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Preface

This book introduces the new theory of discriminant analysis based on mathematical
programming (MP)-based optimal linear discriminant functions (OLDFs) (hereafter,
“the Theory”) after R. Fisher. There are five serious problems of discriminant analysis
in Sect. 1.1.2. I develop five OLDFs in Sect. 1.3. An OLDF based on a minimum
number of misclassification (minimum NM, MNM) criterion using integer pro-
graming (IP-OLDF) reveals four relevant facts in Sect. 1.3.3. IP-OLDF tells us the
relation between NM and LDF clearly in addition to a monotonic decrease of MNM.
IP-OLDF and an OLDF using linear programing (LP-OLDF) are compared with
Fisher’s LDF and a quadratic discriminant function (QDF) using Iris data in Chap. 2
and cephalo-pelvic disproportion (CPD) data in Chap. 3. However, because IP-OLDF
may notfind a trueMNM if data do not satisfy the general position revealed by student
data in Chap. 4 (Problem 1), I develop Revised IP-OLDF, Revised LP-OLDF, and
Revised IPLP-OLDF that is a mixture model of Revised LP-OLDF and Revised
IP-OLDF. Only Revised IP-OLDF can find true MNM corresponding to an interior
point of optimal convex polyhedron (optimal CP, OCP) defined on the discriminant
coefficient space in Sect. 1.3. Because all LDFs except for Revised IP-OLDF cannot
discriminate cases on the discriminant hyperplane exactly (Problem 1), NMs of these
LDFs may not be correct. IP-OLDF finds Swiss banknote data in Chap. 6 having six
variables is linearly separable data (LSD) and two variables such as (X4, X6) is
minimum linearly separable model by examination of all 63 models made by six
independent variables. Revised IP-OLDF confirms this result, later. By monotonic
decrease of MNM, 16 models including (X4, X6) are linearly separable models. This
fact is very important for us to understand the gene analysis. Only Revised IP-OLDF
and a hard-margin support vector machine (H-SVM) can discriminate LSD theoret-
ically (Problem 2). Problem 3 is the defect of generalized inverse of
variance-covariance matrices that causes a trouble for QDF and a regularized dis-
criminant analysis (RDA). I solve Problem 3 that is explained by the pass/fail
determinations using 18 examination scores in Chap. 5. Although these data are LSD,
error rates of Fisher’s LDF andQDF are very high because these datasets do not satisfy
Fisher’s assumption. These facts tell us serious problem that we had better
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re-evaluated the discriminant results of Fisher’s LDF and QDF. In particular, we shall
re-evaluate the medical diagnosis, and various ratings because these data have the
same type of test data having many cases on the discriminant hyperplane. Because
Fisher never formulated the equation of standard error (SE) of error rates and dis-
criminant coefficient (Problem 4), I develop a 100-fold cross-validation for small
sample method (hereafter, “theMethod 1”). TheMethod 1 offers the 95% confidence
interval (CI) of discriminant coefficient and error rate.Moreover, I develop a powerful
model selection procedure such as the best model with minimummean of error rate in
the validation samples (M2). Best models of Revised IP-OLDF are better than other
seven LDFs using six datasets including Japanese-automobile data in addition to
above five datasets. Therefore, we misunderstand I establish the Theory in 2015.
However,whenRevised IP-OLDFdiscriminates sixmicroarray datasets (the datasets)
inNovember 2015, Revised IP-OLDF can naturally select features. AlthoughRevised
IP-OLDF can make feature-selection naturally for Swiss banknote data and
Japanese-automobile data in Chap. 7, I do not think it is a very important fact because
the best model offers the useful model selection procedure for common data. Over
than ten years,many researchers are struggling in the analysis of gene datasets because
there are huge numbers of genes and it is difficult for us to analyze by common
statistical methods (Problem 5). I develop a Matroska feature-selection method
(hereafter, “the Method 2”) and LINGO program. The Method 2 reveals the dataset
consists several disjoint small linearly separable subspaces (small Matroska, SMs)
and other high-dimensional subspace that is not linearly separable. Therefore, we can
analyze each SM by ordinary statistical methods. We find Problem 5 in November
2015 and solve it in December 2015.

The book represents my life's work/research, to which I have dedicated over 44
years of my life. After graduating from Kyoto University in 1971, I was employed
by SCSK Corp. in Japan as a system integrator. Naoji Tuda, the grandson of the
second-generation general director Teigo Iba of Sumitomo Zaibatsu, was my boss
and he believed that medical engineering (ME) is an important target for the
information-processing industries. Through his decision, I became a member of the
project for the automatic diagnostic system of electrocardiogram (ECG) data with
the Osaka Center for Cancer and Cardiovascular Diseases and NEC. The project
leader, Dr. Yutaka Nomura, ordered me to develop the medical diagnostic logic for
ECG data through the Fisher’s LDF and QDF. Although I had hoped to become a
mathematical researcher when I was a senior student in high school, I failed the
entrance examination of graduate school at Kyoto University because I spent much
more time pursuing the activities of the swimming club in the university.
Although I did not become a mathematical researcher, I started research with ME.
The research I conducted from 1971 to 1974 using Fisher’s LDF and QDF was
inferior to his experimental decision tree logic. Initially, I believed that my statis-
tical ability was poor. However, I soon realized that Fisher’s assumption was too
strict for medical diagnosis. I proposed the earth model (Shinmura, 1984)1 for

1See the references in Chap. 1.
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medical diagnosis instead of Fisher’s assumption. Therefore, this experience gave
me the motivation to develop the Theory. Shinmura et al. (1973, 1974) proposed a
spectrum diagnosis using Bayesian theory that was the first trial for the Theory.
However, logistic regression was more suitable for the earth model.

Shimizu et al. (1975) requested me to analyze photochemical air pollution data
by Hayashi quantification theory, and this became my first paper. Dr. Takaichirou
Suzuki, leader of the Epidemiology Group, provided me with several themes for
many types of cancers (Shinmura et al. 1983).

In 1975, I met Prof. Akihiko Miyake from the Nihon Medical School at the
workshop organized by Dr. Shigekoto Kaihara, Professor Emeritus of the Medical
School of Tokyo University. Miyake and Shinmura (1976) studied the relationship
between population and sample error rate in Fisher’s LDF. Next, Miyake and
Shinmura (1979) developed an OLDF based on the MNM criterion by a heuristic
approach. Shinmura and Miyake (1979) discriminated CPD data with collinearities.
After we revised a paper two or three times, a statistical journal rejected our paper.
However, Miyake and Shinmura (1980) was accepted by Japanese Society for
Medical and Biological Engineering (JSMBE). Former editors who judged OLDF
based on the MNM criterion overestimated the validation sample, and Fisher’s LDF
did not overestimate the sample because Fisher’s LDF was derived from the normal
distribution without examination of real data. I was deeply disappointed that many
statisticians disliked real data review and started their research from a normal
distribution because it was very comfortable for them without the examination of
real data (lotus eating). However, I could not develop a second trial of the Theory
because of poor computer power and a defect in the heuristic approach.

Shinmura et al. (1987) analyzed the specific substance mycobacterium (SSM,
commonly known as Maruyama vaccine). From 270,000 patients, we categorized
152,289 cancer patients into four postoperative groups. Those patients that were
administered SSM within one year after surgery were divided into four groups
every three months at the start of the SSM administration. We assumed that SSM is
only water without side effects, and this was the null hypothesis. The survival time
for the first group was longer than for the fourth group from nine months to 12
months after surgery and the null hypothesis was rejected.

In 1994, Prof. Kazunori Yamaguchi and Michiko Watanabe strongly recom-
mended me to apply for the position at Seikei University. After organizing the 9th
Symposium of JSCS in SCSK at Ryogoku near Ryogoku Kokugikan in March
1995, I became a professor at the Economic Department in April of the same year.
Dr. Tokuhide Doi presented a long-term care insurance system that employed a
decision tree method as advised by me. (Doctor Kaihara planned this system as an
advisor to the Ministry of Health and Welfare, and I advised Dr. Doi to use the
decision tree.)

In 1997, Prof. Tomoyuki Tarumi advised me to obtain a doctorate degree in
science at his graduate school. Without examining the previous research, I devel-
oped IP-OLDF and LP-OLDF that discriminated Iris data, CPD data, and 115
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random number datasets. IP-OLDF found two relevant facts about the Theory.
Therefore, we confirmed the MNM criterion was essential for the discriminant
analysis and complete the Theory in 2015. The Theory is useful for the gene
datasets as same as the ordinary datasets. Redears can download all my research
from researchmap and Theory from research gate.

https://www.researchgate.net/profile/Shuichi_Shinmura
http://researchmap.jp/read0049917/?lang=english

Musashinoshi, Japan Shuichi Shinmura
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and 5
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Theory and Method
Theory New theory of discriminant analysis after R. Fisher
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Problem 3 The defect of the generalized inverse matrices technique;
QDF misclassifies all cases as other classes for a particular
case. Adding a small random noise to the constant values
solves Problem 3

Problem 4 Fisher never formulated an equation for the standard error
of the error rate and discriminant coefficient. Method 1
offers 95 % confidence interval (CI) for the error rate and
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Problem 5 For more than ten years, many researchers have struggled
to analyze the microarray dataset that is LSD. Only Revised
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Chapter 1
New Theory of Discriminant Analysis

1.1 Introduction

1.1.1 Theory Theme

This book introduces a new theory of discriminant analysis (hereafter, “the
Theory”) after R. Fisher. This chapter explains how to solve the five serious
problems of discriminant analysis. To the best of my knowledge, this is the first
book that compares eight linear discriminant functions (LDFs) using several dif-
ferent types of data. These eight LDFs are as follows: Fisher’s LDF (Fisher 1936,
1956), logistic regression (Cox 1958), hard-margin SVM (H-SVM) (Vapnik 1995),
two soft-margin SVMs (S-SVMs) such as SVM4 (penalty c = 10,000) and SVM1
(penalty c = 1), and three optimal LDFs (OLDFs). At first, I develop an OLDF
based on a minimum number of misclassifications (minimum NM (MNM)) crite-
rion using integer programming (IP-OLDF) and an OLDF using linear program-
ming (LP-OLDF) (Shinmura 2000b, 2003, 2004, 2005, 2007). However, because I
find the defect of IP-OLDF, I develop three revised OLDFs such as Revised
IP-OLDF (Shinmura 2010a, 2011a), Revised LP-OLDF, and Revised IPLP-OLDF
(Shinmura 2010b, 2014b). Iris data in Chap. 2 are critical test data because Fisher
evaluates Fisher’s LDF with these data (Anderson 1945). Cephalo-pelvic
Disproportion (CPD) data (Miyake and Shinmura 1980) in Chap. 3 are medical
data with three collinearities. Although Student data in Chap. 4 employ a small data
sample (Shinmura 2010a), we can understand Problem 1 because the data are not
general positions. The 18 pass/fail determinations using examination scores in
Chap. 5 are linearly separable data (LSD). None of the LDFs, with the exception of
H-SVM and Revised IP-OLDF, can discriminate LSD theoretically. I demonstrate
that 18 error rates of Fisher’s LDF and the quadratic discriminant function
(QDF) are very high (Shinmura 2011b); nevertheless, these data are LSD.
Moreover, seven LDFs, with the exception of Fisher’s LDF, become trivial LDF
(Shinmura 2015b). Swiss banknote data (Flury and Rieduyl 1988) in Chap. 6 and
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Japanese-automobile data (Shinmura 2016c) in Chap. 7 are also LSD. Although I
develop a Matroska feature-selection method for microarray dataset (Method 2), it
is difficult for us to understand the meaning of Method 2 if we do not know LSD
discrimination very well. I call LSD as big Matroska. As same as big Matroska
includes several small Matroska, the microarray dataset (the datasets) includes
several linearly separable subspaces (small Matroska (SM)) in it (the largest
Matroska). Therefore, I explain this idea using common data in Chaps. 6 and 7.
When I discriminate the datasets, only Revised IP-OLDF can select features nat-
urally and finds the surprising structure of the datasets (Shinmura 2015e–s, 2016b).

Moreover, I develop a 100-fold cross-validation for small sample method
(Method 1) (Shinmura 2010a, 2013, 2014c) instead of the leave-one-out (LOO)
procedure (Lachenbruch and Mickey 1968). We can obtain two error rate means,
M1 and M2, from the training and validation samples, respectively, and propose a
simple model selection procedure to select the best model with minimum M2. The
best model of Revised IP-OLDF is better than the seven other M2s from the
previous data except for the Iris data.

We cannot discriminate cases on the discriminant hyperplane (Problem 1). Only
Revised IP-OLDF can solve Problem 1. Moreover, only H-SVM and Revised
IP-OLDF can discriminate LSD theoretically (Problem 2). Problem 3 is the defect
of the generalized inverse matrix technique and QDF of misclassifying all cases to
another class for a particular case. I solve Problem 3. Fisher never formulated an
equation for the standard errors(SEs) of the error rate and discriminant coefficient
(Problem 4). The Method 1 offers the 95 % confidence interval (CI) of the error rate
and coefficient. For more than ten years, many researchers have struggled to ana-
lyze the dataset that is LSD (Problem 5). Only Revised IP-OLDF can make
feature-selection naturally. The Method 2 finds the surprising structure of the
dataset that is the disjoint unions of several small gene subspaces (SMs) that are
linearly separable models. If we can repair the specific genes found by Method 2,
we might overcome cancer diseases. Now, we can analyze each SM very quickly.
We call the linearly separable model in gene analysis, “Matroska.” If the datasets
are LSD, the full model is the largest Matroska that contains all smaller Matroska in
it. We already know that the smallest Matroska (the basic gene set or subspace
(BGS)) can describe the Matroska structure completely by monotonic decrease of
MNM. On the other hand, LASSO (Buhlmann and Geer 2011; Simon et al. 2013)
attempts to make the feature-selection similar to Method 2. This book offers useful
datasets and results for LASSO researchers from the following perspective:

1. Can LDF obtained by LASSO discriminate three different types of LSD such as
Swiss banknote data, Japanese-automobile data, and six microarray datasets
exactly?

2. Can LDF obtained by LASSO find the Matroska structure correctly and list all
BGSs?

If LASSO cannot find SMs or BGS in the dataset, it cannot explain the data
structure.
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1.1.2 Five Problems

The Theory discusses only binary or two-class, class 1 or class 2, discrimination by
eight LDFs such as Revised IP-OLDF, Revised LP-OLDF, Revised IPLP-OLDF,
H-SVM, SVM4, SVM1, Fisher’s LDF, and logistic regression. The values of class
1 and class 2 are 1 and −1, respectively. We consider these values as object variable
of discriminant analysis and regression analysis. Let f(x) be LDF and f(xi) be a
discriminant score for xi. Although there are many difficult statistics in discriminant
analysis, we should focus on the discriminant rule that is quite direct: If yi × f
(xi) > 0, xi is classified into class 1/class 2 correctly. If yi × f(xi) < 0, xi is mis-
classified. If yi × f(xi) = 0, we cannot discriminate xi correctly. This understanding
is most important for discriminant analysis. There are five serious problems hidden
in this simplistic scenario (Shinmura 2014a, 2015c, d).

1.1.2.1 Problem 1

We cannot adequately discriminate between cases where xi lies on the discriminant
hyperplane (f(xi) = 0). The Student data in Chap. 4 show this fact clearly. Thus far,
this has been an unresolved problem. However, most researchers classify these
cases into class 1 without logical reason. They misunderstand the discriminant rule
as follows: If f(xi) ≥ 0, xi is classified into class 1 correctly. If f(xi) < 0, xi is
classified into class 2 properly. There are two mistakes in their rule. The first
mistake is to classify the cases on the discriminant hyperplane to class 1 without
logical explanation. The second mistake is we cannot determine the cases with
positive discriminant score as classified into class 1 and those with a negative value
as classified into class 2 a priori because the data determine this, not researchers.
Other statisticians propose determining Problem 1 randomly (i.e., akin to throwing
dice) because statistics is the study of probabilities. If users would know of this
claim, they might be surprised and disappointed in discriminant analysis. In par-
ticular, medical doctors might be upset because they do not gamble with medical
diagnoses, given that they attempt to seriously discriminate cases based on the
discriminant hyperplane. Most statistical researchers are lack of this fact of medical
diagnosis. If we consider pass/fail determination using the scores of four tests where
the passing mark is 50 points, we can obtain trivial LDF such as f =
T1 + T2 + T3 + T4 − 50. If f ≥ 0, a given student has passed the examination. On
the other hand, if f < 0, the student has failed the examination. Because we can
describe the discriminant rule by (independent) variables clearly, we can correctly
include such student on the discriminant hyperplane in the passing class. We have
ignored this unresolved problem until now. The proposed Revised IP-OLDF based
on MNM can treat Problem 1 appropriately (Shinmura 2010a). Indeed, with the
exception of Revised IP-OLDF, no LDFs can correctly count the number of mis-
classifications (NMs). Therefore, we must count the number of cases where f(xi) = 0
and display this number “h” alongside NM of all LDFs in the output. We must
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estimate a true NM that might increase to (NM + h). After showing many examples
of Problem 1, some statisticians claim that the probability of cases on the discrim-
inant hyperplane is zero without a theoretical reason. They erroneously believe that
we discriminate data on a continuous space.

1.1.2.2 Problem 2

Only H-SVM and Revised IP-OLDF can recognize LSD theoretically.1 Other LDFs
might not discriminate LSD exactly. When IP-OLDF discriminates Swiss banknote
data inChap. 6, Ifind that these data are LSD. In addition, Japanese-automobile data are
LSD in Chap. 7. Through both data, I explain the Matroska feature-selection method
(Method 2) in Chap. 8. We can obtain examination scores easily, and these datasets are
also LSDs. Moreover, there is trivial LSD. However, several LDFs cannot determine
pass/fail using examination scores correctly (Shinmura 2015b). In particular, the error
rates of Fisher’s LDF and QDF are very high. Table 1.4 lists all the 18 error rates of
Fisher’s LDF and QDF that are not zero in the pass/fail determinations from 2010 to
2012. This fact suggests that review the discriminant analysis of past important research
because error rates may decrease. In medical diagnosis, researchers gave up their
researches, error rates ofwhichwere over ten percent.However,Revised IP-OLDFmay
tell them error rates are zero.Moreover, discriminant functions that cannot discriminate
LSD correctly are not helpful for gene analysis.

1.1.2.3 Problem 3

If the variance–covariance matrix is singular, Fisher’s LDF and QDF cannot cal-
culate it because inverse matrices do not exist. Because JMP (Sall et al. 2004)
adopted the generalized inverse matrix technique, I had believed that Fisher’s LDF
and QDF could calculate generalized inverse matrix without problems. When I
discriminated math examination scores among 56 examination data from the
National Center for University Entrance Examinations (NCUEE), QDF and a
regularized discriminant analysis (RDA) (Friedman 1989) misclassified all students
in the passing class as the failing class. If we exchange class 1 and class 2, QDF and
RDA misclassified all students in the failing class as the passing class decided by
JMP specification. When QDF caused serious problems with problematic data, JMP
switched QDF to RDA automatically. After three years of surveys, I found that
RDA and QDF do not work correctly for a particular case where the values of the
variables that belong to one class have a constant value because all the students in
the passing class answered the particular question correctly. If users can select

1Empirically, Revised LP-OLD can discriminate LSD correctly. However, it is very weak for
Problem 1. Logistic regression and SVM4 discriminate LSD correctly for many examinations.
Fisher’s LDF, QDF, and SVM1 are severe for LSD discriminations. I recommend researchers
review their old researches using these three discriminant functions.
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appropriate options for a modified RDA developed for this particular case, RDA
works better than the QDF listed in Table 1.5, which is explained by the results of
the Japanese-automobile data. However, JMP does not currently offer a modified
QDF. Therefore, I judged this was the defect of generalized inverse matrix. If we
add slight random noise to the constant value, QDF can discriminate the data
exactly. Because it is the basic statistical knowledge for us, the data varied and I
trust the quality of JMP; I need three years to find the reason. Problem 3 has
provided a warning for our statistical understanding data always change.

1.1.2.4 Problem 4

Some statisticians erroneously believe that discriminant analysis is the inferential
statistical method that is similar to regression analysis. However, Fisher never
formulated an equation of SEs for discriminant coefficients or error rates.
Nonetheless, if we use the indicator yi of mathematical programming-based linear
discriminant functions (MP-based LDFs) in Eq. (1.7) as the object variable and
analyze the data by regression analysis, the obtained regression coefficients are
proportional to the coefficients of Fisher’s LDF by the plug-in rule1. Therefore, we
use a model selection procedure, such as stepwise procedures, and all possible
combination models (Goodnight 1978) with statistics such as AIC, BIC, and Cp of
regression analysis. In this book, I propose Method 1 and the new model selection
procedure such as the best model. I set k = 100 and select the model with minimum
M2 as the best model; this is a very direct and powerful model selection procedure
compared with LOO. First, we select the best model in each LDF. Next, we select
the model with minimum M2 among six MP-based LDFs as the final best model.
We claim that the final best model has generalization ability. Moreover, we obtain
the 95 % CI of the discriminant coefficient. Although we could demonstrate in 2010
that the best model was useful (Shinmura 2010a), I could not explain the useful
meaning of the 95 % CI of the discriminant coefficient before 2014. However, if we
divide all coefficients by the LDF intercept and set the intercept to one, six
MP-based LDFs and logistic regression become trivial LDFs, and only Fisher’s
LDF is far from trivial (Shinmura 2015b). Moreover, I can explain the useful
meaning of the 95 % CI of Swiss banknote and Japanese-automobile data
(Shinmura 2016a, c) more precisely.

1.1.2.5 Problem 5

For more than ten years, many researchers have struggled to analyze the datasets
(Problem 5). However, to the best of my knowledge, there has been no research on
LSD discrimination thus far. I examine five different types of LSDs, such as Swiss
banknote data, pass/fail determination of 18 examination data, Japanese-automobile
data, student linearly separable data and six microarray datasets. When I discrim-
inate the datasets, most of the coefficients of Revised IP-OLDF become zero. Only
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Revised IP-OLDF can select features naturally and finds the surprising structure of
the datasets. The datasets are Alon et al. (1999), Chiaretti et al. (2004), Golub et al.
(1999), Shipp et al. (2002), Singh et al. (2002), and Tian et al. (2003). Jeffery et al.
(2006) analyzed these datasets and upload these datasets on their HP.2 Ishii et al.
(2014) analyzed these datasets by principal component analysis (PCA). I find the
Matroska structure in the datasets, with MNM of zero. The Method 2 can reduce the
high-dimensional gene space into several small Matroskas (SMs) (Shinmura
2015e–s, 2016a). We can analyze these SMs by ordinary statistical methods such as
t test, one-way ANOVA, cluster analysis, and PCA. Because there has been no
research on LSD discrimination thus far (to the best of our knowledge), many
researchers have struggled and have not obtained good results. I explain Method 2
with the results of Swiss banknote data in Chap. 6 and Japanese-automobile data in
Chap. 7 because Revised IP-OLDF can select variables naturally for ordinary data.

1.1.2.6 Summary

Revised IP-OLDF solves Problems 1, 2, and 5. Problem 3 is the defect of the
generalized inverse matrix technique, and QDF now causes Problem 3. If we add
slight random noise to the constant value, we can solve Problem 3 easily. I propose
Method 1 and compare two statistical LDFs by JMP script and six MP-based LDFs
by the LINGO Program 2 (Schrage 2006) using six different types of data. Through
many results, I can confirm that Method 1 solves Problem 4 using a computer-
intensive approach. Problem 5 is the complex analysis of microarray datasets. Only
Revised IP-OLDF can make feature-selection of the datasets naturally and find the
datasets that consist of several disjoint unions of SMs. We can analyze each SM in
the dataset easily because each SM is a small gene subspace. It is quite strange three
SVMs cannot select feature naturally.

1.2 Motivation for Our Research

1.2.1 Contribution by Fisher

Fisher described Fisher’s LDF using variance–covariance matrices and founded the
statistical discriminant theory. He assumed that two classes (or groups) have the
same variance–covariance matrices, and two means are different (Fisher’s
assumption). However, because Fisher’s assumption is too strict for actual data,
QDF was defined as two classes having different variance–covariance matrices.
This fact indicates that statisticians are aware that there exist data that do not satisfy
Fisher’s assumption. Moreover, multiclass discrimination that uses the

2http://www.bioinf.ucd.ie/people/ian/.
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Mahalanobis distance has been proposed. In the quality control, Taguchi and
Jugular (2002) considered that one class (the normal state) has a variance–covari-
ance matrix, and another class (the uncontrolled state) consists of only one case.
They discriminated data through multiclass discrimination and claimed that the
typical uncontrolled case is far from the normal state with large Mahalanobis dis-
tance. Their claim is similar to the “earth model” in medical diagnosis (Shinmura
1984). Because statistical software packages easily implement these discriminant
functions based on variance–covariance matrices, we apply discriminant analysis to
many applications in science, technology, and industry, such as medical diagnosis,
pattern recognition, and various ratings. However, real data rarely satisfy Fisher’s
assumptions. Therefore, it is well known that logistic regression is better than
Fisher’s LDF and QDF because it does not assume a particular theoretical distri-
bution, such as a normal distribution. It is very strange and unfortunate for us that
there is no discussion on this matter by researchers and users of logistic regression.

1.2.2 Defect of Fisher’s Assumption for Medical Diagnosis

After graduating from Kyoto University in 1971, I became a member of the project
that developed the automatic diagnostic system for electrocardiogram (ECG) data
from 1971 to 1974. A project leader who was a medical doctor requested me to
discriminate over ten3 abnormal symptoms from normal symptom using Fisher’s
LDF and QDF. Our four years of research were inferior to medical doctor’s
experimental decision tree logic. First, I believed that my results using Fisher’s
LDF and QDF were inferior to decision tree logic results because my knowledge
and experience was poor. Later, I realized that Fisher’s assumption was not ade-
quate for medical diagnosis. I summarized two reasons for my failure, both of
which are described below. On the other hand, there is no actual test for Fisher’s
assumption. I demonstrate that NM of Fisher’s LDF is close to MNM in Iris data.
We can use this trend instead of the test statistics of Fisher’s hypothesis.

First Reason: In medical diagnosis, typical cases in abnormal symptoms are far
from the discriminant hyperplane. I explained medical diagnosis as the “earth
model” where the normal symptom is the land, abnormal symptoms are the
mountains, and the discriminant hyperplanes are horizon. The Mahalanobis–
Taguchi strategy is similar to the earth model. This claim violates Fisher’s
assumption. In a statistical concept, we understand that typical cases in both classes
are two averages of two normal distributions. Therefore, I believed that the dis-
criminant functions based on the variance–covariance matrices are not adequate for
medical diagnosis and developed a spectrum diagnostic method (Shinmura et al.
1973, 1974). I knew that logistic regression is remarkably successful in medical
diagnosis and understood that it is superior to the spectrum diagnostic method.

3I cannot recollect the exact number of abnormal symptoms.
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Currently, Japanese medical researchers discriminate data by logistic regression
instead of Fisher’s LDF and QDF. I regret that as researchers and users of logistic
regression, they did not discuss my claim.

Second Reason: There are many cases close to the discriminant hyperplane.
I concluded that Fisher’s LDF and QDF are fragile for the discrimination of par-
ticular data, such as pass/fail determination using examination scores (Shinmura
2011b) and the rating of bonds, stocks, and estates in addition to medical data.
These data also have the characteristic feature of having many cases close to the
discriminant hyperplane. None of the LDFs, with the exception of Revised
IP-OLDF, can discriminate the cases on the discriminant hyperplane correctly
(Problem 1). Recently, because I could not access medical data for our research, I
used pass/fail determination with examination scores instead of medical data.

1.2.3 Research Outlook

After 1975, I discriminated many data using Fisher’s LDF, QDF, logistic regression,
multiclass discrimination using Mahalanobis distance, decision tree logic (or parti-
tioning), and the quantification theory developed by Dr. Hayashi (Shimizu et al.
1975; Nomura and Shinmura 1978; Shinmura et al. 1983). Through these studies, I
found Problems 1 and 4 (Shinmura 2014a, 2015c, d). In 1973, we developed the
spectrum diagnostic method using Bayesian theory. However, logistic regression
was more sophisticated than the spectrum diagnostic method. Next, we developed
OLDF based on the MNM criterion (Miyake and Shinmura 1979, 1980; Shinmura
and Miyake 1979), which is a heuristic approach. Because Warmack and Gonzalez
(1973) compared several discriminant functions, their research encouraged our
research. We were not able to develop the research because we had low computer
power and because of the defect of the heuristic approach.

Starting in 1997, I developed IP-OLDF (Shinmura 1998; 2000a, b; Shinmura
and Tarumi 2000). Because I defined IP-OLDF in the discriminant coefficient
spaces, I found two important facts of discriminant analysis. The first is OCP. The
second is “the monotonic decrease of MNM.” However, there was a serious defect
in IP-OLDF using Student data that are not general positions. If data are not general
positions, IP-OLDF might not search for the vertex of a true OCP. This defect
means that the obtained MNM might not be true MNM, and Problem 1 caused this
defect. In 2007, Revised IP-OLDF solved the defect because it can find the interior
point of true OCP and avoid Problem 1. Therefore, I could solve Problem 1
completely. Until 2007, I was not able to evaluate eight LDFs using validation
samples because our research data were small samples.

After 2007, I developed Method 1. Through this breakthrough, I was able to
solve Problem 4 and ended the basic research. Revised IP-OLDF solves Problems 1
and 2. Although I can evaluate eight LDFs by M2, I cannot explain the useful
meaning of the 95 % CI of discriminant coefficients. After 2010, I started applied
research on LSD discrimination. I found that Problem 3 is the defect of the
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generalized inverse matrix technique by the pass/fail determination that uses
examination scores (Shinmura 2011b). With regard to IP-OLDF, I set the intercept
of IP-OLDF to one and was able to obtain two important facts such as OCP and
monotonic decrease of MNM. Therefore, I divided all coefficients by the intercept
and set the intercept to one. Through the second breakthrough, seven LDFs, with
the exception of Fisher’s LDF, became trivial LDF by the pass/fail determination
that uses examination scores, and I was able to explain the useful meaning of the
coefficient of Revised IP-OLDF using Swiss banknote data. Therefore, I have
solved the four problems and can confirm the end of our research. However, when I
discriminated Shipp et al. dataset in October 2015, I found that Revised IP-OLDF
can make feature-selection naturally and can solve Problem 5 quickly.

1.2.4 Method 1 and Problem 4

If we set “k = 100” in the Method 1, we can obtain 100 LDFs and 100 error rates
from the training and validation samples. From the 100 LDFs, we obtain the 95 %
CI of discriminant coefficients. From the 100 error rates, we obtain the 95 % CI of
error rates and two means of error rates, M1 and M2, from the training and vali-
dation samples. We consider the model with minimum M2 among all possible
combination models to be the best model. This standard is a direct and powerful
model selection procedure compared with the LOO procedure.

We should distinguish such computer-intensive approaches from traditional in-
ferential statistics with the SE equation based on normal distribution. Statisticians
without computer power established inferential statistics manually. Today, we can
utilize the power of a computer with statistical and MP solvers, such as JMP and
LINGO. I developed the Method 1 (Program 2) of Fisher’s LDF and logistic
regression with the JMP script supported by the JMP division of SAS Institute
Japan. In addition, I developed Method 1 for six MP-based LDFs with LINGO.
Those are Revised IP-OLDF, Revised IPLP-OLDF, Revised LP-OLDF, H-SVM,
SVM4, and SVM1. I explain the LINGO Program 2 in Chap. 9. Those researchers
who want to analyze their research data can obtain the 95 % CI for the error rate
and discriminant coefficients. These statistics provide precise and deterministic
judgment on model selection procedure compared with the LOO procedure. To this
point, I cannot validate and evaluate Revised IP-OLDF with seven other LDFs
because I only have small original data and no validation samples. Researchers with
small samples can validate and assess their research data with Method 1 and the
best model.

Miyake and Shinmura (1976) discussed “error rates of linear discriminant
function” by the traditional approach. On the other hand, Konishi and Honda (1992)
discussed “error rate estimation using the bootstrap method.” Their
computer-intensive approaches are not traditional inferential statistics and do not
offer the 95 % CI of the error rates and coefficients for individual data. Although
logistic regression outputs the 95 % CI of the coefficient through maximum
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likelihood proposed by R. Fisher, this is also a computer-intensive approach. On the
other hand, we can select the best model and 95 % CI of the error rates and
coefficients for six LDFs by the Method 1 and the best model. Many researchers
who want to discriminate small samples have the Philosopher’s Stone.

1.3 Discriminant Functions

I compare two statistical LDFs by JMP and six MP-based LDFs by LINGO. I omit
a kernel SVM because it is a nonlinear discriminant function. However, I evaluate
QDF and RDA with eight LDFs only for the original six different data, with the
exception of the datasets. Next, I compare two statistical LDFs and six MP-based
LDFs for resampling samples if the data are LSD. If the data are not LSD, we
cannot discriminate the data by H-SVM because it causes error for non-LSD.

1.3.1 Statistical Discriminant Functions

Fisher defined Fisher’s LDF by maximization of the variance ratio (between/within
classes) in Eq. (1.1). Nonlinear programming (NLP) can solve this equation.

MIN ¼ tb(m1 �m2) tðm1 �m2Þb=tbRb ð1:1Þ

If we accept Fisher’s assumption, the same LDF is obtained in Eq. (1.2) by
another plug-in rule2. This equation defines Fisher’s LDF explicitly, whereas
Eq. (1.1) defines LDF implicitly. Therefore, statistical software packages adopt this
equation. Some statisticians erroneously believe that discriminant analysis is in-
ferential statistics, similar to regression analysis. Discriminant analysis is not tra-
ditional inferential statistics based on the normal distribution because there are no
SEs for the discriminant coefficients and error rates (Problem 4). Therefore,
Lachenbruch and Mickey proposed the LOO procedure for selecting a good dis-
criminant model, as indicated in Table 1.6.

Fisher's LDF : f ðxÞ ¼ tfx� (m1 þm2Þ=2g R�1ðm1 �m2Þ ð1:2Þ

Most real data do not satisfy Fisher’s assumption. When the variance–covariance
matrices of two classes are not the same (Σ1 ≠ Σ2), the QDF defined in Eq. (1.3)
can be used. This fact is critical for us. Previous statisticians have known that most
real data do not satisfy Fisher’s assumption. We use the Mahalanobis distance in
Eq. (1.4) for the discrimination of multiclasses. The Mahalanobis–Taguchi method
of quality control is one of the applications.

10 1 New Theory of Discriminant Analysis



QDF : f ðxÞ ¼ txðR�1
2 � R�1

1 Þx=2þ tm1R
�1
1 � tm2R

�1
2

� �
xþ c ð1:3Þ

D ¼ SQRT ðtðx�mÞR�1ðx�mÞÞ ð1:4Þ

We use Fisher’s LDF and QDF in many areas, but cannot calculate whether
some variables remain constant. There are three cases. First, some variables that
belong to both classes are the same constant. Second, some variables that belong to
both classes are different, but constant. Third, some variables that belong to one
class are constant. Most statistical software packages exclude all variables in these
three cases. On the other hand, JMP enhances QDF using the generalized inverse
matrix technique. Therefore, QDF can treat the first and second cases correctly, but
cannot manage the third case properly (Problem 3).

Recently, the logistic regression in Eq. (1.5) has been used instead of Fisher’s
LDF and QDF for two reasons. First, it is well known that the error rate of logistic
regression is often less than that of Fisher’s LDF and QDF because it is derived
from real data, instead of some normal distribution free from reality. Let “p” be the
probability of belonging to a class of diseases. If the value of some variable is
increasing/decreasing, “p” increases from zero (normal class) to one (abnormal
class). This representation is very useful in medical diagnosis, as well as for ratings
in real estates and bonds. On the contrary, Fisher’s LDF assumes that cases close to
the average of the diseases are representative cases of the diseases’ class. Medical
doctors never permit this claim. Although the maximum-likelihood procedure
calculates SE of the logistic coefficient, we should distinguish the computer-
intensive approach from the traditional inferential statistics based on the theoretical
distribution induced manually. Firth (1993) indicated that the SE of a logistic
coefficient becomes large and the convergence calculation becomes unstable for
LSD. If I observe the following points: (1) I can find NM = 0 by changing the
discriminant hyperplane on ROC, (2) MNM = 0, (3) SEs become large, and (4) the
convergence calculation becomes unstable, I can determine that logistic regression
can recognize LSD. I confirm that logistic regression can almost recognize LSD by
this tedious work:

Log ðp=ð1� pÞÞ ¼ f ðxÞ ð1:5Þ

1.3.2 Before and After SVM

There are many types of research on MP-based discriminant analysis. Glover
(1990) defined many linear programming (LP) discriminant models. Rubin (1997)
proposed MP-based discriminant functions using IP. Stam (1997) summarized
Lp-norm discriminant methods in 1997 and answered the question, “Why have
statisticians rarely used Lp-norm methods?” He provided four reasons: communi-
cation, promotion, and terminology; software availability; the relative accuracy of
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Lp-norm classification methods: ad hoc studies; and the accuracy of Lp-norm
classification methods: decision theoretic justification. Although each of these
reasons is true, they are not important. The most important reason is that there is no
comparison between these methods with statistical discriminant functions because
discriminant analysis was established by Fisher before MP approaches. There are
two types of MP applications. The first is modeling by MP, such as for portfolio
selection (Markowitz 1959) that is similar to S-SVM. The second is catch-up
modeling, such as for regression and discriminant analyses (Schrage 1991).
Therefore, the latter type should be compared with the preceding results. To the best
of my knowledge, no statisticians use Lp-norm methods because there is no
research that indicates that MP-based methods are superior to statistical methods.
Liitschwager and Wang (1978) defined a model based on the MNM criterion shown
in Eq. (1.6) that is very close to Revised IP-OLDF. Although there are several
mistakes in their model, the most important is a restriction on the discriminant
coefficients. If they could have confirmed their model with an IP solver, they might
have found the defect of their model quickly. I should set the intercept to one. There
is no need to set the other (k−1) coefficients in the range [− 1, 1].

MIN p1r1M
�1Rði¼1;...;MÞPi þ p2r2N

�1Rðj¼1;...;NÞQj

st

c1Xi1 þ c2Xi2 þ � � � þ ckXik 5 bþCPi; i ¼ 1; 2; . . .;M

c1Yj1 þ c2Yj2 þ � � � þ ckYjk = b� CQi; j ¼ 1; 2; . . .;N

� 1þ 2Dr 5 cr 5 1� 2Er; r ¼ 1; 2; . . .; k

Rðr¼1;...kÞDr þRðr¼1;...;kÞEr ¼ 1

ð1:6Þ

Pi, Qi, Dr, Er: 0/1 decision variable
c1, c2, …, ck, b: free variables
C: large constant, such as 10,000
p1, p2: prior probability
r1, r2: risk by misclassification
M, N: number of cases of two groups
k: number of independent variables

Vapnik (1995) proposed three different SVM models. H-SVM indicates the
discrimination of LSD clearly. IP-OLDF confirms that Swiss banknote data are
LSD and realize the importance of Problem 2 by H-SVM. This is defined as the
maximization of the distance of the “support vector (SV)” in order to obtain “good
generalization ability,” which is similar to “not overestimating the validation data in
statistics.” It is redefined to minimize (1/“distance of SV”) in Eq. (1.7). A quadratic
programming (QP) solves it that can analyze the only LSD, not overlapping data.
This restriction might ignore the LSD investigation. Statisticians erroneously
believe that LSD discrimination is very easy. In statistics, there was no technical
term for LSD before H-SVM. However, the condition “MNM = 0” is the same as
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being linearly separable. Note that “NM = 0” does not imply that the data are
linearly separable. It is unfortunate that there has been no research into linear
separability (Problems 2 and 5).

MIN ¼ bj jj j2=2; yi � txibþ b0ð Þ� 1; ð1:7Þ

b: p-discriminant coefficients. b0: H-SVM intercept
yi = 1/−1 for xi ∊ class 1/class 2. xi: p-variables (independent variables)

Real data are rarely linearly separable. Therefore, S-SVM is defined in Eq. (1.8).
S-SVM permits certain cases that are not discriminated by SV (yi × (txib + b0) < 1).
The second objective is to minimize the summation of distances of misclassified
cases (Σei) from SV. These two objects are combined by defining some “penalty c.”
The Markowitz portfolio model that minimizes risk and maximizes return is the
same as S-SVM. However, return is incorporated as a constraint, and the objective
function minimizes only risk. The decision maker selects a solution on the efficiency
frontier. On the contrary, S-SVM does not have a rule for determining c correctly;
nevertheless, it can be solved by an optimization solver. Therefore, I compare two
S-SVMs, such as SVM4 (c = 10,000) and SVM1 (c = 1). In many trials, NM of
SVM4 is less than NM of SVM1.

MIN ¼ bj jj j2=2þ c� Rei; yi � txibþ b0ð Þ� 1� ei ð1:8Þ

c: penalty c for combining two objectives. ei: nonnegative value

1.3.3 IP-OLDF and Four New Facts of Discriminant
Analysis

Miyake and Shinmura (1979, 1980) and Shinmura and Miyake (1979) developed a
heuristic algorithm of OLDF based on the MNM criterion. This algorithm solves
the five-variable model of CDP data that consists of two groups with 19 variables
explained in Chap. 3. I introduced SAS into Japan in 1978 and three technical
reports on the generalized inverse matrix, sweep operator (Goodnight 1978), and
SAS regression applications (Sall 1981) related to this research. I introduced
LINDO to Japan in 1983. MP (Schrage 1991) formulated several regression
models, e.g., QP can solve least-squares regression, and LP can solve least absolute
value (LAV) regression. Without a survey of previous research, I formulated
IP-OLDF in Eq. (1.9). This notation is defined in the p-dimensional coefficient
space because I set the intercept to one. In pattern recognition, the intercept is a free
variable. In this case, the model is defined in the (p + 1) coefficient space, and we
cannot elicit the same deep knowledge as with IP-OLDF. This difference is crucial.
I can consider IP-OLDF in both the p-dimensional data and coefficient spaces. We
can apparently understand the relationship between NM and LDF. The linear
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equation Hi(b) = yi × (txib + 1) = 0 divides the p-dimensional coefficient space
into positive and negative half-planes (Hi(b) > 0, Hi(b) < 0). If bj is in the positive
half-plane, fj(x) = yi × (tbjx + 1) discriminates xi correctly because fj(xi) = yi ×
(tbjxi + 1) = yi × (txibj + 1) > 0. On the contrary, if bj is included in the negative
half-plane, fj(x) cannot discriminate xi correctly because fj(xi) = yi × (tbjxi + 1) =
yi × (txibj + 1) < 0. Then, the linear equation Hi(b) can divide the coefficient space
into a finite number of CPs. Each CP interior point has a unique NM that is equal to
the number of negative half-planes. I define OCP as that value for which NM is
equivalent to MNM. If xi is classified correctly, ei = 0 and Hi(b) ≥ 0 in Eq. (1.9). If
there are p-cases on f(xi) = 0, we can obtain the exact MNM. However, if there are
over (p + 1) cases on f(xi) = 0, this causes Problem 1. If Xi is misclassified, ei = 1
and Hi(b) ≥ −10,000. This means that IP-OLDF selects the discriminant hyper-
plane Hi(b) = 0 for correctly classified cases and Hi(b) = −10,000 for misclassified
cases according to a 0/1 decision variable. IP-OLDF selects a vertex of the OCP
with p-cases on f(xi) = 0. However, if the vertex consists of over (p + 1) cases,
MNM might not be correct. In addition to this defect, IP-OLDF must be solved for
the three cases where the intercept is equal to 1, 0, and −1 because we cannot
determine the sign of yi in advance. Combinations of yi = 1/−1 for xi 2 class 1/class
2 are determined by the data, not the analyst. Many researchers do not know this
important fact.

MIN ¼Rei; Hiðb)� �M � ei;

HiðbÞ ¼ yi � txibþ 1ð Þ
M : 10; 000 ðBig M constantÞ:

ð1:9Þ

Through IP-OLDF that uses Iris, CPD, and Swiss banknote data, I find four
essential facts of discriminant analysis, as follows:

1. Because we define IP-OLDF in the discriminant coefficient space and set the
intercept to one, we can understand the relationship between NM and the dis-
criminant coefficient exactly. The interior points of specific CPs correspond to
LDFs that misclassify the same cases. Therefore, the interior points have unique
“NM.” Because there are finite CPs, we should select the interior point of OCP,
with NM of MNM. If we select the CP vertex or edge as LDF, this LDF is not
free from Problem 1.

2. MNM decreases monotonously, such as MNMp ≥ MNM(p+1), because the
(p + 1)-space includes the p-subspace. Because MNM of a full model has a
minimum value, we cannot use MNM as the feature (model or variable)
selection. If MNMk = 0, all models, including these k-variables, are zero. This
fact is critical for LSD discrimination and gene analysis. Swiss banknote data
consist of six independent variables. I examine all possible models by IP-OLDF
and find that MNM of the two-variable model (X4, X6) is zero. Therefore, 16
MNMs, including (X4, X6), are zero. The MNMs of 47 other models are not
zero. This fact is essential for understanding the structure of microarray dataset
in Chap. 8. We call the two-variable model (X4, X6) “BGS.” Therefore, Swiss
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banknote data have one BGS, and we can understand Matroska structure of
Swiss banknote data by (X4, X6) completely. This fact is very important for
understanding of the datasets because there are numerous Matroskas in it.

3. Student data reveal the defect of IP-OLDF by Problem 1. IP-OLDF searches for
the vertex of the correct OCP if the data are general positions and might not
search for the vertex of the correct OCP if the data are not general positions.
Therefore, I develop Revised IP-OLDF that searches from the interior point of
true OCP directly.

4. If we compare NMs on both models selected by forward and backward stepwise
procedures using CPD data, we observe that QDF are fragile for collinearity
(Shinmura 2000a). Logistic regression is fragile for collinearity, also.

Let us consider the discrimination of three cases with two variables, as follows:

Class 1 : x1 ¼ ð�1=18; �1=12Þ
Class 2 : x2 ¼ ð�1; 1=2Þ; x3 ¼ ð1=9; �1=3Þ:

Equation (1.10) is the model for IP-OLDF:

MIN ¼Rei;

y1 � f�ð1=18Þ � b1 � ð1=12Þ � b2 þ 1g� � e1;

y2 � f�b1 þð1=2Þ � b2 þ 1g� � e2;

y3 � fð1=9Þ � b1 � ð1=3Þ � b2 þ 1g� � e3;

ð1:10Þ

We consider the three linear Eqs. (1.11):

H1 ¼ y1 � f�ð1=18Þ � b1 � ð1=12Þ � b2 þ 1g ¼ 0;

H2 ¼ y2 � f� b1 þð1=2Þ � b2 þ 1g ¼ 0;

H3 ¼ y3 � fð1=9Þ � b1 � ð1=3Þ � b2 þ 1g ¼ 0

ð1:11Þ

The three linear equations divide the two-dimensional coefficient space into
seven CPs, as shown in Fig. 1.1. The CP number is the NM of each LDF that is
equal to the number of negative half-planes of Hi(b) that surround CP. The interior
point in the triangle is located in the three-plus hyperplanes, with NM of zero and
MNM. Because two linear equations make three OCP vertexes, these data are
general positions and free from Problem 1. NMs of three opposite CPs of OCP are
one. Namely, NMs of adjacent CPs differ by one. Although we set the intercept to
one, we must solve the three models as follows: intercept = 1, intercept = −1, and
intercept = 0, because we cannot determine the sign of the discriminant score a
priori. When we set the intercept to two, the graph shown in Fig. 1.1 is similarly
enlarged to twice its size.
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1.3.4 Revised IP-OLDF, Revised LP-OLDF, and Revised
IPLP-OLDF

Revised IP-OLDF in Eq. (1.12) can find the exact MNM because it can directly find
the OCP interior point. This means that there are no cases where yi × (txib +
b0) = 0. If xi is discriminated correctly, ei = 0 and yi × (txib + b0) ≥ 1. If xi is
misclassified, ei = 1 and yi × (txib + b0) ≥ −9999. We expect that all misclassified
cases will be extracted to second SVs, such as yi × (txib + b0) = −9999. Therefore,
the discriminant scores of the misclassified cases become a large negative less than
−1, and there are no cases where yi × (txib + b0) = 0. This means that b is an OCP
interior point defined by IP-OLDF. Ibaraki and Muroga (1970) introduced the same
model. However, they did not survey this model. If I had found this model first and
started our survey with this model, I might not have established the Theory because I
would have never struggled with IP-OLDF and obtained new facts.

MIN ¼Rei; yi � txibþ b0ð Þ� 1�M � ei;

b0 : free decision variable:
ð1:12Þ

If ei is a real nonnegative variable, the Eq. (1.12) utilizes Revised LP-OLDF,
which is an L1-norm LDF. Its elapsed run time is faster than that of Revised
IP-OLDF. If we select a large positive number, such as penalty c for S-SVM, the
result is almost the same as that given by Revised LP-OLDF because the role of the
first term of the objective value in Eq. (1.7) decreases. Many trials realized that
Revised LP-OLDF is fragile for Problem 1. Revised IPLP-OLDF is a combined
model of Revised LP-OLDF and Revised IP-OLDF. In the first step, Revised
LP-OLDF is applied for all cases, and ei is set to zero for cases that are discrimi-
nated correctly by Revised LP-OLDF. In the second phase, Revised IP-OLDF is
used for the cases misclassified in the first step. Therefore, Revised IPLP-OLDF can

Fig. 1.1 Relation between
NM and discriminant
coefficient
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obtain an estimate of MNM faster than Revised IP-OLDF (Shinmura 2010b).
However, it has been slower than Revised IP-OLDF since 2012 because the speed
of the IP solver is fast (Shinmura 2014b).

1.4 Unresolved Problem (Problem 1)

First, IP-OLDF reveals the following important properties:

Fact (1) Relationship between LDFs and NMs

IP-OLDF is defined in the discriminant coefficient spaces. Cases of xi that
correspond to linear hyperplanes (Hi (b) = yi × (txib + 1) = 0) in the p-dimen-
sional discriminant coefficient space divide the space into two half-planes: the
positive (Hi (b) > 0) and negative (Hi(b) < 0) half-planes. Therefore, the coefficient
space is divided into a finite convex polyhedron by Hi(b). Interior point bj of CP
corresponds to LDF ( fj(x) =

tbjx + 1) in the data space that discriminates some
cases appropriately and misclassifies others. This explanation means that each
interior point bj has a unique NM. OCP is defined as that with the MNM. Revised
IP-OLDF finds the OCP interior point directly. Moreover, it solves the unresolved
problem (Problem 1) because there are no cases on f(xi) = 0. If bj is on a CP vertex
or edge, however, the unresolved problem cannot be avoided because there are
some cases on f(xi) = 0. In particular, I know that Revised LP-OLDF is weak for
Problem 1 through many trials.

Fact (2) Monotonic decrease of MNM (MNMp ≥ MNM(p+1))

Let MNMp be the MNM of p-variables. Let MNM(p+1) be the MNM of the
(p + 1)-variables formed by adding one variable to the original p-variables. MNM
decreases monotonously (MNMp ≥ MNM(p+1)) because OCP in the p-dimensional
coefficient space is a subset of the (p + 1)-dimensional coefficient space. If
MNMp = 0, all MNMs, including p-variables, are zero. Swiss banknote data consist
of genuine and counterfeit bills with six variables. IP-OLDF finds that these data are
LSD according to two variables (X4, X6). Therefore, 16 models, including these
two variables, have MNMs = 0. Only Revised IP-OLDF can solve Problem 1
theoretically. Because (X4, X6) can explain all 16 models are linearly separable,
BGS can explain the structure of Matroska in the microarray datasets completely.

1.4.1 Perception Gap of Problem 1

With regard to Problem 1, there are several misunderstandings. Most researchers
treat cases xi on f(xi) = 0 in class 1. There is no explanation for why this makes
sense. Some statisticians explain that it is decided stochastically because statistics is
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the study of probability. This explanation seems theoretical initially, but it is
nonsense for two reasons. Statistical software adopts the former decision rule
because many papers and researchers adopt this rule. In medical diagnosis, medical
doctors strive to determine patients close to the discriminant hyperplane. If they
would know the second explanation, they might be deeply disappointed in dis-
criminant analysis. To this point, all LDFs, such as Fisher’s LDF, logistic regres-
sion, Revised LP-OLDF, Revised IPLP-OLDF, and S-SVM, have not been able to
solve Problem 1 theoretically. IP-OLDF reveals that only interior points of the CP
can solve Problem 1. IP-OLDF can find the vertex of the correct OCP if the data are
general positions and stops the optimization from selecting p-cases on f(xi) = 0.
However, IP-OLDF might not find the actual MNM if the data are not general
positions, and it selects over (p + 1) cases on f(xi) = 0. Revised IP-OLDF can find
the OCP interior point directly. We cannot determine whether other LDFs select the
CP interior point, edge, or vertex. We can confirm this fact in order to verify the
number of cases xi that satisfy |f(xi)| ≤ 10−6 if we consider |f(xi)| ≤ 10−6 = 0 in the
software. If this number is zero, this LDF selects the CP interior point exactly. If the
number “h” is not zero, this LDF selects the CP vertex or edge, and the correct NM
has a possibility of increasing to “h.”

1.4.2 Student Data

Student data4 are proper for us to discuss Problem 1. A total of 15 students
(yi = “F”) fail an examination, and 25 students (yi = “P”) pass the examination, as
indicated in Table 1.1. X1 is the number of study hours/day, and X2 is expenditure
(10,000 yen)/month. In the case where IP-OLDF discriminates two classes by (X1,
X2), the discriminant hyperplane of IP-OLDF is X2 = 5 solved by old version of
“What’s Best!.” Eight students (X2 > 5) are discriminated against the failing group
correctly; four students are on X2 = 5, and three students (X2 < 5) are misclassified
into the passing group. On the other hand, 21 students (X2 < 5) are classified into
the passing group correctly, and four students are on X2 = 5. Nevertheless,
IP-OLDF cannot discriminate eight students in X2 = 5: it returns MNM = 3.
However, Revised IP-OLDF by LINGO ver. 14 can find the three discriminant
hyperplanes: X2 = 0.006 × X1 + 4.984, X2 = 0.25 × X1 + 3.65, and X2 = 0.99 ×
X1 + 212.5 Moreover, the correct MNM = 5. SVM4 is X2 = X1 + 1 and NM = 6.
A student has the value (4, 5) on f(xi) = 0. Therefore, the true NM of SVM4 might
be seven. Although these data are small, they are useful for evaluating LDFs, and
they are easy for us to understand through scatter plots of two variables.

4These data were used for the description of four statistical books using SAS, SPSS, Statistica, and
JMP. In this book, Chap. 4 includes the Student data.
5Because this problem is very nervous, the result may be different by the latest version of LINGO
and other solvers.
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1.5 LSD Discrimination (Problem 2)

1.5.1 Importance of This Problem

The purpose of discriminant analysis is to discriminate two classes correctly. For
this reason, LSD discrimination is crucial because we can evaluate the results very
clearly. If some LDFs cannot discriminate LSD correctly, such LDFs should not be
used. It is very strange that there is no research on LSD discrimination (to the best
of my knowledge). H-SVM implies LSD discrimination very clearly. However, it
can be only applied to LSD. This restriction might be the reason for the lack of
actual research on LSD until now. Some statisticians believe that OLDF based on
the MNM criterion is bad LDF because it overfits the training samples, and its
generalization ability might be wrong for validation samples without examination
by real data. I confirm that Revised IP-OLDF does not overestimate and has better
generalization ability than other LDFs including H-SVM through many trials.

IP-OLDF finds that Swiss banknote data are LSD with two variables (X4, X6),
and MNMs of 16 models, including (X4, X6), are zero. To this point, nobody seems
to have realized this fact. Moreover, we believe that it is difficult for us to find LSD
from real data because we must discriminate all possible models by Revised
IP-OLDF. However, we can easily obtain two types of research data: first, the pass/
fail determination using examination scores. I explain the results in Chap. 5.
Second, every real data are changed to LSD by enlarging the distance between the
mean of the two classes in Chap. 4. Swiss banknote data consist of two types of
bills: 100 genuine and 100 counterfeit. There are six variables: X1 is the bill length
(mm); X2 and X3 are the width of the left and right edges (mm), respectively; X4
and X5 are the bottom and top margin widths (mm), respectively; and X6 is the
length of the image diagonal (mm). I investigate a total of 63 (=26 − 1) models.
According to Shinmura (2010a), of the 63 total models, 16 models, including the
two variables (X4, X6), have MNMs of zero; thus, they are linearly separable
models. The 47 models that remain are not linearly separable. These data are
adequate regardless of whether LDFs can discriminate LSD correctly.

Table 1.2 lists four results. The upper right column (B) is the original data. The
upper left column (A) is the data expanded to 1.25 times the average distance.
The lower left (C) and right (D) columns are the data reduced to 0.75 and 0.5 times
the average distance, respectively. Fisher’s LDF is independent from inferential
statistics. However, if we consider yi = 1/−1 as the object value and analyze the
data by regression analysis, the obtained regression coefficients are proportional to
the discriminant coefficients of Fisher’s LDF by the plug-in rule1. We can use the
stepwise procedures formally. In the table, column “p” is the number of variables
by the forward stepwise procedure. “Var” represents the selected variables. From
p = 1 to p = 6, X6, X4, X5, X3, X2, and X1 are selected in this order by the forward
stepwise procedure. In regression analysis, Mallow’s Cp statistics and AIC are used
for model selection. Usually, the model with minimum |Cp − (p + 1)| and AIC is
recommended. By this rule, Cp statistics selects the same full model. On the other
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hand, AIC selects the four-variable model (X3, X4, X5, X6) in data “A.” AIC selects
the five-variable model (X2, X3, X4, X5, X6) in the other three data. This table
indicates two important facts. We can easily obtain LSD from real data. I observe
that the same result of the Swiss banknote data as the Student linearly separable
data in Chap. 4. The second fact is as follows: “Cp and AIC” select the same
models; nevertheless, the one-variable (X6) model is linearly separable in “A.”
Moreover, the two-variable (X4, X6) model is linearly separable in “B.” The models
selected by “Cp and AIC” are independent from linear separability. These facts
show the defect of statistics based on the variance-covariance matrices. Some
statisticians do not permit this result by the plug-in rule1. On the contrary, they
consider Fisher’s LDF as inferential statistics because it is derived from Fisher’s
assumption. However, they ignore Fisher never formulated the equation of SE of
error rates and discriminant coefficients.

1.5.2 Pass/Fail Determination

The pass/fail determination using examination scores makes good research data
because we can obtain such data quickly, and we can find trivial LDF as explained
in Chap. 5. Our theoretical analysis started in 1997 and ended in 2010. Our applied
research started in 2010 and ended in 2015. I negotiated with the National Center
for University Entrance Examinations (NCUEE) and borrowed research data that
consist of 105 examinations in 14 subjects over three years. I finished analyzing the
data at the end of 2010 and obtained 630 error rates for Fisher’s LDF, QDF, and
Revised IP-OLDF. However, NCUEE requested me not to present the results in

Table 1.2 Swiss banknote data (Shinmura 2010a)

A: the distance *1.25 B: original bank data

Var. p Cp AIC MNM LDF Cp AIC MNM LDF

1–6 6 7.0 −863 0 0 7.0 −779 0 0

2–6 5 5.3 −865 0 0 5.3 −781 0 0

3–6 4 10.5 −896 0 0 10.3 −776 0 0

4–6 3 10.9 −859 0 0 10.7 −775 0 0

4, 6 2 118.8 −779 0 0 107.0 −699 0 3

6 1 313.9 −679 0 1 292.0 −604 2 2

C: The distance * 0.75 D: The distance * 0.5

Var. p Cp AIC MNM LDF Cp AIC MNM LDF

1–6 6 7.0 −676 1 2 7.0 −543 5 12

2–6 5 5.3 −678 1 2 5.3 −545 6 12

3–6 4 9.8 −673 1 1 8.9 −541 7 13

4–6 3 10.1 −673 1 2 8.8 −541 8 14

4, 6 2 97.9 −601 4 6 78.7 −482 16 19

6 1 253.8 −517 6 8 184.4 −417 53 56
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March 2011. Therefore, I explain new research findings using my statistical
examination results. I found the reason for the particular case of QDF and RDA
(Problem 3) at the end of 2012. The course consists of one 90-min lecture per week
for 15 weeks. In 2011, the course only ran for 11 weeks because of power short-
ages in Tokyo caused by the Fukushima nuclear accident. Approximately 130
students, mainly freshmen, attended the lectures. Midterm and final examinations
consisted of 100 questions with ten choices. I found Problem 3 by the discrimi-
nation of 100-item scores. I discriminate two types of pass/fail determinations by
100-item scores and four testlet scores as variables. If the passing mark is 50 points,
we can easily obtain trivial LDF (f = T1 + T2 + T3 + T4 − 50). If f ≥ 0 or f < 0,
the student passes or fails the examination, respectively. In this case, students on
f(xi) = 0 pass the examination because their score is exactly 50. This fact indicates
that there is no Problem 1 because the independent variables determine the dis-
criminant rule clearly.

1.5.3 Discrimination by Four Testlets

Table 1.3 lists the discrimination of four testlet scores as variables for 10 % (from
the third to the seventh column) and 90 % (after the eighth column) levels of the
midterm examinations. I omit the results of the 50 % level from the table to save the
space. In the table, “p” denotes the number of variables selected by the forward
stepwise procedure. In 2010, T4, T2, T1, and T3 were entered in the model selected
by the forward stepwise procedure. MNMs of Revised IP-OLDF and NM of logistic
regression are zero in the full model, which means that the data are LSD in four
variables. NMs of LDF and QDF are nine and two, respectively. This means that

Table 1.3 NMs of four discriminant functions by forward stepwise in midterm examinations at
10 % (from the third to seventh column) and 90 % levels (after the eighth column)

p 10 % 90 %

Var. MNM Logi. LDF QDF Var. MNM Logi. LDF QDF

2010 1 T4 6 9 11 11 T3 10 37 24 24

2 T2 2 6 11 9 T4 5 10 20 11

3 T1 1 3 8 5 T1 0 0 20 10

4 T3 0 0 9 2 T2 0 0 20 11

2011 1 T2 9 17 15 15 T3 6 7 14 14

2 T4 4 9 11 9 T4 1 1 14 6

3 T1 0 0 9 10 T1 0 0 13 5

4 T3 0 0 9 11 T2 0 0 14 9

2012 1 T4 4 8 14 12 T3 8 30 12 12

2 T2 0 0 11 9 T1 5 12 9 9

3 T1 0 0 12 8 T4 3 3 10 3

4 T3 0 0 12 1 T2 0 0 11 3
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LDF and QDF cannot recognize LSD. In 2011, Revised IP-OLDF and logistic
regression were able to acknowledge that the three-variable model (T2, T4, T1) is
linearly separable. In 2012, the two-variable model (T4, T2) was linearly separable.
T4 and T2 contain natural questions, and T1 and T3 consist of questions that are
challenging to the students in the failing group. This suggests the possibility that
pass/fail determination using Revised IP-OLDF can elicit the quality of test prob-
lems and understanding of pupils.

Table 1.4 lists the summary of the 18 error rates derived from NMs of Fisher’s
LDF and QDF for the linear separable model. The ranges of the 18 error rates of
LDF and QDF are [2.2, 16.7 %] and [0.8, 10.8 %], respectively. The error rates of
QDF are lower than those of LDF. At the 10 % level, the six error rates of LDF and
QDF lie in the ranges [4.2, 11.9 %] and [0.8, 8.5 %], respectively. Clearly, the
range at the 50 % level is less than that at the 10 and 90 % levels. Miyake and
Shinmura (1976) followed Fisher’s assumption and surveyed the relationship
between population and sample error rates. One of our results suggests that the
sample error rates of balanced sample sizes, such as the 50 % level, are close to the
population error rates. The above results can confirm this result. Table 1.4 suggests
a serious limitation of LDF and QDF based on the variance–covariance matrices.
We can no longer trust the error rates of Fisher’s LDF and QDF. To this point, this
fact has not been discussed because there is slight research on using LSD (to the
best of my knowledge). Now, I should evaluate discriminant functions using LSD
because the results are very precise. In genome discrimination, researchers attempt

Table 1.5 Discrimination of Japanese small and regular cars

p Var t LDF QDF MNM λ = γ = 0.8 0.5 0.2 0.1

1 Emission 11.37 2 0 0 2 1 1 0
2 Price 5.42 1 0 0 4 1 0 0

3 Capacity 8.93 1 29 0 3 1 0 0

4 CO2 4.27 1 29 0 4 1 0 0

5 Fuel −4.00 0 29 0 5 1 0 0

6 Sales −0.82 0 29 0 5 1 0 0

Table 1.4 Summary of error rates (%) of Fisher’s LDF and QDF

10 % 50 % 90 %

LDF QDF LDF QDF LDF QDF

Midterm 2010 7.5 1.7 2.5 5.0 16.7 9.2

2011 7.0 8.5 2.2 2.3 10.5 6.7

2012 9.9 0.8 4.9 4.8 13.6 7.1

Final 2010 4.2 1.7 3.3 4.2 3.3 10.8
2011 11.9 2.9 2.9 3.6 3.6 8.6

2012 8.7 2.3 2.3 2.3 13.0 4.5
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to estimate the variance–covariance matrices using small sample sizes and large
numbers of variables. These efforts might be meaningless and lead to incorrect
results (Problem 5).

1.6 Generalized Inverse Matrices (Problem 3)

I confirm the particular cases found in the NCUEE examinations with our exami-
nations. I found the reason for Problem 3 in November 2012. Three years were
required because we never questioned the QDF algorithm and conducted our survey
using the multivariate approach. I checked all variables by the t test of two classes
before abandoning the survey. I can explain the particular case by the discrimi-
nation of Japanese-automobile data.6 Let us consider the discrimination of 29
regular and 15 small cars. Small cars have a unique Japanese specification. They are
mainly sold as second cars or to women because they are cost-efficient. The
emission rate of small and regular cars ranges from [0.657, 0.658] and [0.996,
3.456], respectively. The capacity (number of seats) of small and regular cars is 4
and [5, 8], respectively. Therefore, 48 models, including emission rate and capacity,
are linearly separable. We call the emission rate and capacity “two basic gene sets
or subspaces (BGS)” in Chap. 8. In addition, (X4, X6) of Swiss banknote data is one
BGS that consists of two variables (or genes). We can understand the structure of
the Japanese-automobile data by the emission rate and capacity in Chap. 7 and the
structure of Swiss banknote data by (X4, X6) in Chap. 6. These facts are very
important for us to understand Method 2.

Table 1.5 lists the forward stepwise result. First, “emission” is entered into the
model because the t-value is high. MNM of Revised IP-OLDF and NMs of QDF
are zero. Fisher’s LDF cannot recognize LSD. Next, “price” is entered into the
two-variable model, although the t-value of “price” is less than that of “capacity.” In
the third step, QDF misclassifies all 29 regular cars as small cars after “capacity” is
entered into the three-variable model. This is because the capacity of small cars is
four persons. It is critical for QDF and RDA to be the only ones affected by this
particular case. Fisher’s LDF and the t test are not affected because we compute
these statistics by the pooled variance of two classes. Modified RDA offers two
options, such as λ and γ. By the grid search, I find that λ = γ = 0.1 is better than the
others. However, we must survey the grid search for all data. I expect the JMP
division to display a guideline on how to select two parameters. As of 2015, JMP
had not solved Problem 3 of QDF.

6These data are available in the paper on DEA (Table 2.1 in page 4. http://repository.seikei.ac.jp/
dspace/handle/10928/402). Chap. 6 includes these data.
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1.7 K-Fold Cross-Validation (Problem 4)

Usually, the LOO procedure is used for the model selection of discriminant anal-
ysis. I developed the Method 1 because it is stronger than the LOO procedure.
Method 1 establishes a simple and powerful model selection procedure that selects
the best model. Moreover, I can explain the meaning of 95 % CI of the discriminant
coefficient.

1.7.1 100-Fold Cross-Validation

In regression analysis, we benefit from inferential statistics because SE of regres-
sion coefficients and model selection statistics, such as Cp, AIC, and BIC, are
known a priori. On the other hand, there is no SE of discriminant coefficients and
model selection statistics in discriminant analysis. Therefore, users of discriminant
analysis and SVMs often use the LOO procedure. Let the sample size be “n.” We
use one case for validation and the other (n − 1) cases as the training samples. We
evaluate n sets of training and validation samples. On the other hand, if we have a
large sample size, we can use k-fold cross-validation by dividing the sample into
k-subsamples. We can evaluate k-combinations of training and validation samples.
On the other hand, bootstrap or resampling methods can be used with small sample
sizes. In this research, we generate large sample sets by resampling and developing
100-fold cross-validation using these resampled data. Method 1 is as follows:

1. We copy 100 times the data from the original data using JMP.
2. We add a uniform random number as a new variable, sort the data in ascending

order, and divide into 100 subsets.
3. We evaluate eight LDFs by Method 1 using these 100 subsets.

I analyze MP-based LDFs by LINGO, developed with the support of LINDO
Systems Inc. I analyze logistic regression and Fisher’s LDF by JMP, obtained with
the assistance of the JMP division of SAS Japan. There is merit in using 100-fold
cross-validation because we can easily calculate the 95 % CI of the discriminant
coefficients and error rates. We can use the LOO procedure for model selection, but
cannot obtain the 95 % CI. These differences are quite important for the analysis of
small samples.

1.7.2 LOO and K-Fold Cross-Validation

Table 1.6 lists the results of the LOO procedure of Fisher’s LDF and NMs of five
LDFs in 2012 test data (10%). In the table, “Var” displays the suffix of four testlet
scores named “T.” There are only 11 models because I omit four one-variable
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models from the table. MNM of the two-variable model (T2, T4) in row No. 6 is
zero in Table 1.3, as are those of the four-variable model (T1–T4), and the two
three-variable models of (T1, T2, T4) and (T2, T3, T4). NMs of logistic regression
and SVM4 are zero in these four models, but NMs of SVM1 are two and three in
row No. 2 and 6, respectively. I often observe that S-SVM cannot recognize LSD
when penalty c has a small value. The LOO procedure recommends the models in
row No. 3 and 6 because their NMs are minimum.

Table 1.7 lists the results given by Revised IP-OLDF (RIP), SVM4, Fisher’s
LDF (LDF), and logistic regression (Logistic). I omit the results from SVM1,
Revised LP-OLDF, and Revised IPLP-OLDF, because Revised IP-OLDF is better
than three LDFs. The first column shows the same number as that in Table 1.6.
After four linearly separable models, the ranges of seven models are displayed. The
“M1” column denotes the error rate mean from the training sample. Revised
IP-OLDF and logistic regression can recognize four linearly separable models. For
SVM4, the only full model has an NM of zero. All M1s of Fisher’s LDF are over
9.48 %. The “M2” column denotes the error rate mean from the validation sample.
Because only two models (row nos 2 and 6) of Revised IP-OLDF have NMs of
zero, we select this model as the best model. NMs of the other LDFs are greater
than zero, and those of Fisher’s LDF are over 9.91 %. We can conclude that
Fisher’s LDF is the worst of these four LDFs. Some statisticians believe that NMs
of Revised IP-OLDF is less suitable for validation samples because it overfits the
training samples. On the other hand, Fisher’s LDF does not lead to overestimation
because it assumes a normal distribution. Table 1.7 indicates that the presumption
of “overestimation” is wrong. I might conclude that many real data do not obey
Fisher’s assumption. Discrimination based on an incorrect assumption will lead to
incorrect results. “Diff” is the difference between M2 and M1. Some researchers
believe that the small absolute value of “Diff” implies that there is no

Table 1.6 LOO and NMs in original test data

No. Var. LOO LDF Logistic MNM SVM4 SVM1

1 1–4 14 12 0 0 0 0

2 1, 2, 4 13 12 0 0 0 2
3 2, 3, 4 11 11 0 0 0 0

4 1, 3, 4 15 15 2 2 3 3

5 1, 2, 3 16 16 6 4 6 6

6 2, 4 11 11 0 0 0 3
7 1, 4 16 16 6 3 6 6

8 3, 4 14 13 3 3 4 4

9 1, 2 18 17 12 7 7 7

10 2, 3 16 11 11 6 11 11

11 1, 3 22 21 15 7 10 10
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overestimation. In this sense, Fisher’s LDF is better than the other LDFs because all
the values are less than 0.9 %. However, only the high values of M1 of Fisher’s
LDF lead to small values of “Diff.” “M1Diff” is defined as the difference of (M1 of
seven LDFs – M1 of Revised IP-OLDF) in the training samples, and “M2Diff” is
the value of (M2 of seven LDFs – M2 of Revised IP-OLDF) in the validation
samples. All values of “M1Diff and M2Diff” of SVM4, Fisher’s LDF, and logistic
regression are greater than zero. Fisher’s LDF is not as good as the other LDFs with
100-fold cross-validation. Therefore, I should select the model of Revised IP-OLDF
with the minimum value ofM2 as the best model. Two models, such as (T1, T2, T4)
and (T2, T4), are zero. In this case, I select the two-variable model (T2, T4) because
of the principle of parsimony or Occam’s razor. The values of “M2” for four LDFs
are 0, 1.7, 9.91, and 0.91 %, respectively. This result implies that M2 of Fisher’s
LDF is 9.91 % higher than the best model of Revised IP-OLDF in the validation
sample.

Table 1.7 Comparison of four functions

RIP M1 M2 Diff Var

1 0 0.07 0.07 1, 2, 3, 4

2 0 0 0 1, 2, 4

3 0 0.03 0.03 2, 3, 4

6 0 0 0 2, 4

4, 5, 7–11 [0.79, 4.94] [0.03, 7.21] [0.03, 2.39]

SVM4 M1 M2 Diff M1Diff M2Diff

1 0 0.81 0.81 0 0.74

2 0.73 1.62 0.90 0.73 1.62

3 0.13 0.96 0.83 0.13 0.93

6 0.77 1.70 0.93 0.77 1.70
4,5,7–11 [1.65, 6.85] [3.12, 8.02] [0.66, 1.65] [0.78, 2.33] [0.59, 1.36]

LDF M1 M2 Diff M1Diff M2Diff

1 9.64 10.54 0.90 9.64 10.47

2 9.89 10.55 0.66 9.89 10.55

3 9.48 10.09 0.61 9.48 10.06

6 9.54 9.91 0.37 9.54 9.91
4, 5, 7–11 [10.81, 16.28] [11.03, 16.48] [0.16, 0.6] [7.97, 11.34] [6.23, 9.61]

Logistic M1 M2 Diff M1Diff M2Diff

1 0 0.77 0.77 0 0.70

2 0 1.09 1.09 0 1.09

3 0 0.85 0.85 0 0.82

6 0 0.91 0.91 0 0.91
4, 5, 7–11 [1.59, 7.65] [2.83, 8.04] [0.35, 1.34] [0.8, 3.13] [0.39, 1.62]
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In 2014, these results were recalculated using LINGO version 14. The elapsed
run times of Revised IP-OLDF and SVM4 were 3 min 54 s and 2 min 22 s,
respectively. The elapsed run times of Fisher’s LDF and logistic regression by JMP
were 24 and 21 min, respectively. Reversals of CPU time have occurred for this
time.

1.8 Matroska Feature-Selection Method (Problem 5)

In Chap. 8, the Method 2 discriminates the dataset quickly and shows the dataset
consists of disjoint unions of several SMs that easily are analyzed by ordinary
statistical methods. Let us consider that the dataset consists of two classes, such as
cancer (50 cases) and normal (50 cases), with 10,000 genes. Our primary concern is
to discriminate the two classes by 10,000 variables (genes). IP-OLDF finds two
important facts in the discriminant coefficient space, as follows:

1. In the 100 linear hyperplane, 10,000 coefficients are the values of each case that
divide the discriminant coefficient space into finite CP by 100 linear hyper-
planes. The interior points of each CP correspond to the discriminant coefficient
that discriminates the same cases correctly and misclassifies the other case.
Therefore, because the interior points of each CP have unique NM, we can
define OCP with MNM.

2. Let us assume that MNMp is MNM in the p-dimensional space. MNM decreases
monotonously (MNMp ≥ MNM(p+1)). If MNMp = 0, all MNMs, including
these p-variables (genes), are zero. However, IP-OLDF can find the correct
vertex of OCP if the data are general positions, and it might not find the correct
vertex of OCP if the data are not general positions. Therefore, I develop Revised
IP-OLDF that finds the OCP interior point directly. There are four serious
problems in discriminant analysis before 2014. I regret having spent much
research time solving these problems by Revised IP-OLDF. After establishing
the Theory, I discriminate six microarray datasets by seven LDFs, with the
exception of logistic regression that cannot discriminate the microarray dataset
now. Because NMs of Fisher’s LDF are not zero, it is not used for the datasets.
Although NMs of H-SVM are zero, all coefficients of H-SVM are not zero.
Therefore, H-SVM is not helpful for feature-selection. Because several coeffi-
cients of Revised IP-OLDF are not zero, and most of the coefficients are zero,
Revised IP-OLDF can select features of the dataset within a few seconds. Many
researchers have struggled to analyze the dataset by common statistical methods
because there are many variables (genes). Recently, some researchers expect
LASSO is helpful for feature-selection of the datasets. However, I find that
dataset consists of several disjoint unions of SMs, with MNMs of zero. I call the
linearly separable models, “Matroska” in gene analysis. We can analyze these
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SMs easily because each Matroska is a small sample. However, because LSD
discrimination is no longer popular, I explain Method 2 by Swiss banknote data
in Chap. 6 and Japanese-automobile data in Chap. 7 before introducing Method
2 in Chap. 8.

1.9 Summary

In this chapter, we explained the new Theory that can discriminate several types of
real data exactly. Revised IP-OLDF can solve Problems 1, 2, and 5. Problem 3 is the
defect of the generalized inverse matrix technique based on the variance–covariance
matrices. It is only concerned with QDF now. We can find the reason for Problem 3
with a t test after three years of investigation and can solve the problem by adding
slight noise to constant variables. Although discriminant analysis is not inferential
statistics (Problem 4), the Theory 1 offers a simple and powerful model selection
procedure, such as the best model. The best model of Revised IP-OLDF is almost the
minimumM2 among eight LDFs. Moreover, we obtain the 95 % CI of the error rate
and discriminant coefficient. Seven LDFs, with the exception of Fisher’s LDF,
become trivial LDF. Only Revised IP-OLDF and H-SVM can discriminate LSD
theoretically. However, because H-SVM cannot discriminate data with “MNM ≥ 1,”
we believe that there is no research on LSD discrimination. We investigate four types
of LSD, such as Swiss banknote data, pass/fail determination of examination scores,
student linearly separable data, and Japanese-automobile data. When we discriminate
six microarray datasets, we find that only Revised IP-OLDF can select features
naturally, and the dataset has the Matroska structure. By this fact, we can analyze
high-dimensional dataset with common statistical methods such as t test, one-way
ANOVA, cluster analysis, and PCA easily. We hope that the Theory, Method 1, and
Method 2 will be helpful for gene analysis. We confirm our theory and methods with
different types of datasets fromChaps. 2–8 and prove that our theory andmethods can
solve many problems and find new facts of discriminant analysis.

Chapter 2: Iris Data and Fisher’s Assumption
Fisher proposed Fisher’s LDF under Fisher’s assumption and evaluated Fisher’s

LDF by these data. In this book, our main policy of discrimination consists of two
parts as follows:

1. We discriminate the original data by six MP-based LDFs and four statistical
discriminant functions including QDF and RDA.

2. We generate resampling samples from the original data and discriminate the
resampling samples by Method 1. We compare eight LDFs by M2 and the 95 %
CI of the coefficients. We explain the LINGO Program 2 of six LDFs in Chap. 9.
Because there is a small difference among the seven NMs except for H-SVM,
we should no longer use Iris data for the evaluation of discriminant functions. If
the data satisfy Fisher’s assumption, NM of Fisher’s LDF continues to converge
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on MNM. Although there is no actual test for Fisher’s assumption, we can
confirm Fisher’s assumption by this idea.

Chapter 3: CPD Data with Collinearities
In this chapter, we discriminate CPD data with three collinearities. We explain

how to find collinearities and remove the effect of such collinearities. We show the
strange trend of NMs by QDF and find that QDF is fragile for collinearities.
Moreover, NM of Fisher’s LDF does not decrease in the 19 models from the one to
19-variable model selected by the forward stepwise procedure. On the other hand,
NMs of our three MP-based LDFs decrease. In the original CPD data, we select the
four-variable model as useful. However, the best model recommends the
nine-variable model. We believe that many variables and/or collinearities cause this
difference. Because CPD data have many OCPs, Revised IP-OLDF might search
for several OCPs with the same MNMs and different coefficient groups that belong
to different OCPs. This result means that it is difficult for us to evaluate the 95 % CI
of discriminant coefficients that might be the new Problem 6 in future work.

Chapter 4: Student data and Problem 1
The Student data consist of 40 students with six variables, which makes the data

small. Although we never believe that these data might be helpful for our research,
we find the defect of IP-OLDF (Problem 1). Therefore, we develop Revised
IP-OLDF. Moreover, we can demonstrate that seven LDFs are quite different using
a scatter plot in Fig. 4.1.

Chapter 5: Pass/Fail Determination using Examination Scores—A Trivial LDF
These data are LSD, and there is trivial LDF. In this chapter, we set the intercept

to one for seven LDFs and obtain several good results, as follows:

1. M2 of Fisher’s LDF is over 4.6 % worse than Revised IP-OLDF.
2. SVM1 is worse than another MP-based LDFs and logistic regression.
3. The 95 % CI of the best discriminant coefficients is obtained.
4. Furthermore, if we select the median of the coefficient of seven LDFs, with the

exception of Fisher’s LDF, seven medians are almost the same as the trivial
LDF for linearly separable models.

Chapter 6: Best model of Swiss Banknote Data—Explanation 1 of Matroska
Feature-selection Method (Method 2)

Swiss banknote data are LSD. We find that the two-variable model, such as
(X4, X6), is the minimum model that is linearly separable; we also find that 16
models, including these two variables, are linearly separable, whereas 47 other
models are not linearly separable. Therefore, we compare eight LDFs by the best
models and obtain good results. Although we have not been able to explain the
useful meaning of the 95 % CI of the coefficient to this point before 2014, the pass/
fail determination using examination scores provides a clear understanding by
normalizing the coefficient. Therefore, we attempt to explain the meaning of these
data (Shinmura 2015a). Moreover, we study LSD discrimination by these data, the
Japanese-automobile data, and 18 pass/fail determinations precisely. We propose
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Method 2. Because LSD discrimination is no longer popular, we explain the
Method 2 by the detailed examples of these and the Japanese-automobile data.

Chapter 7: Japanese-automobile Data—Explanation 2 of Matroska
Feature-selection (Method 2)

In this chapter, we discriminate the Japanese-automobile data that are LSD.
These data are a good example of Problem 3. Moreover, we can explain Method 2.
Although BGSs can explain the structure of Matroska completely, two BGSs such
as the capacity and emission can explain the structure of these data. Therefore, we
can understand Method 2 by these data.

Chapter 8: Matroska Feature-selection Method for Microarray Data (Method 2)
In this chapter, we propose Method 2 for the datasets. We already established the

Theory and developed Revised IP-OLDF. This LDF can select gene features nat-
urally. It finds that the datasets consist of disjoint unions of several SMs. Therefore,
we do not need to struggle with the high-dimensional gene space (Problem 5). If we
can develop Revised LINGO Program 3 of Method 2 that can find all BGSs, it will
be more useful in gene analysis. LINGO Program 3 is useful for other gene dataset,
such as RNA-Seq., in addition to the microarray datasets. Because we were suc-
cessful to prove the effectiveness of Maruyama vaccine (SSM) administration
(Shinmura et al. 1987, Shinmura 2001), “Ancer 20 that is one of SSM” have been
approved as a formal “Pharmaceuticals” since August 1991 (Noda et al. 2006).
However, our survey failed to clarify the long-term survivors of SSM administra-
tion patients. If we compare two lists of cancer genes (normal and cancer patient
data) versus (normal and SSM Administration patient data), and find the differences
between two gene lists, it may show the proof of the effectiveness of SSM. This
approach will be helpful for the effect judgment of other cancer treatment except for
the surgery. We hope the advice or provision of dataset by medical doctors or
project. We would like to propose a joint research in the world.

Chapter 9: This chapter explains LINGO Program 2 of Method 1.
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Chapter 2
Iris Data and Fisher’s Assumption

2.1 Introduction

Anderson (1945) collected Iris data with three species, setosa, virginica, and ver-
cicolor that have four (independent) variables. Because Fisher (1936, 1956) eval-
uated Fisher’s linear discriminant function (Fisher’s LDF) with these data, such
data have been very popular for the evaluation of discriminant functions. Therefore,
we call these data, “Fisher’s Iris data.” Because we can easily separate setosa from
virginica and vercicolor through a scatter plot, we usually discriminate two classes,
such as the virginica and vercicolor. In this book, our main policy of discrimination
consists two parts: (1) evaluation of Iris data by five MP-based LDFs, with the
exception of hard-margin SVM (H-SVM) by LINGO Program 1 (Schrage
2006), and four statistical discriminant functions such as Fisher’s LDF, logistic
regression (Cox 1958), QDF, and RDA (Friedman 1989) by JMP (Sall et al. 2004);
(2) comparison of seven LDFs by the 100-fold cross-validation for small sample
method (Method 1) by LINGO Program 2 and JMP script.

2.1.1 Evaluation of Iris Data

First, we discriminate Iris data by five MP-based LDFs, with the exception of
H-SVM, and four statistical discriminant functions. LINGO solves six MP-based
LDFs, such as Revised IP-OLDF based on MNM criterion (Miyake and Shinmura
1979, 1980, Shinmura 2010a, 2011a, b), Revised LP-OLDF, Revised IPLP-OLDF
(Shinmura 2010b, 2014b), SVM4 (penalty c = 10,000), and SVM1 (penalty c = 1)
(Vapniik 1995). Section 2.3.3 describes a LINGO Program 1 of six MP-based LDFs
for conventional data. Downloading a free version of LINGO with manual from
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LINDO Systems Inc.1 allows anyone to analyze small sample. JMP discriminated
the data by QDF and RDA (Friedman 1989), in addition to two LDFs, such as
Fisher’s LDF and logistic regression. Because the JMP division in Japan offers a free
trial version, the reader must confirm to download JMP trial version in each country.
The JMP sample folder includes Iris data. I evaluate these nine discriminant func-
tions by NM and discuss the difference of the discriminant coefficient. Because the
discriminant analysis is not the inferential statistics (Problem 4) (Shinmura 2014a,
2015c, d), we discuss model selection by regression analysis. If we use “yi” [le: an
indicator of MP-based LDF in Eq. (1.8)] as the object variable of the regression
analysis, the obtained regression coefficients are proportional to the coefficient of
Fisher’s LDF (plug-in rule1). Therefore, we can use a stepwise procedure and
statistics, such as AIC, BIC, and Cp statistics. We determine a good model in Iris
data. However, these statistics select different good models by other data. The result
is a limitation in the evaluation using a small sample (i.e., training sample).
Section 2.3.3 describes a LINGO model of six MP-based LDFs.

2.1.2 100-Fold Cross-Validation for Small
Sample (Method 1)

We generate resampling samples from Iris data and discriminate these samples by
the Method 1 (Shinmura 2010a, 2013, 2014c). There is an explanation of the LINGO
Program 2 of the Method 1 in Chap. 9. Because we omit QDF and RDA, we compare
five MP-based LDFs and Fisher’s LDF and logistic regression by two means of error
rates, M1 and M2, in the training and validation samples, respectively, and the 95 %
confidence interval (CI) of error rate and discriminant coefficients.

We compare seven LDFs by M2 and 95 % CI of discriminant coefficients.
Because M1 of Revised IP-OLDF is the average of 100 MNMs in the training
samples, it decreases monotonously similarly to MNM, and MNM of the full model
is always minimum. Therefore, we cannot use M1 of Revised IP-OLDF for the
model (feature or variable) selection procedure. We propose the direct and powerful
model selection procedure performed by the best model with the minimum M2 in
each LDF (Shinmura 2016a, b). We should select the best model by this simple
model selection procedure instead of LOO procedure (Lachenbruch and Mickey
1968). We examined the best model of Revised IP-OLDF with the minimum M2
among all LDFs. There is a small difference among the seven best models because
Iris data can satisfy Fisher’s assumption. Although we explain Program 2 in Chap. 9,
we omit the JMP script of the Method 1 for Fisher’s LDF and logistic regression
because explanation of the JMP script language is outside the scope of this book.
Many researchers use Iris data to evaluate the discriminant function. However, we
should not use these data for assessment because there is a small difference among

1http://www.lindo.com/.
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discriminant functions. Fisher proposed Fisher’s LDF under Fisher’s assumption.
However, there are no actual test statistics to determine whether the data satisfy
Fisher’s assumption. If data satisfy Fisher’s assumption, NM of Fisher’s LDF
continues to converge on MNM. We can confirm this fact by this idea. However,
these data are critical for correlation education because we erroneously judge the
meaning of correlation without verification from a scatter plot. Moreover,
Anscombe’s quartet is critical for correlation and simple regression education, also.

2.2 Iris Data

2.2.1 Data Outlook

Iris data have been critical evaluation data for discriminant analysis until now. Such
data consist of three species: setosa, versicolor, and virginica. Each species has 50
cases, as listed in Table 2.1. There are four (independent) variables: X1 (petal width),
X2 (petal length), X3 (sepal width), and X4 (sepal length). The lengths are in mil-
limeters. Left four columns are setosa, middle four columns are versicolor, and right
four columns are virginica. We can find and download from the Research Gate.2

Figure 2.1 shows a matrix of scatter plots of three species. A total of 50 setosa
are shown in red color and the symbol “.”. A total of 50 virginica are shown in
green and the symbol “×”. A total of 50 vercicolor are shown in blue and the
symbol “+”. The scatter plot shown in the first row and fourth column is X1 (Sepal
length) by X4 (Petal width). Setosa, virginica, and vercicolor are located on the left,
middle, and right area, respectively. We can easily separate setosa from virginica
and vercicolor because two sepal lengths and petal widths of setosa are smaller than
the others. Therefore, we can quickly separate setosa from the other two species
through the scatter plot. We usually omit setosa and focus on the discrimination of

Table 2.1 Iris data

SN X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4

1 5.1 3.5 1.4 0.2 7 3.2 4.7 1.4 6.3 3.3 6 2.5

2 4.9 3 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

49 5.3 3.7 1.5 0.2 5.1 2.5 3 1.1 6.2 3.4 5.4 2.3

50 5 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3 5.1 1.8

MIN 4.3 2.3 1 0.1 4.9 2 3 1 4.9 2.2 4.5 1.4

MEAN 5.01 3.43 1.46 0.25 5.94 2.77 4.26 1.33 6.59 2.97 5.55 2.03

MAX 5.8 4.4 1.9 0.6 7 3.4 5.1 1.8 7.9 3.8 6.9 2.5

STD 0.35 0.38 0.17 0.11 0.52 0.31 0.47 0.2 0.64 0.32 0.55 0.27

2https://www.researchgate.net/profile/Shuichi_Shinmura.
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versicolor and virginica. Iris data are linearly separable data (LSD) between setosa
and others. Because we can find Iris data are LSD easily, we never discuss the
importance and difficulties of LSD discrimination. We might erroneously assume
that LSD discrimination can be performed easily by the impression of Iris data.

Figure 2.2 is a matrix scatter plot of two species. A total of 50 virginica are
shown in green color and with the symbol “×”. A total of 50 vercicolor are shown
in blue and with the symbol “+”. Virginica and vercicolor are located on the left and

Fig. 2.1 Matrix of scatter
plots of Iris data (three
species)

Fig. 2.2 Scatter plots of Iris
data (two species)
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right area, respectively. Although we cannot determine whether these data satisfy
Fisher’s assumption, we can estimate that these data satisfy Fisher’s assumption
because NMs of nine discriminant functions are almost the same, as indicated in
Table 2.4. Although Iris data with three species are LSD, Iris data with two species
are not LSD.

Table 2.2 lists two correlation matrices that correspond to Figs. 2.1 (left) and 2.2
(right). Although the correlation of (X2, X4) in the three species is −0.37, the
correlation of (X2, X4) in the two species is 0.57. These data are good educational
examples of correlation because we erroneously judge correlation without the
verification of the scatter plot. In Fig. 2.1, because the scatter plot indicates that
setosa is completely apart from the other species, we never consider the correlation
shown in Fig. 2.1 and indicated in Table 2.2 (left). On the other hand, all scatter
plots include most cases of two species in the 95 % probability ellipse. In these
cases, the correlations are meaningful.

2.2.2 Model Selection by Regression Analysis

Although the discriminant analysis is not the inferential statistics, there is no correct
model selection procedure aside from LOO procedure. We can use the stepwise
procedure of the regression analysis and several statistics, such as AIC, BIC, and
Cp, by the plug-in rule1. To this point, we have two options for selecting a good
model for the original data. The first is the LOO procedure. The second is to
evaluate the models by the model selection statistics of regression analysis.
Table 2.3 lists the result of all possible model combinations (Goodnight 1978). The
column “Model” lists 15 models from four- and one-variable models. “p” indicates
the number of variables. Within the same “p”, the models are in descending order of
“R-square (R2).” “Rank” is the ranking within the same number of “p”. This pro-
cedure is very powerful because we can overlook all models and simulate the
forward and backward stepwise procedures. Both procedures select the same
models, such as (X4) → (X4, X2) → (X4, X2, X3) → (X4, X2, X3, X1). Therefore,
we can easily select a good model among these 15 models. Model selection
statistics, such as AIC, BIC, and Cp, select the full model as a good model.
However, these statistics usually select different models for other data. Therefore,
we cannot usually determine a good model from these statistics alone.

Table 2.2 Two correlation matrices

Three species in Fig. 2.1 Two species in Fig. 2.2

X1 X2 X3 X4 X1 X2 X3 X4

X1 1 −0.12 0.87 0.82 1 0.55 0.83 0.59

X2 −0.12 1 −0.43 −0.37 0.55 1 0.52 0.57
X3 0.87 −0.43 1 0.96 0.83 0.52 1 0.82

X4 0.82 −0.37 0.96 1 0.59 0.57 0.82 1
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2.3 Comparison of Seven LDFs

2.3.1 Comparison of MNM and Eight NMs

We investigate all possible combinations of the discriminant models (15 = 24 − 1)
by LINGO and JMP script. Table 2.4 lists the 15 models from four to one variable,
similar to Table 2.3. “SN” is the sequential number of models. “Var” denotes the
suffix of variables. “RIP” is the MNMs of Revised IP-OLDF. We can confirm the
monotonic decrease of MNM (MNMp ≥ MNM(p+1)). For example, the forward
stepwise procedure of the regression analysis selects the following variables in this
order: X4, X2, X3, and X1. MNM of the four models decreases as follows: 6, 3, 2,
and 1. We can confirm the monotonic decrease of MNM by other model sequences,
such as X1, X2, X3, and X4, in this order. MNM of the four models decreases as
follows: 37, 25, 2, and 1. Therefore, we cannot select the model with minimum
MNM as the best model because we always select the full model. This fact tells us
clearly why we should not select model by statistics in the training sample. The
four discriminant functions represent the following abbreviations in the table:
Revised LP-OLDF is LP, Revised IPLP-OLDF is IPLP, logistic regression is
“Logistic,” and Fisher’s LDF is LDF. The seven columns that follow “RIP” are the
difference (Diff1) defined as (NMs of seven discriminant functions – MNM). All
the NMs of each model should be greater than or equal to MNM because MNM is
the minimum NM in the training samples. The last row shows the number of
models with a negative value of “Diff1.” Revised LP-OLDF has two negative
values. This means that Revised LP-OLDF is fragile for Problem 1. The column
“ZERO” shows the number of cases on the discriminant hyperplane by Revised

Table 2.3 Result of all
possible combinations

Model p Rank R2 AIC BIC Cp

1, 2, 3, 4 4 1 0.78 143.5 158.2 5
2, 3, 4 3 1 0.77 148.7 161.1 10.37

1, 3, 4 3 2 0.76 151.8 164.2 13.59

1, 2, 4 3 3 0.73 163.9 176.3 27.16

1, 2, 3 3 4 0.7 174.2 186.6 40.09

2, 4 2 1 0.72 163.5 173.5 27.39

3, 4 2 2 0.72 165 175 29.19

1, 3 2 3 0.7 172.7 182.7 39.07

1, 4 2 4 0.69 176.4 186.4 44.12

2, 3 2 5 0.63 192.1 202.1 67.61

1, 2 2 6 0.25 264 274 237.4

4 1 1 0.69 174.3 181.8 42.12

3 1 2 0.62 193.7 201.3 71.72

1 1 3 0.24 262 269.6 236.2

2 1 4 0.09 280.1 287.6 2.87
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LP-OLDF. This fact explains that we cannot determine Problem 1 for those models
with “Diff1 ≥ 0.” Moreover, we cannot discuss Problem 1 for the four statistical
discriminant functions because all statistical software developers do not know
Problem 1 and do not support this information. Therefore, we need to re-evaluate
the old results of the discriminant analysis. Although these data are expected to
provide the correct results for Fisher’s LDF, QDF, and RDA, these three NMs are
not less than those of MP-based LDFs. The bold numbers of the “Diff1s” among
each of the 15 models are the maximum values. There are 23 maximum values
among Fisher’s LDF, QDF, and RDA. On the other hand, there are 15 maximum
values among LP, IPLP, SVM4, SVM1, and Logistic. In general, we judge Fisher’s
LDF, QDF, and RDA to be inferior to other LDFs, although this determination is
not clear because there is no appropriate threshold.

2.3.2 Comparison of Seven Discriminant Coefficient

Table 2.5 lists the coefficients of full models. We divide the original coefficients of
five MP-based LDFs by the intercept terms in parentheses (Shinmura 2015a, b).
The four coefficients are normalized. When we analyze the data by regression
analysis, the obtained regression coefficients are proportional to the coefficients of
Fisher’s LDF. The first row of Fisher’s LDF is the original regression coefficients.
The second row is the normalized coefficients divided by the intercept. The third

Table 2.4 MNM and eight “Diff1”

SN Var RIP LP Zero IPLP SVM4 SVM1 Logistic LDF QDF RDA

1 1, 2, 3, 4 1 1 0 1 0 1 2 2 2
2 2, 3, 4 2 0 0 0 2 0 2 2 1

3 1, 3, 4 2 0 0 0 0 0 1 1 2
4 1, 2, 4 4 3 0 3 1 0 1 2 1

5 1, 2, 3 2 2 1 0 2 4 2 5 6 4

6 2, 4 3 3 0 1 1 0 0 2 2

7 3, 4 5 1 0 3 2 1 3 0 2

8 1, 3 4 1 0 1 3 0 2 2 2

9 1, 4 6 0 0 1 1 0 1 0 0

10 2, 3 5 1 0 0 0 0 1 1 1
11 1, 2 25 2 0 2 2 0 0 4 4
12 4 6 0 0 0 0 0 0 0 0
13 3 7 0 0 0 0 0 1 0 0

14 1 37 −3 4 0 0 0 0 0 3 3
15 2 27 −2 10 0 5 5 0 5 5 5

n (-) – 2 0 0 0 0 0 0 0

n (Bold) 4 1 5 5 1 8 8 7
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row is the SEs of the regression coefficient. The first and second rows of logistic
regression are similar to Fisher’s LDF. SE of logistic regression is achieved through
a numerical calculation using the maximum likelihood method proposed by R.
Fisher. We can reject the four coefficients and intercept of Fisher’s LDF at the 5 %
level. This indicates that the full model of Fisher’s LDF is selected by the 95 % CI
of coefficients. On the other hand, we cannot reject the four coefficients of the
logistic regression at the 5 % level. This fact implies us the 95 % CIs of logistic
coefficient are not reliable. Moreover, we cannot discuss the 95 % CI of the
coefficient by MP-based LDFs in the original data. If we focus on the normalized
coefficient values, only values of Fisher’s LDF are greater than the other coeffi-
cients. We suggest that statistical software developers support the Method 1 and an
option for setting the intercept to one. This is helpful to users because users cannot
obtain useful information through discriminant analysis.

2.3.3 LINGO Program 1: Six MP-Based LDFs
for Original Data

We introduce the LINGO model for six MP-based LDFs, including H-SVM. This
Program 1 can be used for a small change in the underlined parts that consist of four
critical sections. The “SETS” section defines one-dimensional sets and arrays by “set:
arrays.” Because the Iris data have four variables, set “P” has four elements. Set “P1”
has five elements, including the intercept; the fifth element stores intercept “yi,” and
“VARK” is the five-element array that corresponds to set “P1.” Set “P2” has six
elements; the sixth element stores the sequential model number from one to 15. Set
“N” has 100 elements of the number of cases. Array “E” stores 0/1 decision variable
“ei”, and array “CONSTANT” stores the values of the discriminant scores. Set “G2”

Table 2.5 Coefficients of seven LDFs

X1 X2 X3 X4 c

RIP 0.06 0.11 −0.25 −0.27 (−120.25)

SVM4 0.04 0.24 −0.19 −0.57 (−33.6)

SVM1 0.09 0.14 −0.3 −0.3 (−6.78)

LP 0.04 0.24 −0.19 −0.57 (−33.6)

IPLP 0.06 0.11 −0.25 −0.27 (−120.25)

Fisher’s LDF 0.39 0.62 −0.77 −1.37 1.84

Normalize 0.21 0.34 −0.42 −0.74 1

SE 0.14* 0.19* 0.16* 0.23* 0.53*

Logistic −2.47 −6.68 9.43 18.29 −42.64

Normalize 0.06 0.16 −0.22 −0.43 1

SE 2.39 4.48 4.74 9.74 25.71
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has five elements that correspond to the five MP-based LDFs, with the exception of
H-SVM. Set “MS” has 15 elements that correspond to all possible models. Set “V2”
has 75 elements (=15models × 5 LDFs) that store 75 coefficients. Set “MB”made by
two one-dimensional sets is a two-dimensional set with 15 rows by five columns with
intercept. Array “CHOICE” defines the variable in 15models by 0/1 values, similar to
what is shown in Fig. 9.4. Set “ERR” is a two-dimensional set with 15 rows by five
columns. Array “IC” stores NM and the “ZERO” that stores the number of cases on
the discriminant hyperplane indicated in Table 2.4. Set “VP” is a two-dimensional set
with 75 rows by six columns, and array “VARK75” stores the coefficients. Set “D” is
a two-dimensional set with 100 rows by five columns, and array “IS” defines the
modified Iris data indicated in Table 2.6 (right). JMP uses the left five columns.
LINGO uses the right five columns (the cell range name “IS” is defined by “G2:
K101” in Excel); the values of class2 have negative values.

MODEL:
SETS:

P; P1:VARK; P2;
N: E, CONSTANT; G2:; MS:; V2:;
MB(MS, P1): CHOICE;
ERR(MS, G2): IC, ZERO;
VP(V2, P2): VARK75;
D(N, P1): IS;

ENDSETS

The DATA section defines the number of elements for “P, P1, P2, N, G2, MS,
V2, G24,” and the constant values, such as “NN and BIGM.” “P=1..4;” means set
“P” has four elements. If we change the underlined parts of the data, the LINGO
model can discriminate such data. The most important role is to input the data from

Table 2.6 Iris data for JMP (left) and LINGO (right)

SN X1 X2 X3 X4 Species X1 X2 X3 X4 yi
1 7 3.2 4.7 1.4 Versicolor 7 3.2 4.7 1.4 1

2 6.4 3.2 4.5 1.5 Versicolor 6.4 3.2 4.5 1.5 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

49 5.1 2.5 3 1.1 Versicolor 5.1 2.5 3 1.1 1

50 5.7 2.8 4.1 1.3 Versicolor 5.7 2.8 4.1 1.3 1

51 6.3 3.3 6 2.5 Virginica −6.3 −3.3 −6 −2.5 −1

52 5.8 2.7 5.1 1.9 Virginica −5.8 −2.7 −5.1 −1.9 −1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

99 6.2 3.4 5.4 2.3 Virginica −6.2 −3.4 −5.4 −2.3 −1

100 5.9 3 5.1 1.8 Virginica −5.9 −3 −5.1 −1.8 −1
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a database, such as Excel, and array name, such as “IS = @OLE();” and output the
results for the same database, such as Excel, by “@OLE() = IC, ZERO, NP,
VARK75;” LINGO and Excel share the same array name.

DATA:
P=1..4; P1=1..5; P2=1..6;
N=1..100; G2=1..5; MS=1..15; V2=1..75;
G24=1..1500; NN=100; BIGM=10,000 (or 1);
CHOICE, IS=@OLE();

ENDDATA

The SUBMODEL section defines five MP-based LDFs, such as Revised
IP-OLDF represented by the submodel name “RIP,” and soft-margin support vector
machine (S-SVM) represented by the submodel name “SVM.” If we set
“BIGM = 10,000,” submodel “SVM” becomes SVM4 in the CALC section.

SUBMODEL RIP:  
 MIN=ER;  
 ER=@SUM(N(i):E(i)); 
 @FOR(N(i):@SUM(P1(J1):IS(i,J1)*VARK(J1)*CHOICE(k,J1))  > 1-BIGM*E(i)); 
 @FOR(P1(J1):@FREE(VARK(J1)));  
 @FOR(N(i):@BIN(E(i))); 
ENDSUBMODEL 
SUBMODEL SVM: 
 MIN=ER; 
 ER=@SUM(P(J):VARK(J)^2)/2+BIGM*@SUM(N(i):E(i)); 
 @FOR(N(i):@SUM(P1(J1):IS(i,J1)*VARK(J1)*CHOICE(k,J1)) > 1-E(i)); 
 @FOR(P1(J1):@FREE(VARK(J1)));  
ENDSUBMODEL 

SUBMODEL LP: … ENDSUBMODEL 
SUBMODEL IPLP: …ENDSUBMODEL 
SUBMODEL HSVM: … ENDSUBMODEL 

The CALC section controls the optimization models by the programming lan-
guage or makes a report and graph.
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CALC:  
@SET('DEFAULT'); @SET('TERSEO',2); 

G=1; 
K=1; LEND=@SIZE(MS); 
@WHILE (K#LE#LEND: @FOR ( P1( J): VARK( J) = 0;  

@RELEASE (VARK( J)));  
NM=0; NMP=0; Z=0; BIGM=10000; 
@SOLVE(RIP); 

  @FOR(P1(J1): VARK75(@SIZE(MS)*(G-1) + K, J1)=VARK(J1)*CHOICE(k,J1)); 
  VARK75(@SIZE(MS)*(G-1) + K, @SIZE(P2)) = G; 
@FOR(n(I): @IFC(SK(I+NN*(G-1), K) # EQ # 0:  Z=Z+1)); 
@FOR(n(I): @IFC(SK(I+NN*(G-1), K) # LT # 0:  NM = NM+1)); 

  @FOR(n(I): @IFC(SK(I+NN*(G-1), K) # GT # 0:  NMP = NMP+1)); 
IC(K,G) = NM; ZERO(K,G)=Z;NP(K, G)=NMP; 
K=K+1); 

G=2; 
K=1;LEND=@SIZE(MS); 
@WHILE(K#LE#LEND: @FOR( P1( J): VARK( J) = 0; 

@RELEASE (VARK( J)));  
BIGM=10000; NM=0;NMP=0; Z=0; 
@SOLVE(SVM);                           !SVM4; 

  @FOR(P1(J1):VARK75(@SIZE(MS)*(G-1)+K,J1)=VARK(J1)*CHOICE(k,J1) ); 
 VARK75(@SIZE(MS)*(G-1)+K,@SIZE(P2))=G ; 

  @FOR(n(I):SK(I+NN*(G1),K) 
=@SUM(P1(J1):IS(i,J1)*VARK(J1)*CHOICE(k,J1))); 

  @FOR(n(I):@IFC(SK(I+NN*(G-1),K)#EQ#0:  Z=Z+1)); 
@FOR(n(I):@IFC(SK(I+NN*(G-1),K)#LT#0:  NM=NM+1)); 
@FOR(n(I):@IFC(SK(I+NN*(G-1),K)#GT#0:  NMp=NMp+1)); 
IC(K,G)=NM; ZERO(K,G)=Z;NP(K,G)=NMP; 
K=K+1); 

!Insert three models from G=3 to G=5; 
ENDCALC 

The DATA section outputs the optimization results to Excel array names, such
as “IC, ZERO, NP, and VAR75.”

DATA:
@OLE() = IC,ZERO,NP,VARK75;

ENDDATA
END

2.3 Comparison of Seven LDFs 47



2.4 100-Fold Cross-Validation for Small Sample Method
(Method 1)

2.4.1 Four Trials to Obtain Validation Sample

Until now, we have not been able to discuss the best model and 95 % CI of the error
rate and discriminant coefficient for the original data because the discriminant
analysis is not the inferential statistical method (Problem 4). We attempt the four
approaches described in the following subsections.

2.4.1.1 Generate Training and Validation Samples by Random
Number

We create a normal random number data by Speakeasy as follows (Shinmura and
Tarumi 2000; Shinmura 2000b):

R=ARRAY (400, 2:);           !Array R consists 400 rows by 2 columns; 
R=NORMRANDOM (R);   ! We store normal random values with m=0 and SD=1;
R(,1)= R(,1) * 2; !The SD of first column is two;

First, we generate array R with 400 cases (rows) × 2 variables (column) and
store the normal random numbers, such as N(0, 1). The first column is variable
x and the second column is variable y. Both means are zero. The standard deviation
(SD) of x is two by the third command and that of y is one. This array is divided
into four datasets called “G1, G2, G3, and G4” and consists of 100 cases × two
variables. G1 consists of 100 cases from the first to 100th rows. G2 consists of 100
cases from the 101st to 200th rows. G3 consists of 100 cases from the 201st to
300th rows. G4 consists of 100 cases from the 301st to 400th rows. G1 and G2 are
used for the training (internal) samples of the discriminant analysis. The remaining
G3 and G4 are used as the validation (external) samples. That is, G3 and G4 are the
validation sample of G1 and G2, respectively. We create 115 datasets from (G1,
G2) and (G3, G4) by the combinations of the rotation for (G1, G2) and the
translation for (G3, G4). (G1, G2) are rotated 0° to 30°, 45°, 60°, and 90°, thus
setting the center of gravity (means of x and y) at the origin. The rotation is
achieved by multiplying the rotation matrix by (G1, G2). With regard to (G3, G4),
we add integers 0, 1, …, 8 to x and 0, 2, 4 to y. The translation is performed simply
as the array operation “G2(, 1) + i; G2(, 2) + j;” and likewise for G4. Speakeasy is
used for this operation. We make 115 datasets by the combination (135 datasets) of
five rotations × nine translations of x × three translations of y. We omit 20 datasets
from the analysis for the following two reasons:
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1. If two classes are too separate, the error rates became zero and offer no infor-
mation with which to evaluate the four discriminant functions, such as
IP-OLDF, LP-OLDF, Fisher’s LDF, and QDF. We did not understand the
importance of LSD in 2000, and thought the discrimination LSD was easy.

2. If two classes are too close, the error rates are close to 0.5 and the discrimination
is not meaningful in the actual application. This judgment is correct.

We evaluate four NMs for each discriminant function by the simple regression
analysis using MNM as the independent variable in Eq. (2.1). In the training
samples, we obtain the following four simple regression lines. If we draw four
regression lines, we can determine their ranking by the predicted values as follows:
IP-OLDF < QDF < LDF < LP-OLDF. Therefore, QDF is the second best and
LP-OLDF is the worst. If we evaluate the four discriminant functions by the random
normal data, we forecast that Fisher’s LDF and QDF based on the variance–
covariance matrices are better than LP-OLDF (Shinmura 1998; 2000a; 2003; 2004;
2005; 2007). However, IP-OLDF is better than Fisher’s LDF and QDF.

MNM ¼ 1þ 1�MNM ðR2 ¼ 1Þ
NM of QDF ¼ 1:735þ 1:038�MNM ðR2 ¼ 0:990Þ
NM of LDF ¼ 2:181þ 1:104�MNM ðR2 ¼ 0:992Þ

NM of LP-OLDF ¼ 1:243þ 1:300�MNM ðR2 ¼ 0:984Þ

ð2:1Þ

In the validation samples, we obtain the four simple regression lines shown in
Eq. (2.2). We can determine the ranking by the predicted values as follows:
QDF < IP-OLDF < LDF < LP-OLDF. Therefore, QDF is better than IP-OLDF for
the following two reasons:

1. Although QDF has five independent variables, the other three LDFs have two
independent variables. In general, the result with more variables is better than
the result with fewer variables.

2. Random number data are suitable for QDF and Fisher’s LDF based on the
variance–covariance matrices. However, we determined that QDF and Fisher’s
LDF are weak for actual data because most actual data do not satisfy the
Fisher’s assumption.

NM of QDF ¼ 4:399þ 1:170�MNM ðR2 ¼ 0:974Þ
NM of IP-OLDF ¼ 5:430þ 1:229�MNM ðR2 ¼ 0:985Þ

NM of LDF ¼ 5:122þ 1:269�MNM ðR2 ¼ 0:981Þ
NM of LP-OLDF ¼ 4:594þ 1:510�MNM ðR2 ¼ 0:984Þ

ð2:2Þ
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2.4.1.2 20,000 Normal Random Sampling

We compute the averages and variance–covariance matrices of two classes and
generate 20,000 normal random samples with “Monako3” in order to create the
random sample only once. We use this random sample as a validation sample and
compare the results of the original data (training sample). In the validation of the
original Iris data and random sample, we accept almost the same results as
Eq. (2.2). In the validation of CPD data, we obtain an error rate for the validation
sample that is often less than that of the original sample because the validation
sample fits better the variance–covariance matrices computed from the original data
compared with the original data.

2.4.1.3 20,000 Resampling Samples

We generate 20,000 resampling samples from the original data. We are successful
in the validation of the result from the original data. However, we cannot obtain
useful results, such as the best model and 95 % CI of the error rate and discriminant
coefficient.

2.4.1.4 K-Fold Cross-Validation for Small Sample Method

First, we set k = 10. However, we realize that this validation sample provides no
useful results. Then, we change k = 100 and obtain the best model and 95 % CI of
the error rate and discriminant coefficient. We could obtain useful results for the
best models and could not explain the useful meaning of the 95 % CI of the
discriminant coefficient (Shinmura 2010a). Because the distribution of coefficients
in the 100 training samples often has a broad range of negative to positive values,
we cannot explain the useful meaning of the 100 coefficients. In 2015, we nor-
malized the coefficient by the intercept of six MP-based LDFs, including H-SVM,
and compared Fisher’s LDF and logistic regression. All LDFs, with the exception
of Fisher’s LDF, became trivial LDFs (Shinmura 2015b). We developed IP-OLDF
first in our research and set the intercept of IP-OLDF to one. We regret not adopting
this idea for the coefficient.

2.4.2 Best Model Comparison

Table 2.7 lists the results of 15 models by Method 1. The first column, “RIP,”
shows all possible combination models from a four to one-variable model, as shown
in column “Model.” “M1 and M2” columns are the error rate means from the

3Japanese software.
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training and validation samples. M1 decreases monotonously, similarly to MNM,
because M1 is the average of 100 MNMs. Therefore,M1 of the full model is always
the minimum value. We can confirm this fact by the M1 values in the table.
Although M2 of the full model is the minimum value, and it is 2.72, this might be
because the data have only four variables. We consider the model with minimum
M2 to be the best model. We claim that the best model has good generalization
ability. Column “Diff” is the difference defined as (M2 − M1). Some statisticians

Table 2.7 Best Models of
seven LDFs (Bold figures are
seven best models and
minimum Diffs)

RIP 12m11s M1 M2 Diff. Model

1 0.56 2.72 2.16 X1, X2, X3, X4

2 0.96 3.03 2.07 X2, X3, X4

3 1.37 3.42 2.05 X1, X3, X4

4 2.68 5.07 2.39 X1, X2, X4

5 1.55 3.70 2.15 X1, X2, X3

6 3.61 5.79 2.18 X2, X4

7 2.44 4.39 1.95 X3, X4

8 2.91 4.82 1.91 X1, X3

9 4.23 5.69 1.46 X1, X4

10 4.29 7.03 2.74 X2, X3

11 22.74 27.27 4.53 X1, X2

12 5.40 6.08 0.68 X4

13 5.88 7.25 1.37 X3

14 25.75 28.24 2.49 X1

15 35.67 38.93 3.26 X2

SVM4 8m43s M1 M2 Diff. M1Diff. M2Diff.

1 1.21 3.03 1.82 0.65 0.31

12 6.00 6.06 0.06 0.60 −0.02

SVM1 8m42s M1 M2 Diff. M1Diff. M2Diff.

1 2.23 3.00 0.77 1.67 0.28

12 6.16 6.28 0.12 0.76 0.20

LP 4m20s M1 M2 Diff. M1Diff. M2Diff.

1 1.15 2.98 1.83 0.59 0.26

12 5.74 5.83 0.09 0.34 −0.25

IPLP 16m39s M1 M2 Diff. M1Diff. M2Diff.

1 0.56 2.70 2.14 0.00 −0.02

12 5.44 6.08 0.64 0.04 0.00

Logistic 18m M1 M2 Diff. M1Diff. M2Diff.

1 1.36 3.07 1.71 1.50 0.35

15 40.68 40.30 −0.38 5.01 1.37

LDF 16m M1 M2 Diff. M1Diff. M2Diff.

1 2.76 3.18 0.42 2.20 0.46

15 40.72 40.30 −0.42 5.05 1.37
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erroneously believe that the model with a minimum value of “Diff” has good
generalization ability. Because a one-variable model (X4) has a minimum “Diff”
value, these statistics are not useful for selecting the best model. We confirmed this
fact through many datasets. We summarize 15 models of other LDFs in two rows.
The first row corresponds to the full model. All LDFs select the full model as their
best models. Those M2s are 3.03, 3.00, 2.98, 2.70, 3.07, and 3.18 %. The second
row corresponds to the model with minimum “Diff.” The last two columns,
“M1Diff & M2Diff,” are the difference defined as (M1/M2 of other LDFs – M1/M2
of RIP). If we focus on “M2Diff” of the full model, those are 0.31, 0.28, 0.26,
−0.02, 0.35, and 0.46 % higher than Revised IP-OLDF. Therefore, six LDFs are
more acceptable than Revised IP-OLDF. The values of “M2Diff” are almost less
than those of “M1Diff.” This fact could imply that Revised IP-OLDF over fits the
training sample. We observed this defect only with Iris data. If we check “Diff,” we
can understand that this claim is not correct. In particular, although “Diff” of
Fisher’s LDF is −0.42 %, this result is caused by a high value of M1, such as
40.72 %. We claim that the full model of Revised IPLP-OLDF has good gener-
alization ability among eight LDFs. The CPU times listed in the first row indicate
that Fisher’s LDF and logistic regression are slower than MP-based LDFs.

2.4.3 Comparison of Discriminant Coefficient

Table 2.8 lists the three percentiles of the discriminant coefficients and intercept. To
set the intercept to one, we divide the original five coefficients by the value of
(original intercept + 0.00001) in order to avoid division by zero if the original
intercept is equal to zero. By setting the intercept to one, we can understand the
meaning of the 95 % CI of coefficients clearly. Before normalizing the intercept, we
struggle many 95 % CI of coefficients ranging from negative to positive values and
include 0 because the intercept almost has both positive and negative values
(Shinmura 2015a). Although we proposed this idea, we could not obtain good
results because we did not set the intercept to one. Four 95 % CIs of the full model
of Revised IP-OLDF include zero, and we cannot reject the null hypothesis at the
5 % level. On the other hand, we can reject three coefficients from a three-variable
model (X2, X3, X4) at the 5 % level. Although the 95 % CI recommends the

Table 2.8 95% CI of LDFs
(Bold figures show three
coefficients are rejected at 5 %
level)

% X1 X2 X3 X4 C

RIP 97.5 4.55 5.35 9.94 12.31 1

50 0.06 0.11 −0.23 −0.41 1

2.5 −5.59 −11.94 −6.93 −6.34 1

97.5 1.25 −0.06 −0.14 1

50 0.18 −0.15 −0.54 1

2.5 0 −0.53 −1.36 1
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three-variable model, we judge the full model selected by the best model is better
than three-variable model without theoretical explanation in this book.

If we select the medians as coefficients, we obtain the Revised IP-OLDF in
Eq. (2.3). Although we determine that the full model of Revised IP-OLDF is the
best model, the 95 % CI of Revised IP-OLDF indicates that this model might be
redundant and suggest a three-variable model as a useful model. There is a mis-
match between our judgment of the model selection using M2 and the 95 % CI of
discriminant coefficients in the best model. We usually experience this uncertainty
in inferential statistics.

RIP ¼ 0:18� X2� 0:15� X3� 0:54� X4þ 1 ð2:3Þ

We cannot reject four coefficients of Revised LP-OLDF in Eq. (2.4), three coef-
ficients of Revised IPLP-OLDF in Eq. (2.5), and two coefficients of SVM4 in
Eq. (2.6). We can only reject four coefficients of SVM1 in Eq. (2.7). If we check a
three-variable model, we can reject three coefficients of four LDFs, similar to Revised
IP-OLDF. Before we set the intercept to one, we lost much research time and had no
knowledge about discriminant coefficients. However, we cannot obtain clear results
from the 95 % CI of the coefficient. On the other hand, we obtain clear results from
the exam scores in Chap. 5, the Swiss banknote data (Flury and Rieduyl 1988) in
Chap. 6, and Japanese-automobile data in Chap. 7 because these data are LSD.

LP ¼ 0:06� X1þ 0:13� X2� 0:21� X3� 0:46� X4þ 1

½�0:3; 1:8�; ½�0:7; 2�; ½�2:6; 0:5�; ½�2:8; 0:4� ð2:4Þ

IPLP ¼ 0:52� X1þ 0:11� X2� 0:21� X3� 0:39� X4þ 1

½�0:1; 1:6�; ½�0:1; 2:3�; ½�2:6; 0:1�; ½�2:7; �0:1� ð2:5Þ

SVM4 ¼ 0:06� X1þ 0:13� X2� 0:22� X3� 0:43� X4þ 1

½�0:1; 0:7�; ½�0:1; 0:8�; ½�1:1; �0:03�; ½�1:2; �0:1� ð2:6Þ

SVM1 ¼ 0:08� X1þ 0:11� X2� 0:28� X3� 0:28� X4þ 1

½0:02; 0:2�; ½0:01; 0:3�; ½�0:5; �0:2�; ½�0:6; �0:2� ð2:7Þ

2.5 Summary

In this chapter, we discussed the Method 1 and the model selection procedure of
discriminant analysis using Iris data. Iris data are critical evaluation data used by
Fisher until now. Because there are small differences between Fisher’s LDF and
other LDFs, we should no longer use Iris data as the evaluation data.

2.4 100-Fold Cross-Validation for Small Sample Method (Method 1) 53

http://dx.doi.org/10.1007/978-981-10-2164-0_5
http://dx.doi.org/10.1007/978-981-10-2164-0_6
http://dx.doi.org/10.1007/978-981-10-2164-0_7


References

Anderson E (1945) The irises of the Gaspe Peninsula. Bull Am Iris Soc 59:2–5
Cox DR (1958) The regression analysis of binary sequences (with discussion). J Roy Stat Soc B

20:215–242
Fisher RA (1936) The use of multiple measurements in taxonomic problems. Annal Eugenics

7:179–188
Fisher RA (1956) Statistical methods and statistical inference. Hafner Publishing Co, New Zealand
Flury B, Rieduyl H (1988) Multivariate Statistics: A Practical Approach. Cambridge University

Press
Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175
Goodnight JH (1978) SAS technical report—the sweep operator: its importance in statistical

computing—(R100). SAS Institute Inc, USA
Lachenbruch PA, Mickey MR (1968) Estimation of error rates in discriminant analysis.

Technometrics 10:1–11
Miyake A, Shinmura S (1979) An algorithm for the optimal linear discriminant functions.

Proceedings of the international conference on cybernetics and society, pp 1447–1450
Miyake A, Shinmura S (1980) An algorithm for the optimal linear discriminant function and its

application. Jpn Soc Med Electron Biol Eng 18(6):452–454
Sall JP, Creighton L, Lehman A (2004) JMP start statistics, third edition. SAS Institute Inc., USA.

(Shinmura S. edits Japanese version)
Schrage L (2006) Optimization modeling with LINGO. LINDO Systems Inc., USA. (Shinmura S.

translates Japanese version)
Shinmura S, Iida K, Maruyama C (1987) Estimation of the effectiveness of cancer treatment by

SSM using a null hypothesis model. Inf Health Social Care 7(3):263–275. doi:10.3109/
14639238709010089

Shinmura S (1998) Optimal linear discriminant functions using mathematical programming. J Jpn
Soc Comput Stat 11(2):89–101

Shinmura S, Tarumi T (2000) Evaluation of the optimal linear discriminant functions using integer
programming (IP-OLDF) for the normal random data. J Jpn Soc Comput Stat 12(2):107–123

Shinmura S (2000a) A new algorithm of the linear discriminant function using integer
programming. New Trends Prob Stat 5:133–142

Shinmura S (2000b) Optimal linear discriminant function using mathematical programming.
Dissertation, 200:1–101. Okayama University, Japan

Shinmura S (2003) Enhanced algorithm of IP-OLDF. ISI2003 CD-ROM, pp 428–429
Shinmura S (2004) New algorithm of discriminant analysis using integer programming. IPSI 2004

Pescara VIP Conference CD-ROM, pp 1–18
Shinmura S (2005) New age of discriminant analysis by IP-OLDF—beyond Fisher’s linear

discriminant function. ISI2005, pp 1–2
Shinmura S (2007) Overviews of discriminant function by mathematical programming. J Jpn Soc

Comput Stat 20(1–2):59–94
Shinmura S (2010a) The optimal linearly discriminant function (Saiteki Senkei Hanbetu Kansuu).

Union of Japanese Scientist and Engineer Publishing, Japan
Shinmura S (2010b) Improvement of CPU time of revised IP-OLDF using linear programming.

J Jpn Soc Comput Stat 22(1):39–57
Shinmura S (2011a) Beyond Fisher’s linear discriminant analysis—new world of the discriminant

analysis. ISI CD-ROM, pp 1–6
Shinmura S (2011b) Problems of discriminant analysis by mark sense test data. Jpn Soc Appl Stat

40(3):157–172
Shinmura S (2013) Evaluation of optimal linear discriminant function by 100-fold

cross-validation. ISI2013 CD-ROM, pp 1–6
Shinmura S (2014a) End of discriminant functions based on variance-covariance matrices.

ICORE2014, pp 5–16

54 2 Iris Data and Fisher’s Assumption

http://dx.doi.org/10.3109/14639238709010089
http://dx.doi.org/10.3109/14639238709010089


Shinmura S (2014b) Improvement of CPU time of linear discriminant functions based on MNM
criterion by IP. Stat Optim Inf Comput 2:114–129

Shinmura S (2014c) Comparison of linear discriminant functions by K-fold cross-validation. Data
Anal 2014:1–6

Shinmura S (2015a) The 95 % confidence intervals of error rates and discriminant coefficients. Stat
Optim Inf Comput 2:66–78

Shinmura S (2015b) A trivial linear discriminant function. Stat Optim Inf Comput 3:322–335.
doi:10.19139/soic.20151202

Shinmura S (2015c) Four serious problems and new facts of the discriminant analysis. In:
Pinson E, Valente F, Vitoriano B (ed) Operations research and enterprise systems, pp 15–30.
Springer, Berlin (ISSN: 1865-0929, ISBN: 978-3-319-17508-9, doi:10.1007/978-3-319-
17509-6)

Shinmura S (2015d) Four problems of the discriminant analysis. ISI 2015:1–6
Shinmura S (2016a) The best model of Swiss banknote data. Stat Optim Inf Comput, 4:118–131.

International Academic Press (ISSN: 2310-5070 (online) ISSN: 2311-004X (print),
doi:10.19139/soic.v4i2.178)

Shinmura S (2016b) Matroska feature selection method for microarray data. Biotechnology
2016:1–8

Shinmura S (2016c) Discriminant analysis of the linear separable data—Japanese automobiles.
J Stat Sci Appl X, X:0–14

Vapnik V (1995) The nature of statistical learning theory. Springer, Berlin

References 55

http://dx.doi.org/10.19139/soic.20151202
http://dx.doi.org/10.1007/978-3-319-17509-6
http://dx.doi.org/10.1007/978-3-319-17509-6
http://dx.doi.org/10.19139/soic.v4i2.178


Chapter 3
Cephalo-Pelvic Disproportion Data
with Collinearities

3.1 Introduction

In this chapter, we discriminate cephalo-pelvic disproportion (CPD) data (Miyake
and Shinmura 1980). These data have significant relationships with the Theory.

1. We evaluated a heuristic optimal linear discriminant function (OLDF) by these
data (Miyake and Shinmura 1979; Shinmura and Miyake 1979). However, we
could only evaluate a six-variable model because our CPU power was poor on
an IBM 360 and because of the limitations of a heuristic OLDF. Therefore, we
could not extend our research.

2. These data consist of 240 patients with 19 independent variables. We specified
three collinearities in these data and established how to remove such
collinearities (Shinmura 1998).

3. We found a strange trend of NMs by quadratic discriminant function (QDF) and
found that QDF is fragile for collinearities.Moreover, NMof Fisher’s LDF did not
decrease in the 19 models from the one-variable model to the 19-variable model
selected by the forward and backward stepwise procedure.On the other hand,NMs
of our three MP-based optimal LDFs (OLDFs) almost decreased (Shinmura and
Tarumi 2000; Shinmura 2000a, b, 2003, 2004, 2011a).

4. In the CPD data, we selected a four-variable model as useful for the regression
model selection procedure (plug-in rule1). However, the new model selection
procedure that uses the 100-fold cross-validation for small sample method
(Method 1) recommends a nine-variable model as the best model. This procedure
is simple and powerful compared with leave-one-out (LOO) procedure
(Lachenbruch and Mickey 1968). We believe that many variables and/or
collinearities cause this difference. Because the Iris data (Anderson 1945) have
four variables and might satisfy Fisher’s assumption, the model selection proce-
dure by regression analysis and the bestmodel select the full model of seven LDFs,
which are Revised IP-OLDF (Shinmura 2005, 2007, 2010a), Revised LP-OLDF,
Revised IPLP-OLDF (Shinmura 2010b, 2014b), Support Vector Machine (SVM4
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and SVM1) (Vapniik 1995), Fisher’s LDF (Fisher 1936, 1956), and logistic
regression (Cox 1958; Firth 1993). Because there are slight differences between
the seven error rate (Miyake and Shinmura 1976) means from the validation
samples (M2), we should no longer use the Iris data as the evaluation data.

5. CPD data has many OCPs. This fact implies that Revised IP-OLDF might
search for several OCPs with the same minimum number of misclassifications
(MNMs), and different coefficients groups that belong to different OCPs. This
result means that it is difficult for us to evaluate the 95 % CI of discriminant
coefficients. This is the new Problem 6.

In this chapter, we solve the aforementioned problems.

3.2 CPD Data

3.2.1 Collinearities

Prof. Suzumura from Nihon Medical School developed Suzumura’s method in
order to determine which treatments a given surgeon should select for pregnant
women with cephalo-pelvic disproportion symptom: Cesarean section or natural
delivery. His method is as follows: First, a copy of the fetus’ head is made on paper
from the X-ray image of the pelvis and cut off. Next, the paper is moved back to the
X-ray in order to determine the correct treatment. Prof. Suzumura’s staff collected
CPD data, and we analyzed these data in order to prove the validity of his method
(Miyake and Shinmura 1980). The data consisted of two classes: 180 women who
delivered naturally and 60 who delivered by Cesarean section. The staff collected
the 19 variables listed in Table 3.1. Three variables (X1–X3) are standard items. Six
variables (X4–X9) are measurements of the side of the uterus. Five variables (X10–
X14) are measurements of the pelvic inlet image. Five variables (X15–X19) are
measurements of the outside of the uterus.

When we discriminate these data by Revised IP-OLDF, LINGO (Schrage 1991,
2006) indicates that there are two linear relationships among six variables in
Eq. (3.1) as a warning error. Therefore, we add slight random noise to X9 and X12.
If we could prove the importance of X9 and X12, we can consider that Suzumura’s
method is meaningful for medical diagnosis. However, these variables caused
collinearity because the two variables are the subtraction of another variable.
Collinearities mean that there are linear relationships of independent variables.

X9 ¼ X7� X8

X12 ¼ X13� X14
ð3:1Þ

Some researchers erroneously believe that high correlation among independent
variables causes collinearities. Table 3.2 lists the top ten high correlations. The two
correlations of (X7, X9) and (X12, X13) including Eq. (3.1) are 0.89 and 0.78,
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respectively, and are not a strong correlation. In addition, the previous claim does
not have a correlation threshold for collinearity.

Sall, the founder of JMP (Sall et al. 2004) and vice president of SAS Institute
Inc., explained collinearity clearly by a variance inflation factors (VIF), as indicated
in Table 3.1. We translated his technical report (Sall 1981) and published a book
with Dr. Goodnight’s technical report of the sweep operator about all possible
regression models (Goodnight 1978). If we regress one independent variable xi by

Table 3.1 Nineteen variables and VIFs

Var. Description VIF

Standard items X1 Age of the pregnant woman 1.2

X2 Number of times of delivery 1.3

X3 Number of sacrum 1.1

Measurements on uterus side X4 Utero-posterior distance at pelvic inlet 24.6
X5 Utero-posterior distance at wide pelvis 8.7

X6 Utero-posterior distance at narrow
pelvis

3.1

X7 Shortest anteroposterior distance 57.0
X8 Biparietal fetal diameter 5.3

X9 X9 = X7 − X8 21.0
Measurements of pelvic inlet
image

X10 Utero-posterior distance at pelvic inlet 3.7

X11 Biparietal diameter at pelvic inlet 1.7

X12 X12 = X13 − X14 1484
X13 Area at pelvic inlet 1466
X14 Area of fetal head 638

Measurements of outside of uterus X15 Area at bottom length of uterus 1.4

X16 Abdominal circumference 1.7

X17 External conjugate 1.6

X18 Intertrochanteric diameter 1.6

X19 Lateral conjugate 1.4

Table 3.2 Top ten correlations

Var1. Var2. Correlation Lower 95 % Upper 95 % p value

X4 X7 0.97 0.96 0.98 3.4E−147

X7 X9 0.89 0.86 0.92 2.13E−84

X4 X9 0.87 0.83 0.90 3.28E−74

X5 X7 0.86 0.82 0.89 6.49E−72

X7 X10 0.81 0.76 0.85 1.15E−56

X5 X6 0.78 0.73 0.83 3.33E−51

X12 X13 0.78 0.73 0.83 3.53E−51

X5 X10 0.78 0.72 0.82 3.18E−50
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other independent variables, we obtain the deterministic coefficient Ri
2. VIF is

defined in Eq. (3.2). Moreover, tolerance (TOL) is the same statistics in Eq. (3.3).
Because the range of TOL is [0, 1] and VIF is greater than one, we should use VIF
because the range of it is wider than TOL.

VIFi ¼ 1= 1� R2
i

� � ð3:2Þ

TOLi ¼ 1� R2
i ¼ 1=VIF ð3:3Þ

Table 3.1 lists VIFs. From our experience of CPD data, we determined
collinearity by the condition “VIF ≥ 50;” in other words, Ri

2 ≥ 0.98 and
TOL ≤ 0.02. However, we asked Dr. Sall about the threshold in 2015. He answered
that it depends on the data, and it is difficult to set the collinearity threshold
uniquely. Therefore, we consider that collinearity might be the condition
“VIF ≥ 20” that is equal to Ri

2 = 0.95. The six VIFs of X4, X7, X9, X12, X13, and
X14 are >20. We think “VIF ≥ 20 or Ri

2 ≥ 0.95” indicates the collinearity.
However, we cannot know the linear relationship among collinearities.

3.2.2 How to Find Linear Relationships in Collinearities

Table 3.3 lists the eigenvalues (left) and eigenvectors (right) by PCA. Eigenvalues
for the 19th, 18th, 17th, and 16th principal components are 0.00, 0.01, 0.04, and
0.15, respectively, and the contribution rates are 0, 0.07, 0.19, and 0.77 %,
respectively. These four principal components explain the 0.25 % of total variance
of data. If we focus on the large values of eigenvectors that are greater than 0.1, we
can drive four linear relationships of collinearities in Eq. (3.4). For example, the
19th principal component is expressed by three variables, such as (X12, X13, X14).
If we assign the value of some cases to this formula, the value of the 19th principal
component can be calculated. However, its variance is almost zero. Although the
variances of the 18th, 17th, and 16th principal components are 0.07, 0.19, and
0.77 %, respectively, we can consider that the three variances are almost zero.
Therefore, we find four linear relationships that present collinearities. Next, we can
determine the variables that should be removed from the 19 variables in order to
eliminate collinearity by the stepwise method.

PRIN19: 0:001� X1� 0:003� X2þ 0:001� X3þ 0:000� X4� 0:004� X5þ 0:000� X6

þ 0:002� X7þ 0:000� X8þ 0:001� X9þ 0:002� X10� 0:001� X11

þ 0:643� X12� 0:639� X13þ 0:422� X14� 0:001� X15þ 0:001� X16

þ 0:001� X17þ 0:000� X18þ 0:000� X19

¼ 0:643� X12� 0:639� X13þ 0:422� X14 ¼ 0 ð0%Þ

ð3:4Þ
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PRIN18: 0:413� X4þ 0:156� X5� 0:837� X7þ 0:134� X8þ 0:289� X9 ¼ 0 ð0:07%Þ

PRIN17: � 0:583� X4� 0:262 � X5þ 0:303� X8þ 0:698� X9 ¼ 0 ð0:19%Þ

PRIN16: 0:106� X3� 0:295� X4þ 0:795� X5� 0:406� X6� 0:277� X10
¼ 0 ð0:77%Þ

Table 3.4 lists all possible combinations of regression models. There are
(219 − 1) models, from one- to 19-variable models. Therefore, we focus only on
those models selected by the forward (F) and backward (B) stepwise procedures. In
the “F/B” column of this table, the symbol “F” represents the model selected by the
forward stepwise procedure and the symbol “B” represents the model selected by the
backward stepwise procedure. We sort all models within the same “p” (number of
independent variables) in descending order by R-square (R2). The column
“R(rank)” shows the ranking within the same “p.” AIC selects a seven-variable
model as the backward model. BIC and Cp select the two- and three-variable models
selected by both stepwise procedures, respectively. The selected models are quite
different. Moreover, the three MNMs are 7, 13, and 12. This fact might imply that we
cannot trust these statistics for the model selection of the discriminant analysis

Table 3.3 Eigenvalues (left) and eigenvectors (right)

Eigenvalues Eigenvectors

Prin. Eigen Contribution Cum. Cont. Var. Prin16 Prin17 Prin18 Prin19

1 6.90 36.29 36.29 X1 0.015 0.004 0.001 0.001

2 2.14 11.26 47.55 X2 0.011 0.006 −0.007 −0.003

3 1.54 8.13 55.68 X3 0.106 0.005 −0.002 0.001

4 1.24 6.54 62.22 X4 −0.295 −0.583 0.413 0.000

5 1.12 5.88 68.10 X5 0.795 −0.262 0.156 −0.004

6 1.01 5.32 73.42 X6 −0.406 0.050 −0.048 0.000

7 0.94 4.95 78.37 X7 0.058 −0.049 −0.837 0.002

8 0.73 3.84 82.21 X8 0.045 0.303 0.134 0.000

9 0.62 3.28 85.50 X9 0.092 0.698 0.289 0.001

10 0.56 2.94 88.44 X10 −0.277 0.062 0.020 0.002

11 0.52 2.76 91.20 X11 0.016 0.039 −0.012 −0.001

12 0.44 2.32 93.52 X12 −0.049 0.011 0.006 0.643
13 0.41 2.17 95.69 X13 −0.026 −0.002 0.002 −0.639
14 0.37 1.96 97.65 X14 0.044 −0.022 −0.002 0.422
15 0.25 1.33 98.98 X15 0.031 −0.017 0.000 −0.001

16 0.15 0.77 99.75 X16 0.043 0.019 0.012 0.001

17 0.04 0.19 99.93 X17 0.024 −0.015 0.006 0.001

18 0.01 0.07 100.00 X18 −0.074 0.023 −0.003 0.000

19 0.00 0.00 100.00 X19 0.017 −0.010 −0.005 0.000
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(Nomura and Shinmura 1978; Shimizu et al. 1975; Shinmura et al. 1983, 1987;
Shinmura 2001). The column “OCP” is the number of OCPs. LINGO K-best option
can find this number, as shown in Fig. 4.3. All models of the Iris, Swiss banknote
(Flury and Rieduyl 1988), pass/fail determination (Shinmura 2011b), and
Japanese-automobile data (Shinmura 2016) have one “OCP.” Although there is no
collinearity in Student data (Shinmura 2010a), two models of Student data have
many OCPs. Until now, we have used the model sequences selected by the stepwise
procedures of SAS calculated before 1981 (Shinmura 1998) in column SF4 and SB4.

Table 3.4 All possible combinations of CPD data

P R F/B(JMP)1 AIC BIC Cp RIP OCP JF2 JB3 F/B(SAS) SF4 SB4

1 1 FB12 110 120 21 20 1 22 22 FB12 22 22

2 1 FB9 94 108 5 13 3 20 20 FB9 20 20

3 1 FB18 93 110 3 12 2 22 22 FB18 22 22

4 1 F15 93 113 3 10 2 18 F15 18

3 B2 93 114 3 9 1 17 B13 20

5 1 B1 92 116 3 9 1 17 F17 18

4 F2 93 117 3 10 1 16 B14 31

6 1 B7 92 119 2 9 4 13 F2 16

8 F1 93 120 3 7 5 15 B15 32

7 1 B5 92 123 2 7 10 13 F1 15

9 F7 93 124 4 6 1 9 B17 30

8 2 F5 93 127 3 6 1 9 F7 9

3 B13 93 127 3 6 3 13 B1 27

9 1 B14 94 131 4 6 3 26 F5 9

2 F17 94 131 4 4 3 9 B2 23

10 1 B17 95 135 5 6 13 26 F19 8

11 F13 96 136 6 4 6 12 B7 24

11 1 F14B15 96 140 6 4 6 22 22 F13/B5 9 22

12 1 FB10 98 145 8 4 1 21 21 F14/B19 21 21

13 2 F16 100 150 9 3 5 20 FB4 17 17

4 B4 100 150 9 3 2 21

14 1 B11 102 155 11 3 10 18 FB11 16 16

2 F4 102 155 11 3 16 18

15 1 B19 104 160 12 2 1 17 FB16 17 17

2 F11 104 160 12 3 1 17

16 1 F19B16 106 165 14 2 2 17 17 FB8 21 21

17 1 FB6 108 171 16 2 8 16 16 FB10 19 19

18 1 FB3 111 176 18 2 15 15 15 FB6 17 17

19 1 FB8 113 182 20 2 16 15 15 FB3 16 16
1F: forward; B: backward; Number: Variable; FB12: X12 selected by F & B
2JF: NM of QDF by JMP forward; 22: NM of model (X12) by QDF is 22
3JB: NM of QDF by JMP backward; 20: NM of model (X9, X12) by QDF is 20
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In 2015, we discriminated CPD data by JMP and obtained several different results in
column JF3 and JB3.

We compare NMs of QDF by JMP and SAS. From 35 years ago, we used the
output by SAS. Forward stepwise of JMP selects a variable from the one- to
19-variable models in column “F/B(JMP) and JF” as follows:

X12(22) -> X9(20) -> X18(22) -> X15(18) -> X2(16) -> X1(15) -> X7(9) -> X5
(9) -> X17(9) -> X13(12) -> X14(22) -> X10(21) -> X16(20) -> X4(18) -> X11(17)
-> X19(17) -> X6(16) -> X3(15) -> X8(15).

The blanket numbers are NMs of QDF. The underlined expressions indicate
three variables that are strong collinearities. After X14 is entered into the
11-variable model, NM increases to 22 from 12 because this model includes (X12,
X13, X14) and has collinearity. Backward stepwise deletes variables from 19- to
one-variable models in column “F/B(JMP) and JB” as follows:

X8(15) -> X3(15) -> X6(16) -> X16(17) -> X19(17) -> X11(18) -> X4(21) ->
X10(21) -> X15(22) -> X17(26) -> X14(26) -> X13(13) -> X5(13) -> X7(13) ->
X1(17) -> X2(17) -> X18(22) -> X9(20) -> X12(22).

After X14 is excluded from the nine-variable model, NM decreases from 26 to
13 in the eight-variable model. Figure 3.1 shows NMs of JMP. The symbol “○” is
NM for forward stepwise. NM decreases from the one- to six-variable models. NMs
for three models (seven, eight, and nine variables) are nine. After the ten-variable
model, NM increases to the 13-variable model. In particular, when X14 is entered
into the 11-variable model, NM “jumps” to 22 from 12. The symbol “+” is NM for
backward stepwise. NM increases from the 19-variable model to the nine-variable
model. After X14 is excluded from the nine-variable model, NM in the
eight-variable model decreases to 13 from 26. The strong relationship of
collinearity causes this result mainly.

Figure 3.2 shows NMs of SAS. The forward stepwise procedure selects from
one- to 19- variables models in column “F/B(SAS) and SF” as follows:

X12(22) -> X9(20) -> X18(22) -> X15(18) -> X17(18) -> X2(16) -> X1(15) ->
X7(9) -> X5(9) -> X19(8) -> X13(9) -> X14(21) -> X4(17) -> X11(16) -> X16(17) ->
X8(21) -> X10(19) -> X6(17) -> X3(16).

Fig. 3.1 NMs of JMP
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Backward stepwise deletes variables from 19- to one-variable models in column
“F/B(SAS) and SB” as follows:

X3(16) -> X6(17) -> X10(19) -> X8(21) -> X16(17) ->-> X11(16) -> X4(17) ->
X19(21) -> X5(22) -> X7(24) -> X2(23) -> X1(27) ->-> X17(30) -> X15(32) ->
X14(31) -> X13(20) -> X18(22) -> X9(20) -> X12(22).

The models selected by JMP and SAS are different. This might be the result of
the computational difficulty of collinearity and/or algorithm change. The symbol
“○” is NM of SAS forward stepwise. NM decreases from one to seven variables.
NMs of three models (eight, nine, and 11 variables) are nine. NM of ten variables is
eight. NM of 12 variables is 21. The symbol “+” is NM of SAS backward stepwise.
NM increases from 19 to five variables. After X14 is excluded from the
five-variable model, NM decreases. For long-term research, we should register the
analysis date and software version because we have had many results that have been
different because of software updates. We are concerned that those researchers who
follow our papers might become confused. JMP is version 10 and LINGO was
version 15 in 2014. However, we have no record on SAS. We analyzed the CPD
data on an IBM 360 Model 135 before 1981. We regret having to introduce this old
output.

3.2.3 Comparison Between MNM and Eight NMs

We compare nine discriminant functions, with the exception of H-SVM. In
Table 3.5, the “RIP” column is MNM and eight columns are “Diff1s” (NMs of
eight discriminant functions – MNM). The eight discriminant functions are SVM4,
SVM1, Revised IPLP-OLDF (IPLP), Revised LP-OLDF (LP), logistic regression
(Logistic), Fisher’s LDF (LDF), QDF, and RDA (Friedman 1989). We can confirm
that MNM decreases monotonously. Although NM of Revised IPLP-OLDF
decreases monotonously, this result is not guaranteed theoretically. From the table,
we find the following remarkable facts:

Fig. 3.2 NMs of SAS
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1. Revised IPLP-OLDF is the same as Revised IP-OLDF. Both LDFs are superior
to other LDFs.

2. The bold numbers are the minimum values of “Diff1s” of seven LDFs, with the
exception of Revised IPLP-OLDF. Three MP-based LDFs have 48 minimum
values. Four statistical LDFs have 12 minimum values. In general, we can
determine that three MP-based LDFs are superior to four statistical LDFs.

In general, logistic regression is better than other LDFs, with the exception of
Revised IP-OLDF and Revised IPLP-OLDF. However, many NMs of logistic
regression are not better than other NMs in CPD data. To this point, we have known
that collinearity greatly influences QDF. In this research, we are aware that logistic
regression might also be weak for collinearity.

Table 3.5 MNM and eight Diff1s

p RIP SVM4 SVM1 IPLP LP Logistic LDF QDF RDA

1 20 1 1 0 0 6 3 2 2

2 13 4 4 0 4 16 4 7 7

3 12 6 6 0 6 12 7 10 9

4 10 3 3 0 3 8 7 8 8

9 6 7 0 6 7 6 8 8

5 9 6 7 0 6 14 8 8 7

7 6 5 0 6 9 10 9 8

6 9 3 5 0 3 7 6 4 6

7 7 5 0 7 7 10 8 5
7 7 9 10 0 9 8 8 6 8

6 6 6 0 6 9 10 3 7

8 4 5 7 0 5 3 10 5 8

6 9 6 0 9 8 10 7 8

9 6 5 6 0 5 7 10 20 8

4 4 7 0 4 8 11 5 8

10 6 7 7 0 7 5 9 20 7

4 5 4 0 5 4 9 8 9

11 4 5 4 0 5 4 9 18 11

12 3 5 5 0 5 5 10 18 11

13 3 3 6 0 3 6 10 17 9

3 3 5 0 3 5 10 18 12

14 3 4 6 0 4 6 13 15 11

3 4 6 0 4 4 9 15 9

15 2 5 6 0 5 7 13 15 11

2 5 6 0 5 5 14 15 10

16 2 3 5 0 3 4 14 15 11

17 2 3 6 0 3 7 14 14 10

18 2 4 5 0 4 7 14 13 10

19 2 4 5 0 4 7 14 13 9
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3.2.4 Comparison of 95 % CI of Discriminant Coefficient

Table 3.6 lists the 95 % CI of 19 and nine-variable coefficients (Shinmura 2013,
2014a, c, 2015a–d, 2016a). Because all coefficients include zero, we determine that
all coefficients, with the exception of the intercept, are zero. Although we cannot
explain this result positively, we consider that two possibilities might be collinearity
and/or many OCPs.

3.3 100-Fold Cross-Validation

3.3.1 Best Model

Table 3.7 lists the results of 29 models by the Method 1. Revised IP-OLDF and
Revised IPLP-OLDF select a forward nine-variable model as the best model. SVM4
and SVM1 select the full models. LP and logistic regression select the 18-variable
models. Fisher’s LDF selects the backward seven-variable model. To summarize the
previous results, we never permit the 19- or 18-variablemodels selected by four LDFs
because the best model of Revised IPLP-OLDF has the minimum M2 among seven
best models. We compare M2s of the forward nine-variable model of seven LDFs,

Table 3.6 95% CI of 19 and
nine-variable models

RIP 97.5 2.5 97.5 2.5

1 675,569 −3857 0.08 −0.59

2 3.202 0 7.63 −3.46

3 1.577 −428,472

4 16,051 −62,257

5 0.318 −99,274 0.17 −0.20

6 17,154 −21,872

7 3188 −31,079 0.30 −0.29

8 451,121 −0.692

9 177,497 −31,534 0.29 −0.28

10 17,910 −21,603

11 740 −84,804

12 0.1 −13,002 0.05 −0.02

13 1269 −1041

14 0.095 −661

15 28,580 −0.035 0.04 −0.08

16 3034 −2988

17 97,137 −273.07 0.52 −0.11

18 0.125 −64,072 0.16 −0.09

19 29,394 −564.17

c 1 0 1 1

66 3 Cephalo-Pelvic Disproportion Data with Collinearities



Table 3.7 Beat models by
100-fold cross-validation

RIP M1 M2 Diff. F/B(JMP)

19 0.02 3.77 3.75 FB8

18 0.03 3.66 3.63 FB3

17 0.12 3.83 3.71 FB6

16 0.15 3.78 3.62 F19B16

15 0.24 3.78 3.54 B19

15 0.18 3.79 3.6 F11

14 0.47 4.01 3.54 B11

14 0.32 3.9 3.58 F4

13 0.51 3.96 3.45 F16

13 0.53 4.08 3.55 B4

12 0.59 3.96 3.37 FB10

11 0.69 3.96 3.28 F14B15

10 0.7 3.77 3.07 F13

10 1.22 4.38 3.15 B17

9 0.82 3.64 2.82 F17

9 1.43 4.43 2.99 B14

8 1.05 3.72 2.66 F5

8 1.44 4.39 2.95 B13

7 1.94 4.77 2.83 F7

7 1.65 4.36 2.7 B5

6 2.16 4.51 2.35 F1

6 2.63 5.23 2.6 B7

5 2.56 4.6 2.04 F2

5 3.02 5.11 2.1 B1

4 3.58 5.68 2.1 F15

4 3.32 5.01 1.69 B2

3 4.38 5.97 1.59 FB18

2 4.83 6.04 1.21 FB9

1 7.92 9.02 1.1 FB12

SVM4 M1 M2 Diff. M1Diff. M2Diff.

19 0.06 3.85 3.79 0.042 0.08

9 2.25 4.48 2.23 1.438 0.85
SVM1 M1 M2 Diff. M1Diff. M2Diff.

19 1.13 4.61 3.48 1.117 0.85

9 2.93 4.93 2.01 2.108 1.3
LP M1 M2 Diff. M1Diff. M2Diff.

19 0.05 3.73 3.68 0.029 −0.04

18 0.07 3.73 3.66 0.042 0.07

9 2.25 4.45 2.2 1.429 0.81
IPLP M1 M2 Diff. M1Diff. M2Diff.

9 0.83 3.62 2.8 0.008 −0.02
Logistic M1 M2 Diff. M1Diff. M2Diff.

(continued)
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which are 3.64, 4.48, 4.93, 4.45, 3.62, 4.78, and 9.88 %. “M2Diff” of six LDFs are
0.85, 1.30, 0.81, −0.02, 1.14, and 6.24 %. Fisher’s LDF is poor. The CPU times of
logistic regression and Fisher’s LDF are 1 and 1 h 10 min, respectively, by our
wristwatch. The CPU times of RIP, IPLP, LP, SVM4, and SVM1 are 1 h 57 min, 2 h
17 min, 46 min, 1 h 34 min, and 1 h 39 min, respectively. Only LP is faster than
logistic regression and Fisher’s LDF. Although Fisher’s LDF and logistic regression
have always been slower than MP-based LDFs since 2012, we find that this is the
reverse in CPDdata. Collinearitymight be the cause for this reversal.We estimate that
four MP-based LDFs, with the exception of Revised LP-OLDF, are slower than
Fisher’s LDF and logistic regression because of collinearity. We estimate that IP and
QP requiremore time to converge to the optimal solution for datawith collinearity.We
must examine this prediction in the near future. We cannot explain the mismatch
where we selected good models within five variables in the original data and the best
modelwith nine variables by the 100-fold cross-validationmethod. Some statisticians
claim the model with minimum “Diff” such as seven-variable Fisher’s LDF has good
generalization ability because such model does not overestimate. However, M1 and
M2 of this model are very high.

3.3.2 95 % CI of Discriminant Coefficient

Table 3.8 lists the percentiles of three models from one to three variables of
Revised IP-OLDF. The 95 % CI of the X12 coefficient is [−169.4, −0.22]. We can
determine that the X12 coefficient is negative. If we use the median as the coeffi-
cient, we obtain one-variable LDF in Eq. (3.5). The 95 % CIs of X9 and X12 are
[−917.61, 1.47] and [−128.11, −0.05], respectively. Therefore, we can determine

Table 3.7 (continued) 18 0.17 3.95 3.79 0.138 0.29

9 2.73 4.78 2.04 1.917 1.14
LDF M1 M2 Diff. M1Diff. M2Diff.

9 8.91 9.88 0.97 8.096 6.24
7 8.73 9.38 0.66 6.783 4.62

Table 3.8 Percentiles of
three models of Revised
IP-OLDF

% X9 X12 X18

97.5 −0.22

50.0 −112.35

2.5 −169.40

97.5 1.47 −0.05

50.0 −621.93 −36.44

2.5 −917.61 −128.11

97.5 −0.67 −0.06 191.31

50.0 −311.77 −49.32 0.52

2.5 −987.37 −104.87 −256.48
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that the coefficient of X9 is zero, and that of X12 is negative. We obtain a
two-variable model in Eq. (3.6). Because there are three OCPs listed in Table 3.4,
100 LDFs from the training samples might correspond to three different OCPs. The
95 % CIs of (X9, X12, X18) are [−987.37, −0.67], [−104.87, −0.06], and [−256.48,
191.31], respectively. Therefore, we can determine that the coefficients of X9 and
X12 are negative, and that of X18 is zero. We obtain a three-variable model in
Eq. (3.7). For four-variable models and above, we can determine that all coeffi-
cients are zero. Therefore, we obtain a mismatch in the conclusion between the best
model and 95 % CI of coefficients.

RIP ¼ �112:35� X12þ 1 ð3:5Þ

RIP ¼ �1621:93� X9� 36:44� X12þ 1 ð3:6Þ

RIP ¼ �311:77� X9� 49:32� X12þ 0:52� X18þ 1 ð3:7Þ

Because many OCPs have the same MNMs, the best models have the same
MNM. On the other hand, we have a serious problem with regard to the 95 % CI of
discriminant coefficients because many OCPs have different 95 % CI of discrimi-
nant coefficients. Moreover, we cannot explain the complex effects of many OCPs
and collinearity for the Theory.

3.4 Trial to Remove Collinearity

3.4.1 Examination by PCA (Alternative 2)

The most popular treatment for collinearities is the use of PCA. We analyze the
original CPD data by PCA and obtain 19 principal components as the new vari-
ables, as listed in Table 3.9. If we analyze these new variables, we are free from the
effect of collinearity. The fifth component is entered into the three-variable model
because it is more valuable than the third and fourth components from the per-
spective of discrimination. In the table, “eigen.” indicates eigenvalues; “contribu-
tion” is the contribution ratio, and its first component is 36.29 % of the total data
variation; “cum.” is cumulative contribution, and its first three components explain
55.68 % of the total data variation. Therefore, we can omit the last three compo-
nents because those explain only 0.25 % of the total data variation. We obtain AIC,
BIC, and Cp by regression analysis, and they recommend nine, four, and
nine-variable models as useful. On the other hand, Table 3.4 indicates that seven,
two, and three-variable models are useful for the original CPD data. If we use 19
components instead of original variables, we observe that the selected model
requires more variables than the original data.

Table 3.10 lists MNM (“RIP” column) and eight “Diff1.” Although MNM
decreases monotonously, MNMs from eight to 14 variables are six. Therefore, we
have a good model within eight variables.
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Table 3.9 19 variables by PCA and VIFs

p Prin. Eigen Contribution Cum. AIC BIC Cp

1 1 6.90 36.29 36.29 177.9 188.3 105.1

2 2 2.14 11.26 47.55 130.1 143.8 43.0

3 5 1.54 8.13 55.68 116.7 133.8 27.7

4 3 1.24 6.54 62.22 104.3 124.9 14.5

5 13 1.12 5.88 68.10 102.2 126.0 12.2

6 12 1.01 5.32 73.42 100.8 128.0 10.7

7 8 0.94 4.95 78.37 99.6 130.2 9.4

8 7 0.73 3.84 82.21 98.6 132.4 8.3

9 19 0.62 3.28 85.50 98.4 135.5 8.1
10 14 0.56 2.94 88.44 98.6 139.0 8.2

11 10 0.52 2.76 91.20 99.1 142.7 8.5

12 6 0.44 2.32 93.52 99.6 147.5 8.9

13 18 0.41 2.17 95.69 100.2 150.2 9.3

14 9 0.37 1.96 97.65 101.7 154.9 10.6

15 11 0.25 1.33 98.98 103.7 160.1 12.3

16 16 0.15 0.77 99.75 105.8 165.3 14.1

17 17 0.04 0.18 99.93 108.1 170.7 16.0

18 15 0.01 0.07 100.00 110.4 176.2 18.0

19 4 0.00 0.00 100.00 112.8 181.7 20.0

Table 3.10 Comparison of MNM and eight NMs

p RIP SVM4 SVM1 LP IPLP Logistic LDF QDF RDA

1 30 0 0 0 0 96 2 3 3

2 14 5 5 5 0 139 4 6 5

3 12 2 2 2 0 27 3 7 7

4 10 2 3 2 0 46 6 8 7

5 10 3 3 3 0 23 5 4 5

6 9 4 4 4 0 12 6 7 8

7 8 4 4 4 0 2 6 9 8

8 6 5 7 5 0 4 11 11 9

9 6 6 7 6 0 2 11 6 9

10 6 5 6 5 0 2 12 12 14

11 6 6 8 6 0 2 10 9 11

12 6 7 8 7 0 2 10 11 11

13 6 7 8 7 0 6 7 9 10

14 6 8 8 8 0 6 12 7 11

15 5 5 7 5 0 4 12 8 6

16 3 9 10 9 0 12 14 8 7

17 3 7 10 7 0 8 14 11 12

18 3 4 7 4 0 6 13 12 10

19 2 4 7 4 0 7 14 13 14
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Table 3.11 lists the results of seven LDFs by the Method 1. Six LDFs select the
full models as the best models. Only Fisher’s LDF select the 15-variable model.
Although logistic regression has the minimum M2 among seven best models, it is
0.01 % less than that of Revised IP-OLDF. “M1s and M2s” of five LDFs are almost
the same as those of Revised IP-OLDF. Only M2s of Fisher’s LDF are over 5.54 %
larger than those of Revised IP-OLDF.

Table 3.11 Results of seven
LDFs by Method 1

RIP M1 M2 Diff. Prin.

1 12.05 13.27 1.23 1

2 5.47 6.69 1.23 2

3 4.37 5.81 1.44 5

4 3.57 5.50 1.93 3

5 3.10 5.48 2.39 13

6 2.75 5.21 2.46 12

7 1.92 4.66 2.74 8

8 1.73 4.61 2.88 7

9 1.54 4.68 3.14 19

10 1.27 4.70 3.44 14

11 1.14 4.85 3.71 10

12 0.98 4.89 3.92 6

13 0.88 4.88 4.00 18

14 0.70 5.04 4.33 9

15 0.45 4.58 4.13 11

16 0.26 4.37 4.10 16

17 0.21 4.53 4.31 17

18 0.13 4.63 4.50 15

19 0.02 4.03 4.01 4

SVM4 M1 M2 Diff. M1Diff. M2Diff.

19 0.02 4.03 5.38 0.000 0.00
SVM1 M1 M2 Diff. M1Diff. M2Diff.

19 1.92 4.59 2.67 1.904 0.56
LP M1 M2 Diff. M1Diff. M2Diff.

19 0.05 4.09 4.05 0.029 0.06
IPLP M1 M2 Diff. M1Diff. M2Diff.

19 0.02 4.06 4.05 0.000 0.03
Logistic M1 M2 Diff. M1Diff. M2Diff.

1 13.13 13.16 0.03 1.083 −0.11

2 7.59 7.77 0.18 2.121 1.08

3 5.90 6.26 0.37 1.529 0.45

4 5.39 6.03 0.64 1.821 0.53

5 5.29 5.97 0.68 2.196 0.49

6 5.16 6.15 0.99 2.413 0.94
(continued)
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We summarize our examinations as follows:

1. If we analyze the principal components instead of the original variables, we are
free from the tedious research task caused by collinearities. However, the best
models of Revised IP-OLDF and logistic regression that use PCA data are worse
than the best models that use the original data.

2. Instead, we see no differences between the original and PCA data. Moreover,
PCA data seems to obtain the best high-dimensional model.

Table 3.11 (continued) 7 4.60 5.99 1.39 2.675 1.32

8 4.55 6.21 1.66 2.825 1.60

9 4.29 6.29 1.99 2.754 1.61

10 4.06 6.22 2.16 2.796 1.52

11 3.84 6.18 2.34 2.700 1.33

12 3.71 6.16 2.45 2.733 1.27

13 3.59 6.22 2.63 2.704 1.34

14 3.23 6.23 3.00 2.529 1.20

15 2.38 5.56 3.18 1.929 0.98

16 1.20 4.82 3.61 0.942 0.45

17 1.06 4.93 3.87 0.846 0.40

18 0.78 4.73 3.95 0.650 0.10

19 0.09 4.02 3.93 0.075 −0.01
LDF M1 M2 Diff. M1Diff. M2Diff.

1 20.29 20.19 −0.10 8.246 6.92

2 13.28 13.40 0.13 7.808 6.71

3 11.91 12.15 0.24 7.542 6.34

4 9.10 9.59 0.49 5.525 4.08

5 9.70 10.44 0.74 6.604 4.96

6 9.79 10.67 0.88 7.046 5.46

7 9.33 10.32 0.99 7.404 5.66

8 9.46 10.55 1.09 7.733 5.94

9 9.12 10.31 1.19 7.583 5.63

10 8.98 10.29 1.31 7.713 5.58

11 8.27 9.76 1.49 7.125 4.90

12 8.02 9.56 1.54 7.042 4.67

13 7.75 9.31 1.56 6.867 4.43

14 7.59 9.34 1.75 6.883 4.30

15 7.37 9.19 1.83 6.917 4.62
16 7.44 9.36 1.92 7.179 4.99

17 7.47 9.44 1.97 7.254 4.91

18 7.47 9.61 2.14 7.338 4.98

19 7.35 9.57 2.22 7.333 5.54
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3.4.2 Third Alternative Approach

We attempted to delete three variables related to collinearity. Table 3.12 lists the
three eigenvectors from the 17th to the 19th component. These three components
explain only 0.75 % of the total variance. Therefore, we consider Eqs. (3.8), (3.9),
and (3.10). There are three variables groups from these equations, such as (X12,
X13, X14), (X4, X5, X7, X8, X9), and (X4, X5, X8, X9), respectively. X14 is first
excluded from (X12, X13, X14) by a stepwise technique from 19 to 1 variable. X8
and X4 are excluded from (X4, X5, X7, X8, X9) and (X4, X5, X8, X9), respectively.
VIF of the 16-variable model is less than two. When we use SAS, we delete
(X4, X7, X14) from the full model.

C19 : 0:643X12� 0:639X13þ 0:422X14 ¼ 0 ð3:8Þ

C18 : 0:413X4þ 0:156X5� 0:837X7þ 0:134X8þ 0:289X9 ¼ 0 ð3:9Þ

C17 : �0:583X4� 0:262X5þ 0:303X8þ 0:698X9 ¼ 0 ð3:10Þ

Table 3.12 Eigenvectors of three components

Var. C17 C18 C19

X1 0.004 0.001 0.001

X2 0.006 −0.007 −0.003

X3 0.005 −0.002 0.001

X4 −0.583 0.413 0.000

X5 −0.262 0.156 −0.004

X6 0.050 −0.048 0.000

X7 −0.049 −0.837 0.002

X8 0.303 0.134 0.000

X9 0.698 0.289 0.001

X10 0.062 0.020 0.002

X11 0.039 −0.012 −0.001

X12 0.011 0.006 0.643
X13 −0.002 0.002 −0.639
X14 −0.022 −0.002 0.422
X15 −0.017 0.000 −0.001

X16 0.019 0.012 0.001

X17 −0.015 0.006 0.001

X18 0.023 −0.003 0.000

X19 −0.010 −0.005 0.000
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Table 3.13 lists MNM (RIP), and eight “Diff1s,” which are the difference
defined as (NMs of seven discriminant functions – MNM). Because NM of Revised
IPLP-OLDF is equal to MNM, we omit its “Diff1” from the table. We can confirm
that MNM decreases monotonously. Although NM of Revised IPLP-OLDF
decreases monotonously, this result is not guaranteed theoretically. From the table,
we find the following remarkable facts:

1. If we focus on the bold figures that are maximum Diff1, four models of logistic
regression from one to four variables are worst and 12 models of Fisher’s LDF
from five to 16 variables are worst. With the exception of CPD data, logistic
regression is better than Fisher’s LDF, QDF, and RDA.

2. With the exception of CPD data, SVM4 is better than SVM1. However, SVM1
is better than SVM4 for five, six, ten, and eleven-variable models.

3. All NMs of Revised IPLP-OLDF are similar to MNMs.

Table 3.14 lists the results of seven LDFs by the Method 1. Six LDFs select the
full models as the best models. M2s of RIP, LP, IPLP and LDF are minimum value
3.55 %. M2s of SVM4 and SVM1 are 3.80 and 4.57 %. Only logistic regression
selects the two-variable model and its MNM is 3.95 %. Seven minus M1Diffs of
logistic regression indicate the effects of Problem 1.

Table 3.13 MNM and seven “Diff1s”

P RIP SVM4 SVM1 LP IPLP Logistic LDF QDF RDA

1 20 0 0 0 0 6 3 2 2

2 13 4 4 4 0 16 4 7 7

3 12 6 6 6 0 12 7 10 9

4 10 3 3 3 0 8 7 8 8
5 7 6 5 6 0 9 10 9 8

6 7 7 5 7 0 7 10 8 5

7 6 6 6 6 0 9 10 3 7

8 4 5 7 5 0 3 10 5 8

9 4 4 7 4 0 4 11 5 8

10 4 5 4 5 0 4 9 8 9

11 3 6 5 6 0 5 11 10 10

12 3 3 6 3 0 4 10 9 10

13 3 3 5 3 0 5 12 8 11

14 2 3 6 3 0 3 13 7 12

15 2 3 6 3 0 8 13 4 10

16 2 3 6 3 0 3 13 6 10
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Table 3.14 Best Models by 100-fold cross-validation

RIP M1 M2 Diff. F/B

1 7.92 9.04 1.12 FB

2 4.83 6.03 1.21 FB

3 4.38 5.95 1.57 FB

4 3.58 5.65 2.07 FB

5 2.56 4.61 2.05 F

6 2.16 4.52 2.36 B

7 1.94 4.70 2.76 F

8 1.05 3.71 2.66 B

9 0.82 3.60 2.79 F

10 0.71 3.83 3.12 B

11 0.61 3.84 3.23 B

12 0.52 3.83 3.30 F

13 0.40 3.90 3.50 F

14 0.18 3.62 3.44 B

15 0.09 3.59 3.50 F

16 0.06 3.55 3.49 B

SVM4 M1 M2 Diff. M1Diff. M2Diff.

1 6.77 7.27 4.04 2.388 1.32

2 5.43 6.18 4.12 1.850 0.53

3 4.33 5.27 4.17 1.775 0.66

4 4.15 5.50 4.16 1.983 0.98

5 3.97 5.37 4.20 2.025 0.67

6 2.62 4.57 4.13 1.563 0.85

7 2.25 4.48 4.28 1.438 0.88

8 2.08 4.42 4.38 1.363 0.59

9 1.83 4.39 4.30 1.213 0.55

10 1.53 4.28 4.44 1.008 0.45

11 1.23 4.26 4.42 0.833 0.37

12 0.14 3.80 5.70 0.083 0.25
SVM1 M1 M2 Diff. M1Diff. M2Diff.

1 6.77 7.27 0.50 2.388 1.33

2 5.43 6.18 0.75 1.850 0.53

3 4.38 5.30 0.92 1.825 0.69

4 4.29 5.50 1.21 2.125 0.98

5 4.08 5.39 1.32 2.133 0.69

6 3.11 4.90 1.80 2.054 1.19
(continued)
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7 2.93 4.93 2.00 2.108 1.33

8 2.85 5.02 2.17 2.138 1.19

9 2.78 5.18 2.41 2.163 1.34

10 2.43 4.85 2.41 1.913 1.02

11 2.10 4.72 2.62 1.708 0.83

12 1.61 4.63 3.03 1.425 1.01

13 1.32 4.57 3.25 1.263 1.02
LP M1 M2 Diff. M1Diff. M2Diff.

1 6.52 6.86 0.34 1.692 0.83

2 6.77 7.27 0.50 2.388 1.32

3 5.43 6.18 0.75 1.850 0.53

4 4.34 5.28 0.94 1.783 0.67

5 4.15 5.49 1.35 1.983 0.97

6 3.97 5.38 1.41 2.029 0.68

7 2.63 4.53 1.90 1.571 0.82

8 2.25 4.45 2.21 1.429 0.85

9 2.08 4.41 2.34 1.363 0.58

10 1.83 4.37 2.54 1.213 0.52

11 1.53 4.23 2.70 1.008 0.41

12 1.22 4.22 3.00 0.825 0.33

13 0.59 3.83 3.24 0.404 0.21

14 0.13 3.55 3.42 0.071 0.00
IPLP M1 M2 Diff. M1Diff. M2Diff.

1 4.83 6.08 1.25 0.004 0.05

2 4.38 6.00 1.62 0.000 0.05

3 3.58 5.54 1.95 0.004 −0.11

4 2.57 4.47 1.90 0.013 −0.15

5 2.18 4.53 2.35 0.017 0.01

6 1.95 4.67 2.71 0.013 −0.03

7 1.06 3.70 2.65 0.004 −0.01

8 0.83 3.64 2.82 0.008 0.04

9 0.71 3.73 3.02 0.000 −0.10

10 0.61 3.73 3.12 0.000 −0.11

11 0.53 3.83 3.30 0.004 0.00

12 0.39 3.93 3.54 −0.004 0.04

13 0.18 3.57 3.39 0.000 −0.05

14 0.06 3.55 3.49 0.000 0.00

Table 3.14 (continued)
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Logistic M1 M2 Diff. M1Diff. M2Diff.

1 0.09 4.04 3.95 −7.829 −5.00

2 0.17 3.95 3.79 −4.658 -2.08
3 0.58 4.20 3.62 −3.804 −1.75

4 0.78 4.25 3.47 −2.796 −1.39

5 1.14 4.38 3.24 −1.421 −0.24

6 1.00 4.40 3.40 −1.167 −0.12

7 1.85 4.64 2.79 −0.092 −0.06

8 1.33 4.52 3.19 0.275 0.80

9 2.04 4.73 2.69 1.225 1.13

10 2.03 4.73 2.70 1.321 0.90

11 2.24 4.74 2.51 1.625 0.90

12 2.53 4.88 2.35 2.013 1.06

13 2.53 4.73 2.20 2.138 0.84

14 3.93 5.89 1.96 3.750 2.27

15 2.73 4.78 2.04 2.646 1.19

16 4.23 5.88 1.65 4.167 2.33
LDF M1 M2 Diff. M1Diff. M2Diff.

1 25.00 25.00 0.00 17.079 15.96

2 25.00 25.00 0.00 20.175 18.97

3 16.10 16.48 0.38 11.717 10.53

4 16.15 16.74 0.58 12.575 11.09

5 13.16 14.53 1.37 10.604 9.92

6 5.71 7.53 1.83 3.546 3.01

7 5.50 7.58 2.08 3.554 2.88

8 5.29 7.58 2.29 4.233 3.87

9 4.90 7.28 2.39 4.079 3.68

10 4.54 7.25 2.71 3.829 3.42

11 4.29 7.13 2.84 3.675 3.28

12 2.20 4.89 2.69 1.679 1.06

13 1.81 4.93 3.13 1.413 1.04

14 1.43 4.86 3.43 1.242 1.24

15 1.17 4.80 3.63 1.079 1.21

16 0.13 3.55 3.42 0.071 0.0

Table 3.14 (continued)
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3.5 Summary

In this chapter, we discriminated CPD data with several difficult problems and
solved these issues as follows:

1. There are strong collinearities in these data. We specified three collinearities in
the data and established how to remove such collinearities.

2. We found a strange trend of NMs by QDF and found that QDF is fragile for
collinearities. Moreover, NM of Fisher’s LDF did not decrease in the 19 models
from the one to 19-variable models selected by the forward stepwise procedure.
On the other hand, NMs of our three MP-based OLDFs almost decreased.

3. In the original data, we selected the four-variable model as useful for the
regression model selection procedure. However, the Method 1 recommends the
nine-variable model as the best model. We think that many variables and/or
collinearities cause this difference. Because the Iris data have four variables and
might satisfy Fisher’s assumption, the model selection procedure and best model
selected the full model of eight LDFs. This is the reason we should no longer
use the Iris data for evaluation.

4. We proposed a method for treating CPD data with collinearities by the best
models. We compare three alternatives in Table 3.15. The basic Alternative 1 is
the result of the original data from Table 3.7. The alternative 2 is to use the data
modified by PCA in Table 3.11. The alternative 3 is to delete variables for the
purpose of generating data without collinearities in Table 3.14. Table 3.15
indicates that the best model of Revised IP-OLDF by Alternative 3 is the best
alternative. In near future, we must examine this result by other data.

In this chapter, we solved the previous problems. However, we found a new
problem: CPD data has many OCPs. This fact implies that Revised IP-OLDF might
search for several OCPs with the same MNMs and different coefficients groups that
belong to different OCPs. This result means that it is difficult for us to evaluate the
95 % CI of discriminant coefficients. This problem is the sixth problem.

Table 3.15 Comparison of three data, such as original, PCA transformation, and 16 variables
without collinearity

Alternative 1
(original)

Alternative 2
(PCA)

Alternative 3
(delete
collinearities)

Var. M2 Var. M2 Var. M2

Revised IP-OLDF 9 3.64 19 4.03 16 3.55
Logistic regression 18 3.95 19 4.02 2 3.95
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Chapter 4
Student Data and Problem 1

4.1 Introduction

Student data (Shinmura 2010a) consist of 40 students with six variables, which are the
study hours per day (X1), spending money per month (X2), drinking days per week
(X3), gender (X4), smoking (X5), and examination scores (X6). The amount of data is
not large. We published four statistical books on SAS, SPSS, Statistica, and JMP
using these data because the reader could easily understand the meaning of variables
and data. Although we never believed that these data would be helpful for our
research, we discriminated the data after completing analysis of the Iris (Anderson
1945), cephalo-pelvic disproportion (CPD) (Miyake and Shinmura 1980), and ran-
dom number data (Shinmura and Tarumi 2000) in 1999.Whenwe discriminated these
data using five variableswith 70 points as the passingmark (Score � 70), we found a
defect in optimal linear discriminant function using integer programming (IP-OLDF).
Because four numerical variables are integer values and two variables are the binary
integers 0/1, and there are many overlapping cases, the obtained vertex of convex
polyhedron (CP) consists of over (p + 1) cases and the solution is not true minimum
number of misclassifications (MNMs). Moreover, three optimal CPs (OCPs) were
found by the K-option of LINGO (Schrage 1991, 2006), as shown in Fig. 4.3.
Although we recognized Problems 1 and 4 before 1980, we did not realize that
Problem 1 causes a defect in IP-OLDF (Shinmura 1998, 2000a, b, 2003, 2004, 2005).
By the scatter plot of the two variablesX1 andX2 indicated in Table 1.1, we found that
the reason for the defect in IP-OLDF is the result of Problem 1.However, we could not
revise it until 2006, when Revised IP-OLDF (Shinmura 2007, 2010a) solved Problem
1 completely. In 2004, IP-OLDF found that Swiss banknote data (Flury and Rieduyl
1988) are linearly separable data (LSD), and no LDFs, with the exception of Revised
IP-OLDF and hard-margin support vector machine (H-SVM), could discriminate
LSD theoretically (Problem 2). In 2005, wewere able to validate the discrimination of

Whole my studies and books are listed in “http://researchmap.jp/read0049917/.”
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original data (the training sample) by 20,000 resampling samples (the validation
sample). After 2006, we could compare sixMP-based LDFs and two statistical LDFs.
The six MP-based LDFs are Revised IP-OLDF, Revised LP-OLDF, Revised
IPLP-OLDF (Shinmura 2010b, 2014b), and three SVMs (Vapniik 1995), and the two
statistical LDFs (Sall et al. 2004) are Fisher’s LDF (Fisher 1936, 1956) and logistic
regression (Cox 1958; Firth 1993). Although quadratic discriminant function
(QDF) and a regularized discriminant analysis (RDA) (Friedman 1989) are not LDFs,
these discriminant functions discriminate Student data. After 2009, we developed the
100-fold cross-validation for small sample method (the Method 1). The Method 1
solved Problem 4 (Shinmura 2010a, 2013, 2014c, 2015a, b), and the best model
provided a clear evaluation of eight LDFs (Shinmura 2016a, c). Although we could
not explain the useful meaning of 95 % CI of the coefficient, we completed the basic
research in 2010 (Shinmura 2010a). After 2010, applied research started on LSD
discrimination using pass/fail determination (Shinmura 2011) and Japanese-
automobile data. In 2010, we found that the pass/fail determination using examina-
tion scores caused Problem 3, and we solved it in 2013. The defect of the generalized
inverse matrices caused Problem 3 for QDF. In 2015, the applied research was
completed because we successfully explained the useful meaning of 95 % CI of the
coefficient, and the Method 1 solved Problem 4 completely (Shinmura 2014a,
2015c, d). In Oct. 2015, young researcher, Ishii et al. (2014), presented the chal-
lenging results of microarray datasets using PCA. Because Jeffery et al. (2006)
indicated six microarray datasets (the datasets) on HP,1 we developed the Matroska
feature-selection method (theMethod 2) within 41 days (Shinmura 2016b). For more
than ten years, many researchers have struggled with the analysis of the dataset
because the dataset consists of few cases with huge genes (n � p) (Problem 5). The
Theory is most suitable for gene analysis. Recently, many researchers have expected
LASSO (Simon et al. 2013) to solve Problem 5. Because Revised IP-OLDF selects
gene features naturally, LASSO researchers should compare their results to ours
through the Swiss banknote data, Japanese-automobile data, Student linearly sepa-
rable data, and six microarray datasets. Such comparison should be helpful for
LASSO research. The platform for this book is over 12 different types of datasets.
Eight LDFs play on this platform, which is a different scenario from statistical themes.

4.2 Student Data

4.2.1 Data Outlook

Table 4.1 lists Student data that consist of two classes: 25 students who passed the
examination and 15 students who failed, where the passing mark is 70 points. There

1http://www.bioinf.ucd.ie/people/ian/.
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Table 4.1 Student data
(Eight bold cases are on
the discriminant hyperplane)

SN X1 X2 X3 C Y (score) X4
(gender)

X5
(smoke)

1 10 2 0 1 90 1 0

2 9 2 0 1 100 1 0

3 5 2 1 1 75 0 1

4 7 3 1 1 70 1 1

5 3 3 1 1 85 1 0

6 7 3 0 1 90 0 1

7 7 3 0 1 90 0 0

8 7 3 0 1 95 1 0

9 6 3 2 1 80 0 1

10 3 3 3 1 70 0 1

11 6 3 0 1 85 1 1

12 6 3 2 1 70 1 0

13 8 3 0 1 85 1 0

14 5 3 2 1 75 1 0

15 2 4 2 1 80 1 0

16 5 4 4 1 75 0 1

17 12 4 1 1 100 0 0

18 4 4 1 1 70 1 0

19 10 4 3 1 80 0 0

20 7 4 1 1 75 1 0

21 5 4 1 1 85 0 0

22 6 5 1 1 85 0 0

23 9 5 1 1 75 0 0

24 4 5 1 1 70 1 1

25 3 5 1 1 75 0 1

26 3 2 1 −1 60 0 1

27 5 2 1 −1 60 1 0

28 3 3 2 −1 65 0 1

29 5 5 3 −1 65 1 0

30 2 5 4 −1 60 0 1

31 3 5 4 −1 65 1 1

32 2 5 4 −1 40 0 1

33 2 6 3 −1 55 0 0

34 1 6 5 −1 60 0 1

35 4 6 2 −1 65 1 1

36 3 6 2 −1 60 0 0

37 3 7 5 −1 55 0 1

38 3 7 3 −1 50 1 1

39 1 8 7 −1 60 0 1

40 3 10 6 −1 40 0 1
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are five variables: X1 is the number of hours of study per day (hours/day); X2 is the
amount of money spent per month (10,000 yen/month); X3 are some days drinking
per week (day/week); X4 is gender; and X5 is smoking. The passing score is 70
points. Gender (male = 1, female = 0) and smoke (smoking = 1, non-smoking = 0)
are dummy variables. The amount of data is not large. First, there is resistance
against using this data in the research. However, we found a serious defect in
IP-OLDF (Problem 1) that stops optimization by setting over p-cases on the dis-
criminant hyperplane in the case of p-variable model. S-SVM, Revised LP-OLDF,
and Revised IPLP-OLDF stop optimization by setting cases on two SVs. These
MP-based LDFs cannot theoretically avoid some cases on the discriminant
hyperplane.

4.2.2 Different LDFs

We discriminated the two-variable model (X1, X2) by IP-OLDF in 2006. What’s
Best!, an Excel add-in solver, formulated IP-OLDF. As shown in Fig. 4.1,
IP-OLDF selected X2 = 5 as the discriminant hyperplane, which appears as a
straight line, and outputted MNM = 3 in Fig. 4.1. Four passing students and four
failing students spent 50,000 yen/month, as indicated in Table 4.1. These eight
students are on the discriminant hyperplane of IP-OLDF and are treated as a
classified group because eight ei in Eq. (1.9) are zeroes. This fact means that
IP-OLDF classifies four passing students into the passing class, and four failing
students into the failing class, which is obviously nonsense. To this point, we have
not been able to discriminate students on the discriminant hyperplane exactly if
there are over three (p + 1) students on the discriminant hyperplane. On the other
hand, Revised IP-OLDF finds three true OCPs, genuine MNMs (Miyake and

Fig. 4.1 Defect in IP-OLDF
caused by Problem 1
(IP-OLDF: straight horizontal
line, Revised IP-OLDF:
straight line with slope,
Fisher’s LDF: dashed line,
Revised LP-OLDF: dotted
line) (Shinmura 2010a)
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Shinmura 1976, 1979; Shinmura and Miyake 1979) of which are five by LINGO k-
best option in Fig. 4.3 (Schrage 2006). One of the three Revised IP-OLDFs is a
straight line with slope. Fisher’s LDF is a dashed line, and Revised LP-OLDF is a
dotted line.

Figure 4.2 is a contour plot of the two classes that correspond to Fig. 4.1. The
two ellipses include 95 % of each type of student. The passing class (symbol: “.”) is
spread on the X1 axis and the failing class (symbol: “�”) is spread on the X2 axis.
The two classes are substantially perpendicular to each other.

4.2.3 Comparison of Seven LDFs

If we analyze the two-variable model (X1, X2) by IP-OLDF, it would select X2 = 5
as the discriminant hyperplane and output MNM = 3. IP-OLDF searches for the
vertex of true OCP when data are general positions and there are p=2 students on
the discriminant hyperplane. However, IP-OLDF searched for the vertex composed
of eight students. If it searches for the vertex that consists of two students, it would
find that only four CPs shared this vertex. Each CP interior point is located in the
four plus/minus side of the linear hyperplane Hi(b) = yi � (xib + 1) = 0, as shown
in Eq. (1.9). The CP interior points are (X1, X2) = (+, +), (+, −), (−, +), and (−, −).
If we select the CP with (+, +), this is the true OCP. In this case, because 16 (=
2 � 8) CPs share this vertex composed of eight linear hyperplanes Hi(b), the
solution might not be the correct vertex of OCP. Revised IP-OLDF finds true OCP,
true MNM of which is five. If we use LINGO k-best option, as shown in Fig. 4.3,
we know that there are three OCPs. In Chap. 3, we introduced several OCPs that
cause deep understanding of the 95 % CI discriminant coefficient (Problem 6).

Fig. 4.2 Two 95 % ellipses
(passing and failing classes
are spread on X1 axis and X2
axis, respectively)
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Table 4.2 lists the comparison of MNM and eight “Diff1s” instead of eight NMs.
“Diff1” is the difference defined as (NMs of eight functions – MNM). Revised
IPLP-OLDF is equal to MNM. The two SVM1 models are worse than those of
SVM4. The two NMs of Revised LP-OLDF are less than MNM because two
differences are negative values, as is evident in the column “f = 0.” Although
Problem 1 causes this result, we cannot check the four statistical discriminant
functions because statistical developers are unfamiliar with Problem 1. Even if
“Diff1s” are greater than or equal to zero, we cannot find Problem 1. Therefore, we
output the number of students on the discriminant hyperplane such as column “f=0”
of all discriminant functions, except for Revised IP-OLDF and H-SVM. The four
models of Revised LP-OLDF have positive values, and they are not free from
Problem 1. Although three more MP-based LDFs are free from Problem 1 in this

Fig. 4.3 K-best solutions

Table 4.2 Comparison between MNM and “Diff1s”

SN Var. RIP SVM4 SVM1 LP f = 0 IPLP Logistic LDF QDF RDA

1 1–3 3 1 1 1 0 0 3 3 1 2

2 2–3 3 1 2 1 3 0 1 3 2 2

3 1, 3 5 1 2 3 0 0 0 0 2 1

4 1, 2 5 1 1 1 1 0 2 1 2 2

5 1 7 1 1 −1 3 0 0 1 1 1

6 2 7 0 0 −4 8 0 0 0 0 0

7 3 8 0 0 0 0 0 1 0 0 0
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data, we cannot determine the four statistical discriminant functions. If the number
of cases (“h”) on the discriminant hyperplane is greater than or equal to one, we
should consider that true NM might increase, i.e., “current NM + h.”

4.2.4 K-Best Option

In the IP model, such as Revised IP-OLDF, we should determine whether there are
several global solutions by “K-best option,” as shown in Fig. 4.3. After we select
“LINGO option ! Integer Solver ! K-Best Solution,” we set “K-Best = 7.”
The LINGO output is shown in Fig. 4.3. There are three global optimum models
with “object value = 5 for two-variable model (X1, X2).” If we select the first
solution, we obtain the first discriminant hyperplane, such as X2 = X/2 + 4. The
second solution is “X2 = X1/4 + 3.63,” and the third solution is “X2 = X/2 + 3.25.”

When we check seven models, we know that two of the models have several
global minimum solutions, as indicated in Table 4.3. The sixth one-variable model
(X2) has two OCPs with MNMs of seven.

4.2.5 Evaluation by Regression Analysis

Before 2005, we attempted to evaluate several discriminant functions by the original
data as training samples because we had no validation samples. Table 4.4 lists the
results of eight regression analyses (Sall 1981), which were some of the validation
approaches used. MNMs regressed eight NMs. Because the NMs of Revise
IPLP-OLDF are equal toMNMs, the regression line is “IPLP = 0 + 1 � RIP” andR-
square is equal to one. If we evaluate the eight discriminant functions at MNM = 3, 5,
and 7, the superiority or inferiority is drastically changed. For example, IPLP is best at
MNM = 3. However, it is worst at MNM = 7, although MNM is minimum value
among all NMs.

Table 4.3 MNMs and OCPs
of seven models

SN X1 X2 X3 c MNM OCP

1 1 1 1 1 4 1

2 0 1 1 1 3 1

3 1 0 1 1 5 1

4 1 1 0 1 5 3

5 1 0 0 1 7 1

6 0 1 0 1 7 2
7 0 0 1 1 8 1

4.2 Student Data 87



We obtain various regression coefficients in the range of [0.39, 1]. Therefore, we
must evaluate the superiority or inferiority of eight results, as shown in Fig. 4.4.
There are at least five interactions at MNM = 4.5, 5.5, 5.8 7.5, and 8. From
Fig. 4.4, the superiority or inferiority of eight results must be evaluated in at least
six different segments. In the range of MNM < 4.5, we can evaluate intercepts, such
as IPLP < SVM4 (SVM1) < LP < logistic < LP < QDF < RDA < LDF, because
we can confirm by the predict value at MNM = 3 in Table 4.4.

Fig. 4.4 Comparison of eight discriminant functions by MNM

Table 4.4 Eight regression analyses

c b R2 MNM = 3 MNM = 5 MNM = 7

SVM4 1.88 0.76 0.976 4.16 5.68 7.59

SVM1 1.88 0.76 0.976 4.16 5.68 7.59

LP 3.45 0.39 0.15 4.62 5.40 1.44

IPLP 0 1 1 3 5.00 7.00

Logistic 2.83 0.66 0.66 4.81 6.13 5.28

LDF 4.22 0.43 0.578 5.51 6.37 4.48

QDF 2.84 0.69 0.816 4.91 6.29 6.40

RDA 3.3 0.6 0.886 5.1 6.30 6.80
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4.3 100-Fold Cross-Validation of Student Data

4.3.1 Best Model

We examine seven LDFs by the Method 1 in Table 4.5. The column “Var” is the
suffix for variables. M1 decreases monotonously from one to three variables. There
are six model sequences, such as (1) ! (1, 2)/(1, 3) ! (1, 2, 3), 2 ! (1, 2)/(2, 3)
! (1, 2, 3), 3 ! (1, 3)/(2, 3) ! (1, 2, 3). Three and one “M1Diffs” of Revised
LP-OLDF and logistic regression are negative. This indicates that Revised
LP-OLDF and logistic regression might not be free from Problem 1 because M1 of
Revised IP-OLDF is the minimum value among all M1s, similar to MNM. Because
M2 of the two-variable model (X2, X3) of Revised IP-OLDF is the minimum M2
among all M2s, we determine that this model is the best. We compare Revised
IP-OLDF with six LDFs by this model; “M2Diff” of SVM4, SVM1, LP, IPLP,
Logistic, and LDF is 3.55, 3.55, 2.55, −0.32, 8.52, and 10.53 %, respectively.
These results, with the exception of Revised IPLP-OLDF, are poor. The results of
logistic regression and Fisher’s LDF are particularly poor. Because Revised
IPLP-OLDF discriminates data by Revised LP-OLDF in the first step, Revised

Table 4.5 Best model by
100-fold cross-validation for
small sample (Bold figures
show the seven best models)

RIP M1 M2 Var.

1m21s 1 5.90 12.00 1, 2, 3

2 9.25 14.93 1, 2

3 10.50 15.48 1, 3

4 16.40 18.90 1

5 7.40 9.25 2, 3

6 14.98 17.50 2

7 17.90 21.33 3

SVM4 M1 M2 M1Diff. M2Diff.

38s 1 9.20 14.48 3.30 2.48

2 13.38 16.68 4.13 1.75

3 14.30 17.75 3.80 2.28

4 17.60 18.50 1.20 −0.40

5 10.63 12.80 3.23 3.55
6 15.88 17.90 0.90 0.40

7 19.55 20.40 1.65 −0.93

SVM M1 M2 M1Diff. M2Diff.

138s 1 9.20 14.48 3.30 2.48

2 13.38 16.68 4.13 1.75

3 14.30 17.75 3.80 2.28

4 17.60 18.50 1.20 −0.40

5 10.63 12.80 3.23 3.55
6 15.88 17.90 0.90 0.40

7 19.55 20.40 1.65 −0.93
(continued)
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IPLP-OLDF is not free from Problem 1 as same as Revised LP-OLDF.
Although Table 4.2 lists only four cases on the discriminant hyperplane of Revised
LP-OLDF, we can not know the effect of the Method 1 because we do not check the
numbers of f(x)=0 for the 100 training and validation samples.

Table 4.5 (continued) LP M1 M2 M1Diff. M2Diff.

35s 1 8.98 13.85 3.08 1.85

2 12.88 15.85 3.63 0.92

3 13.28 16.45 2.78 0.98

4 15.73 16.40 −0.67 −2.50

5 9.95 11.80 2.55 2.55
6 11.43 13.00 −3.55 −4.50

7 16.63 17.48 −1.28 −3.85

IPLP M1 M2 M1Diff. M2Diff.

1m23s 1 5.95 11.68 0.05 −0.32

2 9.38 15.28 0.13 0.35

3 10.75 15.53 0.25 0.05

4 16.40 19.05 0.00 0.15

5 7.40 8.93 0.00 −0.32
6 14.98 17.50 0.00 0.00

7 17.98 21.55 0.08 0.23

logistic M1 M2 M1Diff. M2Diff.

5m 1 11.23 15.41 5.33 3.41

2 14.23 16.63 4.98 1.71

3 15.10 16.87 4.60 1.40

4 12.18 14.68 −4.23 −4.22

5 17.55 17.77 10.15 8.52
6 15.50 17.45 0.53 −0.05

7 19.60 20.08 1.70 −1.25

LDF M1 M2 M1Diff. M2Diff.

3m 1 26.75 15.93 20.85 3.93

2 30.55 17.64 21.30 2.72

3 28.80 15.66 18.30 0.19

4 23.80 16.04 7.40 −2.86

5 39.43 19.78 32.03 10.53
6 35.53 18.27 20.55 0.77

7 39.13 19.86 21.23 −1.47
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4.3.2 Comparison of Coefficients by LINGO Program 1
and Program 2

Table 4.6 consists of three types of coefficients lists by LINGO Program 1,
Program 2 and JMP script. First, LINGO Program 1 outputs coefficients of RIP,
SVM4 and IPLP. Because SVM1 and LP are almost same as SVM4, these two
LDFs are omit. Last column is the intercept. Second, LINGO Program 2 outputs the
95 % CI of coefficients by RIP 100 and SVM4/100, that include above original
coefficients. Although we expect original coefficient are similar to the medians of
95 % CI, our expectation is no correct. Three one-variable models of Revised
IP-OLDF (RIP100) and SVM4 (SVM4/100) are rejected at 5 % level. Third, JMP
output Fisher’s LDF and logistic regression show the coefficient and SE in the first
and second rows. Although Fisher never formulated the SE equation for Fisher’s
LDF (Problem 4), we obtain SEs by the regression analysis through the plug-in
rule1. The Hessian matrix obtains SEs for logistic regression. Three one-variable
models of Fisher’s LDF and logistic are rejected at 5 % level, also. The 95 % CI
of“RIP100, SVM4/100, LDF and Logistic” suggest us only one-variable models are
meaningful in practical use.

Table 4.6 100-fold cross-validation

SN X1 X2 X3 C

RIP 1 −0.25 −0.143 −0.059 1

2 0.125 −0.25 1

3 0.125 −0.751 1

4 −0.286 1

5 −0.2 −6E-5 1

6 −0.167 1

7 −0.4 1

SVM4 1 0.077 −0.154 −0.231 1

2 1 −1 1

3 1 −2 1

4 −0.25 1

5 −0.1 −0.2 1

6 −0.2 1

7 −0.4 1

IPLP 1 0 −0.2 −6E-5 1

2 0.0002 −0.2 1

3 0.125 −0.75 1

4 −0.29 1

5 −0.2 −6E-5 1

6 −0.18 0 1

7 −0.38 1
(continued)
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Table 4.6 (continued)

SN X1 X2 X3 C

RIP100 1 −1.5/-0.02/0.65 −0.43/-0.15/0.67 −3.33/-0.06/2.4 1

2 −0.62/0/176 −119/-0.22/0.35 1

3 −2/-0.32/2.61 −0.694/0.11/4 1

4 −0.4/-0.29/-0.18 1

5 −0.38/-0.17/0.58 −2.32/-0.06/0.09 1

6 −0.25/-0.2/-0.17 1

7 −0.82/-0.4/-0.22 1

SVM4/100 1 −0.99/0.03/3.48 −1.48/-0.15/0.4 −4.16/-0.1/1.39 1

2 −1.05/0/2 −2/-0.22/0.53 1

3 −1E6/-0.25/8E7 −3E8/0/3286607 1

4 −0.29/-0.25/-0.22 1

5 −0.24/-0.12/0 −0.58/-0.15/0 1

6 −0.25/-0.2/-0.15 1

7 −0.5/-0.4/-0.27 1

LDF 1 0.134 −0.095 −0.163 0.315

0.05* 0.1 0.11 0.49

2 0.169 −0.192 0.225

0.17 0.07* 0.23

3 0.137 −0.233 0.042

0.05* 0.08* 0.41

4 0.23 −0.894

0.05* 0.26*

5 −0.106 −0.277 1.261

0.1 0.1* 0.34*

6 −0.312 1.575

0.07* 0.34*

7 −0.358 0.974

0.07* 0.18*

Logistic 1 −0.732 0.315 0.665 −0.15

0.38 0.4 0.48 2.49

2 −0.864 0.537 0.802

0.36* 0.35 0.8

3 −0.785 0.815 1.076

0.38* 0.44 1.92

4 −1.07 3.947

0.35* 3.95*

5 0.5 0.93 −4.606

0.39 0.41* 1.65*

6 0.963 −4.901

0.32* 1.48*

7 1.171 −2.98

0.37* 0.88*
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4.4 Student Linearly Separable Data

4.4.1 Comparison of MNM and Nine “Diff1s”

We generate LSD from the original Student data by adding four to the study
hour/day of the passing group. Table 4.7 lists a comparison of MNM and nine
differences (“Diff1”). The four models include X1 and are linearly separable
models. Six MP-based LDFs can discriminate these models correctly. On the other
hand, most of the models of the four statistical discriminant functions cannot dis-
criminate the four models correctly. Only two NMs of logistic regression are zero.
Three models from SN = 5 to SN = 7 are not linearly separable. Two models of
Revised LP-OLDF are not free from Problem 1. Because 11 “Diff1s” of the four
statistical discriminant functions are negative values, the results might imply that
they are not free from Problem 1.

4.4.2 Best Model

We examine the seven models listed in Table 4.8 by the Method 1. Four models are
linearly separable models. Six MP-based LDFs and logistic regression can recog-
nize that these four models are linearly separable. However, third and fourth “M1s”
of logistic regression are not correct because two corresponding “Diff1s” in
Table 4.7 are two and six. Four M1s and M2s of Revised IP-OLDF are zero. On
the other hand, allM1s and M2s of Fisher’s LDF are not zero. We compare Revised
IP-OLDF with seven LDFs by the best model (X1). “M2Diffs” of SVM4, SVM1,
LP, IPLP, H-SVM, logistic, and LDF are 0.55, 0.55, 0, 0, 0.63, 0.35, and 2.75 %,
respectively. Although the amount of Student data is small, the Method 1 provides a
wealth of information for researchers concerned with the study of a small sample.

Table 4.7 Comparison of MNM and nine “Diff1”

SN Var. RIP HSVM SVM4 SVM1 LP f = 0 IPLP Logistic LDF QDF RDA

1 1−3 0 0 0 0 0 0 0 0 2 2 0

2 1, 2 0 0 0 0 0 0 0 0 3 4 2

3 1, 3 0 0 0 0 0 0 0 2 3 3 3

4 1 0 0 0 0 0 0 0 6 6 6 6

5 2, 3 3 1 2 1 3 0 −2 0 −1 −1

6 2 7 0 0 −4 8 0 −7 −7 −7 −7

7 3 8 0 0 0 0 0 −7 −8 −8 −8

4.4 Student Linearly Separable Data 93



Table 4.8 Best model

RIP M1 M2 Var.

38s 1 0 0 1, 2, 3

2 0 0 1, 2

3 0 0 1, 3

4 0 0 1

5 7.4 9.33 2, 3

6 14.98 17.5 2

7 17.9 21.33 3

SVM4 M1 M2 M1Diff. M2Diff.

38S 1 0 1.75 0.00 1.75

2 0 1.05 0.00 1.05

3 0 1.30 0.00 1.30

4 0 0.55 0.00 0.55
5 10.63 12.8 3.23 3.48

6 15.88 17.9 0.90 0.40

7 19.55 20.4 1.65 −0.93

SVM1 M1 M2 M1Diff. M2Diff.

38S 1 0 1.75 0.00 1.75

2 0 1.05 0.00 1.05

3 0 1.30 0.00 1.30

4 0 0.55 0.00 0.55
5 10.63 12.8 3.23 3.48

6 15.88 17.9 0.90 0.40

7 19.55 20.4 1.65 −0.93

LP M1 M2 M1Diff. M2Diff.

34S 1 0 1.73 0.00 1.73

2 0 1.08 0.00 1.08

3 0 1.20 0.00 1.20

4 0 0 0.00 0.00
5 9.95 11.80 2.55 2.48

6 11.43 13.00 −3.55 −4.50

7 16.63 17.48 −1.28 −3.85

IPLP M1 M2 M1Diff. M2Diff.

1m25S 1 0 2.38 0.00 2.38

2 0 0.83 0.00 0.83

3 0 1.25 0.00 1.25

4 0 0 0.00 0.00
5 7.4 8.925 0.00 −0.40

6 14.98 17.5 0.00 0.00

7 17.98 21.55 0.08 0.23
(continued)
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4.4.3 95 % CI of Discriminant Coefficient

Table 4.9 lists the 95 % CI of the discriminant coefficient. We compare four linearly
separable models: (X1, X2, X3), (X1, X2), (X1, X3), and (X1). Although the best
model is a one-variable model (X1), we examine four models. The four Revised
IP-OLDFs become similar to LDF in Eq. (4.1). These results show that all 100
LDFs are the same, and the two coefficients of X2 and X3 are zero. Therefore, all
400 Revised IP-OLDFs select the same linear discriminant hyperplane X1 = 5.5.
Revised IP-OLDF indicates that discrimination over two variables does not need to
be considered. Moreover, it can select variables naturally.

RIP ¼ 2� X1� 11 ð4:1Þ

Because other coefficients of the five MP-based LDFs vary, the three numeric
values with separated slash (/) are 2.5, 50 (median), and 97.5 %. All the coefficients
of X2 and X3 of the other five LDFs are zero in the three- and two-variable models
because 95 % CI includes zero. All coefficients of X1 are positive.

H-SVM M1 M2 M1Diff. M2Diff.

25s 1 0 1.75 0.00 1.75

2 0 1.05 0.00 1.05

3 0 1.28 0.00 1.28

4 0 0.63 0.00 0.63
Logistic M1 M2 M1Diff. M1Diff.

4 m 1 0 2.6 0.00 2.60

2 0 1.225 0.00 1.23

3 0 1.25 0.00 1.25

4 0 0.35 0.00 0.35
5 19.58 14.60 12.18 5.28

6 32.70 17.27 17.73 −0.23

7 39.05 19.88 21.15 −1.44

LDF M1 M2 M1Diff. M1Diff.

1m30s 1 7.70 4.02 7.70 4.02

2 4.83 3.13 4.88 3.13

3 5.03 3.12 5.03 3.12

4 5.08 2.75 5.08 2.75
5 23.8 16.04 0.28 −4.15

6 35.53 18.27 −3.52 −11.61

7 39.13 19.86 −5.28 −14.92
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The regression coefficients of Fisher’s LDF are in Eq. (4.2). The logistic
regression is in the Eq. (4.3). The numbers in parentheses are SEs. All coefficients
are rejected at 5 % level. SEs of logistic regression are enormous (Firth 1993), and
all CIs include zero.

LDF ¼ 0:18� X1� 0:05� X2� 0:015� X3� 0:9

0:003ð Þ 0:007ð Þ 0:007ð Þ 0:04ð Þ ð4:2Þ

Logi ¼� 31� X1� 11� X2þ 17� X3þ 182

ð1123Þ 1420ð Þ 2068ð Þ 7227ð Þ ð4:3Þ

Table 4.9 95 % CI of discriminant coefficient

X1 X2 X3 C

RIP 2 0 0 −11

HSVM 0.5/1.1/1.9 −0.7/0.2/0.4 −0.7/−0.4/0.3 −10.4/−6/1

SVM4 0.5/1.1/1.9 −0.7/0.2/0.4 −0.7/−0.4/0.3 −10.4/−6/1

SVM1 0.5/1/1.9 −0.7/0.1/0.4 −0.7/−0.2/0.3 −10.4/−6/1

IPLP 0.1/1.1/2.2 −1.7/0.2/1.1 −1.7/−0.6/1.7 −11.6/−6.3/5.2

LP 0.5/1.1/2 −0.9/0.2/1.1 −1.7/−0.5/0.5 −11/−6/0.2

RIP 2 0 −11

HSVM 0.6/1.2/2 −1/0/0.4 −11/−6/−1
SVM4 0.6/1.2/2 −0.1/0/0.4 −11/−6/−1
SVM1 0.6/1/2 −0.1/0/0.4 −11/−6/−1
IPLP 0.6/1.33/3.3 −1.7/0/1.3 −24.3/−8.3/−0.5
LP 0.6/1.2/2 −1/0/0.4 −11/−6/−0.5
RIP 2 0 −11

HSVM 0.6/1/2 −1/0/0.7 −11/−6/−2.8
SVM4 0.6/1/2 −0.1/0/0.7 −11/−6/−2.8
SVM1 0.6/1/2 −1/0/0.7 −11/−6/−2.8
IPLP 0.6/1/6 −1/0/4 −43/−7.5/−2.4
LP 0.6/1/2 −1/0/0.7 −11/−6.5/−2.2
RIP 2 −11

HSVM 0.7/2/2 −11/−11/−3.7
SVM4 0.7/2/2 −11/−11/−3.7
SVM1 0.7/1/2 −11/−6/−3.7
IPLP 0.7/2/2 −11/−11/−3.7
LP 0.7/2/2 −11/−11/−3.7
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4.5 Summary

Many statisticians believe that the MNM criterion is an irrational criterion because
it over fits training samples and overestimate validation samples. On the contrary,
the generalization ability of LDF is best because it follows the normal distribution
without examination by real data. In this book, we prove that the claim is wrong
through many results of the best model for Revised IP-OLDF and Fisher’s LDF. In
addition, the mean error rates, M1 and M2, from the training and validation samples
of Fisher’s LDF, respectively, are higher than other LDFs. Previous critical studies
that have used LDF should be reviewed, especially in medical diagnosis. Method 1
is very useful compared with LOO method. Moreover, Student linearly separable
data explain why Revised IP-OLDF can select features naturally.
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Chapter 5
Pass/Fail Determination Using
Examination Scores

A Trivial Linear Discriminant Function

5.1 Introduction

In this chapter, we examine the k-fold cross-validation for small sample method
(Method 1) by combining the resampling technique with k-fold cross-validation
(Shinmura 2010a, 2013, 2014c, 2015a, b, c, 2016a, b, c). By this breakthrough, we
obtain the error rate means, M1 and M2, for the training and validation samples,
respectively, and the 95 % CI of the discriminant coefficient and the error rate
(Miyake and Shinmura 1976). Fisher (1936, 1956) described Fisher’s linear dis-
criminant function (LDF) and founded the discriminant theory. He never formu-
lated SE of Fisher’s LDF (Problem 4) (Shinmura, 2014a, 2015c-d). Therefore, there
was no sophisticated model selection procedure for the discriminant analysis.
Although Lachenbruch and Mickey (1968) proposed LOO procedure for model
selection of the discriminant analysis, they could not achieve the new procedure
because of lack of computer power. If we set k = 100, we can obtain 100 LDFs and
100 error rates for the training and validation samples. From the 100 error rates, we
calculate two means, M1 and M2, for the training and validation samples, respec-
tively. We consider the model with minimum M2 among all possible combination
models (Goodnight 1978) as the best model. We apply Method 1 and procedure for
six datasets of the pass/fail determinations using examination scores and obtain
good results. We should distinguish these computer-intensive approaches from the
traditional inferential statistics with SE. Genuine statisticians without computer
power established inferential statistics intellectually. Currently, we can utilize
computer power, statistical software such as JMP (Sall et al. 2004), and an MP
solver such as LINGO (Schrage 1991, 2006). Therefore, we propose the Theory by
computer-intensive approach. Those researchers who want to discriminate their
research data can determine the best model in addition to the 95 % CI of the error
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rate and discriminant coefficients (Shinmura 2010a). Method 1 and the best model
provide precise and deterministic judgment with regard to the evaluation and val-
idation of six MP-based LDFs and two statistical LDFs. Six MP-based LDFs are
Revised IP-OLDF (Shinmura 1998, 2003, 2004, 2005, 2007, 2011a, b), Revised
LP-OLDF, Revised IPLP-OLDF (Shinmura 2010b, 2014b), hard-margin support
vector machine (H-SVM) (Vapniik 1995), and two soft-margin SVMs, such as
SVM4 and SVM1. Two statistical LDFs are Fisher’s LDF and logistic regression
(Cox 1958). Moreover, we obtain the actual results of the discriminant coefficients
by setting the intercept of MP-based LDFs to one. Although we could obtain 95 %
CI of the discriminant coefficients in 2000, we could not explain the useful meaning
of 95 % CI of the discriminant coefficients clearly (Shinmura 2015a). By setting the
intercept to one, most LDFs, with the exception of Fisher’s LDF, are almost the
same as trivial LDFs (Shinmura 2015b).

5.2 Pass/Fail Determination Using Examination Scores
Data in 2012

After 2010, we taught a preliminary statistical course to approximately 130
first-year students. Midterm and final examinations consisted of 100 questions with
ten choices. We consider discrimination using four testlet scores as independent
variables (Shinmura 2011b). If the passing mark is 50 points, we can easily obtain a
trivial LDF (f = T1 + T2 + T3 + T4 − 50) with NM of zero. If f � 0 or f < 0, the
students pass or fail the examination, respectively. Usually, all LDFs, with the
exception of Revised IP-OLDF, are not free from Problem 1. Because we can define
the discriminant rule by examination scores (or independent variables), we can
obtain the aforementioned trivial LDF that is free from Problem 1. We propose that
the pass/fail determination using examination scores provides deep knowledge with
regard to discrimination and offers useful test data for linearly separable data (LSD).
We wrote many papers on medical diagnosis (Nomura and Shinmura 1978;
Shimize et al. 1975; Shinmura et al. 1983, 1987; Shinmura 1984). However, we
have no connection with medical doctors now. Therefore, we use these data instead
of medical data because both data have many cases nearby the discriminant
hyperplane. Table 5.1 lists the discrimination of four testlet scores for 10, 50, and
90 % levels of the midterm examinations from 2012. A total of 124 students
attended the examination. “p” denotes the number of independent variables selected
by the forward stepwise technique. At the 10 % level, the two-variable model (T4,
T2) is linearly separable. There are 15 discriminant models by all the combinations
of four variables, only four LDFs of which are linearly separable. The passing mark
is 36 points, and ten students failed the examination. At the 50 % level, the only full
model is linearly separable. The passing mark is 63 points, and 57 students failed
the examination. At the 90 % level, the only full model is linearly separable. The
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passing mark is 78 points, and 112 students failed the examination. “RIP and
Logistic” are Revised IP-OLDF and logistic regression. Both LDFs can discrimi-
nate a linearly separable model correctly. However, logistic regression cannot
sometimes discriminate LSD correctly. On the other hand, Fisher’s LDF and QDF
cannot discriminate all linearly separable models in these data.

Figure 5.1 shows three scatter plots by PCA. The x-axis is the first principal
component. The y-axes correspond to the second, third, and fourth principal
components, from left to right. Three 95 % probability ellipses correspond to three
groups, such as SCORE � 35, 36 � SCORE � 77, and 78 � SCORE. The
three groups consist of 10, 102, and 12 students. The first and third groups are
almost symmetrical because the two ellipses and cases are almost the same. If we
check both NMs of the full model at the three levels of Table 5.1, such NMs for the
Fisher’s LDF and QDF are 1, 7, and 10, respectively, for each level. We cannot
explain whether the increasing trend is common for other data.

Table 5.1 NMs of four discriminant functions by forward stepwise in 2012 midterm
examinations

p Var. RIP Logistic LDFa QDFa

10 % 1 4 4 8 6 6

2 2 0 0 1 1
3 1 0 0 1 1

4 3 0 0 1 1

50 % 1 4 12 12 14 14

2 1 6 5 9 9

3 2 3 3 8 8

4 3 0 0 7 7
90 % 1 3 8 30 12 12

2 1 5 12 9 9

3 4 3 3 10 10

4 2 0 0 10 10
aWe obtained some NMs of Fisher’s LDF and QDF by two options of “prior probability = Same”
or “prior probability = Proportional” using JMP to this point. After this paper (Shinmura 2015b),
we set the option to “prior probability = Proportional.”

Fig. 5.1 Scatter plots for three groups
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5.3 Pass/Fail Determination by Examination Scores
(50 % Level in 2012)

In this section, we discuss discrimination at the 50 % level. The passing mark is 63
points. Table 5.1 indicates that only the full model is a linearly separable model.
We know that trivial LDF is f = T1 + T2 + T3 + T4 − 63.

5.3.1 MNM and Nine NMs

Table 5.2 lists the MNM (Miyake and Shinmura 1979, 1980; Shinmura and Miyake
1979; Shinmura and Tarumi 2000; Shinmura 2000a, b) and nine “Diff1” of seven
LDFs and two discriminant functions. We omit four one-variable model because
there is no meaning for discrimination. The seven LDFs are as follows: H-SVM,
SVM4, SVM1, Revised LP-OLDF (LP), Revised IPLP-OLDF (IPLP), logistic
regression (Logistic), and Fisher’s LDF (LDF). The two discriminant functions are
QDF and RDA (Friedman 1989). Nine “Diff1” are the difference defined as (nine
NMs – MNM). The first column is the sequential number (SN) of 11 models from
four to two variables that correspond to the second column, “Model.” We check the
number of cases on the discriminant hyperplane of the seven LDFs. We show it in
the parenthesized numbers. Only five two-variable Revised LP-OLDF models
cannot avoid Problem 1. We cannot check the number of cases on the discriminant
hyperplane of four statistical discriminant functions analyzed by JMP. SVM1, LDF,
QDF, and RDA cannot recognize the linearly separable model (Problem 2). “Diff1”
indicates the following facts:

1. We can approximately evaluate nine discriminant functions as follows: Revised
IPLP-OLDF is the best result because ten NMs of IPLP are the same as MNM.
Logistic regression is the second best because four NMs of logistic regression

Table 5.2 MNM and nine “Diff1” (50 % level)

SN Model RIP H-SVM SVM4 SVM1 LP IPLP Logistic LDF QDF RDA

1 1–4 0 0 0 3 0 0 0 7 5 4

2 1, 2, 4 3 1 1 1 0 0 5 5 3

3 2–4 5 3 2 3 0 0 5 5 3

4 1, 3, 4 3 0 0 0 0 1 6 2 2

5 1–3 13 4 5 4 0 1 4 3 2

6 2, 4 6 1 1 −2(6) 0 1 7 4 6

7 1, 4 5 2 2 2 0 0 4 3 3

8 3, 4 10 1 2 −2(6) 0 1 1 1 0

9 1, 2 16 2 3 0(6) 0 1 4 5 5

10 2, 3 26 6 6 2(11) 3 1 7 7 7

11 1, 3 17 2 1 0(3) 0 1 2 1 1
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are the same as MNM. Three statistical discriminant functions, with the
exception of logistic regression, are the worst results.

2. Because five LP models have several cases on the discriminant hyperplane and
two “Diff1s,” are negative, we cannot find Problem 1 by checking negative
“Diff1” models. We expect statistical software to output this number for users.

5.3.2 Error Rate Means (M1 and M2)

Table 5.3 lists the results by Method 1. We omit QDF and RDA because those are
not LDFs. We examine 11 discriminant models for seven LDFs and only the full
model for H-SVM. The first 11 rows are 11 Revised IP-OLDF (RIP) models. M1s
and M2s are the error rate means for the training and validation samples, respec-
tively. We confirm that the full models for the eight LDFs are the best models
because the M2 values are the minimum among 11 models (Shinmura 2016a,
2016c). The eight M2s of the best models are 1, 1.09, 1.09, 1.79, 1.02, 1.06, 0.97,
and 5.58 %. “M1Diff and M2Diff” are the differences defined as (M1 and M2 of
seven LDFs – those of RIP). The minimum “M2Diff” of the seven LDFs are 0.09,
0.09, 0.79, 0.02, 0.06, −0.03, and 4.58%. M2 of Fisher’s LDF is 4.58 % greater
than that of Revised IP-OLDF. Although we cannot evaluate the influence of
Problem 1, the best logistic model is 0.03 % less than that of Revised IP-OLDF.
However, this good result of logistic regression may be caused by Problem 1 and
ignores the cases on the discriminant hyperplane. The other five LDFs are
acceptable because “M2Diff” is within 0.79 % higher than that of Revised
IP-OLDF. The column “Diff” is the difference between error rate means defined as
(M2 − M1). Some statisticians claim that the model with a minimum value of
“Diff” has good generalization ability. If this claim is correct, the sixth model (T1,
T2, T3) of Fisher’s LDF has good generalization ability. M1 and M2 of this model
are very high: 9.03 and 9.15 %, respectively. Therefore, we cannot permit this
claim. If we observe the second best model among those ten models that are not
linearly separable, only Fisher’s LDF selects the fourth model, whose M2 is 5.60%.
On the other hand, the other seven LDFs accept the second model. The second
“M2Diff” of six LDFs are 0.41, 0.56, 0, 0.35, 0.27, and 3.03 %. This fact might
imply that Revised IP-OLDF is superior to other LDFs for nonlinearly separable
models, but not for linearly separable models.

5.3.3 95 % CI of Discriminant Coefficients

We examine the 95 % CI of the best models. Table 5.4 lists the median and 95 %
CI of six MP-based LDFs by setting the intercept of MP-based LDFs to one. It is
our mistake that Fisher’s LDF and the logistic regression by the JMP script
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designed by us do not output 100 discriminant coefficients. If the 95 % CI includes
zero, we can determine that the pseudo-population coefficient is zero. If the value of
2.5 % is greater than zero or the value of 97.5 % is less than zero, we estimate the
pseudo-population coefficient as a positive or negative value. Following this
determination, only five T2 coefficients, with the exception of SVM1, are zero, and
the other coefficients are negative. The four medians of the full model are almost
−0.016. This fact implies that these LDFs are the same as the trivial LDF in
Eq. (5.1):

Table 5.3 M1s and M2s of eight LDFs (50 %)

RIP M1 M2 Diff. Model

1 0 1.00 1.00 1, 2, 3, 4

2 2 3.12 1.45 1, 2, 4

3 3 5.66 2.46 1, 3, 4

4 1 3.36 1.86 2, 4

5 9.13 12.57 3.44 1, 3, 4

6 4.51 5.57 1.07 1, 2, 3

7 2.98 4.40 1.41 1, 4

8 6.24 9.16 2.92 3, 4

9 11.75 14.35 2.60 1, 2

10 19.42 22.16 2.74 2, 3

11 12.18 14.58 2.40 1, 3

H-SVM M1 M2 Diff. M1Diff. M2Diff.

1 0.00 1.09 1.09 0.00 0.09
SVM4 1 0.00 1.09 1.09 0.00 0.09

2 2.61 3.53 0.92 0.94 0.41
9 14.57 15.21 0.65 2.82 0.86

SVM1 1 0.47 1.79 1.32 0.47 0.79
2 2.82 3.68 0.86 1.15 0.56
7 4.38 5.06 0.68 1.40 0.66

IPLP 1 0.00 1.02 1.02 0.00 0.02
2 1.67 3.12 1.45 0.00 0.00

LP 1 0.00 1.06 1.06 0.00 0.06
2 2.59 3.47 0.88 0.92 0.35
9 13.91 14.56 0.65 2.16 0.21

Logistic 1 0.00 0.97 0.97 0.00 −0.03
2 2.60 3.39 0.79 0.93 0.27
9 14.31 14.60 0.30 2.56 0.26

LDF 1 5.15 5.58 0.43 5.15 4.58
2 5.65 6.15 0.49 3.98 3.03
4 5.40 5.60 0.21 3.90 2.25
6 9.03 9.15 0.12 4.52 3.58
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F ¼ �0:016� T1� 0:016� T2� 0:016� T3� 0:016� T4þ 1

¼ �T1� T2� T3� T4þ 62:5
ð5:1Þ

We can find this surprising result by setting the intercept to one. When we did
not set the intercept, we could not find useful meaning of discriminant coefficient
(Shinmura 2015a). We discriminate the pseudo-population sample that has 12,400
cases by Fisher’s LDF and logistic regression. Equation (5.2) is a logistic regres-
sion. If we divide five coefficients by 2178, we can obtain the same trivial LDF.
Because the numbers in parentheses are SEs, all coefficients are zero.

Logist 1234 ¼ �34:33� T1� 35:07� T2� 35:27� T3� 35:14� T4þ 2178

ð5062Þ ð4631Þ ð4899Þ ð4607Þð277; 555Þ
¼ �0:016� T1� 0:016� T2� 0:016� T3� 0:016� T4þ 1

ð5:2Þ

On the other hand, we obtain Fisher’s LDF in Eq. (5.3). We obtain these
coefficients by regression analysis (Sall 1981; Schrage 1991). If we divide the
coefficients by −3.22, we can determine that Fisher’s LDF is not the same as the
trivial LDF because the third coefficient becomes −0.008. This fact indicates that
Fisher’s LDF does not follow the real data, but assumes that the data are the normal

Table 5.4 95 % CI of six LDFs

T1 T2 T3 T4 c

RIP 97.5 % −0.0075 0.0082 −0.0069 −0.0117 1

Median −0.0160 −0.0160 −0.0161 −0.0162 1

2.5 % −0.0204 −0.0243 −0.0262 −0.0246 1

H-SVM 97.5 % −0.0075 0 −0.0081 −0.0120 1

Median −0.0160 −0.0160 −0.0160 −0.0160 1

2.5 % −0.0196 −0.0217 −0.0258 −0.0232 1

SVM4 97.5 % −0.0075 0 −0.0081 −0.012 1

Median −0.0160 −0.0160 −0.0160 −0.0160 1

2.5 % −0.0196 −0.0217 −0.0258 −0.0232 1

SVM1 97.5 % −0.0106 −0.0010 −0.0085 −0.0121 1

Median −0.0154 −0.0161 −0.0164 −0.0171 1

2.5 % −0.0202 −0.0230 −0.0250 −0.0208 1

IPLP 97.5 % −0.0080 0.0071 −0.0069 −0.0118 1

Median −0.0160 −0.0160 −0.0160 −0.0160 1

2.5 % −0.0204 −0.0239 −0.0272 −0.0243 1

LP 97.5 % −0.0095 0.0071 −0.0082 −0.0117 1

Median −0.0160 −0.0160 −0.0160 −0.0160 1

2.5 % −0.0204 −0.0243 −0.0264 −0.0234 1
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distribution. The numbers in parentheses are SEs, and we know that all coefficients
are rejected at 5 %.

LDF 1234 ¼ 0:059� T1þ 0:056� T2þ 0:026� T3þ 0:056� T4� 3:22

ð0:001�Þ ð0:003�Þ ð0:002�Þ ð0:0007�Þð0:026�Þ
¼ �0:018� T1� 0:017� T2� 0:008� T2� 0:017� T4þ 1

ð5:3Þ

5.4 Pass/Fail Determination by Examination Scores
(90 % Level in 2012)

In this section, we discuss discrimination at the 90 % level. The passing mark is 78
points. Table 5.1 indicates that only the full model is a linearly separable model.
We know that trivial linearly separable LDF is f = T1 + T2 + T3 + T4 − 78 (or
77.5).

5.4.1 MNM and Nine NMs

Table 5.5 lists MNM and nine “Diff1” of eight LDFs and two discriminant func-
tions. We check the number of cases on the discriminant hyperplane of six
MP-based LDFs. The three Revised LP-OLDF models cannot avoid Problem 1. We
cannot check the number of cases on the discriminant hyperplane of four statistical
discriminant functions because statistical software companies do not know Problem
1. The three statistical discriminant functions and SVM1 cannot recognize the
linearly separable model (Problem 2). “Diff1” indicates the following facts:

1. We can roughly evaluate nine discriminant functions as follows. Revised
IPLP-OLDF is the best because ten NMs of IPLP are the same as MNM.

2. SVM1, LDF, RDA, and QDF cannot discriminate the linearly separable model
exactly (Problem 2).

3. Although logistic regression is the second best at the 50 % level, ten NMs of
nonlinearly separable models are greater than MNM. Moreover, logistic
regression is worse than SVM4, SVM1, LP, and IPLP. This result is crucial
because logistic regression is as same as IPLP and is better than SVM4, SVM1,
and LP in other data. Although logistic regression is most reliable among sta-
tistical discriminant functions, these results show the defect of logistic regression.

4. Three statistical discriminant functions are worse than RIP and IPLP. Although
we shall never use these discriminant functions anymore, statistical software
companies shall support these functions because these functions are our heritage
and we need the education of discriminant analysis.
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5. We find the Problem 1 of Revised LP-OLDF for three models (SN = 3, 8,
10) with non-negative “Diff1s”.

5.4.2 Error Rate Means (M1 and M2)

Table 5.6 lists the results by Method 1. SVM1 and Fisher’s LDF cannot recognize
that the full model is linearly separable. In particular, M1 of Fisher’s LDF is
11.61 %. Only Fisher’s LDF selects the fourth model as the best model. The other
LDFs select the full model as the best model. The seven “M2Diff” of the full model
are −0.03, −0.03, 0.16, −0.02, −0.05, 0.08, and 11.53 %. Although we cannot
evaluate the influence of Problem 1, the four best models of H-SVM, SVM4, IPLP,
and LP are better than those of Revised IP-OLDF within 0.05 %. This fact implies
the following.

M2 of Revised IP-OLDF might be wrong for linearly separable models. On the
other hand, the best model for Fisher’s LDF is 11.525 % worse than RIP. If we look
at the best model among those ten that are not linearly separable, all LDFs select a
fourth model. The six “M2Diff” of the fourth model are 0.29, 0.78, 0.04, 0.23, 0.33,
and 10.25 %. Five LDFs, with the exception of Fisher’s LDF, are acceptable. Only
Fisher’s LDF is 10.25 % worse than Revised IP-OLDF. If we compare two best
models among 11 and ten models, Revised IP-OLDF is superior to other LDFs for
nonlinearly separable models, but not for linearly separable models. The sixth
“Diff” of Fisher’s LDF is the minimum value −0.15 %. This fact means that the
sixth M2 (26.72 %) is 0.15 % less than M1 (26.87 %). Some statisticians claim that
Fisher’s LDF has good generalization ability in this model. Our research shows that
this claim is entirely wrong.

Table 5.5 MNM and nine “Diff1” (90 % level)

SN Model RIP H-SVM SVM4 SVM1 LP IPLP Logistic LDF QDF RDA

1 1−4 0 0 0 1 0 0 0 10 1 10

2 1, 2, 4 3 1 3 1 1 3 9 6 9

3 2–4 5 1 0 0(1) 0 2 4 3 4

4 1, 3, 4 2 1 1 1 0 1 8 5 8

5 1–3 5 2 2 2 0 2 5 2 5

6 2, 4 5 2 2 2 0 10 7 2 7

7 1, 4 5 3 3 3 0 5 7 1 7

8 3, 4 6 4 5 4(1) 0 5 3 5 3

9 1, 2 11 1 1 1 0 27 1 6 1

10 2, 3 8 0 2 0(2) 0 32 2 3 2

11 1, 3 7 2 2 2 0 5 2 2 2
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5.4.3 95 % CI of Discriminant Coefficient

Table 5.7 lists the median and 95 % CI of six MP-based LDFs. The three T2
coefficients RIP, IPLP, and LP are zeroes, and other coefficients are negative. If four
medians of the full model are −0.0128, this LDF is the same as a trivial LDF, such
as f = T1 + T2 + T3 + T4 − 78 (or 77.5). All MP-based LDFs are almost equal to
the trivial LDF in Eq. (5.4).

F ¼ �0:0128� T1� 0:0128� T2� 0:0128� T3� 0:0128� T4þ 1

¼ �T1� T2� T3� T4þ 78
ð5:4Þ

Equation (5.5) shows that logistic regression is almost the same as trivial LDF.
On the other hand, Fisher’s LDF in Eq. (5.6) is different from the trivial LDF.

Table 5.6 M1s and M2s of eight LDFs (90 %)

M1 M2 Diff. Model

RIP 1 14m8s 0 1.06 1.06 1, 2, 3, 4

4 0.61 2.32 1.70 1, 3, 4

6 3.96 4.69 0.73 2, 4

M1 M2 Diff. M1Diff. M2Diff.

H-SVM 1 5m23s 0 1.02 1.02 0 −0.03
SVM4 1 9m23s 0 1.02 1.02 0 −0.03

4 1.07 2.61 1.53 0.46 0.29
11 6.28 6.95 0.67 1.90 0.46

SVM1 1 8m53s 0.20 1.22 1.02 0.20 0.16
4 1.70 3.10 1.40 1.09 0.78
10 7.83 8.45 0.62 1.44 1.21

IPLP 1 13m16s 0 1.04 1.04 0 −0.02
4 0.61 2.35 1.74 0 0.04
6 4.19 5.10 0.90 0.23 0.41

LP 1 4m23s 0 1.01 1.01 0 −0.05
4 1.02 2.54 1.52 0.41 0.23
6 5.43 6.07 0.65 1.47 1.39

Logistic 1 12m 0 1.14 1.14 0 0.08
4 1.28 2.64 1.36 0.669 0.33
10 7.40 7.51 0.11 1.008 0.27

LDF 1 15m 11.61 12.58 0.97 11.62 11.53
4 11.96 12.56 0.60 11.35 10.25
6 26.87 26.72 −0.15 22.911 22.03
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Logist 1234 ¼ �22:8� T1� 26:84� T2� 27:46� T3� 23:94� T4þ 1873:27

ð1123Þ ð2945Þ ð1352Þ ð1167Þ ð89580Þ
¼ �0:0122� T1� 0:0143� T2� 0:0147� T3� 0:0128� T4þ 1

ð5:5Þ

LDF 1234 ¼ 0:026� T1� 0:006� T2þ 0:080� T3þ 0:009� T4� 1:788

ð0:013�Þ ð0:026Þ ð0:017�Þ ð0:0067Þ ð0:24�Þ
¼ �0:015� T1þ 0:003� T2� 0:045� T3� 0:005� T4þ 1

ð5:6Þ

5.5 Pass/Fail Determination by Examination Scores
(10 % Level in 2012)

In this section, we discuss discrimination at the 10 % level. The passing mark is 36
points. Table 5.1 indicates that four models are linearly separable. A trivial LDF is
f = T1 + T2 + T3 + T4 − 36 (35.5).

Table 5.7 95 % CI of six LDFs

T1 T2 T3 T4 c

RIP 97.5 % −0.0075 0.0045 −0.0063 −0.0048 1

Median −0.0128 −0.0141 −0.0150 −0.0128 1

2.5 % −0.0190 −0.0357 −0.0255 −0.0147 1

H-SVM 97.5 % −0.0080 −0.0020 −0.0039 −0.0079 1

Median −0.0130 −0.0130 −0.0152 −0.0128 1

2.5 % −0.0190 −0.0292 −0.0228 −0.0171 1

SVM4 97.5 % −0.0080 −0.0018 −0.0039 −0.0079 1

Median −0.0129 −0.0130 −0.0142 −0.0128 1

2.5 % −0.0190 −0.0292 −0.0228 −0.0171 1

SVM1 97.5 % −0.0081 −0.0022 −0.0039 −0.0102 1

Median −0.0130 −0.0130 −0.0128 −0.0130 1

2.5 % −0.0188 −0.0253 −0.0210 −0.0171 1

IPLP 97.5 % −0.0080 0.0058 −0.0062 −0.004 1

Median −0.0130 −0.0141 −0.0150 −0.0128 1

2.5 % −0.0204 −0.0358 −0.0225 −0.0146 1

LP 97.5 % −0.0080 0.0058 −0.0072 −0.0040 1

Median −0.0130 −0.0141 −0.0150 −0.0128 1

2.5 % −0.0190 −0.0358 −0.0255 −0.0146 1
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5.5.1 MNM and Nine NMs

Table 5.8 lists the MNM and nine “Diff1” of seven LDFs and two discriminant
functions. Revised IPLP-OLDF is omitted from the table because it is the same as
MNM. None of models has cases on the discriminant hyperplane. SVM1, LDF,
QDF, and RDA cannot recognize 12 linear separable models among 16 linear
separable models.

H-SVM, SVM4, Revised LP-OLDF, Revised IPLP-OLDF, and logistic regres-
sion can recognize four linearly separable models. However, most of the seven
nonlinearly separable models are worse than RIP.

5.5.2 Error Rate Means (M1 and M2)

Table 5.9 lists the results by Method 1. We obtain the following outcomes: Revised
IP-OLDF, Revised IPLP-OLDF, Revised LP-OLDF, and Fisher’s LDF select the
fourth model as the best model. However, H-SVM, SVM4, SVM1, and logistic
regression select the full model as the best model. Because the full model for
logistic regression has the minimum M2 among all models, we select this as the best
model. The seven “M2Diff” are −0.07, −0.07, −0.07, 0.12, 0.08, −0.11, and
9.66 %. M2 of Revised IP-OLDF is within 0.11 % larger than the four M2s of
H-SVM, SVM4, SVM1, and logistic regression. Fisher’s LDF is 9.66 % larger than
Revised IP-OLDF. Among those seven models that are not linearly separable, seven
LDFs select fifth models. Moreover, M2 of Revised IP-OLDF is the minimum
value. The six “M2Diff” are 0.4, 0.71, 0, 0.4, 0.39, and 9.6 %. Revised IPLP-OLDF
and Revised IP-OLDF are better than the other five LDFs. Fisher’s LDF is 9.6 %
larger than Revised IP-OLDF. This fact might imply that Revised IP-OLDF is
superior to other LDFs for non linearly separable models, not LSD.

Table 5.8 MNM and nine “Diff1” (10 % level)

SN Model RIP H-SVM SVM4 SVM1 LP IPLP Logistic LDF QDF RDA

1 1–4 0 0 0 0 0 0 0 1 0 1

2 1, 2, 4 0 0 0 2 0 0 0 1 1 2

3 2–4 0 0 0 0 0 0 0 0 1 2

4 1, 3, 4 0 0 0 3 0 0 0 1 1 1

5 1–3 2 1 2 2 0 0 4 0 1

6 2, 4 4 2 2 2 0 2 6 2 4

7 1, 4 3 3 3 3 0 3 3 3 4

8 3, 4 3 1 1 1 0 0 2 2 2

9 1, 2 7 0 0 0 0 5 3 0 0

10 2, 3 7 4 4 4 0 4 4 4 4

11 1, 3 8 2 2 2 0 7 2 3 2
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5.5.3 95 % CI of Discriminant Coefficients

We examine the coefficients of the full model as the best model. A trivial LDF is
f ¼ T1þ T2þ T3þ T4�35:5 ¼ �0:028� T1�0:028� T2 �0:028� T3�0:028
�T4þ 1. Equation (5.7) is Revised IP-OLDF. Equation (5.8) is a logistic regres-
sion. Equation (5.9) is Fisher’s LDF. The seven LDFs are not the same as trivial
LDF. We cannot explain the reason that the full models for all LDFs are not similar
to the trivial LDF. This fact is a new complicated research theme for the near future.
However, if we compare two results such as 10 and 90 % levels, the former failed

Table 5.9 M1s and M2s of eight LDFs (10 %)

RIP M1 M2 Diff. Model

14m8s 1 0 0.88 0.88 1, 2, 3, 4

4 0 0.86 0.86 2, 4

5 0.73 2.44 1.71 1, 3, 4

H-SVM M1 M2 Diff. M1Diff. M2Diff.

5m23s 1 0.00 0.81 0.81 0 −0.07
4 0.00 0.90 0.90 0 0.03

SVM4 M1 M2 Diff. M1Diff. M2Diff.

9m23s 1 0 0.81 0.81 0 −0.07
4 0 0.90 0.90 0 0.04

5 1.36 2.84 1.48 0.629 0.40
SVM1 M1 M2 Diff. M1Diff. M2Diff.

8m53s 1 0 0.81 0.81 0 −0.07
4 0.76 1.71 0.95 0.758 0.85

5 1.65 3.15 1.50 0.919 0.71
IPLP M1 M2 Diff. M1Diff. M2Diff.

13m16s 1 0 1.00 1.00 0 0.12
4 0.00 0.85 0.85 0 −0.02
5 0.73 2.44 1.70 0 0

LP M1 M2 Diff. M1Diff. M2Diff.

4m23s 1 0 0.96 0.96 0 0.08
4 0 0.80 0.80 0 −0.07
5 1.36 2.85 1.48 0.629 0.40

Logistic M1 M2 Diff. M1Diff. M2Diff.

12m 1 0 0.77 0.77 0 −0.11
4 0 0.91 0.91 0 0.05

5 1.59 2.83 1.24 0.855 0.39
LDF M1 M2 Diff. M1Diff. M2Diff.

15m 1 9.64 10.54 0.90 9.637 9.66
4 9.54 9.91 0.37 9.54 9.05

5 11.44 12.04 0.60 10.71 9.60
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class consists of small sample with the unstable answer patterns, and the latter
passing class consists of small sample with the stable answer patters because
passing students have high scores.

Revised IP� OLDF ¼ �0:008� T1� 0:061� T2� 0:032� T3

� 0:024� T4þ 1
ð5:7Þ

Logistic 1234 ¼ �2:6� T1� 21� T2� 6:6� T3� 6:97� T4þ 296

ð725Þ ð2489Þ ð1248Þ ð724Þð26825Þ
¼ �0:009� T1� 0:071� T2� 0:022� T3� 0:024� T4þ 1:5

ð5:8Þ

LDF 1234 ¼ 0:006� T1þ 0:075� T2þ 0:007� T3þ 0:023� T4� 1:683

ð0:011Þ ð0:022�Þ ð0:015Þ ð0:006�Þ ð0:201�Þ
¼ �0:004� T1� 0:045� T2� 0:004� T3� 0:014� T4þ 1

ð5:9Þ

5.6 Summary

In this chapter, we discussed the Method 1 and the best model. We discriminated
the pass/fail determinations at 10, 50, and 90 % levels. We selected the best models
for eight LDFs by the “minimum M2 standard” method. Two studies by 50 and
90 % selected the same best models because only the full models are linearly
separable. We obtained surprising results for the best models of all MP-based LDFs
and logistic regression that are almost the same as trivial LDFs. Both Fisher’s LDFs
are quite different from trivial LDFs. We were able to obtain these results by setting
the intercept of MP-based LDFs to one. The absolute values for “M2Diff” of the six
LDFs, with the exception of Fisher’s LDF, were within 0.08 and 0.16 %, respec-
tively. However, those of Fisher’s LDF were 4.58 and 11.53 %, respectively. Next,
we selected the second best model among ten non linearly separable models by six
LDFs. The analysis of 50 % selected the second three-variable model, and all
“M2Diff” were greater than zero. In particular, that of Fisher’s LDF was 3.026 %.
The analysis of 90 % selected the fourth three-variable model, and all “M2Diff”
were greater than 0.04 %. In particular, that of Fisher’s LDF was 10.247 %. On the
other hand, there were four linearly separable models at the 10 % level. Four LDFs,
such as RIP, IPLP, LP, and Fisher’s LDF, selected the fourth two-variable model,
and four LDFs, such as H-SVM, SVM4, SVM1, and logistic regression, selected
the full model. We selected the full model as the best model. Moreover, all LDFs
were not the same as trivial LDFs.

Based on the above results at the 10, 50, and 90 % levels, we summarize as
follows:
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1. The three M2s for Fisher’s best LDF are 9.66, 4.58, and 11.53 % worse than
Revised IP-OLDF. Only Fisher’s LDFs are fragile for the pass/fail determina-
tion by examination scores. Therefore, we are concerned about obtaining the
same results with medical diagnoses because both data structures are same.

2. The two best Revised IP-OLDF models and logistic regression are the same as
trivial LDFs at the 50 and 90 % levels. However, all LDFs are not the same as
trivial LDFs at the 10 % level. We cannot explain the reason theoretically.

3. If we select the second best LDF for non linearly separable models, all LDFs
select the same models, and M2 of Revised IP-OLDFs has the minimum values.
This fact might imply that Revised IP-OLDF is superior to other LDFs for the
non linearly separable models, although only Revised IP-OLDF and H-SVM
can recognize the linearly separable models.

4. If we discriminate the datasets using 100 items as independent variables, we
obtain more drastic results. Because I am afraid to be misunderstood as agitator,
I do not discuss the results of 100-item discriminations.
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Chapter 6
Best Model for Swiss Banknote Data

Explanation 1 of Matroska Feature-Selection
Method (Method 2)

6.1 Introduction

In this chapter, we discuss Problem 4 in addition to Problems 2 and 5, where the
discriminant analysis is not the inferential statistical method (Shinmura 2014a,
2015c, d). We propose a k-fold cross-validation for small sample method (Method 1)
and can obtain the 95 % CI of error rates (Miyake and Shinmura 1976) and
discriminant coefficients. Through this innovation, we can select the best model with
the minimum error rate mean in the validation samples (Minimum M2 Standard)
(Shinmura 2014c, 2016c). We examine this new model selection procedure instead
of leave-one-out (LOO) procedure (Lachenbruch and Mickey 1968) through many
data and obtain excellent results. However, we cannot explain the useful meaning of
the 95 % CI of discriminant coefficients (Shinmura 2010a). After many trials, we set
the intercept to one for eight linear discriminant functions (LDFs). Six MP-based
LDFs are revised optimal linear discriminant function using integer programming
(Revised IP-OLDF) based on minimum number of misclassifications (MNM)
(Miyake and Shinmura 1979; Shinmura 2011a, b, 2013), Revised LP-OLDF,
Revised IPLP-OLDF (Shinmura 2010b, 2014b), three support vector machines
(SVMs) (Vapnik 1995). Two statistical LDFs are logistic regression (Cox 1958,
Firth 1993), and Fisher’s LDF (Fisher 1936, 1956). Seven LDFs, with the exception
of Fisher’s LDF, are almost the same as a trivial LDF for six pass/fail determinations
that use examination scores (Shinmura 2015a, b), the full model of those is linearly
separable. In this chapter, we examine the 16 linearly separable models of Swiss
banknote data (Flury and Rieduyl 1988) by eight LDFs. M2 of the best model of
Revised IP-OLDF is the smallest value of all models. We find all coefficients of the
best model rejected by the 95 % CI of discriminant coefficients (Coefficient
Standard). We compare t-values of the discriminant scores instead of p-values
because the range of p-values is [0, 1] and narrow. The t-value of the best model
has the maximum values among 16 models (maximum t-value Standard).
Therefore, both standards support the best model of Revised IP-OLDF in these data.
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Moreover, we study LSD discrimination through these data in addition to
Japanese-automobile data (Shinmura 2016c) and six pass/fail determinations using
examination scores precisely.

We propose the Matroska feature-selection method for microarray dataset
(Method 2) (Shinmura 2015e–s, 2016b) in Chap. 8. Because LSD discrimination is
no longer popular, we explain this new Method 2 through detailed examples of
Swiss banknote and Japanese-automobile data. In the gene analysis, we call all
linearly separable models, “Matroska.” The full model is the largest Matroska that
includes all smaller Matroskas in it. We already know that the smallest Matroska
(basic gene set, BGS) can explain the Matroska structure completely by the
monotonic decrease of MNM (MNMp � MNM(p+1)). On the other hand, LASSO
(Buhlmann and Geer 2011; Simon et al. 2013) attempts to make feature-selection. If
it cannot find the smallest Matroska in the data, it cannot explain the Matroska
structure. Swiss banknote data, Japanese-automobile data, and six microarray
datasets (Jeffery et al. 2006) are helpful for evaluating the usefulness of other
feature-selection methods, including LASSO.

6.2 Swiss Banknote Data

In this chapter, we discriminate Swiss banknote data and its resampling samples by
eight LDFs. We focus on two error rates means, M1 and M2, from the training and
validation samples, respectively, and propose the model with minimum M2 as the
best model instead of the LOO procedure. We compare eight M2s of the best model
to eight LDFs and determine the best model among the eight LDFs. Moreover, we
discuss the discriminant coefficients by setting the intercept to one. We confirm the
validity of the best model by both the coefficient standard and maximum t-value
standard by the t test of two means.

6.2.1 Data Outlook

Swiss banknote data consist of two types of bills, such as 100 genuine (yi = 1) and
100 counterfeit (yi = −1) bills. There are six variables, such as X1, which is the bill
length; X2 and X3, which are the widths of the left and right edges, respectively; X4
and X5, which are the bottom and top margin widths, respectively; and X6, which is
the length of the image diagonal. We can download these data from the Internet.

Table 6.1 lists the full model by regression analysis (plug-in rule1). We deter-
mine that only the X1 coefficient is accepted at the 5 % level by p-value. Forward
stepwise selects the variables as follows: X6, X4, X5, X3, X2, and X1. We select the
models with minimum values of AIC, BIC, and |Cp − (p + 1) |. AIC selects the
five-variable model (X2–X6), BIC selects the three-variable model (X4–X6), and Cp
selects the full model. Because of the AIC, BIC, and Cp statistics select three

118 6 Best Model for Swiss Banknote Data

http://dx.doi.org/10.1007/978-981-10-2164-0_8


different models, and thus, we cannot determine the proper model uniquely. On the
other hand, IP-OLDF finds that the two-variable model (X4, X6) is linearly sepa-
rable through examination of all the possible combinations of six independent
variables (Goodnight 1978). Two-variable model (X4, X6) is BGS and can explain
the structure of Swiss banknote data that is very important for us to understand
Method 2 in Chap. 8. Because of the monotonic decrease of MNM (MNMp �
MNM(p+1)), we know that the 16 models, including (X4, X6), are linearly separable.
On the other hand, other 47 models are not linearly separable. Therefore, we can
select the best model among these 16 linearly separable models. In the gene
analysis, we call the linearly separable model, “Matroska.” The full model is the
largest Matroska that includes all smaller Matroska in it. We call the smallest
Matroska, such as (X4, X6), “the basic gene set (BGS).” We can explain the
Matroska structure by BGS completely.

Figure 6.1 is a scatter plot by (X4, X6). Genuine and counterfeit bills are rep-
resented by the symbols “○” and “�,” respectively. The two circles are 99 %
confidence probability ellipses that are expected to include 99 % bills in each ellipse
if the two classes are supposed to be normal distributions. We understand that

Table 6.1 Full model by regression analysis (left) and four statistics by forward stepwise
technique (right)*

Regression analysis Forward stepwise technique

Var. Coeff. SE t p R2 AIC BIC Cp

c 24.09 6.55 3.68 0.00 – – – –

X6 −0.21 0.02 −13.90 0.00 0.81 −34.16 −24.39 292.02

X4 0.15 0.01 14.77 0.00 0.88 −128.72 −115.74 107.00

X5 0.16 0.02 9.22 0.00 0.92 205.74 189.56 10.66

X3 0.11 0.04 2.77 0.01 0.92 205.99 186.64 10.26

X2 0.12 0.04 2.69 0.01 0.92 210.90 188.40 5.32

X1 0.02 0.03 0.56 0.57 0.92 −209.06 −183.43 7.00
* We computed this table again in September 2015. Some values are different from the old table

Fig. 6.1 Swiss banknote data (MNM(X4,X6) = 0)
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counterfeit bills are not well controlled because their variance is significant. There
might reasons for not finding the data to be linearly separable, as follows:

1. To this point, only H-SVM has been able to recognize linearly separable models
theoretically. However, it can be adopted only for linearly separable models.
Therefore, and to the best of our knowledge, no one has attempted to use
H-SVM for discrimination. In addition, SVM researchers are interested in kernel
SVM because its idea is attractive.

2. To the best of our knowledge, nobody has considered the importance of LSD
discrimination. Many scientists have claimed that the purpose of discriminant
analysis is to discriminate overlapping data, not LSD. However, all LDFs, with
the exception of H-SVM and Revised IP-OLDF, cannot discriminate overlap-
ping data correctly because “MNM = 0” indicates that the data do not overlap.

3. All possible combinations of regression models (Goodnight 1978; Sall 1981)
provide clear anddeterministic data perception.Therefore,wediscriminate asmany
possible combinations of discriminant models as possible. If some researchers
attempt to verify all scatter plot combinations, as shown in Fig. 6.1, they might
suspect that the model (X4, X6) is linearly separable. IP-OLDF (Shinmura 1998,
2000a, b, 2003, 2004, 2005, 2007; Shinmura andTarumi 2000) finds that these data
are linearly separable through examination of 63 discriminations.

6.2.2 Comparison of Seven LDF for Original Data

In this chapter, we investigate a total of 63 (=26 − 1) discriminant models. A total of
16 models, including the model (X4, X6), are linearly separable. Other 47 models
are not linearly separable. These data are adequate regardless of whether eight
LDFs can discriminate linearly separable models correctly. We focus on the linearly
separable models because evaluation is very explicit. Table 6.2 lists the results of
the 16 linearly separable models. In the table, “SN” is the sequential number of the
discriminant model; “p” is the number of variables; “Var” is a suffix of the variable;
“1–6” indicates the six-variable model (X1, X2, X3, X4, X5, X6); and “RIP” is
MNM of Revised IP-OLDF. Because NMs of H-SVM, a soft-margin SVM for
penalty c = 104 (SVM4), Revised LP-OLDF (LP), Revised IPLP-OLDF (IPLP),
and logistic regression (logistic) are zero, we omitted five LDFs from the table. The
“SVM1, LDF, QDF, and RDA” columns show NMs of S-SVM for penalty c = 1
(SVM1), Fisher’s LDF (LDF), QDF, and regularized discriminant analysis
(RDA) (Friedman 1989). These four discriminant functions cannot recognize lin-
early separable models. We observe this fact in other data. Therefore, we can
conclude that SVM1 with small penalty c, Fisher’s LDF, QDF, and RDA based on
the variance–covariance matrices are weak for the discrimination of linearly sep-
arable models (Problem 2). None of the LDFs, with the exception of Revised
IP-OLDF, can discriminate cases on the discriminant hyperplane theoretically. We
cannot determine whether the four statistical discriminant functions do not verify
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the number of cases on the discriminant hyperplane (Problem 1). LINGO solves the
six MP-based LDFs (Schrage 1991, 2006), and JMP (Sall et al. 2004) solves the
statistical discriminant function such as Fisher’s LDF, logistic regression, QDF, and
RDA. Although Fisher’s LDF and logistic regression are LDFs, QDF and RDA are
not LDFs. Therefore, we do not evaluate QDF and RDA by Method 1.

Table 6.3 lists NMs of 11 models that exclude X6. The bold NMs are the same
as MNM. We can understand that MNMs are the minimum NMs of nine dis-
criminant functions, with the exception of H-SVM. Revised IPLP-OLDF is the
second best because it obtains the MNM estimate, and ten NMs are the same as
MNM. Next, we observe that logistic regression is often better than the other six
LDFs.

Table 6.2 MNM and NMs
of 16 linearly separable
models

SN p var. RIP SVM1 LDF QDF RDA

1 6 1–6 0 1 1 1 1

2 5 2–6 0 1 1 1 1

3 5 1, 3–6 0 1 1 1 1

4 5 1, 2, 4–6 0 1 1 1 1

5 5 1–4, 6 0 2 1 1 1

6 4 3–6 0 1 1 1 1

7 4 2, 4–6 0 1 1 1 1

8 4 1, 4–6 0 1 1 1 1

9 4 2–4, 6 0 2 1 1 1

10 4 1, 3, 4, 6 0 2 1 1 1

11 4 1, 2, 4, 6 0 2 2 1 1

12 3 4–6 0 1 1 1 1

13 3 3, 4, 6 0 2 1 1 1

14 3 1, 4, 6 0 2 2 2 1

15 3 2, 4, 6 0 2 1 1 1

16 2 4, 6 0 2 3 1 1

Table 6.3 MNM and eight NMs of 11 nonlinearly separable models

SN Var. RIP SVM4 SVM1 LP IPLP logistic LDF QDF RDA

17 1–5 2 3 3 3 2 2 7 6 6

18 1, 3–5 2 3 3 3 2 2 7 6 6

19 2–5 2 3 5 3 2 2 6 6 5

20 1, 2, 4, 5 2 3 5 3 2 2 8 6 8

21 4 12 17 17 17 12 15 19 14 14

22 3–5 2 3 4 3 2 2 6 6 5

23 2, 4, 5 2 2 5 2 2 2 8 6 5

24 1, 4, 5 2 4 5 4 2 2 9 6 6

25 1, 3, 4 13 17 17 17 14 15 19 16 16

26 2–4 13 17 17 17 13 17 19 15 15

27 1, 2, 4 13 19 19 19 13 16 22 18 18
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Because we had no validation samples before Method 1, we evaluated different
LDFs in the training samples using simple regression as explained here (Shinmura
2010a). We could evaluate all LDFs by MNM in the training samples because
MNM is the minimum NMs among all LDFs. In our research, we also evaluate
QDF and RDA by MNM. These are not LDFs. Table 6.4 lists the results of
regression analysis, such as “each NM = c + b � MNM” using 63 NMs, including
16 linearly separable models. QDF is the worst result because the intercept is 1.59,
and the discriminant coefficient is 0.99, which is almost 1. The simple regression
line (QDF = 1.59 + 0.99 � MNM) can predict good NMs of QDF by MNMs
because R-square is 0.991. This result implies that NMs of QDF are almost 1.59
higher than MNMs. In addition, the error rate of QDF is 0.8 % (=1.59/200) greater
than that of Revised IP-OLDF. We conclude that NMs of QDF, RDA, LDF, and
SVM1 are at least 1.28 higher than MNMs. On the contrary, NMs of SVM4,
Revised LP-OLDF, Revised IPLP-OLDF, and logistic regression are half of NMs
for these discriminant functions. Revised IPLP-OLDF is expected to be a good
estimate of MNM. However, Revised LP-OLDF and logistic regression are better
than Revised IPLP-OLDF for 63 models. We agree that everyone might not accept
this explanation on the superiority of Revised IP-OLDF.

6.3 100-Fold Cross-Validation for Small Sample Method

We generate resampling samples from Swiss banknote data and evaluate eight
LDFs by our new Method 1.

6.3.1 Best Model Comparison

Table 6.5 lists the 16 linearly separable models and 23th model, that is not linearly
separable model, in Table 6.3. “M1 and M2” are the mean error rates in the training
and validation samples. All 16 M1s of Revised IP-OLDF, H-SVM, SVM4, LP,

Table 6.4 Comparison of
eight discriminant functions

c b R2 MNM = 1 MNM = 40

SVM4 0.72 1.04 0.988 1.76 42.32

SVM1 1.57 1.02 0.989 2.59 42.37

LP −0.03 0.97 0.998 0.94 38.77

IPLP 0.68 1.03 0.987 1.71 41.88

Logistic 0.32 1 0.995 1.32 40.32

LDF 1.28 1.11 0.974 2.38 45.68
QDF 1.59 0.99 0.991 2.58 41.19

RDA 1.56 0.99 0.992 2.55 41.16
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Table 6.5 100-fold cross-validation for small sample method

LDF SN M1 M2 t Diff. Model

RIP 53m42s 1 0 0.30 453 0.30 1–6

2 0 0.77 307 0.77 2–6

3 0 0.26 456 0.26 1, 3–6

4 0 0.30 453 0.30 1, 2, 4–6

5 0 0.70 243 0.70 1–4, 6

6 0 0.74 409 0.74 3–6

7 0 0.75 419 0.75 2, 4–6

8 0 0.27 454 0.27 1, 4–6

9 0 0.77 362 0.77 2–4, 6

10 0 0.63 379 0.63 1, 3, 4, 6

11 0 0.62 379 0.62 1, 2, 4, 6

12 0 0.69 402 0.69 4–6

13 0 0.67 353 0.67 3, 4, 6

14 0 0.60 379 0.60 1, 4, 6

15 0 0.66 366 0.66 2, 4, 6

16 0 0.47 359 0.47 4, 6

23 0.84 1.69 315 0.85 2, 4, 5

SN M1 M2 t Diff M1Diff. M2Diff.

H-SVM 35m6s 1 0 0.53 −147 0.53 0.00 0.23

2 0 0.46 182 0.46 0.00 −0.30

3 0 0.46 −163 0.46 0.00 0.21
4 0 0.45 −158 0.45 0.00 0.15

5 0 0.72 141 0.72 0.00 0.02

6 0 0.46 192 0.46 0.00 −0.28

7 0 0.43 −185 0.43 0.00 −0.32

8 0 0.38 −164 0.38 0.00 0.11
9 0 0.70 149 0.70 0.00 −0.06

10 0 0.66 147 0.66 0.00 0.03

11 0 0.65 143 0.65 0.00 0.03

12 0 0.39 184 0.39 0.00 −0.30

13 0 0.63 147 0.63 0.00 −0.04

14 0 0.60 142 0.60 0.00 −0.01

15 0 0.59 142 0.59 0.00 −0.07

16 0 0.46 140 0.46 0.00 −0.01

SVM4 44m46s 3 0 0.464 0.46 0.00 0.21
8 0 0.374 0.37 0.00 0.10
23 1.21 1.764 0.56 0.37 0.08

SVM1 46m17s 3 0.26 0.54 0.28 0.26 0.28
12 0.32 0.52 0.21 0.32 −0.17
23 1.94 2.52 0.58 1.11 0.84

(continued)
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IPLP, and logistic regression are zero. SVM1 and Fisher’s LDF cannot recognize
all linearly separable models. Only Revised IP-OLDF selects the third five-variable
model as the best model, with an M2 of 0.26 %. It’s t value of two class means on
discriminant score is maximum value 456 among 17 models. H-SVM, SVM4,
Revised IPLP-OLDF, and Revised LP-OLDF select the eighth four-variable model
as the best model, with M2s of 0.38, 0.37, 0.41, and 0.27 %, respectively. SVM1
and logistic regression select the 12th three-variable model, with M2s of 0.52 and
0.41 %, respectively. Only Fisher’s LDF selects the seventh four-variable model,
with M2 of 0.54 %. The best model of Revised IP-OLDF has the minimum value of
M2 among eight LDFs. The seven “M2Diff” of third model (X1, X3, X4, X5, X6) are
0.21, 0.21, 0.28, 0.23, 0.01, 0.26, and 0.29 %. Next, we examine the best model
among 47 models that are not linearly separable models. We focus on the 23rd
three-variable model (X2, X4, X5) of Revised IPLP-OLDF as the best model.
Because six “M2Diffs” of (X2, X4, X5) are 0.08, 0.84, −0.03, 0.12, 0.33, and 1.75
%, Revised IPLP-OLDF and Revised IP-OLDF are better than other five LDFs
among 47 models.

6.3.2 95 % CI of Discriminant Coefficient

6.3.2.1 Consideration of 27 Models

We can obtain 95 % CI of the coefficient with our new Method 1. We use the
median as eight LDFs. Table 6.6 lists the results of the median represented by a
given symbol. In the table, “SN” is the sequential number of 27 models. First, 16

Table 6.5 (continued)

SN M1 M2 t Diff M1Diff. M2Diff.

IPLP 47m31s 3 0 0.49 0.49 0.00 0.23
8 0 0.41 0.41 0.00 0.14
23 0.84 1.66 0.82 0.00 -0.03

LP 19m58s 3 0.00 0.27 0.27 0.00 0.01
8 0.00 0.27 0.27 0.00 0.00
23 1.22 1.81 0.59 0.38 0.12

Logistic 46m 3 0.00 0.52 0.52 0.00 0.26
12 0.00 0.41 0.41 0.00 −0.27
23 1.51 2.02 0.51 0.67 0.33

LDF 55m 3 0.53 0.55 0.02 0.53 0.29
7 0.51 0.54 0.03 0.51 −0.20
23 3.10 3.43 0.33 2.27 1.75
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Table 6.6 95 % CI of 27 models (First rows of LDF and logistic regression are NMs of two
LDFs).

SN Model RIP LP IPLP H-SVM SVM4 SVM1 LDF Logistic

1 1–6 +ZZ++−Z 0Z0- -+Z 000000* 0000001 0000001 0000001 1 0

+ZZ++−Z 000- -+0 0Z0- -+Z 000++−0 000++−0 000++−0 0+ - - -+- 0000000

2 2–6 d00000* d00000* d00000* d000001 d000000 d000001 1 0

d00++−0 d00- -+0 d00- -+0 d00++−* d00++−0 d00++−0 d+- - -+− d000000

3 1, 3–6 +dZ++−Z −d0- -+Z 0d0000* 0d00001 0d00001 0d00001 1 0

+dZ++−Z 0d0- -+0 0d0- -+0 0d0++−0 0d0++−0 0d0++−0 0d0++−* 0d00000

4 1, 2, 4–6 +Zd++−Z 00d- -+* 00d000* 00d0001 00d0001 00d0001 1 0

+Zd++−Z 00d- -+0 00d- -++ 00d++−0 00d++−0 00d++−0 00d++−+ 00d0000

5 1−4, 6 000+d−* 0000d0* 0000d0* 0000d01 0000d01 0000d01 1 0

000+d−+ 000- -d+0 0000d+0 000+d−0 000+d−0 000+d−0 0−++d−+ 0000d00

6 3−6 dd0000* dd0000* dd0000* dd0++−1 dd0++−1 dd0++−1 1 0

dd0++−0 dd0- -+0 dd0- -+0 dd0++−+ dd0++−0 dd0++−0 dd0- -+− dd00000

7 2, 4−6 d0d000* d0d000* d0d000* d0d++−1 d0d0001 d0d++−1 1 0

d0d++−0 d0d- -+0 d0d- -+0 d0d++−+ d0d++−0 d0d++−0 d0d++−* d0d0000

8 1, 4−6 +dd++−Z 0dd- -+* 0dd000* 0dd0001 0dd0001 0dd0001 1 0

+dd++−Z 0dd- -+0 0dd- -++ 0dd++−0 0dd++−0 0dd++−0 0dd++−+ 0dd0000

9 2−4, 6 d000d0* d000d0* d000d01 d00+d−1 d000d−1 d00+d−1 1 0

d000d−0 d00−d+− d000d+0 d00+d−+ d000d−+ d000d−+ d−++d−+ d000d00

10 1, 3, 4, 6 0d00d0* 0d00d0* 0d00d0* 0d00d01 0d00d01 0d00d01 1 0

0d0+d−0 0d0−d+0 0d00d+0 0d0+d−0 0d0+d−0 0d0+d−0 −d++d−+ 0d00d00

11 1, 2, 4, 6 00d+d−* 00d0d0* 00d0d0* 00d0d01 00d0d01 00d0d01 2 0

00d+d−0 00d−d+0 00d−d+0 00d+d−0 00d+d−0 00d+d−0 00d+d−+ 00d0d00

12 4−6 ddd++−* ddd000* ddd+00* ddd++−1 ddd++−1 ddd++−1 1 0

ddd++−0 ddd- -+− ddd- -+0 ddd++−+ ddd++−+ ddd++−+ ddd++−+ ddd0000

13 3, 4, 6 dd00d−* dd00d0* dd00d01 dd0+d−1 dd00d−1 dd0+d−1 1 0

dd0+d−+ dd0−d+− dd00d+− dd0+d−+ dd00d−+ dd00d−+ dd++d−+ dd00d00

14 1, 4, 6 0dd+d−* 0dd0d0* 0dd0d0* 0dd+d−1 0dd0d01 0dd+d−1 2 0

0dd+d−+ 0dd−d+− 0dd−d+0 0dd+d−+ 0dd+d−0 0dd+d−0 0dd+d−+ 0dd0d00

15 2, 4, 6 d0d+d−1 d0d0d01 d0d0d01 d0d+d−1 d0d+d−1 d0d+d−1 1 0

d0d+d−+ d0d−d+− d0d−d+0 d0d+d−+ d0d+d−+ d0d+d−+ d0d+d−+ d0d0d00

16 4, 6 ddd+d−1 ddd+d−1 ddd+d−1 ddd+d−1 ddd+d−1 ddd+d−1 3 0

ddd+d−+ ddd−d+− ddd−d+− ddd+d−+ ddd+d−+ ddd+d−+ ddd−d+− ddd0d00

22 3−5 dd000d1 dd000d1 dd000d1 dd- - -d1 dd- - -d1 dd- - -d1 6 2

dd0++d0 dd- - -d+ dd0- -d0 dd+++d− dd0++d0 dd+++d− dd0++d− dd0- -d+

25 1, 3, 4 0d00dd1 0d00dd* 0d00dd1 0d00dd1 0d00dd1 0d00dd1 19 15

0d0+dd0 +d- -dd0 +d- -dd0 −d++dd0 −d++dd0 −d++dd0 −d++dd− +d- -dd+

27 1, 2, 4 00d0dd1 00d0dd* 00d0dd1 00d0dd1 00d0dd1 00d0dd1 22 17

00d+dd0 +−d−dd0 +−d−dd0 −+d+dd0 −+d+dd0 −+d+dd0 −+d+dd− +−d−dd+
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models are linearly separable and include (X4, X6). We select 11 models more
without X6 although eight models are dropped from the table. Therefore, these
models are not linearly separable. The “model” column shows the suffix of vari-
ables. Each model, except for LDF and Logistic, has two expressions by a given
symbol. The lower row is the original coefficient, and the upper row is the modified
coefficient by setting the intercept to one. The rule of a given symbols is as follows:

1. Symbols “+,” “−,” and “0” show that the coefficients are positive (lower limit of
the 95 % CI > 0), negative (upper limit of the 95 % CI < 0), and zero (the 95 %
CI includes 0) at the 5 % significant level, respectively. If the model has the
symbol “0,” we should not choose this model by the coefficient standard.

2. Symbol “d” means that the variable has been dropped from the model.
3. Symbol “Z” means that 100 coefficients are zeroes that means natural

feature-selection for 100 training samples. If the model has the symbol “Z,”
we consider this model to be redundant. Moreover, this model is the same as the
model that dropped variables with symbol “d.”

4) Symbol “1” means that 100 intercepts are ones. Symbol “*” means that the
intercept is 1/0 because the same original intercepts are zero.

6.3.2.2 Revised IP-OLDF

Equation (6.1) is the full model for Revised IP-OLDF. We represent the full model
as the symbol “+ZZ++−Z” in Table 6.6. The symbols for X2 and X3, and the
intercept are “Z.” This fact indicates that we can drop these two variables from the
full model and that the full model is redundant. If the symbol for the intercept is “Z”
in the second row, the first row is the same as the second row because we need not
divide by the original intercept. Equation (6.2) shows the third five-variable model
(X1, X3, X4, X5, X6). We select this model as the best model for the minimum M2
standard. The symbol is “+dZ++−Z.” Equation (6.3) shows the fourth five-variable
model (X1, X2, X4, X5, X6). The symbol is “+Zd++−Z.” Equation (6.4) shows the
eighth four-variable model (X1, X4, X5, X6). The symbol is “+dd++−Z.” Because
we believe that the symbols “Z” and “d” initially have the same effect, these four
models are equivalent. However, the four M2s of the four models are different, such
as 0.30, 0.26, 0.30, and 0.27 %, because the 95 % CI of each coefficient is different.
We can determine that X2 and X3 are less significant among the six variables.

SN ¼1 : RIP ¼ 1:037� X1þ Z � X2þ Z � X3þ 2:197� X4þ 2:285� X5� 1:812� X6þ Z

¼1:037� X1þ 2:197� X4þ 2:285� X5 � 1:812� X6:

0:147; 1:455½ � 0:878; 3:729½ � 0:539; 4:278½ � �2:438;�0:556½ �
ð6:1Þ
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SN ¼3 : RIP ¼ 1:037� X1þ d � X2þ Z � X3þ 2:197� X4þ 2:292� X5� 1:908� X6þ Z

¼1:037� X1 þ 2:197� X4 þ 2:292� X5 � 1:908� X6

0:231; 1:353½ � 0:878; 3:124½ � 0:539; 4:049½ � �2:317; �0:612½ �
ð6:2Þ

SN ¼4 : RIP ¼ 1:037� X1þ Z � X2þ d � X3þ 2:20� X4þ 2:30� X5� 1:84� X6þ Z

¼1:037� X1 þ 2:200� X4 þ 2:300� X5 � 1:840� X6

0:147; 1:455½ � 0:878; 3:729½ � 0:539; 4:278½ � �2:438; �0:556½ �
ð6:3Þ

SN ¼8 : RIP ¼ 1:037� X1þ d � X2þ d � X3þ 2:197� X4þ 2:3� X5� 1:84� X6þ Z

¼1:037� X1 þ 2:197� X4 þ 2:3� X5 � 1:84� X6

0:231; 1:297½ � ½0:878; 3:192� ½0:659; 4:242� ½�2:314; �0:612�
ð6:4Þ

Equation (6.5) is the original 12th three-variable model, with symbol “ddd++−0.”
Shinmura (2015a) showed the excellent result of setting the intercept to one by
dividing the original coefficients. We divide each original coefficient by (the intercept
(143.36) + 0.000001); it then becomes “ddd++−*” in Eq. (6.6). Because fewer than
25 intercepts are zero, the intercepts have 1/0 values. We denote this status as the
symbol “*.”We know the values of coefficients are quite different in Eqs. (6.1), (6.2),
(6.3), and (6.4). Equation (6.7) is the 16th two-variable model, with symbol “ddd+d-
+”. If we divide the coefficients by the original intercept, we obtain Eq. (6.8), denoted
by “ddd+d-1.”The symbol “1”means that all intercepts are one. To this point, we have
not been able to understand the useful meaning of the 95 % CI of discriminant
coefficients. In this research, we investigate 16 linearly separable models and find that
all the coefficients of six models have positive or negative values, but not zero.
Therefore, 4; 6ð Þ � 4� 6ð Þ � 1; 4� 6ð Þ � 1; 2; 4� 6ð Þ= 1; 3; 4� 6ð Þ � 1� 6ð Þ,
are more valuable than other ten models. The result of the “minimum M2 standard”
and “coefficient standard” matches well only for six linearly separable models of
Revised IP-OLDF. We claim that the “coefficient standard” supports the best model.

SN ¼ 12 : RIP ¼ 4:346� X4þ 5:432� X5 � 1:498� X6þ 143:356

0:80; 7:71½ � 0:88; 11:87½ � �2:60; �0:44½ � 0; 251½ � ð6:5Þ

¼ 0:023� X4 þ 0:033� X5� 0:012� X6þ 1=0

½0:001; 7E6� ½0:01; 1E7� ½�1E6; �0:01� � ð6:6Þ

SN ¼ 16 : RIP ¼ 3:846� X4 � 5:321� X6 þ 699:395

0:364; 44½ � �48; �2:54½ � 345; 6348½ � ð6:7Þ
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¼0:007� X4 � 0:008� X6þ 1

½0:001; 0:01� ½ � 0:008; �0:007� ð6:8Þ

We calculate the discriminant scores by Revised IP-OLDF and calculate the t-
value of the two classes listed in Table 6.5. The t-value of the best model is 456,
and it is the maximum value among 27 discriminant scores in Table 6.2 and 6.3.
Figure 6.2 shows the scatter plots. The x-axis is M2s (RIPM2), and the y-axis is t-
values (RIPt). The left plot has 27 points, and their correlation is r = −0.84. The
symbol “�” is assigned to 16 linearly separable models and symbol “.” to 11
models. The right plot has only 16 linearly separable models, and the correlation is
r = −0.67. Although the best model (1, 3−6) of RIP has the maximum t-value
(Maximum t-value Standard), we are concerned that the t test always supports the
best model of RIP.

We can confirm that the coefficients of all 11 models include “0.” Although we
can observe the second best model among these 11 models in Table 6.6, we need
not consider these models by the coefficient standard.

6.3.2.3 Hard-Margin SVM (H-SVM) and Other LDFs

Equation (6.9) is the full model of H-SVM, and its symbol is “000++−0.” In order
to avoid division by zero, we divide the coefficients by the original intercept
((−102.38) + 0.000001). Following this notation rule, we can represent Eq. (6.10)
as the symbol “0000001.” In Table 6.6, this equation appears in the first row, and
its original symbol is in the second row because we believe that the model with
intercept equal to one is better than the initial coefficient. The signs of the 12th and
16th models are “ddd++−1” and “ddd+d−1,” respectively. Although the coefficient
standard supports the 12th and 16th models of H-SVM, the maximum t-value
standard support the sixth model. We predict that H-SVM is superior to Revised
IP-OLDF for LSD because the support vector (SV) is efficient for LSD. On the
other hand, we predict that Revised IP-OLDF might overestimate LSD because the

Fig. 6.2 Scatter plots for M2 versus t-value (left r = −0.8449, right r = −0.6678)
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former might arbitrarily search for one of the interior points of OCP. From our
research, we assume that Revised IP-OLDF searches for the OCP gravity that
causes the stability results explained in Chap. 7. Figure 6.3 shows the scatter plot of
16 models. The correlation is r = −0.69.

H-SVM ¼0:993� X1 þ 0:567� X2 þ 0:276� X3þ 1:645� X4

�0:57; 1:74½ � �0:54; 1:41½ � �1:06; 0:83½ � 0:37; 2:54½ �
þ 1:391� X5 � 1:635� X6 � 102:38

0:49; 3:02½ � �2:17; �0:59½ � �456; 285½ �

ð6:9Þ

¼ �0:004� X1� 0:003� X2þ 0:0002� X3� 0:004� X4� 0:004� X5 þ 0:01 � X6þ 1

�0:03; 0:13½ � �0:02; 0:05½ � �0:03; 0:07½ � �0:1; 0:3½ � �0:11; 0:24½ � �0:27; 0:09½ �
ð6:10Þ

The coefficients of the 12th, 16th, and 22nd models of SVM4 and SVM1 do not
include the symbol “0.”We need not discuss these models because the values ofM2s
are larger than those of Revised IP-OLDF. Although Revised LP-OLDF and Revised
IPLP-OLDF select the 16th model, we need not discuss these models for the same
reason. Because Fisher’s LDF and logistic regression by JMP script (Sall et al. 2004)
do not output 100 discriminant coefficients, we discriminate the original data by the
regression analysis and logistic regression. In Table 6.6, the first rows of Fisher’s
LDF and logistic regression show NMs by the original Swiss banknote data. If we
divide this number by two, the calculated value is the error rate because the sample
size is 200 cases. The full models of Fisher’s LDF and logistic regression are
Eqs. (6.11) and (6.12). The numbers enclosed in parentheses are the standard errors
although square bracket (“[]”) means 95 % CI in Eq. (6.1). Coefficients right
shoulder * is the variable rejected at the 5 % level. In Eq. (6.11) and (6.12), the
multiplication sign “�” is omitted in order to avoid the mistake of the symbols “*”
and “�.” The symbols for Fisher’s LDF and logistic regression are “0+- - -+-” and
“0000000,” respectively. Table 6.6 lists the 95 % CI that supports the eight models
of Fisher’s LDF. However, Fisher’s LDF never discriminates the 16 linearly sepa-
rable models correctly. Logistic regression calculates SE from the Hessian matrix.

Fig. 6.3 Scatter plots for M2
versus t-value (r = −0.6871)
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Such SE values are enormous, and all CI include zero. Therefore, JMP outputs a
warning message, such “estimation is unstable” for the linearly separable model
(Firth 1993). However, if we find “NM = 0” on the ROC by JMP output and “MNM
= 0” by Revised IP-OLDF, we determine that logistic regression can discriminate a
linearly separable model. In general, we recommend using the exact logistic
regression supported by SAS in order to avoid complex work such as the one given
above. Although we cannot accept the 16 linearly separable models because all
coefficients are accepted at the 5 % significant level and are zeroes, we judge logistic
regression can discriminate the linearly separable models correctly. Although we
accept only two models among 11, there is no meaning for the discrimination.

LDF ¼ �0:03X1þ 0:23�X2� 0:22�X3� 0:30�X4� 0:31�X5þ 0:42�X6� 47:18�

0:06ð Þ 0:09ð Þ 0:08ð Þ 0:02ð Þ 12:18ð Þ 0:03ð Þ 13:10ð Þ
ð6:11Þ

Logistic ¼ 30:33X1� 3:36X2þ 4:86X3þ 36:69X4þ 50:72X5� 28:63X6� 3594:33:

28411ð Þ 35162ð Þ 48244ð Þ 8772ð Þ 18142ð Þ 8954ð Þ 8608558ð Þ
ð6:12Þ

6.4 Explanation 1 for Swiss Banknote Data

6.4.1 Matroska in Linearly Separable Data

When we discriminated Swiss banknote data by IP-OLDF (Shinmura 1998, 2000a,
b), we found that MNM of the two-variable model (X4, X6) is zero. Although there
are 63 (=26 − 1) models in Table 6.7, 16 models, including (X4, X6), are zero as
listed in Table 6.5, and the other MNMs of 47 models are not zero because these
models do not include (X4, X6). We did not understand that LSD has the Matroska
structure, which is a linearly separable model. The largest Matroska includes
smaller Matroska in it. Because there are 16 Matroskas, we can produce Matroska
products by a combination of the smaller 15 Matroskas into the largest Matroska. It
is the most important fact that the two-variable model (X4, X6) can completely
explain the structure of 16 models. We call the two-variable model (X4, X6) “the
basic gene space (BGS)” in the gene analysis.

Table 6.8 lists the structure of the Swiss banknote data from the perspective of
the Matroska producer. Column “SN2” is the product number of Matroska prod-
ucts. Five columns, such “6,” “5,” “4,” “3,” and “2,” are the Matroska size. The
largest Matroska includes four five-variable linearly separable models (smaller
Matroska), which are (X2, X3, X4, X5, X6), (X1, X3, X4, X5, X6), (X1, X2, X4, X5,
X6), and (X1, X2, X3, X4, X6). Because two models, such as (X1–X3, X5, X6) and
(X1–X5), are not linearly separable, these models are not Matroska. Each
five-variable Matroska includes three four-variable Matroska, and each
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Table 6.7 MNM and NMs
of 16 linearly separable
models

SN p Var. RIP SVM1 LDF QDF RDA

1 6 1–6 0 1 1 1 1

2 5 2–6 0 1 1 1 1

3 5 1, 3–6 0 1 1 1 1

4 5 1, 2, 4–6 0 1 1 1 1

5 5 1–4, 6 0 2 1 1 1

6 4 3–6 0 1 1 1 1

7 4 2, 4–6 0 1 1 1 1

8 4 1, 4–6 0 1 1 1 1

9 4 2–4, 6 0 2 1 1 1

10 4 1, 3, 4, 6 0 2 1 1 1

11 4 1, 2, 4, 6 0 2 2 1 1

12 3 4–6 0 1 1 1 1

13 3 3, 4, 6 0 2 1 1 1

14 3 1, 4, 6 0 2 2 2 1

15 3 2, 4, 6 0 2 1 1 1

16 2 4, 6 0 2 3 1 1

Table 6.8 MNM of 16
linearly separable models

SN2 6 5 4 3 2

1 1–6 2–6 3–6 4–6 4, 6

2 3, 4, 6 4, 6

3 2, 4–6 4–6 4, 6

4 2, 4, 6 4, 6

5 2–4,6 3, 4, 6 4, 6

6 2, 4, 6 4, 6

7 1, 3–6 3–6 4–6 4, 6

8 3, 4, 6 4, 6

9 1, 4–6 4–6 4, 6

10 1, 4, 6 4, 6

11 1, 3, 4, 6 3, 4, 6 4, 6

12 1, 4, 6 4, 6

13 1, 2, 4–6 2, 4–6 4–6 4, 6

14 2, 4, 6 4, 6

15 1, 4–6 4–6 4, 6

16 1, 4, 6 4, 6

17 1, 2, 4, 6 2, 4, 6 4, 6

18 1, 4, 6 4, 6

19 1–4, 6 2–4, 6 3, 4, 6 4, 6

20 2, 4, 6 4, 6

21 1, 3, 4, 6 3, 4, 6 4, 6

22 1, 4, 6 4, 6

23 1, 2, 4, 6 2, 4, 6 4, 6

24 1, 4, 6 4, 6
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four-variable Matroska consists of two three-variable Matroska. At last, each
three-variable Matroska includes one two-variable Matroska, such as the same (X4,
X6). We call the smallest Matroska, such as (X4, X6), “BGS” using the terminology
of microarray dataset in Chap. 8. By Method 2, we can conclude that the structure
of Swiss banknote data is as follows:

1. LSD has the Matroska structure, and we call all linearly separable models,
“Matroska.” The full model of the data with six variables is the largest Matroska
that includes smaller Matroska from five to two variables.

2. The two-variable Matroska, such as (X4, X6), is unique BGS in the terminology
of Method 2. We can understand the structure of LSD by BGS completely
because all Matroska must include BGS by the monotonic decrease of MNM.

3. The Matroska producer can make 24 Matroska products by the combination of
15 Matroska.

4. We call each Matroska product, “the Matroska series.” For example, the first
“Matroska product SN = 1” has the following Matroska series: (1–6)
3 2� 6ð Þ3 3� 6ð Þ3 4� 6ð Þ3 4; 6ð Þ: We can produce the Matroska product with
the instructions of the Matroska series.

6.4.2 Explanation 1 of Method 2 by Swiss Banknote Data

We explain the Method 2 with the Swiss banknote data. Table 6.9 lists the coef-
ficients of Revised IP-OLDF. Because the first 16 models include (X4, X6), these
models are MNM = 0. The seven columns in Table 6.9 (from “X1” to “c”) are the
coefficients of Revised IP-OLDF. When we discriminate the data by Revised
IP-OLDF, the two coefficients of X2 and X3 become zero naturally. Therefore, we
can make feature-selection naturally from six variables to four variables. Next,
when we discriminate “four-variable model (1, 4–6) in row SN = 8,” we cannot
reduce the four-variable model to a smaller model. Therefore, we stop the Method 2
and call this four-variable model, “the small Matroska (SM).” Because MP solver
finds the global solution, it outputs the result by “first-in, first-out” rule, and it
cannot find BGS that is one of global solution having the same value of MNM.
After this step, we must survey BGS, such as (X4, X6), with the statistical approach
(Shinmura 2016a, b). After deleting BGS from the full model, we discriminate the
four-variable model (X1–X3, X5) by Revised IP-OLDF. Because MNM of this
model is 18, we stop Method 2 and conclude that we have found one BGS, such as
(X4, X6) in the Swiss banknote data, through a manual survey. In the near future,
we would like to develop the Revised LINGO Program 3 of Method 2 to find all
BGS automatically.

Table 6.10 lists the coefficients of H-SVM. All the coefficients of the full models
are not zero. Therefore, we cannot naturally make feature-selection by H-SVM. We
also cannot make feature-selection naturally by SVM4. Although many researchers
erroneously believe that S-SVM can discriminate the linearly separable model
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Table 6.9 Six NMs and coefficients of Revised IP-OLDF

SN MNM Var. X1 X2 X3 X4 X5 X6 c

1 0 1–6 −1 0 0 −3 −3 2 0

2 0 2–6 0 2 −4 −5 2 −513

3 0 1, 3–6 −1 0 −3 −3 2 0

4 0 1, 2, 4–6 −1 0 −3 −3 2 0

5 0 1–4, 6 7 −5 2 −11 11 −2606

6 0 3–6 2 −4 −4 2 −444.3

7 0 2, 4–6 −3 −2 −3 2 113.14

8 0 1, 4–6 −1 −3 −3 2 0

9 0 2–4, 6 −5 7 −22 24 −3408

10 0 1, 3, 4, 6 14 −10 −28 28 −5308

11 0 1, 2, 4, 6 8 −4 −14 14 −3126

12 0 4–6 −5 −6 3 −250.7

13 0 3, 4, 6 0 −44 48 −6348

14 0 1, 4, 6 0 −44 48 −6348

15 0 2, 4, 6 0 −44 48 −6348

16 0 4, 6 −44 48 −6348

(1–6) - BGS 18 1–3, 5 9506.8 −4625 −9990 0 −7071 0 −67712

Table 6.10 Coefficients of H-SVM

SN Var. X1 X2 X3 X4 X5 X6 c

1 1–6 −1.14 −0.57 0.124 −2.3 −2.8 1.796 102

2 2–6 −2.08 0.746 −2.62 −2.49 2.275 −94

3 1, 3–6 −1.48 −0.1 −2.27 −2.89 1.699 146

4 1, 2, 4–6 −1.3 −0.29 −2.3 −2.83 1.758 123

5 1–4, 6 7.694 −5.54 3.746 −10.3 10.19 −2759

6 3–6 0.657 −3.31 −2.86 3.018 −447

7 2, 4–6 −1.92 −3.17 −2.12 2.452 −42

8 1, 4–6 −1.45 −2.27 −2.9 1.738 120

9 2–4, 6 −4.83 6.897 −21.5 23.72 −3408

10 1, 3, 4, 6 13.66 −9.76 −28 27.7 −5308

11 1, 2, 4, 6 8.464 −4.23 −14.4 14.14 −3126

12 4–6 −3.75 −2.5 3.125 −377

13 3, 4, 6 0 −44 48 −6348

14 1, 4, 6 24.75 −29.2 30.68 −9366

15 2, 4, 6 0 −44 48 −6348

16 4, 6 −44 48 −6348
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exactly and prefer to select a small value, such as c = 1, as penalty c, only SVM1
(for c = 1) cannot discriminate the 16 modes as linearly separable. We confirm that
SVM4 is better than SVM1 in many trials. However, only H-SVM and Revised
IP-OLDF can discriminate the linearly separable model theoretically. Therefore, we
can omit to use other LDFs.

Table 6.11 lists the coefficients of Revised LP-OLDF. The two coefficients of X2
and X3 are zero. Therefore, when we discriminate the four-variable model (X1, X4,
X5, X6), none of the coefficients are zero, and we stop Method 2 at the four-variable
model. Although Revised LP-OLDF and Revised IPLP-OLDF can make
feature-selection naturally, we never use these OLDFs for the Theory 2 because
they cannot recognize LSD theoretically. Moreover, these OLDFs cannot reduce
the high-dimensional microarray dataset to the small Matroska drastically, as
explained in Chap. 8. I cannot explain this reason. It is one of future works.
Howevere, it may be caused by the branch and bound algorithm of LINGO
IP-solver.

Table 6.11 Coefficients of Revised LP-OLDF

SN Var. X1 X2 X3 X4 X5 X6 c

1 1–6 −1.09 0 0 −2.61 −2.83 2.06 0

2 2–6 −2.94 0 −2.47 −2.7 2.3 113.135

3 1, 3–6 −1.09 0 −2.61 −2.83 2.06 0

4 1, 2, 4–6 −1.09 0 −2.61 −2.83 2.06 0

5 1–4, 6 7.222 −5.24 2.331 −11.1 10.91 −2605.6

6 3–6 0 −4.8 −6.48 2.6 −250.69

7 2, 4–6 −2.94 −2.47 −2.7 2.3 113.135

8 1, 4–6 −1.09 −2.61 −2.83 2.06 0

9 2–4, 6 −4.83 6.897 −21.5 23.72 −3408.1

10 1, 3, 4, 6 13.66 −9.76 −28 27.7 −5307.6

11 1, 2, 4, 6 8.464 −4.23 −14.4 14.14 −3126.5

12 4–6 −4.8 −6.48 2.6 −250.69

13 3, 4, 6 0 −44 48 −6347.8

14 1, 4, 6 0 −44 48 −6347.8

15 2, 4, 6 0 −44 48 −6347.8

16 4, 6 −44 48 −6347.8

(1–6) - BGS 1–3, 5 1.914 −1.22 −2.7 0 −1.53 0 115.031

134 6 Best Model for Swiss Banknote Data

http://dx.doi.org/10.1007/978-981-10-2164-0_8


6.5 Summary

Table 6.12 lists the comparison of the six models selected by Revised IP-OLDF.
Because SVM1 and Fisher’s LDF cannot discriminate the linearly separable models
theoretically, there is no need to compare among the eight LDFs. We omit Revised
IPLP-OLDF and Revised LP-OLDF because these OLDFs are inferior to Revised
IP-OLDF. Column “M2” shows the value of M2. The number before the colon
indicates the rank of the useful models. The third model of Revised IP-OLDF has
the minimum value, 0.26, among all models by eight LDFs and the maximum
value, 456, of the t test. If we compare the third model of Revised IP-OLDF with
H-SVM, SVM4, and logistic regression, we can confirm that the third model of
Revised IP-OLDF is the best model. Both the coefficient and t test standards
support the “minimum M2 standard.” To this point, we cannot determine the best
model uniquely. Even if Fisher had developed SE for the error rate and discriminant
coefficients, we could not choose the best model uniquely. Because we can now
obtain powerful computer power and user-friendly solvers, such as LINGO
(Schrage 2006) and JMP, we should develop a new theory of discriminant analysis
through a computer-intensive approach. Most statisticians respect Fisher. He
opened a new frontier for much of the statistical theory through his intellectual
consideration without computer power. Therefore, we believe that no researcher
might discuss our claim seriously. However, we can use powerful computer power
and software, such as statistical software JMP and MP solver LINGO. We are
fortunate to be a generation with advanced technology, unlike Fisher era. We
should develop analytical techniques that are tailored to the characteristics of
individual data without normal distribution.

Table 6.12 Comparison of six models

SN Model RIP H-SVM SVM4 Logistic

M2 coeff. t M2 coeff. t M2 coeff. M2

1 1–6 4:
0.30

+ZZ++
−Z

4:
453

6:
0.53

0000001 5:
−147

6:
0.52

0000001 6: 0.55

3 1, 3–6 1:
0.26

+dZ++
−Z

1:
456

5:
0.46

0d00001 3:
−163

4:
0.46

0d00001 4: 0.52

4 1, 2,
4–6

3:
0.30

+Zd++
−Z

3:
453

3:
0.45

00d0001 4:
−158

3:
0.45

00d0001 5: 0.55

8 1, 4–6 2:
0.27

+dd++
−Z

2:
454

1:
0.38

0dd0001 2:
−164

1:
0.37

0dd0001 2: 0.46

12 4–6 6:
0.69

ddd++
−*

5:
402

2:
0.39

ddd++
−1

1:
184

2:
0.39

ddd++
−1

1: 0.41

16 4, 6 5:
0.47

ddd+d
−1

6:
359

4:
0.46

ddd+d
−1

6:
140

5
0.46

ddd+d
−1

3: 0.47
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Chapter 7
Japanese-Automobile Data

Explanation 2 of Matroska Feature-Selection
Method (Method 2)

7.1 Introduction

One of our master’s course students presented the statistical report about “The
Japanese-automobile Data (Shinmura 2015c, 2016c)” instead of the test. There are
29 regular and 15 small cars with six independent variables, such as the emission
rate (X1), price (X2), number of seats (X3), CO2 (X4), fuel (X4), and sales (X6). The
student’s main theme was the prediction of X6 by the other five variables. However,
the result was not clear. First, we used these data for the research of data envel-
opment analysis (DEA).1 Next, we found three points that are critical for dis-
criminant analysis:

1. Discrimination of linearly separable data (LSD)

We can easily recognize that these data are LSD because X1 and X3 can separate
two classes completely by two box–whisker plots. They are two basic gene sets
(BGSs) in Chap. 8.

2. Problem 3

The forward stepwise procedure selects X1, X2, X3, X4, X5, and X6 in this order.
Minimum number of misclassifications (MNM) of Revised IP-OLDF (Shinmura
1998, 2000a, b; Shinmura and Tarumi 2000) and NM of quadratic discriminant
function (QDF) are zeroes in the one-variable model (X1). On the other hand, QDF
misclassifies all regular cars as small cars after X3 enters the three-variable model
because the number of seats of small cars is four. These data are more suitable for
explaining Problem 3 than examination scores that use 100 items (Shinmura 2011b)

1See many studies of DEA analysis at Japanese researcher’s DB: http://researchmap.jp/
read0049917/. You can download over 14 papers from Misc(ellanies) category after 2013.
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because the former are very direct and clear. Examination scores using four testlets
in Chap. 5 are free from Problem 3.

3. Explanation of Matroska Feature-selection Method for Microarray Dataset
(Method 2)

When we discriminate six microarray datasets (Jeffery et al. 2006) by eight
LDFs, only Revised IP-OLDF can naturally select features and reduce the
high-dimension gene space to the small gene subspace that is a linearly separable
model (Shinmura 2015e–s). We call all linearly separable models as “Matroskas” in
the Theory 2. We establish the Theory 2 and find that the datasets consist of several
disjoint small gene spaces (Matroskas). We call these spaces, “the small Matroska
(SMs)” with MNMs = 0. Because LSD discrimination is not popular now and
Method 2 has several unknown ideas, we explain these ideas through these data in
addition to Swiss banknote data (Flury and Rieduyl 1988).

If the data are LSD, the full model is the largest Matroska that contains many
smaller Matroska in it. We already know that the smallest Matroska (the basic gene
set, BGS) can describe the Matroska structure completely because MNM decreases
monotonously. On the other hand, LASSO (Buhlmann and Geer 2011; Simon et al.
2013) attempts to make the feature-selection. If it cannot find SM or BGS in these
data, it cannot explain the structure of Matroska in microarray datasets (Shinmura
2016b).

7.2 Japanese-Automobile Data

7.2.1 Data Outlook

Let us consider the discrimination of 29 regular and 15 small cars with the six
variables listed in Table 7.1. Small cars have a unique Japanese specification.
Women tend to buy them as second cars because they are cost efficient. The
emission rate and capacity (number of seats) of small cars are smaller than regular
cars. The range of the emission rate of small and regular cars is [0.657, 0.658] and
[0.996, 3.456], respectively. We can discriminate the data by X1 = (0.658 + 0.996)/
2 = 0.827. The number of seats for small and regular cars is four and [5, 8],
respectively. We can discriminate the data by X3 = (4 + 5)/2 = 4.5. We understand
that each X1 or X3 separates two classes completely and is BGS in Chap. 8. “p” is
the number of variables selected by the forward stepwise procedure. Five- and
six-variable models of Fisher’s LDF (Fisher 1936, 1956) are zeroes. QDF and
Revised IP-OLDF can find that the one-variable model (X1: emission) is a linearly
separable model. The last two columns of Table 7.1 are NMs of regularized dis-
criminant analysis (RDA) (Friedman 1989). Before 2012, JMP (Sall et al. 2004)
switched QDF with RDA when QDF found data problems. However, both QDF
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and RDA misclassify all regular cars as small cars in the three-variable model (X1,
X2, X3) because the number of seats of small cars is four (Problem 3). If we add
slight random noise to the constant values, NMs become zero. Problem 3 might be
the defect of the generalized inverse matrix technique incremented in QDF of JMP.
After this fact, modified RDA was released. We must select two parameters k and c.
Therefore, we select the best combination, such as k = c = 0.1 with an 11 � 11 grid
search. Although the best combination is valid for these data, we use these values
for other data because we believe that the survey of the best combination is not
meaningful for many users.

Figure 7.1 shows the box–whisker plots for the emission (X1) and capacity (X3).
These graphs indicate that we can obtain two one-variable models that are linearly
separable models and two BGSs. Therefore, 48 models, including (X1) and (X3)
that are two BGSs, are linear separable among 63 models by monotonic decrease of
MNM. The other 15 models are not linearly separable.

Table 7.2 lists the NMs of 48 linearly separable models. We categorize these
models into three groups. The first 16 models, from SN = 1 to SN = 16, include
both X1 and X3. The next 16 models, from SN = 17 to SN = 32, include only X1.
The last 16 models, from SN = 33 to SN = 48, contain only X3. NMs of six
MP-based LDFs, logistic regression (Cox 1958, Firth 1993), and RDA are zero.
Therefore, these results are omitted from the table. On the other hand, 41 NMs of
Fisher’s LDF are not zero. Moreover, QDF misclassifies all regular cars as small

Table 7.1 Comparison of MNM and NMs

p Var t LDF QDF MNM k = c = 0.8 k = c = 0.1

1 Emission (X1) 11.37 2 0 0 2 0

2 Price (X2) 5.42 1 0 0 4 0

3 Capacity (X3) 8.93 1 29 0 3 0

4 CO2 (X4) 4.27 1 29 0 4 0

5 Fuel (X5) −4.00 0 29 0 5 0

6 Sales (X6) −0.82 0 29 0 5 0

Fig. 7.1 Box–whisker plots of emission and capacity (−1: small car, 1: regular car)
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Table 7.2 NMs of eight LDFs by forty-eight linear separable models

SN Emission Price Capacity CO2 Fuel Sales LDF QDF

1 1 0 1 0 0 0 2 29

2 1 1 1 0 0 0 1 29

3 1 0 1 1 0 0 1 29

4 1 0 1 0 1 0 1 29

5 1 0 1 0 0 1 2 29

6 1 1 1 1 0 0 1 29

7 1 1 1 0 1 0 1 29

8 1 1 1 0 0 1 1 29

9 1 0 1 1 1 0 1 29

10 1 0 1 1 0 1 1 29

11 1 0 1 0 1 1 1 29

12 1 1 1 1 1 0 0 29

13 1 1 1 1 0 1 0 29

14 1 1 1 0 1 1 1 29

15 1 0 1 1 1 1 1 29

16 1 1 1 1 1 1 0 29

17 1 0 0 0 0 0 2 0

18 1 1 0 0 0 0 1 0

19 1 0 0 1 0 0 1 0

20 1 0 0 0 0 1 2 0

21 1 0 0 0 1 0 2 0

22 1 1 0 1 0 0 1 0

23 1 1 0 0 1 0 1 0

24 1 1 0 0 0 1 1 0

25 1 0 0 1 1 0 1 0

26 1 0 0 1 0 1 1 0

27 1 0 0 0 1 1 4 0

28 1 1 0 1 1 0 0 0

29 1 1 0 1 0 1 1 0

30 1 1 0 0 1 1 1 0

31 1 0 0 1 1 1 2 0

32 1 1 0 1 1 1 0 0

33 0 0 1 0 0 0 0 29

34 0 1 1 0 0 0 5 29

35 0 0 1 0 1 0 3 29

36 0 0 1 0 0 1 1 29

37 0 0 1 1 0 0 0 29

38 0 1 1 1 0 0 5 29

39 0 1 1 0 1 0 6 29

40 0 1 1 0 0 1 6 29
(continued)
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cars for the first and third groups because these models include X3. If we add slight
random noise to X3 that belongs to small cars, all NMs become zero. Therefore, we
conclude that only Fisher’s LDF cannot discriminate 41 linearly separable models
among 48 such models. Therefore, Fisher’s LDF based on variance–covariance
matrices is assumed to never discriminate LSD correctly and is unable to select
features in gene analysis. Researchers of feature-selection method have better
evaluate their method by common data before they try to evaluate their theory for
the microarray datasets (the datasets). Although statisticians tried to discriminate the
datasets by Fisher’s LDF and QDF based on variance–covariance matrices over
than ten years ago, their researches were failure because Fisher’s LDF and QDF
could not discriminate LSD correctly (Theory 2) (Shinmura 2014a, 2015b, d).

7.2.2 Comparison of Nine Discriminant Functions
for Non-LSD

Table 7.3 lists NMs and number of cases on the discriminant hyperplane (f(xi) = 0)
by 15 nonlinearly separable models (MNM > =1). Four variables correspond to four
columns. We omit X1 and X3 from the table. The sixth column is MNM of Revised
IP-OLDF. The next eight columns are “Diff1” of eight discriminant functions.
LINGO (Schrage 2006) solves five MP-based LDFs, such as Revised IP-OLDF,
Revised LP-OLDF (LP), Revised IPLP-OLDF (IPLP), SVM4, and SVM1 (Vapnik
1995). JMP solves four LDFs, such as logistic regression (Logistic), Fisher’s LDF
(LDF), QDF, and RDA. “Diff1” is the difference defined as (eight NMs – MNM).
We omit NM of H-SVM because it cannot discriminate these models. The last
column in the table is the number of cases on f(xi) = 0 of Revised LP-OLDF. We
confirm that Revised LP-OLDF is not free from Problem 1. Because the other LDFs
are free from Problem 1 in these data, we omit from the table seven columns for the
number of cases on f(xi) = 0. The figures in bold are the maximum values among
eight “Diff1s.” There are many maximum values in LDF, QDF, and RDA compared
with the other five LDFs. The last row is the number of figures in bold. It represents
an approximate ranking of eight discriminant functions.

Table 7.2 (continued)

SN Emission Price Capacity CO2 Fuel Sales LDF QDF

41 0 0 1 1 1 0 3 29

42 0 0 1 0 1 1 3 29

43 0 0 1 1 0 1 1 29

44 0 1 1 1 1 0 4 29

45 0 1 1 1 0 1 5 29

46 0 1 1 0 1 1 6 29

47 0 0 1 1 1 1 4 29

48 0 1 1 1 1 1 5 29
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7.2.3 Consideration of Statistical Analysis

Figure 7.2 shows the score plots of PCA by six independent variables. The x-axis is the
first principal component, and the y-axes are the second and third principal components.
The left small 99 % probability ellipses are the small cars plotted with the symbol “.”.
The right large 99 % probability ellipses are the regular cars plotted with the symbol
“+.” Although these data are linearly separable, the regular car ellipses include small
cars. Many researchers misunderstand PCA can detect LSD clearly.

If we use indicator yi as the dependent variable and analyze the
Japanese-automobile data through regression analysis, the obtained regression

Table 7.3 Diff1s and the number on f(x) = 0 by 15 linear separable models

SN Variable MNM Diff1s f(xi)
= 0

X2 X4 X5 X6 RIP SVM4 SVM1 LP IPLP Logistic LDF QDF RDA LP

49 1 0 0 0 5 1 1 1 0 0 8 2 7 0

50 0 0 1 0 10 1 1 1 0 1 1 2 2 1

51 0 1 0 0 10 1 1 1 0 1 3 2 2 1

52 0 0 0 1 13 2 2 2 2 1 2 1 2 0

53 1 0 1 0 4 2 2 2 0 1 4 3 6 0

54 1 1 0 0 4 2 2 2 0 2 7 4 8 0

55 0 0 1 1 8 6 6 6 1 3 3 1 1 0

56 1 0 0 1 4 2 2 2 0 1 8 3 8 0

57 0 1 1 0 10 2 2 1 0 2 1 4 1 1

58 0 1 0 1 8 3 3 3 0 4 5 4 4 0

59 1 0 1 1 4 2 2 2 0 1 4 3 6 0

60 1 1 1 0 4 0 0 0 0 0 5 5 9 0

61 1 1 0 1 4 2 2 2 0 1 7 4 7 0

62 0 1 1 1 8 7 7 7 0 3 2 2 3 0

63 1 1 1 1 3 1 1 1 0 1 6 5 9 0

Number of figures in bold 3 3 3 1 0 5 2 9

Fig. 7.2 Score plots by PCA
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coefficients are proportional to the discriminant coefficients by the plug-in rule1.
Therefore, we can use the model selection procedures and statistics of the regres-
sion analysis instead of LOO procedure (Lachenbruch and Mickey 1968). Table 7.4
lists a summary of all possible combinations of six variables (Goodnight 1978). We
sort six one-variable models in descending order by R-squares. After the
two-variable model, the forward stepwise procedure selects these five models. AIC
and BIC recommend the five-variable model, and Cp statistics suggests full mode.
Because our research proposes a one-variable model (X3) in Tables 7.5, we must
examine whether we can use these statistics for discriminant analysis in the near
future. These statistics are independent of LSD discrimination.

Table 7.4 Summary of all possible combinations of six variables

p Model R-
square

RMSE AIC BIC Cp RIP LDF

1 X1 0.61 0.30 24.2 28.9 47.8 0 2

1 X3 0.49 0.35 35.9 40.7 74.8 0 0

1 X2 0.27 0.42 52.0 56.8 125.5 6 13

1 X5 0.25 0.42 53.1 57.8 129.4 11 11

1 X4 0.23 0.42 54.0 58.8 133.2 12 13

1 X6 0.02 0.48 65.0 69.8 182.4 15 15

2 X1, X2 0.77 0.24 4.3 10.4 14.9 0 1

3 X1, X2, X3 0.79 0.23 1.7 9.0 11.0 0 1

4 X1, X2, X3, X4 0.82 0.22 −1.4 7.0 7.3 0 1

5 X1, X2, X3, X4, X5 0.84 0.21 −3.4 6.0 5.0 0 0

6 X1, X2, X3, X4, X5,
X6

0.84 0.21 −0.4 9.8 7.0 0 0

Table 7.5 M1s and M2s of eight LDFs

RIP M1 M2 Diff. Model

50s 1 0 0 0 X1, X2, X3

2 0 0 0 X1, X2

3 0 0.07 0.07 X1, X3

4 0 0 0 X2, X3

5 0 0 0 X1

6 0 0 0 X3

7 9.55 12.75 3.2 X2

HSVM M1 M2 Diff. M1Diff. M2Diff.

38s 1 0 0.11 0.11 0 0.11

2 0 0.2 0.2 0 0.2

3 0 0 0 0 −0.07

4 0 0.11 0.11 0 0.11

5 0 0 0 0 0

6 0 0 0 0 0
(continued)

7.2 Japanese-Automobile Data 145



Table 7.5 (continued)

SVM4 M1 M2 Diff. M1Diff. M2Diff.

40s 1 0 0.11 0.11 0 0.11

2 0 0.2 0.2 0 0.2

3 0 0 0 0 −0.07
4 0 0.11 0.11 0 0.11

5 0 0 0 0 0
6 0 0 0 0 0
7 40.45 40.64 0.18 30.91 27.89

SVM1 M1 M2 Diff. M1Diff. M2Diff.

44s 1 1.14 1.2 0.07 1.14 1.2

2 0.98 1.7 0.73 0.98 1.7

3 0 0 0 0 −0.07
4 0.34 0.5 0.16 0.34 0.5

5 0.73 0.84 0.11 0.73 0.84
6 0 0 0 0 0
7 12.39 12.98 0.59 2.84 0.23

LP 1 32s 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 –0.07
4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0
7 12.39 12.98 0.59 2.84 0.23

IPLP 1 1m40s 0 0.27 0.27 0 0.27

2 0 0 0 0 0

3 0 0 0 0 –0.07
4 0 0 0 0 0

5 0 0 0 0 0
6 0 0 0 0 0
7 9.55 12.77 3.23 0 0.02

Logistic 1 0 0.36 0.36 0 0.36

2 0 0.05 0.05 0 0.05

3 0 0.02 0.02 0 −0.05
4 0 0 0 0 0

5 0 0 0 0 0
6 0 0 0 0 0
7 12.3 13.01 0.72 2.75 0.26

LDF M1 M2 Diff. M1Diff. M2Diff.

1 1.5 2.35 0.85 1.5 2.35

2 1.89 2.91 1.03 1.89 2.91

3 4.52 4.75 0.23 4.52 4.68
(continued)
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7.3 100-Fold Cross-Validation (Method 1)

7.3.1 Comparison of Best Model

In this section, we compare six MP-based LDFs, including H-SVM, and two sta-
tistical LDFs by Method 1. We examine the seven models made by three variables,
such as X1, X2, and X3, because the other tree variables are not necessary for the
discrimination explained by Table 7.1. Therefore, there are six linearly separable
models, including X1 and X3, and one one-variable model (X2) that is not linearly
separable. Table 7.5 lists the results of the Method 1. We omit QDF and RDA
because they are not LDFs and have several defects. We examine the seven dis-
criminant models of seven LDFs and six models of H-SVM. The first seven rows
are the seven discriminant models of Revised IP-OLDF (RIP). The “Model” col-
umn shows the independent variable. M1s and M2s are the error rate means from
the training and validation samples, respectively. Six M1s and M2s of Revised
LP-OLDF are zeroes. Six M1s and five M2s of Revised IP-OLDF and Revised
IPLP-OLDF are zeroes. Six M1s and three M2s of H-SVM, SVM4, and logistic
regression are zeroes. Only two M1s and M2s of SVM1 are zeroes. All M1s and
M2s of Fisher’s LDF are not zeroes. We can summarize the results of the six
linearly separable models as follows:

1. We can approximately evaluate the ranking of eight LDFs as follows: Revised
LP-OLDF is the first rank. This result is entirely different from the other data
and may be caused by Problem 1. Revised IP-OLDF and Revised IPLP-OLDF
are the second grades. H-SVM, SVM4, and logistic regression are the third
grades. Although SVM1 and Fisher’s LDF are the fourth and fifth rank, these
two LDFs cannot recognize the linearly separable models.

2. We can determine that the fifth and sixth models are the best models for two
reasons: Although several models have “minimum M2 = 0,” we select these
models by the principal parsimony because those are a one-variable model.
Revised IP-OLDF, SVM4, Revised LP-OLDF, Revised IPLP-OLDF, and
logistic regression select these two models as the best models.

The seventh model is not linearly separable. The six values of “M2Diff” are
27.89, 0.23, 0.23, 0.02, 0.26, and 14.28 %. SVM4 and Fisher’s LDF are 27.89 and
14.28 % worse, respectively, than Revised IP-OLDF. Although the discrimination
of one variable is not important, we must investigate the reason that these two

Table 7.5 (continued)

4 2.4 10.43 12.83

5 5.36 5.74 0.38 5.36 5.74

6 4.7 6.09 1.38 4.7 6.09
7 26.89 27.03 0.14 17.34 14.28
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results are poor. On the other hand, the absolute values of other LDFs are within
0.26 %. In the pass/fail determinations (Shinmura 2015a, b), the other seven LDFs
are similar to Revised IP-OLDF for LSD. The results listed in Table 7.5 are dif-
ferent from other data.

7.3.2 95 % CI of Coefficients by Six MP-Based LDFs

Tables 7.6 and 7.7 list the 95 % CI of six MP-based LDFs. Because we set all
intercepts to one (Shinmura 2015b, 2016a), those are omitted from the tables. If 100
coefficients are constant, those are shown in “Median” rows.

7.3.2.1 Revised IP-OLDF Versus H-SVM

Equation (7.1) is the full model of Revised IP-OLDF (Shinmura 2003, 2004, 2005,
2007, 2010a, 2011a). Three coefficients are the constant, such as “0, 0, −0.2222…”.
This means that the discriminant hyperplanes are X3 = 1/0.222 = 4.5, which is

Table 7.6 95 % CI of eight LDFs

RIP X1 X2 X3 H-SVM X1 X2 X3

1 97.50 % 0.975 −0.071 4.50E−08 −1.77E−01

Median 0 0 −0.222 Median −0.073 0 −0.209

2.50 % 0.025 −0.116 −7.20E−08 −0.218

2 97.50 % −1.053 0.975 −0.5115 9.62E−07

Median -1.209 0 Median −1.2092 0

2.50 % −2.184 0.025 −2.4382 −3.50E−07

3 97.50 % 379,174 0.975 −0.0707 −0.1978

Median −1.0776 0 Median −0.0707 −0.2092

2.50 % −1.2092 0.025 −0.1155 −0.2092

4 97.50 % 0.975 0.00E+00 −0.222

Median 0 −0.222 Median 0.00E+00 −0.222

2.50 % 0.025 0.00E+00 −0.222

5 97.50 % −1.053 0.975 −1.053

Median −1.209 Median −1.209

2.50 % −1.209 0.025 −1.209

6 97.50 % 0.975

Median −0.222 Median −0.222

2.50 % 0.025

7 97.50 % −6.70E−07

Median −7.50E−07

2.50 % −8.20E−07
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similar to the discriminant hyperplane described in Sect. 7.2.1. Because the
Japanese-automobile data are LSD and the one-variable model (X3) is a linearly
separable model, 100 Revised IP-OLDFs select an intermediate point as the same
discriminant hyperplane. On the other hand, three 95 % CIs of H-SVM are [−0.116,
−0.071], [−7.2E−8, 4.5E−8], and [−0.218, −0.177]. Because H-SVM maximizes
the distance of two SVs and 100 sets of two SVs are different, we estimate that
H-SVM cannot select the features naturally. Because both X1 and X2 coefficients of
RIP123 are zeroes, Method 2 suggests selecting X3 as the first BGS instead of X1.
Although we select 5th and 6th models by the minimum M2 standard in Table 7.5,
we can determine that the best model is X3 by Table 7.6. Moreover, the forward
stepwise procedure and t test initially select X1 in Table 7.1. We claim that the
statistical suggestions are different from the 95 % CI of coefficients by Method 1.
Equation (7.1) means that the discriminant hyperplane is X3 = 4.5. If X3 < 4.5, we
can determine that the car belongs to the small car group. Otherwise, if X3 > 4.5, we
can determine that the car belongs to the regular car group. This discriminant rule is
similar to the fact that small cars have four seats, and regular cars have over five
seats. This fact should be emphasized before the discrimination. However, we
cannot perform the same action for more than two variables without Revised
IP-OLDF. Moreover, we can understand that Revised IP-OLDF can select the
features suited to human sensibility.

RIP123 : 0� X1þ 0� X2� 0:2222� X3þ 1 ¼ �0:2222� X3þ 1 ¼ 0 ð7:1Þ

Equation (7.2) is a two-variable model, such as (X2, X3). The 95 % CI of X2 and
X3 is the same in the full model and one-variable model (X3). When we make the
feature-selection by Revised IP-OLDF for 100 training samples, 100 Revised
IP-OLDFs reduce the full models to 100 one-variable models (X3). Although
Theory 1 evaluates 100 Revised IP-OLDFs, it can make the feature-selection nat-
urally for two models, such as (X2, X3) and (X3).

RIP23 : 0� X2� 0:2222� X3þ 1 ¼ �0:2222� X3þ 1 ¼ 0 ð7:2Þ

Equation (7.3) is a two-variable model using the median, such as (X1, X2). We
can determine that this model is linearly separable by X1 without X2. The dis-
criminant hyperplane is X1 = 1/1.209 = 0.827, which is equal to an intermediate
point, such as X1 = (0.658 + 0.996)/2, as described in Sect. 7.2.1. However, 100
intermediate points are different. The 95% CI of X1 in the one-variable model (X1)
has almost the same 95 % CI of model (X1, X2). It reduce the two-variable model
(X1, X2) to the fifth model (X1).

RIP12 : �1:209� � X1þ 0� X2þ 1 ¼ �1:209� � X1þ 1 ¼ 0 ð7:3Þ

Equation (7.4) is a two-variable model, such as (X1, X3). Although each variable
is a linearly separable model, both coefficients of (X1, X3) are zero at the 5 % level.
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We estimate that each variable disturbs the capability of feature-selection by another
variable. Revised IP-OLDF cannot select the features by this model.

RIP13 : �1:078� X1þ 0� X3 ¼ 0 ð7:4Þ

Equation (7.5) is a one-variable model, such as (X2). The discriminant hyper-
plane is X2 = 1,333,333. The price of four regular cars is less than 1.3 million yen,
and those of two small cars are higher than this price. Therefore, the error rate is
0.135 (= 6/44) (Miyake and Shinmura 1976).

RIP2 : �0:00000075� � X2þ 1 ¼ 0 ð7:5Þ

If we compare H-SVM with Revised IP-OLDF, two models, such as (X1), and
(X3), are the same. Those are two BGSs.

7.3.2.2 Revised IPLP-OLDF, Revised LP-OLDF, and other LDFs

Four models, such as (X1, X2, X3), (X2, X3), (X1), and (X3) of Revised LP-OLDF,
are similar to Eq. (7.2). Although Revised LP-OLDF is weak for Problem 1, it
might be more suitable for LSD discrimination than H-SVM. However, there is no
theoretical reason for it to discriminate LSD. On the other hand, the full model of
Revised IPLP-OLDF (Shinmura 2010b, 2014b), SVM4, and SVM1 are not useful
for feature-selection.

7.3.3 95 % CI of Coefficients by Fisher’s LDF and Logistic
Regression

Table 7.8 lists the 95 % CI of Fisher’s LDF and logistic regression. We assume that
yi is the object variable and analyze the data by regression analysis (plug-in rule1).
The first row is the coefficients. The second row is SE. The third row is the p-value
instead of t-value by t test. We know that the only coefficient of X2 in the fourth
model (X2, X3) of LDF is zero. The other coefficients are rejected at the 5 or 1 %
levels. Therefore, it is difficult for us to select a good model among the six models.
Because the seventh model (X2) is not linearly separable, this model is rejected at
the 1 % level. We should not trust the SE and p-value of Fisher’s LDF by the
plug-in rule1. In addition to this recommendation, we cannot use the SE and
p-value of logistic regression.
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7.4 Matroska Feature-Selection Method (Method 2)

7.4.1 Feature-Selection by Revised IP-OLDF

Table 7.9 lists 63 models. Because the first 32 models include X1, MNMs are zero.
A total of 28 coefficients of X1 and intercept are 5.92 and −4.893, respectively. The
discriminant hyperplane is X1 = 4.893/5.92 = 0.82652, similar to that described in
Sect. 7.2.1. On the other hand, because the other four coefficients of X3 and intercept
are 2 and −9, respectively, the discriminant hyperplane is X3 = 9/2 = 4.5, similar to
that described in Sect. 7.2.1. The next 16 models are the same as the aforementioned
four models. The last 15 models do not include X1 and X3; MNMs are not zero. We
simulate Method 2 by this table. When we discriminate the full model (SN = 1), the
only coefficient of X1 is 5.917, and the other five coefficients are zero. Therefore,
we can reduce the six-dimension space to one-dimension subspace by natural
feature-selection. We call the linearly separable model, “Matroska” in Theory 2. The
large Matroska with six variables includes five five-variable models (or smaller
Matroska) in it. Each five-variable model includes four four-variable models in it.
Each four-variable model includes three three-variable models in it. Each
three-variable model includes two two-variable models in it. The two two-variable
models include the smallest linearly separable model (X1) in it. We call this model,
“BGS.” Therefore, there are 120 (=5� 4� 3� 2) Matroska products, including X1.

Table 7.8 95 % CI of Fisher’s LDF and logistic regression

LDF X1 X2 X3 c Logistic X1 X2 X3 c

Coeff. 1.84 −7.90E−07 0.179 −1.709 Coeff. −19.488 6.93E−06 −5.37E
+01

251.697

SE 0.25 1.56E−07 0.08 0.32 SE 0 2.317 2979878 1283091

P 0.0001 0.0001 0.031 0.0001 P 1 1 1

Coeff. 2.119 −8.41E−07 −1.085 Coeff. −179.039 1.75E−03 87.858

SE 0.227 1.62E−07 0.164 SE 0 1.774 2497413

P 0.0001 0.0001 0.0001 P 1 1

Coeff. 0.78 0.235 −2.003 Coeff. −3.777 −34.414 158.844

SE 0.175 0.101 0.399 SE 11,909 8185.144 27565

P 0.0001 0.024 0.0001 P 0.9997 0.9966 0.9954

Coeff. 1.62E−07 0.474 −2.443 Coeff. −2.77E−07 −62.889 283.495

SE 1.31E−07 0.105 0.46 SE 2.12E+00 2721988 11568553

P 0.222 0.0001 0.0001 P 1 1 1

Coeff. 1.068 −1.191 Coeff. −94.471 79.66

SE 0.131 0.207 SE 6289 5492.898

P 0.0001 0.0001 P 0.988 0.988

Coeff. 0.549 −2.528 Coeff. −37.05 166.806

SE 0.086 0.458 SE 3702.95 17078

P 0.0001 0.0001 P 0.992 0.992

Coeff. 5.04E+00 −0.636 Coeff. −6.97E
−06

9.233

SE 1.29E−07 0.273 SE 2.60E−06 3.421

P 3.00E−04 0.025 P 7.30E−03 0.007
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Table 7.9 63 models by Revised IP-OLDF

SN2 Var. RIP x1 x2 x3 x4 x5 x6 C

1 1–6 0 5.92 0 0 0 0 0 −4.893

2 1–5 0 5.92 0 0 0 0 −4.893

3 1–4, 6 0 5.92 0 0 0 0 −4.893

4 1–3, 5, 6 0 5.92 0 0 0 0 −4.893

5 1, 3–6 0 5.92 0 0 0 0 −4.893

6 1, 2, 4–6 0 5.92 0 0 0 0 −4.893

7 1–4 0 5.92 0 0 0 −4.893

8 1–3, 5 0 5.92 0 0 0 −4.893

9 1–3, 6 0 5.92 0 0 0 −4.893

10 1, 3–5 0 5.92 0 0 0 −4.893

11 1, 3, 4, 6 0 5.92 0 0 0 −4.893

12 1, 3, 5, 6 0 5.92 0 0 0 −4.893

13 1, 2, 4, 5 0 5.92 0 0 0 −4.893

14 1, 2, 4, 6 0 5.92 0 0 0 −4.893

15 1, 2, 5, 6 0 5.92 0 0 0 −4.893

16 1, 4–6 0 5.92 0 0 0 −4.893

17 1–3 0 0 0 2 −9

18 1, 3, 4 0 0 2 0 −9

19 1, 3, 5 0 0 2 0 −9

20 1, 3, 6 0 5.92 0 0 −4.893

21 1, 2, 4 0 5.92 0 0 −4.893

22 1, 2, 5 0 5.92 0 0 −4.893

23 1, 2, 6 0 5.92 0 0 −4.893

24 1, 4, 5 0 5.92 0 0 −4.893

25 1, 4, 6 0 5.92 0 0 −4.893

26 1, 5, 6 0 5.92 0 0 −4.893

27 1, 3 0 0 2 −9

28 1, 2 0 5.92 0 −4.893

29 1, 4 0 5.92 0 −4.893

30 1, 6 0 5.92 0 −4.893

31 1, 5 0 5.92 0 −4.893

32 1 0 5.92 −4.893

33 2–6 0 0 2 0 0 0 −9

34 2–4 0 0 2 0 −9

35 2–4, 6 0 0 2 0 0 −9

36 2, 3, 5, 6 0 0 2 0 0 −9

37 3–6 0 2 0 0 0 −9

38 2–4 0 0 2 0 −9

39 2, 3, 5 0 0 2 0 −9

40 2, 3, 6 0 0 2 0 −9
(continued)
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Next, when we remove X1 from the full model and discriminate five-variable model
(X2–X6) by Revised IP-OLDF (SN2 = 33), the only coefficient of X3 is two and the
other four coefficients are zeroes. Therefore, we can reduce the five-dimension space
to one-dimension subspace. The second large Matroska includes four four-variable
models in it. Each four-variable model includes three three-variable models in it.
Each three-variable model includes two two-variable models in it. Each two-variable
model includes BGS (X3) in it. Model X3 is the second BGS. Therefore, there are 24
(=4 � 3 � 2) Matroska products, including X3. Next, when we remove X3 from the
five-variable model and discriminate the four-variable model (X2, X4–X6) by
Revised IP-OLDF (SN2 = 50), two coefficients are zeroes. Because NM is not zero,
we stop Method 2. Therefore, we can understand that the structure of these data
consist of two BGSs, such as X1 and X3, and the other four-variable models that are
not linearly separable. Many statisticians have struggled over ten years to analyze
the high-dimension gene space. However, we should analyze two one-variable
models because these two BGSs explain the Matroska structure easily. Although

Table 7.9 (continued)

SN2 Var. RIP x1 x2 x3 x4 x5 x6 C

41 3–5 0 2 0 0 −9

42 3, 5, 6 0 2 0 0 −9

43 3, 4, 6 0 2 0 0 −9

44 2, 3 0 0 2 −9

45 3, 5 0 2 0 −9

46 3, 6 0 2 0 −9

47 3, 4 0 2 0 −9

48 3 0 2 −9

49 2 5 0 −134.3

50 2, 4–6 3 0 −46 −199 0 5342.8

51 2, 5, 6 4 0 4.03 0 −782.7

52 2, 4, 5 4 0 −0.3 −1.7 45.1

53 2, 4, 6 4 0.03 −121 −0.6 −28,515

54 4–6 8 −96 −809 −0.2 29,809

55 2, 5 4 0.03 45.4 −40,747

56 2, 4 4 0 −0.1 −461.8

57 5, 6 8 −685 −0.2 17,748

58 2, 6 4 0.03 0.09 −40,125

59 4, 5 10 3.54 10.8 −601.3

60 4, 6 8 160 −0.3 −14,026

61 5 10 −2.5 59.5

62 4 10 90.7 −8980

63 6 13 −0.7 6773.5
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Method 2 initially selects X3 for the three-variable model in Table 7.6, Method 2
initially selects X1 for the six-variable model in Table 7.9.

7.4.2 Coefficient of H-SVM and SVM4

Table 7.10 lists the coefficients of H-SVM. Although the three coefficients of X2,
X4, and X6 are small in the full model (SN = 1), all coefficients of H-SVM are not
zero. These results imply the following:

1. H-SVM cannot naturally select features. However, because the three coefficients
of X2, X4, and X6 are minuscule, the coefficients might be zero by LASSO
(Simon et al. 2013).

2. Although the RIP coefficients of X1 are 5.92/zero for 32 linearly separable
models in Table 7.9, the coefficient of X1 for H-SVM varies in Table 7.10. If
the X3 values for small cars vary, the X3 coefficient for H-SVM can also vary.

Table 7.11 lists the coefficients of SVM4. Although the three coefficients of X2,
X4, and X6 are minuscule in the full model (SN2 = 1), all coefficients of SVM4 are
not zero. SVM4 cannot make the feature-selection naturally.

Table 7.10 Coefficients of H-SVM

SN2 x1 x2 x3 x4 x5 x6 x7

1 0.63 −2.0E−07 1.78 −9.0E−03 −0.1 4.0E−06 −6.1

2 0.62 −2.0E−07 1.79 −4.0E−03 0 −7.1

3 0.61 −2.0E−07 1.79 2.0E−03 1.0E−06 −8.6

4 0.62 −2.0E−07 1.78 0 2.0E−06 −8.1

5 0.61 1.79 −2.0E−04 0 4.0E−08 −8.5

6 5.62 −1.0E−06 −8.0E−02 −0.5 3.0E−05 17.1

7 0.61 0 1.79 0 −8.6

8 0.61 −2.0E−07 1.79 0 −8.1

9 0.61 0 1.79 0 −8.6

10 0.61 1.79 −5.0E−08 0 −8.6

11 0.61 1.79 0 0 −8.6

12 0.61 1.79 0 0 −8.6

13 5.77 −1.0E−06 −4.0E−02 −0.4 8.94

14 5.83 −2.0E−06 2.0E−02 1.0E−05 −4.7

15 5.74 −2.0E−06 −0.1 2.0E−05 −0.3

16 5.92 0 0 0 −4.9

17 0.61 0 1.79 −8.6
(continued)
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Table 7.10 (continued)

SN2 x1 x2 x3 x4 x5 x6 x7

18 0.61 1.79 0 0 0 −8.6

19 0.61 0 1.79 0 −8.6

20 0.61 1.79 0 −8.6

21 5.9 −8.0E−08 6.0E−04 −4.9

22 5.86 −2.0E−06 −0.1 −0.2

23 5.92 0 0 −4.9

24 5.92 0 0 −4.9

25 5.92 0 0 −4.9

26 5.92 0 0 −4.9

27 0.61 1.79 −8.6

28 5.92 0 −4.9

29 5.92 0 −4.9

30 5.92 0 −4.9

31 5.92 0 −4.9

32 5.92 −4.9

33 0 2 0 0 0 −9

34 0 2 0 −9

35 0 2 0 0 −9

36 0 2 0 0 −9

37 2 0 0 0 −9

38 0 2 0 −9

39 0 2 0 −9

40 0 2 0 −9

41 2 0 0 −9

42 2 0 0 −9

43 2 0 0 −9

44 0 2 −9

45 2 0 −9

46 2 0 −9

47 2 0 −9

48 2 −9
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Table 7.11 Coefficients of SVM4

SN2 x1 x2 x3 x4 x5 x6 x7

1 0.87 −2.00E−08 1.74 −1.00E−02 −0.1 3.00E−06 −5.1

2 0.87 −4.00E−08 1.73 −1.00E−02 −0.1 −5.3

3 0.89 −7.00E−08 1.8 2.00E−03 −3.00E−06 −9

4 0.86 −1.00E−07 1.77 0 7.00E−07 −8.3

5 0.61 1.79 −3.00E−03 0 5.00E−07 −7.9

6 5.62 −1.00E−06 −8.00E−02 −0.5 3.00E−05 17.1

7 0.82 −2.00E−07 1.73 2.00E−03 −8.4

8 0.83 −2.00E−07 1.73 0 −8

9 0.81 −2.00E−07 1.74 −6.00E−06 −8.3

10 0.61 1.79 −4.00E−06 0 −8.6

11 0.61 1.79 0 0 −8.6

12 0.61 1.79 0 −5.00E−09 −8.6

13 5.77 −1.00E−06 −4.00E−02 −0.4 8.95

14 5.83 −2.00E−06 2.00E−02 1.00E−05 −4.7

15 5.74 −2.00E−06 −0.1 2.00E−05 −0.3

16 5.92 −4.00E−04 0 7.00E−08 −4.8

17 0.8 −2.00E−07 1.74 −8.3

18 0.61 1.79 0 −8.6

19 0.61 1.79 0 −8.6

20 0.61 1.79 −2.00E−08 −8.6

21 5.9 −1.00E−07 9.00E−04 −4.9

22 5.86 −2.00E−06 −0.1 −0.2

23 5.91 −8.00E−08 −6.00E−07 −4.8

24 5.92 −2.00E−06 0 −4.9

25 5.92 0 0 −4.9

26 5.92 0 0 −4.9

27 0.61 1.79 −8.6

28 5.92 0 −4.9

29 5.92 0 −4.9

30 5.92 0 −4.9

31 5.92 0 −4.9

32 5.92 −4.9

33 0 2 −7.00E−08 0 0 −9

34 4.00E−09 2 −9.00E−05 −9

35 2.00E−09 2 4.00E−06 −4.00E−08 −9

36 2.00E−07 2.1 0 −2.00E−06 −9.6

37 2 7.00E−09 0 0 −9

38 1.00E−08 2.01 3.00E−05 −9

39 1.00E−08 2.01 0 −9

40 3.00E−07 2.17 −6.00E−06 −10
(continued)
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7.5 Summary

In this chapter, we discussed the model selection procedures of discriminant
analysis. Although AIC and BIC suggest the five-variable model and Cp proposes a
full model by regression analysis, the “M2 minimum standard” procedure recom-
mends a one-variable model (X1) or (X3). Revised IP-OLDF, H-SVM, SVM4,
SVM1, Revised IPLP-OLDF, and logistic regression support these models.
Moreover, we can explain the meaning of Theory 2 by these data. Method 2 selects
X1 and X3 as two BGS naturally.
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Table 7.11 (continued)

SN2 x1 x2 x3 x4 x5 x6 x7

41 2 3.00E−07 0 −9

42 2 0 0 −9

43 2 4.00E−07 0 −9

44 4.00E−07 2.23 −11

45 2 0 −9

46 2 −1.00E−09 −9

47 2 2.00E−07 −9

48 2 −9

49 6.00E−06 −8.6

50 6.00E−06 −1.00E−01 −0.8 −2.00E−05 25.9
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63 0 1
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Chapter 8
Matroska Feature-Selection Method
for Microarray Dataset (Method 2)

8.1 Introduction

In this chapter, we introduce the Matroska feature-selection method for microarray
dataset (Method 2). We have already established a new theory of discriminant
analysis (Theory) and developed five optimal linear discriminant functions
(OLDFs) in Chap. 1. First, we developed OLDF using integer programming
(IP-OLDF) based on minimum number of misclassifications (MNM) criterion by
IP. It reveals two new facts about discriminant analysis. Because IP-OLDF has a
defect for Problem 1, Revised IP-OLDF is proposed (Shinmura 2007, 2010a,
2011a, b, 2013, 2014c).

Discriminant analysis has five serious problems (Shinmura 2014a, 2015c, d). We
could not discriminate cases on the discriminant hyperplane (Problem 1). Only
Revised IP-OLDF could solve this problem theoretically. Only a hard-margin SVM
(H-SVM) (Vapnik 1995) and Revised IP-OLDF could discriminate the linearly
separable dataset (LSD) theoretically (Problem 2).1 Problem 3 was that the gen-
eralized inverse matrices technique of variance–covariance matrices and QDF
misclassified all cases to another class for a particular case. We solved Problem 3 by
adding small random noises for a constant value. Because Fisher never formulated
the standard-error (SE) equation of the discriminant coefficient and error rate
(Miyake and Shinmura 1976), discriminant analysis is not the traditional inferential
statistical theory (Problem 4). We developed the 100-fold cross-validation for a
small sample method (Method 1) instead of the leave-one-out (LOO) procedure
(Lachenbruch and Mickey 1968). The Method 1 offers a 95 % CI for the error rate
and coefficient (Shinmura 2015a, b). Moreover, we obtained two means of error
rates, M1 and M2, in the training and validation samples and proposed a simple
model selection procedure to choose the best model with a minimum M2. We
compared two statistical LDFs and six MP-based LDFs: Fisher’s LDF (Fisher 1936,

1We determined experimentally that Revised LP-OLD could discriminate LSD correctly.
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1956), logistic regression (Cox 1958, Firth 1993), H-SVM, two S-SVMs, Revised
IP-OLDF, and another two OLDFs. The best model of Revised IP-OLDF was
found to be better than the other seven best models (M2s) in the six different types
of data. Because we solved four problems completely in 2015 (Shinmura 2016a, c),
we misunderstood to establish Theory in 2015.

At the end of October 2015, we discriminated six microarray datasets (the
datasets) using six MP-based LDFs and Fisher’s LDF. The JMP statistical package
(Sall et al. 2004) currently does not support logistic regression for the dataset.
Because the NMs of Fisher’s LDF are not zero, we cannot use Fisher’s LDF to
analyze the dataset (Shinmura 2015e–s, 2016b). Although the NMs of three SVMs
are zero, most coefficients of three SVMs are not zero. Therefore, three SVMs are
not helpful for feature-selection. Because several coefficients of three OLDFs are
not zero, and most of the coefficients are zero, we find three OLDFs can select the
dataset features within a few seconds and reduce high-dimensional gene spaces to
smaller subspaces. Because Revised LP-OLDF and Revised IPLP-OLDF cannot
discriminate LSD theoretically and we would like to finalize the Theory 2, we no
longer consider the two OLDFs for feature-selection.

In this chapter, we call the linearly separable gene space or subspaces
“Matroskas,” referring to the Russian dolls that nest inside each other. The dataset
is the big Matroska, which includes a huge number of smaller Matroskas. Only
Revised IP-OLDF can explain the structure of the dataset using the Method 2, as
follows. Because several coefficients of Revised IP-OLDF are not zero, and most of
the coefficients are zero, we find Revised IP-OLDF can select the dataset features
within a few seconds and reduce the high-dimensional gene space (big Matroska) to
smaller subspaces (Matroskas).

Next, whenwe discriminate the subspace again, we can find the smaller subspaces.
Therefore, we find the dataset has the structure of a Matroska. When we cannot find
any smaller Matroskas, we call the last subspace the small Matroska (SM). Moreover,
after we exclude the first SM from the dataset, we find the second SM. Finally, we can
list all SMs and conclude that the dataset consists of several disjoint SMs and another
high-dimensional gene subspace that is not linearly separable.

We confirmed that Revised IP-OLDF could naturally select features for Swiss
banknote data (Flury and Rieduyl 1988) in Chap. 6 and Japanese-automobile data
(Shinmura 2016c) in Chap. 7, in addition to the six datasets. We developed the
Method 2 using the LINGO program (Schrage 2006). Therefore, we can list all SMs
for the six datasets (Alon et al. 1999; Chiaretti et al. 2004; Golub et al. 1999; Shipp
et al. 2002; Singh et al. 2002; Tian et al. 2003).

For more than ten years, researchers have struggled to analyze the dataset
because the genes are huge (Problem 5). However, we find the dataset consists of
several disjoint SMs; their MNMs are zero. We can analyze these SMs very easily
because each SM is a small sample. We have established our Theory, and it is the
most helpful for feature-selection.
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Recently, many researchers have approached this theme using LASSO or or-
dinary statistical methods (Buhlmann and Geer 2011; Jeffery et al. 2006; Simon
et al. 2013). In addition to Chaps. 6 and 7, this chapter offer useful datasets and
results for these researchers from the following points:

1. Because Revised IP-OLDF can naturally select features for Swiss banknote and
Japanese-automobile data, they had better discriminate these data by their LDFs.
If their LDFs are not successful for ordinary data, I think those are not suc-
cessful for the dataset. Because I had already showed Fisher’s LDF could not
discriminate LSD correctly, it cannot discriminate the dataset correctly.
However, it is very helpful for us that JMP develops Fisher’s LDF for the
dataset because I can confirm my claim and save research time. On the other
hand, researchers should be as soon as possible determining the likelihood of
their own research theme.

2. Can their LDFs discriminate our eight different datasets exactly?
3. Can their LDFs find the Matroska structure correctly and list all basic gene sets

or subspaces (BGSs), including the smallest Matroska in each SM?

8.2 Matroska Feature-Selection Method (Method 2)

8.2.1 Short Story to Establish Method 2

We regret that we did not discriminate the dataset more earlier. We developed the
Theory of discriminant analysis using IP from 1997 to 2010 (Shinmura 2010a).
Many statistical researchers cannot understand our research because they assumed a
normal distribution. In the MP society, most researchers are not interested in
statistics; nevertheless, there were many MP-based discriminant functions before
Stam (1997). However, both researchers know about SVM, although H-SVM and
S-SVM are LDFs using QP (Vapnik 1995).

When we discriminated Shipp et al.’s dataset (2002) on Oct. 28, 2015, only a
few coefficients of Revised IP-OLDF were not zero, and many other coefficients
became zero (Shinmura 2015e). We had already found that Revised IP-OLDF could
naturally select features for the Swiss banknote data in Chap. 6 and the Japanese-car
data in Chap. 7. Only Revised IP-OLDF using IP could select a few features from
among 7129 genes. Although we misunderstood that discrimination with 7129
variables was difficult before 2010, Fisher’s LDF using JMP ver. 12 (JMP12) and
other MP-based LDFs, coded using LINGO as described in Sect. 2.3.3, can solve
the datasets in less than 20 s because the datasets are LSD.

However, most coefficients of three SVMs, except for Revised IP-OLDF, are not
zero. Therefore, these SVMs are not helpful for gene-feature-selection. Moreover,
we found that gene spaces are the disjoint union of SMs with “MNM = 0” and
another high-dimensional gene subspace with “MNM ≥ 1.” If we can list all of the
disjoint SMs, we can completely understand the dataset structure. We can analyze
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each SM using ordinary statistical methods because the SM case numbers are
generally less than sample case number and the number of genes of all SMs are less
than 104 for the six datasets. These datasets are small samples in statistics. Many
researchers can easily analyze these SMs using ordinary statistical methods such as
t test, one-way ANOVA, clustering, and PCA.

Because of our breakthrough, the dataset feature-selection is a very easy and
exciting theme. We are grateful that Jeffery et al. (2006) uploaded six datasets on
HP.2 Their paper tells us about the outlook of feature-selection methods until now.
Moreover, we confirmed that our Theory is superior to ordinary statistical
approaches and LASSO.

First, although three OLDFs, three SVMs, and Fisher’s LDF discriminated the
Shipp et al. dataset, we only discuss Revised IP-OLDF, H-SVM, and Fisher’s LDF
in this chapter. Only Revised IP-OLDF can naturally select features. We present
two reasons why Revised IP-OLDF may have this surprising superiority to other
LDFs.

1. The MNM criterion works well for feature-selection. Moreover, Revised
LP-OLDF and Revised IPLP-OLDF show feature-selection. However, three
SVMs cannot make feature-selection. Therefore, we discuss on, H-SVM, and
Fisher’s LDF in this chapter.

2. The LINGO IP-solve algorithm uses branch and bound. We believe that Revised
IP-OLDF coded by another IP algorithm cannot select features naturally.
However, we cannot control the flow of the branch and bound. When the IP
solver first finds the model with MNM = 0, LINGO outputs it and ends by the
“first-in, first-out rule.” Therefore, we cannot find the smallest basic gene sub-
spaces (BGSs) in the SM. If we know the BGSs, we can completely understand
the dataset structure using BGS because of the monotonic decreasing of MNM.

Next, we discriminate two datasets, Alon et al. and Golub et al., using the above
LDFs and confirm the feature-selection by Revised IP-OLDF (Shinmura 2015f).3 In
the third step, we propose the first version of our feature-selection method
(Shinmura 2015g, h). However, we know the omitted genes are linearly separable
models and find the disjoint structure of the Matroska (Shinmura 2015i) in the
fourth step. On Nov. 11, 2015, JMP released JMP ver. 12 (JMP12), which can
discriminate dataset using Fisher’s LDF; we borrowed it from the JMP division of

2http://www.bioinf.ucd.ie/people/ian/.
3In our research, IP-OLDF (Shinmura 1998, 2000a, b, 2003, 2004, 2005; Shinmura and Tarumi
2000) was proposed before Revised IP-OLDF. It reveals the following two important facts about
discriminant analysis:

1. The optimal convex polyhedron (optimal CP, OCP) with MNM;
2. MNM decreases monotonically (MNMk ≥ MNM(k+1)). If MNMk = 0, numerous models,

including these k-variables, are linearly separable models in 7,129-dimensional space. Namely,
although there are numerous linearly separable models in the gene space, we can understand
the dataset structure using these SMs. However, because BGSs can list all linearly separable
models (Matroska) completely, our target is to list all the BGSs in SMs.
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SAS Institute Japan. However, the NMs of Fisher’s LDF are not zero in Table 8.1
(Shinmura 2015j). In the fifth step, we propose the second version of the Matroska
feature-selection method using manual operation (Shinmura 2015k–l). Because we
fear that there are some mistakes in the manual operation, we developed a third
version of Method 2, programmed using LINGO (Shinmura 2015m–r) that is
LINGO Program 3. Six papers (Shinmura 2015m–r) are helpful for gene analysis
because those papers include full lists of SMs.

8.2.2 Explanation of Method 2 by Alon et al. Dataset

8.2.2.1 Feature-Selection by Eight LDFs

Many researchers are struggling with dataset feature-selection. Jeffery et al. (2006)
compared the efficiency of ten feature-selection methods using ordinary statistical
approaches. They uploaded six different two-class datasets. We discriminated those
datasets using six MP-based LDFs. Table 8.2 shows the results. Although Chiaretti
et al. dataset includes four two-class discrimination problems, we use only “B cell or
T cell” as the two-class object variable. All CPU times are less than 36 s. H-SVM,
SVM4 (penalty c = 10,000), and SVM1 (penalty c = 1) cannot select features for
the five datasets except for the Golub et al. dataset. Only 903 and 904 coefficients of
H-SVM, and SVM1, respectively, become zero for the Golub et al. dataset. Because
all NMs of Fisher’s LDF are not zero, it is not useful for gene analysis.

JMP12 does not support logistic regression for high-dimensional dataset.
Because logistic regression can often discriminate LSD, it may be able to select
dataset features. Although three SVMs can recognize these datasets as LSD, the
three SVMs are not helpful for feature-selection of these datasets. Maximizing the
distance between two support vectors (SVs) may cause these results, because three
OLDFs can naturally select features for the ordinary data in Chaps. 6 and 7.
Although Revised IPLP-OLDF (IPLP) and Revised LP-OLDF (LP) can select
features better than Revised IP-OLDF (RIP) because their nonzero coefficients are
fewer than RIP in the first discrimination, these two OLDFs cannot find smaller
Matroskas after the second discrimination. This is my future work.

Table 8.1 Summary of six microarray dataset (Nov. 2015)

Dataset Alon et al.
(1999)

Chiaretti
et al. (2004)

Golub et al.
(1999)

Shipp et al.
(2002)

Singh et al.
(2002)

Tian et al.
(2003)

SM: Gene 64:1152 270:5385 69:1238 213:3032 179:3990 159:7221

Min,
Mean,
Max

11
18
39

9
19
62

10
18
31

7
14
43

13
22
47

28
45.4
104

JMP12 20:2/3:37 94:1/2:31 20:5/3:44 17:2/1:57 46:4/6:46 16:20/9:128

% and
error rate

63, 8 % 49, 1 % 43, 11 % 56, 4 % 46, 10 % 60, 17 %
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Many statisticians struggled with analyzing high-dimensional gene datasets
using ordinary statistical approaches and now expect LASSO (Simon et al. 2013) to
select features. However, because MP-based LDFs can already select features
easily, we suggest that they compare their methods with our results in Table 8.2.

8.2.2.2 Results of Alon et al. Dataset Using the LINGO Program

Revised LP-OLDF and Revised IPLP-OLDF can easily reduce 2000 gene spaces to
forty-gene subspaces; however, three SVMs cannot naturally select features. When
both OLDFs discriminate the forty genes again, they cannot reduce the forty-gene
subspace to a smaller gene subspace. On the other hand, Revised IP-OLDF can
reduce a 62-gene subspace to a 43-gene subspace and reduce a 43-gene subspace to
a 29-gene subspace. Therefore, the Alon et al. dataset has a Matroska series:
Alon2000 � Alon62 � Alon43 � Alon29. Therefore, only Revised IP-OLDF can
achieve the Theory 2. We call Alon2000 the big Matroska and Alon29 a small
Matroska (SM). If we can find a smallest Matroska (BGS) in SM, we can under-
stand the structure of the Alon et al. dataset by the monotonic decrease of the
MNM.

For this section, we discriminated six datasets with the “LINGO Program 3 of
Method 2” using a Dell Optiplex 3020 (Windows 10) in 2016. The results after
Sect. 8.3 were obtained by a Dell Vostro (Windows 7) in 2015. Although the
branch-and-bound algorithm of IP solver may output different optimal solutions
(e.g., the first-in first-out rule), it is important that the BGSs are the same in each
dataset.

Table 8.3 shows the first and second SMs among 66 SMs; nevertheless,
Table 8.1 shows that Vostro computed 64 SMs in 2015.4 The first SM1 and second
SM2 consist of 15 genes. In addition to the different PCs, we changed the number
of reducing iterations from 11 to five in this section to reduce the CPU times. The
“LINGO Program 3” finds these 15 genes in SM1 and excludes them from the 2000

Table 8.2 Summary of six datasets (left CPU time; right number of nonzero coefficients)

Alon
et al.

Chiaretti
et al.

Golub
et al.

Shipp
et al.

Singh et al. Tian et al.

RIP 0s 62 11s 128 1s 72 4s 65 36s 92 14s 173

IPLP 1s 40 6s 38 2s 27 2s 22 4s 75 9s 118

LP 1s 40 4s 38 1s 622 2s 22 2s 75 5s 139

HSVM 0s 2000 4s 12,625 1s 6226 3s 7129 2s 12,625 8s 12,625

SVM4 0s 2000 6s 12,625 1s 7129 3s 7129 4s 12,625 8s 12,625

SVM1 0s 2000 7s 12,625 2s 6225 3s 7129 2s 12,625 7s 12,625

4By manual operation, LINGO finds Alon29 as the first SM. However, “LINGO Program 3” finds
the first SM1 with 15 genes.
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genes. In the second big iteration (Loop1), Revised IP-OLDF discriminates a
second big Matroska with 1985 genes and outputs the second SM2 with Loop1 = 2
(SM2). In this book, the original gene name is replaced by the simple variable
X with a suffix. X1 to X2000 correspond to genes, and X2001 or “c” refers to the
intercept term of Revised IP-OLDF. This rule is the same for the six datasets. If a
researcher wishes to analyze one of the SMs, she/he should add the simple variable
X with a suffix to the downloaded datasets.

Table 8.4 shows a list of 66 SMs with “MNM = 0” and other gene subspaces
from SM67 to SM82. Column “n” means the number of genes and “Cum.” means
the cumulative number of genes. After SM66, there are 16 gene subspaces with
“MNM ≥ 1.” We consider that MNM shows the priorities of cancer diagnosis. We
need not focus on the 16 sms prior to 66 SMs. Because the six datasets are LSD, we
focus on the SMs with “MNM = 0.” However, MNM also tells us the priority for
subspaces that are not linearly separable. Therefore, the Method 2 is useful for other
gene datasets that are not LSD.

8.2.3 Summary of Six Microarray Datasets in 2016

We downloaded six datasets from Jeffery et al. (2006). Their paper tells us about the
outlook of feature-selection methods. We developed the “LINGO Program 3 of
Method 2” to find all SMs amd sms. We are free from the mistakes of using manual
operation. We had already analyzed the six datasets in Table 8.1. Table 8.5 sum-
marizes the six datasets computed in May 2016 under a different PC environment.

Table 8.3 Two gene lists of
first and second SMs

SN Loop1

1 2

Var. Gene Var. Gene

1 X6 Hsa.20,836 X2 Hsa.13491

2 X11 Hsa.750 X59 Hsa.1732

3 X23 Hsa.3002 X175 Hsa.18664

4 X24 Hsa.1119 X365 Hsa.821

5 X178 Hsa.10510 X556 Hsa.268

6 X251 Hsa.41315 X660 Hsa.347

7 X713 Hsa.15844 X1258 Hsa.5211

8 X969 Hsa.35804 X1346 Hsa.5392

9 X976 Hsa.25867 X1370 Hsa.35496

10 X1367 Hsa.7648 X1473 Hsa.1410

11 X1671 Hsa.627 X1505 Hsa.862

12 X1799 Hsa.23824 X1521 Hsa.295

13 X1812 Hsa.41369 X1733 Hsa.2749

14 X1966 Hsa.36705 X1804 Hsa.2199

15 X1986 Hsa.2484 X1932 Hsa.2243
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Table 8.4 List of 66 SMs
and other subspaces

SM MNM n Cum.

SM1 0 15 15

SM2 0 15 30

SM3 0 11 41

SM4 0 11 52

SM5 0 14 66

SM6 0 19 85

SM7 0 11 96

SM8 0 14 110

SM9 0 12 122

SM10 0 18 140

SM11 0 14 154

SM12 0 16 170

SM13 0 14 184

SM14 0 16 200

SM15 0 14 214

SM16 0 14 228

SM17 0 18 246

SM18 0 14 260

SM19 0 14 274

SM20 0 20 294

SM21 0 14 308

SM22 0 12 320

SM23 0 15 335

SM24 0 14 349

SM25 0 14 363

SM26 0 16 379

SM27 0 17 396

SM28 0 16 412

SM29 0 16 428

SM30 0 14 442

SM31 0 16 458

SM32 0 15 473

SM33 0 17 490

SM34 0 17 507

SM35 0 14 521

SM36 0 17 538

SM37 0 19 557

SM38 0 15 572

SM39 0 16 588

SM40 0 16 604

SM41 0 17 621
(continued)
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Table 8.4 (continued) SM MNM n Cum.

SM42 0 16 637

SM43 0 17 654

SM44 0 19 673

SM45 0 16 689

SM46 0 13 702

SM47 0 15 717

SM48 0 17 734

SM49 0 18 752

SM50 0 22 774

SM51 0 18 792

SM52 0 22 814

SM53 0 20 834

SM54 0 15 849

SM55 0 19 868

SM56 0 21 889

SM57 0 23 912

SM58 0 19 931

SM59 0 20 951

SM60 0 21 972

SM61 0 22 994

SM62 0 26 1020

SM63 0 22 1042

SM64 0 29 1071

SM65 0 28 1099

SM66 0 32 1131

sm67 1 19 1150

sm68 1 21 1171

sm69 1 21 1192

sm70 1 29 1221

sm71 1 22 1243

sm72 1 26 1269

sm73 1 18 1287

sm74 1 27 1314

sm75 1 34 1348

sm76 2 31 1379

sm77 2 25 1404

sm78 2 30 1434

sm79 3 26 1460

sm80 3 18 1478

sm81 4 31 1509

sm82 >5 401 2000
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The “Description” rows show two classes. The “Size” rows are the case number by
the gene number. The “SM: Gene” rows are the number of SMs, and the number of
genes included in all SMs. The “Min, Mean, Max” row is the minimum, mean, and
maximum values of the genes included in all SMs.

8.2.4 Summary of Six Datasets in 2015

The “LINGO Program 3” had already analyzed the six datasets in November 2015.
Table 8.1 shows the summary. The “SM: Gene” rows are the number of SMs and the
number of genes included in all SMs. Six references (Shinmura 2015m–r) include
the full gene name of all SMs in the six datasets and are the most important among
the 15 papers. Researchers can find the BGSs in each SM using a manual survey or
by analyzing SMs with ordinary statistical methods. The “Min, Mean, Max” rows
are the minimum, mean, and maximum values of the genes included in all SMs.

The numbers in Tables 8.1 and 8.5 are slightly different because the computa-
tional environments are different. However, each dataset has the same BGSs.
Because we had already uploaded full lists of all SMs of the six dataset, we explain
the Theory 2 detail using the results in 2015 after this section. The “JMP12” rows
are 2 × 2 tables of the discrimination by Fisher’s LDF for high-dimensional dataset
(Shinmura 2015j). Because the six NMs are 5, 3, 8, 3, 10, and 29, the error rates are
high. The “% and error rate” rows are the percentages of (maximum value/case
number) and the error rates of JMP12. The maximum percentage is 63 % for the
Alon et al. dataset. The minimum percentage is 43 % by the Golub et al. dataset.
The maximum error rate is 17 % by the Tian et al. dataset, and the minimum error
rate is 1 % by the Chiaretti et al. dataset. In the future, we expect these numbers
might show the characteristics of the dataset.

We must be aware of the optimal solutions from MP-based LDFs that output
only one optimal solution, even though there are several optimal solutions.
However, we can obtain the k-best solutions using the “k-best option in Sect. 4.2.4
of the IP solver.” However, this verification is outside the scope of this book.

8.3 Results of the Golub et al. Dataset

8.3.1 Outlook of Method 2 by the LINGO Program 3

We introduce the outlook of the Method 2 again. Table 8.6 shows the output of the
Golub et al. dataset. The “Loop1 and Loop2” columns are the sequence numbers for
the big and small loops of the Method 2, respectively. Revised IP-OLDF dis-
criminates the dataset with 7129 genes in Loop1 = 1 and Loop2 = 1, and only 34
coefficients of Revised IP-OLDF are not zero. In general, this number is less than
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the case number, e.g., 72. In the second small loop (Loop1 = 1, Loop2 = 2), we
discriminate the smaller Matroska with 34 genes, and only 11 coefficients are not
zero. Therefore, we get a Matroska series (or Matroska product), e.g.,
Golub7129 → Golub34 → Golub11. We stop at Loop2 = 4 because we cannot
find the smaller Matroska in the fourth small loop. We call Golub11 the first SM1
because Revised IP-OLDF cannot locate a smaller Matroska. By the definition of
the Matroska series, we can produce the first Matroska, product1, if we are a
Matroska producer. We exclude SM1 with 11 genes from the big Matroska with
7129 genes and make the second big Matroska with 7118 genes. In the second big
loop at Loop1 = 2, we find the second SM2 with 16 genes at Loop2 = 5. We stop
the big loop when we find an MNM that is greater than one at Loop1 = 70.
Therefore, we find 69 SMs from SM1 to SM69 in the Golub et al. dataset.
However, we can continue these big and small loops after finding SM69. In this
table, because the maximum number of small iterations is fixed to 15, SN starts with
16 in Loop1 = 2. Because the different maximum numbers may find the different
lists of all SMs in the dataset, I must develop a “Revised LINGO Program 3” to find
all BGSs in the dataset as soon as possible. Different from the SMs, BGSs have a
unique list.

Table 8.7 is the list of all SMs. The “Loop1” column is the sequential number of
69 SMs from SM1 (Loop1 = 1) to SM69 (Loop1 = 69). Therefore, the dataset
consists of disjoint unions of 69 SMs, and all MNMs are zero. The “Gene” column
is the number of genes in the big Matroska at Loop2 = 1. First, Revised IP-OLDF
discriminates Golub7129 and finds Golub11 as SM1. Next, Revised IP-OLDF
discriminates Golub7118 without SM1 and finds Golub16 as SM2. The “N_SM”
column is the number of genes in each SM. The “logistic” column shows the
linearly separable subspace found by logistic regression.5 The “N_BGS” column
shows the gene number of BGS. Therefore, SM1 includes one BGS with four

Table 8.6 Outlook of theory
2

SN Loop1 Loop2 Gene MNM

1 1 1 7129 0

2 1 2 34 0

3 1 3 11 0

4 1 4 11 0

16 2 1 7118 0

17 2 2 36 0

18 2 3 18 0

19 2 4 16 0

20 2 5 16 0

5Logistic regression becomes unstable for the discrimination of LSD and SE of logistic coefficients
become large values (Firth 1993). If it satisfies two conditions, I judge it can discriminate LSD
correctly. Two conditions are as follows: (1) NM of it is zero if I search the minimum NM on
ROC, and (2) MNM = 0. It can almost discriminate LSD and is better than Fisher’s LDF, QDF,
and RDA. However, it cannot select features for ordinal data in this book.
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Table 8.7 69 SMs of the
Golub et al. Dataset

Loop1 Gene N_SM Logistic N_BGS

1 7129 11 4 4

2 7118 16 8 6

3 7102 11 6 6

4 7091 10 4 3

5 7081 13 7 5

6 7068 12 9 9

7 7056 13 8

8 7043 12 5 4

9 7031 14 5 5

10 7017 16 7 6

11 7001 10 7 6

12 6991 12 8 8, 2

13 6979 13 7 5

14 6966 16 15

15 6950 14 7 7

16 6936 13 8

17 6923 19 10 9

18 6904 15 8 8

19 6889 13 9 9

20 6876 14 8 7

21 6862 16 14

22 6846 17 9 9

23 6829 17 14

24 6812 14 10 10

25 6798 16 12 10

26 6782 15 12 12, 3

27 6767 12 7 6

28 6755 21 20

29 6734 15 10 9

30 6719 14 10 9

31 6705 22 11 10

32 6683 19 14 13

33 6664 16 13

34 6648 18 14

35 6630 17 14

36 6613 19 17

37 6594 12 9

38 6582 16 12 12

39 6566 16 13

40 6550 16 15

41 6534 19 12 12
(continued)
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genes, and SM2 includes one BGS with six genes. SM12 has two BGSs with eight
and two genes.

Although most researchers struggle with high-dimensional gene spaces using
statistical methods or LASSO, it is very easy for us to analyze each SM because
SM68 and SM69 are the biggest samples, with 72 cases by 31 genes among 69
SMs. Although we can find BGS in 32 SMs by manual operation, we have stopped
this work. In the near future, we will develop “Revised LINGO Program 3.”

Table 8.7 (continued) Loop1 Gene N_SM Logistic N_BGS

42 6515 14 14 11

43 6501 19 19

44 6482 14 14

45 6468 21 18

46 6447 21 18

47 6426 20 20

48 6406 23 20

49 6383 19 17

50 6364 19 16

51 6345 24 15

52 6321 19 18

53 6302 20 15

54 6282 22 22

55 6260 19 18

56 6241 24 23

57 6217 21 18

58 6196 25 20

59 6171 27 26

60 6144 20 20

61 6124 23 22

62 6101 28 25

63 6073 23 20

64 6050 23 23

65 6027 28 28 28

66 5999 23 23

67 5976 23 23

68 5953 31 26 25

69 5922 31 31 30

Other 5891
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Our primary concern is to find the disjoint union of SMs among 7129 genes. We
omit the high-dimensional subspace that is not linearly separable (MNM ≥ 1). SM1
contains eleven genes. SM69 contains 31 genes. 69 SMs contain 1238 genes. We
omit the detail of another 5891 genes that are not linearly separable.

8.3.2 First Trial to Find the Basic Gene Sets

Because we cannot control the flow of the branch-and-bound algorithm of the
LINGO IP solver, there may be smallest linearly separable models or subspaces in
the SM. We call these smallest Matroska subspaces in each SM “BGSs.” We
propose finding BGSs as follows:

1. We analyze SM1 with 11 genes by the forward-stepwise procedure and obtain
the six columns from “Step” to “BIC” of Table 8.8. The last column is the NM
of logistic regression because it looks for the linearly separable model better
than Fisher’s LDF, QDF, and RDA (Friedman 1989) by JMP. We know the
four-variable model is linearly separable. Mallow’s Cp, Akaike’s information
criterion (AIC), and the Bayesian information criteria (BIC) with bold statis-
tics recommend this model among eleven models. Usually, these three statistics
recommend different models. Therefore, I think two classes of the dataset are
more separated than ordinary data discriminated by me until now.

2. We search the BGSs using all possible combinations of four variables
(Goodnight 1978) using Revised IP-OLDF in Table 8.9.

Table 8.9 includes 15 models by four genes from the second column (Y1) to the
fifth column (Y4). The “c” column is the intercept of Revised IP-OLDF. The “p”
column is the number of independent variables from four variables (p = 4) to four
one-variable models (p = 1). Binary values such as 1/0 indicate whether or not each
model includes each variable in the model. The column “MNM” is the MNM of the

Table 8.8 Forward stepwise and logistic regression

Step Gene Var. Cp AIC BIC Logistic

1 M11722_at Y1 72.56 137.78 144.26 5

2 X59871_at Y2 38.42 118.62 127.13 2

3 U05259_rna1_at Y3 9.92 96.07 106.54 2

4 D21063_at Y4 3.88 90.15 102.52 0

5 M22919_rna2_at 3.80 90.30 104.49 0

6 M21624_at 4.27 91.09 107.02 0

7 M25280_at 4.63 91.79 109.38 0

8 L13210_at 6.15 93.93 113.09 0

9 X82240_rna1_at 8.02 96.56 117.21 0

10 HG3039-HT3200_at 10.01 99.44 121.47 0

11 L76159_at 12.00 102.41 125.73 0
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15 models. Only the four-variable model is linearly separable. Therefore, we find
one BGS, e.g., (Y1: M11722_at, Y2: X59871_at, Y3: U05259_rna1_at, Y4:
D21063_at) in SM1. All MNMs, including these four genes, are linearly separable.
Therefore, there are numerous linearly separable subspaces in the dataset. It is hard
for us to analyze the dataset using ordinary statistical methods without knowing this
fact.

If we directly search for the BGSs using all possible combination models of 11
variables in Eq. (8.1), it requires us to check 2047 models and has a huge com-
putational time. Therefore, we propose a different idea in this section. In Table 8.8,
because logistic regression tells us that the four-gene subspace is linearly separable
in Eq. (8.2), we check only 15 models by all possible combinations in Table 8.9.
Because the MNM of the four-gene model is zero and the four MNMs of the
three-gene models are not zero, we know the four-gene model is the BGS.
Therefore, we find the first Matroska series in Eq. (8.1); Golub11 is SM1. Next, we
survey the smaller linearly separable model in SM1 by logistic regression in (8.2).
Last, we confirm these four genes as the first BGS of SM1 in Eq. (8.3) by all
combination models.

Matroska series : Golub7; 129 � Golub34 � Golub11: ð8:1Þ

Logistic regression : 11 genes ! 4 genes: ð8:2Þ

Founding of BGSs : 15models ! 4 genes: ð8:3Þ

If we add another gene to the BGS, the 7125 (=7129 − 4) five-gene sets are
linearly separable models because they include the four-gene subspace with

Table 8.9 Fifteen models by
four genes

p Y1 Y2 Y3 Y4 c MNM ZERO

4 1 1 1 1 1 0 0

3 1 1 1 0 1 1 0

1 1 0 1 1 1 0

1 0 1 1 1 3 0

0 1 1 1 1 2 0

2 1 1 0 0 1 2 0

1 0 1 0 1 4 0

0 1 1 0 1 3 0

1 0 0 1 1 4 0

0 1 0 1 1 13 0

0 0 1 1 1 6 0

1 1 0 0 0 1 5 0

0 1 0 0 1 25 0

0 0 1 0 1 10 0

0 0 0 1 1 17 0
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MNM = 0. Therefore, there are numerous Matroskas from Golub7129 to
Golub4 (BGS) in the dataset.

Until now, we have ignored the discrimination for the LSD. Some statisticians
claim that discrimination is for overlapping data, not LSD. However, we can cor-
rectly define the status of “overlap” by the condition “MNM ≥ 1.” Moreover, this
knowledge is essential for understanding the dataset.

Although Vapnik clearly defined LSD by H-SVM, no researcher has discrimi-
nated the data using H-SVM. We believe there are two reasons:

1. We can discriminate only LSD by H-SVM. However, nobody uses H-SVM
because it causes errors for data with “MNM ≥ 1.” Moreover, we believe the
discrimination of LSD is evident. However, there is no research on discrimi-
nation for LSD.

2. Because Vapnik proposed a fantastic kernel SVM, most researchers focus on the
kernel SVM and ignore the importance of LSD in medical diagnosis, rating,
pattern recognition, and gene analysis.

Because the LINGO program cannot find the BGSs directly, our research policy
is as follows:

1. We find all SMs using the “LINGO Program 3” in Eq. (8.1).
2. Next, we search for BGSs by two stages in Eqs. (8.2) and (8.3).

8.3.3 Another BGS in the Fifth SM

We explain, again, how to find the BGSs in SM5. Although there are 13 genes in
SM5, logistic regression finds the NM of seven genes is zero. Table 8.10 shows one
Matroska with seven variables and two Matroskas with six variables with bold
figures. If the model includes a variable, the value is “1”. Otherwise, the value is
“0”. Although the MNM of a Matroska with seven variables is zero, only two
Matroskas with six variables are zero. When we drop Y1 in the first Matroska with
six variables, its MNM is 2. This fact means there are no BGSs in this subspace. On
the other hand, if we drop Y2, the MNM of the second Matroska with six variables

Table 8.10 Search for basic
genes

p Y1 Y2 Y3 Y4 Y5 Y6 Y7 C MNM

7 1 1 1 1 1 1 1 1 0

6 0 1 1 1 1 1 1 1 2

6 1 0 1 1 1 1 1 1 0
6 1 1 0 1 1 1 1 1 1

6 1 1 1 0 1 1 1 1 1

6 1 1 1 1 0 1 1 1 1

6 1 1 1 1 1 0 1 1 0

6 1 1 1 1 1 1 0 1 2
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is zero. This means there is/are BGS(s) in this Matroska with six variables.
Although we can obtain clear results by all possible combinations, it requires
extensive computation time if the number of variables exceeds ten. Now, we check
the 63 models of the Swiss banknote data with six variables by all possible models.
The MNM of the sixth six-variable model is also zero.

Table 8.11 shows the second stage of the procedure. The first row is the second
six-variable model, dropping Y2 from the full model. We check five five-variable
models from the second row to the seventh row. The MNM of the fifth five-variable
model is zero. On the other hand, if we survey the sixth six-variable model without
Y6, the MNM of this model is zero. Both surveys selected the same model,
dropping Y2 and Y6 from the full model, e.g., (Y1, Y2, Y3, Y4, Y5, Y6, Y7) = (1, 0,
1, 1, 1, 0, 1).

Table 8.12 shows the stopping rule for this procedure. Because five MNMs of
the four-variable models are greater than one, we can confirm the five-variable
model is the BGS. We can summarize the procedure to find BGS as follows:

Table 8.11 Search for basic
gene sets

p Y1 Y2 Y3 Y4 Y5 Y6 Y7 C MNM

6 1 0 1 1 1 1 1 1 0

5 0 0 1 1 1 1 1 1 2

1 0 0 1 1 1 1 1 1

1 0 1 0 1 1 1 1 1

1 0 1 1 0 1 1 1 1

1 0 1 1 1 0 1 1 0

1 0 1 1 1 1 0 1 2

6 1 1 1 1 1 0 1 1 0

5 0 1 1 1 1 0 1 1 3

1 0 1 1 1 0 1 1 0

1 1 0 1 1 0 1 1 1

1 1 1 0 1 0 1 1 1

1 1 1 1 0 0 1 1 1

1 1 1 1 1 0 0 1 2

Table 8.12 Stopping rule p Y1 Y2 Y3 Y4 Y5 Y6 Y7 C IC

5 1 0 1 1 1 0 1 1 0

4 0 0 1 1 1 0 1 1 3

1 0 0 1 1 0 1 1 1

1 0 1 0 1 0 1 1 1

1 0 1 1 0 0 1 1 1

1 0 1 1 1 0 0 1 4
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1. We find two Matroska series in SM5, e.g., (1, 1, 1, 1, 1, 1, 1) � (1, 0, 1, 1, 1, 1,
1) � (1, 0, 1, 1, 1, 0, 1) and (1, 1, 1, 1, 1, 1, 1) � (1, 1, 1, 1, 1, 0, 1) � (1, 0, 1,
1, 1, 0, 1).

2. By the stopping rule, the five-gene subspace (Y1, Y3–Y4, Y7) is BGS.

8.4 How to Analyze the First BGS

Figure 8.1 shows the cluster analysis of BGS in SM1 by the Ward method.
Although all output of case cluster is omitted, we find four cases belonging to the
acute lymphoblastic leukemia (ALL) class, e.g., 42, 63, 67, and 62, enter the acute
myeloid leukemia (AML) cluster. The cluster of variables tells us that
“M11722_at” and “U05259_rna1_at” become the first cluster. Next, “D21063_at”
joins the first cluster and becomes the second cluster. At last, “X59871_at” joins the
second cluster, and the clustering ends.

Figure 8.2 shows the result of PCA. The left figure is the eigenvalues. Two
eigenvalues are greater than one, and the contribution ratio is about 0.75. The
middle figure is the scatter plot. AMLs are located in the third quadrant. 47 ALL
cases are situated in the fourth quadrant, first quadrant, and second quadrant. The
right plot is the factor-loading plot. “M11722_at” is overlapped on the X-axis,
and “X59871_at” is overlapped on the Y-axis. Figure 8.3 shows two score plots.

Fig. 8.1 Part of cluster
analysis
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The X-axis is the first component. The Y-axes of the left and right score plots are the
second and third components, respectively. It is interesting that AML seems to bite
into ALL.

Table 8.13 is the correlation matrix. The absolute correlation among
“X59871_at” and the other three genes is less than 0.088. Those are the same
results as the factor-loading plot. Figure 8.4 shows the matrix scatter plot.

Fig. 8.2 PCA (left eigenvalues, Middle scatter plot, right factor-loading plot)

Fig. 8.3 Two score plots

Table 8.13 Correlation
matrix

Var. X1 X2 X3 X4

M11722_at 1 0.076 0.713 0.371

X59871_at 0.076 1 −0.088 0.052

U05259_rna1_at 0.713 −0.088 1 0.220

D21063_at 0.371 0.052 0.220 1
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8.5 Statistical Analysis of SM1

In this section, we analyze SM1 and compare four genes in BGS and another seven
genes by a statistical method. The four genes are “D21063_at, M11722_at,
U05259_rna1_at, and X59871_at” and the seven genes are “X883, X1304, X1640,
X1809, X1828, X1856, and X4680.” The two types of genes have different variable
names, showing the differences of the two groups. Many researchers analyze the
dataset by ordinary statistical methods, such as one-way ANOVA, cluster analysis,
PCA, and regression analysis. We fear those methods do not provide clear results
for the dataset without considering the Matroska structure.

8.5.1 One-Way ANOVA

Figure 8.5 shows the one-way ANOVA of four genes in BGS and another seven
genes. The t-values of the four genes are 3.843, 10.231, 8.396, and 3.429. The
minimum value is 3.429. Those of the seven genes are −0.813, −0.698, 2.448,
1.576, −0.966, −1.407, and 6.727. Because six absolute t-values, except for X4680,
are less than 3.429, four genes in BGS are important for the discrimination of two
classes. However, because the t-value of X4680 is 6.727, we focus on this gene.
Although four-variable model and 11-variable model are linearly separable, 11
box–whisker plots are overlapped. This fact tells us the difficulties of the
feature-selection using ordinary statistical methods such as one-way ANOVA,
cluster analysis and PCA.

Fig. 8.4 Matrix scatter plot
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8.5.2 Cluster Analysis

When the Ward cluster analysis method analyzes 72 cases with 11 genes and makes
two clusters, one AML case and nine ALL cases are misclassified to another cluster.
This fact explains why the dataset cluster analysis is not helpful for
feature-selection. Figure 8.6 shows the result of variable clustering.
(U05259_rna1_at and X4680) becomes the first cluster. (D21063_at and X1640)

Fig. 8.5 One-way ANOVA (Upper four genes in BGS; middle and low seven genes)

Fig. 8.6 Cluster analysis
(ward method)
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becomes the fourth cluster, and (X59871_at and X1809) becomes the third cluster.
It is very interesting to us that three genes included in the BGS are clustered with
three other genes not included in the BGS.

8.5.3 PCA

Figure 8.7 shows the PCA. The left figure is the eigenvalues. Four eigenvalues are
greater than one, and the contribution ratio is about 0.68. The middle figure is the
scatter plot. AMLs are located in the second and third quadrant. 47 ALL cases are
situated in the first and fourth quadrant. The right figure is the factor-loading plot.
“M11722_at” is overlapped on the X-axis and “X59871_at” is overlapped on the
Y-axis.

Figure 8.8 shows scatter plot. The X-axis is the first component. The Y-axis is
the second component. Because each ellipse include both class cases, PCA may not
be helpful for gene analysis.

Fig. 8.7 PCA

Fig. 8.8 Scatter plot
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8.6 Summary

We developed the Theory, Method 1, and Method 2. Revised IP-OLDF solves
Problem 1, Problem 2, and Problem 5. Moreover, the best models of Revised
IP-OLD are better than another seven LDFs. Although H-SVM correctly discrim-
inates LSD, it cannot select features for six dataset. Because Problem 3 is a defect
of the generalized inverse matrices technique and the error rates of Fisher’s LDF
and QDF are very high for LSD in Chap. 5, we believe that discriminant analysis
and regression analysis based on variance–covariance matrices may not be helpful
for gene analysis. Although the discriminant analysis is not an inferential statistical
method, the Method 1 offers the 95 % CI for the error rate and the discriminant
coefficient, and the validation of Revised IP-OLDF by six different types of data.

In this paper, we do not discuss the validation of our results. However, because
the Method 1 already validates six ordinary data, the validation of dataset does not
matter. Because the best model is a powerful feature-selection procedure for
ordinary data, we ignore that some parameters of Revised IP-OLDF become zero in
ordinary data. Because other LDFs cannot naturally select features, they may be
difficult for gene dataset.

If we can develop “Revised LINGO Program 3” that can find all BGSs, it will be
more useful in gene analysis. The “LINGO Program 3” is useful for other gene
dataset, such as RNA-Seq., in addition to the six datasets. Although we surveyed to
clarify the long-term survivors of the Maruyama vaccine (SSM) administration
patients, our trial failed (Shinmuea et al. 1987; Shinmura 2001). If we compare two
lists of cancer genes, (normal and cancer patient dataset) versus (normal and
SSM-administration patient dataset) and find the differences between the two gene
lists, it may prove the effectiveness of SSM. This approach will be helpful for
judging the effects of other cancer treatments, except for surgery. We hope for
advice or dataset provision from medical doctors or projects. We would like to
propose a joint research study.
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Chapter 9
LINGO Program 2 of Method 1

9.1 Introduction

Although Fisher established the statistical discriminant analysis based on Fisher’s
assumption, he did not define SE of error rate and discriminant coefficient.
Therefore, we proposed the 100-fold cross-validation for small sample method (the
Method 1). We develop LINGO Program 2 of Method 1 and explain it in this
section.1 The Method 1 is the combination of resampling and k-fold
cross-validation. The Method 1 is as follows: (1) We copy 100 times the data as
validation sample from the original data using JMP. (2) We add a uniform random
number as a new variable, sort the data in ascending order, and divide into 100
subsets as 100 training samples. (3) We evaluate eight LDFs by the Method 1 using
these 100 subsets as training samples and unique validation sample. I analyze six
MP-based LDFs by LINGO, developed with the support of LINDO Systems Inc.
I analyze logistic regression and Fisher’s LDF by JMP, obtained with the assistance
of the JMP division of SAS Japan. There is merit in using 100-fold cross-validation
because we can easily calculate the 95 % CI of the discriminant coefficients and
error rates. Moreover, error rate means, M1 and M2, in the training and validation
samples offer direct and powerful model selection procedure such as the best model.
We can show the best models of Revised IP-OLDF are better than other LDFs. We
can use the LOO procedure for model selection of discriminant analysis but cannot
obtain the 95 % CI. These differences are quite important for the analysis of small
samples.

1Manuals and LINDO products such as LINGO, What’s Best! (Excel add-in solver), and
LINDO API (C library) are free downloaded from LINDO Systems Inc. (http://www.lindo.com/).

© Springer Science+Business Media Singapore 2016
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9.2 Natural (Mathematical) Notation by LINGO

In this section, we explain the natural (mathematical) notation of Revised IP-OLDF
by LINGO. We can describe the model by two notations such as “natural notation”
and “SET and CALC” notation.” Natural notation is similar to the usual mathe-
matical notation. In the case where we want to obtain the global minimum value of
the function2 Z(x, y) = x � sin(y) + y � sin(x), we define the object function and
two constraints and obtain the output as shown in Fig. 9.1. The symbol “@”
represents the LINGO function. “@BND (−10, X1, 10)” means the two constraints
(−10 � X1 � 10). Within 1 s, we obtain −15.8 as the global minimum solution
(the minimum value, not local minimum) at (x1, y1) = (7.98, −7.98).

MIN=X1*@SIN(Y1)+Y1*@SIN(X1);

@BND(-10,X1,10); @BND(-10,Y1,10);

Fig. 9.1 Global minimum solution

2Three LINDO solvers can offer global solution (maximum and minimum values) and is useful in
mathematical education and many researches.
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If we want to draw a contour or surface graph, we can define the model with the
“SET and CALC” section. The “MODEL:” section consists of two subsections, such
as “SETS and CALC” and ends with “END.” We insert the “SETS: … ENDSETS”
and “CALC: … ENDCALC” sections before and after the optimization model. The
“SETS” section defines a one-dimensional set, such as “POINTS,” with 21 elements
by “/1…21/.” We can define two-dimensional sets by the combination of the
one-dimensional set, such as “POINT2 (POINTS, POINTS):” that is a
two-dimensional set with (21, 21) elements. We can define three-dimensional sets by
the combination of three one-dimensional sets. “POINT2” defines three arrays, such
as “X, Y, Z” with (21, 21) elements on the right side of “:”. The set “POINTS” has no
one-dimensional array. The “CALC” section is a programming language that can
optimize the MP-model and control it. In the “CALC” section, we draw the surface
graph of Z(x, y) at the mesh by x = (−10, −9,…, 9, 10) and y = (−10, −9,…, 9, 10).
Figure 9.2 shows the surface graph. Because XS = @FLOOR (−(@SIZE
(POINTS)/2) + 0.5) = @FLOOR (−(21/2) + 0.5) = @FLOOR (−10) = −10, we
can directly replace this statement by “X = −10”. “@FOR (POINTS2(I, J):” is the
below loop function. Because the MP-based model has the same structure of con-
straints, we need not describe those constraints one by one. The “@CHART
(…, ‘SURFACE (or CONTOUR)’,…);” function draws the surface (or contour)
shown in Fig. 9.2. If we replace “surface” with “contour,” we can draw the contour
graph.

Fig. 9.2 Surface graph
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9.3 Iris Data in Excel

We discriminate the Iris data in an Excel file by Revised IP-OLDF. These data consist of
two species, such as versicolor (yi = 1) and virginica (yi = − 1), as shown in Fig. 9.3. Each
species has 50 cases with five variables (four independent variables and indicator (object
variable) yi). We define the Excel range name “IS” as “B2: F101.” LINGO can retrieve “IS”
array values by the “IS = @ OLE();” function and use it as the LINGO array name “IS.”
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Next, we define the Excel range name “CHOICE” as “H2: L16.” A total of 15
rows correspond to the models from the full model (X1, X2, X3, X4) to the
one-variable model (X2). After optimization, we output three LINGO arrays by the
“@OLE() = IC, ZERO, VARK100;” function as shown in Figs. 9.4 and 9.5. “IC”
includes the “NM” in the Excel array name “NM (M2: M16)” in Fig. 9.4. “ZERO”
includes the number of discriminant hyperplanes in the LINGO array name “ZERO
(N2:N16).” “VARK100” includes the discriminant coefficients in “VARK100 (O2:
S16)” in Fig. 9.5.

Fig. 9.3 Iris data in Excel

Fig. 9.4 Range name
CHOICE, NM, and ZERO
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Fig. 9.5 Total of 15 Revised
IP-OLDFs

9.4 Six LDFs by LINGO

We explain the Method 1 by LINGO, which is the solver developed by LINDO
Systems Inc. I develop six LDFs by the “SET” notation: Revised IP-OLDF (RIP),
Revised IPLP-OLDF (IPLP), Revised LP-OLDF (LP), H-SVM, and two S-SVMs
(SVM4 and SVM1). We consider that the two S-SVMs are different LDFs. Revised
IPLP-OLDF is the two-stage algorithm of Revised LP-OLDF and Revised
IP-OLDF. The Revised IP-OLDF shown in Eq. (9.1) can find the actual MNM by
“MIN = Rei” because it can directly find the OCP interior point. If case xi is
classified, ei = 0. If case xi is misclassified, ei = 1. Because the discriminant score
becomes negative for the misclassified case, Revised IP-OLDF selects an alterna-
tive support vactor (SV), such as “yi � (txi b + b0) = 1 − M � ei = −9999”
instead of “yi � (txi b + b0) = 1” for classified cases.

MIN ¼ Rei; yi � txibþ b0ð Þ� 1�M � ei ð9:1Þ

b: p independent variables, b0: intercept
xi: (1 � p) case vector if data is (n � p)
(txi b + b0): discriminant score
M: large M constant, such as 10,000
yi: yi = 1 for class 1 and yi = −1 for class 2
ei: 0/1 integer decision variable that corresponds to xi

We can define this model in the “SUBMODEL” section of LINGO. “RIP” is the
submodel name of Revised IP-OLDF. We can solve and control this IP model by this
name. “@SUM and @FOR” are two important LINGO loop functions. “@SUM (N
(i):E(i))”means “Ri=1

n E(i).” “@FOR(N(i):” defines n constraints such as “@SUM(P1
(j):IS(i, j) * VARK(j) * CHOICE(k, j)) � 1 − BIGM * E(i)).” “@FOR(P1(j):
@FREE(VARK(j)));” defines b as the free decision variable for j = 1,...,
(p+1). “@FOR(N(i):@BIN(E(i)));” defines “ei” as the 0/1 integer decision
variable for i = 1,...,n.
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If we insert “!” before “@FOR(N(i):@BIN(E(i)));”, it changes the comment and
“ei” becomes a non-negative real decision variable from 0/1 binary integer. This
model is Revised LP-OLDF. The “SUBMODEL” section defines an arbitrary
character string. Therefore, we define the model of Revised LP-OLDF called “LP.”

Moreover, we define new “SUBMODEL” called “RIP2” that is one of character
string of complete Revised IP-OLDF.

SUBMODEL RIP2:

@FOR(N(i): @BIN(E(i)));

ENDSUBMODEL

Through these two “SUBMODEL,” we can discriminate the data by Revised
IP-OLDF with the “@SOLVE (LP, RIP2)” function instead of @SOLVE(RIP) in
the “CALC” section. Next, we define Revised IPLP-OLDF. In the first stage, we
discriminate the data by Revised LP-OLDF. In the second phase, Revised IP-OLDF
discriminate the restricted cases misclassified by Revised LP-OLDF. Therefore, we
must distinguish the two alternatives stored in the array “CONSTANT,” and
Revised IP-OLDF discriminates only the misclassified cases by “SUBMODEL
CONS:”.
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SUBMODEL CONS:

@FOR(N(I)| CONSTANT(i)#GT#0: @BIN(E(I)));
@FOR(N(I)| CONSTANT(i)#EQ#0: E(I)=0);

ENDSUBMODEL

In the “CALC” section, we insert the statements shown below for Revised
IPLP-OLDF.

@SOLVE(LP);
@FOR(N(i):@IFC(E(I)#EQ#0:CONSTANT(i)=0; @ELSE
CONSTANT(i)=1;));
MNM =0; ER1=0; MNM2= 0; ER2=0;
@FOR( P1( J): VARK( J) =0; @RELEASE( VARK( J)));
@SOLVE(RIP, CONS);

S-SVM has two objects in Eq. (9.2). These two objects are combined by
defining some “penalty c.” In this research, two S-SVMs, such as SVM4 (c = 104)
and SVM1 (c = 1) are examined in order to demonstrate that the error rate means of
SVM4 are almost better than those of SVM1. If we delete the second object,
“c � Rei,” or set “c = 0,” S-SVM in Eq. (9.2) becomes H-SVM.

MIN ¼ bj jj j2=2þ c� Rei
yi � txibþ b0ð Þ� 1�M � ei

ð9:2Þ

b, xi, (
txi b + b0), yi: same as Eq. (9.2)

c: penalty c
ei: non-negative decision variable
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If we insert six LDFs before the “CALC” section, we can easily discriminate the
data by six LDFs.

9.5 Discrimination of Iris Data by LINGO

We can discriminate Iris data in Excel by Revised IP-OLDF using the “SETS,
DATA, MODEL, CALC, and DATA” sections. In the “SETS” section, “P, P1, N,
and ERR(MS)” are one-dimensional sets with element numbers of 4, 5, 100, and
15, respectively, defined in the “DATA” section. Set “P1” has one-dimensional
array “VARK” that stores the discriminant coefficient. Set “N” has two
one-dimensional arrays. “E” stores the 100 binary integer values of “ei”, and
“CONSTANT” stores 100 discriminant scores. “ERR (MS):” has the two
one-dimensional arrays. “NM” and “ZERO” store the number of misclassifications
(NM) and the number of cases on the discriminant hyperplane as shown in Fig. 9.4.
If we discriminate the data, the “NM” column shows MNMs of 15 models. From
the “ZERO” column, we confirm Revised IP-OLDF is free from Problem 1.
Because other LDFs cannot avoid Problem 1, all LDFs must output these numbers.
Currently, we cannot trust the NM output of these LDFs. “VARK100” stores the 15
coefficients of Revised IP-OLDF of “VARK” shown in Fig. 9.5.

Here, we insert six SUBMODELs of MP-based LDFs.
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9.6 How to Generate Resampling Samples and Prepare
Data in Excel File

We generate resampling samples from the original data and evaluate six
MP-based LDFs by Method 1. I explain this procedure with the Iris data that
consist of two species, such as virginica (yi = 1) and versicolor (yi = −1). These
species are composed of 50 cases with four variables and classifier yi. We copy each
species 100 times. We add a random number as the seventh variable and sort it in
ascending order by “the random number (R column).”We consider this data set as a
pseudo-population and the validation sample that has the same statistics values,
such as average or range, as the original data. Next, we divide this sample into 100
subsamples and add the subsample number (SS column) from 1 to 100 as the sixth
variable. Each resampling sample consists of the 5000 cases and seven variables as
listed in Table 9.1. The “R” column is the random number sorted by ascending
order in each class. Six variables, excluding “R,” are input by “ES = @OLE ();” in
the “DATA” section.” The “@OLE ()” function inputs data ES into the Excel array
name, such as “A2: F10001,” if cell “X1” is located in “A1,” and defines the
LINGO array ES. A total of 100 subsamples are the training samples, and a total
resampling sample is used as the validation sample. We consider the validation
sample the pseudo-population, and the training samples are the samples from the
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pseudo-population. We should set the validation sample uniquely and evaluate the
100 different training samples by the validation sample as the pseudo-population.

The two-dimensional set “MB (MS, P1)” with 15 � 5 defines the array
“CHOICE” that defines the selected variable pattern of all possible models. We can
control the models to discriminate by this array. The “CHOICE = @OLE()”
function inputs the Excel array name “CHOICE” indicated in Table 9.2, such as
“J2: N16” if the “SNl” cell is located in H1. The second row (J2: N2) shows the full
model (X1, X1, X3, X4). “J3:N3” is the three-variable model (X2, X3, X4). In the
“CALC” section, if we set “RIP” in the “@SOLVE (RIP);” command, we can
obtain the results of Revised IP-OLDF. In the second “DATA” section, “@OLE
() = IC, IC_2, EC, EC_2;” outputs MNMs and the number of a discriminant
hyperplane in the training samples, and NMs and the number of the discriminant
hyperplane in the validation samples. The two-dimensional set “ERR(MS, G100)”
with 15 � 100 defines four arrays. The “@OLE() = IC” command outputs MNM
to the Excel array called “IC.” “@OLE() = VARK100, SCORE2;” outputs
VARK100 with 1500 � 6 that contains 15 � 100 LDFs and SCORES with
10,000 � 15 discriminant scores in the validation samples in Excel. From IC and
EC, we compute the error rate mean M1 from the training sample and M2 in the
validation sample. We propose that the model with minimum value of M2 is the
best model, and the model selection procedure selects the best model with mini-
mum values of M2s among six LDFs. From “VARK100,” we can compute the
95 % CI of the discriminant coefficients.

Table 9.1 Re-sampling sample: ES

X1 X2 X3 X4 yi SS R

x(1, 1) x(2, 1) x(3, 1) x(4, 1) 1 1

1 …

1 1

1 …

x(1, 4951) x(2, 4951) x(3, 4951) x(4, 4951) 1 100

1 …

1 100

−x(1, 5001) −x(2, 5001) −x(3, 5001) −x(4, 5001) −1 1

−1 …

−1 1

−1 …

−1 100

−1 …

−x(1, 10000) −x(2, 10000) −x(3, 10000) −x(4, 10000) −1 100
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9.7 Set Model by LINGO

Fisher never formulated the equation for SE of error rates and discriminant coef-
ficients. If we discriminate the data by Method 1, we can calculate the 95 % CI of
the error rate and discriminant coefficient. We obtain the Philosopher’s Stone. The
“SET” section defines eight one-dimensional sets, such as P, P1, P2, N, N2, MS,
MS100, and G100. “P, P1, and P2” are the number of independent variables,
number of (independent variables + intercept), and the number of (independent
variables + intercept + subsample), respectively. These figures of the elements in
the “DATA” section are 4, 5, and 6, respectively. Only “P1” defines the
one-dimensional array called “VARK” with five elements that store the discrimi-
nant coefficients of the training sample. Set “N” with 100 elements defines “E,
SCORE, CONSTANT.” Array “E” is a one-dimensional array with 100 elements
and corresponds to “ei.” “N:; N2:; MS:; MS100:; G100:;” are one-dimensional sets
with 100 elements, 10,000 elements, 15 elements, 1500 elements, and 100 ele-
ments, respectively. The two-dimensional set “D(N, P1):” with 100 � 5 has the
same size array “IS” that stores the 100 subsamples as the evaluation samples. “D2
(N2, P2):” with 10,000 � 6 has the same size array “ES” that stores the
resampling-sample as the validation sample. In the “CALC” section, if we set
“@SOLVE (RIP);”, we can discriminate the Iris data and output six results to the
Excel arrays. “IC and EC” are the 100 MNMs in the training sample and 100 NMs
in the validation sample. “IC_2 and EC_2” are the 100 numbers on the discriminant
hyperplane in the training and the validation samples. From these figures, we
calculate the error rate means, such as “M1 and M2”, from the training and vali-
dation samples. “VARK100” is the 1500 discriminant coefficients of 15 models.
We can calculate the 95 % CI of the discriminant coefficients. “SCORE2” is the

Table 9.2 CHOICE SN p X1 X2 X3 X4 c

1 4 1 1 1 1 1

2 3 0 1 1 1 1

3 3 1 0 1 1 1

4 3 1 1 0 1 1

5 3 1 1 1 0 1

6 2 0 0 1 1 1

7 2 0 1 0 1 1

8 2 1 0 0 1 1

9 2 0 1 1 0 1

10 2 1 0 1 0 1

11 2 1 1 0 0 1

12 1 0 0 0 1 1

13 1 0 0 1 0 1

14 1 0 1 0 0 1

15 1 1 0 0 0 1
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10,000 discriminant scores. We will analyze this information in near future because
the priority is not high.

Here, we insert the six LDFs described in Chap. 2.

CALC:

!Reset all options to default; @SET(‘DEFAULT’);
!@SET(‘TERSEO’,1);!Allow for minimal output;
@SET(‘TERSEO’,2);
!Global solver (1:yes, 0:no); @SET(‘GLOBAL’,1);
!Quadratic recognition (1:yes, 0:no);@SET(‘USEQPR’,1);
!Multisarts (1:Off, >1 number of starts); @SET
(‘MULTIS’,1);
!Number of threads; !@SET(‘THRDS’,4);
!Print output immediately (1:yes, 0:no); @SET
(‘OROUTE’,1);
!No need to compute dual values; @SET(‘DUALCO’,0);
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DATA:

@OLE() = IC, EC, IC_2, EC_2;
@OLE() = VARK100, SCORE2;

ENDDATA
END
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