , δ∗

i ) with respect to
the initial condition F(0, T ∗

i , T ∗
i−1) in the form of a weighted expectation as follows

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)EPT∗

i−1

[ (
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

×
∫ T ∗

i

0

hi (u)Y (u−, T ∗
i , T ∗

i−1)dW
T ∗
i−1

u

λ(u, T ∗
i )

√
cu F(u−, T ∗

i , T ∗
i−1)

]
.

(73)



302 E. Eberlein et al.

We show easily that

Y (u−, T ∗
i , T ∗

i−1) = F(u−, T ∗
i , T ∗

i−1)

F(0, T ∗
i , T ∗

i−1)
, (74)

hence

Δ(F(0, T ∗
i , T ∗

i−1))

= B(0, T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
EPT∗

i−1

[
(
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

∫ T ∗
i

0

hi (u)dW
T ∗
i−1

u

λ(u, T ∗
i )

√
cu

]

. (75)

In accordance with (25) we can write

W
T ∗
i−1

t = WT ∗
t −

∫ t

0
Λi−1(s)

√
csds. (76)

By making a measure change using the fact (see (40)) that

dPT ∗
i−1

dPT ∗

∣∣∣∣
FT∗

i

= exp

(∫ T ∗
i

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i

0
θs

(
Λi−1(s)

)
ds

)
, (77)

we end up with

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

F(0, T ∗
i , T ∗

i−1)
EPT∗

[ (
F(T ∗

i , T ∗
i , T ∗

i−1) − K̃i
)+

× exp

(∫ T ∗
i

0
Λi−1(s)dLT ∗

s −
∫ T ∗

i

0
θs

(
Λi−1(s)

)
ds

)

×
(∫ T ∗

i

0

hi (u)dWT ∗
u

λ(u, T ∗
i )

√
cu

−
∫ T ∗

i

0

hi (u)Λi−1(u)

λ(u, T ∗
i )

du

)]
. (78)

4.2 Greeks Computed by the Fourier-Based
Valuation Method

Thanks to the Fourier-based valuation formula obtained in (45) and the structure
of the forward process model as an exponential semimartingale, we can calculate
readily the Greeks. We focus on the variation to the initial condition, i.e. Delta.

Proposition 4.3 Suppose there is a real number R ∈ (1, 1 + ε) such that the
moment-generating function of XT ∗

i
with respect toPT ∗

i−1
is finite at R, i.e. MXT∗

i
(R) <

∞, then
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Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu−1

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

(
e(R+iu)xλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

× exp

(

−
∫ T ∗

i

0

∫

R

exΛ
i−1(s)(R + iu)

(
exλ(s,T ∗

i ) − 1
)
FT ∗
s (dx)ds

)

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)}
du

R + iu − 1
. (79)

Proof Based on the Sect. 4 in Eberlein et al. (2010) [8], this proposition can be shown
easily.

4.3 Examples

4.3.1 Variance Gamma Process (VG)

We suppose that the jump component of the driving process LT ∗
(see (8)) is described

by a Variance Gamma process with the Lévy density ν given by

ν(dx) = FVG(x)dx (80)

such that

FVG(x) := 1

η|x | exp
⎛

⎝ θ

σ 2
x − 1

σ

√
2

η
+ θ2

σ 2
|x |

⎞

⎠ , (81)

where (θ, σ, η) are the parameters such that θ ∈ R, σ > 0 and η > 0.

Let us put B = θ
σ 2 and C = 1

σ

√
2
η

+ θ2

σ 2 and get

FVG(x) = exp (Bx − C |x |)
η|x | . (82)

In this case, the moment-generating function MXT∗
i
is given by

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z exp

(∫ T ∗
i

0

(cs z
2

(z − 1)λ2(s, T ∗
i ) + I VG(s, z)

)
ds

)

, (83)

where the generalized integral I VG(s, z) is given by
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I VG(s, z) :=
∫

R

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
FVG(x)dx

−
∫

R

z
(
exΛ

i (s) − exΛ
i−1(s)

)
FVG(x)dx . (84)

Now substituting FVG(x) by its explicit expression we get

I VG(s, z) =
∫

R

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
exp (Bx − C |x |) dx

η|x |
−

∫

R

z
(
exΛ

i (s) − exΛ
i−1(s)

)
exp (Bx − C |x |) dx

η|x |
=

∫ +∞

0

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
exp (Bx − Cx)

dx

ηx

−
∫ +∞

0
z
(
exΛ

i (s) − exΛ
i−1(s)

)
exp (Bx − Cx)

dx

ηx

−
∫ 0

−∞

(
ex(zλ(s,T ∗

i )+Λi−1(s)) − exΛ
i−1(s)

)
exp (Bx + Cx)

dx

ηx

+
∫ 0

−∞
z
(
exΛ

i (s) − exΛ
i−1(s)

)
exp (Bx + Cx)

dx

ηx
,

or

I VG(s, z) =
∫ +∞

0

[
e(zλ(s,T ∗

i )+Λi−1(s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]

dx

−
∫ +∞

0

[

z
e(Λ

i (s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]

dx

−
∫ 0

−∞

[
e(zλ(s,T ∗

i )+Λi−1(s)+B+C)x − e(Λ
i−1(s)+B+C)x

ηx

]

dx

+
∫ 0

−∞

[

z
e(Λ

i (s)+B+C)x − e(Λ
i−1(s)+B+C)x

ηx

]

dx

=
∫ +∞

0

[
e(zλ(s,T ∗

i )+Λi−1(s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]

dx

−
∫ +∞

0

[

z
e(Λ

i (s)+B−C)x − e(Λ
i−1(s)+B−C)x

ηx

]

dx

+
∫ +∞

0

[
e−(zλ(s,T ∗

i )+Λi−1(s)+B+C)x − e−(Λi−1(s)+B+C)x

ηx

]

dx

−
∫ +∞

0

[

z
e−(Λi (s)+B+C)x − e−(Λi−1(s)+B+C)x

ηx

]

dx .
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Using the notations

αi (s, z) = − (
zλ(s, T ∗

i ) + Λi−1(s) + B − C
)
, (85)

βi (s) = − (
Λi−1(s) + B − C

)
, (86)

γi (s) = − (
Λi (s) + B − C

)
, (87)

we end up with

I VG (s, z) =
∫ +∞
0

[
e−αi (s,z)x − e−βi (s)x

x
− z

e−γi (s)x − e−βi (s)x

x

]

dx

+
∫ +∞
0

[
e−(2C−αi (s,z))x − e−(2C−βi (s))x

x
− z

e−(2C−γi (s))x − e−(2C−βi (s))x

x

]

dx .

Using Frullani’s integral (see for details Ostrowski (1949) [16]), we can show that,
if α ∈ C and β ∈ C such thatRe(α) > 0,Re(β) > 0 and β

α
∈ C \ R− whereR− =

] − ∞; 0],

I(α,β) :=
∫ +∞

0

e−αx − e−βx

x
dx = Log

(
β

α

)
, (88)

where Log is the principal value of the logarithm. Consequently

I VG(s, z) = Log

(
βi (s)

αi (s, z)

)
− zLog

(
βi (s)

γi (s)

)

+Log

(
2C − βi (s)

2C − αi (s, z)

)
− zLog

(
2C − βi (s)

2C − γi (s)

)

= Log

(
βi (s)

αi (s, z)

)
+ Log

(
2C − βi (s)

2C − αi (s, z)

)

−z

(
Log

(
βi (s)

γi (s)

)
+ Log

(
2C − βi (s)

2C − γi (s)

))

= Log

(
βi (s) (2C − βi (s))

αi (s, z) (2C − αi (s, z))

)
− zLog

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
.

The moment-generating function MXT∗
i
becomes

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z
exp

(∫ T ∗
i

0

csz

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, z) (2C − αi (s, z))

)
ds

)

× exp

(
−

∫ T ∗
i

0
zLog

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)
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or

MXT∗
i
(R + iu) = (

F(0, T ∗
i , T ∗

i−1)
)R+iu

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, R + iu) (2C − αi (s, R + iu))

)
ds

)

× exp

(
−

∫ T ∗
i

0
(R + iu)Log

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)
.

The valuation formula becomes

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)

2π

∫

R

K̃ 1−R−iu
i MXT∗

i
(R + iu)

(R + iu)(R + iu − 1)
du

= K̃i B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, R + iu) (2C − αi (s, R + iu))

)
ds

)

× exp

(

−
∫ T ∗

i

0
(R + iu)Log

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)}
du

(R + iu)(R + iu − 1)
. (89)

The Delta is given by

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu−1

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Log

(
βi (s) (2C − βi (s))

αi (s, R + iu) (2C − αi (s, R + iu))

)
ds

)

× exp

(

−
∫ T ∗

i

0
(R + iu)Log

(
βi (s) (2C − βi (s))

γi (s) (2C − γi (s))

)
ds

)}
du

R + iu − 1
. (90)

4.3.2 Inhomogeneous Gamma Process (IGP)

We suppose that the jump component of the driving process LT ∗
, is described by

an inhomogeneous Gamma process (IGP), which has been introduced by Berman
(1981) [1] as follows



Option Pricing and Sensitivity Analysis … 307

Definition 4.4 Let A(t) be a nondecreasing function from R+ −→ R+ and B > 0.
A Gamma process with shape function A and scale parameter B is a stochastic
process (Lt )t≥0 on R+ such that:

1. L0 = 0;
2. Independent increments: for every increasing sequence of time points t0, . . . , tn ,

the random variables Lt0 , Lt1 − Lt0 , . . . , Ltn − Ltn−1 are independent;
3. for 0 ≤ s < t , the distribution of the random variable Lt − Ls is given by the

Gamma distribution Γ (A(t) − A(s); B).

We suppose that the shape function A is differentiable, hence we can write

A(t) = A(0) +
∫ t

0
Ȧ(s)ds (91)

for all t ∈ R+ where Ȧ denotes the derivative of A. In this case, the Lévy density of
the Gamma process L is given by

FG
s (x) = Ȧ(s)

e−Bx

x
1{x>0}. (92)

The moment-generating function (53) has the form

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z exp

(∫ T ∗
i

0

cs z

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0

∫

R

exΛ
i−1(s)

[(
ezxλ(s,T ∗

i ) − 1
)

− z
(
exλ(s,T ∗

i ) − 1
)]

FG
s (x)dxds

)

= (
F(0, T ∗

i , T ∗
i−1)

)z exp

(∫ T ∗
i

0

cs z

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)

∫

R

exΛ
i−1(s)

(
ezxλ(s,T ∗

i ) − 1
) e−Bx

x
1{x>0}dxds

)

× exp

(

−z
∫ T ∗

i

0
Ȧ(s)

∫

R

exΛ
i−1(s)

(
exλ(s,T ∗

i ) − 1
) e−Bx

x
1{x>0}dxds

)

= (
F(0, T ∗

i , T ∗
i−1)

)z exp

(∫ T ∗
i

0

( cs z
2

(z − 1)λ2(s, T ∗
i ) + Ȧ(s)I G(s, z)

)
ds

)

,

where

I G(s, z) =
∫ +∞

0

e(zλ(s,T ∗
i )+Λi−1(s)−B)x − e(Λ

i−1(s)−B)x

x
dx

−
∫ +∞

0
z
e(Λ

i (s)−B)x − e(Λ
i−1(s)−B)x

x
dx .
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Setting

αi (s, z) = − (
zλ(s, T ∗

i ) + Λi−1(s) − B
)
, (93)

βi (s) = − (
Λi−1(s) − B

)
, (94)

γi (s) = − (
Λi (s) − B

)
(95)

and using Frullani’s integral, we find that

I G(s, z) =
∫ +∞

0

[
e−αi (s,z)x − e−βi (s)x

x
− z

e−γi (s)x − e−βi (s)x

x

]
dx

= Log

(
βi (s)

αi (s, z)

)
− zLog

(
βi (s)

γi (s)

)

= Log

(
Λi−1(s) − B

zλ(s, T ∗
i ) + Λi−1(s) − B

)
− zLog

(
Λi−1(s) − B

Λi (s) − B

)
.

Therefore, we get the form

MXT∗
i
(z) = (

F(0, T ∗
i , T ∗

i−1)
)z
exp

(∫ T ∗
i

0

csz

2
(z − 1)λ2(s, T ∗

i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

zλ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(
−z

∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)

or

MXT∗
i
(R + iu) = (

F(0, T ∗
i , T ∗

i−1)
)R+iu

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

(R + iu)λ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(
−(R + iu)

∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)
.

The valuation formula becomes

Cplt0(T
∗
i , K ) = B(0, T ∗

i−1)

2π

∫

R

K̃ 1−R−iu
i MXT∗

i
(R + iu)

(R + iu)(R + iu − 1)
du

= K̃i B(0, T ∗
i−1)

2π

∫

R

du

(R + iu)(R + iu − 1)

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu
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× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

(R + iu)λ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(
−

∫ T ∗
i

0
(R + iu) Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)}
. (96)

The Greek Delta is given by

Δ(F(0, T ∗
i , T ∗

i−1)) = B(0, T ∗
i−1)

2π

∫

R

{(
F(0, T ∗

i , T ∗
i−1)

K̃i

)R+iu−1

× exp

(∫ T ∗
i

0

cs
2

(R + iu)(R + iu − 1)λ2(s, T ∗
i )ds

)

× exp

(∫ T ∗
i

0
Ȧ(s)Log

(
Λi−1(s) − B

(R + iu)λ(s, T ∗
i ) + Λi−1(s) − B

)
ds

)

× exp

(

−
∫ T ∗

i

0
(R + iu) Ȧ(s)Log

(
Λi−1(s) − B

Λi (s) − B

)
ds

)}
du

R + iu − 1
.

(97)
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A Appendix

A.1 Isonormal Lévy Process (ILP)

Let μ and ν be σ -finite measures without atoms on the measurable spaces (T,A )

and (T × X0,B), respectively. Define a new measure

π(dt, dz) := μ(dt)δΘ(dz) + ν(dt, dz) (98)

on a measurable space (T × X,G ), where X = X0 ∪ {Θ}, G = σ(A × {Θ},B)

and δΘ(dz) is the measure which gives mass one to the point Θ . We assume that the
Hilbert space H := L2(T × X,G , π) is separable.

Definition A.1 We say that a stochastic process L = {L(h), h ∈ H} defined on a
complete probability space (Ω,F , P) is an isonormal Lévy process (or Lévy process
on H ) if the following conditions are satisfied:

1. The mapping h −→ L(h) is linear;
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2. E[eixL(h)] = exp(Ψ (x, h)), where Ψ (x, h) is equal to

∫

T×X

(
(eixh(t,z) − 1 − ixh(t, z))1X0(z) − 1

2
x2h2(t, z)1Θ(z)

)
π(dt, dz). (99)

A.2 The Derivative Operator

Let S denote the class of smooth random variables, that is the class of random
variables ξ of the form

ξ = f (L(h1), . . . , L(hn)), (100)

where f belongs to C∞
b (Rn), h1, . . . , hn are in H , and n ≥ 1. The setS is dense in

L p(Ω) for any p ≥ 1.

Definition A.2 The stochastic derivative of a smooth random variable of the form
(100) is the H -valued random variable Dξ = {Dt,xξ, (t, x) ∈ T × X} given by

Dt,xξ =
n∑

k=1

∂ f

∂yk
(L(h1), . . . , L(hn))hk(t, x)1Θ(x)

+ ( f (L(h1) + h1(t, x), . . . , L(hn) + hn(t, x))

− f (L(h1), . . . , L(hn))) 1X0(x). (101)

Wewill consider Dξ as an element of L2(T × X × Ω) ∼= L2(Ω; H); namely Dξ

is a random process indexed by the parameter space T × X .

1. If the measure ν is zero or hk(t, x) = 0, k = 1, . . . , n when x �= Θ then Dξ

coincides with the Malliavin derivative (see, e.g. Nualart (2006) [15] Definition
1.2.1 p.38).

2. If the measure μ is zero or hk(t, x) = 0, k = 1, . . . , n when x = Θ then Dξ

coincides with the difference operator (see, e.g. Picard (1996) [18]).

A.3 Integration by Parts Formula

Theorem A.3 Suppose that ξ and η are smooth random variables and h ∈ H. Then

1.

E[ξL(h)] = E[〈Dξ ; h〉H ]; (102)
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2.

E[ξηL(h)] = E[η 〈Dξ ; h〉H ] + E[ξ 〈Dη; h〉H ] + E[〈Dη; h1X0Dξ
〉
H ]. (103)

As a consequence of the above theorem we obtain the following result:

The expressionof the derivative Dξ given in (101) does not dependon the particular
representation of ξ in (100).
The operator D is closable as an operator from L2(Ω) to L2(Ω; H).

We will denote the closure of D again by D and its domain in L2(Ω) by D1,2.

A.4 The Chain Rule

Proposition A.4 (see Yablonski (2008), Proposition 4.8) Suppose F = (F1, F2,
. . . , Fn) is a random vector whose components belong to the space D1,2. Let φ ∈
C 1(Rn) be a function with bounded partial derivatives such that φ(F) ∈ L2(Ω).
Then φ(F) ∈ D1,2 and

Dt,xφ(F) =
⎧
⎨

⎩

n∑

i=1

∂φ

∂xi
(F)Dt,Θ Fi ; x = Θ

φ(F1 + Dt,x F1, . . . , Fn + Dt,x Fn) − φ(F1, . . . , Fn); x �= Θ.

(104)

A.5 Regularity of Solutions of SDEs Driven
by Time-Inhomogeneous Lévy Processes

We focus on a class of models in which the price of the underlying asset is given
by the following stochastic differential equation (see Di Nunno et al. [2] and Petrou
[17] for details)

dSt = b(t, St−)dt + σ(t, St−)dWt

+
∫

R0

ϕ(t, St−, z)Ñ (dt, dz), (105)

S0 = x,

where R0 := Rd \ {0Rd }, x ∈ Rd , {Wt , 0 ≤ t ≤ T } is an m-dimensional standard
Brownian motion, Ñ is a compensated Poisson random measure on [0, T ] ×
R0 with compensator νt (dz)dt . The coefficients b : R+ × Rd −→ Rd , σ : R+ ×
Rd −→ Rd × Rm and ϕ : R+ × Rd × R −→ Rd × R, are continuously differen-
tiablewith boundedderivatives and the family of positivemeasures (νt )t∈[0,T ] satisfies∫ T
0 (

∫
R0

(‖z‖2 ∧ 1)νt (dz))dt < ∞ and νt ({0}) = 0. The coefficients are assumed to
satisfy the following linear growth condition
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‖b(t, x)‖2 + ‖σ(t, x)‖2 +
∫

R0

‖ϕ(t, x, z)‖2νt (dz) ≤ C(1 + ‖x‖2), (106)

for all t ∈ [0, T ], x ∈ Rd , where C is a positive constant. Furthermore, we suppose
that there exists a function ρ : R −→ R with

sup
0≤t≤T

∫

R0

|ρ(z)|2νt (dz) < ∞, (107)

and a positive constant K such that

‖ϕ(t, x, z) − ϕ(t, y, z)‖ ≤ K |ρ(z)|‖x − y‖, (108)

for all t ∈ [0, T ], x, y ∈ Rd and z ∈ R0.
In the sequel we provide a theorem which proves that under specific conditions

the solution of a stochastic differential equation belongs to the domain D1,2.

Theorem A.5 Let (St )t∈[0,T ] be the solution of (105). Then St ∈ D1,2 for all t ∈
[0, T ] and the derivative Dr,0St satisfies the following linear equation

Dr,0St =
∫ t

r

∂b

∂x
(u, Su−)Dr,0Su−du + σ(r, Sr−)

+
∫ t

r

∂σ

∂x
(u, Su−)Dr,0Su−dWu

+
∫ t

r

∫

R0

∂ϕ

∂x
(u, Su−, y)Dr,0Su− Ñ (du, dy) (109)

for 0 ≤ r ≤ t a.e. and Dr,0St = 0 a.e. otherwise.

As in the classical Malliavin calculus we are able to associate the solution of (105) to
the first variation processYt := ∇x St . Then,wewill also provide a specific expression
for Dr,0St , the Wiener directional derivative of the St .

Proposition A.6 Let (St )t∈[0,T ] be the solution of (105). Then the derivative satisfies
the following equation

Dr,0St = YtY
−1
r− σ(r, Sr−)1{r≤t} a.e. (110)

where (Yt )t∈[0,T ] is the first variation process of (St )t∈[0,T ].
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Inside the EMs Risky Spreads
and CDS-Sovereign Bonds Basis

Vilimir Yordanov

Abstract The paper considers a no-arbitrage setting for pricing and relative value
analysis of risky sovereign bonds. The typical case of an emerging market country
(EM) that has bonds outstanding both in foreign hard currency (Eurobonds) and local
soft currency (treasuries) is inspected. The resulting two yield curves give rise to a
credit and currency spread that need further elaboration.We discuss their propermea-
surement and also derive and analyze the necessary no-arbitrage conditions that must
hold. Then we turn attention to the CDS-Bond basis in this multi-curve environment.
For EM countries the concept shows certain specifics both in theoretical background
and empirical performance. The paper further focuses on analyzing these peculiari-
ties. If the proper measurement of the basis in the standard case of only hard currency
debt being issued is still problematic, the situation is much more complicated in a
multi-curve setting when a further contingent claim on the sovereign risk in the face
of local currency debt curve appears. We investigate the issue and provide relevant
theoretical and empirical input.

Keywords HJM · Foreign debt · Domestic debt · Z-Spread · CDS-Bond basis

1 Introduction

Local currency debt of EM sovereigns became a hot topic both for practitioners and
academics in the recent years.Major investment banks and asset managers consider it
a separate asset class and publish regularly special local currency investment reports.
A joint working group of IMF, WB, EBRD, and OECD demonstrated recently an
official interest in a thorough investigation of this market segment and support for
its development, thus forming a strict policy agenda. It was recognized that not only
do the local bonds complete the market and thus bring market efficiency, but also
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they could act as a shock absorber to the volatile capital inflows. Furthermore, they
provide flexibility to the governments in financing their budget deficit. However,
these instruments are not well understood from a no-arbitrage point of view and a
formal setting is lacking. Such a setting would provide not only a better picture for
their inherent risk-return characteristics, but would also be an indispensable tool for
market research and strategy. The aim of this paper is exactly to focus attention on
the large set of open questions the local currency debt gives rise to and lay the ground
for a formal relative value analysis with a special emphasis on the CDS-Bond basis.

The paper begins with our general modeling no-arbitrage approach under an HJM
reduced credit risk setting. It serves as a basis and gives a financial engineering intu-
ition about the nature of the problem. The default of the sovereign is represented as
the first jump of a counting process. For the dynamics of the interest rates and the
exchange rate we use jump diffusions controlling the jumps and correlations in a
suitable way, so that we have high precision in capturing the structural macrofinan-
cial effects. We derive the no-arbitrage conditions that must hold in that multi-curve
environment and then analyze their informational content. Then we turn to an appli-
cation related to correctly extracting the credit and currency spreads and measuring
the CDS-Bond basis on a broader scope. This provides basic building blocks for
relative value trades under presence of the local currency yield curve which could
serve as an additional pillar.

The literature on integrating the foreign and domestic debt of a risky sovereign
in a consistent way is at a nascent stage both from an academic and practitioners’
point of view. Related technically but different in essence is the work of Ehlers and
Schönbucher [9] who give a reduced formmodel for CDS of an obligor denominated
in different currencies which accounts for dependence between the exchange rate
and the credit spread. Eberlain and Koval [8] give a high generalization of the cross-
currency term structure models, but similarly they deal only with hard currencies.
Regarding the CDS-Bond basis, Berd et al. [2] provide a thorough analysis of the
shortcomings of the Z-spread as a risky spread metric.1 Alizalde et al. [10] further
discuss the issue and provide extensive simulations. Interesting new measures for
the basis are given in Bernhard and Mai [3] which need further elaboration and
development. However, all these references deal with the single-curve case with an
extension to the multi-curve case pending.

2 Local Currency Bonds No-Arbitrage HJM Setting

In this section we first lay the foundations in brief for pricing of risky debt in a
general reduced form setting. Then we add the local currency debt into the picture
and discuss the risky spreads. We conclude by derivation and analysis of the no-
arbitrage conditions.

1The Z-spread represents a simple shift of the discounting risk-free curve so that the price of the
risky bond is attained.
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2.1 Risky Bonds Under Marked Point Process

The first task is to model default in a suitable way. We start with the most general
formulation and then modify it appropriately. We consider a filtered probability
space (Ω, (Gt )t≥0 , P) which supports an n-dimensional Brownian motion WP =
(W1,W2, . . . ,Wn) under the objective probability measure P and a marked point
processμ : (

Ω, B(R+), ε
) → R+ withmarkers (τi , Xi ) representing the jump times

and their sizes in a measurable space (E, ε), where E = [0, 1] and by ε we denote
the Borel subsets of E . We assume that μ(ω; dt, dx) has a separable compensator
of the form:

υ : (
Ω, B(R+), ε

) → R+ and υ (ω; dt, dx) = h(ω; t)Ft (ω; dx)dt ,

where h(ω; t) = ∫
R+ υ (ω; t, dx) is a Gt measurable intensity and the marks have

a conditional distribution of the jumps of Ft (ω; dx). Thus, we have the identity∫
E Ft (ω; dx) = 1. Furthermore, we can define the total loss function L(ω; t) =∫ t
0

∫
E l(ω; s, x)μ(ω; ds, dx) and the recovery R(ω; t) = 1 − ∫ t

0

∫
E l(ω; s, x)μ

(ω; ds, dx). The function l(ω; t, x) scales the marks in a suitable way, and hav-
ing control over it, we can define it such that our model is tractable enough. We
define also the sum of the jumps by S(ω; t) = ∫ t

0

∫
E xμ(ω; ds, dx) and their number

by N (ω; t) = ∫ t
0

∫
E μ(ω; ds, dx).

Effectively, the marked point process as a sequence of random jumps (τi ,Xi ) is
characterized by the probability measure μ(ω; dt, dx), which gives the number of
jumps with size dx in a small time interval of dt. The compensator υ (ω; t, dx)
provides a full probability characterization of the process. It incorporates in itself
two effects. On one hand, we have the intensity h(ω; t)dt , which gives the condi-
tional probability of jump of the process in a small time interval of dt incorporating
the whole market information up to t . On the other hand, we have the conditional
distribution Ft (ω; dx) of the markers X in case of a jump realization.

We can look at the jumps of the marked point process as sequential defaults of
an obligor at random times τi that lead to losses Xi at each of them. They can also
be considered a set of restructuring events leading to losses for the creditors. Under
this general setting, the prices of the riskless and risky bonds are given by:

• Riskless bond:

P(t, T ) = EQ

(
exp

(
−

∫ T

t
r(s)ds

)
|Gt

)
= exp

(
−

∫ T

t
f (t, s)ds

)
(1)
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• Risky bond:

P∗(t, T ) = EQ

(
exp

(
−

∫ T

t
r(s)ds

)
R(ω; T )|Gt

)

= R(t) exp

(
−

∫ T

t
f ∗(t, s)ds

)
, (2)

where r(t), f (t, T ), and f ∗(t, T ) are the riskless spot, riskless forward, and risky
forward rates respectively.

Depending on how we specify the convention of recovery, we can get further
simplification of the formulas. However, this should be well motivated and come
either from the legal definitions of the debt contracts or their economic grounding.

Under a recovery of market value (RMV) setting, default is a percentage mark
down, q, from the previous recovery. So we have R(ω; τi ) = (1 − q(ω; τi , Xi ))

R(ω; τi−) and l(ω; τi ) has the form l(ω; τi ) = −q(ω; τi , Xi ) × R(ω; τi−). This
definition allows us to write:

μ(ω, dt, dx) =
∑

s>0

1{ΔN (ω,s)�=0}δ(s,ΔN (ω,s))(dt, dx)

dR(ω; t) = −R(ω; t)
∫

E
q (ω; t, x) μ(ω; dt, dx); R(ω; 0) = 1

and if we assume no jumps of the intensity and the risk-free rate at default times
(contagion effects), we have no change for the risk-free bond pricing formula and
for the risky one and as in [13] we get:

P∗RMV (t, T ) = EQ

(

exp

(

−
∫ T

t
r(s)ds

)

R(ω; T )|Gt

)

= R(t)EQ

(

exp

(

−
∫ T

t
(r(s) + h(s)

∫

E
q (ω; s, x) Fs(dx))ds

)

|Gt

)

= R(t) exp

(

−
∫ T

t
f ∗RMV (t, s)ds

)

(3)

Note that within this setting there is no “last default”. The intensity is defined for
the whole marked point process and not just for a concrete single default time, so it
does not go to zero after default realizations. This combinedwith the fact that intensity
is continuous makes the market filtration Gt behave like a background filtration in
the pricing formulas. So we can avoid using the generalized Duffie, Schroder, and
Skiadas [7] formula. Furthermore, we can denote qe(t) = ∫

E q (ω; t, x) Ft (dx) to be
the expected loss. Sowe have that the pricing formula is dependent on the generalized
intensity h(t)qe(t). Due to the multiplicative nature of the last expression, only
frommarket information, as discussed in Schönbucher (2003), we cannot distinguish
between the pure intensity effect h(t) and the recovery induced one qe(t).
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Under a recovery of par (RP) setting, in case of default, the recovery is a separate
fixed or random quantity independent of the default indicator and the risk-free rate.
So we have E = {0, 1 − R (ω)} and υ (ω; dt, dx) = h(ω; t)(1 − Re)dt with Re =
EQ(R (ω) | Gt ). Since we have just one jump, we can write:

μ(ω, dt, dx) = 1{ΔN (ω,t)�=0}δ(t,ΔN (ω,t))(dt, dx)

The bond price is:

P∗RP(t, T ) = EQ

(
exp

(
−

∫ T

t
r(s)ds

)
(
R (ω) 1{τ≤T } + 1{τ>T }

) |Gt

)

= 1{τ>t} exp
(

−
∫ T

t
f ∗RP(t, s)ds

)
(4)

In contrast to RMV, here, as discussed in Schönbucher (2003), he can distinguish
between the pure intensity and recovery induced effects.

2.2 Model Formulation

In this section we develop our HJM model for pricing of local and foreign currency
bonds of a risky country. However, before this being done formally, it is essential
to elaborate on the nature of the problem. Although we do not put here explicitly
macrofinancial structure, but just proxy it by jumps and correlations, it, by all means,
stays in the background and must be conceptually considered.

2.2.1 General Notes

A risky emerging market country can have bonds denominated both in local and
foreign currency that give rise to two risky yield curves and risky spreads—credit
and currency. Generally, the latter arise due to the possibility of the respective credit
events to occur and their severity. To investigate them, formal assumptions are needed
both on their characteristics and interdependence.

We will consider that the two types of debt have different priorities. The country
is first engaged to meeting the foreign debt obligation from its limited international
reserves. The impossibility of this being done leads to default or restructuring. In
both cases, we have a credit event according to the ISDA classification. The foreign
debt has a senior status. The spread that arises reflects the credit risk of the country.
It is a function of: (1) the probability of the credit event to occur; (2) the expected
loss given default; (3) the risk aversion of the market participants to the credit event.



320 V. Yordanov

The domestic debt economically stands differently. It reflects the priority of the
payments in hard currency and it incurs instantly the losses in case of default of
the country. So this debt is the first to be affected by a default and is subordinated.
Technically, the credit event can be avoided under a flexible exchange rate regime
because the country can always make a debt monetization and pay the amounts due
in local currency taking advantage of the fact that there is no resource constraint on
it. However, the price for this is inflation pick-up and exchange rate depreciation.
This leads to real devaluation of the domestic debt. It is exactly the seigniorage and
the dilution effect that cause the loss in the value.2 This resembles the case of a firm
issuingmore equity to avoid default. The spread of the domestic debt over the foreign
one forms the currency spread. Its nature is very broad, and it is not only due to the
currency mismatch. Namely, it is a function of: (1) the probability of the credit event
to occur and the need for monetization; (2) the negative side effect of the credit event
on the exchange rate by a sudden depreciation of the latter; (3) the volatility of the
exchange rate; (4) the expected depreciation of the exchange rate without taking into
consideration the monetization; (5) the risk aversion of market participants to the
credit event and the need for monetization, the sudden exchange rate depreciation
and its size; (6) the risk aversion of the market participants to the volatility of the
exchange rate. All these effects are captured by our model.

2.2.2 Multi-currency Risky Bonds Model

We use the setting of Sect. 2.1 modified to a multi-currency debt. Firstly, we consider
the case of no monetization and then analyze the case with monetization. Secondly,
to avoid using an additional marked point process, and thus a second intensity, the
default on the foreign debt is modeled indirectly. Namely, we assume that default on
domestic debt leads to default on foreign debt, but due to the different priority of the
two, we have just different losses incurred, respectively recoveries. This means that
by controlling recoveries we control default and the inherent subordination without
imposing too much structure. If the default on the domestic debt is so strong that
it leads to a default on the foreign debt as well, we incur zero recovery on the
domestic debt and some positive one on the foreign debt. If the insolvency is mild,
we have a loss only on the domestic debt, so we incur some positive recovery on
the domestic debt and a full recovery on the foreign debt. Thirdly, for notational
purposes, we take as a benchmark Germany and EUR as the base hard currency.
Lastly, we employ the recovery of market value assumption. The reason for this is
twofold. On one hand, in that way, we are consistent with the HJM methodology of
Schönbucher [12] for a single risky curve under RMV and produce parsimonious
no-arbitrage conditions for the extension to a multi-curve environment. On the other

2This pattern can be observed historically for almost all EM countries resorting to a galloping
inflation to avoid a nominal domestic debt default. The Russian default of 1998 somehow seems to
be a partial notable exception where there was along with the inflation surge an actual default on
certain ruble (RU R) bonds—GKOs and OFZs.
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Fig. 1 Risky spreads

hand, as pointed out in Bonnaud et al. [5], for bonds denominated in a different
currency than the numerator employed in discounting, the RMV assumption should
be the working engine. Their argument is exactly as ours above, in case of default,
the sovereign would rather dilute by depreciating the exchange rate and thus the
remaining cash flows of the bond produce in essence the RMV structure. Moreover,
rather than using EUR denominated bonds, we could take advantage of the CDS
quotes and produce synthetic bonds having an RMV recovery structure. Using them
is actually preferable for empirical work since major academic studies argue that it is
the CDSmarket that first captures the market information about the credit risk stance
of the risky sovereign. Furthermore, with a few exceptions, if the EM sovereigns have
in most cases both well developed local currency treasury markets and are subject to
CDS quotation, they do have only few Eurobonds outstanding. Figure1 represents
the typical situation the risky sovereign faces.

Mathematical formulation We continue with the model setup. Firstly, we give the
suitable notation and assumptions. Thenwemove to the derivation of the no-arbitrage
conditions and the pricing.

• Notation
fEU R(t, T )—nominal forward rate, EUR, Ger.
f ∗
EU R(t, T )—nominal forward rate, EUR, EM
f ∗
LC(t, T )—nominal forward rate in LC, EM

rEU R(t)—nominal short rate, EUR, Ger.
r∗
EU R(t)—nominal short rate, EUR, EM
r∗
LC(t)—nominal short rate in LC, EM
h∗
EU R(t, T ) = f ∗

EU R(t, T ) − fEU R(t, T )—credit spr., EM
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h∗
LC,EU R(t, T ) = f ∗

LC(t, T ) − f ∗
EU R(t, T )—currency spr., EM

h∗
LC(t, T ) = f ∗

LC(t, T ) − fEU R(t, T )—general currency spr., EM

PEUR(t, T ) = exp(− ∫ T
t fEU R(t, s)ds)—bond, EUR, Ger.

P∗
f,EU R(t, T ) = R f,EU R(t) exp(− ∫ T

t f ∗
EU R(t, s)ds)—for. bond price., EUR, EM

P∗
d,LC (t, T ) = Rd,LC (t) exp(− ∫ T

t f ∗
LC(t, s)ds)—dom. bond price., LC, EM

BEUR(t) = exp(
∫ t
0 rEU R(s)ds)—bank account, EUR, Ger.

B∗
f,EU R(t) = R f,EU R(t) exp(

∫ t
0 r

∗
EU R(s)ds)—for. bank account, EUR, EM

B∗
d,LC(t) = Rd,LC(t) exp(

∫ t
0 r

∗
LC(s)ds)—dom. bank account, LC, EM

X (t)—exchange rate, EUR for 1 LC, X̃(t)—exchange rate, LC for 1 EUR
R f,EU R(t)—bond recovery, EUR, EM, Rd,LC(t)—bond recovery, LC, EM

We use the asterisk to denote risk, the first letter (d or f ) to denote domestic or
foreign debt, and finally the currency of denomination is shown as EU R or LC.3

• Currency denominations
P∗
d,EU R(t, T ) = X (t)P∗

d,LC(t, T )—dom. bond, EUR
P∗
f,LC(t, T ) = X̃(t)P∗

f,EU R(t, T )—for. bond, LC
B∗
d,EU R(t) = X (t)B∗

d,LC(t)—dom. bank account, EUR
B∗

f,LC(t) = X̃(t)B∗
f,EU R(t)—for. bank account, LC

• Intensities

Foreign debt, EUR:
Intensity: hEUR(t) = h(t)
Compensator: hEUR(t)qe,EU R(t) = h(t)

∫
E q f,EU R (ω; t, x) Ft (dx)

Domestic debt, LC:
Intensity: hLC(t) = h(t)
Compensator: hLC(t)qe,LC(t) = h(t)

∫
E qd,LC (ω; t, x) Ft (dx)

The compensator (generalized intensity) characterizes default. Controlling in a
suitable way the recovery, we can control the compensator and thus the default
event. We turn attention now to the dynamics of the instruments under considera-
tion.

• Forward rates
d fEU R(t, T ) = αEU R(t, T )dt + ∑n

i=1 σEU R,i (t, T )dW P
i (t)

d f ∗
EU R(t, T ) = α∗

EU R(t, T )dt + ∑n
i=1 σ∗

EU R,i (t, T )dW P
i (t)

+∫
Eδ∗

EU R(x, t, T )μ(dx, dt)

3It must be further noted that we actually used standard definitions for the risky forward rates as
in Schönbucher [12]. Namely, f ∗

EU R/LC (t, T ) = − ∂
∂T log P∗

f,EU R/d,LC (t, T ) with terminal condi-
tions P∗

f,EU R/d,LC (T, T ) = R f,EU R/d,LC (T ). The risky bank accounts economically just represent
a unit of currency invested at the respective short rates and continuously rolled over accounting for
any default losses. However, since the forward rates, resp. the bonds, are our basic modeling object,
it would be more precise to consider the bank accounts derived quantities from them similar to
Björk et al. [4] without going here deeper into the modified technical details.
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d f ∗
LC (t, T ) = α∗

LC(t, T )dt + ∑n
i=1 σ∗

LC,i (t, T )dW P
i (t)

+∫
Eδ∗

LC(x, t, T )μ(dx, dt)
We assume that in case of default there is a market turmoil leading to a jump in
both curves. At maturity T , the EU R curve jumps by a size of

∫
Eδ∗

EU R(x, t, T )μ
(dx, dt), and that of the local currency by

∫
Eδ∗

LC(x, t, T )μ(dx, dt). The terms
δ∗
EU R(x, t, T ) and δ∗

LC(x, t, T ) show the jump sizes of the respective curves for
every maturity. As indicated at the beginning of the section, everywhere we will
work under the market filtration Gt so both the Brownian motions and the point
process are adapted to it.

• Recoveries
dR f,EU R(t)
R f,EU R(t) = − ∫

E q f,EU R(x, t)μ(dx, dt)

dRd,LC (t)
Rd,LC (t) = − ∫

E qd,LC(x, t)μ(dx, dt)

After each default we have a devaluation of the respective bond by an expected
value of

∫
Eq f/d(x, t)μ(dx, dt). The stochasticity of the loss is captured by the

random jump size q(., .) as elaborated in Sect. 2.1.

• Bank accounts
dBEUR(t)
BEUR(t) = rEU R(t)dt

dB∗
f,EU R(t)

B∗
f,EU R(t) = r∗

EU R(t)dt − ∫
E q f,EU R(x, t)μ(dx, dt)

dB∗
d,LC (t)

B∗
d,LC (t) = r∗

LC(t)dt − ∫
E qd,LC(x, t)μ(dx, dt)

• Exchange rate
dX (t)
X (t) = αX (t)dt + ∑n

i=1 σX,i (t)dW P
i (t) − ∫

EδX (x, t)μ(dx, dt)
We assume that in case of default the market turmoil causes an exchange rate
devaluation by

∫
EδX (x, t)μ(dx, dt).

• Bond prices

PEUR(t, T ) = exp(− ∫ T
t fEU R(t, s)ds) = EQ f

(exp(− ∫ T
t rEU R(s)ds)|Gt )

P∗
f,EU R(t, T ) = R f,EU R(t) exp(− ∫ T

t f ∗
EU R(t, s)ds)

= EQ f
(exp(− ∫ T

t rEU R(s)ds)R f,EU R(T )|Gt )

P∗
d,EU R(t, T ) = P∗

d,LC (t, T )X (t) = Rd,LC(t)X (t) exp(− ∫ T
t f ∗

LC(t, s)ds)

= EQ f
(exp(− ∫ T

t rEU R(s)ds)Rd,LC (T )X (T )|Gt )

It must be emphasized that the effects of exchange rate, recovery, and the expected
devaluation sizes are incorporated in the respective forward rates of the bonds.
Furthermore, the expectations are taken under Q f , the foreign risk-neutral mea-
sure.
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• Arbitrage

Under standard regularity conditions, for the system to be free of arbitrage, all
traded assets denominated in euro must have a rate of return rEU R under Q f . This
means that the processes:

PEUR(t, T )

BEUR(t)
,
B∗

f,EU R(t)

BEUR(t)
,
P∗
f,EU R(t, T )

BEUR(t)
,
B∗
d,LC(t)X (t)

BEUR(t)
,
P∗
d,LC (t, T )X (t)

BEUR(t)

must be local martingales under Q f . For our purposes being martingales would
be enough.
Taking the stochastic differentials of the upper expressions, omitting the techni-
calities to the appendix, we can get the respective no-arbitrage conditions.

• Spreads:

r∗
EU R(t) − rEU R(t) = h(t)ϕq f,EU R (t) (5.1)

r∗
LC(t) − r∗

EU R(t) = −αX (t) − φ(t)σX (t)
+h(t)(ϕδX (t) − ϕqd,LC ,δX (t) + ϕqd,LC (t) − ϕq f,EU R (t))

(5.2)

• Drifts:

αEU R(t, T ) = σEU R(t, T )
∫ T
t σEU R(t, v)dv − σEU R(t, T )φ(t)

α∗
EU R(t, T ) = σ∗

EU R(t, T )
∫ T
t σ∗

EU R(t, v)dv − σ∗
EU R(t, T )φ(t)

+hEUR(t)ϕ
q f,EU R ,δX
θ∗
EU R

(t)

α∗
LC(t, T ) = σ∗

LC(t, T )
∫ T
t σ∗

LC(t, v)dv − σ∗
LC(t, T )φ(t) − σ∗

LC(t, T )σX (t, T )

+hLC(t)ϕqd,LC ,δX
θ∗
LC

(t),

where we have used the notation:

θ∗
EU R = exp(− ∫ T

t δ∗
EU R(x, t, s)ds) , θ∗

LC = exp(− ∫ T
t δ∗

LC(x, t, s)ds)

ϕ
x,y,...
a.b,... (t) = ∫

E (ab . . .)((1 − x)(1 − y) . . .)Φ(t, x)Ft (dx)

and used vector notation and scalar products where necessary for simplicity.

ByΦ(t, x) andφ(t)we denoted the Girsanov’s kernels of the counting process and
the Brownian motion respectively when changing the probability measure from P
to Q f . The term ϕ(t) represents the scaled expected jump sizes of the counting
process. We can give the interpretation that φ(t) is the market price of diffusion
risk and ϕ(t) is the market price of jump risk. Parametrizing the volatilities and
the market prices of risk, as well as imposing suitable dynamics for h(t), we give a
full characterization of our system. Furthermore, the intensity could be a function
of the underlying processes of the rates, so we could get correlation between the
intensity, the interest rates, and the exchange rate.
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Spreads diagnostics from a reduced form point of view It is important to give a deeper
interpretation of the no-arbitrage conditions and see which factors drive the credit
and currency spreads. Despite the heavy notation, the analysis actually goes fluently.
The drift equations give the modified HJM drift restrictions. The slight change from
the classical riskless case is due to the jumps that arise. Equation (5.1) shows that the
credit risk is proportional to the intensity of default and the scaled expected LGD by
the coefficient controlling the risk aversion. The higher they are, the higher the spread
is. Equation (5.2) gives the currency spread. It arises due to twomain reasons. Firstly,
the intensity of default and the difference between the two LGDs in local currency
and euro, scaled by the coefficient for the risk aversion, act as in the previous case.
They also make explicit the subordination. Secondly, the expected local currency
depreciation, its volatility, and the risk aversion to diffusion risk act similarly to
the standard uncovered interest parity (UIP) relationship. The higher they are, the
higher the spread is. It is both important and interesting to note that inflation does not
appear directly and it influences the spreads, as the next section shows, only through
a secondary channel.

Monetization The analysis so far considered a loss of 1 − Rd,LC(T ) on default of
the domestic debt. However, if a full monetization is applied, then we would have
Rd,LC(T ) = 1 and thus ϕqd,LC (t) = 0 and ϕqd,LC ,δX (t) = 0. If such a monetary injec-
tion is neutral to nominal values, it is certainly not to real ones. Devaluation arises
due to the negative market sentiment following the default and the higher amount of
money in circulation. Its effect can be measured differently based on what we take
as a base—the price index or the exchange rate. Most naturally, we can expect both
of them to depreciate due to the structural macrolinks that exist between these vari-
ables. For quantifying the amount we would need a macromodel which is beyond the
scope of the reduced form model presented. The latter only shows what characteris-
tics the market prices in general without imposing concrete macrolinks among them.
Depending on what the base is, we would have a direct estimation of certain type of
indicators and an indirect one of the rest up to their structural influence on the former.
If the inflation is taken as a base, then we would have the comparison of inflation
indexed bonds to the non-indexed ones. The spread between them would give an
estimate for the expected inflation. Unfortunately, such an analysis is unrealistic due
to the fact that such bonds are issued very rarely by emerging market countries. If
the exchange rate is taken as a base, then we would have the comparison of domestic
debt bonds to foreign debt bonds. The spread between them would give an estimate
for the currency risk and the devaluation effect. The estimate for the inflation would
be indirect and based on hypothetical structural links.

Whether the country would monetize or declare a formal default is based on
strategic considerations. It is a matter of structural analysis which option it would
take. By all means, its decision is priced. In case of default, the pricing formula is
Eq. (5.2). In case of monetization, we would have a jump in the exchange rate. Let
us denote its size by δ̂X . It will be different from the no-monetization one, δX , due
to the different regimes that are followed, and we would thus get:
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r∗
LC(t) − r∗

EU R(t) = h(t)(ϕδ̂X
(t) − ϕq f,EU R (t)) − αX (t) − φ(t)σX (t) (6)

There is no a priori no-arbitrage argument that ϕδ̂X
(t) = ϕδX (t) − ϕqd,LC ,δX (t) +

ϕqd,LC (t) must hold so that the two scenarios are equivalent.4 The only information
we get from the market is an estimate for the generalized intensity being h(t)ϕδ̂X

(t)
or h(t)(ϕδX (t) − ϕqd,LC ,δX (t) + ϕqd,LC (t)) but not knowing which possible scenario
will be realized.

3 CDS-Bond Basis

3.1 General Notes

The setting we built gives us an alternative for evaluating the CDS-Bond basis. This
is represented in Fig. 1. There the LC zero-coupon yield curve is built by employing
local currency treasuries and an appropriate smoothing method. The EUR zero-
coupon yield curve is built by employing CDS quotes with the maths represented in
the sequel. Along with the curves, there are few Eurobonds represented in light blue
colored dots. Both credit and currency spreads can be computed for them employing
a standard Z-spread methodology. Despite its various shortcomings, as discussed in
Berd et al. [2] and Elizalde et al. [10], it allows us to have a certain measure for the
spreads and it is widely accepted by practitioners. Subtracting from the yield curves’
implied credit and currency spreads the bond implied spreads, we get two alternative
specifications for the CDS-Bonds basis. Several things need a comment.

Firstly, the two basis measures are not equal by default. The one representing
the credit spread is subject to Z-spread measurement based on a parallel shift of the
benchmark curve. So it depends on the whole benchmark curve and has nothing to do
with the LC one. Vice versa, the basis implied by the LC curve is subject to Z-spread
measurement based on a parallel shift of the LC curve. So it depends on the whole
LC curve, but has nothing to do with the benchmark one. This provides intuition
how the introduction of the LC curve brings additional information in the picture and
provides more market completeness that must be utilized in relative value trades.

Secondly, as mentioned above, the EUR curve is built by utilizing CDS quotes. As
shown below, in the procedure employed, an assumption is needed for the recovery
scheme. What it should be depends on our purposes. On one hand, if we would like
to just extract the credit and currency spreads from the yield curves and calibrate a
reduced form model,5 it would be convenient to employ the setting from Sect. 2. So

4This is a delicate issue. As indicated, a further structural analysis is needed for a complete answer.
The crucial point is that the two scenarios affect in a different way the monetary base. It will have
a neutral effect on the macro variables in general and the risky spreads in particular only in case
the economy is at the macro potential. Exactly when that is not the case, we can expect that the
two scenarios will not be equivalent. A further elaboration on these issues from a structural point
of view could be found in Yordanov [15, 16].
5We postpone the factors to build realization of the model from Sect. 2 so that it becomes operative
for calibration and consequent further analysis to the forthcoming follow-up paper of Yordanov
[17].
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an RMV assumption for the EUR curve is the most appropriate one since the same
assumption is imposed also for the LC curve and when subtracting the corresponding
zero yields, we subtract apples from apples. On the other hand, if we like to extract the
basis, we must be careful since the Eurobonds are priced under a firmly established
RP assumption. So for a standard calculation via a Z-spread based on the benchmark
curve we need an RP built EUR curve to be consistent. With the many problems of
the Z-spread, it would be definitely bad to add further ones coming from a recovery
assumption inconsistency which would only further contribute to an imprecise basis
measurement. For a calculation via a Z-spread based on the LC curve, we should not
use the RMV LC curve but a modified one. From the RMV LC curve we need to
build an RP one and then compute the Z-spread and the basis to be consistent.

3.2 Technical Notes

Here we provide the technical notes regarding the above discussion.

• EUR curve
Using OIS differential discounting as in Doctor and Goulden [6], we could mod-
ify6 the standard CDS bootstrap procedure of ISDA and extract at time t the
T−maturity default probabilities pR

EU R(t, T ) under a recovery assumption of R.
Then we would get in a straightforward way the EU R zero coupon yields (ytm)
and credit spreads (spr ) under RMV and RP:

– RMV:

sprRMV,R
EU R (t, T ) = − (1−R) log(1−pR

EU R(t,T ))

T−t

ytmRMV,R
EU R (t, T ) = sprRMV,R

EU R (t, T ) + exp(−yEU R(t, T )(T − t))

– RP:

sprRP,R
EU R (t, T ) = − log(RpR

EU R(t,T )+1−pR
EU R(t,T ))

T−t

ytmRP,R
EU R (t, T ) = sprRP,R

EU R (t, T ) + exp(−yEU R(t, T )(T − t)),

where yEU R(t, T ) is the T−maturity zero yield of the riskless benchmark curve
(e.g. German bunds).

• LC curve

– RMV:

ytmRMV,R
LC (t, T )–observed from the market

6The OIS discounting should be given a special comment since there is still no consensus on how to
bootstrap OIS swaps to form the discount factors for the CDS swap bootstrap. The problem comes
from the presence of gaps for certain maturities. A possible specification is given in West [14].



328 V. Yordanov

sprRMV,R
LC,EU R(t, T ) = ytmRMV,R

LC (t, T )−ytmRMV,R
EU R (t, T )

pR
LC(t, T ) = 1 − exp(− sprRMV,R

LC,EU R(t,T )

1−R (T − t))

– RP:

sprRP,R
LC,EU R(t, T ) = − log(RpR

LC (t,T )+1−pR
LC (t,T ))

T−t

ytmRP,R
LC (t, T ) = sprRP,R

LC,EU R(t, T )+ytmRP,R
EU R (t, T )

Note that similarly to the EUR curve procedure, the LC curve one relies on the
premise that both the RMV and RP cases must share the same pR

LC(t, T ), which
stands for the probability of default on the LC debt. However, according to the
analysis we had in Sect. 2 on the no-arbitrage conditions, due to the monetization,
such probability actually does not formally exist. Here it is only a derived quantity
since althoughwe assume the same point process as a driver of default on both the LC
and EUR debt, we can control the compensator by changing the recoveries. However,
we could just take the formulas above for the RP spread as definitions. Taking the
limit case of zero EUR debt, they would be entirely consistent to the RP in case of
EUR debt, thus providing a justification for our method.

3.3 CDS-Bond Basis Empirics

For illustration we provide visualization of the Z-spread measured basis according
to the two alternative ways for a set of European EM countries. They are chosen
so that they have both Eurobonds outstanding in EUR and a liquid LC curve. The
data sources are: Bloomberg, Datastream, and CBonds. We build the LC curves by
employing the Bloomberg BFV curves. Since they are par curves, see Lee [11],
we transform them to zero-coupon yield ones. For spreads extraction we use both
EUR and USD denominated CDS. We give preference to the former, but in case of
missing quotes we use USD quotes instead by making a quanto adjustment using
cross currency basis swaps. The countries under focus are: Bulgaria (BGN), Czech
Rep. (CZK), Hungary (HUF), Lithuania (LTL), Poland (PLN), Romania (RON), and
Slovakia (SKK).

Since there are plenty of bonds outstanding, aggregate measures are presented
based on duration weighting. The events: 1—GM turmoil of May 09, 2005, 2—
Liquidity crisis of August 09, 2007, 3—Bear Sterns default of March 14, 2008,
4—Lehman default of September 15, 2008, 5—Greek turmoil of April 23, 2010,
6—August 5, 2011—the US rating downgrade, 7—06 May, 2012—ECB refi-rate
woes are marked by the vertical dashed lines.
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Fig. 2 CDS-Bond basis across countries

The short conclusion from the patterns in Fig. 2 is that the bonds provide impor-
tant input for extracting the credit and currency spreads. The two alternative basis
formulations preserve general shape similarity, but still give different results that
should not be underestimated. This is not surprising since the outcome is driven by
the difference in shapes between the benchmark and the LC curves.Market strategists
and arbitrage traders have a large scope for interpretations and trades design.

4 Conclusion

The paper considers the credit and currency spreads of a risky EM country. The
necessary no-arbitrage conditions are derived and their informational content is ana-
lyzed. An application of the setting is made to proper building of the foreign and local
currency yield curves of a sovereign as well as to providing ideas for relative value
diagnostics in a multi-currency framework. In that direction, an alternative measure
for the CDS-Bond basis is discussed when the local currency curve is employed as a
pillar. The aim of the paper is both to point out the rich opportunities the setting gives
for market-related research that could be of use to strategists and policy officers and
to make the first several steps toward investigating such opportunities.
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Appendix

Here we briefly elaborate on the derivation of Eqs. (5.1) and (5.2). Applying the
Girsanov’s theorem and the Ito’s Lemma for jump diffusions to Eq. (2), we get the
dynamics:

dP∗
f,EU R(t, T )

P∗
f,EU R(t, T )

=
(

−
∫ T

t
α∗
EU R(t, s)ds + r∗

EU R(t) + 1

2
||

∫ T

t
σ∗
EU R(t, s)ds||2

)
dt

−
(∫ T

t
σ∗
EU R(t, s)ds

)
dW P (t)

+
∫

E
(1 − q f,EU R(x, t))

(
exp

(
−

∫ T

t
δ∗
EU R(x, t, s)ds

)
− 1

)
μ(dx, dt)

−
∫

E
q f,EU R(x, t)μ(dx, dt)

dP∗
d,LC (t, T )

P∗
d,LC (t, T )

=
(

−
∫ T

t
α∗
LC (t, s)ds + r∗

LC (t) + 1

2
||

∫ T

t
σ∗
LC (t, s)ds||2

)

dt

−
(∫ T

t
σ∗
LC (t, s)ds

)

dW P (t)

+
∫

E
(1 − qd,LC (x, t))

(

exp

(

−
∫ T

t
δ∗
LC (x, t, s)ds

)

− 1

)

μ(dx, dt)

−
∫

E
qd,LC (x, t)μ(dx, dt)

Furthermore, we have the dynamics of the exchange rate:

dX (t)

X (t)
= αX (t)dt +

∑n

i=1
σX,i (t)dW

P
i (t) −

∫

E
δX (x, t)μ(dx, dt)

So using the no-arbitrage conditions and equating the expected local drifts to the
risk-free rate, we get the results shown.
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Basket Option Pricing and Implied
Correlation in a One-Factor Lévy Model

Daniël Linders and Wim Schoutens

Abstract In this paper we employ a one-factor Lévy model to determine basket
option prices. More precisely, basket option prices are determined by replacing the
distribution of the real basketwith an appropriate approximation. For the approximate
basket we determine the underlying characteristic function and hence we can derive
the related basket option prices by using the Carr–Madan formula. We consider a
three-moments-matching method. Numerical examples illustrate the accuracy of our
approximations; several Lévy models are calibrated to market data and basket option
prices are determined. In the last part we show how our newly designed basket option
pricing formula can be used to define implied Lévy correlation by matching model
and market prices for basket options. Our main finding is that the implied Lévy
correlation smile is flatter than its Gaussian counterpart. Furthermore, if (near) at-
the-money option prices are used, the corresponding implied Gaussian correlation
estimate is a good proxy for the implied Lévy correlation.

Keywords Basket option · Implied correlation ·One-factor Lévymodel ·Variance-
Gamma

1 Introduction

Nowadays, an increased volume of multi-asset derivatives is traded. An example of
such a derivative is a basket option. The basic version of such a multivariate product
has the same characteristics as a vanilla option, but now the underlying is a basket of
stocks instead of a single stock. The pricing of these derivatives is not a trivial task
because it requires a model that jointly describes the stock prices involved.
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Stock price models based on the lognormal model proposed in Black and Scholes
[6] are popular choices from a computational point of view; however, they are not
capable of capturing the skewness and kurtosis observed for log returns of stocks
and indices. The class of Lévy processes provides a much better fit for the observed
log returns and, consequently, the pricing of options and other derivatives in a Lévy
setting is much more reliable. In this paper we consider the problem of pricing
multi-asset derivatives in a multivariate Lévy model.

The most straightforward extension of the univariate Black and Scholes model is
based on the Gaussian copula model, also called the multivariate Black and Scholes
model. In this framework, the stocks composing the basket at a given point in time
are assumed to be lognormally distributed and a Gaussian copula is connecting these
marginals. Even in this simple setting, the price of a basket option is not given in a
closed form and has to be approximated; see e.g. Hull and White [23], Brooks et al.
[8], Milevsky and Posner [39], Rubinstein [42], Deelstra et al. [18], Carmona and
Durrleman [12] and Linders [29], among others. However, the normality assumption
for the marginals used in this pricing framework is too restrictive. Indeed, in Linders
and Schoutens [30] it is shown that calibrating the Gaussian copula model to mar-
ket data can lead to non-meaningful parameter values. This dysfunctioning of the
Gaussian copula model is typically observed in distressed periods. In this paper we
extend the classical Gaussian pricing framework in order to overcome this problem.

Several extensions of the Gaussian copula model are proposed in the literature.
For example, Luciano and Schoutens [32] introduce a multivariate Variance Gamma
model where dependence is modeled through a common jump component. This
model was generalized in Semeraro [44], Luciano and Semeraro [33], and Guil-
laume [21]. A stochastic correlation model was considered in Fonseca et al. [19].
A framework for modeling dependence in finance using copulas was described in
Cherubini et al. [14]. The pricing of basket options in these advanced multivariate
stock price models is not a straightforward task. There are several attempts to derive
closed form approximations for the price of a basket option in a non-Gaussian world.
In Linders and Stassen [31], approximate basket option prices in a multivariate Vari-
ance Gamma model are derived, whereas Xu and Zheng [48, 49] consider a local
volatility jump diffusion model. McWilliams [38] derives approximations for the
basket option price in a stochastic delay model. Upper and lower bounds for basket
option prices in a general class of stock price models with known joint characteristic
function of the logreturns are derived in Caldana et al. [10].

In this paper we start from the one-factor Lévy model introduced in Albrecher
et al. [1] to build a multivariate stock price model with correlated Lévy marginals.
Stock prices are assumed to be driven by an idiosyncratic and a systematic factor.
The idea of using a common market factor is not new in the literature and goes back
to Vasicek [47]. Conditional on the common (or market) factor, the stock prices are
independent. We show that our model generalizes the Gaussian model (with single
correlation). Indeed, the idiosyncratic and systematic components are constructed
from a Lévy process. Employing a Brownian motion in that construction delivers the
Gaussian copula model, but other Lévy models arise by employing different Lévy
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processes like VG, NIG, Meixner, etc. As a result, this new one-factor Lévy model
is more flexible and can capture other types of dependence.

The correlation is by construction always positive and, moreover, we assume
a single correlation. Stocks can, in reality, be negatively correlated and correla-
tions between different stocks will differ. From a tractability point of view, however,
reporting a single correlation number is often preferred over n(n − 1)/2 pairwise
correlations. The single correlation can be interpreted as a mean level of correlation
and provides information about the general dependence among the stocks compos-
ing the basket. Such a single correlation appears, for example, in the construction of
a correlation swap. Therefore, our framework may have applications in the pricing
of such correlation products. Furthermore, calibrating a full correlation matrix may
require an unrealistically large amount of data if the index consists of many stocks.

In the first part of this paper, we consider the problem of finding accurate approx-
imations for the price of a basket option in the one-factor Lévy model. In order to
value a basket option, the distribution of this basket has to be determined. However,
the basket is a weighted sum of dependent stock prices and its distribution function
is in general unknown or too complex to work with. Our valuation formula for the
basket option is based on a moment-matching approximation. To be more precise,
the (unknown) basket distribution is replaced by a shifted random variable having
the same first three moments than the original basket. This idea was first proposed in
Brigo et al. [7], where the Gaussian copula model was considered. Numerical exam-
ples illustrating the accuracy and the sensitivity of the approximation are provided.

In the second part of the paper we show how the well-established notions of
implied volatility and implied correlation can be generalized in our multivariate
Lévy model. We assume that a finite number of options, written on the basket and
the components, are traded. The prices of these derivatives are observable and will
be used to calibrate the parameters of our stock price model. An advantage of our
modeling framework is that each stock is described by a volatility parameter and that
the marginal parameters can be calibrated separately from the correlation parameter.
Wegive numerical examples to showhow touse the vanilla option curves to determine
an implied Lévy volatility for each stock based on a Normal, VG, NIG, and Meixner
process and determine basket option prices for different choices of the correlation
parameter.

An implied Lévy correlation estimate arises when we tune the single correla-
tion parameter such that the model price exactly hits the market price of a basket
option for a given strike. We determine implied correlation levels for the stocks
composing the Dow Jones Industrial Average in a Gaussian and a Variance Gamma
setting. We observe that implied correlation depends on the strike and in the VG
model, this implied Lévy correlation smile is flatter than in the Gaussian copula
model. The standard technique to price non-traded basket options (or other multi-
asset derivatives) is by interpolating on the implied correlation curve. It is shown in
Linders and Schoutens [30] that in the Gaussian copula model, this technique can
sometimes lead to non-meaningful correlation values. We show that the Lévy ver-
sion of the implied correlation solves this problem (at least to some extent). Several
papers consider the problem of measuring implied correlation between stock prices;
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see e.g. Fonseca et al. [19], Tavin [46], Ballotta et al. [4], and Austing [2]. Our
approach is different in that we determine implied correlation estimates in the one-
factor Lévy model using multi-asset derivatives consisting of many assets (30 assets
for the Dow Jones). When considering multi-asset derivatives with a low dimension,
determining the model prices of these multi-asset derivatives becomes much more
tractable. A related paper is Linders and Stassen [31], where the authors also use
high-dimensional multi-asset derivative prices for calibrating a multivariate stock
price model. However, whereas the current paper models the stock returns using
correlated Lévy distributions, the cited paper uses time-changed Brownian motions
with a common time change.

2 The One-Factor Lévy Model

We consider a market where n stocks are traded. The price level of stock j at some
future time t, 0 ≤ t ≤ T is denoted by Sj(t). Dividends are assumed to be paid
continuously and the dividend yield of stock j is constant and deterministic over
time. We denote this dividend yield by qj. The current time is t = 0. We fix a future
timeT andwe always consider the randomvariables Sj(T) denoting the time-T prices
of the different stocks involved. The price level of a basket of stocks at time T is
denoted by S(T) and given by

S(T) =
n∑

j=1

wjSj(T),

where wj > 0 are weights which are fixed upfront. In case the basket represents the
price of the Dow Jones, the weights are all equal. If this single weight is denoted by
w, then 1/w is referred to as the Dow Jones Divisor.1 The pay-off of a basket option
with strike K and maturity T is given by (S(T) − K)+, where (x)+ = max(x, 0).
The price of this basket option is denoted by C[K, T ]. We assume that the market
is arbitrage-free and that there exists a risk-neutral pricing measure Q such that the
basket option price C[K, T ] can be expressed as the discounted risk-neutral expected
value. In this pricing formula, discounting is performed using the risk-free interest
rate r, which is, for simplicity, assumed to be deterministic and constant over time.
Throughout the paper, we always assume that all expectations we encounter are
well-defined and finite.

1More information and the current value of the Dow Jones Divisor can be found here: http://www.
djindexes.com.

http://www.djindexes.com
http://www.djindexes.com
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2.1 The Model

The most straightforward way to model dependent stock prices is to use a Black
and Scholes model for the marginals and connect them with a Gaussian copula. A
crucial (and simplifying) assumption in this approach is the normality assumption. It
is well-known that log returns do not pass the test for normality. Indeed, log returns
exhibit a skewed and leptokurtic distribution which cannot be captured by a normal
distribution; see e.g. Schoutens [43].

We generalize the Gaussian copula approach by allowing the risk factors to be
distributed according to any infinitely divisible distributionwith known characteristic
function. This larger class of distributions increases the flexibility to find a more
realistic distribution for the log returns. InAlbrecher et al. [1] a similar frameworkwas
considered for pricing CDO tranches; see also Baxter [5]. The Variance Gamma case
was considered in Moosbrucker [40, 41], whereas Guillaume et al. [22] consider the
pricing of CDO-squared tranches in this one-factor Lévy model. A unified approach
for theseCIIDmodels (conditionally independent and identically distributed) is given
in Mai et al. [36].

Consider an infinitely divisible distribution for which the characteristic function
is denoted by φ. A stochastic process X can be built using this distribution. Such a
process is called a Lévy process with mother distribution having the characteristic
function φ. The Lévy process X = {X(t)|t ≥ 0} based on this infinitely divisible dis-
tribution starts at zero and has independent and stationary increments. Furthermore,
for s, t ≥ 0 the characteristic function of the increment X(t + s) − X(t) is φs.

Assume that the random variable L has an infinitely divisible distribution and
denote its characteristic function by φL. Consider the Lévy process
X = {X(t)|t ∈ [0, 1]} based on the distribution L. We assume that the process is stan-
dardized, i.e.E[X(1)] = 0 andVar[X(1)] = 1. One can then show that Var[X(t)] = t,
for t ≥ 0. Define also a series of independent and standardized processes Xj ={
Xj(t)|t ∈ [0, 1]}, for j = 1, 2, . . . , n. The process Xj is based on an infinitely divis-
ible distribution Lj with characteristic function φLj . Furthermore, the processes
X1, X2, . . . , Xn are independent from X. Take ρ ∈ [0, 1]. The r.v. Aj is defined by

Aj = X(ρ) + Xj(1 − ρ), j = 1, 2, . . . n. (1)

In this construction,X(ρ) andXj(1 − ρ) are random variables having the characteris-
tic functionφ

ρ

L andφ
1−ρ

Lj
, respectively. Denote the characteristic function ofAj byφAj .

Because the processes X and Xj are independent and standardized, we immediately
find that

E[Aj] = 0, Var[Aj] = 1 and φAj (t) = φ
ρ

L (t)φ1−ρ

Lj
(t), for j = 1, 2, . . . , n. (2)

Note that if X and Xj are both Lévy processes based on the same mother distribution

L, we obtain the equality Aj
d= L.
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The parameter ρ describes the correlation between Ai and Aj, if i �= j. Indeed, it
was proven in Albrecher et al. [1] that in case Aj, j = 1, 2, . . . , n is defined by (1),
we have that

Corr
[
Ai, Aj

] = ρ. (3)

We model the stock price levels Sj(T) at time T for j = 1, 2, . . . , n as follows

Sj(T) = Sj(0)e
μjT+σj

√
TAj , j = 1, 2, . . . , n, (4)

whereμj ∈ R andσj > 0.Note that in this setting, each time-T stock price ismodeled
as the exponential of a Lévy process. Furthermore, a driftμj and a volatility parameter
σj are added to match the characteristics of stock j. Our model, which we will call the
one-factor Lévy model, can be considered as a generalization of the Gaussian model.
Indeed, instead of a normal distribution, we allow for a Lévy distribution, while the
Gaussian copula is generalized to a Lévy-based copula.2 This model can also, at
least to some extent, be considered as a generalization to the multidimensional case
of the model proposed in Corcuera et al. [17] and the parameter σj in (4) can then
be interpreted as the Lévy space (implied) volatility of stock j. The idea of building
a multivariate asset model by taking a linear combination of a systematic and an
idiosyncratic process can also be found in Kawai [26] and Ballotta and Bonfiglioli
[3].

2.2 The Risk-Neutral Stock Price Processes

If we take

μj = (r − qj) − 1

T
logφL

(
−iσj

√
T
)

, (5)

we find that
E[Sj(T)] = e(r−qj)T Sj(0), j = 1, 2, . . . , n.

From expression (5) we conclude that the risk-neutral dynamics of the stocks in the
one-factor Lévy model are given by

Sj(T) = Sj(0)e
(r−qj−ωj)T+σj

√
TAj , j = 1, 2, . . . , n, (6)

where ωj = logφL

(
−iσj

√
T
)

/T . We always assume ωj to be finite. The first three

moments of Sj(T) can be expressed in terms of the characteristic function φAj . By

2The Lévy-based copula refers to the copula between the r.v.’s A1, A2, . . . , An and is different from
the Lévy copula introduced in Kallsen and Tankov [25].
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the martingale property, we have that E
[
Sj(T)

] = Sj(0)e(r−qj)T . The risk-neutral
variance Var

[
Sj(T)

]
can be written as follows

Var
[
Sj(T)

] = Sj(0)
2e2(r−qj)T

(
e−2ωjTφAj

(
−i2σj

√
T
)

− 1
)

.

The second and third moment of Sj(T) are given by:

E
[
Sj(T)2

] = E[Sj(T)]2
φAj

(
−i2σj

√
T
)

φAj

(
−iσj

√
T
)2 ,

E
[
Sj(T)3

] = E[Sj(T)]3
φAj

(
−i3σj

√
T
)

φAj

(
−iσj

√
T
)3 .

We always assume that these quantities are finite. If the processXj hasmother distrib-
ution L, we can replace φAj by φL in expression (5) and in the formulas forE

[
Sj(T)2

]

and E
[
Sj(T)3

]
. From here on, we always assume that all Lévy processes are built on

the same mother distribution. However, all results remain to hold in the more general
case.

3 A Three-Moments-Matching Approximation

In order to price a basket option, one has to know the distribution of the random sum
S(T), which is a weighted sum of dependent random variables. This distribution is in
most situations unknown or too cumbersome to work with. Therefore, we search for
a new random variable which is sufficiently ‘close’ to the original random variable,
but which is more attractive to work with. More concretely, we introduce in this
section a new approach for approximating C[K, T ] by replacing the sum S(T) with
an appropriate random variable S̃(T) which has a simpler structure, but for which
the first three moments coincide with the first three moments of the original basket
S(T). This moment-matching approach was also considered in Brigo et al. [7] for
the multivariate Black and Scholes model.

Consider the Lévy process Y = {Y(t) | 0 ≤ t ≤ 1} with infinitely divisible distri-
bution L. Furthermore, we define the random variable A as

A = Y(1).

In this case, the characteristic function ofA is given byφL . The sum S(T) is aweighted
sum of dependent random variables and its cdf is unknown.We approximate the sum
S(T) by S̃(T), defined by
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S̃(T) = S̄(T) + λ, (7)

where λ ∈ R and

S̄(T) = S(0) exp
{
(μ̄ − ω̄)T + σ̄

√
TA
}

. (8)

The parameter μ̄ ∈ R determines the drift and σ̄ > 0 is the volatility parameter.
These parameters, as well as the shifting parameter λ, are determined such that the
first three moments of S̃(T) coincide with the corresponding moments of the real
basket S(T). The parameter ω̄, defined as follows

ω̄ = 1

T
logφL

(
−iσ̄

√
T
)

,

is assumed to be finite.

3.1 Matching the First Three Moments

Thefirst threemoments of the basketS(T) are denoted bym1, m2, andm3 respectively.
In the following lemma, we express the moments m1, m2, and m3 in terms of the
characteristic function φL and the marginal parameters. A proof of this lemma is
provided in the appendix.

Lemma 1 Consider the one-factor Lévy model (6) with infinitely divisible mother
distribution L. The first two moments m1 and m2 of the basket S(T) can be expressed
as follows

m1 =
n∑

j=1

wjE
[
Sj(T)

]
, (9)

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)

]
E [Sk(T)]

⎛

⎝
φL

(
−i(σj + σk)

√
T
)

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

⎞

⎠

ρj,k

,(10)

where

ρj,k =
{

ρ, if j �= k;
1, if j = k.

The third moment m3 of the basket S(T) is given by



Basket Option Pricing and Implied Correlation in a One-Factor Lévy Model 343

m3 =
n∑

j=1

n∑

k=1

n∑

l=1

wjwkwlE
[
Sj(T)

]
E [Sk(T)]E [Sl(T)]

×
φL

(
−i
(
σj + σk + σl

)√
T
)ρ

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

φL

(
−iσl

√
T
)Aj,k,l, (11)

where

Aj,k,l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

φL

(
−iσl

√
T
))1−ρ

, if j �= k, k �= l and j �= l;
(
φL

(
−i(σj + σk)

√
T
)

φL

(
−iσl

√
T
))1−ρ

, if j = k, k �= l;
(
φL

(
−i(σk + σl)

√
T
)

φL

(
−iσj

√
T
))1−ρ

, if j �= k, k = l;
(
φL

(
−i(σj + σl)

√
T
)

φL

(
−iσk

√
T
))1−ρ

, if j = l, k �= l;
φL

(
−i
(
σj + σk + σl

)√
T
)1−ρ

, if j = k = l.

InSect. 2.2wederived thefirst threemoments for each stock j, j = 1, 2, . . . , n. Taking
into account the similarity between the price Sj(T) defined in (6) and the approximate
r.v. S̄(T), defined in (8), we can determine the first three moments of S̄(T):

E
[
S̄(T)

] = S(0)eμ̄T =: ξ,

E
[
S̄(T)2

] = E
[
S̄(T)

]2 φL

(
−i2σ̄

√
T
)

φL

(
−iσ̄

√
T
)2 =: ξ 2α,

E
[
S̄(T)3

] = E
[
S̄(T)

]3 φL

(
−i3σ̄

√
T
)

φL

(
−iσ̄

√
T
)3 =: ξ 3β.

These expressions can now be used to determine the first three moments of the
approximate r.v. S̃(T):

E
[̃
S(T)

] = E
[
S̄(T)

]+ λ,

E
[̃
S(T)2

] = E
[
S̄(T)2

]+ λ2 + 2λE
[
S̄(T)

]
,

E
[̃
S(T)3

] = E
[
S̄(T)3

]+ λ3 + 3λ2E
[
S̄(T)

]+ 3λE
[
S̄(T)2

]
.

Determining the parameters μ̄, σ̄ and the shifting parameter λ by matching the first
three moments, results in the following set of equations

m1 = ξ + λ,

m2 = ξ 2α + λ2 + 2λξ,

m3 = ξ 3β + λ3 + 3λ2ξ + 3λξ 2α.
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These equations can be recast in the following set of equations

λ = m1 − ξ,

ξ 2 = m2 − m2
1

α − 1
,

0 =
(

m2 − m2
1

α − 1

)3/2

(β + 2 − 3α) + 3m1m2 − 2m3
1 − m3.

Remember that α and β are defined by

α =
φL

(
−i2σ̄

√
T
)

φL

(
−iσ̄

√
T
)2 and β =

φL

(
−i3σ̄

√
T
)

φL

(
−iσ̄

√
T
)3 .

Solving the third equation results in the parameter σ̄ . Note that this equation does
not always have a solution. This issue was also discussed in Brigo et al. [7] for the
Gaussian copula case. However, in our numerical studies we did not encounter any
numerical problems. If we know σ̄ , we can also determine ξ and λ from the first two
equations. Next, the drift μ̄ can be determined from

μ̄ = 1

T
log

ξ

S(0)
.

3.2 Approximate Basket Option Pricing

The price of a basket option with strikeK andmaturity T is denoted byC[K, T ]. This
unknown price is approximated in this section by CMM[K, T ], which is defined as

CMM[K, T ] = e−rTE

[(̃
S(T) − K

)
+
]
.

Using expression (7) for S̃(T), the price CMM[K, T ] can be expressed as

CMM[K, T ] = e−rTE

[(
S̄(T) − (K − λ)

)
+
]
.

Note that the distribution of S̄(T) is also depending on the choice of λ. In order to
determine the priceCMM[K, T ], we should be able to price an option written on S̄(T),
with a shifted strike K − λ. Determining the approximation CMM[K, T ] using the
Carr–Madan formula requires knowledge about the characteristic function φlog S̄(T)

of log S̄(T):

φlog S̄(T)(u) = E

[
eiu log S̄(T)

]
.
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Using expression (8) we find that

φlog S̄(T)(u) = E

[
exp

{
iu
(
log S(0) + (μ̄ − ω̄)T + σ̄

√
TA
)}]

.

The characteristic function of A is φL, from which we find that

φlog S̄(T)(u) = exp {iu (log S(0) + (μ̄ − ω̄)T)} φL

(
uσ̄

√
T
)

.

Note that nowhere in this section we used the assumption that the basket weights
wj are strictly positive. Therefore, the three-moments-matching approach proposed
in this section can also be used to price, e.g. spread options. However, for pricing
spread options, alternative methods exist; see e.g. Carmona and Durrleman [11],
Hurd and Zhou [24] and Caldana and Fusai [9].

3.3 The FFT Method and Basket Option Pricing

Consider the random variable X. In this section we show that if the characteristic
function φlogX of this r.v. X is known, one can approximate the discounted stop-loss
premium

e−rTE
[
(X − K)+

]
,

for any K > 0.
Let α > 0 and assume that E

[
Xα+1

]
exists and is finite. It was proven in Carr and

Madan [13] that the price e−rTE
[
(X − K)+

]
can be expressed as follows

e−rTE
[
(X − K)+

] = e−α log(K)

π

∫ +∞

0
exp {−iv log(K)} g(v)dv, (12)

where

g(v) = e−rTφlogX (v − (α + 1)i)
α2 + α − v2 + i(2α + 1)v

. (13)

The approximation CMM[K, T ]was introduced in Sect. 3 and the random variable
X now denotes the moment-matching approximation S̃(T) = S̄(T) + λ. The approx-
imation CMM[K, T ] can then be determined as the option price written on S̄(T) and
with shifted strike price K − λ.
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Table 1 Overview of infinitely divisible distributions

Gaussian Variance Gamma

Parameters μ ∈ R, σ > 0 μ, θ ∈ R, σ, ν > 0

Notation N (μ, σ 2)σ V G(σ, ν, θ, μ)

φ(u) eiuμ+ 1
2 σ 2uσ eiuμ

(
1 − iuθν + u2σ 2ν/2

)−1/ν

Mean μ μ + θ

Variance σ 2 σ 2
σ + νθ2

Standardized version N (0, 1) V G(κσ, ν, κθ,−κθ)

where κ = 1√

σ 2+θ2σ ν

Normal Inverse Gaussian Meixner

Parameters α, δ > 0, β ∈ (−α, α), μ ∈ R α, δ > 0, β ∈ (−π, π), μ ∈ R

Notation NIG(α, β, δ, μ) MX(α, β, δ, μ)

φ(u) e
iuμ−δ

(√
α2−(β+iu)2−

√
α2−β2

σ

)

eiuμ
(

cos(β/2)
cosh((αu−iβ)/2)

)2δ

Mean μ + δβ√
α2−β2

σ

μ + αδ tan(β/2)

Variance α2δ
(
α2 − β2

)−3/2
cos−2(β/2)α2

σ δ/2

Standardized version NIG
(
α, β, (α2 − β2)3/2,

−(α2−β2)β

α2

)
MX

(
α, β,

2 cos2( β
2 )

α2
σ

,
− sin(β)

α

)

4 Examples and Numerical Illustrations

The Gaussian copula model with equicorrelation is a member of our class of one-
factor Lévy models. In this section we discuss how to build the Gaussian, Variance
Gamma, Normal Inverse Gaussian, and Meixner models. However, the reader is
invited to construct one-factor Lévymodels based on other Lévy-based distributions;
e.g. CGMY, Generalized hyperbolic, etc. distributions.

Table1 summarizes the Gaussian, Variance Gamma, Normal Inverse Gaussian,
and the Meixner distributions, which are all infinitely divisible. In the last row, it is
shown how to construct a standardized version for each of these distributions. We
assume that L is distributed according to one of these standardized distributions.
Hence, L has zero mean and unit variance. Furthermore, the characteristic function
φL of L is given in closed form. We can then define the Lévy processes X and
Xj, j = 1, 2, . . . , n based on the mother distribution L. The random variables Aj,
j = 1, 2, . . . , n, are modeled using expression (1).



Basket Option Pricing and Implied Correlation in a One-Factor Lévy Model 347

Table 2 Basket option prices in the one-factor VG model with S1(0) = 40, S2(0) = 50, S3(0) =
60, S4(0) = 70, and ρ = 0

K Cmc[K, T ] CMM [K, T ] Length CI

σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

50 6.5748 6.5676 4.27E-03

55 2.4363 2.4781 3.05E-03

60 0.2651 0.2280 9.29E-04

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5

55 4.1046 4.2089 6.31E-03

60 1.7774 1.7976 4.13E-03

65 0.5474 0.4637 2.16E-03

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8

60 3.2417 3.3371 7.16E-03

65 1.6806 1.6429 5.08E-03

70 0.7581 0.6375 3.30E-03

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9

55 5.5067 5.6719 9.44E-03

60 3.2266 3.3305 7.31E-03

65 1.6972 1.6750 5.26E-03

70 0.7889 0.6830 3.52E-03

4.1 Variance Gamma

Although pricing basket option under a normality assumption is tractable from a
computational point of view, it introduces a high degree of model risk; see e.g. Leoni
and Schoutens [28]. The Variance Gamma distribution has already been proposed as
a more flexible alternative to the Brownian setting; see e.g. Madan and Seneta [34]
and Madan et al. [35].

We consider two numerical examples where L has a Variance Gamma distri-
bution with parameters σ = 0.5695, ν = 0.75, θ = −0.9492, μ = 0.9492. Table2
contains the numerical values for the first illustration, where a four-basket option pay-

ing
(
1
4

∑4
j=1 Sj(T) − K

)

+
at time T is considered. We use the following parameter

values: r = 6%, T = 0.5, ρ = 0 and S1(0) = 40, S2(0) = 50, S3(0) = 60, S4(0) =
70. These parameter values are also used in Sect. 5 of Korn and Zeytun [27]. We
denote by Cmc[K, T ] the corresponding Monte Carlo estimate for the price C[K, T ].
Here, 107 number of simulations are used. The approximation of the basket option
price C[K, T ] using the moment-matching approach outlined in Sect. 3 is denoted
by CMM[K, T ]. A comparison between the empirical density and the approximate
density is provided in Fig. 1.

In the second example, we consider the basket S (T) = w1X1 (T) + w2X2 (T) ,

written on two non-dividend paying stocks. We use as parameter values the ones
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also used in Sect. 7 of Deelstra et al. [18], hence r = 5%, X1 (0) = X2 (0) = 100,
and w1 = w2 = 0.5. Table3 gives numerical values for these basket options. Note
that strike prices are expressed in terms of forward moneyness. A basket strike
price K has forward moneyness equal to K/E [S] . We can conclude that the three-
moments-matching approximation gives acceptable results. For far out-of-the-money
call options, the approximation is not always able to closely approximate the real
basket option price.

We also investigate the sensitivity with respect to the Variance Gamma parameters
σ, ν, and θ and to the correlation parameter ρ. We consider a basket option consisting
of 3 stocks, i.e. n = 3. From Tables2 and 3, we observe that the error is the biggest
in case we consider different marginal volatilities and the option under consideration
is an out-of-the-money basket call. Therefore, we put σ1 = 0.2, σ2 = 0.4, σ3 = 0.6
and we determine the prices Cmc[K, T ] and CMM[K, T ] for K = 105.13. The other
parameter values are: r = 0.05, ρ = 0.5, w1 = w2 = w3 = 1/3 and T = 1. The first
panel of Fig. 2 shows the relative error for varying σ . The second panel of Fig. 2
shows the relative error in function of ν. The sensitivity with respect to θ is shown
in the third panel of Fig. 2. Finally, the fourth panel of Fig. 2 shows the relative error
in function of ρ.

The numerical results show that the approximations do not always manage to
closely approximate the true basket option price. Especially when some of the
volatilities deviate substantially from the other ones, the accuracy of the approxi-
mation deteriorates. The dysfunctioning of the moment-matching approximation in
the Gaussian copula model was already reported in Brigo et al. [7]. However, in
order to calibrate the Lévy copula model to available option data, the availability of
a basket option pricing formula which can be evaluated in a fast way, is of crucial
importance. Table4 shows the CPU times3 for the one-factor VGmodel for different
basket dimensions. The calculation time of approximate basket option prices when
100 stocks are involved is less than one second. Therefore, the moment-matching
approximation is a good candidate for calibrating the one-factor Lévy model.

4.2 Pricing Basket Options

In this subsection we explain how to determine the price of a basket option in a
realistic situation where option prices of the components of the basket are available
and used to calibrate the marginal parameters. In our example, the basket under
consideration consists of 2 major stock market indices (n = 2), the S&P500 and the
Nasdaq:

Basket = w1S&P 500 + w2Nasdaq.

The pricing date is February 19, 2009 and we determine prices for the Normal, VG,
NIG, and Meixner case. The details of the basket are listed in Table5. The weights

3The numerical illustrations are performed on an Intel Core i7, 2.70GHz.
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Fig. 1 Probability density function of the real basket (solid line) and the approximate basket (dashed
line). The basket option consists of 4 stocks and r = 0.06, ρ = 0, T = 1/2, w1 = w2 = w3 = w4 =
1
4 . All volatility parameters are equal to σ
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Fig. 2 Relative error in the one-factor VG model for the three-moments-matching approximation.
The basket option consists of 3 stocks and r = 0.05, ρ = 0.5, T = 1, σ1 = 0.2, σ2 = 0.4, σ3 =
0.6, w1 = w2 = w3 = 1

3 . The strike price is K = 105.13. In the benchmark model, the VG para-
meters are σ = 0.57, ν = 0.75, θ = −0.95, μ = 0.95

w1 and w2 are chosen such that the initial price S(0) of the basket is equal to 100.
The maturity of the basket option is equal to 30 days.

The S&P 500 and Nasdaq option curves are denoted by C1 and C2, respec-
tively. These option curves are only partially known. The traded strikes for curve
Cj are denoted by Ki,j, i = 1, 2, . . . , Nj, where Nj > 1. If the volatilities σ1 and σ2
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Table 3 Basket option prices in the one-factor VGmodel with r = 0.05, w1 = w2 = 0.5, X1(0) =
X2(0) = 100 and σ1 = σ2

T ρ σ1 Cmc[K, T ] CMM [K, T ] Length CI

K = 115.64 1 0.3 0.2 1.3995 1.3113 4.08E-03

0.4 5.5724 5.6267 1.26E-02

0.7 0.2 1.8963 1.8706 4.96E-03

0.4 6.9451 7.0095 1.47E-02

K = 127.80 3 0.3 0.2 4.4427 4.4565 1.14E-02

0.4 11.3138 11.5920 2.77E-02

0.7 0.2 5.6002 5.6368 1.34E-02

0.4 13.7444 13.9336 3.23E-02

K = 105.13 1 0.3 0.2 5.5312 5.5965 8.78E-03

0.4 10.1471 10.3515 1.73E-02

0.7 0.2 6.327 6.3731 9.74E-03

0.4 11.7163 11.8379 1.95E-02

K = 116.18 3 0.3 0.2 8.9833 9.1489 1.66E-02

0.4 15.8784 16.2498 3.27E-02

0.7 0.2 10.3513 10.4528 1.86E-02

0.4 18.4042 18.6214 3.73E-02

K = 94.61 1 0.3 0.2 12.3514 12.4371 1.29E-02

0.4 16.213 16.4493 2.17E-02

0.7 0.2 13.0696 13.1269 1.40E-02

0.4 17.7431 17.8690 2.40E-02

K = 104.57 3 0.3 0.2 15.1888 15.3869 2.15E-02

0.4 21.3994 21.7592 3.76E-02

0.7 0.2 16.5069 16.6232 2.36E-02

0.4 23.8489 24.0507 4.23E-02

and the characteristic function φL of the mother distribution L are known, we can
determine the model price of an option on asset j with strike K and maturity T . This
price is denoted by Cmodel

j [K, T;Θ, σj], where Θ denotes the vector containing the
model parameters of L. Given the systematic component, the stocks are independent.
Therefore, we can use the observed option curves C1 and C2 to calibrate the model
parameters as follows:

Algorithm 1 (Determining the parameters Θ and σj of the one-factor Lévy model)

Step 1: Choose a parameter vector Θ .
Step 2: For each stock j = 1, 2, . . . , n, determine the volatility σj as follows:

σj = argmin
σ

1

Nj

Nj∑

i=1

∣∣∣Cmodel
j [Ki,j, T;Θ, σ ] − Cj[Ki,j]

∣∣∣

Cj[Ki,j] ,
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Table 4 The CPU time (in seconds) for the one-factor VGmodel for increasing basket dimension n

n CPU TIMES

Moment Matching

5 0.1991

10 0.1994

20 0.1922

30 0.2043

40 0.2335

50 0.2888

60 0.3705

70 0.4789

80 0.5909

90 0.6862

100 0.8680

The following parameters are used: r = 0.05, T = 1, ρ = 0.5, wj = 1
n , σj = 0.4, qj = 0, Sj(0) =

100, for j = 1, 2, . . . , n. The basket strike is K = 105.13

Table 5 Input data for the basket option

Date Feb 19, 2009

Maturity March 21, 2009

S&P 500 Nasdaq

Forward 777.76 1116.72

Weights 0.06419 0.0428

Step 3: Determine the total error:

error =
n∑

j=1

1

Nj

Nj∑

i=1

∣∣∣Cmodel
j [Ki,j, T;Θ, σj] − Cj[Ki,j]

∣∣∣

Cj[Ki,j] .

Repeat these three steps until the parameter vector Θ is found for which
the total error is minimal. The corresponding volatilities σ1, σ2, . . . , σn are
called the implied Lévy volatilities.

Only a limited number of option quotes is required to calibrate the one-factor Lévy
model. Indeed, the parameter vector Θ can be determined using all available option
quotes. Additional, one volatility parameter has to be determined for each stock.
However, other methodologies for determiningΘ exist. For example, one can fix the
parameter Θ upfront, as is shown in Sect. 5.2. In such a situation, only one implied
Lévy volatility has to be calibrated for each stock.

The calibrated parameters together with the calibration error are listed in Table6.
Note that the relative error in the VG, Meixner, and NIG case is significantly smaller
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Table 6 One-factor Lévy models: Calibrated model parameters

Model Calibration
error (%)

Model Parameters Volatilities

Normal 10.89 μnormal σnormal σ1 σ2

0 1 0.2821 0.2734

VG 2.83 σV G νV G θV G

0.3477 0.49322 −0.3919 0.3716 0.3628

Meixner 2.81 αMeixner βMeixner

1.1689 −1.6761 0.3799 0.3709

NIG 2.89 αNIG βNIG

2.2768 −1.4951 0.3863 0.3772

Table 7 Basket option prices for the basket given in Table5

ρ K CBLS[K, T ] CV G[K, T ] CMeixner[K, T ] CNIG[K, T ]
0.1 90 10.1783 10.7380 10.7893 10.8087

95 5.9457 6.7092 6.7482 6.7418

100 2.8401 3.4755 3.4843 3.4642

105 1.0724 1.3375 1.3381 1.3374

110 0.3158 0.3613 0.3690 0.3766

120 0.0133 0.0198 0.0204 0.0197

0.5 90 10.3557 11.1445 11.2037 11.2169

95 6.3160 7.2359 7.2754 7.2605

100 3.3139 4.0376 4.0436 4.0154

105 1.4699 1.7870 1.7798 1.7706

110 0.5480 0.5857 0.5907 0.5980

120 0.0461 0.0419 0.0421 0.0415

0.8 90 10.5000 11.4203 11.4837 11.4932

95 6.5745 7.5877 7.6280 7.6091

100 3.6292 4.4229 4.4287 4.3970

105 1.7462 2.1247 2.1149 2.1010

110 0.7301 0.7923 0.7954 0.8015

120 0.0852 0.0726 0.0726 0.0723

The time to maturity is 30 days

than in the normal case. Using the calibrated parameters for the mother distribution
L together with the volatility parameters σ1 and σ2, we can determine basket option
prices in the different model settings. Note that here and in the sequel of the paper,
we always use the three-moments-matching approximation for determining basket
option prices. We put T = 30 days and consider the cases where the correlation
parameter ρ is given by 0.1, 0.5, and 0.8. The corresponding basket option prices are
listed in Table7. One can observe from the table that eachmodel generates a different
basket option price, i.e. there is model risk. However, the difference between the
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Fig. 3 Implied market and model volatilities for February 19, 2009 for the S&P 500 (left) and the
Nasdaq (right), with time to maturity 30 days

Gaussian and the non-Gaussianmodels is muchmore pronounced than the difference
within the non-Gaussian models. We also find that using normally distributed log
returns, one underestimates the basket option prices. Indeed, the basket option prices
CV G[K, T ], CMeixner[K, T ] and CNIG[K, T ] are larger than CBLS[K, T ]. In the next
section, however, we encounter situations where the Gaussian basket option price
is larger than the corresponding VG price for out-of-the-money options. The reason
for this behavior is that marginal log returns in the non-Gaussian situations are
negatively skewed, whereas these distributions are symmetric in the Gaussian case.
This skewness results in a lower probability of ending in the money for options with
a sufficiently large strike (Fig. 3).

5 Implied Lévy Correlation

In Sect. 4.2 we showed how the basket option formulas can be used to obtain basket
option prices in the Lévy copula model. The parameter vector Θ describing the
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mother distribution L and the implied Lévy volatility parameters σj can be calibrated
using the observed vanilla option curves Cj[K, T ] of the stocks composing the basket
S(T); see Algorithm 1. In this section we show how an implied Lévy correlation
estimate ρ can be obtained if in addition to the vanilla options, market prices for a
basket option are also available.

We assume that S(T) represents the time-T price of a stock market index. Exam-
ples of such stock market indices are the Dow Jones, S&P 500, EUROSTOXX 50,
and so on. Furthermore, options on S(T) are traded and their prices are observable
for a finite number of strikes. In this situation, pricing these index options is not a
real issue; we denote the market price of an index option with maturity T and strike
K by C[K, T ]. Assume now that the stocks composing the index can be described by
the one-factor Lévy model (6). If the parameter vector Θ and the marginal volatil-
ity vector σ = (σ1, σ2, . . . , σn) are determined using Algorithm 1, the model price
Cmodel[K, T; σ ,Θ, ρ] for the basket option only depends on the choice of the cor-
relation ρ. An implied correlation estimate for ρ arises when we match the model
price with the observed index option price.

Definition 1 (Implied Lévy correlation) Consider the one-factor Lévymodel defined
in (6). The implied Lévy correlation of the index S(T) with moneyness π =
S(T)/S(0), denoted by ρ [π ], is defined by the following equation:

Cmodel
[
K, T; σ ,Θ, ρ [π ]

] = C[K, T ], (14)

where σ contains the marginal implied volatilities and Θ is the parameter vector
of L.

Determining an implied correlation estimate ρ [K/S(0)] requires an inversion of the
pricing formula ρ → Cmodel[K, T; σ ,Θ, ρ]. However, the basket option price is not
given in a closed form and determining this price using Monte Carlo simulation
would result in a slow procedure. If we determine Cmodel[K, T; σ ,Θ, ρ] using the
three-moments-matching approach, implied correlations can be determined in a fast
and efficient way. The idea of determining implied correlation estimates based on an
approximate basket option pricing formula was already proposed in Chicago Board
Options Exchange [15], Cont and Deguest [16], Linders and Schoutens [30], and
Linders and Stassen [31].

Note that in case we take L to be the standard normal distribution, ρ[π ] is an
implied Gaussian correlation; see e.g. Chicago Board Options Exchange [15] and
Skintzi and Refenes [45]. Equation (14) can be considered as a generalization of the
implied Gaussian correlation. Indeed, instead of determining the single correlation
parameter in a multivariate model with normal log returns and a Gaussian copula,
we can now extend the model to the situation where the log returns follow a Lévy
distribution. A similar idea was proposed in Garcia et al. [20] and further studied in
Masol and Schoutens [37]. In these papers, Lévy base correlation is defined using
CDS and CDO prices.

The proposed methodology for determining implied correlation estimates can
also be applied to other multi-asset derivatives. For example, implied correlation
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estimates can be extracted from traded spread options [46], best-of basket options
[19], and quanto options [4]. Implied correlation estimates based on various multi-
asset products are discussed in Austing [2].

5.1 Variance Gamma

In order to illustrate the proposed methodology for determining implied Lévy corre-
lation estimates, we use the Dow Jones Industrial Average (DJ). The DJ is composed
of 30 underlying stocks and for each underlying we have a finite number of option
prices to which we can calibrate the parameter vectorΘ and the Lévy volatility para-
meters σj. Using the available vanilla option data for June 20, 2008, we will work out
the Gaussian and the Variance Gamma case.4 Note that options on components of the
Dow Jones are of American type. In the sequel, we assume that the American option
price is a good proxy for the corresponding European option price. This assumption
is justified because we use short term and out-of-the-money options.

The single volatility parameter σj is determined for stock j by minimizing the rel-
ative error between the model and the market vanilla option prices; see Algorithm 1.
Assuming a normal distribution for L, this volatility parameter is denoted by σ BLS

j ,
whereas the notation σ V G

j , j = 1, 2, . . . , n is used for the VG model. For June 20,
2008, the parameter vector Θ for the VG copula model is given in Table9 and the
implied volatilities are listed in Table8. Figure4 shows the model (Gaussian and
VG) and market prices for General Electric and IBM, both members of the Dow
Jones, based on the implied volatility parameters listed in Table8. We observe that
the Variance Gamma copula model is more suitable in capturing the dynamics of the
components of the Dow Jones than the Gaussian copula model.

Given the volatility parameters for the Variance Gamma case and the normal case,
listed in Table8, the implied correlation defined by Eq. (14) can be determined based
on the availableDow Jones index options on June 20, 2008. For a given index strikeK ,
the moneyness π is defined as π = K/S(0). The implied Gaussian correlation (also
called Black and Scholes correlation) is denoted by ρBLS [π ] and the corresponding
implied Lévy correlation, based on a VG distribution, is denoted by ρV G [π ]. In order
to match the vanilla option curves more closely, we take into account the implied
volatility smile and use a volatility parameter with moneyness π for each stock j,
which we denote by σj[π ]. For a detailed and step-by-step plan for the calculation
of these volatility parameters, we refer to Linders and Schoutens [30].

Figure5 shows that both the implied Black and Scholes and implied Lévy cor-
relation depend on the moneyness π . However, for low strikes, we observe that
ρV G [π ] < ρBLS [π ], whereas the opposite inequality holds for large strikes, making
the implied Lévy correlation curve less steep than its Black and Scholes counterpart.
In Linders and Schoutens [30], the authors discuss the shortcomings of the implied
Black and Scholes correlation and show that implied Black and Scholes correlations

4All data used for calibration are extracted from an internal database of the KU Leuven.
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Table 8 Implied Variance Gamma volatilities σ V G
j and implied Black and Scholes volatilities σBLS

j
for June 20, 2008

Stock σ V G
j σBLS

j

Alcoa Incorporated 0.6509 0.5743

American Express Company 0.4923 0.4477

American International Group 0.5488 0.4849

Bank of America 0.6003 0.5482

Boeing Corporation 0.3259 0.2927

Caterpillar 0.3009 0.2671

JP Morgan 0.5023 0.4448

Chevron 0.3252 0.3062

Citigroup 0.6429 0.5684

Coca Cola Company 0.2559 0.2343

Walt Disney Company 0.3157 0.2810

DuPont 0.2739 0.2438

Exxon Mobile 0.2938 0.2609

General Electric 0.3698 0.3300

General Motors 0.9148 0.8092

Hewlet–Packard 0.3035 0.2704

Home Depot 0.3604 0.3255

Intel 0.4281 0.3839

IBM 0.2874 0.2509

Johnson & Johnson 0.1741 0.1592

McDonald’s 0.2508 0.2235

Merck & Company 0.3181 0.2896

Microsoft 0.3453 0.3068

3M 0.2435 0.2202

Pfizer 0.2779 0.2572

Procter & Gamble 0.1870 0.1671

AT&T 0.3013 0.2688

United Technologies 0.2721 0.2434

Verizon 0.3116 0.2847

Wal-Mart Stores 0.2701 0.2397

can become larger than one for low strike prices. Our more general approach and
using the implied Lévy correlation solves this problem at least to some extent. Indeed,
the region where the implied correlation stays below 1 is much larger for the flatter
implied Lévy correlation curve than for its Black and Scholes counterpart. We also
observe that near the at-the-money strikes, VG and Black and Scholes correlation
estimates are comparable, which may be a sign that in this region, the use of implied
Black and Scholes correlation (as defined in Linders and Schoutens [30]) is justi-



Basket Option Pricing and Implied Correlation in a One-Factor Lévy Model 357

Table 9 Calibrated VG parameters for different trading days

VG Parameters

S(0) T (days) σ ν θ

March 25,
2008

125.33 25 0.2981 0.5741 −0.1827

April 18, 2008 128.49 29 0.3606 0.5247 −0.2102

June 20, 2008 118.43 29 0.3587 0.4683 −0.1879

July 18, 2008 114.97 29 0.2639 0.5222 −0.1641

August 20,
2008

114.17 31 0.2467 0.3770 −0.1887
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Fig. 4 Option prices and implied volatilities (model and market) for Exxon Mobile and IBM on
June 20, 2008 based on the parameters listed in Table8. The time to maturity is 30 days

fied. Figure7 shows implied correlation curves for March, April, July and August,
2008. In all these situations, the time to maturity is close to 30 days. The calibrated
parameters for each trading day are listed in Table9.

We determine the implied correlation ρV G[π ] such that model and market
quote for an index option with moneyness π = K/S(0) coincide. However, the
model price is determined using the three-moments-matching approximation and
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Fig. 5 Implied correlation
smile for the Dow Jones,
based on a Gaussian (dots)
and a one-factor Variance
Gamma model (crosses) for
June 20, 2008
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may deviate from the real model price. Indeed, we determine ρV G[π ] such that
CMM

[
K, T; σ ,Θ, ρ [π ]

] = C[K, T ]. In order to test if the implied correlation esti-
mate obtained is accurate, we determine the model price Cmc

[
K, T; σ ,Θ, ρ [π ]

]

using Monte Carlo simulation, where we plug in the volatility parameters and the
implied correlation parameters. The results are listed in Table10 and shown in Fig. 6.
We observe that model and market prices are not exactly equal, but the error is still
acceptable.

5.2 Double Exponential

In the previous subsection, we showed that the Lévy copula model allows for deter-
mining robust implied correlation estimates. However, calibrating this model can
be a computational challenging task. Indeed, in case we deal with the Dow Jones
Industrial Average, there are 30 underlying stocks and each stock has approximately
5 traded option prices. Calibrating the parameter vector Θ and the volatility para-
meters σj has to be done simultaneously. This contrasts sharply with the Gaussian
copula model, where the calibration can be done stock per stock.

In this subsection we consider a model with the computational attractive calibra-
tion property of the Gaussian copula model, but without imposing any normality
assumption on the marginal log returns. To be more precise, given the convincing
arguments exposed in Fig. 7 we would like to keep L a V G(σ, ν, θ, μ) distribution.
However, we do not calibrate the parameter vector Θ = (σ, ν, θ, μ) to the vanilla
option curves, but we fix these parameters upfront as follows

μ = 0, θ = 0, ν = 1 and σ = 1.
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Table 10 Market quotes for Dow Jones Index options for different basket strikes on June 20, 2008

Basket strikes Market call prices Implied VG
correlation

VG call prices

94 24.45 0.8633 24.4608

95 23.45 0.8253 23.4794

96 22.475 0.786 22.4899

97 21.475 0.7358 21.4887

98 20.5 0.7062 20.5303

99 19.5 0.6757 19.5308

100 18.525 0.6546 18.5551

101 17.55 0.6203 17.5705

102 16.575 0.6101 16.6062

103 15.6 0.5778 15.6313

104 14.65 0.5668 14.6954

105 13.675 0.5386 13.7209

106 12.725 0.5266 12.7672

107 11.8 0.5164 11.8280

108 10.85 0.4973 10.8922

109 9.95 0.4989 9.9961

110 9.05 0.484 9.0813

111 8.2 0.4809 8.2202

112 7.35 0.4719 7.3519

113 6.525 0.4656 6.5193

114 5.7 0.4527 5.6755

115 4.95 0.4467 4.8908

116 4.225 0.4389 4.1554

117 3.575 0.4344 3.4788

118 2.935 0.4162 2.8118

119 2.375 0.4068 2.2337

120 1.88 0.3976 1.7227

121 1.435 0.3798 1.2977

122 1.065 0.3636 0.9549

123 0.765 0.3399 0.6906

124 0.52 0.3147 0.4793

125 0.36 0.3029 0.3517

126 0.22 0.2702 0.2321

127 0.125 0.2357 0.1479

For each price we find the corresponding implied correlation and the model price using a one-factor
Variance Gamma model with parameters listed in Table9
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Fig. 6 Dow Jones option prices: Market prices (circles) and the model prices using a one-factor
Variance Gamma model and the implied VG correlation smile (crosses) for June 20, 2008
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Variance Gamma model (crosses) for different trading days
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In this setting, L is a standardized distribution and its characteristic function φL is
given by

φL(u) = 1

1 + u2
2

, u ∈ R.

From its characteristic function, we see that L has a Standard Double Exponential
distribution, also called Laplace distribution, and its pdf fL is given by

fL(u) =
√
2

2
e− |u|√

2

The Standard Double Exponential distribution is symmetric and centered around
zero, while it has variance 1. Note, however, that it is straightforward to generalize
this distribution such that it has center μ and variance σ 2. Moreover, the kurtosis of
this Double Exponential distribution is 6.

By using the Double Exponential distribution instead of the more general
Variance Gamma distribution, some flexibility is lost for modeling the marginals.
However, the Double Exponential distribution is still a much better distribution for
modeling the stock returns than the normal distribution. Moreover, in this simplified
setting, the only parameters to be calibrated are the marginal volatility parameters,
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Fig. 8 Implied correlation smiles in the one-factor Variance Gamma and the Double Exponential
model
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which we denote by σ DE
j , and the correlation parameter ρDE . Similar to the Gaussian

copula model, calibrating the volatility parameter σ DE
j only requires the option curve

of stock j. As a result, the time to calibrate the Double Exponential copula model is
comparable to its Gaussian counterpart and much shorter than the general Variance
Gamma copula model.

Consider the DJ on March 25, 2008. The time to maturity is 25 days. We deter-
mine the implied marginal volatility parameter for each stock in a one-factor Vari-
ance Gamma model and a Double Exponential framework. Given this information,
we can determine the prices CV G[K, T ] and CDE[K, T ] for a basket option in a
Variance-Gamma and a Double Exponential model, respectively. Figure8 shows the
implied Variance Gamma and the Double Exponential correlations. We observe that
the implied correlation based on a one-factor VG model is larger than its Double
Exponential counterpart for a moneyness bigger than one, whereas both implied
correlation estimates are relatively close to each other in the other situation.

6 Conclusion

In this paper we introduced a one-factor Lévy model and we proposed a three-
moments-matching approximation for pricing basket options. Well-known
distributions like the Normal, Variance Gamma, NIG, Meixner, etc., can be used in
this one-factor Lévy model. We calibrate these different models to market data and
determine basket option prices for the different model settings. Our newly designed
(approximate) basket option pricing formula can be used to define implied Lévy
correlation. The one-factor Lévy model provides a flexible framework for deriving
implied correlation estimates in different model settings. Indeed, by employing a
Brownian motion and a Variance Gamma process in our model, we can determine
Gaussian and VG-implied correlation estimates, respectively. We observe that the
VG implied correlation is an improvement of the Gaussian-implied correlation.
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Appendix: Proof of Lemma 1

The proof for expression (9) is straightforward.
Starting from the multinomial theorem, we can write the second moment m2 as

follows

m2 = E
[
(w1S1(T) + w2S2(T) + . . . wnSn(T))2

]

= E

⎡

⎣
∑

i1+i2+...+in=2

2

i1!i2! . . . in!
n∏

j=1

(
wjSj(T)

)ij

⎤

⎦ .

Considering the cases (in = 0), (in = 1) and (in = 2) separately, we find

m2 = E

⎡

⎣

⎛

⎝
n−1∑

j=1

wjSj(T)

⎞

⎠

2

+ 2wnSn(T)

n−1∑

j=1

wjSj(T) + w2
j S2

n(T)

⎤

⎦ .

Continuing recursively gives

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)Sk(T)

]
. (15)

We then find that

m2 =
n∑

j=1

n∑

k=1

wjwkSj(0)Sk(0)

×E

[
exp

{
(2r − qj − qk − ωj − ωk)T + (σjAj + σkAk)

√
T
}]

=
n∑

j=1

n∑

k=1

wjwk
E
[
Sj(T)

]
E [Sk(T)]

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)E

[
exp

{
(σjAj + σkAk)

√
T
}]

.

In the last step,we used theExpressionωj = logφL

(
iσj

√
T
)

/T . Ifwe use expression

(1) to decompose Aj and Ak in the common component X(ρ) and the independent
components Xj(1 − ρ) and Xk(1 − ρ), we find the following expression for m2

m2 =
n∑

j=1

n∑

k=1

wjwk
E
[
Sj(T)

]
E
[
Sk(T)

]

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)E

[
e(σj+σk )X(ρ)eσj

√
TXj(1−ρ)eσk

√
TXk (1−ρ)

]
.

The r.v. X(ρ) is independent from Xj(1 − ρ) and Xk(1 − ρ). Furthermore, the char-
acteristic function of X(ρ) is φ

ρ

L , which results in
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m2 =
n∑

j=1

n∑

k=1

wjwk
E
[
Sj(T)

]
E [Sk(T)]

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)φL

(
−i(σj + σk)

√
T
)ρ

×E

[
eσj

√
TXj(1−ρ)eσk

√
TXk(1−ρ)

]
.

If j �= k, Xj(1 − ρ) and Xk(1 − ρ) are i.i.d. with characteristic function φ
1−ρ

L , which
gives the following expression for m2:

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)

]
E [Sk(T)]

⎛

⎝
φL

(
−i(σj + σk)

√
T
)

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

⎞

⎠

ρ

.

If j = k, we find that

E

[
eσj

√
TXj(1−ρ)eσk

√
TXk(1−ρ)

]
= φL

(
−i
(
σj + σk

)√
T
)

,

which gives

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)

]
E [Sk(T)]

φL

(
−i(σj + σk)

√
T
)

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
) .

This proves expression (10) for m2.
We can write m3 as follows

m3 = E

⎡

⎣

⎛

⎝
n∑

j=1

wjSj(T)

⎞
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3⎤
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= E

⎡

⎣

⎛
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⎞

⎠

2
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l=1

wlSl(T)

⎤

⎦ .

Using expression (15), we find the following Expression for m3:

m3 = E

⎡

⎣

⎛

⎝
n∑

j=1

n∑

k=1

wjwkSj(T)Sk(t)
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⎤
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=
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k=1

n∑

l=1

wjwkwlE
[
Sj(T)Sk(T)Sl(T)

]
.
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Similar calculations as for m2 result in

m3 =
n∑

j=1

n∑

k=1

n∑

l=1

wjwkwlE
[
Sj(T)

]
E [Sk(T)]E [Sl(T)]

×
φL

(
−i(σj + σk + σl)

√
T
)ρ

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

φL

(
−iσl

√
T
)Aj,k,l,

where

Aj,k,l = E

[
eσj

√
TXj(1−ρ)eσk

√
TXk(1−ρ)eσl

√
TXl(1−ρ)

]
.

Differentiating between the situations (j = k = l), (j = k, k �= l), (j �= k, k = l),
(j �= k, k �= l, j = l) and (j �= k �= l, j �= l), we find expression (11).
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Pricing Shared-Loss Hedge Fund
Fee Structures

Ben Djerroud, David Saunders, Luis Seco and Mohammad Shakourifar

Abstract The asset management business is driven by fee structures. In the context
of hedge funds, fees have usually been a hybrid combination of two different types,
which has coined a well-known business term of “2 and 20”. As an attempt to
provide better alignment with their investors, in a new context of low interest rates
and lukewarm performance, a new type of fund fees has been introduced in the last
few years that offers a more symmetric payment structure, which we will refer to
as shared loss. In this framework, in return for receiving performance fees, the fund
manager provides some downside protection against losses to the investors.We show
that the position values of the investor and the hedge fundmanager can be formulated
as portfolios of options, and discuss issues regarding pricing and fairness of the fee
rates, and incentives for both investors and hedge fund managers. In particular, we
will be able to show that, from a present value perspective, these fee structures can
be set up as being favorable either to the hedge fund manager or to the investor. The
paper is based on an arbitrage-free pricing framework. However, if one is to take
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into account the value to the business that investor capital brings to a fund, which is
not part of our framework, it is possible to create a situation where both investors as
well as asset managers win.

Keywords Hedge funds · Fee structures · First-loss · Shared-loss · Black-Scholes
option pricing

1 Introduction

Hedge Funds are pooled investment vehicles overseen by a management company.
They generally aim at absolute return portfolios and their success is usually linked to
market inefficiencies, such as instrumentmispricing,misguidedmarket consensus or,
in general terms, themanager’s intelligence to anticipatemarketmoves. The nature of
these investments is that they exploit investment opportunities that are rare. This is a
characteristic that they share with private equity investments, but they share with the
mutual fund industry the fact that they often trade in liquid, marketable securities.
Fund sizes are more in line with private equity investing than with the mammoth
mutual fund industry. Their compensation structure, because of their limited access
to opportunity, is also more in line with the private equity universe, and usually
consists in a fixed, asset-based fee, and a variable, performance fee base. Because of
market conditions that have been in place over the last several years, in particular the
low interest rate environment, coupled with the lukewarm performance of the hedge
fund sector in the recent years, investors have become increasingly more sensitive
to fee structures. The traditional 2&20 fee structure, consisting of a flat fee of 2%
of assets under management together with a performance fee of 20% of net profits
is considered unfair on the basis of the asymmetry: the management company will
always earn a fee, whereas the investor is only guaranteed to pay that fee. The advent
of the 40-ACT funds1 has, in particular, dispensed with the performance fee base in
favor of a fixed management fee, which is more in line with the mutual fund industry
than with the hedge fund industry. This compensation model essentially rewards
funds for becoming asset gatherers instead of the alpha-seeking business the hedge
fund was set out to be. In this paper we will examine, from a quantitative perspective,
a suite of symmetric performance fee structures which are gaining traction with more
sophisticated investors, known as first-loss (or shared-loss) fee structures. In this new
framework, in return for receiving performance fees, the fundmanager provides some
downside protection against losses to the investors.

The issue of the incentives created by hedge fund fees bears much similarity
to issues surrounding the structure of executive compensation. At first glance, the
optionality inherent in both would seem to incentivize greater risk taking. However,
the reality is more subtle. Carpenter [2] studies the case of executive compensation,

1Pooled investment vehicles, enforced and regulated by the Securities and Exchange Commission,
that are packaged and sold to retail and institutional investors in the public markets.
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when the manager cannot hedge options provided as compensation by trading the
underlying. In certain conditions, a utility-maximizingmanagermaychoose to reduce
rather than increase the volatility of the underlying firm. Ross [9] gives necessary
and sufficient conditions for a fee schedule to make a utility-maximizing manager
more or less risk-averse. Hodder and Jackwerth [6] consider the effects of hedge
fund fee incentives on a risk manager with power utility, and also in the presence of
a liquidation barrier. They find that over a one-year horizon, risk-taking varies dra-
matically with fund value, but that this effect is moderated over longer time horizons.
Kouwenberg and Ziemba [7] consider loss-averse hedge fund managers and find that
higher incentive fees lead to riskier fundmanagement strategies. However, this effect
is reduced if a significant portion of the manager’s ownmoney is invested in the fund.
They further provide empirical evidence showing that hedge fundswith incentive fees
have significantly lower mean returns (net of fees), and find a positive correlation
between fee levels and downside risk. They find that risk is increasing with respect
to the performance fee if the manager’s objective function is based on cumulative
prospect theory, rather than utility, and provide empirical evidence. Recent work on
the analysis of hedge fund fee structures includes that of Goetzmann et al. [3], who
value a fee structure with a highwater mark provision, using a PDE approach with a
fixed investment portfolio, Panageas and Westerfield [8], who consider the portfolio
selection decision of maximizing the present value of fees for a risk-neutral manager
over an infinite horizon, and Guasoni and Obłój [4], who extend this work to man-
agers with risk-averse power utility. Closest to the current work is He and Kou [5],
who analyze shared-loss fee structures for hedge funds by looking at the portfolio
selection decision of a hedge fund manager whose preferences are modeled using
cumulative prospect theory. The problem is considered in the presence of a man-
ager investing in the fund, and with a predetermined liquidation barrier. Analytical
solutions of the portfolio selection problem are provided, and the result (cumulative
prospect theory) for both the investor and the manager is examined. It is found that
depending on the parameter values, either a traditional fee structure or a first-loss
fee structure may result in a riskier investment strategy. While for some parameter
values, the first-loss structure improves the utility of both the investor and the hedge
fund manager, they find that for typical values, the manager is better off, while the
investor is worse off. In this paper, we investigate the shared-loss fee structures from
the perspective of risk-neutral valuation, with no further assumptions about investor
preferences, while He and Kou [5] solve the stochastic control problem (under the
real-world measure) corresponding to the manager maximizing the utility function
from cumulative prospect theory, and also evaluate the investor’s payoff using the
same type of criterion.

The paper is organized as follows. First, we will review the traditional fee struc-
tures in some detail. Next, wewill introduce the notion andmechanics of the first-loss
structures, and a framework for a fee pricing based on the theory of option price val-
uation. After that, we will introduce the concept of net fee, a number that will allow
us to determine whether the investor or the management company is the net winner
in a given fee agreement. Finally, we will present a set of computational examples
that will display the net fee as a function of the agreement and market variables.
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2 Hedge Fund Fees

The hedge fund manager charges two types of fees to the fund investors:

• A fixed management fee, usually ranging from 1% to 2% of net asset values.
• A performance fee, most commonly equal to 20% of net profits obtained by the
fund.

In this paper we assume a single investor and a single share issued by the fund.
The extension to the case of multiple investors andmultiple shares is straightforward.
Although fees are paid according to a determined schedule (usually monthly or
quarterly for management fees and annual for performance fees), we will assume a
single payment at the end of a fixed term T .

The fund value evolution and fee payment mechanics are denoted as follows: the
initial fund supplied by the investor is X0. The hedge fund manager then invests fund
assets to create future gross values Xt , for t > 0. The gross fund value Xt is split
between the investor’s worth It (the net asset value) and the manager’s fee Mt :

Xt = It + Mt .

At time 0, X0 = I0 and M0 = 0.
There are countless variations to this basic framework, including hurdles, claw-

backs, etc. (for more details on first-loss arrangements see Banzaca [1]). We will
ignore those and assume the commonly used version of a management fee equal to
m · X0 (m represents a fixed percentage of the initial investment by the investor), and
a performance fee of

α · (XT − (1 + m)X0))+ ,

payable only when it is positive, and equal to zero when it is negative. Hence,

MT = m · X0 + α · (XT − (1 + m)X0)+) (1)

In other words, while the management fee is a fixed future liability to the investor,
the performance fee is a contingent claim on the part of the manager. As a conse-
quence, we will be pricing the management fee simply as a fixed guaranteed fee with
a predetermined future cash value, and we will be valuing the performance fee as
the value of a certain call option. In our setting, we will assume normally distributed
log-returns for the invested assets Xt , which allows us to value the performance fee in
the Black–Scholes framework. It is worth mentioning that hedge funds managers can
speculate on volatility, credit risks, etc. and in contrast to the traditional money man-
agers, they can go long and short. The diversity in investment styles and the different
levels of gross and net exposure that they can employ could result in leptokurtic (non-
normal) properties in their returns, which is revealed through frequent large negative
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returns to the left of the return distribution. Generalization of the current framework
to models that account for non-normality of the hedge fund returns, for example
by employing generalized autoregressive conditional heteroskedasticity (GARCH)
models, could be a subject for future research.

3 The First-Loss Model

Calpers announced in 2014 that they were exiting hedge fund investments WSJ [10].
While not the main stated reason for their decision, one they mentioned was high
fees payable to their hedge fund managers, something that has caught the attention
of investors worldwide in the contemporary context of a widely accepted notion that
hedge fund fees nowadays are too high. Certain hedge funds are reacting to this
shifting balance of power between the sell-side and the buy-side of the investment
business with the creation of innovative fee structures which still reward the intel-
lectual capital of the hedge fund manager and allow for business growth but at the
same time offer the investor a more symmetric compensation structure.

An example of a first-loss structure is the following:

• The investor provides an investment of $100M to a fund.
• The fund manager will absorb the first-loss up to 10% of the initial investment.
• The investor pays a management fee of 1% to the manager, and performance fee
of 50%.

In our paper we will present a quantitative comparison of the fees payable to
the manager and the risk-neutral valuation of the guarantee offered to the investor.
We want to note, for the sake of completeness, that there are many other qualitative
considerations which are relevant when analyzing both the fee structure as well as
the business value offered to a management company by the investor, which are not
the objective of this paper. In fact, hedge fund start-ups have become more difficult
in recent times, increasing value to any investor action that allows a hedge fund
business to succeed. That value is linked to a wide variety of fund characteristics,
including the size of assets under management (AUM), the track record, or historical
performance, and the reputation of its investor base, among others.

In addition to the initial investment X0, themanagement feem and the performance
fee α, payable at a fixed time horizon T , we will now also consider a deposit amount
c, as a percentage of the initial investment X0, which the manager will provide as
a guarantee for losses. Our objective is to analyze the relationship between all four
variables to determine whether the investor, or the manager, is the net winner of
value-add from a risk-neutral valuation perspective.
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4 An Option Pricing Framework

The fund value Xt is split between the investors It and the manager Mt , where,
Xt = It + Mt . In the following sub-sections we derive the payoff function of each
player separately, and then price the positions accordingly.

4.1 Payoff to the Investor

The payoff to the investor at the terminal time T is:

IT =

⎧
⎪⎨

⎪⎩

XT − mX0 − α(XT − mX0 − X0) when XT − mX0 ≥ X0

X0 when (1 − c)X0 ≤ XT − mX0 ≤ X0

XT + (c − m)X0 when XT − mX0 ≤ (1 − c)X0

or, writing the payoff in a more compact form:

IT = XT − mX0 (pays a management fee)
−α(XT − mX0 − X0)+ (pays a performance fee)

+(X0 − XT + mX0)+ − ((1 − c)X0 − XT + mX0)+ (receives a guarantee)

Thus, we see that the position of the investor is equivalent to the following portfolio:

• A position in the hedge fund assets, with initial investment X0, less management
fee, that is, X0 − mX0.

• A short position in α call options on the hedge fund assets, with strike price
X0 + mX0 (the performance fee, or performance call option, given to the hedge
fund manager).

• A long position in a put option on the fund assets, with the strike price X0 + mX0

(the insurance put option).
• A short position in a put option on the fund assets, with strike price (1 − c)X0 +
mX0 (yielding a cap on the insurance payment).

4.2 Payoff to the Manager

The payoff to the manager is MT = XT − IT . In other words, the payoff to the
hedge fund manager results from the manager having the opposite position in all of
the options of the investor. More explicitly,
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MT = mX0 (receives a management fee)
+α(XT − mX0 − X0)+ (receives a performance fee)

−(X0 − XT + mX0)+ + ((1 − c)X0 − XT + mX0)+ (provides a guarantee)

which implies that the hedge fund manager has a portfolio of options consisting of:

• A constant position in the fixed management fee of mX0.
• A long position in α call options on the hedge fund assets, with strike price X0 +
mX0.

• A short position in a put option on the fund assets, with the strike price X0 + mX0.
• A long position in a put option on the fund assets, with strike price (1 − c)X0 +
mX0.

Note that net income to the management company is now no longer guaranteed
to be positive. In addition, since the options trades constitute a zero-sum game (the
positions of the manager and the investor are opposite each other), the sum of the
investor payoff and the manager payoff is equal to XT .

4.3 Valuation: Pricing Fees as Derivatives

In this section, we will value the positions of the investor and the hedge fund man-
ager using a simple Black–Scholes model for the underlying fund value process. In
particular, we employ risk-neutral valuation, and assume that under the risk-neutral
probabilities, the fund value process satisfies the stochastic differential equation:

dXt = r Xt dt + σ Xt dWt , (2)

with solution:
Xt = X0 exp

(
(r − σ 2

2 )t + σWt

)
(3)

where Wt is a standard Brownian motion, and r and σ are positive constants, giving
the continuously compounded risk-free interest rate and the volatility of the hedge
fund assets respectively. It should be noted that the Black–Scholes framework is
applicable to our context as the underlying, that is the fund value, can be dynamically
traded. Moreover, in a managed account context, even the liquidity of the fund can
be made to match the liquidity of the underlying traded securities.

The Black–Scholes formula can be used to derive the price of the investor’s
position under the Black–Scholes model:

VI (0) = X0 − e−rTmX0 − αC(X0, T, X0 + mX0, r, σ )

+P(X0, T, X0 + mX0, r, σ ) − P(X0, T, (1 − c)X0 + mX0, r, σ ) (4)

whereC(X, T, K , r, σ ) is the Black–Scholes price of a call option on a non-dividend
paying asset with current value of the underlying X , time to expiration T , strike price
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K , risk-free interest rate r and volatilityσ , and P(X, T, K , r, σ ) is theBlack–Scholes
put option price with the same parameters as arguments.

5 Consequences of the Derivative Pricing Framework

5.1 Graphical Analysis

To compare and contrast the traditional and shared-loss fee structures, in our base case
we take the investment horizon to be one month, that is T = 1/12, the performance
fee α = 50%, the manager deposit c = 10%, the risk-free interest rate r = 2%, the
volatility σ = 15%, and the initial investment X0 = $1. For simplicity and without
loss of generality we assume a zero management fee for our base case.

With our base case parameters, the total value of the investor’s payoff is 1.0073,
and the value of the manager’s payoff is −0.0073. Notice that the value of the
investor’s payoff is greater than the initial investment of 1. In contrast, the price of the
traditional investor payoff (without the insurance part of the payoff—i.e. removing
both put options) is 0.9909, and the value of the manager’s payoff in this instance is
0.0091.

5.1.1 Payoff Functions of the Investor and the Manager

The payoff functions of the investor under the shared-loss and the traditional fee
structures are given in Fig. 1. The payoff to the hedge fund manager using the afore-
mentioned benchmark values and under the shared-loss fee structure is also depicted
in Fig. 2 along with the traditional payoff structure with only the performance fee
α(XT − X0)+. Observe that since the options trades constitute a zero-sum game (the
positions of the manager and the investor are opposite each other), the sum of the
investor payoff and the manager payoff is equal to XT .

Figure3 illustrates the ‘fair performance fee’, where investor gets a payoff with
present value equal to his initial cash injection, X0, given volatility and manager’s
deposit levels, i.e. we setVI (0) = X0. The fair performance fee can be easily obtained
from Eq. (4) as,

αfair = −e−rT mX0 + P(X0, T, X0 + mX0, r, σ ) − P(X0, T, (1 − c)X0 + mX0, r, σ )

C(X0, T, X0 + mX0, r, σ )

Interested reader can derive explicit, well-known expressions for the sensitivities
of the αfair relative to different parameters in terms of the Greeks and Vega of the
involving options. As can be seen from the figure, for small values of volatility, the
fair performance fee is indifferent to the levels of manager’s deposit; however, as
volatility increases, a higher level of deposit by the manager translates into a higher
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Fig. 2 Payoff for the hedge fund manager

performance fee paid by the investor to make the deal a fair one. In Fig. 4, we
normalize the volatility on the horizontal axis by the manager’s deposit defined as a
percentage of the initial investment X0. For a given level of deposit, the higher the
volatility of the underlying investment, the higher the probability that the loss incurred
by the manager exceeds the deposit. In other words, the probability that the manager
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Fig. 4 Fair performance fee versus normalized (by deposit) volatility

exercises the put option offered by the investor increases, which results in a reversal
in the fair performance fee for higher levels of volatility. This is clearly illustrated
in Fig. 4 where volatility and deposit are combined in a single scaling variable, that
is, volatility/deposit, where the deposit is expressed as a percentage of the initial
investment X0. The corresponding maximum value for the fair performance fee
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increases with the size of the deposit; that’s because for higher deposits, the manager
will have to lose more and more before the investor starts bearing the residual loss,
therefore his compensation should be higher accordingly. Note that the x-axis in
Figs. 3 and 4 is incorporating the annual volatility of the fund assets; however, the
performance fee is crystallized on a monthly basis which suggests a comparison
between the deposit level and monthly volatility, as opposed to annual volatility.
Since returns are assumed to follow a normal distribution in our Black–Scholes
framework, one can explicitly calculate the probability of the returns falling into a
certain interval, in particular, with about 68% probability, the return falls within 1
standard deviation of the mean. This explains why the curves for various deposits
reach a maximum roughly around the same level of (annual) volatility/deposit ratio,
in the [1, 2] interval.

5.2 Sensitivity Analysis

In this section, we perform a sensitivity analysis of the prices of the investor’s and
manager’s payouts, as a function of the different model parameters.

5.2.1 Volatility (σ )

Figure 5 shows the value of the investor’s position as a function of the volatility
parameter σ , as σ ranges from 5% to 60%.
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Fig. 5 Value of the investor’s position versus volatility σ
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We see that the position is initially an increasing function of the volatility, owing
to the increasing value of the investor’s put option as a function of σ . However, as
the volatility becomes very large, the value of the investor’s position starts to decline
as the hedge fund’s call option, as well as its put option, become more valuable. The
maximum value for the investor occurs at a volatility around σ = 32.5%. Observe
however, that the value is relatively insensitive to the level of σ , with a minimum
value of 1.0016, and a maximum value of 1.0118.

5.2.2 Manager Deposit (c)

We varied the manager deposit between 1% and 25%, while holding all other para-
meters at their base case values. The results of the sensitivity analysis are shown in
Fig. 6.

Aswould be expected, the value of the investor’s position is an increasing function
of the manager’s deposit. The value of the position is equal to one (break-even point,
or ‘fair fee point’) at around c = 0.0233. Any deposit level less than c = 0.0233 puts
the investor at a disadvantage, and the investor is indifferent to deposit levels higher
than 10%.

0 0.05 0.1 0.15 0.2 0.25
0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

Trader Deposit

In
ve

st
or

 V
al

ue

Shared Loss

Fig. 6 Value of the investor’s position versus manager’s deposit c



Pricing Shared-Loss Hedge Fund Fee Structures 381

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

Expiration Date

In
ve

st
or

 V
al

ue

Shared Loss

Traditional

Fig. 7 Value of the investor’s position versus the expiration date T

5.2.3 Maturity Date (T )

The dependence on the time to maturity is of interest specially when adapting the
results of this paper to realistic situations. As wementioned earlier, our mathematical
assumption is that fees will be paid at a fixed time in the future. In practice, fees are
payable according to calendars agreed between the investors and the manager. In the
graphs that follow, we address this by varying the expiration date T from 1 day to 1
year. The results are shown in Fig. 7.

Initially, the value of the position is increasing in T , but eventually, it begins to
decrease in T , as the options given to the hedge fundmanager becomemore valuable.
The maximum value of the investor’s position occurs at T around one quarter of a
year (T ∼ 0.22).

6 Conclusion

The exchange of business value between the manager and the investor is always a
complex one: beyond fees paid, there are intangibles the investor gives the manager.
An asset management business is valued taking into account many factors, such
as track records, years in business, assets under management, the reputation of its
investors, and of course fees. In this paper we focus on first-loss fee structures, which
are bringing novel points of attention between investors and hedge fund managers
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in the historical discussions on fair compensation. We focus only on the fee payable
by the investor and the guarantee offered by the manager, which is the main novelty
in this set up. The main challenge in this new paradigm is to evaluate the value of
the guarantee offered by the hedge fund manager in relation to the fee paid by the
investor. In this paper, we developed a mathematical approach to compare the two
features of guarantee and performance fee from an option pricing perspective. The
framework is flexible and can be used for different specific investment settings and
can account for slight variations from one fund to another. Our salient leitmotif is:
fee agreements must be structured to be attractive to managers so they are willing to
participate, and at the same time provide a cushion against losses to the investor. A
significant contribution, that sheds light on the road-map and paves theway for deeper
investigations, is to see, andmore importantly formulate, the underlying fee structure
from the lens of option valuation. By employing a risk-neutral framework and options
pricing theory, one is able to not only price, but also analyze the sensitivity of the
value of the investor’s and manager’s positions in reference to a set of influential
parameters.

Acknowledgements Wewish to express our gratitude to Sigma Analysis &Management Ltd., and
especially to Dr. Ranjan Bhaduri and Mr. Kurt Henry for many endless valuable discussions.
The KPMG Center of Excellence in Risk Management is acknowledged for organizing the con-

ference “Challenges in DerivativesMarkets - Fixed IncomeModeling, Valuation Adjustments, Risk
Management, and Regulation”.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, dupli-
cation, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, a link is provided to the Creative Com-
mons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Banzaca, J.: First loss capital arrangements for hedge fund managers: Structures, risks and the
market for key terms. The Hedge Fund Law Report 5(37), (2012)

2. Carpenter, J.: Does option compensation increase managerial risk appetite? J. Financ. 55(5),
2311–2331 (2000)

3. Goetzmann, W., Ingersoll, J., Ross, S.: High-water marks and hedge fund management con-
tracts. J. Financ. 58(4), 1685–1717 (2003)

4. Guasoni, P., Obłój, J.: The incentives of hedge fund fees and high-water marks, forthcoming.
Mathematical Finance (2013)

5. He, X., Kou, S.: Profit sharing in hedge funds. www.ssrn.com (2013)
6. Hodder, J., Jackwerth, J.: Incentive contracts and hedge fund management. J. Financ. Quant.

Anal. 42(4), 811–826 (2007)

http://creativecommons.org/licenses/by/4.0/
www.ssrn.com


Pricing Shared-Loss Hedge Fund Fee Structures 383

7. Kouwenberg, R., Ziemba, W.: Incentives and risk taking in hedge funds. J. Bank Financ. 31,
3291–3310 (2007)

8. Panageas, S., Westerfield, M.: High-water marks: high risk appetites? Convex compensation,
long horizons, and portfolio choice. J. Financ. 64(1), 1–36 (2009)

9. Ross, S.: Compensation, incentives, and the duality of risk aversion and riskiness. J. Financ.
59(1), 207–225 (2004)

10. WSJ: Calpers to Exit Hedge Funds. http://www.wsj.com/articles/calpers-to-exit-hedge-funds-
1410821083?alg=y (2014)

http://www.wsj.com/articles/calpers-to-exit-hedge-funds-1410821083?alg=y
http://www.wsj.com/articles/calpers-to-exit-hedge-funds-1410821083?alg=y


Negative Basis Measurement: Finding
the Holy Scale

German Bernhart and Jan-Frederik Mai

Abstract Investing into a bond and at the same time buying CDS protection on the
same bond is known as buying a basis package. Loosely speaking, if the bond pays
more than the CDS protection costs, the position has an allegedly risk-free positive
payoff known as “negative basis”. However, several different mathematical defini-
tions of the negative basis are present in the literature. The present article introduces
an innovative measurement, which is demonstrated to fit better into arbitrage pric-
ing theory than existing approaches. This topic is not only interesting for negative
basis investors. It also affects derivative pricing in general, since the negative basis
might act as a liquidity spread that contributes as a net funding cost to the value of a
transaction; see Morini and Parampolini (Risk, 58–63, 2011, [23]).

Keywords Negative basis measurement · Bond-CDS basis · Hidden yield

1 Introduction

On first glimpse, it is surprising that investing into a bond and buying CDS protection
on that underlying bond, henceforth called a basis package, can earn an attractive
spread on top of the risk-free rate of return, as it appears to be free of default risk.
This excess return over the risk-free rate is informally called negative basis1; more
formal definitions are given in the main body of this article. [8] has even devoted an
entire book to the topic. If, conversely, the cost of CDS protection exceeds the bond
earnings, one speaks of a positive basis. In this article, we only speak of negative
bases, as fundamentally the concepts of positive and negative basis are simply inverse.

1Sometimes also called bond-CDS basis.;
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The appropriatemeasurement of negative basis plays an important rolewith regard
to the cost of funding literature, which has become of paramount interest in the
financial industry since the recent liquidity crisis. Generally speaking, this stream
of literature reconsiders the pricing of derivatives under the new post-crisis funda-
mentals regarding funding, liquidity, and credit risk issues. Substantial contributions
have been made, among others, by [5, 7, 12, 13, 23, 27, 29]. Loosely speaking, most
references agree upon the fact that, at least under certain simplifying assumptions
(full, bilateral, and continuous collateralization), derivative contracts can be evalu-
ated in the traditional way, only the involved discount factors have to be adjusted by
means of a spread accounting for funding and liquidity charges. In particular, [23]
show in a simple, theoretical framework that the negative basis is a spread which
plays an essential role in this regard. In order to set these theoretical findings into
action in the industry’s pricing machinery, it is therefore an essential task to establish
viable and reasonable measurements for the negative basis. The present article shows
that this topic is not only important but also challenging, and contributes a careful
comparison of three different measurement methods. In particular, we point out why
the most common measurement approaches (denoted by (Z) and (PE) below) are not
recommended, and propose a decent alternative.

In the present article, we take the point of view of a negative basis investor whose
goal is to detect interesting negative basis positions and to monitor the evolution of
such investments over time. Alternatively, consider a bank which has to evaluate its
derivative book. As the aforementioned references show that the required discount
factors for the pricing algorithms might have to be adjusted by means of the negative
basis, one faces the task of measuring this negative basis appropriately. For the
effective implementation of these tasks, it is crucial to come up with a reliable and
viable, yet reasonable mathematical definition of what the negative basis actually
is. Specific focus is put on simple-to-implement approaches that rely on commonly
applied pricing methodologies for bonds and CDS, described in, e.g., [18, 25]. In
total, we discuss three different measurements (two traditional and one innovative):

• Difference between Z-spread of the bond and CDS running spread, as presented,
e.g., in [8], and defined by Bloomberg on the screen YAS.

• Par-equivalent CDS-methodology, as described in the Appendix of [2], who apply
this definition for an empirical study, see also [3].

• A hidden yield approach that assumes the risk-free discounting curve to be a
reference interest rate curve shifted by the (initially unknown) negative basis.

Important to note is that, according to all these definitions, a negative basis is assigned
to a bond, not to an issuer. This means that two different bonds issued by the same
company are allowed to have two different negative bases. This viewpoint stands
in glaring contrast to some of the more macro-economic considerations carried out
in references cited in the next section. CDS protection typically refers to a whole
battery of eligible bonds by a reference issuer, and normally the major driver for
CDS spreads is considered to be the issuer’s default risk. However, some of the
deliverable bonds might trade at diverse yields for reasons other than the issuer’s
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default risk—for instance legal issues, liquidity issues, or funding issues, cf. [21]
and Sect. 2.

The rest of this article is organized as follows. Section2 recalls reasons for the
existence of negative basis. Section3 introduces general notations, which are used
throughout the remaining sections. Section4 reviews the traditional methods (Z) and
(PE), Sect. 5 discusses the innovative method (HY), and Sect. 6 concludes.

2 Why Does Negative Basis Exist?

There are a couple of intuitive explanations for the existence of negative basis, see,
e.g., [1, 2, 4, 6, 10, 19, 24, 26, 30]. For the convenience of the reader, we briefly
recall some of them in the sequel.

• Liquidity issues: Some bond issues are distributed only among a few investors.
If one of these investors has to sell her bonds, for instance due to regulatory
requirements or demand for liquidity, supply may exceed demand and thus the
price of the bond must drop significantly in order for the bond to be sold. At the
same time the CDS price might remain unaffected.

• Funding costs: From a pure credit risk perspective, selling CDS protection eco-
nomically is the same risk as buying the underlying bond. However, buying a bond
requires an initial investment that must be funded, whereas selling CDS protection
typically requires much less initial funding (unless the CDS upfront exceeds the
bond price). Therefore, in times of high funding costs there is an incentive to sell
CDS rather than to buy bonds, which might lead to an increase in supply of CDS
protection, making it cheap relative to bond prices.

• Market segmentation: Empirical observations suggest that bond trades some-
times have larger volumes and might be motivated much less by quantitative
aspects thanCDS trades.Arguing similarly, [6, p. 5, l. 5–7] conjecture that“market-
implied [risk] measures have a stronger impact on the CDSmarket, while the more
easily available rating information affects the bond market more strongly”. Such
instrument-specific differences might contribute to the existence of negative basis.

• Legal risk: The bond of the negative basis position might bear certain risks that
cannot be protected against by means of a CDS. Examples are certain collective
action clauses, debt restructuring events, or call rights for the bond issuer. Such
“legal gaps” explain parts of the negative basis.

• Counterparty credit risk: A joint default of both the CDS counterparty and the
issuer of the bond could lead to a loss for the basis position.2 These potential losses
imply that CDS protection is not 100% and consequently might contribute to the
negative basis, see, e.g., [5, 22].

• Mark-to-market risk: The negative basis might further increase after one has
entered into the position, due to one of the aforementioned reasons. In this case, one

2However, counterparty credit risk can be reduced significantly by a negative basis investor when
the CDS is collateralized, which is the usual case.
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loses money due to mark-to-market balancing. In theory, one gets this money back
eventually, but it might occur that mark-to-market losses exceed one’s personal
tolerance level during the bond’s lifetime. In this case, one has to exit the position
and realize the loss. This risk is especially significant if the negative basis position
is levered (which has happened heavily during the financial crisis). Part of the
negative basis might be viewed as a risk premium for taking this mark-to-market-
risk.

Basis “arbitrageurs” are investors that try to earn the negative basis by investing
into basis packages. This means that they consider the negative basis an adequate
compensation for taking the aforementioned risks. In classical arbitrage theory, their
appearance improves trading liquidity. Counterintuitively, however, [9] argue that
the advent of CDS was detrimental to bond markets and [20] find some evidence that
basis arbitrageurs bring new risks into the corporate bond markets.

3 General Notations

All definitions to follow rely on the pricing of CDS and a plain vanilla coupon bond
according to the most simple mathematical setup we can think of. This is in order
to make the article as reader-friendly as possible; furthermore, we think the setup
is already rich enough in order to convey the main ideas. The only randomness
considered in the present article is the default time of the bond issuer, which is
formally defined on a probability space (Ω,F ,Q), with state space Ω , σ -algebra
F , and probabilitymeasureQ. Expected valueswith respect to the pricingmeasureQ
are denoted byE. The default intensityλ(.) of the issuer’s default time τ is assumed to
be deterministic, i.e. Q(τ > t) = exp(− ∫ t

0 λ(s) ds). Sometimes the function λ(.) is
constant, sometimes piecewise constant, depending on our application. For example,
the computation of a so-called Z-spread requires λ(.) to be constant,3 whereas the
joint consistent pricing of several CDS quotes with different maturities requires λ(.)

to be piecewise constant.
Generally speaking, it is our understanding that a negative basis is a measure

for the mispricing between CDS and bonds with respect to default risk alone. This
explains why considering the default time as the sole stochastic object corresponds
to the most minimal modeling approach possible. Besides the non-randomness of the
default intensity, the following further simplifying assumptions are taken for granted
throughout:

• We ignore recovery risk: Upon default, the bond holder receives the constant
proportionR ∈ [0, 1] of her nominal. Default is assumed to instantaneously trigger
a credit event of the CDS. The bond is assumed to be a deliverable security in
the auction following the CDS trigger event, and the auction process is assumed
to yield the same recovery rate R. Although this is an unrealistic assumption in

3See below in Step 3 of Definition 1.
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principle (see, e.g., [17]), a negative basis investor can always eliminate recovery
risk by delivering his bonds into the auction (physical settlement), in which case
he gets compensated by the (nominal-matched) CDS for the nominal loss of the
bond.4 Consequently, our assumption is not severe for the present purpose.

• We ignore interest rate risk: The discounting curve is deterministic and the discount
factors are denoted by DF(t) := exp(− ∫ t

0 r(s) ds) with some given deterministic
short rate function r(.). All presented negative basis figures are measurements
relative to the applied short rate function r(.).

Under these assumptions we introduce the following notations:

• t(B)
j denotes the coupon payment dates of the bond.

• The bond’s lifetime is denoted by T , i.e. T denotes the last coupon payment
date, which at the same time is the redemption date. Moreover, the bond is
assumed to pay a constant coupon rate C at each coupon payment date.

• t(C)
i denotes the payment dates of the considered CDS contracts, which typically
are quarterly on the 20th of March, June, September, and December, respectively,
according to the terms and conditions of ISDA standard contracts.5

• For a CDS with maturity T , the (usually standardized) running coupon is denoted
by s(T) and the upfront payment to be made at CDS settlement by upf(T).

• The expected discounted value of the sum of all premium payments to be made
by the CDS protection buyer (the premium leg) is denoted by6

EDPL(λ(.), r(.), s(T), upf(T),T)

:= upf(T) + s(T)
∑

0<t(C)
i ≤T

(
t(C)
i − t(C)

i−1

)
DF

(
t(C)
i

)
Q

(
τ > t(C)

i

)

= upf(T) + s(T)
∑

0<t(C)
i ≤T

(
t(C)
i − t(C)

i−1

)
DF

(
t(C)
i

)
e− ∫ t(C)

i
0 λ(s) ds.

• The expected discounted value of the sum of all default compensation payments
to be made by the CDS protection seller (the default/protection leg) is denoted by

EDDL(λ(.), r(.),R,T) : = (1 − R)E[1{τ≤T} DF(τ )]
= (1 − R)

∫ T

0
DF(y) λ(y) e− ∫ y

0 λ(s) ds dy.

4Interestingly, a mismatch between bond and CDS recovery is often favorable for the negative basis
investor, since the CDS recovery rate tends to be lower than the bond recovery, see, e.g., [14]. Thus,
it might make sense for a negative basis investor to opt for cash settlement of the CDS and sell his
bonds in the marketplace, speculating on a favorable recovery mismatch.
5See http://www2.isda.org/asset-classes/credit-derivatives/.
6For the sake of notational convenience we ignore accrued interest upon default, which can, of
course, be incorporated easily.

http://www2.isda.org/asset-classes/credit-derivatives/
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• The model price of the bond is given by

Bond(λ(.), r(.),R,C,T) := C
∑

0<t(B)
j ≤T

(
t(B)
j − t(B)

j−1

)
DF

(
t(B)
j

)
Q

(
τ > t(B)

j

)

+ DF(T)Q(τ > T) + RE[1{τ≤T} DF(τ )]

= C
∑

0<t(B)
j ≤T

(
t(B)
j − t(B)

j−1

)
DF

(
t(B)
j

)
e−

∫ t(B)
j

0 λ(s) ds

+ DF(T) e−
∫ T
0 λ(s) ds + R

∫ T

0
DF(y) λ(y) e−

∫ y
0 λ(s) ds dy.

4 Traditional Measurements

4.1 The Z-Spread Methodology

The main idea of the Z-spread methodology is to define the negative basis as the
difference between (expected) annualized bond earnings and annualized protection
costs. This method is described, e.g., in [8]. The negative basis NB(Z) is computed
by the following algorithm.

Definition 1 (Negative Basis (Z))

1. A reference discounting curve, resp. the associated short rate r(.), is chosen and
used in all subsequent steps, e.g. bootstrapped from quoted prices for interest rate
derivatives according to one of the methods described in [15, 16].

2. From a term structure of quotedCDSwith differentmaturities, piecewise constant
intensities λ(.) are bootstrapped, as described, e.g., in [25]. For this, a recovery
assumption is made, i.e. R is model input.7

3. Denoting by B the quoted market price of the bond, the bond’s Z-spread z is
defined as the root of the function8

x �→ Bond(x, r(.), 0,C,T) − B, (1)

7If CDS prices are quoted in running spreads with zero upfronts, then these quotes typically come
naturally equippedwith a recovery assumption that is required in order to convert the running spreads
into actually tradable standardized coupon and upfront payments. However, after this conversion
the recovery rate is a free model parameter.
8For a reader-friendly explanation of the Z-spread see [28]. In particular, it is useful to observe that
Bond(x, r(.),R,C,T) = Bond(0, r(.) + x,R,C,T) for R = 0, implying that the Z-spread equals
a constant default intensity under a zero recovery assumption.
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if existent. In words, the Z-spread is the amount by which the reference short rate
r(.) needs to be shifted parallelly in order for the discounted bond cash flows to
match the market quote. The root, whenever existing at all, is unique.

4. The (zero-upfront) running CDS spread s(T) for a CDS contract, whose maturity
matches the bond’s maturity, is defined as

s(T) := EDDL(λ(.), r(.),R,T)

EDPL(λ(.), r(.), 1, 0,T)
,

i.e. the fair running spread when no upfront payment is present.
5. NB(Z) := z − s(T).

Intuitively, the Z-spread z is a measure of the annualized excess return of the bond
on top of the “risk-free” rate r(.), whereas s(T) is the annualized CDS protection
cost. Hence, NB(Z) equals the difference between earnings and costs (expected in
case of survival). If the function (1) does not have a root in (0,∞), this means that
the bond is less risky than the default risk intrinsic in the chosen discounting curve
r(.). Especially since the liquidity crisis, when the interbank money transfer ran
dry, significant spreads between discounting curves obtained from overnight rates
and LIBOR-based swap rates are observed. Consequently, one could recognize, e.g.,
German government bonds with a “negative Z-spread” with respect to the interest
rate curve r(.), which was obtained from 6-month EURIBOR swap rates. For such
reasons it has become market standard to extract the “risk-free” discounting curve
from overnight rates rather than from LIBOR-based swap rates. Moreover, [19] point
out that the difference between bond yields and CDS spreads can depend on whether
treasury rates or swap rates are used for discounting. Since negative basis investors
are typically trading in the high yield sector, the function (1) normally does have
a root in (0,∞) for several canonical choices of r(.), be it extracted from swap
rates with overnight tenor, 3-month tenor, or 6-month tenor. But it is important to
stress that all presented negative basis measurements are always relative measures
depending on the applied interest rate curve r(.).

The Z-spread methodology has some drawbacks:

• Imprecision: Earnings and costs are not measured accurately, but only approxi-
mately. TheZ-spread is only a rough estimate for the expected annualized earnings,
and the zero-upfront running CDS spread is also not really tradable, but only a
fictitious quantity. Furthermore, the Z-spread is earned on the bond value, whereas
the CDS spread is paid on the (bond and) CDS nominal, which may result in a
nonsense measurement for bonds trading away from par, see Example1 below.
To this end, [10] proposes to replace the Z-spread by an asset swap spread. It is
possible to define more accurate measurements of earnings and costs taking into
account actual cash flows. However, in the present article we do not elaborate on
these fine-tunings, since the “earnings and costs”-perspective in general suffers
from the following second difficulty.

• Inaccurate hedge: The measurement assumes that bond and CDS have the
same maturity and nominals and furthermore implicitly assumes a survival
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until maturity. Upon a default event the PnL of the position might be considerably
different, depending on the timing of the default, see Fig. 1 in Example1 below.
Hence, the assumedCDShedge cannot really be considered to be default-risk elim-
inating (it might either profit from or lose on a default event), and consequently
the number NB(Z) does not deserve to be called a return figure after elimination of
default risk, which the negative basis should be in our opinion.

4.2 The Par-Equivalent CDS Methodology

The par-equivalent CDS methodology is described in the Appendix of [2]. A similar
idea is also outlined in [8, p. 101 ff] and [3]. The negative basis NB(PE) is computed
along the steps of the following algorithm.

Definition 2 (Negative Basis (PE))

1. A reference discounting curve, resp. the associated short rate r(.), is chosen and
used in all subsequent steps, e.g. bootstrapped from quoted prices for interest rate
derivatives according to one of the methods described in [15, 16].

2. From a term structure of CDS contracts on the reference entity, piecewise constant
intensities λ(.) are bootstrapped, as described, e.g., in [25]. For this a recovery
assumption is made, i.e. R is model input.

3. The (zero-upfront) running CDS spread s(T) for a CDS contract, whose maturity
matches the bond’s maturity, is defined as

s(T) := EDDL(λ(.), r(.),R,T)

EDPL(λ(.), r(.), 1, 0,T)
,

i.e. the fair running spread when no upfront payment is present.
4. Denoting by B the quoted market price of the bond, a shift z̃ is defined as the root

of the function
x �→ Bond(λ(.) + x, r(.),R,C,T) − B,

if existent. In words, the bond is priced with the default intensities λ(.) that are
consistent with CDS quotes, which are then shifted parallelly until the bond’s
market quote is matched.

5. A second (zero-upfront) running CDS spread s̃(T) for a CDS contract, whose
maturity matches the bond’s maturity, is defined as

s̃(T) := EDDL(λ(.) + z̃, r(.),R,T)

EDPL(λ(.) + z̃, r(.), 1, 0,T)
,

i.e. the fair spread when no upfront payment is present, but now with the shifted
intensity rates λ(.) + z̃, which are required in order to price the bond correctly.

6. NB(PE) := s̃(T) − s(T).
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The main idea of (PE) is to question the default probabilities bootstrapped from
the given CDS quotes, and to adjust them in order to match the bond quote. On
a high level, this negative basis measurement is based on the difference between
default probabilities that are required in order to match the bond price and default
probabilities that are required in order to fit the CDS quotes.

The methodology (PE) has some drawbacks:

• No link to arbitrage pricing theory: In our view, there is no convincing economic
argument as to why two different survival functions for the same default time
should be used. In particular, the method provides no joint pricing model for bond
and CDS that explains the negative basis as one of its parameters. The method is
“decoupled” from arbitrage pricing theory.

• No link to “earnings and costs”-perspective:Unlike the method (Z), the method
(PE) does not have a clear link to an earningsmeasure above a reference rate,which
is what the negative basis is informally thought of.

5 An Innovative Methodology

In our opinion, the negative basis should be a spread on top of a reference discounting
curve which can be earned without exposure to default risk. This means we question
the usual assumption that the applied discounting curve r(.) is the appropriate risk-
free rate to be used, because there is actually a higher rate that can be earned “risk-
free” (recalling that default risk is the only riskwithin our tinymodel). Thismotivates
what we call the hidden yield approach. The negative basisNB(HY) is computed along
the steps of the following algorithm.

Definition 3 (Negative Basis (HY))

1. A reference discounting curve, resp. the associated short rate r(.), is chosen and
used in all subsequent steps, e.g. bootstrapped from quoted prices for interest rate
derivatives according to one of the methods described in [15, 16].

2. Denote by λx(.) the piecewise constant intensity rates that are bootstrapped from
CDSmarket quotes,when the assumeddiscounting curve is r(.) + x, as described,
e.g., in [25]. The recovery rate R is fixed and chosen as model input.

3. The negative basis NB(HY) is defined as the root9 of the function

x �→ Bond(λx(.), r(.) + x,R,C,T) − B.

In words, NB(HY) is precisely the parallel shift of the reference short rate r(.)
which allows for a calibration such that the model prices of bond and CDSmatch
the observed market quotes for bond and CDS.

9Lemma A.1 in the Appendix guarantees that this root typically exists and is unique.
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The idea of method (HY) can also be summarized as follows: If the risk-free
interest rate curve is assumed to be r(.) + NB(HY), then the market quotes for bond
and CDS are arbitrage-free (as we have found a corresponding pricing measure).
It allows for the intuitive interpretation of the negative basis as a spread earned
on top of a reference discounting rate after elimination of default risk. Abstractly
speaking, assuming no transaction costs and availability of CDS protection at all
maturities T > 0 (= perfect market conditions), arbitrage pricing theory suggests the
existence of a trading strategy which buys the bond and hedges it via CDS, and which
earns10 precisely the rate r(.) + NB(HY) until theminimum of default time τ and bond
maturity T . Since this way of thinking about NB(HY) is its distinctive property and
highlights its intrinsic coherence with arbitrage pricing theory, the following lemma
demonstrates by a heuristic argument how the rate r(.) + NB(HY) can be earned in a
risk-free way.

Lemma 1 (The rate r(.) + NB(HY) can be earned without default risk) Assuming
perfect market conditions, there exists a (static) portfolio, which is long the bond
and invested in several CDS, which earns the rate r(.) + NB(HY) until min{τ,T}.
Proof (heuristic)We denote byQ the probability measure under which τ has piece-
wise constant default intensity λNB(HY) (.). We discretize the time interval [0,T ] into
m buckets 0 =: t0 < t1 < . . . < tm := T , but m may be chosen arbitrarily large such
that the mesh of the discrete-time grid tends to zero as m tends to infinity. We intro-
duce the following m + 1 probabilities:

w(m)
j := Q

(
τ ∈ (tj−1, tj]

)
, j = 1, . . . ,m, w(m)

m+1 := Q(τ > tm).

Now let τ (m) denote a random variable with distribution

Q

(
τ (m) = t̄j

)
= w(m)

j , t̄j := tj−1 + tj
2

, j = 1, . . . ,m,

Q

(
τ (m) > t

)
= Q(τ > t), t ≥ tm,

(
in particular,Q(τ (m) > tm) = w(m)

m+1

)
.

Notice that τ (m) ≈ τ in distribution, with the approximation improving with increas-
ingm. In the sequel, we work with τ (m), assuming that default during [0,T ] can only
take place at the possible realizations t̄1, . . . , t̄m of τ (m) in [0,T ]. We now consider
a portfolio of m + 1 instruments, namely the bond and one CDS for each maturity
t1, . . . , tm. We assume that the bond nominal is given by N0. Furthermore, Ni ∈ R
denotes the nominal of the CDSwithmaturity ti. Negative nominalmeans that we sell
the bond or sell CDS protection. Let’s have a look at the following random variables,
which are functions of τ (m):

10By “earning” r(.) + NB(HY) wemean that the internal rate of return of the position is the reference
rate r(.) plus a spread NB(HY).



Negative Basis Measurement … 395

V (0)(τ (m)
) :=

(
r(.) + NB(HY)

)
-discounted value of all cash flows from the bond,

when default takes place at τ (m),

V (i)(τ (m)
) :=

(
r(.) + NB(HY)

)
-discounted value of all cash flows from the CDS with

maturity ti, when default takes place at τ (m), i = 1, . . . ,m.

All random variables V (i)
(
τ (m)

)
take on onlym + 1 possible values, since their value

on the event {τ (m) > tm} does not depend on τ (m) (as there are no cash flows after
tm). So without loss of generality we may write V (i)

(
τ (m)

) = V (i)
(
t̄m+1

)
for some

arbitrary t̄m+1 > tm on the event {τ (m) > tm}. Our goal is to show that it is possible
to find a non-zero vector (N0, . . . ,Nm) ∈ Rm+1 such that

N0 V
(0)(τ (m)

) +
m∑

i=1

Ni V
(i)

(
τ (m)

)

︸ ︷︷ ︸(
r(.)+NB(HY)

)
-discounted value of outcome

≡ N0 B +
m∑

i=1

Ni upf(ti)

︸ ︷︷ ︸
initial investment amount

, (2)

where B denotes the market bond price and upf(ti) the market upfront of the CDS
with maturity ti. This mathematical statement intuitively means that the considered
portfolio of bond and CDS earns the rate r(.) + NB(HY) until min{τ (m),T} in a risk-
free manner, regardless of the actual timing of the default. Now why is this possible?
Considering the randomness on the left-hand side of Eq. (2), we actually havem + 1
equations for the m + 1 unknowns N0,N1, . . . ,Nm. Rewriting Eq. (2) in terms of
linear algebra, we obtain

⎛

⎜
⎜⎜
⎜
⎜
⎝

V (0)(t̄1
) − B V (1)(t̄1

) − upf(t1) . . . V (m)
(
t̄1

) − upf(tm)

...
. . .

...

...
. . .

...

V (0)(t̄m+1
) − B V (1)(t̄m+1

) − upf(t1) . . . V (m)
(
t̄m+1

) − upf(tm)

⎞

⎟
⎟⎟
⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

N0
N1
...

Nm

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

0
0
...

0

⎞

⎟⎟
⎟
⎠

.

(3)

In order to prove the existence of a non-trivial solution (N0, . . . ,Nm) to Eq. (3), it
suffices to verify that the associated (m + 1) × (m + 1)-matrix does not have full
rank. Now here enters the essential heuristic argument: it follows from the definition
of NB(HY) that

m+1∑

j=1

w(m)
j V (0)

(
t̄j
) ≈ B =

m+1∑

j=1

w(m)
j B,

m+1∑

j=1

w(m)
j V (i)

(
t̄j
) ≈ upf(ti) =

m+1∑

j=1

w(m)
j upf(ti), i = 1, . . . ,m,
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with the approximations becoming equalities asm → ∞. In other words, this means
that the rows of the equation system (3) are linearly dependent. Consequently, the
associated matrix cannot have full rank and the columns must also be linearly depen-
dent, i.e. there exists a non-zero solution (N0, . . . ,Nm) of Eq. (3), and hence (2), as
desired. Finally, taking a close look at the structure of the involved cash flows, it is
obvious that a solutionmust satisfyN0 
= 0.Without loss of generality wemay hence
set N0 = 1 (because if (N0, . . . ,Nm) is a solution, so is α (N0, . . . ,Nm) for arbitrary
α ∈ R). Concluding, the portfolio we have found is long the bond. ��

We present an example that demonstrates how different the three presented mea-
surements of negative basis can be in practice. The specifications are inspired by a
real-world case.

Example 1 We consider a bond with maturity T = 3.5 years paying a semi-annual
coupon rate of C = 8.25%. It trades far below par value, namely at B = 46.5%. An
almost maturity-matched CDS contract is available at an upfront value of upf(T) =
53% with a running coupon of s(T) = 5%, payed quarterly. This means a nominal-
matched negative basis investment comes at a package price of 46.5 + 53 = 99.5%,
and pays a coupon rate of 8.25 − 5 = 3.25% until default (however, the bond and
CDS coupon payments have different frequencies and payment dates). In the sequel
we assume a recovery rate of R = 20%, and the reference rate r(.) is bootstrapped
from 3-month tenor-based interest rate swaps according to the raw interpolation
method described in [15, 16]. Because the bond trades far below par, the measure-
ment (Z) is highly questionable and returns NB(Z) = −0.42%, which is clearly not
an appropriate measurement. As indicated earlier, improved versions of earnings
and costs-measurements must be used in order to deal with such extreme situations
of highly distressed bonds, but this lies outside the scope of the present article.
The par-equivalent CDS methodology returns the measurement NB(PE) = 2.29%,
whereas the hidden yield methodology returns the significantly lower number
NB(HY) = 1.18%. While the authors are not aware of a strategy how to monetize the
(PE)-measurement 2.29%, Lemma 1 provides a clear interpretation for the (HY)-
measurement 1.18% in terms of an internal rate of return that can be earned on top
of the risk-free rate, when the negative basis investment is structured as indicated in
the proof of Lemma 1.

Now if the described nominal-matched investment seems to earn a rate of 3.25%,
which equals a spread of around 1.75% above the chosen reference rate r(.) in
the present example, why is the measurement NB(HY) so low? Fig. 1 visualizes the
discounted value of the sumover all cash flows from the nominal-matched investment
in dependence of the default time. For instance, in case of survival until maturity, this
value equals approximately 104%, yielding a return (after discounting) of 5.61%
on the initial investment of 98.39% (which equals the package price minus accrued
CDS coupon, the bond accrued equals zero). Distributed on the 3.5-year investment
horizon, this corresponds to a rate of approximately 1.6% per annum. However,
in case of a default just before the first or second bond coupon payment date the
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Fig. 1 Sum over all
discounted cash flows arising
from the described
nominal-matched negative
basis investment are
depicted, in dependence on
the time of default
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described negative basis investment faces a loss. The additional short-dated CDS-
protection required in order to hedge these potential losses decreases the earnings
potential of the investment, which is accounted for in the (HY)-methodology, as
explained in the proof of Lemma 1.

6 Conclusion

We proposed an innovative measurement for the negative basis, denoted NB(HY).
Compared to traditional approaches, it is based on an arbitrage-free pricing model
for the simultaneous pricing of the bond and the CDS, which provides a sound
economic interpretation. Within a simple model with only default risk being present,
the negative basis is perfectly explained as the spread on top of a reference interest
rate curve r(.). It was pointed out how the rate r(.) + NB(HY) can be earned without
exposure to default risk.

Acknowledgements The KPMG Center of Excellence in Risk Management is acknowledged for
organizing the conference “Challenges in Derivatives Markets - Fixed IncomeModeling, Valuation
Adjustments, Risk Management, and Regulation”.

Appendix: The algorithm in Definition 3 is well-defined

The following technical lemma guarantees that Step 3 in Definition 3 admits a unique
solution that can be found efficiently by means of a bisection routine.

Lemma A.1 (Method (HY) is well-defined)

(a) The function x �→ Bond(λx(.), r(.) + x,R,C,T) is continuous.
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(b) The function x �→ Bond(λx(.), r(.) + x,R,C,T) is decreasing on the interval
[− inf{r(t) : t ≥ 0},∞).

(c) We have the lower bound Bond(λx(.), r(.) + x,R,C,T) ≥ R
1−R upf(T).

Proof We prove parts (a), (b), and (c) separately.

(a) For fixed x, the function λx(.) is piecewise constant, so actually we only deal
with a finite vector of values of the default intensity, depending on x. For the
remainder of the proof we denote these values by (y1(x), . . . , ym(x)). In other
words, we observe m CDS maturities T1, . . . ,Tm and the value yk(x) is the level
of the default intensity on the piece (Tk−1,Tk], for k = 1, . . . ,m, with T0 := 0.
Obviously, the bond price then equals a concatenation of continuous functions
if each yk(x) is continuous in x. However, this is guaranteed by the implicit
function theorem since yk(x) is defined as the implicit function yielding the root
of a smooth function. Concluding, continuity of the bond price is clear.

(b) In order to see that the bond price is decreasing in x, we first re-write it as

Bond(λx(.), r(.) + x,R,C,T) = e− ∫ T
0 λx(s)+r(s)+x ds

+ C
∑

0<t(B)
j ≤T

(
t(B)
j − t(B)

j−1

)
e− ∫ t(B)

j
0 λx(s)+r(s)+x ds

+ R

1 − R
EDPL(λx(.), r(.) + x, upf(T),T),

where we have used EDPL = EDDL from the CDS boostrap. This shows that it
suffices to check that the function

x �→ λx(t) + x

is increasing for each fixed t, because all summands in the above bond formula
are then obviously decreasing.
We proceed with an auxiliary observation. If τ1 and τ2 are two positive random
variables with distribution functions F1 and F2, satisfying F1 ≥ F2 pointwise
on an interval (T ,∞) and F1 ≡ F2 on [0,T ], then E[g(τ1)] ≥ E[g(τ2)] for any
bounded function g : (0,∞) → [0,K], which is non-increasing on (T ,∞). To
verify this,11 define the non-decreasing function h := −g and use integration by
parts:

11One says that τ1 is less than τ2 in the usual stochastic order, and the following computation is
standard in the respective theory.
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E[g(τ1)] = −
∫

h dF1 = −
∫

(0,T ]
h dF1 −

∫

(T ,∞)

h dF1

= −
∫

(0,T ]
h dF2 −

(
h(∞) F1(∞)︸ ︷︷ ︸

=1=F2(∞)

−h(T) F1(T)︸ ︷︷ ︸
=F2(T)

−
∫

(T ,∞)

F1 dh
)

≥ −
∫

(0,T ]
h dF2 −

(
h(∞)F2(∞) − h(T)F2(T) −

∫

(T ,∞)

F2 dh
)

= −
∫

(0,T ]
h dF2 −

∫

(T ,∞)

h dF2 = −
∫

h dF2 = E[g(τ2)].

Now we proceed inductively over k = 1, . . . ,m by showing that x �→ λx(t) + x
is non-decreasing for all fixed t ∈ (Tk−1,Tk], i.e. that x �→ yk(x) + x is non-
decreasing. We start the induction for k = 1. To this end, recall that y1(x) is the
unique root of the equation

EDPL(y1(x), r(.) + x, s(T1), upf(T1),T1) = EDDL(y1(x), r(.) + x,R,T1).

For the sake of a more compact notation we denote the left-hand side of
the last equation by LHS(x, y1(x)) and the right-hand side by RHS(x, y1(x)).
Furthermore, we denote the value of both sides by V(x) := LHS(x, y1(x)) =
RHS(x, y1(x)). Since all the summands of LHS depend on the function x �→
x + y1(x) in a monotonic way, it is obvious that V(x) is non-increasing in x if
and only if the function x �→ x + y1(x) is non-decreasing. Hence, it suffices to
prove that V(x) is non-increasing in x. To this end, we (obviously) observe with
ε > 0 that

LHS(x + ε, y1(x)) ≤ LHS(x, y1(x)) = V(x), (4)

RHS(x + ε, y1(x)) ≤ RHS(x, y1(x)) = V(x). (5)

Furthermore, the function y �→ LHS(x + ε, y) is obviously strictly decreasing.
Concerning the right-hand side, we denote byEy[f (τ )] the expectation over f (τ )

when the default time τ has an exponential distribution with parameter y. The
function

y �→ RHS(x + ε, y) = (1 − R)Ey

[
e− ∫ τ

0 r(s)+x+ε ds 1{τ≤T1}
]

is non-decreasing on the claimed interval by the auxiliary observation we have
derived above (increasing y corresponds to increasing the distribution function
of the default time τ pointwise12). We now distinguish two cases:

12Here, we have used that the function τ �→ exp(− ∫ τ

0 r(s) + x + ε ds) 1{τ≤T1} is non-increasing if
x ≥ − inf{r(t) : t ≥ 0}.
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(i) LHS(x + ε, y1(x)) ≤ RHS(x + ε, y1(x)):
In this case y1(x + ε) ≤ y1(x), because otherwise we would observe the follow-
ing contradiction:

LHS(x + ε, y1(x + ε)) < LHS(x + ε, y1(x)) ≤ RHS(x + ε, y1(x))

≤ RHS(x + ε, y1(x + ε)).

This implies that

V(x + ε) = RHS(x + ε, y1(x + ε)) ≤ RHS(x + ε, y1(x))
(5)≤ V(x).

(ii) LHS(x + ε, y1(x)) > RHS(x + ε, y1(x)):
In this case y1(x + ε) ≥ y1(x), because otherwise we would observe the follow-
ing contradiction:

RHS(x + ε, y1(x + ε)) ≤ RHS(x + ε, y1(x)) < LHS(x + ε, y1(x))

≤ LHS(x + ε, y1(x + ε)).

This implies that

V(x + ε) = LHS(x + ε, y1(x + ε)) ≤ LHS(x + ε, y1(x))
(4)≤ V(x).

Concluding, V(x) is non-increasing in x and the induction start is finished.
Weproceedwith the induction step, assuming thatwe alreadyknow that x + λx(t)
is non-decreasing in x for each fixed t ≤ Tk−1. To this end, recall that yk(x) is
the unique root of the equation

EDPL(λx(.), r(.) + x, s(Tk), upf(Tk),Tk) = EDDL(λx(.), r(.) + x,R,Tk),

where yk(x) enters the equation as the function value of λx(.) on the interval
(Tk−1,Tk]. The left-hand side of the last equation can be rewritten as follows,
using the standardmarket convention of standardized CDS strike rates s(Tk−1) =
s(Tk) =: s:

EDPL(λx(.), r(.) + x, s, upf(Tk),Tk)

= EDPL(λx(.), r(.) + x, s, upf (Tk−1),Tk−1) + upf(Tk) − upf(Tk−1)

+ s
∑

Tk−1<t(C)
i ≤Tk

(
t(C)
i − t(C)

i−1

)
e− ∫ t(C)

i
0 λx(s)+r(s)+x ds.

Similarly, the right-hand side can be rewritten as follows:
EDDL(λx(.), r(.) + x,R,Tk) = EDDL(λx(.), r(.) + x,R,Tk−1)

+ (1 − R) yk(x)
∫ Tk

Tk−1

e− ∫ t
0 r(s)+x+λx(s) ds dt.
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Since the values (y1(x), . . . , yk−1(x)) have been determined before, we may
subtract the EDDL and EDPL with maturity Tk−1 on both sides of the defining
equation for yk(x), simplifying the latter to

upf(Tk) − upf(Tk−1) + s
∑

Tk−1<t(C)
i ≤Tk

(
t(C)
i − t(C)

i−1

)
e− ∫ t(C)

i
0 λx(s)+r(s)+x ds

= (1 − R) yk(x)
∫ Tk

Tk−1

e− ∫ t
0 r(s)+x+λx(s) ds dt.

Again, we denote the left-hand side of the last equation by LHS(x, y1(x), . . . ,
yk(x)), and the right-hand side is denoted RHS(x, y1(x), . . . , yk(x)). Further-
more, we denote the value of both sides by

V(x) := LHS(x, y1(x), . . . , yk(x)) = RHS(x, y1(x), . . . , yk(x)).

By induction hypothesis, the function x �→ x + λx(t) is non-decreasing for each
t ≤ Tk−1. With ε > 0 this obviously implies that

LHS(x+ ε, y1(x+ ε), . . . , yk−1(x+ ε), yk(x))

≤LHS(x, y1(x), . . . , yk(x))=V(x), (6)

RHS(x+ ε, y1(x+ ε), . . . , yk−1(x+ ε), yk(x))

≤RHS(x, y1(x), . . . , yk(x))=V(x). (7)

Also, the function y �→ LHS(x + ε, y1(x + ε), . . . , yk−1(x + ε), y) is obviously
non-increasing, whereas the function y �→ RHS(x + ε, y1(x + ε), . . . ,

yk−1(x + ε), y) is non-decreasing by a similar argument as in the induction start,
namely: the right-hand side has the form13

RHS(x + ε, y1(x + ε), . . . , yk−1(x + ε), y)

= (1 − R)Ey

[
e− ∫ τ

0 r(s)+x+ε ds 1{τ∈(Tk−1,Tk ]}
]
,

which is non-decreasing in y. Why? Because an increase of y increases the
distribution function of τ pointwise on [Tk−1,∞) but leaves it unchanged on
[0,Tk−1], and the function τ �→ exp(− ∫ τ

0 r(s) + x ds) 1{τ∈(Tk−1,Tk ]} is clearly
non-increasing on (Tk−1,∞) (so that our auxiliary observation above applies).
Like in the induction start, showing that x �→ x + yk(x) is non-decreasing in x
is equivalent to showing that V(x) is non-increasing in x. The remaining proof
is now completely analogous to the induction start (this is an exercise we leave
to the reader).

13Similar as in the induction start, we denote by Ey[f (τ )] the expectation over f (τ )when the default
time has piecewise constant intensity with the level y on the piece (Tk−1,Tk].
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(c) Denoting byQx the probability measure in dependence of the default intensities
λx(.), we have

Bond(λx(.), r(.) + x,R,C,T) : = C
∑

0<t(B)
j ≤T

DF
(
t(B)
j

) (
t(B)
j − t(B)

j−1

)
Qx

(
τ > t(B)

j

)

+ DF(T)Qx(τ > T) + REx[1{τ≤T} DF(τ )].

We know from the consistent CDS pricing that the appearing expectation can be
replaced by the premium leg of the CDS, which allows to be estimated by the
upfront, i.e.

Ex[1{τ≤T} DF(τ )] = R

1 − R
EDPL(λx(.), r(.) + x, s(T), upf(T),T)

≥ R

1 − R
upf(T),

which in turn implies the claim.
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The Impact of a New CoCo Issuance
on the Price Performance of Outstanding
CoCos

Jan De Spiegeleer, Stephan Höcht, Ine Marquet and Wim Schoutens

Abstract Contingent convertible bonds (CoCos) are new hybrid capital instruments
that have a loss absorbing capacity which is enforced either automatically via the
breachingof a particularCET1 level or via a regulatory trigger. Theprice performance
of outstanding CoCos, after a new CoCo issue is announced by the same issuer, is
investigated in this paper via two methods. The first method compares the returns
of the outstanding CoCos after an announcement of a new issue with some overall
CoCo indices. This method does not take into account idiosyncratic movements and
basically compares with the general trend. A second model-based method compares
the actual market performance of the outstanding CoCos with a theoretical model.
The main conclusion of the investigation of 24 cases of new CoCo bond issues is a
moderated negative effect on the outstanding CoCos.

Keywords Contingent convertibles · CoCo bonds · New issuance

1 Introduction

Contingent convertible bonds or CoCo bonds are new hybrid capital instruments
that have a loss absorbing capacity which is enforced either automatically via the
breaching of a particular CET1 level or via a regulatory trigger. CoCos either convert
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into equity or suffer a write-down of the face value upon the appearance of such a
trigger event.

The financial crisis of 2007–2008 triggered an avalanche of financial worries
for financial institutions around the globe. After the collapse of Lehman Brothers,
governments intervened and bailed out banks using tax-payers money. Preventing
such bail-outs in the future, and designing a more stable banking sector in general,
requires both higher capital levels and regulatory capital of a higher quality. The
implementation under the new regulatory frameworks like Basel III and Capital
Requirement Directive IV (CRD IV) tries to achieve this in various ways, i.e. with
the use of CoCo bonds (Basel Committee on Banking Supervision [1], European
Commision [2]). CoCo bonds are allowed as new capital instruments by the Basel III
guidelines. The Swiss regulators have forced their systemic important banks to issue
large amounts of these instruments. Further, the European CRD IV which entered
into force on 17 July 2013 enforces all new additional Tier 1 instruments to have
CoCo features.

The specific design of a CoCo bond enhances the capital of a bank when it is in
trouble in an automatic way. Hence, a loss-absorbing cushion is created with the aim
to avoid or at least to reduce potential interventions using tax-payers’ money.

The first CoCos have been issued in the aftermath of the credit crisis. In December
2009 Lloyds exchanged some of their old hybrid instruments into this new type of
bonds in order to strengthen their capital position after the bank had been hit very
hard due to the financial crisis of 2008. Since then a lot of other banks have been
issuing CoCos and one is expecting that many will follow in the next years. The
market of CoCos is currently above USD 100bn and is expanding very rapidly.1

When an issuer has already some CoCos outstanding and is announcing the
issuance of a new CoCo bond, there are at least two opposite forces at work. On
one hand, a new issue means that the capital of the issuing institute is strengthened
(at the additional Tier 1 or Tier 2 level). Due to the new issue, the losses in case of a
future trigger event will be shared over a larger bucket and hence recovery rates are
expected to be higher. On the other hand, there are the market dynamics and investors
who often prefer to invest rather in the new CoCo than in the older ones. This can be
just due to the fact that one prefers new things above old stuff, but also because one
believes there is a basis spread to be earned on a new issuance. Some believe a new
issuance is brought to the market with a certain discount, to attract investors and to
make the whole capital raising exercise a success. Investors then will move out of
the old bonds and ask for allocation in the new issue.

In this paper, we estimate the price impact on the outstanding CoCos via two
methods. The first method compares the returns of the outstanding CoCo bonds after
an announcement of a new issue with some overall CoCo indices. More precisely, we
compare the performance with CS Contingent Convertible Euro Total Return index
and the BofA Merrill Lynch Contingent Capital index. Here we basically compare
the performance of the outstanding CoCos with the general market performance.
However such a comparison does not take into account idiosyncratic movements; it

1Source: Bloomberg.
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basically compares with the general market trend. The issuing company is neverthe-
less exposed to market dynamics. Its stock price, its credit worthiness etc. can exhibit
different timely evolutions compared with the respective quantities of their competi-
tors. This can be especially the case around capital raising announcements since then
financial details of the company are published and discussed at, for example road-
shows around the new issuance. Therefore, we also deploy a second methodology
taking into account idiosyncratic movements. Using an equity derivatives model, we
compare the actual market performance of the outstanding CoCo bonds, with a theo-
retical model performance taking into account idiosyncratic effects, like movements
in the underlying stock, credit default spreads or volatilities. The model is derivatives
based and is taking as such forward-looking expectations into account.

In total, we investigate 24 cases of new CoCo bond issues. The main conclusion
of the investigation is that there is a moderated negative effect on outstanding CoCo
bonds. This is confirmed by both methodologies and the impact is an underperfor-
mance of about 25–50 bps on average in between the announcement date and the
issue date. An extra negative impact of 40 bps was observed in the 10 trading days
after the issue.

The analysis in this paper is constrained to CoCo bonds only, but a similar study
could be done for other types of bonds as well. A comparative study for corporate
bonds was, e.g. done in Akigbe et al. [3], where the authors investigate the impact of
574 outstanding debt issues. The investigation was divided by different reasons of a
new debt issue. A significant negative impact on the price of the outstanding debt and
equity was observed in case the public debt securities were issued to finance unex-
pected cash flow shortfalls. No significant reaction was observed when the new debt
issues were motivated by unexpected increase in capital expenditures, unexpected
increase in leverage or expected refinancing of outstanding debt.

This paper is organized as follows. We first provide in the next section the details
of the equity derivatives model. In Sect. 3, we provide details on the data set used and
in particular overview the new issuances of a whole battery of issuers that are part of
our study. Next, we report on the exact methodology and results of our comparison
with other CoCo indices. The final part of that section reports and discusses the
results of the Equity Derivatives model. The final section concludes.

2 The Equity Derivatives Model

CoCos are hybrid instruments, with characteristics of both debt and equity. This gives
rise to different approaches for pricing CoCos. Without considering the heuristic
models, twomain schools of thoughts exist, namely the structuralmodels andmarket-
impliedmodels. Structuralmodels are based on the theory ofMerton and can be found
in Pennacchi [4] and Pennacchi et al. [5]. We will apply a market-implied model
where the derivation is based on market data such as share prices, credit default
spreads and volatilities. The models were introduced in a Black–Scholes framework
in De Spiegeleer and Schoutens [6] and De Spiegeleer et al. [7]. Pricing CoCos under
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smile conformmodels can be found inCorcuera et al. [8]. Based on theHestonmodel,
the impact of skew is discussed in De Spiegeleer et al. [9]. In De Spiegeleer et al.
[10] the implied CET1 volatility is derived from the market price of a CoCo bond.
Further extensions and variations can be found in De Spiegeleer and Schoutens
[11, 12], Corcuera et al. [13], De Spiegeleer and Schoutens [14], Cheridito and
Zhikai [15], Madan and Schoutens [16].

The actual valuation of a CoCo incorporates the modelling of both the trigger
probability and the expected loss for the investor. Notice that the trigger is defined
by a particular CET1 level or decided upon a regulator’s decision. Since these trigger
mechanisms are hard to model or even quantify, we project the trigger into the stock
price framework as considered in the equity derivatives model of De Spiegeleer
and Schoutens [6]. This means that the CoCo will be triggered under the model
once the share price drops below a specified barrier level, denoted by S�. We infer
from existing CoCo market data the share price at the moment the CoCo bond gets
triggered and we will call this the (implied) trigger level. As a result the valuation of
a CoCo bond is transformed into a barrier-pricing exercise in an equity setting.

Under such a framework the CoCo bond can be broken down to several differ-
ent derivative instruments. In first place, the CoCo behaves like a standard (non-
defaultable) corporate bond where the holder will receive coupons ci on regular time
points ti together with the principal N at maturity T . However, in case the share
price drops below the trigger level S�, the investor will lose his initial investment and
all future coupons. This will be modelled by short positions in binary down-and-in
(BIDINO) options with maturities ti for each coupon ci and a BIDINOwith maturity
T to model the cancelling of the initial value. After the trigger event has occurred,
the investor of a conversion CoCo will receive Cr shares. We can model this with Cr

down-and-in asset-(at hit)-or-nothing options on the stock. For a write-down CoCo,
the investor does not receive any shares and we can just set Cr equal to zero in this
case. Therefore, the price of a CoCo can be calculated with the following formula:

P = Corporate bond

−N × binary down-and-in option

−
∑

i

ci × binary down-and-in option

+Cr × down-and-in asset-(at hit)-or-nothing option on the stock

Under the Black–Scholes model, we can find an explicit formula for the price of
the CoCo at time t :

P = N exp(−r(T − t)) +
k∑

i=1

ci exp(−r(ti − t))

−N × exp(−r(T − t))[Φ(−x1 + σ
√
T − t) + (S�/S)2λ−2Φ(y1 − σ

√
T − t)]

−
∑

i

ci × exp(−r(ti − t))[Φ(−x1i + σ
√
ti − t) + (S�/S)2λ−2Φ(y1i − σ

√
ti − t)]

+Cr × S�

[(
S�

S

)a+b
Φ(z) +

(
S�

S

)a−b
Φ(z − 2bσ

√
T − t)

]

(1)
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with

z = log(S�/S)

σ
√
T − t

+ bσ
√
T − t

a = r − q − 1
2σ

2

σ 2

b =
√

(r − q − 1
2σ

2)2 + 2rσ 2

σ 2

λ = r − q + σ 2/2

σ 2

x1 = log(S/S�)

σ
√
T − t

+ λσ
√
T − t

y1 = log(S�/S)

σ
√
T − t

+ λσ
√
T − t

x1i = log(S/S�)

σ
√
ti − t

+ λσ
√
ti − t

y1i = log(S�/S)

σ
√
ti − t

+ λσ
√
ti − t

where Φ is the cdf of a standard normal distribution, r is the risk free rate, q the
dividend yield and σ the volatility.

Applying this equity derivatives pricing model, a CoCo price can be found for a
trigger level S�. However, the other way around is often more interesting. Knowing
the market CoCo price, we can filter out an implied trigger Ŝ� in such a way that
market and model price match. Since CoCos of one financial institution with the
same contractual trigger should trigger at the same time, their implied trigger levels
should theoretically also be the same. Hence the implied barriers give us a way to
compare different CoCos in order to detect over- or undervaluation, irrespectively of
different currencies and maturities.

Our goal is to compare the actual market performance of the outstanding CoCo
bonds with the theoretical model performance. This theoretical price takes idiosyn-
cratic effects into account. Any changes in the actual market performance compared
to the theoretical model performance will be described to the effect of the announce-
ment of a newCoCo issuance. The research can also be translated in terms of implied
trigger levels. In case the new CoCo does not influence the outstanding CoCo, the
implied barrier of the outstanding CoCo should remain constant. Whereas if its
implied barrier derived from the market will change, this change will be caused by
the new CoCo issuance.

3 Measuring the Price Performance
of the Outstanding CoCos

3.1 New Issuances

The impact of a new CoCo issuance is investigated on the outstanding CoCos of
the same issuing company. The issuers in our study contain UBS, Barclays, Crédit
Agricole, Sociéty Général, Deutsche Bank, UniCredit, Credit Suisse, Santander,
Rabobank, Danske and BBVA. The effect on the outstanding CoCos is investigated
in the period between announcement and issuance of the new CoCo, which are
summarised in Table1. Notice that UBS, Barclays and Crédit Agricole all have
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Table 1 Announcement date, issue date and issue size (in bn) of the new CoCos

Name ISIN Announc. Issue Size Curr.

ACAFP 6 5/8
09/29/49

USF22797YK86 11/09/2014 18/09/2014 1,250 USD

ACAFP 6 1/2
04/29/49

XS1055037177a 01/04/2014 08/04/2014 1,000 EUR

ACAFP 7 7/8
01/29/49

USF22797RT78 15/01/2014 23/01/2014 1,750 USD

BACR 7
06/15/49

XS1068561098b 13/06/2014 17/06/2014 697.60 GBP

BACR 8
12/15/49

XS1002801758 03/12/2013 10/12/2013 1,000 EUR

BACR 8 1/4
12/29/49

US06738EAA38 13/11/2013 20/11/2013 2,000 USD

BBVASM 6
3/4 12/29/49

XS1190663952 10/02/2015 18/02/2015 1,500 EUR

CS 6 1/4
12/29/49

XS1076957700 10/06/2014 18/06/2014 2,500 USD

CS 7 1/2
12/29/49

XS0989394589 04/12/2013 11/12/2013 2,250 USD

CS 5 3/4
09/18/25

XS0972523947 11/09/2013 18/09/2013 1,250 EUR

CS 6
09/29/49

CH0221803791 20/08/2013 04/09/2013 290 CHF

DANBNK 5
7/8 04/29/49

XS1190987427 11/02/2015 18/02/2015 750 EUR

DB 7 1/2
12/29/49

US251525AN16 18/11/2014 21/11/2014 1,500 USD

RABOBK 5
1/2 01/22/49

XS1171914515 15/01/2015 22/01/2015 1,500 EUR

SANTAN 6
1/4 09/11/49

XS1107291541 02/09/2014 11/09/2014 1,500 EUR

SANTAN 6
3/8 05/29/49

XS1066553329 08/05/2014 19/05/2014 1,500 USD

SOCGEN 6
10/27/49

USF8586CXG25 19/06/2014 25/06/2014 1,500 USD

SOCGEN 6
3/4 04/07/49

XS0867620725 28/03/2014 07/04/2014 1,000 EUR

SOCGEN 7
7/8 12/29/49

USF8586CRW49 11/12/2013 18/12/2013 1,750 USD

UBS 7 1/8
12/29/49

CH0271428317c 13/02/2015 19/02/2015 1,250 USD

(continued)
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Table 1 (continued)

Name ISIN Announc. Issue Size Curr.

UBS 5 1/8
05/15/24

CH0244100266 08/05/2014 15/05/2014 2,500 USD

UBS 4 3/4
02/12/26

CH0236733827 06/02/2014 13/02/2014 2,000 EUR

UBS 4 3/4
05/22/23

CH0214139930 15/05/2013 22/05/2013 1,500 USD

UCGIM 6 3/4
09/29/49

XS1107890847 03/09/2014 10/09/2014 1,000 EUR

aIncl. XS1055037920
bIncl. US06738EAB11 and XS1068574828
cIncl. CH0271428333 and CH0271428309
Source Bloomberg/own calculations

issued different CoCos on the same day. Since it is not possible to distinguish their
influence from each other, these new CoCos are assumed to have one general impact
on all the outstanding CoCos of the same issuing company.

3.2 CoCo Index Comparison

The first analysis is based on indices as a benchmark to observe a certain impact. It
basically compares the returns of the outstandingCoCo bonds after an announcement
of a new issue with some overall CoCo indices. More precisely, we compare the per-
formance with the CS Contingent Convertible Euro Total Return index and the BofA
Merrill Lynch Contingent Capital Index (whenever the data is available). The meth-
ods are explained for one particular newCoCo issuance, namely theUSF22797YK86
CoCo of Crédit Agricole. In the end, the overall results and conclusions are shown.

3.2.1 Method

In a first step, we analyse the impact of each new CoCo separately on all the out-
standing CoCos of the same issuer. The simple returns are derived for the outstanding
CoCos during the period between the announcement date and the issue date of the
new CoCo. In a second step, we accumulate these simple returns and obtain the
returns between announcement and issue date. As an example, the first steps are
shown for two outstanding CoCos of Crédit Agricole in Fig. 1.

On each day, we calculate the (equallyweighted) average of the cumulative simple
returns of all outstanding CoCos. In a last step, we take the difference between these
averages and the cumulative returns of the CoCo index on each day between the
announcement date and issue date of the new CoCo.
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Fig. 1 Impact of USF22797YK86. a Daily returns. b Cumulative returns

3.2.2 Results

In Table2, the difference in cumulative returns over the observation period, meaning
the period between announcement and issuance, is shown. For some observation
periods, the Merrill Lynch index did not yet exist. When the CoCo does show a
significant change compared to the global index, we can assume that this change is
due to the new CoCo issuance. The averaged difference over all new CoCos analysed
is shown in Fig. 2. These averaged differences in cumulative returns are shown for
one day until five days after the announcement of the new CoCo and also over the
full period as was given in Table2. As a conclusion, we see that on average the
outstanding CoCos get a negative impact of around 25 bps on their return between
announcement and issuance due to a new CoCo.

Multiple CoCo indices can be used for this analysis but CoCo indices are relatively
new on the market. As such we are obliged to restrict our analysis to indices already
available during the period of each analysis. Remark also that we need to handle these
indices with care, in the sense that the indices are applied to give a global market
view on the CoCos. A point of criticism to this approach can be that the indices are
not that representative for the true market. There is also high concentration on some
issuers in the indices, e.g. for the ML index the top 5 issuers almost make 50% of
the index (as of December 2014).

Furthermore, this comparison with the general market performance does not take
into account idiosyncratic movements but compares with the general market trend.
The issuing company is nevertheless exposed to individual dynamics. Its stock price,
its credit worthiness, etc. can change differently from their competitors. This can be
especially the case around capital raising announcements since then financial details
of the company are published and discussed at, for example road-shows around the
new issuance. Therefore, we move on to a second methodology taking into account
idiosyncratic movements.
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Table 2 Averaged difference in cumulative returns (in %) between the outstanding CoCos and the
Credit Suisse CoCo index (left column) and Merrill Lynch CoCo index (right column) over the
observation period of the new CoCo

Issuer ISIN CS index ML index

ACAFP USF22797YK86 0.06 −0.21

XS1055037177 −0.06 0.07

USF22797RT78 −0.21 −0.47

BACR XS1068561098 −0.25 −0.12

XS1002801758 0.08 /

US06738EAA38 0.56 /

BBVA XS1190663952 −0.51 −1.18

CS XS1076957700 0.31 0.60

XS0989394589 −0.28 /

XS0972523947 −0.50 /

CH0221803791 1.09 /

DANBNK XS1190987427 −1.32 −2.27

DB US251525AN16 −0.13 −0.29

RABOBK XS1171914515 −0.36 −0.41

SANTAN XS1107291541 −1.38 −1.19

XS1066553329 −0.49 −0.06

SOCGEN USF8586CXG25 0.23 0.17

XS0867620725 −0.27 −0.02

USF8586CRW49 1.24 /

UBS CH0271428317 −0.46 −1.01

CH0244100266 −0.12 0.42

CH0236733827 0.37 0.31

CH0214139930 −1.15 /

UCGIM XS1107890847 −1.75 −1.48

Mean −0.22 −0.42

Std Dev 0.71 0.77

Source Bloomberg/own calculations

Fig. 2 Averaged difference
in cumulative returns
between the outstanding
CoCos and the Credit Suisse
and Merrill Lynch CoCo
index
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3.3 Model-Based Performance

As experienced by all CoCo investors, the difficulty in these financial products lies
in their different characteristics which are hard to compare like the trigger type, con-
version type, maturity, coupon cancellation, and so on. However, the implied barrier
methodology can be used as a tool to compare CoCos with different characteristics.
In this second approach, we will use the implied barrier to derive theoretical values
for the outstanding CoCos under the assumption of no impact by the new CoCo
issuance and compare them with the actual market values.

3.3.1 Method

The implied barrier can be interpreted as the stock price level (assumed by the
market) that is hit (for the first time) when the CoCo gets converted or written down.
If nothing changes, the market will keep the same idea about the implied barrier level
and hence result in a constant implied barrier over time. In other words, when there
is no impact due to this new CoCo, no change could theoretically be observed in
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the implied barrier. As such we can see in the levels of the implied barrier if there
is an impact due to the announced new CoCo. This leads us easily to the second
approach of our impact analysis. As an example, we show the implied barriers of the
two outstanding CoCos of ACAFP from the previous section in Fig. 3a.

As from the previous section, the implied barriers can be translated into CoCo
quotes. The theoretical CoCo price does not take any information of a new CoCo
issuance into account by assuming a constant implied barrier. These values can be
used as our reference. Any change in the market compared with this reference, is
then due to the impact of the announcement of a new CoCo issuance. As such we can
calculate the theoretical CoCo prices from a constant implied barrier and compare
them with the market values. The results of our CoCo examples are shown in Fig. 3b.
As a last step, we define cheapness as the difference between the market CoCo return
and the theoretical CoCo return until the announcement date. In Fig. 3, the cheapness
of the two outstanding CoCos of Crédit Agricole is shown.

Table 3 Averaged difference
between the market and
model CoCo cumulative
returns (in %)

Issuer ISIN Cheapness

ACAFP USF22797YK86 0.14

XS1055037177 −1.45

USF22797RT78 −0.19

BACR XS1068561098 0.17

XS1002801758 −0.05

US06738EAA38 −0.38

BBVA XS1190663952 −1.91

CS XS1076957700 0.12

XS0989394589 0.53

XS0972523947 −2.63

CH0221803791 1.44

DANBNK XS1190987427 −3.25

DB US251525AN16 0.65

RABOBK XS1171914515 0.31

SANTAN XS1107291541 −2.24

XS1066553329 0.07

SOCGEN USF8586CXG25 1.26

XS0867620725 −2.31

USF8586CRW49 1.67

UBS CH0271428317 0.71

CH0244100266 −1.23

CH0236733827 1.03

CH0214139930 −0.89

UCGIM XS1107890847 −1.60

Mean −0.42

Std Dev 1.37
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Fig. 4 Overall difference
between the market and
model CoCo cumulative
returns
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3.3.2 Results

An overall view is derived for the cheapness by averaging the differences in theo-
retical and market CoCo prices for each outstanding CoCo during the observation
period of the new CoCo. We averaged the differences of all the CoCos on one day
until five days after the announcement and also on the issue date of the new CoCo
(Table 3).

Clearly, from Fig. 4, on average the cheapness on each day of our observation
period is negative, meaning that market price is below the theoretical price assuming
no impact. As such we conclude also from this approach that there is a negative
impact of about 42 bps on average on the outstanding CoCos when a new CoCo
issuance is announced.

4 Impact After Issue Date

At this point, we investigated the impact of a new CoCo issuance between the
announcement and issue date. In this section, we show the results for a longer obser-
vation period. More concrete, both analyses are extended to 10 trading days after the
issue date.

From our first analysis, where we compare the outstanding CoCos with the CoCo
indices, a downward trending impact is observed in Fig. 5a. The second analysis
which compares the market and model prices of the outstanding CoCos is shown in
Fig. 5b. In both analyses, the negative impact gets more significant after the issue
dates. Hence until 10 trading days after the issue date, there is still a negative impact
observable.
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Fig. 5 Impact from the
announcement date until 10
days after the issue date. a
Method 1. bMethod 2
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5 Conclusion

The price performance of outstanding CoCos was investigated after a new CoCo
issue is announced by the same issuer. Based on two approaches, we estimated the
price impact on the outstanding CoCos. The first method compared returns of the
outstanding CoCos with some overall CoCo indices. As a conclusion, we found
that the return of the outstanding CoCos, during the period between announcement
and issuance, was slightly lower than the returns of the CoCo indices. There was
an underperformance of about 22 bps compared with the Credit Suisse index and
about 42 bps with the Merrill Lynch index (although with relative high standard
deviations). Since this first study did not take idiosyncratic movements into account,
we used also a second method based on the equity derivatives model for CoCos. In
this method we compared the actual market performance of the outstanding CoCo
bondswith a theoretical model performance taking into account idiosyncratic effects,
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like movements in the underlying stock, credit default spreads and volatilities. This
second approach also concludes that the averaged market returns of the outstanding
CoCos were about 42 bps lower than one would expect in case of no influence.

In total, we investigate 24 cases of new CoCo bond issues. The main conclusion
of the investigation is that there is a moderated negative effect on outstanding CoCo
bonds. This is confirmed by both methodologies and the impact is an underperfor-
mance of about 20–40 bps on average in between the announcement date and the
issue date. During the period of 10 trading days after the issue date, an extra decrease
of 40 bps was observed.
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The Impact of Cointegration on Commodity
Spread Options

Walter Farkas, Elise Gourier, Robert Huitema and Ciprian Necula

Abstract In this work we explore the implications of cointegration in a system of
commodity prices on the premiums of options written on various spreads on the
futures prices of these commodities. We employ a parsimonious, yet comprehen-
sive model for cointegration in a system of commodity prices. The model has an
exponential affine structure and is flexible enough to allow for an arbitrary number
of cointegration relationships. We conduct an extensive simulation study on pricing
spread options. We argue that cointegration creates an upward sloping term structure
of correlation, that in turn lowers the volatility of spreads and consequently the price
of options on them.

Keywords Cointegration · Futures prices · Commodities · Spread options · Simu-
lation

1 Introduction

A distinctive feature of commodity markets is the existence of long-run equilibrium
relationships that exist between the levels of various commodity prices, such as
the one between the price of crude oil and the price of heating oil. These long-run
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equilibrium relations can be captured in economic models by so-called cointegration
relations.

In this work we employ the continuous time model of cointegrated commodity
prices developed by the authors in Farkas et al. [6] in order to conduct a simulation
study for assessing the impact of cointegration on spread options. In our model,
commodity prices are non-stationary and several cointegration relations are allowed
amongst them, capturing long-run equilibrium relationships. Cointegration (Engle
and Granger [5]) is the property of two or more non-stationary time series of having
at least one linear combination that is stationary.

There is a vast literature on modeling the price of a single commodity as a non-
stationary process (see Back and Prokopczuk [1] for a comprehensive recent review).
For example, Schwartz and Smith [13] assume the log price of a commodity to be the
sum of two latent factors: the long-term equilibrium level, modeled as a geometric
Brownianmotion, and a short-term deviation from the equilibrium,modeled as a zero
mean Ornstein–Uhlenbeck (OU) process. More recently, Paschke and Prokopczuk
[11] propose to model these deviations as a more general CARMA process and
Cortazar and Naranjo [3] generalize the Schwartz and Smith [13] model in a multi-
factor framework.

However, the literature on modeling a system of commodity prices is still quite
scarce. Two fairly recent models are proposed in Cortazar et al. [4] and Paschke and
Prokopczuk [10], both of which account for cointegration by incorporating common
and commodity-specific factors into their modeling framework. Amongst the com-
mon factors, only one is assumed non-stationary. Although they explicitly take into
account cointegration between prices, the cointegrated systems generated by these
two models are not covering the whole range of possible number of cointegration
relations, but allow for none or for exactly n − 1 relations to exist between the n
prices. In Farkas et al. [6] we propose an easy-to-use, yet comprehensive, model for
a system of cointegrated commodity prices that retains the exponential affine struc-
ture of previous approaches and allows, in the same time, for an arbitrary number of
cointegration relationships.

The rest of the work is organized as follows. In Sect. 2 we briefly describe the
model proposed in Farkas et al. [6] and point out some qualitative aspects regarding
the dynamics of the system. Section3 is devoted to an extensive simulation study
focused on computing spread options prices and on assessing the impact of cointe-
gration on pricing spread options. Section4 is reserved for concluding remarks.

2 Outline of the Model

Before proceeding to the simulation study, in this section we present for the sake of
completeness, a short description of the model developed in Farkas et al. [6].

Consider n commodities with spot prices S(t) = (S1(t), . . . , Sn(t))�.
First it is assumed that the spot log-prices X(t) = log S(t) can be decomposed

into three components:
X(t) = Y(t) + ε(t) + φ(t), (1)
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where Y(t) signifies the long-run levels, ε(t) is an n-dimensional stationary process
capturing short-term deviations, and φ(t) = χ1 cos(2π t) + χ2 sin(2π t) controls for
seasonal effects with χ1 and χ2 being n-dimensional vectors of constants.

The notion of cointegration (Engle and Granger [5], Johansen [7], Phillips [12])
refers to the property of two or more non-stationary time series of having a linear
combination that is stationary. For example, if X1(t) and X2(t) are two non-stationary
processes, one says that they are cointegrated if there is a linear combination of them,
X1(t) − αX2(t), that is stationary for some positive real α. Intuitively, cointegration
occurswhen twoormore non-stationary variables are linked in a long-run equilibrium
relationship from which they might depart only temporarily.

Regarding cointegration in the model, we stress that n cointegration relationships
are implicitly assumed by (1): the n seasonally adjusted spot log-prices X(t) −
φ(t) are cointegrated with their corresponding long-run levels, Y(t), since the linear
combination X(t) − φ(t) − Y(t) is stationary.

Secondly, cointegration is allowed to exist between the variables in Y(t) as well.
We denote the number of cointegration relationships between them by h, where
h ≥ 0 and h < n. The corresponding cointegration matrix is symbolized by Θ , an
n × n matrix with the last n − h rows equal to zero vectors. Each of the h non-zero
rows of Θ encodes a stationary (i.e., cointegrating) combination of the variables
in Y(t), normalized such that Θi i = 1, i ≤ h. The total n + h cointegration rela-
tionships between the variables in the vector Z(t) := (X(t) − φ(t),Y(t))� can be

characterized by the (2n × 2n)-matrix

[
In −In
On Θ

]
whereOn denotes the zero-matrix

with dimension n × n.
The dynamics of X(t) and Y(t) under the real-world probability measure is

assumed to be given by:

d

[
X(t) − φ(t)

Y(t)

]
=

[
0n
μy

]
dt +

[−Kx On

On −Ky

] [
In −In
On Θ

] [
X(t) − φ(t)

Y(t)

]
dt

+
[

Σ
1
2
x On

Σ
1
2
xy Σ

1
2
y

]

d

[
Wx (t)
Wy(t)

]
, (2)

where 0n is an n-dimensional vector of zeros, and W := (Wx ,Wy)
� is a 2n-

dimensional standard Brownian motion. Furthermore, the matrix

[−Kx On

On −Ky

]
mea-

sures the speed bywhichZ(t) reverts to its long-run (cointegration) equilibrium level.
More specifically, Kx quantifies the speed of mean reversion of the elements in X
around the long term levels inY. Thematrix Ky is an n × nmatrix with the last n − h
columns equal to zero vector, such that KyΘ is an n × n matrix of rank h. Each of
the h non-zero columns in Ky quantifies the speed of adjustment of each element
in Y to the corresponding cointegration relation. The dynamics given by Eq. (2) is
“error-correcting” in that a deviation from a given cointegration relation induces an
appropriate change in variables in the direction of correcting the deviation.
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Fig. 1 Simulated price paths for various choices of theΘ matrix.Toppanel prices are non-stationary
and there is one cointegration relation. Middle panel prices are non-stationary and there is no
cointegration. Bottom panel prices are stationary

In order to assess qualitatively the role of the cointegration matrix Θ on the
properties of the dynamics of the system, Fig. 1 depicts the results of a simulation of
a system of three variables for various choices of the Θ matrix.

In the top panel of Fig. 1 we assume that there is a cointegration relation and the
first line of theΘ matrix is

[
1 1 −1

]
and, therefore, the residual of the cointegration

relation, Y1(t) + Y2(t) − Y3(t), is stationary. On the other hand, in the middle panel,
depicts the casewhenΘ is the nullmatrix and, therefore, the prices are non-stationary
and not cointegrated. For example, the residual of the cointegration relation from
the previous case, Y1(t) + Y2(t) − Y3(t), is no longer stationary. In fact, there is no
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stationary linear combination of the long run levels in this case.Moreover, as depicted
in the bottom panel, the model also allows for stationary prices, if the Θ matrix is of
full rank.

The characteristic functions ofX andY can be readily computed analytically given
they are normally distributed since the dynamics of Z(t) = (X(t) − φ(t),Y(t))� is
in fact given by a multivariate Ornstein–Uhlenbeck (OU) process:

dZ(t) = [μ − KZ(t)] dt + Σ
1
2 dW(t), (3)

with μ :=
[
0n
μy

]
, K :=

[
Kx −Kx

On KyΘ

]
, Σ

1
2 :=

[
Σ

1
2
x On

Σ
1
2
xy Σ

1
2
y

]

, W(t) :=
[
Wx (t)
Wy(t)

]
.

At the same time, the vector of spot prices S(T ) can be written as an exponential
function of X(t) and Y(t):

S(T ) = exp

{
e−Kx (T−t)X(t) + ψ(T − t)Y(t) +

[
φ(T ) − e−Kx (T−t)φ(t)

]

+
[∫ T

t
ψ(T − u)du

]

μy +
∫ T

t

[
e−Kx (T−u)Σ

1
2
x + ψ(T − u)Σ

1
2
xy

]
dWx (u)

+
∫ T

t
ψ(T − u)Σ

1
2
y dWy(u)

}
. (4)

where

ψ(τ) := Kx

[∫ τ

0
e−Kx (τ−u)e−KyΘudu

]
.

Given the affine structure of the model, futures prices can also be obtained in
closed form. Under the simplifying assumption of constant market prices of risk, one

has that d

[
W∗

x (t)
W∗

y(t)

]
= d

[
Wx (t)
Wy(t)

]
+

[
λx

λy

]
dt where W∗

x (t) and W∗
y(t) are standard

Brownian motions under the risk-neutral measure, and λx , λy are the market prices
of Wx (t) and Wy(t) risks, respectively.

Under these circumstances it can be shown that at time t the vector of futures
prices for the contracts with maturity T is given by

F(t, T ) = exp {α(t, T ) + β(T − t)X(t) + ψ(T − t)Y(t)} , (5)

with β(τ) := e−Kx τ and with α(t, T ) defined by

α(t, t + τ) :=
[
φ(t + τ) − e−Kx τ φ(t)

]
−

(
In − e−Kx τ

)
K−1
x μ∗

x +
(∫ τ

0
ψ(τ − u)du

)
μ∗
y

+ diag

{
1

2

[
In On

]
[
e−K τ

(∫ τ

0
eKuΣeKudu

)
e−K τ

] [
In
On

]}
, (6)
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Fig. 2 The relative contribution of various components to log futures prices

where diag(A) returns the vector with diagonal elements of A, and where

μ∗ =
[
μ∗

x
μ∗

y

]
= μ + Σ

1
2

[
λx

λy

]
.

To better assess qualitatively the impact of the two factors, X(t) and Y(t), on the
term structure of futures prices, we depict in Fig. 2 the relative contribution of the
corresponding two terms in Eq. (5) to the logarithm of the futures prices on one of
the commodities in a cointegrated system.

The contribution of the X(t) component decreases exponentially as a function of
time to maturity. On the other hand, theY(t) component contributes significantly for
higher maturities. Therefore, the two factors capture the short-end and, respectively,
the long-end of the term-structure of futures prices.

By Itô’s lemma, the risk-neutral dynamics of F(t, T ) is given by

dF(t, T )

F(t, T )
=

[
e−Kx (T−t)Σ

1
2
x + ψ(T − t)Σ

1
2
xy

]
dW∗

x (t) + ψ(T − t)Σ
1
2
y dW∗

y(t),

(7)

and it follows immediately that the variance–covariance matrix of returns on futures
prices is given by:

Ξ(τ) = e−Kx τΣxe
−K�

x τ + ψ(τ)Σ
1
2
xy(Σ

1
2
x )�e−K�

x τ + e−Kx τΣ
1
2
x (Σ

1
2
xy)

�ψ�(τ )

+ ψ(τ)Σxyψ
�(τ ) + ψ(τ)Σyψ

�(τ ) (8)

where τ = T − t .
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Since the term structure of correlation of futures prices returns plays an impor-
tant role in the results of the simulations performed in the following section, it is
worthwhile to point out some qualitative results about this term structure.

First, Eq. (8) shows that unless Kx = On , the variance–covariance matrix Ξ(τ)

depends on τ .
Second, let us consider the case that there is no instantaneous correlation between

the shocks driving the dynamics, meaning that Σx and Σy are diagonal matrices and
Σxy is the null matrix. Moreover, let us assume that Kx is diagonal, meaning that the
spot price of a commodity reacts only to its deviation from the long run level and
not to deviations of the other commodities. It follows that the first term in Eq. (8) is a
diagonal matrix and the next three terms are null matrices. If, in addition, there is no
cointegration in the system, meaning that Θ is the null matrix, then the last term in
Eq. (8) is a diagonal matrix since ψ(τ) is also a diagonal matrix. So, in this case, the
variance–covariance matrix Ξ(τ) is diagonal and, therefore, there is no correlation
at any maturity. However, if there is at least one cointegration relation in the system,
then the last term in Eq. (8) is no longer a diagonal matrix sinceψ(τ) is not diagonal.
Therefore, cointegration induces correlation at various maturities although it was
assumed there is no instantaneous correlation between the Brownian motions in the
model.

3 Spread Option Prices

In this section,we focus on futures prices and prices ofEuropean-style optionswritten
on the spread between two or more commodities, such as the difference between the
price of electric power and the cost of the natural gas needed to produce it, or the price
difference between crude oil and a basket of various refined products, known as the
crack spread. The crack spread is in fact related to the profit margin that an oil refiner
realizes when “cracking” crude oil while simultaneously selling the refined products
in the wholesale market. The oil refiner can hedge the risk of losing profits by buying
an appropriate number of futures contract on the crack spread or, alternatively, by
buying call options of the crack spread. Since spread options have become regularly
and widely used instruments in financial markets for hedging purposes, there is a
growing need for a better understanding of the effects of cointegration on their prices.

There is extensive literature on approximation methods for spread and basket
options on two (e.g. Kirk [8]) or more than two commodities, with recent contribu-
tions from Li et al. [9] and Caldana and Fusai [2]. However, mostly for simplicity,
we relay in this chapter on the Monte-Carlo simulation method for pricing spread
options written on two or more than two commodities.

From Eq. (7), it follows that F(t, T ) (conditional on information available up to
time s ≤ t ≤ T ) is distributed as follows:
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F(t, T ) ∼ logN

(
logF(s, T ) − 1

2

∫ t

s
diag(Ξ(T − u))du,

∫ t

s
Ξ(T − u)du

)
,

(9)

where diag(X) denotes the vector containing the diagonal elements of the matrix X .
Note that F(s, T ) can be either computed from (5) or observed from data.

The fact that the distribution function of F(t, T ) is known in an easy-to-use and
analytic form is one of the key features of the model we employ. It allows us to
simulate futures price curves at any time t in the future based on today’s curves
(time s) almost effortlessly. Hence, the price of a call option on the time-T value of
a certain spread can be simply obtained by carrying out the following steps:

(i) compute or observe today’s futures price curves F(s, T );
(ii) compute M realizations F(m) (m = 1, . . . , M) of F(T, T ) by sampling from

(9) as follows:
F(m) = F(s, T ) exp

{
ε(m)

}
,

where ε(m) is generated from a multivariate normal distribution with mean
− 1

2

∫ T
s diag(Ξ(T − u))du and variance–covariance matrix

∫ T
s Ξ(T − u)du1;

(iii) compute the Monte-Carlo estimate of a call with strike k on the spread

N∑

n=1

ωn Sn(T )

(

=
N∑

n=1

ωn Fn(T, T )

)

,

withωn , n = 1, . . . , N the weights of each component in the spread, as follows:

1

M

M∑

m=1

max

{[
N∑

n=1

ωn F
(m)
n

]

− k, 0

}

. (10)

For the sake of clarity we have set the risk-free rate curve equal to zero. We note
that the random variables ε(m) can be simply re-used for pricing spread options with
different maturity dates.

In the following we consider a system of three commodities2 characterized by one

cointegration relationwithΘ =
⎡

⎣
1 −0.4 −0.6
0 0 0
0 0 0

⎤

⎦. The rest of the parameters describ-

ing the dynamics are Kx =
⎡

⎣
1.5 0 0
0 1 0
0 0 0.5

⎤

⎦, Σx =
⎡

⎣
0.0625 0.0562 0.0437
0.0562 0.0900 0.0262
0.0437 0.0262 0.1225

⎤

⎦, μy =

1Here the technique of antithetic variables is used to reduce the number of random samples needed
for a given level of accuracy.
2The structure of the parameters is chosen, in a parsimonious manner, taking into consideration the
key facts of the empirical study conducted in Farkas et al. [6], where the results provide compelling
evidence of cointegration between various commodities.
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⎡

⎣
0.025
0.025
0.025

⎤

⎦, Ky =
⎡

⎣
1.5 0 0
0 0 0
0 0 0

⎤

⎦, Σy =
⎡

⎣
0.0225 0 0

0 0.0225 0
0 0 0.0225

⎤

⎦, Σxy = O3. Since Kx

is diagonal, each spot price is error-corrected only with respect to deviations from its
own long-run level. Moreover, given the specific form of the Ky matrix, deviations
from the cointegration relationships between the long-run levels influence only the
dynamics of the first spot price. In this respect, the second and third commodities are
“exogenous” in that their dynamics is not influenced by the variables characterizing
the other commodities. Regarding instantaneous dependence, the shocks driving the
dynamics of the long-run factors are not correlated, whereas we imposed positive
correlations between the shocks driving the dynamics of theX(t). More specifically,
the instantaneous variance–covariance matrixΣy for long-run shocks corresponds to
an annual volatility of 0.15 for all three commodities. At the same time, the instanta-
neous variance–covariance matrix Σx for short-run shocks corresponds to an annual
volatility of 0.25 for the first commodity, of 0.30 for the second and of 0.35 for the
third and to a correlation coefficient of 0.75 between the first and the second com-
modities, of 0.50 between the first and the last and of 0.25 between the second and
the third. For simplicity, we also assume there is no correlation between the two cat-
egories of shocks. Since we focus on the impact of cointegration on spread options,
in the following simulations we have set, for illustration purposes, the vector of risk
premiums λx and λy and the risk-free rate curve equal to zero.3

Figure3 depicts the term structure of correlation, over a period of 5 years, between
the returns of futures prices of the three commodities in the system in two cases: the
one when the cointegration relation is taken into account and, respectively, the one
where the cointegration relation is abstracted from (i.e. Θ = O3).

One can observe that, regarding the correlation term structure between commodi-
ties 2 and 3, the two curves are identical (Fig. 3, bottom panel). This is not surprising
since these two commodities are “exogenous” as explained above and their dynam-
ics is not influenced by the cointegration relation. However, cointegration induces
additional correlation when it comes to the commodities 1 and 2 and commodities 1
and 3, as also pointed out at the end of the previous section. In the absence of coin-
tegration, the correlation vanishes after 2–3 years, whereas when the cointegration
relation is taken into account the correlation exists also in the long run.

Next, we consider three spreads on two commodities, respectively S1(t) − S2(t),
S1(t) − S3(t), S2(t) − S3(t), and one spread on all the three commodities in the
system S1(t) − 0.5(S2(t) + S3(t)).We assume that at time 0, the two factors are such

that X(0) = Y(0) =
⎡

⎣
2
2
2

⎤

⎦ and, therefore, the current spot prices of all four spreads

equal 0. We focus on studying the prices of the at-the-money (ATM) European-style
call spread options with up to 5 years tomaturity. Figure4 shows the term structure of

3In a real-world application the parameters of the model can be estimated using futures prices
data for the corresponding commodities. Given the features of the model one can implement an
estimation procedure based on the Kalman filter.
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Fig. 3 Term structure of correlation, over a period of 5 years, between the futures log-returns of
three commodities (from top to bottom: between 1 and 2, between 1 and 3, between 2 and 3)
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Fig. 4 Relative ATM call spread option prices with up to 5 years to maturity, and relative standard
deviations of the spread distribution at maturities up to 5 years. Top panel for the spread S1(t) −
S2(t). Bottom panel for the spread S1(t) − 0.5(S2(t) + S3(t))
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Fig. 5 The distribution of the spread at maturity (5 years). Top panel for the spread S1(t) − S2(t).
Bottom panel for the spread S1(t) − 0.5(S2(t) + S3(t))

prices in the case with cointegration relative to the prices in the case the cointegration
is not accounted for.4

Cointegration has a significant impact on spread option prices, with the price for
the call with 5 years to maturity on the S1(t) − S2(t) spread being almost 30% lower
in the casewith cointegration and for the call on the S1(t) − 0.5(S2(t) + S3(t)) spread
being almost 60% lower. This can be explained by the fact that cointegration induces
additional correlation that acts to lower the standard deviation of the distribution of
the spread at maturity. To give a better grasp of this fact, Fig. 5 depicts the distribution
of the spread at maturity in the two cases. We omitted from the figures the other two
spreads, because the results for the S1(t) − S3(t) spread are similar to those for the
S1(t) − S2(t) spread, and for the S2(t) − S3(t) spread there is, as expected given the
“exogenous” nature of these two prices, no difference between the cases with and
without cointegration.

If one were to add another cointegration relation to the system, linking the second
and the third commodities in a long-run relationship, then the new cointegration
relation would affect the prices of the options written on the S2(t) − S3(t) spread.
Moreover, the newcointegration relationmight also affect the option priceswritten on
the other three spreads, the magnitude of this influence depending on the structure
of the Ky matrix that captures the strength of responses in various spot prices to
deviations in the new long-run relationship.

To have a better grasp of the influence of cointegration, next we run a series of
sensitivity analyses concerning the existence of a second cointegration relationship in
the system. To account for the new cointegration relation, we assume a new structure

4Relative quantities in Fig. 4 are determined as the ratio between the quantity computed with the
model accounting for cointegration and the correspondingquantity computedwith themodelwithout
cointegration.
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Fig. 6 The impact of k2 and k3 on the distribution of the spread S2(t) − S3(t) at maturity (5 years).
Top left panel correlation between the futures log-returns of the two commodities in the basket.
Top right panel relative standard deviations of the spread distribution (the values are normalized by
division with the standard deviation in the case k2 = k3 = 0). Bottom panel the distribution for the
two extreme cases in the analysis

for Θ =
⎡

⎣
1 −0.4 −0.6

−θ 1 −0.8
0 0 0

⎤

⎦ and Ky =
⎡

⎣
1.5 k1 0
0 k2 0
0 −k3 0

⎤

⎦, where θ, k1, k2, k3 > 0. The

other parameters have the same values as before. We first focus on the impact of
the parameters k2 and k3 on the S2(t) − S3(t) spread. These two parameters quantify
the strength that the second and, respectively, the third commodity reacts to deviations
in the newly added cointegration relation. In the extreme case when both k2 and k3 are
zero, we are in the same situation as before since the two commodities do not react
to deviations. However, with the increase of these parameters the new cointegration
relation will start to matter for the dynamics of the two commodities, and will have
an impact on the distribution of the spread at maturity. Figure6 presents the results
of the sensitivity analysis when k2 and k3 are varied between 0 and 0.5, with the other
parameters kept fixed at a level θ = 0.2 and k1 = 0.

A higher value for the two reaction parameters produces a higher extra correlation
induced by the second cointegration relation, which, in turn, is reflected in a lower
standard deviation of the distribution of the spread atmaturity.Over a 5-years horizon,
the standard deviation for the case k2 = k3 = 0.5 is 32% lower than in the case the
two parameters are equal to zero, and the ATM call price is 35% lower.
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Fig. 7 The impact of k1 and θ on the distribution of the spread S1(t) − 0.5(S2(t) + S3(t)) at
maturity (5 years). Top left panel correlation between the futures log-returns of the first commodity
and the sum of the other two. Top right panel relative standard deviations of the spread distribution
(the values are normalized by division with the standard deviation in the case k1 = 0, θ = 0.2).
Bottom panel the distribution for two specific cases in the analysis

Next, we focus on the impact of θ and k1 on the S1(t) − 0.5(S2(t) + S3(t)) spread.
The parameter θ is a free variable that determines the second cointegration rela-
tionship and the parameter k1 measures the magnitude of the response of the first
commodity to deviations from the second cointegration relation. Figure7 presents
the results of the sensitivity analysis when k1 and θ are varied between 0 and 1 and,
respectively, between 0.1 and 0.3, with the other parameters kept fixed at a level
k2 = 0.25 and k3 = 0.25. An increase of k1 generates a reduction in the correlation
between the components of the spread, showing that the second cointegration rela-
tionship has the effect of pulling the components of the spread away from each other.
This effect is marginally stronger for the smaller θ . The result of the reduction in
correlation is a higher standard deviation of the distribution of the spread at maturity.

For amaturity of 5 years, the standard deviation for the case k1 = 1 is around 33%
higher than in the case the parameter equals zero, and the ATM call price is about
40% higher. Therefore, the two cointegration relations influence the distribution of
the S1(t) − 0.5(S2(t) + S3(t)) spread in different directions, the first one generating
a reduction, and the second one an increase in the standard deviation. The overall
impact depends on the magnitude of the parameters quantifying the responses of the
commodities to deviations in the two cointegration relations.
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4 Concluding Remarks

In this work, we explored the implications of cointegration between commodity
prices on the premiums of options written on various spreads between these com-
modities.We employed the continuous timemodel of cointegrated commodity prices
developed in Farkas et al. [6] and conducted a simulation study for a cointegrated
system of three commodities. We calculated the prices of several spread options
and found that cointegration significantly influences these prices. Furthermore, we
pointed out that cointegration leads to an upward sloping correlation term-structure
which lowers the volatility of spreads and therefore it also lowers the value of options
on spreads. Although we restricted in this chapter to a simulation study, it is worth-
while to mention that the model can also be estimated using futures prices on various
commodities, as shown in Farkas et al. [6].
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The Dynamic Correlation Model
and Its Application to the Heston Model

L. Teng, M. Ehrhardt and M. Günther

Abstract Correlation plays an essential role in many problems of finance and eco-
nomics, such as pricing financial products and hedging strategies, since it models
the degree of relationship between, e.g., financial products and financial institutions.
However, usually for simplicity the correlation coefficient is assumed to be a constant
in many models, although financial quantities are correlated in a strongly nonlinear
way in the real market. This work provides a new time-dependent correlation func-
tion, which can be easily used to construct dynamically (time-dependent) correlated
Brownian motions and flexibly incorporated in many financial models. The aim of
using our time-dependent correlation function is to reasonably choose additional
parameters to increase the fitting quality on the one hand, but also add an economic
concept on the other hand. As examples, we illustrate the applications of dynamic
correlation in the Heston model. From our numerical results we conclude that the
Heston model extended by incorporating time-dependent correlations can provide a
better volatility smile than the pure Heston model.

Keywords Time-dependent correlations ·Heston model · Implied volatility ·Non-
linear dependence

1 Introduction

Correlation is a well-established concept for quantifying interdependence. It plays an
essential role in several problems of finance and economics, such as pricing financial
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products and hedging strategies. For example, in [3] the arbitrage pricing model is
based on that correlation as a measure for the dependence among the assets, and
in portfolio credit models the default correlation is one fundamental factor of risk
evaluation, see [1, 2, 12].

In most of the financial models, the correlation has been considered as a constant.
However, this is not a realistic assumption due to the well-known fact that the cor-
relation is hardly a fixed constant, see e.g. [7, 13]. For example, in many situations
the pure Heston model [9] cannot provide enough skews or smiles in the implied
volatility surface as market requires, especially for a short maturity. A reason for
this might be that deterministically correlated Brownian motions (BMs) of the price
process and the variance process are used, as the correlation mainly affects the slope
of implied volatility smile. If the correlation is modeled as a time-dependent dynamic
function, better skews or smiles will be provided in the implied volatility surface by
reasonably choosing additional parameters. Furthermore, compared with the way
to extend a model by using time-dependent parameter, e.g., [6, 10] for the Heston
model, a time-dependent correlation function adds an economic concept (nonlinear
relationship) and its application will be considerably simpler.

The key of modeling correlation as a time-dependent function is being able to
ensure that the boundaries −1 and 1 of the correlation function are not attractive and
unattainable for any time. In this work, we build up a appropriate time-dependent
correlation function, so that one can reasonably choose additional parameters to
increase the fitting quality on the one hand but also add an economic concept on the
other hand.

The outline of the remaining part is as follows. Section2 is devoted to a specific
dynamic correlation function and its (analytical) computation. In Sect. 3, we present
the concept of dynamically (time-dependent) correlated Brownian motions and the
corresponding construction. The incorporation of our newdynamic correlationmodel
in the Heston model is illustrated in Sect. 4. Finally, in Sect. 5 we conclude.

2 The Dynamic Correlation Function

In this section we introduce a dynamic correlation function. Actually, it is in high
demand to find such a correlation function which must satisfy the correlation prop-
erties: it provides only the values in the interval (−1, 1) for any time; it converges
for increasing time. We find the following simple idea: we denote the dynamic cor-
relation by ρ̄ and propose simply using

ρ̄t := E [tanh(Xt)] , t > 0 (1)

for the dynamic correlation function, where Xt is any mean-reverting process with
positive and negative values. For the known parameters ofXt , the correlation function
ρ̄t : [0, t] → (−1, 1) depends only on t. We observe that the dynamic correlation
model (1) satisfies the desired properties: first, it is obvious that ρ̄t takes values only
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in (−1, 1) for all t. Besides, it converges for increasing time due to themean reversion
of the used process Xt .

Although we could intuitively observe that the function tanh is eminently suit-
able for transforming value to the interval (−1, 1), one might still ask whether
other functions can also be applied for this purpose, like trigonometric functions
or 2

π
arctan( π

2 x). In theory, such functions could be used for this purpose. However,
the problem is whether one can obtain the expectation of the transformed mean-
reverting process by such functions in a closed-form expression. Furthermore, our
experiments show that the tendency of the function tanh ismore suitable formodeling
correlations, see [13].

Xt in (1) could be any mean-reverting process which allows positive and negative
outcomes. As an example, let Xt be the Ornstein–Uhlenbeck process [14]

dXt = κ(μ − Xt)dt + σdWt, t ≥ 0. (2)

We are interested in computing E[ρ̄t] as a function of the given parameters in (2).
We compute ρ̄t = E[tanh(Xt)] as

ρ̄t = E[tanh(Xt)] = E

[
1 − e−Xt · 2

e−Xt + eXt

]
= 1 − E

[
e−Xt · 1

cosh(Xt)

]
. (3)

We set g(Xt) = 1/ cosh(Xt). Applying the results by Chen and Joslin [4], the expec-
tation in (3) can be found in closed-form expression (up to an integral) as

1

2π

∫ ∞

−∞
ĝ(u) · E[e−XteiuXt ] du, (4)

where i = √−1 denotes the imaginary unit and ĝ is the Fourier transform of g, in this
case is known analytically by ĝ(u) = π/ cosh( πu

2 ).DenotingCF(t, u|X0, κ, μ, σ ) as
the characteristic function of Xt , the expectation in (4) can be presented by CF(t, i+
u|X0, κ, μ, σ ). Thus, we obtain the closed-form expression for ρ̄t :

ρ̄t = 1 − 1

2

∫ ∞

−∞
1

cosh( πu
2 )

· CF(t, i + u|X0, κ, μ, σ )du. (5)

The next step is to calculate CF(t, i + u|X0, κ, μ, σ ). The process Xt is an
Ornstein–Uhlenbeck process and its characteristic function CF(t, u|X0, κ, μ, σ ) can
be obtained analytically, e.g. using the framework of the affine process, see [5]. Then,
we only need to substitute u+ i for u in the characteristic function of Xt to calculate
CF(t, i + u|X0, κ, μ, σ ) which is given by

CF(t, i + u|X0, κ, μ, σ ) = e−A(t)− B(t)
2 +iu(A(t)+B(t))+u2 B(t)

2 , (6)
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with

A(t) = e−κtX0 + μ(1 − e−κt), B(t) = −σ 2

2κ
(1 − e−2κt) (7)

Finally, the dynamic correlation function ρ̄t can be computed by

ρ̄t = 1 − e−A(t)− B(t)
2

2

∫ ∞

−∞
1

cosh( πu
2 )

· eiu(A(t)+B(t))+u2 B(t)
2 du, (8)

where A(t) and B(t) are defined in (7). In fact, X0 in A(t) is equal to artanh(ρ̄0).
To illustrate the role of each parameter in (8), we plot ρ̄t for several values of

the parameters. First in Fig. 1, we let κ = 2 and σ = 0.5 and display ρ̄t with
different values of μ, which is set to be 0.5, 0, and −0.5, respectively. Obviously,
μ determines the long term mean of ρ̄t . However, μ is not the exact limiting value.
Considering Fig. 1a where the initial value of the correlation function is 0, we see
that ρ̄t is increasing to a value around μ = 0.5 and decreasing to a value around
μ = −0.5 as t become larger, when μ = 0.5 and −0.5, respectively. Besides, for
μ = ρ̄0 = 0 we observe that the correlation function ρ̄t yields always 0 which is the
same as constant correlation ρ = 0. Now, we set ρ̄0 = 0.3 and keep the value of all
other parameters unchanged, then display the curves of ρ̄t in Fig. 1b.

Next, we fix κ = 2 and μ = 0.5 and then display ρ̄t for the varying σ = 0.5, 1
and 2 in Fig. 2. Obviously, σ shows the magnitude of variation from the transformed
mean value ofXt (μ = 0.5). In Fig. 2a we see, the larger the value of σ is, the stronger
the deviations of ρ̄t is from the transformed mean value of Xt . More interesting is
that ρ̄t first decreases until t ≈ 0.25, then increases and converges to a value, see
Fig. 2b where ρ̄0 = 0.3 and σ = 2.

Again, in order to illustrate the role of κ , we set μ = 0.5, σ = 2 and vary the
value of κ , see Fig. 3. From Fig. 3a it is easy to observe that κ represents the speed
of ρ̄t tending to its limit. Especially, as we have seen in Fig. 2b, the curve is more
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Fig. 1 Dynamic correlation ρ̄t for varying μ (κ = 2 and σ = 0.5). a ρ̄0 = 0. b ρ̄0 = 0.3
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Fig. 2 Dynamic correlation ρ̄t for varying σ (κ = 2 and μ = 0.5). a ρ̄0 = 0. b ρ̄0 = 0.3
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Fig. 3 Dynamic correlation ρ̄t for varying κ (μ = 0.5 and σ = 2). a ρ̄0 = 0. b ρ̄0 = 0.3

unstable for κ = 2 and σ = 2 in Fig. 3b. However, if σ remains constant while the
value of κ is increased, we can see that curves of ρ̄t become more stable and tend
straightly to its limit. If one incorporates the dynamic correlation function (8) to a
financial model, the parameter ρ̄0, κ, μ, and σ could be estimated by fitting the
model to market data.

3 Dynamically Correlated BMs and Their Construction

We fix a probability space (Ω,F ,P) and an information filtration (Ft)t∈R+ , satis-
fying the usual conditions, see e.g. [11]. At a time t > 0, the correlation coefficient
of two Brownian motions (BMs) W 1

t and W 2
t is defined as
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ρ1,2
t = E

[
W 1

t W
2
t

]

t
. (9)

If we assume that ρ
1,2
t is constant, ρ

1,2
t = ρ1,2 for all t > 0, say W 1

t and W 2
t are

correlated with the constant ρ1,2.
Therefore, we give the definition of dynamically correlated BMs.

Definition 1 Two Brownian motionsW 1
t andW 2

t are called dynamically correlated
with correlation function ρt , if they satisfy

E
[
W 1

t W
2
t

] =
∫ t

0
ρsds, (10)

where ρt : [0, t] → [−1, 1]. The average correlation of W 1
t and W 2

t , ρAv , is given
by ρAv := 1

t

∫ t
0 ρsds.

We consider first the two-dimensional case and let ρt be a correlation function.
For two independent BMs W 1

t and W 3
t we define

W 2
t =

∫ t

0
ρsdW

1
s +

∫ t

0

√
1 − ρ2

s dW
3
s , (11)

with the symbolic expression

dW 2
t = ρtdW

1
t +

√
1 − ρ2

t dW
3
t . (12)

It can be easily verified that W 2
t is a BM and correlated with W 1

t dynamically by ρt .
Besides, the covariancematrix and the average correlationmatrix ofWt = (W 1

t ,W 2
t )

can be determined, given by

(
t

∫ t
0 ρsds∫ t

0 ρsds t

)
and

(
1 1

t

∫ t
0 ρsds

1
t

∫ t
0 ρsds 1

)
,

respectively.
The construction above could be also generalized to n-dimensions. We denote

a standard n-dimensional BM by Zt = (Z1,t, . . . ,Zn,t) and the matrix of dynamic
correlationsRt = (ρ

i,j
t )1<i,j<n which has the Cholesky decomposition for each time

t, Rt = AtA
�
t with At = (ai,jt )1<i,j<n. We define a new n-dimensional process

Wt = (W1,t, . . . ,Wn,t) by

Wi,t =
n∑

j=1

aijt dZj,t, i = 1, . . . , n. (13)
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We can easily verify that Wt satisfies the following properties:

• W0 = 0 and the paths are continuous with probability 1.
• The incrementsWt1 −Wt0 andWt2 −Wt1 are independent for 0 ≤ t0 < t1 < t2 < t.
• For 0 ≤ s < t, the increment Wt − Ws is multivariate normally distributed with
mean zero and covariance matrix � : Wt − Ws ∼ N(0, �) with

� =

⎛

⎜⎜⎜
⎝

t − s
∫ t
s ρ1,2

u du . . .
∫ t
s ρ1,n

u du∫ t
s ρ2,1

u du t − s . . .
∫ t
s ρ2,n

u du
...

...
. . .

...∫ t
s ρn,1

u du
∫ t
s ρn,2

u du . . . t − s

⎞

⎟⎟⎟
⎠

.

We call the process (Wt)t≥0 an n-dimensional dynamically correlated Brownian
motion, with the correlation matrixRt .

4 Dynamic Correlation in the Heston Model

As mentioned before, in many situations the pure Heston model has a limitation on
reproducing properly a volatility smile. For this problem, several time-dependent
Heston models have been proposed for good fitting to implied volatilities, e.g. [6]
and [10]. In this section, we show how to incorporate our time-dependent correlation
function into the Heston model.

4.1 Incorporating Dynamic Correlations

Heston’s stochastic volatility model is specified as

dSt = μSStdt + √
νt St dW

S
t , (14)

dνt = κν(μν − νt)dt + σν

√
νt dW

ν
t , (15)

where (14) is the price of the spot asset, (15) is the volatility (variance) andWS
t andW

ν
t

are correlated with a constant correlation ρSν . To incorporate the time-dependent cor-
relations, we assume that dSt and dνt are correlated by a time-dependent correlation
function ρ̄t instead of the constant correlation ρSν . The extended Heston model with
dynamic correlation ρ̄ is specified as

dSt = μSStdt + √
νt St dW

1
t , (16)

dνt = κν(μν − νt)dt + σν

√
νt

(
ρ̄t dW

1
t +

√
1 − ρ̄2

t dW
2
t

)
, (17)
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where W 1
t and W 2

t are independent. Applying Itô’s lemma and no-arbitrage argu-
ments yields [9]

1

2
νS2

∂2U

∂S2
+ ρ̄tσννS

∂2U

∂S∂ν
+ 1

2
σ 2

ν ν
∂2U

∂ν2
+ rS

∂U

∂S

+ [κν(μν − ν) − λ̃(S, ν, ρ̄, t)ν]∂U
∂ν

− rU + ∂U

∂t
= 0, (18)

where ρ̄t is defined in (8) but with the parameter ρ̄0, κρ, μρ, and νρ . It is worth
mentioning that the market price of volatility risk depends also on the dynamic cor-
relation, which could be written as λ̃(S, ν, ρ̄t, t). This means, the price of correlation
risk embedding in the price of volatility risk has been considered.

We consider, e.g. a European call option with strike price K and maturity T in the
Heston model

C(S, ν, t, ρ̄t) = SP1 − KP(t,T)P2, τ = T − t, (19)

where P(t,T) is the discount factor and both in-the-money probabilities P1,P2 must
satisfy the PDE (18) as well as their characteristic functions, f1(St, νt, ρ̄t, φ, t) and
f2(St, νt, ρ̄t, φ, t)

fj(St, νt, ρ̄t, φ, t) = E[eiφ ln ST |St, νt, ρ̄t] = eCj(τ,φ)+Dj(τ,φ)ν+iφ ln St , j = 1, 2, (20)

where Cj(0, φ) = 0 and Dj(0, φ) = 0. By substituting this functional form (20) into
the PDE (18) we can obtain the following ordinary differential equations (ODEs) for
the unknown functions C and D:

−1

2
φ2 + ρ̄tσνφiDj + 1

2
σ 2

ν D
2
j + ujφi − bjDj + ∂Dj

∂t
= 0, (21)

rφi + κνμνDj + ∂Cj

∂t
= 0, (22)

with the initial conditions Cj(0, φ) = Dj(0, φ) = 0

u1 = 0.5, u2 = −0.5, b1 = κν + λ − ρ̄tσν and b2 = κν + λ, (23)

where

ρ̄t = 1 − e−A(t)− B(t)
2

2

∫ ∞

−∞
1

cosh( πu
2 )

· eiu(A(t)+B(t))+u2 B(t)
2

︸ ︷︷ ︸
:=g(u)

du, (24)

with A(t) = e−κρ tartanh(ρ̄0) + μρ(1 − e−κρ t), B(t) = − σ 2
ρ

2κρ
(1 − e−2κρ t).

Obviously, (21) and (22) cannot be solved analytically. Therefore, we need to
find an efficient way to compute the option price numerically. We firstly generate the
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Fig. 4 g(u) under ρ0 = 0.3, κρ = 2, μρ = −0.8, σρ = 0.1. a t = 0.1. b t = 10

dynamic correlations using (24). We observe that g(u) is a symmetric function about
u = 0 and vanishes (approaches zero) for a sufficiently large absolute value of u, see
Fig. 4. For these two reasons, the numerical integration in (24) is computationally
fast. Next we use an explicit Runge–Kutta method, the matlab routine ode45, to
obtain C and D in (21) and (22) and thus also the characteristic functions (20).
Finally, we employ the COS method [8] to obtain the option price C(S, ν, t, ρ̄) in
(19). Thanks to the COS method, although we solved that ODE system numerically,
the time for obtaining European option prices is less than 0.1 s so that a calibration
can be performed. Obviously, the error consists of the error using ode45 for (21)
and (22) and the error using COS method. The detailed analysis of error using COS
method has been provided in [8].

4.2 Calibration of the Heston Model Under
Dynamic Correlation

In this section we calibrate the Heston model extended by our time-dependent corre-
lation function to the real market data (Nikk300 index call options on July 16, 2012)
and compare these to the pure Heston model [9] and the time-dependent Heston
model [10].

We consider a set of N maturities Ti, i = 1, . . . ,N and a set ofM strikes Kj, j =
1, . . . ,M. Then for each combination of maturity and strike we have a market price
VM(Ti,Kj) = VM

ij and a corresponding model price V (Ti,Kj;Θ) = VΘ
ij generated

by using (19). We choose the relative mean error sum of squares (RMSE) for the

loss function 1
M×N

∑
i,j

(VM
ij −VΘ

ij )2

VM
ij

, which can be minimized to obtain the parameter

estimates

Θ̂ = argmin
1

M × N

∑

i,j

(VM
ij − VΘ

ij )2

VM
ij

. (25)
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For the optimization we restrict ρ̄0 to the interval (−1, 1) but not the value of μρ .
Since it is not the direct limit of the correlation function but the mean reversion of
the Ornstein–Uhlenbeck process, thus, it could take any value inR. Our experiments
showed, that it is sufficient and appropriate to restrict μρ to the interval [−4, 4].

We state our estimated parameters and the estimation error for the pure Heston
model (abbr. PH), the Hestonmodel under our time-dependent correlations (CH), the
time-dependent Heston model by Mikhailov and Ngel [10] (MN) in Tables1, 2 and
3, respectively. We see that the estimation error using the CH model is significantly
less than the error using the PHmodel and almost the same to the error (sum of errors
for each maturity) under the MNmodel. To illustrate more clearly, for each maturity
we compare the implied volatilities for all the models to the market volatilities in
Fig. 5. We can observe that the implied volatilities for the CHmodel are much closer
to the market volatilities than the implied volatilities for the PHmodel, especially the
CH model has better volatility smile for the short maturity T = 1/12. Compared to
the MN model, the implied volatilities for our model are almost the same. However,
our CH model has an economic interpretation, namely the correlation is nonlinear

Table 1 The estimated parameters for the pure Heston model using call options on the Nikk300
index on July 16, 2012 for the maturities 1/12, 1/4, 1/2, 1

The pure heston model

ν̂0 κ̂ν μ̂ν σ̂ν ρ̂ Estimation
error

0.029 4.746 0.053 1.108 −0.355 1.10 × 10−3

Table 2 The estimated parameters for the Heston model under time-dependent correlations using
call options on the Nikk300 index on July 16, 2012 for the maturities 1/12, 1/4, 1/2, 1

The extended Heston model by using our time-dependent correlation function

ν̂0 κ̂ν μ̂ν σ̂ν
ˆ̄ρ0 κ̂ρ μ̂ρ σ̂ρ Estimation

error

0.027 5.542 0.055 1.224 −0.165 5.333 −0.752 0.434 2.38 ×
10−4

Table 3 The estimated parameters for the time-dependent Heston model by Mikhailov and Ngel
using call options on the Nikk300 index on July 16, 2012

The time-dependent Heston model by Mikhailov and Ngel

Maturity ν̂0 κ̂ν μ̂ν σ̂ν ρ̂ Estimation
error

1/12 0.025 2.749 0.095 1.172 −0.201 1.78× 10−4

1/4 0.012 2.936 0.076 0.524 −0.411 2.45× 10−5

1/2 0.011 2.890 0.058 0.592 −0.430 1.14× 10−5

1 0.001 2.911 0.051 0.558 −0.389 4.28× 10−6
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Fig. 5 The comparison of implied volatilities for all the models to the market volatilities of the
call options on the Nikk300 index on July 16, 2012, where the spot price is 150.9

and time-dependent as market requires.We conclude that the Hestonmodel extended
by incorporating our time-dependent correlations can provide better volatility smiles
compared to the pure Heston model. The time-dependent correlation function can
be easily and directly introduced into the financial models.

5 Conclusion

In this work, we first investigated the dynamically (time-dependent) correlated
Brownian motions and their construction. Furthermore, we proposed a new dynamic
correlation function which can be easily incorporated into another financial model.
The aim of using our dynamic correlation function is to reasonably choose addi-
tional parameters to increase the fitting quality on the one-hand side, but also add an
economically meaningful perspective.

As an application, we incorporated our time-dependent correlation function into
the Heston model. An experiment on estimation of the models using real market data
has been provided. The numerical calibration results show that the Heston model
extended by using our time-dependent correlation function provides better volatility
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smiles compared to the pure Heston model. Besides, this time-dependent correlation
function could be easily and directly imposed to the financial models and thus it is
preferred to use instead of a constant correlation.
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