
Latif M. Jiji

     Heat
Convection

123

     Heat
Convection



Heat Convection



Latif M. Jiji

Heat Convection

With 206 Figures and 16 Tables 



This work is subject to copyright. All rights are reserved, whether the whole or part of the material is 

concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 

broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication 

of this publication or parts thereof is permitted only under the provisions of the German Copyright 

Law of September 9, 1965, in its current version, and permission for use must always be obtained 

from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. 

The use of general descriptive names, registered names, trademarks, etc. in this publication does not 

imply, even in the absence of a specific statement, that such names are exempt from the relevant 

protective laws and regulations and therefore free for general use. 

Printed on acid free paper 

springer.com 

Springer is a part of Springer Science + Business Media 

Printed in The Netherlands 

© Springer-Verlag Berlin Heidelberg 2006 

30/3100/as               5 4 3 2 1 0 

Prof. Latif M. Jiji

Dept. of Mechanical Engineering

10031 New York, NY
USA

E-Mail: jiji@ccny.cuny.edu

Library of Congress Control Number: 2005937166

ISBN-10 3-540-30692-7 Springer Berlin Heidelberg New York 

ISBN-13 978-3-540-30692-4 Springer Berlin Heidelberg New York

City University of New York

Convent Avenue at 138th Street

School of Engineering

Cover Design: Erich Kirchner, Heidelberg
Cover Image: Microchannel convection, courtesy of Fluent Inc. 

Production: SPI Publisher Services, Pondicherry



To my sister Sophie and brother Fouad 

 for their enduring love and affection



PREFACE   

Why have I chosen to write a book on convection heat transfer when 

several already exist?  Although I appreciate the available publications, in 

recent years I have not used a text book to teach our graduate course in 

convection. Instead, I have relied on my own notes, not because existing 

textbooks are unsatisfactory, but because I preferred to select and organize 

the subject matter to cover the most basic and essential topics and to strike 

a balance between physical description and mathematical requirements. As 

I developed my material, I began to distribute lecture notes to students, 

abandon blackboard use, and rely instead on PowerPoint presentations. I 

found that PowerPoint lecturing works most effectively when the presented 

material follows a textbook very closely, thus eliminating the need for 

students to take notes. Time saved by this format is used to raise questions, 

engage students, and gauge their comprehension of the subject. This book 

evolved out of my success with this approach. 

      This book is designed to:  

Provide students with the fundamentals and tools needed to model, 

analyze, and solve a wide range of engineering applications involving 

convection heat transfer.  

Present a comprehensive introduction to the important new topic of 

convection in microchannels.  

Present textbook material in an efficient and concise manner to be 

covered in its entirety in a one semester graduate course. 

Liberate students from the task of copying material from the 

blackboard and free the instructor from the need to prepare extensive 

notes.

Drill students in a systematic problem solving methodology with 

emphasis on thought process, logic, reasoning, and verification.  

Take advantage of internet technology to teach the course online by 

posting ancillary teaching materials and solutions to assigned 

problems. 



      Hard as it is to leave out any of the topics usually covered in classic 

texts, cuts have been made so that the remaining materials can be taught in 

one semester. To illustrate the application of principles and the construction 

of solutions, examples have been carefully selected, and the approach to 

solutions follows an orderly method used throughout. To provide                          

consistency in the logic leading to solutions, I have prepared all solutions 

myself.  

      This book owes a great deal to published literature on heat transfer. As 

I developed my notes, I used examples and problems taken from published 

work on the subject. As I did not always record references in my early 

years of teaching, I have tried to eliminate any that I knew were not my 

own. I would like to express regret if a few have been unintentionally 

included.

Latif M. Jiji 

New York, New York

January 2006 
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1

1.1 Convection Heat Transfer 

In general, convection heat transfer deals with thermal interaction between 

a surface and an adjacent moving fluid. Examples include the flow of fluid 

over a cylinder, inside a tube and between parallel plates. Convection also 

includes the study of thermal interaction between fluids. An example is a 

jet issuing into a medium of the same or a different fluid.

1.2 Important Factors in Convection Heat Transfer 

Consider the case of the electric bulb shown in 
Fig. 1.1. Surface temperature and heat flux 
are s and  respectively. The ambient fluid 
temperature is  Electrical energy is dissipat-
ed into heat at a fixed rate determined by the 
capacity of the bulb. Neglecting radiation, the 
dissipated energy is transferred by convection 
from the surface to the ambient fluid. Suppose 
that the resulting surface temperature is too high 
and that we wish to lower it.  What are our 
options?

T ,sq
.T

V
T

sT sq

1.1 Fig.
(1) Place a fan in front of the bulb and force the 

ambient fluid to flow over the bulb.  

(2) Change the fluid, say, from air to a non-conducting liquid.  

(3) Increase the surface area by redesigning the bulb geometry. 

We conclude that three factors play major roles in convection heat transfer: 

(i) fluid motion, (ii) fluid nature, and (iii) surface geometry.

      Other common examples of the role of fluid motion in convection are: 

BASIC CONCEPTS
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Fanning to feel cool. 

Stirring a mixture of ice and water. 

Blowing on the surface of coffee in a cup. 

Orienting a car radiator to face air flow. 

Common to all these examples is a moving fluid which is exchanging heat 

with an adjacent surface.

1.3 Focal Point in Convection Heat Transfer

Of interest in convection heat transfer problems is the determination of 

surface heat transfer rate and/or surface temperature.  These important 

engineering factors are established once the temperature distribution in the 

moving fluid is determined. Thus the focal point in convection heat transfer 

is the determination of the temperature distribution in a moving fluid. In 

Cartesian coordinates this is expressed as 

),,,( tzyxTT .                                       (1.1) 

1.4 The Continuum and Thermodynamic Equilibrium Concepts 

In the previous sections we have invoked the concept of temperature and 

fluid velocity.  The study of convection heat transfer depends on material 

properties such as density, pressure, thermal conductivity, and specific 

heat. These familiar properties which we can quantify and measure are in 

fact manifestation of the molecular nature and activity of material. All 

matter is composed of molecules which are in a continuous state of random 

motion and collisions. In the continuum model we ignore the characteristics 

of individual molecules and instead deal with their average or macroscopic 

effect. Thus, a continuum is assumed to be composed of continuous matter. 

This enables us to use the powerful tools of calculus to model and analyze 

physical phenomena. However, there are conditions under which the 

continuum assumption breaks down. It is valid as long as there is 

sufficiently large number of molecules in a given volume to make the 

statistical average of their activities meaningful. A measure of the validity 

of the continuum assumption is the molecular-mean-free path  relative to 

the characteristic dimension of the system under consideration.  The mean-

free-path is the average distance traveled by molecules before they collide. 

The ratio of these two length scales is called the Knudson number, Kn,

defined as 
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eD
Kn ,                                            (1.2) 

where  is the characteristic length, such as the equivalent diameter or 

the spacing between parallel plates. The criterion for the validity of the 

continuum assumption is [1]  

eD

110Kn .                                         (1.3a) 

Thus this assumption begins to break down, for example, in modeling 

convection heat transfer in very small channels.  

      Thermodynamic equilibrium depends on the collisions frequency of 

molecules with an adjacent surface. At thermodynamic equilibrium the 

fluid and the adjacent surface have the same velocity and temperature.  

This is called the no-velocity slip and no-temperature jump, respectively. 

The condition for thermodynamic equilibrium is  

310Kn .                                        (1.3b) 

      The continuum and thermodynamic equilibrium assumptions will be 

invoked throughout Chapters 1-8. Chapter 9, Convection in Microchannels, 

deals with applications where the assumption of thermodynamic 

equilibrium breaks down.  

1.5 Fourier’s Law of Conduction

Our experience shows that if one end of a metal bar is heated, its 

temperature at the other end will eventually begin to rise.  This transfer of 

energy is due to molecular activity. Molecules at the hot end exchange their 

kinetic and vibrational energies with neighboring layers through random 

motion and collisions. A temperature gradient, or slope, is established with 

energy continuously being transported in the direction of decreasing 

temperature. This mode of energy transfer is called conduction. The same 

mechanism takes place in fluids, whether they are stationary or moving. It 

is important to recognize that the mechanism for energy interchange at the 

interface between a fluid and a surface is conduction. However, energy 

transport throughout a moving fluid is by conduction and convection. 
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.

      We now turn our attention to 
formulating a law that will help us 
determine the rate of heat transfer by 
conduction. Consider the wall shown 
in . The temperature of one 
surface (x = 0) is and of the other 
surface (x = L) is so   The wall 
thickness is L and its surface area is 
A.  The remaining four surfaces are 
well insulated and thus heat is 
transferred in the x-direction only.  
Assume steady state and let x be
the rate of heat transfer in the x-
direction. Experiments have shown 
that is directly proportional to A
and and inversely proportional to L. That is 

2.1.Fig

siT
T

q

xq
)( sosi TT

xq

soTsiT

L

dx
x

A

0

1.2 Fig.

L

TTA
q sosi

x

)( 
.

Introducing a proportionality constant k, we obtain

L

TTA
kq sosi

x

)( 
,                                  (1.4)

where k is a property of material called thermal conductivity. We must 
keep in mind that (1.4) is valid for: (i) steady state, (ii) constant k and (iii) 
one-dimensional conduction.  These limitations suggest that a re-
formulation is in order.  Applying (1.4) to the element dx shown in 

 and noting that2.1.Fig ),(xTTsi ),( dxxTTso  and L is replaced 
by dx, we obtain 

dx

xTdxxT
Ak

dx

dxxTxT
Akqx

)( )+(
     =  

)+( )(
   = .

Since T(x+dx) T(x) = dT, the above gives 

dx

dT
Akqx    = .                                 (1.5) 

      It is useful to introduce the term heat flux x ,q which is defined as the 
heat flow rate per unit surface area normal to x. Thus, 
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A

q
q x

x .                                            (1.6)

Therefore, in terms of heat flux, (1.5) becomes 

dx

dT
kqx .                                        (1.7) 

Although (1.7) is based on one-dimensional conduction, it can be 
generalized to three-dimensional and transient conditions by noting that 
heat flow is a vector quantity. Thus, the temperature derivative in (1.7) is 
changed to partial derivative and adjusted to reflect the direction of heat 
flow as follows: 

x

T
kqx  ,

y

T
kqy  ,

z

T
kqz ,             (1.8) 

where x, y, and z are the rectangular coordinates. Equation (1.8) is known 

as Fourier's law of conduction.  Four observations are worth making: (i) 

The negative sign means that when the gradient is negative, heat flow is in 

the positive direction, i.e., towards the direction of decreasing temperature, 

as dictated by the second law of thermodynamics.  (ii) The conductivity k

need not be uniform since (1.8) applies at a point in the material and not to 

a finite region. In reality thermal conductivity varies with temperature. 

However, (1.8) is limited to isotropic material, i.e., k is invariant with 

direction. (iii) Returning to our previous observation that the focal point in 

heat transfer is the determination of temperature distribution, we now 

recognize that once T(x,y,z,t) is known, the heat flux in any direction can be 

easily determined by simply differentiating the function T and using (1.8). 

(iv) By manipulating fluid motion, temperature distribution can be altered.  

This results in a change in heat transfer rate, as indicated in (1.8). 

1.6 Newton's Law of Cooling

An alternate approach to determining heat transfer rate between a surface 

and an adjacent fluid in motion is based on Newton’s law of cooling. Using 

experimental observations by Isaac Newton, it is postulated that surface 

flux in convection is directly proportional to the difference in temperature 

between the surface and the streaming fluid.  That is 

TTq ss   ,
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where s  is surface flux, sT is surface temperature and T  is the fluid 
temperature far away from the surface.  Introducing a proportionality 
constant to express this relationship as equality, we obtain 

q

)(  TThq ss .                                     (1.9) 

This result is known as Newton's law of cooling.  The constant of 

proportionality h is called the heat transfer coefficient. This simple result is 

very important, deserving special attention and will be examined in more 

detail in the following section.

1.7 The Heat Transfer Coefficient h

The heat transfer coefficient plays a major role in convection heat transfer. 

We make the following observations regarding h:

(1) Equation (1.9) is a definition of h and not a phenomenological law.   

(2) Unlike thermal conductivity k, the heat transfer coefficient is not a 

material property. Rather it depends on geometry, fluid properties, motion, 

and in some cases temperature difference, )( TTT s .  That is

fh (geometry, fluid motion, fluid properties, )T .        (1.10)

(3) Although no temperature distribution is explicitly indicated in (1.9), the 

analytical determination of h requires knowledge of temperature 

distribution in a moving fluid. 

This becomes evident when both 

Fourier’s law and Newton’s law 

are combined. Application of 

Fourier’s law in the y-direction

for the surface shown in Fig. 1.3 

gives

y

zxT
kqs

),0,(
,     (1.11) 

where y is normal to the surface, yzxT /),0,(  is temperature gradient in 

the fluid at the interface,  and k  is  the  thermal  conductivity  of  the  fluid.

Combining (1.9) and (1.11) and solving for h, gives

Fig. 1.3
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TT

y

zxT

kh
s

),0,(

.                                 (1.12) 

This result shows that to determine h analytically one must determine 

temperature distribution.  

(4) Since  both  Fourier’s  law  and  Newton’s  law  give  surface  heat  
flux, what is the advantage of introducing Newton’s law? In some 
applications the analytical determination of the temperature distribution 
may not be a simple task, for example, turbulent flow over a complex 
geometry.  In such cases one uses equation (1.9) to determine h
experimentally by measuring sq , sT  and T  and constructing an empirical 
equation to correlate experimental data. This eliminates the need for the 
determination of temperature distribution. 

(5)  We return now to the bulb shown in Fig. 1.1.  Applying Newton’s law 

(1.9) and solving for surface temperature , we obtain sT

h

q
TT s

s .                                     (1.13) 

For specified  and , surface temperature  can be altered by 

changing h. This can be done by changing the fluid, surface geometry 

and/or fluid motion.  On the other hand, for specified surface temperature 

 and ambient temperature T ,

equation (1.9) shows that surface 

flux can be altered by changing h.

sq T sT

sT

(6) One of the major objectives of 

convection is the determination of h.

(7) Since h is not a property, its 

values cannot be tabulated as is the 

case with thermal conductivity, 

enthalpy, density, etc. Nevertheless, 

it is useful to have a rough idea of 

its magnitude for common processes 

and fluids.  Table 1.1 gives the 

approximate range of h for various 

conditions.

Table 1.1 

Typical values of  h

Process )CW/m(
o2

h

Free convection 

   Gases 

   Liquids 

5-30

20-1000

Forced  convection 

   Gases 

   Liquids 

   Liquid metals 

20-300

50-20,000

5,000-50,000

Phase change 

   Boiling 

   Condensation 

2,000-100,000

5,000-100,000
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1.8 Radiation: Stefan-Boltzmann Law 

Radiation energy exchange between two surfaces depends on the geometry, 
shape, area, orientation, and emissivity of the two surfaces. In addition, it 
depends on the absorptivity   of each surface.  Absorptivity is a surface 
property defined as the fraction of radiation energy incident on a surface 
which is absorbed by the surface. Although the determination of the net 
heat exchange by radiation between two surfaces, 12 , can be complex, the 
analysis is simplified for an ideal model for which the absorptivity 

q
 is 

equal to the emissivity .   Such an ideal surface is called a gray surface.  
For the special case of a gray surface which is completely enclosed by a 
much larger surface,  is given by Stefan-Boltzmann radiation law 12q

)( 4
2

4
11112 TTAq ,                              (1.14) 

where 1 is the emissivity of the small surface, A1 its area, T1 its absolute 
temperature, and T2 is the absolute temperature of the surrounding surface.  
Note that for this special case neither the area of the large surface nor 
its emissivity

2A

2 affect the result.

1.9 Differential Formulation of Basic Laws

The analysis of convection heat transfer relies on the application of the 

three basic laws: conservation of mass, momentum, and energy. In 

addition, Fourier’s conduction law and Newton’s law of cooling are also 

applied. Since the focal point is the determination of temperature 

distribution, the three basic laws must be cast in an appropriate form that 

lends itself to the determination of temperature distribution. This casting 

process is called formulation. Various formulation procedures are 

available. They include differential, integral, variational, and finite

difference formulation.  This section deals with differential formulation.  

Integral formulation is presented in Chapter 5.  

      Differential formulation is based on the key assumption of continuum. 

This assumption ignores the molecular structure of material and focuses on 

the gross effect of molecular activity. Based on this assumption, fluids are 

modeled as continuous matter. This makes it possible to treat variables 

such as temperature, pressure, and velocity as continuous function in the 

domain of interest. 
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1.10 Mathematical Background 

We review the following mathematical 

definitions which are needed in the differential 

formulation of the basic laws.  w

v

u

x

y

z
1.4 Fig.

(a) Velocity Vector V .  Let u, v, and w be the 
velocity components in the x, y and z directions, 
respectively. The vector V is given by 

kwjiuV v .                (1.15a) 

(b) Velocity Derivative. The derivative of the velocity vector with respect 

to any one of the three independent variables is given by 

k
x

w
j

x
i

x

u

x

V v

.                            (1.15b) 

(c) The Operator .  In Cartesian coordinates the operator  is a vector 

defined as 

k
z

j
y

i
x

.                               (1.16) 

In cylindrical coordinates this operator takes the following form 

zr i
z

i
r

i
r

1
.                        (1.17) 

Similarly, the form in spherical coordinate is

i
r

i
r

i
r

r
sin

11
.                 (1.18) 

(d) Divergence of a Vector. The divergence of a vector V  is a scalar 

defined as

z

w

yx

u
VVdiv

v

. .                      (1.19) 
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(e) Derivative of the Divergence. The derivative of the divergence with 

respect to any one of the three independent variables is given by 

z

w

yx

u

x
V

x

v

.                      (1.20) 

The right hand side of (1.20) represents the divergence of the derivative of 

the vector V . Thus (1.20) can be rewritten as 

kwjiu
x

V
x

v ,

or

x

V
V

x
.                                  (1.21) 

(f) Gradient of Scalar. The gradient of a scalar, such as temperature T, is a 

vector given by 

k
z

T
j

y

T
i

x

T
TTGrad .                   (1.22) 

(g) Total Differential and Total Derivative. We consider a variable of 

the flow field designated by the symbol f. This is a scalar quantity such as 

temperature T, pressure p, density ,  or velocity component u. In general 

this quantity is a function of the four independent variables x, y, z and t.
Thus in Cartesian coordinates we write

),,,( tzyxff .                                          (a) 

The total differential of f is the total change in f resulting from changes in 

x, y, z and t. Thus, using (a) 

dt
t

f
dz

z

f
dy

y

f
dx

x

f
df .

Dividing through by dt
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t

f

dt

dz

z

f

dt

dy

y

f

dt

dx

x

f

Dt

Df

dt

df
.                  (b) 

However

u
dt

dx
, v

dt

dy
, w

dt

dz
.                               (c) 

Substituting (c) into (b)

t

f

z

f
w

y

f

x

f
u

Dt

Df

dt

df
v .              (1.23) 

dtdf / in the above is called the total derivative. It is also written as 
, to emphasize that it represents the change in  f  which results 

from changes in the four independent variables. It is also referred to as the 
substantial derivative. Note that the first three terms on the right hand side 
are associated with motion and are referred to as the convective derivative.
The last term represents changes in  f  with respect to time and is called the 
local derivative. Thus

DtDf /

z

f
w

y

f

x

f
u v  convective derivative,                    (d) 

t

f
local derivative.                                      (e) 

To appreciate the physical significance of (1.23), we apply it to the velocity 

component u. Setting uf  in (1.23) gives 

t

u

z

u
w

y

u

x

u
u

Dt

Du

dt

du
v .                 (1.24) 

Following (d) and (e) format, (1.24) represents 

z

w
w

y

u

x

u
u v  convective acceleration in the x-direction,     (f) 
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t

u
local acceleration .                                    (g) 

Similarly, (1.23) can be applied to the y and z directions to obtain the 

corresponding total acceleration in these directions. 

      The three components of the total acceleration in the cylindrical 

coordinates zr ,,  are

tzrrrDt

D

dt

d rr
z

rr
r

rr vv

v

vvvv

v

vv
2

,    (1.25a) 

tzrrrDt

D

dt

d
z

r
r

vv

v

vvvvv

v

vv

, (1.25b) 

tzrrDt

D

dt

d zz
z

zz
r

zz vv

v

vvv

v

vv

.         (1.25c) 

      Another example of total derivative is obtained by setting f = T in 

(1.23) to obtain the total temperature derivative 

t

T

z

T
w

y

T

x

T
u

Dt

DT

dt

dT
v .                (1.26) 

1.11 Units

SI units are used throughout this text.  The basic units in this system are: 

     Length (L): meter (m). 

     Time (t): second (s). 

     Mass (m): kilogram (kg). 

     Temperature (T): kelvin (K). 

Temperature on the Celsius scale is related to the kelvin scale by 

T(oC) = T(K) - 273.15.                              (1.27) 

Note that temperature difference on the two scales is identical.  Thus, a 

change of one kelvin is equal to a change of one Celsius.  This means that 

quantities that are expressed per unit kelvin, such as thermal conductivity, 
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heat transfer coefficient, and specific heat, are numerically the same as per 

degree Celsius.  That is, W/m2-K = W/ m2-oC.

      The basic units are used to derive units for other quantities. Force is 

measured in newtons (N).  One newton is the force needed to accelerate a 

mass of one kilogram one meter per second per second: 

Force = mass  acceleration, 

N = .
2m/skg

Energy is measured in joules (J).  One joule is the energy associated with a 

force of one newton moving a distance of one meter. 

J = N m = .
22 /smkg

Power is measured in watts (W).  One watt is energy rate of one joule per 

second.

W = J/s = N m/s = .
32 /smkg

1.12 Problem Solving Format

Convection problems lend themselves to a systematic solution procedure. 

The following basic format which builds on the work of Ver Planck and 

Teare [2] is used throughout the text.  

(1) Observations. Study the situation, operation, process, design, etc. 

under consideration.  Read the problem statement very carefully and note 

essential facts and features.  Identify cueing information in the problem 

statement. Show a schematic diagram describing the situation. Where 

appropriate show the origin and coordinate axes.  

(2) Problem Definition.  Identify the key factors which must be 

determined so that a solution can be constructed.  Distinguish between the 

question asked and the problem to be solved.  Look for cues in the problem 

statement to construct a problem definition that cues a solution plan.  

(3) Solution Plan.  Identify the problem's basic laws and concepts.  

(4) Plan Execution.  This stage is carried out in four steps.

 (i) Assumptions.  Model the problem by making simplifications and 

approximations. List all assumptions. 
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.

 (ii) Analysis.  Apply the basic laws identified in the solution plan. 

Carry out analysis in terms of symbols representing variables, parameters 

and constants rather than numerical values.  Define all terms and give their 

units.

     (iii) Computations.  Execute the necessary computations and 

calculations to generate the desired numerical results. 

     (iv)  Checking.  Check each step of the solution as you proceed.  Apply 

dimensional checks and examine limiting cases.  

(5) Comments. Review your solution and comment on such things as the 

role of assumptions, the form of the solution, the number of governing 

parameters, etc.  

Example 1.1: Heat Loss from Identical Triangles

Consider two identical triangles drawn on the surface of a flat plate as 
shown.  The plate, which is maintained at uniform surface temperature T ,
is cooled by forced convection. The free stream temperature is T  Under 
certain conditions the heat transfer 
coefficient varies with distance x 
from the leading edge of the plate 
according to

s

top view

0 x

y

dx

)(xy dAV

T

L

H1 2

x

C
xh )( ,

where C is constant. Determine the 

ratio of the heat transfer rate from 

the two triangles, q1/q2.

(1) Observations. (i) Convection heat transfer from a surface can be 

determined using Newton’s law of cooling. (ii) The local heat transfer 

coefficient varies along the plate. (iii) For each triangle the area of an 

element dx varies with distance along the plate. (iv) The total heat transfer 

rate can be determined by integration along the length of each triangle.

(2) Problem Definition.  Determine the heat rate by convection from an 

element dx of each triangle.

(3) Solution Plan. Apply Newton's law of cooling to an element of each 

triangle and integrate over the area. 

(4) Plan Execution.
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      (i) Assumptions. (1) Steady state, (2) one-dimensional variation of heat 

transfer coefficient, (3) uniform free stream temperature, (4) uniform 

surface temperature, and (5) negligible radiation. 

      (ii) Analysis.  Of interest is the ratio of the total heat transfer rate from 

triangle 1 to that of triangle 2.  Since both the heat transfer coefficient and 

area vary along each triangle, it follows that Newton's law of cooling 

should be applied to an element dA at a distance x from the leading edge: 

dATTxhdq s ))(( , (a)

where

= area of element, dA 2m

 = local heat transfer coefficient,.  )(xh

= rate of heat transfer from element, W dq

= surface temperature, sT Co

= free stream temperature, T Co

x = distance along plate, m 

The local heat transfer coefficient is given by

h = 
x

C
.                                               (b) 

Using the subscripts 1 and 2 to refer to triangles 1 and 2, respectively, the 

infinitesimal area for each triangle is given by dA

dxxydA )(11 , (c)

and

dxxydA )(22 , (d)

where

)(1 xy = side of element in triangle 1, m 

 = side of element in triangle 2, m )(2 xy

Similarity of triangles gives 

)()(1 xL
L

H
xy ,  (e) 
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x
L

H
xy )(2 .  (f) 

Substituting (e) into (c) and (f) into (d) gives 

dxxL
L

H
dA )(1 ,                            (g) 

xdx
L

H
dA2  ,                                          (h)

where

H = base of triangle, m 

L = length of triangle, m 

Substituting (b) and (g) into (a) and integrating from x = 0 to x = L, gives 

q1 =

L

s

L

dx
x

xL

L

H
TTCdx

x

xL

L

H
TTCdq s

0
2/1

0
2/11 )()( .

Carrying out the integration yields 

2/1
1 )()3/4( HLTTCq s .                                (i) 

Similarly, substituting (b) and (h) into (a) and integrating from x = 0 to x = 

L gives 

q2 =

LL

dxx
L

H
TTCdx

x

x

L

H
TTCdq ss

0

2/1

0
2/12 )()( .

Carrying out the integration yields 

2/1
2 )()3/2( HLTTCq s .                              (j) 

Taking the ratio of (i) and (j) 

2
2

1

q

q
.                                                (k) 
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(iii) Checking. Dimensional check: Units of q1 in equation (i) should 

be W. First, units of C are 

      C = CW/m o2/3

Thus units of are1q

= C (W/m1q 3/2-oC)(  - TsT  )(oC)H(m)L1/2 (m1/2) = W 

Since  has the same form as , it follows that units of  in equation (j) 

are also correct. 
2q 1q 2q

Qualitative check:  The result shows that the rate of heat transfer from 

triangle 1 is greater than that from triangle 2.  This is expected since the 

heat transfer coefficient increases as the distance from the leading edge is 

decreased and triangle 1 has its base at x = 0 where h is maximum. 

According to (b), the heat transfer coefficient is infinite at x = 0. 

(5) Comments. (i) Although the two triangles have the same area, the rate 

of heat transfer from triangle 1 is double that from triangle 2. Thus, 

orientation and proximity to the leading edge of a flat plate play an 

important role in determining the rate of heat transfer.  

(ii) The same approach can be used to determine heat transfer for 

configurations other than rectangles, such as circles and ellipses.
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          PROBLEMS 

1.1 Heat is removed from a rectangular surface by convection to an 
ambient fluid at T .  The heat transfer coefficient is h. Surface 
temperature is given by 

2/1x

A
s

T

L

x0 W

T ,

 where A is constant.  Determine 

the steady state heat transfer 

rate from the plate. 

1.2    A right angle triangle is at a uniform surface temperature s  Heat is 
removed by convection to an ambient fluid atT .  The heat transfer 
coefficient h varies along the surface according to

.

    h = 
C

W

x
L

0

,
/x

where C is constant and x is the 

distance along the base measured 

from the apex. Determine the total 

heat transfer rate from the triangle. 

1.3    A high intensity light bulb with surface heat flux s is cooled 
by a fluid at T . Sketch the fluid temperature profiles for three 
values of the heat transfer coefficient: h

Aq )/(

1, h2, and h3, where h1 < h2 < h3.

1.4    Explain why fanning gives a cool sensation. 

1.5    A block of ice is submerged in water above the melting tempera- 

ture. Explain why stirring the water accelerates the melting rate. 

1.6    Consider steady state, incompressible, axisymmetric parallel flow in  
a tube of radius . The axial velocity distribution for this flow is 
given by 

or

)(
2

2

12

or

r
uu ,

         where u  is the mean or average axial velocity. Determine the three 

components of the total acceleration for this flow. 
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1.7    Consider transient flow in the neighborhood of a vortex line where 

the velocity is in the tangential direction, 

given by 

V
rt

r

r

o

4
exp1

2

trV
2

),( .

         Here r is the radial coordinate, t is time, 

o  is circulation (constant), and  is 
kinematic viscosity. Determine the three 
components of total acceleration. 

1.8 An infinitely large plate is 

suddenly moved parallel to its 

surface with a velocity U . The 

resulting transient velocity dis- 

tribution of the surrounding fluid 

is given by   

o

oU
x

y

plate 0

0

)exp()/2(1 2 dUu o ,

where the variable  is defined as 

t

y
tx

2
),( .

Here t is time, y is the vertical coordinate and  is kinematic 

viscosity.  Note that streamlines for this flow are parallel to the plate. 

Determine the three components of total acceleration. 

1.9 Consider two parallel plates with 
the lower plate stationary and 
the upper plate moving with a 
velocity o  The lower plate is 
maintained at temperature 1T
and the upper plate at oT  The 
axial velocity of the fluid for 
steady state and parallel stream-
lines is given by 

.

x

y

oU

0

oT

1T

U

.
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H

y
Uu o ,

where H is the distance between the two plates.  Temperature 

distribution is given by 

11

22

)(
2

T
H

y
TT

H

y
y

kH

U
T o

o
,

where k is thermal conductivity and  is viscosity. Determine the 

total temperature derivative. 

1.10  One side of a thin plate is heated electrically such that surface heat 
flux is uniform.  The opposite side of the plate is cooled by           
convection. The upstream velocity is V  and temperature is T .
Experiments were carried out at two upstream velocities,  and 

2  where  All 
other conditions were 
unchanged. The heat transfer 
coefficient was found to 
increase as the free stream 
velocity is increased. Sketch 
the temperature profile T(y)
of the fluid corresponding to 
the two velocities.

1V
V .12 VV

oq
x

y

1.11  Heat is removed from an  L-shaped  area by convection.  The heat 

transfer coefficient is h and the ambient 

temperature is  Surface temperature 

varies according to

.T

xceoTxT )( ,

         where c and T  are constants. Determine 

the rate of heat transfer from the area. 

o

a2

0

a

a

a

a

a2x

T

V
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2.1 Introduction  

In a moving fluid the three fundamental laws, conservation of mass, 

momentum, and energy, must be satisfied at every point in the domain. 

Thus the first step is to formulate (cast) the three laws in a form that 

satisfies this condition. This is accomplished by applying each law to a 

differential (infinitesimal) element. Following this approach, each law is 

described by a partial differential equation. Differential formulation of the 

three laws will be presented using rectangular coordinates. The 

corresponding forms in cylindrical and spherical coordinates will be stated 

without details. 

2.2 Flow Generation

Since fluid motion is central to convection heat transfer we will be 

concerned with two common flow classifications: 

(a) Forced convection. Fluid motion is generated mechanically through the 

use of a fan, blower, nozzle, jet, etc..  Fluid motion relative to a surface can 

also be obtained by moving an object, such as a missile, through a fluid.  

(b) Free (natural) convection. Fluid motion is generated by gravitational 

field.  However, the presence of a gravitational field is not sufficient to set 

a fluid in motion.  Fluid density change is also required for free convection 

to occur. In free convection, density variation is primarily due to 

temperature changes.   

DIFFERENTIAL FORMULATION 
OF THE  BASIC LAWS
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2.3 Laminar vs. Turbulent Flow

One classification of fluid flow and convection heat transfer is based on 
certain flow characteristics. If the flow is characterized by random
fluctuations in quantities such as velocity, temperature, pressure, and 
density, it is referred to as turbulent.  On the other hand, in the absence of
such fluctuations the flow is called laminar.  These two basic flow patterns
are illustrated in Fig.2.1. Since flow and heat transfer characteristics differ 
significantly for these two modes, it is essential to establish if a flow is
laminar, turbulent, or mixed. Transition from laminar to turbulent flow
takes place at experimentally determined value of the Reynolds number
known as the transition Reynolds number, t .  The magnitude of this
number depends primarily on flow geometry but can be influenced by
surface roughness, pressure gradient and other factors.  For uniform flow 
over a semi-infinite flat plate 

Re

/xVRe tt  500,000, where V  is the
free stream velocity, t is the distance along the plate, measured from the 
leading edge to where transition occurs, and 

x
 is the kinematic viscosity. 

On the other hand, for flow through tubes t =Re  2300, where D is
tube diameter and is the mean fluid velocity.

Du
u

t

turbulent
u

laminar
u

t

2.1Fig.

2.4 Conservation of Mass: The Continuity Equation

2.4.1 Cartesian Coordinates

Consider an element  as a control volume in the flow field of Fig. 

2.2a. For simplicity, the z-direction is not shown.  The element is enlarged 

in Fig. 2.2b showing the flow of mass through it. Conservation of mass,

applied to the element, states that 

dxdydz

Rate of mass added to element - Rate of mass removed from element =

Rate of mass change within element

(2.1)
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Assuming continuum and using the notation of Fig. 2.2b, equation (2.1) is

expressed as 

dx

dy

x

y

)(a
2.2Fig.

)(b

dy
y

m
m

y
y

)(

ym

xm dy
y

m
m x

x

)(

,
)()()(

( )

t

m
dz

z

m
mdy

y

m
m

dx
x

m
mmmm

z
z

y
y

x
xzyx

       (a) 

where

xm = mass flow rate entering element in the x-direction

ym = mass flow rate entering element in the y-direction

zm = mass flow rate entering element in the z-direction

m  = mass within element

To express (a) in terms of fluid density and velocity, we utilize the one-

dimensional flow rate equation 

VAm ,      (b) 

where V is the velocity normal to the flow area A, and  is density. It
should be emphasized that in this form both  and V must be uniform over 
the flow area A.  Applying (b) to the element, gives 

dydzumx , (c)

dxdzmy v , (d)

wdxdymz , (e)

where u,  and w are the velocity components in the x, y and z-direction,

respectively. The mass,

v

m , within the element is given by

dxdydzm . (f)
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Substituting (c)–(f) into (a) and dividing through by dxdydz, gives 

0w
zy

u
xt

v .       (2.2a)

This result is called the continuity equation. An alternate form is obtained 

by differentiating the product terms in (2.2a) to obtain

0
z

w

yx

u

z
w

yx
u

t

v

v .       (2.2b)

Note that the first four terms in (2.2b) represent the total derivative of 
and the last three terms represent the divergence of the velocity vectorV .
Thus, (2.2b) is rewritten as 

0V
tD

D
.       (2.2c)

An alternate form of (2.2c) is 

0V
t

.       (2.2d)

For constant density (incompressible fluid) the total derivative in (2.2d)

vanishes. That is

0
tD

D
.

Substituting into (2.2d) gives 

0V .  (2.3) 

Equation (2.3) is the continuity equation for incmopressible fluid. 

2.4.2 Cylindrical Coordinates 

Applying (2.1) to an infinitesimal element drdzrd in the cylindrical

coordinates shown in Fig. 2.3, gives
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0
11

zr
zr

r vvv ,

(2.4)

y
r

),,( zr

x

z

2.3Fig.

rrt

where  and are the velocity 

components in r,

,rv v zv

 and z-direction, respectively.

2.4.3 Spherical Coordinates 

Applying (2.1) to an infinitesimal element

drrddr  in the spherical coordinates shown in

Fig. 2.4 and following the procedure of Section

2.4.1, gives 

0
sin

1

sin
sin

121
2

v

vv

r

r
r

r
r

rt
.

z
),,( zr

x

y

r

2.4Fig.

     (2 .5)

Example 2.1:  Fluid in Angular Motion r

shaft

A shaft rotates concentrically inside a tube. The 

annular space between the shaft and the tube is 

filled with incompressible fluid. Neglecting fluid 

motion in the axial direction z, write the 

continuity equation for this case. 

(1) Observations. (i) Use cylindrical coordinates. (ii) No variation in the

axial and angular directions. (iii) The fluid is incompressible (constant 

density).

(2) Problem Definition.  Simplify the three-dimensional continuity

equation for this flow. 

(3)  Solution Plan.  Apply the continuity in cylindrical coordinates.

(4)  Plan Execution.

(i) Assumptions. (1) Continuum, (2) incompressible fluid, (3 no
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motion in the axial direction, and (4) shaft and tube are concentric. 

      (ii) Analysis.  The continuity equation in cylindrical coordinates is 

given by (2.4)

0
11

z
zr

r
rrt

r vvv .      (2.4)

This equation is simplified based on: 

Incompressible fluid:  is constant, 0/ dt .

No axial velocity: .0zv

Axisymmetric: 0/ .

Introducing the above simplifications into (2.4), gives the continuity

equation for this flow 

0.rr
r

v (a)

(iii) Checking. Dimensional check: Each term in (2.4) has units of

density per unit time.

(5) Comments.  (i) Equations (a) and (d) are valid for transient as well as 

steady state as long as the fluid is incompressible.

(ii) Continuity equation (a) can be integrated to give the radial

velocity rv

Cr rv ,     (b) 

where C is constant or a function of .  Since the radial velocity

vanishes at the shaft’s surface, if follows from (b) that
rv

0C .       (c) 

Equation (b) gives

0rv .       (d) 

(iii) Since everywhere in the flow field, it follows that the 

streamlines are concentric circles.

0rv
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2.5 Conservation of Momentum: The Navier-Stokes Equations

of Motion 

2.5.1 Cartesian Coordinates

We note first that momentum is a

vector quantity. Thus conservation of

momentum (Newton’s law of motion)

provides three equations, one in each 

of the three coordinates. Application

of Newton’s law of motion to the

element shown in Fig. 2.5, gives

dx
dy

x

y

z

dz

2.5Fig.amF )( ,      (a) 

where

= acceleration of the element a

F = external force acting on the element

m = mass of the element

Application of (a) in the x-direction, gives

xx amF )( .       (b)

The mass of the element is 

dzdydxm . (c)

Based on the assumption of continuum, the total acceleration of the

element in the x-direction,  is,xa

t

u

z

u
w

y

u
v

x

u
u

Dt

Du

dt

du
ax . (d)

Substituting (c) and (d) into (b) 

dxdydz
Dt

Du
Fx .      (e) 
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Next we determine the sum of all external forces acting on the element in 

the x-direction. We classify external forces as:

(i) Body force. This is a force that acts on every particle of the material or 

element. Examples include gravity and magnetic forces.

(ii) Surface force. This is a force that acts on the surface of the 

element. Examples include tangential forces (shear) and normal

forces (pressure and stress).

Thus we write 

surfacebody xxx FFF .  (f) 

We consider gravity as the only body force acting on the element. The x-

component of this force is 

dxdydzgF xx body
,     (g) 

where is gravitational acceleration component in the plus x-direction.

Next we formulate an expression for the surface forces in the x-direction.

These forces are shown in Fig. 2.6.  They are: 

xg

xx  normal stress on surface dydz

yx = shearing (tangential) stress on surface dxdz

zx = shearing (tangential) stress on surface dxdy

Summing up all the x-component forces shown in Fig. 2.6 gives

Fig. 2.6
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dxdydz
zyx

F zxyxxx
x surface

.  (h) 

Similar expressions are obtained for surface forces in the y and z-directions.

Substituting (f), (g) and (h) into (e), gives the x-direction equation

zyx
g

Dt

Du zxyxxx
x .       (2.6a)

Similarly, applying Newton’s law of motion in the y and z-directions gives 

the two corresponding momentum equations. By analogy with (2.6a), these 

equations are 

zyx
g

Dt

D zyyyxy

y

v

,       (2.6b)

and

zyx
g

Dt

Dw zzyzxz
z .       (2.6c)

Equations (2.6a), (2.6b), and (2.6c) are general in nature since they are

based on fundamental laws of motion. The only restriction is the

assumption of continuum. Examination of these equations shows that they 

contain 13 unknowns: u, , w,v ,,,,,, yxxyzzyyxx ,xz yzzx ,
and .zy  Application of the moment of momentum principle to a

differential element gives

yxxy , zxxz , zyyz .        (i)

To further reduce the number of unknown variables, an important

restriction is introduced. The basic idea is to relate normal and shearing

stresses to the velocity field. This is accomplished through the introduction

of experimentally based relations known as constitutive equations. These 

equations are [1]:

y

u

x
yxxy

v

,         (2.7a)
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z

u

x

w
zxxz ,     (2.7b)

y

w

z
zyyz

v

,   (2.7c) 

V
x

u
pxx

3

2
2 ,       (2.7d)

V
y

pyy
3

2
2

v

,      (2.7e)

V
z

w
pzz

3

2
2 .      (2.7f)

where  is a property called viscosity and p is the hydrostatic pressure. A 

fluid that obeys (2.7) is referred to as Newtonian fluid. Examples of 

Newtonian fluids include air, water and most oils. Fluids such as tar, honey

and polymers are called non-Newtonian. Substituting (2.7) into (2.6), we 

obtain

,

3

2
2

z

u

x

w

zxy

u

y

V
x

u

xx

p
g

Dt

D
x

v

u

  (2.8x) 

,
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2

xy

u

xy

w

zz

V
yyy

p
g

Dt

D
y

vv

vv

  (2.8y) 
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.
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w

zyz

u

x

w

x

V
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w

zz

p
g

Dt

Dw
z

v

  (2.8z) 

The following observations are made regarding (2.8):

(1) These equations are known as the Navier-Stokes equations of motion.

They apply to Newtonian fluids. 

(2) The number of unknowns in the three equations are 6: u, , w, p,v ,

and .

(3) The assumptions leading to (2.8) are: continuum and Newtonian fluid.

Expressing equations (2.8x), (2.8y) and (2.8z) in a vector form, gives 

.

3

4

2 VVVV

VVpg
Dt

VD

  (2.8) 

Equation (2.8) is now applied to two simplified cases: 

(i) Constant viscosity. For this case

0 ,       (j) 

and

VVVVV 2 .  (k) 

Substituting (j) and (k) into (2.8) 

VVpg
Dt

VD 2

3

1
.       (2.9)

Thus (2.9) is valid for: (1) continuum, (2) Newtonian fluid, and (3) constant 

viscosity.
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(ii) Constant viscosity and density. The continuity equation for incom-

pressible fluid is given by equation (2.3) 

0V .   (2.3) 

Substituting (2.3) into (2.9) gives 

Vpg
Dt

VD 2 .         (2.10)

Equation (2.10) is valid for: (1) continuum, (2) Newtonian fluid, (3)

constant viscosity and (4) constant density.  Note that this vector equation

represents the three components of the Navier-Stokes equations of motion.

These three x, y, and z components are 

2

2

2

2
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u

y

u
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u
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xv ,

(2.10x)
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(2.10y)
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w
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t

w
zv .

(2.10z)

2.5.2 Cylindrical Coordinates

Applying Newton’s law of motion to an infinitesimal element

drdzrd  in the cylindrical coordinates shown in Fig. 2.3 and 

following the procedure of Section 2.5.1, gives the three Navier-

Stokes equations in cylindrical coordinates. We limit the result to the

following case:

(1) Continuum, (2) Newtonian fluid, (3) constant viscosity, and (4) constant

density. The r, ,  and z components for this case are 
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2.5.3 Spherical Coordinates

Applying Newton’s law of motion to an infinitesimal element drrddr

in the spherical coordinates shown in Fig. 2.4 and following the procedure

of Section 2.5.1, gives the three Navier-Stokes equations in spherical

coordinates. We limit the result to the following case: 

Continuum, (2) Newtonian fluid, (3) constant viscosity, and (4) constant

density. The r, ,  and  components for this case are

vvvv

v

vvvvvvvv

v

sin

2cot222

sin

2222

2

22

rrrrr

p
g

trrr

r
r

r

rrrr

r

r

(2.12r)
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.
sin
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sin

2

sinsin

1

cot
sin

222222

2 vvv

v

vvvvvvvvvv
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g
trrrrr
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r
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(2.12 )

Note that in equations (2.12) the operator  in spherical coordinates 

is defined as

.
sin

1
sin

sin

11
2

2

222

2

2

2

rrr
r

rr
 (2.13) 

Example 2.2: Thin Liquid Film Flow over an Inclined Surface

A thin liquid film flows axially down an 

inclined plane.   Consider the example of 

incompressible, steady flow with parallel 

streamlines. Write the Navier-Stokes

equations of motion for this flow. 

 (1) Observations. (i) The flow is due to

gravity. (ii) For parallel streamlines the vertical component  (iii)

Pressure at the free surface is uniform (atmospheric).  (iv) The component

of gravity in the direction tangent to the surface causes the fluid to flow 

downwards. (v) The geometry is Cartesian. 

g x

y

u

.0v

(2) Problem Definition. Determine the x and y components of the Navier-

Stokes equations of motion for the flow under consideration.
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(3) Solution Plan. Start with the Navier-Stokes equations of motion in

Cartesian coordinates and simplify them for this special case.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady, (4)

flow is in the x-direction, (5) constant properties, (6) uniform ambient

pressure, and (7) parallel streamlines.

      (ii) Analysis. Start with the Navier Stokes equations of motion in

Cartesian coordinates for constant properties, equations (2.10x) and (2.10y)

2

2

2

2

2

2

z

u

y

u

x

u

x

p
g

z

u
w

y

u

x

u
u

t

u
xv ,

(2.10x)

2

2

2

2

2

2

zyxy
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u

t
y

vvvvv

v

vv
.

(2.10y)

The two gravitational components are

singg x , cosgg y .     (a) 

Based on the above assumptions, these equations are simplified as follows:

Steady state: 0
tt

u v

.      (b) 

Axial flow (x-direction only): 0
z

w .   (c) 

Parallel flow: 0v .   (d)

Substituting (a)-(d) into (2.10x) and (2.10y), gives

sing
x

u
u

2

2

2

2

y

u

x

u

x

p
, (e)



36  2 Differential Formulation of the Basic Laws

0 =
y

p
g cos . (f)

The x-component (e) can be simplified further using the continuity

equation for incompressible flow, equation (2.3)

0
zyx

u
V

wv

.   (g) 

Substituting (c) and (d) into (g), gives

0
x

u
.     (h) 

Using (h) into (e) gives the x-component

sing
2

2

y

u

x

p
= 0.  (i) 

Integrating (f) with respect to y

)()cos( xfygp ,     (j) 

where f(x) is constant of integration.  At the free surface, ,Hy  the 

pressure is uniform equal to  Therefore, setting.p Hy  in (j) gives

cos)( gHpxf .     (k) 

Substituting (k) into (j) gives the pressure solution 

pyHgp cos)( .    (l)

Differentiating (l) with respect to x gives 

x

p
 = 0.                                           (m)

Substituting (m) into (i) gives the x-component of the Navier-Stokes 

equations



2.5 Conservation of Momentum: The Navier-Stokes Equations of Motion   37 

0sin
2

2

yd

ud
g .    (n)

(iii) Checking. Dimensional check: Each term of the y-component

equation (f) must have the same units:

 g cos   = .
2223 -skg/m))(m/s(kg/m

y

p
 = = .

32 N/mm/)(N/m 32 m/)m/s(kg 22 -skg/m

Similarly, units of the x-component equation (n) must also be consistent 

g sin  = .
22 -skg/m

2

2

yd

ud
 =  . 

222 -skg/m)s)(m/s)/(m-(kg/m

Limiting check: For the special case of zero gravity the fluid will not flow. 

That is, u = 0. Setting 0g  in (n) gives 

0
2

2

yd

ud
.    (o) 

It can be shown that the solution to (o) gives 0u .

(5) Comments. (i) For two-dimensional incompressible parallel flow, the 

momentum equations are considerably simplified because the vertical

velocity  vanishes. ,v

(ii) The flow is one-dimensional since u does not change with x and is a

function of y only.

2.6 Conservation of Energy: The Energy Equation 

2.6.1 Formulation: Cartesian Coordinates

Consider an element  as a control volume in the flow field of Fig. 

2.7. Fluid enters and leaves the element through its six surfaces. We

dxdydz
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introduce the principle of conservation of energy (first law of 

thermodynamics). We begin with the statement

Energy cannot be created or 

destroyed

dx
dy

x

y

z

dz

2.7Fig.

This statement is not very useful in

solving heat transfer problems. We 

rewrite it as an equation and apply it

to the element:

_

Rate of change of
internal and kinetic

energy of element

Net rate of internal and kinetic

energy transport by convection

+
Net rate of heat added

by conduction

Net rate of work done by
element on surroundings

A

C

B

D
(2.14)

Note that net rate in equation (2.14) refers to rate of energy added minus

rate of energy removed. The objective is to express each term in equation

(2.14) in terms of temperature to obtain what is known as the energy

equation. This formulation is detailed in Appendix A. In this section we

will explain the physical significance of each term in equation (2.14) and 

its relation to temperature. The resulting energy equation will be presented

in various forms.  The formulation assumes: (1) continuum, (2) Newtonian 

fluid, and (3) negligible nuclear, electromagnetic and radiation energy 

transfer.

(1) A  = Rate of change of internal and kinetic energy of element

The material inside the element has internal and kinetic energy. Internal 

energy can be expressed in terms of temperature using thermodynamic

relations. Kinetic energy depends on the flow field.

(2) B = Net rate of internal and kinetic energy transport by convection

Mass flow through the element transports kinetic and thermal energy.

Energy convected through each side of the element in Fig. 2.7 depends on 
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mass flow rate and internal and kinetic energy per unit mass. Mass flow 

rate depends on density and velocity field. Thus this component of energy

balance can be expressed in terms of temperature and velocity fields.

(3) C = Net rate of heat addition by conduction

Energy is conducted through each side of the element in Fig. 2.7. Using 

Fourier’s law this component of energy can be expressed in terms of

temperature gradient using equation (1.6).

(4)  D = Net rate of work done by the element on the surroundings

The starting point in formulating this term is the observation that a moving

force by the element on the surrounding represents work done or energy

supplied by the element. That is 

Rate of work = force velocity

Thus we must account for all surface forces acting on each side of the 

element as well as on the mass of the element (body forces). Examination 

of Fig. 2.6 shows that there are three forces on each side for a total of 18 

forces. Each force moves with its own velocity. Body forces act on the

mass of the element.  Here the only body force considered is gravity.

Accounting for all the forces and their respective velocities determines the 

net work done by the element on the surroundings.

Formulation of the four terms A, B, C and D and substitution into (2.14)

give the following energy equation (See Appendix A)

Dt

Dp
TTk

Dt

DT
c p , (2.15)

where

specific heat at constant pressure pc
thermal conductivityk

p pressure

coefficient of thermal expansion (compressibility)

= dissipation function

The coefficient of thermal expansion  is a property of material defined as 
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pT

1
.      (2.16) 

The dissipation function  is associated with energy dissipation due to 

friction. It is important in high speed flow and for very viscous fluids. In

Cartesian coordinates  is given by

.
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2
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w

yx

u

vvv
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    (2.17) 

2.6.2 Simplified Form of the Energy Equation

Equation (2.15) is based on the following assumptions: (1) continuum, (2)

Newtonian fluid, and (3) negligible nuclear, electromagnetic and radiation

energy transfer.  It can be simplified under certain conditions. Three cases 

are considered.

(1) Incompressible fluid. According to (2.16), 0  for incompressible

fluid. In addition, thermodynamic relations show that

ccc p v
,

where  is specific heat at constant volume. Equation (2.15) becomes
v

c

Tk
Dt

DT
c p .         (2.18)

(2) Incompressible constant conductivity fluid 

Equation (2.18) is simplified further if the conductivity k is assumed

constant. The result is 

Tk
Dt

DT
c p

2 .  (2.19a) 
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Using the definition of total derivative and operator , this equation is 

expressed as

2

2

2

2

2

2

z

T

y

T

x

T
k

z

T
w

y

T

x

T
u

t

T
c p v . (2.19b)

Note that for incompressible fluid, the last term in the dissipation function,

equation (2.17), vanishes. Furthermore, if dissipation is negligible equation

(2.19b) is simplified by setting .0

(3) Ideal gas. The ideal gas law gives 

RT

p
. (2.20)

Substituting into (2.16) 

TRT

p

T p

111
2

.   (2.21) 

Equation (2.21) into (2.15), gives 

Dt

Dp
Tk

Dt

DT
c p .   (2.22) 

This result can be expressed in terms of  using continuity (2.2c) and the 

ideal gas law (2.20)

v
c

VpTk
Dt

DT
c
v

. (2.23)

2.6.3 Cylindrical Coordinates

The energy equation in cylindrical coordinates will be presented for

the simplified case based on the following assumptions:

(1) Continuum, (2) Newtonian fluid, (3) negligible nuclear, electromagnetic

and radiation energy transfer, (4) incompressible fluid, and (5) constant

conductivity. The energy equation for this case is 
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The dissipation function in cylindrical coordinates for incompressible fluid

is given by

.
1

1
2

1
22
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vvvv

vvvvvvv

(2.25)

2.6.4 Spherical Coordinates

The energy equation in spherical coordinates will be presented for the

simplified case based on the following assumptions:

(1) Continuum, (2) Newtonian fluid, (3) negligible nuclear, electromagnetic

and radiation energy transfer, (4) incompressible fluid, and (5) constant

conductivity. The energy equation for this case is 

2

2

222

2

2 sin

1
sin

sin

11

sin

T

oro

T
o

oorr

T
r

rr
k

T

ro

T

rr

T

t

T
c rP

vv

v

(2.26)

The dissipation function in cylindrical coordinates for incompressible fluid

is given by
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Example 2.3: Flow between Parallel Plates 

A fluid flows axially (x-direction)

between parallel plates. Assume: 

Newtonian fluid, steady state, 

constant density and conductivity, 

and parallel streamlines. Taking 

dissipation into consideration,

write the energy equation for this flow. 

(1) Observations. (i) For parallel streamlines the vertical component

(ii) Density and thermal conductivity are constant.  (iii) Dissipation 

must be included in the energy equation. (iv) The geometry is Cartesian. 

.0v

(2) Problem Definition.  Determine the energy equation for parallel flow.

(3) Solution Plan. Start with the energy equation in Cartesian coordinates

for constant density and conductivity and simplify it for this special case. 

(4) Plan Execution.

     (i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state, 

(4) axial flow, (5) constant density and conductivity, (6) negligible nuclear,

electromagnetic and radiation energy transfer, and (7) parallel streamlines. 

     (ii) Analysis.  The energy equation in Cartesian coordinates for 

incompressible constant conductivity fluid is given by equation (2.19b)
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c p v  (2.19b)
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where the dissipation function in Cartesian coordinates is given by equation

(2.17)
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Based on the above assumptions, these equations are simplified as follows:

Steady state: 0
t

T
.       (a) 

Axial flow: 0
z

w .         (b)

Parallel flow: 0v .     (c)

Substituting (a)-(c) into (2.19b), gives

2

2

2

2

y

T

x

T
k

x

T
ucp .        (d) 

The dissipation function (2.17) is simplified using (b) and (c)

222

3

2
2

x

u

y

u

x

u
.      (e)

Continuity equation (2.3) gives

0
x

u
.      (f) 

Using (f) into (e) gives

2

y

u
.   (g) 
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Substituting (g) into (d) gives the energy equation

2

2

2

2

2

y

u

y

T

x

T
k

x

T
uc .    (h) 

     (iii) Checking. Dimensional check: Each term in (h) has units of

.
3W/m

Limiting check: If the fluid is not moving, the energy equation should

reduce to pure conduction. Setting 0u  in (h) gives

0
2

2

2

2

y

T

x

T
.

This is the correct equation for this limiting case. 

(5) Comments. In energy equation (h), properties ,, kc p and

represent fluid nature. The velocity u represents fluid motion. This

confirms the observation made in Chapter 1 that fluid motion and nature 

play a role in convection heat transfer (temperature distribution).

2.7 Solutions to the Temperature Distribution 

Having formulated the three basic laws, continuity (2.2), momentum (2.8) 

and energy (2.15), we examine the mathematical consequence of these

equations with regard to obtaining solutions to the temperature distribution.

Table 2.1 lists the governing equations and the unknown variables.

Basic law
No. of

Equations
Unknowns

Viscosity relation

Conductivity relation
)( Tpkk ,

)( Tp,

1 T u v w p

TABLE 2.1

1

3

1

1

T

T

p

p

p

w

w

u

u

T1 wu

Continuity

Momentum

Energy

StateofEquation

1 T p k

kv

v

v
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The following observations are made regarding Table 2.1: 

(1) Although specific heats p  and 
v

, and the coefficient of thermal 

expansion

c c
 appear in the energy equation, they are not listed in Table 2.1 

as unknown. These properties are determined once the equation of state is 

specified.

(2) For the general case of variable properties, the total number of 

unknowns is 8: T, u, w, p,v, , ,  and k. To determine the temperature

distribution, the eight equations must be solved simultaneously for the eight 

unknowns. Thus the velocity and temperature fields are coupled.

(3) For the special case of constant conductivity and viscosity the number

of unknowns is reduced to six: T, u, , w, p andv ,  Thus the six equations,

energy, continuity, momentum and state must be solved simultaneously to

determine the temperature distribution. This case is defined by the largest

dashed rectangle in Table 2.1. 

(4) For the important case of constant density (incompressible fluid), 

viscosity and conductivity, the number of unknowns is reduced to five: T,

u, , w, p. This case is defined by the second largest dashed rectangle in 

Table 2.1. However a significant simplification takes place: the four

equations, continuity, and momentum, contain four unknowns: u, w and

p, as defined by the smallest rectangle in Table 2.1. Thus the velocity and

temperature fields are uncoupled. This means that the velocity field can be 

determined first by solving the continuity and momentum equations

without using the energy equation. Once the velocity field is determined, it

is substituted into the energy equation and the resulting equation is solved 

for the temperature distribution.

v

v,

2.8 The Boussinesq Approximation 

Fluid motion in free convection is driven by density change and gravity.

Thus the assumption of constant density cannot be made in the analysis of

free convection problems. Instead an alternate simplification called the 

Boussinesq approximation is made. The basic approach in this

approximation is to treat the density as constant in the continuity equation

and the inertia term of the momentum equation, but allow it to change with 

temperature in the gravity term. We begin with the momentum equation for

constant viscosity
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VVpg
Dt

VD 2

3

1
. (2.9)

This equation is valid for variable density . However, we will assume that 

 is constant in the inertia (first) term but not in the gravity term g . Thus 

(2.9) is rewritten as 

Vpg
Dt

VD 2 ,   (a) 

where  is fluid density at some reference state, such as far away from 

an object where the temperature is uniform and the fluid is either stationary

or moving with uniform velocity. Thus at the reference state we have

02V
Dt

VD
.      (b)

Applying (a) at the reference state  and using (b), gives

0pg .      (c)

Subtracting (c) from (a)

Vppg
Dt

VD 2)()( . (d)

The objective of the next step is to eliminate the ( ) term in (d) and

express it in terms of temperature difference. This is accomplished through 

the introduction of the coefficient of thermal expansion , defined as

pT

1
.       (2.16)

Pressure variation in free convection is usually small and in addition, the

effect of pressure on  is also small. In other words, in free convection

can be assumed independent of p. Thus we rewrite (2.16) as
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dT

d1
 . (e)

We further note that over a small change in temperature the change in 

density is approximately linear. Thus we rewrite (e) as

TT

1
.     (f)

This result gives

)( TT .         (2.28)

Equation (2.28) relates density change to temperature change. Substituting

(2.28) into (d)

VppTTg
Dt

VD 21
.    (2.29)

The simplification leading to (2.29) is known as the Boussinesq

approximation. The importance of this approximation lies in the 

elimination of density as a variable in the analysis of free convection

problems. However, the momentum and energy equations remain coupled. 

2.9 Boundary Conditions 

To obtain solutions to the flow and temperature fields, boundary 

conditions must be formulated and specified. Boundary conditions

are mathematical equations describing what takes place physically at 

a boundary. In convection heat transfer it is necessary to specify

boundary conditions on the velocity and temperature. The following

are commonly encountered conditions. 

(1) No-slip condition. Fluid velocity vanishes at a stationary boundary

such as the wall of a tube, surface of a plate, cylinder, or sphere. Thus all 

three velocity components must vanish. In Cartesian coordinates this 

condition is expressed mathematically as

0),,0,( tzxV ,       (2.30a)
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where y is the coordinate normal to the surface and the origin is at .

It follows from the above that 

0y

0),,0,(),,0,(),,0,( tzxwtzxtzxu v .       (2.30b)

Equation (2.30) is referred to as the no-slip condition.

(2) Free stream condition. Far away from an object it is common to

assume a uniform or zero velocity. For example, a uniform x-component

velocity at y  is expressed as 

Vtzxu ),,,(  .      (2.31) 

 Similarly, uniform temperature far away from an object is expressed as

TtzxT ),,,(  .      (2.32) 

(3) Surface thermal conditions. Two common surface thermal conditions

are used in the analysis of convection problems. They are: 

(i) Specified temperature. This condition is written as 

sTtzxT ),,0,( .      (2.33) 

Note that surface temperature sT  need not be uniform or constant. It can 

vary with location x and z as well as time.

(ii) Specified heat flux. The boundary condition for a surface which is 

heated or cooled at a specified flux is expressed as

oq
y

tzxT
k

),,0,(
.  (2.34) 

Note that in (2.34) the heat flux oq  points in the positive y-direction.  It

need not be uniform or constant. It can vary with location x and z as well as 

time.

Example 2.4: Heated Thin Liquid Film Flow over an Inclined Surface

A thin liquid film flows axially down an inclined plate.  The film thickness

H is uniform. The plate is maintained at uniform temperature  and the oT
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free surface is heated with a flux oq .

Write the velocity and thermal boundary

conditions at these two surfaces.

g x

y

u
oqoT(1) Observations.   (i) The free surface is 

parallel to the inclined plate. (ii) The no-

slip condition applies at the inclined 

surface. (iii) The temperature is specified

at the plate. The flux is specified at the

free surface. (iv) Cartesian geometry.

(2) Problem Definition. Write the boundary conditions at the two surfaces 

for the velocity components  and  and for the thermal field.u v

(3) Solution Plan. Select an origin and coordinate axes. Identify the

physical flow and thermal conditions at the two surfaces and express them 

mathematically.

(4) Plan Execution.

     (i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) negligible 

shearing stress at the free surface, and (4) constant film thickness.

(ii) Analysis.  The origin and Cartesian coordinate axes are selected as

shown. The velocity and thermal boundary conditions at the two surfaces 

are:

(1) No-slip condition at the inclined surface:

0)0,(xu ,    (a) 

0)0,(xv .    (b) 

(2) Free surface is parallel to inclined plate: 

0),( Hxv .   (c) 

(3) Negligible shear at the free surface:  Shearing stress for a Newtonian

fluid is given by equation (2.7a)

y

u

x
yx

v

.      (2.7a)

Applying (2.7a) at the free surface and using (c), gives
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0
),(

y

Hxu
. (d)

(4) Specified temperature at the inclined surface:

oTxT )0,( .  (e) 

(5) Specified heat flux at the free surface. Application of equation (2.34) 

gives

oq
y

tzxT
k

),,0,(
.   (f) 

     (iii) Checking. Dimensional check: Each term in (f) has units of flux. 

(5) Comments. (i) To write boundary conditions, origin and coordinate

axes must be selected first.

(ii) Since the heat flux at the free surface points in the negative y-direction,

a minus sign is introduced on the right hand side of equation (f). 

2.10 Non-dimensional Form of the Governing Equations:

Dynamic and Thermal Similarity Parameters

Useful information can be obtained without solving the governing

equations by rewriting them in dimensionless form.  This procedure is 

carried out to: (1) identify the governing parameters, (2) plan experiments,

and (3) guide in the presentation of experimental results and theoretical

solutions. To appreciate the importance of this process we consider an 

object of characteristic length L which is exchanging heat by convection

with an ambient fluid. For simplicity we assume constant properties. In

general the unknown variables are:  and  These variables

depend on the four independent variables x, y, z and t. In addition various

quantities affect the solutions. They are: , V , sT ,

,u ,v w, p .T

,p T ,L g  and fluid 

properties k, , , and . Furthermore, the geometry of the object is

also a factor. To map the effect of these quantities experimentally or

numerically for a single geometry requires extensive effort.  However, in 

dimensionless formulation these quantities are consolidated into four 

dimensionless groups called parameters. This dramatically simplifies the 

mapping process.

,pc



52  2 Differential Formulation of the Basic Laws

2.10.1 Dimensionless Variables

To non-dimensionalize the dependent and independent variables, we use 

characteristic quantities that are constant throughout the flow and 

temperature fields. These quantities are g, ,,L ,sT T ,p , and .

We consider Cartesian coordinates and define the following dimensionless

dependent and independent variables: 

V

V

V
V * ,

2

* )(

V

pp
p ,

)(

)(*

TT

TT
T

s

, ,*

g

g
g

    (2.35) 

L

x
x* ,

L

y
y* ,

L

z
z* , t

L

V
t*

.

Note that in the above the subscript  refers to the characteristic

condition, say far away from the object.  is the magnitude of the 

velocity vector at  and g is the magnitude of the gravitational

acceleration vector.  Equation (2.35) is first used to construct the 

dimensionless form of the operators 

V

 and DtD /

*1

LzLyLxLzyx
,       (2.36a)

2222222

2

2

2

2

2
2

zLyLxLzyx
=

2

2

1

L
,

(2.36b)

Dt

D

L

V

VLtD

D

Dt

D

)/(
.  (2.36c) 

2.10.2 Dimensionless Form of Continuity

Substituting (2.35) and (2.36) into continuity equation (2.2c) gives

0*

*
V

tD

D
.    (2.37)

We note that the dimensionless form of continuity reveals no parameters.
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2.10.3 Dimensionless Form of the Navier-Stokes Equations of Motion 

Substituting (2.35) and (2.36) into (2.29) gives 

*
2*****

2*

* 1
V

Re
PgT

Re

Gr

Dt

VD
,     (2.38) 

where the parameters Re and Gr are the Reynolds and Grashof numbers,

defined as

LVLV
Re , Reynolds number, (2.39)

2

3LTTg
Gr s

, Grashof number. (2.40)

2.10.4 Dimensionless Form of the Energy Equation 

We consider two special cases of the energy equation. 

(i) Incompressible, constant conductivity

Substituting (2.35) and (2.36) into (2.19) gives

**2*

*

* 1

Re

c
T

RePrDt

DT
,   (2.41a) 

where the parameters Pr and Ec are the Prandtl and Eckert numbers,

defined as 

p

p

ckk

c
Pr

/

/
, Prandtl number,   (2.42) 

)(

2

TTc

V
c

sp

, Eckert number.        (2.43) 

The dimensionless dissipation function
*

 is determined by substituting

(2.35) and (2.36) into (2.17)

2

*

*
2

*

*
* 2

yx

u v
 .   (2.44) 
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(ii) Ideal gas, constant conductivity and viscosity

Substituting (2.35) and (2.36) into (2.22) yields

*

*

*
*2*

* 1

Re

c

Dt

Dp
cT

RePrDt

DT
.   (2.41b)

2.10.5 Significance of the Governing Parameters

The non-dimensional form of the governing equations (2.37), (2.38), and

(2.41) are governed by four parameters: Re, Pr, Gr, and Ec. Thus the

temperature solution for convection can be expressed as

),,,;,,,( ***** EcGrPrRetzyxfT .    (2.45)

The following observations are made:

(1) The Reynolds number is associated with viscous flow while the Prandtl

number is a heat transfer parameter which is a fluid property.  The Grashof

number represents buoyancy effect and the Eckert number is associated

with viscous dissipation and is important in high speed flow and very

viscous fluids.

(2) In dimensional formulation six quantities, , sT , V ,,p T ,L g  and 

five properties k, , , and  , affect the solution. In dimensionless

formulation these factors are consolidated into four dimensionless

parameters: Re, Pr, Gr and Ec.

,pc

(3) The number of parameters can be reduced in two special cases: (i) If 

fluid motion is dominated by forced convection (negligible free 

convection), the Grashof number can be eliminated. (ii) If viscous

dissipation is negligible, the Eckert number can be dropped. Thus under

these common conditions the solution is simplified to

),;,,,( ***** PrRetzyxfT     (2.46) 

(4) The implication of (2.45) and (2.46) is that geometrically similar bodies

have the same dimensionless velocity and temperature solutions if the 

similarity parameters are the same for all bodies. 

(5) By identifying the important dimensionless parameters governing a

given problem, experimental investigations can be planned accordingly.

Instead of varying the relevant physical quantities, one can vary the 
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similarity parameters.  This will vastly reduce the number of experiments

needed. The same is true if numerical results are to be generated. 

(6) Presentation of results such as heat transfer coefficient, pressure drop, 

and drag, whether experimental or numerical, is most efficiently done when 

expressed in terms of dimensionless parameters.

2.10.6 Heat Transfer Coefficient: The Nusselt Number 

Having identified the important dimensionless parameters in convection

heat transfer we now examine the dependency of the heat transfer

coefficient h on these parameters.  We begin with equation (1.10) which 

gives h

y

zxT

TT

k
h

s

),0,(

)(
.        (1.10) 

Using (2.30) to express temperature gradient and h in dimensionless form,

(1.10) becomes

*

**
*

),0,( *

y

zxT
x

k

hx
,        (4.47) 

where the dimensionless heat transfer coefficient is known as the 

Nusselt number.  Since it depends on the location  it is referred to as the 

local Nusselt number and is given the symbol  Thus we define 

khx /
*x

.xNu

k

hx
Nux .       (2.48)

Similarly, the average Nusselt number NuL  for a surface of length L is 

based on the average heat transfer coefficient h  and is defined as 

Nu
hL

kL ,      (2.49)

where h  for the one-dimensional case is given by

L

dxxhh
L

0

)(1 .     (2.50)
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Since *T  depends on four parameters, it follows from (2.45), (2.47) and 

(2.48) that the local Nusselt number also depends on the same four 

parameters and is expressed as

)EcGrPrRexfNux ,,,;(= * .     (2.51) 

This is an important result since it suggests how experiments should be

planned and provides an appropriate form for correlation equations for the

Nusselt number.  As was pointed out in Section 2.10.5, for the special case 

of negligible buoyancy and viscous dissipation, (2.51) is simplified to 

)PrRexfNux ,;(= * .   (2.52) 

Similarly, for free convection with negligible dissipation we obtain

)PrGrxfNux ,;(= * .  (2. 53) 

Equations (2.51) (2.53) are for the local Nusselt number.  For the average

Nusselt number, which is based on the average heat transfer coefficient, the

variable is eliminated according to (2.50).  Thus (2.51) takes the form x

Nu
h L

k
f Re Pr Gr EcL ( , , , ) . (2.54)

Equations (2.52) and (2.53) are similarly modified.

It should be noted that much has been learned by expressing the

governing equations in dimensionless form without solving them.

However, although we now know what the Nusselt number depends on, the

form of the functional relations given in (2.51) (2.54) can only be

determined by solving the governing equations or through experiments.

Example 2.5: Heat Transfer Coefficient for Flow over Cylinders

You carried out two experiments to determine the average heat 
transfer coefficient for flow normal to a cylinder.  The diameter of 
one cylinder is D1 = 3 cm and that of the other is D2 = 5 cm. The free 
stream velocity over D1 is V1 = 15 m/s and the velocity over D2 is 
V2 = 98 m/s. Measurements showed that the average heat transfer
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coefficient for D1 is 2441 W/mh 2
-

o
C and for D2 is 1442 /mh W

2
-

o
C. In both experiments you used the same fluid. To check your

results you decided to compare your data with the following
correlation equation for flow normal to a cylinder: 

n
D PrReC

k

hD
Nu

D

0.6
,    (a) 

where C and n are constants. What do you conclude regarding the

accuracy of your data?

(1) Observations. (i) Experimental results for h1  and h2  should be 

compared with those predicted by the correlation equation.  (ii) The heat

transfer coefficient appears in the definition of the Nusselt number .DuN
(iii) The correlation equation can not be used to determine h  and h  since

the fluid and the constants C and n are not given. However, the equation 

can be used to determine the ratio 1 /h .2h  (iv) The absence of the Grashof 

and Eckert numbers in the correlation equation implies that it is applicable

to cases where buoyancy and viscous dissipation are negligible. 

(2) Problem Definition. Determine 1h / 2h using experimental data and the

correlation equation. 

(3)  Solution Plan.  Apply the correlation equation to determine 1h / 2h and

compare with the experimentally obtained ratio. 

(4)  Plan Execution.

(i) Assumptions. (i) Correlation equation (a) is valid for both 

experiments. (ii) Fluid properties are constant.

(ii) Analysis.  Noting that Nu
hD
k

D  and 
VD

ReD , equation (a)

is rewritten as 

nPr
VD

C
k
Dh

6.0

,       (b)

where

 = diameter, mD

h = heat transfer coefficient, W/m2-oC

k  = thermal conductivity, W/m-oC

Pr  = Prandtl number
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V = free stream velocity, m/s

= kinematic viscosity, m2/s

Solving equation (b) for h

4.06.0

6.0

D

PrVkC
h

n

.      (c)

Applying (c) to the two experiments

4.0
1

6.0

6.0
1

1
D

PrCkV
h

n

,                              (d) 

and

4.0
2

6.0

6.0
2

2
D

PrCkV
h

n

.    (e) 

Taking the ratio of (d) and (e) gives 

4.0

1

2

6.0

2

1

2

1

D

D

V

V

h

h
.      (f) 

(iii) Computations. Substituting the experimental data for V1, V2, D1

and D2 into (f)

4.0
)cm(3

)cm(5

)sm(98

)sm(15
4.06.0

2

1

h

h

The experimentally obtained ratio 1h / h2  is

69.1
C)-W/m(144

C)-W/m(244
2

2

2

1

h

h

The two results differ by a factor of 4.2. This points to an error in the 

experimental data. 

(iv) Checking. Dimensional check: Equation (f) is dimensionally

consistent since each term is dimensionless.
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Limiting check: If V1 = V2 and D1 = D2, then .21 hh  (f)  confirms this.

Qualitative check: If V is increased, h should increase. This is

substantiated by (c). 

(5) Comments.  (i) The assumption that the correlation equation is valid 

for both experiments is critical. If, for example, the effects of viscous 

dissipation and/or buoyancy are significant in the two experiments,

equation (a) is not applicable.

(ii) The analysis suggests that there is an error in the experimental data. 

However, it is not possible to establish whether one experiment is wrong or

both are wrong.

(iii) A more conclusive check can be made if C, n and the fluid are known.

2.11 Scale Analysis

Scale analysis, or scaling, is a procedure by which estimates of useful 

results are obtained without solving the governing equations. It should be

emphasized that scaling gives order of magnitude answers, and thus the 

approximation is crude. Scaling is accomplished by assigning order of

magnitude values to dependent and independent variables in an equation.

Excellent applications of scaling in heat transfer is found in reference [2].

Example 2.6: Melting Time of Ice Sheet

An ice sheet of thickness L is at the 

freezing temperature fT . One side is

suddenly maintained at temperature oT
which is above the freezing temperature.

The other side is insulated. Conserva-

tion of energy at the melting front gives 

ix

0

xL

solid

liquid

oT

fT

,    (a) 
dt

dx

x

T
k i

L

where

thermal conductivity k
T temperature distribution in the liquid phase

t  time 
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coordinatex

interface location ix

L = latent heat of fusion

Use scale analysis to determine the time needed for the entire sheet to melt. 

(1) Observations. (i) The entire sheet melts when .Lxi  (ii) The largest 

temperature difference is .fo TT  (iii) Scaling of equation (a) should be

helpful in determining melt time. 

(2) Problem Definition.  Determine the time ott  when Ltxi )( .

(3)  Solution Plan.  Apply scale analysis to equation (a). 

(4)  Plan Execution.

(i) Assumptions. (i) Sheet is perfectly insulated at Lx . (ii) Liquid

phase is stationary.

       (ii) Analysis. Equation (a) is approximated by

t

x

x

T
k i

L .     (b) 

We now select scales for the variables in (a). 

      scale for :T )( fo TTT

      scale for :x Lx

      scale for :ix Lxi

      scale for :t ott

Substituting the above scales into (a)

o

fo

t

L

L

TT
k L

)(
.

Solving for melt time ot

)(

2

fo
o

TTk

L
t

L
.       (c)

(iii) Checking. Dimensional check: Each term in (c) should have units

of time:
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)C)()(CW/m-(

)m()J/kg()kg/m(
oo

223

fo

o
TTk

L
t

L
= s. 

Limiting check: (1) If the latent heat of fusion L is infinite, melt time

should be infinite. Setting L =  in (c) gives .ot

(2) If sheet thickness is zero, melt time should vanish. Setting L = 0 in (c) 

gives .0ot

Qualitative check: Melt time should be directly proportional to mass, latent 

heat and thickness and inversely proportional to conductivity and

temperature difference ).( fo TT This is confirmed by solution (c).

(5) Comments.  (i) With little effort an estimate of the melt time is 

obtained without solving the governing equations for the two phase region.

(ii) An exact solution based on quasi-steady process gives the melt time

as

ot

)(2

2

fo
o

TTk

L
t

L
.     (d) 

Thus scaling gives an approximate answer within a factor of 2.
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yxxy

PROBLEMS

2.1 [a] Consider transient (unsteady), incompressible, three dimensional

flow. Write the continuity equation in Cartesian coordinates for this

flow.

[b] Repeat [a] for steady state.

2.2    Far away from the inlet of 

a tube, entrance effects

diminish and streamlines

become parallel and the 

flow is referred to as fully

developed. Write the

continuity equation in the fully developed region for incompressible

fluid.

2.3  Consider incompressible flow 

between parallel plates.  Far

away from the entrance the axial

velocity component does not 

vary with the axial distance.

[a]  Determine the velocity component in the y-direction.

[b] Does your result in [a] hold for steady as well as unsteady flow? 

Explain.

2.4. The radial and tangential velocity

components for incompressible

flow through a tube are zero. Show

that the axial velocity does not

change in the flow direction.  Is

this valid for steady as well as 

transient flow?

2.5  Show that .

2.6  A fluid flows axially between 

parallel plates. Assume: Newto-

nian fluid, steady state, constant

density, constant viscosity, neg- 

ligible gravity, and parallel streamlines. Write the three components

of the momentum equations for this flow.
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2.7   A fluid flows axially (z-direction) through a tube. Assume: Newto-

nian fluid, steady state, constant density, constant viscosity, 

negligible gravity, and parallel streamlines. Write the three 

components of the momentum equations for this flow.

2.8     Consider two-dimensional flow (x,y) between parallel plates. Assume:

Newtonian fluid, constant density and viscosity. Write the two

components of the momentum equations for this flow. How many

unknown do the equations have? Can they be solved for the 

unknowns? If not what other equation(s) is needed to obtain a

solution?

2.9  Consider two-dimensional, flow through a tube. Assume:
Newtonian, constant density and viscosity. Write the two 
components of the momentum equations for this flow. How many
unknowns do the equations have? Can the equations be solved for the 
unknowns? If not what
other equation(s) is needed 
to obtain a solution? 

),( zr

2.10  In Chapter 1 it is stated that 

fluid motion and fluid nature play a role in convection heat transfer.

Does the energy equation substantiate this observation? Explain.

2.11 A fluid flows axially (x-

direction) between parallel 

plates. Assume: Newtonian

fluid, steady state, constant 

density, constant viscosity,

constant conductivity, negligible gravity, and parallel streamlines.

Write the energy equation for this flow. 

2.12 An ideal gas flows axially (x-direction) between parallel plates. 

Assume: Newtonian fluid, steady state, constant viscosity, constant

conductivity, negligible gravity, and parallel stream- lines. Write the

energy equation for this flow.

2.13 Consider two-dimensional free convection over a 

vertical plate. Assume: Newtonian fluid, steady

state, constant viscosity, Boussinesq approximation,

and negligible dissipation. Write the governing

equations for this case. Can the flow field be 

determined independent of the temperature field? 
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2.14  Discuss the condition(s) under which the Navier-Stokes equations of 

motion can be solved independent of the energy equation.

2.15 Consider a thin film of liquid condensate which is 

falling over a flat surface by virtue of gravity. 

Neglecting variations in the z-direction and assuming

Newtonian fluid, steady state, constant properties, and 

parallel streamlines 
y

x

g

[a] Write  the momentum equation(s) for this flow. 

[b] Write the energy equation including 

dissipation effect. 

2.16   A wedge is maintained at T1 along one side and T2 along the opposite

side.  A solution for the flow field is obtained based on Newtonian

fluid and constant properties.  The 

fluid approaches the wedge with 

uniform velocity and temperature.

Examination of the solution

shows that the velocity distribu-

tion is not symmetrical with 

respect to the x-axis. You are 

asked to support the argument that the solution is incorrect.

1T

2T
T

V

y

x

2.17 Starting with the equations of motion for constant properties and 

Boussinesq model

VppgTT
Dt

)()(
VD 21

,

 and the energy equation for an ideal gas with constant k

tD
Tk

Dt
c p

DpDT 2
,

 show that the dimensionless form of these equations is 

*2*****
* 1GrVD

2*
V

Re
PgT

ReDt
,

 and

*

*

*
*2*

*

* 1

Re

Ec

Dt

DP
ET

RePrDt

DT
.
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2.18 Consider two-dimensional (x and y), steady, constant properties,

parallel flow between two plates separated by a distance H. The 

lower plate is stationary while the upper plate moves axially with a

velocityU . The upper plate is maintained at uniform

temperatureT  and the lower

plate is cooled with a flux .

Taking into consideration

dissipation, write the Navier-

Stokes equations of motion,

energy equation and boundary

conditions at the two plates. 

o

o

oq

2.19  A shaft of radius  rotates concentrically

inside a sleeve of inner radius .

Lubrication oil fills the clearance between

the shaft and the sleeve.  The sleeve is

maintained at uniform temperatureT .

Neglecting axial variation and taking into

consideration dissipation, write the

Navier-Stokes equations of motion, energy

equation and boundary conditions for this 

flow. Assume constant properties.

1r

2r

o

2.20  A rod of radius  moves axially with velocity U inside a concentric

tube of radius . A fluid having constant properties fills the space 

between the shaft and tube. The tube surface is maintained at uniform 

temperature  Write the Navier-Stokes equations of motion,

energy equation and surface boundary conditions taking into 

consideration dissipation. Assume that the streamlines are parallel to 

the surface. 

ir o

or

.oT
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ir

o

o

q

2.21  A rod or radius  rotates concentrically

inside a tube of inner radius r . Lubrication 

oil fills the clearance between the shaft and

the tube.  Tube surface is maintained at 

uniform temperatureT . The rod generates 

heat volumetrically at uniform rate .

Neglecting axial variation and taking into

consideration dissipation, write the Navier-

Stokes equations of motion, energy

equation and boundary conditions for this

flow. Assume constant properties.

oT

0

oq

ir

or

2.22  Air flows over the two spheres shown.  The 

radius of sphere 2 is double that of sphere 1. 

However, the free stream velocity for sphere 

1 is double that for sphere 2.  Determine the 

ratio of the average heat transfer coefficients

 for the two spheres.21 / hh

2.23 The average Nusselt number for laminar free convection over an

isothermal vertical plate is determined analytically and is given by

)(
43

4
4/1

Prf
Gr

k

Lh
Nu L

L

CW/m o2

,

1

2

1V

2V

 where Gr  is the Grashof number based on the length of the plate L

and f(Pr) is a function of the Prandtl number.  Determine the percent

change in the average heat transfer coefficient if the length of the 

plate is doubled.

L

2.24  An experiment was performed to determine the average heat transfer

coefficient for forced convection over spheres. In the experiment a 

sphere of diameter 3.2 cm is maintained at uniform surface 

temperature. The free stream velocity of the fluid is 23.4 m/s.

Measurements showed that the average heat transfer coefficient is

62 .

[a] Predict the average heat transfer coefficient for the same fluid 

which is at the same free stream temperature flowing over a sphere of 

diameter 6.4 cm which is maintained at the same surface

temperature. The free stream velocity is 11.7 m/s.
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[b] Which sphere transfers more heat?

2.25  Atmospheric air at  flows with a mean velocity of 10

inside a tube.  The surface of the tube is maintained at 115

(t

C25 o m/s

C.o

/2Tk .)/( 2rzv

.o

[a] Calculate the Eckert number. Can dissipation be neglected?

[b] Use scale analysis to compare the magnitude of radial 

conduction,  with dissipation,  Is 

dissipation negligible compared to conduction?

)(t

,2r

.

2.26 An infinitely large plate is immersed in an infinite fluid. The plate is 

suddenly moved along its plane with velocity U  Neglect gravity

and assume constant properties.

 [a] Show that the axial Navier-Stokes

equation is given by

2.27 An infinitely large plate is immersed in an infinite fluid at uniform

temperature T . The plate is suddenly maintained at temperature T

Assume constant properties and neglect gravity.

i .o

2

2

y

u

 [b] Due to viscous forces, the effect of

plate motion penetrates into the fluid. The

penetration depth  increases with

time. Use scaling to derive an expression for )(t .

t

u

)(t

.

 [a] Show that the energy equation is given by

2

2

y

T

t

T

 [b] Due to conduction, the effect of plate

temperature propagates into the fluid.

The penetration depth )  increases

with time. Use scaling to derive an 

expression for .
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3.1 Introduction 

Although the energy equation for constant properties is linear, the Navier-

Stokes equations of motion are non-linear. Thus, in general, convection 

problems are non-linear since the temperature field depends on the flow 

field.  Nevertheless, exact solutions to certain simplified cases can easily be 

constructed.  One of the objectives of this chapter is to develop an 

appreciation for the physical significance of each term in the equations of 

continuity, Navier-Stokes and energy and to identify the conditions under 

which certain terms can be neglected. Simplification of the governing 

equations is critical to constructing solutions. The general procedure in 

solving convection problems is, whenever possible, to first determine the 

flow field and then the temperature field.  

3.2 Simplification of the Governing Equations

Simplified convection models are based on key assumptions that lead to 

tractable solutions. We will present these assumptions and study their 

application to the governing equations. 

(1) Laminar flow. The assumption of laminar flow eliminates the effect of 

fluctuations. Mathematically this means that all time derivatives are set 

equal to zero at steady state.   

(2) Constant properties.  Returning to Table 2.1, we recall that for 

constant density (incompressible fluid), viscosity and conductivity, the 

velocity and temperature fields are uncoupled. This means that the velocity 

field can be determined first by solving the continuity and momentum 

equations without using the energy equation.  

EXACT ONE-DIMENSIONAL SOLUTIONS 
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(3) Parallel streamlines. Consider 

the parallel flow of Fig. 3.1.  This

flow pattern is also referred to as 

fully developed. Since the velocity 

component normal to a streamline is 

zero, it follows that

0v .  (3.1)

Using this result into the continuity equation for two-dimensional constant 

density fluid, gives

0
x

u
.   (3.2) 

Since (3.2) is valid everywhere in the flow field, it follows that

0
2

2

x

u
.   (3.3)

Significant simplification is obtained when these results are substituted in 

the Navier-Stokes and energy equations. This is illustrated in Examples 3.1, 

3.2 and 3.3. It should be emphasized that equations (3.1)-(3.3) are valid for

constant density flow with parallel streamlines.

(4) Negligible axial variation of temperature.  For the case of axial flow 

in the x-direction, this condition leads to 

0
x

T
. (3.4)

Equation (3.4) is exact for certain channel flows and a reasonable 

approximation for others. The following are conditions that may lead to the 

validity of (3.4): 

(1) Parallel streamlines.

(2) Uniform surface conditions. 

(3) Far away from the entrance of a channel (very long channels). 

In cases where (3.4) is valid everywhere in the thermal field, it follows that
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0
2

2

x

T
. (3.5)

Similar results are obtained for certain rotating flows.  In Fig. 3.2 a shaft 

rotates concentrically inside a sleeve. The streamlines are concentric

circles. For axisymmetric conditions and no axial variations, we have

0
T

.  (3.6) 

It follows that 

0
2

2T
.      (3.7) 

3.3 Exact Solutions

The simplifications described in the previous section will be invoked to 

obtain exact solutions. We will consider various cases to show how these 

assumptions lead to tractable differential equations and solutions to the 

temperature distribution [1-4].

3.3.1 Couette Flow

In this class of flow configuration a fluid between parallel plates is set in 

motion by moving one or both plates in their own plane. Fluid motion can 

also be driven by axial pressure gradient. A general case of Couette flow 

includes the effects of both plate motion and pressure gradient. The plates

are assumed infinite and thus there are no end effects. It will be shown that 

the streamlines in this flow are parallel to the plates. 

Example 3.1: Couette Flow with Dissipation 

Two infinitely large parallel plates form a channel of width H. An

incompressible fluid fills the channel. The lower plate is stationary while 

the upper plate moves with constant velocity . The lower plate is 

insulated and the upper plate is maintained at uniform temperature .

Taking into consideration dissipation, determine the temperature

distribution in the fluid and the rate of heat transfer at the moving plate.

oU

oT

Fig. 3.2
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Assume laminar flow and neglect gravity, end effects and pressure

variation in the channel.

(1) Observations.  (i) Moving plate sets fluid in motion in the x-direction.

(ii) Since plates are infinite, the flow field does not vary in the axial 

direction x. (iii) Pressure gradient is zero. (iv) The fluid is incompressible

(constant density). (v) Use Cartesian coordinates.

(2) Problem Definition.  Determine the velocity and temperature

distribution.

(3)  Solution Plan.  Apply continuity and Navier-Stokes equations to

determine the flow field.  Apply the energy equation to determine the 

temperature distribution.

(4)  Plan Execution.

      (i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state, 

(4) laminar flow, (5) constant properties (density, viscosity, conductivity

and specific heat), (6) infinite plates, (7) no end effects, (8) parallel plates, 

and (9) negligible gravitational effect. 

      (ii) Analysis.  Since the objective is the determination of temperature

distribution and heat transfer rate, it is logical to begin the analysis with the

energy equation. The energy equation for constant properties is given by

(2.19b)

2

2

2

2

2

2

z

T

y

T

x

T
k

z

T
w

y

T

x

T
u

t

T
c p v , (2.19b) 

where the dissipation function  is given by (2.17)

.

2

3

2
222

222
2

z

w

yx

u

z

u

x

w

y

w

zxy

u

z

w

yx

u

vvv

v

(2.17)

Thus it is clear from (2.19b) and (2.17) that the determination of

temperature distribution requires the determination of the velocity 
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components ,  and w. This is accomplished by applying continuity and 

the Navier-Stokes equations. We begin with the continuity equation in

Cartesian coordinates

u v

0
z

w

yx

u

z
w

yx
u

t

v

v .       (2.2b)

For constant density

0
zyxt

.      (a) 

Since plates are infinite

0w
zx

.       (b)

Substituting (a) and (b) into (2.2b), gives

0
y

v

.       (c) 

Integrating (c) 

)(xfv .     (d) 

To determine the “constant” of integration  we apply the no-slip

boundary condition at the lower plate 

)(xf

0)0,(xv .    (e) 

Equations (d) and (e) give 

0)(xf .

Substituting into (d) 

0v .        (f) 

Since the vertical component  vanishes everywhere, it follows that the

streamlines are parallel. To determine the horizontal component u we apply 

the Navier-Stokes equation in the x-direction, (2.10x) 

v
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2

2

2

2

2

2

z

u

y

u

x

u

x

p
g

z

u
w

y

u

x

u
u

t

u
xv .

(2.10x)

This equation is simplified as follows: 

Steady state: 0
t

u
.  (g) 

Negligible gravity effect: 0xg .   (h)

No axial pressure variation: 0
x

p
.    (i)

Substituting (b) and (f)-(i) into (2.10x) gives

0
2

2

dy

ud
.      (j) 

The solution to (j) is

21 CyCu ,  (k) 

where and  are constants of integration. The two boundary

conditions on u are: 
1C 2C

0)0(u  and oUHu )( . (l)

These conditions give

H

U
C o

1  and 02C , (m)

Substituting (m) into (k)

H

y

U

u

o

. (3.8)

With the velocity distribution determined, we return to the dissipation 

function and energy equation. Substituting (b) and (f) into (2.17) gives
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2

y

u
. (n)

Using solution (3.8) into (n) gives 

2

2

H

U o
 .   (o) 

Noting that for steady state 0/ tT  and using (b), (f) and (o), the

energy equation (2.19b) simplifies to 

0
2

2

2

2

H

U

dy

Td
k o .    (p)

In arriving at (p), axial temperature variation was neglected. This is valid

for infinite plates at uniform surface temperature.  Equation (p) is solved by 

direct integration

43
2

2

2

2
CyCy

kH

U
T o ,   (q) 

where and  are constants of integration. The two boundary condi-

tions on (q) are

3C 4C

0
)0(

dy

dT
k  and oTHT )( .    (r)

These boundary conditions and solution (q) give

03C  and 
k

U
TC o

o
2

2

4 .      (s)

Substituting (s) into (q) and rearranging the result in dimensionless form,

give

2

2

2
1

2

1

H

y

k

U

TT

o

o .   (3.9)
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The heat flux at the moving plate is determined by applying Fourier’s law 

at Hy

dy

HdT
kHq

)(
)( .

Substituting (3.9) into the above, gives

H

U
Hq o

2

)( .   (3.10)

     (iii) Checking. Dimensional check: Each term in (3.8) and (3.9) is

dimensionless. Units of (3.10) should be
2W/m

23

222

m

W

s

kg

)m(

)/sm()skg/m(
)(

H

U
Hq o

.

Differential equation check: Velocity solution (3.8) satisfies equation (j) 

and temperature solution (3.9) satisfies (p). 

Boundary conditions check: Velocity solution (3.8) satisfies boundary

conditions (l) and temperature solution (3.9) satisfies boundary conditions

(r).

Limiting check: (i) If the upper plate is stationary the fluid will also be 

stationary. Setting  in (3.8) gives0oU .0)( yu

(ii) If the upper plate is stationary the dissipation will vanish, temperature

distribution will be uniform equal to oT  and surface flux at the upper plate 

should be zero. Setting 0oU in (o), (3.9) and (3.10) gives

,0 oTyT )(  and .0)(Hq

(iii) If the fluid is inviscid the dissipation term will vanish and the 

temperature should be uniform equal to . Setting oT 0  in (3.9) gives

.oTyT )(

(iv) Global conservation of energy. All energy dissipation due to friction is 

conducted in the y-direction. Energy dissipation is equal to the rate of work

done by the plate to overcome frictional resistance. Thus

W = oUH )( ,  (t) 

where

     W = work done by the plate.
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)(H = shearing stress at the moving plate, given by, 

dy

Hdu
H

)(
)( .      (u)

Substituting (3.8) into (u) 

H

U
H o)( . (v)

Combining (v) and (t), gives

W = 
H

U o
2

.  (w) 

This result is identical to surface heat flux given in (3.10).

(5) Comments. (i) Treating the plate as infinite is one of the key 

simplifying assumptions. This eliminates the x-coordinate as a variable and

results in governing equations that are ordinary.  Alternatively, one could 

state that the streamline are parallel. This means that .0/ yvv

Substituting this into the continuity equation for two-dimensional

incompressible flow gives .0/ xu  This is identical to equation (b)

which is based on assuming infinite plate.

(ii) Maximum temperature occurs at the insulated surface .0y  Setting

 in (3.9) gives0y

k

U
TT o

o
2

)0(
2

3.3.2 Poiseuille Flow 

This class of problems deals with axial flow in long channels or tubes. 

Fluid motion is driven by axial pressure gradient. The channel or tube is

assumed infinite and thus end effects are neglected. The flow is 

characterized by parallel streamlines.

Example 3.2: Flow in a Tube at Uniform Surface Temperature

Incompressible fluid flows in a

long tube of radius . The fluid

is set in motion due to an axial 

pressure gradient  The 

surface of the tube is maintained 

or

./ zp
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at uniform temperature Taking into consideration dissipation, assuming

axisymmetric laminar flow and neglecting gravity, axial temperature 

variation, and end effects, determine:

.oT

[a]  Fluid temperature distribution.

[b] Surface heat flux.

[c] Nusselt number based on oTT )0( .

(1) Observations.  (i) Fluid motion is driven by axial pressure drop. (ii) 

For a very long tube the flow field does not vary in the axial direction z.

(iii) The fluid is incompressible (constant density). (iv) Heat is generated 

due to viscous dissipation. It is removed from the fluid by conduction at the 

surface. (v) The Nusselt number is a dimensionless heat transfer 

coefficient. (vi) To determine surface heat flux and heat transfer coefficient

requires the determination of temperature distribution. (vii) Temperature

distribution depends on the velocity distribution. (viii) Use cylindrical

coordinates.

(2) Problem Definition.  Determine the velocity and temperature

distribution.

(3)  Solution Plan.  Apply continuity and Navier-Stokes equations in

cylindrical coordinates to determine the flow field.  Apply the energy 

equation to determine temperature distribution. Fourier’s law gives surface 

heat flux. Equation (1.10) gives the heat transfer coefficient.

(4)  Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state,

(4) laminar flow, (5) axisymmetric flow, (6) constant properties (density,

viscosity and conductivity), (7) no end effects, (8) uniform surface 

temperature, and (9) negligible gravitational effect. 

     (ii) Analysis.  [a] Since temperature distribution is obtained by solving

the energy equation, we begin the analysis with the energy equation. The

energy equation in cylindrical coordinates for constant properties is given 

by (2.24)

,
11

2

2

2

2

2 z

TTT
k

z

TTT

t

T
c

rr
r

rrrr
zrp v

v

v

 (2.24)
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where the dissipation function  is given by (2.25)

)25.2(.
1

1
2

1
22

22

2222

rzzr

rrrzrrr

zrz

rzrr

vvvv

vvvvvvv

Equations (2.24) and (2.25) show that the determination of temperature

distribution requires the determination of the velocity components rv

.

,

and

v

zv   The flow field is determined by solving the continuity and the 

Navier-Stokes equations. We begin with the continuity equation in 

cylindrical coordinates 

0
11

zr
zr

r
rrt

vvv .       (2.4)

For constant density

0
zrt

. (a)

For axisymmetric flow 

0v .   (b) 

For a long tube with no end effects, axial changes in velocity vanish

0
z

.       (c) 

Substituting (a)-(c) into (2.4) 

0rr
dr

d
v .   (d) 

Integrating (d) 

)(zfr rv .   (e) 

To determine the “constant” of integration we apply the no-slip 

boundary condition at the surface 

)(zf
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0),( zrorv .  (f) 

Equations (e) and (f) give 

0)(zf .

Substituting into (e) 

0rv .       (g) 

Since the radial component rv  vanishes everywhere, it follows that the 

streamlines are parallel to the surface. To determine the axial component

zv  we apply the Navier-Stokes equation in the z-direction, (2.11z) 

)11.2(.
11

2

2

2

2

2
z

zrr
r

rrz

p
g

tzrr

zzz
z

zz
z

zz

vvv

vv

v

vvv

v
r

This equation is simplified as follows: 

Steady state 

0
t

.        (h) 

Negligible gravity effect 

0zr gg .    (i) 

Substituting (b), (c) and (g)-(i) into (2.11z) gives

0
1

dr

d
r

dr

d

rz

p zv .         (3.11)

Since zv depends on r only, equation (3.11) can be written as

)(
1

rg
dr

d
r

dr

d

rz

p zv .    (j) 

Integrating (j) with respect to z
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oCzrgp )( ,       (k)

where  is constant of integration. We turn our attention now to the radial 

component of Navier-Stokes equation, (2.11r)

oC

.
21

)(
1

2

2

22

2

2

2

zrr
r

rrrr

p
g

tz
v

rr

v

r
v

r
rr

r

rr

z

rr

r

vvv

v

vvvvv

v

(2.11r)

Substituting (b), (g) and (i) into (2.11r), gives

0
r

p
.      (l) 

Integrating (l)

)(zfp ,  (m) 

where  is “constant” of integration.  We now have two solutions for

the pressure p: (k) and (m). Equating the two, gives 

)(zf

)()( zfCzrgp o .       (n)

One side of (n) shows that the pressure depends on z only while the other

side shows that it depends on r and z. This, of course, is a contradiction. 

The only possibility for reconciling this is by requiring that

g(r) = C,      (o)

where C is a constant. Substituting (o) into (j) 

C
dr

d
r

dr

d

rz

p zv1
.     (p) 

Thus the axial pressure gradient in the tube is constant. Equation (p) can 

now be integrated to give the axial velocity distribution. Integrating once
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1
2

2

1
Cr

zd

pd

dr

d
r zv .

Separating variables and integrating again 

21
2 ln

4

1
CrCr

zd

pd
zv ,   (q) 

where and  are constants of integration. The two boundary

conditions on 

1C 2C

zv  are

,0
)0(

dr

d zv 0)( oz rv .  (r) 

Equations (q) and (r) give and1C 2C

,01C 2
2

4

1
or

zd

pd
C .

Substituting into (q) 

)(
4

1 22
oz rr

zd

pd
v .  (3.12) 

With the velocity distribution determined we return to the energy equation

(2.24) and the dissipation function (2.25). To simplify the problem, we will 

assume that axial temperature variation is negligible. Thus

0
2

2

z

T

z

T
. (s)

It should be emphasized that this is an approximation and not an exact 

condition. Substituting (b), (c), (g), (h) and (s) into (2.24) 

0
1

dr

dT
r

dr

d

r
k .       (t) 

Using (b), (c) and (g) into (2.25) gives the dissipation function for this flow 
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2

dr

d zv .

Substituting the velocity solution (3.12) into the above, gives

2

2

2

1
r

zd

pd
.      (u)

Using (u) to eliminate  in (t) and rearranging, we obtain

dr

dT
r

dr

d 3

2

4

1
r

zd

pd

k
.     (3.13) 

Integrating the above twice 

43
4

2

ln
64

1
CrCr

zd

pd

k
T .    (v) 

Two boundary conditions are needed to evaluate the constants of

integration  and . They are: 3C 4C

0
)0(

dr

dT
 and oo TrT )( .      (w)

Equations (v) and (w) give the two constants 

,03C 4

2

4
64

1
oo r

zd

pd

k
TC .

Substituting the above into (v)

4

424

1
64

o

o
o

r

r

zd

pd

k

r
TT .    (3.14a) 

This solution can be expressed in dimensionless form as
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4

4

24
1

64

oo

o

r

r

zd

pd

k

r

TT
.        (3.14b) 

[b] Surface heat flux is obtained by applying Fourier’s law )( orq

dr

rdT
krq o

o

)(
)( .

Using (3.14) into the above 

23

16
)(

zd

pdr
rq o

o
.    (3.15)

[c] The Nusselt number is defined as

k

hr

k

hD
Nu o2

,      (x)

where D is tube diameter. The heat transfer coefficient h is determined

using equation (1.10)

dr

rdT

TT

k
h o

o

)(

])0([
.    (y)

Substituting (3.14a) into (y)

or

k
h

4
.     (z) 

Substituting (z) into (x)

8Nu .       (3.16)

     (iii) Checking. Dimensional check: Each term in (3.12) has units of

velocity. Each term in has units of temperature. Each term in 

(3.15) has units of 

)14.3( a

.W/m2

Differential equation check: Velocity solution (3.12) satisfies equation (p)

and temperature solution (3.14) satisfies (3.13). 
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Boundary conditions check: Velocity solution (3.12) satisfies boundary

conditions (r) and temperature solution (3.14) satisfies boundary conditions

(w).

Limiting check: (i) If pressure is uniform ( 0/ dzdp ) the fluid will be

stationary. Setting 0/ dzdp  in (3.12) gives .0zv

(ii) If pressure is uniform ( 0/ dzdp ) the fluid will be stationary and no

dissipation takes place and thus surface heat transfer should vanish. Setting 

 in (3.15) gives0/ dzdp .0)( orq

(iii) Global conservation of energy. Heat transfer rate leaving the tube must

be equal to the rate of work required to pump the fluid. Pump work for a

tube section of length L is

QppW )( 21 ,  (z-1) 

where

=  upstream pressure1p

 =  downstream pressure 2p

Q = volumetric flow rate, given by

or

rdrQ z

0

2 v .

Substituting (3.12) into the above and integrating

4

8
or

dz

dp
Q .    (z-2) 

Combining (z-1) and (z-2) 

)(
8

21

4

pp
dz

dpr
W o

.  (z-3) 

Work per unit area W is

Lr

W
W

o2
.

Substituting (z-3) into the above
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L

pp

dz

dpr
W o )(

16

21
3

.         (z-4) 

However

dz

dp

L

pp )( 21 .

Combining this result with (z-4) gives 

23

16 dz

dpr
W o .

This result is identical to surface heat transfer rate given in (3.15). 

(5) Comments. (i) Neglecting axial variation of temperature is a key factor 

in simplifying the problem. This assumption eliminates the z-coordinate as

a variable and results in governing equations that are ordinary.

(ii) Solution (3.14) shows that the maximum temperature occurs at the 

center, .0r

(iii) The Nusselt number is constant, independent of Reynolds and Prandtl 

numbers.

(iv) A more appropriate definition of the heat transfer coefficient is based 

on the mean temperature,  rather than the centerline temperature. Thus,

(y) is modified to

,mT

dr

rdT

TT

k
h o

om

)(
.

3.3.3 Rotating Flow

Angular fluid motion can be generated by rotating a cylinder. A common

example is fluid motion in the clearance space between a journal and its

bearing. Under certain conditions the streamlines for such flows are 

concentric circles.

Example 3.3: Lubrication Oil Temperature in Rotating Shaft 

Lubrication oil fills the clearance between a shaft and its housing. The

radius of the shaft is  and its angular velocity is ir .  The housing radius
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is  and its temperature is  Assuming laminar 

flow and taking into consideration dissipation,

determine the maximum temperature rise in the oil 

and the heat generated due to dissipation.

or .oT

Solution

(1) Observations.  (i) Fluid motion is driven by 

shaft rotation (ii) The housing is stationary. (iii) Axial variation in velocity

and temperature are negligible for a very long shaft. (iv) Velocity and 

temperature do not vary with angular position. (v) The fluid is incompres-

sible (constant density). (vi) Heat generated by viscous dissipation is 

removed from the oil at the housing. (vii) No heat is conducted through the 

shaft. (viii) The maximum temperature occurs at the shaft. (ix) Use 

cylindrical coordinates.

(2) Problem Definition.  Determine the velocity and temperature

distribution in the oil.

(3) Solution Plan.  Apply continuity and Navier-Stokes equations in 

cylindrical coordinates to determine the flow field.  Use the energy 

equation to determine temperature distribution. Apply Fourier’s law at the 

housing to determine the rate of energy generated by dissipation.

(4) Plan Execution.

     (i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state, 

(4) laminar flow, (5) axisymmetric flow, (6) constant properties (density,

conductivity, specific heat, and viscosity), (7) no end effects, (8) uniform

surface temperature and (9) negligible gravitational effect. 

     (ii) Analysis.  Temperature distribution is obtained by solving the

energy equation. Thus we begin the analysis with the energy equation. The

energy equation in cylindrical coordinates for constant properties is given 

by (2.24)

)24.2(,
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where the dissipation function  is given by (2.25)

)25.2(.
1

1
2

1
22

22

2222

rzzr

rrrzrrr

zrz

rzrr

vvvv

vvvvvvv

The solution to (2.24) requires the determination of the velocity 

components rv ,  and v .zv   These are obtained by solving the continuity 

and the Navier-Stokes equations in cylindrical coordinates. The continuity

equation is given by equation (2.4)

0
11

zr
zr

r
rrt

vvv .       (2.4)

For constant density

0
zrt

.       (a) 

For axisymmetric flow

0 .      (b) 

For a long shaft with no end effects axial changes are negligible

0
z

zv .  (c) 

Substituting (a)-(c) into (2.4)

0rr
dr

d
v .  (d) 

Integrating (d) 

Cr rv .      (e) 
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To determine the constant of integration C we apply the no-slip boundary

condition at the housing surface 

0)( or rv .     (f) 

Equations (e) and (f) give 

0C .

Substituting into (e) 

0rv .       (g) 

Since the radial component rv  vanishes everywhere, it follows that the 

streamlines are concentric circles. To determine the tangential velocity

we apply the Navier-Stokes equation in the

v

-direction, equation (2.11 )

.
21

)(
11

2

2

22

2

2 zrr
r

rrr

p

r
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tzrrr

r

r

vvv

v

vv

v

vvvvv

v
zr

(2.11 )

For steady state

0
t

.         (h)

Neglecting gravity and applying (b), (c), (g) and (h), equation (2.11 )

simplifies to 

0)(
1

vr
dr

d

rdr

d
.     (3.17)

Integrating (3.17) twice 

r

C
r

C 21

2
v , (i)
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where and  are constants of integration. The two boundary

conditions on  are 

1C 2C

v

ii rr )(v , 0)( orv .     (j)

Boundary conditions (j) give and1C 2C

22

2

1

2

io

i

rr

r
C ,

22

22

2

io

oi

rr

rr
C .  (k) 

Substituting (k) into (i) and rearranging in dimensionless form, gives 

1)/(

)/()/()/()(

2

2

io

iiio

i rr

rrrrrr

r

rv

.  (3.18) 

We now return to the energy equation (2.24) and the dissipation 

function (2.25). Using (b), (c), (g) and (h), equation (2.24) simplifies to

0
1

dr

dT
r

dr

d

r
k .       (l) 

The dissipation function (2.25) is simplified using (b), (c) and (g) 

2

rdr

d vv

.

Substituting the velocity solution (3.18) into the above, gives

4

2

2

2
1

)/(1

2

rrr

r

oi

i .      (m)

Combining (m) and (l) and rearranging, we obtain

dr

dT
r

dr

d
3

2

2

2
1
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2

rrr

r

k
oi

i .       (3.19)
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Integrating (3.19) twice

432

2

2

2

ln
1

)/(1

2

4
)( CrC

rrr

r

k
rT

oi

i .     (n) 

where 3  and 4  are the integration constants. Two boundary conditions

are needed to determine  and . They are: 

C C

3C 4C

0
)(

dr

rdT i
 and oo TrT )( .    (o)

Equations (n) and (o) give the two constants 
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Substituting the above into (n) 
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This solution can be expressed in dimensionless form as

)/ln(2)/()/(

)/(1
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The maximum temperature is at the shaft’s surface. Setting  in 

(3.20a) gives

irr

1)/ln(2)/(
)/(1

2

4
)( 2

2

2 iooi
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i
oi rrrr

rr

r

k
TrT .  (3.21) 
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Energy generated due to dissipation per unit shaft length,  is 

determined by applying Fourier’s law at the housing. Thus

),( orq

dr

rdT
krrq o

oo

)(
2)( .

Using (3.20a), the above gives

2

2

)/(1

)(
4)(

oi

i
o

rr

r
rq ,        (3.22) 

(iii) Checking. Dimensional check: each term in solutions (3.18) and 

(3.20b) is dimensionless. Equation (3.22) has the correct units of W/m.

Differential equation check: Velocity solution (3.18) satisfies equation 

(3.17) and temperature solution (3.20) satisfies (3.19). 

Boundary conditions check: Velocity solution (3.18) satisfies boundary

conditions (j) and temperature solution (3.20) satisfies boundary conditions

(o).

Limiting check: (i) If the shaft does not rotate the fluid will be stationary. 

Setting 0  in (3.18) gives .0v

(ii) If the shaft does not rotate no dissipation takes place and thus surface

heat transfer should vanish.  Setting 0  in (3.22) gives .0)( orq

Global conservation of energy: Heat transfer rate from the housing must

equal to work required to overcome friction at the shaft’s surface. The rate

of shaft work per unit length is given by

iii rrrW )(2 ,     (p) 

where

W = work done on the fluid per unit shaft length. 

)( ir = shearing stress at the shaft’s surface, given by

i

i

rrrdr

d
r

vv

)( .    (q) 

Substituting (3.18) into the above
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2)/(1
2)(

oi

i
rr

r .   (r) 

Combining (p) and (r) and rearranging, gives

2

2

)/(1

)(
4

oi

i

rr

r
W .   (s) 

This result is identical to surface heat transfer rate given in (3.22) 

(5) Comments.  (i) The key simplifying assumption is axisymmetry. This

results in concentric streamlines with vanishing normal velocity and 

angular changes.

(ii) Temperature rise of the lubricating oil and energy dissipation increase

as the clearance between the shaft and the housing is decreased. This is 

evident from equations (3.22) and (s) which show that in the limit

as ,1)/( oi rr .qW

(iii) Velocity and temperature distributions are governed by a single 

parameter )./( oi rr
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e is at temperature  and the moving

on

e plates.  The upper plate is maintained

A

king i

PROBLEMS

3.1  A large plate moves with

constant velocity  paral- 

lel to a stationary plate

separated by a distance H.

An incompressible fluid

fills the channel formed by 

the plates.  The stationary plat

plate is at temperature oT . Taking into consideration dissipati ,

determine the maximum temperature and the heat flux at the moving

plate. Assume laminar flow and neglect gravity effect and pressure 

variation in the channel.

oU

1T

3.2 A large plate moves with

constant velocity  paral-

lel to a stationary plate

separated by a distance H.

An incompressible fluid

fills the channel formed by th

at uniform temperature oT and the stationary plate is insulated.

pressure gradient dxdp /  is applied to the fluid. Ta nto

consideration dissipation, determine the temperature of the insulated 

plate and the heat flux at the upper plate. Assume laminar flow and 

neglect gravity effect.

oU

3.3 Incompressible fluid is set in motion between two large parallel

plates by moving the upper plate with constant velocity  and 

holding the lower plate stationary. The clearance between the plates

is H. The lower plate is insulated while the upper plate exchanges 

heat with the ambient by convection. The heat transfer coefficient is

 and the ambient temperature is  Taking into consideration

dissipation determine the temperature of the insulated plate and the 

heat flux at the moving plate. Assume laminar flow and neglect

gravity effect.

oU

h .T

3.4 Two parallel plates are separated by a distance 2H.  The plates are 

moved in opposite direction with constant velocity . Each plate is

maintained at uniform tem-perrature . Taking into consideration

oU

oT
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dissipation, determine the heat

flux at the plates. Assume

laminar flow and neglect 

gravity effect. 

3.5    Incompressible fluid flows in

a long tube of radius . Fluid

motion is driven by an axial 

pressure gradient  The 

tube exchanges heat by 

convection with an ambient 

fluid. The heat transfer

coefficient is h and the ambient temperature is  Taking into

consideration dissipation, assuming laminar incompressible

axisymmetric flow, and neglecting gravity, axial temperature

variation and end effects, determine:

or

./ dzdp

.T

 [a] Surface temperature.

 [b]  Surface heat flux.

 [c]  Nusselt number based on 

.)()0( orTT

3.6 Fluid flows axially in the annular space between a cylinder and a 

concentric rod.  The radius of the rod is  and that of the cylinder is 

 Fluid motion in the annular space is driven by an axial pressure 

gradient  The cylinder is maintained at uniform temperature

 Assume incompressible laminar axisymmetric flow and neglect 

gravity and end effects. Show that the axial velocity is given by

ir

.or

./ dzdp

.oT

1)/ln(
)/ln(

)/(1
)/(

4

2
2

2

o
io

oi
o

o
z rr

rr

rr
rr

dz

dpr
v .

3.7 A rod of radius r  is placed 

concentrically inside a cylinder

of radius  The rod moves

axially with constant velocity 

 and sets the fluid in the annular space in motion. The cylinder is

maintained at uniform temperature T  Neglect gravity and end 

effects, and assume incompressible laminar axisymmetric flow. 

i

.or

oU

.o



96  3 Exact One-Dimensional Solutions

 [a] Show that the axial velocity is given by

)/ln(
)/ln(

o
oi

o
z rr

rr

U
v .

[b] Taking into consideration dissipation, determine the heat flux at 

the outer surface and the Nusselt number based on [ ].

Neglect axial temperature variation.
oi TrT )(

3.8   A liquid film of thickness H flows down an inclined plane due to 

gravity. The plane is maintained at uniform temperature  and the 

free film surface is insulated. Assume incompressible laminar flow 

and neglect axial variation of velocity and temperature and end 

effects.

oT

 [a] Show that the axial velocity is 

given by

2

2

2

1

H

y

H

y2

sin
gH

u .

 [b] Taking into consideration dissipation, determine the heat flux at

the inclined plane.

3.9   A liquid film of thickness H flows down an inclined plane due to 

gravity. The plane exchanges heat by convection with an ambient

fluid. The heat transfer coefficient is h and the ambient temperature

is  The inclined surface is insulated. Assume incompressible

laminar flow and neglect axial variation of velocity and temperature

and end effects. 

.T

 [a] Show that the axial velocity is given 

by

2

22

2

1
sin

H

y

H

ygH
u .

 [b] Taking into consideration dissipation, determine the heat flux at

the free surface.

3.10  Lubricating oil fills the clearance space between a rotating shaft and 

its housing.  The shaft radius is cm6ir  and housing radius is 
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cm.1.6ir  The angular velocity of the shaft 

is RPM3000  and the housing

temperature is  Taking into

consideration dissipation, determine the 

maximum oil temperature and the heat flux at 

the housing. Neglect end effects and assume

incompressible laminar flow. Properties of 

lubricating oil are:  and 

C.40o
oT

CW/m138.0 ok

skg/m0356.0 .

3.11 Consider lubrication oil in the clearance

between a shaft and its housing. The radius of 

the shaft is and that of the housing is .

The shaft rotates with an angular velocity 

ir

and the housing exchanges heat by convection

with the ambient fluid. The heat transfer

coefficient is h and the ambient temperature is 

 Taking into considera-tion dissipation,

determine the maximum temperature of the

oil and surface heat flux at the housing. 

Assume incompressible laminar flow and 

neglect end effects.

.T

or

3.12 A rod of radius  is placed concentrically 

inside a sleeve of radius . Incompressible

fluid fills the clearance between the rod and 

the sleeve. The sleeve is maintained at

uniform temperature T  while rotating with

constant angular velocity 

ir

or

o

.  Taking into 

consideration dissipation, determine the 

maximum fluid temperature and surface heat 

flux at the sleeve. Assume incompressible lam

end effects. 

inar flow and neglect 

or3.13 A hollow shaft of outer radius  rotates with

constant angular velocity  while immersed

in an infinite fluid at uniform temperature

 The shaft is maintained at uniform 

temperature  Taking into consideration

dissipation, determine surface heat flux. 

.T

.oT
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Assume incompressible laminar flow and neglect end effects. 

3.14 Two large porous plates are separated by a distance H. An

incompressible fluid fills the channel formed by the plates.  The

lower plate is maintained at temperature  and the upper plate at

. An axial pressure gradient  is applied to the fluid to set it

in motion. A fluid at temperature  is injected through the lower 

plate with a normal velocity  Fluid is removed along the upper

plate at velocity  The injected fluid is identical to the channel 

fluid. Neglect gravity, dissipation and axial variation of temperature.

1T

2T dxdp /

1T

.ov

.ov

[a] Show that the axial velocity is given by

)/exp(1

)/exp(11

H

y

H

y

dx

dpH
u

o

o

o v

v

v

.

[b] Determine surface heat flux at each plate.
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BOUNDARY LAYER FLOW: 

APPLICATION TO EXTERNAL FLOW 

4.1 Introduction

The mathematical complexity of convection heat transfer is traced to the 

non-linearity of the Navier-Stokes equations of motion and the coupling of 

flow and thermal fields. The boundary layer concept, first introduced by 

Prandtl [1] in 1904, provides major simplifications. This concept is based 

on the notion that under special conditions certain terms in the governing 

equations are much smaller than others and therefore can be neglected 

without significantly affecting the accuracy of the solution. This raises two 

questions:

(1) What are the conditions under which terms in the governing equations 

can be dropped?

(2) What terms can be dropped?

These questions will be answered first by using intuitive arguments and 

then by scale analysis. 

4.2 The Boundary Layer Concept:

      Simplification of the Governing Equations 

4.2.1 Qualitative Description 

Consider fluid flow over the semi-

infinite heated surface shown in 

Fig. 4.1. The foundation of the 

boundary layer concept is the 

following observation: under 

certain conditions the effect of Fig. 4.1
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viscosity is confined to a thin region near the surface. This region, whose 

edge is defined by , is referred to as the velocity or viscous boundary 

layer.  Similarly, under certain conditions the effect of thermal interaction 

between the surface and the moving fluid is confined to a thin region near 

the surface defined by .t  This region is referred to as the thermal

boundary layer. It should be noted that the boundaries of these regions are 

not sharply or uniquely defined.  

      We consider the conditions for the formation of the two boundary 

layers. The conditions for the velocity boundary layer model are: (1) 

slender body without flow separation and (2) high Reynolds number (Re > 

100).  The conditions for the thermal boundary layer model are: (1) slender 

body without flow separation and (2) high product of Reynolds and Prandtl 

numbers (Re Pr > 100).  This product is called the Peclet number, given by 

k

LVc

k

cLV
RePrPe

pp
NumberPeclet .        (4.1) 

      Before examining the mathematical implication of the boundary layer 

concept we make the following observations: 

(1)  Fluid velocity at the surface vanishes.  This is the no-slip condition due 

to the viscous nature of the fluid. However, fluid velocity changes rapidly 

as the boundary layer is traversed normal to the surface, as shown in Fig. 

4.1.  At the edge of the boundary layer the velocity approaches its free 

stream value . Similarly, fluid temperature changes within the thickness 

of the thermal boundary layer from surface temperature to free stream 

value  at the edge of the thermal boundary layer. 

V

sT

T

 (2) In general, at high  and Re Pr  both velocity and thermal boundary 

layers are thin. For example, air flowing at 10 m/s parallel to a 1.0 m long 

plate will have a viscous boundary layer thickness of 6 mm at the 

downstream end. 

 (3) Viscosity plays no role outside the viscous boundary layer. This makes 

it possible to divide the flow field into a viscosity dominated region 

(boundary layer), and an inviscid region (outside the boundary layer). 

 (4) Boundary layers can exist in both forced and free convection flows. 
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4.2.2 The Governing Equations 

To examine the mathematical consequences of the boundary layer concept 

we begin with the governing equations for a simplified case. We make the 

following assumptions: (1) steady state, (2) two-dimensional, (3) laminar, 

(4) uniform properties, (5) no dissipation, and (6) no gravity. Based on 

these assumptions the continuity, momentum, and energy equations are 

0
yx

u v

 ,                                           (2.3) 
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u
u  ,                (2.10x) 
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vvvv
 ,                (2.10y) 
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2

y

T

x

T
k

y

T

x

T
uc p v .                     (2.19) 

These equations will be simplified using the boundary layer concept. 

4.2.3 Mathematical Simplification

It is legitimate to ask whether all terms in the governing equations are 

equally significant.  We will argue that certain terms play a minor role in 

the solution and thus can be neglected to simplify the equations. Indeed, 

this is what the boundary layer concept enables us to do. We will first use 

intuitive arguments to simplify the equations.  A more rigorous approach 

will then be presented using scaling to arrive at the same simplifications.  

4.2.4 Simplification of the Momentum Equations 

(i) Intuitive Arguments 

Starting with the x-momentum equation (2.10x), we wish to establish if one 

of the two viscous terms on the right-hand-side, , is 

small compared to the other.  Imagine that a very small insect, so small that 

it does not disturb the flow, is placed inside the viscous boundary layer at 

2222 // yuxu
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position 0, as shown in Fig. 4.2.  

The insect finds the fluid velocity 

at this location too high and wishes 

to move to a position of lower 

velocity. If the insect is allowed to 

take one short step to any of the 

four locations 1, 2, 3, or 4, where 

should it go? If your answer is to 

position 4, you are correct. This decision is based on the intuitive sense that 

changes in axial velocity u with respect to the y are much more pronounced 

compared to changes with respect to x. After all, the axial velocity u

changes from zero at the wall to  across a short distance V  in the y-

direction. However, this does not give a clue regarding the relative 

magnitudes of and . Additional communication with the 

insect is required. Imagine that the insect is initially a step away from the 

surface. Taking a step towards the surface is the ultimate choice since the 

velocity drops to zero. On the other hand, if the insect is at the edge of the 

boundary layer, taking a step towards the surface will hardly bring about a 

change in u.  Mathematically, this means that there is a significant change 

in the axial velocity gradient with respect to y.  However, taking one, two, 

or three steps in the x-direction will bring no significant change in u. This 

means that changes in the axial gradient of u with respect to x are 

negligible. We conclude that

22 / xu 22 / yu

2

2

2

2

y

u

x

u
.                                           (4.2) 

Thus, the term can be dropped from equation (2.10x). 
22 / xu

      We now examine the pressure term in (2.10x) and (2.10y). We argue 

that for a slender body the streamlines are nearly parallel having small 

vertical velocity component. Thus 

0
y

p
.                                               (4.3) 

It follows that p depends on x only, i.e. p p(x).  Therefore 

dx

dp

dx

dp

x

p
.                                       (4.4) 

Fig. 4.2
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Here is the pressure gradient at the edge of the boundary layer, dxdp /
y , where the fluid can be assumed inviscid.  Substituting (4.2) and 

(4.4) into (2.10x) gives the boundary layer x-momentum equation

2

21

y

u

x

dp

y

u

x

u
u v ,                           (4.5) 

where ./  On the other hand, equation (2.10y) simplifies to (4.3). 

Continuity equation (2.3) and the x-momentum boundary layer equation 

(4.5) contain three unknowns: u, , andv p . However, since  is the 

pressure at the edge of the boundary layer y = , it can be independently 

obtained from the solution to the governing equations for inviscid flow 

outside the boundary layer.   

p

(ii) Scale Analysis

Boundary layer approximations 

(4.2)-(4.4) will now be arrived at 

using scaling. Here we follow the 

procedure detailed in reference [2]. 

Scaling is used to estimate the order 

of magnitude of each term in 

Navier-Stokes equations and drop 

terms of higher order. In this 

procedure a scale (measure) is assigned to each variable in an equation. 

      Consider the flow over a slender body such as the flat plate shown in 

Fig. 4.3. The free stream velocity isV , characteristic length is L, and the 

boundary layer thickness is .  We postulate that  is small compared to 

the characteristic length L, that is 

1
L

.                                              (4.6) 

Assuming that equation (4.6) is valid, we pose three questions:

(1) What terms in the governing equations can be dropped?

(2) Is normal pressure gradient negligible compared to axial pressure 

gradient?

(3) Under what conditions is (4.6) valid?

Fig. 4.3
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To answer these questions the dependent variables u  and  and 

independent variables x and y are assigned the following measures or 

scales:

v

u ,                                            (4.7a) V

Lx ,                                            (4.7b) 

y .                                            (4.7c)

Equation (4.7) is applied to continuity (2.3) to develop a scale for .

Rewriting (2.3) as

v

x

u

y

v

.

Using (4.7), the above gives 

v

L

V
.

Solving for v

v

L
V .                                           (4.7d) 

Based on assumption (4.6) it follows that .Vv  Equation (4.7) is now 

used to determine the order of magnitude of the inertia and viscous terms of 

the x-momentum equation (2.10x). 

First inertia term:

L

V
V

x

u
u .                                           (a) 

Second inertia term: 

V

y

u
vv .

Using (4.7d) to eliminate  in the above, gives v

L

V
V

y

u
v .                                         (b) 
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We conclude that the two inertia terms are of the same magnitude.  

Following the same procedure, the order of magnitude of the two viscous 

terms in (2.10x) are determined. 

First viscous term: 

2

2

x

u
2L

V
.                                              (c) 

Second viscous term:

2

2

y

u
2

V
.                                              (d) 

Since, according to (4.6), L , comparing (c) with (d) shows that  

2

2

x

u
<<

2

2

y

u
.                                         (4.2) 

Thus in equation (2.10x) can be neglected. This conclusion is 

identical to the result obtained using the intuitive insect approach.

22 / xu

      Scaling of the two viscous terms in the y-component of the momentum 

equation, (2.10y), shows that 

2

2

x

v

<<
2

2

y

v

.                                        (4.8) 

Using (4.2) and (4.8), equations (2.10x) and (2.10y) simplify to  

2
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y

u

x

u
u v ,                          (4.9x) 

2

21
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p

yx
u

vv

v

v
.                          (4.9y) 

      Having answered the first question we turn our attention to the second 

question regarding pressure gradient. The order of magnitude of xp /
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and  is determined using scaling. A balance between axial pressure 

and inertia in (4.9x) gives 

yp /

x

u
u

x

p
.

The above is scaled using (4.7) 

L

V

x

p
2

.                                          (e) 

Similarly, a balance between pressure and inertia in (4.9y) and scaling, 

gives

LL

V

y

p
2

.                                           (f) 

Comparison between (e) and (f) using assumption (4.6) shows that 

x

p

y

p
.                                        (4.10) 

Note that the same result is obtained by balancing pressure gradient against 

viscous forces instead of inertia in (2.10x) and (2.10y). Equation (4.10) has 

important consequences on the determination of boundary layer pressure. 

For two-dimensional flow, pressure depends on the variables x and y. That 

is

),( yxpp ,

and

dy
y

p
dx

x

p
dp .

Dividing through by dx and rearranging 

dx

dy

xp

yp

x

p

dx

dp

)/(

)/(
1  .                          (4.11) 

The gradient  is scaled asdxdy /
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Ldx

dy
.                                                 (g) 

Substituting (e)-(g) into (4.11) 

2)/(1 L
x

p

dx

dp
.                                     (h) 

Invoking (4.6), the above simplifies to   

x

p

dx

dp
.                                                (i) 

We thus conclude that boundary layer pressure depends on the axial 

direction x and that variation in the y-direction is negligible. That is, at a 

given location x the pressure p(x) inside the boundary layer is the same as 

the pressure  at the edge of the boundary layer)(xp .y  Thus 

)(),( xpyxp .                                           (j) 

      We now examine the consequences of this result on the x-momentum 

equation. Differentiating (j) and using (i)

dx

dp

x

p
.                                          (4.12) 

Substituting (4.12) into (4.9x) 

2

21

y

u

dx

dp

y

u

x

u
u v .                        (4.13) 

This is the x-momentum equation for boundary layer flow. It is the same as 

that obtained using our intuitive approach. Note that (4.13) is arrived at 

using scaling of the y-momentum equation. It is important to recall that this 

result is based on the key assumption that .1/ L It remains to answer 

the third question regarding the condition under which this assumption is 

valid.
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      The first two terms in (4.13) representing inertia are of the same order 

as shown in (a) and (b). The last term in (4.13) represents viscous force. 

According to (d) this term is scaled as  

2

2

y

u
2

V
.                                           (k) 

A balance between inertia (a) and viscous force (k) gives 

L

V 2

2

V
.

Rearranging the above 

LVL
,                                      (4.14a) 

This result is rewritten as

LReL

1
.                                       (4.14b) 

where  is the Reynolds number defined as  LRe

LV
ReL .                                       (4.15) 

Thus 1/ L  is valid when .1LRe  Equation (4.14) is generalized 

to provide a measure of the variation of boundary layer thickness along a 

surface. Setting  in (4.14) and (4.15), gives Lx

xRex

1
.                                        (4.16) 

      We return to the y-component of the momentum equation, (4.9y), and 

note that each term is of order .  Thus all terms in this equation are 

neglected, leading to the important boundary layer simplification of 

negligible pressure gradient in the y-direction, as described in (4.3). 
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4.2.5 Simplification of the Energy Equation

We now simplify the energy equation for two-dimensional constant 

properties flow by neglecting higher order terms in equation (2.19) 

2

2

2

2

y

T

x

T
k

y

T

x

T
uc v .                      (2.19) 

(i) Intuitive Argument 

We wish to determine if one of the conduction terms in (2.19), 

, is  small compared to the other.  Returning to the 

small insect of Fig. 4.2., we pretend that the surface is hot and the fluid is at 

a lower temperature.  The insect is placed at location 0 inside the thermal 

boundary layer shown in Fig. 4.2.  It finds the environment too hot and 

wishes to move to a cooler location.  It is allowed to take a small step to 

location 1, 2, 3, or 4.  Where would you advise the insect to go?  If your 

answer is to location 2, you are correct.  This is interpreted as recognizing 

that temperature changes in the y-direction are much more pronounced than 

changes in the x-direction. To evaluate the relative magnitudes of 

and , additional observations are required. Imagine 

that the insect is initially within a step of the surface. Taking a step away 

from the surface brings some relief. However, taking a step in the x-

direction brings no significant relief.  Suppose instead the insect is at the 

edge of the boundary layer. Taking a step away from the surface will 

essentially result in no change in temperature. Neither would moving 

axially. From this we conclude that changes in the axial temperature 

gradient with respect to x are small compared to changes in the normal 

temperature gradient with respect to y. That is

2222 // yTxT

22 / xT 22 / yT

2

2

2

2

y

T

x

T
.                                        (4.17) 

Thus, axial conduction, ,/ 22 xT can be dropped from the energy 

equation to obtain 

2

2

y

T

y

T

x

T
u v ,                                  (4.18) 

where  is thermal diffusivity. This equation is known as the boundary

layer energy equation.
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(ii) Scale Analysis 

Scaling will now be used to examine the order of magnitude of each term 

in energy equation (2.19). Again we consider the flow over a slender body 

of characteristic length L. The free stream velocity and temperature are V
and  The thermal boundary layer thickness is .T .t  We postulate that 

t is small compared to the characteristic length L, that is 

1
L

t .                                            (4.19) 

Assuming that equation (4.19) is valid, we pose two questions:

(1) What terms in energy equation (2.19) can be dropped?

(2) Under what condition is equation (4.19) valid?

To answer these questions we assign scales to the variables in the energy 

equation. The scale for x is given by equation (4.7b) 

Lx .                                             (4.7b) 

Scales for y and T  are 

ty ,                                            (4.20) 

TTT s .                                       (4.21) 

Scales for u and v depend on whether t is larger or smaller than .  Thus 

two cases are identified as illustrated in Fig. 4.4: 

Fig. 4.4
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Case (1): t .  For this case the axial velocity u within the thermal 

boundary layer is of the order of the free stream velocity. Thus the scale for 

u is

u .                                            (4.22) V

Following the formulation of (4.7d), scaling of the continuity equation 

gives

v

L
V t .                                          (4.23) 

Using (4.7b) and (4.20-4.23), the two convection terms in equation (2.19) 

scale as 

L

T
V

x

T
u ,                                          (a) 

and

L

T
V

y

T
v .                                         (b) 

Thus the two convection terms are of the same order. We now examine the 

order of magnitude of the two conduction terms in (2.19). They scale as 

22

2

L

T

x

T
,                                             (c) 

and

22

2

t

T

y

T
.                                             (d) 

Comparing (c) with (d) and using (4.19), we conclude that 

2

2

2

2

y

T

x

T
.                                           (e) 

This is identical to the intuitive result of (4.17).  Thus the boundary layer 

energy equation simplifies to 
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2

2

y

T

y

T

x

T
u v .                               (4.18) 

      To answer the second question we note that each term in (4.18) is 

equally important. A balance between convection and conduction gives 

2

2

y

T

x

T
u .

Scaling each term in the above 

2
t

T

L

T
V .

Rearranging

LVL

t .

Using the definition of  the above gives 

LVc

k

L p

t .

Using the definitions of Prandtl and Reynolds numbers, the above is 

rewritten as 

LePrRL

t 1
.                                     (4.24) 

Thus

1
L

t  when 1LePrR .                         (4.25) 

The product of the Prandtl and Reynolds numbers appears in various 

convection problems and is called the Peclet number, Pe, defined as

LePrRPe .                                         (4.26) 
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As an example, a Peclet number of 100 gives .1.0/ Lt  It should be 

noted that the above result applies to the case of .t  It remains to 

establish the condition under which .t  Taking the ratio of (4.24) to 

(4.14b) gives 

Pr

t 1
.                                         (4.27) 

Thus the criterion for t  is

t   when 1Pr .                                (4.28) 

Case (2): t .  Examination of Fig. 4.4 shows that for this case the 

axial velocity u within the thermal boundary layer is smaller than the free 

stream velocity. Pretending that the velocity profile is linear, similarity of 

triangles gives a scale for u as

u tV .                                          (4.29) 

Following the formulation of (4.7d), scaling of the continuity equation 

gives

v

L
V t

2

.                                          (4.30) 

Using (4.29) and (4.30) and following the procedure used in Case (1), we 

arrive at the conclusion that the two convection terms are of the same order 

and that axial conduction is negligible compared to normal conduction.  

      To answer the second question we again perform a balance between 

convection and conduction

2

2

y

T

x

T
u .

Using (4.29) for u, scaling each term in the above gives

2
t

t T

L

T
V .

Using the definition of  and rearranging



114      4 Boundary Layer Flow: Application to External Flow  

LLVc

k
L

p

t
3

/ .

Applying (4.14b) to eliminate L/  in the above, we obtain 

LeRPrL

t
1/3

1
.                                    (4.31) 

Thus the condition for the assumption in (4.19) that 1/ Lt  is

1
L

t   when 11/3
LeRPr .                       (4.32) 

We next establish the condition under which .t  Taking the ratio of 

(4.31) to (4.14b)

1/3

1

Pr

t .                                         (4.33) 

Thus the criterion for t  is

t   when 11/3Pr .                             (4.34) 

4.3 Summary of Boundary Layer Equations for Steady Laminar Flow

In formulating the governing equations for convection heat transfer we 

have made several simplifying assumptions in order to limit the 

mathematical complexity.  These assumptions are: (1) Continuum, (2) 

Newtonian fluid, (3) two-dimensional process, (5) negligible changes in 

kinetic and potential energy and (4) constant properties.  The additional 

assumptions leading to boundary layer simplifications are: (6) slender 

surface, (7) high Reynolds number (Re > 100), and (8) high Peclet number 

(Pe > 100).  Finally, we introduce the following additional simplifications: 

(9) steady state, (10) laminar flow, (11) no dissipation (  = 0), (12) no 

gravity, and (13) no energy generation ( q = 0). The governing boundary 

layer equations for these conditions are: 

Continuity: 



4.3 Summary of Boundary Layer Equations for Steady Laminar Flow       115

0
yx

u v

.                                         (2.3) 

x-Momentum: 

2

21

y

u

dx

dp

y

u

x

u
u v .                        (4.13) 

Energy

2

2

y

T

y

T

x

T
u v .                                (4.18) 

Note the following: (1) The continuity equation is not simplified for 

boundary layer flow because both terms in (2.3) are of the same order of 

magnitude. (2) The pressure term in (4.13) is obtained from the solution to 

inviscid flow outside the boundary layer. Thus (2.3) and (4.13) have two 

unknowns: u and v. (3) To include the effect of buoyancy, the term 

[ )( TTg ] should be added to the right-hand-side of (4.13). This 

assumes that gravity points in the positive x-direction. (4) In applying these 

equations one must keep in mind all the assumptions and restrictions 

leading to their formulation. 

4.4 Solutions: External Flow 

We consider external flow over a surface in which the fluid is infinite in 

extent. Of interest is thermal interaction between a surface and the external 

fluid. Thermal interaction is fully characterized once fluid temperature 

distribution is determined. However, temperature distribution depends on 

velocity distribution. For the special case of constant properties, velocity 

distribution is independent of temperature. Since this assumption will be 

made throughout, in each case the solution to the velocity distribution will 

be determined first and used to obtain the corresponding temperature 

solution.  The exceptions are problems involving free convection where 

velocity and temperature must be solved simultaneously.  
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4.4.1 Laminar Boundary Layer Flow over Semi-infinite Flat Plate: 

Uniform Surface Temperature 

Consider the classic problem of 

flow over a semi-infinite flat 

plate shown in Fig. 4.5. The plate 

is maintained at uniform tem-

perature s  and the upstream 

fluid temperature is T  The 

upstream velocity is uniform and 

parallel to the plate. Invoking all 

the assumptions summarized in Section 4.3, the three governing equations 

(continuity, momentum, and energy) are given in (2.3), (4.13), and (4.18). 

It should be recalled that for uniform flow over a semi-infinite flat plate 

transition from laminar to turbulent flow takes place at 

T
.

Ret tV x /

500,000 (see Section 2.3). 

(i) Velocity Distribution.  In addition to velocity distribution, of interest is 

the determination of the boundary layer thickness )(x and wall shearing 

stress o ).(x  These important flow characteristics are easily determined 

once the velocity solution is obtained.  Before an analytic solution is 

presented, scaling will be used to estimate )(x and ).(xo

(a) Governing equations and boundary conditions

The continuity and x-momentum equations for this flow are: 

0
yx

u v

,                                         (2.3) 

2

21

y

u

dx

dp

y

u

x

u
u v .                        (4.13) 

The velocity boundary conditions are: 

0)0,(xu ,                                       (4.35a) 

0)0,(xv ,                                       (4.35b) 

Vxu ),( ,                                     (4.35c) 

Vyu ),0( .                                     (4.35d) 
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(b) Scale analysis: boundary layer thickness, wall shear and friction 

coefficient

In Section 4.2.4 we used scale analysis to obtain an order of magnitude 

solution to the boundary layer thickness ),(x  given in (4.16) 

xRex

1
.                                         (4.16) 

Wall shearing stress o  is determined using (2.7a)

y

u

x
yxxy

v

.                            (2.7a) 

Applying (2.7a) at the wall 0y  where 0)0,(xv  gives o

y

xu
o

)0,(
.                                      (4.36) 

To determine the order of magnitude of o  the following scales are 

assigned to  and y:u

u ,                                             (4.7a) V

y .                                             (4.7c)

Equation (4.36) is scaled using (4.7) 

V
o .                                              (a) 

Using (4.16) to eliminate in (a)

xRe
x

V
o .                                         (b) 

Introducing the definition of the Darcy friction coefficient fC



118       4 Boundary Layer Flow: Application to External Flow

2)2/1( V
C o

f .                                 (4.37a) 

Using (b) to eliminate o  in (4.37)

xRe
C f

1
.                                      (4.37b) 

(c) Blasius solution: similarity method  

Equations (2.3) and (4.13) are solved analytically for the velocity 

components u and v. These two equations contain three unknowns: u, v,

and . However, as was previously pointed out, pressure in boundary 

layer problems is independently obtained from the inviscid flow solution 

outside the boundary layer.  Focusing on this inviscid region we note that it 

can be modeled as uniform inviscid flow over the slightly curved edge of 

the viscous boundary layer .  However, since this layer is thin, we make 

the assumption that the edge coincides with the plate.  We do this as a first 

approximation since the edge of the boundary layer is not yet known.  

Thus, the inviscid problem becomes that of uniform flow over a flat plate 

of zero thickness.  Since the fluid is assumed inviscid, the plate does not 

disturb the flow and the velocity remains uniform.  Therefore the solution 

to the inviscid flow outside the boundary layer is 

p

u = , v = 0, p = = constant.                       (4.38) V p

Thus the pressure gradient is

0
dx

dp
.                                           (4.39) 

Substituting (4.39) into (4.13) we obtain the boundary layer momentum 

equation for this problem 

2

2

y

u

y

u

x

u
u v .                                  (4.40) 

Equation (4.40) is nonlinear and must be solved simultaneously with the 
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continuity equation (2.3). The solution, which is briefly outlined here, was 

obtained by Blasius [1] in 1908. He used similarity transformation to 

combine the two independent variables x and y into a single variable (x, y)

and postulated that u/V  depends on  only.  For this problem the correct 

form of the transformation variable   is 

x

V
yyx ),( .                                     (4.41) 

The velocity u(x, y) is assumed to depend on  according to 

d

df

V

u
 ,                                         (4.42) 

where f = f ( ) is a function which is yet to be determined.  Two 

observations are made regarding similarity transformation (4.41): (1) The 

inclusion of  in the definition of 
2/1)/(V , as will be seen later, is for 

convenience only. (2) Formal procedures are available for identifying the 

appropriate transformation variable for a given problem [2].  

      With u defined in (4.42), continuity equation (2.3) is integrated to give 

the vertical velocity component v. Rewriting (2.3) 

x

u

y

v

.

Multiplying both sides by dy and integrating gives v

dy
x

u
v .                                           (a) 

To evaluate the integral in (a) we use (4.41) and (4.42) to express and

 in terms of the variable 

dy

xu / .  Differentiating (4.41) with respect to y

and rearranging, yields 

d
V

x
dy .                                             (b) 

Using the chain rule, the derivative xu /  is expressed in terms of 
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xd

du

x

u
.

Using (4.41) and (4.42) into the above 

2

2

2 d

fd

x

V

x

u
.                                        (c) 

 Substituting (b) and (c) into (a) and rearranging 

d
d

fd

xVV 2

2

2

1v

.

Integration by parts gives 

f
d

df

xVV 2

1v

.                            (4.43) 

      With continuity satisfied, the momentum equation will be transformed 

and the function f( ) determined. In addition to u, v and xu / , the 

derivatives  and  must be expressed in terms of yu / 22 / yu .  Using 

the chain rule and equations (4.41) and (4.42), we obtain 

x

V

d

fd
V

yd

du

y

u
2

2

,                               (d) 

x

V

d

fd
V

y

u
3

3

2

2

.                                       (e) 

Substituting (4.42), (4.43), and (c)-(e) into (4.40)

0)(2
2

2

3

3

d

fd
f

d

fd
.                               (4.44) 

Thus, the governing partial differential equations are successfully 

transformed into an ordinary differential equation.  Note that the original 
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independent variables x and y are eliminated in this transformation. Note 

further that (4.44) is independent of characteristic velocity  and property V
. This is a direct consequence of including the factor  in the 

definition of 

2/1)/(V
 in (4.41).

      To complete the transformation, the boundary conditions must also be 

transformed in terms of the new variable .  Using (4.41) (4.43), boundary 

conditions (4.35a-4.35d) transform to 

0
)0(

d

df

0)0(f

,       (4.45a) 

,        (4.45b) 

1
)(

d

df
,       (4.45c) 

1
)(

d

df
.       (4.45d) 

Note that transformed equation 

(4.44) is third order requiring 

three boundary conditions. 

Boundary conditions (4.35c) 

and (4.35d) coalesce into a 

single condition, as shown in 

(4.45c) and (4.45d). Although

the mathematical problem is 

reduced to solving a third order 

ordinary differential equation 

(4.44), the difficulty is that this equation is nonlinear.  Blasius obtained a 

power series solution for the function f( ). Since the solution is not 

expressed in terms of simple functions that are convenient to use, tabulated 

values for f and its derivatives are available for the determination of u and 

v.  Table 4.1 gives a summary of these functions. Beside giving the 

velocity distribution, Blasius solution also gives the boundary layer 

thickness )(x and the wall shearing stress .)(xo  Defining  as the 

distance y from the plate where the velocity ratio u/V  = 0.994, Table 4.1 

gives

Table 4.1

asius solution [1Bl ] 

y
V

x

     f

V

udf

d 2

2

d

fd

0.0 0.33206    0.0    0.0 

0.4 0.026 77 0.33147 56 0.132

0.8 0.106 71 0.32739 11 0.264

1.2 0.237 78 0.31659 95 0.393

1.6 0.420 76 0.29667 32 0.516

2.0 0.650 77 0.26675 03 0.629

2.4 0.922 99 0.22809 30 0.728

2.8 1.23099 0.81152 0.18401 

3.2 1.56911 0.87609 0.13913 

3.6 1.92954 0.92333 0.09809 

4.0 2.30576 0.95552 0.06424 

4.4 2.69238 0.97587 0.03897 

4.8 3.08534 0.98779 0.02187 

5.0 3.28329 0.99155 0.01591 

5.2 3.48189 0.99425 0.01134 

5.4 3.68094 0.99616 0.00793 

5.6 3.88031 0.99748 0.00543 

6.0 4.27964 0.99898 0.00240 

7.0 5.27926 0.99992 0.00022 

8.0 6.27923 1.00000 0.00001 
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V

x
2.5 .

This can be expressed as

xRex

2.5
.                                     (4.46)

where Rex is the local Reynolds number. We are now in a position to 

compare this result with scaling prediction of (4.16)  

xRex

1
.                                         (4.16) 

The comparison shows that scaling predicts the correct dependency on the 

local Reynolds number with the constant 5.2 in Blasius solution 

approximated by unity. 

      Wall shearing stress o  is obtained using (4.36) 

y

xu
o

)0,(
.                                      (4.36) 

Substituting (d) into (4.36) and using Table 4.1

o =
x

V
V

d

fd

x

V
V 33206.0

)0(
2

2

.             (4.47) 

Substituting (4.47) into (4.37a) gives the friction coefficient fC

xRe
Cf

664.0
.                                        (4.48) 

Note that scaling prediction of  is given by equation (4.37b) fC

xRe
C f

1
.                                       (4.37b) 
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Again scaling predicts the correct dependency on the local Reynolds 

number with the constant 0.664 in Blasius solution approximated by unity. 

(ii) Temperature Distribution.

We return to the problem shown 

in Fig. 4.5 for uniform flow 

over an isothermal semi-infinite 

plate. The determination of the 

thermal boundary layer thick-

ness t , surface heat flux, heat 

transfer coefficient, and Nusselt 

number, hinges on the determination of the temperature distribution in the 

fluid.

(a) Governing equation and boundary conditions 

Based on all the assumptions summarized in Section 4.3, temperature 

distribution is governed by energy equation (4.18).   

2

2

y

T

y

T

x

T
u v .                                (4.18) 

The boundary conditions for this problem are:

sTxT )0,( ,                                      (4.49a) 

TxT ),( ,                                     (4.49b) 

TyT ),0( .                                     (4.49c) 

(b) Scale analysis: Thermal boundary layer thickness, heat transfer 

coefficient and Nusselt number 

In Section 4.2.5 we used scale analysis to obtain an order of magnitude 

estimate for the thermal boundary layer thickness .t  We generalize the 

results by setting  in equations (4.24) and (4.31): xL

Case (1): t  (Pr <<1)

xePrRx

t 1
.                                       (4.50) 
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Case (2): t  (Pr >>1)

xeRPrx

t
1/3

1
.                                     (4.51) 

       The heat transfer coefficient h was introduced in Section 1.6 of 

Chapter 1. Analytic determination of h is based on Fourier’s law of 

conduction and Newton’s law of cooling. Equating the two laws gives 

TT

y

xT

kh
s

)0,(

.                                  (1.10)

Using the scales of (4.20) and (4.21), the above gives

t

k
h ,                                           (4.52) 

where t is given by (4.50) and (4.51). 

Case (1): t  (Pr <<1). Substituting (4.50) into (4.52) 

xePrR
x

k
h  ,     for Pr <<1.                         (4.53) 

Defining the local Nusselt number asxNu

k

hx
Nux .                                         (4.54)

Substituting (4.53) into (4.54) 

xeRPrNux
1/2

,     for Pr <<1.                       (4.55) 

Case (2): t  (Pr >>1). Substituting (4.51) into (4.52) 

xeRPr
x

k
h

1/3
,    for Pr >>1.                         (4.56) 
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The corresponding Nusselt number is 

xeRPrNux

1/3
,    for Pr >>1.                          (4.57) 

(c) Pohlhausen’s solution: Temperature distribution, thermal boundary 

layer thickness, heat transfer coefficient, and Nusselt number 

Boundary layer energy equation (4.18) is solved analytically for the 

temperature distribution T(x,y). The solution was obtained in 1921 by 

Pohlhausen [1] using similarity transformation. For convenience, equation 

(4.18) is expressed in terms of dimensionless temperature  defined as

s

s

TT

TT
.                                        (4.58) 

Substituting (4.58) into (4.18) 

2

2

yyx
u v .                                (4.59) 

Boundary conditions (4.49) become 

0)0,(x ,                                       (4.60a) 

1),(x ,                                      (4.60b) 

1),0( y .                                       (4.60c) 

     To solve (4.59) and (4.60) using similarity method, the two independent 

variables x and y are combined into a single variable (x, y).  For this 

problem the correct form of the transformation variable   is the same as 

that used in Blasius solution 

x

V
yyx ),( .                                    (4.41) 

The solution ),( yx  is assumed to depend on  as 

)(),( yx .

Velocity components u and v in (4.59) are given by Blasius solution 
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d

df

V

u
,                                        (4.42) 

f
d

df

xVV 2

1v

.                            (4.43) 

Substituting (4.41)-(4.43) into (4.59) and noting that

d

d

xxd

d

x 2
,

d

d

x

V

yd

d

y
,

2

2

2

2

d

d

x

V

y
,

gives

0)(
22

2

d

d
f

Pr

d

d
.                           (4.61) 

Thus, the governing partial differential equation is successfully transformed 

into an ordinary differential equation. The following observations are made 

regarding (4.61):

(1) The Prandtl number Pr is the single parameter characterizing the 

equation.

(2) This is a linear second order ordinary differential equation requiring 

two boundary conditions. 

(3) The function )(f  appearing in (4.61) represents the effect of fluid 

motion on temperature distribution. It is obtained from Blasius solution.  

      To complete the transformation, boundary conditions (4.60) must also 

be transformed in terms of the new variable .  Using (4.41), the three 

boundary conditions (4.60a-4.60c) transform to 

0)0( ,                                         (4.62a) 

1)( ,                                         (4.62b) 

1)( .                                         (4.62c) 
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Note that boundary conditions (4.60b) and (4.60c) coalesce into a single 

condition, as shown in (4.62b) and (4.62c). Equation (4.61) is solved by 

separating the variables, integrating and using boundary conditions (4.62). 

Integration details are found in Appendix B. The temperature solution is 

0
2

2

2

2 )

1)(

d
d

fd

d
d

fd

Pr

Pr

.                         (4.63) 

Differentiating (4.63) gives surface temperature gradient 

d
d

fd
d

d

Pr

Pr

2

2

332.0)0(
.                           (4.64) 

The integrals in (4.63) and (4.64) are evaluated numerically. The integrand 

 is obtained from Blasius solution and is given in Table 4.1. The 

integration result is presented graphically in Fig. 4.6 for several values of 

the Prandtl number. 

22 / dfd

0.1

6.0

4.0

2.0

2 4 6 8 12 1410

01.0Pr

1.0

)(7.0 air110100

0

8.0

xVy

s

s

TT

TT

Fig. 4.6  Pohlhausen's solution for temperature 

              distribution for laminar flow over  a 

              semi-infinite isotheral flat plate 
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      With the temperature distribution determined, attention is focused on 

the thermal boundary layer thickness, heat transfer coefficient, and Nusselt 

number. The thermal boundary layer thickness t  is determined from Fig. 

4.6. The edge of the thermal layer is defined as the distance y where 

. This corresponds toTT

1
s

s

TT

TT
,   at ty .                          (4.65) 

Using this definition of t , Fig. 4.6 shows that )(xt depends on the 

Prandtl number and that it decreases as the Prandtl number is increased.  

      The heat transfer coefficient h is determined using equation (1.10) 

TT

y

xT

kh
s

)0,(

,                                  (1.10)

where

yd

d

d

dT

y

xT )0()0,(
.

Using (4.41) and (4.58) into the above 

d

d

x

V
TT

y

xT
s

)0(
)(

)0,(
.

Substituting into (1.10) gives the local heat transfer coefficient 

d

d

x

V
kxh

)0(
)( .                                 (4.66) 

The average heat transfer coefficient for a plate of length L is defined in 

equation (2.50) 
L

dxxhh
L

0

)(1 .                           (2.50) 

Substituting (4.66) into (2.50) and integrating 
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d

d
Re

L

k
h L

)0(
2 .                                (4.67) 

The local Nusselt number is obtained by substituting (4.66) into (4.54)  

xx Re
d

d
Nu

)0(
.                                 (4.68) 

The corresponding average Nusselt number is 

LL Re
d

d
Nu

)0(
2 .                               (4.69) 

Total heat transfer rate  from a plate of length L and width W is obtained 

by applying Newton’s law of cooling 
Tq

hWLTTdxxhWTTdxWTTxhq sss

LL

T )()()())((

00

.

Noting that WL is the surface area A, the above becomes 

hATTq sT )( .                   (4.70) 

Examination of equations (4.66)-(4.69) shows 

that the heat transfer coefficient and Nusselt 

number depend on the temperature gradient at 

the surface, ./)0( dd  This key factor depends 

on the Prandtl number and is determined from 

(4.64). The integral in (4.64) is evaluated 

numerically using Blasius data in Table 4.1.  

Values of dd  corresponding to various 

Prandtl numbers are given in Table 4.2 [3]. The 

following equations give good approximation of 

, Pr < 0.05,   (4.71a) 

      Table 4.2 

Pr
d

d )0(

     0.001   0.0173 

     0.01   0.0516 

     0.1   0.140 

     0.5   0.259 

     0.7   0.292 

     1.0   0.332 

     7.0   0.645 

   10.0   0.730 

   15.0   0.835 

   50   1.247 

  100   1.572 

1000   3.387 

/)0(

dd /)0(

2/1564.0
)0(

Pr
d

d
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3/1332.0
)0(

Pr
d

d
,     0.6 < Pr < 10,                  (4.71b) 

3/1339.0
)0(

Pr
d

d
, Pr >10.                      (4.71c) 

      To evaluate scaling prediction of the Nusselt number, we consider two 

cases corresponding to Pr << 1 and Pr >> 1. Combining (4.71) with (4.68) 

gives

0.05for,564.0 2/1 PrRePrNu xx ,           (4.72a) 

106.0for,332.0 3/1 PrRePrNu xx ,      (4.72b) 

10for,339.0 3/1 PrRePrNu xx ,               (4.72c) 

The corresponding scaling results are given in (4.55) and (4.57) 

xeRPrNux
1/2

,          for Pr <<1,                      (4.55) 

xeRPrNux

1/3
,         for Pr >>1.                       (4.57) 

Comparing (4.72a) with (4.55) and (4.72c) with (4.57) shows that scaling 

predicts the correct dependency on the local Reynolds number and the 

Prandtl number. However, scaling approximates the coefficients 0.564 and 

0.339 of the analytic solution with unity. 

      The use of Pohlhausen’s solution to determine heat transfer character-

istics requires the determination of fluid properties such as kinematic 

viscosity, thermal conductivity, and Prandtl number. All fluid properties in 

Pohlhausen’s solution are assumed constant. In fact they are temperature 

dependent. When carrying out computations using Pohlhausen’s solution, 

properties are evaluated at the film temperature , defined as fT

2/)( TTT sf .                                      (4.73) 
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4.4.2 Applications: Blasius Solution, Pohlhausen’s Solution,

         and Scaling 

Three examples will be presented in this section to illustrate the application 

of Blasius solution, Pohlhausen’s solution, and scaling to the solution of 

convection problems.    

Example 4.1:  Insect in Search of Advice

Air at 30oC flows with uniform 

velocity V  = 4 m/s over a flat plate.  

A tiny insect finds itself at location 0 

near the surface of the plate.  Air 

velocity u at this location is too high 
for the insect. It wants to take a one 

millimeter step to any of the locations 1, 2, 3, or 4.  What will the velocity u 

be at these locations if the insect starts at x = 150 mm and y = 2 mm? Is 

the insect inside the viscous boundary layer? 

(1) Observations. (i) This is an external forced convection boundary layer 

problem. (ii)  Changes in velocity between locations 1 and 3 should be 

small compared to those between 2 and 4. (iii)  Location 4 should have the 

lowest velocity.  (iv) If the flow is laminar, Blasius solution can be used to 

determine the velocity distribution and boundary layer thickness. (v) The 

flow is laminar if Reynolds number is less than 500,000. 

(2) Problem Definition.  Determine the axial velocity at the five given 

locations.

(3) Solution Plan.  Check the Reynolds number to determine if boundary 

layer approximations can be made and if the flow is laminar.  If it is, use 

Blasius solution, Table 4.1, to determine the axial velocity at the five 

locations and boundary layer thickness. 

(4) Plan Execution.

(i) Assumptions.  All assumptions leading to Blasius solution are 

applicable. These are: (1) Continuum, (2) Newtonian fluid, (3) steady state, 

(4) constant properties, (5) two-dimensional, (6) laminar flow (Rex < 

5 105), (7) viscous boundary layer flow (Rex > 100), (8) uniform upstream 

velocity, (9) flat plate, (10) negligible changes in kinetic and potential 

energy and (11) no buoyancy (  = 0 or g = 0).
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 (ii) Analysis. The Reynolds number is computed to establish if the 

flow is laminar and if boundary layer approximations can be made.  The 

Reynolds number is defined as  

xV
Rex ,                                             (a) 

where

 Reynolds number xRe
V upstream velocity = 4 m/s  

x distance from the leading edge of the plate, m 

 kinematic viscosity = 16.01  m
610 2 /s

To determine if the flow is laminar or turbulent, compare the Reynolds 

number with the transition Reynolds number.  For flow over a flat plate the 

transition Reynolds number is
txRe

txRe = 5 105 .                                            (b)

The flow is laminar if Rex < . Viscous boundary layer approximations 

are valid for 

txRe

100xRe .                                              (c) 

Evaluating the Reynolds number at x = 151 mm, equation (a) gives 

)/sm(1001.16

)m(151.0)m/s(4
26xRe 37,726

Therefore, boundary layer approximations can be made and the flow is 

laminar. Use Blasius solution to determine the velocity component u at any 

location and boundary layer thickness .  At each location, the variable is

computed and used in Table 4.1 to determine the corresponding velocity 

ratio u/V .  This variable is defined as   

x

V
y , (d)

where

       y = normal distance from surface, m 

= dimensionless variable 

Blasius solution also gives the boundary layer thickness as  
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xRex

2.5
.                                         (4.46)

(iii) Computations. At each location (x, y), equation (d) is used to 

compute . The computed is used in Table 4.1 to determine u/V . Sample 

computation is shown for location 0. The results for the five locations 0, 1, 

2, 3 and 4 are tabulated below.

      At location 0 where x = 150 mm and y = 2 mm.  Equation (d) gives 

 = 0.002(m)
)(15.0)/(1001.16

)/(4
26 msm

sm
= 2.581 

At this value of , Table 4.1 gives

= 0.766, u = 0.766 4(m/s) = 3.064 m/s Vu /

Location x (m)  y (m)    u/V u(m/s)    

        0   0.150  0.002  2.581  0.766  3.064 

        1   0.151  0.002  2.573  0.765  3.06

        2   0.150  0.003  3.872  0.945  3.78

        3   0.149  0.002  2.590  0.768  3.072

        4   0.150  0.001  1.291  0.422  1.688 

      The boundary layer thickness at the location of the insect is determined 

using (4.46) where m and 15.0x 726,37xRe

mm4m004.0)m(151.0
726,37

2.52.5
x

Rex

Thus the insect is within the boundary layer.

     (iv) Checking. Dimensional check:  Computations showed that equa-

tions (a) and (d) are dimensionally correct.   

Qualitative check:  The velocity at the five locations follows an expected 

behavior; minor changes in velocity in the x-direction and significant 

changes in the y-direction.

(5) Comments.  (i) The insect should move to location 4 where the axial 

velocity is lowest.  
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(ii) Changes in axial velocity with respect to x, at the same distance y from 

the plate, are minor. 

(iii) Changes in axial velocity with respect to y, at the same distance x, are 

significant.

(iv) The tabulated values of u are approximate since they are determined by 

interpolations of Table 4.1.

(v) What is important for the insect is the magnitude of the velocity vector 

 and not the axial component u. However, since v << u

in boundary layer flow, using u as a measure of total velocity is reasonable. 

2/122 )( vuV

Example 4.2: Laminar Convection over a Flat Plate 

Water flows with a velocity of 0.25 m/s over a 75 cm long plate.  Free 

stream temperature is 35°C and surface temperature is 85°C. [a] Derive an 

equation for the thermal boundary layer thickness t in terms of the 

Reynolds number. [b] Determine the heat transfer coefficient at x = 7.5 cm 

and 75 cm. [c] Determine the 

heat transfer rate for a plate 50 

cm wide. [d] Can Pohlhausen's 

solution be used to determine the

heat flux at the trailing end of 

the plate if its length is doubled?

(1) Observations.  (i) This is an external forced convection over a flat 

plate. (ii) The thermal boundary layer thickness increases with distance 

along the plate. (iii) Newton’s law of cooling gives surface heat flux and 

heat transfer rate from the plate. (iv) The heat transfer coefficient changes 

with distance along the plate. (v) Pohlhausen's solution is applicable only if 

the flow is laminar and all other assumptions leading to this solution are 

valid. (vi) Doubling the length doubles the Reynolds number.  

(2) Problem Definition.  Determine water temperature distribution. 

(3) Solution Plan.  Compute the Reynolds and Peclet numbers to establish 

if this is a laminar boundary layer problem. If it is, use Pohlhausen's 

solution to determine the thermal boundary layer thickness, heat transfer 

coefficient, heat transfer rate, and surface heat flux. 

(4) Plan Execution.
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(i) Assumptions. The assumptions listed in Section 4.3, which lead to 

Pohlhausen’s solution, are made: (1) Continuum, (2) Newtonian fluid, (3) 

two-dimensional process, (4) negligible changes in kinetic and potential 

energy, (5) constant properties, (6) boundary layer flow, (7) steady state, 

(8) laminar flow, (9) no dissipation, (10) no gravity, (11) no energy 

generation, (12) flat plate, (13) negligible plate thickness, (14) uniform 

upstream velocity V , (15) uniform upstream temperature , (16) 

uniform surface temperature , and (16) no radiation.

T

sT

(ii) Analysis and Computations. Calculate the Reynolds and Peclet 

numbers to determine if boundary layer approximations can be made and if 

the flow is laminar or turbulent.  Boundary layer approximations are valid 

if the body is streamlined and if 

> 100  and Pe = Pr  > 100 ,                           (a) xRe xRe

where

/xVRex

Pe = Peclet number 

Pr = Prandtl number 

V = free stream velocity = 0.25 m/s 

x = distance along plate, m

= kinematic viscosity, m2/s

The transition Reynolds number for flow over a semi-infinite plate is  tRe

5105tRe .                                            (b) 

Properties of water are evaluated at the film temperature, defined in 

(4.73)

,fT

2/)( TTT sf ,                                       (c) 

where

= surface temperature = 85sT oC

T = free stream temperature = 35oC

Substituting into (c) gives 

fT  = (85+ 35)(oC)/2 = 60oC

Water properties at this temperature are:  

k = thermal conductivity = 0.6507 W/m-oC
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Pr = 3.0 

 = 0.4748  10 6 m2/s.

Thus at x = 7.5 cm  and Pe are 
xRe

4

26
10949.3

)s/m(104748.0

)m(075.0)m/s(25.0xV
Rex

and

PrRePe x
44 1085.11310949.3

Comparison with equations (a) and (b) shows that boundary layer 

approximations can be made and the flow is laminar at x = 7.5 m. At the 

trailing edge, x = L = 75 cm, the Reynolds number .10949.3 5
LRe Since

this is less than the transition number it follows that the flow is  laminar 

over the entire plate. Thus, Pohlhausen's solution is applicable. 

[a] Determination of .t  At the edge of the thermal boundary 

layer ty and . Thus,TT 1)( / sst TTTT . From 

Fig. 4.6 the value of t  corresponding to 1)( t  and Pr = 3 is 

approximately 3.2.  Therefore 

/2.3 xVtt ,

or

xRexVx

t 2.32.3
.                                   (d) 

[b] Heat transfer coefficient. The local heat transfer coefficient is given in 

(4.66)

d

d

x

V
kxh

)0(
)( ,                               (4.66) 

where dd /)0(  for Pr = 3 is given in (4.71b) 

3/1332.0
)0(

Pr
d

d
,     0.6 < Pr < 10 .                (4.71b) 

For Pr = 3, this gives 
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4788.0(3)332.0
)0( 3/1

d

d

Substituting into (4.66) for x = 0.075 m 

(m)075.0/s)2m(6104748.0

m/s)(25.0
)C/mW)(6507.0(4788.0 oh

CW/m5.825 o2

Similarly, at x = 0.75 m            

(m)75.0/s)2m(6104748.0

m/s)(25.0
)C/mW)(6507.0(4788.0 oh

CW/m261 o2

[c] Heat transfer rate.  Equation (4.70) gives the total heat transfer rate from 

the plate 

hATTq sT )( ,                                  (4.70) 

where

       A = surface area = LW, m2

h = average heat transfer coefficient, W/m2-oC

      L = length of plate = 75 cm =0.75 m 

 = total heat transfer rate from plate, W Tq

      W = width of plate = 50 cm = 0.5 m 

The average heat transfer coefficient is given in (4.67) 

d

d
Re

L

k
h L

)0(
2  .                               (4.67) 

The Reynolds number at the trailing edge is .510949.3LRe Substitut-

ing into the above 

4788.0510949.3
0.75(m)

C)o20.6507(W/m
2h CW/m1.522 o2

Substituting into (4.70) 
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W9789.5(m)C)0.75(m)0)(3585C)(W/m(1.522 oo2
Tq

[d] Doubling the length of plate doubles the corresponding Reynolds 

number at the trailing end. There is a possibility that transition to turbulent 

flow may take place.  For a plate of length 2L, the Reynolds number is  

= 2 (3.949  10LRe2

5) = 7.898 105

Since this Reynolds number is greater than , the flow at the 

trailing end is turbulent and consequently Pohlhausen's solution is not 

applicable.

5105tRe

(iii) Checking. Dimensional check: Computations showed that the 

Reynolds number is dimensionless and units of h and h are correct. 

Qualitative check: As x is increased h decreases. Computation of the local 

heat transfer coefficient at x = 0.075 m and x = 0.75 m confirms this.  

Quantitative check: The computed values of the heat transfer coefficients 

are within the range given in Table 1.1 for forced convection of liquids.

(5) Comments. (i) It is important to check the Reynolds number before 

applying Pohlhausen's solution.  

(ii) The velocity boundary layer thickness is given by 

xRex

2.5
.                                        (4.46) 

Comparing (d) with equation (4.46) indicates that the thermal boundary 

layer thickness for water is smaller than the velocity boundary layer. 

Example 4.3: Scaling Estimate of Heat Transfer Rate

Use scaling to determine the total heat transfer rate for the conditions 

described in Example 4.2 

(1) Observation. (i)  Heat transfer rate is determined using Newton’s law 

of cooling. (ii) The heat transfer coefficient can be estimated using scaling. 

(2) Problem Definition. Determine the heat transfer coefficient h.

(1) Solution Plan. Apply Newton’s law of cooling and use scaling to 

determine h.
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(2) Plan Execution.  

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) two-

dimensional process, (4) negligible changes in kinetic and potential energy, 

(5) constant properties, (6) boundary layer flow, (7) steady state, (8) no 

dissipation, (9) no gravity, (10) no energy generation and (11) no radiation.

(ii) Analysis. Application of Newton’s law of cooling gives 

hATTq sT )( ,                                  (4.70) 

where

       A = surface area = LW, m2

h = average heat transfer coefficient, W/m2-oC

L = length of plate = 75 cm =0.75 m 

Tq  = total heat transfer rate from plate, W 

= surface temperature = 85sT oC

T = free stream temperature = 35oC

W = width of plate = 50 cm = 0.5 m 

The heat transfer coefficient is given by (1.10) 

TT

y

xT

kh
s

)0,(

 ,                                  (1.10)

where

 k = thermal conductivity = 0.6507 W/m-oC

Following the analysis of Section 4.41, scaling of h for Pr >>1 gives 

xeRPr
x

k
h

1/3
,    for Pr >>1,                        (4.56) 

where /xVeR x  and Pr = 3. Setting ,hh x = L, A = WL and 

substituting (4.56) into (4.70) 

LT eRPrkWTTq s

1/3
)( .                              (a) 

(iii) Computations. The Reynolds number at the trailing end is 

. Substituting numerical values into (a) 510949.3LRe
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3949003C)W/m(6507.0)m(5.0)C)(3585(
1/3oo

Tq

 W 14740Tq

Using Pohlhausen’s solution gives 9789Tq W.

      (iv) Checking. Dimensional Check: Solution (a) is dimensionally 

correct.

(5) Comments. Scaling gives an order of magnitude estimate of the heat 

transfer coefficient. In this example, the error in scaling estimate of the heat 

transfer rate is 50%.

4.4.3 Laminar Boundary Layer Flow over Semi-infinite Flat Plate: 

Variable Surface Temperature [4]

Consider uniform flow over a semi-

infinite flat plate shown in Fig. 4.7. 

Surface temperature varies with 

axial distance x according to

nCxTxTs )( ,       (4.74) 

where C and n are constants and T

is free stream temperature. We wish to determine the temperature 

distribution, heat transfer coefficient, Nusselt number, and heat transfer 

rate. To solve this problem we invoke all the assumptions summarized in 

Section 4.3.

(i) Velocity Distribution.  Since properties are assumed constant, velocity 

distribution is independent of the temperature distribution. Thus Blasius 

solution is applicable to this case and the velocity components are given by 

d

df

V

u
,                                          (4.42) 

f
d

df

xVV 2

1v

,                            (4.43) 

where the similarity variable  is defined as

Fig. 4.7



4.4 Solutions: External Flow       141

x

V
yyx ),( .                                    (4.41) 

(ii) Governing Equations for Temperature Distribution. Based on the 

assumptions listed in Section 4.3, temperature distribution is governed by

energy equation (4.18) 

2

2

y

T

y

T

x

T
u v .                                (4.18) 

The boundary conditions for this problem are:

nCxTTxT s)0,( ,                                    (a) 

TxT ),( ,                                            (b) 

TyT ),0( .                                             (c) 

(iii) Solution. The solution to (4.18) is obtained by the method of similarity 

transformation. We define a dimensionless temperature  as 

s

s

TT

TT
.                                       (4.58) 

We assume 

)(),( yx .                                     (4.75) 

Using (4.41)-(4.43), (4.58), (4.74) and (4.75), energy equation (4.18) 

transforms to (see Appendix C for details) 

0)(
2

)1(
2

2

d

d
f

Pr

d

df
Prn

d

d
.                  (4.76) 

Boundary conditions (a)-(c) become  

0)0( ,                                          (4.77a) 

1)( ,                                          (4.77b) 

1)( .                                          (4.77c) 
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Note that boundary conditions (b) and (c) coalesce into a single condition, 

as shown in (4.76b) and (4.76c). The local heat transfer coefficient and 

Nusselt number are determined using (1.10) 

TT

y

xT

kh
s

)0,(

 ,                                  (1.10)

where

yd

d

d

dT

y

xT )0()0,(
.

Using (4.41), (4.58) and (4.72) into the above 

d

d

x

V
Cx

y

xT n )0()0,(
.

Substituting into (1.10) gives the local heat transfer coefficient 

d

d

x

V
kxh

)0(
)( .                                 (4.78) 

The average heat transfer coefficient for a plate of length L is defined in 

equation (2.50) 
L

dxxhh
L

0

)(1 .                           (2.50) 

Substituting (4.78) into (2.50) and integrating

d

d
Re

L

k
h L

)0(
2 .                                (4.79) 

The local Nusselt number is obtained by substituting (4.78) into (4.54)

xx Re
d

d
Nu

)0(
.                                 (4.80) 

The corresponding average Nusselt number is
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LL Re
d

d
Nu

)0(
2 .                                (4. 81) 

Thus the key factor in the determination of the heat transfer coefficient and 

Nusselt number is surface temperature gradient ./)0( dd

(iii) Results. The solution to (4.76) subject to boundary conditions (4.77) is 

obtained by numerical integration [4]. The solution depends on two 

parameters: the Prandtl number Pr and the exponent n in (4.74) which 

characterizes surface temperature variation. Temperature gradient at the 

surface, dd /)0( , is presented in Fig. 4.8 for three Prandtl numbers.    

Fig. 4.8 Surface temperature gradient for 

                    plate with varying surface 

]4[n
s CxTTtemperatue, 

4.4.4 Laminar Boundary Layer Flow over a Wedge: Uniform Surface 

Temperature

Consider symmetrical flow over a 

wedge of angle  shown in Fig. 

4.9. The wedge is maintained at 

uniform surface temperature. Fluid 

velocity, temperature, and pressure 

upstream of the wedge are uniform. 

However, pressure and velocity 

outside the viscous boundary layer 

vary with distance x along the 

wedge. A summary of key features 

of this problem follows. 

Fig. 4.9
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Based on the assumptions listed in Section 4.3, the x-momentum equation 

for this case is: 

2

21

y

u

dx

dp

y

u

x

u
u v .                         (4.13) 

The solution to inviscid flow over the wedge gives the velocity outside the 

viscous boundary layer as)(xV

mCxxV )( ,                                      (4.82) 

where C is a constant and  is defined in terms of wedge angle as m

2
m .                                         (4.83) 

Application of (4.13) to the inviscid flow outside the viscous boundary 

layer where and0v )(xVu , gives the pressure gradient dxdp /

x

V
V

dx

dp1
.

Substituting into (4.13)

2

2

y

u

x

V
V

y

u

x

u
u v .                         (4.84) 

The boundary conditions are 

0)0,(xu ,                                        (4.85a) 

0)0,(xv ,                                         (4.85b) 

mCxxVxu )(),( .                             (4.85c) 

The solution to the velocity distribution is obtained by the method of 

similarity. Following Blasius approach, a similarity variable  is defined 

as
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2/)1()(
),( mx

C
y

x

xV
yyx .                      (4.86) 

The velocity u(x, y) is assumed to depend on  according to 

d

dF

xV

u

)(
.                                          (4.87) 

Continuity equation (2.3), (4.86), and (4.87) give the vertical velocity 

component v

d

dF

m

m
F

m

xxV
xV

1

1

2

1

)(
)(v .                (4.88) 

Substituting (4.82) and (4.86)-(4.88) into (4.84) 

0
2

1
2

2

2

3

3

m
d

dF
m

d

Fd
F

m

d

Fd
.                 (4.89) 

This is the transformed momentum equation. Boundary conditions (4.85) 

transform to  

0
)0(

d

dF
,                                       (4.90a) 

0)0(F ,                                        (4.90b) 

1
)(

d

dF
.                                       (4.90c) 

Note the following regarding (4.89) and (4.90):

(1) The original variables x and y do not appear explicitly in these 

equations.

(2) Momentum equation (4.89) is a third order non-linear ordinary 

differential equation. 
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(3) The special case of 0m  corresponds to a flat plate. Setting 

 in (4.89)   and (4.90) reduces to Blasius problem (4.44) and (4.45) 

with

0m

).()( fF

Equation (4.89) is integrated numerically [5, 6]. The solution gives the 

function )(F and its derivative ./ ddF  These in turn give the velocity 

components  and u v.

      To determine the temperature distribution we begin with the energy 

equation and thermal boundary conditions. The applicable equations for the 

wedge are the same as those of the semi-infinite flat plate, given by 

2

2

yyx
u v  ,                                  (4.59) 

0)0,(x ,                                         (4.60a) 

1),(x ,                                        (4.60b) 

1),0( y .                                         (4.60c) 

where the dimensionless temperature  is defined as

s

s

TT

TT
.                                        (4.58) 

The difference between the flat plate and wedge problem is the velocity 

distribution. In the flat plate case the velocity is given by Blasius solution 

while in the wedge the solution to (4.89) gives the velocity distribution. 

Energy equation (4.59) is solved by the method of similarity 

transformation. We assume  

)( ,                                           (4.75) 

where the similarity variable  is defined in (4.86). Substituting (4.86)-

(4.88) and (4.75) into (4.59) and (4.60) 

0)()1(
22

2

d

d
Fm

Pr

d

d
,                         (4.91) 
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0)0( ,                                          (4.92a) 

1)( ,                                          (4.92b) 

1)( .                                          (4.92c) 

Thus, the governing partial differential equation is successfully transformed 

into an ordinary differential equation. The following observations are made 

regarding (4.91) and (4.92):

(1) Two parameters, Prandtl number Pr and the wedge size m, characterize

the equation.

(2) This is a linear second order ordinary differential equation requiring 

two boundary conditions. 

(3) The function )(F appearing in (4.91) represents the effect of fluid 

motion on temperature distribution. It is obtained from the solution to 

(4.89).

(4) Boundary conditions (4.60b) and (4.60c) coalesce into a single 

condition, as shown in (4.92b) and (4.92c). 

(5) The special case of 0m  corresponds to a flat plate. Setting 

 in (4.91) reduces to Pohlhausen’s problem (4.61). 0m

Following the procedure used in Appendix B, separating variables in 

equation (4.91), integrating twice and applying boundary conditions (4.92), 

gives the temperature solution as 

ddF
Pr

ddF
Pr

0
0

0

)(
2

1)(m
exp

)(
2

1)(m
exp

1)( .   (4.93) 

The temperature gradient at the surface is obtained by differentiating (4.93) 

and evaluating the derivative at the surface, 0 to obtain 

1

0 0

)(
2

1)(m
exp

)0(
ddF

Pr

d

d
.       (4.94)
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The function )(F  appearing in (4.93) and (4.94) is obtained from the 

numerical solution to flow field equation (4.89). The integrals in (4.93) and 

(4.94) are evaluated numerically.  Results for the temperature gradient at 

the surface, dd /)0( , are given in Table 4.3 for four wedge angles at 

five Prandtl numbers [7]. Also shown in Table 4.3 is )0(F [5]. 

Surface temperature gradient 
d

d )0(
 and surface velocity gradient )0(F

  for flow over an isothermal wedge 

dd /)0(  at five values of  Pr
m wedge angle (0)F

0.7 0.8 1.0 5.0 10.0 

0             0 0.3206 0.292 0.307 0.332 0.585 0.730 

0.111 5/    (36o) 0.5120 0.331 0.348 0.378 0.669 0.851 

0.333 2/    (90
o
) 0.7575 0.384 0.403 0.440 0.792 1.013 

1.0        (180
o
) 1.2326 0.496 0.523 0.570 1.043 1.344 

Table 4.3 is used to determine the heat transfer coefficient h and Nusselt 

number  Equation (1.10) gives h.Nu

TT

y

xT

kh
s

)0,(

,                                  (1.10)

where

yd

d

d

dT

y

xT )0()0,(
.

Using (4.58), (4.75) and (4.86) into the above 

d

d

x

xV
TT

y

xT
s

)0()(
)(

)0,(
.

Substituting into (1.10) gives the local heat transfer coefficient 
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d

d

x

xV
kxh

)0()(
)( .                               (4.95) 

The local Nusselt number is obtained by substituting (4.95) into (4.54)  

xx Re
d

d
Nu

)0(
,                                  (4.96) 

where is the local Reynolds number defined as  xRe

)(xxV
Rex .                                       (4.97) 

Examination of (4.95) and (4.96) shows that the key factor in the 

determination of the heat transfer coefficient and Nusselt number is surface 

temperature gradient dd /)0(  listed in Table 4.3. 
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                                                        PROBLEMS

4.1   Put a check mark in the appropriate column for each of the following 

statements. 

Statement true false may be  

(a) 0)/()/( yxu v  is valid for 

transient flow. 

(b) The y-momentum equation is neglected in 

boundary layer flow. 

(c) Boundary layer equations are valid for all 

Reynolds numbers. 

(d) Pressure gradient is zero outside the 

boundary layer. 

(e)

2

2

2

2

y

u

x

u
  is for a streamlined body. 

(f) In boundary layer flow fluid velocity 

upstream of an object is undisturbed. 

(g) Axial pressure gradient is neglected in 

boundary layer flow. 

(i) Axial conduction is neglected in

boundary layer flow. 

4.2 Examine the three governing equations, (2.3), (4.13) and (4.18) for 

two-dimensional, constant properties, laminar boundary layer flow. 

         [a]  How many dependent variables do these equations have? 

         [b]  How is the pressure  determined? p

         [c]  If streamlines are parallel in the boundary layer, what terms will 

vanish?

         [d] Can (2.3) and (4.13) be solved for the velocity field u and v

independently of the energy equation (4.18)? 

4.3   Air flows over a semi-infinite plate with a free stream velocity V =

0.4 m/s and a free stream temperature  The plate is 

maintained at   Can boundary layer approximations for 

the flow and temperature fields be applied at:  

.C
o

20T
.C

o
60sT
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 [a] location x = 1.5 mm?  

 [b] location x = 15 mm? 

 Note: Evaluate air properties at the average film temperature 

./)( 2TTT sf

4.4 Water at  flows with uniform velocity V = 2 m/s over a 

streamlined object. The object is 8 cm long and its surface is 

maintained at  Use scaling to: 

C
o

25

C.
o

85sT

         [a] show that 1/ L ,

         [b] evaluate the inertia terms xuu /  and yu /v ,

         [c] evaluate the viscous terms  and .
22 / xu 22 / yu

4.5 Water at  flows with uniform velocity = 2 m/s over a 

streamlined object. The object is 8 cm long and its surface is 

maintained at  Use scaling to:

C
o

25 V

C.
o

85sT

         [a] show that 1/ L , [b] evaluate the convection terms 

and ,

xTu /

yT /v

         [c] evaluate the conduction terms  and 
22 / xT ./ 22 yT

4.6   Atmospheric air at 25  flows over a surface at 115 . The free 

stream velocity is 10 m/s. 

Co Co

         [a]  Calculate the Eckert number. 

         [b] Use scale analysis to show that the dissipation term 

is small compared    to the conduction term 

2)/( yu

)./( 22 yTk

4.7   Air at flows over a streamlined surface with a free stream 

velocity of . Use scale analysis to determine the boundary 

layer thickness at a distance of 80 cm from the leading edge.   

C
o

20

m/s10

4.8   In boundary layer flow, pressure 

gradient normal to the flow 

direction is assumed zero. That 

is  If this is correct, 

how do you explain lift on the 

wing of an airplane in flight?

.0/ yp

4.9    Derive an equation describing the vertical velocity component v at the 

edge of the boundary layer for two-dimensional incompressible flow 
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over a semi-infinite flat plate.  Assume laminar flow. Compare your 

result with scaling estimate. 

4.10  Sketch the streamlines in boundary layer flow over a semi-infinite flat 

plate.

4.11  Define  the  thickness  of  the  velocity  boundary layer    in Blasius 

solution as  the distance y  where the velocity u = 0.988 V .  Derive 

an expression for /x.

4.12 Water flows over a semi-infinite plate 

with an upstream velocity of 0.2 m/s. 

Blasius solution is used to calculate at

three locations along the plate. Results 

are tabulated. Are these results valid? 

Explain.

4.13  Consider laminar boundary layer flow over a semi-infinite flat plate. 

Evaluate the wall shearing stress at the leading edge. Comment on 

your answer. Is it valid? If not explain why. 

4.14 Water at 20  flows over aCo m2m2 plate with a free stream 

velocity of 0.18 m/s. Determine the force needed to hold the plate in 

place. Assume laminar boundary layer flow. 

4.15   Consider Blasius solution for uniform flow over a semi-infinite plate. 

Put a check mark in the appropriate column for each of the following 

statements. 

               Statement  true false may be 

(a) 0/ dxdp  because the flow is 

laminar. 

(b) Wall shearing stress increases 

with distance from the leading 

edge of plate. 

(c) Solution is not valid for 

.100xRe

(d) Solution is not valid for 

.
5

105xRe

(e) Solution is valid for .100xRe

  x(cm) (cm)

   300 1.441

   40 0.526

   0.01 0.0083
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(f) Boundary layer thickness is 

uniquely defined. 

(g) Solution is not valid for a curved 

plate.

(h) Solution for the wall shear at the 

leading edge (x = 0) is not valid. 

(i) The plate does not disturb 

upstream flow. 

(j) Solution is not valid for 

.
5

105xRe

4.16   Imagine a cold fluid flowing over a thin hot plate. Using your 

intuition, would you expect the fluid just upstream of the plate to 

experience a temperature rise due to conduction from the hot plate?  

How do you explain the assumption in Pohlhausen's solution that 

fluid temperature is unaffected by the plate and therefore 

?),0( TyT

4.17 Consider laminar boundary layer flow over a semi-infinite flat plate. 

The plate is maintained at uniform temperature  Assume constant 

properties and take into consideration dissipation. 

.sT

 [a] Does Blasius solution apply to this case? Explain.

 [b] Does Pohlhausen’s solution apply to this case? Explain. 

4.18   A fluid with Prandtl number 9.8 flows over a semi-infinite flat plate. 

The plate is maintained at uniform surface temperature. Derive an 

expression for the variation of the thermal boundary layer thickness 

with distance along the plate. Assume steady state laminar boundary 

layer flow with constant properties and neglect dissipation. Express 

your result in dimensionless form. 

4.19   Use Pohlhausen’s solution to determine the heat flux at the leading 

edge of a plate. Comment on your answer. Is it valid? If not explain 

why. 

4.20   Consider laminar boundary layer flow over a semi-infinite flat plate 

at uniform surface temperature  The free stream velocity is V
and the Prandtl number is 0.1. Determine temperature gradient at the 

surface

.sT

./)0( dydT
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4.21   Fluid flows between two 

parallel plates. It enters 

with uniform velocity V

and temperature  The 

plates are maintained at 

uniform surface temperature  Assume laminar boundary layer 

flow at the entrance. Can Pohlhausen solution be applied to 

determine the heat transfer coefficient? Explain.  

.T

.sT

4.22   Two identical rectangles, A and B, 

of dimensions L1 L2 are drawn on 

the surface of a semi-infinite flat 

plate as shown. Rectangle A is 

oriented with side L1 along the 

leading edge while rectangle B is 

oriented with side L2 along the 

edge. The plate is maintained at 

uniform surface temperature. 

         [a] If the flow over rectangle A is  

laminar,   what is it for B ?

         [b] If the heat transfer rate from 

plate A is 435 W, what is the rate from plate B ?

T

sT
V B

A
2L

1L

1L

2L

 viewtop

4.23 A semi-infinite plate is divided into four equal sections of one 

centimeter long each. Free stream temperature and velocity are 

uniform and the flow is laminar. 

The surface is maintained at 

uniform temperature. Determine 

the ratio of the heat transfer rate 

from the third section to that 

from the second section. 

T

V

sT

4321

x

4.24  A fluid at a uniform velocity and temperature flows over a semi-

infinite flat plate. The surface temperature is uniform.  Assume 

laminar boundary layer flow. 

         [a] What  will be  the  percent  change  in the local heat transfer 

coefficient  if  the  free stream  velocity is reduced by a factor of 

two?

         [b] What will be the percent change in the local heat transfer 

coefficient if the distance from the leading edge is reduced by a 
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factor of two? 

4.25  Use Pohlhausen's solution to derive an expression for the ratio of the 

thermal boundary layer thickness for two fluids.  The Prandtl number 

of one fluid is 1.0 and its kinematic viscosity is .

The Prandtl number of the second fluid is 100 and its kinematic 

viscosity is .

s/m26
1012.0

s/m26
108.6

4.26  Water at 25oC flows over a flat plate with a uniform velocity of 2 m/s.  

The plate is maintained at 85oC.  Determine the following: 

         [a] The thermal boundary layer thickness at a distance of 8 cm from 

the leading edge. 

         [b] The heat flux at this location. 

         [c] The total heat transfer from the first 8 cm of the plate. 

         [d] Whether Pohlhausen's solution can be used to find the heat flux at 

a distance of 80 cm from the leading edge. 

4.27 The cap of an electronic package is cooled by forced convection.  

The free stream temperature is 25oC.  The Reynolds number at the 

downstream end of the cap is 110,000. Surface temperature was 

found to be 145oC. However, reliability requires that surface 

temperature does not exceed 83oC.  One possible solution to this 

design problem is to increase the 

free stream velocity by a factor of 

3. You are asked to determine if 

surface temperature under this plan 

will meet design specification. 

T

V
sT cap

4.28 The back of the dinosaur Stegosaurus has two rows of fins. Each row 

is made up of several fins arranged in line and separated by a space. 

One theory suggests that providing a space between neighboring fins 

reduces the weight on the back of the dinosaur when compared with 

a single long fin along the back. On the other hand, having a space 

between neighboring fins reduces the total surface area. This may 

result in a reduction in the total heat loss. 

Model the fins as rectangular 

plates positioned in line as 

shown. The length of each plate 

is L and its height is H. Consider 

two fins separated by a distance 

L. Compare the heat loss from the 
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two fins with that of a single fin of length 3L and height H. Does 

your result support the argument that spaced fins result in a reduction 

in heat loss? To simplify the analysis assume laminar flow. 

4.29   A fluid with Prandtl number 0.098 

flows over a semi-infinite flat 

plate. The free stream temperature 

is  and the free stream velocity 

is .  The surface of the plate is 

maintained at uniform temperature  Assume laminar flow.  

T

V

.sT

T

V

x

1x 2x

W0

[a] Derive an equation for the local Nusselt number.

[b] Determine the heat transfer rate from a section of the plate 

between  and . The width of the plate is W.1x 2x

[c] Derive an equation for the thermal boundary layer thickness ).(xt

4.30  Two identical triangles are drawn 

on the surface of a flat plate as 

shown.  The plate, which is main-

tained at uniform surface tempera-

ture, is cooled by laminar forced 

convection.  Determine the ratio 

of the heat transfer rate from the 

two triangles, q1/q2.

T
sT

V

 viewtop

1 2 H

L

4.31  An isosceles triangle is drawn on a 

semi-infinite flat plate at a 

uniform surface temperature 

Consider laminar uniform flow of 

constant properties fluid over the 

plate.  Determine the rate of heat 

transfer between the triangular 

area and the fluid 

.sT T
sT

V

 viewtop

H

L

4.32 Determine the total heat transfer 

rate from a half circle drawn on a 

semi-infinite plate as shown. 

Assume laminar two-dimensional 

boundary layer flow over the 

plate.

orV

T
or
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4.33  Consider steady, two-dimensional, laminar boundary layer flow over 

a semi-infinite plate. The sur-

face is maintained at uniform 

temperature  Determine the 

total heat transfer rate from the 

surface area described by 

.sT

LxHxy /)( as shown. 

T

sTV
 viewtop

H

L
L

x
Hy

y

x

4.34 Fluid flows over a semi-infinite flat plate which is maintained at 

uniform surface temperature. It is desired to double the rate of heat 

transfer from a circular area of 

radius 1  by increasing its radius to 

2 . Determine the percent increase 

in radius needed to accomplish this 

change. In both cases the circle is 

tangent to the leading edge. Assume 

laminar boundary layer flow with 

constant properties.

R
R

T sT

V

 viewtop

1R 2R

4.35  Liquid potassium (Pr << 1) flows over a semi-infinite plate. Assume 

laminar boundary layer flow. Suggest a simplified velocity profile for 

solving the energy equation. 

4.36  For very low Prandtl numbers the thermal boundary layer is much 

thicker than the viscous boundary layer. Thus little error is 

introduced if the velocity everywhere in the thermal boundary layer 

is assumed to be the free stream velocity    Show that for laminar 

boundary layer flow over a flat plate at low Prandtl numbers, the 

local Nusselt number is given by 

.V

.
2/12/1

564.0 RePrxNu

How does this result compare with scaling prediction?

4.37  Consider laminar boundary layer flow over a flat plate at a uniform 

temperature  When the Prandtl number is very high the viscous 

boundary layer is much thicker than the thermal boundary layer.  

Assume that the thermal boundary layer is entirely within the part of 

the velocity boundary layer in which the velocity profile is 

approximately linear.  Show that for such approximation the Nusselt 

number is given by 

.sT
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.
2/13/1

339.0 RePrxNu

    Note: , where 
0

)3/1(
3/1

)3/1()
3

exp( cdxcx  is the 

Gamma function. 

4.38 Consider steady, two-dimensional, laminar boundary layer flow over 

a porous flat plate at uniform surface temperature.  The plate is 

subject to a uniform suction 
o
vv )0,(x . Far away downstream 

both the axial velocity and the temperature may be assumed to be 

functions of y only. Free 

stream velocity is V  and 

free stream temperature is 

 Determine the heat 

transfer coefficient and 

Nusselt number in this 

region.

.T

T

V
x

y

ov

4.39 A semi infinite plate is heated with uniform flux q along its length.  

The free stream temperature is T  and free stream velocity is 

Since the heat transfer coefficient varies with distance along the 

plate, Newton’s law of cooling requires that surface temperature 

must also vary to maintain uniform heat flux. Consider the case of 

laminar boundary layer flow over a plate whose surface temperature 

varies according to

.V

.
nCxTxTs )(

         Working with the solution to this case, show that 

corresponds to a plate with uniform surface flux. 

2/1n

4.40  Water flows over a semi-infinite flat plate which is maintained at a 

variable surface temperature  given by  sT

,
75.0)( CxTxTs

         where

            C = 54.27 oC / m0.75 

= free stream temperature =T C.3
o

            x =  distance from the leading edge, m 
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Determine the average heat transfer coefficient for a plate if length L

= 0.3 m.  Free stream velocity is 1.2 m/s. 

4.41  Air flows over a plate which is heated non-uniformly such that its 

surface temperature increases linearly as the distance from the 

leading edge is increased according to

CxTxTs )(

where

               C = 24 oC /m

= free stream temperature =T C20o

             x = distance from the leading edge, m 

         Determine the total heat transfer rate from a square plate 10

cm. Free stream velocity is 3.2 m/s. 

cm10

4.42  The surface temperature of a plate 

varies with distance from the 

leading edge according to

T 8.0)( CxTxs

          Two identical triangles are drawn 

on the surface as shown. Fluid at uniform upstream temperature T
and uniform upstream velocity V  flows over the plate. Assume 

laminar boundary layer flow.  Determine the ratio of the heat transfer 

rate from the two triangles, q1/q2.

T

V

 viewtop

1 2 H

L

)(xTs

4.43 Construct a plot showing the variation of xx  with wedge 

angle. Where x  is the local Nusselt number and x  is the local 

Reynolds number. Assume laminar boundary layer flow of air.  

ReNu /
Nu Re

4.44 Consider laminar boundary layer flow over a wedge. Show that the 

average Nusselt number Nu  for a wedge of length L is given by 

LRe
d

d

m
Nu

)0(

1

2

         where the Reynolds number is defined as .
)(LLV

ReL
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4.45 Compare the total heat transfer rate from a  wedge,  with 

that from a flat plate, of the same length. Construct a plot of 

 as a function of Prandtl number.   

o90 ,wq

,pq

pw qq /

4.46  For very low Prandtl numbers the 

thermal boundary layer is much 

thicker than the viscous boundary 

layer. Thus little error is intro-

duced if the velocity everywhere 

in the thermal boundary layer is 

assumed to be the free stream 

velocity    Show that for lami-

nar boundary flow over a wedge at 

low Prandtl numbers the local 

Nusselt number is given by 

.V

xx Re
Prm

Nu
)1(

.

4.47  Consider laminar boundary layer flow over a wedge at a uniform 

temperature  When the Prandtl number is very high the viscous 

boundary layer is much thicker than the thermal boundary layer.  

Assume that the velocity profile within the thermal boundary layer is 

approximately linear.  Show that for such approximation the local 

Nusselt number is given by 

.sT

2/11/3
)0()1(489.0 eNu RPrFmx .

         Note: , where 
0

3
)3/1(

3/1
)3/1()exp( cdxcx  is the 

Gamma function.  
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APPROXIMATE SOLUTIONS:

THE INTEGRAL METHOD 

5.1 Introduction

There are various situations where it is desirable to obtain approximate

analytic solutions. An obvious case is when an exact solution is not 

available or can not be easily obtained.  Approximate solutions are also

obtained when the form of the exact solution is not convenient to use.

Examples include solutions that are too complex, implicit or require 

numerical integration.  The integral method is used extensively in fluid

flow, heat transfer and mass transfer. Because of the mathematical

simplifications associated with this method, it can deal with such 

complicating factors as turbulent flow, temperature dependent properties 

and non-linearity.

5.2 Differential vs. Integral Formulation

To appreciate the basic approximation and simplification associated with 

the integral method, we consider the boundary layer flow shown in Fig.

5.1. In differential formulation, Fig. 5.1a, a differential element measuring

 is selected. The three basic laws are formulated for this element.dydx

Fig. 5.1
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The resulting equations thus apply to any point in the region and the 

solutions to these equations satisfy the basic laws exactly. Note that the

same approach is used in three-dimensional transient problems. Here the

basic laws are formulated for an element measuring dzdydx  during

an infinitesimal time  In integral formulation, Fig. 5.1b, a differential

element measuring

.dt
dx is selected. Note that this element is infinitesi-

mal in x but finite in y. The three basic laws are formulated for this

element. Here the resulting equations satisfy the basic laws for an entire 

cross section  and not at every point. Thus solutions to this type of

formulation are approximate in the sense that they do not satisfy the basic

laws at every point. 

5.3 Integral Method Approximation:

      Mathematical Simplification 

Although integral solutions do not satisfy the basic laws at every point,

they provide significant mathematical simplifications. A key simplification

is a reduction in the number of independent variables. For example, for

two-dimensional problems, instead of solving a partial differential equation 

in differential formulation, one solves an ordinary differential equation in 

integral formulation. In addition, an accompanying reduction of the order 

of the governing differential equation may result. Thus, major mathema-

tical simplifications are associated with this approach.  This explains why it

is extensively used to solve a wide range of problems in fluid flow, heat 

transfer and mass transfer. In this chapter, the integral method is applied to

boundary layer convection problems.

5.4 Procedure

Since convection heat transfer depends on fluid motion as well as 

temperature distribution, solutions require the determination of the velocity 

and temperature fields. The integral method is used in the determination of

both fields. Recall that for constant properties the velocity field is 

independent of the temperature field. The following procedure is used in

obtaining integral solutions:

(1) Integral formulation of the basic laws. The first step is the integral

formulation of the principles of conservation of mass, momentum and 

energy.
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(2) Assumed velocity and temperature profiles.  Appropriate velocity

and temperature profiles are assumed which satisfy known boundary

conditions. An assumed profile can take on different forms.  However, a 

polynomial is usually used in Cartesian coordinates.  An assumed profile is 

expressed in terms of a single unknown parameter or variable which must

be determined.

(3) Determination of the unknown parameter or variable. Substituting 

the assumed velocity profile into the integral form of conservation of 

momentum and solving the resulting equation gives the unknown

parameter. Similarly, substituting the assumed velocity and temperature 

profiles into the integral form of conservation of energy yields an equation

whose solution gives the unknown parameter in the temperature profile. 

5.5 Accuracy of the Integral Method

Since basic laws are satisfied in an average sense, integral solutions are

inherently approximate. The following observations are made regarding the

accuracy of this method: 

(1) Since an assumed profile is not unique (several forms are possible), the

accuracy of integral solutions depends on the form of the assumed profile. 

In general, errors involved in this method are acceptable in typical

engineering applications. 

(2) The accuracy is not very sensitive to the form of an assumed profile. 

(3) While there are general guidelines for improving the accuracy, no 

procedure is available for identifying assumed profiles that will result in the 

most accurate solutions.

(4) An assumed profile which satisfies conditions at a boundary yields

more accurate information at that boundary than elsewhere. 

5.6 Integral Formulation of the Basic Laws

5.6.1 Conservation of Mass

Consider boundary layer flow over a 

curved porous surface shown in Fig. 

5.2.  Fluid is injected into the 

boundary layer with velocity o

through the porous surface. It is

important to recognize that the edge 

v

Fig. 5.2
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of the viscous boundary layer does not coincide with a streamline. Thus, 

mass can enter the boundary layer from the external flow. Application of 

conservation of mass to the element dx ,

shown in Fig. 5.2 and enlarged in Fig. 5.3,

gives

xm

edm

5.3Fig.

dx
dx

dm
m x

x

odm

dx
dx

dm
mdm x

xedmm ox ,

or

o
x

e dmdx
dx

dm
dm ,     (a) 

where

= mass flow rate supplied to element from the external flow edm

= mass flow rate supplied to element through porous wall odm

 =  mass flow rate entering element at xxm

To formulate expressions for  and m  we apply the one-dimensional

mass flow rate equation 
odm x

VAm ,     (b) 

where A  is area, V is velocity normal to A, and  is density. Applying (b)

to the porous side of the element and assuming that the injected fluid is

identical to the external fluid, gives 

Pdxdm oo v ,       (c)

where P is wall porosity. To determine the rate of mass entering the 

element at section x, we note that the flow rate varies along y due to

variations in velocity and density. Applying (b) to an infinitesimal distance

dy gives

udydmx .

Integrating
)(

0

x

udymx . (d)

Substituting (c) and (d) into (a) 
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Pdxdxdyu
dx

d
dm

x

e o
v

)(

0

.   (5.1) 

Equation (5.1) gives the mass supplied to the boundary layer from the 

external flow in terms of boundary layer variables and injected fluid. This

result is needed in the integral formulation of the momentum and energy

equations.

5.6.2 Conservation of Momentum

Application of the momentum theorem in the x-direction to the element

dx  shown in Fig. 5.2, gives 

)in()out( xxx MMF ,         (a) 

 where 

= sum of external forces acting on element in the x-directionxF

= x-momentum of the fluid entering element)in(xM

= x-momentum of the fluid leaving element)out(xM

Fig. 5.4a shows all external forces acting on the element in the x-direction.

Fig. 5.4b shows the x-momentum of the fluid entering and leaving the 

element. Applying equation (a) and using the notations in Fig. 5.4, we 

obtain

d
dp

p )
2

(

p

dxp
dx

d
p )(

dxPo )1(

5.4Fig.

dx

(a) forces

dx
dx

dM
M x

xxM

emxV )(

dx

(b) x-momentum
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)b(,)(

1
2

ex
x

x

o

dmxVMdx
dx

dM
M

dxPdxp
dx

d
pd

dp
pp

 where

= x-momentumxM

p = pressure

= local fluid velocity at the edge of the boundary layer)(xV

o = wall shearing stress 

However
)(

0

2

x

dyuM x ,       (c)

and

y

xu
o

0,
. (d)

Substituting (c) and (d) into (b) and neglecting higher order terms

o
vPxVdyu

dx

d
xVdyu

dx

d

y

xu
P

dx

dp
xx )()(

00

20,
1

(5.2)

Note the following:

(1) Fluid entering the element through the porous surface has no axial

velocity. Therefore it has no x-momentum.

(2) There is no shearing force on the slanted surface since the velocity 

gradient at the edge of the boundary layer vanishes, i.e. 0/),( yxu .

(3)  Equation (5.2) applies to laminar as well as turbulent flow.

(4) Since the porous surface is curved, the external flow velocity 

and pressure  vary along the surface. )(xV )(xp

(5) The effect of gravity is neglected in (5.2). 
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(6) Equation (5.2) represents integral formulation of both conservation of

momentum and mass.

(7) Although u is a function of x and y, once the integrals in (5.2) are 

evaluated one obtains a first order ordinary differential equation with x as

the independent variable. 

Special Cases:

Case 1: Incompressible fluid. Boundary layer approximation gives the 

axial pressure gradient as

dx

dp

dx

dp
.      (4.12)

The x-momentum equation for boundary layer flow is 

2

21

y

u

x

dp

y

u

x

u
u v .     (4.5) 

Applying equation (4.5) at the edge of the boundary layer, y , where 

 and Vu 0// dydVyu , gives 

dx

dV
xV

dx

dp

dx

dp
)( .      (5.3)

Substituting (5.3) into (5.2) and noting that  is constant 

o
vPxVdyu

dx

d
xVdyu

dx

d

y

xu
P

dx

Vd
xV

xx )()(

00

20,
1)(

      (5.4)

Case 2: Incompressible fluid and impermeable flat plate. At the edge of

boundary layer flow the fluid is assumed inviscid. Neglecting boundary

layer thickness and viscous effects for the special case of a flat plate means

that the external flow experiences no changes. It follows from (5.3) that 

0
dx

dp

dx

dp

dx

dV
.   (e) 
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For an impermeable plate 

,0ov 0P ,   (f) 

Substituting (e) and (f) into (5.4)

dyu
dx

d
udy

dx

d
V

y

xu
xx

0

2

0

0,
,      (5.5)

where is kinematic viscosity.

5.6.3 Conservation of Energy

Consider the flow of fluid at temperature  over a porous surface. The

surface is maintained at a different temperature and thus heat exchange

takes place. At high Reynolds and Peclet numbers temperature and velocity

boundary layers form over the surface. Fluid at temperature oT  is injected 

into the boundary layer with velocity  Conservation of energy is

applied to the element 

T

.ov

dxt , shown in Fig. 5.5 and enlarged in Fig. 5.6.

We neglect: 

Based on these assumptions, conservation of energy for the element gives 

dx
dx

dE
EdEdEdEE x

xeocx .

Rearranging

Fig. 5.5 Fig. 5.6
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oe
x

c dEdEdx
dx

dE
dE ,     (a) 

where

= energy added at surface by conduction cdE

= energy added by external massedE

= energy added by injected massodE

= energy convected with boundary layer flow xE

Heat conduction at the porous surface is determined using Fourier’s law 

dx
y

xT
PkdEc

0,
)1( .    (b) 

Mass entering the element from the external flow, e , is at the free

stream temperature  Thus energy carried with this mass,  is

dm
.T ,edE

epe dmTcdE .

Using (5.1) for edm

PdxTcdxdyu
dx

d
TcdE p

t

pe

x

o
v

)(

0

.     (c)

Note that the upper limit of the integral in (c) is t  since the element

extends to the edge of the thermal boundary layer. Neglecting conduction

in the injected fluid, energy convected through the pores is

PdxTcdE opo o
v .     (d) 

Energy convected with fluid flow within the boundary layer,  depends

on the local axial velocity u and temperature T. Integration across the 

thermal boundary layer thickness gives the total convected energy

,xE

)(

0

xt

dyTucE px .      (e)

Substituting (b)-(e) into (a) 
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)6.5(.

0,
1

)(

)(

0

0

TTPcudy
dx

d
Tc

uTdyc
dx

d

y

xT
Pk

oop

t

p

t

p

x

x

v

Note the following regarding this result: 

(1) Equation (5.6) represents integral formulation of both conservation of

mass and energy.

(2) Although u and T are functions of x and y, once the integrals in (5.6) are 

evaluated one obtains a first order ordinary differential equation with x as

the independent variable. 

Special Case: Constant properties and impermeable flat plate 

Setting 1P  and assuming constant density and specific heat, equation 

(5.6) simplifies to 

)(

0

)(
0,

xt

dyTTu
dx

d

y

xT
,   (5.7) 

where  is thermal diffusivity. 

5.7 Integral Solutions

To obtain solutions to the temperature distribution using the integral 

method, the velocity distribution u must be determined first. This is evident 

in equations (5.6) and (5.7) where the variable u appears in the integrands.

5.7.1 Flow Field Solution: Uniform Flow over a Semi-Infinite Plate

The integral method will be 

applied to obtain a solution

to Blasius laminar flow 

problem, shown in Fig. 5.7.

Equation (5.5) gives the

Fig. 5.7
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integral formulation of momentum for this problem

dyu
dx

d
udy

dx

d
V

y

xu
xx

0

2

0

0,
.       (5.5)

As pointed out in the procedure of Section 5.4, the next step is the

introduction of an assumed velocity profile to be used in equation

(5.5). An assumed profile is usually based on some knowledge of the 

general flow characteristics.  For laminar flow over a flat plate, a

polynomial is a reasonable representation of the velocity profile. Thus

),( yxu

N

n

n
n yxayxu

0

)(),( ,    (5.8)

where N is the degree of the polynomial. As an example, we assume a third 

degree polynomial

3
3

2
210 )()()()(),( yxayxayxaxayxu .     (a)

The coefficients  are determined using the following known exact

and approximate boundary conditions on the velocity

)(xan

(1) ,0)0,(xu

(2) Vxu ),( ,

(3) 0
),(

y

xu
,

(4) 0
)0,(

2

2

y

xu
.

Note the following regarding the above conditions:

(1) The second and third conditions are approximate since the edge of the 

boundary layer is not uniquely defined.

(2) Condition (4) is obtained by setting 0y  in the x-component of the 

Navier equations of motion (2.10x).



172   5 Approximate Solutions: The Integral Method

Equation (a) and the four boundary conditions give the coefficients )(xan

020 aa ,
V

a
2

3
1 ,

33
2

1 V
a .

Substituting the above into (a) 

3

2

1

2

3 yy

V

u
.     (5.9)

Thus the assumed velocity is expressed in terms of the unknown variable 

).(x  This variable is determined using the integral form of the momen-

tum equation, (5.5). Substituting (5.9) into (5.5) and evaluating the integ-

rals, gives 

dx

d
VV 2

280

391

2

3
 .  (b) 

This is a first order ordinary differential equation in ).(x  Separating 

variables

dx
V

v
d

13

140
,

Integrating and noting that 0)0(

x

dx
V

d

00
13

140
.

Evaluating the integrals and rearranging

xx ReRex

64.413/280
.  (5.10) 

Substituting (5.10) into (5.9) gives the velocity u as a function of x and y.

With the velocity distribution determined, friction coefficient  is

obtained using (4.36) and (4.37a)

fC
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xVV

x
y

u

V
C o

f

3

2/

0,

2/ 22
.

Using (5.10) to eliminate )(x  in the above 

x

f
Re

C
646.0

.      (5.11)

We are now in a position to examine the accuracy of the integral solution 

by comparing it with Blasius solution for )(x and , equations (4.46)

and (4.48):

fC

xRex

2.5
,      Blasius solution ,   (4.46)

and

x

f
Re

C
664.0

, Blasius solution. (4.48)

The following observations are made:

(1) The integral and Blasius solutions for )(x and  have the same

form.
fC

(2) The constant 5.2 in Blasius solution for )(x differs by 10.8% from the

corresponding integral solution of 4.64. However, it must be kept in mind

that the constant in Blasius solution for )(x is not unique. It depends on

how )(x is defined. 

(3) The error in  is 2.7%.fC

(4) Predicting accurately is more important than predicting fC ).(x

5.7.2 Temperature Solution and Nusselt Number: Flow over a Semi-

Infinite Plate 

(i) Temperature Distribution
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Consider uniform boundary

layer flow over a semi-

infinite plate shown in Fig.

5.8. A leading section of the

plate of length o  is 

insulat-ed and the remaining 

part is at uniform

temperature s  Assume

laminar, steady, two-

dimensional, constant properties boundary layer flow and neglect axial 

conduction and dissipation.  Of interest is the determination of the thermal

boundary layer thickness, local heat transfer coefficient, and Nusselt 

number. This requires determining the temperature distribution. Since the 

velocity field is independent of temperature, the integral solution for the

velocity and boundary layer thickness 

x

.T

),( yxu )(x obtained in Section 

5.7.1 is applicable to this case. Equation (5.7) gives the integral formulation

of conservation of energy for this problem

)(

0

)(
0,

xt

dyTTu
dx

d

y

xT
, (5.7)

where is given by equation (5.9). The next step is the introduction

of an assumed temperature profile T to be used in equation (5.7). For

laminar flow over a flat plate a polynomial is a reasonable representation 

for the temperature profile. Thus 

),( yxu

),( yx

N

n

n
n yxbyxT

0

, .  (5.12) 

Following the procedure used in Section 5.7.1, we assume a third degree 

polynomial

3
3

2
210 )()()()(),( yxbyxbyxbxbyxT .      (a)

The coefficients b  are determined using the following known exact 

and approximate boundary conditions on the temperature

)(xn

)0,((1) T ,sTx

Fig. 5.8
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(2) TxT t ),( ,

(3) 0
),(

y

xT t ,

(4) 0
)0,(

2

2

y

xT
.

Note that the second and third conditions are approximate since the edge of

the thermal boundary layer is not uniquely defined. The fourth condition is

obtained by setting  in the energy equation (2.19). Equation (a) and

the four boundary conditions give the coefficients

0y

)(xbn

,0 sTb
t

sTTb
1

)(
2

3
1 , ,02b

33

1
)(

2

1

t

sTTb .

Substituting the above into (a)

3

3

2

1

2

3
)(),(

tt
ss

yy
TTTyxT .      (5.13)

Substituting (5.9) and (5.13) into (5.7) and evaluating the integral, gives

)14.5(,)(
2

3
42

280

3

20

3 tt
s

t

s VTT
dx

dTT

where )(x is given in (5.10). Eliminating )(x in the above gives a first 

order ordinary differential equation for t .  However, equation (5.14) is 

simplified first. For Prandtl numbers greater than unity the thermal

boundary layer is smaller than the viscous boundary layer. That is 

1
t

,   for 1Pr .   (5.15) 

Based on this restriction the last term in (5.14) can be neglected
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2

20

3

280

3 tt .

Equation (5.14) simplifies to

2

10 t

t dx

d
V  .      (b) 

To solve (b) for t we use the integral solution to . Rewriting (5.10)

V

x

13

280
. (c)

Substitute (c) into (b) and rearrange

Prdx

d
x ttt 1

14

13
4

23

.     (d) 

Equation (d) is solved for /t  by introducing the following definition:

tr .       (e) 

Substitute (e) into (d) 

Prdx

dr
xr

1

3

4

14

13
.     (f)

This is a first order differential equation for r.  Separating variables and

integrating

Pr
xCr t 1
)(

14

134/3
3

,         (g)

where C is constant of integration determined from the boundary condition

on t

0)( ot x .   (h) 
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Applying (h) to (g) gives the constant C

4/31

14

13
ox

Pr
C .       (i)

Substituting (i) into (g) and rearranging 

3/1
4/3

1
1

14

13

x

x

Pr

ot .  (5.16) 

Using (c) to eliminate in (5.16)

V

x

x

x

Pr

o
t

13

280

14

13

3/1
4/3

1
1

,  (5.17a) 

or
3/1

4/3

1/21/3
1

528.4

x

x

RePrx

o

x

t ,      (5.17b)

where  is the local Reynolds number defined as xRe

xV
Rex .      (5.18)

(ii) Nusselt Number

The local Nusselt number is defined as 

k

hx
Nux ,     (j) 

where h is the local heat transfer coefficient given by 

TT

y

xT
k

h
s

)0,(

.     (k) 
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Using the temperature distribution (5.13) into (k)

t

k
xh

2

3
)( .      (5.19)

Eliminating t by using (5.17b) gives the local heat transfer coefficient

1/21/3

3/1
4/3

1)( 331.0 x
o RePr
x

x

x

k
xh .      (5.20) 

Substituting into (j)

1/21/3

3/1
4/3

1331.0 x
o

x RePr
x

x
Nu .    (5.21)

Special Case: Plate with no Insulated Section 

Fig. 5.9 shows a flat plate which

is maintained at uniform surface 

temperature. The plate has no

insulated section. The solution to 

this case is obtained by setting

 in the more general case 

of a plate with a leading insulat-

ed section presented above. The 

solution to the temperature

distribution is given by equation

(5.13). Thermal boundary layer thickness, heat transfer coefficient, and

Nusselt number are obtained by setting 

0ox

0ox  in (5.16), (5.17), (5.20) and 

(5.21)

3/1

3/1
975.0

14

13 1

PrPr

t ,       (5.22)

1/21/3

528.4

x

t

RePrx
,       (5.23)

Fig. 5.9
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1/21/3
331.0)( xRePr

x

k
xh ,      (5.24)

1/21/3
331.0 xx RePrNu .  (5.25) 

To examine the accuracy of the integral solution, comparison is made with 

Pohlhausen’s results. For the limiting case of 1Pr  the viscous and

thermal boundary layers coincide, i.e. .1/t  Setting 1Pr  in (5.22)

gives

975.0
t .

This has an error of 2.5%. We examine next the accuracy of the local 

Nusselt number. For  equation (4.72c) gives Pohlhausen’s solution10Pr

10for,3/1
339.0 PrRePrNu xx .       (4.72c)

Comparing this result with integral solution (5.25) gives an error of 2.4%.

Example 5.1: Laminar Boundary Layer Flow over a Flat Plate:

Uniform Surface Temperature 

Fluid flows with uniform velocity and temperature over a semi-infinite flat

plate. The plate is maintained at uniform temperature  A leading 

section of the plate of length  is insulated. Use the integral method to

determine the local Nusselt number based on linear velocity and

temperature profiles. Assume steady, two-dimensional, constant properties

boundary layer flow and neglect dissipation.

.sT

ox

(1) Observations. (i) The determination of the Nusselt number requires the

determination of the velocity and temperature distribution. (ii) Results 

based on linear velocity and temperature profiles are less accurate than

those using second or third degree polynomials. (iii) The velocity field is

independent of temperature.

(2) Problem Definition. Determine the velocity and temperature

distribution for boundary layer flow over a flat plate.

(3) Solution Plan. Start with equating Newton’s law with Fourier’s law to 

obtain an equation for the heat transfer coefficient h. Apply the integral

form of the momentum equation using a linear velocity profile.  Apply the

integral form of the energy equation using a linear temperature profile
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(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian, (3) steady state, (4)

constant properties, (5) two-dimensional, (6) laminar flow (Rex < 5 105),

(7) viscous boundary layer flow (Rex > 100), (8) thermal boundary layer

(Pe > 100), (9) uniform upstream velocity and temperature, (10) flat plate, 

(11) uniform surface temperature, (12) negligible changes in kinetic and 

potential energy, (13) negligible axial conduction, (14) negligible

dissipation and (15) no buoyancy (  = 0 or g = 0). 

(ii) Analysis. The local Nusselt number is defined as

k

hx
Nux ,     (a) 

where the heat transfer coefficient h is given by equation (1.10)

TT

y

xT
k

h
s

)0,(

.  (1.10) 

Thus h depends on the temperature distribution  The integral form 

of the energy equation is used to determine the temperature distribution

).,( yxT

)(

0

)(
)0,(

xt

dyTTu
dx

d

y

xT
.   (5.7)

Before proceeding with the energy equation, axial velocity distribution

u(x,y) appearing in (5.7) must be determined. This is accomplished by 

applying the integral form of the momentum equation

dyu
dx

d
udy

dx

d
V

y

xu
xx

0

2

0

)0,(
.      (5.5)

Following the procedure outlined in Section 5.4, a velocity profile is

assumed. As an example, assume a linear profile given by

yaau 10 .   (b) 
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Select the following two boundary conditions to determine the coefficients

in (b) 

(1) ,0)0,(xu

(2) Vxu ),( .

Applying these conditions to (b) gives

,00a
V

a1 .

Substituting into (b) 

y
Vu .     (c) 

To determine )(x the assumed velocity (c) is substituted into (5.5) 

dyy
V

dx

d
ydy

V

dx

d
V

V
xx

2

0

2

2

0

.

Evaluating the integrals

dx

dV

dx

dV

dx

dVv

632
.

Separating variables

dx
V

d 6 .

Integrating and noting that 0)0(

x

dx
V

d

00

6 .

Evaluating the integrals and rearranging the result 

x
V

12
,    (d) 
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or

xRex

12
,       (5.26)

where is the local Reynolds number defined asxRe

xV
Rex .    (e) 

Having determined the velocity  attention is focused on the 

determination of the temperature distribution. Assume, for example, a

linear temperature profile

),( yxu

ybbT 10 .   (f) 

Select the following two boundary conditions to determine the coefficients

in (f) 

(1) ,sTxT )0,(

(2) TxT t ),( .

Applying these conditions to (f) gives

,0 sTb
t

sTT
b1 .

Substituting into (f) 

t
ss

y
TTTT )( .  (g) 

Introducing (g) into (1.10)

t

k
h .       (h) 

Substituting (h) into (a) 

t
x

x
Nu .       (i)
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Thus the key to the determination of the heat transfer coefficient and the 

Nusselt number is the solution to the thermal boundary layer thickness .t

The integral form of the energy equation (5.7) is used to determine .t

Substituting (c) and (g) into (5.7) 

)(

0

)/)(()(

xt

dyyTTTTy
V

dx

d
V

TT
tss

t

s .

Evaluating the integrals and rearranging the result

2

6

t

t dx

dV
.

Rewriting the above 

2

)()(
16 t

t dx

d

V
.    (j) 

To solve this equation for t , let

tr .        (k)

Substituting (k) into (j)

2116
r

dx

d

rV
.

Using (d) to eliminate ,  the above becomes

2/12
11

12

6
rxV

dx

d

rx

V

V
.

Simplifying

21

2

1
rx

dx

d
r

x
,

Expanding and noting that Pr , the above becomes
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x

r

dx

dr
xrr

xPr 2
2

1

2

1 2

,

324
1

r
dx

dr
xr

Pr
.

Separating variables and integrating

x

xo
x

dx

rPr

drr
r

0
3

2

-)/1(

4
.       (l)

Note that the limits in (l) are based on the following boundary condition on

t

0rt  at oxx . (m)

Evaluating the integrals in (l) and rearranging the results 

3/1
4/3

1/3
)/(1

1
xx

Pr
r o

t .      (n) 

Using (d) to eliminate in the above 

3/1
4/3

1/3
)/(1

1 12
xxx

VPr
ot . (o)

The local Nusselt number is determined by substituting (o) into (i) and 

using the definition of the local Reynolds number in (e) to obtain 

3/1
4/31/3 )/(1289.0 xxRePrNu oxx .     (5.27)

For the special case of a plate with no insulated section, setting  in 

(5.27) gives 

0ox

xx RePrNu 1/3
289.0 .       (5.28)
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(iii) Checking.  Dimensional check: Solutions to x/  and are

dimensionless.  Units of 
xNu

t in (o) are correct

Boundary conditions check: Assumed velocity and temperature profiles

satisfy their respective boundary conditions.

Limiting check: For the special case of 1Pr  an exact solution to the ratio

/tr should be unity for .0ox  Setting 1Pr  in (n) gives the 

correct result.

(5) Comments. As might be expected, results based on assumed linear 

profiles for the velocity and temperature are less accurate than those based

on third degree polynomials. Table 5.1 compares exact solutions for x/

and  with integral results for the case of a plate with no 

insulated section based on assumed linear and polynomial profiles.

Equations (4.46) and (4.72c) give exact solutions, and equation (5.10),

(5.25), (5.26) and (5.28) give integral results. Note that the integral method

gives a more accurate prediction of Nusselt number than of the boundary

layer thickness 

1/23/1/
xx RePrNu

.

5.7.3 Uniform Surface Flux

Figure 5.10 shows a flat plate with an insulated leading section of 

length . The plate is heated with uniform flux ox sq  along its surface 

 We consider steady

state, laminar, two-dimensional

flow with constant properties.

We wish to determine surface

tempera-ture distribution and the

local Nusselt number. Applica-

tion of Newton’s law of cooling

gives

.oxx

Table 5.1 

Solution xRe
x 2/13/1 eRPr

Nux

Exact (Blasius/ Pohlhausen) 5.2 0.332

3rd degree polynomial 4.64 0.339

Linear 3.46 0.289
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TxTxhq ss )()( .   (a) 

 Solving (a) for )(xh

TxT

q
xh

s

s

)(
)( .

Introducing the definition of the Nusselt number, the above gives 

TxTk

xq
Nu

s

s
x

)(
.   (b)

Thus once surface temperature  is determined equation (b) gives the

local Nusselt number. is determined using the integral form of the

energy equation

)(xTs
)(xTs

)(

0

)(
0,

xt

dyTTu
dx

d

y

xT
.  (5.7) 

For constant properties, the velocity distribution  in (5.7) is 

independent of temperature. Thus the integral solution to  for a

third degree polynomial is given by (5.9)

),( yxu
),( yxu

3

2

1

2

3 yy

V

u
.      (5.9)

Assume a third degree polynomial for the temperature profile ),( yxT

3
3

2
210 ybybybbT .      (c) 

The boundary conditions on temperature are

(1) sq
y

xT
k

0,
,

(2) TxT t, ,
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(3) 0
,

y

xT t ,

(4) 0
0,

2

2

y

xT
.

Application of the boundary conditions gives the four coefficients.  The 

temperature profile becomes

k

qy
yTyxT s

t

t 2

3

3

1

3

2
),( . (5.29)

Surface temperature is obtained by setting 0y  in the above 

t
s

s
k

q
TxTxT

3

2
)0,()( .     (5.30) 

Substituting (5.30) into (b)

x

x
Nu

t
x

2

3
.     (5.31) 

Thus the problem reduces to determining .t  Substituting (5.9) and (5.29)

into (5.7) 

dy
y

y
yy

dx

d
V

t

t

t

2

3

3

3

3

1

3

2

2

1

2

3

0

.     (d) 

Evaluating the integrals

3

2

140

1

10

1 tt
t

dx

d

V
.    (e) 

For Prandtl numbers larger than unity, 1/t . Thus
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tt

10

1

140

1
3

.   (f) 

Introducing (f) into (e), gives

3

10 t

dx

d

V
.

Integrating the above 

Cx
V

t
3

10 .      (g)

The boundary condition on t  is 

0)( ot x .   (h) 

Applying (h) to (g) 

ox
V

C 10 .   (i) 

Equation (i) into (g) 
3/1

)(10 ot xx
V

    (j) 

Using (5.10) to eliminate in (j)

3/1

1
)(10

13

280
x

Re
xx

V x
ot .

Introducing the definition of the Prandtl and Reynolds numbers and

rearranging the above

3/1

1
1/21/3

594.3

x

x

x

ot

xRerP

.       (5.32)

Surface temperature is obtained by substituting (5.32) into (5.30) 

1/21/3

3/1

1)( 396.2

x

os
s

RerP

x

x

x

k

q
TxT .       (5.33)
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Substituting (5.32) into (5.31) gives the local Nusselt number

1/21/3

3/1

1417.0 x
o

x RerP
x

x
Nu . (5.34)

For the special case of a plate with no insulated section, setting  in 

(5.33) and (5.34) gives

0ox

1/21/3
396.2)(

x

s
s

RerP

x

k

q
TxT ,  (5.35) 

1/21/3
417.0 xx RerPNu .   (5.36) 

This result is in good agreement with the more accurate differential 

formulation solution [1]

1/21/3
453.0 xx RerPNu .    (5.37)

Examination of surface temperature (5.35) shows that it increases with 

distance along the plate according to x .

Example 5.2: Laminar Boundary Layer Flow over a Flat Plate:

                       Variable Surface Temperature 

Consider uniform flow over 

a semi-infinite flat plate.

The plate is maintained at a 

variable surface tempera-

ture given by 

xCTxTs )(

where C is constant. Apply the integral method to determine the local 

Nusselt number using third degree polynomials for the velocity and 

temperature profiles. Assume steady, two-dimensional, constant properties

boundary layer flow and neglect dissipation.

Fig. 5.11
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(1) Observations. (i) The determination of the Nusselt number requires the

determination of the velocity and temperature distributions. (ii). Surface

temperature is variable. (iii) For constant properties, velocity distribution is

independent of temperature.

(2) Problem Definition. Determine the velocity and temperature distribu-

tion for laminar boundary layer flow over a flat plate.

(3) Solution Plan. Start with the definition of local Nusselt number and

equation (1.10) for the heat transfer coefficient h. Apply the integral form 

of the energy equation to determine the temperature distribution

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian, (3) steady state, (4)

constant properties, (5) two-dimensional, (6) laminar flow (Rex < 5 105),

(7) viscous boundary layer flow (Rex > 100), (8) thermal boundary layer

(Pe > 100), (9) uniform upstream velocity and temperature, (10) flat plate, 

(11) negligible changes in kinetic and potential energy, (12) negligible

axial conduction, (13) negligible dissipation and (14) no buoyancy (  = 0 

or g = 0). 

(ii) Analysis. The local Nusselt number is defined as 

k

hx
Nux .     (a) 

The heat transfer coefficient h is given by equation (1.10)

TxT

y

xT
k

h
s )(

)0,(

.   (1.10)

Thus temperature distribution must be determined. The integral

form of the energy equation is used to determine temperature distribution

),( yxT

)(

0

)(
0,

xt

dyTTu
dx

d

y

xT
.      (5.7)

The axial velocity distribution u(x,y), based on an assumed third degree 

polynomial, was determined in Section 5.7.1 and is given by
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3

2

1

2

3 yy

V

u
,       (5.9)

where

V

x
x

Rex
13

28013/280
.       (5.10)

We assume a third degree temperature polynomial

3
3

2
210 )()()()(),( yxbyxbyxbxbyxT .    (b)

The temperature boundary conditions are: 

(1) ,)()0,( xTxT s

(2) TxT t ),( ,

(3) 0
),(

y

xT t
,

(4) 0
0,

2

2

y

xT
.

The four boundary conditions are used to determine the coefficients in (b). 

The assumed profile becomes

3

3

2

1

2

3
)()(),(

tt
ss

yy
xTTxTyxT .     (c)

Substituting (c) into (1.10)

t

k
xh

2

3
)( .   (d) 

Introducing (d) into (a) 

t
x

x
Nu

2

3
.  (e) 

Thus the problem reduces to determining the thermal boundary layer

thickness t . This is accomplished using the integral form of the energy
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equation (5.7). Substituting (5.9) and (c) into (5.7) and evaluating the

integral, gives

42

280

3

20

3
)(

)(

2

3 tt
s

t

s VTxT
dx

dTxT
. (f) 

This equation is simplified for Prandtl numbers greater than unity. For this

case

1
t

,   for 1Pr ,  (5.15) 

Thus
24

20

3

280

3 tt .

Equation (f) simplifies to 

2

)()(10 t
ss

t

TxT
dx

d
VTxT .      (g) 

However

xCTxTs )( . (h)

Substituting (5.10) and (h) into (g) 

2

280

13
10 t

t x

V
xC

dx

d
VxC .

Simplifying, rearranging and separating variables 

tt ddxxV 22/3
/

13

280
5 .    (i) 

The boundary condition on t is

0)0(t .    (j) 

Integrating (i) using condition (j) 
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2/13/1
3/1

)/()(13/28010 VxPrt . (k)

Substituting into (e) and introducing the definition of the local Reynolds

number

2/13/1
417.0 xx eRPrNu .  (5.38) 

(5) Checking. Dimensional check: Equations (5.10), (c), (d) and (k) are 

dimensionally correct. Equations (d) and (5.38) are dimensionless.

Boundary conditions check: Assumed temperature profile satisfies the four 

boundary conditions. 

(6) Comments. (i) The local Nusselt number given in (5.38) is identical to 

the result of Section 5.7.3 for the case of uniform surface flux shown in 

equation (5.36). This is not surprising since uniform surface flux results in 

a variable surface temperature given by 

1/21/3
396.2)(

x

s
s

RerP

x

k

q
TxT . (5.35)

Note that the above can be rewritten as

xCTxTs )(

This is identical to the surface temperature specified in this example.

(ii) The same procedure can be used to analyze plates with surface

temperature distribution other than the above.
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PROBLEMS

5.1 For fluids with 1Pr  the thermal boundary layer thickness is 

much larger than the viscous boundary layer. That is .1/t  It 

is reasonable for such cases to assume that fluid velocity within the

thermal layer is uniform 

equal to the free stream 

velocity. That is 

u .V

x

 Consider laminar bounda-

ry layer flow over a flat

plate. The surface is maintained at uniform temperature s and has an 

insulated leading section of length o  Assume a third degree

polynomial temperature profile. Show that the local Nusselt number

is given by

T
.

2/12/1

2/1

153.0 x
o

x eRPr
x

x
Nu ,

 where the local Reynolds number is ./xVRex

5.2 For fluids with 1Pr
the thermal boundary

layer thickness is much

smaller than the viscous 

boundary layer. That is 

 It is reason-

able for such cases to assume that fluid velocity within the thermal

layer is linear given by 

.1/t

y
Vu .

Consider uniform laminar boundary layer flow over a flat plate with

an insulated leading section of length  The plate is maintained at

uniform surface temperature T  Assume a third degree polynomial

temperature profile, show that the local Nusselt number is given by

.ox

.s

2/13/1
3/1

4/3
/1319.0 xox eRPrxxNu .



Problems  195

5.3  A square array of chips is mounted flush on a flat plate. The array 

measures . The forward edge of the array is at a distance

o  from the leading edge of the plate. The chips dissipate uniform

surface flux  The plate is cooled by forced convection with 

uniform upstream velocity V  and temperature .  Assume laminar

boundary layer flow. Assume

further that the axial velocity

within the thermal boundary 

layer is equal to the free stream

velocity.  Use a third degree 

polynomial temperature profile.

cmcm LL

x
.sq

T

        [a] Show that the local Nusselt

number is given by

)/(1
75.0

xx

eRPr
Nu

o

x
x .

 [b] Determine the maximum surface temperature.

5.4 A liquid film of thickness 

H flows by gravity down

an inclined surface. The

axial velocity u is given by

2

2

2
H

y

H

y
uu o .

 where o  is the free 

surface velocity. At  the surface is maintained at uniform

temperature  Fluid  temperature upstream of this section is 

Assume laminar boundary layer flow and that 

u
0x

.sT .T
.1/ Ht  Determine

the local Nusselt number and the total surface heat transfer from a

section of width W and length L. Neglect heat loss from the free

surface. Use a third degree polynomial temperature profile.

5.4    A thin liquid film flows under gravity down an inclined surface of 

width W.  The film thickness is H and the angle of inclination is .

The solution to the equations of motion gives the axial velocity u of 

the film as
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.
2

22

2
2

sin

H

y

H

ygH
u

q

Heat is added to the film

along the surface beginning

at  at uniform flux s0x .
Determine the total heat

added from  to the 

section where the thermal boundary layer penetrates half the film

thickness. Assume laminar boundary layer flow. Use a third degree 

polynomial temperature profile. 

0x

5.6 A plate is cooled by a fluid with Prandtl number .1Pr Surface

temperature varies with distance from the leading edge according to 

xCTxs )0,(

.

number is given by

,

 and that surface heat orm. Assume laminar boundary layer

5.7 e is cooled by a fluid with Prandtl number

T ,

 where C is constant. For 

such a fluid it is 

reasonable to assume

that  Use a 

third degree polynomial

temperature profile to

show that the local Nusselt 

Nu

Vu

2/12/1
75.0 xx eRPr

flux is unif

flow.

A plat 1Pr . Surface

temperature varies with distance form the leading edge according to 

xCTxT )0,( ,

w r

s

here C is constant. Fo

such a fluid it is reason-

able to assume that

axial velocity within the 

thermal boundary layer

is linear given by

/yVu .
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Determine the local Nusselt number and show that surface heat flux is 

uniform. Use a third degree polynomial temperature profile and

assume laminar boundary layer flow. 

5.8   Surface temperature of a plate increases exponentially with distance

from the leading edge according to

)exp()0,( xCTxTs ,

 where C and  are con-

stants. The plate is cooled

with a low Prandtl number

fluid ( 1Pr ). Since for

such fluids t , it is reasonable to assume uniform axial

velocity within the thermal boundary layer. That is

Vu .

 Assume laminar boundary layer flow and use a third degree polyno-

mial temperature profile.

 [a] Show that the local Nusselt number is given by

.
2/12/12/1

)exp(175.0 xx eRPrxxNu

 [b] Determine surface flux distribution.

5.9    A square array of chips of side L is mounted flush on a flat plate. The 

chips dissipate non-uniform surface flux according to

.
x

C
qx

.

  The plate is cooled by forced

convection with uniform upstream

velocity  and temperatureT .

Assume laminar boundary layer

flow with 

V

1/t  Use third 

degree polynomials for the axial 

velocity and temperature.

 [a] Show that the local Nusselt number is given by

.
2/13/1

331.0 eRPrNux

 [b] Show that surface temperature is uniform.
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5.10  A square array of chips of side 

L is mounted flush on a flat 

plate. The forward edge of the 

array is at a distance o  from

the leading edge of the plate.

The heat dissipated in each

row increases with successive

rows as the distance from the

forward edge increases. The dis

arrangement may be approximated by

x

tribution of surface heat flux for this

 where C is constant. The plate is cooled by forced convection with 

2Cxqs ,

uniform upstream velocity V  and temperatureT .  Assume laminar

boundary layer flow. Assu  further that the axial velocity within

the thermal boundary layer is equal to the free stream velocity,

Vu .  Use a third degree polynomial temperature profile. 

that the local Nusselt number is given by

me

 [a] Show

2/1
2/1

3 2/1

 [b] Determine the 

)/(13.1 eRPrxxNu ox .

maximum surface temperature

uce the maximum

5.11 ing a linear surface flux distribution

[c] How should the rows be rearranged to red

surface temperature?

Repeat Problem 5.10 us

.Cxqs

 [a]  Show that the local Nusselt number is given by

2/1
2/12/12)/(106.1 eRPrxxNu ox .

 [b]  Determine the maximum surface temperature

ce the maximum

5.12 e  and flow rate  is injected radially 

[c] How should the rows be rearranged to redu

surface temperature?

A fluid at temperatur oT om
between parallel plates. The spacing between the plates is H. The

upper plate is insulated and the lower plate is maintained at uniform

temperature sT along oRr  and is insulated along .0 oRr
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Consider lam nar boun layer flow and assume tha l

velocity u does not vary in the direction normal to the plates (slug

flow).

i dary t the radia

[a drrt 2  the external mass

er is flow, edm , to the thermal boundary lay

t

] Show that for a cylindrical element

t
o

e d
H

m
drru

dr

d
dm

0

2 .

[b] Show that the integral form of conservation of energy is 

dyTT
dr

d

H

cm

r

rT
kr o

po
t

)(
2

)0,(

0

.

 [c] Assume a linear temperature profile, show that the local Nusselt

number is 

2/12/1
2/1

2
/1

2

1
ror eRPrrRNu ,

 where 

H

mur
Re o

r
2

.
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5.13 The lower plate in Problem 5.12 is heated with uniform flux 

along  and insulated along 
sq

oRr .0 oRr

[a] Show that for a cylindrical element drrt 2  the external mass

flow  to the thermal boundary layer isedm

t
o

t

e d
H

m
drru

dr

d
dm

0

2 .

[b] Show that the integral form of conservation of energy is

dyTT
dr

d

H

cm
q o

t
po

s )(
2

0

.

 [c] Assume a linear temperature profile, show that the local Nusselt

number is 

2/12/1
2/1

2
/1 ror eRPrrRNu ,

  where

H

mur
Re o

r
2

.

5.14 A porous plate with an impermeable and insulated leading section of

length  is maintained at uniform temperature  along 

The plate is cooled by forced convection with a free stream velocity

 and temperature  Fluid at temperature  is injected through

the porous surface with

uniform velocity  The

injected and free stream

fluids are identical. As-

sume laminar boundary

layer flow, introduce axial 

ox sT .oxx

V .T oT

.ov
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velocity simplification based on 1Pr  and use a linear 

temperature pro-file to determine the local Nusselt number.

5.15 A porous plate with an 

impermeable and insulated

leading section of length

o  is  heated with uniform

surface flux s

x
q  along 

o  The plate is cool-

ed by forced convection 

with a free stream velocity 

 and temperature T  Fluid at temperature oT  is injected through

the porous surface with uniform velocity o  The injected and free

stream fluids are identical. Assume laminar boundary layer flow and

introduce axial velocity simplification based on 

.

V .
.

1Pr . Use a 

third degree polynomial temperature profile to determine the local 

Nusselt number.

xx

v

5.16  Consider steady two-dimensional laminar flow in the inlet region of

two parallel plates. The plates are separated by a distance H. The 

lower plate is maintained at uniform temperature oT  while heat is

removed from the upper plate at uniform flux o .q  The inlet 

temperature is i  Determine the distance from the inlet where the 

lower and upper thermal boundary layers meet. Use a linear 

temperature profile and assume that velocity is uniform equal to V
Express your result in terms of dimensionless quantities. 

.T

.i

iV
iT

0 x

L

H

oT

oq

1
t

2
t
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HEAT TRANSFER IN CHANNEL FLOW 

6.1 Introduction

We consider internal flow through channels such as ducts, tubes and 

parallel plates. The following factors should be noted in analyzing heat 

transfer in internal flow.

(1) Laminar vs. turbulent flow. Transition from laminar to turbulent flow 

takes place when the Reynolds number reaches the transition value. For 

flow through tubes the experimentally determined transition Reynolds 

number  istDRe

2300
Du

Re
tD ,                                   (6.1) 

where

tube diameter D
u mean velocity 

kinematic viscosity 

(2) Entrance vs. fully developed region.  Based on velocity and 

temperature distribution, two regions are identified:  

(i)  Entrance region 

(ii) Fully developed region 

The length of the entrance region for velocity and temperature as well as 

the characteristics of these regions will be examined.   



204      6 Heat Transfer in Channel Flow 

(3) Surface boundary conditions. Two common thermal boundary 

conditions will be considered: 

(i)  Uniform surface temperature 

(ii) Uniform surface heat flux  

(4) Objective. A common problem involves a fluid entering a channel with 

uniform velocity and temperature. The objective in analyzing internal flow 

heat transfer depends on the thermal boundary condition.  

(i) Uniform surface temperature. In this class of problems we seek to 

determine axial variation of the following variables: 

(1) Mean fluid temperature  

(2) Heat transfer coefficient 

(3) Surface heat flux 

(ii) Uniform surface flux. For this class of problems the objective is to 

determine axial variation of the following variables: 

(1) Mean fluid temperature  

(2) Heat transfer coefficient 

(3) Surface temperature 

6.2 Hydrodynamic and Thermal Regions: General Features

We consider fluid entering a channel with uniform velocity  and 

temperature  Velocity and temperature boundary layers form on the 

inside surface of the channel. The two boundary layers grow as the distance 

x from the entrance is increased. Two regions are identified for each of the 

flow (hydrodynamic) and temperature (thermal) fields:  

iV

.iT

(1) Entrance region. This is also referred to as the developing region. It 

extends from the inlet to the section where the boundary layer thickness 

reaches the channel center. 

(2) Fully developed region. This zone follows the entrance region.

Note that in general the lengths of the velocity and temperature entrance 

regions are not identical. The general features of velocity and temperature 

fields in the two regions will be examined in detail. 
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6.2.1 Flow Field 

(1) Entrance Region (Developing Flow, hLx0 ). Fig. 6.1 shows the 

developing velocity boundary 

layer in the entrance region of a 

tube. This region is called the 

hydrodynamic entrance region. Its 

length, h , is referred to as the 

hydrodynamic entrance length.

This region is characterized by the 

following features: 

L

Streamlines are not parallel. 

Thus the radial velocity component does not vanish ).0rv(

developedfully

r

6.1Fig.

x

hL

u
cu

iV

u

Core velocity  increases with axial distance x (cu cu constant).

Pressure decreases with axial distance ( 0/ dxdp ).

Velocity boundary layer thickness is within tube radius ( 2/D ).

(2) Fully Developed Flow Region.  At  the flow is described as 

fully developed. It is characterized by the following features: 

hLx

Streamlines are parallel ).0rv(

For two-dimensional incompressible flow the axial velocity u is 

invariant with axial distance x.  That is .0/ xu

6.2.2 Temperature Field

(1) Entrance Region (Developing Temperature, tLx0 ). Fig. 6.2 

shows fluid entering a tube with uniform velocity  and temperature 

The surface is at uniform 

temperature  The region 

in which the temperature 

boundary layer forms and 

grows is referred to as the 

thermal entrance region.

The length of this region, 

 is called the thermal

entrance length. At t
the thermal boundary layer 

thickness t

iV .iT

.sT

,tL
Lx

 reaches the 

tube’s center. This region is 

developedfully

r

iV

6.2Fig.

iT

cT
sT

tL

T

x

t

sT

sT
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characterized by the following features: 

Core temperature  is uniform equal to inlet temperature ( ).cT ic TT

Temperature boundary layer thickness is within the tube’s radius 

( ).2/Dt

(2) Fully Developed Temperature Region. The region  is 

characterized by the following features: 
tLx

Fluid temperature varies radially and axially. Thus .0/ xT

A dimensionless temperature  (to be defined later) is invariant with 

axial distance x. That is .0/ x

6.3 Hydrodynamic and Thermal Entrance Lengths

The determination of the two entrance lengths  and  is important in 

many applications. Scale analysis will be used to estimate the entrance 

lengths and results of analytic and numerical solutions will be summarized.  

hL tL

6.3.1 Scale Analysis

(1) Hydrodynamic Entrance Length Result of scale analysis for the 

velocity boundary layer thickness for external flow is given by (4.16)  

.hL

xRex

1
.                                      (4.16) 

Applying (4.16) to the flow through a tube at the end of the entrance region 

 where hLx D , gives 

hLh ReL

D 1
.                                         (a) 

We now express  in terms of the Reynolds number based on tube 

diameter D
hLRe

D

L
Re

D

LDuLu
Re h

D
hh

hL ,                           (b) 

where u is mean or average velocity. Substituting (b) into (a) and 

rearranging
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1
/

2/1

~
Re

DL

D

h .                                      (6.2) 

(2) Thermal Entrance Length  In internal flow both .tL  and 

t increase with axial distance in the entrance region and eventually 

become equal upon reaching the centerline. Thus the scale for u for all 

Prandtl numbers is ~u u . This is unlike external flow where different 

scales are used depending on the Prandtl number. To scale t  we start with 

the external flow result, equation (4.24)

2/12/1~ PrReL Lt .                                (4.24) 

Applying (4.24) at  where tLL Dt

2/12/1~ rPReLD tt .                                     (a) 

The Reynolds number for internal flow should more appropriately be based 

on the diameter D rather than length  Thus .tL

D

L
Re

D

LDuLu
Re t

DtL
tt .                             (b) 

Substituting (b) into (a) and rearranging 

1~
/

2/1

rPRe

DL

D

t .                                    (6.3) 

From (6.2) and (6.3) we obtain

Pr
L

L

h

t ~ .                                             (6.4) 

6.3.2 Analytic and Numerical Solutions: Laminar Flow 

Solutions to the velocity and temperature distribution in the entrance region 

of various channel geometries have been obtained for laminar flow using 

analytic and numerical methods. Results provide information on  and hL
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.Lt  Since these lengths are not uniquely   determined, their values depend 

on how they are defined.  

(1) Hydrodynamic Entrance Length . Results for  are expressed ashL hL

eDh
h ReC

D

L

e

,                                       (6.5) 

where e  is the equivalent 

diameter, defined as   

D

P

A
D

f
e

4
.

Here f  is channel flow area 

and

A
P  is channel perimeter.  

The coefficient hC  depends 

on channel geometry and is 

given in Table 6.1 [1]. Scaling 

prediction of h  can now be 

evaluated using this table. 

Recall that scaling gives 

C

Table 6.1
Entrance length coefficients [1]

1
/

2/1

~
Re

DL

D

h .  (6.2) 

To compare this with analytical results, equation (6.5) is rewritten as 

2/1

2/1

/
h

D

h C
Re

DL

e

e .                                   (a) 

As an example, for a rectangular channel of aspect ratio 2, Table 6.1 gives 

 Substituting this value into (a), gives .085.0hC

29.0085.0
2/1

2/1

/

eD

h

Re

DL e .                           (b) 

Comparing (6.2) with (b) shows that scaling estimates the constant 0.29 to 

be unity. 

geometry
hC tC

uniform
surface
flux temperature

uniform
surface

b

b

b

a = b

a = 2b

ba /

0.056 0.043 0.033

0.09 0.0660.041
a

0.049

0.075 0.042 0.054

0.085 0.057
a

a

0.011 0.012 0.008

a = 4b
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(2) Thermal Entrance Length t . The length t depends on surface 

boundary conditions. Two cases are of special interest: uniform surface 

flux and uniform surface temperature. Solutions are expressed as  

L L

Dt
t PrReC

D

L

e

,                                      (6.6) 

where t  is a constant which depends on channel geometry as well as 

boundary conditions and is given in Table 6.1. To compare scaling 

prediction of with the results of Table 6.1, equation (6.6) is rewritten as 

C

tL

2/1

2/1
/

t

D

t C
PrRe

DL e .                                  (c) 

Scaling gives 

1~
/

2/1

rPRe

DL

D

t .                                    (6.3) 

As an example, for a rectangular channel of aspect ratio 2 at uniform 

surface temperature, Table 6.1 gives .049.0tC  Substituting this value 

into (c), gives 

22.0049.0
2/1

2/1

/

eD

et

PrRe

DL
.                          (d) 

Comparing (6.3) with (d) shows that scaling estimates the constant 0.22 to 

be unity. 

      For turbulent flow, results for h  and t  are based on experimental 

data. In general, both lengths are much shorter than their corresponding 

laminar flow values. The following equation provides a guide for 

estimating the two lengths [2] 

L L

10
D

L
,                                            (6.7) 

where .th LLL
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Example 6.1: Entrance Length for a Square Channel 

In applications where entrance length is small compared to channel length, 

it is reasonable to neglect entrance length and assume fully developed 

conditions throughout. This approximation represents a significant 

simplification in obtaining analytic solutions. Consider the flow of water 

through a 0.75 cm  0.75 cm square duct which is 2.5 m long. The duct is 

heated with uniform surface flux. The mean axial velocity is 0.12 cm/s. Is it 

justified to neglect entrance lengths? Evaluate water properties at .C55o

(1) Observations.  (i) This is an internal forced convection problem.  (ii)  

The fluid is heated at uniform surface flux.  (iii) The Reynolds number 

should be computed to establish if the flow is laminar or turbulent. (iv) If 

the flow is laminar, equations (6.5) and (6.6) can be used to determine 

entrance lengths and t  (v) Velocity and temperature can be assumed 

fully developed if entrance lengths are small compared to channel length. 
hL .L

(2) Problem Definition. Determine entrance lengths and  and 

compare them with total channel length.  
hL tL

(3) Solution Plan. Compute the Reynolds number to establish if the flow is 

laminar or turbulent. If laminar, apply (6.5) and (6.6) to determine entrance 

lengths and    hL .tL

(4) Plan Execution.

      (i) Assumptions. (1) Con-

tinuum, (2) steady state, (3)  

Newtonian, (4) constant prop-

erties, (5) uniform surface 

flux, (6) negligible axial conduction, (7) negligible changes in kinetic and 

potential energy, and (8)  negligible dissipation.  

sq

L

0

sq

s
sux

      (ii) Analysis

The transition Reynolds number for flow through channels is

2300
eDu

Re
tD ,                                    (a) 

The Reynolds number for flow through a square channel is defined as

eDu
ReDe ,                                          (b) 

where
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 = equivalent diameter, m eD

= Reynolds number  
eDRe

u = mean velocity = 0.12 m/s 

= kinematic viscosity = 0.5116 10-6 m2/s

Water properties are evaluated at the mean temperature, C.o
55mT  The 

equivalent diameter for a square channel is defined as 

P

A
D

f
e 4   = 4

4

2S

S
 = S ,                                (c) 

where

= channel flow area = , mfA 2S 2

P = channel perimeter in contact with the fluid = 4S, m 

S = side dimension of the square channel = 0.0075 m 

If the flow is laminar, and  are determined using equations (6.5) and 

(6.6)

hL tL

Dh
h ReC

D

L

e

,                                      (6.5) 

and

Dt
t PrReC

D

L

e

,                                    (6.6) 

where

 = hydrodynamic entrance length coefficient = 0.09, (Table 6.1) hC

tC = thermal entrance length coefficient = 0.066, (Table 6.1) 

hL  = hydrodynamic entrance length, m 

tL  = thermal entrance length, m 

Pr = Prandtl number = 3.27  

Neglecting entrance lengths is justified if

1
L

Lh  and 1
L

Lt ,                                  (d) 

where

= total channel length = 2.5 m L

      (iii) Computations. Substituting into (b) 
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DeRe  = 
s)/(m100.5116

0.0075(m)(m/s)0.12

26
 = 1759 

Since the Reynolds number is smaller than 2300, the flow is laminar. 

Equations (6.5) and (6.6) give

m19.11759)m(0075.0(09.0hL

m85.21759)27.3)(m(0075.0(066.0tL

Thus

48.0
)m(5.2

)m(19.1

L

Lh

14.1
)m(2.3

)m(85.2

L

Lt

Comparison with (d) shows that the entrance lengths cannot be neglected. 

      (iv) Checking. Dimensional check: Computations showed that equa-

tions (b) and (d) are dimensionally consistent. 

(5) Comments.  (i) In general, the determination of the Reynolds number is 

an essential first step in analyzing internal flow.  (ii) Fluids with Prandtl 

numbers greater than unity have longer thermal entrance lengths than 

hydrodynamic lengths. (iii) Entrance lengths can exceed channel length. 

6.4 Channels with Uniform Surface Heat Flux sq

Consider a section of a channel shown in Fig. 6.3.  Let the start of the 

section be at  and its end at 0x Lx . The mean temperature at the 

inlet to this section is mmiT )0(T . Heat is added at the surface at a 

uniform flux .  We wish to determine the following: sq

q

0

sq

x
miT

6.3Fig.

L

)(xTm

(1) Total surface heat transfer rate s
between  and location x along the 

channel.

0x

(2)  Mean temperature variation ).(xTm

(3)  Surface temperature variation ).(xTs

Since the heat flux is uniform, the total 

heat transfer rate  issq
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xPqAqq ssss ,                                  (6.8) 

where is channel surface area and P is perimeter.  sA

      The mean temperature  is obtained from energy conservation. 

Assume steady state, no energy generation, negligible changes in kinetic 

and potential energy and no axial conduction. Energy added at the surface 

must be equal to energy absorbed by the fluid. For constant properties, 

conservation of energy for a control volume between 

)(xTm

0x and x gives

])([ mimpss TxTcmxPqq ,

where  is mass flow rate and is specific heat.  Solving for 
  we obtain 
m pc

),(xTm

x
cm

Pq
TxT

p

s
mim )( .                                (6.9) 

This equation gives the variation of the mean temperature along the 

channel. Note that no assumptions have been made regarding the region 

occupied by the section. That is, equations (6.8) and (6.9) are valid for the 

entrance region, fully developed region or a combination of the two.  

Furthermore, they apply to laminar as well as turbulent flow.  The specific 

heat p should be evaluated at the average of the inlet and outlet mean 

temperatures. 

c

      Surface temperature  is determined using heat transfer analysis. 

Assume axisymmetric flow and neglect variations along the perimeter P,

Newton’s law of cooling gives 

)(xTs

)()()( xTxTxhq mss .

Solving for )(xTs

)(
)()(

xh

q
xTxT s

s m .

Using (6.9) to eliminate , we obtain )(xTm

)(

1
)(

xhcm

Px
qTxT

p
sims .                      (6.10) 
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Thus, to determine surface temperature distribution the heat transfer 
coefficient h(x) must be known.  It is here that questions regarding the 
nature of the flow (laminar or turbulent) as well as the region of interest 
(entrance or fully developed) become crucial. Analytic and numerical 
solutions for h for laminar flow are available for both entrance and fully 
developed regions. For turbulent flow, empirical equations are used. The 
determination of  h for laminar flow will be presented in Section 6.6. 

Example 6.2: Maximum Surface Temperature

Water flows through a tube with a mean velocity of 0.2 m/s.  The mean inlet 

and outlet temperatures are  and  respectively. The inside 

diameter of the tube is 0.5 cm.  The surface is heated with uniform heat flux 

of 0.6 W/cm

C20o ,C80o

2. If the flow is fully developed at the outlet the corresponding 
Nusselt number for laminar flow is given by

364.4
k

hD
NuD

Determine the maximum surface 

temperature.

(1)  Observations. (i) This is an 

internal forced convection problem in a tube.  (ii) The surface is heated at 

uniform flux. (iii) Surface temperature changes along the tube. It is 

maximum at the outlet. (iv) The Reynolds number should be calculated to 

determine if the flow is laminar or turbulent. (v) If hydrodynamic and 

thermal entrance lengths are smaller than tube length, the flow can be 

assumed fully developed at the outlet. (vi) For fully developed flow, the 

heat transfer coefficient is uniform. (vii) Tube length is unknown.  

(2)  Problem Definition. (i) Find the required length to heat the water to a 

given temperature, and (ii) determine surface temperature at the outlet. 

(3)  Solution Plan. (i) Since surface flux, mean velocity, diameter, inlet 

and outlet temperatures are known, apply conservation of energy between 

the inlet and outlet to determine the required tube length. (ii) Compute the 

Reynolds number to determine if the flow is laminar or turbulent. (iii) 

Calculate the hydrodynamic and thermal entrance lengths and compare 

with tube length. (iv) Apply surface temperature solution for flow through 

a tube with constant surface flux. 

0

sq

x

L

)(xTm

)(xTs

sq
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(4)  Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian, (3) steady state, (4) 

constant properties, (5) axisymmetric flow, (6) uniform surface heat flux, 

(7) negligible changes in kinetic and potential energy, (8) negligible axial 

conduction and (9) negligible dissipation. 

(ii) Analysis. Application of conservation of energy between the inlet 

and outlet, gives 

)( mimops TTmcqDL ,                               (a) 

where

pc  = specific heat, J/kg-oC

D  = tube diameter = 0.5 cm = 0.005 m 

L  = tube length, m 

= mass flow rate, kg/s m

miT  = mean temperature at the inlet = 20oC

 = mean temperature at the outlet = 80moT oC

sq = surface heat flux = 0.6 W/cm2 = 6000 W/m2

Solving (a) for L

L =
s

mimop

qD

TT mc )(
.                                  (b) 

The mass flow rate m is given by 

uDm 2)4/( ,                                      (c)

where

u = mean flow velocity = 0.2 m/s 

 = density, kg/m3

To determine surface temperature at the outlet, use the solution for surface 

temperature distribution for flow through a tube with uniform surface flux, 

given by equation (6.10) 

)(

1
)(

xhcm

Px
qTxT

p
sims ,                    (6.10) 

where

h = local heat transfer coefficient, W/m2-oC
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P = tube perimeter, m 

= local surface temperature, )(xTs
oC

       x = distance from inlet of heated section, m 

The perimeter P is given by 

P =  D.                                                (d) 

Maximum surface temperature at the outlet,  is obtained by setting x

= L in (6.10) 

),(LTs

)(

1
)(

Lhcm

LP
qTLT

p
sims .                         (e) 

The determination of h(L) requires establishing if the flow is laminar or 

turbulent and if it is fully developed at the outlet.  Thus, the Reynolds 

number should be determined. It is defined as 

Du
ReD ,                                             (f) 

where = kinematic viscosity, m2/s. Properties of water are determined at 

the mean temperature mT , defined as

mT  = 
2

momi TT
.                                        (g) 

Substituting into (g)

T  = C50
2

)C)(8020( o
o

Properties of water at this temperature are  

= 4182 J/kg-pc oC

k = 0.6405 W/m-oC

Pr = 3.57 

 = 0.5537 10
-6

m2/s

  = 988 kg/m
3

Substituting into (f) 

ReD 1806
/s)

2
(m

6
100.5537

005(m)0.2(m/s)0.
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Since the Reynolds number is less than 2300, the flow is laminar. The next 

step is calculating the hydrodynamic and thermal entrance lengths h and

t

L
L to see if the flow is fully developed at the outlet. For laminar flow in a 

tube, the hydrodynamic and thermal lengths are given by (6.5) and (6.6) 

Dh
h ReC

D

L

e

,                                        (6.5) 

Dt
t PrReC

D

L

e

,                                      (6.6) 

where

= hydrodynamic entrance length coefficient = 0.056, (Table 6.1) hC

tC = thermal entrance length coefficient = 0.043, (Table 6.1) 

hL = hydrodynamic entrance length, m 

tL = thermal entrance length, m 

Substituting numerical values into (6.5) and (6.6) 

= 0.056  0.005 (m)  1806 = 0.506 m hL

and

= 0.043  0.005 (m)  1806  3.57 = 1.386 m tL

If tube length L is larger than  and , the flow is fully developed at the 

outlet.  Thus, it is necessary to compute L using (b). The mass flow rate in 

(b) is given by (c) 

hL tL

m = 988(kg/m3) 0.2(m/s)  (0.005)2(m2)/4 = 0.00388kg/s 

Substituting into (b) 

L =
)/() 2242

mcm106(W/cm0.005(m)0.

C)
o

20)(C)(80
o

4182(J/kg/s)0.00388(kg
 = 10.33 m 

Since L is larger than both h  and t , the flow is fully developed at the 

outlet. The heat transfer coefficient for fully developed laminar flow 

through a tube with uniform surface flux is given by  

L L

k

hD
NuD   = 4.364.                                        (h) 

(iii) Computations. The heat transfer coefficient at the outlet is 

computed using (h) 
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h(L) = 4.364 
0.005(m)

C)
o

0.6405(W/m
 = 559 W/m2-oC

With L, m and h(L) determined, equation (e) gives outlet surface tempera-

ture

C)559(W/m

1

C)kg/s)4182(J/0.00388(kg

10.33(m)0.005(m)
)W/m(6000C20)(

o2o

2o
LTs

C7.90
o

(iv) Checking. Dimensional check: Computations showed that equa-

tions (b), (c), (e), (f), (6.5), and (6.6) are dimensionally correct. 

Quantitative checks: (1) Alternate approach to determining :

Application of Newton’s law of cooling at the outlet gives 

)(LTs

moss TLTLhq )()( .                                   (i)

Solving for )(LTs

h

q
TLT s

mos )( = 80 (oC) +
C)

2
559(W/m

)/m(cm10)0.6(W/cm

o

2242

= 90.7 Co

(2) The value of h is within the range reported in Table 1.1 for forced 

convection of liquids.

Limiting check: If momi , the required length should vanish.  Setting 

 in (b) gives L = 0.

TT

momi TT

(5) Comments. (i) As long as the outlet is in the fully developed region, 

surface temperature at the outlet is determined entirely by the local heat 

transfer coefficient. Therefore, it is not necessary to justify neglecting 

entrance length to solve the problem.  

(ii) In solving internal forced convection problems, it is important to 

establish if the flow is laminar or turbulent and if it is developing or fully 

developed.

6.5 Channels with Uniform Surface Temperature  

Consider the same channel flow presented in the previous section with one 

important change.  Instead of imposing uniform heat flux at the surface we 
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specify uniform surface temperature as 

shown in Fig. 6.4.  We wish to 

determine the following: 

(1) Mean temperature variation ).(xTm

(2) Total heat transfer rate s  between 

and location x along the channel. 

q
0x

(3) Surface heat flux variation ).(xqs

Because surface flux is not uniform in 

this case, it is necessary to work with an 

infinitesimal element dx.  Applying con-

servation of energy to the element and 

invoking the assumptions used in the uniform surface flux case, we obtain 

0 x
miT )(xTm

dx
dx

dT
T m

m

dx

sdq

m

sT

6.4Fig.

mT

dx

mps dTcmdq .                                         (a) 

Applying Newton's law of cooling to the element gives

PdxxTTxhdq mss )()( .                              (b) 

Eliminating by combining the two equations and separating variables 

gives

sdq

dxxh
cm

P

xTT

dT

pms

m )(
)(

.                              (c) 

Integrating (c) from x = 0, where mimm TTT )0( , to x where 

, gives)(xTT mm

x

dxxh
cm

P

TT

TxT

psmi

sm

0

)(
)(

ln .                   (6.11) 

The integral in (6.11) cannot be evaluated unless h(x) is known.  We can 

rewrite this integral in terms of the average heat transfer coefficient h  over 

the length x by applying the definition of h
x

dxxh
x

h

0

)(
1

.                                   (6.12) 

Introducing (6.12) into (6.11) and solving the resulting equation for )(xTm
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][exp)()( x
cm

hP
TTTxT

p
smim s .                 (6.13) 

The key factor in (6.13) is finding h(x). The determination of h(x) depends 

on whether the flow is laminar or turbulent and if the channel section is in 

the entrance region, fully developed region or both. With known

from (6.13), the total heat transfer rate and the variation of the local heat 

flux along the channel can be determined. Application of conservation of 

energy between the inlet of the channel and a section at location x gives 

)(xTm

])([ mimps TxTcmq .                             (6.14) 

Application of Newton’s law of cooling gives the heat flux at

location x

)(xqs

)]()[()( xTTxhxq mss .                           (6.15) 

      Properties such as kinematic viscosity, thermal conductivity, and 

specific heat should be evaluated at the average of the inlet and outlet mean 

temperatures. 

Example 6.3: Required Tube Length

Air flows with a mean velocity of 2 m/s through a tube of diameter 1.0 cm.  

The mean temperature at a given section in the fully developed region is 

35oC.  The surface of the tube is maintained at a uniform temperature of 

130oC.  For fully developed laminar flow through tubes at uniform surface 

temperature, the Nusselt number is given by 

657.3
k

hD
NuD

Determine the length of the tube section needed to raise the mean 

temperature to 105oC.

(1) Observations. (i) This is an internal forced convection problem. (ii) 

The surface is maintained at uniform temperature. (iii) The Reynolds 

number should be checked to establish if the flow is laminar or turbulent. 

(iv) Since the Nusselt number for this flow is constant it follows that the 

heat transfer coefficient is uniform along the tube length. 

(2) Problem Definition.  Determine the tube length needed to raise the 

mean temperature to a specified level.  
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(3) Solution Plan. Use the analysis of flow in tubes at uniform surface 

temperature to determine the required tube length. Compute the Reynolds 

number to establish if the flow is laminar or turbulent. 

(4) Plan Execution.

(i) Assumptions. (1)  Continuum, (2) Newtonian, (3) steady state, (4) fully 

developed flow, (5) constant properties, (6) uniform surface temperature, 

(7) negligible changes in kinetic and potential energy, (8) negligible axial 

conduction, and (9) negligible dissipation. 

(ii) Analysis. For flow through a tube at uniform surface temperature, 

conservation of energy and Newton's law of cooling lead to equation (6.13)

][)()( exp x
cm

hP
TTTxT

p
smism ,                (6.13) 

where

pc = specific heat, CJ/kg o

h = average heat transfer coefficient for a tube of length L, CW/m
o2

m  = mass flow rate, kg/s 

P = tube perimeter, m 

Tm(x) = mean temperature at x, Co

miT = mean inlet temperature = 35 Co

sT = surface temperature = 130 Co

x = distance from inlet of heated section, m 

Applying (6.13) at the outlet of the heated section (x = L) and solving for L

mos

misp

TT

TT

hP

cm
L ln ,                                    (a) 

where

Tmo = mean outlet temperature = 105 Co

To compute L using (a), it is necessary to determine p , P, , and c m h . Air 

properties are determined at the mean temperature mT , defined as

mT  = 
2

momi TT
.                                        (b) 

The perimeter P and flow rate m are given by 

P =  D,  (c) 

and
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u
D

m
4

2

,                                         (d) 

where

D = inside tube diameter = 1 cm = 0.01 m 

u = mean flow velocity = 2 m/s 

 = density, kg/m3

The heat transfer coefficient for fully developed laminar flow is given by 

657.3
k

hD
NuD , (e)

where

= heat transfer coefficient, h CW/m o2

= thermal conductivity of air, k CW/m o

According to (e), h is uniform along the tube.  Thus  

D

k
hh 657.3 .                                        (f) 

To proceed, it is necessary to compute the Reynolds number to determine if 

the flow is laminar or turbulent. The Reynolds number for tube flow is 

defined as 

Du
ReD ,                                            (g) 

where

= Reynolds number DRe

 = kinematic viscosity, m2/s

The mean temperature is calculated using (b) 

mT = C70
2

C10535 o
o ))((

Properties of air at this temperature are  

= 1008.7 pc CJ/kg o

CW/m02922.0 ok

Pr 0.707

/sm26
109.19

3/mk1 0287. g
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Substituting into (g) 

DRe 1005
/s)(m1019.9

(m)2(m/s)0.01
26

Since the Reynolds number is smaller than 2300, the flow is laminar. Thus 

(f) can be used to determine .h

(iii) Computations. Substituting into (c), (d) and (f) 

P =  0.01(m) = 0.03142 m 

kg/s0001616.0)m/s(2)kg/m(0287.1
4

)m()01.0( 3
22

m

h  = 3.657 
)m(01.0

)Cm/W(02922.0 o

  = 10.69 W/m2-oC

Substituting into (a) 

)C)(105130(

)C)(35130(
ln

)Cm/W(69.10)m(03142.0

)Ckg/J(7.1008)s/kg(0001616.0
o

o

o2

o

L  = 0.65 m 

(iv) Checking. Dimensional check:  Computations showed that 

equations (a)-(d), (f) and (g) are dimensionally consistent.

Limiting checks: (i) For the special case of Tmo = Tmi, the required length 

should vanish.  Setting Tmo = Tmi in (a) gives L = 0.

(ii) The required length for the outlet temperature to reach surface 

temperature is infinite. Setting Tmo = in (a) gives L = .sT

Quantitative checks: (i) An approximate check can be made using 

conservation of energy and Newton’s law of cooling. Conservation of 

energy is applied to the air between inlet and outlet 

Energy added at the surface = Energy gained by air.            (h) 

Assuming that air temperature in the tube is uniform equal to mT , Newton’s 

law of cooling gives 

Energy added at surface = )( ms TTDLh .                   (i) 

Neglecting axial conduction and changes in kinetic and potential energy, 

energy gained by air is  

Energy gained by air = )( mimop TTcm .            (j) 
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Substituting (j) and (i) into (h) and solving for the resulting equation for L

)(

)(

ms

mimop

TTDh

TTcm
L .                                   (k) 

Equation (k) gives

C)70)(m)(130C) ) (0.0110.69(W/m

C)35)(C)(1057(J/kgkg/s)1008.0.0001616(

oo2

oo

L  = 0.57 m 

This is in reasonable agreement with the more exact answer obtained 

above.

(ii) The value of h appears to be low compared with typical values listed in 

Table 1.1 for forced convection of gases. However, it should be kept in 

mind that values of h in Table 1.1 are for typical applications. Exceptions 

should be expected. 

(5) Comments. This problem is simplified by two conditions: fully 

developed and laminar flow.  

6.6 Determination of Heat Transfer Coefficient and Nusselt

Number  

)(xh

DNu

The heat transfer coefficient is critical in the analysis of channel flow heat 

transfer. Scale analysis will be presented first to obtain estimates of the heat 

transfer coefficient and Nusselt number. This will be followed by laminar 

flow analytic solutions in both entrance and fully developed regions. 

6.6.1 Scale Analysis 

Consider heat transfer in a tube of radius  shown 

in Fig. 6.5. Surface temperature is  and mean 

fluid temperature at a given section is T  Equating 

Fourier’s law with Newton’s law

or

sT
.m

0

mT
sT

sq
r

or

6.5Fig.sm

o

TT

r

xrT
k

h

),(

.            (6.16) 

A scale for r is



r ~ t .                                                (a) 

A scale for the temperature gradient in (6.16) is  

r

xrT o ),(
~

t

sm TT
.                                   (b) 

Substituting (a) and (b) into (6.16) 

sm

t

sm

TT

TT
k

h ~ ,

or

t

k
h ~ .                                          (6.17) 

The Nusselt number is defined as  

k

hD
NuD .

Introducing (6.17) into the above 

t
D

D
Nu ~ .                                         (6.18) 

In the fully developed region where )(xt ~ D, equation (6.18) gives 

1~DNu   (fully developed).                             (6.19) 

This shows that in the fully developed region the Nusselt number is of 

order unity. However, in the entrance region where )(xt grows from zero 

to o , the Nusselt number, according to (6.18), is greater than unity. To 

examine t

r
 in the entrance region, we note that, unlike external flow, 

t scales over the entire range of Prandtl numbers according to (4.24)  

t ~ .                                (4.24) 
2/12/1

xRePrx

Substituting (4.24) into (6.18) 
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1/22/1~ xD RerP
x

D
uN .                                    (c) 

Expressing the Reynolds number in terms of diameter to form xRe DRe

D

x
Re

D

xDuxu
Re Dx .                            (d) 

Substituting (d) into (c)

1/22/1
1/2

~ DD RerP
x

D
uN .                          (6.20a) 

The above is rewritten as 

1~
2/1

x/D

RerP

uN

D

D .                               (6.20b) 

Scaling estimates (6.19) and (6.20) can be compared with the 

corresponding exact solutions presented in Section 6.6.2. 

6.6.2 Basic Considerations for the Analytical Determination of Heat 

Flux, Heat Transfer Coefficient and Nusselt Number 

The analytic determination of thermal characteristics such as heat transfer 

coefficient requires the determination of velocity and temperature 

distribution. An important simplification is the assumption of fully 

developed velocity. Neglecting axial conduction provides another major 

mathematical simplification. In this section we introduce basic definitions 

and present the governing equations for the analytic determination of 

surface heat flux, heat transfer coefficient and Nusselt number. In addition, 

the criterion for neglecting axial conduction will be identified. 

0

mT
sT

sq
r

or

6.5Fig.

(1) Fourier’s law and Newton’s law.   We return to 

Fig. 6.5 where heat flow is in the positive radial 

direction r.  Fourier’s law gives surface heat flux sq

r

rxT
kq o

s

,
             (a) 
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Define dimensionless variables as

si

s

TT

TT
,

PrRe

Dx

D

/
,

or

r
R ,

u

x
x

v

v ,
u

r
r
v

v ,
Du

ReD ,

(6.21)

where u is the mean axial velocity. Substituting into (a) 

R
TT

r

k
q is

o

s

)1,(
)( .                          (6.22) 

We define h using Newton’s law of cooling 

sm

s

TT

q
h

"
.                                     (6.23) 

Combining (6.22) and (6.23) 

Rr

k

RTTr

TTk
h

mosmo

is )1,(

)(

1)1,(

)(

)(
)( ,        (6.24) 

where the dimensionless mean temperature m  is defined as

si

sm
m

TT

TT
.                                     (6.25) 

The Nusselt number based on diameter is 

k

rh

k

Dh
Nu o2)()(

)( .                           (6.26) 

Substituting (6.24) into (6.26) 

R
Nu

m

)1,(

)(

2
)( .                            (6.27) 

As can be seen from equations (6.22), 6.24) and (6.27), the key to 

determining ),(sq )(h  and )(Nu is the determination of the 

temperature distribution ),( R which is obtained by solving the energy 

equation.
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(2) The Energy Equation.  Consider flow through a tube. Assume: (1) 

Continuum, (2) Newtonian, (3) steady state, (4) laminar flow, (5) 

axisymmetric, (6) negligible gravity, (7) negligible dissipation, (8) 

negligible changes in kinetic and potential energy and (9) constant 

properties. Based on these assumptions energy equation (2.24) gives 

2

21

z

T

r

T
r

rr
k

z

T

r

T
c zrp vv .         (2.24) 

Replacing the axial coordinate z by x, this equation is expressed in 

dimensionless form as 

2

2

2(

14
2

Pr)ReR
R

RRR
PrRe

D

rDx vv .  (6.28) 

The product of Reynolds and Prandtl numbers is called the Peclet number

rPRePe D ,   Peclet number.                         (6.29) 

Note that the first and second terms on the right-hand-side of (6.28) 

represent radial and axial conduction, respectively. Examination of the two 

terms suggests that for large values of the Peclet number, axial conduction 

may be neglected compared to radial conduction. Comparing solutions to 

(6.28) with and without the last term shows that axial conduction can be 

neglected for

100DPrRePe .                                 (6.30) 

Thus, under such conditions, (6.28) becomes

R
R

RRR
PrRe rDx

4
2 vv .                (6.31) 

(3) Mean (Bulk) Temperature  To determine h, a reference local 

temperature is needed.  The mass average or mean temperature at a section 

of a channel is defined as

.mT

or

rdrTcTmc xpmp

0

2v .                               (a) 
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Each term in (a) represents the energy convected by the fluid. However, 

mass flow rate m is given by 

rdrm x

or

2
0

v .                                       (b) 

Substituting (b) into (a) and assuming constant properties 

o

o

r

r

rdr

Trdr

T

x

x

m

0

0

v

v

.                                  (6.32a) 

This result is expressed in dimensionless form as

dRR

dRR

TT

TT

x

x

si

sm
m

v

v

1

0

1

0
.                        (6.32b) 

6.7 Heat Transfer Coefficient in the Fully Developed 

Temperature Region 

As might be expected, analytical determination of the heat transfer 

coefficient in the fully developed region is simpler than that in the 

developing region.  This section focuses on the fully developed region.  

Section 6.8 deals with the developing region. 

6.7.1 Definition of Fully Developed Temperature Profile 

Far away from the entrance of a channel ( ),

temperature effect penetrates to the centerline and the temperature profile is 

said to be fully developed. This profile is not as easily visualized as a fully 

developed velocity profile. We introduce a dimensionless temperature 

rPRedx D05.0/

defined as

)()(

),()(

xTxT

xrTxT

ms

s ,                                (6.33) 
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where  is fluid temperature distribution. Note that this definition is 

applicable to a uniform as well as variable surface temperature. Since heat 

is added or removed from the fluid, it follows that its mean temperature 

varies with distance x along the channel. Fully developed temperature is 

defined as a profile in which 

),( xrT

 is independent of x. That is

)(r .                                         (6.34) 

This definition means that a fully developed temperature profile has a 

single distribution in the radial direction at all locations x.  It follows from 

(6.34) that

0
x

.                                          (6.35) 

Equations (6.33) and (6.35) give

0
)()(

),()(

xTxT

xrTxT

xx ms

s .                     (6.36a) 

Expanding and using the definition of  in (6.33) 

0)(
dx

dT

dx

dT
r

x

T

dx

dT mss .                 (6.36b) 

This result will be used in analyzing thermally developed flow in channels.  

6.7.2 Heat Transfer Coefficient and Nusselt Number 

We wish to examine the nature of h and Nu in the fully developed thermal 

region.  Equating Fourier’s with Newton’s law, gives

sm

o

TT

r

xrT
k

h

),(

.                                  (6.16)

Using (6.33) to determine rxrT o /),(  and substituting into (6.16)

dr

rd
kh o )(

 = constant.                           (6.37) 
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From this result we conclude that the heat transfer coefficient in the fully 

developed region is constant. This important conclusion is valid regardless 

of surface boundary conditions. Using (6.37) in the definition of the 

Nusselt number, gives 

dr

rd
D

k

hD
Nu o

D

)(
.                          (6.38) 

In Section 6.6.1 scaling was used to estimate the Nusselt number in the 

entrance region. The result was used to examine the Nusselt number in the 

fully developed region as a limiting case of the entrance region. It was 

shown that

1~DNu   (fully developed).                          (6.19) 

This result will now be arrived at using scale analysis of the fully 

developed temperature region where the thermal boundary layer fills the 

tube. A scale for the temperature gradient rxrT o /),( is

D

TT

r

xrT mso ~
),(

.

Substituting into (6.16) 

D

k
h ~ .                                             (6.39) 

Substituting (6.39) into the definition of the Nusselt number in (6.38) 

1~DuN     (fully developed).                         (6.40) 

6.7.3 Fully Developed Region for Tubes at Uniform Surface flux

Fig. 6.6 shows a tube 

section with uniform 

surface heat flux. We 

wish to determine the 

axial variation of surface 

temperature and heat 

transfer coefficient. Al-

though we have shown in 

equation (6.37) that the 

r

T

x0

sq

D
u

6.6Fig.

sq
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heat transfer coefficient is uniform throughout the fully developed region, 

its value was not determined. Application of Newton’s law of cooling gives 

)()( xTxThq mss .                                   (a) 

Note that and  are unknown. However, since )(xTs )(xTm sq  and h are 

constant it follows from (a) that  

)()( xTxT ms constant.                                  (b) 

Differentiating (b)

dx

dT

dx

dT ms .                                             (c) 

Substituting (c) into (6.36b) 

dx

dT

x

T s .                                              (d) 

Combining (c) and (d) 

dx

dT

dx

dT

x

T ms   (for constant sq ).                    (6.41) 

Note that  and  are unknown. According to (6.16) 

and (6.38), these variables are needed to determine h and D . To 

determine the gradients in (6.41) an energy balance is made for an element 

dx of the tube shown in Fig. 6.7. Neglecting changes in kinetic and 

potential energy and assuming steady state and constant  conservation 

of energy for the element gives 

),,( xrT )(xTm )(xTs
Nu

,pc

mT

dx

dx
dx

dT
T m

m

sq

m

sq

Fig. 6.7

dx
dx

dT
TmcT m

mpmpmcPdxqs ,

where P is channel perimeter. Simplifying 

gives
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p

sm

mc

Pq

dx

dT
 = constant.                              (6.42) 

This result shows that the axial gradient of the mean temperature is 

constant along the channel. Substituting (6.42) into (6.41) 

dx

dT

dx

dT

x

T ms =
p

s

mc

Pq
= constant.                    (6.43) 

Equation (6.42) shows that  and  vary linearly with 

axial distance x. Integrating (6.43) 

),,( rxT )(xTm )(xTs

1)( Cx
mc

Pq
xT

p

s
m ,                                    (e) 

where  is constant of integration which is determined from inlet 

condition
1C

mim TT )0( .                                           (f) 

Application of (e) to (f) gives the .1 miTC  Solution (e) becomes

x
mc

Pq
TxT

p

s
mim )( .                             (6.44) 

Note that this result is identical to (6.9) which was obtained by applying 

conservation of energy to a finite tube section.  

      It remains to determine fluid temperature distribution and

surface temperature  This requires solving the differential form of 

the energy equation in the fully developed region. Neglecting axial 

conduction and dissipation, and noting that 

),( xrT
).(xTs

0rv  for fully developed 

velocity, energy equation (2.24) simplifies to  

r

T
r

rr

k

x

T
c xpv .                           (6.45) 

The axial velocity for fully developed flow is   
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2

2

12
o

x
r

r
uv  .                                  (6.46) 

Substituting (6.43) and (6.46) into (6.45) 

r

T
r

rr

k

cm

Pq

r

r
uc

p

s

o

p 2

2

12 .                        (g) 

However, urm o
2

 and orP 2 , equation (g) becomes

r

T
r

rr

k

r

r

r

q

oo

s

2

2

1
4

.                          (6.47) 

The boundary conditions are: 

0
),0(

r

xT
,                                   (6.48a) 

s
o q
r

xrT
k

),(
.                                (6.48b) 

Integrating (6.47) once with respect to r

xf
r

T
kr

r

rr
q

r
o

s
o

2

42

42

4
,                             (h) 

where  is “constant” of integration. Application of boundary 

condition (6.48a) gives 

)(xf

.0)(xf  Equation (h) becomes 

2

3

42

4

oo

s

r

rr

kr

q

r

T
.

Integrating again 

)(
164

4
),(

2

42

xg
r

rr

kr

q
xrT

oo

s .                 (6.49) 
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The integration “constant”  represents the local centerline 
temperature   Boundary condition (6.48b) does not give since
(6.49) already satisfies this condition. The local mean temperature 
is used to determine  Substituting (6.46) and (6.49) into (6.32a), 
gives

)(xg
).,0( xT )(xg

)(xTm
).(xg

)(
24

7
)( xg

k

qr
xT so

m .                           (6.50) 

Thus we have two equations for : (6.44) and (6.50). Equating the two 
gives

)(xTm
)(xg

x
mc

qP

k

qr
Txg

p

sso
mi

24

7
)( .                      (6.51) 

Substituting (6.51) into (6.49)

x
mc

qP

k

qr

r

rr

kr

q
TxrT

p

sso

oo

s
mi

24

7

164

4
),(

2

42

.     (6.52) 

Equation (6.52) satisfies the energy equation (6.45) and boundary 
conditions (6.48). Surface temperature is obtained by setting 

in (6.52) 
)(xTs

orr

x
mc

qP

k

qr
TxT

p

sso
mis

24

11
)( .                        (6.53) 

With and determined, equation (6.33) 

gives

),,( xrT )(xTm )(xTs
)(r and (6.38) gives the Nusselt number. Substituting (6.44), (6.52) 

and (6.53) into (6.33) gives )(r

xx
mc

qP

r

r
r

r
r

p

s

oo
11

7

11

24

4

1

11

24
1)(

2

4
2

2
.        (6.54) 

Differentiating (6.54) and substituting into (6.38) gives the Nusselt number 

364.4
11

48
DNu .                                  (6.55) 

The following observations are made regarding this result: 

(1) Equation (6.55) applies to laminar fully developed velocity and 

temperature in tubes with uniform surface heat flux. 
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(2) Unlike other forced convection results, the Nusselt number for this case 

is independent of Reynolds and Prandtl numbers. 

(4) Scaling prediction of the Nusselt number is given in equation (6.40) as 

1~DuN .                                         (6.40) 

This compares favorably with (6.55).

6.7.4 Fully Developed Region for Tubes at Uniform Surface

Temperature

We consider fully developed flow through a tube at uniform surface 

temperature  Of interest is the determination of the Nusselt number. As 

shown in equation (6.38), the Nusselt number is constant throughout the 

fully developed region regardless of surface boundary condition. The 

determination of the Nusselt number requires solving the energy equation 

for the fully developed region. Neglecting axial conduction and dissipation 

and noting that 

.sT

0rv  for fully developed velocity, energy equation 

(2.24) simplifies to  

r

T
r

rr

k

x

T
c p x
v .                           (6.45) 

The boundary conditions for this case are 

0
),0(

r

xT
,                                     (6.56a) 

so TxrT ),( .                                     (6.56b) 

The axial velocity for fully developed flow is   

2

2

12

o

x
r

r
uv .                                   (6.46) 

The axial temperature gradient xT / in equation (6.45) is eliminated 

using the definition of fully developed temperature profile, equation (6.36a)  

0
)()(

),()(

xTxT

xrTxT

xx ms

s .                   (6.36a) 
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For uniform surface temperature, ss TxT )( , (6.36a) give 

dx

dT

xTT

xrTT

x

T m

ms

s

)(

),(
.                            (6.57) 

Substituting (6.46) and (6.57) into (6.45)

r

T
r

rr

k

dx

dT

xTT

xrTT

r

r
c m

ms

s

o

p
)(

),(
12

2

2

u .        (6.58) 

Equation (6.58), subject to boundary conditions (6.56), was solved using an 

infinite power series [3]. The solution gives the Nusselt number as  

657.3DNu .                                   (6.59) 

6.7.5 Nusselt Number for Laminar Fully Developed Velocity 

and  Temperature in Channels of Various Cross-Sections 

Many internal flow applications involve channels with non-circular cross-

sections. Analytical and numerical solutions for such cases have been 

obtained for various surface boundary conditions [3].  In all cases the 

Nusselt number in fully developed flow is uniform throughout.  Table 6.2 

[3] lists the Nusselt 

numbers for channels of 

various geometries at 

two surface conditions: 

(1) uniform heat flux 

and (2) uniform temper-

ature.  The Nusselt 

number for non-circular 

cross-sections is based 

on the equivalent diam-

eter defined as

P

A
D

f
e

4
   (6.60) 

where  the flow area 

and P is the perimeter. 

Note that the heat 

transfer coefficient for 

fA

Table 6.2

Nusselt number for laminar fully developed

conditions in channels [3]

geometry

uniform
surface
flux temperature

surface
uniform

b

b

b

a

a

a

DNu

a

b

1

2

4

8

4.364

3.408

a/b

3.657

2.976

4.123

5.331

3.391

4.439

5.5976.490

8.235 7.541

2.4603.102
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non-circular channels varies along the periphery. However, Table 6.2 gives 

the average Nusselt number along the periphery. For uniform surface heat 

flux, surface temperature varies axially and along the periphery. The results 

shown in Table 6.2 are based on uniform periphery temperature.  Note that 

in all cases the Nusselt number for uniform surface flux is greater than that 

for uniform surface temperature. 

       Scaling estimate of the Nusselt number in the fully developed region 

gives

1~DNu   (fully developed).                             (6.40) 

Examination of Table 6.2 shows that the Nusselt number ranges from 2.46 

to 8.235. Thus scaling provides a reasonable estimate of the Nusselt 

number. 

Example 6.4:  Maximum Surface Temperature in an Air Duct 

Air is heated in a 4 cm  4 cm square 

duct from 40 to 120  A uniform 

heat flux of 590  is applied at 

the surface. The mean air velocity is 

0.32 m/s. Neglecting entrance effects, 

determine the maximum surface 

temperature.

Co C.o

2W/m

sq

moT

miT

u

L

(1)  Observations.  (i) This is an internal forced convection problem in a 

square duct.  (ii) The surface is heated at uniform flux. (iii) Surface 

temperature changes along the channel. It reaches a maximum value at the 

outlet.  (iv) The Reynolds number should be checked to determine if the 

flow is laminar or turbulent. (v) Velocity and temperature profiles become 

fully developed far away from the inlet. (vi) The heat transfer coefficient is 

uniform for fully developed flow. (vii) Duct length is unknown. (viii) The 

fluid is air. 

(2)  Problem Definition. (i) Find the required length to heat the air to a 

given temperature and (ii) determine surface temperature at the outlet. 

(3) Solution Plan. (i) Since surface flux, mean velocity, duct size, inlet and 

outlet temperatures are known, application of conservation of energy 

between the inlet and outlet gives the required duct length. (ii) Check the 

Reynolds number to determine if the flow is laminar or turbulent. (iii) 

Apply surface temperature solution for flow through a channel with 
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constant surface flux. (iv) Use Table 6.2 to determine the heat transfer 

coefficient.

(4)  Plan Execution.

      (i) Assumptions. (1) Continuum, (2) steady state, (2) constant 

properties, (3) uniform surface heat flux, (5) negligible changes in kinetic 

and potential energy, (6) negligible axial conduction, and (7) negligible 

dissipation.

(ii) Analysis. Application of conservation of energy between the inlet 

and outlet gives the required channel length 

)( mimops TTcmqLP ,                                (a) 

where

pc  = specific heat, CJ/kg o

L  = channel length, m 

m = mass flow rate, kg/s  

P = perimeter, m 

= surface heat flux = 590sq 2W/m
 40miT Co

moT 120 Co

Solving (a) for L

s

mimop

qP

TTcm
L

)(
.                                      (b)

The mass flow rate and perimeter are given by 

uSm 2
,                                             (c) 

SP 4 ,                                                (d) 

where

 = duct side = 0.04 m S
u = mean flow velocity = 0.32 m/s 

 = density, 
3kg/m

Substituting (c) and (d) into (b) 

s

mimop

q

TTcuS
L

4

)(
.                                  (e) 

To determine surface temperature at the outlet, use the solution for surface 
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temperature distribution for channel flow with uniform surface flux, given 

by equation (6.10) 

mis TxT )(
)(

1

xhcm

Px
q

p
s ,                          (f) 

where

= local heat transfer coefficient, )(xh CW/m o2

= local surface temperature, )(xTs Co

 x = distance from inlet of heated section, m 

Surface temperature at the outlet,  is obtained by setting x = L in (f). 

Substituting (c) and (d) into (f) 

),(xTs

mis TLT )(
)(

14

LhcuS

L
q

p
s .                     (g) 

Finally, it remains to determine the heat transfer coefficient at the outlet, 

h(L).  This requires establishing whether the flow is laminar or turbulent.  

Thus, the Reynolds number should be determined. The Reynolds number 

for flow through a square channel is defined as

eDu
ReDe ,                                           (h) 

where

= equivalent diameter, m eD
= kinematic viscosity, /sm2

The equivalent diameter for a square channel is defined as

P

A
De 4   =

S

S

4
4

2

 = S.                                    (i) 

Substituting (i) into (h) 

Su
ReDe .                                              (j) 

Properties of air are determined at the mean temperature mT  defined as

mT  = 
T Tmi mo

2
.                                         (k) 



6.7 Heat Transfer Coefficient in the Fully Developed Temperature Region       241

Substituting into (k)

mT  = C80
2

)C)(12040( o
o

Properties of air at this temperature are:  

 = 1009.5 pc CJ/kg o

 = 0.02991 k CW/m o

Pr  = 0.706 

 = 20.92 m
610 2/s

 = 0.9996 kg/m
3

Substituting into (j) 

9.611
/s)m(1092.20

m)(04.0)m/s(32.0

26DeRe

Since the Reynolds number is smaller than 2300, the flow is laminar. The 

heat transfer coefficient for fully developed laminar flow through a square 

channel with uniform surface flux is constant. It is given by equation (6.55) 

and Table 6.2 

k

Dh
Nu e

De
  = 3.608,                                   (l) 

where hh . Solving (l) for h

eD

k
h 608.3 .                                       (m)  

(iii) Computations. Substituting numerical values in (e) gives the 

channel length 

)W/m(590)4(

C))(40120(C)J/kg-(5.1009m/s)(32.0)m(04.0)kg/m(9996.0

2

oo3

L

m4378.0

To determine surface temperature at the outlet, the heat transfer coefficient 

is computed using (m)    

       h(L) = h =
)m(04.0

)CW/m(02991.0
608.3

o

 = 2.7 CW/m
o2
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Equation (g) gives surface temperature at the outlet 

C)W/m(7.2

1

C)k/J(5.1009m/s)(32.0)m(04.0)kg/m(9996.0

)m)(4378.0(4

)W/m(590)C(40

o2o3

2o)(

g

LTs

)(LTs = 338.5 Co

(iv) Checking. Dimensional check: Computations showed that 

equations (e), (g), (j), and (m) are dimensionally correct. 

Quantitative checks: (i) Alternate approach to determining : Applica-

tion of Newton’s law of cooling at the outlet gives 

)(xTs

])([ moss TLThq .                                    (n)

Solving for )(LTs

)(LTs = moT
h

qs = C5.338
)CW/m(7.2

)W/m(590
)C(120

o

o2

2
o

(ii) The value of h is within the range reported in Table 1.1 for forced 

convection of gases.

Limiting check: If mimo , the required length should be zero.  Setting 

 into (e) gives L = 0.

TT

mimo TT

(5) Comments.  (i) As long as the outlet is in the fully developed region, 

surface temperature at the outlet is determined entirely by the local heat 

transfer coefficient.

(ii) In solving internal forced convection problems it is important to 

establish if the flow is laminar or turbulent and if it is developing or fully 

developed.

6.8 Thermal Entrance Region: Laminar Flow through Tubes

6.8.1 Uniform Surface Temperature: Graetz Solution    

Consider laminar flow through a tube shown in Fig. 6.8. Fluid enters a 

heated or cooled section with a fully developed velocity. We neglect axial 

conduction (Pe > 100) and consider the case of uniform surface 
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0
r
v

temperature  It was shown in 

Chapter 3 that for two-

dimensional fully developed flow 

the radial velocity vanishes 

.sT

6.8Fig.

t

r

.               (3.1) 

The axial velocity is 

)(
4

1 22
oz rr

dz

dp
v .                               (3.12) 

Using the notation of this chapter, the axial velocity is expressed in 

dimensionless form as   

)1(2 2R
u

x
x

v

v .                                 (6.61) 

Substituting (3.1) and (6.61) into energy equation (6.31)  

R
R

RR
R

1
1

2

1 2 .                         (6.62) 

The boundary conditions for this case are 

0
)0,(

R
,                                     (6.63a) 

0)1,( ,                                       (6.63b) 

1),0( R .                                      (6.63c) 

Analytic and numerical solutions to this problem have been obtained [4, 5]. 

The following is a summary of the solution and results. Assume product 

solution of the form 

)()(),( RR RX .                                     (a) 

Substituting (a) into (6.62), separating variables 

T

x

sT

0u
iT
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02 2
nn

n

d

d
X

X
,                                       (b) 

0)1(
1 22

2

2

nn
nn R

dR

d

RdR

d
R

RR
.                        (c) 

where n are the eigenvalues obtained from the boundary conditions. 

Solution )(nX  to (b) is exponential. However, solution  to (c) is 

not available in terms of simple tabulated functions. Substituting the 

solutions to (b) and (c) into (a)

)(RnR

)2exp()(),(

0

2

n

nnn RCR R ,                  (6.64) 

where  is constant. With the temperature distribution given in (6.64), 

surface heat flux, mean temperature, local and average Nusselt numbers 

can be determined. Surface heat flux is given by 

nC

R

0
TT

r

k
q is

o
s

)1,(
)( .                          (6.22) 

Surface temperature gradient R/)1,( is obtained by differentiating 

(6.64)

)2exp(
)1()1,(

0

2

n

n
n

n
dR

d
C

R

R
.                   (d) 

Defining the constant asnG

dR

dC
G nn

n

)1(

2

R
.                                     (e) 

Substituting (d) and (e) into (6.22) 

)2exp{
2

)( 2

0

n

n

nis
o

s GTT
r

k
q .             (6.65) 
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The local Nusselt number is given by

R
Nu

m

)1,(

)(

2
)( ,                             (6.27) 

where the gradient R/)1,(  is given in (d). The local mean 

temperature )(m  is obtained by substituting (6.61) and (6.64) into 

(6.32b), integrating by parts and using (e)  

)2exp(8 2

2

0

n

n n

n
m

G
 .                      (6.66) 

Substituting (d), (e) and (6.66) into (6.27) 

0

0

)2exp(2

)2exp(

2

2

2

n

n

n

n

n

nn

G

G

Nu .                       (66.7) 

The average Nusselt number for a tube of length is defined as

k

Dh
Nu

)(
)( .                                         (f) 

where )(h is determined by integrating the local heat transfer coefficient 

along a tube of  length .   A simpler approach is to use equation (6.13) 

which contains the average heat transfer coefficient 

][)()( exp x
cm

hP
TTTxT

p
smism .                (6.13) 

Solving (6.13) for h

smi

smp

TT

TxT

xP

cm
h

)(
ln .                                 (g) 
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Substituting (g) into (f), noting that 4/2Dum , DP , and using 

the definitions of ,  and DRe m in (6.21) and (6.25), gives 

)(ln
4

1
)( mNu .                              (6.68) 

The constants n  and  are needed to compute nG ),(sq ),(m )(Nu

and )(Nu  in equations (6.65)-(6.68). Table 6.3 [4] lists values of n  and 

 for  Equations (6.67) and (6.68) are used to plot and 

tabulate the local and average Nusselt numbers. Table 6.4 [5] gives 
nG .100 n

)(Nu

and )(Nu  at selected values of the axial distance .  Fig. 6.9 gives the 

variation of )(Nu  and )(Nu along a tube.

Table 6.3 

Uniform surface temperature [4] 

n
n nG

0 2.70436 0.74877

1 6.67903 0.54383

2 10.67338 0.46286

3 14.67108 0.41542

4 18.66987 0.38292

5 22.66914 0.35869

6 26.66866 0.33962

7 30.66832 0.32406

8 34.66807 0.31101

9 38.66788 0.29984

10 42.66773 0.29012

Table 6.4 

Local and average Nusselt 

number for tube at uniform 

surface temperature [5] 

=
PrRe

Dx

D

/
)(Nu )(Nu

0

0.0005 12.8   19.29 

     0.002 8.03   12.09 

     0.005 6.00   8.92 

     0.02 4.17   5.81 

     0.04 3.77   4.86 

     0.05 3.71   4.64 

     0.1 3.66   4.15 

3.66   3.66 
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fornumberNusseltaverageandLocal
re temepratusurfaceuniformattube ]4[

The following observations are made:

(1) The local and average Nusselt numbers, and heat transfer coefficient, 

decrease as the distance  from the entrance is increased. 

(2) At any given location , the average Nusselt number is greater than the 

local Nusselt number. 

(3) The Nusselt number reaches an asymptotic value of 3.657 at 05.0 .

As was shown in Section 6.7.4, this corresponds to the Nusselt number in 

the fully developed region. Thus  

657.3)(Nu .                                   (6.69) 

(4) Surface heat flux and heat transfer coefficient depend on fluid 

properties such as thermal conductivity k, kinematic viscosity  and 

Prandtl number   Properties in channel flow are evaluated at the 

average of inlet and outlet mean temperatures 

Pr.

mT , defined as 

2/)( momim TTT .                                    (6.70) 

Note that in problems where the outlet temperature is not known a priori 

and must be determined as part of the solution, a trial and error procedure is 

used.

Fig. 6.9
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Example 6.5: Hot Water Heater 

Water enters a tube with fully developed velocity and uniform temperature 

 The inside diameter of the tube is 1.5 cm and its length is 80 

cm. The mass flow rate is 0.002 kg/s. It is desired to heat the water to 

 by maintaining the surface at uniform temperature. Determine the 

required surface temperature.

.C25iT o

o C75

(1) Observations. (i) This is an internal forced convection problem. (ii) 

The surface is maintained at uniform temperature. (iii) The Reynolds 

number should be computed to establish if the flow is laminar or turbulent. 

(iv) Compute the thermal entrance length to determine if thermal entrance 

effects can be neglected. 

(2) Problem Definition.  Determine the required surface temperature to 

raise the mean temperature to a specified level. This requires determining 

the heat transfer coefficient. 

(3) Solution Plan. Use the analysis of flow in tubes at uniform surface 

temperature. Compute the Reynolds number to establish if the flow is 

laminar or turbulent. Compute the thermal entrance length to determine if 

entrance or fully developed analysis is required. 

(4) Plan Execution.

      (i) Assumptions. (1) Continuum, (2) steady state, (3) constant 

properties, (4) uniform surface temperature, (5) negligible changes in 

kinetic and potential energy, (6) negligible axial conduction, (7) fully 

developed velocity, and (8) negligible dissipation. 

(ii) Analysis. For flow through a tube at uniform surface temperature, 

conservation of energy and Newton's law of cooling lead to equation (6.13)

][)()( exp x
cm

hP
TTTxT

p
smism ,                (6.13) 

where

h = average heat transfer coefficient for a tube of length x, CW/m
o2

m  = mass flow rate kg/s002.0

miT  mean inlet temperature C25o

moT  mean outlet temperature C75o

Applying (6.13) at the outlet, x = L, and solving for sT
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)/exp(1

)/exp()(

p

pmmi
s

mcLhP

mcLhPLTT
T .                       (a) 

To compute sT using (a), it is necessary to determine p , P, and c h . Water 

properties are determined at the mean temperature mT , defined as

mT  = 
2

momi TT
.                                        (b) 

The perimeter P is 

P =  D,  (c) 

where

D = inside tube diameter = 1.5 cm = 0.015 m 

The determination of h  requires computing the Reynolds number to 

establish if the flow is laminar or turbulent, and computing the thermal 

entrance length to determine if it is important. The Reynolds number is  

Du
ReD ,                                            (d) 

where

= kinematic viscosity, m2/s

u = mean velocity, m/s 

 The flow rate gives the mean velocity 

2

4

D

m
u ,                                           (e) 

where  is density. To determine water properties, (b) is used to compute 

mT

mT  = C50
2

)C)(8020( o
o

Properties of water at this temperature are  

= 4182 J/kg-pc oC

k = 0.6405 W/m-oC

Pr = 3.57 

  = 0.5537 10
-6

m2/s

  = 988 kg/m
3
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Substituting into (e)

sm/01146.0
)m()015.0()kg/m(988

)kg/s)(002.0(4

223
u

Equation (d) gives 

DRe 5.310
/s)(m100.5537

s)0.015(m)0.01146(m/

26

Since the Reynolds number is less than 2300, the flow is laminar. The next 

step is to compute the thermal entrance length . For laminar flow through 

channels, the thermal entrance length is given by (6.6) 

tL

Dt
t PrReC

D

L
,                                      (6.6) 

where

hC = hydrodynamic entrance length coefficient = 0.056, (Table 6.1) 

tC = thermal entrance length coefficient = 0.033, (Table 6.1) 

hL = hydrodynamic entrance length, m 

t
Substituting numerical values into (6.6)  

L = thermal entrance length, m 

= 0.033  0.015 (m)  310.5  3.57 = 0.55 m tL

Since t is not negligible compared to tube length L, it follows that 

temperature entrance effects must be taken into consideration in 

determining 

L

.h  For laminar flow in the entrance region of a tube at fully 

developed velocity profile and uniform surface temperature, Graetz 

solution gives .h  Fig. 6.9 and Table 6.4 give the average Nusselt number 

Nu  as a function of the dimensionless axial distance ,  defined as

rPRe

Dx

D

/
.                                            (f) 

The average heat transfer coefficient h  is given by

Nu
D

k
h .                                             (g) 
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      (iii) Computation.  Evaluating  at x = L

0481.0
57.35.310

)m(015.0/)m(8.0

At 481.0  Fig. 6.9 gives 

6.4Nu

Substituting into (g) 

CW/m4.1966.4
0.015(m)

C)0.6405(W/m o2
o

h

Equation (a) gives the required surface temperature. First, the exponent of 

the exponential is calculated 

88524.0
C))4182(J/kg0.002(kg/s

C)0.8(m)(W/m4.961(m))(015.0(

o

o2

pmc

LhP

Substituting into (a)

C1.110)88524.0exp()C(75)C(25
)88524.0exp(1

1 ooo
sT

(iv) Checking. Dimensional check:  (i) Computations showed that 

equations (a), (e), (g) and (6.6) are dimensionally consistent. (ii) The 

Reynolds number and the exponent of the exponential are dimensionless.

Limiting checks: (i) For the special case of )(LTTmi , the required 

surface temperature should be the same as inlet temperature.  Setting 

in (a) gives)(LTTmi .mis TT

(ii) The required surface temperature should be infinite if the length is zero. 

Setting L = 0 in (a) gives .sT

Quantitative checks: (i) An approximate check can be made using 

conservation of energy and Newton’s law of cooling. Conservation of 

energy is applied to the water between inlet and outlet 

Energy added at the surface = Energy gained by water.           (h) 

Assuming that water temperature in the tube is uniform equal to mT ,

Newton’s law of cooling gives 
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Energy added at surface = )( ms TTDLh .                  (i) 

Neglecting axial conduction and changes in kinetic and potential energy, 

energy gained by water is  

Energy gained by water = )( mimop TTcm .             (j) 

Substituting (i) and (j) into (h) and solving the resulting equation for sT

DLh

TTcm
TT

mimop
ms

)(
.                              (k) 

Equation (k) gives 

C5.106
.8)(m)0((0.015)(m)C)196.4(W/m

C)25)(C)(75)4182(J/kg0.002(kg/s
C)

o
(50

o

o2

oo

sT

This is in reasonable agreement with the more exact answer obtained 

above.

(ii) The value of h is within the range listed in Table 1.1 for forced 

convection of liquids.

(5) Comments.  (i) Using Fig. 6.9 to determine h  introduces a small error.  

(ii) If entrance effects are neglected and the flow is assumed fully 

developed throughout, the corresponding Nusselt number is 3.657. Using 

this value gives CW/m3.156
o2h  and .C121

o
sT

6.8.2 Uniform Surface Heat Flux

We repeat Graetz entrance 

problem replacing the 

uniform surface tempera-

ture with uniform surface 

heat flux, as shown in Fig. 

6.10. The fluid enters the 

heated or cooled section 

with fully developed 

velocity. The governing 

energy equation is the same as that for the Graetz problem, given by (6.62) 

t

r

T

x0

iT

sq

D
u

6.10Fig.
sq
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R
R

RR
R

1
1

2

1 2 .                        (6.62) 

The boundary conditions, expressed in 

dimensionless form are:: Table 6.5 
Uniform surface flux [4] 

,0
)0,(

R
               (6.71a) n 2

n nA

1    25.6796 0.198722

)(

)1,(

si

os

TTk

rq

R

1),0( R

2    83.8618 0.069257

3  174.1667 0.036521

4  296.5363 0.023014

5 450.9472 0.016030

,          (6.71b) 

6 637.3874 0.011906

7 855.8495 0.009249

8 1106.3290 0.007427

9 1388.8226 0.006117

10 1703.3279 0.005141

.                 6.71c) 

Analytic solution based on separation of 

variables as well as numerical solution to 

this problem is available [4]. The solution 

for the local Nusselt number is    

1

1

)2exp(
2

1

48

11
)( 2

n

nnA
k

hx
Nu .              (6.72] 

The eigenvalues  and the constant  are listed in Table 6.5 [4]. The 

average Nusselt number is given by 

2
n nA

1

1

22

)2exp(1

2

1

48

11
)(

2

n n

n
nA

k

hx
Nu  .        (6.73] 

The limiting case corresponding to  gives the Nusselt number in the 

fully developed region. Setting  in (6.72) or (6.73) gives

364.4
11

48
)(Nu .                                (6.74) 

This agrees with the solution of the fully developed region given in 

equation (6.55). The solution to the local and average Nusselt number is 

presented graphically in Fig. 6.11 [4].  
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[4]fluxheatsurfaceuniformate       tub
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PROBLEMS

6.1    Use scaling to determine the ratio .  Compare scaling estimates 

with exact solutions.

/ ht LL

6.2    Use scaling to estimate the hydrodynamic and thermal entrance 

lengths for the flow of   air in a cm3cm3  square duct. The mean 

velocity is 0.8 m/s. Compare scaling estimates with exact solutions. 

Evaluate properties at C.50o

657.3DNu

6.3 Far away from the entrance of a channel the velocity and temperature 

become fully developed. It can be shown that under such conditions 

the Nusselt number becomes constant. Consider air flowing with a 

mean velocity of 2 m/s through a long tube of diameter 1.0 cm.  The 

mean temperature at a section in the fully developed region is 35oC.

The surface of the tube is maintained at a uniform temperature of 

130oC.  What is the length of the 

tube section needed for the mean 

temperature to reach 105oC? The 

Nusselt number for this case is 

given by 
u sT

L

.

6.4   A fluid is heated in a long tube with uniform surface flux.  The 

resulting surface temperature distribution is found to be higher than 

design specification.  Two suggestions are made for lowering surface 

temperature without changing surface flux or flow rate: (1) 

increasing the diameter, (2) decreasing the diameter. You are asked 

to determine which suggestion to follow. The flow is laminar and 

fully developed. Under such conditions the Nusselt number is given 

by  

364.4DNu .

6.5   Two identical tubes are heated with the same uniform flux at their 

surfaces.  Air flows through one tube while water flows at the same 

rate through the other.  The mean inlet temperature for both tubes is 

the same.  Which tube will have a higher surface temperature 

distribution? Assume laminar flow and neglect entrance effects. For 

this case the Nusselt number is given by  

364.4DNu .
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6.6 Water flows through a tube with a mean velocity of 0.2 m/s. The 

mean inlet temperature is 20oC and the inside diameter of the tube is 

0.5 cm.  The water is heated to 80oC with uniform surface heat flux 

of 0.6 W/cm2.  Determine surface temperature at the outlet. If 

entrance effects can be neglected the Nusselt number for fully 

developed flow is constant given by  

364.4DNu .

         Is it justifiable to neglect entrance effects?

6.7 Fluid flows with a mean axial velocity u  in a tube of diameter D.

The mean inlet temperature is miT . The surface is maintained at 

uniform temperature  Show that the average Nusselt number for a 

tube of length L is given by 

.sT

sm

smiD
L

TLT

TTPrRe
Nu

)(
ln

4
,

where
k

Lh
Nu L

L ,
Du

ReD  and Lh  is the average heat transfer 

coefficient over the length L.

6.8   Water flows through a cm75.0cm75.0 square duct with a mean 

velocity of 0.12 m/s.  The duct is heated with a uniform surface flux 

of 0.25 W/cm2.  The mean inlet 

temperature is 25oC.  The maxi-

mum allowable surface temper-

ature is 95oC. Justify neglecting 

entrance effects and determine 

maximum outlet mean temper-

ature.

moT

miT

u

L

sT

6.9   Two experiments were conducted on fully developed laminar flow 

through a tube. In both experiments surface temperature is 

and the mean inlet temperature is 
o

. The mean outlet 

temperature for the first experiment is found to be . In the 

second experiment the flow rate is reduced by a factor of 2. All other 

conditions remained the same. Determine:  

Co
180

C20

Co
120

         [a]  The outlet temperature of the second experiment. 

         [b] The ratio of heat transfer rate for the two experiments.   
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m

6.10 A long rectangular duct with 

a c cross section is 

used to heat air from –19.6

8cm4
oC to 

339.6oC.  The mean velocity in 

the duct is 0.2 m/s and surface 

temperature is 340 oC.

Determine the required duct 

length. Is neglecting entrance 

effects justified? 

u

moT

miT

sT

L

6.11  A rectangular duct with inside dimensions of cm4cm2 is used to 

heat water from 25  to 115 . The mean water velocity is 0.018 

m/s. The surface of the duct is maintained at 145 . Determine the 

required duct length. Assume fully developed flow conditions 

throughout.

Co Co

Co

6.12   Air is heated in a cm4cm4 square duct at uniform surface flux of 

590  The mean air velocity is 0.32 m/s. At a section far away 

from the inlet the mean temperature is 40 . The mean outlet 

temperature is 120 . Determine the required length and maximum 

surface temperature. 

.W/m2

Co

Co

6.13  Consider fully developed laminar flow in two tubes having the same 

length.  The flow rate, fluid, inlet temperature and surface 

temperature are the same for both tubes.  However, the diameter of 

one tube is double that of the other.  Determine the ratio of the heat 

transfer rate from the two tubes. 

6.14 To evaluate the accuracy of scaling prediction of the thermal entrance 

length and Nusselt number, compare scaling estimates with the exact 

results of Graetz solution for flow through tubes.

6.15  Use scaling to estimate the heat transfer coefficient for plasma at a 

distance of 9 cm from the entrance of a vessel. The mean plasma 

velocity is 0.042 m/s and the vessel diameter is 2.2 mm. Properties of 

plasma are:  

, ,CJ/kg3900
o

pc CW/m5.0
o

k /s
2

m
6

1094.0 ,
3

kg/m1040

6.16  Air flows with fully developed velocity through a tube of inside 

diameter 2.0 cm.  The   flow is fully developed with a mean velocity 

of 1.2 m/s.  The surface is maintained at a uniform temperature of 

90oC. Inlet temperature is uniform equal 30 oC. Determine the length 

of tube needed to increase the mean temperature to 70oC.
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6.17  Air flows with a mean velocity of 2 m/s through a tube of diameter 

1.0 cm and length 14 cm. The velocity is fully developed throughout. 

The mean temperature at the inlet is 35oC.  The surface of the tube is 

maintained at a uniform temperature of 130oC.  Determine the outlet 

temperature.    

6.18  A research apparatus for a 

pharmaceutical laboratory 

requires heating plasma in 

a tube 0.5 cm in diameter. 

The tube is heated by 

uniformly wrapping an 

electric element over its 

surface. This arrangement provides uniform surface heat flux. The 

plasma is monitored in a 15 cm long section. The mean inlet 

temperature to this section is  and the mean velocity is 0.025 

m/s.  The maximum allowable temperature is  You are asked 

to provide the designer of the apparatus with the outlet temperature 

and required power corresponding to the maximum temperature. 

Properties of plasma are:  

C18o

C.o
42

+

-
L

mi
T

mo
T

u
D

sectiontest

,CJ/kg3900
o

pc s/m1094.0
26

, .
3

kg/m1040

6.19  An experiment is designed to investigate heat transfer in rectangular 

ducts at uniform surface temperature. One method for providing 

heating at uniform surface temperature is based on wrapping a set of 

electric elements around the surface. Power supply to each element is 

individually adjusted to provide uniform surface temperature. This 

experiment uses air flowing in a cm8cm4 rectangular duct 32 cm 

long. The air is to be heated from  to  The velocity is 

fully developed with a mean value of 0.15 m/s. Your task is to 

provide the designer of the experiment with the heat flux distribution 

along the surface. This data is needed to determine the power 

supplied to the individual elements. 

C22
o .C89

o

+

L

mi
T mo

T

u

+ + + +

---- - -
a

b
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7.1 Introduction

Free convection is encountered in many situations.  In fact, it is always 

present as long as fluid temperature is not uniform and there is an 

acceleration field such as gravity. In some applications, free convection 

heat transfer is small compared to other modes and therefore may be 

neglected.  In others it is the dominant mechanism for heat transfer.  There 

are situations where it is desirable to suppress free convection, such as in 

heat loss from steam pipes, windows, and solar collectors. On the other 

hand, one seeks to enhance the transfer of heat by free convection in 

cooling microelectronic components and packages. 

7.2 Features and Parameters of Free Convection 

(1)  Driving Force.  Fluid motion in free convection is driven by natural 

forces.  In general, two conditions are required for fluids to be set in motion 

in free convection: (1) the presence of an acceleration field, and (2) a 

density gradient in the fluid.  The most common acceleration field is 

gravity.  Since all fluids undergo changes in density due to temperature 

changes, it follows that a temperature gradient will set up a density

gradient. However, there are cases in which the presence of a density 

gradient in an acceleration field does not result in fluid motion. An example 

is a fluid which is contained between two horizontal plates with the upper 

plate at a higher temperature than the lower plate.  

FREE CONVECTION 
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(2) Governing Parameters.  Two parameters play a key role in the

determination of the Nusselt number in free convection: (1) the Grashof

number, and (2) the Prandtl number.  The Grashof number is defined as 

Grashof number = 
2

3)( LTTg
Gr s

L ,     (7.1) 

where L is a characteristic dimension of the body. For a horizontal cylinder

it is the diameter and for a vertical plate it is a dimension in the vertical

direction. is a fluid property defined in equation (2.16). It is called the 

coefficient of thermal expansion, also known as compressibility factor.  For

ideal gases it is given by

T
1

,   for ideal gas,    (2.21)

where T  is in absolute degrees. In some solutions, the Grashof number

appears multiplied by the Prandtl number.  This dimensionless product is 

called the Rayleigh number, defined as 

3

2

3 )()( LTTg
=Pr

LTTg
PrGrRa ss

LL ,      (7.2)

where   is thermal diffusivity.

(3) Boundary Layer.  As with forced convection, viscous and thermal

boundary layers do exist in free convection.  Furthermore the flow can be 

laminar, turbulent, or mixed. Boundary layer approximations for free 

convection are valid for .10xRa 4

(4) Transition from Laminar to Turbulent Flow.  The criterion for 

transition from laminar to turbulent flow is expressed in terms of the 

Grashof or Rayleigh number.  For vertical plates the transition Rayleigh 

number, , is given by
txRa

. (7.3)
910

txRa

(5) External vs. Enclosure Free Convection.  It is convenient to classify

free convection as (i) external free convection, and (ii) enclosure free

convection.  In external free convection a surface is immersed in a fluid of 
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infinite extent.  Examples include free convection over vertical plates,

horizontal cylinders, and spheres. Enclosure free convection takes place 

inside closed volumetric regions such as rectangular confines, concentric 

cylinders, and concentric spheres. 

(6) Analytic Solutions. Since the velocity and temperature fields are

coupled in free convection, analytic solutions require the simultaneous 

integration of the continuity, momentum, and energy equations.  Even for 

the simplest case of laminar free convection over an isothermal vertical

plate, the mathematical analysis is not elementary and results are obtained 

through numerical integration. 

7.3 Governing Equations

Analysis of free convection is usually based on following approxi-mations:

(1)  Density is assumed constant except in evaluating gravity forces. 

(2) The Boussinesq approximation which relates density change to

temperature change is used in formulating buoyancy force in the 

momentum equation. 

(3) Dissipation effect is neglected in the energy equation. 

      Considering steady state, laminar, two-dimensional flow with constant 

properties, the continuity, momentum, and energy equations are obtained

from equations (2.2), (2.29) and (2.19), respectively

0
yx

u v

,

(7.4)

)(
2

2

2

2

)(
1

)(
y

u

x

u
pp

x
TTg

y

u

x

u
u v , (7.5)

)(
2

2

2

2

)(
1

yx
pp

yyx

v
u

vvv

v ,         (7.6)

2

2

2

2

y

T

x

T

y

T

x

T
u v . (7.7)
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In equation (7.5) gravity points in the negative x-

direction as shown in Fig. 7.1.  Further simpli-

fications will be introduced in above equations

based on boundary layer approximation.

7.3.1 Boundary Layer Equations 

Boundary layer approximations used to simplify

the governing equations in forced convection are 

applied to free convection. Fig. 7.1 shows the 

viscous and thermal boundary layers over a 

vertical plate. In boundary layer flow, the y-

component of the Navier-Stokes equations,

(7.6), reduces to

0)( pp
y

. (a)

Neglecting ambient pressure variation with distance x, it follows that

0)( pp
x

. (b)

Furthermore, for boundary layer flow

2

2

2

2

y

u

x

u
.    (c) 

Thus the x-component of the Navier-Stokes equations simplifies to

2

2

y

u
TTg

y

u

x

u
u v .   (7.8)

Similarly axial conduction is neglected compared to normal conduction 

2

2

2

2

y

T

x

T
.     (d) 

Substituting (d) into energy equation (7.7)

Fig. 7.1
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2

2

y

T

y

T

x

T
u v .    (7.9)

Thus the governing equations for laminar boundary layer free convection 

are: continuity equation (7.4), x-momentum (7.8), and energy equation

(7.9). These equations contain three unknowns: u, v, and T. However, it 

should be noted that momentum and energy are coupled since both contain

the variables u, v, and T.

7.4 Laminar Free Convection over a Vertical Plate: Uniform 

Surface Temperature 

Consider the vertical plate at uniform temperature sT shown in Fig. 7.1.

The plate is submerged in an infinite fluid at temperature . Of primary

interest is the velocity and temperature distribution in the fluid adjacent to 

the plate.

T

7.4.1 Assumptions. (1) Continuum, (2) Newtonian, (3) steady state, (4)

laminar flow, (5) two-dimensional, (6) constant properties, (7) Boussinesq

approximation, (8) uniform surface temperature, (9) uniform ambient

temperature, (10) vertical plate and (11) negligible dissipation.

7.4.2 Governing Equations. Based on the above assumptions the

governing equations are: continuity (7.4), momentum (7.8), and energy

(7.9)

0
yx

u v

,      (7.4)

2

2

y

u
TTg

y

u

x

u
u v , (7.8)

2

2

yyx
u v ,  (7.10)

where  is a dimensionless temperature defined as 

TT

TT

s

. (7.11)
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7.4.3 Boundary Conditions. The boundary conditions on velocity and 

temperature are:

Velocity:

(1) ,0)0,(xu

(2) ,0)0,(xv

(3) ,0),(xu

(4) .0),0( yu

Temperature:

(5) 1)0,(x ,

(6) 0),(x ,

(7) 0),0( y .

7.4.4 Similarity Transformation [1].  Equations (7.4), (7.8), and (7.10)

are solved simultaneously using similarity method to transform the three 

partial differential equations to two ordinary differential equations. The 

resulting ordinary differential equations are solved numerically. The

appropriate similarity variable ),( yx  for this case takes the form

4/1
),(

x

y
Cyx ,       (7.12)

where

4
1

24

TTg
C s .  (7.13) 

Substituting (7.13) into (7.12)

x

yGrx

4/1

4
,      (7.14)

where the local Grashof number based on (7.1) is defined as

2

3)( xTTg
Gr s

x .       (7.15)

We postulate that the dimensionless temperature  depends on . That is

)(),( yx . (7.16)
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Continuity equation (7.4) is satisfied by introducing a stream function 

which gives the velocity components u and v as

y
u , (7.17)

and

x
v .       (7.18)

Using the stream function of Blasius solution for forced convection over a

flat plate as a guide, the stream function for this problem is given by

Grx
4
1

4
4 ,  (7.19) 

where )(  is an unknown function to be determined. Introducing (7.19)

into (7.17) and (7.18)

d

d

x

Gr
u

x
2 ,     (7.20)

and

3
)(

)4(

4/1

4/1 d

d

x

Grx
v .         (7.21)

Substituting (7.20) and (7.21) into (7.8) and (7.10) and using (7.11) and 

(7.16), gives 

023

2

2

2

3

3

d

d

d

d

d

d
,  (7.22)

03
2

2

d

d
Pr

d

d
.       (7.23)

Note that the original variables x and y do not appear in the transformed

equations (7.22) and (7.23). They are replaced by the single independent 

variable .
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      Using (7.14), (7.16), (7.20), and (7.21), the four boundary conditions on

velocity and three conditions on temperature transform to:

Velocity:

(1) 0
)0(

d

d
,

(2) 0)0( ,

(3) 0
)(

d

d
,

(4) 0
)(

d

d
.

Temperature:

(1) 1)0( ,

(2) 0)( ,

(3) 0)( .

The following observations are made regarding the above transformation:

(1) The three original partial differential equations, (7.4), (7.8), and (7.10)

are transformed into two ordinary differential equations.

(2) Equation (7.22) is a third order non-linear ordinary differential equation

requiring three boundary conditions.

(3) Equation (7.23) is a second order ordinary differential equation

requiring two boundary conditions. 

(4) The boundary conditions are transformed in terms of the similarity

variable .

(5) The original seven boundary conditions on u, v, and T are transformed 

into five conditions on  and .

(6) The problem is characterized by a single parameter which is the Prandtl 

number.
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7.4.5 Solution.

Equations (7.22) and (7.23)

and their five boundary con-

ditions are solved numer-

ically [1]. The solution is

presented graphically in 

Figs. 7.2 and 7.3. Fig. 7.2

gives the axial velocity 

and Fig. 7.3 gives 

the temperature distribution 

for various Prandtl 

numbers.

),( yxu

),( yxT

7.4.6 Heat Transfer Coefficient and Nusselt Number. The heat transfer

coefficient h is based on Fourier’s law and Newton’s law. It is given by 

(see Sections 1.6 and 2.10.6)

)/(
)0,(

TT
y

xT
kh s .       (7.24)

Expressing the above in terms of the variables  and 

yd

d

d

dT

TT

k
h

s

)0(
.

Using (7.11) and (7.14), the above gives

d

dGr

x

k
h x )0(

4

4/1

.                          (7.25) 

Fig. 7.2 Axial velocity distribution [1]
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Introducing the definition of the local Nusselt number, the above becomes

d

dGr

k

hx
Nu x

x

)0(

4

4/1

.       (7.26)

The average heat transfer coefficient for a plate of length L is defined as

L

dxxh
L

h

0

)(
1

.  (2.50) 

Substituting (7.25) into (2.50) and performing the integration

d

dGr

L

k
h L )0(

43

4
4/1

.   (7.27) 

Fig. 7.3 Temperature distribution [1]
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The average Nusselt number is given by

0.01

1000 3.9660

0.72 0.5045
0.733

0.0806 0.9862

d

d )0(
2

2 )0(

d

d_

0.508

0.676

0.6741
1.0 0.5671 0.6421

10

100

0.7165 0.5713

1.1649 0.4192
2.191 0.2517

0.1450

Pr

0.03 0.136

0.09 0.219

0.5 0.442

1.5 0.6515
2.0
3.5
5.0
7.0

0.8558

0.954
1.0542

Table 7.1 [1,2]

d

d )0(
4/1

Gr

k

Lh
Nu L

L
43

4
.      (7.28) 

Surface temperature gradient, dd /)0( , which 

appears in the above equations is obtained from 

the numerical solution of equations (7.22) and

(7.23).  This important factor depends on the 

Prandtl number only and is listed in Table 7.1 for

selected values of the Prandtl number.  Also listed 

in this table is d . This constant is 

needed to determine surface velocity gradient and 

shearing stress.

22 /)0( d

Special Cases

Equations (7.22) and (7.23) are simplified for two limiting cases corre-

sponding to very small and very large Prandtl numbers. The local Nusselt 

number for these cases is given by [3]

1/4)(600.0 xx RaPrNu , ,      (7.29a)0Pr

1/4)(503.0 xx rGPrNu , Pr .    (7.29b)

Example 7.1 Vertical Plate at Uniform Surface Temperature

A square plate measuring 8 cm8cm is suspended vertically in air. The 

plate is maintained at uniform surface temperature of 70 oC. The ambient 

air is at 10 oC. Of interest is the determination of flow and heat transfer 

conditions at the trailing end .Lx  Specifically, 

determine:

(1) Axial velocity u at y = 0.2 cm 

(2) Air temperature T at y = 0.2 cm 

(3) Viscous boundary layer thickness

(4) Thermal boundary layer thickness t
(5) Nusselt number 

(6) Heat transfer coefficient 

(7) Heat flux 

(8) Total heat transfer rate from the plate. 
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(1) Observations. (i) This is an external free convection problem over a

vertical flat plate. (ii) The plate is maintained at uniform surface 

temperature. (iii) The Rayleigh number should be computed to determine if 

the flow is laminar. (iv) If the flow is laminar Fig. 7.2 gives the axial 

velocity u and viscous boundary layer thickness .  Similarly, Fig. 7.3

gives temperature distribution, and thermal boundary layer thickness .t
(v) Attention is focused on the trailing edge of the plate. This means that 

local values of Nusselt number and heat transfer coefficient should be

determined.

(2) Problem Definition. Determine flow and heat transfer characteristics

for free convection over a vertical flat plate at uniform surface temperature.

(3) Solution Plan.  Compute the Rayleigh number to determine if the flow 

is laminar.  If it is, use the similarity solution results including Figs. 7.2 and

7.3.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state,

(4) Boussinesq approximations, (5) two-dimensional, (6) laminar flow

( ), (7) flat plate (8) uniform surface temperature, (9) no 

dissipation, and (10) no radiation.

9
10xRa

(ii) Analysis and Computation. The Rayleigh number is computed at 

the trailing edge to establish if the flow is laminar. The Rayleigh number is 

defined in equation (7.2) as

3)( LTTg
Ra s

L ,         (7.2)

where

gravitational acceleration = 9.81 g
2m/s

L plate length = 0.08 m

Rayleigh number at the trailing end LRa Lx
surface temperature = sT C70

o

 ambient temperature =T C10
o

 thermal diffusivity, /sm
2

 coefficient of thermal expansion fT/1
-1K

 kinematic viscosity, /sm
2

 Properties are evaluated at the film temperature fT
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C40
2

C))(1070( o
o

2

TT
T s

f

Properties of air at this temperature are

thermal conductivity = 0.0271k CW/m
o

0.71Pr

/sm1096.16 26

/s
2

m1089.23
71.0

/sm1096.16 6
26

Pr

0031936.0
15.273C40

1

o

-1K

Substituting into (7.2)

6

2621

321

103753.2
/s)(m10/s)23.89)(m16.96(K

)810)(K)(0.0)(70)9.81(m/sK0.0031936(
LRa

Thus the flow is laminar. Axial velocity u is given by (7.20)

d

d

x

Gr
u

x
2 ,       (7.20)

where dd /  is given in Fig. 7.2 as a function of

x

yGrx

4/1

4
, (a)

where, according to (7.2) 

6
6

103455.3
71.0

103792.2

Pr

Ra
GrGr L

Lx

Using (a) to evaluate  at 08.0x m and 002.0y m

21.1
)m(08.0

)m(0032.0

4

103455.3
4/1

6

At 21.1  and Pr = 0.71, Fig. 7.2 gives 

27.0
2 xGr

x
u

d

d
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Solving for u at x = L = 0.08 m

m/s2094.0
0.08(m)

103.3455/s))(m102(16.96
72.0

2
27.0

626

L

Gr
u

L

At 21.1  and Pr = 0.71, Fig. 7.3 gives the temperature at x = 0.8 m and

y = 0.002 m

43.0
TT

TT

s

C.853C)10)(0.43(70C)(1043.0
ooo)( TTTT s

At the edge of the viscous boundary layer, ,y  the axial velocity

vanishes. Fig. 7.2 gives the corresponding value of   as

L

Gr
x L

4/1

4
5),(

Solving for 

cm1.32m0132.0
103455.3

4
)m)(08.0(5

4/1

6

At the edge of the thermal boundary layer, ,ty  the temperature

reaches ambient value and thus .0  Fig. 7.3 gives the corresponding

value of   as

L

Gr
x L

t

4/1

4
5.4),(

Solving for t

cm1.19m0119.0
6

103455.3

4
)m)(08.0(5.4

4/1

t

The local Nusselt number is given by equation (7.26)

d

dGr

k

hx
Nu x

x

)0(
4/1

4
.   (7.26) 
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Table 7.1 gives the temperature gradient at the surface dd /)0(  for

various Prandtl numbers. Extrapolation to Pr = 0.71 gives

5018.0
)0(

d

d

Using (7.26), the local Nusselt number is evaluated at the trailing end, x = 

L = 0.08 m

18.15
4

6
103455.3

5018.0

4/14/1
)0(

4 d

dGr

k

hL
Nu L

L

The local heat transfer coefficient at the trailing end is obtained from the

definition of the Nusselt number above 

CW/m14.518.15
0.08(m)

C)0.0271(W/m o2
o

)( LNu
L

k
Lh

Newton’s law of cooling gives surface heat flux sq

2oo
W/m308.4C))(1070(C)W/m(14.5)( TThq ss

Total heat transfer from the plate is determined using the average heat 

transfer coefficient h

)( TTAhq sT ,       (b)

where A is surface area and h  is given by (7.27)

d

dGr

L

k
h L )0(

43

4
4/1

,       (7.27)

CW/m85.6)5018.0(
4

103455.3

0.08(m)

C)/m(0.0271)(W

3

4 o2
6o

4/1

h

Substituting into (b) 

 W 2.63C))(1070(.08(m)C)0.08(m)0(W/m86.6 oo2
Tq



274   7 Free Convection 

(iii) Checking. Dimensional check:  Computations showed that units 

for ,,,,, NuTu t qh, and  are consistent.Tq

Quantitative check: (i) The heat transfer coefficient is within the range 

given in Table 1.1 for free convection of gases. 

(ii) Computations showed that .t  This must be the case since the 

thermal boundary layer thickness cannot be greater than the velocity 

boundary layer thickness. Why?

(5) Comments. (i) As expected, fluid velocity and heat transfer coefficient

are relatively small in free convection.

(ii) The local heat transfer coefficient at location x is smaller than the

average for a plate of length x. This is due to the fact that the heat transfer 

coefficient decreases as the distance from the leading edge is increased. 

7.5 Laminar Free Convection over a Vertical Plate:

      Uniform Surface Heat Flux 

Fig. 7.4 shows a vertical plate with uniform

surface heat flux.  The plate is submerged in an 

infinite fluid at temperatureT . Analytical

determination of the velocity and temperature

distribution follows the procedure used in Section 

7.4 replacing uniform surface temperature with

uniform surface heat flux. The two problems are

based on the same assumptions and governing

equations. They differ by the thermal boundary

condition at the surface, which takes the form

sq
y

xT
k

)0,(
,      (7.30)

where is surface heat flux. It is important to recognize that for uniform

surface heat flux, surface temperature varies along the plate. Thus, of

interest is the determination of surface temperature variation Ts  and the

local Nusselt number  This problem was solved by similarity

transformation [4]. The solution for surface temperature variation is given

by

sq

)(x
.xNu

Fig. 7.4
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)0(
)(

)(

5/1

4

42

5 x
kg

q
TxT s

s ,      (7.31)

Pr )0(

0.1

1.0

10

100

- 2.7507

- 1.3574

 - 0.76746

- 0.46566

Table 7.2 [4]where )0(  is a dimensionless parameter which 

depends on the Prandtl number and is given in Table

7.2 [4]. The local Nusselt number is given by

)0(

1
5/1

4

2
5

x
k

qg
Nu s

x .     (7.32) 

For a wide range of Prandtl numbers, the parameter )0(  may also be

determined using the following correlation equation [5]

5/1

2

2/1

5

1094
)0(

Pr

PrPr
, 1000001.0 Pr . (7.33)

Properties are determined at the film temperature T , defined asf

2/)2/(LTTT sf .  (7.34) 

Example 7.2:  Vertical Plate at Uniform Surface Flux

An 8 cm high plate is suspended vertically in air. The plate is heated at

uniform surface flux of 308.4 W  The ambient temperature is 10
Determine surface temperature, Nusselt number and heat transfer 

coefficient at x = 2, 4, 6 and 8 cm from the leading end.

./ m2 o C.

 (1) Observations. (i) This is an external free convection problem over a 

vertical flat plate. (ii) The plate is heated at uniform surface flux. (iii) The 

Rayleigh number should be computed to determine if the flow is laminar.

(iv) Surface temperature is given by equation (7.31) and the local Nusselt

number is given by equation (7.32).

(2) Problem Definition. Determine the distribution of surface temperature,

Nusselt number and heat transfer coefficient along a uniformly heated

vertical plate under free convection.
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(3) Solution Plan.  Compute the Rayleigh number to determine if the flow 

is laminar. Use (7.31) and (7.32) to determine surface temperature and

Nusselt number at the trailing end.  Use Newton’s law to determine the 

heat transfer coefficient.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state,

(4) Boussinesq approximations, (5) two-dimensional, (6) laminar flow

( ), (7) flat plate, (8) uniform surface heat flux, (9) no 

dissipation, and (10) no radiation.

910xRa

(ii) Analysis and Computation. The Rayleigh number is computed at 

the trailing edge to establish if the flow is laminar. The Rayleigh number is 

defined in equation (7.2) as

3)( LTTg
Ra s

L .  (7.2) 

Since surface temperature is unknown, the Rayleigh number cannot be

computed. To proceed, the flow is assumed laminar and subsequently 

verified once surface temperature is computed. For laminar flow, surface

temperature and Nusselt number are given by

)0(
)(

)(

5/1

4

42

5 x
kg

q
TxT s

s ,      (7.31)

)0(

1
5/1

4

2
5

x
k

qg
Nu s

x ,     (7.32) 

where )0(  is given in Table 7.2.  It can also be determined using (7.33).

Properties are determined at the film temperature defined in equation

(7.34).

      (iii) Computations.  Assume   Compute film

temperature using (7.34)

C.70)2/( oLTs

C40
2

)C)(7010(

2

)2/( o
oLTT

T s
f

Properties of air at this temperature are
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 0.0271k CW/m o

0.71Pr

/sm1096.16 26

/sm1089.23
71.0

/sm1096.16 26
26

Pr

0031936.0
15.273C40

1
o

-1K

Equations (7.33) is used to evaluate )0(

4928.1
)71.05(

)71.0(10)71.0(94
)0(

5/1

2

2/1

The assumed surface temperature at x = L/2 is verified first using (7.31)

C
o

96.56

)4928.1()m)(04.0(
K/mW()0271.0)((m/s81.9)K/1(0031934.0

)/m(W)4.308)(/s(m)1096.16(
5)C

o
(10

5/1

44442

8442426

)2/(LTs

This is lower than the assumed temperature. This procedure is repeated

until a satisfactory agreement is obtained between the assumed and 

computed surface temperature at x = L/2. Following this iterative

procedure, surface temperature at x = L/2 is found to be

C7.56)2/( oLTs

The corresponding film temperature is 

C35.33
2

)C)(7.5610( o
o

fT

Properties of air at this temperature are 

 0.02662k CW/m
o

0.71Pr

/sm103283.16
26

002662.0
-1K

Equation (7.33) gives 

4922.1)0(



278   7 Free Convection 

Equation (7.32) is used to determine the Nusselt number at the trailing end 

28.17

4922.1

1
)(m(0.08)

C)m0.02662(W/)/s(m)105(16.328

)m)308.3(W/9.81(m/s1/K)0.0032626(
5/1

44

o2426

22

xNu

The local heat transfer coefficient at the trailing end is obtained from the 

definition of Nusselt number

CW/m75.528.17
0.08(m)

C)m0.02662(W/ o2
o

)( LNu
L

k
Lh

Surface temperature, Nusselt number, and heat transfer coefficient at 

various locations along the plate are determined following the above 

procedure.  The result is tabulated below.

x(m) T qC)()( oxs xNu )CW/m)(( o2xh )W/m( 2
s

0.02   50.6    5.70    7.59 308.2

0.04   56.7    9.92    6.60 308.2

0.06   60.6    13.73    6.09 308.2

0.08 63.6 17.28 5.75   308.2 

To verify that the flow is laminar throughout, equation (7.2) is used to

compute the Rayleigh number at x = L

6

226

332

103424.2

711.0

1016.3283

0.081063.69.810.0032626

/s)(m)(

)(m))(K)(()(m/s)(K

2

1

LRa

Since , the flow is laminar.910LRa

      (iii) Checking. Dimensional check:   Computations showed that units 

for  and h are consistent.NuTs ,

Quantitative check: (i) The heat transfer coefficient is within the range 

given in Table 1.1 for free convection of gases. (ii) The tabulated results 

show that application of Newton’s law at the four locations along the plate 

gives uniform surface flux. 
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(5) Comments. (i) Since surface temperature is unknown, the problem is

solved by an iterative procedure. (ii) As with forced convection over a flat

plate, the heat transfer coefficient decreases as the distance from the 

leading edge is increased.

7.6 Inclined Plates 

We consider a plate which is inclined 

at an angle  from the vertical. In Fig. 

7.5a the heated side of the plate is 

facing downward while Fig. 7.5b the 

cooled side is facing upward. Note that 

the flow field is identical for both 

cases and consequently the same 

solution holds for both. Note further 

that gravity component for the inclined

plate is cosg  while for the vertical

plate it is g. Studies have shown that the vertical plate solutions of Sections

7.4 and 7.5  apply  to  inclined  plates,  with g replaced by cosg  [6-8].

However, this approximation deteriorates at large values of .  Thus, this

approach is recommended for .60o

7.7 Integral Method

The integral method can be applied to obtain 

approximate solutions to free convection 

boundary layer flows problems. As an example,

consider the problem of a vertical plate at

uniform surface temperature shown in Fig. 7.6. 

An exact analytic solution to this problem is

presented in Section 7.4.

7.7.1 Integral Formulation of Conservation of 

Momentum

The starting point in integral solutions is the integral formulation of

conservation of momentum.  To simplify the analysis we assume that the 

viscous and thermal boundary layers are the same. That is

Fig. 7.5

Fig. 7.6
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t .   (a) 

This approximation is valid for Prandtl numbers in the neighborhood of

unity. Application of the momentum theorem in the x-direction to the 

element dx  shown in Fig. 7.6, gives 

,       (b))in()out( xxx MMF

where

= sum of all external forces acting on element in the x-directionxF

= x-momentum of the fluid entering element)in(xM

= x-momentum of the fluid leaving element)out(xM

The element dx  of Fig. 7.6 is enlarged in Fig. 7.7 showing the x-

momentum and x-forces. The forces acting on the element are due to 

shearing stress o  at the wall, pressure forces p and gravity force (weight)

dW.  Applying equation (b) and using the notations in Fig. 7.7, we obtain

dx

dy

dxo

xM

dx
dx

dM
M x

x

p

dxp
dx

d
p )(

ddpp )2/(gdxdy

7.7Fig.

dW

x
x

xo Mdx
dx

dM
Mdxdxp

dx

d
pd

dp
pp

2
,

(c)

Simplifying equation (c) and neglecting higher order terms

dx
dx

dM
dWdxdp x

o .         (d)
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Wall shearing stress is given by

y

xu
o

0,
.     (e)

In determining the weight of the element dx , one must take into

consideration the variation of density in the y-direction. This requires

integration of the weight of a differential element dydx  along the 

thickness of the boundary layer. Thus

0

dygdxdW .   (f) 

The x-momentum of the fluid entering the element is

)(

0

2

x

x dyuM ,    (g)

where is axial velocity. Note that the density),( yxuu  is assumed

constant in evaluating momentum. This is consistent with the Boussinesq 

approximation used in obtaining similarity solution to this problem.

Substituting (e), (f) and (g) into (d) and rearranging

dyu
dx

d
gdy

dx

dp

y

xu

0

2

0

0,
.     (h) 

Pressure and gravity terms in (h) will now be combined. Pressure gradient 

in boundary layer flow is given by

g
dx

dp

dx

dp
.    (i)

Thus pressure gradient term in (h) can be rewritten as 

gdyg
dx

dp

0

.  (j) 
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Substituting (j) into (h) and rearranging 

dyu
dx

d
dyg

y

xu 2

00

)(
0,

.    (k)

However, density change can be expressed in terms of temperature change

)( TT .  (2.28) 

Introducing (2.28) into (k) and treating  and as constants

dyu
dx

d
dyTTg

y

xu

0

2

0

)(
)0,(

,  (7.35) 

where ./  Note the following:

(1) There is no shearing force on the slanted surface since the velocity

gradient at the edge of the boundary layer vanishes,

i.e. 0/),( yxu .

(2) Equation (7.35) applies to laminar as well as turbulent flow.

(3) Although u and T are functions of x and y, once the integrals in (7.35)

are evaluated one obtains a first order ordinary differential equation

with x as the independent variable.

7.7.2 Integral Formulation of Conservation of Energy

The following assumptions are made in the integral formulation of 

conservation of energy:

(1) No changes in kinetic and potential energy

(2) Negligible axial conduction

(3) Negligible dissipation

(4) Properties are constant

Based on the above assumption, integral formulation of conservation of

energy for free convection boundary layer flow is the same as that for

forced convection. Thus equation (5.7) is applicable to free convection 

)(

0

)(
0,

x

dyTTu
dx

d

y

xT
,       (7.36)
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where  is thermal diffusivity.

7.7.3 Integral Solution

Consider the vertical plate shown in Fig. 7.6. The plate is maintained at 

uniform temperature  and the quiescent fluid is at uniform temperature

 Following the procedure used in integral solution of forced

convection, velocity and temperature profiles are assumed. Recall that in 

forced convection a velocity profile is assumed in terms of a single 

unknown function

sT
.T

).(x  Application of the integral form of momentum is 

used to determine ).(x  Similarly, a temperature profile is assumed in

terms of a single unknown function ).(xt  Application of the integral

form of energy is used to determine ).(xt  However, in the integral

formulation of conservation of momentum and energy for free convection

we assumed that t . Thus we have two equations, (7.35) and (7.36)

for the determination of a single unknown .   This presents a quandary

which must be resolved so that both (7.35) and (7.36) are used to insure

that conservation of momentum and energy are satisfied. The problem is 

resolved by introducing a second unknown function in the assumed

velocity profile.

Assumed Velocity Profile. To proceed, we assume laminar boundary layer

flow. Thus a polynomial is an appropriate velocity profile. Assume a fourth 

degree polynomial for the axial velocity u(x,y)

3
3

2
210 )()()()(, yxayxayxaxayxu .    (a) 

The coefficients  are determined using the following known exact

and approximate boundary conditions on the velocity

)(xan

(1) ,0)0,(xu

(2) 0),(xu ,

(3) 0
),(

y

xu
,

(4) )(
)0,(

2

2

TT
g

y

xu
s .
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Note that the second and third conditions are approximate since the edge of

the boundary layer is not uniquely defined. The fourth condition is obtained

by setting  in the x-component of the equations of motion, (7.5).0y

Equation (a) and the four boundary conditions give the coefficients )(xan

,00a ,
4

)(
1

TTg
a s ,

2

)(
2

TTg
a s

1

4

)(
3

TTg
a s

.

Substituting the above into (a) and rearranging 

2

2

21
4

)( yy
y

TTg
u s .

This can be written as

2

2 1
4

)( yyTTg
u s .   (b) 

To introduce a second unknown function in the assumed velocity profile

(b), we define 

2

4

)(
)(

TTg
xu s

o  .  (c) 

Equation (b) becomes
2

1)(
yy

xuu o .      (7.37)

Note that replacing the term in bracket in (c) with implies that

is independent of 

)(xuo

)(xuo ).(x Thus in (7.32) both )(x and are

unknown. This means that both conservation of momentum and energy are

needed to solve the problem.

)(xuo

Assumed Temperature Profile. A third degree polynomial is assumed for 

the temperature profile 
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.   (d) 
2

210 )()()(),( yxbyxbxbyxT

The boundary conditions are 

(1) ,sTxT )0,(

(2) TxT ),( ,

(3) 0
),(

y

xT
.

Equation (d) and the three boundary conditions give the coefficients )(xbn

,0 sTb
1

)(21 TTb s ,
22

1
)( TTb s .

Substituting the above into (d) and rearranging

2

1)(),(
y

TTTyxT s . (7.38)

Heat Transfer Coefficient and Nusselt Number. Equation (7.24) gives 

the heat transfer coefficient h

TT

y

xT
k

h
s

)0,(

.      (7.24) 

Substituting (7.38) into (7.24)

)(

2

x

k
h .      (7.39)

Thus the local Nusselt number is 

)(
2

x

x

k

hx
Nux .    (7.40)

The problem becomes one of determining the boundary layer thickness

).(x
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Solution.  To determine the functions )(x  and we substitute (7.37)

and (7.38) into (7.35)

)(xuo

dy
y

y
u

dx

d
dy

y
TTg

u oo
s

0

4

2

2

2

0

2

11)( .

(e)

Evaluating the integrals in (e) and rearranging 

u
TTgu

dx

d o
so

3

1

105

1 2 .       (7.41)

Similarly, substituting (7.37) and (7.38) into (7.36) 

)(

0

4

1)(
1

)(2

x

dy
y

y
u

dx

d
TTTT o

s s .   (f) 

Evaluating the integrals and rearranging

1

60

1
ou

dx

d
.      (7.42) 

Equations (7.41) and (7.42) are two simultaneous first order ordinary

differential equations. The two dependent variables are )(x and

We assume a solution of the form

).(xuo

m
o Axxu )( ,   (7.43)

nBxx)( .    (7.44)

where A, B, m and n are constants. To determine these constants we

substitute (7.43) and (7.44) into (7.41) and (7.42) to obtain 

nmn
o

nm x
B

A
BxTTgBxA

nm
v

3

1

105

2 122 ,  (7.45)

nnm x
B

ABx
nm 1

210

1 .     (7.46)
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To satisfy (7.45) and (7.46) at all values of x, the exponents of x in each 

term must be identical. Thus, (7.45) requires that

nmnnm 12 .      (g) 

Similarly, (7.46) requires that

nnm 1 .         (h)

Solving (g) and (h) for m and n gives 

2

1
m ,

4

1
n .      (i) 

Introducing (i) into (7.45) and (7.46) gives two simultaneous algebraic 

equations for A and B

B

A
BTTgBA o

3

1

85

1 2 ,         (j)

B
AB

1

280

1
.       (k)

Solving equations (j) and (k) for A and B, gives

2/1

2

2/1
)(

21

20
17.5

TTg
PrA s  ,  (l) 

and
4/1

2

4/1
1/2- )(

21

20
93.3

TTg
PrPrB s .   (m)

Substituting (i) and (m) into (7.44), rearranging and introducing the 

definition of Rayleigh number, gives the solution to )(x

4/1
4/1

)(1
1

21

20
93.3 xRa

Prx
. (7.47)

Introducing (7.47) into (7.40) gives the local Nusselt number
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4/1
4/1

)(1
1

21

20
508.0 xx Ra

Pr
Nu .      (7.48)

7.7.4 Comparison with Exact Solution for Nusselt Number

Equation (7.26) gives the exact solution to the local Nusselt number for 

free convection over a vertical plate at uniform temperature

d

dGr
Nu x

x

)0(

4

4/1

.        (7.26) 

To compare this result with the integral solution (7.48), equation (7.26) is 

rewritten as

d

d
Nu

Gr
x

x )0(

4

4/1

.      (7.49)

To facilitate comparison, integral solution (7.48) is rewritten as

4/1
4/14/1

)4(1
1

21

20
508.0

4
Pr

Pr
Nu

Gr
x

x .   (7.50) 

The accuracy of the integral

solution depends on the agreement

of the right hand side of (7.50)

with  of exact solu-

tion (7.49). Temperature gradient

d/)d 0(  depends on the

Prandtl number and is given in

Table 7.2.  The two solutions are 

compared in Table 7.3. The exact

solution for the limiting case of

 is given in (7.29a)0Pr

0.01

1000 3.9660

0.72 0.5045

0.0806

d

d )0(_

1.0 0.5671

10

100

0.7165

1.1649

2.191

Pr

0.09 0.219

0.5 0.442

2.0

5.0 0.954

1/4
4/1

)4(1
1

21

20
508.0 Pr

Pr

0.0725

0.213
0.4627

0.5361

0.6078
0.7751

1.0285
1.2488

1.2665

4.0390

Table 7.3

dd /)0(

1/4
exact )(600.0 xx RaPrNu , .     (7.29a)0Pr
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Applying integral solution (7.47) to  gives0Pr

4/1

integral
)(514.0 xx RaPrNu , .      (7.51a)0Pr

Similarly, exact and integral solutions for the limiting case of  are 

given by

Pr

1/4

exact
)(503.0 xx RaNu , Pr ,  (7.29b) 

and

4/1

integral
)(508.0 xx RaNu , Pr .     (7.51b)

The following observations are made regarding the above comparisons:

(1) The error ranges from 1% for Pr  to 14% for .0Pr

(2) Although the integral solution is based on the assumption that

t ( 1Pr ), the solution is reasonably accurate for a wide range of 

Prandtl numbers.
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                                                   PROBLEMS

7.1  Explain why

 [a] t  can not be larger than .

 [b]  can be larger than .t

7.2  A vertical plate 6.5cm high and 30 wide cm is maintained at 82 .

The plate is immersed in water at 18 . Determine:

Co

Co

[a]  The viscous boundary layer thickness.

[b]  The thermal boundary layer thickness at the trailing end. 

[c]  The average heat transfer coefficient.

[d]  Total heat added to water.

7.3 Use Fig. 7.3 to determine dd /)0(  for Pr = 0.01 and 100.

Compare your result with the value given in table 7.1.

7.4 In designing an air conditioning system for a pizza restaurant an 

estimate of the heat added to the kitchen from the door of the pizza

oven is needed.  The rectangular door is cm201cm50  with its

short side along the vertical direction. Door surface temperature is 

110oC.  Estimate the heat loss from the door if the ambient air

temperature is 20oC.

7.5   To compare the rate of heat transfer by radiation with that by free 

convection, consider the following test case.  A vertical plate 

measuring 12 cm  12 cm is maintained at a uniform surface 

temperature of 125oC.  The ambient air and the surroundings are at 

25oC. Compare the two modes of heat transfer for surface 

emissivities of 0.2 and 0.9. A simplified model for heat loss by
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radiation rq  is given by

,)( 44
sursr TTAq

 where A is surface area,  is emissivity, and 

.  Surface and surroundings temperatures are measured in 

degrees kelvin.

8
1067.5

42
KW/m

7.6 A sealed electronic package is designed to 

be cooled by free convection. The package

consists of components which are mounted

on the inside surfaces of two cover plates

measuring cm5.7cm5.7  cm each.

Because the plates are made of high 

conductivity material, surface temperature

may be assumed uniform. The maximum

allowable surface temperature is 70oC.

Determine the maximum power that can be 

dissipated in the package without violating

design constraints. Ambient air temperature

is 20oC.

g
T

components

gT

1

2

7.7  Assume that the electronic package of

Problem 7.6 is to be used in an underwater 

application.  Determine the maximum power

that can be dissipated if the ambient water

temperature is 20oC.

7.8  Consider laminar free convection from a vertical plate at uniform

surface temperature.  Two 45  triangles are drawn on the plate as 

shown. Determine the ratio of the heat transfer rates from the two

triangles.

7.9   A vertical plate measuring 21 cm  21 cm is at a uniform surface

temperature of 80oC. The ambient air temperature is 25oC.  Deter-

mine the heat flux at 1 cm, 10 cm, and 20 cm from the lower edge. 

7.10  200 square chips measuring cm1cm1

each are mounted on both sides of a thin

vertical board .cm01cm10  The chips

dissipate 0.035 W each.  Assume uniform 

surface heat flux. Determine the maximum

surface temperature in air at 22oC.

T g
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7.11  power boards dissipate 15 watts uniformly. Assume

that all energy leaves the board from one side. The maximum

allowable surface temperature is  The ambient fluid is air at 

 Would you recommend cooling the board by free 

convection?

cm21cm12

.C82o

.C24o

7.12 Use the integral method to obtain solution to the local Nusselt number

for laminar flow over a vertical plate at uniform surface temperature

 Assume.sT t  and a velocity and temperature profiles given

by

,
3

3
2

210 )()()()(, yxayxayxaxayxu
 and 

.
3

3
2

210 )()()()(),( yxbyxbyxbxbyxT

 Since there is a single unknown ),(xt  either the momentum or 

energy equation may  be used. Select the energy equation to 

determine ).(xt

7.13 Consider laminar free convection over a vertical plate at uniform

surface flux s . Assumeq t  and a third degree polynomial

velocity profile given by

2

1)(,
yy

xuyxu o .

        Show that: 

        [a] An assumed second degree polynomial for the temperature profile 

gives

2

2
2

1
),(

y
y

k

q
TyxT s .

        [b] The local Nusselt number is given by

5/1

4

2

2

4536

)(4
x

k

qg

Pr

Pr
Nu s

x .
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CORRELATION EQUATIONS: 

FORCED AND FREE CONVECTION 

8.1 Introduction

There are many situations where analytic determination of the heat transfer 

coefficient h is difficult to obtain.  As was shown in previous chapters, 

even after making many simplifying assumptions, the analytic determina-

tion of h is generally not a simple mathematical problem.  When 

complicating factors such as geometry, variable properties, turbulent flow, 

boiling, condensation, etc. are involved, the heat transfer coefficient is 

usually determined experimentally.  This does not mean that each time 

there is a need for h for which there is no analytic solution we must conduct 

an experiment.  Instead, we utilize the experimental results of other 

researchers.  Experimental results are usually correlated and presented as 

dimensionless equations which are convenient to use.  Such equations are 

known as correlation equations.  They are extensively used in the solution 

of heat transfer problems and therefore deserve special attention. 

      In this chapter we will explain how correlation equations are obtained, 

discuss their selection and use and present common cases.  Four topics will 

be considered: (1) external forced convection over plates, cylinders, and 

spheres, (2) internal forced convection through channels, (3) external free 
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convection over plates, cylinders and spheres, and (4) free convection in 

enclosures.

8.2 Experimental Determination of Heat Transfer Coefficient h

To determine the heat transfer coefficient 

h it is common to work with Newton's law 

of cooling which defines h as 

TT

q
h

s

s .                 (8.1) 

By measuring surface temperature s
surface heat flux s  and free stream 

temperature equation (8.1) can be used 

to determine the heat transfer coefficient.  A common method for heating a 

surface and calculating the flux is shown in Fig. 8.1. Heating is provided by 

an electric resistor. Measurement of current i and voltage drop V provides 

data for calculating dissipated power and heat flux.  Thermocouples are 

commonly used to measure surface temperature. A refinement of this 

experimental setup involves using multi-resistors and circuits to provide a 

prescribed surface flux or surface temperature.  

-

sT

sq
V

V

T
i

Fig. 8.1

,
,

T

T
q

,

      Correlation equations are presented in dimensionless form.  This is an 

effective and efficient way to organize and present experimental data. 

Instead of presenting equations for h, it is common to correlate data in 

terms of a dimensionless heat transfer coefficient called the Nusselt

number.  Since the parameters governing convection heat transfer are 

known from dimensional analysis, both the design of experiments for 

determining the Nusselt number and the form of correlation equations are 

based on this knowledge.  For example, for constant properties forced 

convection heat transfer with no dissipation, we have shown that

)PrRexfNux ,;(= * .                                 (2.52) 

Thus, experiments are designed such that both the Reynolds and Prandtl 

numbers can be varied and measurements are made for calculating the 

Nusselt number at various locations  The collected data is then 

correlated according to equation (2.52). 

.*x
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8.3 Limitations and Accuracy of Correlation Equations

All correlation equations have limitations which must be carefully noted 

before they are applied.  First, geometry is an obvious factor.  External 

flow over a tube is not the same as flow through a tube. Thus, each 

equation is valid for a specific configuration.  Second, limitations on the 

range of parameters, such as the Reynolds, Prandtl and Grashof numbers, 

for which a correlation equation is valid, are determined by the availability 

of data and/or the extent to which an equation correlates the data. 

      Since correlation equations are based on experimentally determined 

data, they do not always provide very accurate predictions of h.  Errors as 

high as 25% are not uncommon. 

8.4 Procedure for Selecting and Applying Correlation Equations 

To identify the appropriate correlation equation for a specific application, 

the following steps should be considered: 

(1) Identify the geometry under consideration.  Is it flow over a flat plate, 

over a cylinder, through a tube, or through a channel? 

(2) Identify the classification of the heat transfer process.  Is it forced 

convection, free convection, external flow, internal flow, entrance 

region, fully developed region, boiling, condensation, micro-gravity? 

(3) Determine if the objective is finding the local heat transfer coefficient 

(local Nusselt number) or average heat transfer coefficient (average 

Nusselt number). 

(4) Check the Reynolds number in forced convection.  Is the flow 

laminar, turbulent or mixed? 

(5) Identify surface boundary condition. Is it uniform temperature or 

uniform flux?  

(6) Examine the limitations on the correlation equation to be used.  Does 

your problem satisfy the stated conditions? 

(7) Establish the temperature at which properties are to be determined. 

For external flow properties are usually determined at the film 

temperature fT

2/)( TTT sf .                                  (8.2) 
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 and for internal flow at the mean temperature .mT  However, there are 

exceptions that should be noted. 

(8) Use a consistent set of units in carrying out computations. 

(9) Compare calculated values of h with those listed in Table 1.1.  Large 

deviations from the range of h in Table 1.1 may mean that an error has 

been made. 

8.5 External Forced Convection Correlations

8.5.1 Uniform Flow over a Flat Plate: Transition to Turbulent Flow

We consider boundary layer flow 

over a semi-infinite flat plate 

shown in Fig. 8.2.  In the region 

close to the leading edge the flow 

is laminar.  As the distance from 

the leading edge increases so does 

the Reynolds number.  At some 

location downstream, ,txx  tur-

bulence begins to appear and transition from laminar to turbulent flow 

develops.  The Reynolds number corresponding to this location is called 

the transition or critical Reynolds number 
tx   Its value, which is exper- 

imentally determined, depends on several factors including surface finish, 

pressure gradient, free stream turbulence, etc.  For uniform flow over a flat 

plate the transition Reynolds number is approximately given by 

.

laminar turbulent
transition

x
xt

V T,

Fig. 8.2

Re

5105txV
Re

tx .                                  (8.3) 

It should be kept in mind that this value is not an exact criterion for this 

flow configuration.  It may be lower or higher, with extreme values that 

differ by as much as orders of magnitude.  

      Correlation equations will be presented for the basic geometry of a semi-

infinite flat plate with uniform upstream velocity and temperature. Laminar, 

turbulent and mixed flow conditions will be considered. We will examine 

various boundary conditions for this flat plate geometry. 

(1) Plate at Uniform Surface Temperature.  The local heat transfer 

coefficient is determined from the local Nusselt number.  To proceed, 

establish if the flow is laminar or turbulent. For txx the flow is laminar 
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and thus equation (4.72) is applicable.  In the turbulent region, the

following correlation equation is used [1] 

,txx

3/15/4 )()(0296.0 PrRe
k

hx
Nu xx .                  (8.4a) 

Equation (8.4a) is valid for: 

flat plate, constant sT

75 10105 xRe

606.0 rP

properties at fT

                              (8.4b) 

With the local heat transfer coefficient determined in the laminar and 

turbulent regions, we can construct the average heat transfer coefficient h

for a plate of length L.  For txL  the flow is laminar.  For txL
xx

the

flow is mixed, being laminar for t0 xxand turbulent for t
Determining 

.L
h  for this case requires integration of the local value over 

both the laminar and turbulent regions.  Starting with the definition of h  in 

(2.50), we have

t L

t

tL

L x

x

dxxhdxxh
L

dxxh
L

h
00

)()(1)(1 ,           (8.5) 

where L and t  are the local heat transfer coefficients in the 

laminar and turbulent regions, respectively. The local laminar Nusselt 

number in (4.72) gives L . Equation (8.4a) gives h .  Substituting 

(4.72b) and (8.4a) into (8.5) we obtain 

)(xh )(xh

)(xh )(xt

3/1

0

5/1

5/4

2/1

2/1

)(0296.0332.0 Pr
x

dxV

x

dxV

L

k
h

t

t

x L

x

.            

(8.6)

When the integration is carried out, the result is 

.)()()( 3/15/45/42/1
037.0664.0 PrReReRe

L

k
h

tLt xx (8.7a)
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Or, expressed in terms of the average Nusselt number 
L

Nu , equation 

(8.7a) gives 

.)()(7)( 3/15/45/42/1
03.0664.0 PrReReRe

k

Lh
Nu

tt xx LL

(8.7b)

This result is limited to the assumptions leading to Pohlhausen’s solution 

and the range of Pr and Rex given in (8.4b). 

(2) Plate at Uniform Surface Temperature with an Insulated Leading 

Section.  This case is shown in 

Fig. 8.3. A leading section of 

length xo is insulated. Transition 

from laminar to turbulent flow 

can take place within or beyond 

this section.  The laminar flow 

case was presented in Chapter 5 

where the local Nusselt number 

is given by equation (5.21).  For 

turbulent flow the local Nusselt number is given by [2] 

insulation

tx
ox

x
T

V

8.3Fig.

sT

t

9/110/9
o

1/35/4

)/(1

)()(0296.0

xx

PrRe

k

hx
Nu x

x .                      (8.8) 

(3) Plate with Uniform Surface Flux. Fig. 8.4 shows a plate which is 

heated uniformly along its surface.  As with the case of uniform surface 

temperature, the flow is laminar for 

t and turbulent for  For 

the laminar region the local Nusselt 

number is determined analytically using 

(5.36) or (5.37). In the turbulent region 

the local Nusselt number is [2] 

xx0 .txx

x tx

s
q

T
V

8.4Fig.

3/14/5)(030.0 PrRe
k

hx
Nu xx .                        (8.9) 

Note that surface temperature  varies along the plate. The variation is 

determined by Newton's law of cooling using the local heat transfer 

)(xTs
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coefficient (8.9). Properties are determined at the film temperature 

,/)( 2TTT sf  where sT  is the average surface temperature. 

Example 8.1: Power Dissipated by Chips 

An array of  chips measuring 9030 cm0.4cm40.  each are mounted 

flush on a plate. Surface temperature of the chips is = 76sT oC.  The array 

is cooled by forced convection of air 

at = 24T oC flowing parallel to the 

plate with a free stream velocity V =

35 m/s. Determine the dissipated 

power in the array. 

Ts

T

V

(1) Observations.  (i) This is a forced convection problem over a flat plate. 

(ii) Surface temperature is uniform.  (iii) The average heat transfer 

coefficient and Newton’s law of cooling give the heat transfer rate from the 

surface to the air.  (iv) The Reynolds number at the trailing end should be 

calculated to determine if the flow is laminar, turbulent or mixed.   

(2) Problem Definition.  Find the average heat transfer coefficient for 

flow over a semi-infinite flat plate. 

(3) Solution Plan.   Apply Newton's law of cooling to determine the heat 

transfer from the surface to the air. Calculate the Reynolds number to 

establish if the flow is laminar, turbulent or mixed.  Use an analytic 

solution or a correlation equation to determine the average heat transfer 

coefficient.

(4) Plan Execution.  

(i) Assumptions.  (1) Continuum, (2) Newtonian, (3) steady state, (4) 

constant properties, (5) uniform upstream velocity and temperature, (6) 

uniform surface temperature, (7) negligible plate thickness, (8) negligible 

edge effects, (9) all dissipated power in chips is transferred to the air by 

convection, (10) no radiation, and (11) the array is oriented with its short 

side facing the flow. 

(ii)  Analysis.  Applying Newton’s law of cooling to the surface of the 

array gives 

)( TTAhqP sT ,                                  (a) 

where

A = surface area

h = average heat transfer coefficient, W/m2-oC
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P = power dissipated by the chips, W 

T
q  = total heat transfer from surface = power dissipated in array, W 

sT = surface temperature = 76oC

T = free stream temperature = 24oC

To determine h  it is necessary to establish if the flow is laminar, turbulent 

or mixed.  This is determined by calculating the Reynolds number at the 

trailing end of the array, L , and comparing it with the transition 

Reynolds number,  These two numbers are defined as 

Re
.

txRe

LV
ReL ,                                             (b) 

and

5105t
t

xV
Rex ,                                  (c) 

where

L = length of array = 90(chips) 0.4(cm/chip) = 36 cm = 0.36 m  

V = free stream velocity = 35 m/s 

= kinematic viscosity of air, m2/s

Properties are evaluated at the film temperature Tf  given by 

Tf = (Ts + T )/2 = (76 + 24)(oC)/2 = 50oC

Air properties at this temperature are  

k = 0.02781 W/m-oC

Pr = 0.709 

 = 17.92  10 6 m2/s

Substituting into (b) 

5

26
10031.7

/s)m(1092.17

m)(36.0m/s)(35
LRe

Comparing this with the transition Reynolds number shows that the flow is 

turbulent at the trailing end. Therefore, the flow is mixed over the array and 

the average heat transfer coefficient is given by equation (8.7b) 

3/15/45/42/1 )()()()( 037.0664.0 PrReReRe
L

k
h

tLt xx .   (d) 
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This result is limited to the assumptions leading to Pohlhausen’s solution 

and the range of Pr and Rex given in (8.4b). 

(iii) Computations.  The area of the rectangular array is 

A = 30(chips) 0.4(cm/chip) 90(chips)0.4(cm/chip) = 432 cm2

   = 0.0432 m2

Equations (c) and (d) give h

CW/m3.61

)703.0()105()10031.7(037.0)105(664.0
)m(36.0

)CW/m(0278.0

o2

3/15/455/452/15
o

h

h

Substituting into (a)

P =  = 61.3(W/mTq 2-oC) 0.0432(m2) (76 – 24)(oC) = 137.7 W 

(iv) Checking. Dimensional check: Computations showed that 

equations (a), (b) and (d) are dimensionally consistent. 

Quantitative check: The calculated value of h  is within the range given in 

Table 1.1 for forced convection of gases. 

(5) Comments.  (i) Pohlhausen’s solution (4.72b) for laminar flow and 

correlation equation (8.4a) for turbulent flow were used to solve this 

problem.  The solution is limited to all the assumptions and restrictions 

leading to these two equations.

(ii) More power can be dissipated in the array if the boundary layer is 

tripped at the leading edge to provide turbulent flow over the entire array. 

The corresponding heat transfer coefficient can be obtained by 

setting = 0 in equation (d) 
txRe

1/35/4
037.0 PrRe

k

Lh
Nu LL .

Solving for h

3.121709.010031.7037.0
0.36(m)

)C
o

m-W/0.02781( 3/15/45 )()(h  W/m2-oC

Substituting into (a)
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W)C)()(m()CW/m( 5.27224760432.03.121
o2o2

TqP

Thus, turbulent flow over the entire array almost doubles the maximum 

dissipated power. 

8.5.2 External Flow Normal to a Cylinder

Fig.8.5 shows forced convection normal to a 

cylinder.  Since the flow field varies in the 

angular direction , the heat transfer coefficient 

h also varies with .  An equation which 

correlates the average heat transfer coeffi-

cient h over the circumference is given by [3] 

5/4
8/5

4/1
3/2

3/12/1

000,282
4.0

62.0
3.0 1

1

DD
D

Re

Pr

PrRe

k

Dh
uN .   (8.10a) 

T

V

8.5Fig.

Valid for:

flow normal to cylinder

2.0PrRePe D

properties at fT

(8.10b)

flow normal to cylinder 

2.0PrRePe D

properties at fT

where ReD is the Reynolds number based on diameter and Pe is the Peclet

number defined as the product of the Reynolds and Prandtl numbers. For 

Pe < 0.2, the following is used [4] 

ek

Dh
uN

P
D

ln5.08237.0

1
.                    (8.11a) 

Valid for:

 (8.11b) 

Equations (8.10) and (8.11) may also be applied to cylinders with uniform 

flux.
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8.5.3 External Flow over a Sphere 

The average Nusselt number for the flow over a sphere is given by [5] 

4/1
4.03/22/1 06.04.02

s
PrReRe

k

Dh
uN DDD .    (8.12a) 

Valid for:
flow over sphere 

4106.73 ReD.5

38071.0 Pr

2.3/1 s

properties at sT , at sT (8.12b)

8.6 Internal Forced Convection Correlations

In Chapter 6, analytic determination of the heat transfer coefficient is 

presented for a few laminar flow cases.  We will now present correlation 

equations for the entrance and fully developed regions under both laminar 

and turbulent flow conditions.  The criterion for transition from laminar to 

turbulent flow is expressed in terms of the Reynolds number ReD , based on 

the mean velocity u and diameter D. The flow is considered laminar for 

, where 
tDD ReRe

2300
Du

Re
tD .                (8.13) 

Properties for internal flow are generally evaluated at the mean tempera-

ture mT .

8.6.1 Entrance Region: Laminar Flow through Tubes at Uniform 

Surface Temperature

In considering heat transfer in the entrance region of tubes and channels, 

we must first determine if both velocity and temperature are developing 

simultaneously or if the velocity is already fully developed but the 

temperature is developing.  This latter case is encountered where the heat 

transfer section of a tube is far away from the flow inlet section.  

Correlations for both cases will be presented for laminar flow in tubes at 

uniform surface temperature.

(1) Fully Developed Velocity, Developing Temperature: Laminar Flow.

This case is encountered where the velocity profile develops prior to 
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entering the thermal section as 

shown in Fig. 8.6. This problem 

was solved analytically using 

boundary layer theory. However, 

the form of the solution is not 

convenient to use.  Results are 

correlated for the average Nusselt 

number for a tube of length L in 

the following form [6]:  

r

tL

sT

u

Fig. 8.6

t

x
T T

sT

fully 
developed

3/2
)/(04.01

)/(0668.0
66.3

PrReLD

PrReLD

k

Dh
uN

D

D
D .       (8.14a) 

Valid for: 
entrance region of tube 

uniform surface temperature Ts

fully developed laminar flow (ReD < 2300) 

developing temperature  

properties at 2/)( momim TTT

(8.14b)

where Tmi and Tmo are the mean temperatures at the inlet and outlet, 

respectively. 

(2) Developing Velocity and Temperature: Laminar Flow.  A correla-

tion equation for this case is given by [5, 7] 

14.0
3/1

)/(86.1
s

DD PrReLD
k

Dh
Nu  .        (8.15a)

Valid for:
entrance region of tube  

uniform surface temperature sT

laminar flow (ReD < 2300)  

developing velocity and temperature 

0.48 < Pr < 16700 

0.0044 < 
s

 < 9.75 

2

14.03/1

s
D PrRe

L

D

properties at ssmomim TTTT at,2/)(

(8.15b)
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Example 8.2: Force Convection Heating in a Tube 

Water enters a tube with 

a uniform velocity u  = 

0.12 m/s and uniform 

temperature Tmi = 18oC.

The surface of the tube is 

maintained at Ts = 72oC. The tube diameter is D = 1 cm and its length is L 

= 1.5 m. Determine the heat transfer rate to the water.

u
L

sTmoT

miT

x

moT

(1) Observations.  (i) This is an internal flow problem through a tube at 

uniform surface temperature. (ii) Both velocity and temperature are 

developing. (iii) Entrance effects can be neglected if the tube is much 

longer than the developing lengths  and t (iv) The Reynolds number 

establishes if the flow is laminar or turbulent. (v) Heat transfer to the water 

can be calculated if the outlet temperature is known. 

hL .L

(2) Problem Definition. Determine the outlet water temperature.  

(3) Solution Plan.  (i) Apply conservation of energy to the water to 

determine the rate of heat transfer  (ii) Calculate the Reynolds number. 

(iii) Determine the hydrodynamic and thermal entrance lengths to establish 

if this is an entrance or fully developed flow problem. 

.sq

(4) Plan Execution

(i) Assumptions. Anticipating the need to apply conservation of energy 

and to determine the heat transfer coefficient, the following assumptions 

are made: (1) Continuum, (2) negligible changes in kinetic and potential 

energy, (3) constant properties, (4) steady state, (5) no energy generation 

( = 0 ), (6) negligible axial conduction (Pe > 100, to be verified), (7) 

axisymmetric flow, and (8) uniform surface temperature. 

q

(ii) Analysis. Application of conservation of energy to the water 

between the inlet and outlet gives 

)( mimops TTmcq ,                                   (a) 

where

pc = specific heat, J/kg-oC

m  = mass flow rate, kg/s 

sq = rate of heat transfer to water, W 

Tmi = inlet temperature = 18oC

Tmo = Tm(L) = outlet temperature, oC
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The mass flow rate is given by 

4

2Du
m ,                                         (b) 

where

D = tube diameter = 1 cm = 0.01 m 

u = mean velocity = 0.12 m/s 

 = density, kg/m3

Properties of water are evaluated at mT , defined as 

mT = (Tmi + Tmo)/2 .                                       (c) 

The mean fluid temperature Tm(x) at distance x from the inlet is given by 

equation (6.13). Setting x = L in (6.13) gives the outlet temperature Tm(L) = 

Tmo

])( [exp L
cm

hP
TTTT

p

mimo ss ,                   (d) 

where

h = average heat transfer coefficient, W/m2-oC

L = tube length = 1.5 m 

P = tube perimeter = D

= surface temperature = 72sT oC

The problem now becomes one of finding the heat transfer coefficient .h
The Reynolds number is determined next to establish if the flow is laminar 

or turbulent. The Reynolds number is defined as 

Du
ReD ,                                               (e) 

where  is the kinematic viscosity evaluated at the mean temperature mT .

Since the outlet temperature Tmo is unknown, an iterative procedure is 

required to determine mT . An assumed value for Tmo is used to obtain 

approximate values for water properties needed to calculate Tmo. If the 

calculated Tmo is not close to the assumed value, the procedure is repeated 

until a satisfactory agreement is obtained. Assume Tmo = 42oC.  Equation 

(c) gives

CTm
oo

3024218 C/)(

Properties of water at this temperature are:  
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cp = 4180 J/kg-oC

k = 0.6150 W/m-oC

Pr = 5.42

 = 0.7978  10 kg/s-m  

= 0.8012  10 6 m2/s

 = 995.7 kg/m3

Substituting into equation (e) gives the Reynolds number

8.1497
100.8012

01.012.0

)/sm(

)m/s(
26-

(m)Du
ReD

Since this is smaller than the transition Reynolds number (
tD
= 2300), the 

flow is laminar. The Peclet number is calculated to verify assumption (6) 

Re

Pe = ReD Pr = 1497.8 5.42 = 8118 

Thus neglecting axial conduction is justified.  To determine if the flow is 

developing or fully developed, the hydrodynamic and thermal entrance 

lengths,  and are calculated using equations (6.5) and (6.6) and 

Table 6.1

hL ,tL

= 0.056DRehL D = (0.056)(0.01 m)(1497.8) = 0.839 m 

= 0.033DRetL D Pr = (0.033)(0.01 m)(1497.8)(5.42) = 2.679 m 

Comparing these with the tube length, L = 1.5 m, shows that both velocity 

and temperature are developing. Therefore, entrance effects must be taken 

into consideration in determining h . The applicable correlation equation 

for this case is (8.15a)

14.0
3/1

)(86.1
s

PrReL/D
k

Dh
uN DD ,                  (f) 

where s  is the viscosity at surface temperature  Before using equation 

(f), the conditions on its applicability, equation (8.15b), must be satisfied. 

Consideration is given to the 6

.sT

th and 7th conditions in (8.15b).

s/  = / = 2.02 )m-s(kg/3
100.7978 m)(kg/s3

100.394

and
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17.4)02.2()42.5)(8.1497(
)m(5.1

)m(01.0 14.0

3/1
14.0

3/1
)(

s
PrReL/D D

Therefore, all conditions listed in (8.15b) are satisfied. 

(iii) Computations.  Equation (b) gives m

kg/s
4

)m()(m/s)()(kg/m
0.009384

0.010.12995.7
223

m

Equation (f) gives h

7.766

mKg/s(

)mKg/s(
0.14

3-

3-1/3

100.394

100.7978
5.42)(1497.8)(

1.5(m)

0.01(m)
1.86

k

Dh
Nu D

h  = 7.766
0.01

0.615

(m)

C)-m/(W o

DNu
D

k
 = 477.6 (W/m2-oC)

Substituting into (d) gives Tmo

C

C)(J/kgkg/s)(

m)(m)()CW/m(
expC))((C)(

o

o

o2

41.6

4180009384.0

1.501.06.477
187272moT

This is close to the assumed value of 42oC.  Substituting into (a) gives sq

sq = 0.009384(kg/s) 4180(J/kg-oC) (41.6 – 18)(oC) = 925.7 W 

 (iv) Checking. Dimensional check: Computations showed that 

equations (a), (b) and (d)-(f) are dimensionally consistent. 

Quantitative check: (i) The calculated value of the heat transfer coefficient 

is within the range suggested in Table 1.1 for forced convection of liquids.

(ii) To check the calculated heat transfer rate  assume that the water 

inside the tube is at a uniform temperature 

,sq

mT

C/2C)(2/)( oo
29.841.618momim TTT

Application of Newton's law of cooling gives 

sq = )( mTTAh s  = 477.6(W/m2-oC)  0.01 (m) 1.5(m) (72 29.8) (oC)
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     = 949.8 W 

This is close to the exact answer of 925.7 W. 

(5) Comments.  (i) The determination of the Reynolds number is critical in 

solving this problem.  

(ii) If we incorrectly assume fully developed flow, the Nusselt number will 

be 3.66, CmW/ 2
225.09h ,  and  Co

8.30moT 1.502sq W.  This 

is significantly lower than the value obtained for developing flow.  

8.6.2 Fully Developed Velocity and Temperature in Tubes:

         Turbulent Flow 

Unlike laminar flow through tubes, turbulent flow becomes fully developed 

within a short distance (10 to 20 diameters) from the inlet.  Thus entrance 

effects in turbulent flow are sometimes neglected and the assumption that 

the flow is fully developed throughout is made.  This is common in many 

applications such as heat exchangers.  Another feature of turbulent flow is 

the minor effect that surface boundary conditions have on the heat transfer 

coefficient for fluids with Prandtl numbers greater than unity. Therefore, 

results for uniform surface temperature are close to those for uniform 

surface heat flux. 

      Because heat transfer in fully developed turbulent flow has many 

applications, it has been extensively investigated.  As a result, there are 

many correlation equations covering different ranges of Reynolds and 

Prandtl numbers. Two correlation equations will be presented here.

(1) The Colburn Equation [8]:  This is one of the earliest and simplest 

equations correlating the Nusselt number with the Reynolds and Prandtl 

numbers as 

1/34/5 )()0.023( PrRe
k
Dh

uN DD  .               (8.16a) 

Valid for:

fully developed turbulent flow  

smooth tubes 

ReD > 104

0.7 < Pr < 160  

L /D > 60 

properties at 2/)( momim TTT

(8.16b)



310       8 Correlation Equations: Forced and Free Convection 

This equation is not recommended since errors associated with it can be as 

high as 25%.  Its accuracy diminishes as the difference in temperature 

between surface and fluid increases. 

(2) The Gnielinski Equation [9, 10]: Based on a comprehensive review of 

many correlation equations for turbulent flow through tubes, the following 

equation is recommended:  

3/2

2/31/2
)/(1

)1(/8)12.7(1

)1000)(8/(
LD

Prf

PrRef
Nu D

D .    (8.17a) 

Valid for: 

developing or fully developed turbulent flow 

 2300 < ReD < 5  106

0.5 < Pr < 2000 

0 < D/L <1 

 properties at

                                                                                                             (8.17b) 

2/)( momim TTT

The D/L factor in equation (8.17a) accounts for entrance effects. For fully 

developed flow set D/L = 0.  The friction factor f is defined as 

2/2u

p

L

D
f ,                                     (8.18) 

where u is the mean fluid velocity and p  is the pressure drop in a tube 
of length L.  This factor depends on the Reynolds number and surface 
finish.  It is obtained from the Moody chart [11].  For smooth tubes f may 
be approximated by [12] 

                       f = (0.79 ln ReD  1.64)–2  .                                                (8.19)

8.6.3  Non-circular Channels: Turbulent Flow

Correlation equations for turbulent flow through tubes can be applied to 

non-circular channels to provide a reasonable approximation for the 

average heat transfer coefficient. In such applications the diameter D

appearing in the correlation equations is replaced by the hydraulic or 

equivalent diameter defined as eD
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P

A
D

f
e

4
,                                       (8.20) 

where  is the flow area and P is the wet perimeter. fA

8.7 Free Convection Correlations

8.7.1 External Free Convection Correlations 

Correlation equations for several configurations are available.  Some are 

based on analytical or numerical results while others are based on 

experimental data. 

(1) Vertical Plate: Laminar Flow, Uniform Surface Temperature. 

This is an important geometry since it can be used to 

model many applications.  Fig.8.7 shows a vertical plate 

which is submerged in an infinite fluid at T . Surface 

temperature s  is uniform. If , the fluid will rise 

along the surface forming viscous and thermal boundary 

layers. The viscous boundary layer can be laminar or 

turbulent. A solution to this problem was presented in 

Chapter 7 for laminar boundary layer flow [13].  The 

following equation correlates the results for the local 

Nusselt number to within 0.5% [14] 

T TTs

u

y

x
g

T
sT

8.7Fig.

4/1
4/1

2/1
)(

953.4884.4435.24

3
xRa

PrPr

Pr

k

hx
Nux ,  (8.21a) 

where is the local Rayleigh number defined in (7.2) with L replaced 

by the variable x.  To determine the average Nusselt number for a plate of 

length L, equation (8.21a) is substituted into (2.50) to give the average heat 

transfer coefficient

xRa

h and
L

Nu

k

Lh
uN L

41/
41/

1/2
)(

4.9534.8842.435
LRa

PrPr

Pr
.   (8.21b) 

Equations (8.21a) and (8.21b) are valid for: 



312       8 Correlation Equations: Forced and Free Convection 

vertical plate 

uniform surface temperature sT

laminar Ra                                                                                               (8.21c), 94 1010 L

0 < Pr < 

properties at fT

(2) Vertical Plates: Laminar and Turbulent, Uniform Surface Temper-

ature.  A single equation which correlates experimental data for the 

average Nusselt number for laminar, transition and turbulent flow was 

developed by Churchill and Chu [15] 

2

8/279/16

6/1

/0.4921

)0.387(
0.825

Pr

Ra

k

Lh
uN L

L .   (8.22a) 

Valid for:

(8.22b)

vertical plate 

 uniform surface temperature sT

 laminar, transition, and turbulent 

10 1
< LRa <1012

 0 < Pr < 

 properties at fT

Although (8.22a) can be applied in the laminar range, RaL < 109, better 

accuracy is obtained using (8.21b). 

(3) Vertical Plates: Laminar Flow, Uniform Surface Heat Flux.  Of 

interest in this case is the determination of surface temperature 

which varies along the plate. The local Nusselt number for laminar 

flow is given by [16] 

)(xTs

5/1

1/2

2
*

1094
xx Gr

PrPr

Pr

k

hx
Nu ,             (8.23) 

where the local heat transfer coefficient h(x) is expressed in terms of 

surface heat flux  as sq

TxT

q
xh

s

s

)(
)( .                                 (8.24) 
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The modified Grashof number  in (8.23) is defined as*
xGr

4

2

* x
k

qg
Gr s

x .                                    (8.25) 

Substituting (8.24) and (8.25) into (8.23) and solving for ),( TTs  we 

obtain
5/1

42

2

2/1 1094
x

k

q

gPr

PrPr
TxT s

s  .    (8.26a) 

Equations (8.23) and (8.26a) are valid for: 

vertical plate 

uniform surface flux sq

laminar, 94 1010 * PrGrx

0 < Pr  < 

b)

However, properties in (8.26a) depend on surface temperature 

s which is not known a priori.  A solution can be obtained using an 

iterative procedure.  An assumed value for the surface temperature at the 

mid-point, s is used to calculate the film temperature at which 

properties are determined.  Equation (8.26a) is then used to calculate 

s  If the calculated value does not agree with the assumed 

temperature, the procedure is repeated until a satisfactory agreement is 

obtained.

),(xT

),2/(LT

).2/(LT

(4) Inclined Plates: Laminar Flow, Uniform Surface Temperature.  We 

consider a plate of length L which is 

tilted at an angle   from the vertical. 

Fig. 8.8a shows an inclined plate with 

its heated surface facing downward 

while Fig. 8.8b shows a plate with its 

cooled surface facing upward. Note 

that the flow field is identical for both 

cases and consequently the same 

solution holds for both. Note further 

that gravity component for the 

inclined plate is cosg  while for the 

sT

T g

sT

TTs)a( TTs)b(

8.8Fig.
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vertical plate it is g. It is reasonable to use the correlation equation for the 

vertical plate, with g replaced by cosg
.

. However, this approximation 

deteriorates at large values of   Thus equations (8.21a), (8.21b) and 

(8.22a) can be used for inclined plates with Rayleigh number modified to  

3)(cos xTTg
Ra s

x .                        (8.27) 

This approximation is valid for:

inclined plate

rface tuniform su ure sT

laminar, LRa

600

emperat

910
(8.28)

For an inclined plate with its heated surface facing up or cooled surface 

facing down, the flow is complicated by transition and three-dimensional 

effects.  Correlation equations for this case are given in [17, 18]. 

(5) Horizontal Plates: Uniform Surface Temperature.  The recommend-

ed correlations for the following two arrangements are [19-21]: 

(i) Heated upper surface or cooled lower surface 

4/1
54.0 LL RauN ,   for 

75 10210 LRa ,       (8.29a)

3/1
14.0 LL RauN ,   for

107 103102 LRa .     (8.29b)

Valid for: horizontal plate 

hot surface up or cold surface down

properties, except , at fT

 at fT  for liquids, T  for gases 

(8.29c)

(ii) Heated lower surface or cooled upper surface 

4/1
27.0 LL RauN ,   for

105 103103 LRa ,       (8.30a) 

Valid for: 
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horizontal plate 

hot surface down or cold surface up

properties, except , at fT

 at fT  for liquids, T  for gases 

 (8.30b) 

Properties in equations (8.29) and (8.30) are determined at the film 

temperature Tf. The characteristic length L is defined as [18] 

perimeter

areasurface
L .                                  (8.31) 

Although equations (8.29) and (8.30) are for uniform surface 

temperature, they are applicable to uniform surface flux. In this case 

the flux is specified while surface temperature is unknown. Surface 

temperature is determined following the procedure used in vertical 

plates at uniform flux, described in case (3) above. 

(6) Vertical Cylinders.  Correlation equations for vertical plates can be 

applied to vertical cylinders if the effect of boundary layer curvature is 

negligible. This approximation is valid if the thermal boundary layer 

thickness t  is small compared to the diameter of the cylinder D. The 

condition for Dt/  << 1 is 

4/1

35

LGrL

D
 ,  for Pr  1.                            (8.32) 

(7) Horizontal Cylinders.  This case has many 

engineering applications such as heat loss from 

steam pipes, refrigeration lines and fins. Fig. 8.9 

shows free convection over a horizontal cylinder. 

Due to flow asymmetry, the local heat transfer 

coefficient varies along the circumference.  The 

following equation correlates the average Nusselt 

number for a wide range of Rayleigh numbers [22] Fig.8.9

T

g

2

27/816/9

6/1

/1 559.0

387.0
60.0

Pr

Ra

k

Dh
uN D

D .       (8.33a) 
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Valid for: 

horizontal cylinder 

uniform  surface temperature or flux 

10 5 < RaD < 1012

properties at fT

                                                                                                             (8.33b) 

Note that the characteristic length in the Rayleigh number is the diameter D

of the cylinder. 

(8) Spheres.  The average Nusselt number for a sphere is given by [23]

9/4
16/9

4/1

469.0

589.0
2

1
Pr

Ra

k

Dh
uN D

D .                8.34a) 

Valid for: 

sphere 

uniform surface temperature or flux
1110DRa

Pr > 0.7 

properties at fT
(8.34b)

Example 8.3: Free Convection Heat Loss from a Window 

Estimate the heat loss to a 2.5 m high and 1.25 m wide glass window. The 

average inside surface temperature is 7oC. Room air temperature is 23oC.

Room surroundings is at 28oC and window surface 

emissivity .87.0

sT

g

T

surT

(1) Observations.  (i) Heat transfer to the inside 

surface of the window is by free convection and 

radiation. (ii) The problem can be modeled as a 

vertical plate at uniform surface temperature.  (iii) 

Newton’s law of cooling gives the heat transfer 

rate. (iv) The Rayleigh number should be checked 

to establish if the flow is laminar or turbulent. (iiv) 

Stefan-Boltzmann relation (1.12) can be used to 

estimate radiation heat loss.  
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(2) Problem Definition.  Determine the average free convection heat 

transfer coefficient h  for a vertical plate at uniform surface temperature. 

(3) Solution Plan.  (i) Apply Newton's law of cooling. (ii) Use a free 

convection correlation equation for an isothermal vertical plate to 

determine the heat transfer coefficient. Apply Stefan-Boltzmann relation 

(1.12) to estimate radiation heat rate. 

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) vertical plate, (3) uniform surface 

temperature, (4) quiescent ambient air, (5) negligible edge effects, (6) 

window is small compared to room, and (7) ideal gas. 

(ii) Analysis.  The total heat transfer rate q is given by 

rc qqq ,                                              (a) 

where  and cq rq are heat transfer rates by convection and radiation, 

respectively. Newton's law of cooling cq

)( sc TTAhq ,                                        (b) 

where

A = surface area of glass = 2.5(m) 1.25(m) = 3.125 m2

h = average heat transfer coefficient, W/m2-oC

sT = surface temperature = 7oC = 280.15 K 

T  = room air temperature = 23oC = 296.15 K

Radiation heat rate is determined using Stefan-Boltzmann relation (1.12) 

)( 44
ssurr TTAq ,                                    (c)

where

= surroundings temperature = 28surT oC = 301.15 K 

 = emissivity = 0.87 

= 5.67 x 10
8
 W/m2-

4K

The Rayleigh number is calculated to determine the appropriate correlation 

equation for the average heat transfer coefficient .h   The Rayleigh number 

is defined as 

Pr
LTTg

Ra s
L 2

3

,                                  (d) 

where
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g = gravitational acceleration = 9.81 m/s2

L = length scale in the direction of gravity = 2.5 m 

Pr = Prandtl number

 = coefficient of thermal expansion, 1/K   

= kinematic viscosity, m2/s

Air properties are evaluated at the film temperature defined as fT

)( TTT sf /2 = (7oC + 23oC)/2 = 15oC

Air properties at this temperature are

k = 0.02526 W/m-oC

Pr = 0.7145 

= 14.64  10 6 m2/s

For an ideal gas is given by 

fT

1
,                                                (e) 

where Tf  in this equation is in degrees kelvin.  Thus 

= 1/(15 + 273.15)K = 0.003471/K

Substituting into (d) 

9

2426

3o2

10373.287145.0
)/s(m)10(14.64

)C)(m7)()(23K)9.81(m/s0.00347(1/
LRa

Thus the flow is turbulent and the appropriate correlation equation is 

(8.24a)
2

27/816/9

6/1

/1 492.0

387.0
825.0

Pr

Ra

k

Lh
uN L

L ,             (f) 

The conditions for the applicability of (f), listed in (8.24b) must be 

satisfied.

      (iii) Computations. Equation (f) gives 

57.351

7145.0/492.0

10373.28387.0
825.0

2

27/816/9

6/1
9

1k

Lh
uN L
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C-W/m
(m)

)C-(W/m 2
3.55

2.5

0.02526351.57
h

Substituting into (b) gives 

= 3.55(W/mcq 2-oC) 3.125(m2) (23–7)(oC) = 177.5W 

Equation (c) gives radiation heat loss 

W)K()()K()(

)m()KW/m)((

318.415.28015.301

125.31067.587.0

4444

2428
rq

Total heat loss to the window is

         q = 177.5 W + 318.4 W = 495.9 W 

 (iv) Checking. Dimensional check:  Computations show that equations 

(b), (c), (d) and (f) are dimensionally consistent.  

Quantitative check: The magnitude of h  is in line with typical free 

convection values for air given in Table 1.1. 

Validity of correlation equation (8.26a): Conditions listed in equation 

(8.24b) are satisfied. 

(5) Comments.  (i) Radiation heat loss is very significant. It accounts for 

64% of the total heat loss.

(ii) The use of the simplified radiation model of equation (1.12) is justified 

since the window has a small area compared to the walls, floor and ceiling 

of the room.   

(iii) No information on the glass thickness and outside heat transfer 

coefficient is needed to solve this problem because the inside surface 

temperature is given. 

8.7.2 Free Convection in Enclosures 

Examples of free convection in enclosures are found in double-glazed 

windows, solar collectors, building walls, concentric cryogenic tubes and 

electronic packages.  A fluid in an enclosed space experiences free 

convection if the walls of the enclosure are not at a uniform temperature. A 

buoyancy force causes the fluid to circulate in the enclosure transferring 

heat from the hot side to the cold side. If buoyancy forces are not large 

enough to overcome viscous forces, circulation will not occur and heat 

transfer across the enclosure will essentially be by conduction. Heat flux 

due to circulation is determined from Newton’s law  
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)( ch TThq ,                                     (8.35) 

where h is the heat transfer coefficient, cT  and h  are the cold and hot 

surface temperatures. The heat transfer coefficient is obtained from Nusselt 

number correlation equations. Such equations depend on configuration, 

orientation, geometric aspect ratio, Rayleigh number

T

LRa , and Prandtl 

number  We will consider selected common examples.  .Pr

(1) Vertical Rectangular Enclosures. Consider a 

rectangular cavity with one side at hT  and the 

opposite side at cT , shown in Fig. 8.10.  The top and 

bottom surfaces are insulated. The fluid adjacent to 

the hot surface rises while that near the cold wall 

falls.  This sets up circulation in the cavity resulting 

in the transfer of heat from the hot to the cold side. 

Boundary layers form on the side walls while the core 

remains stagnant.  The aspect ratio /L  is one of the 

key parameters governing the Nusselt number. 

Another parameter is the Rayleigh number based on 

the spacing and defined as

L

hT cT

g

Fig. 8.10

Pr
TTg

Ra ch

2

3)(
.                            (8.36) 

For 1 40/L , the following correlation equations are recommended 

[24-26]. 

29.0

2.0
18.0 Ra

Pr

Pr

k

h
Nu . (8.37a)

Valid for

(8.37b)

vertical rectangular enclosure 

21
L

53 1010 Pr

310
0.2

Ra
Pr

Pr

properties at 2/)( hc TTT
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25.028.0

2.0
22.0

L
Ra

Pr

Pr

k

h
Nu . (8.38a)

Valid for

(8.38b)

vertical rectangular enclosure 

102
L

510Pr
103 1010 Ra

properties at 2/)( hc TTT

3/1
046.0 Ra

k

h
Nu . (8.39a)

Valid for 

              (8.39b)        

vertical rectangular enclosure  

401
L

96 1010 Ra

properties at 

201 Pr

2/)( hc TTT

3.0
25.0012.0

42.0
L

RaPr
k

h
Nu . (8.40a)

Valid for

(8.40b)

vertical rectangular enclosure 

4010
L

41021 Pr
74 1010 Ra

properties at 2/)( hc TTT
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(2) Horizontal Rectangular Enclosures.  Fig. 8.11 shows a horizontal 

enclosure heated from below. At low Rayleigh numbers the fluid remains 

stagnant and heat transfer through the cavity is by conduction. At a critical 

value of the Rayleigh number, , a cellular flow pattern develops. This 

Rayleigh number is given by  
cRa

L

hT

cT

g

Fig. 8.11

.1708cRa

The Nusselt number for cellular flow is 

given by [27] 

074.03/1
069.0 PrRa

k

h
Nu .                 (8.41a) 

Valid for 

(8.41b)horizontal rectangular enclosure 

heated from below 
95 107103 Ra

properties at 2/)( hc TTT

(3) Inclined Rectangular Enclosures. 

An important application of this geometry is solar collectors.  To maximize 

solar energy absorption the collector is tilted an angle  from the 

horizontal, as shown in Fig. 8.12. However, 

energy is lost from the collector to the ambient 

air due to convection. To estimate this loss it 

is necessary to determine the heat transfer 

coefficient in the collector’s enclosure. 

Correlation equations for the Nusselt number 

depend on the aspect ratio /L  and 

inclination angle . For  the 

lower surface is heated and the upper surface 

is cooled. This relationship is reversed for 

 Within the

average Nusselt number passes through a 

minimum value at a critical angle c

L
hT

cT

g

Fig. 8.12

o

o

o 900

.18090 oo o 900

 which 

varies with aspect ratio according to Table 8.1. 

Due to the changing flow pattern with 

Table 8.1
Critical tilt angle

/L

c
o

25
o

53
o

60
o

67
o

70

1 3 6 12 >12
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inclination and aspect ratio, a single correlation equation is not available. 

The following equations are recommended (28-31): 

1
18

)cos(

cos

)sin8.1(1708
1

cos

1708
144.11

3/16.1 Ra

RaRak

h
Nu .

(8.42a)

Valid for

inclined rectangular enclosure 

12/L

c0

set 0
*  when negative 

properties at 

                                                                                                            (8.42b) 

2/)( hc TTT

c

c
Nu

Nu
Nu

k

h
Nu

/

25.0

o

o
o )(sin

)0(

)90(
)0( . (8.43a)

Valid for

inclined rectangular enclosure 

12/L

c0

properties at 2/)( hc TTT
(8.43b)

25.0o sin)90(Nu
k

h
Nu . (8.44a)

Valid for 

            (8.44b)

inclined rectangular enclosure 

o90c

all /L

properties at 2/)( hc TTT
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sin1)90(1 oNu
k

h
Nu . (8.45a)

Valid for 

inclined rectangular enclosure 

all /L
oo 18090

properties at 2/)( hc TTT

(8.45b)

Example 8.4: Advertising Display 

A proposed device for an advertising 

display is based on observing fluid 

circulation in a rectangular enclosure. The 

idea is to fill the enclosure with colored 

water and many small reflective particles 

of the same density as water. The particles 

move with the fluid providing visual 

observation of the flow patterns. The enclosure is 70 cm long, 5 cm wide 

and 70 cm deep. The heated side is to be maintained at  and the cold 

side at  The design allows the inclination angle 

C27 o

C.23o
 of the cavity to be 

varied from to  Estimate the power requirement for the device 

when the inclination angle is 

o0 .o180
.30o

g L

hT

cT

(1) Observations.  (i) Power requirement is equal to the heat transfer rate 

through the enclosure. (ii) The problem can be modeled as an inclined 

rectangular cavity at specified hot and cold surface temperatures.  (iii) 

Newton’s law of cooling gives the heat transfer rate. (iv) The aspect ratio 

and critical inclination angle should be computed to determine the 

applicable correlation equation for the Nusselt number.  

(2) Problem Definition.  Determine the average free convection heat 

transfer coefficient h  for an inclined rectangular enclosure. 

(3) Solution Plan.  (i) Apply Newton's law of cooling. (ii) Compute the 

aspect ratio and critical inclination angle. Select an appropriate Nusselt 

number correlation equation for convection in an inclined rectangular 

cavity. 

(4) Plan Execution.
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(i) Assumptions. (1) Continuum, (2) uniform hot and cold surface 

temperatures, (3) insulated top and bottom surfaces, (4) negligible radiation 

and (5) properties of the water-particles mixture are the same as those of 

water.

(ii) Analysis.  Newton's law of cooling gives 

)( ch TTAhqP ,                                     (a) 

where

 A = surface area of rectangle = 0.7(m) 0.7(m) = 0.49 m2

h = average heat transfer coefficient, W/m2-oC

P power requirement, W 

q heat transfer rate through cavity, W 

hT = hot surface temperature = 27oC

cT = cold surface temperature = 23oC

The aspect ratio is defined as

aspect ratio = 
L

,                                        (b) 

where

L length of rectangle = 0.7 m 

width of rectangle = 0.05 m 

Equation (b) gives 

14
(m)05.0

(m)7.0L

According to Table 8.1, the critical angle is . Since 
o70c 12/L

and c0 , it follows that the applicable correlation equation for the 

Nusselt number is  

*
3/16.1*

1
18

)cos(

cos

)sin8.1(1708
1

cos

1708
144.11

Ra

RaRak

h
Nu .

8.42a)

The Rayleigh number is defined as 

Pr
TTg

Ra ch

2

3

,                                  (c) 

where
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g = gravitational acceleration = 9.81 m/s2

Pr = Prandtl number

 = coefficient of thermal expansion, 1/K   

= kinematic viscosity, m2/s

Water properties are evaluated at the film temperatureT defined as 

2/)( ch TTT .                                        (d)

       (iii) Computations. Equation (d) gives 

C25
2

)C)(2327( o
o

T

Properties of water at this temperature are:  

k = thermal conductivity = 0.6076 CW/m o

Pr = 6.13 
310259.0 1/K

6108933.0 m2/s

Substituting into (c)

6

2426

3323

1075898.9

6.13
)/s(m)10(0.8933

)(m0.05C)23)((27)9.81(m/s1/K100.259
Ra

Substituting into (8.42a) 

755.121
18

)30cos1075898.9(

30cos1075898.9

)o30sin8.1(1708
1

30cos1075898.9

1708
144.11

*
3/16

o

6.1

*

o6

6

k

h
Nu

CW/m155
m)(05.0

)CW/m(6076.0
755.12755.12 o2

o
k

h

Equation (a) gives the required power

303.8 WC))(2327)(C)(0.49)(mW/m(155 o2o2P
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      (iv) Checking. Dimensional check:  Computations showed that the 

Nusselt number and Rayleigh number are dimensionless.  

Quantitative check: The magnitude of h  is in line with typical free 

convection values for liquids given in Table 1.1. 

Validity of correlation equation (8.42a): Conditions listed in equation 

(8.42b) are satisfied.

(5) Comments. (i) If the device is to be used continuously, the estimate 

power requirement is relatively high. Decreasing the temperature difference 

between the hot and cold surfaces will reduce the power requirement.  

(ii) The ambient temperature plays a role in the operation of the proposed 

device. The design must take into consideration changing ambient 

temperature.  

(iii) Changing the inclination angle will change the power requirement.  

(4) Horizontal Concentric Cylinders. Fig. 8.13 

shows two long concentric cylinders. The inner 

cylinder of diameter  is maintained at uniform 

temperature . The outer cylinder of diameter is

maintained at uniform temperature oT  If oiT ,

buoyancy force sets up two flow circulation cells in 

the annular space as shown in Fig. 2.13 . Flow 

direction is reversed for oiT

i

. T

T

D

iT oD

.  In both cases flow 

circulation results in an enhancement of the thermal 

conductivity. The one-dimensional heat transfer rate 

per unit cylinder length, q , is given by 

oD

Fig. 8.13

oT

iT

iD

)(
)/ln(

2
oi

io

eff
TT

DD

k
q  .                           (8.46) 

Correlation equation for the effective conductivity is given by [32] effk

4/1

*

861.0
386.0 Ra

rP

rP

k

keff
 ,                  (8.47a) 

where

Ra

DD

DD
Ra

oi

io
5

5/35/33

4
*

)()(

)/ln(
.                (8.47b) 
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2

io DD
.                                       (8.47c) 

Valid for 

(8.47d)

concentric cylinders 
7*2 1010 Ra

properties at 2/)( oi TTT

8.8 Other Correlations 

In the previous sections, correlation equations have been presented for 

limited processes and configurations.  It should be emphasized that the 

above treatment is highly abridged.  There are many other correlation 

equations for topics such as condensation, boiling, high speed flow, jet 

impingement, dissipation, liquid metals, enhancements, finned geometries, 

irregular geometries, micro-gravity, non-Newtonian fluids, etc..  Some are 

found in textbooks, others in handbooks and journals.
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        PROBLEMS

8.1 Water at 120oC boils inside a channel with a flat surface measuring 

45cm 45 cm. Air at 62 

m/s and 20oC flows over 

the channel parallel to the 

surface. Determine the 

heat transfer rate to the air. 

Neglect wall resistance. 

T

V

air

water water

8.2 Steam at 105oC flows inside a specially designed narrow channel.  

Water at 25oC flows over the channel with a velocity of 0.52 m/s. 

Assume uniform outside surface temperature 105sT oC.

         [a]  Determine surface  heat  flux at 20 

cm and 70 cm down-stream from the 

leading edge of the channel. 

L

W

water

steam

V

T

L

W

components

         [b] Determine the total heat removed by 

the water if the length is L = 80 cm and 

the width is W = 100 cm. 

8.3 Electronic components are mounted on 

one side of a circuit board. The board is 

cooled on the other side by air at 23oC

flowing with a velocity of 10 m/s. The 

length of the board is L = 20 cm and its 

width is W = 25 cm. Assume uniform 

board temperature. 
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         [a]  Determine the maximum power that can be dissipated in  the 

package if surface temperature is not to exceed 77oC. Assume that all 

dissipated power is conducted through the plate to the air. 

         [b] To increase the maximum power without increasing surface 

temperature, it is recommended that the boundary layer be tripped to 

turbulent flow very close to the leading edge.  Is this a valid 

recommendation? Substantiate your view. 

8.4 Water at 15oC flows with a velocity of 0.18 m/s over a plate of length 

L = 20 cm and width W = 25 cm.  Surface temperature is 95oC.

Determine the heat transfer rate from the leading and trailing halves 

of the plate. 

8.5 A chip measuring mm5mm5 is placed flush on a flat plate 18 cm 

from the leading edge.  The chip 

is cooled by air at 17oC flowing 

with a velocity of 56 m/s. Deter-

mine the maximum power that 

can be dissipated in the chip if its 

surface temperature is not to 

exceed 63oC. Assume no heat loss 

from the back side of the chip. 

V

T

chip

cm18

8.6   A solar collector is 

mounted flush on the roof of a 

house. The leading edge of the 

collector is located 5 m from the 

leading edge of the roof. Estimate 

the heat loss to the ambient air on 

a typical winter day when wind speed parallel to the roof is 12 m/s 

and air temperature is 5

m2.1m2.1

oC.  Outside collector surface temperature is 

estimated to be 35oC.

V
T

m6.5

solar collector

8.7 Water at 20oC flows over a rectangular plate of length L = 1.8 m and 

width W = 0.3 m.  The upstream velocity is 0.8 m/s and surface 

temperature is 80oC.  Two orientations are considered.  In the first 

orientation the width W faces the flow and in the second the length L

faces the flow.  Which orientation should be selected to minimize 

heat loss from the plate?  Determine the heat loss ratio of the two 

orientations.

8.8 100 flat chips are placed on a cm01cm10 circuit board and 

cooled by forced convection of air at 27oC. Each chip measures 
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cm1cm1  and dissipates 0.13 W.  The maximum allowable chip 

temperature is 83oC.  Free stream air velocity is 5 m/s.  Tests showed 

that several chips near the trailing end of the board exceeded the 

allowable temperature.  Would you recommend tripping the 

boundary layer to turbulent flow at the leading edge to solve the 

overheating problem? Substantiate your recommendation.  

8.9 Water at 27oC flows normally over a tube with a velocity of 4.5 m/s.  

The outside diameter of the tube is 2 cm.  Condensation of steam 

inside the tube results in a uniform outside surface temperature of 

98oC.  Determine the length of tube needed to transfer 250,000 W of 

energy to the water. 

8.10 A proposed steam condenser design for marine applications is based 

on the concept of rejecting heat to the surrounding water while a boat 

is in motion. The idea is to submerge a steam-carrying tube in the 

water such that its axis is normal to boat velocity.  Estimate the rate 

of steam condensation for a 75 cm long tube with an 

         outside diameter of 2.5 cm.  Assume a condensation temperature of 

90oC and a uniform surface temperature of 88oC.  Ambient water 

temperature is 15oC and boat speed is 8 m/s. 

8.11  An inventive student wanted to verify the speed of a boat using heat 

transfer analysis. She used a 10 cm long electrically heated tube with 

inside and outside radii of 1.1 cm and 1.2 cm, respectively. She 

immersed the tube in the water such that its axis is normal to boat 

velocity. She recorded the following measurements: 

         Water temperature = 16.5oC

         Outside surface temperature of tube = 23.5oC

         Electric energy dissipated in tube = 480 W 

         Determine the speed of the boat.    

8.12 A thin electric heater is wrapped around a rod of diameter 3 cm.   

The heater dissipates energy uniformly at a rate of 1300 W/m.  Air at 

20oC flows normal to the rod with a velocity of 15.6 m/s.  Determine 

the steady state surface temperature of the heater. 

8.13 A fluid velocity measuring instrument consists of a wire which is 

heated electrically.  By positioning the axis of the wire normal to 

flow direction and measuring surface temperature and dissipated 

electric power, fluid velocity can be estimated.  Determine the 

velocity of air at 25oC for a wire diameter of 0.5 mm, dissipated 

power 35 W/m and surface temperature 40oC.
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8.14  Students were asked to devise unusual methods for determining the 

height of a building. One student designed and tested the following 

system.  A thin walled copper balloon was heated to 133oC and 

parachuted from the roof of the building. Based on aerodynamic 

consideration, the student reasoned that the balloon dropped at 

approximately constant speed. The following measurements were 

made: 

= balloon diameter = 13 cm D
M = mass of balloon = 150 grams 

= balloon temperature at landing = 47fT oC

= ambient air temperature = 20T oC

U = balloon velocity = 4.8 m/s 

         Determine the height of the building.

8.15 A 6 cm diameter sphere is used to study skin friction characteristics 

at elevated temperatures. The sphere is heated internally with an 

electric heater and placed in a wind tunnel. To obtain a nearly 

uniform surface temperature the sphere is made of copper.  Specify 

the required heater capacity to maintain surface temperature at 

140oC. Air velocity in the wind tunnel is 18 m/s and its temperature 

is 20oC.

8.16 A hollow aluminum sphere weighing 0.2 kg is initially at 200oC. The 

sphere is parachuted from a building window above street 

level. You are challenged to catch the sphere with your bare hands as 

it reaches the street. The sphere drops with an average velocity of 4.1 

m/s.  Its diameter is 40 cm and the ambient air temperature is 20

m100

oC.

Will you accept the challenge? Support your decision. 

8.17 Steam condenses on the outside surface of a 1.6 cm diameter tube. 

Water enters the tube at 12.5oC and leaves at 27.5oC. The mean 

water velocity is 0.405 m/s. Outside surface temperature is 34 oC.

Neglecting wall thickness, determine tube length.  

8.18 A 150 cm long tube with 8 mm inside diameter passes through a 

laboratory chamber. Air enters the tube at 12oC with fully developed 

velocity and a flow rate 0.0005 kg/s. Assume uniform surface 

temperature of 25oC, determine outlet air temperature. 

8.19 Water enters a tube with a fully developed velocity and uniform 

temperature  Tmi = 18oC.  The inside diameter of the tube is 1.5 cm 

and its surface temperature is uniform at = 125sT oC.  Neglecting 
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wall thickness, determine the length of the tube needed to heat the 

water to 82oC at a flow rate of 0.002 kg/s. 

8.20 Cold air is supplied to a research apparatus at a rate of 0.14 g/s. The 

air enters a 20 cm long tube with uniform velocity and uniform 

temperature of 20oC. The inside diameter of the tube is 5 mm. The 

inside surface is maintained at 30oC. Determine the outlet air 

temperature. 

8.21 Water flows through a tube of inside diameter 2.5 cm. The inside 

surface temperature is 230oC and the mean velocity is 3 cm/s.  At a 

section far away from the inlet the mean temperature is 70oC.

 [a] Calculate the heat flux at this section. 

 [b] What will the flux be if the mean velocity is increased by a factor 

of ten? 

8.22 Air flows through a tube of inside diameter 5 cm.  At a section far 

away from the inlet the mean temperature is 30oC.  At another 

section further downstream the mean temperature is 70oC.  Inside 

surface temperature is 90oC and the mean velocity is 4.2 m/s.  

Determine the length of this section. 

8.23 Two identical tubes have inside diameters of 6 mm.  Air flows 

through one tube at a rate of 0.03 kg/hr and through the other at a rate 

of 0.4 kg/hr.  Far away from the inlets of the tubes the mean 

temperature is 120oC for both tubes. The air is heated at a uniform 

surface temperature which is identical for both tubes.  Determine the 

ratio of the heat flux of the two tubes at this section. 

8.24 Two concentric tubes of diameters 2.5 cm and 6.0 cm are used as a 

heat exchanger.  Air flows through the inner tube with a mean 

velocity of 2 m/s and mean temperature of 190oC.  Water flows in the 

annular space between the two tubes with a mean velocity of 0.5 m/s 

and a mean temperature of 30oC.  Determine the inside and outside 

heat transfer coefficients. 

8.25  A heat exchanger consists of a tube and 

square duct. The tube is placed co-

axially inside the duct. Hot water flows 

through the tube while cold water passes 

through the duct. The inside and outside 

diameters are 5 cm and 5.2 cm, 

respectively.  The side of the duct is 10 

iD
oD

S

cold water

water
hot
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cm. At a section far away from the inlet the mean hot water 

temperature is 90oC and the mean cold water temperature is 30oC.

The mean hot water velocity is 1.32 m/s and the mean cold water 

velocity is 0.077 m/s. Determine the inside and outside heat transfer 

coefficient.

8.26 In designing an air conditioning system for a pizza restaurant an 

estimate of the heat added to the kitchen from the door of the pizza 

oven is needed.  The rectangular door is cm201cm50 with its 

short side along the vertical direction. Door surface temperature is 

110oC.  Ambient air and surroundings temperatures are 20oC and 

24oC, respectively. Door surface emissivity is 0.08. Estimate the heat 

loss from the door.  

8.27 To compare the rate of heat transfer by radiation with that by free 

convection, consider the following test case.  A vertical plate 

measuring cm12cm12 12 is maintained at a uniform surface 

temperature of 125oC.  The ambient air and the surroundings are at 

25oC. Compare the two modes of heat transfer for surface 

emissivities of 0.2 and 0.9. 

8.28 A sealed electronic package is designed to be 

cooled by free convection. The package 

consists of components which are mounted on 

the inside surfaces of two cover plates 

measuring cm01cm10  cm each.  Because 

the plates are made of high conductivity 

material, surface temperature may be assumed 

uniform. The maximum allowable surface 

temperature is 70oC. Determine the maximum 

power that can be dissipated in the package 

without violating design constraints. Ambient air temperature is 

20oC. Neglect radiation heat exchange. 

g
T

components

8.29  Assume that the electronic package of Problem 8.28 is to be used in 

an undersea application.  Determine the maximum power that can be 

dissipated if the ambient water temperature is 10oC.

g

w

H

0

x1

2
T8.30   A plate 20 cm high and 25 cm wide is placed 

vertically in water at 29.4oC. The plate is 

maintained at 70.6oC. Determine the free 

convection heat transfer rate from each half. 
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8.31 Consider laminar free convection from a 

vertical plate at uniform surface temperature.  

Two 45  triangles are drawn on the plate as 

shown.

1

2 g

T

[a] Explain why free convection heat transfer 

from triangle 1 is greater than that from the 

triangle 2.

         [b] Determine the ratio of the heat transfer from two triangles.

8.32  A vertical plate measuring 21 cm  21 cm is at a uniform surface 

temperature of 80oC. The ambient air temperature is 25oC.

Determine the free convection heat flux at 1 cm, 10 cm and 20 cm 

from the lower edge. 

8.33  200 square chips measuring cm1cm1 each

are mounted on both sides of a thin vertical 

board measuring .cm01cm10  The chips 

dissipate 0.035 W each.  Assume uniform 

surface heat flux. Determine the maximum 

surface temperature in air at 22oC. Neglect 

heat exchange by radiation. 

g

T

8.34  An apparatus is designed to determine 

surface emissivity of materials. The 

apparatus consists of an electrically 

heated cylindrical sample (disk) of 

diameter D and thickness .  The disk is 

insulated along its heated side and rim. 

It is placed horizontally with its heated 

surface facing down in a large chamber 

whose surface is maintained at uniform 

temperature  The sample is cooled 

by free convection and radiation from its upper surface. To determine 

the emissivity of a sample, measurements are made of the diameter 

D, electric power input P, surface temperature sT , surroundings 

temperature sur  and ambient temperature T  Determine the 

emissivity of a sample using the following data: 

.surT

T .

+ -

D

T

surT

sT
g

D = 12 cm,  0.5 cm, P 13.2 W, , ,
.

Co
98sT Co

27surT
Co

22T
8.35 It is desired to increase heat loss by free convection from a wide 

vertical plate without increasing its surface temperature.  Increasing 
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the height of the plate is ruled out because of the limited vertical 

space available. It is suggested that a taller plate can be accommo-

dated in the same vertical space by tilting it 45o. Explore this 

suggestion and make appropriate recommendations. Assume laminar 

flow.

8.36 Estimate the free convection heat transfer rate from five sides of a 

cubical ceramic kiln.  Surface temperature of each side is assumed 

uniform at 70oC and the ambient air temperature is 20oC.  Each side 

measures 48 cm. 

8.37  Determine the surface temperature of a single burner electric stove 

when its power supply is 75 W. The diameter of the burner is 18 cm 

and its emissivity is 0.32. The ambient air temperature is 30  and 

the surroundings temperature is 25 .

Co

Co

8.38 A test apparatus is designed to determine surface emissivity of 

material. Samples are machined into disks of diameter D. A sample 

disk is heated electrically 

on one side and allowed 

to cool off on the opposite 

side. The heated side and 

rim are well insulated. 

The disk is first placed 

horizontally in a large 

chamber with its exposed 

surface facing up. At 

steady state the exposed 

surface temperature is measured. The procedure is repeated, without 

changing the power supplied to the disk, with the exposed surface 

facing down. Ambient air temperature in the chamber is recorded.  

surT

-

D

T sT

+

g

1 2

+

-

T
sT
D

.        [a] Show that surface emissivity is given by 

)(

)()(

4
1

4
2

2211

ss

ss

TT

TThTTh
,

         where subscripts 1 and 2 refer to the exposed surface facing up and 

down, respectively, and 

      h  average heat transfer coefficient, CW/m o2

 surface temperature, K      sT
 ambient temperature, K T
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 Stefan-Boltzmann constant, 
42 KW/m

         [b] Calculate the emissivity for the following case: 

14 cm, K,D 5331sT 5732sT K, 293T K.

8.39 A hot water tank of diameter 65 cm and height 160 cm loses heat by 

free convection. Estimate the free convection heat loss from its 

cylindrical and top surfaces. Assume a surface temperature of 50oC

and an ambient air temperature of 20oC.

8.40 Hot gases from a furnace are discharged through a round horizontal 

duct 30 cm in diameter.  The average surface temperature of a 3 m 

duct section is 180oC.  Estimate the free convection heat loss from 

the duct to air at 25oC.

8.41 A 6 m long horizontal steam pipe has a surface temperature of 

120oC.  The diameter of the pipe is 8 cm.  It is estimated that if the 

pipe is covered with a 2.5 cm thick insulation material its surface 

temperature will drop to 40oC.  Determine the free convection heat 

loss from the pipe with and without insulation.  The ambient air 

temperature is 20oC.

8.42 An electric wire dissipates 0.6 W/m while suspended horizontally in 

air at 20oC.  Determine its surface temperature if the diameter is 0.1 

mm. Neglect radiation. 

8.43 The diameter of a 120 cm long horizontal section of a neon sign is 

1.5 cm.  Estimate the surface temperature in air at 25oC if 12 watts 

are dissipated in the section. Neglect radiation heat loss. 

8.44 An air conditioning duct passes horizontally a distance of 2.5 m 

through the attic of a house. The diameter is 30 cm and the average 

surface temperature is 10oC. The average ambient air temperature in 

the attic during the summer is 42oC. Duct surface emissivity is 0.1. 

Estimate the rate of heat transfer to the cold air in the duct. 

8.45 Estimate the surface temperature of a light bulb if its capacity is 150 

W and the ambient air is at 23oC. Model the bulb as a sphere of 

diameter 9 cm.  Neglect radiation. 

8.46  A sphere of radius 2.0 cm is suspended in a 

very large water bath at 25oC.  The sphere is 

heated internally using an electric coil.  

Determine the rate of electric power that must 

be supplied to the sphere so that its average 
water
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o

o

surface temperature is 85oC. Neglect radiation. 

8.47 A fish tank at a zoo is designed to 

maintain water temperature at 4 .

Fish are viewed from outdoors 

through a glass window L = 1.8 m 

high and w = 3 m wide. The average 

ambient temperature during summer 

months is 26 . To reduce water 

cooling load it is proposed to create an 

air enclosure over the entire window 

using a pexiglass plate. Estimate the reduction in the rate of heat 

transfer to the water if the air gap thickness is 

C

C

6 cm. Neglect 

radiation. Assume that the cold side of the enclosure is at the same 

temperature as the water and the warm side is at ambient 

temperature.   

g

T

L

8.48 It is proposed to replace a single pane observation window with 

double pane. On a typical winter day the inside and outside air 

temperatures are  and . The inside and 

outside heat transfer coefficients are i  and 

. The height of the window is 

C20o
iT C10o

oT
h CW/m o2

CW/m37 o2
oh 28.0L m and 

its width is w = 3 m. The thickness of glass is t = 0.3 cm and its 

conductivity is  Estimate the savings in energy 

if the single pane window is replaced. Note that for the single pane 

window there are three resistances in series and the heat transfer rate 

 is given by 

.CW/m7.0 o
gk

1q

ogi

oi

hk

t

h

TTA
q

11

)(
1 .

          For the double pane window, two additional resistances are added. 

The width of the air space in the double pane is 3 cm. In 

determining the heat transfer coefficient in the cavity, assume that 

enclosure surface temperatures are the same as the inside and outside 

air temperatures. 

L

L /28.49   To reduce heat loss from an oven, a glass door 

with a rectangular air cavity is used. The 

cavity has a baffle at its center. Door height is 

cm and its width is 65L cm70w . The 
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air space thickness is cm5.1 .  Estimate the heat transfer rate 

through the door if the inside and outside surface temperatures of the 

cavity are  and .C198o C42o

8.50  The ceiling of an exhibit room 

is designed to provide natural 

light by using an array of 

horizontal skylights. Each unit 

is rectangular with an air gap 

cm5.6 thick. The length 

and width of each unit are cm54L  and cm120w . On a typical 

day the inside and outside glass surface temperatures are  and 

. Estimate the rate of heat loss from each unit. 

C15o

C15o

L

w g

8.51   Repeat Example 8.4 using inclination angles of    

 and  Plot heat transfer rate q vs. inclination angle 

,o
0 ,

o
60 ,

o
90 ,o120

o
150 .o

175 .

8.52 A rectangular solar collector has an 

absorber plate of length m5.2L

cm

and

width  A protection cover is 

used to form a rectangular air enclosure 

of thickness 

m.0.4w

4 to provide 

insulation. Estimate the heat loss by 

convection from the plate when the 

enclosure inclination angle is  and 

its surfaces are at and

o45
C28o C.72o

8.53  A liquid-vapor mixture at i
flows inside a tube of diameter 

 and length

C20oT

cm4iD m.3L  The 

tube is placed concentrically inside 

another tube of diameter cm.6oD
Surface temperature of the outer tube is 

at  Air fills the annular 

space.  Determine the heat transfer rate 

from the mixture. 

C.10o
oT

oD
oT

iD

iT

g

hT

cT

ab
so

rb
er

pl
at

e
L
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9.1 Introduction

Research on fluid flow and heat transfer in microchannels was partly driven 

by miniaturization of microelectronic devices. The need for efficient 

cooling methods for high heat flux components focused attention on the

cooling features of microchannels. Microchannels are used in a variety of

engineering and scientific applications. The inkjet printer is a classic

example. Extensive use is found in medical applications and in mico-

elecro-mechanical systems (MEMS) such as micro heat exchangers,

mixers, pumps, turbines, sensors and actuators.

9.1.1 Continuum and Thermodynamic Hypothesis

The analysis and results of all previous chapters are based on two

fundamental assumptions: (1) continuum, and (2) thermodynamic

equilibrium. The continuity equation, Navier-Stokes equations, and the 

energy equation are applicable as long as the continuum assumption is 

valid. The no-velocity slip and no-temperature jump at a solid boundary,

imposed in previous chapters, are valid as long as thermodynamic or quasi-

thermodynamic equilibrium can be justified. In Chapter 1, the Knudsen 

number was used to establish a criterion for the validity of the continuum

and thermodynamic assumptions. The Knudsen number is defined in terms

of the molecular mean free path  as 

eD
Kn , (1.2)

CONVECTION IN MICROCHANNELS



344  9 Convection in Microchannels

where is a characteristic length, such as channel equivalent diameter.

The continuum model is valid for [1]

eD

1.0Kn . (1.3a)

Thus as channel size becomes smaller the Knudsen number increases and

the continuum assumption begins to fail at approximately 1.0Kn .  On 

the other hand, departure from thermodynamic equilibrium leads to the 

failure of the no-velocity slip and no-temperature jump boundary

conditions. This takes place at a much smaller Knudsen number given by

001.0Kn .      (1.3b)

It should be understood that departure from continuum behavior takes place

progressively as the Knudsen number is increased.  Microchannels are 

characterized by their relatively small size. A legitimate question is, how 

small must a channel be to be classified as micro? The answer to this 

question is not obvious since the mean free path depends on the fluid as 

well as on its temperature and pressure.  Noting that the mean free path of 

liquids is much smaller than that of gases, liquid flow in a small channel 

may be in the continuum domain while gas flow in the same channel may 

be outside it. Thus classification of microchannels by size is inherently 

arbitrary.

9.1.2 Surface Forces

As channel size becomes smaller the ratio of surface area to volume

becomes larger. This can be illustrated for the case of a tube of diameter D

and length L. The ratio of surface area A to volume V is

DLD

DL

V

A 4

4/2
.  (9.1) 

Equation (9.1) shows that the smaller the diameter,  the larger is A/V.

Consequently, the role of surface forces becomes more dominant as the 

diameter decreases. As an example, for a tube with m1D , equation 

(9.11) gives  On the other hand, for.1-
m4/VA mD 1 ,

 This represents a  fold increase in A/V. Thus 

conditions at the boundaries may depart from the continuum behavior and 

take on different forms.  This has important implications in the analysis of 

microchannel problems. Under certain conditions, continuum governing

.m104/ -16VA
6

10
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equations for flow and energy can still be applied while boundary

conditions must be modified. Another size effect on gas flow in

microchannels is the increase in pressure drop in long channels. This 

results in significant density changes along channels. Consequently, unlike

flow in macrochannels, compressibility becomes an important factor and 

must be taken into consideration.

9.1.3 Chapter Scope

This chapter presents an introduction to convection heat transfer in

microchannels. To lay the foundation for the treatment of microchannel

convection, topic classification and definitions are presented. This includes: 

distinction between gases and liquids, microchannel classification, 

rarefaction and compressibility, velocity slip and temperature jump

phenomena. The effect of compressibility and axial conduction will be

examined. Analytic solutions to Couette and Poiseuille flows and heat 

transfer will be detailed. Attention will be focused on convection of gases 

in microchannels. The treatment will be limited to single phase shear 

driven laminar flow between parallel plates (Couette flow) and pressure 

driven flow (Poiseuille flow) through rectangular channels and tubes.

Although extensive research on fluid flow and heat transfer in

microchannels has been carried out during the past two decades, much

remains unresolved. Due to the complex nature of the phenomena, the role

of various factors such as channel size, Reynolds number, Knudsen

number, surface roughness, dissipation, axial conduction, and 

thermophysical properties, is not fully understood.  As with all new 

research areas, discrepancies in findings and conclusions are not 

uncommon. Conflicting findings are attributed to the difficulty in making

accurate measurements of channel size, surface roughness, pressure 

distribution, as well as uncertainties in entrance effects and the

determination of thermophysical properties.

9.2 Basic Considerations 

9.2.1 Mean Free Path

The mean free path  of a fluid is needed to establish if the continuum

assumption is valid or not. For gases,  is given by [2]
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RT
p 2

,      (9.2)

where p is pressure, R is gas constant, T is absolute temperature, and  is 

viscosity. Since  is very small, it is expressed in terms of micrometers,

. This unit is also known as micron. For liquids,m.10 6  is much

smaller than for gases. It is clear from (9.2) that as the pressure decreases

the mean free path increases. Application of (9.2) to air at and

atmospheric pressure ( ) gives

K300
2N/m330,101p m.067.0 µ  Properties

and the mean free path of

various gases are listed in 

Table 9.1. Pressure drop in 

channel flow results in an

axial increase in . There-

fore the Knudsen number

increases in the flow direc-

tion. Upper atmospheric air 

cannot be treated as contin-

uum and is referred to as 

rarefied gas due to low pressure and large .

9.2.2 Why Microchannels?

 no-slip solution for laminar fully developed We return to the continuum,

convection in tubes. For constant surface temperature, we learned in 

Chapter 6 that the Nusselt number is constant in the fully developed region.

This is true for tubes as well as channels of other cross section geometry.

Equation (6.57) gives 

hD
657.3

k
NuD ,      (6.57)

where D is diameter, h is heat

transfer coefficient, and k is fluid 

thermal conductivity. Solving (6.57)

for h, gives

D

k
h 657.3 .

Examination of (9.3) shows that the 

smaller the diameter, the larger the

    (9.3) 

gas

Air

Helium

Hydrogen

Nitrogen

Oxygen

R

2077.1

4124.3

296.8

259.8

287.0

3kg/mKJ/kg

1.1614

0.1625

0.08078

1.1233

1.2840

mkg/s

7
10

184.6

199.0

89.6

178.2

207.2

m

0.067

0.1943

0.1233

0.06577

0.07155

Table 9.1
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9.2.3 Classification 

tion of flow in microchannels is based on the Knudsen

heat transfer coefficient. Fig. 9.1 shows the variation of h with D for air and 

water. The conductivity k is determined at a mean fluid temperature of 

C.40o
  The dramatic increase in h as the diameter is decreased has 

ted numerous studies aimed at the development of efficient cooling

methods to maintain pace with the rapid miniaturization of microelectronic

devices during the past three decades. Early studies have analytically and 

experimentally demonstrated the potential of microchannels for cooling 

high power density devices using water [3]. Typically, grooves are 

machined in a sink to form fins to

enhance heat transfer. The heat sink

is attached to a substrate and forms

flow channels as shown in Fig. 9.2.

Due to fabrication constraints,

microchannels usually have rectan-

gular or trapezoidal cross-sections. It 

should be noted that although

microchannels have high heat

transfer coefficients, pressure drop 

through them increases as channel size becomes smaller.

motiva

flow

Fig. 9.2

microchip

sink

q

A common classifica

number. The continuum and thermodynamic equilibrium assumptions hold

as long as channel size is large compared to the mean free path .  As 

channel size approaches , flow and temperature phenomena be to

change. The following flow classification is recommended for gases [1]:

gin

(9.4)

o appreciate the classification of (9.4) attention is focused on four factors: 

transition100

flowmolecularfreeKn

flowKn

flowslipcontinuumKn

flowslipnocontinuumKn

10

1.

,1.0001.0

,001.0

T

(i) continuum, (ii) thermodynamic equilibrium, (iii) velocity slip, and (iv)

temperature jump.  If there is no relative velocity between the fluid and a

surface, the condition is referred to as no-slip. Similarly, if there is no-

temperature discontinuity at a surface (fluid and surface are at the same

temperature), the condition is described as no-temperature jump. Macro-
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limits in (9.4) are arbitrary. Furthermore,

.2.4 Macro and Microchannels

ffect on flow and heat transfer, channels

scale analysis (Chapters 1-8) is based on the assumptions of continuum,

thermodynamic equilibrium, no-velocity slip and no-temperature jump.

These conditions are valid in the first regime of (9.4) where .001.0Kn

Recall that under these conditions solutions are based on the

Navier-Stokes equations, and energy equation.  As device or channel size is 

reduced the Knudsen number increases. At the onset of the second regime,

,001.0Kn   thermodynamic equilibrium begins to fail, leading to velocity

perature jump. This requires reformulation of the velocity and 

temperature boundary conditions. Away from the boundaries the fluid

behaves as a continuum. For most gases, failure of thermodynamic

equilibrium precedes the breakdown of the continuum assumption. Thus, 

the Navier-Stokes equations and energy equation are still valid. As size is

reduced further the continuum assumption fails. This occurs at 1.0Kn ,

which is the beginning of the transition flow range. This

reformulation of the governing equations and boundary conditions. 

Transition flow is characterized by total departure from thermodynamic

equilibrium and the continuum model.  It is commonly analyzed using 

statistical methods to examine the behavior of a group of molecules.  As 

device size becomes an order of magnitude smaller than the mean free path,

,10Kn  the free molecular flow mode begins. This flow is analyzed

tic theory where the laws of mechanics and thermodynamics are

applied to individual molecules.

      It should be noted that regime

continuity,

slip and tem

 requires 

using kine

transition from one flow regime to another takes place gradually. In this 

chapter we will limit ourselves to the slip flow regime.

9

Since channel size has significant e

can also be classified according to size. However, size alone does not

establish if the continuum assumption is valid or not.  Nevertheless,

channels that function in the continuum domain, with no velocity slip and 

temperature jump, and whose flow and heat transfer behavior can be

predicted from continuum theory or correlation equations, are referred to as 

macrochannels. On the other hand, channels for which this approach fails 

to predict their flow and heat transfer characteristics are known as

microchannels. It should be emphasized that for microchannels the 

continuum assumption may or may not hold. Various factors contribute to

distinguishing microchannel flow phenomena from macrochannels.  These 

factors include two and three dimensional effects, axial conduction,

dissipation, temperature dependent properties, velocity slip and temperature
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9.2.5 Gases vs. Liquids

o flow and heat transfer no distinction is made 

e much smaller than those of 

vides a criterion for the validity of 

t of failure of thermodynamic equilibrium and continuum is 

own. 

.3 General Features

As channel size is reduced, flow and heat transfer behavior change 

jump at the boundaries and the increasingly dominant role of surface forces 

as channel size is reduced.

In the analysis of macr

between gases and liquids. Solutions to gas and liquid flows for similar 

geometries are identical as long as the governing parameters (Reynolds 

number, Prandtl number, Grashof number, etc.) and boundary conditions 

are the same for both. This is not the case under micro scale conditions.  

The following observations are made regarding gas and liquid 

characteristics in microscale applications [4]. 

(1) Because the mean free paths of liquids ar

gases, the continuum assumption may hold for liquids but fail for gases. 

Thus, despite the small size of typical MEMS applications, the continuum 

assumption is valid for liquid flows.  

(2) While the Knudsen number pro

thermodynamic equilibrium and the continuum model for gases, it does not 

for liquids.  

(3) The onse

not well defined for liquids. Thus the range of validity of the no-slip, no-

temperature jump, linearity of stress-rate of strain relation, (2.7), and 

linearity of Fourier’s heat flux-temperature relation, (1.8), are unknown.     

(4) As device size becomes smaller, surface forces become more important.

In addition, the nature of surface forces in liquids differs from that of gases. 

Consequently, boundary conditions for liquids differ from those for gases.  

(5) Liquid molecules are much closer to each other than gas molecules.

Thus liquids are almost incompressible while gases are compressible. 

In general, the physics of liquid flow in microdevices is not well kn

Analysis of liquid flow and heat transfer is more complex for liquids than 

for gases and will not be considered here.

9

depending on the domain of the Knudsen number in condition (9.4). 

Knudsen number effect is referred to as rarefaction. Density change due to 

pressure drop along microchannels gives rise to compressibility effects. 

Another size effect is viscous dissipation which affects temperature 
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distribution. Of particular interest is the effect of channel size on the

velocity profile, flow rate, friction factor, transition Reynolds number, and

Nusselt number.  Consideration will be limited to the variation of these 

factors for fully developed microchannel gas flow as the Knudsen number

increases from the continuum through the slip flow domain.

9.3.1 Flow Rate

velocity profiles for fully developed laminar flow. The Fig. 9.3 shows the

no-slip and slip profiles are shown in Fig. 9.3a and 9.3b, respectively.

Velocity slip at the surface 

results in an increase in the 

flow rate Q  as conditions 

depart from thermodynamic

equilibrium. Thus

1
t

e

Q

Q
,     (9.5)

where subscript e refers to the experimentally determined slip flow rate and 

.3.2 Friction Factor

 for channel flow is defined as 

subscript t represents the flow rate determined from macrochannel theory

or correlation equations. This notation will be used throughout to refer to 

other performance characteristics such as friction factor and Nusselt

number.

9

The friction coefficient fC

2)2/1( m

w
f

u
C ,      (4.37a) 

where w  is wall shear stress and  is the mean velocity. For fullymu

developed flow through tubes, fC  can be expressed in terms of pressure

drop and is referred to as the friction factor f

22

1

mu

p

L

D
f ,      (9.6)

(a) (b)

Fig. 9.3
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where D is diameter, L is length and p  is pressure drop. Thus,

inemeasurements of p can be used to determ .f   For fully developed

laminar flow in macrochannels f is independent of surface roughness.

Furthermore, the product of f  and Reynolds number is constant. That is 

oPRef , (9.7)

where Po is known as the Poiseuille number. For example, for continuum

flow through tubes, .64Po  For rectangular channels the Poiseuille 

number depends on channel aspect ratio. For fully developed laminar flow 

in macrochannels Po is independent of Reynolds number. To examine the 

accuracy of theoretical models, the Poiseuille number has been computed

using extensive experimental data on microchannels. Applying (9.7) to

experimentally determined Po and normalizing it with respect to the

theoretical value, gives 

*C
Po

Po

t

e
.       (9.8)

When  is determined from macroscopic (continuum) theory or 

n the

.

aking

tPo)(

correlation equations, the departure of *C  from unity represents the degree

to which macroscopic theory fails to predict microscopic conditions.

      The behavior of f depends on the Knudson number as well as o

nature of the fluid. Extensive experimental data on gases and liquids by

several investigators have been compiled and evaluated [5-7]. The

compiled data covers a wide range of Reynolds numbers, hydraulic

diameters, and aspect ratios.  Because pressure drop in the reported 

experiments was usually measured between channel inlet and outlet, the 

computed friction factor did not always correspond to fully developed flow. 

Reported values for *C  ranged from much smaller than unity to much

larger than unity. Nevertheless, reviewing the experimental data on friction

factors in microchannels suggests the following preliminary conclusions:

(1) The Poiseuille number Po appears to depend on the Reynolds number

This is in contrast to macrochannels where Po is independent of Reynolds

number for fully developed flow.

(2) Both increase and a decrease in the friction factor are reported.

(3) The conflicting findings are attributed to the difficulty in m

accurate measurements of channel size, surface roughness, pressure 

distribution, as well as uncertainties in entrance effects, transition to

turbulent flow, and the determination of thermophysical properties.
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9.3.3 Transition to Turbulent flow

The Reynolds number is used as the criterion for transition from laminar to 

turbulent flow. In macrochannels, transition Reynolds number depends on

cross-section geometry and surface roughness.  For flow through smooth

tubes it is given by

Du
2300

on Reynolds numbers ranged 

Ret .    (6.1)

However, for microchannels, reported transiti

.57), the Nusselt number for fully developed

from 300 to 16,000 [7].  One of the factors affecting the determination of

transition Reynolds number in microchannels is fluid property variation.

Outlet Reynolds number can be significantly different from inlet.  The

effect of size and surface roughness on the transition Reynolds number is

presently not well established.

9.3.4 Nusselt number

As shown in equation (6

laminar flow in macrochannels is constant, independent of Reynolds

number.  However, the constant depends on channel geometry and thermal

boundary conditions. As with the friction factor, the behavior of the Nusselt 

number for microchannels is not well understood, resulting in conflicting 

published conclusions. Nevertheless, there is agreement that microchannel

Nusselt number depends on surface roughness and Reynolds number.

However, the following demonstrates the widely different reported results

for the Nusselt number [8, 9]

2.0 100
)(

)(
1

t

e

Nu

Nu
.  (9.9) 

Difficulties in accurate measurements of temperature and channel size, as 

n the slip-flow domain,

well as inconsistencies in the determination of thermophysical properties, 

partly account for the discrepancies in the reported values of the Nusselt

number.

9.4 Governing Equations 

It is generally accepted that i 1.0001.0 Kn , the

on arecontinuity, Navier Stokes equations, and energy equati valid

throughout the flow field [1, 10]. However, common assumptions made in

the analysis of macrochannels require reconsideration. Macrochannel
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solutions of Chapter 6 are based on negligible compressibility, axial

conduction, and dissipation.

9.4.1 Compressibility

The level of compressi

which is defined as the

bility is expressed in terms of Mach number M

ratio of fluid velocity and the speed of sound.

Incompressible flow is associated with Mach numbers that are small

compared to unity. Compressibility in microchannel flow results in non-

linear pressure drop [8, 11]. Its effect depends on Mach number as well as 

the Reynolds number [12, 13].  Friction factor increases as the Mach

number is increased. For example, at 35.0M  Poiseuille number ratio for

tube flow is 13.1*C . On the other hand, the Nusselt number decreases 

from 5.3Nu  at M = 0.01 to 1.1Nu 0.1 [8].

9.4.2 A duction

 at M =

xial Con

ction in channel flow a distinction must be made

e channel wall and conduction in the fluid. In

In examining axial condu

between conduction in th

Section 6.6.2 fluid axial conduction in macrochannels was neglected for 

Peclet numbers greater than 100. However, microchannels are typically

operated at low Peclet numbers where axial conduction in the fluid may be

important. A study on laminar fully developed gas flow through micro-

channels and tubes showed that the effect of axial conduction is to increase

the Nusselt number in the velocity-slip domain [14]. However, the increase

in Nusselt number diminishes as the Knudsen number is increased.  The

maximum increase is of order 10%, corresponding to 0Kn .

9.4.3. Dissipation

To examine the role

the energy equation

of dissipation we return to the dimensionless form of 

(2.41a)

**2*

*

*DT 1

Re

c
T

RePrDt
,    (2.41a) 

where *

2
V

TTc
c

sp

.  (2.43) 

 is the dissipation function and Ec is the Eckert number defined 

as

)(
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Since Ec is proportional to , it can be shown that it is proportional to the 

square of Mach number,

2V
2M .  Thus as long as M is small compared to 

unity, the effect of dissipation can be neglected in microchannels.

9.5 Velocity Slip and Temperature Jump Boundary Conditions 

To obtain solutions in the slip-flow domain, fluid velocity and thermal

conditions must be specified at the boundaries. Unlike the no-slip case, the 

velocity does not vanish at stationary surfaces and fluid temperature

departs from surface temperature.  An approximate equation for the 

velocity slip for gases is referred to as the Maxwell slip model and is given 

by [1]

n

xu
uxu

u

u
s

)0,(2
)0,( ,    (9.10) 

where

= fluid axial velocity at surface )0,(xu

surface axial velocitysu

x = axial coordinate

n = normal coordinate measured from the surface

u = tangential momentum accommodating coefficient

      Gas temperature at a surface is approximated by [1]

n

xT

Pr
TxT

T

T
s

)0,(

1

22
)0,( ,    (9.11)

where

T(x,0) = fluid temperature at the boundary

= surface temperaturesT

v
cc p / , specific heat ratio

T = energy accommodating coefficient

The accommodating coefficients, u and ,T are empirical factors that

reflect the interaction between gas molecules and a surface. They depend

on the gas as well as the geometry and nature of the impingement surface. 

Their values range from zero (perfectly smooth) to unity. Experimentally

determined values of u and T  are very difficult to obtain. Nevertheless,

there is general agreement that their values for various gases flowing over 
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several surfaces are close to unity [15]. Two observations are made

regarding (9.10) and (9.11):

(1) They are valid for gases. Liquid flow through microchannels gives rise 

to different surface phenomena and boundary conditions.

(2) They represent first order approximation of the velocity slip and 

temperature jump.  Additional terms in (9.10) and (9.11) provide second

order correction which extend the limits of their applicability to Kn = 0.4 

[10, 16].

9.6 Analytic Solutions: Slip Flows

In previous chapters we considered both Couette and Poiseuille flows. 

Analysis and solutions to these two basic flows, subject to slip conditions, 

will be presented in this 

section. In Couette flow the 

fluid is set in motion inside a 

channel by moving an adjacent 

surface. This type of flow is

also referred to as shear driven

flow. On the other hand, fluid

motion in Poiseuille flow is 

generated by an axial pressure 

gradient. This class of flow 

problems is referred to as 

pressure driven flow. Both

flows find extensive applications in MEMS. An example of shear driven 

flow is found in the electrostatic comb-drive used in microactuators and 

microsensors. Fig. 9.4 shows a schematic diagram of such a device. The 

lateral motion of the comb drives the fluid in the channel formed between 

the stationary and moving parts. Typical channel length is 100  and 

width is  A model for this application is Couette flow between two

infinite plates. 

m2

m100

movable stationary

Fig. 9.4

m

.m2

Other examples of shear driven flows are found in lubrication of 

micromotors, rotating shafts and microturbines. A simplified model for this

class of problems is shown in Fig. 9.5. Angular motion of the fluid in the 

gap between the inner cylinder (rotor) and the housing (stator) is shear 

driven by the rotor. Poiseuille flow is encountered in many MEMS devices 

such as micro heat exchangers and mixers. Fig. 9.2 shows a typical
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example of fluid cooled micro heat sink. A 

major concern in Poiseuille flow is the large 

pressure drop associated with microchannels.

      Uniform surface temperature and uniform

surface heat flux are two basic boundary

conditions that will be considered in heat

transfer analysis of Couette and Poiseuille 

flows. Consideration will also be given to 

surface convection, compressibility, and 

internal heat dissipation. Fig. 9.5

stator

rotor

9.6.1 Assumptions.

Analytical solution will be based on common simplifying assumptions.

These assumptions are:

(1)  Steady state, (2) laminar flow, (3) two-dimensional, (4) idea gas, (5) 

slip flow, regime (0.001 < Kn < 0.1), (6) constant viscosity, conductivity,

and specific heats, (7) negligible lateral variation of density and pressure, 

(8) negligible dissipation (unless otherwise stated), (9) negligible gravity,

and (10) the accommodation coefficients are assumed to be equal to unity, 

( 0.1Tu ).

      Note that the assumption 0.1Tu  is made for the following

reasons: (1) Their exact values are uncertain, and furthermore, there is

general agreement that they are close to unity. (1) Including them in the 

analysis introduces no conceptual complications or difficulties. (3) 

Solutions will be more concise.

9.6.2 Couette Flow with Viscous Dissipation:

 Parallel Plates with  Surface Convection

Fig. 9.6 shows two infinitely large parallel 

plates separated by a distance H. The 

upper plate moves axially with uniform

velocity .s  The lower plate is insulated 

while the upper plate exchanges heat with

the ambient by convection. The ambient

temperature is T  and the heat transfer

coefficient along the exterior surface of 

the moving plate is  This is an example

of shear driven flow in which the fluid is set in motion by the plate. Taking

u

.oh

x

y

u H

T oh su

Fig. 9.6
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into consideration dissipation and slip conditions, we wish to determine the 

following:

(1) The velocity distribution

(2) The mass flow rate

(3) The Nusselt number

Thus the problem is finding the flow field and temperature distribution in

the moving fluid.

Flow Field.  The vector form of the Navier-Stokes equations for compres-

sible, constant viscosity flow is given by (2.9) 

VVpg
Dt

VD 2

3

1
.      (2.9)

The axial component is

)()(
33

4
2

2

2

2

yxy

u

x

u

x

p
g

y

u

x

u
u

t

u
x

v

v . (a)

For steady state and negligible gravity

0xg
t

u
.    (b) 

In addition, since the plates are infinitely long and the boundary conditions

are uniform, it follows the all derivatives with respect to x must vanish.

That is

0
x

.         (c) 

Thus (a) simplifies to 

2

2

y

u

y

u
v .  (d) 

The continuity equation (2.2a) is now used to provide information on the

vertical velocity component v

0w
zy

u
xt

v .       (2.2a)
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Introducing the above assumptions into (2.2a), gives 

0v

y
.    (e) 

However, since density variation in the lateral y-direction is assumed

negligible, (e) yields 

0
y

v
.       (f) 

Integration of (f) and using the condition that  vanishes at the surfaces

shows that  everywhere and thus streamlines are parallel (see

Example 3.1, Section 3.3.1). Substituting (f) into (d) 

v

0v

0
2

2

dy

ud
. (9.12)

Equation (9.10) provides two boundary conditions on (9.12). Setting 

1u and noting that for the lower plate 0yn , (9.10) gives 

dy

xdu
xu

)0,(
)0,( .     (g) 

For the upper plate, n = H – y, (9.10) gives

dy

Hxdu
uHxu s

),(
),( .    (h) 

The solution to (9.12) is

ByAu .    (i) 

Boundary conditions (g) and (h) give the two constants of integration A and 

B

2H

u
A s

,
2H

u
B s

.

Substituting into (i) 
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)(
)/(21 HH

y

H

u
u s .     (j) 

Defining the Knudsen number as

H
Kn . (9.13)

Solution (j) becomes

)(
21

1
Kn

H

y

Knu

u

s

.  (9.14) 

The following observations are made regarding this result: 

(1) Fluid velocity at the moving plate, y = H, is

1
21

1)(

Kn

Kn

u

Hu

s

.

Thus the effect of slip is to decrease fluid velocity at the moving plate and 

increase it at the stationary plate.

(2)  Setting Kn = 0 in (9.14) gives the limiting case of no-slip.

(3) For the no-slip case (Kn = 0), the velocity distribution is linear 

H

y

u

u

s

.      (k) 

This agrees with equation (3.8) of Example 3.1

Mass Flow Rate.  The flow rate,  for a channel of width W is given by,m

H

dyuWm

0

.   (9.15)

Substituting (9.14) into (9.15) and noting that  is assumed constant along

y, gives 

dyKn
H

y

Kn

u
Wm s

H

)(
210

.
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Evaluating the integral

2

su
WHm . (9.16)

It is somewhat surprising that the flow rate is independent of the Knudsen

number. To compare this result with the flow rate through macro-

channels,  solution (k) is substituted into (9.15). This yields,om

2

s
o

u
WHm . (9.17)

This is identical to (9.16). Thus

1
om

m
.  (9.18) 

This result indicates that the effect of an increase in fluid velocity at the

lower plate is exactly balanced by the decrease at the moving plate.

Nusselt Number.  The Nusselt number for a parallel plate channel, based 

on the equivalent diameter ,2HDe  is defined as 

k

Hh
Nu

2
.     (l) 

The heat transfer coefficient h for channel flow is defined as 

sm TT

y

HT
k

h

)(

.

Substituting into (l)

sm TT

y

HT

HNu

)(

2 ,      (9.19) 

where

thermal conductivity of fluid k
T fluid temperature function (variable) 

fluid mean temperaturemT
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plate temperaturesT

It is important to note the following: (1) The heat transfer coefficient in 

microchannels is defined in terms of surface temperature rather than fluid 

temperature at the surface. (2) Because a temperature jump develops at the

surface of a microchannel, fluid temperature at the moving plate,

is not equal to surface temperature   (3) Surface temperature is

unknown in this example. It is determined using temperature jump equation

(9.11). (4) Care must be taken in applying (9.11) to Fig. 9.6. For

 and 

),,( HxT
.sT

yHn 1T , (9.11) gives

y

HxT

Pr
HxTTs

),(

1

2
),( . (9.20)

The mean temperature , as defined in Section 6.6.2, ismT

H

pmp dyTucWTmc
0

.       (9.21)

Noting that andpc are independent of y, and using (9.16) for the mass

flow rate m , the above gives 

H

s
m dyTu

Hu
T

0

2
,  (9.22) 

where u is given in (9.14). Examination of equations (9.19)-(9.22) shows 

that the determination of the heat transfer coefficient requires the 

determination of the temperature distribution of the moving fluid.

Temperature distribution is governed by the energy equation. For two-

dimensional, constant conductivity flow, (2.15) gives

)()()(
2

2

2

2

y

p

x

p
uT

y

T

x

T
k

y

T

x

T
u

t

T
c p vv .

(2.15)

However, noting that all derivatives with respect to x must vanish, 

and in addition, ,0/ tv  the above simplifies to 

0
2

2

y

T
k .   (9.23)
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The dissipation function  is given by

.

2

3

2
222

222

2

z

w

yx

u

z

u

x

w

y

w

zxy

u

z

w

yx

u

vvv

v

    (2.17) 

This simplifies to 
2

y

u
.      (9.24)

Substituting (9.24) into (9.23)

2

2

2

dy

du

kdy

Td
. (9.25)

Note that T is independent of x. This energy equation requires two

boundary conditions. They are:

0
)0(

dy

dT
,  (m) 

and

)(
)(

TTh
dy

HdT
k so .

Using (9.20) to eliminate  in the above, gives the second boundary

condition

sT

T
n

HxT

Pr
HxTh

dy

HdT
k o

),(

1

2
),(

)(
.   (n)

To solve (9.25) for the temperature distribution, the velocity solution (9.14)

is substituted into (9.25)

2

2

2

)21( KnH

u

kdy

Td s
.       (o) 
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Defining the constant  as

2

)21( KnH

u

k

s . (p)

Substituting (p) into (o)

2

2

dy

Td
.   (q) 

Integration of (q) gives

DCyyT 2

2
,  (r) 

where C and D are constants of integration. Application of boundary

conditions (m) and (n) gives the two constants: 

0C .

and

TH
Pr

KnH

h

Hk
D

o

2
2

1

2

2
. (s)

Substituting into (r)

TH
Pr

KnH

h

kH
yT

o

2
2

2

1

2

22
. (9.26)

To determine the Nusselt number using (9.19), equation (9.26) is used to

formulate T , and T  Differentiating (9.26) , .s dyHdT /)( m

H
dy

HdT )(
. (t)

Equation (9.26) and (9.20) give sT

T
h

kH
T

o
s .                                      (u) 

Finally,  is determined by substituting (9.14) and (9.26) into (9.22)mT
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dyDyKn
H

y

KnH
T

H

m )
2

)((
)21(

2 2

0

,   (v)

where D is defined in (s). Evaluating the integral, gives

DKnKnHH
Kn

Tm )(
2

1

6

1

8

1

21

2 22
.

Substituting (s) into the above

TH
Pr

Kn

h

kH
KnHH

Kn
T

o
m

222

1

2

3

2

4

1

21

1
.  (w) 

Using (t), (u) and (w) into (9.19) gives the Nusselt number

T
h

kH
T

Pr

KnH

h

kH
KnH

H

Kn

H
Nu

oo 1

2

3

2

421

1

2

2
2

2

2

.

This simplifies to

Pr

KnKn
Kn

Kn
Nu

)21(

1

8

3

8
1

)21(8
. (9.27)

We make the following remarks:

(1) The Nusselt number is independent of Biot number. This means that

changing the heat transfer coefficient  does not affect the Nusselt 

number.
oh

(2) The Nusselt number is independent of the Reynolds number. This is 

also the case with macrochannel flows. 

(3) Unlike macrochannels, the Nusselt number depends on the fluid.

(4) The first two terms in the denominator of (9.27) represent the effect of 

rarefaction (Knudsen number) while the second term represents the effect 

of temperature jump. Both act to reduce the Nusselt number.

(5) The corresponding Nusselt number for macrochannel flow,  is 

determined by setting 

,oNu
0Kn in (9.27) to obtain
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8oNu .  (9.28) 

Taking the ratio of (9.27) and (9.28)

Pr

KnKn
Kn

Kn

Nu

Nu

o
)21(

1

8

3

8
1

21
. (9.29)

This result shows that ratio is less than unity.

(6) If dissipation is neglected ( )0 , equation (9.26) gives the

corresponding temperature solution as

TT .

Thus, the temperature is uniform and no heat transfer takes place. 

Consequently, equation (9.27) for the Nusselt number is not applicable to 

this limiting case. 

Example 9.1: Micro Shaft Temperature

A micro shaft rotates clockwise with angular

velocity 1  inside a housing which rotates 

counterclockwise with an angular velocity .2

The radius of the shaft is R  and the clearance

between it and the housing is H. The fluid in the

clearance is air and the inside surface

temperature of the housing is  Consider slip 

flow domain and assume that

.2T
,1/ RH  set up 

the governing equations and boundary conditions for the determination of

the maximum shaft temperature. List all assumptions.

shaft

housing

R

H

1

2

2
T

(1)  Observations. (i) The effect of dissipation must be included;

otherwise the entire system will be at uniform temperature 2  (ii) The 

shaft is at uniform temperature. Thus maximum shaft temperature is equal

to shaft surface temperature. (iii) Velocity slip and temperature jump take 

place at both boundaries of the flow channel.  (iv) For  the 

problem can be modeled as shear driven Couette flow between two parallel

plates moving in the opposite direction. (v) To determine temperature

distribution it is necessary to determine the velocity distribution. (vi) No

heat is conducted through the shaft. Thus its surface is insulated.

.T

,1H / R
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(2)  Problem Definition. Formulate the Navier-Stokes equations, energy 

equation, velocity slip, and temperature jump boundary conditions for shear 

driven Couette flow between parallel plates.

(3) Solution Plan. Model the flow as shear driven Couette flow between 

two parallel plates. To formulate the governing equations, follow the

analysis of Section 9.6.2.

Modify velocity slip at the 

shaft and thermal boundary

condition at the housing 

surface.

y

x

H

1su

2su

u

(4)  Plan Execution.

(i) Assumptions. (1) Steady state, (2) laminar flow, (3) (4)

one-dimensional (no variation with axial distance x and normal distance z),

(5) slip flow regime (0.001 < Kn < 0.1), (6) ideal gas,  (7)  constant

viscosity, conductivity and specific heats, (8) negligible lateral variation of

density and pressure, (9) the accommodation coefficients are assumed

equal to unity,

,1/ RH

,0.1Tu (10) negligible dissipation, and (11)

negligible gravity.

      (ii) Analysis. Since the shaft is at uniform temperature, its maximum

temperature is equal to its surface temperature,  Surface temperature is

related to the temperature jump given by (9.11) 

.1sT

n

xT

Pr
TxT

T

T
s

)0,(

1

22
)0,( .      (9.11)

Applying (9.11) to the shaft surface, n = y = 0, and setting ,1T  gives 

dy

dT

Pr
TT s

)0(

1

2
)0( 1 ,    (a) 

where  is the fluid temperature distribution. Thus, the problem

becomes one of determining  To determine temperature distribution, 

it is necessary to determine the flow field.

)( yT
).( yT

Flow Field. Following the analysis of Section 9.6.2, the axial component

of the Navier-Stokes equations is given by (9.12)
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0
2

2

dy

ud
. (9.12)

Boundary conditions for (9.12) are given by (9.10)

n

xu
uxu

u

u
s

)0,(2
)0,( .   (9.10) 

Applying (9.10) to the lower surface, 0yn , and setting 1u

dy

du
uu s

)0(
)0( 1 ,    (b)

where

Rus 11 .     (c) 

For the upper surface, n = H – y, (9.10) gives

dy

Hdu
uHu s

)(
)( 2 ,      (d) 

where  is the velocity of the upper surface, given by2su

)(22 HRus .     (e)

Temperature Distribution.  The energy equation for this configuration is 

given by (9.25)
2

2

2

dy

du

kdy

Td
. (9.25)

The boundary condition at y = 0 is

0
)0(

dy

dT
. (f)

At the upper surface, n = H – y, surface temperature is specified. Thus,

(9.11) gives 

dy

HdT

Pr
THT

)(

1

2
)( 2 . (g)
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      (iii) Checking. Dimensional check: Equations (9.25), (b), (d) and (g) 

are dimensionally correct.

Limiting Check:  For the limiting case of no-slip, fluid and surface must

have the same velocity and temperature. Setting 0 in (b), (d) and (g) 

gives ,1)0( suu ,)( 2suHu  and .)( 2THT  These are the correct 

boundary conditions for the no-slip case.

(5) Comments. (i) The problem is significantly simplified because no 

angular variations take place in velocity, pressure, and temperature. (ii) The 

effect of slip is to decrease fluid velocity at the upper and lower surfaces. 

9.6.3 Fully Developed Poiseuille Channel Flow: Uniform Surface Flux 

We consider heat transfer in 

microchannels under pressure 

driven flow conditions. Fig.

9.7 shows two infinitely large

parallel plates separated by a

distance H. This configuration 

is often used to model flow 

and heat transfer in rectan-

gular channels with large

aspect ratios. Velocity and temperature are assumed to be fully developed.

Inlet and outlet pressures are i  and  respectively. The two plates are

heated with uniform and equal flux

p ,op

sq . We wish to determine the 

following:

H/2

H/2

y

x

sq

sq

Fig. 9.7

(1) Velocity distribution

(2) Pressure distribution 

(3) Mass flow rate

(4) Nusselt number

Poiseuille flow differs from Couette flow in that axial pressure gradient in 

Poiseuille flow does not vanish. It is instructive to examine how

microchannel Poiseuille flow differs from fully developed, no-slip 

macrochannel flow. Recall that incompressible fully developed Poiseuille 

flow in macrochannels is characterized by the following: (1) parallel

streamlines, (2) zero lateral velocity component (v = 0), (3) invariant axial 

velocity with axial distance ),0/( xu  and (4) linear axial pressure

 However, in microchannels, compressibility and 

rarefaction change this flow pattern, and consequently none of these 

conditions hold. Because of the large pressure drop in microchannels,

constant)./( dxdp
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density change in gaseous flows becomes appreciable and the flow can no 

longer be assumed incompressible. Another effect is due to rarefaction. 

According to equation (9.2), a decrease in pressure in microchannels results 

in an increase in the mean free path .  Thus the Knudsen number increases 

along a microchannel in Poiseuille flow. Consequently, axial velocity

varies with axial distance, lateral velocity component does not vanish,

streamlines are not parallel, and pressure gradient is not constant.

      Poiseuille flow and heat transfer have been extensively studied 

experimentally and analytically.  The following analysis presents a first 

order solution to this problem [16-19].

Assumptions. We invoke all the assumptions listed in Section 9.6.1.

Additional assumptions will be made as needed.

Flow Field.   Following the analysis of Section 9.6.2, the axial component

of the Navier-Stokes equation for constant viscosity, compressible flow is

given by

)()(
33

4
2

2

2

2

yxy

u

x

u

x

p
g

y

u

x

u
u

t

u
x

v

v .(a)

For steady state and negligible gravity

0xg
t

u
.    (b) 

To simplify (a) further. the following additional assumptions are made:

(11) Isothermal flow. This assumption eliminates temperature as a variable 

in the momentum equations. In addition, density can be expressed in terms 

of pressure using the ideal gas law. 

(12) Negligible inertia forces. With this assumption the inertia terms

)//( yuxuu v can be neglected. This approximation is justified for 

low Reynolds numbers. The Reynolds number in most microchannels is 

indeed small because of the small channel spacing or equivalent diameter.

(13) The dominant viscous force is . Scale analysis shows that 

this term is of order 

)/( 22 yu
2H while  and )/( 22 xu )(/ yx v/  are of 

order  Thus these two terms can be neglected. Using (b) and the above

assumptions, equation (a) simplifies to

.2L
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0
2

2

y

u

x

p
. (c)

Since pressure is assumed independent of y, this equation can be integrated 

directly to give the axial velocity u. Thus 

BAyy
dx

dp
u 2

2

1
,  (d) 

where A and B are constants of integration obtained from boundary

conditions on u. Symmetry at y = 0 gives using (9.10).

0
)0,(

y

xu
.   (e) 

Applying (9.10) to the upper plate, n = H – y, and setting 1u  gives the

second boundary condition 

y

Hxu
Hxu

)2/,(
)2/,( .     (f) 

Applying (e) and (f) to (d), and using the definition of the Knudsen number

in (9.13), give A and B

,0A )(41
8

2

pKn
dx

dpH
B .        (g) 

Substituting (g) into (d)

2

22

4)(41
8 H

y
pKn

dx

dpH
u .       (9.30)

      Note the following: (1) The Knudsen number, which varies with

pressure along the channel, represents rarefaction effect on axial velocity.

(2) Pressure gradient is unknown and must be determined to complete the 

solution. (3) Setting 0Kn in (9.30) gives the no-slip solution to Poiseuille

flow in macrochannels.

To complete the flow field solution, the lateral velocity component v

and pressure distribution p must be determined. The continuity equation for

compressible flow, (2.2a), is used to determine v
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0w
zy

u
xt

v . (2.2a)

Introducing the above assumptions into (2.2a), we obtain

0v

y
u

x
.   (h)

Integration of this equation gives v. The density  is eliminated using the 

ideal gas law 

RT

p
, (9.31)

where R is the gas constant and T is temperature. Substituting (9.31) into 

(h), assuming constant temperature, and rearranging 

up
x

p
y

v .      (i)

Substituting (9.30) into (i)

)()(
2

22

4)(41
8 H

y
pKn

dx

dp
p

x

H
p

y
v .     (j)

Flow symmetry with respect to y gives the following boundary condition

on v

0)0,(xv .     (k) 

A second condition is obtained by requiring that the lateral velocity 

vanishes at the wall. Thus 

0)2/,( Hxv .  (l) 

Multiplying (j) by dy, integrating from y = 0 to y = y, and using (k) 

dy
H

y
pKn

dx

dp
p

x

H
pd

0
2

22

0

)( 4)(41
8

)( v

yy

.  (m)
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Evaluating the integrals and solving for v

3

33

3

4
)(41

1

8 H

y

H

y
pKn

dx

dp
p

xp

H
v . (9.32)

It remains to determine the pressure p(x). Application of boundary

condition (l) to (9.32) gives a differential equation for p

0
3

4
)(41

2/
3

3

Hy
H

y

H

y
pKn

dx

dp
p

x
.      (n) 

To integrate (n), the Knudsen number must be expressed in terms of 

pressure. Equations (9.2) and (9.13) give

p
RT

HH
Kn

1

2
.         (9.33)

Evaluating (n) at  substituting (9.33) into (n) and integrating,2/Hy

C
p

RT
Hdx

dp
p

1
2

3

1
.

Integrating again noting that T  is assumed constant

DCxpRT
H

p 2
6

1 2 ,        (o) 

where C and D are constants of integration.  The solution to this quadratic

equation is 

DCx
H

RTRT
H

xp 661823)(
2

2

.     (p) 

The constants C and D are determined by specifying channel inlet and 

outlet pressures. Let 

ipp )0( , opLp )( ,    (q)

where L is channel length. Application of (q) to (p) gives C and D
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)(2)(
6

1 22
ioio ppRT

HL
pp

L
C ,

i
i pRT

H

p
D 2

6

2

.

Substituting the above into (p) and normalizing the pressure by , giveop

.2
6

)1(2
6

1
18

2
3)(

2

2

2

2

22

2

o

i

oo

i

o

i

oo

i

o

oo

p

p
RT

Hpp

p

L

x

p

p
RT

Hpp

p

p

RT

H

RT
Hpp

xp

(r)

This result can be expressed in terms of the Knudsen number at the outlet

using (9.2) and (9.13)

o
o

o
o RT

pHH

p
Kn

2

)(
,   (9.34) 

 where T  in (r) is approximated by the outlet temperature  Equation (r) 

becomes

.oT

.)1(12)1(66
)(

2
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L

x

p

p
Kn

p

p

p

p
KnKn

p
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o

i
o

o

i

o

i
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o

(9.35)

Note the following regarding (9.35): (1 unlike macrochannel Poiseuille 

flow, pressure variation along the channel is non-linear. (2) Knudsen

number terms represent rarefaction effect on the pressure distribution. (3)

The terms  and  represent the effect of

compressibility.  (4) Application of (9.35) to the limiting case of 

gives

2)/( oi pp )/]()/(1[ 2 Lxpp oi

0oKn

L

x

p

p

p

p

p

xp

o

i

o

i

o

)1(
)(

2

2

2

2

.      (9.36)



374  9 Convection in Microchannels

This result represents the effect of compressibility alone. Axial pressure 

distribution for this case is also non-linear.

Mass Flow Rate. The flow rate  for a channel of width W ism

2/

0

2

H

dyuWm .       (s)

Using (9.30), the above yields

dy
H

y
pKn

dx

dpH
Wm

H

2

22/

0

2

4)(41
8

2 .

Since  and p are assumed uniform along y, they are treated as constants in 

the above integral. Evaluating the integral, gives 

dx

dp
pKn

WH
m )(61

12

3

.  (t) 

The density  is expressed in terms of pressure using the ideal gas law

RT

p
.   (9.37) 

Substituting (9.33) and (9.37) into (t), gives 

dx

dp
RT

H
p

RT

WH
m

2
6

12

3

.       (9.38)

Using (9.35) to formulate the pressure gradient, substituting into (9.38), 

assuming constant temperature ( oTT ), and rearranging, gives

)( 1121
24

1
2

223

o

i
o

o

i

o

o

p

p
Kn

p

p

LRT

pHW
m .     (9.39)

It is instructive to compare this result with the corresponding no-slip

macrochannel case where the flow is assumed incompressible. The mass

flow rate for this case is given by
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1
12

1
23

o

i

o

o
o

p

p

LRT

pHW
m .      (9.40)

Taking the ratio of the two results

o
o

i

o

Kn
p

p

m

m
121

2

1
. (9.41)

      We make the following observations:

(1) The mass flow rate in microchannels, (9.39), is very sensitive to 

channel height H. This partly explains the difficulty in obtaining accurate

data where channel height is typically measured in microns.

(2) Equation (9.39) shows the effect of rarefaction (slip) and compres-

sibility on the mass flow rate.  To examine the effect of compressibility

alone (long channels with no-slip), set 0oKn  in (9.39).

(3) Since  equation (9.41) shows that neglecting the effect of

compressibility and rarefaction underestimates the mass flow rate.

,1/ oi pp

Nusselt Number.  Following the analysis of Section 9.6.2, the Nusselt 

number is defined as 

k

hH
Nu

2
.   (u) 

The heat transfer coefficient h for uniform surface flux sq  is

ms

s

TT

q
h .

Substituting into (u) 

)(

2

ms

s

TTk

qH
Nu ,      (v)

where

fluid mean temperaturemT

plate temperaturesT

As usual, the heat transfer coefficient in microchannels is defined in terms 

of surface temperature rather than fluid temperature at the surface. Plate
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surface temperature s  is given by (9.11), which for the coordinate y

selected, takes the form

T

y

HxT

Pr
HxTTs

)2/,(

1

2
)2/,( . (9.42)

      The mean temperature mT  is defined in Section 6.6.2. Since density and 

specific heat are assumed invariant with respect to y, the mean temperature

takes the form 

2/

0

2/

0

H

H

m

udy

dyTu

T . (9.43)

      Thus, equations (v), (9.42) and (9.43) show that axial velocity, ,

and temperature distribution, are required for the determination of

the Nusselt number. We consider first  velocity distribution  The 

solution obtained above, equation (9.30), is limited to isothermal flow, as 

indicated in assumption (11) listed above. To proceed with the solution,

additional assumptions are made. However, in the heat transfer aspect of

this problem the temperature is not uniform. We assume that the effect of 

temperature variation on the velocity distribution is negligible. Continuing

with the list of assumptions, we add 

),( yxu
),,( yxT

).,( yxu

(14) Axial velocity distribution is approximated by the solution to the

isothermal case.

Temperature distribution is governed by energy equation (2.15)

.)()()(
2

2

2

2

y

p

x

p
uT

y

T

x

T
k

y

T

x

T
u

t

T
c p vv

(2.15)

To simplify this equation, additional assumptions are made:

(15) Negligible dissipation, 0

(16) Negligible axial conduction, 
2222 // yTxT

(17) Negligible effect of compressibility on the energy equation 

(18) Nearly parallel flow, 0v
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Equation (2.15) becomes

2

2

y

T
k

x

T
uc p . (9.44)

This equation requires two boundary conditions. They are:

0
)0,(

y

xT
, (w)

and

sq
y

HxT
k

)2/,(
.     (x) 

To proceed with the solution to (9.44), we follow the analysis of Chapter 6

and introduce the following important assumption:

(19) Fully developed temperature. Introducing the dimensionless tempera-

ture

)()2/,(

),()2/,(

xTHxT

yxTHxT

m

.  (9.45) 

Fully developed temperature is defined as a profile in which  is 

independent of x. That is

)( y . (9.46)

Thus

0
x

.  (9.47) 

Equations (9.45) and (9.46) give 

0
)()2/,(

),()2/,(

xTHxT

yxTHxT

xx m

.

Expanding and using the definition of  in (9.45)

0
)()2/,(

)(
)2/,(

dx

xdT

dx

HxdT
y

x

T

dx

HxdT m .   (9.48) 
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The relationship between the three gradients, ,/),( xyxT
  and   will be determined.  The heat transfer

coefficient h, is given by

,/)2/,( dxHxdT dxxdTm )(

)()(

)2/,(

xTxT

y

HxT
k

h
sm

,                                    (y)

where is given in (9.42). Temperature gradient in (y) is obtained

from (9.45) 

)(xTs

)]()2/,([)2/,(),( xTHxTHxTyxT m .

Differentiating the above and evaluating the derivative at 2/Hy

dy

Hd
xTHxT

y

HxT
m

)2/(
)]()2/,([

)2/,(
.  (z) 

Substituting (z) into (y) and using (9.42) for )(xTs

dy

Hd

xTxT

xTHxTk
h

ms

m )2/(

)()(

)]()2/,([
.     (9.49) 

Newton’s law of cooling gives another equation for h

)()( xTxT

q
h

ms

s
.

Equating the above with (9.49) and rearranging

constant.
)2/(

)()2/,(

dy

Hd

q
xTHxT s

m   (9.50) 

Differentiating

0
)()2/,(

x

xT

x

HxT m
.

Combining this with (9.48), gives 
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x

T

dx

xdT

dx

HxdT m )()2/,(
.     (9.51) 

This is an important result since 

 in partial differential equa-

tion (9.44) can be replaced with 

 The next step is to

formulate an equation for the mean

temperature gradient dTm  by

applying conservation of energy. For

the element shown in Fig. 9.8,

conservation of energy gives

xT /

.

dx/

/ dxdTm

sq

dx

dx
dx

dT
T m

mmT

sq

Fig. 9.8

m

dx
dx

dT
TmcTmcWdxq m

mpmps2 .

Simplifying

p

sm

mc

qW

dx

dT 2
 = constant.         (aa) 

However,

muWHm , (bb)

where  is the mean axial velocity. Substituting (bb) into (aa) mu

Huc

q

dx

dT

mp

sm 2
 = constant. (9.52)

Substituting (9.52) into (9.51)

Huc

q

x

T

dx

xdT

dx

HxdT

mp

sm 2)()2/,(
.  (9.53) 

Equation (9.53) shows that T m  and T  vary linearly with 

axial distance x. Substituting (9.53) into (9.44)

),,( rx )(xT )(xs

m

s

u

u

kH

q

y

T 2

2

2

.   (9.54)
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The velocity u is given by (9.30) and the mean velocity is defined as

2/

0

2
H

m udy
H

u .      (cc)

Substituting (9.30) into (cc) 

.441
4

2/

0
2

22 H

m dy
H

y
Kn

dx

dpH
u

Integration gives

Kn
dx

dpH
um 61

12

2

.         (9.55)

Combining (9.30) and (9.55)

2

2

4

1

61

6

H

y
Kn

Knu

u

m

.    (9.56) 

(9.56) into (9.54)

2

2

2

2

4

1

61

12

H

y
Kn

kH

q

Kny

T s . (9.57)

Integrating twice

)()(
124

1

2

1

)61(

12
),(

2

4
2)( xgyxf

H

y
yKn

kHKn

q
yxT s ,  (dd) 

where f(x) and g(x) are “constants” of integration. Boundary condition (w)

gives

0)(xf .

Solution (dd) becomes

)(
124

1

2

1

)61(

12
),(

2

4
2)( xg

H

y
yKn

kHKn

q
yxT s .    (9.58)
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Boundary condition (x) is automatically satisfied and thus will not yield

g(x). To proceed, g(x) will be determined by evaluating the mean

temperature mT  using two methods. In the first method, (9.52) is integrated

between the inlet of the channel, x = 0, and an arbitrary location x

xT

T

dx
Huc

q
dT

mp

s

m

mi

m

0

2
,

where

mim TT )0( .      (9.59)

Evaluating the integrals 

mi
m

s
m Tx

Huc

q
xT

p

2
)( .       (9.60)

In the second method, is evaluated using its definition in (9.43).

Substituting (9.30) and (9.58) into (9.43)

mT

.

441
8

)(
124

1

2

1

)61(

12
441

8
)(

2/

0
2

2

2/

0
2

4

2

2
2)(

H

H

s

m

dy
H

y
Kn

dx

dpH

dyxg
H

y
yKn

kHKn

q

H

y
Kn

dx

dpH

xT

Evaluating the integrals 

)(
560

13

40

13
)(

)61(

3
)( 2

2
xgKnKn

Knk

Hq
xT s

m .     (9.61)

Equating (9.60) and (9.61) gives g(x)

.
560

13

40

13
)(

)61(

32
)( 2

2
KnKn

Knk

Hq
x

Huc

q
Txg s

mp

s
mi   (9.62)

Surface temperature  is determined by substituting tempera-

ture solution (9.58) into (9.42)

)2/,( HxTs
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)(
1

2

48

5

2

1

)61(

3
)( xgKn

Prk

Hq
Kn

Knk

Hq
xT ss

s .   (9.63) 

Substituting (9.61) and (9.63) into (v), gives the Nusselt number

Kn
Pr

1
KnKn

Kn
Kn

Kn

Nu

1

2
)(

)1(

1

)1(

3

560

13

40

13

648

5

2

1

6

2

2

 . 

(9.64)

Using (9.64), the Nusselt num-

ber variation with Knudsen

number for air, with 

and Pr = 0.7, is plotted in Fig. 

9.9. The following remarks are 

made:

4.1

(1) The Knudsen number in 

(9.64) is a function of local

pressure. Since pressure varies

along the channel, it follows

that the Nusselt number varies 

with distance x. This is

contrary to the no-slip macro-

channels case where the 

Nusselt number is constant. 

(2) Unlike macrochannels, the

Nusselt number depends on the fluid, as indicated by Pr and  in (9.64).

Nu

Kn
0 0.04 0.08 0.12

4

5

6

7

8

9

1Tu

Fig. 9.9 Nusselt number for air flow between

parallel plates at  unifrorm  surface

heat flux for air, = 1.4,  Pr = 0.7,

(3) The effect of temperature jump on the Nusselt number is represented by 

the last term in the denominator of (9.64). 

(4) The corresponding no-slip Nusselt number for macrochannel flow, 

 is determined by setting ,oNu 0Kn  in (9.64)

235.8
17

140
oNu .       (9.65)

This is in agreement with the value given in Table 6.2.
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(5) Rarefaction and compressibility have the effect of decreasing the

Nusselt number. Depending on the Knudsen number, using the no-slip 

solution, (9.65), can significantly overestimate the Nusselt number.

Example 9.2: Microchannel Heat Exchanger: Uniform Surface Flux

Rectangular microchannels are used to remove heat from a device at 

uniform surface heat flux. The height, width, and length of each channel

are m,26.1H m,90W and mm,10L  respectively. Using air

at  as the coolant fluid, determine the mass flow rate and the

variation of Nusselt number along the channel. Assume steady state fully

developed conditions. Inlet and 

outlet pressure are: 

Co
20iT

x

y
HL

W
sq

sqm

210ip kPa = mkg/s2
000,210

105op kPa = mkg/s2
000,105

(1)  Observations. (i) The problem can be modeled as pressure driven

Poiseuille flow between two parallel plates with uniform surface flux. (ii)

Assuming fully developed velocity and temperature, the analysis of Section 

9.6.3 gives the mass flow rate and Nusselt number. (iii) The Nusselt

number depends on the Knudsen number, Kn. Since Kn varies along the 

channel due to pressure variation, it follows that pressure distribution along

the channel must be determined. 

(2)  Problem Definition. Determine the flow and temperature fields for

fully developed Poiseuille flow.

(3) Solution Plan. Apply the results of Section 9.6.3 for the mass flow rate, 

pressure distribution, and Nusselt number.

(4)  Plan Execution.

(i) Assumptions. (1) Steady state, (2) laminar flow, (3) two-

dimensional (no variation along the width W), (4) slip flow regime (0.001 < 

Kn < 0.1), (5) ideal gas, (6)  constant viscosity, conductivity and specific 

heats, (7) negligible lateral variation of density and pressure, (8) the

accommodation coefficients are equal to unity, ,0.1Tu  (9) 

negligible dissipation, (10) uniform surface flux, (11) negligible axial

conduction, and (12) no gravity.

(ii) Analysis. Assuming isothermal flow, the results of Section 9.6.3

give the mass flow rate as 
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)( 1121
24

1

2

223

o

i
o

o

i

o

o

p

p
Kn

p

p

LRT

pHW
m .   (9.39) 

The Knudsen number at the exit, isoKn

o
o

o
o RT

pHH

p
Kn

2

)(
,    (9.34) 

where the temperature oT at the outlet is assumed to be the same as inlet 

temperature and the viscosity  is based on inlet temperature.

      The Nusselt number, is given by,Nu

Kn
Pr

1
KnKn

Kn
Kn

Kn

Nu

1

2

560

13

40

13
)(

)61(

1

48

5

2

1

)61(

3

2

2

(9.64)

The local Knudsen number,  depends on the local pressure p(x)

according to 

,Kn

RT
pHH

Kn
2

. (9.33)

Equation (9.35) gives )(xp

L

x

p

p
Kn

p

p

p

p
KnKn

p

xp

o

i
o

o

i

o

i
oo

o

)1()1(
)(

1266
2

22

.

(9.35)

Thus, (9.35) is used to determine p(x), (9.33) to determine  and

(9.64) to determine the variation of the Nusselt number along the channel.

),(xKn

      (iii) Computations. Air properties are determined at  To 

compute p(x),  and the following data are used 

.Co
20

),(xKn ,Nu

m26.1H

mm10L

ip m/skg10210 23
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op m/skg10105 23

713.0Pr

Ks/m287Kkg/J287 22R

C20 o
oi TTT

m90W

4.1

m/skg1017.18 6

Substituting into (9.34)

)(K)K)(-s/m(
2m)/skg(10105m)(1026.1

m)/skg(1017.18
293.15287

22

236

6

oKn = 0.05

Using (9.39) and noting that 2/ oi pp

)12(05.0121)2(
93.15(K)2K)s/m)287(m(01.0m)/skg(1017.18

)m/skg()10105)(m(m)(1090

24

1 2

226

24223336

m

kg/s10476.19 12m

Axial pressure variation is obtain from (9.35)

L

x

p

xp

o

)21(05.012)2(1)205.06(05.06
)( 22 ,

L

x

p

xp

o

6.329.53.0
)(

.      (a) 

Equation (a) is used to tabulate 

pressure variation with 

Equations (9.33) and (9.64) are used

to compute the corresponding

Knudsen and Nusselt numbers.

./ Lx Knopp / Nu

0.1
8.0
6.0
4.0
2.0

0

000.1
252.1
469.1
662.1
838.1
000.2

0500.0
0399.0
0340.0
0301.0
0272.0
0250.0 333.7

259.7
163.7
035.7
850.6
549.6

Lx / Kn

(iii) Checking. Dimensional check:

Units for equations (9.33), (35), 

(9.39), and (9.64) are consistent.

Limiting check: No-slip macrochannel Nusselt number is obtained by

setting in (9.64). This gives Nu = 8.235. This agrees with the value 

given in Table 6.2.

0Kn

(5) Comments. (i) To examine the effect of rarefaction and compressibility

6
1.26 10( )
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on the mass flow rate, equation (9.41) is used to calculate :omm /

8.1)05.01212(
2

1
121

2

1
o

o

i

o

Kn
p

p

m

m
.

Thus, neglecting rarefaction and compressibility will underestimate the m

by 44%.

(ii) No-slip Nusselt number for fully developed Poiseuille flow between 

parallel plates with uniform surface heat flux is Nu = 8.235. Thus, no-slip 

theory overestimates the Nusselt number if applied to microchannels.

(iii) It should be noted that the equations used to compute and

are based on the assumptions of isothermal conditions in the 

determination of the flow field. This is a reasonable approximation for 

typical applications. 

,m ),(xp
Nu

9.6.4  Fully Developed Poiseuille Channel Flow:   Uniform Surface 

Temperature [14]

The uniform surface flux of Section 9.6.3 is now repeated with the plates 

maintained at uniform surface temperature  as shown in Fig. 9.10. We 

invoke all the assumptions made in solving the uniform flux case.   Since 

the flow field is assumed independent of temperature, it follows that the 

solution to the velocity, pressure, and

mass flow rate is unaffected by changes

in thermal boundary conditions.  Thus,

Equation (9.30) for the axial velocity u,

(9.35) for pressure variation o ,

(9.39) for mass flow rate , and (9.44)

of the governing energy equation for

temperature, are applicable to this case. 

However, thermal boundary condition at

the surface must be changed. Therefore,

a new solution to the temperature distribution and Nusselt number must be

determined. This change in boundary condition makes it necessary to use a 

different mathematical approach to obtain a solution. The solution and

results detailed in [14] will be followed and summarized here.

,sT

pxp /)(

m

H/2

H/2

y

x

sT

sTFig. 9.10

Temperature Distribution and Nusselt Number. Using Newton’s law of 

cooling, the Nusselt number for this case is given by
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y

HxT

TxT

H

k

Hh
Nu

sm

)2/,(

)(

22
. 9.66a)

Thus, the problem becomes one of determining the temperature distribution

and the mean temperature T  One approach to this problem is 

to solve the more general case of Graetz channel entrance problem and 

specialize it to the fully developed case at

),( yxT ).(xm

 [14]. This requires 

solving a partial differential equation. Although axial conduction was 

neglected in the uniform heat flux condition, it will be included in this 

analysis [14]. Thus energy equation (9.44) is modified to include axial 

conduction

x

)(
2

2

2

2

y

T

x

T
k

x

T
uc p . (9.67a)

The boundary and inlet conditions are

0
)0,(

y

xT
,     (9.68a) 

y

HxT
Kn

Pr

H
THxT s

)2/,(

1

2
)2/,( ,      (9.69a) 

iTyT ),0( ,       (9.70a)

sTyT ),( .      (9.71a)

The normalized axial velocity is given by (9.56) 

2

2

4

1

61

6

H

y
Kn

Knu

u

m

.     (9.56) 

Equations (9.66a)-(9.71a) are expressed in dimensionless form using the

following dimensionless variables

,
si

s

TT

TT
,

RePrH

x
,

H

y
,

2 Hu
Re m .

(9.72)

RePrPe

Using (9.56) and (9.72), equations (9.66a)-(9.71a) are transformed to 
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)2/,(2

m

Nu ,         (9.66)

2

2

2

2

2

2

)(

1

4

1

61

6
)(

eP
Kn

Kn
,     (9.67)

0
)0,(

(9.68)

)2/1,(1

1

2
)2/1,( Kn

Pr
,       (9.69)

1),0( , (9.70)

0),( .       (9.71)

      In Section 6.6.2, the criterion for neglecting axial conduction is given

as

, 8100PrRePe

where Pe is the Peclet number.

Because the Reynolds number is

usually small in microchannels,

the Peclet number may not be 

large enough to justify neglecting

axial conduction. By including the

axial conduction term in (9.67),

the effect of Peclet number on the 

Nusselt number can be evaluated.

      This problem was solved using

the method of separation of 

variables [14]. The solution is 

specialized to the fully developed 

temperature case far away from

the inlet. The variation of Nusselt number with Knudsen number for air at 

various values of the Peclet number is shown in Fig. 9.11. Examination of

Fig. 9.11 leads to the following conclusions:

Nu

Kn

0 0.04 0.08 0.12

5

6

7
8

Fig. 9.11 Nusselt number for flow between

  parallel plates at uniform surface

  temperature for air, Pr = 0.7,
4.1 , 1Tu

, [14]

Pe = 0
1

5

(1) The Nusselt number decreases as the Knudsen number is increased.

Thus using no-slip results to determine microchannel Nusselt number can 

significantly overestimate its value.



9.6 Analytic Solutions: Slip Flows  389

(2) Axial conduction increases the Nusselt number. However, the increase 

diminishes as the Knudsen number increases.

(3) The limiting case of no-slip (Kn = 0) and negligible axial conduction

 gives )(Pe

5407.7oNu .  (9.73) 

This is in agreement with the value given in Table 6.2.

(4) If axial conduction is taken into consideration at Kn = 0, the Nusselt

number increases to 1174.8oNu .  Thus the maximum error in neglecting

axial conduction is 7.1%.

(5) With the Nusselt number known, the heat transfer rate,  is

determined following the analysis of Section 6.5

,sq

])([ mimps TxTcmq ,     (6.14) 

where the local mean temperature is given by

][exp)()( x
cm

hP
TTTxT

p
smism .     (6.13) 

The average heat transfer coefficient, ,h  is determine numerically using

(6.12)
x

dxxh
x

h

0

)(
1

.     (6.12) 

Example 9.3: Microchannel Heat Exchanger:

 Uniform Surface Temperature 

Repeat Example 9.2 with the

channel surface maintained at 

uniform temperature .sT

(1) Observations. (i) Since the 

flow field is assumed inde-

pendent of temperature, it 

follows that the velocity, mass flow rate and pressure distribution of

Example 9.2 are applicable to this case.  (ii) The variation of the Nusselt 

x

y
HL

WsT

sTm
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number with Knudsen number for air is shown in Fig. 9.11. (iii) The

determination of Knudsen number as a function of distance along the

channel and Fig. 9.11 establish the variation of Nusselt number. (iv) The

use of Fig. 9.11 requires the determination of the Peclet number.

(2)  Problem Definition. Determine the Nusselt number corresponding to

each value of Knudsen number of Example 9.2.

(3) Solution Plan. Use the tabulated data of Knudsen number and pressure 

in Example 9.2, compute the Peclet number, and use Fig. 9.11 to determine

the Nusselt number variation along the channel.

(4)  Plan Execution.

(i) Assumptions. (1) Steady state, (2) laminar flow, (3) two-

dimensional (no variation along the width W), (4) slip flow regime (0.001 < 

Kn < 0.1), (5) ideal gas, (6)  constant viscosity, conductivity and specific 

heats, (7) negligible lateral variation of density and pressure, (8) the

accommodation coefficients are assumed equal to unity, ,0.1Tu

(9) negligible dissipation, (10) uniform surface temperature, and (11)

negligible gravity.

(ii) Analysis and Computations. Since the velocity and pressure

distribution of Example 9.2 are based on the assumption of isothermal

conditions, the variation of Knudsen number and pressure with axial 

distance x/L for uniform surface flux is the same as that for uniform surface

temperature. Thus, the tabulated results of Example 9.2 will be used with 

Fig. 9.11 to determine the variation of Nusselt number with axial distance.

The Peclet number is defined as

PrRePe ,    (a) 

where the Reynolds number is given by

W

mHHWmHu
Re m 22)/(2

.  (b) 

Using the data of Example 9.2, equation (b) gives 

0238.0
m)(1090m-kg/s1017.18

)kg/s(10476.19
2

66

12

Re

Using (a) 
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01698.0713.002382.0Pe

Examination of Fig. 9.11 shows a small change in the Nusselt number as 

Pe is increased from zero to 

unity. Thus, we assume that the 

curve corresponding to Pe = 0 

applies to this example.  The 

variation of pressure, Knudsen

number and Nusselt number with

axial distance x/L is tabulated. 

Also tabulated is the Nusselt

number corresponding to negli-

gible axial conduction ).(Pe

x/L

1.0

0.2

0.4

0.6
0.8

0

opp/

2.000

1.838

1.662

1.469

1.252
1.000

Kn

0.0250

0.0272

0.0301

0.0340

0.0399

0.0500

6.837.38

7.31

7.22

7.12

6.91

6.65

with
conduction

Nu

6.77

6.70

6.60

6.41
6.18

conduction
no

Nu

(5) Comments. (i) Taking into consideration axial conduction, the no-slip 

Nusselt number for fully developed Poiseuille flow between parallel plates 

with uniform surface temperature is .1174.8Nu  The tabulated values of 

Nusselt numbers are lower due to rarefaction and compressibility. Thus,

no-slip theory overestimates the Nusselt number.

(ii) Neglecting axial conduction underestimates the Nusselt number by less

than 10%.

(iii)  The effect of axial conduction is to shift the values of the Nusselt 

number for constant surface temperature closer to those for constant

surface flux of Example 9.2.

9.6.5 Fully Developed Poiseuille Flow in Microtubes: 

 Uniform Surface Flux [20] 

We consider now Poiseuille flow in microtubes at uniform surface heat

flux. This problem is identical to Poiseuille flow between parallel plates at

uniform flux presented in Section 9.6.3. Fig. 9.12 shows a tube of radius

with surface heat flux s

or
q .

Velocity and temperature

are assumed fully develop-

ed. Inlet and outlet pressures 

are i  and  respective-

ly. We wish to determine

the following:

p ,op

sq

sq

Fig. 9.12

z

or
r r

     (1) Velocity distribution

     (2) Nusselt number
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As with pressure driven flow between parallel plates, rarefaction and 

compressibility alter the familiar flow and heat transfer characteristics of 

macro tubes. Slip velocity and temperature jump result in axial velocity

variation, lateral velocity component, non-parallel streamlines, and non-

linear pressure gradient.

Assumptions. We apply the assumptions made in the analysis of Poiseuille

flow between parallel plates (see Section 9.6.3).

Flow Field.   Following the analysis of Section 9.6.3, the axial component

of the Navier-Stokes equations for constant viscosity, compressible flow in

cylindrical coordinates simplifies to 

z

p

r
r

rr

z 11
)(

v

,  (a)

where ),( zrzv  is the axial velocity. Assuming symmetry and setting 

1u , the two boundary conditions on zv  are 

0
),0(

r

zzv ,  (b) 

r

zr
zr oz

oz

),(
),(

v

v .       (c) 

Integration of (a) and application of boundary conditions (b) and (c) give

(Problem 9.13): 

2

22

41
4

o

o
z

r

r
Kn

dz

dpr
v .       (9.74)

The Knudsen number for tube flow, Kn, is defined as

or
Kn

2
.  (9.75) 

The mean velocity  is defined as zmv

or

drvr
r

z

o

zm
0

2
1

2
v .

Substituting (9.73) into the above, gives
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)81(
8

2

Kn
dz

dpro
zmv .         (9.76)

Combining (9.74) and (9.76)

Kn

rrKn o

zm

z

81

)/(41
2

2

v

v

.      (9.77)

Note that the Knudsen number varies with pressure along the channel. It

represents the effect of rarefaction on the axial velocity. Following the 

derivation of Section 9.6.3 for the analogous problem of Poiseuille flow 

between parallel plates, axial pressures distribution is given by (Problem

9.14):

L

z

p

p
Kn

p

p

p

p
KnKn

p

zp

o

i
o

o

i

o

i
oo

o

)1(16)1(88
)(

2

22

.

(9.78)

Using (9.76) and (9.78), and assuming oTT , gives the mass flow rate 

(Problem 9.15): 

)( 1161
16 2

224

o

i
o

o

i

o

oo

p

p
Kn

p

p

LRT

pr
m .     (9.79a)

The corresponding mass flow rate for incompressible no-slip (macroscopic)

flow is given by

)( 1
8

24

o

ioo
o

p

p

LRT

pr
m .        (9.79b) 

Note that since (9.79a) accounts for rarefaction and compressibility, setting 

 in (9.79a) does not reduce to the incompressible no-slip case of 

(9.79b).

0oKn

Nusselt Number.  Following the analysis of Section 9.6.3, the Nusselt 

number is defined as 

k

hr
Nu o2

.     (d) 
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The heat transfer coefficient h for uniform surface flux sq  is

ms

s

TT

q
h .

Substituting into (d)

)(

2

ms

so

TTk

qr
Nu ,     (e)

where  is tube surface temperature determined from temperature jump

condition (9.11) 
sT

r

zrT

Pr
zrTT o

os

),(

1

2
),( . (f)

The mean temperature  for tube flow is given bymT

o

z

o

z

m r

rdr

r

drrT

T

0

0

v

v

.     (9.80) 

Thus, the solution to the temperature distribution is needed for the 

determination of the Nusselt number. Based on the assumptions made,

energy equation (2.24) simplifies to

)(
r

T
r

rr

k

z

T
c zpv .       (9.81)

The boundary conditions are 

0
),0(

r

zT
, (g)

s
o q
r

zrT
k

),(
.      (h)

We introduce the definition of fully developed temperature profile 

)(),(

),(),(

zTzrT

zrTzrT

mo

o
.   (9.82) 
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For fully developed temperature,  is assumed independent of z. That is

)(r . (9.83)

Thus

0
z

. (9.84)

Equations (9.82) and (9.84) give

0
)(),(

),(),(

zTzrT

zrTzrT

zz mo

o
.

Expanding and using the definition of  in (9.82)

0
)(),(

)(
),(

zd

zdT

zd

zrdT
r

z

T

zd

zrdT moo
.       (9.85)

The relationship between the three temperature gradients ,/),( zzrT
  and  will be determined.  The heat transfer 

coefficient h, is given by

,/),( dzzrdT o dzzdTm )(

)()(

),(

zTzT

r

zrT
k

h
sm

o

 ,       (i)

where is given in (9.11). Temperature gradient in (i) is obtained from

(9.81)

)(zTs

)](),([),(),( zTzrTzrTzrT moo .

Differentiating the above and evaluating the derivative at orr

dr

rd
zTzrT

r

zrT o
mo

o )(
)](),([

),(
.    (j)

Substituting (j) into (i)

dr

rd

zTzT

zTzrTk
h o

ms

mo )(

)()(

)](),([
.        (k) 
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Newton’s law of cooling gives another equation for h

)()( zTzT

q
h

ms

s
.

Equating the above with (k) and rearranging 

constant.
)(

)(),(

dr

rd
k

q
zTzrT

o

s
mo  (9.86) 

Differentiating

0
)(),(

z

zT

z

zrT mo
.

Combining this with (9.85), gives 

z

T

zd

zdT

zd

zrdT mo )(),(
.        (9.87) 

Equation (9.87) will be used to replace zT /  in partial differential 

equation (9.81) with  Applying conservation of energy to the

element dx in Fig. 9.13 gives

./ dzdTm

dz
dz

dT
TmcTmcdzqr m

mpmpso2 .

Simplifying

p

som

mc

qr

dz

dT 2

mzorm v
2

.  (l) 

,       (m)
sq

dz
dz

dT
T m

m

sq

Fig. 9.13

mT
m

However,

where  is the mean axial velocity.

Substituting (m) into (l) 

mzv
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mzop

sm

rc

q

dz

dT

v

2
.   (9.88) 

Substituting (9.88) into (9.87)

mzop

smo

rc

q

z

T

zd

zdT

zd

zrdT

v

2)(),(
.  (9.89) 

Equation (9.89) shows that  and  vary linearly with

axial distance z. Substituting (9.89) into (9.81)

),,( zrT )(zTm )(zTs

r
kr

q

r

T
r

r mz

z

o

s

v

v2
)( .  (9.90) 

Equation (9.77) is used to eliminate  in the above mzz vv /

r
r

r
Kn

kr

q

Knr

T
r

r
oo

s

2

2

41
81

4
)( .    (9.91)

Integrating twice

)()(
4

1
)41(

)81(
),(

2

4
2 zgyzf

r

r
rKn

rkKn

q
zrT

oo

s .      (n) 

Boundary condition (g) gives

0)(zf .

Solution (n) becomes

)(
4

1
)41(

)81(
),(

2

4
2 zg

r

r
rKn

rkKn

q
zrT

oo

s .       (9.92)

Boundary condition (h) is automatically satisfied. To determine g(z) the

mean temperature mT  is evaluated using two methods. In the first method,

(9.88) is integrated between the inlet of the tube, ,0z  and an arbitrary

location z
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zT

T

dz
rc

q
dT

omzp

s

m

mi

m
0

2

v

,

where

mim TT )0( .      (9.93)

Evaluating the integrals

mi
omzp

s
m Tz

rc

q
T

v

2
.        (9.94) 

In the second method, is evaluated using its definition in (9.80).

Substituting (9.74) and (9.92) into (9.80) and simplifying

mT

o

o

oo

s

o
m r

r

rdr
r

r
Kn

drrzg
r

r
Kn

krKn

q

r

r
Kn

T

o

r

0

0

2

2

2

4
2

2

2

41

)(
164

1

)81(

4
41 )(

.

Evaluating the integrals, gives

)(
24

7

3

14
16

)81(

2

2
zgKnKn

Knk

rq
T os

m .   (9.95) 

Equating (9.94) and (9.95), gives g(z)

24

7

3

14
16

)81(

2
)( 2

2
KnKn

Knk

rq
z

rc

q
Tzg os

mzop

s
mi

v

. (9.96) 

Surface temperature is determined using (f) and (9.92) ),( zrT os

)(
1

4

16

3

)81(

4
),( zgKn

Prk

rq
Kn

Knk

rq
zrT osos

os .      (9.97) 

Finally, the Nusselt number is determined by substituting (9.95) and (9.97)

into (e) 
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Kn
Pr

KnKn
Kn

Kn
Kn

Nu
1

1

4

24

7

3

14
16

)81(

1

16

3

)81(

4

2

2

2
)(

.

(9.98)

Using (9.98), the Nusselt number variation with Knudsen number for air,

with  and is plotted in Fig. 9.14.  The effect of 

rarefaction and compressibility is to decrease the Nusselt number.

,7.0Pr4.1

      As with Poiseuille flow

between parallel plates, the 

Nusselt number for fully 

developed flow depends on

the fluid and varies with 

distance along the channel.

The variation of  with 

respect to z in (9.98) is

implicit in terms of the 

Knudsen number, which is

a function of pressure. The 

variation of pressure with 

axial distance can be

determined following the

procedure of Section 9.6.3.

Nu

      The corresponding no-

slip Nusselt number,  is obtained by setting ,oNu 0Kn  in (9.98) 

364.4
11

48
oNu .       (9.99)

This agrees with equation (6.55) of the macro tube analysis of Chapter 6. 

Example 9.4:  Microtube Heat Exchanger: Uniform Surface Flux

Microtubes of radius m786.0or  and length mm10L are used to 

heat air at iT  Assume uniform surface temperature and fully

developed conditions; determine the axial variation of Nusselt number. 

Inlet and outlet pressures are: 

C.20o

315ip kPa = mkg/s2
000,315

105op kPa = 105 mkg/s2
000,

Nu

Kn
0 0.04 0.08 0.12

2.0

2.5

3.0

3.5

4.0

4.5

1Tu

Fig. 9.14  Nusselt  number  for  air flow through

   tubes  at  unifrorm  surface  heat flux

   for air,   = 1.4, Pr = 0.7, [20],
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(1)  Observations. (i) This is a pressure driven Poiseuille flow problem

through a tube. (ii) Axial Nusselt number variation is given in equation 

(9.98) in terms of the local Knudsen number, Kn. Local Knudsen number

depends on local pressure. It follows that pressure distribution along a tube 

must be determined. (iii) Pressure distribution is given by equation (9.78). 

(2)  Problem Definition. Determine the axial pressure distribution in a 

microtube for fully developed Poiseuille flow.

(3) Solution Plan. Use the results of Section 9.6.5 to compute axial 

variation of pressure, Knudsen number, and Nusselt number.

(4)  Plan Execution.

(i) Assumptions. (1) Steady state, (2) laminar flow, (3) two-

dimensional (no angular variation), (4) slip flow regime (0.001 < Kn < 0.1), 

(5) ideal gas,   (6)  constant viscosity, conductivity and specific heats, (7)

negligible radial variation of density and pressure, (8) the accommodation 

coefficients are assumed equal to unity, ,0.1Tu  (9) negligible 

dissipation, (10) uniform surface flux, (11) negligible axial conduction, and 

(12) negligible gravity.

(ii) Analysis. Assuming isothermal flow, The Nusselt number, is

given by

,Nu

Kn
Pr

1
KnKn

Kn
Kn

Kn

Nu

1

4

24

7

3

14
16

)81(

1

16

3

)81(

4

2

2

2
)(

.

(9.98)

The local Knudsen number,  depends on the local pressure p(z)

according to 

,Kn

RT
prr

Kn
oo 222

, (a)

.)1(16)1(88
)(

2

22

L

z

p

p
Kn

p

p

p

p
KnKn

p

zp

o

i
o

o

i

o

i
oo

o

(9.78)

      (iii) Computations. Equation (9.78) is used to determine the axial 

variation of pressure. Equation (a) gives the corresponding Knudsen
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numbers. The Nusselt number is determined using (9.98).  Air properties

are evaluated at  Computations are based on the following data; .C20o

m786.0or

mm10L

ip m/skg10315 23

op m/skg10105 23

713.0Pr

Ks/m287Kkg/J287 22R

C20 o
oi TTT

4.1

m/skg1017.18 6

Substituting into (a)

6
2 2

6 3 2

18.17 10 (kg /s m)
287(m / s - K)(293.15)(K)

2 0.786 10 (m)105 10 (kg /s m) 2

0.04

oKn

Axial pressure variation is obtain from (9.78)

L

z

p

zp

o

)31(05.016)3(1)304.08(04.08
)( 22

This gives

L

z

p

xp

o

28.90224.1132.0
)(

.         (b)

z/L

1.0

0.2

0.4

0.6

0.8

0

opp/

3.000
2.708

2.384
2.016

1.577

1.000

Kn

0.0133

0.0148

0.0168

0.0199

0.0254

0.0400

4.182
4.161

4.130

4.083

3.997

3.766

Nu
Equations (a), (b), and (9.98) are used

to tabulate pressure, Knudsen number

and Nusselt number at various values of 

z/L.

(iii) Checking. Dimensional check:

Computations confirmed that pressure 

ratio, Knudsen number and Nusselt 

number are dimensionless.

Limiting check: No slip macrochannel Nusselt number is obtained by

setting Kn = 0 in (9.98), giving .364.4Nu  This is close to 4.182 at

 The difference is due to compressibility effect. .0/ Lz
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(5) Comments. No-slip Nusselt number for fully developed Poiseuille flow 

through tubes at uniform surface heat flux is Nu = 4.364. The tabulated

values for this example show that no-slip theory overestimates the Nusselt

number if applied to microchannels.

9.6.6 Fully Developed Poiseuille Flow in Microtubes:

 Uniform Surface Temperature [14] 

The uniform surface flux of

Section 9.6.5 is repeated with the 

tube maintained at uniform surface 

temperature  as shown in Fig.

9.15. The assumptions made in the 

solution of the uniform flux 

condition are applied to this case.

The flow field solution is identical 

for the two cases since it is based

on isothermal flow condition. Changing the boundary condition from 

uniform flux to uniform temperature requires using a different

mathematical approach to obtain a solution. Results obtained in [14] are 

summarized here. 

,sT

Fig. 9.15

z

or
r r

sT

Temperature Distribution and Nusselt Number. The Nusselt number is

given by

r

zrT

TzT

r

k

hr
Nu o

sm

oo ),(

)(

22
.     (9.100a)

This requires the determination of the temperature distribution  and 

the mean temperature  Following the analysis of Section 9.6.4, the

solution is based on the limiting case of Graetz tube entrance problem.

This approach requires solving a partial differential equation taking into

consideration axial conduction. Energy equation (9.81) is modified to

include axial conduction 

),( zrT
).(zTm

)()(
2

2

z

T
k

r

T
r

rr

k

z

T
c zpv . (9.101a)

The boundary and inlet conditions are
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0
),0(

r

zT
,       (9.102a)

r

zrT
Kn

Pr

r
TzrT oo

so

),(2

1

2
),( ,    (9.103a)

iTrT )0,( ,    (9.104a)

sTrT ),( .   (9.105a)

The normalized axial velocity is given by (9.76)

Kn

rrKn o

zm

z

81

)/(41
2

2

v

v

.      (9.77)

Equations (9.100a)-(9.104a) are expressed in dimensionless form using the 

following dimensionless variables

,
si

s

TT

TT
,

2 RePrr

z

o

,
or

r
R ,

2 omru
Re RePrPe .

(9.106)

Using (9.77) and (9.106), equations (9.100a)-(9.105a) are transformed to

R
Nu

m

),1(2
,    (9.100)

2

2

2

2

)2(

11

)162(2

41
)(

ePR
R

RRKn

RKn
,    (9.101)

0
).0(

R
,     (9.102)

RPr

Kn ),1(

1

2
),1( ,      (9.103)

1)0,(R , (9.104)

0),(R .       (9.105)



  404   9 Convection in Microchannels

Equation (9.100) shows that

axial conduction becomes

important at low Peclet 

numbers.  This problem was

solved using the method of 

separation of variables [14].

The infinite series solution is 

truncated to determine the

Nusselt number for the fully

developed case. Fig. 9.16

shows the effect of Peclet

and Knudsen numbers on the 

Nusselt number. Neglecting

axial conduction corresponds 

to .Pe  According to 

Fig. 9.16, axial conduction

increases the Nusselt number

while rarefaction decreases

it. Although axial conduction increases the Nusselt number, its effect 

diminishes as the Knudsen number increases. The maximum increase 

corresponds to the no-slip condition of .0Kn   Fig. 9.16 gives the

limiting case of no-slip and negligible axial conduction )(Pe  as

Nu

Kn

Pe = 0
1

5

2.5

2.0

3.0

3.5

4.0

4.5

0 0.04 0.08 0.12

Fig. 9.16 Nusselt number for flow through

 tubes at uniform surface tempera-

 ture for air, Pr = 0.7 [14]

657.3oNu .      (9.107)

This agrees with equation (6.59) obtained in Chapter 6.  If axial conduction

is taken into consideration at Kn = 0, the Nusselt number increases to 

  Thus the maximum error in neglecting axial conduction is

12.4%.

.175.4oNu
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PROBLEMS

9.1 The speed of sound, c, in an ideal gas is given by

TRc ,

where  is the specific heat ratio, R  is gas constant and T is  temper-

ature. Show that

Re

M
Kn

2
,

 where M is mach number defined as

cVM / .
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9.2 Reported discrepancies in experimental data on the fiction factor f are 

partially attributed to errors in measurements. One of the key

quantities needed to calculate f is channel diameter D. Show that

.
5Df

9.3 Consider shear driven Couette flow between parallel plates separated 

by a distance H. The lower plate is stationary while the upper plate 

moves with a velocity  Assume that no heat is conducted through

the lower plate and that the upper plate is maintained at uniform

temperature  Taking into consideration dissipation, velocity slip

and temperature jump, determine the Nusselt number. Assume steady

state ideal gas flow. 

.su

.sT

9.4 A large plate moves with constant velocity  parallel to a stationary 

plate separated by a distance H. An 

ideal gas fills the channel formed

by the plates.  The stationary plate

is at temperature oT  and the 

moving plate is at temperature sT .

Assume laminar flow and take into

consideration dissipation and

velocity slip and temperature jump:

su

sT

oT

suy

x
H

u

(a) Show that temperature

distribution is given by

H

y

Pr

Kn

Pr

Kn

TT

H

y

H

y

Pr

Kn

Knk

u
TT o

o
ss

1

2

1

2
21

1

2

)21(2 2

2

2

2
 . 

(b)  Determine the heat flux at the plates.

9.5  Consider Couette flow between two parallel plates separated by a

distance H. The lower plate moves with velocity u  and the upper

plate moves in the opposite direction with velocity 2su  The channel 

is filled with ideal gas. Assume velocity slip conditions, determine 

the mass flow rate. Under what condition will the net flow rate be 

zero?

1s
.

9.6   Determine the frictional heat generated by the fluid in Example 9.1. 
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9.7 Consider shear driven 

Couette flow between

parallel plates. The upper

plate moves with velocity

s  and is maintained at

uniform temperature sT
The lower plate is heated

with uniform flux o

u
.

.q  The fluid between the two plates is an ideal

gas. Taking into consideration velocity slip, temperature jump, and 

dissipation, determine the temperature of the lower plate.

y

9.8   Pressure distribution in Poiseuille flow between parallel plates is given

by

.)1(12)1(66
)(

2

22

L

x

p

p
Kn

p

p

p

p
KnKn

p

xp

o

i
o

o

i

o

i
oo

o

(9.35)

        This equation was derived in Section 9.6.3 using the continuity

equation to determine the y-velocity component v. An alternate

approach to derive (9.35) is based on the condition that for steady 

state the flow rate is invariant with axial distance x. That is 

02

2/

0

H

udyW
dx

d

dx

dm
.

        where W is channel width. Derive (9.35) using this approach. 

9.9   One of the factors affecting mass flow rate through microchannels is

channel height H. To examine this effect, consider air flow through

two microchannels. Both channels have the same length, inlet

pressure and temperature and outlet pressure. The height of one

channel is double that of the other. Compute the mass flow ratio for 

the following: m,51H m,102H C30 o
iT , kPa,420ip

kPa.105op

9.10 A micro heat exchanger consists of rectangular channels of height

m,25H  width m,600W and length mm.10L  Air enters 

the channels at temperature T  and pressureC20 o
i kPa.420i

The outlet pressure is

p

kPa.105op  The air is heated with uniform 

surface heat flux s  Taking into consideration

velocity slip and temperature jump, assume fully developed 

conditions and compute the following: 

.W/m1100 2q

su

x

H

sT

oq

u H
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        (a) Mass flow rate, m.

        (b) Mean outlet temperature, .moT

        (c) Heat transfer coefficient at the outlet, ).(Lh

        (d) Surface temperature at the outlet, ).(LTs

9.11 Rectangular microchannels are used to remove heat from a device at 

uniform surface heat flux. The height, width, and length of each 

channel are m,29.6H m,90W  and mm,10L  respective-

ly.  Using air at  as the coolant fluid, determine the mass

flow rate and the variation of

Nusselt number along the

channel. Inlet and outlet 

pressures are  kPa,

 kPa.  Assume

steady state fully developed 

slip flow and temperature

jump conditions. 

C20o
iT

410ip

105op
x

y
HL

W
sq

sqm

9.12 A micro heat exchanger consists of 

rectangular channels of height

m,7.6H  width m,400W  and

length  Air enters the

channels at temperature  and 

pressure  The outlet

pressure is Channel surface is at uniform temperature

 Assume fully developed flow and temperature, compute:

mm8L .

C30 o
iT

kPa.510ip

kPa.102op

C.50o
sT

m
H

sT

W

L
sT

        (a)  Mass flow rate, m.

        (b)  Heat transfer coefficient at the inlet, and outlet,),0(h ).(Lh

        (c)  Mean outlet temperature, .moT

        (d)  Surface heat flux at the outlet, ).(Lqs

9.13  Consider isothermal Poiseuille flow of gas in a microtube of radius 

 Taking into consideration velocity slip, show that the axial

velocity is given by

.or

2

22

41
4

o

o
z

r

r
Kn

dz

dpr
v  .    (9.74) 

9.14 Consider fully developed isothermal Poiseuille flow through a

microtube. Follow the analysis of Section 9.6.3 and use the continuity

equation in cylindrical coordinates to derive the following:
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        (a)  The radial velocity component rv

)(2
4

1

2

11

4 3

33

pKn
r

r

r

r

r

r

dz

dp
p

zp

r

ooo

o
rv ,

        where Kn(p) is the local Knudsen number.

        (b) The local pressure p(z)

,)1(16)1(88
)(

2

22

L

z

p

p
Kn

p

p

p

p
KnKn

p

zp

o

i
o

o

i

o

i
oo

o

(9.78)

        where i  is inlet pressure,  outlet pressure, and  is the outlet

Knudsen number.

p op oKn

9.15 Taking into consideration velocity slip, show that the mass flow rate 

for laminar, fully developed isothermal Poiseuille flow in a microtube

is given by

)( 1161
16 2

224

o

i
o

o

ioo

p

p
Kn

p

p

LRT

pr
m  .       (9.79a)

9.16 Pressure distribution for fully developed Poiseuille flow through tubes

is given by

.)1(16)1(88
)(

2

22

L

z

p

p
Kn

p

p

p

p
KnKn

p

zp

o

i
o

o

i

o

i
oo

o

(9.78)

        Derive this equation using the condition that, for steady state, the mass

flow rate is invariant with axial distance z. That is 

02

0

or

drrv
dz

d

dz

dm
z .

9.17  Air is heated in a microtube of radius m5or  and length

Inlet temperature and pressure are  and 
mm.2L

C20 o
iT kPa.600ip

Outlet pressure is kPa.100op  Uniform surface flux,

 is used to heat the air. Taking into consideration velocity slip

and temperature jump and assuming fully developed flow and

temperature, compute:

1500sq

,W/m 2
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        (a) Mass flow rate, m.
sq

sq

z

or
r r        (b)Mean outlet temperature,

.moT

        (c) Heat transfer coefficient

at the outlet, ).(Lh

        (d) Surface temperature at 

the outlet, ).(LTs

9.18 Determine the axial variation of the Nusselt number and heat transfer 

coefficient of the microtube in Problem 9.17.

9.19 A micro heat exchanger uses microtubes of radius m3or  and

length  Inlet air temperature and pressure are 

and pressure  Outlet pressure is 

mm.6L C20 o
iT

kPa.600ip kPa.100op  Each 

tube is maintained at 

uniform surface tempera-

ture  Taking 

into consideration veloc-

ity slip and temperature

jump and assuming fully

developed flow and tem-

perature, determine the following: 

C.60 o
sT

z

or
r r

sT
sT

        (a) Heat transfer coefficient at the inlet,  and outlet,),0(h ).(Lh

        (b) Mean outlet temperature .moT

9.20 Air enters a microtube at temperature , and pressure 

 Outlet pressure is 

C20 o
iT

kPa.600ip kPa.100op  Tube radius is 

m1or  and length is mm.6L  The surface is maintained at 

uniform temperature  Taking into consideration velocity

slip and temperature jump and assuming fully developed conditions,

determine the variation along the tube of the following: 

C.40 o
sT

        (a) Nusselt number, ).(zNu

        (b) Heat transfer coefficient, ).(zh

        (c) Mean temperature, ).(zTm
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APPENDIX A 

Conservation of Energy: The Energy Equation 

x

y

z

dx
dy

dz

 A.1Fig.

The derivation of energy equation (2.15) in

Section 2.6 is presented in detail. We

consider the element dxdydz in Fig. A.1 

and apply conservation of energy (first law

of thermodynamics). We assume contin-

uum and neglect nuclear, electromagnetic

and radiation energy transfer. Our starting

point is equation (2.14) [1]:

_

Rate of change of
internal and kinetic

energy of element

Net rate of internal and kinetic

energy transport by convection

+
Net rate of heat added

by conduction

Net rate of work done by
element on surroundings

A

C

B

D
(2.14)

    Note that net rate in equation (2.14) refers to rate of energy added minus

rate of energy removed. We will formulate expressions for each term in

equation (2.14).

(1)  A = Rate of change of internal and kinetic energy of element

The material inside the element has internal and kinetic energy. Let

massunitperenergyinternalû

 velocityofmagnitudeV

Thus

dxdydzVu
t

)2/ˆ( 2
A .   (A-1) 
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(2) B = Net rate of internal and kinetic energy transport by convection 

dxdydzuVu
x

dydzuVu

)2/ˆ(

)2/ˆ(

2

2

dxdydzVu
z

dxdyVu ww )2/ˆ()2/ˆ( 22

dxdyVu w)2/ˆ( 2

dydzuVu )2/ˆ( 2

dx

dy

dz

 A.2Fig.

Mass flow through the element transports kinetic and thermal energy. Fig. 

A.2 shows energy convected in the x and y-directions only. Not shown is 

energy carried in the z-direction. To understand the components of energy 

transport shown in Fig. A.2, we examine the rate of energy entering the

dydz surface. Mass flow rate through this area is udydz . When this is

multiplied by internal and kinetic energy per unit mass, )2/( 2Vu , gives 

the rate of energy entering dydz due to mass flow .)2/( 2 udydzVu

Similar expressions are obtained for the energy transported through all

sides. Using the components shown in Fig. A.2 and including energy

transfer in the z-direction (not shown) we obtain 

B = dxdyVudxdzVudydzVu wu )2/ˆ()2/ˆ()2/ˆ( 222
v

dxdydzVu
x

dydzVu uu )2/ˆ()2/ˆ( 22

dxdydzVu
y

dxdzVu vv )2/ˆ()2/ˆ( 22

dxdydzwVu
z

dxdywVu )2/ˆ()2/ˆ( 22
.

Simplifying

.)2/ˆ()2/ˆ()2/ˆ( 222 dxdydzwVu
z

Vu
y

Vu
x

vuB
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Making use of the definition of divergence (1.19) the above becomes 

dxdydzVVu )2/ˆ( 2
B .  (A-2)

(3) C = Net rate of heat addition by conduction

Let

dx

dy dydzdx
x

q
q x

x )(

dxdzq y

dxdzdy
y

q
q

y
y )(

 A.3Fig.

dydzqx

q heat flux = rate of heat conduc-

tion per unit area

Fig. A.3 shows the z-plane of the 

element dxdydz. Taking into consid-

eration conduction in the z-direction,

the net energy conducted through the

element is given by

.)()(

)(

dxdydz
z

q
qdxdzdy

y

q
q

dydzdx
x

q
qdxdyqdxdzqdydzq

z
z

y
y

x
xzyxC

Simplifying

dxdydz
z

q

y

q

x

q zyxC .

Introducing the definition of divergence 

dxdydzq )(C .     (A-3)

(4) D = Net rate of work done by the element on the surroundings

Rate of work is defined as force velocity. Thus 

Rate of work = force  velocity.

Work done by the element on the surroundings is negative because it

represents energy loss. We thus examine all forces acting on the element

and their corresponding velocities. As we have done previously in the 

formulation of the equations of motion, we consider body and surface 

forces. Thus 
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sb DDD ,      (A-4)

where

= Net rate of work done by body forces on the surroundingsbD

= Net rate of work done by surface forces on the surroundingssD

Consider  first. Let  and  be the three components of 

gravitational acceleration. Thus is given by

bD yx gg , zg

bD

bD = dxdydzwggug zyx )( v ,

or

bD = )( gV    (A-5) 

The negative sign is introduced so that when the product of gravity and

velocity is positive, work is done on the element and when it is negative,

work is done by the element. 

      Next we formulate an equation for rate of work done by surface stresses

. Fig. A.4 shows an element with some of the surface stresses. For the 

purpose of clarity, only stresses on two faces are shown.  Each stress is 

associated with a velocity component. The product of stress, surface area

and velocity represents rate of work done. Summing all such products, we 

obtain

sD

xx

u

dx
x

u
u

xz

dx
x

xz
xz

dx
x

xy

xy

xy

dx
dy

dz

x

y z

 A.4Fig.
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.dxdyudxdydz
z

dz
z

u
u

dxdzwdxdzdy
y

dy
y

w
w

dxdzudxdzdy
y

dy
y

u
u

dxdzdxdzdy
y

dy
y

dxdydxdydz
z

dz
z

dxdywdxdydz
z

dz
z

w
w

dydzdydzdx
x

dx
x

dydzwdydzdx
x

dx
x

w
w

dydzudydzdx
x

dx
x

u
u

zx
zx

zx

yz
yz

yz

yx
yx

yx

yy
yy

yy

zy
zy

zy

zz
zz

zz

xy
xy

xy

xz
xz

xz

xx
xx

xx

v

v

v

v

v

v

v

v

v

sD

Note that negative sign indicates work is done by element on the

surroundings. Neglecting higher order terms the above simplifies to 

.dxdydz
z

w

y

w

x

w

zyx

z

u

y

u

x

u

zyx
w

zyxzyx
u

zzyzxzzyyyxy

zxyxxx
zzyyxz

zyyyxyzxyxxx

vvv

vsD

)6A(

Substituting (A-5) and (A-6) into (A-4)
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7)-(A.)()(

)(

dxdydzwu
z

wu
y

wu
x

dxdydzgV

zzzyzxyzyyyx

xzxyxx

vv

vD

Substituting (A-1), (A-2), (A-3) and (A-7) into (2.14)

8)-(A.)(

)()(

2

1
ˆ

2

1
ˆ 22

zzzyzx

yzyyyxxzxyxx

wu
z

wu
y

wu
x

gVqVVuVu
t

v

vv

Note that equation (A-8) contains the nine normal and shearing stresses that

appear in the formulation of the momentum equations (2.6). We will now 

use (2.6) to simplify (A-8). Multiplying equations (2.6a), (2.6b) and (2.6c)

by the velocity components u, v and w, respectively, and adding the

resulting three equations, we obtain

.
zyx

w
zyxzyx

u

wggug
Dt

Dw
w

Dt

Du
u

zzyzxzzyyyxyzxyxxx

zyx

d

Dt

D

v

v

v

v

(A-9)

However,

Dt

DV

Dt

Dw
w

Dt

D

Dt

Du
u

2

2

v

v ,      (A-10)

and

gVwgggu zyx v      (A-11) 

Substituting (A-10) and (A-11) into (A-9)
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zyx
w

zyxzyx
ugV

Dt

VD

zzyzxz

zyyyxyzxyxxx
v

2
.

(A-12)

Returning to (A-8), the first and second terms are rewritten as follows 

222

2

1
ˆ

2

1
ˆ

2

1
ˆ Vu

tt
VuVu

t
,    (A-13)

222

2

1
ˆ

2

1
ˆ

2

1
ˆ VuVVVuVVu .   (A-14) 

Substituting (A-12), (A-13) and (A-14) into (A-8)

.0

2

2

1
ˆ

2

1
ˆ

2

1
ˆ

2

222

2
2

1
ˆ

0

z

w

y

w

x

w

zyz

u

y

u

x

u

Dt

DV

qVuVVu
t

V
t

Vu

zzyzxz

yzyyxyzxyxxx

Vu
Dt

D

vvv

x

The above equation simplifies to 

)15A(.

ˆ

z

w

y

w

x

w

zyxz

u

y

u

x

u
q

Dt

uD

zzyzxz

zyyyxyzyyxxx
vvv

Equation (A-15) is based on the principle of conservation of energy. In 

addition, conservation of mass and momentum were used. Note that the 

only assumptions made so far are: continuum and negligible nuclear,

electromagnetic and radiation energy transfer. We next introduce 
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qconstitutive equations to express the heat flux  in terms of the

temperature field, and the normal and shearing stresses in terms of the

velocity field. For the former we use Fourier’s law (1.8) and for the latter 

we apply Newtonian approximation (2.7). Application of Fourier’s law 

(1.8) gives the heat flux in the n-direction as 

n

T
kq nn ,    (A-16) 

where  is thermal conductivity in the n-direction. Assuming isotropic 

material, we write

nk

kkkkk zyxn .        (A-17) 

Using the operator , equation (A-16) is expressed as 

Tkq .      (A-18)

Substituting (A-18) and (2.7) into (A-15) and rearranging, we obtain

VpTk
Dt

uD ˆ
,    (A-18) 

where u  internal energy and ˆ  is the dissipation function defined as

)19A(
3

2

2

.

22

22222

z

w

yx

u

zy

w

dx

w

z

u

y

u

xz

w

yx

u

vv

vv

Equation (A-18) is based on the following assumptions: (1) continuum, (2)

negligible nuclear, electromagnetic and radiation energy, (3) isotropic

material, and (4) Newtonian fluid. 

      The next step is to express (A-18) first in terms of enthalpy and then in 

terms of temperature. Starting with the definition of enthalpy ĥ

P
uh ˆ .      (A-20)

Differentiating (A-20) 



APPENDIX A. Conservation of Energy: The Energy Equation  421

Dt

DP

Dt

Dp

Dt

uD

Dt

hD
2

1ˆˆ
.      (A-21) 

Substituting (A-21) into (A-18)
0

ˆ
V

Dt

Dp

Dt

Dp
Tk

Dt

hD
.      (A-22) 

Application of the continuity equation (2.2c) to (A-22) eliminates the last

two terms. Thus (A-22) simplifies to

Dt

Dp
Tk

Dt

hD ˆ
.      (A-23) 

We next express enthalpy in (A-23) in terms of temperature using the

following thermodynamic relation [2]

dpTdTchd p 1
1

,      (A-24) 

where  is the coefficient of thermal expansion, defined as 

pT

p1
.    (A-25) 

Taking the total derivative of (A-24) 

Dt

Dp
T

Dt

DT
c

Dt

hD
p 1

1ˆ
.    (A-25) 

Substituting (!-25) into (A-23) 

Dt

Dp
TTk

Dt

DT
c p . (2.15)
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APPENDIX B:  POHLHAUSEN’S SOLUTION

The transformed energy equation is

0)(
22

2

d

d
f

Pr

d

d
.         (4.61)

The boundary conditions are

0)0( , (4.62a)

1)( , (4.62b)

1)( . (4.62c)

Note that boundary conditions (4.60b) and (4.60c) coalesce into a single 

condition, as shown in (4.62b) and (4.62c). Equation (4.61) is solved by 

first separating the variables as 

df
Pr

d

d

d

d
d

)(
2

)(
.

Integrating the above from 0  to 

00

)(
2

)(
df

Pr

d

d

d

d
d

.

Evaluating the integral on the left-hand-side 

0

)(
2)0(

ln df
Pr

d

d

d

d

.

Taking the anti log of the above 



APPENDIX B. Pohlhausen’s Solution 423

0

)(
2

exp
)0(

df
Pr

d

d

d

d
.

Integrating again from  to  and using boundary condition (4.62b)

ddf
Pr

d

d
d

0

1

)(
2

exp
)0(

.

This gives 

ddf
Pr

d

d

0

)(
2

exp
)0(

1)( .      (a) 

The constant dd /)0(  in (a) is unknown. It is determined by satisfying

boundary condition (4.62a), which gives

1

0 0

)(
2

exp
)0(

ddf
Pr

d

d
.  (b) 

Substituting (b) into (a)

ddf
Pr

ddf
Pr

0 0

0

)(
2

exp

)(
2

exp

1)(   .      (c)

The integral in (c) can be simplified using the transformed momentum

equation (4.44)

0)(2
2

2

3

3

d

fd
f

d

fd
.       (4.44)

Solving (4.44) for )(f and integrating 
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2

2

2

2

2

2

3

3

00
)0(

ln)(
2

1

d

fd

d

fd

d

d

fd

d

fd

df .

Multiplying both sides of the above by Pr and taking the anti log of the 

above

Pr

Pr

d

fd

d

fd

df
Pr

2

2

2

2

0 )0(

)(
2

exp .   (d) 

Substituting (d) into (c) gives 

0
2

2

2

2

1)(

d

d

fd

d

d

fd

Pr

Pr

.       (e) 

Similarly, substituting (d) into (b) gives the temperature gradient at the wall 

d

d

fd

d

fd

d

d

Pr

Pr

2

2

2

2 )0(

)0(
.   (4.63) 

The constant 
2

2 )0(

d

fd
 in (f) is obtained from Table 4.1 

332.0
)0(

2

2

d

fd
.
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Thus (f) becomes 

d

d

fd
d

d

Pr

Pr

2

2

332.0)0(
.    (4.64) 
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APPENDIX C 

LAMINAR BOUNDARY LAYER FLOW OVER SEMI-INFINITE PLATE:

VARIABLE SURFACE TEMPERATURE [1]

Surface temperature varies with distance along the plate according to

nCxTxTs )( .     (4.72)

Based on the assumptions listed in Section 4.3, temperature distribution is 

governed by energy equation (4.18)

2

2

y

T

y

T

x

T
u v .  (4.18) 

The velocity components u and v in (4.18) are given in Blasius solution 

d

df

V

u
 , (4.42)

f
d

df

xVV 2

1v

.       (4.43)

The boundary conditions are:

nCxTTxT s)0,( ,       (4.74a)

TxT ),( ,    (4.74b)

TyT ),0( .    (4.74c)

The solution to (4.18) is obtained by the method of similarity

transformation. We define a dimensionless temperature  as 

s

s

TT

TT
.   (a) 

We assume that

)(),( yx , (b)

where
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x

V
y .     (c) 

Equation (4.18) is transformed in terms of )(  and .   Equation (a) is 

solved for T(x,y)

)( ss TTTT .

Substituting (4.72) in the above

nn CxCxTT .   (d)

The derivatives in (4.18) are formulated using (b)-(c) and the chain rule:

x
CxxnCxnC

x

T nnn 11
.

However,

d

d

xxd

d

x 2
.

Substituting into the above 

d

d
x

C
xnCxnC

x

T nnn 111

2
.      (e)

Similarly

d

d

x

V
Cx

yd

d
Cx

y

T nn
, (f)

2

2
1

2

2

d

dV
Cx

y

T n
.   (g) 

Substituting (4.42), (4.43) and (e)-(f) into (4.18) 

.
2

2

2

2

111

d

d

x

V

d

d

x

V
Cxf

d

df

xV

V

d

d
x

C
xnCxnC

d

df
V

n

nnn
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This simplifies to

0)(
2

)1(
2

2

d

d
f

Pr

d

df
Prn

d

d
,     (4.75) 

where

Pr .
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 T Cp k        Pr
 o

C       J/kg-
o
C kg/m

3
kg/s-m    m

2
/s           W/m-

o
C

 40 1006.0 1.5141 15.17 10
6
 10.02 10

6
  0.02086     0.731

 30 1005.8 1.4518 15.69 10
6
 10.81 10

6
   0.02168     0.728

 20 1005.7 1.3944 16.20 10
6
 11.62 10

6
  0.02249     0.724

 10 1005.6 1.3414 16.71 10
6
 12.46 10

6
  0.02329     0.721

 0 1005.7 1.2923 17.20 10
6
 13.31 10

6
 0.02408     0.718

 10 1005.8 1.2467 17.69 10
6
 14.19 10

6
  0.02487     0.716

 20 1006.1 1.2042 18.17 10
6
 15.09 10

6
  0.02564     0.713

 30 1006.4 1.1644 18.65 10
6
 16.01 10

6
  0.02638     0.712

 40 1006.8 1.1273 19.11 10
6
 16.96 10

6
  0.02710     0.710

 50 1007.4 1.0924 19.57 10
6
 17.92 10

6
  0.02781     0.709

 60 1008.0 1.0596 20.03 10
6
 18.90 10

6
  0.02852     0.708

 70 1008.7 1.0287 20.47 10
6
 19.90 10

6
  0.02922     0.707

80 1009.5 0.9996 20.92 10
6
 20.92 10

6
  0.02991     0.706

  90 1010.3 0.9721 21.35 10
6
 21.96 10

6
  0.03059     0.705

 100 1011.3 0.9460 21.78 10
6
 23.02 10

6
  0.03127     0.704

 110 1012.3 0.9213 22.20 10
6
 24.10 10

6
  0.03194     0.704

 120 1013.4 0.8979 22.62 10
6
 25.19 10

6
  0.03261     0.703

 130 1014.6 0.8756 23.03 10
6
 26.31 10

6
  0.03328     0.702

 140 1015.9 0.8544 23.44 10
6
 27.44 10

6
  0.03394     0.702

 150 1017.2 0.8342 23.84 10
6
 28.58 10

6
  0.03459     0.701

 160 1018.6 0.8150 24.24 10
6
 29.75 10

6
  0.03525     0.701

 170 1020.1 0.7966 24.63 10
6
 30.93 10

6
  0.03589     0.700

 180 1021.7 0.7790 25.03 10
6
 32.13 10

6
  0.03654     0.700

 190 1023.3 0.7622 25.41 10
6
 33.34 10

6
  0.03718     0.699

 200 1025.0 0.7461 25.79 10
6
 34.57 10

6
  0.03781     0.699

 210 1026.8 0.7306 26.17 10
6
 35.82 10

6
  0.03845     0.699

 220 1028.6 0.7158 26.54 10
6
 37.08 10

6
  0.03908     0.699

 230 1030.5 0.7016 26.91 10
6
 38.36 10

6
  0.03971     0.698

 240 1032.4 0.6879 27.27 10
6
 39.65 10

6
  0.04033     0.698

  250 1034.4 0.6748 27.64 10
6
 40.96 10

6
  0.04095     0.698

 260 1036.5 0.6621 27.99 10
6
 42.28 10

6
  0.04157     0.698

 270 1038.6 0.6499 28.35 10
6
 43.62 10

6
  0.04218     0.698

 280 1040.7 0.6382 28.70 10
6
 44.97 10

6
  0.04279     0.698

  290 1042.9 0.6268 29.05 10
6
 46.34 10

6
  0.04340     0.698

  300 1045.2 0.6159 29.39 10
6
 47.72 10

6
  0.04401     0.698

  310   1047.5  0.6053 29.73 10
6
 49.12 10

6
  0.04461     0.698

 320 1049.9 0.5951 30.07 10
6
 50.53 10

6
  0.04521     0.698

 330 1052.3 0.5853 30.41 10
6
 51.95 10

6
  0.04584     0.698

  340 1054.4 0.5757   30.74 10
6
 53.39 10

6
  0.04638 0.699

  350 1056.8 0.5665 31.07 10
6
 54.85 10

6
  0.04692     0.700
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      Boussinesq approximation, 46,

261
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           39, 46, 47, 260 

       compressibility, 39, 345, 349, 
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     convective derivative, 11 

     correlation equations, 293-296, 
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          limitations, 295 
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      Couette flow, 71, 345-355, 356, 

365, 368 
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41, 42, 392 

D

      differential formulation, 21, 161 

      dimensionless variables, 52 

      dissipation, 39-43, 53, 350, 353,

356, 362 

      divergence, 9 

E

      Eckert number, 53, 353 

      emissivity,  8 

      energy equation, 37-48, 53, 69, 

101, 109-111, 123, 125, 141, 

146, 165, 175, 179, 180, 183, 

186, 190, 228, 233, 236, 243, 
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361, 376, 386, 394, 402, 413 

      entrance length, 205-209 

      entrance region, 203-207, 225 

      exact solution, 69, 71, 161, 185, 

288

      external flow, 99, 115, 164, 166, 

167, 206, 207, 225, 295, 302 

F

      film temperature, 130, 271, 275, 

295, 299, 314 
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           free molecular, 347 

           transition, 347 

      forced convection, 21, 54 
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      Fourier’s law, 3 

      free convection, 21, 259 

           correlations, 311-316, 319-324 
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351

      friction factor, 310, 350

      fully developed flow, 70, 205, 

214, 236, 238, 243, 350, 351, 

399

      fully developed temperature, 206, 

229-237, 377, 388, 394, 395 

G

      governing equations, 51, 54, 260, 

349

      gradient, 10 

      Graetz, 242, 402 

      Grashof number, 53, 260, 264 

H

      heat flux, 4, 123, 204, 212, 225, 

231, 236, 237, 387, 391, 402 

      heat transfer coefficient, 6, 55, 86,

123, 128, 136, 148, 177, 180, 

190, 222, 226, 245, 267, 273, 

285, 290, 297, 306, 346, 375 

      hydrodynamic entrance length, 

206-209

      hydrodynamic entrance region, 

206, 209 

I

      ideal gas, 41, 371, 374 

      inclined plates, 279, 313 

      integral 

          formulation, 161, 279 

          method, 161, 279 

          solutions, 170, 283 

      isotropic, 5 

J

      joule, 13 

K

      Knudsen number,2, 343, 347, 

349, 364, 370, 373, 382, 388, 

391, 399, 404 

L

      laminar boundary layer, 99, 116, 

140, 143, 426 

      local derivative, 11 

      local Nusselt number, 55, 124, 

129, 142, 149, 178, 179, 184, 
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296, 298, 311 

M

     Mach number, 353, 354 

     mass flow rate, 357, 359, 361, 

368, 374, 375, 386, 389, 393 

     mean free path, 2, 343-349, 369 

     mean temperature, 211-220, 233, 

235, 244-246, 269, 304, 306, 

360, 361, 375, 376, 379, 381, 

387, 389, 394,397, 402 

     microchannels, 343, 346-348, 370, 

389

     micron, 346

N

      Navier-Stokes equations, 27, 31, 

32, 53, 99, 343, 348, 352, 392 

      Newton, 13 

      Newton’s law of cooling, 6 

      no-slip condition, 48, 100 

      no-slip flow, 368 

      no-temperature jump, 343, 347 

      no-velocity slip, 343 

      Nusselt number, 55, 129, 142, 

149, 177, 179, 186, 224, 227, 

230, 231, 235, 237, 245, 246, 

253, 268, 285, 287, 288, 296, 

298, 303, 304, 311, 312, 315, 

316, 352, 360, 364, 375, 382, 

384, 393, 404 

O

      operator , 9 

      other correlations, 328 

P

      Peclet number, 100, 112, 228, 

302, 353, 404 

      Pohlhausen, 125, 127, 130, 298, 

422

      Poiseuille, 77, 355, 368, 386, 391, 

402

      Poiseuille number, 351 

      Prandtl number, 53, 54, 66, 68, 

101, 126-129, 143, 147, 148, 

175, 187, 192, 207, 212, 225, 

228, 236, 260, 266, 267, 269, 

275, 280, 288, 289, 294, 302, 

309, 320, 349 

      Properties 

           air, 429 

          water, 430 

R

      rarefaction, 345, 349, 364, 368, 

369, 370, 373, 375, 383, 391, 

392, 393, 399, 404 

     Rayleigh number, 187, 188, 195, 

208, 225, 260, 261, 271, 275, 

276, 278, 287 

      Reynolds number, 22, 53, 54, 

100, 108, 112, 122, 130, 149, 

177, 184, 188, 206, 207, 226, 

228, 240, 241, 309, 351, 364, 

390

      rotating flow, 86 

S

      scale analysis, 59, 103, 110, 117, 

123, 206, 224, 231, 369 

      slip flow, 348, 350, 355, 356, 365,

366, 383, 390 

      similarity parameters, 54, 55 

      similarity transformation, 119, 

125, 141, 146, 248, 274, 427 

      spherical coordinates, 21, 25, 33, 

34, 42 

      Stefan-Boltzmann law, 8 

      substantial derivative, 11 

      surface force, 28, 344 

T

      temperature jump, 344, 344, 347- 

349, 354, 355, 361, 364, 365, 

382, 392, 394, 407 

      thermal

           boundary layer, 100, 109-111, 

113, 122, 123, 125, 128, 136, 

153, 169, 174, , 178, 183, 191, 

260, 262, 272, 279 

           conductivity, 4 

                tables, 429, 430

           diffusivity, 260 

           entrance length, 206, 208, 209 

           entrance region, 242



      thermodynamic equilibrium, 2, 3, 

343, 344, 347-350 

      total derivative, 11 

      total differential, 10 

      transition 

          flow, 347 

          Rayleigh number, 260 

          Reynolds number, 22, 203 

      turbulent flow, 22 

U

      units, 12 

V

      variable surface temperature, 140, 

426

      velocity 

           derivative, 9 

           slip, 343-345, 347, 348, 350, 

354, 355, 365 

      vector, 9 

      viscous boundary layer, 70, 87 

W

      watt, 13
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