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PREFACE

Why have I chosen to write a book on convection heat transfer when
several already exist? Although I appreciate the available publications, in
recent years I have not used a text book to teach our graduate course in
convection. Instead, I have relied on my own notes, not because existing
textbooks are unsatisfactory, but because I preferred to select and organize
the subject matter to cover the most basic and essential topics and to strike
a balance between physical description and mathematical requirements. As
I developed my material, I began to distribute lecture notes to students,
abandon blackboard use, and rely instead on PowerPoint presentations. I
found that PowerPoint lecturing works most effectively when the presented
material follows a textbook very closely, thus eliminating the need for
students to take notes. Time saved by this format is used to raise questions,
engage students, and gauge their comprehension of the subject. This book
evolved out of my success with this approach.

This book is designed to:

e Provide students with the fundamentals and tools needed to model,
analyze, and solve a wide range of engineering applications involving
convection heat transfer.

e Present a comprehensive introduction to the important new topic of
convection in microchannels.

e Present textbook material in an efficient and concise manner to be
covered in its entirety in a one semester graduate course.

e Liberate students from the task of copying material from the
blackboard and free the instructor from the need to prepare extensive
notes.

e Drill students in a systematic problem solving methodology with
emphasis on thought process, logic, reasoning, and verification.

e Take advantage of internet technology to teach the course online by
posting ancillary teaching materials and solutions to assigned
problems.
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Hard as it is to leave out any of the topics usually covered in classic
texts, cuts have been made so that the remaining materials can be taught in
one semester. To illustrate the application of principles and the construction
of solutions, examples have been carefully selected, and the approach to
solutions follows an orderly method used throughout. To provide
consistency in the logic leading to solutions, I have prepared all solutions
myself.

This book owes a great deal to published literature on heat transfer. As
I developed my notes, I used examples and problems taken from published
work on the subject. As I did not always record references in my early
years of teaching, I have tried to eliminate any that I knew were not my
own. I would like to express regret if a few have been unintentionally
included.

Latif M. Jiji
New York, New York
January 2006
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BASIC CONCEPTS

1.1 Convection Heat Transfer

In general, convection heat transfer deals with thermal interaction between
a surface and an adjacent moving fluid. Examples include the flow of fluid
over a cylinder, inside a tube and between parallel plates. Convection also
includes the study of thermal interaction between fluids. An example is a
jet issuing into a medium of the same or a different fluid.

1.2 Important Factors in Convection Heat Transfer

Consider the case of the electric bulb shown in "
Fig. 1.1. Surface temperature and heat flux qs
are T, and g, respectively. The ambient fluid
temperature is 7. Electrical energy is dissipat-
ed into heat at a fixed rate determined by the
capacity of the bulb. Neglecting radiation, the
dissipated energy is transferred by convection
from the surface to the ambient fluid. Suppose
that the resulting surface temperature is too high
and that we wish to lower it. What are our
options?

(1) Place a fan in front of the bulb and force the
ambient fluid to flow over the bulb.

8'ﬂ 8‘

+
Fig. 1.1

(2) Change the fluid, say, from air to a non-conducting liquid.
(3) Increase the surface area by redesigning the bulb geometry.

We conclude that three factors play major roles in convection heat transfer:
(1) fluid motion, (i1) fluid nature, and (i) surface geometry.

Other common examples of the role of fluid motion in convection are:
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e Fanning to feel cool.
e Stirring a mixture of ice and water.
e Blowing on the surface of coffee in a cup.

e Orienting a car radiator to face air flow.

Common to all these examples is a moving fluid which is exchanging heat
with an adjacent surface.

1.3 Focal Point in Convection Heat Transfer

Of interest in convection heat transfer problems is the determination of
surface heat transfer rate and/or surface temperature. These important
engineering factors are established once the temperature distribution in the
moving fluid is determined. Thus the focal point in convection heat transfer
is the determination of the temperature distribution in a moving fluid. In
Cartesian coordinates this is expressed as

T=T(x,y,zt). (1.1)

1.4 The Continuum and Thermodynamic Equilibrium Concepts

In the previous sections we have invoked the concept of temperature and
fluid velocity. The study of convection heat transfer depends on material
properties such as density, pressure, thermal conductivity, and specific
heat. These familiar properties which we can quantify and measure are in
fact manifestation of the molecular nature and activity of material. All
matter is composed of molecules which are in a continuous state of random
motion and collisions. In the continuum model we ignore the characteristics
of individual molecules and instead deal with their average or macroscopic
effect. Thus, a continuum is assumed to be composed of continuous matter.
This enables us to use the powerful tools of calculus to model and analyze
physical phenomena. However, there are conditions under which the
continuum assumption breaks down. It is valid as long as there is
sufficiently large number of molecules in a given volume to make the
statistical average of their activities meaningful. A measure of the validity
of the continuum assumption is the molecular-mean-free path A relative to
the characteristic dimension of the system under consideration. The mean-
free-path is the average distance traveled by molecules before they collide.
The ratio of these two length scales is called the Knudson number, Kn,
defined as
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Kn=—, (1.2)

where D, is the characteristic length, such as the equivalent diameter or

the spacing between parallel plates. The criterion for the validity of the
continuum assumption is [1]

Kn<107!, (1.3a)

Thus this assumption begins to break down, for example, in modeling
convection heat transfer in very small channels.

Thermodynamic equilibrium depends on the collisions frequency of
molecules with an adjacent surface. At thermodynamic equilibrium the
fluid and the adjacent surface have the same velocity and temperature.
This is called the no-velocity slip and no-temperature jump, respectively.
The condition for thermodynamic equilibrium is

Kn<1073, (1.3b)

The continuum and thermodynamic equilibrium assumptions will be
invoked throughout Chapters 1-8. Chapter 9, Convection in Microchannels,
deals with applications where the assumption of thermodynamic
equilibrium breaks down.

1.5 Fourier’s Law of Conduction

Our experience shows that if one end of a metal bar is heated, its
temperature at the other end will eventually begin to rise. This transfer of
energy is due to molecular activity. Molecules at the hot end exchange their
kinetic and vibrational energies with neighboring layers through random
motion and collisions. A temperature gradient, or slope, is established with
energy continuously being transported in the direction of decreasing
temperature. This mode of energy transfer is called conduction. The same
mechanism takes place in fluids, whether they are stationary or moving. It
is important to recognize that the mechanism for energy interchange at the
interface between a fluid and a surface is conduction. However, energy
transport throughout a moving fluid is by conduction and convection.
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We now turn our attention to |‘ >
formulating a law that will help us

determine the rate of heat transfer by
conduction. Consider the wall shown A
inFig.1.2. The temperature of one
surface (x = 0) is 7; and of the other -
surface (x = L) is T,,. The wall 9x
thickness is L and its surface area is /’

A. The remaining four surfaces are

well insulated and thus heat is ZLsi j =0 T
transferred in the x-direction only. 0 _) < > X
Assume steady state and let g, be dx

the rate of heat transfer in the x- Fig. 1.2

direction. Experiments have shown
that g, is directly proportional to A4
and (7,; —T,,) and inversely proportional to L. That is

quCA(TSi _Tso) '
L

Introducing a proportionality constant k, we obtain

AT, -T,
:k (Sl SO)’

7 (1.4)

where k is a property of material called thermal conductivity. We must
keep in mind that (1.4) is valid for: (i) steady state, (ii) constant £ and (iii)
one-dimensional conduction.  These limitations suggest that a re-
formulation is in order. Applying (1.4) to the element dx shown in
Fig.1.2 and noting that 7y; > T'(x), T,,— T(x+dx), and L is replaced
by dx, we obtain

:kAT(x)—T(x+dx) k4 T(x+dx)—T(x)'
dx dx

Since T(x+dx) — T(x) = dT, the above gives

qx=—kA%£. (1.5)

It is useful to introduce the term heat flux g, which is defined as the
heat flow rate per unit surface area normal to x. Thus,
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" Qx
=1x 1.6
qx y, (1.6)

Therefore, in terms of heat flux, (1.5) becomes

q. =—k%. (1.7)

Although (1.7) is based on one-dimensional conduction, it can be
generalized to three-dimensional and transient conditions by noting that
heat flow is a vector quantity. Thus, the temperature derivative in (1.7) is
changed to partial derivative and adjusted to reflect the direction of heat
flow as follows:

oT oT oT
"=—k— " =—k— T =—k—, 1.8
Tx 0x b oy 1 0z (1.8)

where x, y, and z are the rectangular coordinates. Equation (1.8) is known
as Fourier's law of conduction. Four observations are worth making: (i)
The negative sign means that when the gradient is negative, heat flow is in
the positive direction, i.e., towards the direction of decreasing temperature,
as dictated by the second law of thermodynamics. (ii) The conductivity k&
need not be uniform since (1.8) applies at a point in the material and not to
a finite region. In reality thermal conductivity varies with temperature.
However, (1.8) is limited to isotropic material, i.e., k is invariant with
direction. (iii) Returning to our previous observation that the focal point in
heat transfer is the determination of temperature distribution, we now
recognize that once 7(x,y,z,¢) is known, the heat flux in any direction can be
easily determined by simply differentiating the function 7" and using (1.8).
(iv) By manipulating fluid motion, temperature distribution can be altered.
This results in a change in heat transfer rate, as indicated in (1.8).

1.6 Newton's Law of Cooling

An alternate approach to determining heat transfer rate between a surface
and an adjacent fluid in motion is based on Newton’s law of cooling. Using
experimental observations by Isaac Newton, it is postulated that surface
flux in convection is directly proportional to the difference in temperature
between the surface and the streaming fluid. That is

qZOC(TS _Too)’



6 1 Basic Concepts

where ¢ is surface flux, 7 is surface temperature and 7, is the fluid
temperature far away from the surface. Introducing a proportionality
constant to express this relationship as equality, we obtain

q;=h(T, =T). (1.9)

This result is known as Newton's law of cooling. The constant of
proportionality /4 is called the heat transfer coefficient. This simple result is
very important, deserving special attention and will be examined in more
detail in the following section.

1.7 The Heat Transfer Coefficient

The heat transfer coefficient plays a major role in convection heat transfer.
We make the following observations regarding #:

(1) Equation (1.9) is a definition of / and not a phenomenological law.

(2) Unlike thermal conductivity &, the heat transfer coefficient is not a
material property. Rather it depends on geometry, fluid properties, motion,

and in some cases temperature difference, AT = (7, —T, ). Thatis
h = f (geometry, fluid motion, fluid properties, AT). (1.10)

(3) Although no temperature distribution is explicitly indicated in (1.9), the
analytical determination of /4 requires knowledge of temperature
distribution in a moving fluid.

This becomes evident when both y

Fourier’s law and Newton’s law
are combined. Application of
Fourier’s law in the y-direction
for the surface shown in Fig. 1.3
gives

Fig. 1.3
q” :_k aT(x’OJZ) (1‘11)

N b4

where y is normal to the surface, 07'(x,0,z)/0y is temperature gradient in

the fluid at the interface, and & is the thermal conductivity of the fluid.
Combining (1.9) and (1.11) and solving for 4, gives
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0T (x,0,z)
h= _ka—y
(Ts _Too)

This result shows that to determine /4 analytically one must determine
temperature distribution.

(1.12)

(4) Since both Fourier’s law and Newton’s law give surface heat
flux, what is the advantage of introducing Newton’s law? In some
applications the analytical determination of the temperature distribution
may not be a simple task, for example, turbulent flow over a complex
geometry. In such cases one uses equation (1.9) to determine 4
experimentally by measuringq. , 7, and 7, and constructing an empirical
equation to correlate experimental data. This eliminates the need for the
determination of temperature distribution.

(5) We return now to the bulb shown in Fig. 1.1. Applying Newton’s law
(1.9) and solving for surface temperature 7, we obtain

14

q,
T =T +—. 1.13
) (1.13)

N 0
For specified ¢! and T, surface temperature 7, can be altered by

changing 4. This can be done by changing the fluid, surface geometry
and/or fluid motion. On the other hand, for specified surface temperature

T, and ambient temperature 7, ,

equation (1.9) shows that surface _Table 1.1
. Typical values of &
flux can be altered by changing 4. ;
Process h(W/m”-°C)

(6) One of the major objectives of
convection is the determination of 4.

(7) Since & is not a property, its
values cannot be tabulated as is the
case with thermal conductivity,
enthalpy, density, etc. Nevertheless,
it is useful to have a rough idea of
its magnitude for common processes
and fluids. Table 1.1 gives the
approximate range of # for various
conditions.

Free convection

Gases 5-30

Liquids 20-1000
Forced convection

Gases 20-300

Liquids 50-20,000

Liquid metals 5,000-50,000

Phase change
Boiling
Condensation

2,000-100,000
5,000-100,000
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1.8 Radiation: Stefan-Boltzmann Law

Radiation energy exchange between two surfaces depends on the geometry,
shape, area, orientation, and emissivity of the two surfaces. In addition, it
depends on the absorptivity a of each surface. Absorptivity is a surface
property defined as the fraction of radiation energy incident on a surface
which is absorbed by the surface. Although the determination of the net
heat exchange by radiation between two surfaces, ¢, , can be complex, the
analysis is simplified for an ideal model for which the absorptivity « is
equal to the emissivity &. Such an ideal surface is called a gray surface.
For the special case of a gray surface which is completely enclosed by a
much larger surface, g, is given by Stefan-Boltzmann radiation law

g =040 -T,)), (1.14)

where & is the emissivity of the small surface, 4, its area, T its absolute
temperature, and 7 is the absolute temperature of the surrounding surface.
Note that for this special case neither the area A4, of the large surface nor
its emissivity &, affect the result.

1.9 Differential Formulation of Basic Laws

The analysis of convection heat transfer relies on the application of the
three basic laws: conservation of mass, momentum, and energy. In
addition, Fourier’s conduction law and Newton’s law of cooling are also
applied. Since the focal point is the determination of temperature
distribution, the three basic laws must be cast in an appropriate form that
lends itself to the determination of temperature distribution. This casting
process is called formulation. Various formulation procedures are
available. They include differential, integral, variational, and finite
difference formulation. This section deals with differential formulation.
Integral formulation is presented in Chapter 5.

Differential formulation is based on the key assumption of continuum.
This assumption ignores the molecular structure of material and focuses on
the gross effect of molecular activity. Based on this assumption, fluids are
modeled as continuous matter. This makes it possible to treat variables
such as temperature, pressure, and velocity as continuous function in the
domain of interest.
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1.10 Mathematical Background

We review the following mathematical ¢
definitions which are needed in the differential T_> u
formulation of the basic laws. W ¥

(a) Velocity Vector V. Let u, v, and w be the by
velocity components in the x, y and z directions,
respectively. The vector V' is given by

V=ui+vj+wk. (1.15a) Fig. 1.4

(b) Velocity Derivative. The derivative of the velocity vector with respect
to any one of the three independent variables is given by

VO P Dy (1.15b)
Oox Ox Ox ox

(¢) The Operator V. In Cartesian coordinates the operator V is a vector
defined as

Eii+—j+—k. (1.16)

=—i, +———ip+—1i,. (1.17)

Similarly, the form in spherical coordinate is

Vzii +li ! 0

9 118
o' 106" rsing og” (1.18)

(d) Divergence of a Vector. The divergence of a vector V is a scalar
defined as

divV=V.-V="3""24"" (1.19)
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(e) Derivative of the Divergence. The derivative of the divergence with
respect to any one of the three independent variables is given by

i(V-I7)=i ou, oo, 0w (1.20)
ox ox\ox 0oy oz
The right hand side of (1.20) represents the divergence of the derivative of

the vector ¥ . Thus (1.20) can be rewritten as

0 - 0 . .
E(V~V)—V‘a—x(ul+v]+wk),
or
0 (o - oV
—\WV.rV)l=v.——. 1.21
6x( ) ox (1.21)

(f) Gradient of Scalar. The gradient of a scalar, such as temperature 7, is a
vector given by
or . or . or

GradT =V -T =—i+—j+—k. (1.22)
ox Oy 0z

(g) Total Differential and Total Derivative. We consider a variable of
the flow field designated by the symbol f. This is a scalar quantity such as
temperature 7, pressure p, density p, or velocity component u. In general

this quantity is a function of the four independent variables x, y, z and .
Thus in Cartesian coordinates we write

f:f(x,y,Z,t). (a)

The total differential of fis the total change in f resulting from changes in
x, v, z and ¢. Thus, using (a)

df :gdx+gdy+%dz+gdt.
ox oy oz ot

Dividing through by df
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g _Df _ g ody & o

dt Dt oxdt ovdr ozdt o ®)
However
Substituting (c) into (b)

g o _ L LSS (1.23)

dt Dt ox oy oz ot

df /dt in the above is called the total derivative. Tt is also written as
Df/ Dt to emphasize that it represents the change in f which results
from changes in the four independent variables. It is also referred to as the
substantial derivative. Note that the first three terms on the right hand side
are associated with motion and are referred to as the convective derivative.
The last term represents changes in f* with respect to time and is called the
local derivative. Thus

u g + vg + wgz convective derivative, (d)
ox oy 0z
% =local derivative. (e)

To appreciate the physical significance of (1.23), we apply it to the velocity
component u. Setting / = u in (1.23) gives

du  Du Oou ou 8_u+@

—_— Yy — _

== w : (1.24)
dt Dt ox oy oz Ot

Following (d) and (e) format, (1.24) represents

ou Oou

w . . L
u— + v— + w—= convective acceleration in the x-direction, (f)

ox oy oz
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a—L; =local acceleration . €3]

Similarly, (1.23) can be applied to the y and z directions to obtain the
corresponding total acceleration in these directions.

The three components of the total acceleration in the cylindrical
coordinates 7,0,z are

dv, Do, v, v, v, v, ov, O0v,

i Dt o o0 r e

D
do, _ Dy, _o, 0v, +v_9809 A +o, 0vy N 0v, (125b)
dt Dt or r 00 r 0z Ot
dv, Du, ov, v, 0V, ov, Ov,
= =y 24+ 24y +—=.  (1.25¢)

. Dt " or r 00 ¢ oz o

Another example of total derivative is obtained by setting f = T in
(1.23) to obtain the total temperature derivative

dr _DT _ or _ or  or or

—_— Yy —

= = D— +w (1.26)
dt Dt ox oy 0z Ot

1.11 Units

SI units are used throughout this text. The basic units in this system are:
Length (L): meter (m).
Time (¢): second (s).
Mass (m): kilogram (kg).
Temperature (7): kelvin (K).

Temperature on the Celsius scale is related to the kelvin scale by
T(°C) = T(K) - 273.15. (1.27)

Note that temperature difference on the two scales is identical. Thus, a
change of one kelvin is equal to a change of one Celsius. This means that
quantities that are expressed per unit kelvin, such as thermal conductivity,
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heat transfer coefficient, and specific heat, are numerically the same as per
degree Celsius. That is, W/m*-K = W/ m*-°C.

The basic units are used to derive units for other quantities. Force is
measured in newfons (N). One newton is the force needed to accelerate a
mass of one kilogram one meter per second per second:

Force = mass x acceleration,
_ 2
N=kg—-m/s”.

Energy is measured in joules (J). One joule is the energy associated with a
force of one newton moving a distance of one meter.

J=Nxm=kg-m?/s?.

Power is measured in watts (W). One watt is energy rate of one joule per
second.

W =J/s =Nxm/s=kg —-m?*/s> .

1.12 Problem Solving Format

Convection problems lend themselves to a systematic solution procedure.
The following basic format which builds on the work of Ver Planck and
Teare [2] is used throughout the text.

(1) Observations. Study the situation, operation, process, design, etc.
under consideration. Read the problem statement very carefully and note
essential facts and features. Identify cueing information in the problem
statement. Show a schematic diagram describing the situation. Where
appropriate show the origin and coordinate axes.

(2) Problem Definition. Identify the key factors which must be
determined so that a solution can be constructed. Distinguish between the
question asked and the problem to be solved. Look for cues in the problem
statement to construct a problem definition that cues a solution plan.

(3) Solution Plan. Identify the problem's basic laws and concepts.
(4) Plan Execution. This stage is carried out in four steps.

(i) Assumptions. Model the problem by making simplifications and
approximations. List all assumptions.
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(i) Analysis. Apply the basic laws identified in the solution plan.
Carry out analysis in terms of symbols representing variables, parameters
and constants rather than numerical values. Define all terms and give their
units.

(iii) Computations. Execute the necessary computations and
calculations to generate the desired numerical results.

(iv) Checking. Check each step of the solution as you proceed. Apply
dimensional checks and examine limiting cases.

(5) Comments. Review your solution and comment on such things as the
role of assumptions, the form of the solution, the number of governing
parameters, etc.

Example 1.1: Heat Loss from Identical Triangles

Consider two identical triangles drawn on the surface of a flat plate as
shown. The plate, which is maintained at uniform surface temperature T,
is cooled by forced convection. The free stream temperature is T,,. Under
certain conditions the heat transfer

coefficient varies with distance x Y4
from the leading edge of the plate

according to
C L“’ 1
h(x)=—7=, N
Jx Vo | 3 | da
O Ny
where C is constant. Determine the dx %

ratio of the heat transfer rate from top view

the two triangles, q,/q..

(1) Observations. (i) Convection heat transfer from a surface can be
determined using Newton’s law of cooling. (ii) The local heat transfer
coefficient varies along the plate. (iii) For each triangle the area of an
element dx varies with distance along the plate. (iv) The total heat transfer
rate can be determined by integration along the length of each triangle.

(2) Problem Definition. Determine the heat rate by convection from an
element dx of each triangle.

(3) Solution Plan. Apply Newton's law of cooling to an element of each
triangle and integrate over the area.

(4) Plan Execution.
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(i) Assumptions. (1) Steady state, (2) one-dimensional variation of heat
transfer coefficient, (3) uniform free stream temperature, (4) uniform
surface temperature, and (5) negligible radiation.

(ii) Analysis. Of interest is the ratio of the total heat transfer rate from
triangle 1 to that of triangle 2. Since both the heat transfer coefficient and
area vary along each triangle, it follows that Newton's law of cooling
should be applied to an element dA4 at a distance x from the leading edge:

dq = h(x)(T, ~ T, )dA, (@

where

dA = area of element, m?

h(x) = local heat transfer coefficient,.

dgq = rate of heat transfer from element, W
T, = surface temperature, °C

T, = free stream temperature, °C

x = distance along plate, m

The local heat transfer coefficient is given by

n-S (b)

Vx

Using the subscripts 1 and 2 to refer to triangles 1 and 2, respectively, the
infinitesimal area dA for each triangle is given by

dA, = y,(x)dx, ()
and
dd, = y,(x)dx, (d)

where

¥, (x) = side of element in triangle 1, m
¥, (x) = side of element in triangle 2, m

Similarity of triangles gives

.mm=%@—m, ©
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H
o (x) = f X (H
Substituting (e) into (¢) and (f) into (d) gives

d4, = %(L —x)dx , (2)

H
dA2 = fxdx . (h)
where

H = base of triangle, m
L = length of triangle, m

Substituting (b) and (g) into (a) and integrating from x = 0 to x = L, gives

L L
HL-x H [ L-x
0= qu - I T -T2 dx:C(TS—TOO)—.“ dx.
1 1 . K L xl/z L A x1/2
Carrying out the integration yields
¢ = (4/3)C(T, ~T,)HL"*. (0

Similarly, substituting (b) and (h) into (a) and integrating from x =0 to x =
L gives
L o . .
X
92~ jqu = j C(T; _Too)_de =C(T,-T,)— J‘xl/zdx.
0 L x L 0

Carrying out the integration yields
g =(2/3)C(T, ~T,)HL"*. 0)

Taking the ratio of (i) and (j)

=2, (®)
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(iii) Checking. Dimensional check: Units of ¢; in equation (i) should
be W. First, units of C are

C=Wm'?*-°C
Thus units of g, are
g, = C(Wm’?-°C)(T, - T, )(CC)H(m)L"* (m"?) =W

Since g, has the same form as ¢, , it follows that units of g, in equation (j)
are also correct.

Qualitative check: The result shows that the rate of heat transfer from
triangle 1 is greater than that from triangle 2. This is expected since the
heat transfer coefficient increases as the distance from the leading edge is
decreased and triangle 1 has its base at x = 0 where /4 is maximum.
According to (b), the heat transfer coefficient is infinite at x = 0.

(5) Comments. (i) Although the two triangles have the same area, the rate
of heat transfer from triangle 1 is double that from triangle 2. Thus,
orientation and proximity to the leading edge of a flat plate play an
important role in determining the rate of heat transfer.

(i1) The same approach can be used to determine heat transfer for
configurations other than rectangles, such as circles and ellipses.
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1 Basic Concepts

PROBLEMS

Heat is removed from a rectangular surface by convection to an
ambient fluid at 7,,. The heat transfer coefficient is 4. Surface
temperature is given by

L
A
T =——,
s T T
OF——x w
where 4 is constant. Determine i

the steady state heat transfer
rate from the plate.

A right angle triangle is at a uniform surface temperature 7. Heat is
removed by convection to an ambient fluid at7 . The heat transfer
coefficient / varies along the surface according to

where C is constant and x is the |

distance along the base measured X
from the apex. Determine the total ~—— L ——
heat transfer rate from the triangle.

A high intensity light bulb with surface heat flux (q/ 4),is cooled
by a fluid at 7. Sketch the fluid temperature profiles for three
values of the heat transfer coefficient: 4, /,, and hs;, where A, < by < hs.

Explain why fanning gives a cool sensation.

A block of ice is submerged in water above the melting tempera
ture. Explain why stirring the water accelerates the melting rate.

Consider steady state, incompressible, axisymmetric parallel flow in
a tube of radius7,. The axial velocity distribution for this flow is
given by

2
u:2z7(1—r—2),
o

where u is the mean or average axial velocity. Determine the three
components of the total acceleration for this flow.
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Consider transient flow in the neighborhood of a vortex line where
the velocity is in the tangential direction,
given by

Ia 2
Vrt) = 5 7z-or {1 — exp[— :—WH .

Here r is the radial coordinate, ¢ is time,
I, is circulation (constant), and v is
kinematic viscosity. Determine the three

components of total acceleration.

An infinitely large plate is %
suddenly moved parallel to its

surface with a velocity U . The

resulting transient velocity dis- > X
tribution of the surrounding fluid  plate o U
is given by

n
u=U, {1 - (2/\/;)J' eXp(—nz)dU},
0

where the variable 77 is defined as

Y

77(?@’)=2—\/;-

Here ¢ is time, y is the vertical coordinate and v is kinematic
viscosity. Note that streamlines for this flow are parallel to the plate.
Determine the three components of total acceleration.

Consider two parallel plates with

the lower plate stationary and Y T

the upper plate moving with a 5 U,
velocity U,. The lower plate is
maintained at temperature 7
and the upper plate at 7. The
axial velocity of the fluid for 0
steady state and parallel stream-

lines is given by
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where H is the distance between the two plates. Temperature
distribution is given by

U2 2
Lo {y—%}(n—m%%

where k is thermal conductivity and 4 is viscosity. Determine the
total temperature derivative.

1.10 One side of a thin plate is heated electrically such that surface heat
flux is uniform. The opposite side of the plate is cooled by
convection. The upstream velocity is ¥, and temperature is 7, .
Experiments were carried out at two upstream velocities, V,; and
V., where V_, >V . All

other  conditions were

unchanged. The heat transfer

coefficient was found to

increase as the free stream AAEA A NN A X

velocity is increased. Sketch q,

the temperature profile 7(y)

of the fluid corresponding to

the two velocities.

Y

SH lg‘

1.11 Heat is removed from an L-shaped area by convection. The heat
transfer coefficient is # and the ambient

. 2a

temperature is 7, . Surface temperature 0 x'

varies according to a

cx
T(x)=T,e ™, 2a
a
. a
where c and 7, are constants. Determine

the rate of heat transfer from the area.
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DIFFERENTIAL FORMULATION
OF THE BASIC LAWS

2.1 Introduction

In a moving fluid the three fundamental laws, conservation of mass,
momentum, and energy, must be satisfied at every point in the domain.
Thus the first step is to formulate (cast) the three laws in a form that
satisfies this condition. This is accomplished by applying each law to a
differential (infinitesimal) element. Following this approach, each law is
described by a partial differential equation. Differential formulation of the
three laws will be presented using rectangular coordinates. The
corresponding forms in cylindrical and spherical coordinates will be stated
without details.

2.2 Flow Generation

Since fluid motion is central to convection heat transfer we will be
concerned with two common flow classifications:

(a) Forced convection. Fluid motion is generated mechanically through the
use of a fan, blower, nozzle, jet, etc.. Fluid motion relative to a surface can
also be obtained by moving an object, such as a missile, through a fluid.

(b) Free (natural) convection. Fluid motion is generated by gravitational
field. However, the presence of a gravitational field is not sufficient to set
a fluid in motion. Fluid density change is also required for free convection
to occur. In free convection, density variation is primarily due to
temperature changes.
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2.3 Laminar vs. Turbulent Flow

One classification of fluid flow and convection heat transfer is based on
certain flow characteristics. If the flow is characterized by random
fluctuations in quantities such as velocity, temperature, pressure, and
density, it is referred to as turbulent. On the other hand, in the absence of
such fluctuations the flow is called laminar. These two basic flow patterns
are illustrated in Fig.2.1. Since flow and heat transfer characteristics differ
significantly for these two modes, it is essential to establish if a flow is
laminar, turbulent, or mixed. Transition from laminar to turbulent flow
takes place at experimentally determined value of the Reynolds number
known as the tranmsition Reynolds number, Re,. The magnitude of this
number depends primarily on flow geometry but can be influenced by
surface roughness, pressure gradient and other factors. For uniform flow
over a semi-infinite flat plate Re, =V _x,/ v~ 500,000, where V_ is the
free stream velocity, x,is the distance along the plate, measured from the
leading edge to where transition occurs, and v is the kinematic viscosity.
On the other hand, for flow through tubes Re,= uD/v ~ 2300, where D is
tube diameter and # is the mean fluid velocity.

u u

t >t

Fig. 2.1

2.4 Conservation of Mass: The Continuity Equation

2.4.1 Cartesian Coordinates

Consider an element dxdydz as a control volume in the flow field of Fig.

2.2a. For simplicity, the z-direction is not shown. The element is enlarged
in Fig. 2.2b showing the flow of mass through it. Conservation of mass,
applied to the element, states that

Rate of mass added to element - Rate of mass removed from element =
Rate of mass change within element

2.1)
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 dom,)
y —— ; oy
i om, dde:
/ d/—)x m \; 5mx + ay dy
(@) Fig. 2.2 ®)

Assuming continuum and using the notation of Fig. 2.2b, equation (2.1) is
expressed as

om, +m,, + om, —[5mx +

—{51% + a(imy) dy} + [5mz + a(ng) dz} = 8(5’%),

o(oi
—( mx)dx}
X

(a)

Y )y 4 ot
where

om, = mass flow rate entering element in the x-direction
om ,,= mass flow rate entering element in the y-direction
om,= mass flow rate entering element in the z-direction
om = mass within element

To express (a) in terms of fluid density and velocity, we utilize the one-
dimensional flow rate equation

m= pVA, (b)
where V' is the velocity normal to the flow area 4, and p is density. It

should be emphasized that in this form both p and V" must be uniform over
the flow area 4. Applying (b) to the element, gives

om, = pudydz, (©)
§my = podxdz , (d)
om, = pwdxdy, (e)

where u, v and w are the velocity components in the x, y and z-direction,
respectively. The mass, Om , within the element is given by

om= pdxdydz . (f)
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Substituting (c)—(f) into (a) and dividing through by dxdydz, gives

op O 0 0
I — — =0. .
o + . (pu)+ PR (pv)+ P (pw) (2.2a)

This result is called the continuity equation. An alternate form is obtained
by differentiating the product terms in (2.2a) to obtain

+p —+—

op uap op op ou 8v+6_w
ox 0y Oz

} =0. (2.2b)

Note that the first four terms in (2.2b) represent the total derivative of g
and the last three terms represent the divergence of the velocity vector V.
Thus, (2.2b) is rewritten as

Dp =
—_— + V . V = O . 2.2C
o TP (2.2¢)
An alternate form of (2.2¢) is
aa—p+v-pl7=0. (2.2d)
t

For constant density (incompressible fluid) the total derivative in (2.2d)
vanishes. That is

Dp_y
Dt
Substituting into (2.2d) gives
V.-V =0. (2.3)

Equation (2.3) is the continuity equation for incmopressible fluid.
2.4.2 Cylindrical Coordinates

Applying (2.1) to an infinitesimal element rd@ drdz in the cylindrical
coordinates shown in Fig. 2.3, gives
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8_p+1 8(
ot ror

pro, )+ 2 (pvg )+ (po.) =0,

where v,, v, and v, are the velocity

components in 7, € and z-direction, respectively.

2.4.3 Spherical Coordinates

Applying (2.1) to an infinitesimal element
rd@rdgdr in the spherical coordinates shown in

Fig. 2.4 and following the procedure of Section
2.4.1, gives

op 10( 5 5 .
p, Lo 9 0
or 2 ar(pr U’)+rsmeaa(pvé’sm )

Example 2.1: Fluid in Angular Motion

A shaft rotates concentrically inside a tube. The
annular space between the shaft and the tube is
filled with incompressible fluid. Neglecting fluid
motion in the axial direction z, write the
continuity equation for this case.

(1) Observations. (i) Use cylindrical coordinates. (ii) No variation in the
axial and angular directions. (iii) The fluid is incompressible (constant
density).

(2) Problem Definition. Simplify the three-dimensional continuity
equation for this flow.

(3) Solution Plan. Apply the continuity in cylindrical coordinates.
(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) incompressible fluid, (3 no
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motion in the axial direction, and (4) shaft and tube are concentric.
(ii) Analysis. The continuity equation in cylindrical coordinates is
given by (2.4)

op 16 16 P
@, 2o - < ~0. 24
at+rﬁr(prvr)+r@@<pv€)+az(p02) (2.4)

This equation is simplified based on:

Incompressible fluid: p is constant, p/dt = 0.
No axial velocity: v, =0.
Axisymmetric: 0/060 =0.

Introducing the above simplifications into (2.4), gives the continuity
equation for this flow

—(rv,)=0. (a)

(iii) Checking. Dimensional check: Each term in (2.4) has units of
density per unit time.

(5) Comments. (i) Equations (a) and (d) are valid for transient as well as
steady state as long as the fluid is incompressible.

(i) Continuity equation (a) can be integrated to give the radial
velocity v,

ro. =C, (b)

where C is constant or a function of @. Since the radial velocity v,
vanishes at the shaft’s surface, if follows from (b) that

C=0. (c)
Equation (b) gives
v,.=0. (d)

(iif) Since v, =0 everywhere in the flow field, it follows that the
streamlines are concentric circles.
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2.5 Conservation of Momentum: The Navier-Stokes Equations
of Motion

2.5.1 Cartesian Coordinates

We note first that momentum is a

vector quantity. Thus conservation of y dz
momentum (Newton’s law of motion)
provides three equations, one in each dy| _—
of the three coordinates. Application
of Newton’s law of motion to the

element shown in Fig. 2.5, gives / £
z

Z SF =(5mya,  (a) Fig. 2.5

where

a= acceleration of the element
SF = external force acting on the element
Oom = mass of the element

Application of (a) in the x-direction, gives
Z SF, = (Sm)a, . (b)
The mass of the element is
om = pdxdydz . (©

Based on the assumption of continuum, the total acceleration of the
element in the x-direction, a,, is

du Du ou ou ou Ou
===y —+V—+w

=" ——. d
T T T ey e @

Substituting (c) and (d) into (b)

Du
Z5Fx = pEdXdde . (e)
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Next we determine the sum of all external forces acting on the element in
the x-direction. We classify external forces as:

(1) Body force. This is a force that acts on every particle of the material or
element. Examples include gravity and magnetic forces.

(11) Surface force. This is a force that acts on the surface of the
element. Examples include tangential forces (shear) and normal
forces (pressure and stress).

Thus we write

z 5Fx = z §Fx )body + z 5Fx )surface ’ 0

We consider gravity as the only body force acting on the element. The x-
component of this force is

DO, Dy = 08 vz, ®

where g, is gravitational acceleration component in the plus x-direction.

Next we formulate an expression for the surface forces in the x-direction.
These forces are shown in Fig. 2.6. They are:

O, = normal stress on surface dydz
Ty = shearing (tangential) stress on surface dxdz
7, = shearing (tangential) stress on surface dxdy

~

CcT..
T +——dz
oz
y /
|
] P
' +60'n. ;
<« g, +——ax
([z (!1‘ ‘j T__"_\ ----------------
= = \
A or,,
»TJ dx N Ty o+ — “{‘.
—>Xx : oy
Fig. 2.6

Summing up all the x-component forces shown in Fig. 2.6 gives
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or
3 oF, ) [0, Oy | O | e (h)
X Jsurface ox dy oz

Similar expressions are obtained for surface forces in the y and z-directions.
Substituting (f), (g) and (h) into (e), gives the x-direction equation

Dl/l 50'xx az—yx 52‘2x
——=pg, + + + .
Pore P8 T Ty T e

(2.6a)

Similarly, applying Newton’s law of motion in the y and z-directions gives
the two corresponding momentum equations. By analogy with (2.6a), these
equations are

Dv dr,, 0o, 01,
—= + + + : 2.6b
P Dt PEy ox oy 0z (2.6b)
and
Dw aTx 82—)}2 86
= _ + Z 4 +—= 2.6¢
Por P8 e Ty T (2.60)

Equations (2.6a), (2.6b), and (2.6c) are general in nature since they are
based on fundamental laws of motion. The only restriction is the
assumption of continuum. Examination of these equations shows that they
contain 13 unknowns: u, U, W, 0, Oy, Oy, Oz, Ty Ty Tazs Togs Ty
and Toye Application of the moment of momentum principle to a
differential element gives

z-xy = Tyx > Tyz = Toxs Tyz = sz : (1)
To further reduce the number of unknown variables, an important
restriction is introduced. The basic idea is to relate normal and shearing
stresses to the velocity field. This is accomplished through the introduction
of experimentally based relations known as constitutive equations. These

equations are [1]:

ov  Ou
=7, =4 —+ 22, 2.7
Ty = Ty /J[ o ayj (2.72)
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ow Ou
T, =T, = U —+— 2.7b
= = [Gx 82) (2.70)
T, =7, = 87] —+— ow (2.7¢)
62 oy )
O x :—p+2,ua—u—£,uV-I7, (2.7d)
ox 3
ov 2 ~
O-yy =—p+2,u§—§,uv‘l/, (276)
O, :—p+2,ua—w—g,uv-l7. (2.79)
oz 3

where y is a property called viscosity and p is the hydrostatic pressure. A

fluid that obeys (2.7) is referred to as Newtonian fluid. Examples of
Newtonian fluids include air, water and most oils. Fluids such as tar, honey
and polymers are called non-Newtonian. Substituting (2.7) into (2.6), we

obtain
pRu_ L, O, aHza_u_zv Vﬂ

Dt ox Ox ox 3
(2.8%)
L9 8u 6w 6uj
ay ay ax ax oz )|
Dt 6y 6y oy 3
(2.8y)

2 fe3)ae ZZH



2.5 Conservation of Momentum: The Navier-Stokes Equations of Motion 31

Dw dp O ow 2_ =
—= ——+—| Yy 2—-=V.V
r Dt 18- 0z 0Oz {u( oz 3 H

0 (6w Ouj o| (ov ow
+— oy —+— ||+ 4 —+—|
Ox Ox Oz oy 0z Oy

The following observations are made regarding (2.8):

(2.87)

(1) These equations are known as the Navier-Stokes equations of motion.
They apply to Newtonian fluids.

(2) The number of unknowns in the three equations are 6: u, v, w, p, p,
and u .

(3) The assumptions leading to (2.8) are: continuum and Newtonian fluid.

Expressing equations (2.8x), (2.8y) and (2.8z) in a vector form, gives

p%: *—Vﬁ+§V(/JV'I7)+V(’7'V”) 2.8)

—VVZ,quV,ux(VxV)—(V-V)V,u—Vx(Vx,uV).
Equation (2.8) is now applied to two simplified cases:
(i) Constant viscosity. For this case
Vu=0, 0)
and
Vx(Vxul )=V -yl )=V -Vl = (V-7 )= vV . (K
Substituting (j) and (k) into (2.8)

DV~ .1 . .
p%:: —Vp+§,uV(V'V)+,uV2V. 2.9)

Thus (2.9) is valid for: (1) continuum, (2) Newtonian fluid, and (3) constant
viscosity.
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(ii) Constant viscosity and density. The continuity equation for incom-
pressible fluid is given by equation (2.3)

V-V=0. (2.3)
Substituting (2.3) into (2.9) gives

p%= G —Vp+ ViV . (2.10)
t

Equation (2.10) is valid for: (1) continuum, (2) Newtonian fluid, (3)
constant viscosity and (4) constant density. Note that this vector equation
represents the three components of the Navier-Stokes equations of motion.
These three x, y, and z components are

ou ou ou ou op o*u 0*u ou
u + R e e P
ox° oy oz

(2.10x)

(60 o v avJ op [820 020 azvj
pl—tu—+v—+w—_—|=pg, ———+u + + ,

o oyt oz’

2.5.2 Cylindrical Coordinates

Applying Newton’s law of motion to an infinitesimal element
rd@drdz in the cylindrical coordinates shown in Fig. 2.3 and
following the procedure of Section 2.5.1, gives the three Navier-
Stokes equations in cylindrical coordinates. We limit the result to the
following case:

(1) Continuum, (2) Newtonian fluid, (3) constant viscosity, and (4) constant
density. The r, 8, and z components for this case are
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2
p(v, o0, , vy 00, _ vy o0, av,]

+0, + =
or r 00 r oz ot
(2.117)
op o(10o 1 0°v, 2 dv, 0°v,
——+ U —|——=0v,) |+— -— + ,
e or ﬂl:ar(l” al"( r)j 2 00% r? 00 0z
oo, 809+v_5609+vr09+vz 8vg+609 _
or r 00 r oz ot
(2.1109)
1 op o(10 1 0°v, 2 dv, 0°v,
————t U —| ——(rvy) |+ — +— + ,
P~ 50 ’{ar(rar( H)J 2 00> o0 o2
’ 6&_‘_0_96024_0 8UZ+67)Z 3
A a0 e e )
(2.11z)

o 1of dv.), 1 o%v, +a2vz
- ——|r — .
PE: ool o ) 72 002 T a2

2.5.3 Spherical Coordinates

Applying Newton’s law of motion to an infinitesimal element rd@rdgdr

in the spherical coordinates shown in Fig. 2.4 and following the procedure
of Section 2.5.1, gives the three Navier-Stokes equations in spherical
coordinates. We limit the result to the following case:

Continuum, (2) Newtonian fluid, (3) constant viscosity, and (4) constant
density. The r, 8, and ¢ components for this case are

2 2
oo, T Po o s o Do *0 | 0
or r 060 rsinf 0¢ r ot

0 20 2 Ov 2v, cotd 2 oo
pgr——p+ﬂv2vr— 2r__2 9 _ 92 - ¢
r r- 00 r r-sin@ 0¢

or
(2.127)
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2
v, v, O Uy Ov, U,v, U, cotd ov
p{vr 0 %0 %% 14 €+r¢9_¢ n an

or r 00 rsinf@ 0¢ r r ot
1 op ) 2 Ov, Uy 2cosf 0vy
___+ R — — 5
780 o0 ”( ©7 1200 Psin’0 rPsin’6 04
(2.120)
ov ov v, 0V, V40, VYU
plo, 2400 4 T4 T %% ot + 200 =g,
or r 00 rsinf 0¢ r r ot
1 ¢ v 2 O0v,  2cos@ 0Ov
- —p+ﬂvzv¢_2.¢2+z.z 2 .2 ol
rsin@ O¢ r“sin“@ r°sin“@ 04 rsin° O O¢
2.12¢)

Note that in equations (2.12) the operator V in spherical coordinates
is defined as

2
v? :%i(r2£]+ 21 i[smei}%a—z. (2.13)
rs or or) r°sin@ 00 00) rsin“ 0 o¢

Example 2.2: Thin Liquid Film Flow over an Inclined Surface

A thin liquid film flows axially down an
inclined plane. Consider the example of
incompressible, steady flow with parallel
streamlines. Write the Navier-Stokes
equations of motion for this flow.

(1) Observations. (i) The flow is due to

gravity. (ii) For parallel streamlines the vertical component v =0. (iii)
Pressure at the free surface is uniform (atmospheric). (iv) The component
of gravity in the direction tangent to the surface causes the fluid to flow
downwards. (v) The geometry is Cartesian.

(2) Problem Definition. Determine the x and y components of the Navier-
Stokes equations of motion for the flow under consideration.
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(3) Solution Plan. Start with the Navier-Stokes equations of motion in
Cartesian coordinates and simplify them for this special case.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady, (4)
flow is in the x-direction, (5) constant properties, (6) uniform ambient
pressure, and (7) parallel streamlines.

(ii) Analysis. Start with the Navier Stokes equations of motion in
Cartesian coordinates for constant properties, equations (2.10x) and (2.10y)

(au ou ou é’u] op (aZu d%u azuj
ol —+u—+v—+w— |=pg. ——+u + + ,

toox a9yt ozt
(2.10x)

(87) oo ov avJ p [020 0% a%}
ol —+u—+v—+ =pg, ——tu + + .

W_ —_—
ot ox oy oz dy ot ot
(2.10y)
The two gravitational components are
g, =gsinf, g,=-gcosb. (2)

Based on the above assumptions, these equations are simplified as follows:

ou Ov
Steady state: —=—=0 b
Y o o ®
Axial flow (x-direction only): w = 6_ =0. (©)
Z
Parallel flow: v=0. (d)

Substituting (a)-(d) into (2.10x) and (2.10y), gives

2 2
0x o0x

ox? 6y2
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0=—pgcosé?—a—p. ®
oy

The x-component (e) can be simplified further using the continuity
equation for incompressible flow, equation (2.3)

ou o0 ow

v.pdu oo ow g
ox 0y 0z ®)
Substituting (c) and (d) into (g), gives
ou
—=0. h
o (h)
Using (h) into (e) gives the x-component
P 2
pgsind ——p+,ua u=0. 6]
Ox 0 y 2
Integrating (f) with respect to y
p=—(pgcosd)y+ f(x), ©)

where f(x) is constant of integration. At the free surface,y = H, the

pressure is uniform equal to p_ . Therefore, setting y = H in (j) gives

J(x)=p,, + pgH cost. (k)
Substituting (k) into (j) gives the pressure solution

p=pg(H—y)cost+p,,. 0)

Differentiating (1) with respect to x gives

op
QE— = 0.
ox (m)

Substituting (m) into (i) gives the x-component of the Navier-Stokes
equations
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2

pgsinf+ ,ud—L2l=O. (n)
dy

(iii) Checking. Dimensional check: Each term of the y-component
equation (f) must have the same units:

pgcos 0 = (kg/m>)(m/s?) = kg/m*>-s?.
Z—p = (N/m?)/m =N/m’=(kg - m/s?)/m® = kg/m?*-s?.
y

Similarly, units of the x-component equation (n) must also be consistent
pg sin 0=kg/m?-s?.
d*u 2 2.2
,uF = (kg/m -s)(m/s)/(m”) = kg/m~-s~ .
y

Limiting check: For the special case of zero gravity the fluid will not flow.
That is, u = 0. Setting g = 0 in (n) gives

=0. (0)

It can be shown that the solution to (o) gives u =0.

(5) Comments. (i) For two-dimensional incompressible parallel flow, the
momentum equations are considerably simplified because the vertical
velocity v, vanishes.

(i) The flow is one-dimensional since # does not change with x and is a
function of y only.

2.6 Conservation of Energy: The Energy Equation
2.6.1 Formulation: Cartesian Coordinates

Consider an element dxdydz as a control volume in the flow field of Fig.
2.7. Fluid enters and leaves the element through its six surfaces. We
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introduce the principle of conservation of energy (first law of
thermodynamics). We begin with the statement

Energy cannot be created or

destroyed y dz
This statement is not very useful in dy| _—1
solving heat transfer problems. We dx

rewrite it as an equation and apply it

to the element: / "
z

Fig. 2.7
B
Rate of change of Net rate of internal and kinetic
internal and kinetic —  energy transport by convection
energy of element
C D (2.14)
Net rate of heat added __ Net rate of work done by
by conduction element on surroundings

Note that net rate in equation (2.14) refers to rate of energy added minus
rate of energy removed. The objective is to express each term in equation
(2.14) in terms of temperature to obtain what is known as the energy
equation. This formulation is detailed in Appendix A. In this section we
will explain the physical significance of each term in equation (2.14) and
its relation to temperature. The resulting energy equation will be presented
in various forms. The formulation assumes: (1) continuum, (2) Newtonian
fluid, and (3) negligible nuclear, electromagnetic and radiation energy
transfer.

(1) A = Rate of change of internal and Kinetic energy of element

The material inside the element has internal and kinetic energy. Internal
energy can be expressed in terms of temperature using thermodynamic
relations. Kinetic energy depends on the flow field.

(2) B = Net rate of internal and kinetic energy transport by convection

Mass flow through the element transports kinetic and thermal energy.
Energy convected through each side of the element in Fig. 2.7 depends on
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mass flow rate and internal and kinetic energy per unit mass. Mass flow
rate depends on density and velocity field. Thus this component of energy
balance can be expressed in terms of temperature and velocity fields.

(3) C = Net rate of heat addition by conduction

Energy is conducted through each side of the element in Fig. 2.7. Using
Fourier’s law this component of energy can be expressed in terms of
temperature gradient using equation (1.6).

(4) D = Net rate of work done by the element on the surroundings

The starting point in formulating this term is the observation that a moving
force by the element on the surrounding represents work done or energy
supplied by the element. That is

Rate of work = force x velocity

Thus we must account for all surface forces acting on each side of the
element as well as on the mass of the element (body forces). Examination
of Fig. 2.6 shows that there are three forces on each side for a total of 18
forces. Each force moves with its own velocity. Body forces act on the
mass of the element. Here the only body force considered is gravity.
Accounting for all the forces and their respective velocities determines the
net work done by the element on the surroundings.

Formulation of the four terms A, B, C and D and substitution into (2.14)
give the following energy equation (See Appendix A)

DT Dp
¢, = =V-kVT + BT + @, 2.15
P, B D T H (2.15)

where
cp = specific heat at constant pressure
k = thermal conductivity
p =pressure
[ = coefficient of thermal expansion (compressibility)
@ = dissipation function

The coefficient of thermal expansion f is a property of material defined as
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ﬁz—l[a—p} . (2.16)
plLoT »

The dissipation function @ is associated with energy dissipation due to
friction. It is important in high speed flow and for very viscous fluids. In
Cartesian coordinates @ is given by

2 2 2
S CRERE
Ox oy oz

ou o0’ 806w2(8w 8u)2 2Wou v ow)
== +|—=F+—| +|—+—| |- —+—+—] .
oy Ox 0z Oy ox Oz 3\ox oy oz

(2.17)

2.6.2 Simplified Form of the Energy Equation

Equation (2.15) is based on the following assumptions: (1) continuum, (2)
Newtonian fluid, and (3) negligible nuclear, electromagnetic and radiation
energy transfer. It can be simplified under certain conditions. Three cases
are considered.

(1) Incompressible fluid. According to (2.16), =0 for incompressible
fluid. In addition, thermodynamic relations show that

where ¢, is specific heat at constant volume. Equation (2.15) becomes

DT
pcpE:v-kVTwcp. (2.18)

(2) Incompressible constant conductivity fluid
Equation (2.18) is simplified further if the conductivity & is assumed
constant. The result is

DT 2
c¢c, —=kVT+ ud. 2.19a
PCp py u ( )
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Using the definition of total derivative and operator V, this equation is
expressed as

2 2 2
ot Ox oy Oz oyt ozt

Note that for incompressible fluid, the last term in the dissipation function,
equation (2.17), vanishes. Furthermore, if dissipation is negligible equation
(2.19b) is simplified by setting @ = 0.

(3) Ideal gas. The ideal gas law gives

p
=4 (2.20)
P RT
Substituting into (2.16)
ﬂ:_l(a_pj 1 1 2.21)
p\oT), pRT* T
Equation (2.21) into (2.15), gives
DT Dp
c,—=V-kVT +—+ ud. 222
Py o H (2.22)

This result can be expressed in terms of ¢, using continuity (2.2¢) and the
ideal gas law (2.20)

ch%=V~kVT—pV-I7+,u¢. (2.23)

2.6.3 Cylindrical Coordinates

The energy equation in cylindrical coordinates will be presented for
the simplified case based on the following assumptions:

(1) Continuum, (2) Newtonian fluid, (3) negligible nuclear, electromagnetic
and radiation energy transfer, (4) incompressible fluid, and (5) constant
conductivity. The energy equation for this case is
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oT 8T v, oT oT 1o( oT\ 1 8°T o°T
pPCyl 0, —+——tv. —|=k | r |t 5t | TP
ot or r 00 1074 r or or 2 00% 872

(2.24)

The dissipation function in cylindrical coordinates for incompressible fluid
is given by

2 2 2 2
D=2 avr +2 l%_}_& +2 802 + %_0_94_16&
or r 00 r oz or r r 0¢
1ov, v, (6v, 0. Y
+ | = + + + .
r 06 Oz Oz or

2.6.4 Spherical Coordinates

(2.25)

The energy equation in spherical coordinates will be presented for the
simplified case based on the following assumptions:

(1) Continuum, (2) Newtonian fluid, (3) negligible nuclear, electromagnetic
and radiation energy transfer, (4) incompressible fluid, and (5) constant
conductivity. The energy equation for this case is

_Jr_vr_ - _
ot or r O0p rsing 0@

2
/{Li(,ﬂ 8Tj+ L (sin¢a—TJ+—l a—T}L,ucD.

(8T oT ;0T v, 6T]
PCp -t

72 or E r?sing 8_¢ r2sin? ¢ 062
(2.26)

The dissipation function in cylindrical coordinates for incompressible fluid
is given by



2.6 Conservation of Energy: The Energy Equation 43
oo, ¥ (100 (1w vy cotg)’
@:2 i + __¢+U_r + - _€+U_”+¢—
or rog r rsing 00 r r
[ o(v) 100,] [si o0, |
BB P 2 D S/ I LT % |4 1 0
or\ r r O¢ r O¢g\rsing ) rsing 06

r 2
N +ri(”_eﬂ . @27)
| ¥sing O¢ or

Example 2.3: Flow between Parallel Plates

A fluid flows axially (x-direction)
between parallel plates. Assume: 7
Newtonian fluid, steady state, .
constant density and conductivity,
and parallel streamlines. Taking
dissipation  into  consideration,
write the energy equation for this flow.

yyYy

(1) Observations. (i) For parallel streamlines the vertical component
v = 0.(ii) Density and thermal conductivity are constant. (iii) Dissipation
must be included in the energy equation. (iv) The geometry is Cartesian.

(2) Problem Definition. Determine the energy equation for parallel flow.

(3) Solution Plan. Start with the energy equation in Cartesian coordinates
for constant density and conductivity and simplify it for this special case.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state,
(4) axial flow, (5) constant density and conductivity, (6) negligible nuclear,
electromagnetic and radiation energy transfer, and (7) parallel streamlines.

(ii) Analysis. The energy equation in Cartesian coordinates for
incompressible constant conductivity fluid is given by equation (2.19b)

(aT ar  orT 6Tj [azr T 8T
¢, + + =k +

— tu— v— w— + =+ @, 219b
o0 ox oy oz oxt oy’ 822] ub 210
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where the dissipation function in Cartesian coordinates is given by equation
2.17)

2 2 2
S ERCRC
Ox oy 0z
ou vl Gvéwz[éw Gu)z 2Wou v ow)
H|—+—=| +|=+—| +|—+—| |- —F+—+—] .
oy Ox oz Oy ox 0Oz 3\ox oy oz

(2.17)
Based on the above assumptions, these equations are simplified as follows:

Steady state: a—T =0 (a)
ot
. 0
Axial flow: w=—-=0. (b)
0z
Parallel flow: v=0. (c)
Substituting (a)-(c) into (2.19b), gives
or _ [8*T o'T
— =kt —— |+ D . d
PP o [8}62 5)/2} “® @

The dissipation function (2.17) is simplified using (b) and (c)

2 2 2
RO N
ox oy 3\ ox

Continuity equation (2.3) gives

—=0. "

2
ou
@‘(a} | ®

Using (f) into (e) gives
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Substituting (g) into (d) gives the energy equation

pcpu—=k| —+ — (h)
Oy

or (o1 1), (ou)
a o o) " ( J |
(iii) Checking. Dimensional check: Each term in (h) has units of
W/m’ .
Limiting check: 1f the fluid is not moving, the energy equation should
reduce to pure conduction. Setting # =0 in (h) gives

o’r  8°T
—2+—2:O.
ox oy

This is the correct equation for this limiting case.

(5) Comments. In energy equation (h), properties c p,k, p and u
represent fluid nature. The velocity u represents fluid motion. This
confirms the observation made in Chapter 1 that fluid motion and nature
play a role in convection heat transfer (temperature distribution).

2.7 Solutions to the Temperature Distribution

Having formulated the three basic laws, continuity (2.2), momentum (2.8)
and energy (2.15), we examine the mathematical consequence of these
equations with regard to obtaining solutions to the temperature distribution.
Table 2.1 lists the governing equations and the unknown variables.

TABLE 2.1
] No. of
Basic law Equations Unknowns
Energy 1 T |u|v|w Pk |k
Continuity 1 ul| ol w P
Momentum 3 u,ov | wipiip|u
Equation of State 1 T p |pP
Viscosity relation 1 T p y7i
u=u(p,T)
Conductivity relation
1 T )4 k
k=k(p,T)
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The following observations are made regarding Table 2.1:

(1) Although specific heats ¢, and c,, and the coefficient of thermal
expansion [ appear in the energy equation, they are not listed in Table 2.1
as unknown. These properties are determined once the equation of state is
specified.

(2) For the general case of variable properties, the total number of
unknowns is 8: 7, u, v, w, p, p, , and k. To determine the temperature
distribution, the eight equations must be solved simultaneously for the eight
unknowns. Thus the velocity and temperature fields are coupled.

(3) For the special case of constant conductivity and viscosity the number
of unknowns is reduced to six: 7, u,U, w, p and p, Thus the six equations,
energy, continuity, momentum and state must be solved simultaneously to
determine the temperature distribution. This case is defined by the largest
dashed rectangle in Table 2.1.

(4) For the important case of constant density (incompressible fluid),
viscosity and conductivity, the number of unknowns is reduced to five: 7,
u, v, w, p. This case is defined by the second largest dashed rectangle in
Table 2.1. However a significant simplification takes place: the four
equations, continuity, and momentum, contain four unknowns: u, v, w and
p, as defined by the smallest rectangle in Table 2.1. Thus the velocity and
temperature fields are uncoupled. This means that the velocity field can be
determined first by solving the continuity and momentum equations
without using the energy equation. Once the velocity field is determined, it
is substituted into the energy equation and the resulting equation is solved
for the temperature distribution.

2.8 The Boussinesq Approximation

Fluid motion in free convection is driven by density change and gravity.
Thus the assumption of constant density cannot be made in the analysis of
free convection problems. Instead an alternate simplification called the
Boussinesq approximation is made. The basic approach in this
approximation is to treat the density as constant in the continuity equation
and the inertia term of the momentum equation, but allow it to change with
temperature in the gravity term. We begin with the momentum equation for
constant viscosity
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DV 1 > >
p—=,0g—Vp+—,uV(V'V)+,uV2V. (2.9)
Dt 3

This equation is valid for variable density p . However, we will assume that
L 1is constant in the inertia (first) term but not in the gravity term pg . Thus
(2.9) is rewritten as

DV -
Po o= pE=Vp+ ViV, (a)
Dt
where p_ is fluid density at some reference state, such as far away from

an object where the temperature is uniform and the fluid is either stationary
or moving with uniform velocity. Thus at the reference state we have

DV _v2j o). (b)
Dt

o0

Applying (a) at the reference state oo and using (b), gives
poog_vpoo:()' (C)
Subtracting (c) from (a)
DV . -
P = (P=PE V(PP )+ VT )

The objective of the next step is to eliminate the ( p — p,,) term in (d) and

express it in terms of temperature difference. This is accomplished through
the introduction of the coefficient of thermal expansion £, defined as

ﬂz—l[a—p} . (2.16)
plLoT »

Pressure variation in free convection is usually small and in addition, the
effect of pressure on /3 is also small. In other words, in free convection [

can be assumed independent of p. Thus we rewrite (2.16) as
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1 dp
p= o dTl (e

We further note that over a small change in temperature the change in
density is approximately linear. Thus we rewrite (e) as

1 p-p,
ﬂN P T_Too . (D
This result gives
P=Pu==PpP(T-T,). (2.28)

Equation (2.28) relates density change to temperature change. Substituting
(2.28) into (d)

%Z_ﬁg(T‘Tw)—LV(p—pw)+vV2V. (2.29)

o0

The simplification leading to (2.29) is known as the Boussinesq
approximation. The importance of this approximation lies in the
elimination of density as a variable in the analysis of free convection
problems. However, the momentum and energy equations remain coupled.

2.9 Boundary Conditions

To obtain solutions to the flow and temperature fields, boundary
conditions must be formulated and specified. Boundary conditions
are mathematical equations describing what takes place physically at
a boundary. In convection heat transfer it is necessary to specify
boundary conditions on the velocity and temperature. The following
are commonly encountered conditions.

(1) No-slip condition. Fluid velocity vanishes at a stationary boundary
such as the wall of a tube, surface of a plate, cylinder, or sphere. Thus all
three velocity components must vanish. In Cartesian coordinates this
condition is expressed mathematically as

V(x,0,z,6)=0, (2.30a)
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where y is the coordinate normal to the surface and the origin is aty = 0.
It follows from the above that

u(x,0,z,t) =v(x,0,z,¢) = w(x,0,2z,1) = 0. (2.30b)

Equation (2.30) is referred to as the no-slip condition.

(2) Free stream condition. Far away from an object it is common to
assume a uniform or zero velocity. For example, a uniform x-component
velocity at y = o is expressed as

u(x,o,z,t) =V, . (2.31)
Similarly, uniform temperature far away from an object is expressed as

T(x,00,z,t) =T, . (2.32)
(3) Surface thermal conditions. Two common surface thermal conditions

are used in the analysis of convection problems. They are:

(i) Specified temperature. This condition is written as
T(x,0,z,t)=Tj. (2.33)

Note that surface temperature 7, need not be uniform or constant. It can
vary with location x and z as well as time.

(ii) Specified heat flux. The boundary condition for a surface which is
heated or cooled at a specified flux is expressed as

_ k aT(x7OJ ZJ t) — + 14

tq,. 2.34
P 0 (2.34)

Note that in (2.34) the heat flux g points in the positive y-direction. It
need not be uniform or constant. It can vary with location x and z as well as
time.

Example 2.4: Heated Thin Liquid Film Flow over an Inclined Surface

A thin liquid film flows axially down an inclined plate. The film thickness
H is uniform. The plate is maintained at uniform temperature T, and the
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free surface is heated with a flux q, .

Write the velocity and thermal boundary
conditions at these two surfaces.

(1) Observations. (i) The free surface is
parallel to the inclined plate. (ii) The no-
slip condition applies at the inclined
surface. (iii) The temperature is specified
at the plate. The flux is specified at the
free surface. (iv) Cartesian geometry.

(2) Problem Definition. Write the boundary conditions at the two surfaces
for the velocity components # and v and for the thermal field.

(3) Solution Plan. Select an origin and coordinate axes. Identify the
physical flow and thermal conditions at the two surfaces and express them
mathematically.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) negligible
shearing stress at the free surface, and (4) constant film thickness.

(i) Analysis. The origin and Cartesian coordinate axes are selected as
shown. The velocity and thermal boundary conditions at the two surfaces
are:

(1) No-slip condition at the inclined surface:
u(x,0)=0, (a)
(x,0)=0. (b)
(2) Free surface is parallel to inclined plate:

v(x,H)=0. (©)

(3) Negligible shear at the free surface: Shearing stress for a Newtonian
fluid is given by equation (2.7a)

ov 0O
7, = y(a—z 4 5”] . (2.7a)

Applying (2.7a) at the free surface and using (c), gives
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ou(x,H) _

0. d
o (d)

(4) Specified temperature at the inclined surface:
T(x,0)=T,. (e)

(5) Specified heat flux at the free surface. Application of equation (2.34)
gives

0T (x,0,z,t¢ ”
S TTEOED 0
oy

(iii) Checking. Dimensional check: Each term in (f) has units of flux.

(5) Comments. (i) To write boundary conditions, origin and coordinate
axes must be selected first.

(i1) Since the heat flux at the free surface points in the negative y-direction,
a minus sign is introduced on the right hand side of equation (f).

2.10 Non-dimensional Form of the Governing Equations:
Dynamic and Thermal Similarity Parameters

Useful information can be obtained without solving the governing
equations by rewriting them in dimensionless form. This procedure is
carried out to: (1) identify the governing parameters, (2) plan experiments,
and (3) guide in the presentation of experimental results and theoretical
solutions. To appreciate the importance of this process we consider an
object of characteristic length L which is exchanging heat by convection
with an ambient fluid. For simplicity we assume constant properties. In
general the unknown variables are: u, v, w, p and T. These variables
depend on the four independent variables x, y, z and ¢. In addition various
quantities affect the solutions. They are: p, T, V,, T, L, g and fluid
properties ¢, k, [, 4, and p. Furthermore, the geometry of the object is
also a factor. To map the effect of these quantities experimentally or
numerically for a single geometry requires extensive effort. However, in
dimensionless formulation these quantities are consolidated into four
dimensionless groups called parameters. This dramatically simplifies the
mapping process.



52 2 Differential Formulation of the Basic Laws

2.10.1 Dimensionless Variables

To non-dimensionalize the dependent and independent variables, we use
characteristic quantities that are constant throughout the flow and
temperature fields. These quantities are g, L, T, T, P, Py.and V.

We consider Cartesian coordinates and define the following dimensionless
dependent and independent variables:

oV e pmpe) o (ToL) €
Voo pwsz (Ts _Too) g
(2.35)
* * * * Voo
X :i, y :X’ z ZE’ ! =—t
L L L L

Note that in the above the subscript oo refers to the characteristic
condition, say far away from the object. V, is the magnitude of the

velocity vector at o and g is the magnitude of the gravitational
acceleration vector. Equation (2.35) is first used to construct the
dimensionless form of the operators V and D/ Dt

vy.0,0 . 90_ 0 4 % _+ 0 . Lyt s
ox 0Oy 0z Lox* Loy" Loz" L
2 2 2
vi= 82+ 82+ 82 - 28*2+ 28*2+ 28*2 :sz*z’
ox° oy® 0z° Lox Loy L0z L
(2.36b)
D = ]3 = Veo D* ) (2.36¢)
Dt pDLt*/v,) L Dt
2.10.2 Dimensionless Form of Continuity
Substituting (2.35) and (2.36) into continuity equation (2.2¢) gives
Do .7 =0, (2.37)

Dt

We note that the dimensionless form of continuity reveals no parameters.
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2.10.3 Dimensionless Form of the Navier-Stokes Equations of Motion

Substituting (2.35) and (2.36) into (2.29) gives

CUSSEL R SR e (2.38)
DI Re Re

where the parameters Re and Gr are the Reynolds and Grashof numbers,
defined as

V.L V_L
Re=Plot ,  Reynolds number, (2.39)
u 1%
T,-T,)L
Gr = 'Bg(q—zw) , Grashof number. (2.40)
14

2.10.4 Dimensionless Form of the Energy Equation
We consider two special cases of the energy equation.
(i) Incompressible, constant conductivity

Substituting (2.35) and (2.36) into (2.19) gives
Ec

DT” 1 Ec
Re

_ = o, (2.41a)
Dt RePr

V2T" +

where the parameters Pr and Ec are the Prandtl and Eckert numbers,
defined as

c
Pr= 2l __H 'p -V , Prandtl number, (2.42)
k  klpc, «a
2
Ec=——>——, Eckert number. (2.43)
Cp (TS - Too )

The dimensionless dissipation function @ is determined by substituting
(2.35) and (2.36) into (2.17)

#\2 £\ 2
e | R U (2.44)
Ox oy
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(ii) Ideal gas, constant conductivity and viscosity
Substituting (2.35) and (2.36) into (2.22) yields
Dp°  Ec .

DT 1 _u
= VAT + Ec——+ —". (2.41b)
Dt* RePr Dt Re

2.10.5 Significance of the Governing Parameters

The non-dimensional form of the governing equations (2.37), (2.38), and
(2.41) are governed by four parameters: Re, Pr, Gr, and Ec. Thus the
temperature solution for convection can be expressed as

T* :f(x*’y*,z*’[*; Re, Pr, Gr, EC) (245)

The following observations are made:

(1) The Reynolds number is associated with viscous flow while the Prandt!
number is a heat transfer parameter which is a fluid property. The Grashof
number represents buoyancy effect and the Eckert number is associated
with viscous dissipation and is important in high speed flow and very
viscous fluids.

(2) In dimensional formulation six quantities, p., T, T, V.., L, g and
five properties c,,, k B, u, and p, affect the solution. In dimensionless
formulation these factors are consolidated into four dimensionless
parameters: Re, Pr, Gr and Ec.

(3) The number of parameters can be reduced in two special cases: (i) If
fluid motion is dominated by forced convection (negligible free
convection), the Grashof number can be eliminated. (ii) If viscous
dissipation is negligible, the Eckert number can be dropped. Thus under
these common conditions the solution is simplified to

T = f(x,y .,z ,t"; Re, Pr) (2.46)

(4) The implication of (2.45) and (2.46) is that geometrically similar bodies
have the same dimensionless velocity and temperature solutions if the
similarity parameters are the same for all bodies.

(5) By identifying the important dimensionless parameters governing a
given problem, experimental investigations can be planned accordingly.
Instead of varying the relevant physical quantities, one can vary the
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similarity parameters. This will vastly reduce the number of experiments
needed. The same is true if numerical results are to be generated.

(6) Presentation of results such as heat transfer coefficient, pressure drop,
and drag, whether experimental or numerical, is most efficiently done when
expressed in terms of dimensionless parameters.

2.10.6 Heat Transfer Coefficient: The Nusselt Number

Having identified the important dimensionless parameters in convection
heat transfer we now examine the dependency of the heat transfer
coefficient # on these parameters. We begin with equation (1.10) which
gives A

~ —k 0T(x,0,2)
(T,-T,) o

(1.10)

Using (2.30) to express temperature gradient and / in dimensionless form,
(1.10) becomes

h_x =—x* aT* (X*’O’Z*)

(4.47)
k oy*

where the dimensionless heat transfer coefficient 4x/k is known as the

Nusselt number. Since it depends on the location x™* it is referred to as the

local Nusselt number and is given the symbol Nu .. Thus we define

hx
Ny ="x 2.48
U= (2.48)

Similarly, the average Nusselt number Nu, _for a surface of length L is
based on the average heat transfer coefficient /2 and is defined as

— hL
Nu, =—, (2.49)
k
where 4 for the one-dimensional case is given by
L
h :% j h(x)dx . (2.50)
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Since T depends on four parameters, it follows from (2.45), (2.47) and
(2.48) that the local Nusselt number also depends on the same four
parameters and is expressed as

Nu, = f(x*;Re, Pr,Gr, Ec). (2.51)

This is an important result since it suggests how experiments should be
planned and provides an appropriate form for correlation equations for the
Nusselt number. As was pointed out in Section 2.10.5, for the special case
of negligible buoyancy and viscous dissipation, (2.51) is simplified to

Nu, = f(x*;Re, Pr). (2.52)
Similarly, for free convection with negligible dissipation we obtain

Nu, = f(x*; Gr, Pr). (2.53)
Equations (2.51)—(2.53) are for the local Nusselt number. For the average

Nusselt number, which is based on the average heat transfer coefficient, the

variable x"is eliminated according to (2.50). Thus (2.51) takes the form

Nu;, =——= f(Re, Pr, Gr, Ec). (2.54)

»‘i'

Equations (2.52) and (2.53) are similarly modified.

It should be noted that much has been learned by expressing the
governing equations in dimensionless form without solving them.
However, although we now know what the Nusselt number depends on, the
form of the functional relations given in (2.51)—(2.54) can only be
determined by solving the governing equations or through experiments.

Example 2.5: Heat Transfer Coefficient for Flow over Cylinders

You carried out two experiments to determine the average heat
transfer coefficient for flow normal to a cylinder. The diameter of
one cylinder is D; = 3 cm and that of the other is D; = 5 cm. The free
stream velocity over D; is V; = 15 m/s and the velocity over D; is
V, =98 m/s. Measurements showed that the average heat transfer
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coefficient for Dy is h, =244 W/m’-°C and for D, is h,=144 Wim’-
°C. In both experiments you used the same fluid. To check your
results you decided to compare your data with the following
correlation equation for flow normal to a cylinder:

Nup =hTD:CRe[?'6Pr”, (a)

where C and n are constants. What do you conclude regarding the
accuracy of your data?

(1) Observations. (i) Experimental results for 4, and /4, should be
compared with those predicted by the correlation equation. (ii) The heat
transfer coefficient appears in the definition of the Nusselt number Nu ,.
(iii) The correlation equation can not be used to determine 4, and /4, since
the fluid and the constants C and » are not given. However, the equation
can be used to determine the ratio /4 /h,. (iv) The absence of the Grashof
and Eckert numbers in the correlation equation implies that it is applicable
to cases where buoyancy and viscous dissipation are negligible.

(2) Problem Definition. Determine h, 1/ f?z using experimental data and the

correlation equation.

(3) Solution Plan. Apply the correlation equation to determine /71/ }_12 and

compare with the experimentally obtained ratio.
(4) Plan Execution.

(i) Assumptions. (i) Correlation equation (a) is valid for both
experiments. (ii) Fluid properties are constant.

(ii) Analysis. Noting that Nuy, = hTD and Re, = D , equation (a)
14
1S rewritten as
o (vD)"*
T = C(Tj Pl"n . (b)
where
D = diameter, m
h = heat transfer coefficient, W/m>-°C

k = thermal conductivity, W/m-"C
Pr = Prandtl number
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V' = free stream velocity, m/s
v = kinematic viscosity, m%/s

Solving equation (b) for h
__ Ckroepr”
h =~z - (c)

. 4
VO 6D0

Applying (c) to the two experiments

_ Ckv,"oppn

hy = o.é 04 (d)
v D,

and

27 069 04
v D,

(e)

Taking the ratio of (d) and (e) gives

% 0.6D 0.4

1 2

=| -] 2] ®
~)

(iii) Computations. Substituting the experimental data for V), V,, D,
and D, into (f)

ﬁ_ 15(m/s) 06 5(cm) 04 _o04
hy |98(m/s)| |3(cm)|

=1

The experimentally obtained ratio }71/ /_12 is

h _244(Wm® - C) 6
h, 144(W/m?-°C)

The two results differ by a factor of 4.2. This points to an error in the
experimental data.

(iv) Checking. Dimensional check: Equation (f) is dimensionally
consistent since each term is dimensionless.
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Limiting check: 1f V, =V, and Dy = D,, then E = 52. (f) confirms this.

Qualitative check: If V is increased, h should increase. This is
substantiated by (c).

(5) Comments. (i) The assumption that the correlation equation is valid
for both experiments is critical. If, for example, the effects of viscous
dissipation and/or buoyancy are significant in the two experiments,
equation (a) is not applicable.

(i) The analysis suggests that there is an error in the experimental data.
However, it is not possible to establish whether one experiment is wrong or
both are wrong.

(ii1) A more conclusive check can be made if C, n and the fluid are known.

2.11 Scale Analysis

Scale analysis, or scaling, is a procedure by which estimates of useful
results are obtained without solving the governing equations. It should be
emphasized that scaling gives order of magnitude answers, and thus the
approximation is crude. Scaling is accomplished by assigning order of
magnitude values to dependent and independent variables in an equation.
Excellent applications of scaling in heat transfer is found in reference [2].

Example 2.6: Melting Time of Ice Sheet

An ice sheet of thickness L is at the

freezing temperatureT Iz One side is ; x. solid

suddenly maintained at temperature T, ! -

which is above the freezing temperature. L 2 o

The other side is insulated. Conserva- T liquid
0

tion of energy at the melting front gives

e

3 (a)
where

k = thermal conductivity
T = temperature distribution in the liquid phase
t = time
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X = coordinate
X; =interface location
L = latent heat of fusion

Use scale analysis to determine the time needed for the entire sheet to melt.

(1) Observations. (i) The entire sheet melts when x; = L. (ii) The largest
temperature difference is 7, —T' f- (ii1) Scaling of equation (a) should be
helpful in determining melt time.

(2) Problem Definition. Determine the time ¢ =7, when x;(#)=L.

(3) Solution Plan. Apply scale analysis to equation (a).
(4) Plan Execution.

(i) Assumptions. (i) Sheet is perfectly insulated atx = L. (ii) Liquid
phase is stationary.

(ii) Analysis. Equation (a) is approximated by

AT Ax;
—k—=pL—*. b
Ax r At ®)

We now select scales for the variables in (a).

scale for AT : AT ~(T, =T;)
scale fordx: Ax~L

scale forAx; : Ax; ~L

scale forAt: At ~1¢,

Substituting the above scales into (a)

T L

L—.
L P t,
Solving for melt time 7,
L0’
ty ~ 25 ©
k(T, —=Ty)

(iii) Checking. Dimensional check: Each term in (c) should have units
of time:
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_ p(kgfm)L(/kg)L? (m?) _
k(W/m-"C)(T, ~T;)(°C)

o

Limiting check: (1) If the latent heat of fusion . is infinite, melt time
should be infinite. Setting .£= o0 in (c) gives 7, = oo.

(2) If sheet thickness is zero, melt time should vanish. Setting L = 0 in (c)
gives 7, =0.

Qualitative check: Melt time should be directly proportional to mass, latent
heat and thickness and inversely proportional to conductivity and
temperature difference (7, — T ’ ). This is confirmed by solution (c).

(5) Comments. (i) With little effort an estimate of the melt time is
obtained without solving the governing equations for the two phase region.

(11) An exact solution based on quasi-steady process gives the melt time 7,
as
pLI?

=== d
T )

Thus scaling gives an approximate answer within a factor of 2.
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2.1

2.2

23

2.4.

2.5

2.6

2 Differential Formulation of the Basic Laws

PROBLEMS

[a] Consider transient (unsteady), incompressible, three dimensional
flow. Write the continuity equation in Cartesian coordinates for this
flow.

[b] Repeat [a] for steady state.

Far away from the inlet of , -
a tube, entrance effects @ B -
diminish and streamlines

become parallel and the
flow is referred to as fully
developed.  Write  the

continuity equation in the fully developed region for incompressible
fluid.

fully developed

Consider incompressible flow  V,
between parallel plates. Far .
away from the entrance the axial
velocity component does not fully developed
vary with the axial distance. ’

[a] Determine the velocity component in the y-direction.

[b] Does your result in [a] hold for steady as well as unsteady flow?
Explain.

The radial and tangential velocity
components for incompressible

flow through a tube are zero. Show Q >

Fy

that the axial velocity does not
change in the flow direction. Is
this valid for steady as well as
transient flow?

Show that 7, =7 ..
A fluid flows axially between - 4
parallel plates. Assume: Newto- - i
nian fluid, steady state, constant
density, constant viscosity, neg-
ligible gravity, and parallel streamlines. Write the three components
of the momentum equations for this flow.




2.7

2.8

2.9

2.10

2.11

2.12
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A fluid flows axially (z-direction) through a tube. Assume: Newto-
nian fluid, steady state, constant density, constant viscosity,
negligible gravity, and parallel streamlines. Write the three
components of the momentum equations for this flow.

Consider two-dimensional flow (x,)) between parallel plates. Assume:
Newtonian fluid, constant density and viscosity. Write the two
components of the momentum equations for this flow. How many
unknown do the equations have? Can they be solved for the
unknowns? If not what other equation(s) is needed to obtain a
solution?

Consider two-dimensional, (7,z) flow through a tube. Assume:
Newtonian, constant density and viscosity. Write the two
components of the momentum equations for this flow. How many
unknowns do the equations have? Can the equations be solved for the
unknowns? If not what , p

other equation(s) is needed 1 =
to obtain a solution? > >
In Chapter 1 it is stated that

fluid motion and fluid nature play a role in convection heat transfer.
Does the energy equation substantiate this observation? Explain.

L]

A fluid flows axially (x-
direction) between parallel
plates. Assume: Newtonian
fluid, steady state, constant
density, constant viscosity,
constant conductivity, negligible gravity, and parallel streamlines.
Write the energy equation for this flow.

Y
-
Yy

An ideal gas flows axially (x-direction) between parallel plates.
Assume: Newtonian fluid, steady state, constant viscosity, constant
conductivity, negligible gravity, and parallel stream- lines. Write the
energy equation for this flow.

Consider two-dimensional free convection over a Tu
vertical plate. Assume: Newtonian fluid, steady
state, constant viscosity, Boussinesq approximation, i l g
and negligible dissipation. Write the governing '
equations for this case. Can the flow field be *
determined independent of the temperature field?
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2.14

2.15

2.16

2.17

2 Differential Formulation of the Basic Laws

Discuss the condition(s) under which the Navier-Stokes equations of
motion can be solved independent of the energy equation.

Consider a thin film of liquid condensate which is
falling over a flat surface by virtue of gravity.
Neglecting variations in the z-direction and assuming l g
Newtonian fluid, steady state, constant properties, and

parallel streamlines *

[a] Write the momentum equation(s) for this flow. Y
[b] Write the energy equation including
dissipation effect.

A wedge is maintained at 7 along one side and 7, along the opposite
side. A solution for the flow field is obtained based on Newtonian

fluid and constant properties. The y
fluid approaches the wedge with T
. . V a 1 X
uniform velocity and temperature. ©
Examination of the solution 7. @

* T
shows that the velocity distribu- \

tion is not symmetrical with
respect to the x-axis. You are
asked to support the argument that the solution is incorrect.

Starting with the equations of motion for constant properties and
Boussinesq model

DY sar-T)8-Lvip-p) vV,
Dt P

and the energy equation for an ideal gas with constant k

DT 2. Dp
c,—=kV'T +—+ ud,
P Dy b ”

show that the dimensionless form of these equations is

DV* - GI; T*g'* —V*P* -I—LV*ZI;*,
Dt Re Re

and
pT" 1 DP"  Ec

_ VI E=——+ ="
Dt RePr Dt Re
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2.18 Consider two-dimensional (x and y), steady, constant properties,

2.19

parallel flow between two plates separated by a distance H. The
lower plate is stationary while the upper plate moves axially with a
velocitylU ,. The wupper plate is maintained at uniform
temperature 7, and the lower

plate is cooled with a flux g . /T U
Taking into consideration
dissipation, write the Navier-
Stokes equations of motion, ] Vox] !
energy equation and boundary

conditions at the two plates.

¥y Y

A shaft of radius 7 rotates concentrically

inside a sleeve of inner radius 7,.

Lubrication oil fills the clearance between A e T,
the shaft and the sleeve. The sleeve is

maintained at uniform temperature?, . shaft y
Neglecting axial variation and taking into

consideration  dissipation, write the

Navier-Stokes equations of motion, energy

equation and boundary conditions for this
flow. Assume constant properties.

2.20 A rod of radius 7; moves axially with velocity U, inside a concentric

tube of radiusr,. A fluid having constant properties fills the space
between the shaft and tube. The tube surface is maintained at uniform
temperature 7. Write the Navier-Stokes equations of motion,
energy equation and surface boundary conditions taking into
consideration dissipation. Assume that the streamlines are parallel to
the surface.

I

‘ L’,l’)
Q) ) 0« Cz —
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2.21 A rod or radius 7; rotates concentrically

inside a tube of inner radiusz, . Lubrication 7,
oil fills the clearance between the shaft and Lo

the tube. Tube surface is maintained at

uniform temperature 7, . The rod generates '

heat volumetrically at uniform rateq” .
Neglecting axial variation and taking into
consideration dissipation, write the Navier-
Stokes equations of motion, energy
equation and boundary conditions for this
flow. Assume constant properties.

2.22 Air flows over the two spheres shown. The ——> @

radius of sphere 2 is double that of sphere 1. Vi
However, the free stream velocity for sphere

1 is double that for sphere 2. Determine the —
ratio of the average heat transfer coefficients v,
h, | h, for the two spheres.

2.23 The average Nusselt number for laminar free convection over an

isothermal vertical plate is determined analytically and is given by

hlL 4] Gr o
Nu, =—=— L Pr),
up 2 3{ 4 } f(Pr)

where G7, is the Grashof number based on the length of the plate L

and f{Pr) is a function of the Prandtl number. Determine the percent
change in the average heat transfer coefficient if the length of the
plate is doubled.

2.24 An experiment was performed to determine the average heat transfer

coefficient for forced convection over spheres. In the experiment a
sphere of diameter 3.2 cm is maintained at uniform surface
temperature. The free stream velocity of the fluid is 23.4 m/s.
Measurements showed that the average heat transfer coefficient is

62 W/m*-°C.

[a] Predict the average heat transfer coefficient for the same fluid
which is at the same free stream temperature flowing over a sphere of
diameter 6.4 cm which is maintained at the same surface
temperature. The free stream velocity is 11.7 m/s.
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[b] Which sphere transfers more heat?

Atmospheric air at 25 °C flows with a mean velocity of 10m/s
inside a tube. The surface of the tube is maintained at 115 °C.

[a] Calculate the Eckert number. Can dissipation be neglected?

[b] Use scale analysis to compare the magnitude of radial
conduction, k0?7 /or?, with dissipation, u (0v,/ or)?. s
dissipation negligible compared to conduction?

An infinitely large plate is immersed in an infinite fluid. The plate is
suddenly moved along its plane with velocity U,. Neglect gravity
and assume constant properties.

[a] Show that the axial Navier-Stokes
equation is given by
p@_u = ,U_azu
ot oy? .

Vi o(t)

0 X {—-I

[b] Due to viscous forces, the effect of
plate motion penetrates into the fluid. The
penetration depth  O(¢) increases with

time. Use scaling to derive an expression foro(7) .

An infinitely large plate is immersed in an infinite fluid at uniform
temperature 7;. The plate is suddenly maintained at temperature 7.

Assume constant properties and neglect gravity.
[a] Show that the energy equation is given by
or  o'T
—=a—_—.
ot oy

L=

[b] Due to conduction, the effect of plate
temperature propagates into the fluid.
The penetration depth O(¢) increases

y a(1)

with time. Use scaling to derive an 0 x T
expression for o (z).

Y
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EXACT ONE-DIMENSIONAL SOLUTIONS

3.1 Introduction

Although the energy equation for constant properties is linear, the Navier-
Stokes equations of motion are non-linear. Thus, in general, convection
problems are non-linear since the temperature field depends on the flow
field. Nevertheless, exact solutions to certain simplified cases can easily be
constructed. One of the objectives of this chapter is to develop an
appreciation for the physical significance of each term in the equations of
continuity, Navier-Stokes and energy and to identify the conditions under
which certain terms can be neglected. Simplification of the governing
equations is critical to constructing solutions. The general procedure in
solving convection problems is, whenever possible, to first determine the
flow field and then the temperature field.

3.2 Simplification of the Governing Equations

Simplified convection models are based on key assumptions that lead to
tractable solutions. We will present these assumptions and study their
application to the governing equations.

(1) Laminar flow. The assumption of laminar flow eliminates the effect of
fluctuations. Mathematically this means that all time derivatives are set
equal to zero at steady state.

(2) Constant properties. Returning to Table 2.1, we recall that for
constant density (incompressible fluid), viscosity and conductivity, the
velocity and temperature fields are uncoupled. This means that the velocity
field can be determined first by solving the continuity and momentum
equations without using the energy equation.
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(3) Parallel streamlines. Consider YA
the parallel flow of Fig. 3.1. This X
flow pattern is also referred to as
fully developed. Since the velocity
component normal to a streamline is
zero, it follows that

yYyY

Fig. 3.1

v=0. 3.1

Using this result into the continuity equation for two-dimensional constant
density fluid, gives
ou
—=0. (3.2)
ox

Since (3.2) is valid everywhere in the flow field, it follows that

2
o _ 0. (3.3)

o’
Significant simplification is obtained when these results are substituted in
the Navier-Stokes and energy equations. This is illustrated in Examples 3.1,
3.2 and 3.3. It should be emphasized that equations (3.1)-(3.3) are valid for
constant density flow with parallel streamlines.

(4) Negligible axial variation of temperature. For the case of axial flow
in the x-direction, this condition leads to

oT

—=0. 3.4
ox

Equation (3.4) is exact for certain channel flows and a reasonable

approximation for others. The following are conditions that may lead to the

validity of (3.4):

(1) Parallel streamlines.
(2) Uniform surface conditions.
(3) Far away from the entrance of a channel (very long channels).

In cases where (3.4) is valid everywhere in the thermal field, it follows that
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2
Z—f =0. 3.5)
X

Similar results are obtained for certain rotating flows. In Fig. 3.2 a shaft
rotates concentrically inside a sleeve. The streamlines are concentric
circles. For axisymmetric conditions and no axial variations, we have

oT - 7_7"‘\\

—=0. (3.6) To gy
o6 V72 O
It follows that : n/?‘\'". |
2 ‘\ \@ : |
a_z =0. (3.7) \\ / %

ol N

Fig. 3.2

3.3 Exact Solutions

The simplifications described in the previous section will be invoked to
obtain exact solutions. We will consider various cases to show how these
assumptions lead to tractable differential equations and solutions to the
temperature distribution [1-4].

3.3.1 Couette Flow

In this class of flow configuration a fluid between parallel plates is set in
motion by moving one or both plates in their own plane. Fluid motion can
also be driven by axial pressure gradient. A general case of Couette flow
includes the effects of both plate motion and pressure gradient. The plates
are assumed infinite and thus there are no end effects. It will be shown that
the streamlines in this flow are parallel to the plates.

Example 3.1: Couette Flow with Dissipation

Two infinitely large parallel plates form a channel of width H. An
incompressible fluid fills the channel. The lower plate is stationary while
the upper plate moves with constant velocity U,. The lower plate is
insulated and the upper plate is maintained at uniform temperature T, .

Taking into consideration dissipation, determine the temperature
distribution in the fluid and the rate of heat transfer at the moving plate.
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Assume laminar flow and neglect gravity, end effects and pressure
variation in the channel.

(1) Observations. (i) Moving plate sets fluid in motion in the x-direction.
(i) Since plates are infinite, the flow field does not vary in the axial
direction x. (iii) Pressure gradient is zero. (iv) The fluid is incompressible
(constant density). (v) Use Cartesian coordinates.

(2) Problem Definition. Determine the velocity and temperature
distribution.

(3) Solution Plan. Apply continuity and Navier-Stokes equations to
determine the flow field. Apply the energy equation to determine the
temperature distribution.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state,
(4) laminar flow, (5) constant properties (density, viscosity, conductivity
and specific heat), (6) infinite plates, (7) no end effects, (8) parallel plates,
and (9) negligible gravitational effect.

(ii) Analysis. Since the objective is the determination of temperature
distribution and heat transfer rate, it is logical to begin the analysis with the
energy equation. The energy equation for constant properties is given by
(2.19b)

or oTr oT  oT 0T 0T o°T
PCy| —+u— w— |=k
ot Ox oy oz

— + +
ox? oy? ezt

}+,uCD,(2.19b)

where the dissipation function @ is given by (2.17)
2 2 2
S CRCRE
ox oy oz

ou w) (v ow) (6w aujz 2Wou v ow)
| —+=| +|—=+—| +|—+—]| |- —F—+—] .

oy Ox 0z Oy ox Oz 3\ox oy oz
2.17)

Thus it is clear from (2.19b) and (2.17) that the determination of
temperature distribution requires the determination of the velocity
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components #,0 and w. This is accomplished by applying continuity and
the Navier-Stokes equations. We begin with the continuity equation in
Cartesian coordinates

ftUu—+0—+w +—

P, 0P, ,OP, 0P JOU UM o
ot ox dy Oz ox oy oz

For constant density

o _op_op_op_, "
ot oOx Oy 0Oz

Since plates are infinite

— =" =w=0. (b)

Substituting (a) and (b) into (2.2b), gives

o _

0.
o (c)

Integrating (c)
v=f(x). (d)

To determine the “constant” of integration f(x) we apply the no-slip
boundary condition at the lower plate

v(x,0)=0. (e)
Equations (d) and (e) give
f(x)=0.
Substituting into (d)
v=0. )

Since the vertical component ¥ vanishes everywhere, it follows that the
streamlines are parallel. To determine the horizontal component u we apply
the Navier-Stokes equation in the x-direction, (2.10x)
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(&1 ou ou auJ op (ﬁzu o%u quJ
pl—+u—+v—+w—|=pg, ——+u + + .

o ox oy oz ox ox? oy’ oz’
(2.10x)
This equation is simplified as follows:
0
Steady state: a_ 0. (2)
ot
Negligible gravity effect: g.=0. (h)
. .. op )
No axial pressure variation: —=0. (1)
ox
Substituting (b) and (f)-(i) into (2.10x) gives
d*u .
-0, ()
dy
The solution to (j) is
u=Cy+C,, (k)

where Cjand C, are constants of integration. The two boundary
conditions on u are:

u(0)=0 and u(H)=U,. )
These conditions give
Clz% and C, =0, (m)
Substituting (m) into (k)
u
= % . (3.8)

With the velocity distribution determined, we return to the dissipation
function and energy equation. Substituting (b) and (f) into (2.17) gives
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2
ou

@: _ . n
(@vj ™

Using solution (3.8) into (n) gives
U,

@—HZ .

(0)

Noting that for steady state 07 /0t =0 and using (b), (f) and (o), the
energy equation (2.19b) simplifies to

d*r  U:

k +u—=%=0. (p)
dy? 'qu

In arriving at (p), axial temperature variation was neglected. This is valid
for infinite plates at uniform surface temperature. Equation (p) is solved by

direct integration
2
uU,

T=-—
2kH?

y2+C3y+C4, @

where Cyand C, are constants of integration. The two boundary condi-

tions on (q) are

—k@zo and T(H)=T,. (r)

These boundary conditions and solution (q) give

U2
C; =0 and C4:TO+'u2ko . (s)

Substituting (s) into (q) and rearranging the result in dimensionless form,

give

T-T, 1 2

U; :5(1_#} (3.9)
HYo

k
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The heat flux at the moving plate is determined by applying Fourier’s law
at y=H
" dT'(H)
q'(H)=-k .
dy

Substituting (3.9) into the above, gives

14 U02
q (H)=—ﬂH - (3.10)

(iii) Checking. Dimensional check: Each term in (3.8) and (3.9) is
dimensionless. Units of (3.10) should be W/m?
pkg/m-s)U; (m*/s*) kg =W
H(m) 3 m?

q"(H) =

Differential equation check: Velocity solution (3.8) satisfies equation (j)
and temperature solution (3.9) satisfies (p).

Boundary conditions check: Velocity solution (3.8) satisfies boundary
conditions (1) and temperature solution (3.9) satisfies boundary conditions

(1).
Limiting check: (i) If the upper plate is stationary the fluid will also be
stationary. Setting U, = 0 in (3.8) gives u(y) = 0.

(i1) If the upper plate is stationary the dissipation will vanish, temperature
distribution will be uniform equal to 7, and surface flux at the upper plate
should be =zero. Setting U, =0in (o), (3.9) and (3.10) gives
@=0,T(y)=T, and q"(H)=0.

(iii) If the fluid is inviscid the dissipation term will vanish and the
temperature should be uniform equal to 7, . Setting ¢ =0 in (3.9) gives

r(y)=T1,.

(iv) Global conservation of energy. All energy dissipation due to friction is
conducted in the y-direction. Energy dissipation is equal to the rate of work
done by the plate to overcome frictional resistance. Thus

w=rt(H)U,, t)
where

W = work done by the plate.
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7(H ) = shearing stress at the moving plate, given by,

du(H
() = p P W
dy
Substituting (3.8) into (u)
U
H) = <.
T(H)=u o v)
Combining (v) and (t), gives
e s (W)
Ik

This result is identical to surface heat flux given in (3.10).

(5) Comments. (i) Treating the plate as infinite is one of the key
simplifying assumptions. This eliminates the x-coordinate as a variable and
results in governing equations that are ordinary. Alternatively, one could
state that the streamline are parallel. This means that v =0v/0y =0.
Substituting this into the continuity equation for two-dimensional
incompressible flow gives Ou/0x =0. This is identical to equation (b)
which is based on assuming infinite plate.

(i) Maximum temperature occurs at the insulated surface y = (. Setting

y =0 in (3.9) gives

2
T(0)-T, :%

3.3.2 Poiseuille Flow

This class of problems deals with axial flow in long channels or tubes.
Fluid motion is driven by axial pressure gradient. The channel or tube is
assumed infinite and thus end effects are neglected. The flow is
characterized by parallel streamlines.

Example 3.2: Flow in a Tube at Uniform Surface Temperature

Incompressible fluid flows in a

long tube of radiusr, . The fluid r P ?
is set in motion due to an axial fa
pressure gradient Op/0z. The . =

surface of the tube is maintained
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at uniform temperature T, . Taking into consideration dissipation, assuming
axisymmetric laminar flow and neglecting gravity, axial temperature
variation, and end effects, determine:

[a] Fluid temperature distribution.
[b] Surface heat flux.

[c] Nusselt number based on T(0)—T, .

(1) Observations. (i) Fluid motion is driven by axial pressure drop. (ii)
For a very long tube the flow field does not vary in the axial direction z.
(ii1) The fluid is incompressible (constant density). (iv) Heat is generated
due to viscous dissipation. It is removed from the fluid by conduction at the
surface. (v) The Nusselt number is a dimensionless heat transfer
coefficient. (vi) To determine surface heat flux and heat transfer coefficient
requires the determination of temperature distribution. (vii) Temperature
distribution depends on the velocity distribution. (viii) Use cylindrical
coordinates.

(2) Problem Definition. Determine the velocity and temperature
distribution.

(3) Solution Plan. Apply continuity and Navier-Stokes equations in
cylindrical coordinates to determine the flow field. Apply the energy
equation to determine temperature distribution. Fourier’s law gives surface
heat flux. Equation (1.10) gives the heat transfer coefficient.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state,
(4) laminar flow, (5) axisymmetric flow, (6) constant properties (density,
viscosity and conductivity), (7) no end effects, (8) uniform surface
temperature, and (9) negligible gravitational effect.

(ii) Analysis. [a] Since temperature distribution is obtained by solving
the energy equation, we begin the analysis with the energy equation. The
energy equation in cylindrical coordinates for constant properties is given
by (2.24)

oT 8T vy ol  oT 1o( or\ 1 8°T 8T
Pyl — 0, —t————H v, —— =k | r—— |+ ——+— |t u®,
ot or r 06 0z ror\_ or) ;% 9% 522

(2.24)
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where the dissipation function @ is given by (2.25)
2 2 2 2
@ =2 o, +2 lav—g+v—r +2 o, - &)_g_v_ngl%
or rod r 0z or r r o0¢

(mvz av,gjz (80,, avZJ2
+——+— + +— . (2.25)

r 06 Oz 6_2 or

Equations (2.24) and (2.25) show that the determination of temperature
distribution requires the determination of the velocity componentsv,., Uy

andv,. The flow field is determined by solving the continuity and the

Navier-Stokes equations. We begin with the continuity equation in
cylindrical coordinates

op 10 10 8
ST - - =0. 2.4
at+rar(prvr)+rae(pvﬁ)—i_az(pvz) (2.4)

For constant density
9 _0p _0p _0p_

= (a)
ot or 00 o0z
For axisymmetric flow
0
vg=—=0. b
0=2g (b)
For a long tube with no end effects, axial changes in velocity vanish
0
—=0. c
P (c)
Substituting (a)-(c) into (2.4)
d
—|(rv,)=0. d
4 (rv,) @
Integrating (d)
v, = f(2). (e)

To determine the “constant” of integration f(z)we apply the no-slip
boundary condition at the surface
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v,(r,,2)=0. ®
Equations (e) and (f) give
f(z)=0.
Substituting into (e)
v, =0. (9]

Since the radial component ¥, vanishes everywhere, it follows that the
streamlines are parallel to the surface. To determine the axial component
v, we apply the Navier-Stokes equation in the z-direction, (2.11z)

+

ov, vy OV, Ov, Ov,
Pl v, — +0, + =
or r 06 oz ot

op 1o( ov,) 1 0%, d%v,
— 4y ——\r +— +
rorC or ) 2 90°  8z°

}. (2.11z)

This equation is simplified as follows:
Steady state

—=0. h
o (h)

Negligible gravity effect
g =8:=0. ©)

Substituting (b), (¢) and (g)-(i) into (2.11z) gives

op 1d( dv
R R Z1=0. 3.11
oz 'urdr(r drj G-1D

Since v, depends on r only, equation (3.11) can be written as

op _ li(rdvz

o M ﬂ:g@' 0

Integrating (j) with respect to z
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p=g(r)z+C,, k)

where C, is constant of integration. We turn our attention now to the radial

component of Navier-Stokes equation, (2.11r)

- +v, +

0v, vy Ov, 092 ov, Ov,
_+_
pv [Vr o r 00 r oz ot

2 2
pgr—a—p+,ui(li(rv,.))+La v, _iavg+a or |
or or\ror ¥ 00% 1?00 57

(2.11r)

Substituting (b), (g) and (i) into (2.11r), gives

op
—=0. 1
o 0]
Integrating (1)

r=f(2), (m)

where f(z) is “constant” of integration. We now have two solutions for
the pressure p: (k) and (m). Equating the two, gives

p=gr)z+C, = f(2). (n)
One side of (n) shows that the pressure depends on z only while the other
side shows that it depends on r and z. This, of course, is a contradiction.

The only possibility for reconciling this is by requiring that

g(n=_¢, (0)

where C is a constant. Substituting (o) into (j)

P uta(re)-c. o)

oz " rar\ dr

Thus the axial pressure gradient in the tube is constant. Equation (p) can
now be integrated to give the axial velocity distribution. Integrating once
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Separating variables and integrating again

1dp

V.= 222, C Inr+0C,,
z 4udz ! 2 @

where C,and C, are constants of integration. The two boundary

conditions on U, are

do, (0) _

0 0, v,(r,)=0. (r)

Equations (q) and (r) give C,and C,
C =0, c,=L9P,2
4,u dz
Substituting into (q)

1 dp 2
v, =— . 3.12
ST unds == -r)) (3.12)

With the velocity distribution determined we return to the energy equation

(2.24) and the dissipation function (2.25). To simplify the problem, we will
assume that axial temperature variation is negligible. Thus

or 8T

=0.
PRy (s)

It should be emphasized that this is an approximation and not an exact
condition. Substituting (b), (c), (g), (h) and (s) into (2.24)

= r—j+,ucD:O. (t)

Using (b), (¢) and (g) into (2.25) gives the dissipation function for this flow
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@:(d%jz.
dr

Substituting the velocity solution (3.12) into the above, gives

2
@:(id—p] r2. (W)
2u dz

Using (u) to eliminate @ in (t) and rearranging, we obtain

2
i(rd_T):_L ar) 3. (3.13)
dr\ dr 4ku\ dz

Integrating the above twice

2
T=_—1 ap r4+C3 Inr+Cy. v)
64ku\ dz

Two boundary conditions are needed to evaluate the constants of
integration C; and C,. They are:

@:0 and T'(r,)=T,. (w)
dr

Equations (v) and (w) give the two constants

2
Cy=0, Cy=T, +—— 9P| 4.
64ky\ dz

Substituting the above into (v)

4 2 4
T=1, + o [P _ | (3.14a)
64k,u dz r4

(o]

This solution can be expressed in dimensionless form as
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4
_ -1 . :(1_”_4]. (3.14b)
. (dp "o
64ku\ dz

[b] Surface heat flux ¢"(r,) is obtained by applying Fourier’s law

dr(r,)
n — _k—o .
q'(r,) &

Using (3.14) into the above

v} (dp ?
iy to [dP) 3.15
70D =16\ (3-19)

[c] The Nusselt number is defined as

Nu :h_D: 2hr,
k k

b (X)

where D is tube diameter. The heat transfer coefficient /# is determined
using equation (1.10)

k dl'(r,)
== : )
[T(0)-T,] dr
Substituting (3.14a) into (y)
h= ﬁ (z)
VO
Substituting (z) into (x)
Nu =8§. (3.16)

(iii) Checking. Dimensional check: Each term in (3.12) has units of
velocity. Each term in (3.14a)has units of temperature. Each term in

(3.15) has units of W/m?.

Differential equation check: Velocity solution (3.12) satisfies equation (p)
and temperature solution (3.14) satisfies (3.13).
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Boundary conditions check: Velocity solution (3.12) satisfies boundary
conditions (r) and temperature solution (3.14) satisfies boundary conditions

(w).
Limiting check: (i) If pressure is uniform (dp/dz =0) the fluid will be
stationary. Setting dp/dz =0 in (3.12) gives v, = 0.

(ii) If pressure is uniform (dp / dz = 0) the fluid will be stationary and no
dissipation takes place and thus surface heat transfer should vanish. Setting
dp/dz =0 in (3.15) gives ¢"(r,) = 0.

(iii) Global conservation of energy. Heat transfer rate leaving the tube must
be equal to the rate of work required to pump the fluid. Pump work for a
tube section of length L is

W=(p-p2)0, (z-1)
where

P = upstream pressure
P, = downstream pressure

Q= volumetric flow rate, given by

o

0=2r jvzrdr.
0

Substituting (3.12) into the above and integrating

7 dp

0= —@Zr;. (z-2)
Combining (z-1) and (z-2)
4
w =_%%(P1 —P2)- (z-3)
Work per unit area W" is
W= 27zWr L

o

Substituting (z-3) into the above
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" _ 1’03 d_p(pl_p2)

w"= . (z-4)
16u dz L
However
(P —P2) __ dp
L dz’

Combining this result with (z-4) gives

3 2
W " — r() d_p
lou\ dz
This result is identical to surface heat transfer rate given in (3.15).

(5) Comments. (i) Neglecting axial variation of temperature is a key factor
in simplifying the problem. This assumption eliminates the z-coordinate as
a variable and results in governing equations that are ordinary.

(i) Solution (3.14) shows that the maximum temperature occurs at the
center, 7 = 0.

(iii) The Nusselt number is constant, independent of Reynolds and Prandtl
numbers.

(iv) A more appropriate definition of the heat transfer coefficient is based
on the mean temperature, 7,,, rather than the centerline temperature. Thus,
(y) is modified to

-k dI(r,)

h= )
-7, dr

o

3.3.3 Rotating Flow

Angular fluid motion can be generated by rotating a cylinder. A common
example is fluid motion in the clearance space between a journal and its
bearing. Under certain conditions the streamlines for such flows are
concentric circles.

Example 3.3: Lubrication Oil Temperature in Rotating Shaft
Lubrication oil fills the clearance between a shaft and its housing. The

radius of the shaft is 1; and its angular velocity is @. The housing radius
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is v, and its temperature is T, . Assuming laminar

° e A= N
flow and taking into consideration dissipation, O e A4 N
determine the maximum temperature rise in the oil |

and the heat generated due to dissipation.

Solution

(1) Observations. (i) Fluid motion is driven by

shaft rotation (ii) The housing is stationary. (iii) Axial variation in velocity
and temperature are negligible for a very long shaft. (iv) Velocity and
temperature do not vary with angular position. (v) The fluid is incompres-
sible (constant density). (vi) Heat generated by viscous dissipation is
removed from the oil at the housing. (vii) No heat is conducted through the
shaft. (viii) The maximum temperature occurs at the shaft. (ix) Use
cylindrical coordinates.

(2) Problem Definition. Determine the velocity and temperature
distribution in the oil.

(3) Solution Plan. Apply continuity and Navier-Stokes equations in
cylindrical coordinates to determine the flow field. Use the energy
equation to determine temperature distribution. Apply Fourier’s law at the
housing to determine the rate of energy generated by dissipation.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state,
(4) laminar flow, (5) axisymmetric flow, (6) constant properties (density,
conductivity, specific heat, and viscosity), (7) no end effects, (8) uniform
surface temperature and (9) negligible gravitational effect.

(ii) Analysis. Temperature distribution is obtained by solving the
energy equation. Thus we begin the analysis with the energy equation. The
energy equation in cylindrical coordinates for constant properties is given
by (2.24)

oT oT vy OT oT
Pyl ——+ 0, v, —
ot or r 00 0z

10( or\ 1 8°T 8°T
kl——|r T |+ — 2+ 2 |+, 2.24
[rar[ arj 2 6 aﬁ} “r. @220
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where the dissipation function @ is given by (2.25)
2 2 2 2
&= ov, L9 l@vngv_,, L9 00, N Gvg_v_ngl&vr
or r oo r oz or r r o0

2 2
+ 1%, + % + o, + o0, . (2.25)
0z Or

The solution to (2.24) requires the determination of the velocity
components ¥, , Uy and v,. These are obtained by solving the continuity
and the Navier-Stokes equations in cylindrical coordinates. The continuity
equation is given by equation (2.4)

op 10 10 5
L L < -0, 2.4
= +rar(prvr)+rae(pvg)+az(pvz) (2.4)

For constant density
P _% _0p_%_, (@)
ot or 00 oz

For axisymmetric flow

— =0. b
26" ®

For a long shaft with no end effects axial changes are negligible

0
=—=0.
vz oz ©
Substituting (a)-(c) into (2.4)
d
Bl =0. d
o lros)=0 (d)

Integrating (d)
ro, =C. (e)
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To determine the constant of integration C we apply the no-slip boundary
condition at the housing surface

v,(r,) = 0. ()
Equations (e) and (f) give
Cc=0
Substituting into (e)
v, =0. (9]

Since the radial component ¥, vanishes everywhere, it follows that the
streamlines are concentric circles. To determine the tangential velocity vy

we apply the Navier-Stokes equation in the @ -direction, equation (2.118)

» Ur%+v_9609 LT Ovg 0Ovy
or r 00 r Oz ot

Lo, i(lﬁ(m j+Lazve+iavr+5209
o0 ar\rar ) e TR 00 a2 |
(2.1180)
For steady state
0
—=0. h
o ()

Neglecting gravity and applying (b), (c), (g) and (h), equation (2.116)
simplifies to

d(1d
—| ——(rvy) |=0. 3.17
dr(r dr( g)j G.17)
Integrating (3.17) twice
C C
Vg = L r+—2, (6))]



90 3 Exact One-Dimensional Solutions

where Cjand C, are constants of integration. The two boundary

conditions on v, are
vy(r;) = wr;, vy(r,)=0. G

Boundary conditions (j) give C, and C,

c 2a)r,~2 c a)rl-zro2 "
1= 2 22 Y27 o2 5 (k)
o =i o =T

Substituting (k) into (i) and rearranging in dimensionless form, gives

vp(r) _ (ry 1) (r; /1) = (r/ 1)
or; /) =1

(3.18)

We now return to the energy equation (2.24) and the dissipation
function (2.25). Using (b), (¢), (g) and (h), equation (2.24) simplifies to

k—— r—j+,u@=0. Q)
The dissipation function (2.25) is simplified using (b), (c) and (g)
o[ )
dar r
Substituting the velocity solution (3.18) into the above, gives
2
2017
o= i4 (m)
1-(r;/r,) r

Combining (m) and (1) and rearranging, we obtain

, 12
i(rd_Tj:_ﬁ I R (3.19)
dr\ dr k|1-@/r)* | r*
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Integrating (3.19) twice

2 2
Y7 2or, 1
T(=—2 22 | L iCnr+C,. (n)
") 4k{1—(ri/r0)2} ’ N

1"2

where C; and C, are the integration constants. Two boundary conditions
are needed to determine C; and C,. They are:

M:O and T'(r,)=T,. (o)

Equations (n) and (o) give the two constants

5 2
.. 2or; 1
3 2| 27
2k | 1=(r; /7)) 7

1

2
201!
C4=To+i Lz Lz+%lnr0 .
4k | 1=(r;/r,) ryoor

1

and

Substituting the above into (n)

2
T(r)=T, +ﬁ L_(z:)—/';)z} [ 1202 = 1) + 2In(r, /7). (3.200)

This solution can be expressed in dimensionless form as

T(r)_To

H 2or,

4k 1- (ri / o )2
The maximum temperature is at the shaft’s surface. Setting 7 =7, in
(3.20a) gives

— = (r;/r,)* = (r;/r)* +2In(r, /r). (3.20b)

2
Y7 20r;
T(r;)-T, :E {m:l [(I’[ /ro)2 +21n(r, /rl-)—l]. (3.21)
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Energy generated due to dissipation per unit shaft length, ¢'(r,), is
determined by applying Fourier’s law at the housing. Thus

dr
(1) = ~2r, TV,
dr
Using (3.20a), the above gives
’ (a)r')z
q'(r))=4ryu —————, (3.22)
1- (ri /Vo)2

(iii) Checking. Dimensional check: each term in solutions (3.18) and
(3.20b) is dimensionless. Equation (3.22) has the correct units of W/m.

Differential equation check: Velocity solution (3.18) satisfies equation
(3.17) and temperature solution (3.20) satisfies (3.19).

Boundary conditions check: Velocity solution (3.18) satisfies boundary
conditions (j) and temperature solution (3.20) satisfies boundary conditions

(0).
Limiting check: (i) If the shaft does not rotate the fluid will be stationary.
Setting @ =0 in (3.18) gives vy = 0.

(i1) If the shaft does not rotate no dissipation takes place and thus surface
heat transfer should vanish. Setting @ =0 in (3.22) gives ¢'(r,) = 0.

Global conservation of energy: Heat transfer rate from the housing must
equal to work required to overcome friction at the shaft’s surface. The rate
of shaft work per unit length is given by

W'=2zxriz(r;)or;, (p)

where

W'=work done on the fluid per unit shaft length.
7(r;) = shearing stress at the shaft’s surface, given by

w(r;)= ,u{czj—: - 079} : (@)

=i

Substituting (3.18) into the above



3.2 Exact Solutions 93

0]
z'(ri)=2,u—2- (r)
1-(r;/7,)
Combining (p) and (r) and rearranging, gives
2
W'=4ru L)z . (s)
1- (ri / ro)

This result is identical to surface heat transfer rate given in (3.22)

(5) Comments. (i) The key simplifying assumption is axisymmetry. This
results in concentric streamlines with vanishing normal velocity and
angular changes.

(i) Temperature rise of the lubricating oil and energy dissipation increase
as the clearance between the shaft and the housing is decreased. This is
evident from equations (3.22) and (s) which show that in the limit

as(r;/r,) >1, W'=q"— .
(iii) Velocity and temperature distributions are governed by a single
parameter (7;/7,).
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3.1

3.2

33

34

3 Exact One-Dimensional Solutions

PROBLEMS
A large plate moves with T
constant velocity U, paral- ) i Y
. L
lel to a stationary plate g —>
separated by a distance H. ¥— 7 X ~
An incompressible fluid T,

fills the channel formed by

the plates. The stationary plate is at temperature 7} and the moving
plate is at temperature 7, . Taking into consideration dissipation,
determine the maximum temperature and the heat flux at the moving
plate. Assume laminar flow and neglect gravity effect and pressure
variation in the channel.

A large plate moves with

constant velocity U paral- Y P U
lel to a stationary plate Hr
separated by a distance H. ¥ _
An incompressible fluid

fills the channel formed by the plates. The upper plate is maintained
at uniform temperature 7, and the stationary plate is insulated. A
pressure gradient dp/dx is applied to the fluid. Taking into
consideration dissipation, determine the temperature of the insulated
plate and the heat flux at the upper plate. Assume laminar flow and
neglect gravity effect.

V<=

—>

X
o s

Incompressible fluid is set in motion between two large parallel
plates by moving the upper plate with constant velocity U, and
holding the lower plate stationary. The clearance between the plates
is H. The lower plate is insulated while the upper plate exchanges
heat with the ambient by convection. The heat transfer coefficient is
h and the ambient temperature is 7. Taking into consideration
dissipation determine the temperature of the insulated plate and the
heat flux at the moving plate. Assume laminar flow and neglect
gravity effect.

Two parallel plates are separated by a distance 2H. The plates are
moved in opposite direction with constant velocity U, . Each plate is

maintained at uniform tem-perrature 7, . Taking into consideration
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3.6

3.7

Problems 95

dissipation, determine the heat . T ;

Fa e U,
flux at the plates. Assume =
laminar flow and neglect — = - % <
gravity effect. "F T~ -

Incompressible fluid flows in

a long tube of radius 7, . Fluid r . r
motion is driven by an axial k1o r,
pressure gradient dp /dz. The — @
tube exchanges heat by
convection with an ambient
fluid. The heat transfer
coefficient is /# and the ambient temperature is 7,,. Taking into
consideration  dissipation, assuming laminar incompressible

axisymmetric flow, and neglecting gravity, axial temperature
variation and end effects, determine:

)

h.T, hT,

[a] Surface temperature.
[b] Surface heat flux.
[c] Nusselt number based on

T(0)-T(r,).

Fluid flows axially in the annular space between a cylinder and a
concentric rod. The radius of the rod is #; and that of the cylinder is
7,. Fluid motion in the annular space is driven by an axial pressure
gradient dp/dz. The cylinder is maintained at uniform temperature
T,. Assume incompressible laminar axisymmetric flow and neglect
gravity and end effects. Show that the axial velocity is given by

2 ()2
v, _L dp (r/r,)? —ﬂln(r/ro)—l '
4u dz In(r, /1;)

A rod of radius 7; is placed r, ra g
concentrically inside a cylinder — i) Y
of radius r,. The rod moves [—=: — U, ( Jj
axially with constant velocity — —
U, and sets the fluid in the annular space in motion. The cylinder is

maintained at uniform temperature 7,. Neglect gravity and end
effects, and assume incompressible laminar axisymmetric flow.
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[a] Show that the axial velocity is given by
UO

v =— 20 ingrir).
> (s /7)) n(r/r,)

[b] Taking into consideration dissipation, determine the heat flux at
the outer surface and the Nusselt number based on [T(r;)—T,].
Neglect axial temperature variation.

3.8 A liquid film of thickness H flows down an inclined plane due to
gravity. The plane is maintained at uniform temperature 7, and the
free film surface is insulated. Assume incompressible laminar flow

and neglect axial variation of velocity and temperature and end
effects.

[a] Show that the axial velocity is
given by

2 2
u= pett sinﬁ{l—ly—}.

1z H 2H?

[b] Taking into consideration dissipation, determine the heat flux at
the inclined plane.

3.9 A liquid film of thickness H flows down an inclined plane due to
gravity. The plane exchanges heat by convection with an ambient
fluid. The heat transfer coefficient is # and the ambient temperature
is T.,. The inclined surface is insulated. Assume incompressible
laminar flow and neglect axial variation of velocity and temperature
and end effects.

[a] Show that the axial velocity is given

[b] Taking into consideration dissipation, determine the heat flux at
the free surface.

3.10 Lubricating oil fills the clearance space between a rotating shaft and
its housing. The shaft radius is 7, = 6 cm and housing radius is



3.11

3.12

3.13

r; = 6.1 cm. The angular velocity of the shaft
is ®=3000 RPM and the housing
temperature is 7, =40°C. Taking into
consideration dissipation, determine the
maximum oil temperature and the heat flux at
the housing. Neglect end effects and assume
incompressible laminar flow. Properties of
lubricating oil are: k=0.138W/m-°C and
#=0.0356kg/m-s.

Consider lubrication oil in the clearance
between a shaft and its housing. The radius of
the shaft is 7; and that of the housing is7, .
The shaft rotates with an angular velocity @
and the housing exchanges heat by convection
with the ambient fluid. The heat transfer
coefficient is # and the ambient temperature is
T,. Taking into considera-tion dissipation,
determine the maximum temperature of the
oil and surface heat flux at the housing.

Assume incompressible laminar flow and
neglect end effects.

A rod of radius r; is placed concentrically
inside a sleeve of radius r,. Incompressible
fluid fills the clearance between the rod and
the sleeve. The sleeve is maintained at
uniform temperature 7, while rotating with
constant angular velocity @. Taking into
consideration dissipation, determine the
maximum fluid temperature and surface heat

Problems 97

flux at the sleeve. Assume incompressible laminar flow and neglect

end effects.

A hollow shaft of outer radius 7, rotates with
constant angular velocity @ while immersed
in an infinite fluid at uniform temperature
T,. The shaft is maintained at uniform
temperature 7. Taking into consideration

dissipation, determine surface heat flux.
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Assume incompressible laminar flow and neglect end effects.

3.14 Two large porous plates are separated by a distance H. An
incompressible fluid fills the channel formed by the plates. The
lower plate is maintained at temperature 7, and the upper plate at
T, . An axial pressure gradient dp /dx is applied to the fluid to set it
in motion. A fluid at temperature 7] is injected through the lower
plate with a normal velocity v,. Fluid is removed along the upper
plate at velocity ©v,. The injected fluid is identical to the channel
fluid. Neglect gravity, dissipation and axial variation of temperature.

[a] Show that the axial velocity is given by

u__ﬂld_p b 1-exp(v,y/v)
v, wdc| H 1—exp(v,H/v)|

[b] Determine surface heat flux at each plate.
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BOUNDARY LAYER FLOW:
APPLICATION TO EXTERNAL FLOW

4.1 Introduction

The mathematical complexity of convection heat transfer is traced to the
non-linearity of the Navier-Stokes equations of motion and the coupling of
flow and thermal fields. The boundary layer concept, first introduced by
Prandtl [1] in 1904, provides major simplifications. This concept is based
on the notion that under special conditions certain terms in the governing
equations are much smaller than others and therefore can be neglected
without significantly affecting the accuracy of the solution. This raises two
questions:

(1) What are the conditions under which terms in the governing equations
can be dropped?

(2) What terms can be dropped?

These questions will be answered first by using intuitive arguments and
then by scale analysis.

4.2 The Boundary Layer Concept:
Simplification of the Governing Equations

4.2.1 Qualitative Description

Consider fluid flow over the semi- T,
infinite heated surface shown in vV

Fig. 4.1. The foundation of the yT
boundary layer concept is the zad3
following  observation:  under
certain conditions the effect of
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viscosity is confined to a thin region near the surface. This region, whose
edge is defined by 0, is referred to as the velocity or viscous boundary
layer. Similarly, under certain conditions the effect of thermal interaction
between the surface and the moving fluid is confined to a thin region near
the surface defined by &,. This region is referred to as the thermal

boundary layer. 1t should be noted that the boundaries of these regions are
not sharply or uniquely defined.

We consider the conditions for the formation of the two boundary
layers. The conditions for the velocity boundary layer model are: (1)
slender body without flow separation and (2) high Reynolds number (Re >
100). The conditions for the thermal boundary layer model are: (1) slender
body without flow separation and (2) high product of Reynolds and Prandtl
numbers (Re Pr > 100). This product is called the Peclet number, given by

pV L c i pc,V,L
U k k

Peclet Number = Pe = RePr =

“4.n

Before examining the mathematical implication of the boundary layer
concept we make the following observations:

(1) Fluid velocity at the surface vanishes. This is the no-slip condition due
to the viscous nature of the fluid. However, fluid velocity changes rapidly
as the boundary layer is traversed normal to the surface, as shown in Fig.
4.1. At the edge of the boundary layer the velocity approaches its free

stream value V. Similarly, fluid temperature changes within the thickness
of the thermal boundary layer from surface temperature 7 to free stream
value 7, at the edge of the thermal boundary layer.

(2) In general, at high Re and Pr both velocity and thermal boundary
layers are thin. For example, air flowing at 10 m/s parallel to a 1.0 m long

plate will have a viscous boundary layer thickness of 6 mm at the
downstream end.

(3) Viscosity plays no role outside the viscous boundary layer. This makes
it possible to divide the flow field into a viscosity dominated region
(boundary layer), and an inviscid region (outside the boundary layer).

(4) Boundary layers can exist in both forced and free convection flows.
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4.2.2 The Governing Equations

To examine the mathematical consequences of the boundary layer concept
we begin with the governing equations for a simplified case. We make the
following assumptions: (1) steady state, (2) two-dimensional, (3) laminar,
(4) uniform properties, (5) no dissipation, and (6) no gravity. Based on
these assumptions the continuity, momentum, and energy equations are

m g, 2.3)
ox Oy
2 2
you, ou_ 10p [0u Ouj (2.10x)
x oy  pox ax* oy?
2 2
CUBHLCRRER N e A B (2.10y)
ox Oy p oy ox~ Oy
2 2
pcp(ua—T+Ua—Tj:k 6_34_6_3 . (219)
Ox oy ox~ Oy

These equations will be simplified using the boundary layer concept.

4.2.3 Mathematical Simplification

It is legitimate to ask whether all terms in the governing equations are
equally significant. We will argue that certain terms play a minor role in
the solution and thus can be neglected to simplify the equations. Indeed,
this is what the boundary layer concept enables us to do. We will first use
intuitive arguments to simplify the equations. A more rigorous approach
will then be presented using scaling to arrive at the same simplifications.

4.2.4 Simplification of the Momentum Equations

(i) Intuitive Arguments

Starting with the x-momentum equation (2.10x), we wish to establish if one
of the two viscous terms on the right-hand-side, 0%ulox? +0%u/ ayz, is
small compared to the other. Imagine that a very small insect, so small that
it does not disturb the flow, is placed inside the viscous boundary layer at
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position 0, as shown in Fig. 4.2. 8 T
The insect finds the fluid velocity ¥ T, e
at this location too high and wishes e E AR
to move to a position of lower T BT i '
velocity. If the insect is allowed to *5 7
take one short step to any of the

four locations 1, 2, 3, or 4, where Fig. 4.2
should it go? If your answer is to

position 4, you are correct. This decision is based on the intuitive sense that
changes in axial velocity u with respect to the y are much more pronounced
compared to changes with respect to x. After all, the axial velocity u
changes from zero at the wall to V across a short distance O in the y-
direction. However, this does not give a clue regarding the relative
magnitudes of &%u/dx*and &% u/dy* . Additional communication with the
insect is required. Imagine that the insect is initially a step away from the
surface. Taking a step towards the surface is the ultimate choice since the
velocity drops to zero. On the other hand, if the insect is at the edge of the
boundary layer, taking a step towards the surface will hardly bring about a
change in #. Mathematically, this means that there is a significant change
in the axial velocity gradient with respect to y. However, taking one, two,
or three steps in the x-direction will bring no significant change in . This
means that changes in the axial gradient of u# with respect to x are
negligible. We conclude that

2 2
o u ou - (4.2)
ox oy
Thus, the term 02w/ x” can be dropped from equation (2.10x).

We now examine the pressure term in (2.10x) and (2.10y). We argue
that for a slender body the streamlines are nearly parallel having small
vertical velocity component. Thus

8_p ~0. 4.3)
oy

It follows that p depends on x only, i.e. p = p(x). Therefore

— R 4.4
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Here dp, /dx is the pressure gradient at the edge of the boundary layer,
y =0, where the fluid can be assumed inviscid. Substituting (4.2) and
(4.4) into (2.10x) gives the boundary layer x-momentum equation

ou ou 1 dp,, 0%u
U—t+V—=—— +V—,

(4.5)
ox oy p Ox oy

where v = u/p . On the other hand, equation (2.10y) simplifies to (4.3).
Continuity equation (2.3) and the x-momentum boundary layer equation
(4.5) contain three unknowns: u, v, and p_. However, since p_ is the
pressure at the edge of the boundary layer y = 4, it can be 1ndependently
obtained from the solution to the governing equations for inviscid flow
outside the boundary layer.

(ii) Scale Analysis

Boundary layer approximations

(4.2)-(4.4) will now be arrived at ¥ v

using scaling. Here we follow the > et -
procedure detailed in reference [2]. o : Io‘
Scaling is used to estimate the order :

of magnitude of each term in L * L !
Navier-Stokes equations and drop Fig. 4.3

terms of higher order. In this
procedure a scale (measure) is assigned to each variable in an equation.

Consider the flow over a slender body such as the flat plate shown in
Fig. 4.3. The free stream velocity isV_ , characteristic length is L, and the
boundary layer thickness is 0. We postulate that & is small compared to
the characteristic length L, that is

)
— << 1. 4.6
7 (4.6)

Assuming that equation (4.6) is valid, we pose three questions:

(1) What terms in the governing equations can be dropped?

(2) Is normal pressure gradient negligible compared to axial pressure
gradient?

(3) Under what conditions is (4.6) valid?
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To answer these questions the dependent variables # and © and
independent variables x and y are assigned the following measures or
scales:

u~v,, (4.72)
x~L, (4.7b)
y~5. (4.7¢)

Equation (4.7) is applied to continuity (2.3) to develop a scale forv.
Rewriting (2.3) as

ov _ Ou
o
Using (4.7), the above gives
vV,
s L
Solving forv
v~V é . (4.7d)
L

Based on assumption (4.6) it follows that v <<V . Equation (4.7) is now

used to determine the order of magnitude of the inertia and viscous terms of
the x-momentum equation (2.10x).

First inertia term:

ou V

u—n~V, —. a
Oox L (@)
Second inertia term:
Ve
oy

Using (4.7d) to eliminate v in the above, gives

va—”~VwVi. (b)
oy L
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We conclude that the two inertia terms are of the same magnitude.
Following the same procedure, the order of magnitude of the two viscous
terms in (2.10x) are determined.

First viscous term:

o*u V,

o ©
Second viscous term:

o*u vV,

P @

Since, according to (4.6),0 << L, comparing (c) with (d) shows that

2 2
Z_Z <Z—Z. (4.2)
oy

Thus &”u/éx”in equation (2.10x) can be neglected. This conclusion is
identical to the result obtained using the intuitive insect approach.

Scaling of the two viscous terms in the y-component of the momentum
equation, (2.10y), shows that

2 2
a_;; <<a—f . (4.8)
Ox oy
Using (4.2) and (4.8), equations (2.10x) and (2.10y) simplify to
2
ua—u+va—u=—la—p+vﬂ, (4.9x%)
&  dy  pox oy
2
az)+vav:—l6—p+v o© (4.9y)

u—-~ —_— 7
Ox oy p Oy oy

Having answered the first question we turn our attention to the second
question regarding pressure gradient. The order of magnitude of Op/0Ox
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and Op /0y is determined using scaling. A balance between axial pressure
and inertia in (4.9x) gives

op ou
—— ~ pu—.
ox r ox

The above is scaled using (4.7)

9 V2
el ©

Similarly, a balance between pressure and inertia in (4.9y) and scaling,
gives
p Vo
Lo p=2 )
oy L L

Comparison between (¢) and (f) using assumption (4.6) shows that

6_p<<8_p (4.10)

oy ox

Note that the same result is obtained by balancing pressure gradient against
viscous forces instead of inertia in (2.10x) and (2.10y). Equation (4.10) has
important consequences on the determination of boundary layer pressure.
For two-dimensional flow, pressure depends on the variables x and y. That
is

p=pxy),
and

dp = a—pcl)c+a—pdy )
ox oy

Dividing through by dx and rearranging

dp _op |, Gp/y)dy| @.11)
dx Ox (Op/ox) dx

The gradient dy / dx is scaled as
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dy o
oL (8)
Substituting (e)-(g) into (4.11)
dp _p 2
—=—11+(/L)"|. h
L -Lle@ry] (h)

Invoking (4.6), the above simplifies to

L 0]
dx Ox

We thus conclude that boundary layer pressure depends on the axial
direction x and that variation in the y-direction is negligible. That is, at a
given location x the pressure p(x) inside the boundary layer is the same as

the pressure p_ (x) at the edge of the boundary layer y = 6. Thus

p(x,y) = po,(x). 0)

We now examine the consequences of this result on the x-momentum
equation. Differentiating (j) and using (i)

8_p ~ dp_oo (4.12)
ox dx
Substituting (4.12) into (4.9x)
2
u, ,ou__Ldp,  07u (4.13)

u— e
ox oy  p dx oy?

This is the x-momentum equation for boundary layer flow. It is the same as
that obtained using our intuitive approach. Note that (4.13) is arrived at
using scaling of the y-momentum equation. It is important to recall that this
result is based on the key assumption that ¢/ L << 1.1t remains to answer
the third question regarding the condition under which this assumption is
valid.
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The first two terms in (4.13) representing inertia are of the same order

as shown in (a) and (b). The last term in (4.13) represents viscous force.
According to (d) this term is scaled as

V——~V—. (k)

Rearranging the above

AP S (4.14a)

This result 1s rewritten as

(4.14b)

L JRe,

where Re; is the Reynolds number defined as

V.L
Re, === (4.15)
1%

Thus 6/L <<1 is valid when,/Re, >>1. Equation (4.14) is generalized

to provide a measure of the variation of boundary layer thickness along a
surface. Setting x = L in (4.14) and (4.15), gives

o 1

—_—~

X Re,

(4.16)

We return to the y-component of the momentum equation, (4.9y), and
note that each term is of order O. Thus all terms in this equation are
neglected, leading to the important boundary layer simplification of
negligible pressure gradient in the y-direction, as described in (4.3).
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4.2.5 Simplification of the Energy Equation

We now simplify the energy equation for two-dimensional constant
properties flow by neglecting higher order terms in equation (2.19)

2 2
pPCp ua—T+va—T =k 8_T+6_T . (2.19)
ox oy ox? 8);2

(i) Intuitive Argument

We wish to determine if one of the conduction terms in (2.19),
0T /éx* +0°T /dy?, is small compared to the other. Returning to the
small insect of Fig. 4.2., we pretend that the surface is hot and the fluid is at
a lower temperature. The insect is placed at location O inside the thermal
boundary layer shown in Fig. 4.2. It finds the environment too hot and
wishes to move to a cooler location. It is allowed to take a small step to
location 1, 2, 3, or 4. Where would you advise the insect to go? If your
answer is to location 2, you are correct. This is interpreted as recognizing
that temperature changes in the y-direction are much more pronounced than
changes in the x-direction. To evaluate the relative magnitudes of
0T /éx*and 0°T/dy?, additional observations are required. Imagine
that the insect is initially within a step of the surface. Taking a step away
from the surface brings some relief. However, taking a step in the x-
direction brings no significant relief. Suppose instead the insect is at the
edge of the boundary layer. Taking a step away from the surface will
essentially result in no change in temperature. Neither would moving
axially. From this we conclude that changes in the axial temperature
gradient with respect to x are small compared to changes in the normal
temperature gradient with respect to y. That is

2 2
2—3 <g—f. 4.17)
X Y

Thus, axial conduction, o’r/ ze, can be dropped from the energy
equation to obtain
T T ’T
a—+va—=aa—, (4.18)
ox oy 6y2

where « is thermal diffusivity. This equation is known as the boundary
layer energy equation.
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(ii) Scale Analysis

Scaling will now be used to examine the order of magnitude of each term
in energy equation (2.19). Again we consider the flow over a slender body
of characteristic length L. The free stream velocity and temperature are V_
and T,. The thermal boundary layer thickness is J0,. We postulate that
0, is small compared to the characteristic length L, that is

S,
—<<1. 4.19
7 (4.19)

Assuming that equation (4.19) is valid, we pose two questions:

(1) What terms in energy equation (2.19) can be dropped?
(2) Under what condition is equation (4.19) valid?

To answer these questions we assign scales to the variables in the energy
equation. The scale for x is given by equation (4.7b)

x~L. (4.7b)

Scales for y and AT are
y~0;, (4.20)
AT ~T,-T,. (4.21)

Scales for u and v depend on whether J; is larger or smaller thano. Thus

two cases are identified as illustrated in Fig. 4.4:

case(1):6,>¢6 ) case(2):0,<9d

Fig. 4.4
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Case (1): 0, >0 . For this case the axial velocity » within the thermal

boundary layer is of the order of the free stream velocity. Thus the scale for
uis

u~Vv

i (4.22)
Following the formulation of (4.7d), scaling of the continuity equation
gives

o

v~V, L. (4.23)

L
Using (4.7b) and (4.20-4.23), the two convection terms in equation (2.19)
scale as

u—~n~"V, —, a
Oox L @®)
and
Ty, AT o
oy L

Thus the two convection terms are of the same order. We now examine the
order of magnitude of the two conduction terms in (2.19). They scale as

0T AT
2 " ()
ox L

and
0T AT
PEITE @
oy 0,

Comparing (c) with (d) and using (4.19), we conclude that

o°T _0°T
a—2<<8—2. (e)
X Y

This is identical to the intuitive result of (4.17). Thus the boundary layer
energy equation simplifies to
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2
ua—T+va—T=aa—T. (4.18)
ox oy 8y2

To answer the second question we note that each term in (4.18) is
equally important. A balance between convection and conduction gives

Rearranging
o |
L \v,L’
Using the definition of « the above gives
O |k
L peyV, '

Using the definitions of Prandtl and Reynolds numbers, the above is
rewritten as

AU — (4.24)
L |/PrRe,
Thus
o
Tt <<1 when /PrRe, >>1. (4.25)

The product of the Prandtl and Reynolds numbers appears in various
convection problems and is called the Peclet number, Pe, defined as

Pe = PrRe, . (4.26)
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As an example, a Peclet number of 100 gives J,/L ~0.1. It should be
noted that the above result applies to the case of 0, > J. It remains to
establish the condition under which ¢, > 6. Taking the ratio of (4.24) to
(4.14b) gives

i ! “4.27)
s pPr '
Thus the criterion for 6, > J is
0, >0d when +Pr <<1. (4.28)

Case (2): 0, <J. Examination of Fig. 4.4 shows that for this case the

axial velocity # within the thermal boundary layer is smaller than the free
stream velocity. Pretending that the velocity profile is linear, similarity of
triangles gives a scale for u as

u~V, %. (429)

Following the formulation of (4.7d), scaling of the continuity equation
gives
52
v~V, —L. (4.30)
Lo

Using (4.29) and (4.30) and following the procedure used in Case (1), we
arrive at the conclusion that the two convection terms are of the same order
and that axial conduction is negligible compared to normal conduction.

To answer the second question we again perform a balance between
convection and conduction

Using (4.29) for u, scaling each term in the above gives

G AT AT

a—-—.
Y5 L 57

Using the definition of ¢ and rearranging
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k

S /LY ~—"
( ! ) pchOOL

o
I

Applying (4.14b) to eliminate 0/ L in the above, we obtain

e 4.31)

L Pr Re,

Thus the condition for the assumption in (4.19) that 0, /L <<1 is

o
ft«l when Pr'\/Re, >>1. (4.32)

We next establish the condition under which 6, < J. Taking the ratio of
(4.31) to (4.14b)

o, 1 4
FRE (4.33)
Thus the criterion for &, <0 is
0, <J when Pr'® >>1. (4.34)

4.3 Summary of Boundary Layer Equations for Steady Laminar Flow

In formulating the governing equations for convection heat transfer we
have made several simplifying assumptions in order to limit the
mathematical complexity. These assumptions are: (1) Continuum, (2)
Newtonian fluid, (3) two-dimensional process, (5) negligible changes in
kinetic and potential energy and (4) constant properties. The additional
assumptions leading to boundary layer simplifications are: (6) slender
surface, (7) high Reynolds number (Re > 100), and (8) high Peclet number
(Pe > 100). Finally, we introduce the following additional simplifications:
(9) steady state, (10) laminar flow, (11) no dissipation (@ = 0), (12) no

" _

gravity, and (13) no energy generation (g'"' = 0). The governing boundary
layer equations for these conditions are:

Continuity:
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a—u+@:0. (2.3)
ox Oy

x-Momentum:

2
W L, | OTu (4.13)
Ox oy p dx oy?

Energy
2
a—TJrva—Tzoza—T. (4.18)
ox oy ayz

Note the following: (1) The continuity equation is not simplified for
boundary layer flow because both terms in (2.3) are of the same order of
magnitude. (2) The pressure term in (4.13) is obtained from the solution to
inviscid flow outside the boundary layer. Thus (2.3) and (4.13) have two
unknowns: # and v. (3) To include the effect of buoyancy, the term

[—pfg(T—T,)] should be added to the right-hand-side of (4.13). This

assumes that gravity points in the positive x-direction. (4) In applying these
equations one must keep in mind all the assumptions and restrictions
leading to their formulation.

4.4 Solutions: External Flow

We consider external flow over a surface in which the fluid is infinite in
extent. Of interest is thermal interaction between a surface and the external
fluid. Thermal interaction is fully characterized once fluid temperature
distribution is determined. However, temperature distribution depends on
velocity distribution. For the special case of constant properties, velocity
distribution is independent of temperature. Since this assumption will be
made throughout, in each case the solution to the velocity distribution will
be determined first and used to obtain the corresponding temperature
solution. The exceptions are problems involving free convection where
velocity and temperature must be solved simultaneously.
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4.4.1 Laminar Boundary Layer Flow over Semi-infinite Flat Plate:
Uniform Surface Temperature

Consider the classic problem of

flow over a semi-infinite flat i» VT
plate shown in Fig. 4.5. The plate  y Vo ] .
is maintained at uniform tem- T TR
perature 7, and the upstream ———

fluid temperature is 7,. The
upstream velocity is uniform and
parallel to the plate. Invoking all
the assumptions summarized in Section 4.3, the three governing equations
(continuity, momentum, and energy) are given in (2.3), (4.13), and (4.18).
It should be recalled that for uniform flow over a semi-infinite flat plate
transition from laminar to turbulent flow takes place at Re, =V_ x,/v=~
500,000 (see Section 2.3).

Fig. 4.5

(i) Velocity Distribution. In addition to velocity distribution, of interest is
the determination of the boundary layer thickness o(x)and wall shearing
stress 7, (x). These important flow characteristics are easily determined
once the velocity solution is obtained. Before an analytic solution is
presented, scaling will be used to estimate o(x) and 7, (x).

(a) Governing equations and boundary conditions

The continuity and x-momentum equations for this flow are:

ou + g =0, (2.3)
ox Oy

2
W L | OTu (4.13)

ox dy  pdv

The velocity boundary conditions are:

u(x,0)=0, (4.35a)
v(x,0)=0, (4.35b)
u(x,o)=V_, (4.35¢)

u0,y)=",. (4.35d)
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(b) Scale analysis: boundary layer thickness, wall shear and friction
coefficient

In Section 4.2.4 we used scale analysis to obtain an order of magnitude
solution to the boundary layer thickness d(x), given in (4.16)

1) 1
Z - (4.16)
X Re,
Wall shearing stress 7, is determined using (2.7a)
ov oOu
T, =T, =M —+—|. 2.7a
R ﬂ( Ox Oy ] (2-72)
Applying (2.7a) at the wall y =0 where v(x,0) =0 gives 7,
ou(x,0
b = M (4.36)
oy

To determine the order of magnitude of 7, the following scales are

assigned to # and y:

u~v,, (4.7a)
y~0. (4.7¢)
Equation (4.36) is scaled using (4.7)

T, ~ ,u?‘o. (a)

Using (4.16) to eliminate o in (a)

=
T() ~ /u Rex : (b)

X

Introducing the definition of the Darcy friction coefficient C ’
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T

C,=——2—. (4.37a)
") pr;
Using (b) to eliminate 7, in (4.37)
1
C,~ (4.37b)
‘ Re

X

(c) Blasius solution: similarity method

Equations (2.3) and (4.13) are solved analytically for the velocity
components u and v. These two equations contain three unknowns: u, v,
and p, . However, as was previously pointed out, pressure in boundary
layer problems is independently obtained from the inviscid flow solution
outside the boundary layer. Focusing on this inviscid region we note that it
can be modeled as uniform inviscid flow over the slightly curved edge of
the viscous boundary layer 8. However, since this layer is thin, we make
the assumption that the edge coincides with the plate. We do this as a first
approximation since the edge of the boundary layer is not yet known.
Thus, the inviscid problem becomes that of uniform flow over a flat plate
of zero thickness. Since the fluid is assumed inviscid, the plate does not
disturb the flow and the velocity remains uniform. Therefore the solution
to the inviscid flow outside the boundary layer is

u=V,, v=0, p=p,=constant. (4.38)

Thus the pressure gradient is
d,
pOO O

==0. (4.39)

Substituting (4.39) into (4.13) we obtain the boundary layer momentum
equation for this problem

U—=+ov—=v—-—. (4.40)

Equation (4.40) is nonlinear and must be solved simultaneously with the
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continuity equation (2.3). The solution, which is briefly outlined here, was
obtained by Blasius [1] in 1908. He used similarity transformation to
combine the two independent variables x and y into a single variable 7(x, )
and postulated that u/V,, depends on 77 only. For this problem the correct

form of the transformation variable 7 is

v
nx,y)=y |—. (4.41)
VX

The velocity u(x, y) is assumed to depend on 7 according to

g (4.42)

|4 _dn’

o0

where f = f (77) is a function which is yet to be determined. Two
observations are made regarding similarity transformation (4.41): (1) The
inclusion of (¥, /v)"'? in the definition of 77, as will be seen later, is for
convenience only. (2) Formal procedures are available for identifying the
appropriate transformation variable for a given problem [2].

With u defined in (4.42), continuity equation (2.3) is integrated to give
the vertical velocity component v. Rewriting (2.3)

o __u
oy ox
Multiplying both sides by dy and integrating gives v

Oou
v=—| —dy.
o ly (a)

To evaluate the integral in (a) we use (4.41) and (4.42) to express dy and
Ou /Ox in terms of the variable 77. Differentiating (4.41) with respect to y

and rearranging, yields
[vx
dy=_|—dn. (b)
'y v n

Using the chain rule, the derivative Ou/Ox is expressed in terms of 7
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ou _du on

ox  dnox

Using (4.41) and (4.42) into the above

ou_ V. d')

o 2x dn? ©

Substituting (b) and (¢) into (a) and rearranging

Integration by parts gives

v 1 |v df
= == 7 443
v, 2 \/ V. _x (77 dn j (4.43)

With continuity satisfied, the momentum equation will be transformed
and the function f{7) determined. In addition to u, v and Ou/0Ox, the
derivatives Ou /0y and 0%u/0y” must be expressed in terms of 7. Using
the chain rule and equations (4.41) and (4.42), we obtain

2
u_duon_y, d'f [V @
6y “dn oy dn* \vx

2 3

Ou_y &V @©

oy Pdndvx

Substituting (4.42), (4.43), and (c)-(e) into (4.40)

d daf
0]773

+ f() f : (4.44)

Thus, the governing partial differential equations are successfully
transformed into an ordinary differential equation. Note that the original
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independent variables x and y are eliminated in this transformation. Note
further that (4.44) is independent of characteristic velocity ¥, and Broperty
v. This is a direct consequence of including the factor (V, / V)1 in the
definition of 77 in (4.41).

To complete the transformation, the boundary conditions must also be
transformed in terms of the new variable 77. Using (4.41)—(4.43), boundary
conditions (4.35a-4.35d) transform to

_df(O) =0 (4.45a)
d > : Table 4.1
n Blasius solution [1]

f(O) =0 > (445b) I f i _ de
d =y vXx d77 Voo d?]2

) | (4450
d ’ : 0.0 0.0 0.0 0.33206
n 0.4 0.02656 | 0.13277 | 033147
0.8 0.10611 | 026471 032739
df () 1.2 0.23795 | 039378 |0.31659
——==1.  (4.45d) 1.6 042032 | 0.51676 | 0.29667
dn 2.0 0.65003 | 0.62977 | 0.26675
2.4 092230 | 0.72899 | 0.22809
) 2.8 123099 | 081152 | 0.18401
Note that transformed equation 32 156911 | 0.87609 | 0.13913
(4.44) is third order requiring 3.6 1.92954 1 0.92333 | 0.09809
. 4.0 230576 | 095552 | 0.06424
three  boundary  conditions. 4.4 269238 | 0.97587 | 0.03897
Boundary conditions (4350) 4.8 3.08534 0.98779 | 0.02187
1 . 5.0 328329 | 0.99155 | 0.01591
and (4.35d) coalesce mto a 52 348189 | 0.99425 |[0.01134
single condition, as shown in 22 ggggg‘l‘ 823% ggg;zg
(4.45¢) and (4.45d). Although 60 427964 | 099898 | 0.00240
the mathematical problem is 7.0 527926 | 0.99992 | 0.00022
8.0 627923 | 1.00000 | 0.00001

reduced to solving a third order
ordinary differential equation
(4.44), the difficulty is that this equation is nonlinear. Blasius obtained a
power series solution for the function f{7). Since the solution is not
expressed in terms of simple functions that are convenient to use, tabulated
values for f'and its derivatives are available for the determination of » and
v. Table 4.1 gives a summary of these functions. Beside giving the
velocity distribution, Blasius solution also gives the boundary layer

thickness o(x) and the wall shearing stress 7,(x). Defining & as the

distance y from the plate where the velocity ratio u/V,, = 0.994, Table 4.1
gives
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s=52 2%
V.,

5: 52 . (4.46)

X Re,

This can be expressed as

where Re, is the local Reynolds number. We are now in a position to
compare this result with scaling prediction of (4.16)

o 1

—_—~

X 4/Re, '

The comparison shows that scaling predicts the correct dependency on the
local Reynolds number with the constant 5.2 in Blasius solution
approximated by unity.

(4.16)

Wall shearing stress 7, is obtained using (4.36)

ou(x,0)

4.36
& (4.36)

o

Substituting (d) into (4.36) and using Table 4.1

2
on=uV, /V;"’d f(20) =0.33206 uV,, /V;“’ (4.47)
vx dn VX

Substituting (4.47) into (4.37a) gives the friction coefficient Cf

c, = 0.664 4.48)

VRe,

Note that scaling prediction of C ¢ 1s given by equation (4.37b)

1
Re

C, ~ (4.37b)

X
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Again scaling predicts the correct dependency on the local Reynolds
number with the constant 0.664 in Blasius solution approximated by unity.

(ii) Temperature Distribution.

We return to the problem shown L, Vay g
. . . — - =" -
in Fig. 4.5 for uniform flow Ve ’
. .. . y
over an isothermal semi-infinite T IS
plate. The determination of the LR SR B
thermal boundary layer thick- .
ness J,, surface heat flux, heat Fig. 4.5

transfer coefficient, and Nusselt
number, hinges on the determination of the temperature distribution in the
fluid.

(a) Governing equation and boundary conditions

Based on all the assumptions summarized in Section 4.3, temperature
distribution is governed by energy equation (4.18).

2
u6l+va—T=aa—T. (4.18)
Ox oy 6y2

The boundary conditions for this problem are:

T(x,0)=T,, (4.49a)
T(x,0)=T,, (4.49b)
T0,y)=T,. (4.49¢)

(b) Scale analysis: Thermal boundary layer thickness, heat transfer
coefficient and Nusselt number

In Section 4.2.5 we used scale analysis to obtain an order of magnitude
estimate for the thermal boundary layer thickness &,. We generalize the
results by setting L = x in equations (4.24) and (4.31):

Case (1): 5, >0 (Pr<<l1)

t PP (4.50)
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Case (2): 5, <0 (Pr>>1)
o, 1

—_~

173
X Pr ./Re

X

4.51)

The heat transfer coefficient # was introduced in Section 1.6 of
Chapter 1. Analytic determination of % is based on Fourier’s law of
conduction and Newton’s law of cooling. Equating the two laws gives

0T (x,0)

Using the scales of (4.20) and (4.21), the above gives

pk

t
where 0, is given by (4.50) and (4.51).

Case (1): 5, > 0 (Pr<<l). Substituting (4.50) into (4.52)

h~£1/PrRex , for Pr<<l.

X

Defining the local Nusselt number Nu, as

Substituting (4.53) into (4.54)

Nu, ~Prl/2,/Rex , for Pr<<I.

Case (2): J;, << (Pr>>1). Substituting (4.51) into (4.52)

13
h~£Pr Re_, for Pr>>1.

X
X

(1.10)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)
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The corresponding Nusselt number is

1/3
Nu, ~Pr L|/Re,, for Pr>>1. (4.57)

(c¢) Pohlhausen’s solution: Temperature distribution, thermal boundary
layer thickness, heat transfer coefficient, and Nusselt number

Boundary layer energy equation (4.18) is solved analytically for the
temperature distribution 7(x,y). The solution was obtained in 1921 by
Pohlhausen [1] using similarity transformation. For convenience, equation
(4.18) is expressed in terms of dimensionless temperature & defined as

T-T
0 = s (4.58)
T, T,

Substituting (4.58) into (4.18)

2
u%+v%=aﬁ. 4.59)
ox oy 6y2

Boundary conditions (4.49) become

0(x,0) =0, (4.60a)
O(x,0) =1, (4.60b)
0(0,y) =1. (4.60c)

To solve (4.59) and (4.60) using similarity method, the two independent
variables x and y are combined into a single variable 7(x, y). For this
problem the correct form of the transformation variable 7 is the same as
that used in Blasius solution

7
n(x,y) = wa;”- (4.41)
VX

The solution &(x, y) is assumed to depend on 77 as

O(x,y)=0(n).

Velocity components # and v in (4.59) are given by Blasius solution
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g (4.42)
V., dn

o0

o Vv [ 4
v, 2\V.x [ndn / j (443)

Substituting (4.41)-(4.43) into (4.59) and noting that

20 d0on  1n do

Ox dn oOx 2xd_77’

0 _doon_ [V, do
oy dn oy vxdn’

Fo_v. a0
ayz VX d772 ?
gives

d*e Pr do
+— —=0. 4.61
a2 G)) i (4.61)

Thus, the governing partial differential equation is successfully transformed
into an ordinary differential equation. The following observations are made
regarding (4.61):

(1) The Prandtl number Pr is the single parameter characterizing the
equation.

(2) This is a linear second order ordinary differential equation requiring
two boundary conditions.

(3) The function f(77) appearing in (4.61) represents the effect of fluid
motion on temperature distribution. It is obtained from Blasius solution.

To complete the transformation, boundary conditions (4.60) must also
be transformed in terms of the new variable 7. Using (4.41), the three

boundary conditions (4.60a-4.60c) transform to
0(0)=0, (4.62a)
O(o0) =1, (4.62b)
(o) =1. (4.62¢)



4.4 Solutions: External Flow 127

Note that boundary conditions (4.60b) and (4.60c) coalesce into a single
condition, as shown in (4.62b) and (4.62c). Equation (4.61) is solved by
separating the variables, integrating and using boundary conditions (4.62).
Integration details are found in Appendix B. The temperature solution is

0 5 Pr
[ [£n] a
o) =1-—— n . (4.63)

5 Pr
o 154] e
o | dn?

Differentiating (4.63) gives surface temperature gradient

do©) _ [0.332]""

dﬂ 00 ) PI" ’
Jloa) o
dn?

n

(4.64)

The integrals in (4.63) and (4.64) are evaluated numerically. The integrand
d? f/dn® is obtained from Blasius solution and is given in Table 4.1. The
integration result is presented graphically in Fig. 4.6 for several values of
the Prandtl number.

1.0 =
100 10 /I 0.7((11/‘)‘ L]
0.8 el

1/
sl /1 | ol —

=

=1 L/ =
Too_rv 0.4 ” // 7
!I ‘ P = |
/ Pr=0.01
0.2/
/-
0 2 4 6 8 10 12 14

n=yV,/vx

Fig. 4.6 Pohlhausen's solution for temperature
distribution for laminar flow over a
semi-infinite isotheral flat plate
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With the temperature distribution determined, attention is focused on
the thermal boundary layer thickness, heat transfer coefficient, and Nusselt
number. The thermal boundary layer thickness o, is determined from Fig.
4.6. The edge of the thermal layer is defined as the distance y where
T =T, . This corresponds to

T-T
0= S ~1, at =0,. 4.65
T, T, Yy ¢ ( )

Using this definition of J;, Fig. 4.6 shows that o0, (x)depends on the
Prandtl number and that it decreases as the Prandtl number is increased.

The heat transfer coefficient / is determined using equation (1.10)
0T (x,0)
0
h=—b—2 (1.10)

where
oT(x,0) d_Td@(O)@_T]
oy do dn oy

Using (4.41) and (4.58) into the above

Mmm:@;nvgﬁmm'
oy vx dn

Substituting into (1.10) gives the local heat transfer coefficient

h(x):k@m. 466)
vx dn

The average heat transfer coefficient for a plate of length L is defined in
equation (2.50)

L
h =% j h(x)dx . (2.50)
0

Substituting (4.66) into (2.50) and integrating



4.4 Solutions: External Flow 129

h = 2 1/ dQ(O) . (4.67)
The local Nusselt number is obtained by substituting (4.66) into (4.54)
Nu, :@JR% . (4.68)
n

The corresponding average Nusselt number is

Nu, =2 d¢9(0) \Re (4.69)

Total heat transfer rate g, from a plate of length L and width ' is obtained
by applying Newton’s law of cooling

L L
qr = Ih(x)(Ts ~T, ) Wadx = (T, —Tw)th(x)dx:(Ts ~T)WLh .
0 0

Noting that WL is the surface area 4, the above becomes

qr =T, -T,)Ah. (4.70) Table 4.2
Examination of equations (4.66)-(4.69) shows pr | 4900
that the heat transfer coefficient and Nusselt dn
number depend on the temperature gradient at 0.001 0.0173
the surface, d@(0)/dn. This key factor depends 0.01 0.0516
on the Prandtl number and is determined from 0.1 0.140
(4.64). The integral in (4.64) is evaluated 0.5 0.259
numerically using Blasius data in Table 4.1. 0.7 0.292
Values of d@(0)/dn corresponding to various ;8 8232
Prandtl numbers are given in Table 4.2 [3]. The 0.0 0:730
following equations give good approximation of 15.0 0.835
do(0)/dn 50 1.247

100 1.572
400) _o564pr2,  Pr<0.0s, @712) |12 3387

dn
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490) _ 337 pp1'3 , 0.6<Pr<10, (4.71b)
dn
@:0.339%”3, Pr>10. (4.71¢c)
n

To evaluate scaling prediction of the Nusselt number, we consider two
cases corresponding to Pr << 1 and Pr >> 1. Combining (4.71) with (4.68)
gives

Nu, =0.564Pr"* |[Re_,  for Pr<0.05, (4.72a)
Nu, =0.332Pr'3 [Re,, for 0.6>Pr>10, (4.72b)
Nu_=0339Pr"? JRe., for Pr>10, (4.72¢)

The corresponding scaling results are given in (4.55) and (4.57)

Nu, ~Pr'? [Re_, for Pr<<l, (4.55)
1/3
Nu, ~Pr \|Re,, for Pr>>1. (4.57)

Comparing (4.72a) with (4.55) and (4.72¢) with (4.57) shows that scaling
predicts the correct dependency on the local Reynolds number and the
Prandtl number. However, scaling approximates the coefficients 0.564 and
0.339 of the analytic solution with unity.

The use of Pohlhausen’s solution to determine heat transfer character-
istics requires the determination of fluid properties such as kinematic
viscosity, thermal conductivity, and Prandtl number. All fluid properties in
Pohlhausen’s solution are assumed constant. In fact they are temperature
dependent. When carrying out computations using Pohlhausen’s solution,

properties are evaluated at the film temperature 7', defined as

Ty =(T, +T,)/2. (4.73)
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4.4.2 Applications: Blasius Solution, Pohlhausen’s Solution,
and Scaling

Three examples will be presented in this section to illustrate the application
of Blasius solution, Pohlhausen’s solution, and scaling to the solution of
convection problems.

Example 4.1: Insect in Search of Advice

Air at 30°C flows with uniform
velocity V., = 4 m/s over a flat plate. ¥
A tiny insect finds itself at location 0
near the surface of the plate. Air
velocity u at this location is too high
for the insect. It wants to take a one
millimeter step to any of the locations 1, 2, 3, or 4. What will the velocity u
be at these locations if the insect starts at x = 150 mm and y = 2 mm? Is
the insect inside the viscous boundary layer?

(1) Observations. (i) This is an external forced convection boundary layer
problem. (ii) Changes in velocity between locations 1 and 3 should be
small compared to those between 2 and 4. (iii) Location 4 should have the
lowest velocity. (iv) If the flow is laminar, Blasius solution can be used to
determine the velocity distribution and boundary layer thickness. (v) The
flow is laminar if Reynolds number is less than 500,000.

(2) Problem Definition. Determine the axial velocity at the five given
locations.

(3) Solution Plan. Check the Reynolds number to determine if boundary
layer approximations can be made and if the flow is laminar. If it is, use
Blasius solution, Table 4.1, to determine the axial velocity at the five
locations and boundary layer thickness.

(4) Plan Execution.

(i) Assumptions. All assumptions leading to Blasius solution are
applicable. These are: (1) Continuum, (2) Newtonian fluid, (3) steady state,
(4) constant properties, (5) two-dimensional, (6) laminar flow (Re, <
5%10°), (7) viscous boundary layer flow (Re, > 100), (8) uniform upstream
velocity, (9) flat plate, (10) negligible changes in kinetic and potential
energy and (11) no buoyancy (f=0 or g =0).
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(ii) Analysis. The Reynolds number is computed to establish if the
flow is laminar and if boundary layer approximations can be made. The
Reynolds number is defined as

Re =-2—, (a)
where

Re, = Reynolds number
V., =upstream velocity = 4 m/s

x = distance from the leading edge of the plate, m
v = kinematic viscosity = 16.01 x 107° m? /s

To determine if the flow is laminar or turbulent, compare the Reynolds
number with the transition Reynolds number. For flow over a flat plate the

transition Reynolds number Re, is
Re, =5x10°. (b)

The flow is laminar if Re, <Rext . Viscous boundary layer approximations
are valid for
Re, >100. ()
Evaluating the Reynolds number at x = 151 mm, equation (a) gives
Re. - 4(m/s)0.151(m)

= =37,726
Y 16.01x107%(m?/s)

Therefore, boundary layer approximations can be made and the flow is
laminar. Use Blasius solution to determine the velocity component u at any
location and boundary layer thickness 0. At each location, the variable 7 is
computed and used in Table 4.1 to determine the corresponding velocity
ratio u/V,. This variable is defined as

Ve
n=y ; (d)
VX

y =normal distance from surface, m
n = dimensionless variable

where

Blasius solution also gives the boundary layer thickness as
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o_ 32 (4.46)

X Re,

(iii) Computations. At each location (x, y), equation (d) is used to
compute 77. The computed 7 is used in Table 4.1 to determine u/V.,. Sample
computation is shown for location 0. The results for the five locations 0, 1,
2, 3 and 4 are tabulated below.

At location 0 where x = 150 mm and y =2 mm. Equation (d) gives

4(m/s)

=2.581
16.01x 1076 (m? / $)0.15(m)

5 = 0.002(m) \/

At this value of 7, Table 4.1 gives

ulV, ==0.766, u=0.766x4(m/s)=3.064 m/s

Location | x (m) | y(m) n wV, | u(m/s)

0 0.150 | 0.002 | 2.581 | 0.766 | 3.064
1 0.151 | 0.002 | 2.573 | 0.765 | 3.06
2 0.150 | 0.003 | 3.872 | 0.945 | 3.78
3 0.149 | 0.002 | 2.590 | 0.768 | 3.072
4 0.150 | 0.001 | 1.291 | 0.422 | 1.688

The boundary layer thickness at the location of the insect is determined
using (4.46) where x = 0.15mand Re, =37,726

52 52

5 = =
JRe, T B8

0.151(m) = 0.004m = 4 mm

Thus the insect is within the boundary layer.

(iv) Checking. Dimensional check: Computations showed that equa-
tions (a) and (d) are dimensionally correct.

Qualitative check: The velocity at the five locations follows an expected
behavior; minor changes in velocity in the x-direction and significant
changes in the y-direction.

(5) Comments. (i) The insect should move to location 4 where the axial
velocity is lowest.
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(i1) Changes in axial velocity with respect to x, at the same distance y from
the plate, are minor.

(ii1)) Changes in axial velocity with respect to y, at the same distance x, are
significant.

(iv) The tabulated values of u are approximate since they are determined by
interpolations of Table 4.1.

(v) What is important for the insect is the magnitude of the velocity vector
V= (u2 + 02)1/2 and not the axial component u. However, since v << u
in boundary layer flow, using # as a measure of total velocity is reasonable.

Example 4.2: Laminar Convection over a Flat Plate

Water flows with a velocity of 0.25 m/s over a 75 cm long plate. Free
stream temperature is 35°C and surface temperature is 85°C. [a] Derive an
equation for the thermal boundary layer thickness 8, in terms of the
Reynolds number. [b] Determine the heat transfer coefficient at x = 7.5 cm

and 75 cm. |[c] Determine the T

heat transfer rate for a plate 50 %

cm wide. [d] Can Pohlhausen's v, '~
solution be used to determine the T e
heat flux at the trailing end of ——

the plate if its length is doubled?

(1) Observations. (i) This is an external forced convection over a flat
plate. (ii) The thermal boundary layer thickness increases with distance
along the plate. (iii) Newton’s law of cooling gives surface heat flux and
heat transfer rate from the plate. (iv) The heat transfer coefficient changes
with distance along the plate. (v) Pohlhausen's solution is applicable only if
the flow is laminar and all other assumptions leading to this solution are
valid. (vi) Doubling the length doubles the Reynolds number.

(2) Problem Definition. Determine water temperature distribution.

(3) Solution Plan. Compute the Reynolds and Peclet numbers to establish
if this is a laminar boundary layer problem. If it is, use Pohlhausen's
solution to determine the thermal boundary layer thickness, heat transfer
coefficient, heat transfer rate, and surface heat flux.

(4) Plan Execution.
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(i) Assumptions. The assumptions listed in Section 4.3, which lead to
Pohlhausen’s solution, are made: (1) Continuum, (2) Newtonian fluid, (3)
two-dimensional process, (4) negligible changes in kinetic and potential
energy, (5) constant properties, (6) boundary layer flow, (7) steady state,
(8) laminar flow, (9) no dissipation, (10) no gravity, (11) no energy
generation, (12) flat plate, (13) negligible plate thickness, (14) uniform
upstream velocity ¥, (15) uniform upstream temperature7, , (16)
uniform surface temperature 7 , and (16) no radiation.

(ii) Analysis and Computations. Calculate the Reynolds and Peclet
numbers to determine if boundary layer approximations can be made and if
the flow is laminar or turbulent. Boundary layer approximations are valid
if the body is streamlined and if

Re >100 and Pe= Re, Pr >100, (a)
where
Re, =V, x/v
Pe = Peclet number
Pr = Prandtl number

V. = free stream velocity = 0.25 m/s

x = distance along plate, m
v =kinematic viscosity, m*/s

The transition Reynolds number Re, for flow over a semi-infinite plate is
Re, =5x10°. (b)
Properties of water are evaluated at the film temperature, T’ r» defined in
(4.73)
sz(TS+TOO)/2, (¢

where

T, = surface temperature = 85°C

T, = free stream temperature = 35°C
Substituting into (¢) gives

T, =(85+35)(°C)/2=60°C
Water properties at this temperature are:

k = thermal conductivity = 0.6507 W/m-"C



136 4 Boundary Layer Flow: Application to External Flow

Pr=3.0
Vv =0.4748 x 10 m?/s.

Thus atx= 7.5 cm Re, and Pe are

Re, = V,x  0.25(m/s)0.075(m)

_ — =3.949x10*
V. 0.4748x107°(m?/s)

and
Pe = Re Pr =3.949x10* x3=11.85x10"

Comparison with equations (a) and (b) shows that boundary layer
approximations can be made and the flow is laminar at x = 7.5 m. At the
trailing edge, x = L =75 c¢m, the Reynolds number Re, =3.949 x 10°. Since
this is less than the transition number it follows that the flow is laminar
over the entire plate. Thus, Pohlhausen's solution is applicable.

[a] Determination of0,. At the edge of the thermal boundary
layer y=0, andT = T,,. Thus, 8(n,) = (TOO —TS)/(TOO —Ts)z 1. From
Fig. 4.6 the value of 7, corresponding to 6(17,)=1 and Pr =3 is
approximately 3.2. Therefore

N, =32=0,V,/vx ,
or

S, 32 3.2
Zr = ) d
x \/Vw/vx \/Rex @

[b] Heat transfer coefficient. The local heat transfer coefficient is given in

(4.66)
h(x)=k V;‘OM , (4.66)
\vx dn

where d@(0)/dn for Pr=13 is given in (4.71b)
@:0.3321%”3, 0.6<Pr<10. (4.71b)
n

For Pr =3, this gives
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400) _ 0.332(3)"3 = 0.4788
dn

Substituting into (4.66) for x = 0.075 m

0.25(m/s)
0.4748 x 1070 (m?2/5)0.075(m)

h=0.4788(0.6507)(W/m—"°C) \/

=825.5W/m?>-°C

Similarly, at x = 0.75 m

0.25(m/s)
0.4748 x 100 (m2/5)0.75(m)

h=0.4788(0.6507)(W /m—°C) \/

=261W/m?-°C

[c] Heat transfer rate. Equation (4.70) gives the total heat transfer rate from
the plate

qr =(T, =T, )Ah, (4.70)

where

A = surface area = LW, m*

h= average heat transfer coefficient, W/m>-°C
L =length of plate =75 cm =0.75 m

qr = total heat transfer rate from plate, W

W = width of plate =50 cm = 0.5 m

The average heat transfer coefficient is given in (4.67)

- k do(0)
h=2—.R . 4.67
I er dn ( )

The Reynolds number at the trailing edge is Re L= 3.949 x 105' Substitut-

ing into the above

. 2 0
h=2 0‘65070(\;;/;“) ©) 3.949x10° 0.4788 = 522.1 Wim2-°C
. m

Substituting into (4.70)
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gr =522.1(W/m?—°C)(85 — 35)(° C)0.75(m)0.5(m) = 9789 W

[d] Doubling the length of plate doubles the corresponding Reynolds
number at the trailing end. There is a possibility that transition to turbulent
flow may take place. For a plate of length 2L, the Reynolds number is

Re,, =2 (3.949 x 10°) = 7.898 x10°

Since this Reynolds number is greater than Re,=5 x10°, the flow at the

trailing end is turbulent and consequently Pohlhausen's solution is not
applicable.

(iii) Checking. Dimensional check: Computations showed that the
Reynolds number is dimensionless and units of # and 4 are correct.

Qualitative check: As x is increased / decreases. Computation of the local
heat transfer coefficient at x = 0.075 m and x = 0.75 m confirms this.

Quantitative check: The computed values of the heat transfer coefficients
are within the range given in Table 1.1 for forced convection of liquids.

(5) Comments. (i) It is important to check the Reynolds number before
applying Pohlhausen's solution.

(ii) The velocity boundary layer thickness O is given by

o_ 32 (4.46)

X  /Re, .

Comparing (d) with equation (4.46) indicates that the thermal boundary
layer thickness for water is smaller than the velocity boundary layer.

Example 4.3: Scaling Estimate of Heat Transfer Rate

Use scaling to determine the total heat transfer rate for the conditions
described in Example 4.2

(1) Observation. (i) Heat transfer rate is determined using Newton’s law
of cooling. (ii) The heat transfer coefficient can be estimated using scaling.
(2) Problem Definition. Determine the heat transfer coefficient /.

(1) Solution Plan. Apply Newton’s law of cooling and use scaling to
determine 4.
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(2) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) two-
dimensional process, (4) negligible changes in kinetic and potential energy,
(5) constant properties, (6) boundary layer flow, (7) steady state, (8) no
dissipation, (9) no gravity, (10) no energy generation and (11) no radiation.

(ii) Analysis. Application of Newton’s law of cooling gives

qT:(TS_Too)Al/_la (470)
where
A = surface area = LW, m*

h = average heat transfer coefficient, W/m*-°C
L = length of plate =75 cm =0.75 m

qr = total heat transfer rate from plate, W

T, = surface temperature = 85°C

T, = free stream temperature = 35°C

W = width of plate =50 cm = 0.5 m

The heat transfer coefficient is given by (1.10)
0T (x,0)
he—k— (1.10)

where
k = thermal conductivity = 0.6507 W/m-"C

Following the analysis of Section 4.41, scaling of 4 for Pr>>1 gives

k 13
h~—Pr L|/Re. , for Pr>>1, (4.56)
X

where Re, =V, x/v and Pr = 3. Setting h~h,x = L, A = WL and
substituting (4.56) into (4.70)

gr ~(T, ~T )W kPr'" Re, . (@)

(iii) Computations. The Reynolds number at the trailing end is

Re; =3.949x 10°. Substituting numerical values into (a)
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13
qr ~(85-35)(°C)0.5(m)0.6507(W/m-°C)3 /394900
qr ~14740 W
Using Pohlhausen’s solution gives g7 = 9789 W.

(iv) Checking. Dimensional Check: Solution (a) is dimensionally
correct.

(5) Comments. Scaling gives an order of magnitude estimate of the heat
transfer coefficient. In this example, the error in scaling estimate of the heat
transfer rate is 50%.

4.4.3 Laminar Boundary Layer Flow over Semi-infinite Flat Plate:
Variable Surface Temperature [4]

Consider uniform flow over a semi-

infinite flat plate shown in Fig. 4.7. L,
Surface temperature varies with Ve e
axial distance x according to T RAPPRS
X
T,(x)-T, =Cx", (474 Fig. 4.7

where C and » are constants and 7

is free stream temperature. We wish to determine the temperature
distribution, heat transfer coefficient, Nusselt number, and heat transfer
rate. To solve this problem we invoke all the assumptions summarized in
Section 4.3.

(i) Velocity Distribution. Since properties are assumed constant, velocity
distribution is independent of the temperature distribution. Thus Blasius
solution is applicable to this case and the velocity components are given by

g (4.42)

.
v, dn’

v 1 |v df
— == |- r], 4.43
V, 2\V,x (77 dn J (4.43)

where the similarity variable 7 is defined as
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7
n(x,y) = wa;“’- (4.41)
VX

(ii) Governing Equations for Temperature Distribution. Based on the
assumptions listed in Section 4.3, temperature distribution is governed by
energy equation (4.18)
orT oT  9°T
U—+o—=a——-—. (4.18)
ox oy oy?

The boundary conditions for this problem are:

T(x,00=T, =T, +Cx", (a)
T(x,0)=T,, (b)
I0,y)=T,. (©)

(iii) Solution. The solution to (4.18) is obtained by the method of similarity
transformation. We define a dimensionless temperature 6 as

_T-T;
-T

N

(7

(4.58)

We assume

O(x,y)=6(n). 4.75)

Using (4.41)-(4.43), (4.58), (4.74) and (4.75), energy equation (4.18)
transforms to (see Appendix C for details)

2
d 'g + nPri
dn dn

P do
(1-6)+ TF f(n)d—n =0. (4.76)

Boundary conditions (a)-(c) become
6(0)=0, (4.77a)
O(0) =1, (4.77b)
0(c0) =1. (4.77¢)
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Note that boundary conditions (b) and (c) coalesce into a single condition,

as shown in (4.76b) and (4.76¢). The local heat transfer coefficient and
Nusselt number are determined using (1.10)

oT (x,0)
he—k— Y (1.10)

where
0T (x,0) _ ﬂd@(())@_ﬂ
oy de dn Oy '

Using (4.41), (4.58) and (4.72) into the above

oT(x,0) Ly V., d0(0)
oy vx dn

Substituting into (1.10) gives the local heat transfer coefficient

;muszE;ﬁﬁ@l (478)
vx dn

The average heat transfer coefficient for a plate of length L is defined in
equation (2.50)

L
E:%jmmw. (2.50)
0
Substituting (4.78) into (2.50) and integrating

— k de(0)
h=2=_.]Re, 237 4.79
L ‘L dn ( )

The local Nusselt number is obtained by substituting (4.78) into (4.54)

Nu, =@,/Rex . (4.80)
n

The corresponding average Nusselt number is
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N_sz@ﬂq . (4. 81)
n

Thus the key factor in the determination of the heat transfer coefficient and
Nusselt number is surface temperature gradient d@(0)/dn.

(iii) Results. The solution to (4.76) subject to boundary conditions (4.77) is
obtained by numerical integration [4]. The solution depends on two
parameters: the Prandtl number Pr and the exponent » in (4.74) which
characterizes surface temperature variation. Temperature gradient at the
surface, d@(0)/dn, is presented in Fig. 4.8 for three Prandtl numbers.

2.0

[ | 30— | |
dn /_,_,_l_!l-"

1.0

|P} = l]T

0 0.5 1.0 1.5
n

Fig. 4.8 Surface temperature gradient for
plate with varying surface

temperatue, 7, — 7., = Cx" [4]

4.4.4 Laminar Boundary Layer Flow over a Wedge: Uniform Surface
Temperature

Consider symmetrical flow over a

AT
wedge of angle f 7 shown in Fig.

4.9. The wedge is maintained at
uniform surface temperature. Fluid Ve
velocity, temperature, and pressure 7T,
upstream of the wedge are uniform.  p,
However, pressure and velocity
outside the viscous boundary layer

vary with distance x along the
wedge. A summary of key features Fig. 4.9
of this problem follows.
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Based on the assumptions listed in Section 4.3, the x-momentum equation
for this case is:

ou ou 1 dp,, o%u
Uu—=+70 = V—z.

-~ (4.13)
ox oy p dx oy

The solution to inviscid flow over the wedge gives the velocity outside the
viscous boundary layer V_ (x)as

V,(x)=Cx", (4.82)
where C'is a constant and m is defined in terms of wedge angle as

__ B
2-8°

m (4.83)

Application of (4.13) to the inviscid flow outside the viscous boundary
layer where v=0and u =V _ (x), gives the pressure gradient dp_, / dx

_Ldp, _,, OV,
p dx ?oox

Substituting into (4.13)

ou  ou v, 0%u
+v—s-

u—+v—="V, . (4.84)
ox Oy ox oy?
The boundary conditions are
u(x,0)=0, (4.85a)
v(x,0)=0, (4.85b)
u(x,0)=V_(x)=Cx". (4.85¢)

The solution to the velocity distribution is obtained by the method of
similarity. Following Blasius approach, a similarity variable 77 is defined

as
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V., (x C
n(x,y) =y Vol®) = p| = x"2 (4.86)
VX 1%

The velocity u(x, y) is assumed to depend on 7 according to

u dFF
vV

==, (4.87)
L(x) dn

Continuity equation (2.3), (4.86), and (4.87) give the vertical velocity
component U

0=V, ()| Ll Lom, dF (4.88)
xV, (x) 2 l+m dn
Substituting (4.82) and (4.86)-(4.88) into (4.84)
3 2 2
df+m+1Fdf—m{d—F} +m=0. (4.89)
2 dnp dn

This is the transformed momentum equation. Boundary conditions (4.85)
transform to

dF(0) _

0 4.90
dn , (4.90a)
F(0)=0, (4.90b)
dF (=) _ 1. (4.90¢)
dn

Note the following regarding (4.89) and (4.90):

(1) The original variables x and y do not appear explicitly in these
equations.

(2) Momentum equation (4.89) is a third order non-linear ordinary
differential equation.
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(3) The special case of m= =0 corresponds to a flat plate. Setting
m =0 in (4.89) and (4.90) reduces to Blasius problem (4.44) and (4.45)
with F(17) = 1 (17).

Equation (4.89) is integrated numerically [5, 6]. The solution gives the
function F'(77) and its derivative dF' / dn. These in turn give the velocity

components ¢ and v.

To determine the temperature distribution we begin with the energy
equation and thermal boundary conditions. The applicable equations for the
wedge are the same as those of the semi-infinite flat plate, given by

2
, 98, ,99_,90 (4.59)
Ox oy oy?

0(x,0)=0, (4.60a)
O(x,0) =1, (4.60b)
0(0,y)=1. (4.60c)

where the dimensionless temperature & is defined as

T-T
6= s (4.58)
T, T,

The difference between the flat plate and wedge problem is the velocity
distribution. In the flat plate case the velocity is given by Blasius solution
while in the wedge the solution to (4.89) gives the velocity distribution.
Energy equation (4.59) is solved by the method of similarity
transformation. We assume

0=0(n), (4.75)

where the similarity variable 77 is defined in (4.86). Substituting (4.86)-
(4.88) and (4.75) into (4.59) and (4.60)

d’0 Pr do
+—m+1)F(n)—=0, 491
a2 (m+1) (77)61,77 (4.91)
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6(0)=0, (4.92a)
O(0) =1, (4.92b)
6(0) =1. (4.92c¢)

Thus, the governing partial differential equation is successfully transformed
into an ordinary differential equation. The following observations are made
regarding (4.91) and (4.92):

(1) Two parameters, Prandtl number Pr and the wedge size m, characterize
the equation.

(2) This is a linear second order ordinary differential equation requiring
two boundary conditions.

(3) The function F'(77) appearing in (4.91) represents the effect of fluid
motion on temperature distribution. It is obtained from the solution to
(4.89).

(4) Boundary conditions (4.60b) and (4.60c) coalesce into a single
condition, as shown in (4.92b) and (4.92c).

(5) The special case of m = =0 corresponds to a flat plate. Setting
m =0 in (4.91) reduces to Pohlhausen’s problem (4.61).

Following the procedure used in Appendix B, separating variables in
equation (4.91), integrating twice and applying boundary conditions (4.92),
gives the temperature solution as

o0 r n |
J. exp —WIF(n)dn dn
o(n)=1- ——— 0,7 ~ . (4.93)
(m +1) Pr
exXpl - 5 IF(n)dn dn
0 L 0 i

The temperature gradient at the surface is obtained by differentiating (4.93)
and evaluating the derivative at the surface, 7 = 0 to obtain

w -1
do(0) m+1)Pr
ao) _ O N Fapdn | dnt . @
dn “0 eXp{ > J; (m) 77} 77} (4.94)



148 4 Boundary Layer Flow: Application to External Flow

The function F'(77) appearing in (4.93) and (4.94) is obtained from the
numerical solution to flow field equation (4.89). The integrals in (4.93) and
(4.94) are evaluated numerically. Results for the temperature gradient at
the surface, d@(0)/dn, are given in Table 4.3 for four wedge angles at
five Prandtl numbers [7]. Also shown in Table 4.3 is F'"(0)[5].

and surface velocity gradient F"(0)

Surface temperature gradient

de(0)
dn

for flow over an isothermal wedge

df(0)/dn at five values of Pr
m wedge angle 78 | F"(0)

0.7 0.8 1.0 5.0 | 10.0

0 0 0.3206 | 0.292 | 0.307 | 0.332 | 0.585 | 0.730
0.111 /5 (36°) 0.5120 | 0.331 | 0.348 | 0.378 | 0.669 | 0.851
0.333 /2 (90°) 0.7575 | 0.384 | 0.403 | 0.440 | 0.792 | 1.013
1.0 7 (180°) 1.2326 | 0.496 | 0.523 | 0.570 | 1.043 | 1.344

Table 4.3 is used to determine the heat transfer coefficient # and Nusselt
number Nu. Equation (1.10) gives 4

oT (x,0)
he kY (1.10)
where
0T (x,0) _ dT d6(0) on
dy do dn oy

Using (4.58), (4.75) and (4.86) into the above

AE0) g g [Val) do©)
oy vx dn

Substituting into (1.10) gives the local heat transfer coefficient
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V., (x) dO(0)

h(x)=k
) vx dn

(4.95)

The local Nusselt number is obtained by substituting (4.95) into (4.54)
de(o
Nu, :%./Rex , (4.96)
n

where Re, is the local Reynolds number defined as

_xV,(x)
==

Re 4.97)

X

Examination of (4.95) and (4.96) shows that the key factor in the
determination of the heat transfer coefficient and Nusselt number is surface
temperature gradient d@(0)/dn listed in Table 4.3.
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PROBLEMS

4.1 Put a check mark in the appropriate column for each of the following

statements.
Statement true | false | may be

@ | (Bu/dx)+(8v/y) =0 is valid for
transient flow.

(b) | The y-momentum equation is neglected in
boundary layer flow.

(c) | Boundary layer equations are valid for all
Reynolds numbers.

(d) | Pressure gradient is zero outside the
boundary layer.

© | 52y o’u ]
—— << is for a streamlined body.
ox oy

(f) | In boundary layer flow fluid velocity
upstream of an object is undisturbed.

(g) | Axial pressure gradient is neglected in
boundary layer flow.

(i) | Axial conduction is neglected in
boundary layer flow.

4.2 Examine the three governing equations, (2.3), (4.13) and (4.18) for
two-dimensional, constant properties, laminar boundary layer flow.

[a] How many dependent variables do these equations have?
[b] How is the pressure p_ determined?

[c] If streamlines are parallel in the boundary layer, what terms will
vanish?

[d] Can (2.3) and (4.13) be solved for the velocity field # and v

independently of the energy equation (4.18)?

4.3 Air flows over a semi-infinite plate with a free stream velocity V=
0.4 m/s and a free stream temperature 7, = 20°C. The plate is
maintained at 7 = 60°C. Can boundary layer approximations for
the flow and temperature fields be applied at:
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4.5

4.6

4.7

4.8

4.9
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[a] location x = 1.5 mm?
[b] location x = 15 mm?

Note: Evaluate air properties at the average film temperature
T, =T, +T,)/2.

Water at 25°C flows with uniform velocity V_ = 2 m/s over a
streamlined object. The object is 8§ cm long and its surface is
maintained at 7 = 85° C. Use scaling to:

[a] show that 6 /L <<1,
[b] evaluate the inertia terms ©Ou /Ox and vou /0y,

[c] evaluate the viscous terms vo*u/éx* and vd*u/ 5‘)/2 .

Water at 25°C flows with uniform velocity V.= 2 m/s over a
streamlined object. The object is 8§ cm long and its surface is

maintained at 7 = 85°C. Use scaling to:

[a] show that & /L << 1, [b] evaluate the convection terms ©#07T / Ox
and v0T /0y,

[c] evaluate the conduction terms & 0°T /x> and a 8T/ 8y2.

Atmospheric air at 25°C flows over a surface at 115°C . The free
stream velocity is 10 m/s.

[a] Calculate the Eckert number.
[b] Use scale analysis to show that the dissipation term 1 (0u/dy)*
is small compared ~ to the conduction term k (6°T/dy?).

Air at 20°C flows over a streamlined surface with a free stream
velocity of 10m/s. Use scale analysis to determine the boundary

layer thickness at a distance of 80 cm from the leading edge.

In boundary layer flow, pressure
gradient normal to the flow
direction is assumed zero. That
is Op/0y = 0. If this is correct,
how do you explain lift on the
wing of an airplane in flight?

Derive an equation describing the vertical velocity component v at the
edge of the boundary layer for two-dimensional incompressible flow
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4.10

4.11

4.12

4.13

4.14

4.15
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over a semi-infinite flat plate. Assume laminar flow. Compare your
result with scaling estimate.

Sketch the streamlines in boundary layer flow over a semi-infinite flat
plate.

Define the thickness of the velocity boundary layer & in Blasius
solution as the distance y where the velocity # = 0.988 V,,. Derive
an expression for J/x.

Water flows over a semi-infinite plate x(cm) 5(cm)
with an upstream velocity of 0.2 m/s.
Blasius solution is used to calculate O at

300 1.441

. 40 0.526
three locations along the plate. Results 0.01 0.0083

are tabulated. Are these results valid?
Explain.

Consider laminar boundary layer flow over a semi-infinite flat plate.
Evaluate the wall shearing stress at the leading edge. Comment on
your answer. Is it valid? If not explain why.

Water at 20°C flows over a2mx2mplate with a free stream

velocity of 0.18 m/s. Determine the force needed to hold the plate in
place. Assume laminar boundary layer flow.

Consider Blasius solution for uniform flow over a semi-infinite plate.
Put a check mark in the appropriate column for each of the following
statements.

Statement true | false | may be

(@ | dp,, /dx=0 because the flow is

laminar.
(b) | Wall shearing stress increases
with distance from the leading

edge of plate.

(c) | Solution is not valid for
Re, <100.

(d) | Solution is not wvalid for
Re, >5x10°.

(¢) | Solution is valid for Re, > 100.
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(f) | Boundary layer thickness is
uniquely defined.

(€9) Solution is not valid for a curved
plate.

(h) | Solution for the wall shear at the
leading edge (x = 0) is not valid.

(@) | The plate does not disturb
upstream flow.

(j) | Solution is not valid for
Re, <5x 10°.

Imagine a cold fluid flowing over a thin hot plate. Using your
intuition, would you expect the fluid just upstream of the plate to
experience a temperature rise due to conduction from the hot plate?
How do you explain the assumption in Pohlhausen's solution that
fluid temperature is unaffected by the plate and therefore

70,y)=T,7?

Consider laminar boundary layer flow over a semi-infinite flat plate.
The plate is maintained at uniform temperature 7. Assume constant
properties and take into consideration dissipation.

[a] Does Blasius solution apply to this case? Explain.
[b] Does Pohlhausen’s solution apply to this case? Explain.

A fluid with Prandtl number 9.8 flows over a semi-infinite flat plate.
The plate is maintained at uniform surface temperature. Derive an
expression for the variation of the thermal boundary layer thickness
with distance along the plate. Assume steady state laminar boundary
layer flow with constant properties and neglect dissipation. Express
your result in dimensionless form.

Use Pohlhausen’s solution to determine the heat flux at the leading
edge of a plate. Comment on your answer. Is it valid? If not explain
why.

Consider laminar boundary layer flow over a semi-infinite flat plate
at uniform surface temperature 7. The free stream velocity is V
and the Prandtl number is 0.1. Determine temperature gradient at the
surface dT'(0)/dy.
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4.22

4.23

4.4

4 Boundary Layer Flow: Application to External Flow

Fluid flows between two
parallel plates. It enters -
with uniform velocity V,,  Vepv .oo---ootmoTC
and temperature 7. The T TG s e
plates are maintained at ¥ TN
uniform surface temperature 7. Assume laminar boundary layer
flow at the entrance. Can Pohlhausen solution be applied to
determine the heat transfer coefficient? Explain.

Two identical rectangles, 4 and B,
of dimensions L;xL, are drawn on
the surface of a semi-infinite flat
plate as shown. Rectangle 4 is 7T
oriented with side L, along the —— T
leading edge while rectangle B is V., |BiL, s
oriented with side L, along the
edge. The plate is maintained at
uniform surface temperature. L top view

[a] If the flow over rectangle A4 is
laminar, what is it for B ?

[b] If the heat transfer rate from
plate A4 is 435 W, what is the rate from plate B ?

A semi-infinite plate is divided into four equal sections of one
centimeter long each. Free stream temperature and velocity are
uniform and the flow is laminar.
The surface is maintained at
uniform temperature. Determine
the ratio of the heat transfer rate
from the third section to that
from the second section.

A fluid at a uniform velocity and temperature flows over a semi-
infinite flat plate. The surface temperature is uniform. Assume
laminar boundary layer flow.

[a] What will be the percent change in the local heat transfer
coefficient if the free stream velocity is reduced by a factor of
two?

[b] What will be the percent change in the local heat transfer
coefficient if the distance from the leading edge is reduced by a
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factor of two?

Use Pohlhausen's solution to derive an expression for the ratio of the
thermal boundary layer thickness for two fluids. The Prandtl number
of one fluid is 1.0 and its kinematic viscosity is0.12x10°m%s .
The Prandtl number of the second fluid is 100 and its kinematic
viscosity is 6.8 x 10°m7%.

4.26 Water at 25°C flows over a flat plate with a uniform velocity of 2 m/s.

4.27

4.28

The plate is maintained at 85°C. Determine the following:

[a] The thermal boundary layer thickness at a distance of 8 cm from
the leading edge.

[b] The heat flux at this location.
[c] The total heat transfer from the first 8 cm of the plate.

[d] Whether Pohlhausen's solution can be used to find the heat flux at
a distance of 80 cm from the leading edge.

The cap of an electronic package is cooled by forced convection.
The free stream temperature is 25°C. The Reynolds number at the
downstream end of the cap is 110,000. Surface temperature was
found to be 145°C. However, reliability requires that surface
temperature does not exceed 83°C. One possible solution to this
design problem is to increase the
free stream velocity by a factor of Vo

o —s
3. You are asked to determine if T M

. [e'e]
surface temperature under this plan (
will meet design specification.

The back of the dinosaur Stegosaurus has two rows of fins. Each row
is made up of several fins arranged in line and separated by a space.
One theory suggests that providing a space between neighboring fins
reduces the weight on the back of the dinosaur when compared with
a single long fin along the back. On the other hand, having a space
between neighboring fins reduces the total surface area. This may
result in a reduction in the total heat loss.

Model the fins as rectangular
plates positioned in line as
shown. The length of each plate
is L and its height is H. Consider
two fins separated by a distance

L. Compare the heat loss from the le— ok 1 b 1

- H H
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4.29

4.30

4 Boundary Layer Flow: Application to External Flow

two fins with that of a single fin of length 3L and height H. Does
your result support the argument that spaced fins result in a reduction
in heat loss? To simplify the analysis assume laminar flow.

A fluid with Prandtl number 0.098
flows over a semi-infinite flat
plate. The free stream temperature

is T, and the free stream velocity

is V. The surface of the plate is

V.
T, fo~ X W
X 29%)

maintained at uniform temperature 7. Assume laminar flow.

[a] Derive an equation for the local Nusselt number.

[b] Determine the heat transfer rate from a section of the plate
between x; and x,. The width of the plate is V.

[c] Derive an equation for the thermal boundary layer thickness o, (x).

Two identical triangles are drawn
on the surface of a flat plate as
shown. The plate, which is main-
tained at uniform surface tempera-
ture, is cooled by laminar forced
convection. Determine the ratio
of the heat transfer rate from the
two triangles, ¢1/q>.

4.31 An isosceles triangle is drawn on a

semi-infinite flat plate at a
uniform surface temperature 7.
Consider laminar uniform flow of
constant properties fluid over the
plate. Determine the rate of heat
transfer between the triangular
area and the fluid

4.32 Determine the total heat transfer

rate from a half circle drawn on a
semi-infinite plate as shown.
Assume laminar two-dimensional
boundary layer flow over the
plate.

L
T,
* 1 2 \H T,
Ve

top view

l—— L*>|
T,
— H T
Ve

top view
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4.33 Consider steady, two-dimensional, laminar boundary layer flow over

a semi-infinite plate. The sur-

face is maintained at uniform y
temperature 7. Determine the T y=H\/% H
X L T

o0

total heat transfer rate from the
surface area described by Ve

y(x) = H+/x/ L as shown.

N

top view

4.34 Fluid flows over a semi-infinite flat plate which is maintained at

uniform surface temperature. It is desired to double the rate of heat
transfer from a circular area of

radius R, by increasing its radius to 5 R,

R, . Determine the percent increase T Yol /\ T,
in radius needed to accomplish this | / e
change. In both cases the circle is v, ‘\\\\\ y /,’
tangent to the leading edge. Assume N top view,

laminar boundary layer flow with
constant properties.

4.35 Liquid potassium (Pr << 1) flows over a semi-infinite plate. Assume

4.36

4.37

laminar boundary layer flow. Suggest a simplified velocity profile for
solving the energy equation.

For very low Prandtl numbers the thermal boundary layer is much
thicker than the viscous boundary layer. Thus little error is
introduced if the velocity everywhere in the thermal boundary layer
is assumed to be the free stream velocity . Show that for laminar

boundary layer flow over a flat plate at low Prandtl numbers, the
local Nusselt number is given by

Nu, =0.564Pr" 2Rel/2.

How does this result compare with scaling prediction?

Consider laminar boundary layer flow over a flat plate at a uniform
temperature 7. When the Prandtl number is very high the viscous
boundary layer is much thicker than the thermal boundary layer.
Assume that the thermal boundary layer is entirely within the part of
the velocity boundary layer in which the velocity profile is
approximately linear. Show that for such approximation the Nusselt
number is given by
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4.39

4.40
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Nu, =0339Pr /3Rl 2,

00

Note: J. exp(—cx3 )dx = (1/3)0_1/3
0

I’'(1/3) , where I' is the

Gamma function.

Consider steady, two-dimensional, laminar boundary layer flow over
a porous flat plate at uniform surface temperature. The plate is
subject to a uniform suction v(x,0) = —v,. Far away downstream
both the axial velocity and the temperature may be assumed to be
functions of y only. Free

stream velocity is V and T 7
free stream temperature is I}L’ L)_

00

T,. Determine the heat 222222222
transfer  coefficient and o,

Nusselt number in this

region.

A semi infinite plate is heated with uniform flux ¢" along its length.
The free stream temperature is 7, and free stream velocity is V.
Since the heat transfer coefficient varies with distance along the
plate, Newton’s law of cooling requires that surface temperature
must also vary to maintain uniform heat flux. Consider the case of
laminar boundary layer flow over a plate whose surface temperature
varies according to

T,(x)-T, =Cx".
Working with the solution to this case, show that n=1/2
corresponds to a plate with uniform surface flux.

Water flows over a semi-infinite flat plate which is maintained at a
variable surface temperature 7 given by

T,(x)-T, = Cx"",
where
C=5427°C/m"”

T, = free stream temperature =3° C.
x = distance from the leading edge, m
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Determine the average heat transfer coefficient for a plate if length L
=0.3 m. Free stream velocity is 1.2 m/s.

Air flows over a plate which is heated non-uniformly such that its
surface temperature increases linearly as the distance from the
leading edge is increased according to

T, (x)=T, +Cx
where
C=24°C/m
T,,= free stream temperature =20° C
x = distance from the leading edge, m

Determine the total heat transfer rate from a square plate 10 cmx 10
cm. Free stream velocity is 3.2 m/s.

The surface temperature of a plate I
varies with distance from the
leading edge according to T, 1 2 g
T,(x)=T, +Cx"* Ve o Ae)
top view §

Two identical triangles are drawn

on the surface as shown. Fluid at uniform upstream temperature 7.
and uniform upstream velocity V,, flows over the plate. Assume
laminar boundary layer flow. Determine the ratio of the heat transfer
rate from the two triangles, q,/¢,.

Construct a plot showing the variation of Nu, /,/Re, with wedge
angle. Where Nu . is the local Nusselt number and Re, is the local
Reynolds number. Assume laminar boundary layer flow of air.

Consider laminar boundary layer flow over a wedge. Show that the

average Nusselt number Nu for a wedge of length L is given by

Nu=—2 490 5,
m+1 dn
LV (L)

14

where the Reynolds number is defined as Re; =
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4.45

4.46

4.47

4 Boundary Layer Flow: Application to External Flow

Compare the total heat transfer rate from a 90° wedge, ¢,,, with
that from a flat plate,q,,of the same length. Construct a plot of

4, /4, asafunction of Prandtl number.

For very low Prandtl numbers the r
thermal boundary layer is much i
thicker than the viscous boundary
layer. Thus little error is intro-
duced if the velocity everywhere
in the thermal boundary layer is
assumed to be the free stream

velocity V. Show that for lami-

nar boundary flow over a wedge at
low Prandtl numbers the local
Nusselt number is given by

Nu, = \/(m+1)Pr e
T

X

Consider laminar boundary layer flow over a wedge at a uniform
temperature 7. When the Prandtl number is very high the viscous
boundary layer is much thicker than the thermal boundary layer.
Assume that the velocity profile within the thermal boundary layer is
approximately linear. Show that for such approximation the local
Nusselt number is given by

Nu, = 0.489[(m + )F"(0)Pr]3 Re''2.

0

Note: j exp(—cx3)a’x:(1/3)c_1/3
0

I'(1/3), where I' is the

Gamma function.



APPROXIMATE SOLUTIONS:
THE INTEGRAL METHOD

5.1 Introduction

There are various situations where it is desirable to obtain approximate
analytic solutions. An obvious case is when an exact solution is not
available or can not be easily obtained. Approximate solutions are also
obtained when the form of the exact solution is not convenient to use.
Examples include solutions that are too complex, implicit or require
numerical integration. The integral method is used extensively in fluid
flow, heat transfer and mass transfer. Because of the mathematical
simplifications associated with this method, it can deal with such
complicating factors as turbulent flow, temperature dependent properties
and non-linearity.

5.2 Differential vs. Integral Formulation

To appreciate the basic approximation and simplification associated with
the integral method, we consider the boundary layer flow shown in Fig.
5.1. In differential formulation, Fig. 5.1a, a differential element measuring
dx x dy is selected. The three basic laws are formulated for this element.

T—) R o 7—7" - d
o : - -

(a) differential (b) integral
Fig. 5.1
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The resulting equations thus apply to any point in the region and the
solutions to these equations satisfy the basic laws exactly. Note that the
same approach is used in three-dimensional transient problems. Here the
basic laws are formulated for an element measuring dx x dy x dz during
an infinitesimal time df. In integral formulation, Fig. 5.1b, a differential
element measuring dx x O is selected. Note that this element is infinitesi-
mal in x but finite in y. The three basic laws are formulated for this
element. Here the resulting equations satisfy the basic laws for an entire
cross section 0 and not at every point. Thus solutions to this type of
formulation are approximate in the sense that they do not satisfy the basic
laws at every point.

5.3 Integral Method Approximation:
Mathematical Simplification

Although integral solutions do not satisfy the basic laws at every point,
they provide significant mathematical simplifications. A key simplification
is a reduction in the number of independent variables. For example, for
two-dimensional problems, instead of solving a partial differential equation
in differential formulation, one solves an ordinary differential equation in
integral formulation. In addition, an accompanying reduction of the order
of the governing differential equation may result. Thus, major mathema-
tical simplifications are associated with this approach. This explains why it
is extensively used to solve a wide range of problems in fluid flow, heat
transfer and mass transfer. In this chapter, the integral method is applied to
boundary layer convection problems.

5.4 Procedure

Since convection heat transfer depends on fluid motion as well as
temperature distribution, solutions require the determination of the velocity
and temperature fields. The integral method is used in the determination of
both fields. Recall that for constant properties the velocity field is
independent of the temperature field. The following procedure is used in
obtaining integral solutions:

(1) Integral formulation of the basic laws. The first step is the infegral
formulation of the principles of conservation of mass, momentum and
energy.
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(2) Assumed velocity and temperature profiles. Appropriate velocity
and temperature profiles are assumed which satisfy known boundary
conditions. An assumed profile can take on different forms. However, a
polynomial is usually used in Cartesian coordinates. An assumed profile is
expressed in terms of a single unknown parameter or variable which must
be determined.

(3) Determination of the unknown parameter or variable. Substituting
the assumed velocity profile into the integral form of conservation of
momentum and solving the resulting equation gives the unknown
parameter. Similarly, substituting the assumed velocity and temperature
profiles into the integral form of conservation of energy yields an equation
whose solution gives the unknown parameter in the temperature profile.

5.5 Accuracy of the Integral Method

Since basic laws are satisfied in an average sense, integral solutions are
inherently approximate. The following observations are made regarding the
accuracy of this method:

(1) Since an assumed profile is not unique (several forms are possible), the
accuracy of integral solutions depends on the form of the assumed profile.
In general, errors involved in this method are acceptable in typical
engineering applications.

(2) The accuracy is not very sensitive to the form of an assumed profile.

(3) While there are general guidelines for improving the accuracy, no
procedure is available for identifying assumed profiles that will result in the
most accurate solutions.

(4) An assumed profile which satisfies conditions at a boundary yields
more accurate information at that boundary than elsewhere.

5.6 Integral Formulation of the Basic Laws

5.6.1 Conservation of Mass

T,
Consider boundary layer flow overa Vo(x)
curved porous surface shown in Fig. AT s oy
5.2.  Fluid is injected into the 0y T mmsd _:-* LR
boundary layer with velocity v, /:,“ It

through the porous surface. It is )
important to recognize that the edge Fig. 5.2
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of the viscous boundary layer does not coincide with a streamline. Thus,
mass can enter the boundary layer from the external flow. Application of
conservation of mass to the elementd x dx,

shown in Fig. 5.2 and enlarged in Fig. 53,  dm,— 1
gives 6\\
o
—> —
d i E dmx
m, +dm, +dm, =m, + ™ ix, " P T dxdx
dx
or
dam T d
dm, =—=dx —dm,, (a) "
dx Fig.5.3

where

dm, = mass flow rate supplied to element from the external flow
dm = mass flow rate supplied to element through porous wall

m,. = mass flow rate entering element at x

X
To formulate expressions for dm, and m, we apply the one-dimensional
mass flow rate equation

m=pVA, (b)

where A is area, V is velocity normal to 4, and p is density. Applying (b)
to the porous side of the element and assuming that the injected fluid is
identical to the external fluid, gives

dm, = pv, Pdx (c)

where P is wall porosity. To determine the rate of mass entering the
element at section x, we note that the flow rate varies along y due to
variations in velocity and density. Applying (b) to an infinitesimal distance
dy gives

dm, = pudy .
Integrating
5(x)
m, = j pudy . (d)
0

Substituting (c) and (d) into (a)
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5(x)
dm, = di Ipudy dx— pv, Pdx . (5.1
fx
0

Equation (5.1) gives the mass supplied to the boundary layer from the
external flow in terms of boundary layer variables and injected fluid. This
result is needed in the integral formulation of the momentum and energy
equations.

5.6.2 Conservation of Momentum

Application of the momentum theorem in the x-direction to the element
O X dx shown in Fig. 5.2, gives

D F, =M, (out)— M,(in), (a)
where
D" F, = sum of external forces acting on element in the x-direction
M . (in) = x-momentum of the fluid entering element

M . (out) = x-momentum of the fluid leaving element

Fig. 5.4a shows all external forces acting on the element in the x-direction.
Fig. 5.4b shows the x-momentum of the fluid entering and leaving the
element. Applying equation (a) and using the notations in Fig. 5.4, we
obtain

dp

(p+=0)ds vV, (x)om, .
o d
5 | PO+ (pd)d v le Mg

pé —> < > 5 dx
L dx dx
— <—7,(1-P)dx
(a) forces (b) x-momentum

Fig.5.4
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p§+(p+d7pjd§—p5—%(p5)dx—ro(l—P)dx

dM
:[Mx'f' dxdx]—Mx—Vw(x)dme, (b)
X

where

M = x-momentum

p = pressure

V., (x) = local fluid velocity at the edge of the boundary layer
7, = wall shearing stress

However
5(x)
M, = I pu’dy . (c)
0
and
oulx,0
7, =y 2ul) @
oy
Substituting (¢) and (d) into (b) and neglecting higher order terms
o(x) 4(x)
6% _4a1-p) oulx0)_ d Ipuzdy ()L I pudy —V,(x)p Po,,
dx oy dx dx
0 0
(5.2)

Note the following:

(1) Fluid entering the element through the porous surface has no axial
velocity. Therefore it has no x-momentum.

(2) There is no shearing force on the slanted surface since the velocity
gradient at the edge of the boundary layer vanishes, i.e.ou(x,0)/0dy = 0.

(3) Equation (5.2) applies to laminar as well as turbulent flow.
(4) Since the porous surface is curved, the external flow velocity

V.. (x) and pressure p(x) vary along the surface.

(5) The effect of gravity is neglected in (5.2).
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(6) Equation (5.2) represents integral formulation of both conservation of
momentum and mass.

(7) Although u is a function of x and y, once the integrals in (5.2) are
evaluated one obtains a first order ordinary differential equation with x as
the independent variable.

Special Cases:

Case 1: Incompressible fluid. Boundary layer approximation gives the
axial pressure gradient as

dj dj
AN 4.12)
dx  dx
The x-momentum equation for boundary layer flow is
2
Ou O Lpw O (4.5)

u— _
x oy pox ol

Applying equation (4.5) at the edge of the boundary layer, y =6, where
u=Vy, and Ou/o0y =dV, /dy =0, gives

dp dpy av,
—r—=—pV (x)—. 5.3
dx  dx PV (3) dx G3)
Substituting (5.3) into (5.2) and noting that p is constant
5(x) 5(x)
5V, (1~ P) ulx0)_d I Wiy~ ()% I udy — V., (x) Pog
dx oy dx dx
0 0
(5.4)

Case 2: Incompressible fluid and impermeable flat plate. At the edge of
boundary layer flow the fluid is assumed inviscid. Neglecting boundary
layer thickness and viscous effects for the special case of a flat plate means
that the external flow experiences no changes. It follows from (5.3) that

dV, _dp _dpy

=0.
dx dx dx ©)
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For an impermeable plate

v =0, P=0, (H

Substituting (e) and (f) into (5.4)

Y
y 0L =V, — judy—— qudy, (5.5)
dx ) dx )

oy
where v is kinematic viscosity.

5.6.3 Conservation of Energy

Consider the flow of fluid at temperature 7, over a porous surface. The
surface is maintained at a different temperature and thus heat exchange
takes place. At high Reynolds and Peclet numbers temperature and velocity
boundary layers form over the surface. Fluid at temperature 7, is injected
into the boundary layer with velocity ©,. Conservation of energy is
applied to the element &, x dx, shown in Fig. 5.5 and enlarged in Fig. 5.6.
We neglect:

(1) Changes in kinetic and potential energy

(2) A?da.l co.nduction dE o
(3) Dissipation "7’\ E
I
T, 5 E dE
V() B ot By
e R i
B P P
. o mticfE 1 !
et g L dx |
Iylv, dEt.T TdEo
Fig. 5.5 Fig. 5.6

Based on these assumptions, conservation of energy for the element gives

dE .

E.+dE.+dE,+dE,=E + y
X

dx.

Rearranging
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dE,

dx

dE,_ =

c

dx—dE, —dE,, (a)
where

dE .= energy added at surface by conduction
dE, = energy added by external mass

dE ,= energy added by injected mass

E .= energy convected with boundary layer flow

Heat conduction at the porous surface is determined using Fourier’s law

dE, = —k(1— P)%dx . (b)
y

Mass entering the element from the external flow, dm,, is at the free
stream temperature 7. Thus energy carried with this mass, dE,, is

dE, =c,T, dm,.
Using (5.1) for dm,

07 (x)
dE, chngl‘[ pudy}dx—cpToopvode. (c)

Note that the upper limit of the integral in (¢) is J, since the element

extends to the edge of the thermal boundary layer. Neglecting conduction
in the injected fluid, energy convected through the pores is

dE, = pc,T,v,Pdx. (d)

Energy convected with fluid flow within the boundary layer, £, depends
on the local axial velocity u# and temperature 7. Integration across the
thermal boundary layer thickness gives the total convected energy

o (x)

E = J.pcpquy. (e)
0
Substituting (b)-(e) into (a)
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0 5, (x)
oT(x,0 d
—kl1-P = — c uld
1-P) dxjp,, p
0
J (x)
t
d
_cpTwaJ. pudy - pc,v,P(T,~T,). (5.6
0

Note the following regarding this result:

(1) Equation (5.6) represents integral formulation of both conservation of
mass and energy.

(2) Although u and T are functions of x and y, once the integrals in (5.6) are
evaluated one obtains a first order ordinary differential equation with x as
the independent variable.

Special Case: Constant properties and impermeable flat plate

Setting P =1 and assuming constant density and specific heat, equation
(5.6) simplifies to

3, (x)

8T(x,0)= a j u(T =T, )dy (5.7)
dx
0

oy

-

where ¢ is thermal diffusivity.

5.7 Integral Solutions

To obtain solutions to the temperature distribution using the integral
method, the velocity distribution # must be determined first. This is evident
in equations (5.6) and (5.7) where the variable « appears in the integrands.

5.7.1 Flow Field Solution: Uniform Flow over a Semi-Infinite Plate

The integral method will be ;
applied to obtain a solution L,
to Blasius laminar flow y I
problem, shown in Fig. 5.7. T i
Equation (5.5) gives the RS

Fig. 5.7



5.7 Integral Solutions 171

integral formulation of momentum for this problem

S(x) S(x)
, ulx0) _ y. 4 I udy - I uldy. (5.5)
oy dx ) dx )

As pointed out in the procedure of Section 5.4, the next step is the
introduction of an assumed velocity profile u(x, y) to be used in equation

(5.5). An assumed profile is usually based on some knowledge of the
general flow characteristics. For laminar flow over a flat plate, a
polynomial is a reasonable representation of the velocity profile. Thus

N
u(x,y)= Y a,(x)y", (5.8)

n=0

where N is the degree of the polynomial. As an example, we assume a third
degree polynomial

u(x,y) = ag(x) +ay (x)y + a, (x)p* +az(x)y° . (a)

The coefficients a,(x) are determined using the following known exact
and approximate boundary conditions on the velocity

(1) u(x,0)=0,
) u(x,0)=V,,
3 ou(x,0) ~0

( o ,
2
@ L0 ”()ZC’O) 0.
oy

Note the following regarding the above conditions:

(1) The second and third conditions are approximate since the edge of the
boundary layer is not uniquely defined.

(2) Condition (4) is obtained by setting y =0 in the x-component of the
Navier equations of motion (2.10x).
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Equation (a) and the four boundary conditions give the coefficients a,, (x)

Substituting the above into (a)

3
w3y _1(») (5.9)
V, 2\o0) 2\0
Thus the assumed velocity is expressed in terms of the unknown variable
O0(x). This variable is determined using the integral form of the momen-

tum equation, (5.5). Substituting (5.9) into (5.5) and evaluating the integ-
rals, gives

EVlezﬁViﬁ ) (b)
2 o 280 dx

This is a first order ordinary differential equation ind(x). Separating
variables

sds =20V .
3V,

Integrating and noting that 6(0) =0
o X

j5d§=ﬂijdx.
A 13V, ),

Evaluating the integrals and rearranging

é V280/13 4.64
X

- = . (5.10)
Re Re

X X

Substituting (5.10) into (5.9) gives the velocity u as a function of x and y.
With the velocity distribution determined, friction coefficient C'f is

obtained using (4.36) and (4.37a)
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ou
“Z(x,0
7, ”ay v ) 3v

T V22 pr2i2 Vadl)

Cy

Using (5.10) to eliminate o (x) in the above

Cf = 0.646 . (5.11)
Re

X

We are now in a position to examine the accuracy of the integral solution
by comparing it with Blasius solution for ¢ (x)and C /> equations (4.46)

and (4.48):

5.2
—= ,  Blasius solution, (4.406)
X Re,
and
Cf = 0.664 ,  Blasius solution. (4.48)
Re

X

The following observations are made:

(1) The integral and Blasius solutions for &(x)and C, have the same
form. .

(2) The constant 5.2 in Blasius solution for ¢'(x) differs by 10.8% from the

corresponding integral solution of 4.64. However, it must be kept in mind
that the constant in Blasius solution for o (x) is not unique. It depends on

how J(x) is defined.
(3) The error in Cf is 2.7%.

(4) Predicting C , accurately is more important than predicting &(x).

5.7.2 Temperature Solution and Nusselt Number: Flow over a Semi-
Infinite Plate

(i) Temperature Distribution
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Consider uniform boundary

layer flow over a semi- T, [y
infinite plate shown in Fig. % T .S

5.8. A leading section of the ¥
plate of length x, s T e T
insulat-ed and the remaining & g

part is at  uniform =, \ I
temperature 7. Assume Fig. 5.8

laminar, steady,  two-

dimensional, constant properties boundary layer flow and neglect axial
conduction and dissipation. Of interest is the determination of the thermal
boundary layer thickness, local heat transfer coefficient, and Nusselt
number. This requires determining the temperature distribution. Since the
velocity field is independent of temperature, the integral solution for the
velocity u(x,y)and boundary layer thickness o(x) obtained in Section
5.7.1 is applicable to this case. Equation (5.7) gives the integral formulation
of conservation of energy for this problem

=Y

5

5,(x)

g0 d j u(T —T,)dy » (5.7)
dx
0

oy

where u(x, y)is given by equation (5.9). The next step is the introduction
of an assumed temperature profile 7'(x, y)to be used in equation (5.7). For
laminar flow over a flat plate a polynomial is a reasonable representation
for the temperature profile. Thus

N

T(x,y)= D b, (x)y" - (5.12)

n=0

Following the procedure used in Section 5.7.1, we assume a third degree
polynomial

T(x, ) = by (x) + by (X)y +by (x)y* + b5 (x)y”. (a)

The coefficients b, (x) are determined using the following known exact

and approximate boundary conditions on the temperature

(1) T'(x,0) =T,



5.7 Integral Solutions 175

(2) T(xaé‘t) zTooa
) oT(x,6,) _

3 0,
( o
2
@ L0 T(’;’O) - 0.
y

Note that the second and third conditions are approximate since the edge of
the thermal boundary layer is not uniquely defined. The fourth condition is
obtained by setting y = 0 in the energy equation (2.19). Equation (a) and

the four boundary conditions give the coefficients b, (x)

3 1 1 1
b():TsJ bIZE(TOO_TS)é‘_’ b2=0, b3:_E(T00_TS)§‘

t t

Substituting the above into (a)

3y 1y
T(x,y) =T, +(T, -T,)| L —~2_|. 5.13
(x,») ( ){2 5, 25,3} (5.13)

Substituting (5.9) and (5.13) into (5.7) and evaluating the integral, gives

2 4
T, -T
3ol =T Al _ryve 2 0] 22 |l 514
275, dv 200 6) 280005

where J(x) is given in (5.10). Eliminating (x) in the above gives a first
order ordinary differential equation ford,. However, equation (5.14) is
simplified first. For Prandtl numbers greater than unity the thermal
boundary layer is smaller than the viscous boundary layer. That is

S
g<1, for Pr>1. (5.15)

Based on this restriction the last term in (5.14) can be neglected
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3(8,)  3(sY
e i P [
280\ 5 ) 20l

Equation (5.14) simplifies to

2
0% -y 4 5(i] . (b)
5, de| o

To solve (b) for &, we use the integral solution to o . Rewriting (5.10)

280 |vx
O=,— |—.
V13 \7, ©)

Substitute (¢) into (b) and rearrange

3 2
1) 1) 1)
2L 444 22 i Ry EL (d)
o o) dc\ 6 ) 14 Pr
Equation (d) is solved for &, /0 by introducing the following definition:

r=—-. (e)

Substitute (e) into (d)
4 dr 131

+—x—=——"
g 3xdx 14 Pr ®

This is a first order differential equation for ». Separating variables and
integrating

3
S, 34 131
=|—| =C +——,
: ( 5} *) 14 Pr ®

where C is constant of integration determined from the boundary condition
on o,

5t(xo) =0. (h)
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Applying (h) to (g) gives the constant C
131 34 .
-———Xx, . i
14 Pr° »

Substituting (i) into (g) and rearranging

1/3

3/4
O B LY (% . (5.16)
o 14 Pr X
Using (¢) to eliminate o in (5.16)
1/3
3/4
5, =B L [Y 280 vx (5.17a)
14 Pr X 13\V,
or
1/3
3/4
O, 4528 JI, (X , (5.17b)
x  prBRe 12 ¥
where Re, is the local Reynolds number defined as
V.
Re, == (5.18)
v
(ii) Nusselt Number
The local Nusselt number is defined as
hx
Nu_=—, i
x = )
where /4 is the local heat transfer coefficient given by
0T (x,0
D
h= L S . (k)

T,-T,
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Using the temperature distribution (5.13) into (k)

h(x)zgaﬁ. (5.19)

Eliminating &, by using (5.17b) gives the local heat transfer coefficient

-1/3

i L)
h(x)=0331 ~ 1—(—‘0 Pr'3Re V2. (5.20)
X X
Substituting into (j)
3/4) 713
X 13, 172
Nu, =0.331 1—(7" Pri"Re, . (5.21)

Special Case: Plate with no Insulated Section

Fig. 5.9 shows a flat plate which

is maintained at uniform surface T, -5
temperature. The plate has no — i .
insulated section. The solution to v £ P ’ Y O
this case is obtained by setting ~ T ot S ;

x, =0 in tl.le more g.ener.al case > \

of a plate with a leading insulat- T

ed section presented above. The Fig. 5.9

solution to the temperature

distribution is given by equation

(5.13). Thermal boundary layer thickness, heat transfer coefficient, and
Nusselt number are obtained by setting x, =0 in (5.16), (5.17), (5.20) and

(5.21)

1/3
S B3 1T _ 0975 (5.22)
6 14 Pr prl/3

O, 4528 (5.23)

x  pplBpe 12

X
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k
h(x)=0.331=Pr'®Re 2, (5.24)
X

Nu, =0331Pr'"3Re 2. (5.25)

To examine the accuracy of the integral solution, comparison is made with
Pohlhausen’s results. For the limiting case of Pr =1 the viscous and

thermal boundary layers coincide, i.e. J,/0 =1. Setting Pr =1 in (5.22)

gives

51
~L=0975.
S

This has an error of 2.5%. We examine next the accuracy of the local
Nusselt number. For Pr > 10 equation (4.72c¢) gives Pohlhausen’s solution

Nu, =0339Pr"3 JRe_, for Pr>10. (4.72¢)
Comparing this result with integral solution (5.25) gives an error of 2.4%.

Example 5.1: Laminar Boundary Layer Flow over a Flat Plate:
Uniform Surface Temperature

Fluid flows with uniform velocity and temperature over a semi-infinite flat
plate. The plate is maintained at uniform temperature T,. A leading
section of the plate of length x, is insulated. Use the integral method to
determine the local Nusselt number based on linear velocity and
temperature profiles. Assume steady, two-dimensional, constant properties
boundary layer flow and neglect dissipation.

(1) Observations. (i) The determination of the Nusselt number requires the
determination of the velocity and temperature distribution. (ii) Results
based on linear velocity and temperature profiles are less accurate than
those using second or third degree polynomials. (iii) The velocity field is
independent of temperature.

(2) Problem Definition. Determine the velocity and temperature
distribution for boundary layer flow over a flat plate.

(3) Solution Plan. Start with equating Newton’s law with Fourier’s law to
obtain an equation for the heat transfer coefficient 4. Apply the integral
form of the momentum equation using a linear velocity profile. Apply the
integral form of the energy equation using a linear temperature profile
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(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian, (3) steady state, (4)
constant properties, (5) two-dimensional, (6) laminar flow (Re, < 5x10°),
(7) viscous boundary layer flow (Re, > 100), (8) thermal boundary layer
(Pe > 100), (9) uniform upstream velocity and temperature, (10) flat plate,
(11) uniform surface temperature, (12) negligible changes in kinetic and
potential energy, (13) negligible axial conduction, (14) negligible
dissipation and (15) no buoyancy (f= 0 or g = 0).

(ii) Analysis. The local Nusselt number is defined as

_hx

Nu
Yk

; (a)

where the heat transfer coefficient /4 is given by equation (1.10)
_k oT éx,O)
h=— (1.10)

Thus / depends on the temperature distribution 7'(x, y). The integral form
of the energy equation is used to determine the temperature distribution

,(x)

L0 _ 4 I u(T —T,,)dy - (5.7)
dx
0

Oy
Before proceeding with the energy equation, axial velocity distribution

u(x,y) appearing in (5.7) must be determined. This is accomplished by
applying the integral form of the momentum equation

S(x) 5(x)

VM=VOOi Judy—i qudy. (5.5)
dx ) dx

oy

Following the procedure outlined in Section 5.4, a velocity profile is
assumed. As an example, assume a linear profile given by

u=ag+ay. (b)
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Select the following two boundary conditions to determine the coefficients
in (b)
(1) u(x,0)=0,

@) u(x,0)=V,.
Applying these conditions to (b) gives
v
ap =0, a =—=.
0 1 S
Substituting into (b)

y
-y
u=V, (©)

To determine o (x) the assumed velocity (c) is substituted into (5.5)

S(x)

v d v d 5(X)V2
y= =y = Lo sdv— = o 20,
s dx ,[ s 7Y ,([ 520 Y

Evaluating the integrals

v V,ds V,ds V,ds

o 2 dx 3 dx 6 dx

Separating variables

S5ds =6-2dx.

Integrating and noting that 6(0) =0
o X

j5d5=6ljdx.
0 VOO 0

Evaluating the integrals and rearranging the result

12v
o= |—x, d
X/wa (d)



182 5 Approximate Solutions: The Integral Method

or
o 12
—= |—, (5.26)
X Re,
where Re, is the local Reynolds number defined as
V
Re, =2~ ©
14

Having determined the velocity u(x,y) attention is focused on the

determination of the temperature distribution. Assume, for example, a
linear temperature profile

T=by+by. ®

Select the following two boundary conditions to determine the coefficients

in (f)
(1) T(x,0) =T,
) T(x,5,)~T,, .

Applying these conditions to (f) gives

T,-T
by=T,, b =—"2—7%
0 s 1 6;
Substituting into (f)
T=T,+(T, -T,)~. @
2y
Introducing (g) into (1.10)
k
h=—. (h)
9y
Substituting (h) into (a)
Nu, =—. (i)
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Thus the key to the determination of the heat transfer coefficient and the
Nusselt number is the solution to the thermal boundary layer thickness o, .

The integral form of the energy equation (5.7) is used to determine J,.
Substituting (c) and (g) into (5.7)

T,-T d (WV)
—g s oy = 2Ly (T, —T)+ (T, —T,)(¥/8,)|dy -
a 3, e J‘ 5)/[(5 )+ ( )y ,)]y
0

Evaluating the integrals and rearranging the result

a V., d|sl
o, 6 dx| 0
Rewriting the above
61,5\ df .6\
Z ()Y =Z0850(2) . i
VOO5(5,) dx | (5)} W

o
r=—L. (k)
o
Substituting (k) into (j)
bal1_d ;o]
Vo, or dx .
Using (d) to eliminate J, the above becomes
6a [V, 1 1 d
2 (T L D vy, a2
Vo V12v \Jx v dx ]
Simplifying

v
Expanding and noting that — = Pr , the above becomes
a
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1 1 dr r?
RN P L) |
2Pr \Jx r|: g xdx 2\/;}

€L = 4xr? ﬂ+ P
Pr dx

Separating variables and integrating

r 2
J' 4ridr J' dx "
, (1/ Pr)-r? x
Note that the limits in (I) are based on the following boundary condition on

S

o,=r=0atx=x,. (m)

Evaluating the integrals in (1) and rearranging the results

1/3

o _ 1 [1—(x0/x)3/4] . (n)

y =—=
o Prl/S

Using (d) to eliminate O in the above

1 12v 3/4 173
0= /Z\/;[l—(xo/x) . )

The local Nusselt number is determined by substituting (o) into (i) and
using the definition of the local Reynolds number in (e) to obtain

-1/3
Nu, =028 Pr'” /Re, [1—(x0 /x)3/4] . (5.27)

For the special case of a plate with no insulated section, setting x, =0 in
(5.27) gives
Nu, =0.289Pr'” |Re, . (5.28)
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(iii) Checking. Dimensional check: Solutions to ¢ /x and Nu, are
dimensionless. Units of ¢, in (o) are correct

Boundary conditions check: Assumed velocity and temperature profiles
satisfy their respective boundary conditions.

Limiting check: For the special case of Pr =1 an exact solution to the ratio
r =0,/06 should be unity for x, =0. Setting Pr =1 in (n) gives the
correct result.

(5) Comments. As might be expected, results based on assumed linear
profiles for the velocity and temperature are less accurate than those based
on third degree polynomials. Table 5.1 compares exact solutions for ¢/ x
and Nu, / P1”1/3Re)1/2 with integral results for the case of a plate with no
insulated section based on assumed linear and polynomial profiles.
Equations (4.46) and (4.72c¢) give exact solutions, and equation (5.10),
(5.25), (5.26) and (5.28) give integral results. Note that the integral method
gives a more accurate prediction of Nusselt number than of the boundary
layer thickness 0.

Table 5.1
Solution 2 Re, o Nuy
x Pri3Rel/2
Exact (Blasius/ Pohlhausen) 52 0.332
3" degree polynomial 4.64 0.339
Linear 3.46 0.289

5.7.3 Uniform Surface Flux

Figure 5.10 shows a flat plate with an insulated leading section of
lengthx,. The plate is heated with uniform flux ¢ along its surface
x2x,. We consider steady
state, laminar, two-dimensional
flow with constant properties.
We wish to determine surface
tempera-ture distribution and the
local Nusselt number. Applica-
tion of Newton’s law of cooling
gives
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g5 =h) [T, () - T,.]. (@)
Solving (a) for 4(x)
_ g
h(X)_TS(x)_Too '

Introducing the definition of the Nusselt number, the above gives

gy x
E T Raa— b
T (0 -T,] ©

Thus once surface temperature 7 (x) is determined equation (b) gives the
local Nusselt number. 7 (x) is determined using the integral form of the
energy equation

,(x)

or(x0) _ d I u(T —T,)dy . (5.7)
dx
0

oy

For constant properties, the velocity distribution u#(x,y) in (5.7) is
independent of temperature. Thus the integral solution to u(x,y) for a
third degree polynomial is given by (5.9)

U E(lj _ 1(1]3 , (5.9)
v, 2.5) 2\s

Assume a third degree polynomial for the temperature profile 7'(x, )
T:b0+b1y+b2y2+b3y3. (©)

The boundary conditions on temperature are

(1 kL0 _ 0
Oy

Q) T(x,6,)~T,,
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3) T (x,5,) 0.
y
2
@) 0 T()zc,O):O
oy

Application of the boundary conditions gives the four coefficients. The
temperature profile becomes

2 1y3 q"
T(x,y)=T, +| =68, — y+—=—|1%. 5.29
(x,) L (= 3@2}]{ (529)

Surface temperature is obtained by setting y = 0 in the above

T.(x)=T(x,0) =T, + %%5, . (5.30)

Substituting (5.30) into (b)

(5.31)

Thus the problem reduces to determining J,. Substituting (5.9) and (5.29)
into (5.7)

St
3 3
a:Vwi J. 3y 1y zé‘t—erly— dyp. (d)
dx 28 2533 3§t2
0
Evaluating the integrals
3
i:i 5t2 1o _1(o . (e)
Ve dx 10 6 140\ 6

For Prandtl numbers larger than unity, o, /6 <1. Thus
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3
1 (5, 16,
— = <<——.
140( 5 ] 10 & ®
Introducing (f) into (e), gives
3
1024 4| |
V, dx| o

Integrating the above

53

a
10—x=-—L+C.
3 s (2
The boundary condition on 0, is
5,(x,)=0. (h)
Applying (h) to (g)
C=10—x, (1)
Equation (i) into (g)
1/3
o .
51 :|:10V—()C_X0)5:| (])

Using (5.10) to eliminate O in (j)

1/3
5, =102 (x—x)/ 220 | Lo
Vo 13 | Re,

Introducing the definition of the Prandtl and Reynolds numbers and
rearranging the above

5 3.594 x 17
_fzﬂ{l——"} . (5.32)
X Pr~Rey X

Surface temperature is obtained by substituting (5.32) into (5.30)

” 1/3
_ qs Xo X
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Substituting (5.32) into (5.31) gives the local Nusselt number

-1/3
Nu, = 0417 [1 —x—O} PrPRe!?. (5.34)
X

For the special case of a plate with no insulated section, setting x, =0 in
(5.33) and (5.34) gives

B q; X
Ts(x)—Tw +23967W’ (5.35)
Nu, = 0417 Pr'”Re'?. (5.36)

This result is in good agreement with the more accurate differential
formulation solution [1]

Nu, =0.453 Pr'Re!?. (5.37)

Examination of surface temperature (5.35) shows that it increases with

distance along the plate according to \/; .

Example 5.2: Laminar Boundary Layer Flow over a Flat Plate:
Variable Surface Temperature

Consider uniform flow over

a semi-infinite flat plate. L 5 UUPPPREEE o
The plate is maintained at a Ve "‘5r
variable surface tempera- T e e

ture given by iz \ R T .

T.(x)=T, +Cyx
Ty(x) =T +Cx Fig. 5.11

where C is constant. Apply the integral method to determine the local
Nusselt number using third degree polynomials for the velocity and
temperature profiles. Assume steady, two-dimensional, constant properties
boundary layer flow and neglect dissipation.
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(1) Observations. (i) The determination of the Nusselt number requires the
determination of the velocity and temperature distributions. (ii). Surface
temperature is variable. (iii) For constant properties, velocity distribution is
independent of temperature.

(2) Problem Definition. Determine the velocity and temperature distribu-
tion for laminar boundary layer flow over a flat plate.

(3) Solution Plan. Start with the definition of local Nusselt number and
equation (1.10) for the heat transfer coefficient 4. Apply the integral form
of the energy equation to determine the temperature distribution

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian, (3) steady state, (4)
constant properties, (5) two-dimensional, (6) laminar flow (Re, < 5x10°),
(7) viscous boundary layer flow (Re, > 100), (8) thermal boundary layer
(Pe > 100), (9) uniform upstream velocity and temperature, (10) flat plate,
(11) negligible changes in kinetic and potential energy, (12) negligible
axial conduction, (13) negligible dissipation and (14) no buoyancy (8= 0
or g =0).

(ii) Analysis. The local Nusselt number is defined as
Nu, =—. (a)

The heat transfer coefficient /4 is given by equation (1.10)

L OT(x0)

0
h=— Y (1.10)
T, K (x) - o0
Thus temperature distribution 7'(x, y) must be determined. The integral
form of the energy equation is used to determine temperature distribution

O (x)

g0 d j u(T =T,)dy - (5.7)
dx

0

The axial velocity distribution u(x,y), based on an assumed third degree
polynomial, was determined in Section 5.7.1 and is given by
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3
w3y Ly (5.9)
v, 2\s5) 2\s
where
5:\/280/13x: 280 xv 5.10)
Re, 13V,

We assume a third degree temperature polynomial

T(x,y) = by (x) + b (X)y + by (X)y* + by (x)y”. (b)

The temperature boundary conditions are:
(1) T(x,0) =T (x),
(2) T(xﬂét) ~ TOCH

3 &0
oy
2
4) i);’o):().
oy

The four boundary conditions are used to determine the coefficients in (b).
The assumed profile becomes

3 1y’
T(x,y) =T, (x) +[T, ~T,(x)] {551—5%}. ©
t t
Substituting (c) into (1.10)
3k
h(x)==——. d
(x) 23, (d)
Introducing (d) into (a)
3 x
Nu,==——.
U =75 5, (e)

Thus the problem reduces to determining the thermal boundary layer
thickness 0, . This is accomplished using the integral form of the energy
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equation (5.7). Substituting (5.9) and (c) into (5.7) and evaluating the
integral, gives

3 LT _d i o p g s 2] -2 (4
275 _dx{[TS(x) Tw]Vwa[zo(&J 280(5) ]}'(D

This equation is simplified for Prandtl numbers greater than unity. For this
case

2y
g<1, for Pr>1, (5.15)

3 (s 3(6,Y
— | L <=L
280\ & 200 5

Equation (f) simplifies to

1021, (0)-T, 1=V, | [1,(0-T ]5@}2 @
§t S [e0] OOd S o0 5 .

Thus

x
However

T, (x)-T, =C+x. (h)

Substituting (5.10) and (h) into (g)

10L]cvx =7, di{c\/} Bl f}.
X

5, 280 vx

Simplifying, rearranging and separating variables

51/%g /v, P2 x de = 52 ds, 0

14

The boundary condition on &, is

6,(0)=0. ©)

Integrating (i) using condition (j)
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1/3
5, = [10\/280/13 ] (P P vx /v, )2, )

Substituting into (e) and introducing the definition of the local Reynolds
number

Nu, =0.417 Pr'3Rel/?. (5.38)

(5) Checking. Dimensional check: Equations (5.10), (c), (d) and (k) are
dimensionally correct. Equations (d) and (5.38) are dimensionless.

Boundary conditions check: Assumed temperature profile satisfies the four
boundary conditions.

(6) Comments. (i) The local Nusselt number given in (5.38) is identical to
the result of Section 5.7.3 for the case of uniform surface flux shown in
equation (5.36). This is not surprising since uniform surface flux results in
a variable surface temperature given by

_ 45 x

Note that the above can be rewritten as
T,(x)=T, +Cx

This is identical to the surface temperature specified in this example.

(i1)) The same procedure can be used to analyze plates with surface
temperature distribution other than the above.
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5.1

52

5 Approximate Solutions: The Integral Method

PROBLEMS

For fluids with Pr <<1 the thermal boundary layer thickness is
much larger than the viscous boundary layer. That is &, /0 >>1. It
is reasonable for such cases to assume that fluid velocity within the
thermal layer is uniform

equal to the free stream T,

velocity. That is - > [, )
uxV,. yT T = 5

Consider laminar bounda- le— x,—>! ™ T x

ry layer flow over a flat
plate. The surface is maintained at uniform temperature 7, and has an
insulated leading section of length x,. Assume a third degree
polynomial temperature profile. Show that the local Nusselt number
is given by

—1/2

Nu, :O.SS{I—X—O} Pr''?Re!'?,
x

where the local Reynolds number is Re, =V x/v.

For fluids with Pr >>1 I,

the thermal boundary v )

layer thickness is much ya - )

smaller than the viscous PPy S e
boundary layer. That is e it TN 7,

0y /6 << 1. It is reason-

able for such cases to assume that fluid velocity within the thermal
layer is linear given by

u:le.
o

Consider uniform laminar boundary layer flow over a flat plate with
an insulated leading section of length x,. The plate is maintained at
uniform surface temperature 7. Assume a third degree polynomial
temperature profile, show that the local Nusselt number is given by

Nu, =0.319 [1 —(x, /x)3/4]_1/3Pr1/3Rex1/2.
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5.4

Problems 195

A square array of chips is mounted flush on a flat plate. The array
measures L cmx L cm. The forward edge of the array is at a distance
x, from the leading edge of the plate. The chips dissipate uniform
surface flux ¢gj;. The plate is cooled by forced convection with
uniform upstream velocity V,, and temperature 7, . Assume laminar
boundary layer flow. Assume )

further that the axial velocity s
within the thermal boundary |
layer is equal to the free stream
velocity. Use a third degree
polynomial temperature profile.

[a] Show that the local Nusselt — x,
number is given by

PrRe
Nu, =075 | ———.
1-(x,/x)
[b] Determine the maximum surface temperature.

A liquid film of thickness
H flows by gravity down
an inclined surface. The
axial velocity u is given by

2
u=u, {2 Y y_} .

H H?
where u, is the free
surface velocity. At x >0 the surface is maintained at uniform
temperature 7. Fluid temperature upstream of this section is 7.
Assume laminar boundary layer flow and that 6, / H <1. Determine
the local Nusselt number and the total surface heat transfer from a

section of width W and length L. Neglect heat loss from the free
surface. Use a third degree polynomial temperature profile.

A thin liquid film flows under gravity down an inclined surface of
width W. The film thickness is H and the angle of inclination is @ .
The solution to the equations of motion gives the axial velocity u of
the film as
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5.6

5.7

5 Approximate Solutions: The Integral Method

gH 2sin@ )Y y2

2v H H*|
Heat is added to the film
along the surface beginning
at x =0 at uniform flux gj.
Determine the total heat
added from x=0 to the
section where the thermal boundary layer penetrates half the film
thickness. Assume laminar boundary layer flow. Use a third degree
polynomial temperature profile.

A plate is cooled by a fluid with Prandtl number Pr <<1. Surface
temperature varies with distance from the leading edge according to

T,(x,0)=T, +Cx,

T, .
where C is constant. For T’. _, unV f
such a fluid it is Y } .
reasonable to assume T ------- 0 v
that u=V,. Use a \ i
third degree polynomial Ty(x)=T,, +Cx

temperature profile to
show that the local Nusselt number is given by

Nu, =0.75 Pr1/2Re)lc/2,

and that surface heat flux is uniform. Assume laminar boundary layer
flow.

A plate is cooled by a fluid with Prandtl number Pr >>1. Surface
temperature varies with distance form the leading edge according to

T, (x,0) =T, +Cx, r —
. R — eeemmT T
where C is constant. For v, JPPTE A ! /
such a fluid it is reason- 2 e “ » 5
able to assume that s AR : " .
axial velocity within the TN :

thermal boundary layer T,(x) =T, +CVx

is linear given by
u="V,ylo.
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Determine the local Nusselt number and show that surface heat flux is
uniform. Use a third degree polynomial temperature profile and
assume laminar boundary layer flow.

Surface temperature of a plate increases exponentially with distance
from the leading edge according to

T,(x,00=T, +Cexp(fx), T, [P }
where C and [ are con- Vy et uxVe 5
stants. The plate is cooled AP A x
with a low Prandtl number N T(x,0)=T, +Cexp(fx)

fluid (Pr <<1). Since for
such fluids o << J,, it is reasonable to assume uniform axial

velocity within the thermal boundary layer. That is

u=V,.
Assume laminar boundary layer flow and use a third degree polyno-
mial temperature profile.

[a] Show that the local Nusselt number is given by

Nu, =0758x [l—exp(Bx)]""> Pr'/?Re!?.

[b] Determine surface flux distribution.

A square array of chips of side L is mounted flush on a flat plate. The
chips dissipate non-uniform surface flux according to

" C

9x Jx - (_/_
The plate is cooled by forced 7 I L S
convection with uniform upstream - Y /{’ [/ /,-'
velocity V,, and temperatureT,,. V. / // / 77—
Assume laminar boundary layer / b [/ I/' L

flow with o,/6 <1. Use third
degree polynomials for the axial
velocity and temperature.

ol Lol L /L LS
x L

[a] Show that the local Nusselt number is given by
Nu, =0331Pr'*Re'’?.

[b] Show that surface temperature is uniform.
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5.10 A square array of chips of side

5.11

5.12

5 Approximate Solutions: The Integral Method

L is mounted flush on a flat 7
plate. The forward edge of the ——

array is at a distance x, from “ /
the leading edge of the plate. /

The heat dissipated in each 0

row increases with successive — x, x

rows as the distance from the
forward edge increases. The distribution of surface heat flux for this
arrangement may be approximated by

qr = Cx?,
where C is constant. The plate is cooled by forced convection with
uniform upstream velocity V', and temperature 7. Assume laminar
boundary layer flow. Assume further that the axial velocity within

the thermal boundary layer is equal to the free stream velocity,
u =V, . Use a third degree polynomial temperature profile.

[a] Show that the local Nusselt number is given by

-1/2
Nu, =13 [1—(x0/x)3] Pr''?Re"?.
[b] Determine the maximum surface temperature

[c] How should the rows be rearranged to reduce the maximum
surface temperature?

Repeat Problem 5.10 using a linear surface flux distribution
q: =Cx.

[a] Show that the local Nusselt number is given by
-1/2
Nu, =1.06 [1—(x0 /x)z] Pr'/?Re"?.

[b] Determine the maximum surface temperature

[c] How should the rows be rearranged to reduce the maximum
surface temperature?

A fluid at temperature 7, and flow rate m, is injected radially
between parallel plates. The spacing between the plates is H. The
upper plate is insulated and the lower plate is maintained at uniform
temperature 7, along » > R, and is insulated along 0<r <R, .



Problems 199

Consider laminar boundary layer flow and assume that the radial
velocity u# does not vary in the direction normal to the plates (slug
flow).

I, m,
[ i\ dm,~ )
H S «— T oyl T U— oW
K 7
\1'. SN dr

[a] Show that for a cylindrical element &, x 27zrdr the external mass
flow, dm,, , to the thermal boundary layer is

61‘
d m
dm, = 272',0; .[ urdr = F"dé}.

[b] Show that the integral form of conservation of energy is

o oT(r,0)  MyCp i
or 27 H dr

5[
I (T =T, )dy.

[c] Assume a linear temperature profile, show that the local Nusselt
number is

-1/2
Nu, = 1 [l—(Ro/r)z] Pr''?Re)’?,

"~

where
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5.13 The lower plate in Problem 5.12 is heated with uniform flux g¢;
along > R, and insulated along 0 <r < R.

T,,yw0
E—— ;/',k;‘que
- — _,| drq

[a] Show that for a cylindrical element o, x 27zrdr the external mass

flow dm, to the thermal boundary layer is

t
dm, = 27[,01 ‘[ urdr =" do, .
dr H

[b] Show that the integral form of conservation of energy is

" T-T)d
9 =5 H & _[ (T'=T,)dy .
[c] Assume a linear temperature profile, show that the local Nusselt
number is
2172 12 102
Nu, = [1 - (Ro /r) Pr'“Re,'”,
where
Re, <PMT _ Mo
Y7, 2ruH

5.14 A porous plate with an impermeable and insulated leading section of
length x, is maintained at uniform temperature 7 along x > x,,.
The plate is cooled by forced convection with a free stream velocity
V,, and temperature 7. Fluid at temperature 7, is injected through
the porous surface with

uniform velocity v,. The L, 5

. vV Ceem-e- O

injected and free stream y, -

fluids are identical. As- | .- 7 V”

sume laminar bounda A S R
. .I'y |<— X, 4 T T x

layer flow, introduce axial v, §
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velocity simplification based on Pr <<1 and use a linear
temperature pro-file to determine the local Nusselt number.

A porous plate with an
impermeable and insulated — 5,
leading section of length  , "~ )

X, is heated with upiform | .-~~~ "=

surface flux ¢, along ‘Fx ‘“7|r - T—T#T T T——;

x 2 x,. The plate is cool-
ed by forced convection
with a free stream velocity
V, and temperature 7. Fluid at temperature 7, is injected through
the porous surface with uniform velocity ©v,. The injected and free
stream fluids are identical. Assume laminar boundary layer flow and
introduce axial velocity simplification based on Pr <<1. Use a
third degree polynomial temperature profile to determine the local
Nusselt number.

.U(J

5.16 Consider steady two-dimensional laminar flow in the inlet region of

two parallel plates. The plates are separated by a distance H. The
lower plate is maintained at uniform temperature 7, while heat is
removed from the upper plate at uniform flux ¢,. The inlet
temperature is 7;. Determine the distance from the inlet where the
lower and upper thermal boundary layers meet. Use a linear
temperature profile and assume that velocity is uniform equal to V.
Express your result in terms of dimensionless quantities.

s
. _¢MMM¢M¢M
52
V; Tl 0—>X /_‘j,i::-—» H
T s
v )
L T,
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HEAT TRANSFER IN CHANNEL FLOW

6.1 Introduction

We consider internal flow through channels such as ducts, tubes and
parallel plates. The following factors should be noted in analyzing heat
transfer in internal flow.

(1) Laminar vs. turbulent flow. Transition from laminar to turbulent flow
takes place when the Reynolds number reaches the transition value. For
flow through tubes the experimentally determined franmsition Reynolds

number ReD; 1S

D
Rey, = ”7 ~ 2300, 6.1)

where

D =tube diameter
u =mean velocity
v =Kkinematic viscosity

(2) Entrance vs. fully developed region. Based on velocity and
temperature distribution, two regions are identified:

(1) Entrance region
(i1) Fully developed region

The length of the entrance region for velocity and temperature as well as
the characteristics of these regions will be examined.
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(3) Surface boundary conditions. Two common thermal boundary
conditions will be considered:

(1) Uniform surface temperature
(i1) Uniform surface heat flux
(4) Objective. A common problem involves a fluid entering a channel with

uniform velocity and temperature. The objective in analyzing internal flow
heat transfer depends on the thermal boundary condition.

(1) Uniform surface temperature. In this class of problems we seek to
determine axial variation of the following variables:

(1) Mean fluid temperature
(2) Heat transfer coefficient
(3) Surface heat flux

(i1) Uniform surface flux. For this class of problems the objective is to
determine axial variation of the following variables:

(1) Mean fluid temperature
(2) Heat transfer coefficient
(3) Surface temperature

6.2 Hydrodynamic and Thermal Regions: General Features

We consider fluid entering a channel with uniform velocity V; and
temperature 7;. Velocity and temperature boundary layers form on the
inside surface of the channel. The two boundary layers grow as the distance
x from the entrance is increased. Two regions are identified for each of the

flow (hydrodynamic) and temperature (thermal) fields:
(1) Entrance region. This is also referred to as the developing region. It

extends from the inlet to the section where the boundary layer thickness
reaches the channel center.

(2) Fully developed region. This zone follows the entrance region.

Note that in general the lengths of the velocity and temperature entrance
regions are not identical. The general features of velocity and temperature
fields in the two regions will be examined in detail.
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6.2.1 Flow Field

(1) Entrance Region (Developing Flow,0 < x < L, ). Fig. 6.1 shows the
developing velocity boundary 7
layer in the entrance region of a
tube. This region is called the
hydrodynamic entrance region. Its
length, L, , is referred to as the
hydrodynamic entrance length. )

gﬁi ;}eiiiort} is char'acterized by the | L, fully developed
g features: Fie. 6.1
ig. 6.

LT
l

e Streamlines are not parallel.
Thus the radial velocity component does not vanish (v, # 0).

e Core velocity u, increases with axial distance x (#, # constant).
e Pressure decreases with axial distance (dp/dx < 0).
e Velocity boundary layer thickness is within tube radius (0 < D/2).

(2) Fully Developed Flow Region. At x = L, the flow is described as
fully developed. 1t is characterized by the following features:

e Streamlines are parallel (v, = 0).

e For two-dimensional incompressible flow the axial velocity u is
invariant with axial distance x. That is Ou/0x = 0.

6.2.2 Temperature Field

(1) Entrance Region (Developing Temperature, 0 < x < L,). Fig. 6.2
shows fluid entering a tube with uniform velocity V; and temperature 7;.
The surface is at uniform

temperature 7. The region

in which the temperature ! F L ﬁ‘
boundary layer forms and — T
grows is referred to as the Vv, —

thermal —entrance region. T,

The length of this region, e K T, \
L,, is called the thermal . T5t 7

entrance length. At x =L, | L, l< fully developed
the thermal boundary layer Fig. 6.2

thickness O, reaches the
tube’s center. This region is
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characterized by the following features:

e Core temperature 7. is uniform equal to inlet temperature (7, = 7).
e Temperature boundary layer thickness is within the tube’s radius

(8, <D/2).

(2) Fully Developed Temperature Region. The region x=L, is
characterized by the following features:

e Fluid temperature varies radially and axially. Thus 07 /ox # 0.

e A dimensionless temperature ¢ (to be defined later) is invariant with
axial distance x. That is 0¢/0x = 0.

6.3 Hydrodynamic and Thermal Entrance Lengths

The determination of the two entrance lengths L, and L, is important in

many applications. Scale analysis will be used to estimate the entrance
lengths and results of analytic and numerical solutions will be summarized.

6.3.1 Scale Analysis

(1) Hydrodynamic Entrance Length L, .Result of scale analysis for the
velocity boundary layer thickness for external flow is given by (4.16)

1
X Re

(4.16)

X

Applying (4.16) to the flow through a tube at the end of the entrance region
x =L, where 0 ~ D, gives

- - (a)
Lh JReLh

We now express Re L, in terms of the Reynolds number based on tube
diameter D

Re; =——=——"=Re, —, (b)

where % is mean or average velocity. Substituting (b) into (a) and
rearranging
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1/2
(Lh/DJ ~1. (6.2)
Re,

(2) Thermal Entrance Length L,. In internal flow both ¢ and
0, increase with axial distance in the entrance region and eventually
become equal upon reaching the centerline. Thus the scale for u for all
Prandtl numbers is # ~u . This is unlike external flow where different
scales are used depending on the Prandtl number. To scale 0, we start with
the external flow result, equation (4.24)

8, ~ LRe;"2Pr7"2. (4.24)
Applying (4.24) at L = L, where &, ~D
D~ L,Re"2pPr72, (a)

The Reynolds number for internal flow should more appropriately be based
on the diameter D rather than length L,. Thus

ReLt =——=——=Re, —. (b)

Substituting (b) into (a) and rearranging

1/2
L,/D ~1. (6.3)
Rep Pr

From (6.2) and (6.3) we obtain

L
L ~Pr. (6.4)
Ly,

6.3.2 Analytic and Numerical Solutions: Laminar Flow
Solutions to the velocity and temperature distribution in the entrance region

of various channel geometries have been obtained for laminar flow using
analytic and numerical methods. Results provide information on L, and
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L,. Since these lengths are not uniquely determined, their values depend
on how they are defined.

(1) Hydrodynamic Entrance Length L, . Results for L, are expressed as

L
—h =CyRep,, (6.5)
e
where D, is the equivalent Table 6.1
diameter. defined as Entrance length coefficients [1]
44 geometry Cy C p
D = f uniform| uniform
e p surface| surface
flux |temperature
Here A, is channel flow area O 0.056 1 0.043 | 0.033

a : ’

The coefficient C, depends
on channel geometry and is |, B
given in Table 6.1 [1]. Scaling I;I a__j:
prediction of C), can now be a-

evaluated using this table. bl:l 0.075| 0.042 0.054

a

0.085 | 0.057 0.049

Recall that scaling gives alb=o
. [ Tloot| 0012 | 0008
LDy (6.2)
Re,

To compare this with analytical results, equation (6.5) is rewritten as

1/2
(Lh/DeJ =(Ch)1/2- ()

As an example, for a rectangular channel of aspect ratio 2, Table 6.1 gives
C), = 0.085. Substituting this value into (a), gives

1/2
(Lh /DQJ =(0.085)""* =0.29. (b)

Comparing (6.2) with (b) shows that scaling estimates the constant 0.29 to
be unity.
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(2) Thermal Entrance Length L,. The length L, depends on surface
boundary conditions. Two cases are of special interest: uniform surface
flux and uniform surface temperature. Solutions are expressed as

Lt
—=C,PrRe,, (6.6)
D ! b

e

where C, is a constant which depends on channel geometry as well as
boundary conditions and is given in Table 6.1. To compare scaling
prediction of L, with the results of Table 6.1, equation (6.6) is rewritten as

/D 1/2
' e Z(Ct)l/2~ ©)
PrRe,,
Scaling gives
LD 1/2
! ~1. (6.3)
RepPr

As an example, for a rectangular channel of aspect ratio 2 at uniform
surface temperature, Table 6.1 gives C, = 0.049. Substituting this value
into (¢), gives

1/2

L, /D

— e | =(0.049)"% =0.22. ()
PrRe,,

Comparing (6.3) with (d) shows that scaling estimates the constant 0.22 to
be unity.

For turbulent flow, results for L, and L, are based on experimental
data. In general, both lengths are much shorter than their corresponding
laminar flow values. The following equation provides a guide for
estimating the two lengths [2]

L
—=10, 6.7
D (6.7)
where L=L, =L,.
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Example 6.1: Entrance Length for a Square Channel

In applications where entrance length is small compared to channel length,
it is reasonable to neglect entrance length and assume fully developed
conditions throughout. This approximation represents a significant
simplification in obtaining analytic solutions. Consider the flow of water
through a 0.75 cm x 0.75 cm square duct which is 2.5 m long. The duct is
heated with uniform surface flux. The mean axial velocity is 0.12 cm/s. Is it
Jjustified to neglect entrance lengths? Evaluate water properties at 55° C.

(1) Observations. (i) This is an internal forced convection problem. (ii)
The fluid is heated at uniform surface flux. (iii) The Reynolds number
should be computed to establish if the flow is laminar or turbulent. (iv) If
the flow is laminar, equations (6.5) and (6.6) can be used to determine
entrance lengths L, and L,. (v) Velocity and temperature can be assumed
fully developed if entrance lengths are small compared to channel length.

(2) Problem Definition. Determine entrance lengthsZ,and L; and
compare them with total channel length.

(3) Solution Plan. Compute the Reynolds number to establish if the flow is
laminar or turbulent. If laminar, apply (6.5) and (6.6) to determine entrance
lengths L; and L,.

L
(4) Plan Execution. vV VvV by Vo
e T > l<—
(i) Assumptions. (1) Con- 1 —>x~ —>u S
tinuum, (2) steady state, (3)  |o7liiec--ostTTTTTTT > s |«
Newtonian, (4) constant prop- rrt q;f'T T ) qu

erties, (5) uniform surface
flux, (6) negligible axial conduction, (7) negligible changes in kinetic and
potential energy, and (8) negligible dissipation.

(ii) Analysis
The transition Reynolds number for flow through channels is
uD
Rep, = —< %2300, (a)
14

The Reynolds number for flow through a square channel is defined as

uD
Re,, =2=¢, (b)
1%

where
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D, = equivalent diameter, m
Rep, = Reynolds number

u = mean velocity = 0.12 m/s
v = kinematic viscosity = 0.5116x10° m*/s

Water properties are evaluated at the mean temperature, T, ', =55°C. The
equivalent diameter for a square channel is defined as

A 2
f S

- 4—=9, C
¢ P 45 ©

I
T
Il

where

A = channel flow area = S? , m’

P = channel perimeter in contact with the fluid = 4S5, m

S = side dimension of the square channel = 0.0075 m
If the flow is laminar, L, and L; are determined using equations (6.5) and
(6.6)
Ly,
—=C,Re,, (6.5)
D nep

e
and

Lt

——=C,PrRep, 6.6
p, ~ CiPriep (6.6)
where

C,, = hydrodynamic entrance length coefficient = 0.09, (Table 6.1)
C, = thermal entrance length coefficient = 0.066, (Table 6.1)

L, =hydrodynamic entrance length, m

L, = thermal entrance length, m

Pr = Prandtl number = 3.27

Neglecting entrance lengths is justified if

L L
“hccland =L <<1, (d)
L L

where
L = total channel length =2.5 m
(iii) Computations. Substituting into (b)
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_ 0. 12(m/s)0.0075(m)

=1759
0.5116x10°% (m24)

eDe

Since the Reynolds number is smaller than 2300, the flow is laminar.
Equations (6.5) and (6.6) give

L, =0.09(0.0075(m)1759 =1.19m

L, =0.066(0.0075(m)(3.27)1759 = 2.85m

Thus
L .
S LIOM) 6 g
L 2.5(m)
L
L _285m) _
L 32(m)

Comparison with (d) shows that the entrance lengths cannot be neglected.

(iv) Checking. Dimensional check: Computations showed that equa-
tions (b) and (d) are dimensionally consistent.

(5) Comments. (i) In general, the determination of the Reynolds number is
an essential first step in analyzing internal flow. (ii) Fluids with Prandtl
numbers greater than unity have longer thermal entrance lengths than
hydrodynamic lengths. (iii) Entrance lengths can exceed channel length.

6.4 Channels with Uniform Surface Heat Flux ¢}

Consider a section of a channel shown in Fig. 6.3. Let the start of the
section be at x =0 and its end at x = L. The mean temperature at the
inlet to this section is 7,, =7, (0). Heat is added at the surface at a
uniform flux g . We wish to determine the following:

(1) Total surface heat transfer rate ¢ L
between x = 0 and location x along the VoV VvV
channel. Toni
(2) Mean temperature variation 7, (x). o * L@
(3) Surface temperature variation 7’ (x). ) 'Fq,,? 0

)
Since the heat flux is uniform, the total Fig. 6.3

heat transfer rate g is
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qs =qyA4; = q5Px, (6.8)

where A, is channel surface area and P is perimeter.

The mean temperature 7, (x) is obtained from energy conservation.
Assume steady state, no energy generation, negligible changes in kinetic
and potential energy and no axial conduction. Energy added at the surface
must be equal to energy absorbed by the fluid. For constant properties,
conservation of energy for a control volume between x = 0 and x gives

14

qs =qsPx=mc, [T, (x)—T,;],

where m is mass flow rate and c,is specific heat. Solving for
T,,(x), we obtain

qs P

mcp

T,(x)=T,; + 5 x. (6.9)

This equation gives the variation of the mean temperature along the
channel. Note that no assumptions have been made regarding the region
occupied by the section. That is, equations (6.8) and (6.9) are valid for the
entrance region, fully developed region or a combination of the two.
Furthermore, they apply to laminar as well as turbulent flow. The specific
heat c,should be evaluated at the average of the inlet and outlet mean
temperatures.

Surface temperature 7, (x) is determined using heat transfer analysis.
Assume axisymmetric flow and neglect variations along the perimeter P,
Newton’s law of cooling gives

g5 = h)[Ty(x) =7, ()],
Solving for 7 (x)

qs
h(x)

T,(x) =T,(x)+

Using (6.9) to eliminate 7, (x) , we obtain

T,(x)=T,, +q;{m’zx +ﬁ} (6.10)
P
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Thus, to determine surface temperature distribution the heat transfer
coefficient 4(x) must be known. It is here that questions regarding the
nature of the flow (laminar or turbulent) as well as the region of interest
(entrance or fully developed) become crucial. Analytic and numerical
solutions for % for laminar flow are available for both entrance and fully
developed regions. For turbulent flow, empirical equations are used. The
determination of /4 for laminar flow will be presented in Section 6.6.

Example 6.2: Maximum Surface Temperature

Water flows through a tube with a mean velocity of 0.2 m/s. The mean inlet
and outlet temperatures are 20°C and 80°C, respectively. The inside

diameter of the tube is 0.5 cm. The surface is heated with uniform heat flux
of 0.6 W/ent'. If the flow is fully developed at the outlet the corresponding
Nusselt number for laminar flow is given by

L "
qs
NuD=h7D=4.364 Y v v
—> > X T,(x) g
Determine the maximum surface
temperature. f 1\qu f A\\ T,(x)

(1) Observations. (i) This is an

internal forced convection problem in a tube. (ii) The surface is heated at
uniform flux. (iii) Surface temperature changes along the tube. It is
maximum at the outlet. (iv) The Reynolds number should be calculated to
determine if the flow is laminar or turbulent. (v) If hydrodynamic and
thermal entrance lengths are smaller than tube length, the flow can be
assumed fully developed at the outlet. (vi) For fully developed flow, the
heat transfer coefficient is uniform. (vii) Tube length is unknown.

(2) Problem Definition. (i) Find the required length to heat the water to a
given temperature, and (ii) determine surface temperature at the outlet.

(3) Solution Plan. (i) Since surface flux, mean velocity, diameter, inlet
and outlet temperatures are known, apply conservation of energy between
the inlet and outlet to determine the required tube length. (ii) Compute the
Reynolds number to determine if the flow is laminar or turbulent. (iii)
Calculate the hydrodynamic and thermal entrance lengths and compare
with tube length. (iv) Apply surface temperature solution for flow through
a tube with constant surface flux.
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(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian, (3) steady state, (4)
constant properties, (5) axisymmetric flow, (6) uniform surface heat flux,
(7) negligible changes in kinetic and potential energy, (8) negligible axial
conduction and (9) negligible dissipation.

(ii) Analysis. Application of conservation of energy between the inlet
and outlet, gives

aDLg{ =mec, (T, —Tpi) (a)

N

where

¢, = specific heat, J/kg-°C

D = tube diameter = 0.5 cm = 0.005 m

L =tube length, m

m = mass flow rate, kg/s

T,,; = mean temperature at the inlet = 20°C
T,,, = mean temperature at the outlet = 80°C

g = surface heat flux = 0.6 W/cm’ = 6000 W/m’

Solving (a) for L
mcp(Tmo -T,i)

L= . b
zDq;} ®)

The mass flow rate m is given by

m=(z/4)D?pir ()
where
u = mean flow velocity = 0.2 m/s
p = density, kg/m’

To determine surface temperature at the outlet, use the solution for surface
temperature distribution for flow through a tube with uniform surface flux,
given by equation (6.10)

n| Px 1
T.(x))=T, . + +—, 6.10
S( ) mij qs {mcp h(X)j| ( )

where

h = local heat transfer coefficient, W/m>-°C
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P = tube perimeter, m
T (x) = local surface temperature, °C
x = distance from inlet of heated section, m

The perimeter P is given by
P=zD. (d)

Maximum surface temperature at the outlet, 7 (L), is obtained by setting x
=L in (6.10)

L
Ts(L)ZTmI-JFCI;'l:nfc +ﬁ} (e)
P

The determination of 4(L) requires establishing if the flow is laminar or
turbulent and if it is fully developed at the outlet. Thus, the Reynolds
number should be determined. It is defined as
uD
14

where v = kinematic viscosity, m?/s. Properties of water are determined at
the mean temperature 7),, defined as

— T +T
T — mi mo .
R (8
Substituting into (g)
(o)
- GO0 e

Properties of water at this temperature are

¢, =4182 J/kg-°C
=0.6405 W/m-°C

Pr=3.57 .

v =0.5537x10 m%/s

p =988 kg/m

Substituting into (f)

0.2(m/s)0.005
Rep = 2-2/8)0.005(m) o0

0.5537x10 0 (m?/s)
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Since the Reynolds number is less than 2300, the flow is laminar. The next
step is calculating the hydrodynamic and thermal entrance lengths L, and
L, to see if the flow is fully developed at the outlet. For laminar flow in a
tube, the hydrodynamic and thermal lengths are given by (6.5) and (6.6)

L
~h = CyRep, (6.5)

e

L,

——=C,PrRep, (6.6)
p, P

where

C}, = hydrodynamic entrance length coefficient = 0.056, (Table 6.1)
C, = thermal entrance length coefficient = 0.043, (Table 6.1)

Lj, = hydrodynamic entrance length, m

L, = thermal entrance length, m

Substituting numerical values into (6.5) and (6.6)

L, =0.056 x 0.005 (m) x 1806 = 0.506 m

and
L,;=0.043 x 0.005 (m) x 1806 x 3.57=1.386 m

If tube length L is larger than L;, and L,, the flow is fully developed at the

outlet. Thus, it is necessary to compute L using (b). The mass flow rate in
(b) is given by (c)

m = 988(kg/m’) 0.2(m/s) 7 (0.005)*(m?)/4 = 0.00388kg/s
Substituting into (b)
~0.00388(kg/s)4182(J/kg—° C)(80 — 20)(° C)
7 0.005(m)0.6(W/cm?)10* (cm?/m?)

=10.33m

Since L is larger than both L, and L,, the flow is fully developed at the
outlet. The heat transfer coefficient for fully developed laminar flow
through a tube with uniform surface flux is given by

Nup = hTD =4.364. (h)

(iii) Computations. The heat transfer coefficient at the outlet is
computed using (h)
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0.6405(W/m-°C)
0.005(m)

With L, m and h(L) determined, equation (e) gives outlet surface tempera-
ture

h(L) = 4.364 =559 W/m*-°C

70.005(m)10.33(m) 1
+

T, (L) = 20° C + 6000(W/m”) -
0.00388(kg/s)4182(J/kg—"C)  559(W/m~ -° C)

=90.7°C

(iv) Checking. Dimensional check: Computations showed that equa-
tions (b), (¢), (), (f), (6.5), and (6.6) are dimensionally correct.

Quantitative checks: (1) Alternate approach to determining 7 (L) :
Application of Newton’s law of cooling at the outlet gives

qy = h(D)[T,(L)-T,,]. (i)

Solving for T (L)
0.6(W/cm?)x10* (cm*/m?)

5 =90.7°C
559(W/m“-°C)

T,(L)=T,, +q73= 80 (°C) +

(2) The value of % is within the range reported in Table 1.1 for forced
convection of liquids.

Limiting check: If T, =T,

mo ?

T,=T,, in(b)gives L =0.

the required length should vanish. Setting

(5) Comments. (i) As long as the outlet is in the fully developed region,
surface temperature at the outlet is determined entirely by the local heat
transfer coefficient. Therefore, it is not necessary to justify neglecting
entrance length to solve the problem.

(i1)) In solving internal forced convection problems, it is important to
establish if the flow is laminar or turbulent and if it is developing or fully
developed.

6.5 Channels with Uniform Surface Temperature

Consider the same channel flow presented in the previous section with one
important change. Instead of imposing uniform heat flux at the surface we
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specify uniform surface temperature as

shown in Fig. 6.4. We wish to Ty

determine the following: T, (x)
o—>x —>

(1) Mean temperature variation 7,, (x). m

Tmi
—

(2) Total heat transfer rate g, between d dx
. qs
x = O and location x along the channel.

(3) Surface heat flux variation g (x). T 4 ddi d

Because surface flux is not uniform in

this case, it is necessary to work with an dx

infinitesimal element dx. Applying con- Fig. 6.4

servation of energy to the element and

invoking the assumptions used in the uniform surface flux case, we obtain

dq =mcpdTm. (a)
Applying Newton's law of cooling to the element gives
dq, = h(x)|T, =T, (x)|Pdx. (b)

Eliminating dg by combining the two equations and separating variables

gives
dT,
m____P h(x)dx . (c)
I, -T,(x) mc,
Integrating (¢) from x = 0, where 7,,=7,,(0)=T,,, to x where
T, =T,(x), gives
T, -T,
T EL1C A I N P 6.11)

The integral in (6.11) cannot be evaluated unless /(x) is known. We can
rewrite this integral in terms of the average heat transfer coefficient 2 over
the length x by applying the definition of 4

X
h :% Ih(x)dx. (6.12)
0

Introducing (6.12) into (6.11) and solving the resulting equation for 7, (x)
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Ph_ 1

Cp

T, (x)=T, +(T,; —T,)exp[-

(6.13)

The key factor in (6.13) is finding 4(x). The determination of A(x) depends
on whether the flow is laminar or turbulent and if the channel section is in
the entrance region, fully developed region or both. With 7, (x)known
from (6.13), the total heat transfer rate and the variation of the local heat
flux along the channel can be determined. Application of conservation of
energy between the inlet of the channel and a section at location x gives

qS:mcp[Tm(x)—Tmi]. (6.14)

14

Application of Newton’s law of cooling gives the heat flux gg(x)at

location x
qs(x) = h(X)[T; — T, (x)]. (6.15)

Properties such as kinematic viscosity, thermal conductivity, and
specific heat should be evaluated at the average of the inlet and outlet mean
temperatures.

Example 6.3: Required Tube Length

Air flows with a mean velocity of 2 m/s through a tube of diameter 1.0 cm.
The mean temperature at a given section in the fully developed region is
35°C. The surface of the tube is maintained at a uniform temperature of
130°C. For fully developed laminar flow through tubes at uniform surface
temperature, the Nusselt number is given by

Nup = hTD =3.657

Determine the length of the tube section needed to raise the mean
temperature to 105°C.

(1) Observations. (i) This is an internal forced convection problem. (ii)
The surface is maintained at uniform temperature. (iii) The Reynolds
number should be checked to establish if the flow is laminar or turbulent.
(iv) Since the Nusselt number for this flow is constant it follows that the
heat transfer coefficient is uniform along the tube length.

(2) Problem Definition. Determine the tube length needed to raise the
mean temperature to a specified level.
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(3) Solution Plan. Use the analysis of flow in tubes at uniform surface
temperature to determine the required tube length. Compute the Reynolds
number to establish if the flow is laminar or turbulent.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian, (3) steady state, (4) fully
developed flow, (5) constant properties, (6) uniform surface temperature,
(7) negligible changes in kinetic and potential energy, (8) negligible axial
conduction, and (9) negligible dissipation.

(ii) Analysis. For flow through a tube at uniform surface temperature,
conservation of energy and Newton's law of cooling lead to equation (6.13)

Ph

T, (x) =T, + (T, —T,) expl————x], (6.13)
mec,
where
¢ , = specific heat, J/kg—"C
h = average heat transfer coefficient for a tube of length L, W/m?-°C
m = mass flow rate, kg/s
P = tube perimeter, m
T,,(x) = mean temperature at x, °C
T, ;= mean inlet temperature = 35°C
T, = surface temperature = 130°C
x = distance from inlet of heated section, m

Applying (6.13) at the outlet of the heated section (x = L) and solving for L

mc, T —-T..
L=—FIn=s—m (a)
pPh T,-T,,

where
T,,, = mean outlet temperature = 105° C

To compute L using (a), it is necessary to determine ¢ p>Pom, and h . Air
properties are determined at the mean temperature 7, , defined as

— T . +T,
Tm — mi mo . (b)
2
The perimeter P and flow rate m are given by
P=rD, (c)

and
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DZ
m=m— pu, d
1 P (d)
where

D = inside tube diameter =1 cm = 0.01 m
u = mean flow velocity = 2 m/s
p = density, kg/m’

The heat transfer coefficient for fully developed laminar flow is given by
hD
Nup, =7=3.657, (©)

where
h = heat transfer coefficient, W/m?—°C
k = thermal conductivity of air, W/m—°C

According to (e), / is uniform along the tube. Thus

- k
h=h=3.657—.
D ®

To proceed, it is necessary to compute the Reynolds number to determine if
the flow is laminar or turbulent. The Reynolds number for tube flow is
defined as

uD
ReD =, (g)
v
where
Rep=Reynolds number
v = kinematic viscosity, m*/s
The mean temperature is calculated using (b)
7 (35+105)(°C)
" 2
Properties of air at this temperature are
c¢,=1008.7 J/kg—°C
k=0.02922 W/m-°C
Pr=0.707

v =19.9x10"% m?/s
p=1.0287 kg/m®

=70°C
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Substituting into (g)
2(m/s)0.01(m)
D 19.9%1070 (m2/s)

Re =1005

Since the Reynolds number is smaller than 2300, the flow is laminar. Thus
(f) can be used to determine /.

(iii) Computations. Substituting into (c), (d) and (f)
P=70.01(m)=0.03142 m

2 2
m= ﬁ%‘r(m)l.0287(kg/m3)2(m/s) =0.0001616kg/s

_ 0.02922(W/m-°C)

h =3.657 =10.69 W/m*-°C
0.01(m)

Substituting into (a)
0.0001616(kg/s)1008.7(J / kg —°C )‘n (130-35)(°C)

L = 1
0.03142(m)10.69(W /m2-°C)  (130—-105)(°C)

=0.65m

(iv) Checking. Dimensional check:  Computations showed that
equations (a)-(d), (f) and (g) are dimensionally consistent.

Limiting checks: (1) For the special case of T, = T, the required length
should vanish. Setting 7, = T,,;in (a) gives L = 0.

(i1)) The required length for the outlet temperature to reach surface
temperature is infinite. Setting 7, = T in (a) gives L = 0.

Quantitative checks: (i) An approximate check can be made using
conservation of energy and Newton’s law of cooling. Conservation of
energy is applied to the air between inlet and outlet

Energy added at the surface = Energy gained by air. (h)

Assuming that air temperature in the tube is uniform equal to T, > Newton’s
law of cooling gives

Energy added at surface = /1 nDL(T, — T, ) (1)

Neglecting axial conduction and changes in kinetic and potential energy,
energy gained by air is

Energy gained by air =mc , (T,,, = T,,;) - )
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Substituting (j) and (i) into (h) and solving for the resulting equation for L

me (T, —T,:
I = _p( mo _rm)‘ ()
haD(T; -T,,)

Equation (k) gives

_0.0001616(kg/s)1008.7(J/kg—"C)(105 —35)(° C)
10.69(W/m? —° C)m)n(0.01m)(130 — 70)(°C)

L =0.57m

This is in reasonable agreement with the more exact answer obtained
above.

(i1) The value of % appears to be low compared with typical values listed in
Table 1.1 for forced convection of gases. However, it should be kept in
mind that values of /# in Table 1.1 are for typical applications. Exceptions
should be expected.

(5) Comments. This problem is simplified by two conditions: fully
developed and laminar flow.

6.6 Determination of Heat Transfer Coefficient /2(x) and Nusselt
Number Nu

The heat transfer coefficient is critical in the analysis of channel flow heat
transfer. Scale analysis will be presented first to obtain estimates of the heat
transfer coefficient and Nusselt number. This will be followed by laminar
flow analytic solutions in both entrance and fully developed regions.

6.6.1 Scale Analysis

Consider heat transfer in a tube of radius 7, shown

in Fig. 6.5. Surface temperature is 7, and mean q" r
fluid temperature at a given section is 7,,. Equating
Fourier’s law with Newton’s law
i oT (r,,x)
or ~ T
h = 7 (6.16)
m=— s Fig. 6.5

A scale for r is
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r~9;. (a)

A scale for the temperature gradient in (6.16) is

oT(r,,x) T, —T,

(b)
or o,
Substituting (a) and (b) into (6.16)
k (T m T, s )
h~ J ,
T, m - T, s
or
k
h~—. (6.17)
S
The Nusselt number is defined as
hD
NUD = 7 .
Introducing (6.17) into the above
D
Nupy ~—. (6.18)
D 5,
In the fully developed region where &, (x) ~ D, equation (6.18) gives
Nup ~1 (fully developed). (6.19)

This shows that in the fully developed region the Nusselt number is of
order unity. However, in the entrance region where J,(x) grows from zero
tor,, the Nusselt number, according to (6.18), is greater than unity. To
examine O, in the entrance region, we note that, unlike external flow,
0, scales over the entire range of Prandtl numbers according to (4.24)

5,~xPr'?Re "% (4.24)

Substituting (4.24) into (6.18)
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Nup ~ D pv *Rel”. (c)
X

Expressing the Reynolds number Re, in terms of diameter to form Re,

ux uD x X
Re, =—=——=Re,—. d
X v v D D D ( )
Substituting (d) into (c)
D 12
Nup ~ [—) Pr''?Rel} . (6.20a)
X
The above is rewritten as
N”—Dm ~1. (6.20b)
PI"R@D
x/D

Scaling estimates (6.19) and (6.20) can be compared with the
corresponding exact solutions presented in Section 6.6.2.

6.6.2 Basic Considerations for the Analytical Determination of Heat
Flux, Heat Transfer Coefficient and Nusselt Number

The analytic determination of thermal characteristics such as heat transfer
coefficient requires the determination of velocity and temperature
distribution. An important simplification is the assumption of fully
developed velocity. Neglecting axial conduction provides another major
mathematical simplification. In this section we introduce basic definitions
and present the governing equations for the analytic determination of
surface heat flux, heat transfer coefficient and Nusselt number. In addition,
the criterion for neglecting axial conduction will be identified.

(1) Fourier’s law and Newton’s law. We return to
Fig. 6.5 where heat flow is in the positive radial

direction r. Fourier’s law gives surface heat flux g;

"
qs

q" — —k aT(x,VO)

T.
a X 1S
y or @
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Define dimensionless variables as

- * * _D
Q:T Ts,éz X/D 9R:L90x:UTxavr:vTraReD:u_s
T, T Rep Pr r, u u v
(6.21)
where u is the mean axial velocity. Substituting into (a)
y k 08¢l
4= (1, 1) %D (622)
r, OR
We define / using Newton’s law of cooling
q"s
hé)= . 6.23
) o (6.23)
Combining (6.22) and (6.23)
k(T, —T;
ney - ML =T 0ED k100D
ro(Tm_Ts) OR o em(f) OR
where the dimensionless mean temperature 6,, is defined as
emETm_TS. (6.25)
Ti - Ts
The Nusselt number based on diameter is
h(&)2
Nu($) = h(é]?D = (42 iy (6.26)
Substituting (6.24) into (6.26)
Nu(é) = LM (6.27)
#,(5) OR

As can be seen from equations (6.22), 6.24) and (6.27), the key to
determining ¢ (&), A(E) and Nu($)is the determination of the
temperature distribution &(&, R) which is obtained by solving the energy
equation.
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(2) The Energy Equation. Consider flow through a tube. Assume: (1)
Continuum, (2) Newtonian, (3) steady state, (4) laminar flow, (5)
axisymmetric, (6) negligible gravity, (7) negligible dissipation, (8)
negligible changes in kinetic and potential energy and (9) constant
properties. Based on these assumptions energy equation (2.24) gives

2
pCcy, vra—T+vza—T zkli ra—T +6_T . (2.24)
or 0z ror\ or Oz2

Replacing the axial coordinate z by x, this equation is expressed in
dimensionless form as

- (6.28)

vg—§+2ReDPr 08 4 8(R66’j 1 66’

"OR ROR\ OR (Rep, Pr)? 8§
The product of Reynolds and Prandtl numbers is called the Peclet number
Pe = Rep Pr, Peclet number. (6.29)

Note that the first and second terms on the right-hand-side of (6.28)
represent radial and axial conduction, respectively. Examination of the two
terms suggests that for large values of the Peclet number, axial conduction
may be neglected compared to radial conduction. Comparing solutions to
(6.28) with and without the last term shows that axial conduction can be
neglected for

Pe = PrRey, >100. (6.30)

Thus, under such conditions, (6.28) becomes

(6.31)

v;%+2ReDP ppr 8 _ 240 (R%j.

"O0R RAR\  OR

(3) Mean (Bulk) Temperature 7,,. To determine /4, a reference local

temperature is needed. The mass average or mean temperature at a section

of a channel is defined as
,

o

me T, = J‘pcpvxT27zrdr. (a)
0
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Each term in (a) represents the energy convected by the fluid. However,
mass flow rate m is given by
,

= j 00 2. )
0

Substituting (b) into (a) and assuming constant properties

7,

I v Trdr
0
T, = — (6.32a)
j v, rdr
0
This result is expressed in dimensionless form as
1
I v ORdR
= Ly =T, _ % (6.32b)
T‘i - TS ! *
I v, RdR
0

6.7 Heat Transfer Coefficient in the Fully Developed
Temperature Region

As might be expected, analytical determination of the heat transfer
coefficient in the fully developed region is simpler than that in the
developing region. This section focuses on the fully developed region.
Section 6.8 deals with the developing region.

6.7.1 Definition of Fully Developed Temperature Profile

Far away from the entrance of a channel (x/d >0.05RepPr),
temperature effect penetrates to the centerline and the temperature profile is
said to be fully developed. This profile is not as easily visualized as a fully
developed velocity profile. We introduce a dimensionless temperature ¢
defined as

_TL(0)-T(@,x)

- Ty(x) =T, (x)

(6.33)
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where T'(r,x) is fluid temperature distribution. Note that this definition is
applicable to a uniform as well as variable surface temperature. Since heat
is added or removed from the fluid, it follows that its mean temperature
varies with distance x along the channel. Fully developed temperature is
defined as a profile in which ¢ is independent of x. That is

$=9(r). (6.34)

This definition means that a fully developed temperature profile has a
single distribution in the radial direction at all locations x. It follows from
(6.34) that

o¢
—=0. 6.35
. (6.35)
Equations (6.33) and (6.35) give
o _ o [Lm-T0x|_ 6360
ox ox| Ty(x)—T,(x)
Expanding and using the definition of ¢ in (6.33)
dT dT dT
=0. (6.36b)
dx dx

This result will be used in analyzing thermally developed flow in channels.

6.7.2 Heat Transfer Coefficient and Nusselt Number

We wish to examine the nature of # and Nu in the fully developed thermal
region. Equating Fourier’s with Newton’s law, gives

aT AT (r,,x)
or

h=————. 6.16
T T (6.16)

Using (6.33) to determine 07'(r,,x)/Or and substituting into (6.16)

L d90,)

dr

h=-— = constant. (6.37)
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From this result we conclude that the heat transfer coefficient in the fully
developed region is constant. This important conclusion is valid regardless
of surface boundary conditions. Using (6.37) in the definition of the
Nusselt number, gives

hD D dg(r,) ‘

Nun =72 _ 6.38
"D k dr (6.38)

In Section 6.6.1 scaling was used to estimate the Nusselt number in the
entrance region. The result was used to examine the Nusselt number in the
fully developed region as a limiting case of the entrance region. It was
shown that

Nup ~1 (fully developed). (6.19)
This result will now be arrived at using scale analysis of the fully

developed temperature region where the thermal boundary layer fills the
tube. A scale for the temperature gradient 07'(r,,x)/ Or is

8T(r0,x) Ts_Tm
or D

Substituting into (6.16)

k
h~—. 6.39
D (6.39)

Substituting (6.39) into the definition of the Nusselt number in (6.38)

Nup ~1 (fully developed). (6.40)

6.7.3 Fully Developed Region for Tubes at Uniform Surface flux

Fig. 6.6 shows a tube

section with uniform r q

v oIs v \
surface heat flux. We T
wish to determine the '(; -
axial variation of surface  [% X
temperature and heat
transfer coefficient. Al- Ao q" A A A
hough we have shown in y
thoug Fig. 6.6

equation (6.37) that the
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heat transfer coefficient is uniform throughout the fully developed region,
its value was not determined. Application of Newton’s law of cooling gives

qy = h[T,(x) =T, (x)]. (a)

Note that 7, (x)and 7,,(x) are unknown. However, since ¢; and h are

constant it follows from (a) that

T,(x)—T,,(x) =constant. (b)
Differentiating (b)
T T
AT, _dly (©)
dx dx

Substituting (c) into (6.36b)
ar _dr,

. (d)
Oox dx
Combining (¢) and (d)
or dI, dT, "
—=—2=—""(for constant . 6.41
e ( qs) (6.41)

Note that 7'(r,x), 7,,(x) and T, (x) are unknown. According to (6.16)
and (6.38), these variables are needed to determine s and Nup. To
determine the gradients in (6.41) an energy balance is made for an element
dx of the tube shown in Fig. 6.7. Neglecting changes in kinetic and

potential energy and assuming steady state and constant ¢ p> conservation
of energy for the element gives .
s l
s Pdbx + T T, + T, d |
x + mc =mc —dx |, -
qs pim plim dx e
e —
T, T, + AT dx
where P is channel perimeter. Simplifying A X

gives
4
4

Fig. 6.7
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dr,, q.P

dx mc,

= constant. (6.42)

This result shows that the axial gradient of the mean temperature is
constant along the channel. Substituting (6.42) into (6.41)

a_T_de_a’Tm:q;’P
ox dx dx mc

= constant. (6.43)
p

Equation (6.42) shows that 7'(x,r), T,,(x) and 7, (x) vary linearly with
axial distance x. Integrating (6.43)

qﬂ P
T,(x)=—"—x+C, (e)
mc

p
where C; is constant of integration which is determined from inlet
condition

T (0)=T,;. )

Application of (e) to (f) gives the C; =T,,;. Solution (e) becomes

!!P
T,(x)=T,; +qs_x' (6.44)

I’I’le

Note that this result is identical to (6.9) which was obtained by applying
conservation of energy to a finite tube section.

It remains to determine fluid temperature distribution7 (7,x) and
surface temperature 7 (x). This requires solving the differential form of
the energy equation in the fully developed region. Neglecting axial
conduction and dissipation, and noting that v, =0 for fully developed
velocity, energy equation (2.24) simplifies to

or ko oT
v =" . 6.45
PEpx ox r Gr[r arj (043)

The axial velocity for fully developed flow is
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2
v, =2 1-"—|. (6.46)
rO
Substituting (6.43) and (6.46) into (6.45)
WP ko or
pe, 20 {1 ——2}"— ( j ()
vy |me, r or\_ or

However, m = 72'r02 pu and P =2rr,, equation (g) becomes

2
A5y r|_kof oy (6.47)
r r02 ror\_ or

o

The boundary conditions are:

or@,x) =0, (6.48a)
or
8T
( %) =q5. (6.48b)
or
Integrating (6.47) once with respect to
A oT
—qi| ————|=kr—+ f(x), h
roq{z 444 5 f(x) (h)

where f(x) is “constant” of integration. Application of boundary
condition (6.48a) gives f(x) = 0. Equation (h) becomes

or _4q5 r3
Gr k 2 4]/'

T(r,x)= Ang l:ﬁ— r’ }+ g(x). (6.49)

Integrating again
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The integration “constant” g(x) represents the local centerline
temperature 7'(0,x). Boundary condition (6.48b) does not give g(x) since
(6.49) already satisfies this condition. The local mean temperature 7, (x)
is used to determine g(x). Substituting (6.46) and (6.49) into (6.32a),
gives

7 7 q”
T (x)=—-"2"+g(x). 6.50
n(¥) ==+ g) (6.50)
Thus we have two equations for 7, (x) : (6.44) and (6.50). Equating the two
gives g(x)
_ T g5, Pas

24 k mc,,

gx)=T,,; X. (6.51)

Substituting (6.51) into (6.49)

4 " 2 4 " P "
Trox)=T, + s | 7" _ 7| T 5 Pds (652
kr, | 4 167}

o

Equation (6.52) satisfies the energy equation (6.45) and boundary
conditions (6.48). Surface temperature 7 (x)is obtained by setting
r=r,in (6.52)

n P "
T.(x)=T,, +%%+ix. (6.53)

k mc,

With  T(r,x), T,(x)and T, (x)determined, equation (6.33)
gives @(r) and (6.38) gives the Nusselt number. Substituting (6.44), (6.52)
and (6.53) into (6.33) gives @(7)

241 , r* | 24P 7
N=1-"——|pr°— +——x+—x. 6.54
) 11 rj{ 45} 11 me, 11 (6.3

Differentiating (6.54) and substituting into (6.38) gives the Nusselt number

4
Nup =1—213=4.364. (6.55)
The following observations are made regarding this result:

(1) Equation (6.55) applies to laminar fully developed velocity and
temperature in tubes with uniform surface heat flux.
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(2) Unlike other forced convection results, the Nusselt number for this case
is independent of Reynolds and Prandtl numbers.

(4) Scaling prediction of the Nusselt number is given in equation (6.40) as
Nup ~1. (6.40)
This compares favorably with (6.55).

6.7.4 Fully Developed Region for Tubes at Uniform Surface
Temperature

We consider fully developed flow through a tube at uniform surface
temperature 7. Of interest is the determination of the Nusselt number. As
shown in equation (6.38), the Nusselt number is constant throughout the
fully developed region regardless of surface boundary condition. The
determination of the Nusselt number requires solving the energy equation
for the fully developed region. Neglecting axial conduction and dissipation
and noting that v, =0 for fully developed velocity, energy equation
(2.24) simplifies to

or ko orT
v — =22 2|, 6.45
PEpTx ox r@r[rﬁr] (643
The boundary conditions for this case are
or(0,x) _ , (6.56a)
or
I(r,,x)=T;. (6.56b)

The axial velocity for fully developed flow is

2

v, = 25{1 —r—z} . (6.46)

"o

The axial temperature gradient 07" /Oxin equation (6.45) is eliminated
using the definition of fully developed temperature profile, equation (6.36a)

%zi{Ts(x)—T(r,x)}

=0. (6.36a)
ox ox| Ty(x)—T,(x)
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For uniform surface temperature, 7 (x) = T, (6.36a) give

or _ T, -T(r,x) dT,

= . (6.57)
ox T,-T,(x) dx
Substituting (6.46) and (6.57) into (6.45)
2\T,-T T
2peal1-l | LZTE0dl, kO 0T (¢ se)
P r2 | Ty —Ty,(x) dx ror\ or

Equation (6.58), subject to boundary conditions (6.56), was solved using an
infinite power series [3]. The solution gives the Nusselt number as

Nuj, =3.657. (6.59)

6.7.5 Nusselt Number for Laminar Fully Developed Velocity
and Temperature in Channels of Various Cross-Sections

Many internal flow applications involve channels with non-circular cross-
sections. Analytical and numerical solutions for such cases have been
obtained for various surface boundary conditions [3]. In all cases the
Nusselt number in fully developed flow is uniform throughout. Table 6.2
[3] lists the Nusselt

Table 6.2
numbers for chanpels of Nusselt number for laminar fully developed
various geometries  at conditions in channels [3]
two surface conditions:
(1) uniform heat flux geometry alb Nup
and (2) uniform temper- uniform|  uniform
ature. The Nusselt surface surface
number for non-circular flux | temperature
cross-sections is based Q 4364 3.657
on the equivalent diam- a
eter defined as [ ] 1| 3.408 2.976
4Af bﬁ 2 | 4123 3.391
D,=—— (6.60) a
P o[ ] 4 | 5331 4439
where A4, the flow area b| . g | 6490 5.597
and P is the perimeter.
Note that the heat © 8235 7.541
transfer coefficient for A 5100 5 460
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non-circular channels varies along the periphery. However, Table 6.2 gives
the average Nusselt number along the periphery. For uniform surface heat
flux, surface temperature varies axially and along the periphery. The results
shown in Table 6.2 are based on uniform periphery temperature. Note that
in all cases the Nusselt number for uniform surface flux is greater than that
for uniform surface temperature.

Scaling estimate of the Nusselt number in the fully developed region
gives
Nup ~1 (fully developed). (6.40)

Examination of Table 6.2 shows that the Nusselt number ranges from 2.46
to 8.235. Thus scaling provides a reasonable estimate of the Nusselt
number.

Example 6.4: Maximum Surface Temperature in an Air Duct

Air is heated in a 4 cmx 4 cm square
duct from 40°C to 120°C. A uniform

heat flux of 590 W/m® is applied at
the surface. The mean air velocity is
0.32 m/s. Neglecting entrance effects,
determine the maximum surface
temperature.

(1) Observations. (i) This is an internal forced convection problem in a
square duct. (ii) The surface is heated at uniform flux. (iii) Surface
temperature changes along the channel. It reaches a maximum value at the
outlet. (iv) The Reynolds number should be checked to determine if the
flow is laminar or turbulent. (v) Velocity and temperature profiles become
fully developed far away from the inlet. (vi) The heat transfer coefficient is
uniform for fully developed flow. (vii) Duct length is unknown. (viii) The
fluid is air.

(2) Problem Definition. (i) Find the required length to heat the air to a
given temperature and (ii) determine surface temperature at the outlet.

(3) Solution Plan. (i) Since surface flux, mean velocity, duct size, inlet and
outlet temperatures are known, application of conservation of energy
between the inlet and outlet gives the required duct length. (ii) Check the
Reynolds number to determine if the flow is laminar or turbulent. (iii)
Apply surface temperature solution for flow through a channel with
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constant surface flux. (iv) Use Table 6.2 to determine the heat transfer
coefficient.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) steady state, (2) constant
properties, (3) uniform surface heat flux, (5) negligible changes in kinetic
and potential energy, (6) negligible axial conduction, and (7) negligible
dissipation.

(ii) Analysis. Application of conservation of energy between the inlet
and outlet gives the required channel length

PLgy :mcp(Tmo_Tmi)a (a)
where
¢, = specific heat, J/kg—°C
L = channel length, m
m = mass flow rate, kg/s
P = perimeter, m
g"= surface heat flux = 590 W/m*

T, =120°C
Solving (a) for L
L: mcp (TmO”_ Tml) ' (b)
Py
The mass flow rate and perimeter are given by
m=pS*u, (c)
P =4S, (d)

where

S = duct side = 0.04 m
u = mean flow velocity = 0.32 m/s
p = density, kg/m’

Substituting (c) and (d) into (b)
I pSLTCp(TmO -T,,)
4q5

(e)

To determine surface temperature at the outlet, use the solution for surface
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temperature distribution for channel flow with uniform surface flux, given
by equation (6.10)

P 1
Ts(x):Tmi'Fqg(#*’%Ja (f)
p

where

h(x) = local heat transfer coefficient, W/m?—°C
T, (x) = local surface temperature, °C
x = distance from inlet of heated section, m

Surface temperature at the outlet, 7 (x), is obtained by setting x = L in (f).
Substituting (c) and (d) into (f)

TS(L):Tmi"i_q;’{ AL 1 J €3]

—+
pSiuc, h(L)

Finally, it remains to determine the heat transfer coefficient at the outlet,
h(L). This requires establishing whether the flow is laminar or turbulent.
Thus, the Reynolds number should be determined. The Reynolds number
for flow through a square channel is defined as
uD
Re,, ="7¢ (h)
1%

where

D, = equivalent diameter, m
v = kinematic viscosity, m?/s

The equivalent diameter for a square channel is defined as

2
De:4£ = 4S—=S. (1)
P 48
Substituting (i) into (h)
usS .
ReDe = . (J)
14

Properties of air are determined at the mean temperature 7, defined as

T 7:ni+7:no

Tm:T- (k)
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Substituting into (k)

2

T, 80°C

Properties of air at this temperature are:

¢, =1009.5 J/kg—°C
k =0.02991 W/m-°C
Pr =0.706
v =20.92x107° rsnz/s
£ =0.9996 kg/m
Substituting into (j)
0.32(m/s)0.04(m)

ReDe = =611.9
-6, 2
20.92x10 “(m~/s)

Since the Reynolds number is smaller than 2300, the flow is laminar. The
heat transfer coefficient for fully developed laminar flow through a square
channel with uniform surface flux is constant. It is given by equation (6.55)
and Table 6.2

— kD
Nup, =——% =3.608, 0
k
where 4 = h . Solving (1) for &
7 =3.608-~. (m)
D

e

(iii) Computations. Substituting numerical values in (e) gives the
channel length

I 0.9996(kg/m>)0.04(m)0.32(m/s) 1009.5(J/kg-° C)(120 — 40)(° C)
(4)590(W/m?)

=0.4378m

To determine surface temperature at the outlet, the heat transfer coefficient
is computed using (m)

0.02991(W/m-°C)
0.04(m)

WL)=h= 3.608 =27 Wm*-°C
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Equation (g) gives surface temperature at the outlet

T, (L) = 40(°C) + 590(W/m*) x

4(0.4378)(m) 1
+
0.9996(kg/m> ) 0.04(m)0.32 (m/s) 1009.5(J / kg—°"C)  2.7(W/m*-°C)

T,(L)=338.5°C

(iv) Checking. Dimensional check: Computations showed that
equations (e), (g), (j), and (m) are dimensionally correct.

Quantitative checks: (i) Alternate approach to determining 7 (x) : Applica-
tion of Newton’s law of cooling at the outlet gives

q;:h[Ts(L)_Tmo]' (n)
Solving for T (L)

590(W/m?)
2.7(W/m?-°C)

T,(L)=T,, + %S: 120(°C) +

=338.5°C

(il)) The value of % is within the range reported in Table 1.1 for forced
convection of gases.

Limiting check: If T,,, =
T mo = T mi

1

mi » the required length should be zero. Setting
into (e) gives L = 0.

(5) Comments. (i) As long as the outlet is in the fully developed region,
surface temperature at the outlet is determined entirely by the local heat
transfer coefficient.

(i) In solving internal forced convection problems it is important to
establish if the flow is laminar or turbulent and if it is developing or fully
developed.

6.8 Thermal Entrance Region: Laminar Flow through Tubes

6.8.1 Uniform Surface Temperature: Graetz Solution

Consider laminar flow through a tube shown in Fig. 6.8. Fluid enters a
heated or cooled section with a fully developed velocity. We neglect axial
conduction (Pe > 100) and consider the case of uniform surface
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temperature 7. It was shown in r
Chapter 3 that for two-
dimensional fully developed flow

the radial velocity vanishes T+~
U 0
v, =0. 3.1 S
The axial velocity is
1
v, =—“’—1’9(r2 —r2). (3.12)
4u dz

Using the notation of this chapter, the axial velocity is expressed in
dimensionless form as

ot =2 _o(1_R?). (6.61)
u

Substituting (3.1) and (6.61) into energy equation (6.31)

l(l_RZ)%zli(R%j. (6.62)
2 0, ROR\ OR
The boundary conditions for this case are
90(2,0) =0, (6.63a)
OR
(1) =0, (6.63b)
0(0,R)=1. (6.63c)

Analytic and numerical solutions to this problem have been obtained [4, 5].
The following is a summary of the solution and results. Assume product
solution of the form

O(S, R) = X(S)R(R) . (a)

Substituting (a) into (6.62), separating variables
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dx,

22X, =0, (b)
dé
d’®, 1d®, ., >
ny "+ A°(1-R =0.
2 R R o )R, (©)

where A,are the eigenvalues obtained from the boundary conditions.
Solution X, (&) to (b) is exponential. However, solution ® ,(R) to (c) is
not available in terms of simple tabulated functions. Substituting the
solutions to (b) and (¢) into (a)

O(ZR) = C,R,y (R)eXp(-2238), (6.64)
n=0

where C,, is constant. With the temperature distribution given in (6.64),

surface heat flux, mean temperature, local and average Nusselt numbers
can be determined. Surface heat flux is given by

oo Ko 08D
45(6) =~ (7, T’)—aR : (6.22)

o

Surface temperature gradient 068(&,1)/ OR is obtained by differentiating
(6.64)

00E) N . dr, ()
— —nZ:O:Cn o exp(-246). (d

Defining the constant G, as

Gn = _& dq{n (1) ' @)
2 dR
Substituting (d) and (e) into (6.22)
, 2k N )
gl (&) =—"(T, -T, )Z G, exp{—2/2&). (6.65)

v
° n=0
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The local Nusselt number is given by

Nu(&) =2 29D, (6.27)

On(s) OR

where the gradient 06(&,1)/0R is given in (d). The local mean
temperature @,,(£) is obtained by substituting (6.61) and (6.64) into
(6.32b), integrating by parts and using (e)

G
0,(6)=8 1 exp(-24,6) . (6.66)
n=0 "1
Substituting (d), (e) and (6.66) into (6.27)

D Gyexp(-22:8)
n=0

Nu(cf) == (66.7)
G
22—; exp(—2A2&)
n=0 2”
The average Nusselt number for a tube of length & is defined as
— . h(ED
Nu(&) :@T)' ®

where & (&) is determined by integrating the local heat transfer coefficient
along a tube of length&. A simpler approach is to use equation (6.13)
which contains the average heat transfer coefficient

Ph

T,(x)=T,+(T,, —T,)exp[— . x]. (6.13)
p

Solving (6.13) for &

mcp lnTm(x)_Ts )

Px T, -T

mi s

h=-

(2
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Substituting (g) into (f), noting that m = pu D*/4, P=7D,and using
the definitions of &, Rep and 6,,in (6.21) and (6.25), gives

Nu(é) = —éln 0,(8).

(6.68)

The constants A, and G,, are needed to compute g (&), 6,,(&), Nu(&)
and Nu(&) in equations (6.65)-(6.68). Table 6.3 [4] lists values of 4, and

G, for 0<n<10. Equations (6.67) and (6.68) are used to plot and

tabulate the local and average Nusselt numbers. Table 6.4 [5] gives Nu(&)

and Nu(&) at selected values of the axial distance &. Fig. 6.9 gives the

variation of Nu(&) and Nu(&) along a tube.

Table 6.3

Uniform surface temperature [4]

Table 6.4

Local and average Nusselt
number for tube at uniform
surface temperature [5]

n An G,

x/D —
0 2.70436 | 0.74877 E= Nu($) | Nu(&)
1 6.67903 | 0.54383 RepPr
2 10.67338 | 0.46286 0 % o
3 14.67108 0.41542 0.0005 12.8 19.29
4 18.66987 | 0.38292 0.002 803 | 12.09
5 | 2266914 | 0.35869 0.005 600 | 892
6 | 26.66866 | 0.33962 0.02 417 | 581
7 | 30.66832 | 0.32406 0.04 377 | 486
8 | 34.66807 | 0.31101 0.05 371 | 4.64
9 | 38.66788 | 0.29984 0.1 366 | 415
10 | 42.66773 | 0.29012 o 366 | 3.66
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Fig. 6.9 Local and average Nusselt number for
tube at uniform surface temepratu re [4]

The following observations are made:

(1) The local and average Nusselt numbers, and heat transfer coefficient,
decrease as the distance & from the entrance is increased.

(2) At any given location &, the average Nusselt number is greater than the
local Nusselt number.

(3) The Nusselt number reaches an asymptotic value of 3.657 at & = 0.05.
As was shown in Section 6.7.4, this corresponds to the Nusselt number in
the fully developed region. Thus

Nu(©) =3.657. (6.69)

(4) Surface heat flux and heat transfer coefficient depend on fluid
properties such as thermal conductivity %, kinematic viscosity v and
Prandtl number Pr. Properties in channel flow are evaluated at the
average of inlet and outlet mean temperatures 7,,, defined as

Ty =T +Tpo)/ 2. (6.70)
Note that in problems where the outlet temperature is not known a priori

and must be determined as part of the solution, a trial and error procedure is
used.
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Example 6.5: Hot Water Heater

Water enters a tube with fully developed velocity and uniform temperature
T; =25°C. The inside diameter of the tube is 1.5 cm and its length is 80
cm. The mass flow rate is 0.002 kg/s. It is desired to heat the water to
75°C by maintaining the surface at uniform temperature. Determine the
required surface temperature.

(1) Observations. (i) This is an internal forced convection problem. (ii)
The surface is maintained at uniform temperature. (iii) The Reynolds
number should be computed to establish if the flow is laminar or turbulent.
(iv) Compute the thermal entrance length to determine if thermal entrance
effects can be neglected.

(2) Problem Definition. Determine the required surface temperature to
raise the mean temperature to a specified level. This requires determining
the heat transfer coefficient.

(3) Solution Plan. Use the analysis of flow in tubes at uniform surface
temperature. Compute the Reynolds number to establish if the flow is
laminar or turbulent. Compute the thermal entrance length to determine if
entrance or fully developed analysis is required.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) steady state, (3) constant
properties, (4) uniform surface temperature, (5) negligible changes in
kinetic and potential energy, (6) negligible axial conduction, (7) fully
developed velocity, and (8) negligible dissipation.

(ii) Analysis. For flow through a tube at uniform surface temperature,
conservation of energy and Newton's law of cooling lead to equation (6.13)

Ph

T (x) =T +(T,y; — T5)exp[— x], (6.13)
c
p

where

h = average heat transfer coefficient for a tube of length x, W/m?-°C
m = mass flow rate= 0.002 kg/s

T,,; = mean inlet temperature = 25° C
T,,, = mean outlet temperature= 75° C

Applying (6.13) at the outlet, x = L, and solving for 7}



6.8 Thermal Entrance Region: Laminar Flow through Tubes 249

|7, ~ T,y (Lyexp(PRL I me )|

T, = = . (a)
1—exp(PhL/mc,)

To compute 7 using (a), it is necessary to determine ¢ p» P, and h . Water
properties are determined at the mean temperature 7, , defined as

— T . +T,
Tm — mi mo . (b)
2
The perimeter P is
P=7xD, (©)

where
D = inside tube diameter=1.5cm=0.015 m

The determination of 4 requires computing the Reynolds number to
establish if the flow is laminar or turbulent, and computing the thermal
entrance length to determine if it is important. The Reynolds number is

uD
Rep =—, (d)
v
where
v = kinematic viscosity, m*/s
u = mean velocity, m/s
The flow rate gives the mean velocity
_ 4m
=" ©
prD
where p is density. To determine water properties, (b) is used to compute
Tm

]_“m - WZSOOC

Properties of water at this temperature are

c,=4182 J/kg-C

k= 0.6405 W/m-°C
Pr=3.57 “

v =0.5537x10 m?/s
£ =988 kg/m
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Substituting into (e)

4(0.002)(kg/s)

U= 3 PN =0.01146 m/s
988(kg/m”) 7 (0.015)" (m~)
Equation (d) gives
0.01146(m/s)0.015
Rep = (m/$)0.015(m) _ 5 5

0.5537x 107 (m*?/s)

Since the Reynolds number is less than 2300, the flow is laminar. The next
step is to compute the thermal entrance length L, . For laminar flow through

channels, the thermal entrance length is given by (6.6)

L,
— =C,PrRep, 6.6
D t D (6.6)

where

C}, = hydrodynamic entrance length coefficient = 0.056, (Table 6.1)
C, = thermal entrance length coefficient = 0.033, (Table 6.1)
Lj, = hydrodynamic entrance length, m
L, = thermal entrance length, m
Substituting numerical values into (6.6)

L;=0.033 x0.015 (m) x 310.5 x 3.57 =0.55m

Since L,is not negligible compared to tube length L, it follows that
temperature entrance effects must be taken into consideration in
determining /. For laminar flow in the entrance region of a tube at fully
developed velocity profile and uniform surface temperature, Graetz
solution gives /. Fig. 6.9 and Table 6.4 give the average Nusselt number
Nu as a function of the dimensionless axial distance &, defined as

x/D
f_ReDPr' ®

The average heat transfer coefficient h s given by

_ k —
h=—Nu.
o (8)
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(iii) Computation. Evaluating & atx=1L

£o 0.8(m)/0.015(m)
310.5x3.57

At £=0.481 Fig. 6.9 gives

=0.0481

m ~4.6
Substituting into (g)

0.6405(W/m—"°C) 6
0.015(m) '

h = =196.4W/m>-°C

Equation (a) gives the required surface temperature. First, the exponent of
the exponential is calculated

PhL _ 7(0.015)(m)(196.4(W/m”~°C)0.8(m)
mc, 0.002(kg/s)4182(J/kg—°"C)

=0.88524

Substituting into (a)

1
T, =
1 - exp(0.88524)

[25("0) ~75(°C) exp(0.88524)]= 110.1°C

(iv) Checking. Dimensional check: (i) Computations showed that
equations (a), (e), (g) and (6.6) are dimensionally consistent. (ii) The
Reynolds number and the exponent of the exponential are dimensionless.

Limiting checks: (i) For the special case of T,,, =T(L), the required
surface temperature should be the same as inlet temperature. Setting
T, =T(L)in (a) givesT; =T,,,.

(i1) The required surface temperature should be infinite if the length is zero.
Setting L = 0 in (a) gives T, = 0.

Quantitative checks: (1) An approximate check can be made using
conservation of energy and Newton’s law of cooling. Conservation of
energy is applied to the water between inlet and outlet

Energy added at the surface = Energy gained by water. (h)

Assuming that water temperature in the tube is uniform equal to 7, ,
Newton’s law of cooling gives
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Energy added at surface = h 7 DL(T, o~ T, ) (1)

Neglecting axial conduction and changes in kinetic and potential energy,
energy gained by water is

Energy gained by water =mc ,(T,,, = T,,;) - ()

Substituting (i) and (j) into (h) and solving the resulting equation for 7

= mcp(Tmo_Tmi)

T, =T, = k
v hz DL ()
Equation (k) gives
.002(kg/s)4182(J/kg—° -25)(°
TS:SO(OC)+OOO(g/S) 82(J/kg—"C)(75—-25)( C)=106.5°C

196.4(W/m?—°C)7x (0.015)(m)(0.8)(m)

This is in reasonable agreement with the more exact answer obtained
above.

(i1)) The value of his within the range listed in Table 1.1 for forced
convection of liquids.

(5) Comments. (i) Using Fig. 6.9 to determine h introduces a small error.

(il)) If entrance effects are neglected and the flow is assumed fully
developed throughout, the corresponding Nusselt number is 3.657. Using
this value gives 4 =156.3W/m*~°C and T, =121 °C.

6.8.2 Uniform Surface Heat Flux

We repeat Graetz entrance r "

problem replacing the T
uniform surface tempera- \Ti——) """" Fif/

ture with uniform surface U o e
. . —> X -
heat flux, as shown in Fig. / ___________ Tgt\

6.10. The fluid enters the % 3 F
heated or cooled section $ .
with  fully  developed Fig. 6.10

velocity. The governing
energy equation is the same as that for the Graetz problem, given by (6.62)
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1 1
—(1 R )60 6 R% . (6.62)
2 o0& R aR OR
The boundary conditions, expressed in
dimensionless form are:: Table 6.5
26(£.0) Uniform surface flux [4]
—222 =0, 6.71a 2
1 25.6796 | 0.198722
B0(& 1) qr, 2 | 83.8618 | 0.069257
R T T (6.71b) 3 | 174.1667 | 0.036521
( i S) 4 296.5363 | 0.023014
5 4509472 | 0.016030
O0,R)=1. 6.71c) 6 | 637.3874 | 0.011906
7 855.8495 | 0.009249
Analytic solution based on separation of 8 | 1106.3290 | 0.007427
variables as well as numerical solution to 9 | 1388.8226 | 0.006117
this problem is available [4]. The solution 10 | 1703.3279 | 0.005141
for the local Nusselt number is
-1
hx
Nu(@) == o ZA exp(-28,9) | - (6.72]

The eigenvalues ,6’2 and the constant 4, are listed in Table 6.5 [4]. The
average Nusselt number is given by
-1

e |11 150 1—exp(-282&)
Nu(§)=""= 48+52An i . (6.73]

n=l1

The limiting case corresponding to & = oo gives the Nusselt number in the
fully developed region. Setting & = o0 in (6.72) or (6.73) gives

Nu() —4—21;— 4.364. (6.74)

This agrees with the solution of the fully developed region given in
equation (6.55). The solution to the local and average Nusselt number is
presented graphically in Fig. 6.11 [4].
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Fig. 6.11 Local and average Nusselt number for
tube at uniform surface heat flux [4]
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PROBLEMS

6.1 Use scaling to determine the ratio L, /L;. Compare scaling estimates
with exact solutions.

6.2 Use scaling to estimate the hydrodynamic and thermal entrance
lengths for the flow of air in a 3cm x3cm square duct. The mean
velocity is 0.8 m/s. Compare scaling estimates with exact solutions.
Evaluate properties at 50°C.

6.3  Far away from the entrance of a channel the velocity and temperature
become fully developed. It can be shown that under such conditions
the Nusselt number becomes constant. Consider air flowing with a
mean velocity of 2 m/s through a long tube of diameter 1.0 cm. The
mean temperature at a section in the fully developed region is 35°C.
The surface of the tube is maintained at a uniform temperature of
130°C. What is the length of the
tube section needed for the mean
temperature to reach 105°C? The
Nusselt number for this case is
given by

Nu,, =3.657.

6.4 A fluid is heated in a long tube with uniform surface flux. The
resulting surface temperature distribution is found to be higher than
design specification. Two suggestions are made for lowering surface
temperature without changing surface flux or flow rate: (1)
increasing the diameter, (2) decreasing the diameter. You are asked
to determine which suggestion to follow. The flow is laminar and
fully developed. Under such conditions the Nusselt number is given
by

Nup =4.364.

6.5 Two identical tubes are heated with the same uniform flux at their
surfaces. Air flows through one tube while water flows at the same
rate through the other. The mean inlet temperature for both tubes is
the same. Which tube will have a higher surface temperature
distribution? Assume laminar flow and neglect entrance effects. For
this case the Nusselt number is given by

Nu,, = 4364.
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6.6

6.7

6.8

6.9

6 Heat Transfer in Channel Flow

Water flows through a tube with a mean velocity of 0.2 m/s. The
mean inlet temperature is 20°C and the inside diameter of the tube is
0.5 cm. The water is heated to 80°C with uniform surface heat flux
of 0.6 W/em®. Determine surface temperature at the outlet. If
entrance effects can be neglected the Nusselt number for fully
developed flow is constant given by

Nup, = 4364 .

Is it justifiable to neglect entrance effects?

Fluid flows with a mean axial velocity # in a tube of diameter D.
The mean inlet temperature is 7,,;. The surface is maintained at
uniform temperature 7. Show that the average Nusselt number for a
tube of length L is given by

—  RepPr T, —T

Nujp = In mi s ,
4 T,(L)-T,

— L uD . —
where Nuj = % , Rep, = U2 and h 1 1is the average heat transfer
1%

coefficient over the length L.

Water flows through a 0.75cmx0.75cm square duct with a mean
velocity of 0.12 m/s. The duct is heated with a uniform surface flux
of 0.25 W/cm®. The mean inlet
temperature is 25°C. The maxi-
mum allowable surface temper-
ature is 95°C. Justify neglecting
entrance effects and determine
maximum outlet mean temper- 7
ature. m

Two experiments were conducted on fully developed laminar flow
through a tube. In both experiments surface temperature is 180°C
and the mean inlet temperature is 20°C. The mean outlet
temperature for the first experiment is found to be120°C. In the
second experiment the flow rate is reduced by a factor of 2. All other
conditions remained the same. Determine:

[a] The outlet temperature of the second experiment.
[b] The ratio of heat transfer rate for the two experiments.
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6.11

6.12

6.13
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A long rectangular duct with
a 4cmx 8cm cross section is
used to heat air from —19.6°C to
339.6°C. The mean velocity in
the duct is 0.2 m/s and surface
temperature is 340  °C.
Determine the required duct
length. Is neglecting entrance
effects justified?

A rectangular duct with inside dimensions of 2cm x 4 cm is used to
heat water from 25°C to 115°C. The mean water velocity is 0.018
m/s. The surface of the duct is maintained at 145 °C. Determine the
required duct length. Assume fully developed flow conditions
throughout.

Air is heated in a 4cm x 4 cm square duct at uniform surface flux of
590 W/m?. The mean air velocity is 0.32 m/s. At a section far away
from the inlet the mean temperature is 40°C. The mean outlet
temperature is 120 ° C. Determine the required length and maximum
surface temperature.

Consider fully developed laminar flow in two tubes having the same
length.  The flow rate, fluid, inlet temperature and surface
temperature are the same for both tubes. However, the diameter of
one tube is double that of the other. Determine the ratio of the heat
transfer rate from the two tubes.

6.14 To evaluate the accuracy of scaling prediction of the thermal entrance

6.15

length and Nusselt number, compare scaling estimates with the exact
results of Graetz solution for flow through tubes.

Use scaling to estimate the heat transfer coefficient for plasma at a
distance of 9 cm from the entrance of a vessel. The mean plasma
velocity is 0.042 m/s and the vessel diameter is 2.2 mm. Properties of
plasma are:

¢, =3900 /kg=°C, k = 0.5 Wim—="C, v=094x10"% m
p =1040 kg/m’

2/s ,

6.16 Air flows with fully developed velocity through a tube of inside

diameter 2.0 cm. The flow is fully developed with a mean velocity
of 1.2 m/s. The surface is maintained at a uniform temperature of
90°C. Inlet temperature is uniform equal 30 °C. Determine the length
of tube needed to increase the mean temperature to 70°C.
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6.17

6.18

6.19

6 Heat Transfer in Channel Flow

Air flows with a mean velocity of 2 m/s through a tube of diameter
1.0 cm and length 14 cm. The velocity is fully developed throughout.
The mean temperature at the inlet is 35°C. The surface of the tube is
maintained at a uniform temperature of 130°C. Determine the outlet
temperature.

L

A research apparatus for a . -

. test section
pharmaceutical laboratory j /
requires heatmg pl.asma in / / / / / / / / @
a tube 0.5 cm in diameter. D
The tube is heated by + T T —

. . mi mo
uniformly wrapping an
electric element over its
surface. This arrangement provides uniform surface heat flux. The
plasma is monitored in a 15 cm long section. The mean inlet
temperature to this section is 18°C and the mean velocity is 0.025
m/s. The maximum allowable temperature is 42°C. You are asked
to provide the designer of the apparatus with the outlet temperature

and required power corresponding to the maximum temperature.
Properties of plasma are:

¢, =3900J/kg—"C, v =0.94x10"" m*/s, p =1040 kg/m"’.

An experiment is designed to investigate heat transfer in rectangular
ducts at uniform surface temperature. One method for providing
heating at uniform surface temperature is based on wrapping a set of
electric elements around the surface. Power supply to each element is
individually adjusted to provide uniform surface temperature. This
experiment uses air flowing in a 4cm x §cm rectangular duct 32 cm
long. The air is to be heated from 22°C to 98°C. The velocity is
fully developed with a mean value of 0.15 m/s. Your task is to
provide the designer of the experiment with the heat flux distribution
along the surface. This data is needed to determine the power
supplied to the individual elements.
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FREE CONVECTION

7.1 Introduction

Free convection is encountered in many situations. In fact, it is always
present as long as fluid temperature is not uniform and there is an
acceleration field such as gravity. In some applications, free convection
heat transfer is small compared to other modes and therefore may be
neglected. In others it is the dominant mechanism for heat transfer. There
are situations where it is desirable to suppress free convection, such as in
heat loss from steam pipes, windows, and solar collectors. On the other
hand, one seeks to enhance the transfer of heat by free convection in
cooling microelectronic components and packages.

7.2 Features and Parameters of Free Convection

(1) Driving Force. Fluid motion in free convection is driven by natural
forces. In general, two conditions are required for fluids to be set in motion
in free convection: (1) the presence of an acceleration field, and (2) a
density gradient in the fluid. The most common acceleration field is
gravity. Since all fluids undergo changes in density due to temperature
changes, it follows that a temperature gradient will set up a density
gradient. However, there are cases in which the presence of a density
gradient in an acceleration field does not result in fluid motion. An example
is a fluid which is contained between two horizontal plates with the upper
plate at a higher temperature than the lower plate.
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(2) Governing Parameters. Two parameters play a key role in the
determination of the Nusselt number in free convection: (1) the Grashof
number, and (2) the Prandtl number. The Grashof number is defined as

T, -T,)L
Grashof number = Gr;, = ped; 5 ) , (7.1)
v

where L is a characteristic dimension of the body. For a horizontal cylinder
it is the diameter and for a vertical plate it is a dimension in the vertical
direction. fis a fluid property defined in equation (2.16). It is called the
coefficient of thermal expansion, also known as compressibility factor. For
ideal gases it is given by

p = %, for ideal gas, (2.21)

where T is in absolute degrees. In some solutions, the Grashof number
appears multiplied by the Prandtl number. This dimensionless product is
called the Rayleigh number, defined as

pel, ~T )L , _ Be(Ty ~T.)L

2
v? va

Ra; =Gr;Pr=

(7.2)

where « is thermal diffusivity.

(3) Boundary Layer. As with forced convection, viscous and thermal
boundary layers do exist in free convection. Furthermore the flow can be
laminar, turbulent, or mixed. Boundary layer approximations for free
convection are valid for Ra, > 10*.

(4) Transition from Laminar to Turbulent Flow. The criterion for
transition from laminar to turbulent flow is expressed in terms of the
Grashof or Rayleigh number. For vertical plates the transition Rayleigh

number, Rax, , 18 given by

Raxt ~10°. (7.3)

(5) External vs. Enclosure Free Convection. It is convenient to classify
free convection as (i) external free convection, and (ii) enclosure free
convection. In external free convection a surface is immersed in a fluid of
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infinite extent. Examples include free convection over vertical plates,
horizontal cylinders, and spheres. Enclosure free convection takes place
inside closed volumetric regions such as rectangular confines, concentric
cylinders, and concentric spheres.

(6) Analytic Solutions. Since the velocity and temperature fields are
coupled in free convection, analytic solutions require the simultaneous
integration of the continuity, momentum, and energy equations. Even for
the simplest case of laminar free convection over an isothermal vertical
plate, the mathematical analysis is not elementary and results are obtained
through numerical integration.

7.3 Governing Equations

Analysis of free convection is usually based on following approxi-mations:
(1) Density is assumed constant except in evaluating gravity forces.

(2) The Boussinesq approximation which relates density change to
temperature change is used in formulating buoyancy force in the
momentum equation.

(3) Dissipation effect is neglected in the energy equation.

Considering steady state, laminar, two-dimensional flow with constant
properties, the continuity, momentum, and energy equations are obtained
from equations (2.2), (2.29) and (2.19), respectively

ou Ov
—+—=0,
ox Oy
(7.4)
Ou Ou 1 o*u  0%u
A M BT -T, ) —— (L 2y s
“=""% B gl ) wﬁx(p P) (x2 6y2)( )
2 2
u@wa—v:—L—(p pw)+V(a—+a—a (7.6)
o P, 0 oy’

(7.7)
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In equation (7.5) gravity points in the negative x-
direction as shown in Fig. 7.1. Further simpli-
fications will be introduced in above equations
based on boundary layer approximation.

7.3.1 Boundary Layer Equations

Boundary layer approximations used to simplify
the governing equations in forced convection are
applied to free convection. Fig. 7.1 shows the
viscous and thermal boundary layers over a
vertical plate. In boundary layer flow, the y- Fig. 7.1
component of the Navier-Stokes equations,

(7.6), reduces to

0
—(P—p,)=0. (a)
oy

Neglecting ambient pressure variation with distance x, it follows that

0
8x(p Pw)=0 (b)

Furthermore, for boundary layer flow
o*u  o%u
~ < NER (©)
ox oy

Thus the x-component of the Navier-Stokes equations simplifies to

ou ou 0*u
U—+v—=po(T-T, )+v——. 7.8
ER pe(T-T.,) P (7.8)

Similarly axial conduction is neglected compared to normal conduction

2 2
Z—Z«Z—f. (d)
X y

Substituting (d) into energy equation (7.7)
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2
a—T+?Ja—T:0ca—T. (7.9)
ox oy oy?

Thus the governing equations for laminar boundary layer free convection
are: continuity equation (7.4), x-momentum (7.8), and energy equation
(7.9). These equations contain three unknowns: u, v, and 7. However, it
should be noted that momentum and energy are coupled since both contain
the variables u, v, and T.

7.4 Laminar Free Convection over a Vertical Plate: Uniform
Surface Temperature

Consider the vertical plate at uniform temperature 7 shown in Fig. 7.1.
The plate is submerged in an infinite fluid at temperature 7., . Of primary
interest is the velocity and temperature distribution in the fluid adjacent to
the plate.

7.4.1 Assumptions. (1) Continuum, (2) Newtonian, (3) steady state, (4)
laminar flow, (5) two-dimensional, (6) constant properties, (7) Boussinesq
approximation, (8) uniform surface temperature, (9) uniform ambient
temperature, (10) vertical plate and (11) negligible dissipation.

7.4.2 Governing Equations. Based on the above assumptions the
governing equations are: continuity (7.4), momentum (7.8), and energy

(7.9)

ou Ly, (7.4)
ox 0oy
ou ou o%u
—+vo—=pg(T T, )+v—F>, 7.8
"% % pe(T-T.,) - (7.8)

2
228 190 _ 06 (7.10)
ox oy o>

where @ is a dimensionless temperature defined as

T-T,
6= 0

= 7.11
T T, (7.11)
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7.4.3 Boundary Conditions. The boundary conditions on velocity and
temperature are:

Velocity:

(1) u(x,0)=0,
2 v(x,0)=0,
() u(x,0) =0,
4) u(0,y)=0.
Temperature:
() 0(x,0)=1,

(6)6(x,0) =0,
(16(0,y)=0.

7.4.4 Similarity Transformation [1]. Equations (7.4), (7.8), and (7.10)
are solved simultaneously using similarity method to transform the three
partial differential equations to two ordinary differential equations. The
resulting ordinary differential equations are solved numerically. The
appropriate similarity variable 77(x, y) for this case takes the form

n(x,y)= C—ly/4 , (7.12)
X
where
1
T,-T,)]*
C= {%} . (7.13)
1%
Substituting (7.13) into (7.12)
Gr )4
nz( j 2, (7.14)
4 X

where the local Grashof number based on (7.1) is defined as

T —T )x®

X 2
|4

(7.15)

We postulate that the dimensionless temperature & depends on7 . That is

&(x,y)=06(n). (7.16)
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Continuity equation (7.4) is satisfied by introducing a stream function
which gives the velocity components # and v as

u=Y (7.17)
oy
and
oy
V=—"-—. 7.18
o (7.18)

Using the stream function of Blasius solution for forced convection over a
flat plate as a guide, the stream function for this problem is given by

Gr i
w==4V(‘fj &(n), (7.19)

where &(77) is an unknown function to be determined. Introducing (7.19)

into (7.17) and (7.18)
NOry de (7.20)

u= 2V 9
x dn
and
G VAT 4
0= </4£—52——{n-i§—3§ . (7.21)
4) x dn

Substituting (7.20) and (7.21) into (7.8) and (7.10) and using (7.11) and
(7.16), gives

3 2 2
I8 3eds f_z(ﬁj +0-0. (7.22)
dn dn dn
2
@O ped0 g 023
dn dn

Note that the original variables x and y do not appear in the transformed
equations (7.22) and (7.23). They are replaced by the single independent
variable 7.
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Using (7.14), (7.16), (7.20), and (7.21), the four boundary conditions on
velocity and three conditions on temperature transform to:

Velocity:
ds(0)
—_— 0

6] " ,

2 5(0)=0,

¢ L@y,
dn

@) —dg;(oo) =0.

Temperature:
(1) 6(0) =1,
(2) O(0) =0,
(3) B(0)=0.

The following observations are made regarding the above transformation:

(1) The three original partial differential equations, (7.4), (7.8), and (7.10)
are transformed into two ordinary differential equations.

(2) Equation (7.22) is a third order non-linear ordinary differential equation
requiring three boundary conditions.

(3) Equation (7.23) is a second order ordinary differential equation
requiring two boundary conditions.

(4) The boundary conditions are transformed in terms of the similarity
variable 7.

(5) The original seven boundary conditions on u, v, and T are transformed
into five conditions on & and 6.

(6) The problem is characterized by a single parameter which is the Prandtl
number.
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7.4.5 Solution.

Equations (7.22) and (7.23)
and their five boundary con-
ditions are solved numer-
ically [1]. The solution is

presented graphically in 08— Pr = 0,01 G\t y
Figs. 7.2 and 7.3. Fig. 7.2 T'j{f\ft I"“('f) x
gives the axial velocity 0s}- { ! -
u(x,y)and Fig. 7.3 gives !'g e J—w —
the temperature distribution ) PELY T | P~ |
T'(x,y) for various Prandtl 3 i (:).72'—- 11 \J‘\'\'
numbers. g™ Z‘"l 2[ |
02i i:g <[ 10
A 00—
o1tif 4 % 41000
= AR
0 1 2 5

Fig. 7.2 Axial velocity distribution [1]

7.4.6 Heat Transfer Coefficient and Nusselt Number. The heat transfer
coefficient / is based on Fourier’s law and Newton’s law. It is given by
(see Sections 1.6 and 2.10.6)

h=—

T g‘ 0) (T, -T,). (7.24)

Expressing the above in terms of the variables € and 7

—k dT do(0) on
T ~T,d0 dn oy

Using (7.11) and (7.14), the above gives

h= k[ } dH(O) (7.25)
x| 4 dn
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Introducing the definition of the local Nusselt number, the above becomes

1/4
G
Nu, =T |G | OO (7.26)
k 4 dn
The average heat transfer coefficient for a plate of length L is defined as
- 1
h=— | h(x)dx. (2.50)
L J
Substituting (7.25) into (2.50) and performing the integration
1/4
ho Ak(Gr ) dOO) (7.27)
3L\ 4 dn

8| & 04
! L

B | L f ..\ — — -
C;L 0.2 I Qﬂ)l

1.0 - '10’_}0 G 0 :’4\1}’4 , 18 22
S 4 ¥
% n=[*4—'J *
08 1000- F~h
—J100—}— { —
i T~
8|8 °° 0 = ~—
|
S e
S E s &\ i

* NN

(6 y
”_k-“- =
X

Fig. 7.3 Temperature distribution [1]
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The average Nusselt number is given by
Table 7.1 [1,2]

_ 14 do(0) | d*4(0)
_ pr |-
Nuj. :h_L:_i(ﬂj do() (7.28) " g | dif
k 30 4 dn 0.01 |0.0806 | 0.9862
0.03 |0.136

. . 0.09 | 0.219
Surface temperature gradient, d@(0)/dn , which 05 | 0442

appears in the above equations is obtained from 0.72 | 0.5045 | 0.676

the numerical solution of equations (7.22) and  [9.733 | 0.508 1 0.6741
1.0 0.5671 | 0.6421

(7.23). This important factor depends on the 15 | 06515
Prandtl number only and is listed in Table 7.1 for gg 8:;%2% 0.5713
selected values of the Prandtl number. Also listed 50 | 0954
in this table isd*&(0)/dn?. This constant is |70 | 10542

. . . 10 1.1649 | 0.4192
needed to determine surface velocity gradient and 100 | 2191 | 02517

shearing stress. 1000 | 3.9660 | 0.1450

Special Cases

Equations (7.22) and (7.23) are simplified for two limiting cases corre-
sponding to very small and very large Prandtl numbers. The local Nusselt
number for these cases is given by [3]

Nu, =0.600(PrRa,)"*, Pr—0, (7.292)
Nu, =0.503(PrGr,)'"*, Pr—w. (7.29b)

Example 7.1 Vertical Plate at Uniform Surface Temperature

A square plate measuring 8 cmx 8 cm is suspended vertically in air. The
plate is maintained at uniform surface temperature of 70 °C. The ambient
air is at 10 °C. Of interest is the determination of flow and heat transfer
conditions at the trailing end x = L. Specifically,
determine:

(1) Axial velocity uaty = 0.2 cm

(2) Air temperature T aty = 0.2 cm

(3) Viscous boundary layer thickness O
(4) Thermal boundary layer thickness O,
(5) Nusselt number i
(6) Heat transfer coefficient i
(7) Heat flux 0
(8) Total heat transfer rate from the plate.
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(1) Observations. (i) This is an external free convection problem over a
vertical flat plate. (i) The plate is maintained at uniform surface
temperature. (iii) The Rayleigh number should be computed to determine if
the flow is laminar. (iv) If the flow is laminar Fig. 7.2 gives the axial
velocity u and viscous boundary layer thickness o. Similarly, Fig. 7.3
gives temperature distribution, and thermal boundary layer thickness J;.
(v) Attention is focused on the trailing edge of the plate. This means that
local values of Nusselt number and heat transfer coefficient should be
determined.

(2) Problem Definition. Determine flow and heat transfer characteristics
for free convection over a vertical flat plate at uniform surface temperature.

(3) Solution Plan. Compute the Rayleigh number to determine if the flow
is laminar. If it is, use the similarity solution results including Figs. 7.2 and
7.3.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state,
(4) Boussinesq approximations, (5) two-dimensional, (6) laminar flow
(Ra, < 10° ), (7) flat plate (8) uniform surface temperature, (9) no
dissipation, and (10) no radiation.

(ii) Analysis and Computation. The Rayleigh number is computed at
the trailing edge to establish if the flow is laminar. The Rayleigh number is
defined in equation (7.2) as

3
Ra, - PETTIL 0

va

where

g = gravitational acceleration = 9.81 m/ s?

L =plate length = 0.08 m

Ra; =Rayleigh number at the trailing end x = L

T, = surface temperature = 70°C

T,, = ambient temperature =10°C

o = thermal diffusivity, m?/s

B = coefficient of thermal expansion =1/7, K
. .. . 2

v = kinematic viscosity, m~/s

-1

Properties are evaluated at the film temperature 7',
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Ty +T,  (70+10)(°C)
2 2
Properties of air at this temperature are

k = thermal conductivity = 0.0271 W/m-°C
Pr=0.71

v =16.96x10"°m?/s
v 16.96x10°m?/s

T Pr 0.71

1 i
B=——— =0.0031936 K

40°C +273.15
Substituting into (7.2)

o
Tf =40"C

= 23.89x10 m?/s

a

~0.0031936(K "")9.81(m/s*)(70 — 10)(K)(0.08%)
16.96(K ) (m?/5)23.89 x10~® (m?/s)

Ra; =2.3753x10°

Thus the flow is laminar. Axial velocity u is given by (7.20)

\Gr
U= ZV—xﬁ, (7.20)
x dn
where d&/dn is given in Fig. 7.2 as a function of 7
1/4
Gr,
7 =[ j z, (a)
4 X

where, according to (7.2)

Ra; 2.3792x10°
Pr 0.71

Gr, =Gr, = =3.3455x10°

Using (a) to evaluate 77 at x =0.08 m and y = 0.002m

1/4
_(3.3455%10° 0.0032(m) _, ,,
4 0.08(m) '

At 7=1.21 and Pr=0.71, Fig. 7.2 gives

g _, X 0a7

dn - 2v,/Gry
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Solving for u# at x =L = 0.08 m

2v, /G =6 (12 \/76

0.08(m)

=0.2094 m/s

At 7 =1.21 and Pr=0.71, Fig. 7.3 gives the temperature at x = 0.8 m and
y=0.002 m

T-T
0=—"2 043
T,-T,

T~T,+043(T, —T,)=10(°C)+0.43(70-10)(°C) = 35.8°C

At the edge of the viscous boundary layer, y =0, the axial velocity
vanishes. Fig. 7.2 gives the corresponding value of 77 as

Gile 5

,0)=5= —
n(x,9) (4 i

Solving for &
4

1/4
—Gj =0.0132m=1.32cm
3.3455x10

5= 5(0.08)(m)(

At the edge of the thermal boundary layer, y =J,, the temperature
reaches ambient value and thus € ~ (. Fig. 7.3 gives the corresponding
value of 77 as

ﬂjlﬂ‘ S

,0,)~4.5= —
n(x,0,) (4 7

Solving for o,

1/4
4
5, =4.5(0.08)(m) [—J =0.0119m=1.19cm
3.3455x10

The local Nusselt number is given by equation (7.26)

1/4
e _ —[%} a0 (7.26)

4 dn
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Table 7.1 gives the temperature gradient at the surface d@(0)/dn for
various Prandtl numbers. Extrapolation to Pr=0.71 gives

M =-0.5018
dn

Using (7.26), the local Nusselt number is evaluated at the trailing end, x =
L=0.08m

e [Gr, 1" d6() 33455100 |
Nu, =—=—| —* =0.5018 —————| =15.18
k 4 dn 4

The local heat transfer coefficient at the trailing end is obtained from the
definition of the Nusselt number above

ML) = k Nu, = 0.0271(W/m-"°C)
L 0.08(m)

15.18 = 5.14 W/m>-°C

Newton’s law of cooling gives surface heat flux g
qr =h(T, -T,)=514W/m-"C)(70 - 10)(°C) = 308.4 W/m®

Total heat transfer from the plate is determined using the average heat

transfer coefficient A

qr = hA(T, - T,,), (b)

where 4 is surface area and / is given by (7.27)

1/4
o Ak(Gr dG(O), (7.27)
3L\ 4 dn

h=

4(0.0271)(W/m="C) | 3.3455x10°
3 0.08(m) 4

1/4
} (-0.5018) = 6.85 W/m*-°C

Substituting into (b)

qr = 6.86(W/m>—°C)0.08(m)0.08(m)(70 —10)(°C) =2.63 W
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(iii) Checking. Dimensional check: Computations showed that units
foru, T, d,0,, Nu, h, q" and q; are consistent.

Quantitative check: (1) The heat transfer coefficient is within the range
given in Table 1.1 for free convection of gases.

(ii) Computations showed that & > J,. This must be the case since the
thermal boundary layer thickness cannot be greater than the velocity
boundary layer thickness. Why?

(5) Comments. (i) As expected, fluid velocity and heat transfer coefficient
are relatively small in free convection.

(i1)) The local heat transfer coefficient at location x is smaller than the
average for a plate of length x. This is due to the fact that the heat transfer
coefficient decreases as the distance from the leading edge is increased.

7.5 Laminar Free Convection over a Vertical Plate:
Uniform Surface Heat Flux

Fig. 7.4 shows a vertical plate with uniform c), 6
surface heat flux. The plate is submerged in an sl A
infinite fluid at temperature7,,. Analytical _,_{ T
determination of the velocity and temperature - _’__:i ”i"",’ j pm
distribution follows the procedure used in Section 9s B e
7.4 replacing uniform surface temperature with g 8
uniform surface heat flux. The two problems are 1
based on the same assumptions and governing o>
equations. They differ by the thermal boundary
condition at the surface, which takes the form Fig. 7.4
_kmzq;’, (7.30)
oy

where ¢ is surface heat flux. It is important to recognize that for uniform
surface heat flux, surface temperature varies along the plate. Thus, of
interest is the determination of surface temperature variation 7 (x) and the
local Nusselt number Nu,. This problem was solved by similarity
transformation [4]. The solution for surface temperature variation is given
by
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2, n\4 1/5
s()-T, =—|5——7—x| 6(0), (7.31)
pgk
where 6(0) is a dimensionless parameter which Table 7.2 [4]
depends on the Prandtl number and is given in Table Pr 6(0)
7.2 [4]. The local Nusselt number is given by 01 | -27507
N IE 10 | -1.3574
Nut, = ﬂqusf L (732) 10 | -0.76746
svik 6(0) 100 | - 0.46566

For a wide range of Prandtl numbers, the parameter #(0) may also be
determined using the following correlation equation [5]

4+9Pr% 110Pr
spr?

1/5
} , 0.001<Pr<1000. (7.33)

6(0) = {

Properties are determined at the film temperature 7’ I defined as

T, =T, +T,(L/2)]/2. (7.34)

Example 7.2: Vertical Plate at Uniform Surface Flux

An 8 cm high plate is suspended vertically in air. The plate is heated at
uniform surface flux of 308.4 W/ m> The ambient temperature is 10° C.
Determine surface temperature, Nusselt number and heat transfer
coefficient at x = 2, 4, 6 and 8 cm from the leading end.

(1) Observations. (i) This is an external free convection problem over a
vertical flat plate. (ii) The plate is heated at uniform surface flux. (iii) The
Rayleigh number should be computed to determine if the flow is laminar.
(iv) Surface temperature is given by equation (7.31) and the local Nusselt
number is given by equation (7.32).

(2) Problem Definition. Determine the distribution of surface temperature,
Nusselt number and heat transfer coefficient along a uniformly heated
vertical plate under free convection.
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(3) Solution Plan. Compute the Rayleigh number to determine if the flow
is laminar. Use (7.31) and (7.32) to determine surface temperature and
Nusselt number at the trailing end. Use Newton’s law to determine the
heat transfer coefficient.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian fluid, (3) steady state,
(4) Boussinesq approximations, (5) two-dimensional, (6) laminar flow
(Ra, < 109), (7) flat plate, (8) uniform surface heat flux, (9) no
dissipation, and (10) no radiation.

(ii) Analysis and Computation. The Rayleigh number is computed at
the trailing edge to establish if the flow is laminar. The Rayleigh number is
defined in equation (7.2) as

_ pe(T,-T)L
va '

Ra, (7.2)

Since surface temperature is unknown, the Rayleigh number cannot be
computed. To proceed, the flow is assumed laminar and subsequently
verified once surface temperature is computed. For laminar flow, surface
temperature and Nusselt number are given by

V2( ﬂ)4 /5
T,(0)~T, =-|5°—12 x| 6(0), (7.31)
Bgk
" 1/5
Nuy = |P8G 4 L (7.32)
sv2k 0(0)

where @(0) is given in Table 7.2. It can also be determined using (7.33).
Properties are determined at the film temperature defined in equation
(7.34).

(iii) Computations. Assume 7,(L/2)=70°C. Compute film
temperature using (7.34)

T, +T(L/2) _ (10+70)(°C)
2

Tf :400C

Properties of air at this temperature are
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k= 0.0271 W/m-"C
Pr=0.71
v=16.96x10"°m?/s

v 16.96x10°m?/s

a=— - 23.89x10 °*m?/s
Pr 0.71

f-— 1 00031936 K
40°C +273.15

Equations (7.33) is used to evaluate 8(0)

4+9(0.71)"% +10(0.71)
5(0.71)*

1/5
0(0) = —[ } =-1.4928

The assumed surface temperature at x = L/2 is verified first using (7.31)

1/5

—6.2, 4,2 4,4, 8
(16.96x10~°)*(m"/s*)(308.4)* (W*/m®) 00hm | (14929

0.0031934(1/ K)9.81(m/s>)(0.0271)* (W*/m* —K

T,(L/2)=10°C) —[5

=56.96°C

This is lower than the assumed temperature. This procedure is repeated
until a satisfactory agreement is obtained between the assumed and
computed surface temperature at x = L/2. Following this iterative
procedure, surface temperature at x = L/2 is found to be

T,(L/2)=56.7°C
The corresponding film temperature is
(10+56.7)(°C)
Tj=——T""
' 2
Properties of air at this temperature are

k = 0.02662 W/m—°C
Pr=0.71

v =16.3283x10 " m?/s
B =0.002662 K !

=33.35°C

Equation (7.33) gives
0(0) = —1.4922
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Equation (7.32) is used to determine the Nusselt number at the trailing end

1/5
0.0032626(1/K)9.81(m/s*)308.3(W/m?) 1

Nu, =-— —— - 0.08)*(m*)
5(16.328x107°)*(m*/s%)0.02662(W/m-° C) —1.4922

=17.28

The local heat transfer coefficient at the trailing end is obtained from the
definition of Nusselt number

k 0.02662(W/m-°C
h(L)="Nuj = (Wim—C)
L 0.08(m)

Surface temperature, Nusselt number, and heat transfer coefficient at
various locations along the plate are determined following the above
procedure. The result is tabulated below.

17.28 = 5.75 W/m>-°C

xm) T,()(°C) Nu, h(x)(Wm>-°C) ¢(W/m?)

0.02 50.6 5.70 7.59 308.2
0.04 56.7 9.92 6.60 308.2
0.06 60.6 13.73 6.09 308.2
0.08 63.6 17.28 5.75 308.2

To verify that the flow is laminar throughout, equation (7.2) is used to
compute the Rayleigh number at x = L
-1 2 3,03
Ra, - 00032626 (K ~1)9.81 (m/s *)(63.6 ~10)(K)( 0.08)*(m*) =
(16.3283 x 10 )% (m */s) ?

=2.3424 x10°

Since Ra; < 10°, the flow is laminar.

(iii) Checking. Dimensional check: Computations showed that units
for T, Nu and h are consistent.

Quantitative check: (i) The heat transfer coefficient is within the range
given in Table 1.1 for free convection of gases. (i) The tabulated results
show that application of Newton’s law at the four locations along the plate
gives uniform surface flux.
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(5) Comments. (i) Since surface temperature is unknown, the problem is
solved by an iterative procedure. (ii) As with forced convection over a flat
plate, the heat transfer coefficient decreases as the distance from the
leading edge is increased.

7.6 Inclined Plates

We consider a plate which is inclined
at an angle @ from the vertical. In Fig.
7.5a the heated side of the plate is
facing downward while Fig. 7.5b the
cooled side is facing upward. Note that
the flow field is identical for both
cases and consequently the same (a) T, >T,
solution holds for both. Note further
that gravity component for the inclined Fio. 7.5

. . : g. 7.
plate is gcos @ while for the vertical
plate it is g. Studies have shown that the vertical plate solutions of Sections
7.4 and 7.5 apply to inclined plates, with g replaced by gcos € [6-8].
However, this approximation deteriorates at large values of 8. Thus, this
approach is recommended for @ < 60°.

(b) 7, <T,

7.7 Integral Method

The integral method can be applied to obtain
approximate solutions to free convection
boundary layer flows problems. As an example,
consider the problem of a vertical plate at
uniform surface temperature shown in Fig. 7.6.
An exact analytic solution to this problem is
presented in Section 7.4.

7.7.1 Integral Formulation of Conservation of Fig. 7.6
Momentum

The starting point in integral solutions is the integral formulation of
conservation of momentum. To simplify the analysis we assume that the
viscous and thermal boundary layers are the same. That is
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0=0;. (a)

This approximation is valid for Prandtl numbers in the neighborhood of
unity. Application of the momentum theorem in the x-direction to the
element O x dx shown in Fig. 7.6, gives

D F, =M (out)- M_(in), (b
where

D" F, = sum of all external forces acting on element in the x-direction
M . (in) = x-momentum of the fluid entering element

M . (out) = x-momentum of the fluid leaving element

The element O xdx of Fig. 7.6 is enlarged in Fig. 7.7 showing the x-
momentum and x-forces. The forces acting on the element are due to
shearing stress 7, at the wall, pressure forces p and gravity force (weight)
dw. Applying equation (b) and using the notations in Fig. 7.7, we obtain

dM
M+ gy 25+ (pS)a
dx dx

&
%ﬁlﬁ | | }ﬁ

o

M, aw pgdxdy pS (p+dp/2)do

Fig. 7.7

p5+@ﬂl?}w—p5—§{mmﬁ—ndp:[M;+¢MxmJ—M,
X

dx
()

Simplifying equation (¢) and neglecting higher order terms

dM

dx

—o0dp—t,dx —dW =—=dx. (d)
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Wall shearing stress is given by

du(x,0)

T, =lU—". (e)

’ oy

In determining the weight of the element O x dx, one must take into
consideration the variation of density in the y-direction. This requires
integration of the weight of a differential element dxxdy along the
thickness O of the boundary layer. Thus

1)
dW:de‘pgdy. 63)
0
The x-momentum of the fluid entering the element is
o (x)
M,=p J udy, (€9)
0

where u =u(x, y)is axial velocity. Note that the density p is assumed
constant in evaluating momentum. This is consistent with the Boussinesq
approximation used in obtaining similarity solution to this problem.
Substituting (e), (f) and (g) into (d) and rearranging

5
ulx0) _sdp _ ngafy=/3a,i qudy- ®)
X
0 0

s oy dx

Pressure and gravity terms in (h) will now be combined. Pressure gradient
in boundary layer flow is given by

dp _ dps

= . i
e Px& (1)

Thus pressure gradient term in (h) can be rewritten as
1)

d .
5—p=—pmg5=—‘[poogdy- @
dx
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Substituting (j) into (h) and rearranging

oulx,0 d
—ugwhgﬁpw—p)dwp— fuzdy- (k)
oy dx

However, density change can be expressed in terms of temperature change
P —P=pBT -T,). (2.28)

Introducing (2.28) into (k) and treating /8 and p as constants

_Va”(x’0)+ﬂgifT—Tw)dy=i ﬁzdy, (7.35)
oy dx

0

where v = u/ p. Note the following:

(1) There is no shearing force on the slanted surface since the velocity
gradient at the edge of the boundary layer vanishes,
i.e.ou(x,0)/0y =0.

(2) Equation (7.35) applies to laminar as well as turbulent flow.

(3) Although u and T are functions of x and y, once the integrals in (7.35)
are evaluated one obtains a first order ordinary differential equation
with x as the independent variable.

7.7.2 Integral Formulation of Conservation of Energy

The following assumptions are made in the integral formulation of
conservation of energy:

(1) No changes in kinetic and potential energy
(2) Negligible axial conduction

(3) Negligible dissipation

(4) Properties are constant

Based on the above assumption, integral formulation of conservation of
energy for free convection boundary layer flow is the same as that for
forced convection. Thus equation (5.7) is applicable to free convection

5(x)

0T (x,0) _ 4 I u(T =T,)dy , (7.36)
dx
0

oy

24
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where « is thermal diffusivity.
7.7.3 Integral Solution

Consider the vertical plate shown in Fig. 7.6. The plate is maintained at
uniform temperature 7, and the quiescent fluid is at uniform temperature
T,. Following the procedure used in integral solution of forced
convection, velocity and temperature profiles are assumed. Recall that in
forced convection a velocity profile is assumed in terms of a single
unknown function 0(x). Application of the integral form of momentum is
used to determine O(x). Similarly, a temperature profile is assumed in
terms of a single unknown function J,(x). Application of the integral
form of energy is used to determine o,(x). However, in the integral
formulation of conservation of momentum and energy for free convection
we assumed that ¢ = §,. Thus we have two equations, (7.35) and (7.36)
for the determination of a single unknown ¢. This presents a quandary
which must be resolved so that both (7.35) and (7.36) are used to insure
that conservation of momentum and energy are satisfied. The problem is
resolved by introducing a second unknown function in the assumed
velocity profile.

Assumed Velocity Profile. To proceed, we assume laminar boundary layer
flow. Thus a polynomial is an appropriate velocity profile. Assume a fourth
degree polynomial for the axial velocity u(x,y)

ulx, y) = ag (x) + a; (x)y + ap () y? + a3 (x))°. (a)

The coefficients a, (x) are determined using the following known exact

and approximate boundary conditions on the velocity

(1) u(x,0)=0,

(2) u(x,6)=0,

3 ou(x,0) ~0
oy

82u(x,0) B
8y2

(

2

@) P 1),
14
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Note that the second and third conditions are approximate since the edge of
the boundary layer is not uniquely defined. The fourth condition is obtained
by setting y = 0 in the x-component of the equations of motion, (7.5).

Equation (a) and the four boundary conditions give the coefficients a,, (x)

-0 _ﬂg(Ts_Too)5 __ﬂg(Ts_Too)
ay=0, a =—"——""%9, =,
4v 2v
P, -T) 1
4v 5

Substituting the above into (a) and rearranging

T -T 2
4y o o2
This can be written as

2
{Mﬁ 1{1_1} | )
4y o o

To introduce a second unknown function in the assumed velocity profile
(b), we define

w0 :[ﬂg(Ts -T.) 52] ©
4v
Equation (b) becomes
2
u=u,(x) % [l — %} . (7.37)

Note that replacing the term in bracket in (c) with u,(x)implies that
u,(x)is independent of J(x).Thus in (7.32) both &(x)and u,(x)are
unknown. This means that both conservation of momentum and energy are
needed to solve the problem.

Assumed Temperature Profile. A third degree polynomial is assumed for
the temperature profile
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T(x,¥) = by (x)+ by (x) y+ by (x) ¥ (d)

The boundary conditions are

(1) T(x,0) =Ty,
@) T(x,0)=T,,

oT (x,0) _ 0

3) &

Equation (d) and the three boundary conditions give the coefficients b,, (x)
1 1
bOZTsﬂ blz_z(Ts_Too)g’ bZZ(Ts_Too)é‘_Q'

Substituting the above into (d) and rearranging

2

T(x,y)=T, +(T, - Tw)[l —ﬂ . (7.38)

Heat Transfer Coefficient and Nusselt Number. Equation (7.24) gives
the heat transfer coefficient 4

Lk 0T (x,0)
P (7.24)
T, -T,
Substituting (7.38) into (7.24)
= 2k . (7.39)
6(x)
Thus the local Nusselt number is
Nu, = b, X (7.40)
k o(x)

The problem becomes one of determining the boundary layer thickness

o(x).
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Solution. To determine the functions J(x) and u,(x) we substitute (7.37)
and (7.38) into (7.35)

2 2 4
M _ Y| g d ), _Y
& + g Tw)f[ 5} dy dx{é.z _‘j y [l 5} dy}

(e)
Evaluating the integrals in (e) and rearranging
1 25] o (T, —T,)0 - vie. (7.41)
105 dx )
Similarly, substituting (7.37) and (7.38) into (7.36)
. J 9(x) 4
u Y
2(T, - T,)==(T, - T, - =l dyp- D
( 5= )dxgj‘y{Ay
0
Evaluating the integrals and rearranging
1d = [u,8]= ol (7.42)
60 dx o

Equations (7.41) and (7.42) are two simultaneous first order ordinary
differential equations. The two dependent variables are J(x)and u,(x).
We assume a solution of the form

u,(x)=Ax", (7.43)
5(x) = Bx". (7.44)

where A, B, m and n are constants. To determine these constants we
substitute (7.43) and (7.44) into (7.41) and (7.42) to obtain

2m+n 2mn-1 _ A m-n
A%Bx T —T )Bx" —Zox™", (745
05 ﬂg( .) - (7.45)
mAn pemint _ g L n (7.46)
210 B
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To satisfy (7.45) and (7.46) at all values of x, the exponents of x in each
term must be identical. Thus, (7.45) requires that

2m+n—l=n=m-n. (8)
Similarly, (7.46) requires that

m+n—1l=-n. (h)

Solving (g) and (h) for m and » gives

1 .
m=—, n=-—. i
2 4 ®
Introducing (i) into (7.45) and (7.46) gives two simultaneous algebraic
equations for 4 and B
1 1 A .
— A B=—pg\T, -T,)B——V,
> (T, =T, )8 - 0)
LAB = al . k)
280 B
Solving equations (j) and (k) for 4 and B, gives
-1/2 1/2
T, -T.
A:5.171{Pr+§} bels ~ 1) ; M
21 p2
and
1/4 -1/4
2 T, -T.
B=393p 2 [pry 2] | P8T 1) . (m)
21 V2

Substituting (i) and (m) into (7.44), rearranging and introducing the
definition of Rayleigh number, gives the solution to o (x)

1/4
o 20 1 1/4
=393 ——+1 Ra . 7.47
X {21 Pr } (Ray) (747)

Introducing (7.47) into (7.40) gives the local Nusselt number
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20 1 -1/4
Nu.=0508 | ——+1 Ra )V*. 7.48
o {ler } (Ray) (7.48)

7.7.4 Comparison with Exact Solution for Nusselt Number

Equation (7.26) gives the exact solution to the local Nusselt number for
free convection over a vertical plate at uniform temperature

(7.26)

Gr, 1" de)
4 dn '

Nu, = —{
To compare this result with the integral solution (7.48), equation (7.26) is

rewritten as
-1/4
Ore | N, =900 (7.49)
4 dn

To facilitate comparison, integral solution (7.48) is rewritten as

1/4 “1/4
O | N, =008 22 L] @t a50)
21 Pr

4
The accuracy of the integral Table 7.3
solution depends on the agreement deo Ve
oep 1¢ 48 pr |- 209 O.SOS{E—H} @4pr)'

of the right hand side of (7.50) dn 21 Pr
with —d@(0)/dn of exact solu- 0.01 | 0.0806 0.0725
tion (7.49). Temperature gradient 0.09 | 0.219 0.213
d@(0)/dn depends on the 0.5 | 0442 0.4627

. . . 0.72 | 0.5045 0.5361
Prandtl number and is given in 1.0 | 05671 0.6078
Table 7.2. The two solutions are 2.0 | 0.7165 0.7751
compared in Table 7.3. The exact ?60 ?'1965:9 ll'gﬁgg
solution for the limiting case of |19 |219] 1.2665
Pr — 0 is given in (7.29a) 1000 | 3.9660 4.0390

Nt | exact = 0.600(PrRa, )™, Pr—0. (7.29a)
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Applying integral solution (7.47) to Pr — 0 gives

Nu =0.514PrRa,)"*, Pr—0. (7.51a)

x | integral

Similarly, exact and integral solutions for the limiting case of Pr — oo are
given by

Nu = 0.503(Ra,)"*, Pr—ow, (7.29b)

x | exact

and

Nu =0.508(Ra, )4, Pr—w. (7.51b)

X | integral

The following observations are made regarding the above comparisons:

(1) The error ranges from 1% for Pr — oo to 14% for Pr — 0.

(2) Although the integral solution is based on the assumption that
0 =0,(Pr=1), the solution is reasonably accurate for a wide range of
Prandtl numbers.
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PROBLEMS

7.1 Explain why

[a] J, can not be larger than J.
[b] O can be larger than o, .

7.2 A vertical plate 6.5cm high and 30 wide cm is maintained at 82°C.
The plate is immersed in water at 18 ° C . Determine:

[a] The viscous boundary layer thickness.

[b] The thermal boundary layer thickness at the trailing end.
[c] The average heat transfer coefficient.

[d] Total heat added to water.

7.3 Use Fig. 7.3 to determine d@(0)/dn for Pr = 0.01 and 100.
Compare your result with the value given in table 7.1.

7.4 In designing an air conditioning system for a pizza restaurant an
estimate of the heat added to the kitchen from the door of the pizza
oven is needed. The rectangular door is 50 cm x 120 cm  with its
short side along the vertical direction. Door surface temperature is
110°C. Estimate the heat loss from the door if the ambient air
temperature is 20°C.

7.5 To compare the rate of heat transfer by radiation with that by free
convection, consider the following test case. A vertical plate
measuring 12 cm X 12 cm is maintained at a uniform surface
temperature of 125°C. The ambient air and the surroundings are at
25°C. Compare the two modes of heat transfer for surface
emissivities of 0.2 and 0.9. A simplified model for heat loss by
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radiation g, is given by
4 4
q, =sc AT, -T,,),

where A is surface area, & is emissivity, and o =5.67 x 1078
W/m? —K*. Surface and surroundings temperatures are measured in
degrees kelvin.

A sealed electronic package is designed to

be cooled by free convection. The package
consists of components which are mounted '
on the inside surfaces of two cover plates
measuring 7.5cmx7.5cm cm  each.
Because the plates are made of high 7',
conductivity material, surface temperature g
may be assumed uniform. The maximum
allowable surface temperature is 70°C.

Determine the maximum power that can be Z
dissipated in the package without violating
design constraints. Ambient air temperature

is 20°C. T, l g
Assume that the electronic package of

Problem 7.6 is to be used in an underwater
application. Determine the maximum power

that can be dissipated if the ambient water
temperature is 20°C.

components

7.8 Consider laminar free convection from a vertical plate at uniform

7.9

7.10

surface temperature. Two 45° triangles are drawn on the plate as
shown. Determine the ratio of the heat transfer rates from the two
triangles.

A vertical plate measuring 21 cm x 21 cm is at a uniform surface
temperature of 80°C. The ambient air temperature is 25°C. Deter-
mine the heat flux at 1 cm, 10 cm, and 20 cm from the lower edge.

200 square chips measuring 1cm x 1cm

each are mounted on both sides of a thin
vertical board 10cm x 10 cm. The chips
dissipate 0.035 W each. Assume uniform
surface heat flux. Determine the maximum
surface temperature in air at 22°C.
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7.11 12cmx12cm power boards dissipate 15 watts uniformly. Assume
that all energy leaves the board from one side. The maximum
allowable surface temperature is 82°C. The ambient fluid is air at
24°C. Would you recommend cooling the board by free
convection?

7.12 Use the integral method to obtain solution to the local Nusselt number
for laminar flow over a vertical plate at uniform surface temperature
T,. Assume O =9, and a velocity and temperature profiles given
by

5 ulx, )= ag(x) + ay (x)y + ay (x)y* +as (x)»°,

T(x,7) = bo(x) + by (x) y + by (X) y* + b3 (x)y°.

Since there is a single unknown J,(x), either the momentum or
energy equation may be used. Select the energy equation to
determine J;(x).

7.13 Consider laminar free convection over a vertical plate at uniform
surface flux g5 . Assume O =0, and a third degree polynomial
velocity profile given by

2
u(x,y) =u, (x)%{l —g} )

Show that:

[a] An assumed second degree polynomial for the temperature profile
gives

1 g5 y?
T(x,y)=T, +——>|0-2y+—1.
(x,») > k{ y 5}

[b] The local Nusselt number is given by

AP ’ ) 1/5
Nu, = (Pr)” feqs 4|
36+ 45Pr kvz



CORRELATION EQUATIONS:
FORCED AND FREE CONVECTION

8.1 Introduction

There are many situations where analytic determination of the heat transfer
coefficient 4 is difficult to obtain. As was shown in previous chapters,
even after making many simplifying assumptions, the analytic determina-
tion of 4 is generally not a simple mathematical problem. When
complicating factors such as geometry, variable properties, turbulent flow,
boiling, condensation, etc. are involved, the heat transfer coefficient is
usually determined experimentally. This does not mean that each time
there is a need for /4 for which there is no analytic solution we must conduct
an experiment. Instead, we utilize the experimental results of other
researchers. Experimental results are usually correlated and presented as
dimensionless equations which are convenient to use. Such equations are
known as correlation equations. They are extensively used in the solution
of heat transfer problems and therefore deserve special attention.

In this chapter we will explain how correlation equations are obtained,
discuss their selection and use and present common cases. Four topics will
be considered: (1) external forced convection over plates, cylinders, and
spheres, (2) internal forced convection through channels, (3) external free
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convection over plates, cylinders and spheres, and (4) free convection in
enclosures.

8.2 Experimental Determination of Heat Transfer Coefficient /

To determine the heat transfer coefficient
h it 1s common to work with Newton's law
of cooling which defines % as

n
h=—9s (8.1)
T, -T,

By measuring surface temperature 7,
surface heat flux ¢;, and free stream “ TFig. 8.1
temperature 7, , equation (8.1) can be used
to determine the heat transfer coefficient. A common method for heating a
surface and calculating the flux is shown in Fig. 8.1. Heating is provided by
an electric resistor. Measurement of current i and voltage drop AV provides
data for calculating dissipated power and heat flux. Thermocouples are
commonly used to measure surface temperature. A refinement of this
experimental setup involves using multi-resistors and circuits to provide a
prescribed surface flux or surface temperature.

Correlation equations are presented in dimensionless form. This is an
effective and efficient way to organize and present experimental data.
Instead of presenting equations for /4, it is common to correlate data in
terms of a dimensionless heat transfer coefficient called the Nusselt
number. Since the parameters governing convection heat transfer are
known from dimensional analysis, both the design of experiments for
determining the Nusselt number and the form of correlation equations are
based on this knowledge. For example, for constant properties forced
convection heat transfer with no dissipation, we have shown that

Nu_ = f(x*;Re, Pr). (2.52)

Thus, experiments are designed such that both the Reynolds and Prandtl
numbers can be varied and measurements are made for calculating the
Nusselt number at various locationsx™. The collected data is then
correlated according to equation (2.52).
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8.3 Limitations and Accuracy of Correlation Equations

All correlation equations have limitations which must be carefully noted
before they are applied. First, geometry is an obvious factor. External
flow over a tube is not the same as flow through a tube. Thus, each
equation is valid for a specific configuration. Second, limitations on the
range of parameters, such as the Reynolds, Prandtl and Grashof numbers,
for which a correlation equation is valid, are determined by the availability
of data and/or the extent to which an equation correlates the data.

Since correlation equations are based on experimentally determined
data, they do not always provide very accurate predictions of 4. Errors as
high as 25% are not uncommon.

8.4 Procedure for Selecting and Applying Correlation Equations

To identify the appropriate correlation equation for a specific application,
the following steps should be considered:

(1) Identify the geometry under consideration. Is it flow over a flat plate,
over a cylinder, through a tube, or through a channel?

(2) Identify the classification of the heat transfer process. Is it forced
convection, free convection, external flow, internal flow, entrance
region, fully developed region, boiling, condensation, micro-gravity?

(3) Determine if the objective is finding the local heat transfer coefficient
(local Nusselt number) or average heat transfer coefficient (average
Nusselt number).

(4) Check the Reynolds number in forced convection. Is the flow
laminar, turbulent or mixed?

(5) Identify surface boundary condition. Is it uniform temperature or
uniform flux?

(6) Examine the limitations on the correlation equation to be used. Does
your problem satisfy the stated conditions?

(7) Establish the temperature at which properties are to be determined.
For external flow properties are usually determined at the film
temperature 7',

T, =(T,+T,)/2. (8.2)
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and for internal flow at the mean temperature T - However, there are
exceptions that should be noted.

(8) Use a consistent set of units in carrying out computations.

(9) Compare calculated values of /# with those listed in Table 1.1. Large
deviations from the range of 4 in Table 1.1 may mean that an error has
been made.

8.5 External Forced Convection Correlations

8.5.1 Uniform Flow over a Flat Plate: Transition to Turbulent Flow

We consider boundary layer flow
over a semi-infinite flat plate
shown in Fig. 8.2. In the region .
close to the leading edge the flow

is laminar. As the distance from F—lammar% F—turbulent
the leading edge increases so does Ntransition

the Reynolds number. At some Fig. 8.2

location downstream, x = x,, tur-

bulence begins to appear and transition from laminar to turbulent flow
develops. The Reynolds number corresponding to this location is called
the transition or critical Reynolds number Rext . Its value, which is exper-
imentally determined, depends on several factors including surface finish,
pressure gradient, free stream turbulence, etc. For uniform flow over a flat
plate the transition Reynolds number is approximately given by

VXt < 5x10°. (8.3)

> X

Re, =
v

It should be kept in mind that this value is not an exact criterion for this
flow configuration. It may be lower or higher, with extreme values that
differ by as much as orders of magnitude.

Correlation equations will be presented for the basic geometry of a semi-
infinite flat plate with uniform upstream velocity and temperature. Laminar,
turbulent and mixed flow conditions will be considered. We will examine
various boundary conditions for this flat plate geometry.

(1) Plate at Uniform Surface Temperature. The local heat transfer
coefficient is determined from the local Nusselt number. To proceed,
establish if the flow is laminar or turbulent. For x < x, the flow is laminar
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and thus equation (4.72) is applicable. In the turbulent region, x > x,, the
following correlation equation is used [1]

Nu, = % = 0.0296 (Re, )*> (Pr)'3. (8.42)

X

Equation (8.4a) is valid for:

flat plate, constant T

5x10° < Re, <10’ (8.4b)
0.6 < Pr<60
properties at 7'y

With the local heat transfer coefficient determined in the laminar and
turbulent regions, we can construct the average heat transfer coefficient 4

for a plate of length L. For L < x, the flow is laminar. For L > x, the
flow is mixed, being laminar for 0 < x < x, and turbulent for x, <x < L.
Determining 4 for this case requires integration of the local value over
both the laminar and turbulent regions. Starting with the definition of /4 in
(2.50), we have

X

L t L
h =% jo h(x)dx:%{ '[) hy (x)dix + j h,(x)dx] (8.5)

Xy

where /; (x)and h,(x) are the local heat transfer coefficients in the
laminar and turbulent regions, respectively. The local laminar Nusselt
number in (4.72) gives h; (x). Equation (8.4a) gives A, (x). Substituting
(4.72b) and (8.4a) into (8.5) we obtain

12 &t 4/5 WL
_ % v
Rk 0.332(7“} j %+o.oz96(7‘oj j % (Pr)"3 .
L X ¥

(8.6)
When the integration is carried out, the result is

~ k
h 22{0.664 (Re, )'"? +o.037[(1'i’eL)‘”5 —(Re, )*" ]}Pr”3, (8.7a)
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Or, expressed in terms of the average Nusselt number Nu, , equation
(8.7a) gives

Nu, = %L = {0.664(Rext )" +0.037 [(ReL)‘”5 ~(Re,, )4/5] }prm,

(8.7b)

This result is limited to the assumptions leading to Pohlhausen’s solution
and the range of Pr and Re, given in (8.4D).

(2) Plate at Uniform Surface Temperature with an Insulated Leading
Section. This case is shown in

Fig. 8.3. A leading section of Vv ff”f -
length x, is insulated. Transition % e 5
from laminar to turbulent flow T, i i < >
can take place within or beyond insulation ™~ T, X
this section. The laminar flow Xy
case was presented in Chapter 5 Yo
where the local Nusselt number Fig. 8.3
is given by equation (5.21). For
turbulent flow the local Nusselt number is given by [2]
4/5 13
Nu, = hx _ 0.0296(Re, )" " (Pr) (8.8)

ko [1 — (xo/x)9/10 ]1/9

(3) Plate with Uniform Surface Flux. Fig. 8.4 shows a plate which is
heated uniformly along its surface. As with the case of uniform surface
temperature, the flow is laminar for

0 < x < x, and turbulent for x > x,. For Vo _» J— T
the laminar region the local Nusselt °°x x,
number is determined analytically using - 5 > A * 7
(5.36) or (5.37). In the turbulent region . s
the local Nusselt number is [2] Fig.8.4

Nu, = % = 0.030(Re, ) ¥ Pr!/3. (8.9)

Note that surface temperature 7 (x) varies along the plate. The variation is
determined by Newton's law of cooling using the local heat transfer
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coefficient (8.9). Properties are determined at the film temperature
T, =T, +T, )/2, where T is the average surface temperature.

Example 8.1: Power Dissipated by Chips

An array of 30x 90 chips measuring 0.4cmx0.4cm each are mounted
Sflush on a plate. Surface temperature of the chips is Ty = 76°C. The array
is cooled by forced convection of air T.

at T, = 24°C flowing parallel to the
plate with a free stream velocity V.= |
35 m/s. Determine the dissipated —>
power in the array. L

[
-

(1) Observations. (i) This is a forced convection problem over a flat plate.
(il) Surface temperature is uniform. (iii) The average heat transfer
coefficient and Newton’s law of cooling give the heat transfer rate from the
surface to the air. (iv) The Reynolds number at the trailing end should be
calculated to determine if the flow is laminar, turbulent or mixed.

(2) Problem Definition. Find the average heat transfer coefficient for
flow over a semi-infinite flat plate.

(3) Solution Plan. Apply Newton's law of cooling to determine the heat
transfer from the surface to the air. Calculate the Reynolds number to
establish if the flow is laminar, turbulent or mixed. Use an analytic
solution or a correlation equation to determine the average heat transfer
coefficient.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) Newtonian, (3) steady state, (4)
constant properties, (5) uniform upstream velocity and temperature, (6)
uniform surface temperature, (7) negligible plate thickness, (8) negligible
edge effects, (9) all dissipated power in chips is transferred to the air by
convection, (10) no radiation, and (11) the array is oriented with its short
side facing the flow.

(ii) Analysis. Applying Newton’s law of cooling to the surface of the
array gives
PZQT:hA(Ts_Too)’ (a)
where

A = surface area

h = average heat transfer coefficient, W/m>-°C
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P = power dissipated by the chips, W

g, = total heat transfer from surface = power dissipated in array, W
T, = surface temperature = 76°C

T, = free stream temperature = 24°C

To determine /4 it is necessary to establish if the flow is laminar, turbulent
or mixed. This is determined by calculating the Reynolds number at the
trailing end of the array, Re,, and comparing it with the transition
Reynolds number, Re, - These two numbers are defined as

V.L
Re, =—=—, (b)
v

and

y
Re,, ==L =5x10°, ©
14
where

L = length of array = 90(chips)x0.4(cm/chip) =36 cm = 0.36 m
V. = free stream velocity = 35 m/s
v = kinematic viscosity of air, m*/s
Properties are evaluated at the film temperature 7; given by
Ty= (T, + T.,)/2 = (76 + 24)(°C)/2 = 50°C
Air properties at this temperature are

k=0.02781 W/m-°C
Pr=0.709
v =17.92 x 10°° m?/s

Substituting into (b)
35(m/s)0.36(m)
17.92 x 10™° (m?/s)

=7.031x10°

€r

Comparing this with the transition Reynolds number shows that the flow is
turbulent at the trailing end. Therefore, the flow is mixed over the array and
the average heat transfer coefficient is given by equation (8.7b)

K :%{0.664(Rext )2 40.037|(Re, ) = (Rey ) |}(P) . (@)
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This result is limited to the assumptions leading to Pohlhausen’s solution
and the range of Pr and Re, given in (8.4D).
(iii) Computations. The area of the rectangular array is
A = 30(chips)x0.4(cm/chip)x90(chips)0.4(cm/chip) = 432 cm?
=0.0432 m’
Equations (c) and (d) give h

_O
0.0278(W/m-_C) {0.664(5x105)”2 +0.037|(7.031x10%)%/> —(5x10%)*/3 }0.703)“3}
0.36(m)

7 =613 Wm?>-°C

h=

Substituting into (a)
P= q; = 61.3(W/m’-°C) 0.0432(m’) (76 — 24)(°C) = 137.7 W

(iv) Checking. Dimensional check: Computations showed that
equations (a), (b) and (d) are dimensionally consistent.

Quantitative check: The calculated value of h is within the range given in
Table 1.1 for forced convection of gases.

(5) Comments. (i) Pohlhausen’s solution (4.72b) for laminar flow and
correlation equation (8.4a) for turbulent flow were used to solve this
problem. The solution is limited to all the assumptions and restrictions
leading to these two equations.

(i1) More power can be dissipated in the array if the boundary layer is
tripped at the leading edge to provide turbulent flow over the entire array.
The corresponding heat transfer coefficient can be obtained by
setting Rext = 0 in equation (d)

— _hL
Nup = h? = 0.037ReL4/5 pr'?

Solving forh

—0.02781( W/m-"

h = (W/m C)(0.037)(7.031><105)4/ 30.709"% =121.3 W/m>-°C
0.36(m)

Substituting into (a)
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P =g, =121.3(W/m*—°C)0.0432(m?)(76 — 24)(°C) = 272.5 W

Thus, turbulent flow over the entire array almost doubles the maximum
dissipated power.

8.5.2 External Flow Normal to a Cylinder

Fig.8.5 shows forced convection normal to a =

cylinder. Since the flow field varies in the =
angular direction 6, the heat transfer coefficient w0 m

h also varies with € An equation which V., R
correlates the average heat transfer coeffi- f\ =

~ 7

cient /1 over the circumference is given by [3] Fig. 8.5

4/5
— D 0.62Re! > '3 Re, \'*
NuD:hTzo.u °o 7T |14 0 . (8.10a)

04 2/377V/4 282,000
1+(Pr]

flow normal to cylinder
Pe=RepPr>0.2 (8.10b)

properties at 7'y

Valid for:

where Rep is the Reynolds number based on diameter and Pe is the Peclet
number defined as the product of the Reynolds and Prandtl numbers. For
Pe < 0.2, the following is used [4]

hD 1

N, =12 |
k 0.8237—-0.51n Pe

(8.11a)

Valid for:

flow normal to cylinder
Pe=RepPr<0.2 (8.11b)

properties at 7'

Equations (8.10) and (8.11) may also be applied to cylinders with uniform
flux.
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8.5.3 External Flow over a Sphere

The average Nusselt number for the flow over a sphere is given by [5]

Nu,, = hTD = 2+[0.4Re)> + 0.06Re} (L) . 8120

Valid for:
anator flow over sphere

3.5> Rep >7.6x10*
0.71 < Pr <380

l<p/p, <32

properties at 7, p, at T, (8.12b)

8.6 Internal Forced Convection Correlations

In Chapter 6, analytic determination of the heat transfer coefficient is
presented for a few laminar flow cases. We will now present correlation
equations for the entrance and fully developed regions under both laminar
and turbulent flow conditions. The criterion for transition from laminar to
turbulent flow is expressed in terms of the Reynolds number Rep , based on
the mean velocity # and diameter D. The flow is considered laminar for
Rep < Rep, , where

ubD

t

Properties for internal flow are generally evaluated at the mean tempera-
ture 7, .

8.6.1 Entrance Region: Laminar Flow through Tubes at Uniform
Surface Temperature

In considering heat transfer in the entrance region of tubes and channels,
we must first determine if both velocity and temperature are developing
simultaneously or if the velocity is already fully developed but the
temperature is developing. This latter case is encountered where the heat
transfer section of a tube is far away from the flow inlet section.
Correlations for both cases will be presented for laminar flow in tubes at
uniform surface temperature.

(1) Fully Developed Velocity, Developing Temperature: Laminar Flow.
This case is encountered where the velocity profile develops prior to
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entering the thermal section as r T,
shown in Fig. 8.6. This problem Wﬁ T G\T\
was solved analytically using " Lx

boundary layer theory. However, T T .
the form of the solution is not 2151 T,

convenient to use. Results are &% I fully
correlated for the average Nusselt ! developed

number for a tube of length L in Fig. 8.6
the following form [6]:
— h 0.0668(D/L) Re, P
Ny =P _ 366+ (D/L) Rep rm . (8.14a)
k 1+0.04[(D/L) Rep, Pr]

Valid for: .
entrance region of tube

uniform surface temperature 7
fully developed laminar flow (Rep < 2300)
developing temperature (8.14b)

properties at T, = (T,,;; + 1,0 )/ 2

where T, and T,, are the mean temperatures at the inlet and outlet,
respectively.

(2) Developing Velocity and Temperature: Laminar Flow. A correla-
tion equation for this case is given by [5, 7]

- 7 1/3 0.14
Nu,, :hTD = 1.86[(D/L) Re,,Pr] (ﬂﬁj . (8.152)

Valid for:

entrance region of tube
uniform surface temperature 7
laminar flow (Rep < 2300)
developing velocity and temperature
0.48 < Pr<16700
0.0044 < 47, <9.75

0.14 (8.15b)

1/3 .
[D Re DPr} (ij >2
L Hy

properties atT,, = (T,; +T,,,)/2, i, at T,
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Example 8.2: Force Convection Heating in a Tube

Water enters a tube with

a uniform velocity u = Tm_,; SiE— L — =ng0
0.12 m/s and uniform —x i T
temperature T,,; = 18°C. e mo Tg

The surface of the tube is
maintained at Ty = 72°C. The tube diameter is D = 1 cm and its length is L
= 1.5 m. Determine the heat transfer rate to the water.

(1) Observations. (i) This is an internal flow problem through a tube at
uniform surface temperature. (ii) Both velocity and temperature are
developing. (iii) Entrance effects can be neglected if the tube is much
longer than the developing lengths L, and L,.(iv) The Reynolds number
establishes if the flow is laminar or turbulent. (v) Heat transfer to the water
can be calculated if the outlet temperature is known.

(2) Problem Definition. Determine the outlet water temperature.

(3) Solution Plan. (i) Apply conservation of energy to the water to
determine the rate of heat transfer g. (ii) Calculate the Reynolds number.

(ii1) Determine the hydrodynamic and thermal entrance lengths to establish
if this is an entrance or fully developed flow problem.

(4) Plan Execution

(i) Assumptions. Anticipating the need to apply conservation of energy
and to determine the heat transfer coefficient, the following assumptions
are made: (1) Continuum, (2) negligible changes in kinetic and potential
energy, (3) constant properties, (4) steady state, (5) no energy generation
(¢"=0), (6) negligible axial conduction (Pe > 100, to be verified), (7)
axisymmetric flow, and (8) uniform surface temperature.

(ii) Analysis. Application of conservation of energy to the water
between the inlet and outlet gives

qs:mcp(Tmo_Tmi)7 (a)
where
¢, = specific heat, J/kg-°C
m = mass flow rate, kg/s
g = rate of heat transfer to water, W
T,,; = inlet temperature = 18°C
T,no = T,(L) = outlet temperature, °C
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The mass flow rate is given by

urD?
m= ”T, (b)

where

D = tube diameter =1 cm = 0.01 m
u = mean velocity = 0.12 m/s
p = density, kg/m’

Properties of water are evaluated at T, n » defined as

Tm:(Tmi+Tn10)/2' (C)

The mean fluid temperature 7,,(x) at distance x from the inlet is given by
equation (6.13). Setting x = L in (6.13) gives the outlet temperature 7,,(L) =
Tmo
Tmo :Ts+(Tmi_Ts)eXp[_.P—hL]’ (d)
p
where

h = average heat transfer coefficient, W/m*-°C
L =tube length=1.5m

P = tube perimeter = 7D

T, = surface temperature = 72°C

The problem now becomes one of finding the heat transfer coefficient /.
The Reynolds number is determined next to establish if the flow is laminar
or turbulent. The Reynolds number is defined as

Re, =2 ©

14

where v is the kinematic viscosity evaluated at the mean temperature 7, .
Since the outlet temperature 7, is unknown, an iterative procedure is
required to determine 7,,. An assumed value for 7, is used to obtain
approximate values for water properties needed to calculate 7,,. If the
calculated T, is not close to the assumed value, the procedure is repeated
until a satisfactory agreement is obtained. Assume T,,, = 42°C. Equation
(c) gives

T, =(18+42)°C/2=30C

Properties of water at this temperature are:
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c, = 4180 J/kg-°C
k=0.6150 W/m-°C
Pr=542

21=0.7978 x 10~ kg/s-m
v=0.8012 x 10° m%/s
p=995.7 kg/m’

Substituting into equation (e) gives the Reynolds number

7D 0.12(m/s)0.01
Re, =YD _ (m 5)6 (’2") =1497.8
v 0.8012x107 (m~/s)

Since this is smaller than the transition Reynolds number (ReDt =2300), the
flow is laminar. The Peclet number is calculated to verify assumption (6)

Pe = Rep Pr=1497.8x5.42 =8118

Thus neglecting axial conduction is justified. To determine if the flow is
developing or fully developed, the hydrodynamic and thermal entrance

lengths, L, and L,,are calculated using equations (6.5) and (6.6) and
Table 6.1
L;,=0.056DRep = (0.056)(0.01 m)(1497.8) = 0.839 m
L,=0.033DRep Pr=(0.033)(0.01 m)(1497.8)(5.42) =2.679 m

Comparing these with the tube length, L = 1.5 m, shows that both velocity
and temperature are developing. Therefore, entrance effects must be taken

into consideration in determiningl; . The applicable correlation equation
for this case is (8.15a)

o ],_ZD 0.14
NI/ID = 7 = 186[(D/L) ReDPr]l/’j(ﬂiS) > (f)

where £ is the viscosity at surface temperature 7. Before using equation

(f), the conditions on its applicability, equation (8.15b), must be satisfied.
Consideration is given to the 6™ and 7" conditions in (8.15b).

w/ pg = 0.7978 x10 (kgh-m )/0.394 x 10 (kg/s—m) = 2.02

and
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1/3
[(D/L) Re,Pr]"? (ﬂi)mz {01051(“1;) (1497.8)(5.42)} 2.02)"" =4.17
S S(m

Therefore, all conditions listed in (8.15b) are satisfied.
(iii) Computations. Equation (b) gives m

- 995.7(kg/m>)0.12(m/s)(0.01)* (m?)
4

=0.009384 kg/s

Equation (f) gives h

L — 1/3 3 B 0.14
Nut, :h_D:Ls{O'm(m) (1497.8)(5.42)} 0.7978 x 10 . (Kg/s —m)
k 1.5(m) 0.394 x10™ (Kg/s —m
~7.766
— — .61 -°C
=K, = 0O WIM-C) sl 4776 (W)
D 0.01(m)

Substituting into (d) gives T,

2 o
T —1(°C)— (12 -18)°C) exp{_ 7477.6(W/m?> - C)0.0l(m)l.S(m)}

0.009384 (kg/s)4180(J/kg—°C)

=41.6°C
This is close to the assumed value of 42°C. Substituting into (a) gives ¢

q,=0.009384(kg/s) 4180(J/kg-°C) (41.6 — 18)(°C) = 925.7 W
(iv) Checking. Dimensional check: Computations showed that

equations (a), (b) and (d)-(f) are dimensionally consistent.

Quantitative check: (i) The calculated value of the heat transfer coefficient
is within the range suggested in Table 1.1 for forced convection of liquids.

(i1) To check the calculated heat transfer rate g;, assume that the water
inside the tube is at a uniform temperature 7,

T,=(T, +T,,)/2=(18+41.6)°C/2=29.8°C
Application of Newton's law of cooling gives

q,= hA(T, —=T,) = 477.6(W/m>°C) 7 0.01 (m) 1.5(m) (72-29.8) (°C)



8.6 Internal Forced Convection Correlations 309

=949.8 W

This is close to the exact answer of 925.7 W.

(5) Comments. (i) The determination of the Reynolds number is critical in
solving this problem.

(i1) If we incorrectly assume fully developed flow, the Nusselt number will
be 3.66, h = 225.09 W/ m*-°C, T,, =30.8°C and ¢, =502.1W. This
is significantly lower than the value obtained for developing flow.

8.6.2 Fully Developed Velocity and Temperature in Tubes:
Turbulent Flow

Unlike laminar flow through tubes, turbulent flow becomes fully developed
within a short distance (10 to 20 diameters) from the inlet. Thus entrance
effects in turbulent flow are sometimes neglected and the assumption that
the flow is fully developed throughout is made. This is common in many
applications such as heat exchangers. Another feature of turbulent flow is
the minor effect that surface boundary conditions have on the heat transfer
coefficient for fluids with Prandtl numbers greater than unity. Therefore,
results for uniform surface temperature are close to those for uniform
surface heat flux.

Because heat transfer in fully developed turbulent flow has many
applications, it has been extensively investigated. As a result, there are
many correlation equations covering different ranges of Reynolds and
Prandtl numbers. Two correlation equations will be presented here.

(1) The Colburn Equation [8]: This is one of the earliest and simplest
equations correlating the Nusselt number with the Reynolds and Prandtl
numbers as

Nu, = hTD = 0.023(Re )5 (Pr)" . (8.16a)
Valid for:

fully developed turbulent flow

smooth tubes

Rep> 10

0.7 <Pr<160

L/D> 60 (8.16b)

properties atT, = (T, + T,,) /2
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This equation is not recommended since errors associated with it can be as
high as 25%. Its accuracy diminishes as the difference in temperature
between surface and fluid increases.

(2) The Gnielinski Equation [9, 10]: Based on a comprehensive review of
many correlation equations for turbulent flow through tubes, the following
equation is recommended:

— (f /8)(Re,, —1000)Pr
Nup =
1+ 12.7(/8)"*(Pr*? - 1)

[1 + (D/L)m]. (8.17a)

Valid for:

developing or fully developed turbulent flow
2300 < Rep <5 x 10°
0.5 < Pr<2000 (8.17b)
0<D/L<I
properties atT,, = (T, + T,,,) /2

The D/L factor in equation (8.17a) accounts for entrance effects. For fully
developed flow set D/L = 0. The friction factor fis defined as

_D_ 4p

=— , (8.18)
L pu?/2

where # is the mean fluid velocity and Ap is the pressure drop in a tube

of length L. This factor depends on the Reynolds number and surface

finish. It is obtained from the Moody chart [11]. For smooth tubes f may

be approximated by [12]

f=(0.79 In Rep — 1.64)* - (8.19)

8.6.3 Non-circular Channels: Turbulent Flow

Correlation equations for turbulent flow through tubes can be applied to
non-circular channels to provide a reasonable approximation for the
average heat transfer coefficient. In such applications the diameter D
appearing in the correlation equations is replaced by the hydraulic or

equivalent diameter D, defined as
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e P 4

where 4 / is the flow area and P is the wet perimeter.

(8.20)

8.7 Free Convection Correlations

8.7.1 External Free Convection Correlations

Correlation equations for several configurations are available. Some are
based on analytical or numerical results while others are based on
experimental data.

(1) Vertical Plate: Laminar Flow, Uniform Surface Temperature.

This is an important geometry since it can be used to
model many applications. Fig.8.7 shows a vertical plate .
which is submerged in an infinite fluid at 7.. Surface IR
temperature 7 is uniform. If 7 >7, , the fluid will rise /

along the surface forming viscous and thermal boundary

layers. The viscous boundary layer can be laminar or T /
turbulent. A solution to this problem was presented in % LT‘”
Chapter 7 for laminar boundary layer flow [13]. The ;8
following equation correlates the results for the local
Nusselt number to within 0.5% [14] Fig. 8.7
1/4
Nu, =@=3{ Prm } (Ra)"*, (821a)
k 412435+ 4.884Pr "'~ +4.953Pr

where Ra, is the local Rayleigh number defined in (7.2) with L replaced

by the variable x. To determine the average Nusselt number for a plate of
length L, equation (8.21a) is substituted into (2.50) to give the average heat

transfer coefficient 4 and Nu L

1/4
} (Ra))"". (821b)

— EL_{ Pr
k

Nu, =——= 12
2.435+4.884Pr"" +4.953Pr
Equations (8.21a) and (8.21b) are valid for:
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vertical plate
uniform surface temperature 7

laminar, 104 < Ra; < 10° (8.21¢)
0<Pr<ow
properties at 7',

(2) Vertical Plates: Laminar and Turbulent, Uniform Surface Temper-
ature. A single equation which correlates experimental data for the
average Nusselt number for laminar, transition and turbulent flow was
developed by Churchill and Chu [15]

1/6
Nu, = "E ] 08054 0387 (Ray) . (8.22a)
k /16 1827
[1 +(0.492/ Pr) ]
Valid for:
vertical plate
uniform surface temperature 7
laminar, transition, and turbulent
10_1<RaL<1012 (8.22b)
0<Pr<ow
properties at 7'

Although (8.22a) can be applied in the laminar range, Ra, < 10°, better
accuracy is obtained using (8.21b).

(3) Vertical Plates: Laminar Flow, Uniform Surface Heat Flux. Of
interest in this case is the determination of surface temperature
T, (x) which varies along the plate. The local Nusselt number for laminar
flow is given by [16]

2 1/5
hx Pr *

Nu = Gr , (8.23)
k| 4+9pP"2 y10Pr 7

X

where the local heat transfer coefficient /(x) is expressed in terms of
surface heat flux g as

qll
h(x) = —35 .
(x) T.(o-T. (8.24)
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The modified Grashof number Gr;ck in (8.23) is defined as

ot - P8as
kv?

X
Substituting (8.24) and (8.25) into (8.23) and solving for (7, —T,), we
obtain

xt. (8.25)

1/5

4+ P 1/2 +1 P 2 " 4

T,(x)-T, = L 5 OPFI Y- 14s ] o . (8260)

Pr Bg \ k
Equations (8.23) and (8.26a) are valid for:

vertical plate
uniform surface flux g;
laminar, 10*< Gr:Pr <10° (8.26b)
0<Pr <w

However, properties in (8.26a) depend on surface temperature
T (x), which is not known a priori. A solution can be obtained using an
iterative procedure. An assumed value for the surface temperature at the
mid-point, 7, (L / 2), is used to calculate the film temperature at which
properties are determined. Equation (8.26a) is then used to calculate
T,(L/2). If the calculated value does not agree with the assumed
temperature, the procedure is repeated until a satisfactory agreement is
obtained.

(4) Inclined Plates: Laminar Flow, Uniform Surface Temperature. We
consider a plate of length L which is
tilted at an angle € from the vertical.
Fig. 8.8a shows an inclined plate with
its heated surface facing downward
while Fig. 8.8b shows a plate with its
cooled surface facing upward. Note
that the flow field is identical for both
cases and consequently the same
solution holds for both. Note further
that gravity component for the
inclined plate is gcos & while for the Fig. 8.8

@) T, >T, (b) T, <7,
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vertical plate it is g. It is reasonable to use the correlation equation for the
vertical plate, with g replaced by gcos&. However, this approximation
deteriorates at large values of @. Thus equations (8.21a), (8.21b) and
(8.22a) can be used for inclined plates with Rayleigh number modified to

BgcosO (T, —T,)x°

Ra, = (8.27)
av
This approximation is valid for:
inclined plate
uniform surface temperature 7
(8.28)

laminar, Ra; < 10°
0<0<60

For an inclined plate with its heated surface facing up or cooled surface
facing down, the flow is complicated by transition and three-dimensional
effects. Correlation equations for this case are given in [17, 18].

(5) Horizontal Plates: Uniform Surface Temperature. The recommend-
ed correlations for the following two arrangements are [19-21]:

(i) Heated upper surface or cooled lower surface

Nu, =0.54(Ra; )"*, for 10° < Ra; <2x107,  (8.29a)

Nuy =0.14(Ray )'?, for 2x107 < Ra; <3x10'".  (8.29b)

Valid for: horizontal plate

hot surface up or cold surface down

properties, except S, at T, (8.29¢)

B at T, forliquids, T, for gases

(ii) Heated lower surface or cooled upper surface

Nu, =027(Ra; )", for 3x10° < Ra; <3x10'%,  (8.30a)

Valid for:
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horizontal plate
hot surface down or cold surface up
properties, except [, at Tf (8.30b)

p at T, for liquids, T, for gases

Properties in equations (8.29) and (8.30) are determined at the film
temperature 7y The characteristic length L is defined as [18]

_ surface area (8.31)
perimeter '

Although equations (8.29) and (8.30) are for uniform surface
temperature, they are applicable to uniform surface flux. In this case
the flux is specified while surface temperature is unknown. Surface
temperature is determined following the procedure used in vertical
plates at uniform flux, described in case (3) above.

(6) Vertical Cylinders. Correlation equations for vertical plates can be
applied to vertical cylinders if the effect of boundary layer curvature is
negligible. This approximation is valid if the thermal boundary layer
thickness o, is small compared to the diameter of the cylinder D. The
condition for 6,/D <<1is

Do 3 pst (8.32)

L (G}"L)l/4 i

(7) Horizontal Cylinders. This case has many .
engineering applications such as heat loss from AN
steam pipes, refrigeration lines and fins. Fig. 89 A 0%
shows free convection over a horizontal cylinder. /' A i
Due to flow asymmetry, the local heat transfer ° % /" .
coefficient varies along the circumference. The ' ™. &
following equation correlates the average Nusselt

number for a wide range of Rayleigh numbers [22] Fig.8.9

— kD 0.387(Ra,, )"°
Nu,, == =060+ DW 7
[l+(0.559/Pr) ]

(8.33a)
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Valid for:

horizontal cylinder

uniform surface temperature or flux
107 < Rap < 10" (8.33b)
properties at 7',

Note that the characteristic length in the Rayleigh number is the diameter D
of the cylinder.

(8) Spheres. The average Nusselt number for a sphere is given by [23]

— WD 0.589(Ra,, )''*
N, =P ol (Rap)™* 8.34a)

4/9
k 1+[0.469j9/16
Pr

sphere

uniform surface temperature or flux
Rap, <10"

Pr>0.7

properties at 7',

Valid for:

(8.34b)

Example 8.3: Free Convection Heat Loss from a Window

Estimate the heat loss to a 2.5 m high and 1.25 m wide glass window. The
average inside surface temperature is 7°C. Room air temperature is 23°C.
Room surroundings is at 28°C and window surface
emissivity & = 0.87.

\T;‘lﬂ'
(1) Observations. (i) Heat transfer to the inside

surface of the window is by free convection and
radiation. (ii) The problem can be modeled as a g
vertical plate at uniform surface temperature. (iii) \L
Newton’s law of cooling gives the heat transfer ;
rate. (iv) The Rayleigh number should be checked I, T
to establish if the flow is laminar or turbulent. (iiv)
Stefan-Boltzmann relation (1.12) can be used to
estimate radiation heat loss.
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(2) Problem Definition. Determine the average free convection heat
transfer coefficient 4 for a vertical plate at uniform surface temperature.

(3) Solution Plan. (i) Apply Newton's law of cooling. (ii) Use a free
convection correlation equation for an isothermal wvertical plate to

determine the heat transfer coefficient. Apply Stefan-Boltzmann relation
(1.12) to estimate radiation heat rate.

(4) Plan Execution.

(i) Assumptions. (1) Continuum, (2) vertical plate, (3) uniform surface
temperature, (4) quiescent ambient air, (5) negligible edge effects, (6)
window is small compared to room, and (7) ideal gas.

(ii) Analysis. The total heat transfer rate ¢ is given by
9=4c: %4, (a)

where ¢, and ¢, are heat transfer rates by convection and radiation,
respectively. Newton's law of cooling ¢,

dc :h_A(Too _Ts), (b)
where
A = surface area of glass = 2.5(m)x1.25(m) = 3.125 m’

h= average heat transfer coefficient, W/m*-°C
T, = surface temperature = 7°C = 280.15 K

T, = room air temperature = 23°C =296.15 K

Radiation heat rate is determined using Stefan-Boltzmann relation (1.12)

4 4
qr :go-A(Tsur _Ts )a (C)
where

T, = surroundings temperature = 28°C = 301.15 K

& = emissivity = 0.87
-8
o =567x10 Wm-K*
The Rayleigh number is calculated to determine the appropriate correlation

equation for the average heat transfer coefficient /2. The Rayleigh number
is defined as

pe(T, - T,

e @

Ra; =

where
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g = gravitational acceleration = 9.81 m/s’

L =length scale in the direction of gravity = 2.5 m
Pr = Prandtl number

= coefficient of thermal expansion, 1/K

v = kinematic viscosity, m*/s

Air properties are evaluated at the film temperature 7', defined as
T, =T, +T,)/2=(7°C+23°C)2=15C
Air properties at this temperature are

k=0.02526 W/m-°C
Pr=0.7145
v=14.64 x 10° m%/s

For an ideal gas £ is given by
/B =, (e)

where 77 in this equation is in degrees kelvin. Thus
S =1/(15+273.15K = 0.003471/K
Substituting into (d)

_ 0.00347(1/K)9.81(m/s>)(23 - 7)(° C)(m®)

— 0.7145=28.373x10°
(14.64x107%)%(m*/s?)

ar

Thus the flow is turbulent and the appropriate correlation equation is
(8.24a)

0.387(Ra, )""°
[1 +(0.492/ Pr)”! 16]

—  hL
NUL :7: 0.825+ 8/27 5 (f)

The conditions for the applicability of (f), listed in (8.24b) must be
satisfied.

(iii) Computations. Equation (f) gives

1/6 2

— KL 0.387(28.373x10°
Nuy === =10825+ s373310°)

=351.57

8/27
[1 +(0.492/0.7145)" 16]
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351.57x0.02526(W/m-°"C )
2.5(m)
Substituting into (b) gives
g.= 3.55(W/m*-°C) 3.125(m’) (23-7)(°C) = 177.5W

h = =3.55W/m? -°C

Equation (c) gives radiation heat loss
g, =0.87(5.67x10~*)(W/m*~K *)3.125(m?)

[(301.15)4(K4) —(280.15)4(K4)]= 318.4W
Total heat loss to the window is
g=177.5W + 3184 W=4959 W

(iv) Checking. Dimensional check: Computations show that equations
(b), (¢), (d) and (f) are dimensionally consistent.

Quantitative check: The magnitude of h is in line with typical free
convection values for air given in Table 1.1.

Validity of correlation equation (8.26a): Conditions listed in equation
(8.24b) are satisfied.

(5) Comments. (i) Radiation heat loss is very significant. It accounts for
64% of the total heat loss.

(i1) The use of the simplified radiation model of equation (1.12) is justified
since the window has a small area compared to the walls, floor and ceiling
of the room.

(ii1)) No information on the glass thickness and outside heat transfer
coefficient is needed to solve this problem because the inside surface
temperature is given.

8.7.2 Free Convection in Enclosures

Examples of free convection in enclosures are found in double-glazed
windows, solar collectors, building walls, concentric cryogenic tubes and
electronic packages. A fluid in an enclosed space experiences free
convection if the walls of the enclosure are not at a uniform temperature. A
buoyancy force causes the fluid to circulate in the enclosure transferring
heat from the hot side to the cold side. If buoyancy forces are not large
enough to overcome viscous forces, circulation will not occur and heat
transfer across the enclosure will essentially be by conduction. Heat flux
due to circulation is determined from Newton’s law
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q"=hT,-T,), (8.35)

where /£ is the heat transfer coefficient, 7, and 7} are the cold and hot
surface temperatures. The heat transfer coefficient is obtained from Nusselt
number correlation equations. Such equations depend on configuration,
orientation, geometric aspect ratio, Rayleigh number Ra; , and Prandtl
number Pr. We will consider selected common examples.

(1) Vertical Rectangular Enclosures. Consider a
rectangular cavity with one side at 7, and the
opposite side at 7., shown in Fig. 8.10. The top and
bottom surfaces are insulated. The fluid adjacent to L l’ g
the hot surface rises while that near the cold wall

falls. This sets up circulation in the cavity resulting
in the transfer of heat from the hot to the cold side.
Boundary layers form on the side walls while the core 5
remains stagnant. The aspect ratio L/ is one of the

—7Z . [~
T, T

key parameters governing the Nusselt number. Fig. 8.10
Another parameter is the Rayleigh number based on
the spacing ¢ and defined as
T,-T.)5°
Ra _ P, _ o p,| (8.36)
1%

For 1< L/6 <40, the following correlation equations are recommended
[24-26].

o —5 Pr 0.29
Nus =—=0.18)| —Ra . 8.37
Tk {0.2+Pr ‘5} (8.372)
Valid for
vertical rectangular enclosure
I< L <2
o
107 < Pr<10°
(8.37b)
P Rag >103
0.2+ Pr

properties at T = (T, +T,)/2




Valid for

Valid for

Valid for
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hS
02+ Pr

0.28 -0.25
Nug = 7 =0.22 ‘:LRG(S} |:§:| . (8383)

vertical rectangular enclosure

2<£<10
o

Pr<10’
10° < Rag <10
properties at 7 = (T, +T},)/2

hé

Nug =19
k

= 0.046 [Rag ">

Nus =

vertical rectangular enclosure
1< L <40
o
1< Pr<20
10° < Rag <10°
properties at T = (T, +T),)/2

ko
vertical rectangular enclosure
10 < L <40
o

1< Pr<2x10*
10* < Ras <10’
properties at T = (T, +T},)/2

hé _ 0.42 [Pr]o.mz [Ra§]0.25 {

L

o

"

(8.38b)

(8.392)

(8.39b)

(8.402)

(8.40Db)
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(2) Horizontal Rectangular Enclosures. Fig. 8.11 shows a horizontal
enclosure heated from below. At low Rayleigh numbers the fluid remains
stagnant and heat transfer through the cavity is by conduction. At a critical
value of the Rayleigh number, Ray,., a cellular flow pattern develops. This
Rayleigh number is given by

T,
Ray, =1708. L« °
5 J( g
The Nusselt number for cellular flow is O Q Q\Q
given by [27] 7,
Fig. 8.11
—  hé 1/3[p..10.074
Nug ==== 0.069[Ras "> [Pr]”""*. (8.41a)
Valid for
horizontal rectangular enclosure (8.41b)

heated from below
3x10° < Rag < 7x10°
properties at T = (T, +T),)/2

(3) Inclined Rectangular Enclosures.

An important application of this geometry is solar collectors. To maximize
solar energy absorption the collector is tilted an angle 6 from the
horizontal, as shown in Fig. 8.12. However,
energy is lost from the collector to the ambient
air due to convection. To estimate this loss it
is necessary to determine the heat transfer
coefficient in the collector’s enclosure.
Correlation equations for the Nusselt number
depend on the aspect ratio L/ and
inclination angled. For 0° < <90° the
lower surface is heated and the upper surface

is cooled. This relationship is reversed for Fig. 8.12

90° <0 <180°. Within 0% <@ <90°the

average Nusselt number passes through a Table 8.1
minimum value at a critical angle @, which Critical tilt angle
varies with aspect ratio according to Table 8.1. L/s| 1]3]6|12][>12
Due to the changing flow pattern with 0. | 25° 53°| 60°] 67°| 70°
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inclination and aspect ratio, a single correlation equation is not available.
The following equations are recommended (28-31):

* 16 3

— . R 7
Nus = 5:1+1.44 - 1708 1_1708(1 8sin ) N (Rags cos @) 1l .
k Rag cos @ Rag cos@ 18

(8.42a)
Valid for

inclined rectangular enclosure

L/6>12 (8.42b)
0<8<80,

set [ ]* = 0 when negative

properties at T = (T, +T),)/2

_ — a/6
Nus =@=E5(0°) M(sin@)o-25 . (8.43a)
k Nus(0°)

Valid for

inclined rectangular enclosure
L/6<12
0<6<0,

_ (8.43b)
properties at 7 = (T, +1})/2

= Nu5(90°)[sin 6] *° . (8.44a)

— kS
Nus =—
T

Valid for

inclined rectangular enclosure
all L/o

0. <0 <90°
properties at T = (T, +T},)/2

(8.44b)




324 8 Correlation Equations: Forced and Free Convection

Nus =7§=1+[M§(90°)—1] sin@. (8.45a)
Valid for
inclined rectangular enclosure
all L/o (8.45b)
90°< 6 <180° '

properties at T = (T, +T},)/2

Example 8.4: Advertising Display

A proposed device for an advertising
display is based on observing fluid
circulation in a rectangular enclosure. The
idea is to fill the enclosure with colored
water and many small reflective particles
of the same density as water. The particles
move with the fluid providing visual
observation of the flow patterns. The enclosure is 70 cm long, 5 cm wide
and 70 cm deep. The heated side is to be maintained at 27° C and the cold
side at 23° C. The design allows the inclination angle 6 of the cavity to be
varied from 0°to 180°. Estimate the power requirement for the device
when the inclination angle is 30°.

(1) Observations. (i) Power requirement is equal to the heat transfer rate
through the enclosure. (ii) The problem can be modeled as an inclined
rectangular cavity at specified hot and cold surface temperatures. (iii)
Newton’s law of cooling gives the heat transfer rate. (iv) The aspect ratio
and critical inclination angle should be computed to determine the
applicable correlation equation for the Nusselt number.

(2) Problem Definition. Determine the average free convection heat
transfer coefficient /2 for an inclined rectangular enclosure.

(3) Solution Plan. (i) Apply Newton's law of cooling. (ii) Compute the
aspect ratio and critical inclination angle. Select an appropriate Nusselt

number correlation equation for convection in an inclined rectangular
cavity.

(4) Plan Execution.
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(i) Assumptions. (1) Continuum, (2) uniform hot and cold surface
temperatures, (3) insulated top and bottom surfaces, (4) negligible radiation
and (5) properties of the water-particles mixture are the same as those of
water.

(ii) Analysis. Newton's law of cooling gives

P=q=hA(T,-T,), (a)
where

A = surface area of rectangle = 0.7(m)x0.7(m) = 0.49 m’
h = average heat transfer coefficient, W/m*-°C

P =power requirement, W

q = heat transfer rate through cavity, W

T},= hot surface temperature = 27°C

T, = cold surface temperature = 23°C

The aspect ratio is defined as

L
aspect ratio = g , (b)

where
L =length of rectangle = 0.7 m
0 = width of rectangle = 0.05 m

Equation (b) gives
L_07m) _,
o 0.05(m)

According to Table 8.1, the critical angle is €, =70°. Since L/& >12
and 0 <@ <@,, it follows that the applicable correlation equation for the
Nusselt number is

- * 16 i3 1
g B0 _ 1+1.44{1_ 1708 } {1_ 1708(1.8sin 0) }_{(Rag cos) —1} '
k Rag cosf Rag cos 18
8.42a)
The Rayleigh number is defined as
T, -T,)5°
Ra§ — 'Bg'(h—ZC)P}/' R (C)
1%

where
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g = gravitational acceleration = 9.81 m/s’
Pr = Prandtl number

S = coefficient of thermal expansion, 1/K
v = kinematic viscosity, m*/s

Water properties are evaluated at the film temperature T defined as
T=(T,+T.)/2. (d)
(iii) Computations. Equation (d) gives
T (27 +23)(°C)

2
Properties of water at this temperature are:

k = thermal conductivity = 0.6076 W/m—°C
Pr=6.13

B=0259x1071/K
v =0.8933x10"° m?/s

=25°C

Substituting into (c)
0.259 %107 (/K 9.81(m/s 2 )(27 — 23)(° €)(0.05) (m*?)

Ra 6.13
° (0.8933 x10™°)2 (m*/s2)
=9.75898 x10°
Substituting into (8.42a)
Ma=—5=1+1.44{1— 17086 } x
k 9.75898 x10° cos 30°
: 0,1.6 6 1/3
L 1708(1.8s1n630 ) J{(9.75898><10 c0s30) _1} 12755
9.75898x 10 c0s30° 18

o
7 =12.755 % = 12,755 20076(W/m="C)
J 0.05(m)

Equation (a) gives the required power

=155 W/m?-°C

P =155(W/m?=°C)(0.49)(m?)(27 - 23)(°C) = 303.8 W
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(iv) Checking. Dimensional check: Computations showed that the
Nusselt number and Rayleigh number are dimensionless.

Quantitative check: The magnitude of h is in line with typical free
convection values for liquids given in Table 1.1.

Validity of correlation equation (8.42a): Conditions listed in equation
(8.42b) are satisfied.

(5) Comments. (i) If the device is to be used continuously, the estimate
power requirement is relatively high. Decreasing the temperature difference
between the hot and cold surfaces will reduce the power requirement.

(i) The ambient temperature plays a role in the operation of the proposed
device. The design must take into consideration changing ambient
temperature.

(ii1) Changing the inclination angle will change the power requirement.

(4) Horizontal Concentric Cylinders. Fig. 8.13
shows two long concentric cylinders. The inner
cylinder of diameter D); is maintained at uniform
temperature 7;. The outer cylinder of diameter D, is
maintained at uniform temperature 7,. If 7, >T ,
buoyancy force sets up two flow circulation cells in
the annular space as shown in Fig. 2.13 . Flow
direction is reversed for 7; <7 . In both cases flow
circulation results in an enhancement of the thermal
conductivity. The one-dimensional heat transfer rate
per unit cylinder length, ¢', is given by

!

2rk,
q = 2

=% _(T,-T) . :
ln(Do/D,.)(’ o) (8.46)

Correlation equation for the effective conductivity keff is given by [32]

k i 1/4
Yol _o386| — L7 Ry , (8.47a)
k 0.861+ Pr
where
: [in(D, /D[
Ra = 3 Rag . (8.47b)

- 53[(D,-)_3/5+(D0)‘3/5]
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5= # . (8.47¢)
Valid for
concentric cylinders
102< Ra" <10’ (8.47d)
properties at T’ =(7; +7,)/2

8.8 Other Correlations

In the previous sections, correlation equations have been presented for
limited processes and configurations. It should be emphasized that the
above treatment is highly abridged. There are many other correlation
equations for topics such as condensation, boiling, high speed flow, jet
impingement, dissipation, liquid metals, enhancements, finned geometries,
irregular geometries, micro-gravity, non-Newtonian fluids, etc.. Some are
found in textbooks, others in handbooks and journals.
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PROBLEMS

8.1  Water at 120°C boils inside a channel with a flat surface measuring
45cmx45 cm. Air at 62
m/s and 20°C flows over —= >

the channel parallel to the %,ir HW

surface. Determine the ®

heat transfer rate to the air. A )\ )
Neglect wall resistance. water water

8.2 Steam at 105°C flows inside a specially designed narrow channel.
Water at 25°C flows over the channel with a velocity of 0.52 m/s.
Assume uniform outside surface temperature 7, = 105 °C.

[a] Determine surface heat flux at 20
cm and 70 cm down-stream from the
leading edge of the channel.

[b] Determine the total heat removed by
the water if the length is L = 80 cm and
the width is W= 100 cm.

8.3  Electronic components are mounted on

one side of a circuit board. The board is % L
cooled on the other side by air at 23°C -3

flowing with a velocity of 10 m/s. The 7T,

length of the board is L = 20 c¢cm and its

width is W = 25 cm. Assume uniform

board temperature. components
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8.4

8.5

8.6

8.7

8.8
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[a] Determine the maximum power that can be dissipated in the
package if surface temperature is not to exceed 77°C. Assume that all
dissipated power is conducted through the plate to the air.

[b] To increase the maximum power without increasing surface
temperature, it is recommended that the boundary layer be tripped to
turbulent flow very close to the leading edge. Is this a valid
recommendation? Substantiate your view.

Water at 15°C flows with a velocity of 0.18 m/s over a plate of length
L =20 cm and width W = 25 ¢cm. Surface temperature is 95°C.
Determine the heat transfer rate from the leading and trailing halves
of the plate.

A chip measuring 5mm x 5mm is placed flush on a flat plate 18 cm
from the leading edge. The chip

is cooled by air at 17°C flowing v -
with a velocity of 56 m/s. Deter- TZ chip
mine the maximum power that 7 LT
can be dissipated in the chip if its 18cm—f%

L
surface temperature is not to
exceed 63°C. Assume no heat loss
from the back side of the chip.

A 1.2m x 1.2 m solar collector is
mounted flush on the roof of a AK— 5.6m
house. The leading edge of the V. ?%
collector is located 5 m from the T, /

leading edge of the roof. Estimate 501\ar collector
the heat loss to the ambient air on

a typical winter day when wind speed parallel to the roof is 12 m/s

and air temperature is 5°C. Outside collector surface temperature is
estimated to be 35°C.

Water at 20°C flows over a rectangular plate of length L = 1.8 m and
width W=0.3 m. The upstream velocity is 0.8 m/s and surface
temperature is 80°C. Two orientations are considered. In the first
orientation the width W faces the flow and in the second the length L
faces the flow. Which orientation should be selected to minimize
heat loss from the plate? Determine the heat loss ratio of the two
orientations.

100 flat chips are placed on al0cm x 10 cm circuit board and
cooled by forced convection of air at 27°C. Each chip measures
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8.10

8.11

8.12

8.13
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Icmx1cm and dissipates 0.13 W. The maximum allowable chip
temperature is 83°C. Free stream air velocity is 5 m/s. Tests showed
that several chips near the trailing end of the board exceeded the
allowable temperature.  Would you recommend tripping the
boundary layer to turbulent flow at the leading edge to solve the
overheating problem? Substantiate your recommendation.

Water at 27°C flows normally over a tube with a velocity of 4.5 m/s.
The outside diameter of the tube is 2 cm. Condensation of steam
inside the tube results in a uniform outside surface temperature of
98°C. Determine the length of tube needed to transfer 250,000 W of
energy to the water.

A proposed steam condenser design for marine applications is based
on the concept of rejecting heat to the surrounding water while a boat
is in motion. The idea is to submerge a steam-carrying tube in the
water such that its axis is normal to boat velocity. Estimate the rate
of steam condensation for a 75 cm long tube with an
outside diameter of 2.5 cm. Assume a condensation temperature of
90°C and a uniform surface temperature of 88°C. Ambient water
temperature is 15°C and boat speed is 8 m/s.

An inventive student wanted to verify the speed of a boat using heat
transfer analysis. She used a 10 cm long electrically heated tube with
inside and outside radii of 1.1 cm and 1.2 cm, respectively. She
immersed the tube in the water such that its axis is normal to boat
velocity. She recorded the following measurements:

Water temperature = 16.5°C
Outside surface temperature of tube = 23.5°C
Electric energy dissipated in tube = 480 W

Determine the speed of the boat.

A thin electric heater is wrapped around a rod of diameter 3 cm.
The heater dissipates energy uniformly at a rate of 1300 W/m. Air at
20°C flows normal to the rod with a velocity of 15.6 m/s. Determine
the steady state surface temperature of the heater.

A fluid velocity measuring instrument consists of a wire which is
heated electrically. By positioning the axis of the wire normal to
flow direction and measuring surface temperature and dissipated
electric power, fluid velocity can be estimated. Determine the
velocity of air at 25°C for a wire diameter of 0.5 mm, dissipated
power 35 W/m and surface temperature 40°C.
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8.15

8.16

8.17

8.18

8.19
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Students were asked to devise unusual methods for determining the
height of a building. One student designed and tested the following
system. A thin walled copper balloon was heated to 133°C and
parachuted from the roof of the building. Based on aerodynamic
consideration, the student reasoned that the balloon dropped at
approximately constant speed. The following measurements were
made:

D = balloon diameter = 13 cm

M = mass of balloon = 150 grams

T = balloon temperature at landing = 47°C
T, = ambient air temperature = 20°C

U = balloon velocity = 4.8 m/s

Determine the height of the building.

A 6 cm diameter sphere is used to study skin friction characteristics
at elevated temperatures. The sphere is heated internally with an
electric heater and placed in a wind tunnel. To obtain a nearly
uniform surface temperature the sphere is made of copper. Specify
the required heater capacity to maintain surface temperature at
140°C. Air velocity in the wind tunnel is 18 m/s and its temperature
is 20°C.

A hollow aluminum sphere weighing 0.2 kg is initially at 200°C. The
sphere is parachuted from a building window 100 m above street
level. You are challenged to catch the sphere with your bare hands as
it reaches the street. The sphere drops with an average velocity of 4.1
m/s. Its diameter is 40 cm and the ambient air temperature is 20°C.
Will you accept the challenge? Support your decision.

Steam condenses on the outside surface of a 1.6 cm diameter tube.
Water enters the tube at 12.5°C and leaves at 27.5°C. The mean
water velocity is 0.405 m/s. Outside surface temperature is 34 °C.
Neglecting wall thickness, determine tube length.

A 150 cm long tube with 8 mm inside diameter passes through a
laboratory chamber. Air enters the tube at 12°C with fully developed
velocity and a flow rate 0.0005 kg/s. Assume uniform surface
temperature of 25°C, determine outlet air temperature.

Water enters a tube with a fully developed velocity and uniform
temperature 7, = 18°C. The inside diameter of the tube is 1.5 cm
and its surface temperature is uniform at 7, = 125°C. Neglecting



8.20

8.21

8.22

8.23

8.24

8.25

Problems 335

wall thickness, determine the length of the tube needed to heat the
water to 82°C at a flow rate of 0.002 kg/s.

Cold air is supplied to a research apparatus at a rate of 0.14 g/s. The
air enters a 20 cm long tube with uniform velocity and uniform
temperature of —20°C. The inside diameter of the tube is 5 mm. The
inside surface is maintained at 30°C. Determine the outlet air
temperature.

Water flows through a tube of inside diameter 2.5 cm. The inside
surface temperature is 230°C and the mean velocity is 3 cm/s. At a
section far away from the inlet the mean temperature is 70°C.

[a] Calculate the heat flux at this section.

[b] What will the flux be if the mean velocity is increased by a factor
of ten?

Air flows through a tube of inside diameter 5 cm. At a section far
away from the inlet the mean temperature is 30°C. At another
section further downstream the mean temperature is 70°C. Inside
surface temperature is 90°C and the mean velocity is 4.2 m/s.
Determine the length of this section.

Two identical tubes have inside diameters of 6 mm. Air flows
through one tube at a rate of 0.03 kg/hr and through the other at a rate
of 0.4 kg/hr. Far away from the inlets of the tubes the mean
temperature is 120°C for both tubes. The air is heated at a uniform
surface temperature which is identical for both tubes. Determine the
ratio of the heat flux of the two tubes at this section.

Two concentric tubes of diameters 2.5 cm and 6.0 cm are used as a
heat exchanger. Air flows through the inner tube with a mean
velocity of 2 m/s and mean temperature of 190°C. Water flows in the
annular space between the two tubes with a mean velocity of 0.5 m/s
and a mean temperature of 30°C. Determine the inside and outside
heat transfer coefficients.

A heat exchanger consists of a tube and D,

square duct. The tube is placed co- D,

axially inside the duct. Hot water flows /\
through the tube while cold water passes S

through the duct. The inside and outside
diameters are 5 cm and 5.2 cm,
respectively. The side of the duct is 10 cold water
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8.26

8.27

8.28

cm. At a section far away from the inlet the mean hot water
temperature is 90°C and the mean cold water temperature is 30°C.
The mean hot water velocity is 1.32 m/s and the mean cold water
velocity is 0.077 m/s. Determine the inside and outside heat transfer
coefficient.

In designing an air conditioning system for a pizza restaurant an
estimate of the heat added to the kitchen from the door of the pizza
oven is needed. The rectangular door is 50 cm x 120 cm with its
short side along the vertical direction. Door surface temperature is
110°C. Ambient air and surroundings temperatures are 20°C and
24°C, respectively. Door surface emissivity is 0.08. Estimate the heat
loss from the door.

To compare the rate of heat transfer by radiation with that by free
convection, consider the following test case. A vertical plate
measuring 12cmx12cm 12 is maintained at a uniform surface
temperature of 125°C. The ambient air and the surroundings are at
25°C. Compare the two modes of heat transfer for surface
emissivities of 0.2 and 0.9.

A sealed electronic package is designed to be
cooled by free convection. The package
consists of components which are mounted on

the inside surfaces of two cover plates
measuring 10 cm x 10 cm cm each. Because 7',
the plates are made of high conductivity g
material, surface temperature may be assumed
uniform. The maximum allowable surface /
temperature is 70°C. Determine the maximum Z
power that can be dissipated in the package
without violating design constraints. Ambient air temperature is
20°C. Neglect radiation heat exchange.

components

8.29 Assume that the electronic package of Problem 8.28 is to be used in

8.30

an undersea application. Determine the maximum power that can be
dissipated if the ambient water temperature is 10°C.

A plate 20 cm high and 25 cm wide is placed W
vertically in water at 29.4°C. The plate is .

maintained at 70.6°C. Determine the free

convection heat transfer rate from each half. g H
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Consider laminar free convection from a

vertical plate at uniform surface temperature. T,
Two 45° triangles are drawn on the plate as l
shown. g

[a] Explain why free convection heat transfer
from triangle 1 is greater than that from the
triangle 2.

[b] Determine the ratio of the heat transfer from two triangles.

A vertical plate measuring 21 cm X 21 cm is at a uniform surface
temperature of 80°C. The ambient air temperature is 25°C.
Determine the free convection heat flux at 1 cm, 10 cm and 20 cm
from the lower edge.

200 square chips measuring 1 cm x 1 cm each
are mounted on both sides of a thin vertical
board measuring 10cm x10cm. The chips
dissipate 0.035 W each. Assume uniform
surface heat flux. Determine the maximum
surface temperature in air at 22°C. Neglect
heat exchange by radiation.

An apparatus is designed to determine

surface emissivity of materials. The V\

apparatus consists of an electrically
heated cylindrical sample (disk) of D ——>
diameter D and thickness O. The disk is gl E
insulated along its heated side and rim.

It is placed horizontally with its heated
surface facing down in a large chamber
whose surface is maintained at uniform
temperature 7,,.. The sample is cooled

by free convection and radiation from its upper surface. To determine
the emissivity of a sample, measurements are made of the diameter
D, electric power input P, surface temperature 7, surroundings
temperature 7, and ambient temperature 7. Determine the

emissivity of a sample using the following data:
D=12cm, §=05cm, P=132W, T, =98°C, T,,
T, =22°C.

It is desired to increase heat loss by free convection from a wide
vertical plate without increasing its surface temperature. Increasing

=27°C,
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the height of the plate is ruled out because of the limited vertical
space available. It is suggested that a taller plate can be accommo-
dated in the same vertical space by tilting it 45°. Explore this
suggestion and make appropriate recommendations. Assume laminar
flow.

Estimate the free convection heat transfer rate from five sides of a
cubical ceramic kiln. Surface temperature of each side is assumed
uniform at 70°C and the ambient air temperature is 20°C. Each side
measures 48 cm.

Determine the surface temperature of a single burner electric stove
when its power supply is 75 W. The diameter of the burner is 18 cm
and its emissivity is 0.32. The ambient air temperature is 30°C and
the surroundings temperature is 25°C .

A test apparatus is designed to determine surface emissivity of
material. Samples are machined into disks of diameter D. A sample
disk is heated electrically 7
on one side and allowed T
to cool off on the opposite
side. The heated side and f D—
rim are well insulated. T

The disk is first placed g j\AA/\/\/\/\/ %
horizontally in a large 7 ¥

chamber with its exposed + € T ﬂ
surface facing up. At 1 2

steady state the exposed

surface temperature is measured. The procedure is repeated, without
changing the power supplied to the disk, with the exposed surface
facing down. Ambient air temperature in the chamber is recorded.

[a] Show that surface emissivity is given by
c= I/_ll(Tsl _Too) _]/_IZ(TSZ _Too)
o (T s42 -T s‘t )

where subscripts 1 and 2 refer to the exposed surface facing up and
down, respectively, and

h = average heat transfer coefficient, W/m?*-°C
T; = surface temperature, K
T,, = ambient temperature, K
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o = Stefan-Boltzmann constant, W/m?-K*
[b] Calculate the emissivity for the following case:

D=14cm, T, =533K, T,, =573K, T,, =293K.

A hot water tank of diameter 65 cm and height 160 cm loses heat by
free convection. Estimate the free convection heat loss from its
cylindrical and top surfaces. Assume a surface temperature of 50°C
and an ambient air temperature of 20°C.

Hot gases from a furnace are discharged through a round horizontal
duct 30 cm in diameter. The average surface temperature of a 3 m
duct section is 180°C. Estimate the free convection heat loss from
the duct to air at 25°C.

A 6 m long horizontal steam pipe has a surface temperature of
120°C. The diameter of the pipe is 8 cm. It is estimated that if the
pipe is covered with a 2.5 cm thick insulation material its surface
temperature will drop to 40°C. Determine the free convection heat
loss from the pipe with and without insulation. The ambient air
temperature is 20°C.

An electric wire dissipates 0.6 W/m while suspended horizontally in
air at 20°C. Determine its surface temperature if the diameter is 0.1
mm. Neglect radiation.

The diameter of a 120 cm long horizontal section of a neon sign is
1.5 cm. Estimate the surface temperature in air at 25°C if 12 watts
are dissipated in the section. Neglect radiation heat loss.

An air conditioning duct passes horizontally a distance of 2.5 m
through the attic of a house. The diameter is 30 cm and the average
surface temperature is 10°C. The average ambient air temperature in
the attic during the summer is 42°C. Duct surface emissivity is 0.1.
Estimate the rate of heat transfer to the cold air in the duct.

Estimate the surface temperature of a light bulb if its capacity is 150
W and the ambient air is at 23°C. Model the bulb as a sphere of

diameter 9 cm. Neglect radiation.
+

A sphere of radius 2.0 cm is suspended in a
very large water bath at 25°C. The sphere is
heated internally using an electric coil. =
Determine the rate of electric power that must

. . t
be supplied to the sphere so that its average water
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8.47 A fish tank at a zoo is designed to
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surface temperature is 85°C. Neglect radiation.

maintain water temperature at 4°C.
Fish are viewed from outdoors T,
. 2=
through a glass window L = 1.8 m 12D L
high and w = 3 m wide. The average S l g
ambient temperature during summer —
months is 26°C. To reduce water 4
cooling load it is proposed to create an
air enclosure over the entire window
using a pexiglass plate. Estimate the reduction in the rate of heat
transfer to the water if the air gap thickness is 0 =6 cm. Neglect
radiation. Assume that the cold side of the enclosure is at the same
temperature as the water and the warm side is at ambient
temperature.

8.48 It is proposed to replace a single pane observation window with

8.49

double pane. On a typical winter day the inside and outside air
temperatures are 7; =20°C and 7, =—-10°C. The inside and
outside heat transfer coefficients are h; = W/m?-°C  and
h, =37 W/m?-°C. The height of the window is L = 0.28m and
its width is w = 3 m. The thickness of glass is # = 0.3 cm and its
conductivity is k, =0.7 W/m—°C. Estimate the savings in energy
if the single pane window is replaced. Note that for the single pane
window there are three resistances in series and the heat transfer rate

q, is given by

g = A(Tl_To)
A
h kg h,

For the double pane window, two additional resistances are added.
The width of the air space in the double pane is 6 =3cm. In
determining the heat transfer coefficient in the cavity, assume that
enclosure surface temperatures are the same as the inside and outside
air temperatures.

To reduce heat loss from an oven, a glass door
with a rectangular air cavity is used. The
cavity has a baffle at its center. Door height is
L =65cm and its width is w=70cm. The
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air space thickness is 6 =1.5cm. Estimate the heat transfer rate

through the door if the inside and outside surface temperatures of the
cavity are 198°C and 42°C.

8.50 The ceiling of an exhibit room
is designed to provide natural 5
light by using an array of |
horizontal skylights. Each unit w l g
is rectangular with an air gap A T
0 = 6.5cm thick. The length
and width of each unit are L =54cm and w=120cm. On a typical
day the inside and outside glass surface temperatures are 15° C and
—15°C. Estimate the rate of heat loss from each unit.

o
3

8.51 Repeat Example 8.4 using inclination angles of 0°, 60°, 90°, 120
150° and 175°. Plot heat transfer rate ¢ vs. inclination angle 6.

8.52 A rectangular solar collector has an
absorber plate of length L =2.5m and
width w=4.0m. A protection cover is
used to form a rectangular air enclosure
of thickness O =4cmto provide
insulation. Estimate the heat loss by
convection from the plate when the
enclosure inclination angle is 45° and
its surfaces are at 28°C and 72°C.

8.53 A liquid-vapor mixture at 7; = —20°C

flows inside a tube of diameter
D, =4cm and lengthL =3m. The
tube is placed concentrically inside
another tube of diameter D, = 6cm.
Surface temperature of the outer tube is
at T, =10°C. Air fills the annular
space. Determine the heat transfer rate
from the mixture.
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CONVECTION IN MICROCHANNELS

9.1 Introduction

Research on fluid flow and heat transfer in microchannels was partly driven
by miniaturization of microelectronic devices. The need for efficient
cooling methods for high heat flux components focused attention on the
cooling features of microchannels. Microchannels are used in a variety of
engineering and scientific applications. The inkjet printer is a classic
example. Extensive use is found in medical applications and in mico-
elecro-mechanical systems (MEMS) such as micro heat exchangers,
mixers, pumps, turbines, sensors and actuators.

9.1.1 Continuum and Thermodynamic Hypothesis

The analysis and results of all previous chapters are based on two
fundamental assumptions: (1) continuum, and (2) thermodynamic
equilibrium. The continuity equation, Navier-Stokes equations, and the
energy equation are applicable as long as the continuum assumption is
valid. The no-velocity slip and no-temperature jump at a solid boundary,
imposed in previous chapters, are valid as long as thermodynamic or quasi-
thermodynamic equilibrium can be justified. In Chapter 1, the Knudsen
number was used to establish a criterion for the validity of the continuum
and thermodynamic assumptions. The Knudsen number is defined in terms
of the molecular mean free path A4 as

Kn=—-, (1.2)
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where D, is a characteristic length, such as channel equivalent diameter.

The continuum model is valid for [1]

Kn<0.1. (1.3a)

Thus as channel size becomes smaller the Knudsen number increases and
the continuum assumption begins to fail at approximately Kn =0.1. On
the other hand, departure from thermodynamic equilibrium leads to the
failure of the no-velocity slip and no-temperature jump boundary
conditions. This takes place at a much smaller Knudsen number given by

Kn<0.001. (1.3b)

It should be understood that departure from continuum behavior takes place
progressively as the Knudsen number is increased. Microchannels are
characterized by their relatively small size. A legitimate question is, how
small must a channel be to be classified as micro? The answer to this
question is not obvious since the mean free path depends on the fluid as
well as on its temperature and pressure. Noting that the mean free path of
liquids is much smaller than that of gases, liquid flow in a small channel
may be in the continuum domain while gas flow in the same channel may
be outside it. Thus classification of microchannels by size is inherently
arbitrary.

9.1.2 Surface Forces

As channel size becomes smaller the ratio of surface area to volume
becomes larger. This can be illustrated for the case of a tube of diameter D
and length L. The ratio of surface area 4 to volume V' is

A_ L4 o
V. aD?L/4 D

Equation (9.1) shows that the smaller the diameter, the larger is A/V.
Consequently, the role of surface forces becomes more dominant as the
diameter decreases. As an example, for a tube with D =1 m, equation
(9.11) gives A/V =4 m”. On the other hand, forD =1um,
A/V =4%x10°m™. This represents a 10° fold increase in A/V. Thus
conditions at the boundaries may depart from the continuum behavior and
take on different forms. This has important implications in the analysis of
microchannel problems. Under certain conditions, continuum governing
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equations for flow and energy can still be applied while boundary
conditions must be modified. Another size effect on gas flow in
microchannels is the increase in pressure drop in long channels. This
results in significant density changes along channels. Consequently, unlike
flow in macrochannels, compressibility becomes an important factor and
must be taken into consideration.

9.1.3 Chapter Scope

This chapter presents an introduction to convection heat transfer in
microchannels. To lay the foundation for the treatment of microchannel
convection, topic classification and definitions are presented. This includes:
distinction between gases and liquids, microchannel classification,
rarefaction and compressibility, velocity slip and temperature jump
phenomena. The effect of compressibility and axial conduction will be
examined. Analytic solutions to Couette and Poiseuille flows and heat
transfer will be detailed. Attention will be focused on convection of gases
in microchannels. The treatment will be limited to single phase shear
driven laminar flow between parallel plates (Couette flow) and pressure
driven flow (Poiseuille flow) through rectangular channels and tubes.

Although extensive research on fluid flow and heat transfer in
microchannels has been carried out during the past two decades, much
remains unresolved. Due to the complex nature of the phenomena, the role
of various factors such as channel size, Reynolds number, Knudsen
number, surface roughness, dissipation, axial conduction, and
thermophysical properties, is not fully understood. As with all new
research areas, discrepancies in findings and conclusions are not
uncommon. Conflicting findings are attributed to the difficulty in making
accurate measurements of channel size, surface roughness, pressure
distribution, as well as uncertainties in entrance effects and the
determination of thermophysical properties.

9.2 Basic Considerations

9.2.1 Mean Free Path

The mean free path A of a fluid is needed to establish if the continuum
assumption is valid or not. For gases, A is given by [2]
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A=£ |ZRrr, 9.2)
p\2

where p is pressure, R is gas constant, 7 is absolute temperature, and £ is
viscosity. Since A is very small, it is expressed in terms of micrometers,
4 =10"°m.. This unit is also known as micron. For liquids, A is much
smaller than for gases. It is clear from (9.2) that as the pressure decreases
the mean free path increases. Application of (9.2) to air at 300K and
atmospheric pressure ( p =101,330 N/m?) gives A =0.067 yum. Properties
and the mean free path of

. : . Table 9.1
various gases are listed in
Table 9.1. Pressure drop in R P ,u><107 A
channel flow results in an gas Jkg-K| kg/nt kg/s-m| “m
axial increase in A. There- [ Ajr 287.0 | 11614 | 184.6 |0.067

fore the Knudsen number  |[Helium |2077.1 | 0.1625 | 199.0 |0.1943

increases in the flow direc- [y 4rogen| 4124.3 [ 0.08078 | 89.6 [0.1233
tion. Upper atmospheric air  [Njwogen | 2968 | 1.1233 | 1782 |0.06577

cannot be treated as contin-  [Oxygen | 259.8 | 1.2840 | 207.2 |0.07155
uum and is referred to as

rarefied gas due to low pressure and large 4.

9.2.2 Why Microchannels?

We return to the continuum, no-slip solution for laminar fully developed
convection in tubes. For constant surface temperature, we learned in
Chapter 6 that the Nusselt number is constant in the fully developed region.
This is true for tubes as well as channels of other cross section geometry.
Equation (6.57) gives

hD 1P
Nup =22 23657,  (6.57) N Water
k 10°} \
where D is diameter, s is heat ? N
transfer coefficient, and & is fluid  _! ¢ \ :
thermal conductivity. Solving (6.57) E PN
for h, gives é 10}
k = i . \
h=3.657—. 9.3) ¢ [ S,
D
Examination of (9.3) shows that the 10 i
smaller the diameter, the larger the 0 TV S T S [V [ o
D(pm)

Fig. 9.1
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heat transfer coefficient. Fig. 9.1 shows the variation of # with D for air and
water. The conductivity k& is determined at a mean fluid temperature of
40°C. The dramatic increase in /4 as the diameter is decreased has
motivated numerous studies aimed at the development of efficient cooling
methods to maintain pace with the rapid miniaturization of microelectronic
devices during the past three decades. Early studies have analytically and
experimentally demonstrated the potential of microchannels for cooling
high power density devices using water [3]. Typically, grooves are
machined in a sink to form fins to
enhance heat transfer. The heat sink
is attached to a substrate and forms

flow channels as shown in Fig. 9.2.

Due to fabrication constraints, :I H H H H
. flow

microchannels usually have rectan-

gular or trapezoidal cross-sections. It f T. Th'T Tq
should be noted that although IMICTOChIP
microchannels have high heat Fig. 9.2

transfer coefficients, pressure drop
through them increases as channel size becomes smaller.

9.2.3 Classification

A common classification of flow in microchannels is based on the Knudsen
number. The continuum and thermodynamic equilibrium assumptions hold
as long as channel size is large compared to the mean free path A. As
channel size approaches A, flow and temperature phenomena begin to
change. The following flow classification is recommended for gases [1]:

Kn <0.001 continuum, no — slip flow
0.001< Kn < 0.1 continuum, slip flow

A< Kn< flow ©-4)
10 < Kn free molecular flow

To appreciate the classification of (9.4) attention is focused on four factors:
(i) continuum, (ii) thermodynamic equilibrium, (iii) velocity slip, and (iv)
temperature jump. If there is no relative velocity between the fluid and a
surface, the condition is referred to as no-slip. Similarly, if there is no-
temperature discontinuity at a surface (fluid and surface are at the same
temperature), the condition is described as no-temperature jump. Macro-
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scale analysis (Chapters 1-8) is based on the assumptions of continuum,
thermodynamic equilibrium, no-velocity slip and no-temperature jump.
These conditions are valid in the first regime of (9.4) where Kn < 0.001.
Recall that under these conditions solutions are based on the continuity,
Navier-Stokes equations, and energy equation. As device or channel size is
reduced the Knudsen number increases. At the onset of the second regime,
Kn>0.001, thermodynamic equilibrium begins to fail, leading to velocity
slip and temperature jump. This requires reformulation of the velocity and
temperature boundary conditions. Away from the boundaries the fluid
behaves as a continuum. For most gases, failure of thermodynamic
equilibrium precedes the breakdown of the continuum assumption. Thus,
the Navier-Stokes equations and energy equation are still valid. As size is
reduced further the continuum assumption fails. This occurs at Kn > 0.1,
which is the beginning of the transition flow range. This requires
reformulation of the governing equations and boundary conditions.
Transition flow is characterized by total departure from thermodynamic
equilibrium and the continuum model. It is commonly analyzed using
statistical methods to examine the behavior of a group of molecules. As
device size becomes an order of magnitude smaller than the mean free path,
Kn >10, the free molecular flow mode begins. This flow is analyzed
using kinetic theory where the laws of mechanics and thermodynamics are
applied to individual molecules.

It should be noted that regime limits in (9.4) are arbitrary. Furthermore,
transition from one flow regime to another takes place gradually. In this
chapter we will limit ourselves to the slip flow regime.

9.2.4 Macro and Microchannels

Since channel size has significant effect on flow and heat transfer, channels
can also be classified according to size. However, size alone does not
establish if the continuum assumption is valid or not. Nevertheless,
channels that function in the continuum domain, with no velocity slip and
temperature jump, and whose flow and heat transfer behavior can be
predicted from continuum theory or correlation equations, are referred to as
macrochannels. On the other hand, channels for which this approach fails
to predict their flow and heat transfer characteristics are known as
microchannels. It should be emphasized that for microchannels the
continuum assumption may or may not hold. Various factors contribute to
distinguishing microchannel flow phenomena from macrochannels. These
factors include two and three dimensional effects, axial conduction,
dissipation, temperature dependent properties, velocity slip and temperature
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jump at the boundaries and the increasingly dominant role of surface forces
as channel size is reduced.

9.2.5 Gases vs. Liquids

In the analysis of macro flow and heat transfer no distinction is made
between gases and liquids. Solutions to gas and liquid flows for similar
geometries are identical as long as the governing parameters (Reynolds
number, Prandtl number, Grashof number, etc.) and boundary conditions
are the same for both. This is not the case under micro scale conditions.
The following observations are made regarding gas and liquid
characteristics in microscale applications [4].

(1) Because the mean free paths of liquids are much smaller than those of
gases, the continuum assumption may hold for liquids but fail for gases.
Thus, despite the small size of typical MEMS applications, the continuum
assumption is valid for liquid flows.

(2) While the Knudsen number provides a criterion for the validity of
thermodynamic equilibrium and the continuum model for gases, it does not
for liquids.

(3) The onset of failure of thermodynamic equilibrium and continuum is
not well defined for liquids. Thus the range of validity of the no-slip, no-
temperature jump, linearity of stress-rate of strain relation, (2.7), and
linearity of Fourier’s heat flux-temperature relation, (1.8), are unknown.

(4) As device size becomes smaller, surface forces become more important.
In addition, the nature of surface forces in liquids differs from that of gases.
Consequently, boundary conditions for liquids differ from those for gases.

(5) Liquid molecules are much closer to each other than gas molecules.
Thus liquids are almost incompressible while gases are compressible.

In general, the physics of liquid flow in microdevices is not well known.
Analysis of liquid flow and heat transfer is more complex for liquids than
for gases and will not be considered here.

9.3 General Features

As channel size is reduced, flow and heat transfer behavior change
depending on the domain of the Knudsen number in condition (9.4).
Knudsen number effect is referred to as rarefaction. Density change due to
pressure drop along microchannels gives rise to compressibility effects.
Another size effect is viscous dissipation which affects temperature
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distribution. Of particular interest is the effect of channel size on the
velocity profile, flow rate, friction factor, transition Reynolds number, and
Nusselt number. Consideration will be limited to the variation of these
factors for fully developed microchannel gas flow as the Knudsen number
increases from the continuum through the slip flow domain.

9.3.1 Flow Rate

Fig. 9.3 shows the velocity profiles for fully developed laminar flow. The
no-slip and slip profiles are shown in Fig. 9.3a and 9.3b, respectively.
Velocity slip at the surface
results in an increase in the

flow rate O as conditions
depart from thermodynamic ?
equilibrium. Thus

(a) (b)
Q. Fig. 9.3
O

>1, (9.5)

where subscript e refers to the experimentally determined slip flow rate and
subscript ¢ represents the flow rate determined from macrochannel theory
or correlation equations. This notation will be used throughout to refer to
other performance characteristics such as friction factor and Nusselt
number.

9.3.2 Friction Factor
The friction coefficient C I for channel flow is defined as

T

Cf = —Wz, (4373)
T2 pu
where 7, is wall shear stress and u,, is the mean velocity. For fully

developed flow through tubes, C £ can be expressed in terms of pressure
drop and is referred to as the friction factor f

_1D 4

f_ - B
2L pul

(9.6)
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where D is diameter, L is length and Ap is pressure drop. Thus,
measurements of Ap can be used to determine f. For fully developed
laminar flow in macrochannels f is independent of surface roughness.
Furthermore, the product of f/ and Reynolds number is constant. That is

f Re="Po, 9.7)

where Po is known as the Poiseuille number. For example, for continuum
flow through tubes, Po =64. For rectangular channels the Poiseuille
number depends on channel aspect ratio. For fully developed laminar flow
in macrochannels Po is independent of Reynolds number. To examine the
accuracy of theoretical models, the Poiseuille number has been computed
using extensive experimental data on microchannels. Applying (9.7) to
experimentally determined Po and normalizing it with respect to the
theoretical value, gives

(Po)e 08

(P 0)1

When (Po), is determined from macroscopic (continuum) theory or
correlation equations, the departure of C* from unity represents the degree
to which macroscopic theory fails to predict microscopic conditions.

The behavior of f depends on the Knudson number as well as on the
nature of the fluid. Extensive experimental data on gases and liquids by
several investigators have been compiled and evaluated [5-7]. The
compiled data covers a wide range of Reynolds numbers, hydraulic
diameters, and aspect ratios. Because pressure drop in the reported
experiments was usually measured between channel inlet and outlet, the
computed friction factor did not always correspond to fully developed flow.
Reported values for (" ranged from much smaller than unity to much
larger than unity. Nevertheless, reviewing the experimental data on friction
factors in microchannels suggests the following preliminary conclusions:

(1) The Poiseuille number Po appears to depend on the Reynolds number.
This is in contrast to macrochannels where Po is independent of Reynolds
number for fully developed flow.

(2) Both increase and a decrease in the friction factor are reported.

(3) The conflicting findings are attributed to the difficulty in making
accurate measurements of channel size, surface roughness, pressure
distribution, as well as uncertainties in entrance effects, transition to
turbulent flow, and the determination of thermophysical properties.
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9.3.3 Transition to Turbulent flow

The Reynolds number is used as the criterion for transition from laminar to
turbulent flow. In macrochannels, transition Reynolds number depends on
cross-section geometry and surface roughness. For flow through smooth
tubes it is given by

Re, :£z2300. (6.1)

1%

However, for microchannels, reported transition Reynolds numbers ranged
from 300 to 16,000 [7]. One of the factors affecting the determination of
transition Reynolds number in microchannels is fluid property variation.
Outlet Reynolds number can be significantly different from inlet. The
effect of size and surface roughness on the transition Reynolds number is
presently not well established.

9.3.4 Nusselt number

As shown in equation (6.57), the Nusselt number for fully developed
laminar flow in macrochannels is constant, independent of Reynolds
number. However, the constant depends on channel geometry and thermal
boundary conditions. As with the friction factor, the behavior of the Nusselt
number for microchannels is not well understood, resulting in conflicting
published conclusions. Nevertheless, there is agreement that microchannel
Nusselt number depends on surface roughness and Reynolds number.
However, the following demonstrates the widely different reported results
for the Nusselt number [8, 9]

N
021<Me 100, 9.9)

Nu),

Difficulties in accurate measurements of temperature and channel size, as
well as inconsistencies in the determination of thermophysical properties,
partly account for the discrepancies in the reported values of the Nusselt
number.

9.4 Governing Equations

It is generally accepted that in the slip-flow domain, 0.001< Kn < 0.1, the

continuity, Navier Stokes equations, and energy equation are valid
throughout the flow field [1, 10]. However, common assumptions made in
the analysis of macrochannels require reconsideration. Macrochannel
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solutions of Chapter 6 are based on negligible compressibility, axial
conduction, and dissipation.

9.4.1 Compressibility

The level of compressibility is expressed in terms of Mach number M
which is defined as the ratio of fluid velocity and the speed of sound.
Incompressible flow is associated with Mach numbers that are small
compared to unity. Compressibility in microchannel flow results in non-
linear pressure drop [8, 11]. Its effect depends on Mach number as well as
the Reynolds number [12, 13]. Friction factor increases as the Mach
number is increased. For example, at M = 0.35 Poiseuille number ratio for
tube flow is C* =1.13. On the other hand, the Nusselt number decreases
from Nu=3.5 at M=0.01to Nu=1.1at M=0.1[8].

9.4.2 Axial Conduction

In examining axial conduction in channel flow a distinction must be made
between conduction in the channel wall and conduction in the fluid. In
Section 6.6.2 fluid axial conduction in macrochannels was neglected for
Peclet numbers greater than 100. However, microchannels are typically
operated at low Peclet numbers where axial conduction in the fluid may be
important. A study on laminar fully developed gas flow through micro-
channels and tubes showed that the effect of axial conduction is to increase
the Nusselt number in the velocity-slip domain [14]. However, the increase
in Nusselt number diminishes as the Knudsen number is increased. The
maximum increase is of order 10%, corresponding to Kn =0.

9.4.3. Dissipation
To examine the role of dissipation we return to the dimensionless form of
the energy equation (2.41a)
pT* 1
Dt RePr

VAR g %@*, (2.41a)
e

where @ * is the dissipation function and Ec is the Eckert number defined

as
2
Veo

- ® . 2.43
T, -T,) 24
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Since Ec is proportional to Vf, , it can be shown that it is proportional to the
square of Mach number, M?. Thus as long as M is small compared to
unity, the effect of dissipation can be neglected in microchannels.

9.5 Velocity Slip and Temperature Jump Boundary Conditions

To obtain solutions in the slip-flow domain, fluid velocity and thermal
conditions must be specified at the boundaries. Unlike the no-slip case, the
velocity does not vanish at stationary surfaces and fluid temperature
departs from surface temperature. An approximate equation for the
velocity slip for gases is referred to as the Maxwell slip model and is given

by [1]
2-0, P ou(x,0) ’
on

u(x,0)—ug = (9.10)

where

u(x,0)= fluid axial velocity at surface

u, =surface axial velocity

x = axial coordinate

n = normal coordinate measured from the surface

o, = tangential momentum accommodating coefficient

Gas temperature at a surface is approximated by [1]

2
T(x0)-T, =2=9r 2 4 T(x0) ©.11)
oy l+yPr on

where

T(x,0) = fluid temperature at the boundary
T, = surface temperature

y =c¢p /¢y, specific heat ratio

o= energy accommodating coefficient

The accommodating coefficients, o, and o, are empirical factors that
reflect the interaction between gas molecules and a surface. They depend
on the gas as well as the geometry and nature of the impingement surface.
Their values range from zero (perfectly smooth) to unity. Experimentally
determined values of o, and o are very difficult to obtain. Nevertheless,
there is general agreement that their values for various gases flowing over
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several surfaces are close to unity [15]. Two observations are made
regarding (9.10) and (9.11):

(1) They are valid for gases. Liquid flow through microchannels gives rise
to different surface phenomena and boundary conditions.

(2) They represent first order approximation of the velocity slip and
temperature jump. Additional terms in (9.10) and (9.11) provide second
order correction which extend the limits of their applicability to Kn = 0.4
[10, 16].

9.6 Analytic Solutions: Slip Flows

In previous chapters we considered both Couette and Poiseuille flows.
Analysis and solutions to these two basic flows, subject to slip conditions,
will be presented in this

section. In Couette flow the i‘ 100m >
fluid is set in motion inside a |
channel by moving an adjacent |
surface. This type of flow is |
also referred to as shear driven
flow. On the other hand, fluid | '

< 2 um

—

motion in Poiseuille flow is |
generated by an axial pressure <>

gradient. This class of flow  movable stationary
problems is referred to as Fig. 9.4

pressure driven flow. Both

flows find extensive applications in MEMS. An example of shear driven
flow is found in the electrostatic comb-drive used in microactuators and
microsensors. Fig. 9.4 shows a schematic diagram of such a device. The
lateral motion of the comb drives the fluid in the channel formed between
the stationary and moving parts. Typical channel length is 100 #um and
width is2 gm. A model for this application is Couette flow between two
infinite plates.

Other examples of shear driven flows are found in lubrication of
micromotors, rotating shafts and microturbines. A simplified model for this
class of problems is shown in Fig. 9.5. Angular motion of the fluid in the
gap between the inner cylinder (rotor) and the housing (stator) is shear
driven by the rotor. Poiseuille flow is encountered in many MEMS devices
such as micro heat exchangers and mixers. Fig. 9.2 shows a typical
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example of fluid cooled micro heat sink. A
major concern in Poiseuille flow is the large stator
pressure drop associated with microchannels.

Uniform surface temperature and uniform
surface heat flux are two basic boundary
conditions that will be considered in heat
transfer analysis of Couette and Poiseuille
flows. Consideration will also be given to
surface convection, compressibility, and
internal heat dissipation. Fig. 9.5

9.6.1 Assumptions.

Analytical solution will be based on common simplifying assumptions.
These assumptions are:

(1) Steady state, (2) laminar flow, (3) two-dimensional, (4) idea gas, (5)
slip flow, regime (0.001 < Kn < 0.1), (6) constant viscosity, conductivity,
and specific heats, (7) negligible lateral variation of density and pressure,
(8) negligible dissipation (unless otherwise stated), (9) negligible gravity,
and (10) the accommodation coefficients are assumed to be equal to unity,

(0,=0;=10).

Note that the assumption o, = o, =1.0 is made for the following
reasons: (1) Their exact values are uncertain, and furthermore, there is
general agreement that they are close to unity. (1) Including them in the
analysis introduces no conceptual complications or difficulties. (3)
Solutions will be more concise.

9.6.2 Couette Flow with Viscous Dissipation:
Parallel Plates with Surface Convection

Fig. 9.6 shows two infinitely large parallel

plates separated by a distance H. The T, h, Us.
upper plate moves axially with uniform

velocity u,. The lower plate is insulated u H
while the upper plate exchanges heat with X —?7 |
the ambient by convection. The ambient >

temperature is 7,, and the heat transfer Fig. 9.6

coefficient along the exterior surface of
the moving plate is /z,. This is an example
of shear driven flow in which the fluid is set in motion by the plate. Taking
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into consideration dissipation and slip conditions, we wish to determine the
following:

(1) The velocity distribution

(2) The mass flow rate

(3) The Nusselt number

Thus the problem is finding the flow field and temperature distribution in
the moving fluid.

Flow Field. The vector form of the Navier-Stokes equations for compres-
sible, constant viscosity flow is given by (2.9)

p 2V — g i L (v P v 2.9)
Dt 3
The axial component is
ou  ou  Ou op 4 *u  d'w pd 0v
pl—+u—+v— =pgx——p+—,u—2+,u—2+ﬂ—(—).(a)
ot ox oy ox 3 ox oy 30x oy

For steady state and negligible gravity

ou
ot
In addition, since the plates are infinitely long and the boundary conditions

are uniform, it follows the all derivatives with respect to x must vanish.
That is

gx=0. (b)

0
—=0.
. (©)
Thus (a) simplifies to
ou 0%u
PO~ = (d)
oy oy

The continuity equation (2.2a) is now used to provide information on the
vertical velocity component v

op 0 0 0
O o)+ 2 (p0)+ L (ow)= 0. 22
6t+6x(pu)+6y(pv)+82(pw) 0 (2.2)
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Introducing the above assumptions into (2.2a), gives

0
—(pv)=0. (e)
oy

However, since density variation in the lateral y-direction is assumed

negligible, (e) yields
ov
T =o. ®
oy

Integration of (f) and using the condition that ¥ vanishes at the surfaces
shows that v =0 everywhere and thus streamlines are parallel (see
Example 3.1, Section 3.3.1). Substituting (f) into (d)

2
%zo. (9.12)
fy

Equation (9.10) provides two boundary conditions on (9.12). Setting
o, = land noting that for the lower plate n» = y =0, (9.10) gives

u(x,0) = z@. )
b

For the upper plate, n = H—y, (9.10) gives

du(x,H)

Hy=u, -1
u(x,H)=u &

(h)

The solution to (9.12) is
u=Ay+B5B. 6

Boundary conditions (g) and (h) give the two constants of integration A and
B

Uy o ugh
H+24’ H+21

Substituting into (i)
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y R .
1+2(/1/H)(H H) 0)

Defining the Knudsen number as

A
Kn=—. 9.13
o (9.13)
Solution (j) becomes

u

—+ K 9.14
1+2Kn(H+ n) G149

S
The following observations are made regarding this result:

(1) Fluid velocity at the moving plate, y = H, is

u(H) 1+Kn
u 1+2Kn

<1.

N

Thus the effect of slip is to decrease fluid velocity at the moving plate and
increase it at the stationary plate.

(2) Setting Kn =0 in (9.14) gives the limiting case of no-slip.

(3) For the no-slip case (Kn = 0), the velocity distribution is linear

L2 (k)

This agrees with equation (3.8) of Example 3.1

Mass Flow Rate. The flow rate, m, for a channel of width W is given by

m:ijudy. (9.15)
0

Substituting (9.14) into (9.15) and noting that o is assumed constant along
y, gives
H

Yy
nm=p .[ 1+2K (H n)y
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Evaluating the integral

m:pWH%S. (9.16)

It is somewhat surprising that the flow rate is independent of the Knudsen
number. To compare this result with the flow rate through macro-

channels, 71, solution (k) is substituted into (9.15). This yields
m, szH%. 9.17)
This is identical to (9.16). Thus
m_ (9.18)
m

o

This result indicates that the effect of an increase in fluid velocity at the
lower plate is exactly balanced by the decrease at the moving plate.

Nusselt Number. The Nusselt number for a parallel plate channel, based
on the equivalent diameter D, = 2H, is defined as

_ 2Hh
S

The heat transfer coefficient / for channel flow is defined as

Nu @

_, OT(H)

v
Tm _Ts

Substituting into (1)
0T (H)

Nu = —2HLT, (9.19)

where

k = thermal conductivity of fluid
T = fluid temperature function (variable)

T’,, = fluid mean temperature
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T, =plate temperature

It is important to note the following: (1) The heat transfer coefficient in
microchannels is defined in terms of surface temperature rather than fluid
temperature at the surface. (2) Because a temperature jump develops at the
surface of a microchannel, fluid temperature at the moving plate, 7' (x, H ),
is not equal to surface temperature 7. (3) Surface temperature is
unknown in this example. It is determined using temperature jump equation
(9.11). (4) Care must be taken in applying (9.11) to Fig. 9.6. For
n=H -y and o, =1, (9.11) gives

2 T(x,H
T, =T(x, Hy+-—2L 2T H) (9.20)
l+y Pr 0oy
The mean temperature 7,,, as defined in Section 6.6.2, is
H
mcme =ijcpquy. 9.21)
0

Noting that ¢ » and p are independent of y, and using (9.16) for the mass
flow rate m, the above gives
) H

T, = Iuh@, (9.22)
Ug 0

where u# is given in (9.14). Examination of equations (9.19)-(9.22) shows
that the determination of the heat transfer coefficient requires the
determination of the temperature distribution of the moving fluid.
Temperature distribution is governed by the energy equation. For two-
dimensional, constant conductivity flow, (2.15) gives

o*r  8°T
2777
ox oy

a—T+ua—T+va—T):k(
dy

9% op
+ Loy yo.
pCp p ) ﬁT(u (% y) 2]

(2.15)

However, noting that all derivatives with respect to x must vanish,
and in addition, v = 0/0¢ = 0, the above simplifies to
2
kg§+ﬂ@=0. (9.23)
oy
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The dissipation function @ is given by

o2& %)

(2.17)
ou 0\ (v ow)? (8w aujz 2Weu oo ow)
| —+—| +|—+—| +|—F+—| |- =—F—+—]| .
oy Ox 0z Oy ox Oz 3\ox Oy Oz
This simplifies to
a 2
(p:[_”J , (9.24)
y
Substituting (9.24) into (9.23)
2
d*T d
o= 9.25)
dy k\ dy

Note that 7 is independent of x. This energy equation requires two
boundary conditions. They are:

dT(0)
Z3Y 0
a0 , (m)

and

_, 4T

:ho(Tv _Too) .

Using (9.20) to eliminate 7 in the above, gives the second boundary

condition

dT(H) _ I
dy ©

2y A oT(x,H) 7

—k :
l+y Pr  oOn w} (®)

{T (x,H)+
To solve (9.25) for the temperature distribution, the velocity solution (9.14)

is substituted into (9.25)
ﬂ S ’ (0)
dy? k| H1+2Kn) |



9.6 Analytic Solutions: Slip Flows 363

Defining the constant ¢ as

2
_H Us
v k[H(l+2Kn)} ' ®)
Substituting (p) into (o)
d*T
= =-p. @
dy
Integration of (q) gives
T:—§y2+Cy+D, )

where C and D are constants of integration. Application of boundary
conditions (m) and (n) gives the two constants:

C=0.

and

2
=Hk(p+H . 2y Kn

H?p+T,.
o 2  gsipr ? )

D

0

Substituting into (r)

2
¢ 2 kHp H7¢ 2y Kn

T=-- H2¢)+T
2 y+1 Pr

0 *

9.26
v I (9.26)

To determine the Nusselt number using (9.19), equation (9.26) is used to
formulate 7, dT(H)/dy,and T,,. Differentiating (9.26)

dT (H
(H) =-Hgp. ()
dy
Equation (9.26) and (9.20) give T
T, = Ky +7,. (u)

Finally, 7,

m

is determined by substituting (9.14) and (9.26) into (9.22)
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2

" y O 2
T S— 2 4+ Kn)(-= D)d
" H(1+2Kn) J; (H+ ) 2y +D)dy, ©)

where D is defined in (s). Evaluating the integral, gives

2 1., 1 ) 1
T, = —-—H*¢p——KnH*¢p+(=+Kn)D |.
" 1+2Kn[ g 7% v (2 ) }

Substituting (s) into the above

7= Y2 2kt | KO L 27 K ()
1+2Kn| 4 3 h, y+1Pr
Using (t), (u) and (w) into (9.19) gives the Nusselt number

2
Nu = 5 279 5 .
! H—(p+%KnH2¢> +kH¢+2yH ﬁgo+TOO——kbhp—Too
1+2Kn| 4 3 h,  y+1 Pr h,
This simplifies to
1+ 2K
Nu = & n) 9.27)

1+§Kn+ 8y (1+2Kn)Kn
3 y+1 Pr

We make the following remarks:

(1) The Nusselt number is independent of Biot number. This means that
changing the heat transfer coefficient 4, does not affect the Nusselt
number.

(2) The Nusselt number is independent of the Reynolds number. This is
also the case with macrochannel flows.

(3) Unlike macrochannels, the Nusselt number depends on the fluid.

(4) The first two terms in the denominator of (9.27) represent the effect of
rarefaction (Knudsen number) while the second term represents the effect
of temperature jump. Both act to reduce the Nusselt number.

(5) The corresponding Nusselt number for macrochannel flow, Nu,, is
determined by setting Kz = 01in (9.27) to obtain
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Nu, =8. (9.28)
Taking the ratio of (9.27) and (9.28)
Nu 1+2Kn
= . 9.29
Nu, L+ §Kn N 8y (1+2Kn)Kn ©-29)
3 y+1 Pr

This result shows that ratio is less than unity.
(6) If dissipation is neglected (@ =0), equation (9.26) gives the
corresponding temperature solution as

T=T,.

Thus, the temperature is uniform and no heat transfer takes place.
Consequently, equation (9.27) for the Nusselt number is not applicable to
this limiting case.

Example 9.1: Micro Shaft Temperature
housing
A micro shaft rotates clockwise with angular
velocity @, inside a housing which rotates H
counterclockwise with an angular velocity @,. :
2

The radius of the shaft is R and the clearance T
between it and the housing is H. The fluid in the
clearance is air and the inside surface
temperature of the housing is T,. Consider slip
Sflow domain and assume that H /| R <<1, set up
the governing equations and boundary conditions for the determination of
the maximum shaft temperature. List all assumptions.

(1) Observations. (i) The effect of dissipation must be included;
otherwise the entire system will be at uniform temperature 7,. (ii) The
shaft is at uniform temperature. Thus maximum shaft temperature is equal
to shaft surface temperature. (iii) Velocity slip and temperature jump take
place at both boundaries of the flow channel. (iv) For H/R <<1, the
problem can be modeled as shear driven Couette flow between two parallel
plates moving in the opposite direction. (v) To determine temperature
distribution it is necessary to determine the velocity distribution. (vi) No
heat is conducted through the shaft. Thus its surface is insulated.
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(2) Problem Definition. Formulate the Navier-Stokes equations, energy
equation, velocity slip, and temperature jump boundary conditions for shear
driven Couette flow between parallel plates.

(3) Solution Plan. Model the flow as shear driven Couette flow between
two parallel plates. To formulate the governing equations, follow the
analysis of Section 9.6.2. U, v
Modify velocity slip at the 52
shaft and thermal boundary ?

condition at the housing i\ H
u
surface. Ug

X

(4) Plan Execution.

(i) Assumptions. (1) Steady state, (2) laminar flow, 3) H /R << 1, (4)
one-dimensional (no variation with axial distance x and normal distance z),
(5) slip flow regime (0.001 < Kn < 0.1), (6) ideal gas, (7) constant
viscosity, conductivity and specific heats, (8) negligible lateral variation of
density and pressure, (9) the accommodation coefficients are assumed
equal to unity, o, =0, =1.0,(10) negligible dissipation, and (11)
negligible gravity.

(ii) Analysis. Since the shaft is at uniform temperature, its maximum
temperature is equal to its surface temperature, 7. Surface temperature is

related to the temperature jump given by (9.11)

2-0; 2y A 0T(x,0)
oy l+yPr on

T(x,0)-T, = (9.11)

Applying (9.11) to the shaft surface, n =y = 0, and setting o, =1, gives

2y A dT(0)
T(O)_TS1:1+7E dy

) (a)

where 7'(y) is the fluid temperature distribution. Thus, the problem
becomes one of determining 7'(y). To determine temperature distribution,
it is necessary to determine the flow field.

Flow Field. Following the analysis of Section 9.6.2, the axial component
of the Navier-Stokes equations is given by (9.12)
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2
%:0. (9.12)
ly

Boundary conditions for (9.12) are given by (9.10)

2-0, P ou(x,0) '
on

u(x,0)—u, = (9.10)

O-M
Applying (9.10) to the lower surface, n = y = 0, and setting o, =1

u(©0)—u,, =290 (b)
dy

where
usl = a)lR . (C)

For the upper surface, n = H —y, (9.10) gives
du(H)

u(H)—ug, = -4 ; (d)
dy
where 1, is the velocity of the upper surface, given by
Uy =—w,(R+H). (e)
Temperature Distribution. The energy equation for this configuration is
given by (9.25)
2
d*T d
4L __Ad) 9.25)
dy2 k \ dy

The boundary condition at y =0 is

dr) _
& =0. ()

At the upper surface, n = H — y, surface temperature is specified. Thus,
(9.11) gives

2y A dI(H)
l+y Pr dy

T(H)-T, =— (8)
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(iii) Checking. Dimensional check: Equations (9.25), (b), (d) and (g)
are dimensionally correct.

Limiting Check: For the limiting case of no-slip, fluid and surface must
have the same velocity and temperature. Setting A = 0in (b), (d) and (g)
gives u(0)=uy, u(H)=uy,, and T(H)=T,. These are the correct
boundary conditions for the no-slip case.

(5) Comments. (i) The problem is significantly simplified because no
angular variations take place in velocity, pressure, and temperature. (ii) The
effect of slip is to decrease fluid velocity at the upper and lower surfaces.

9.6.3 Fully Developed Poiseuille Channel Flow: Uniform Surface Flux

We consider heat transfer in q
microchannels under pressure y oy \L
driven flow conditions. Fig. H2
9.7 shows two infinitely large  ----¥-- R IR -
parallel plates separated by a ~ H/2 *

distance H. This configuration O
is often used to model flow qs

and heat transfer in rectan- Fig. 9.7
gular channels with large

aspect ratios. Velocity and temperature are assumed to be fully developed.
Inlet and outlet pressures are p; and p,, respectively. The two plates are
heated with uniform and equal flux ¢;. We wish to determine the
following:

(1) Velocity distribution
(2) Pressure distribution
(3) Mass flow rate

(4) Nusselt number

Poiseuille flow differs from Couette flow in that axial pressure gradient in
Poiseuille flow does not vanish. It is instructive to examine how
microchannel Poiseuille flow differs from fully developed, no-slip
macrochannel flow. Recall that incompressible fully developed Poiseuille
flow in macrochannels is characterized by the following: (1) parallel
streamlines, (2) zero lateral velocity component (v = 0), (3) invariant axial
velocity with axial distance (Ou/0Ox =0), and (4) linear axial pressure
(dp/ dx = constant). However, in microchannels, compressibility and
rarefaction change this flow pattern, and consequently none of these
conditions hold. Because of the large pressure drop in microchannels,
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density change in gaseous flows becomes appreciable and the flow can no
longer be assumed incompressible. Another effect is due to rarefaction.
According to equation (9.2), a decrease in pressure in microchannels results
in an increase in the mean free path A. Thus the Knudsen number increases
along a microchannel in Poiseuille flow. Consequently, axial velocity
varies with axial distance, lateral velocity component does not vanish,
streamlines are not parallel, and pressure gradient is not constant.

Poiseuille flow and heat transfer have been extensively studied
experimentally and analytically. The following analysis presents a first
order solution to this problem [16-19].

Assumptions. We invoke all the assumptions listed in Section 9.6.1.
Additional assumptions will be made as needed.

Flow Field. Following the analysis of Section 9.6.2, the axial component
of the Navier-Stokes equation for constant viscosity, compressible flow is
given by

ou  ou ou op 4 *u 9w pd v
p(Cru v ) = pg ~La T p T L B (D) ()
ot ox oy ox 3 ox oy 3 0x Oy
For steady state and negligible gravity
ou
—=g,=0. b
5 8 (b)

To simplify (a) further. the following additional assumptions are made:

(11) Isothermal flow. This assumption eliminates temperature as a variable
in the momentum equations. In addition, density can be expressed in terms
of pressure using the ideal gas law.

(12) Negligible inertia forces. With this assumption the inertia terms
p (uou / 0x + vou / Oy) can be neglected. This approximation is justified for
low Reynolds numbers. The Reynolds number in most microchannels is
indeed small because of the small channel spacing or equivalent diameter.

(13) The dominant viscous force is #(8%u /dy?). Scale analysis shows that
this term is of order H >while 1 (8%u/ox*) and ud/0x(u/dy) are of
order L. Thus these two terms can be neglected. Using (b) and the above
assumptions, equation (a) simplifies to
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op o%u
+u—-=0.
o o ©

Since pressure is assumed independent of y, this equation can be integrated
directly to give the axial velocity u. Thus

u:L@y2+Ay+B, (d
2u dx

where A and B are constants of integration obtained from boundary
conditions on #. Symmetry at y = 0 gives using (9.10).
ou(x,0)
y

Applying (9.10) to the upper plate, n = H — y, and setting o, =1 gives the
second boundary condition

0. ()

ou(x,H/2)

u(x,H/2)=-1
y

)

Applying (e) and (f) to (d), and using the definition of the Knudsen number
in (9.13), give 4 and B

2
a=0, B=—T" P 4kinp)]. ©®
8u dx
Substituting (g) into (d)
2 2
u=—T BN aknpy-a2 | (9.30)
8u dx H?

Note the following: (1) The Knudsen number, which varies with
pressure along the channel, represents rarefaction effect on axial velocity.
(2) Pressure gradient is unknown and must be determined to complete the
solution. (3) Setting Kn = 01in (9.30) gives the no-slip solution to Poiseuille
flow in macrochannels.

To complete the flow field solution, the lateral velocity component v
and pressure distribution p must be determined. The continuity equation for
compressible flow, (2.2a), is used to determine v
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op 0 o 0
I - - =0. 2.2
o)+ . (pv)+—(ow) (2.22)

Introducing the above assumptions into (2.2a), we obtain

o o
9 9 (pv)=0. h
p» (pu)+ . (pv) (h)

Integration of this equation gives v. The density p is eliminated using the
ideal gas law

p
_r 9.31
P=pr (9:31)

where R is the gas constant and 7 is temperature. Substituting (9.31) into
(h), assuming constant temperature, and rearranging

Spo)=—2 (pu). 0
Substituting (9.30) into (i)
2 (o) =2 B (1 aknpy-a ) | i)
oy 8u ox|  dx H?

Flow symmetry with respect to y gives the following boundary condition
onv

0(x,0) = 0. (k)

A second condition is obtained by requiring that the lateral velocity
vanishes at the wall. Thus

v(x,H/2)=0. Q)
Multiplying (j) by dy, integrating from y = 0 to y = y, and using (k)

Y

H? 9 dp Y y2
9P (14 4Kn(p) - 422 ) |y
J-Od(pv) Su o {p - J; (1+4Kn(p) H2) dy.  (m)
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Evaluating the integrals and solving for v

3 3
p 10 dp [1+4Kn(p)]l—fy— L (932)
8u pox | dx H 3p3

It remains to determine the pressure p(x). Application of boundary
condition (1) to (9.32) gives a differential equation for p

3
ﬁ{ 22 [[1 +4Kn(p)] #} } =0. ()
y=H/2

ox | dx
To integrate (n), the Knudsen number must be expressed in terms of
pressure. Equations (9.2) and (9.13) give

w |~

s
H

ALK | Fpr L (9.33)

Kn=
H H\2 p

Evaluating (n) at y = H /2, substituting (9.33) into (n) and integrating

pP L s R L —c
de|3 H p

Integrating again noting that 7' is assumed constant
1
gpz +%1/272RTp:Cx+D, (0)

where C and D are constants of integration. The solution to this quadratic
equation is

2
() =_3%,/2ERT +\/187rRT'u—2+6Cx+6D S
H

The constants C and D are determined by specifying channel inlet and
outlet pressures. Let

p(o):pi’ p(L):po’ (q)

where L is channel length. Application of (q) to (p) gives C and D
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1 H
C =5<p§ —p?)+E¢2nRT<po - pi),

2
D :%+%\/27rRT ..

Substituting the above into (p) and normalizing the pressure by p,,, give

PO _ 3 e
Do Hp,
18,2 7RT ? : ; :
8/; ”72_,_ 1_%+67/" lzﬂRT(l_&) E-|-p—’2+6—’u,/27rRT Pi
H™ p; p, Hp, p, |L p, Hp Po
(r)

This result can be expressed in terms of the Knudsen number at the outlet
using (9.2) and (9.13)

Kn, = Po) _ M7 pp (9.34)
H Hp, \2

where T in (r) is approximated by the outlet temperature 7,. Equation (r)

becomes
2 2
PO _ 6k + [6Kno+ﬁ} + -2y 112K,y | 2
Po Po Po Po L

(9.35)

Note the following regarding (9.35): (1 unlike macrochannel Poiseuille
flow, pressure variation along the channel is non-linear. (2) Knudsen
number terms represent rarefaction effect on the pressure distribution. (3)
The terms (p; /po)2 and [1-(p; /po)z](x/L) represent the effect of
compressibility. (4) Application of (9.35) to the limiting case of Kn, =0
gives

2 2
M:\/P_mr(l_p_iz)% , (9.36)

Po pg
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This result represents the effect of compressibility alone. Axial pressure
distribution for this case is also non-linear.

Mass Flow Rate. The flow rate m for a channel of width W is

H)2
m=2W | pudy (s)
0
Using (9.30), the above yields
H2 /2 2
m:—2W—p@ 1+4Kn(p)—4y— dy .
8u ~ dx ), H?

Since p and p are assumed uniform along y, they are treated as constants in
the above integral. Evaluating the integral, gives

WH? dp
m=— 1+ 6Kn —_. t
2, L+ 6Kn(pl o ®
The density p is expressed in terms of pressure using the ideal gas law
p
= 9.37
P=pT 9-37)
Substituting (9.33) and (9.37) into (t), gives
3
me— | 62 | E Ry |2 (9.38)
12uRT H\2 dx

Using (9.35) to formulate the pressure gradient, substituting into (9.38),
assuming constant temperature (7 = T, ), and rearranging, gives

3.2 2
me L VH p, Pi_1i12km,(ZL-1)|. (9.39)
24 uLRT, | p?

[

It is instructive to compare this result with the corresponding no-slip
macrochannel case where the flow is assumed incompressible. The mass
flow rate for this case is given by
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WHp: | p;
m, :L—I)O &—1 . (9.40)
12 uLRT, | p,

Taking the ratio of the two results

ﬂzl{ﬂﬂﬂzmo] (9.41)
m, Po

We make the following observations:

(1) The mass flow rate in microchannels, (9.39), is very sensitive to
channel height H. This partly explains the difficulty in obtaining accurate
data where channel height is typically measured in microns.

(2) Equation (9.39) shows the effect of rarefaction (slip) and compres-
sibility on the mass flow rate. To examine the effect of compressibility
alone (long channels with no-slip), set Kn, =0 in (9.39).

(3) Since p;/ p, >1, equation (9.41) shows that neglecting the effect of
compressibility and rarefaction underestimates the mass flow rate.

Nusselt Number. Following the analysis of Section 9.6.2, the Nusselt
number is defined as

2hH
Ny =——. (u)
k
The heat transfer coefficient 4 for uniform surface flux q; is
he s
T, s T, m
Substituting into (u)
2H n
Nu=—Is )
k(T,-T,)

where

T, = fluid mean temperature
T, = plate temperature

As usual, the heat transfer coefficient in microchannels is defined in terms
of surface temperature rather than fluid temperature at the surface. Plate
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surface temperature 7 is given by (9.11), which for the coordinate y
selected, takes the form

2y A OT(x,HI2)

T,=T(x,H/2)+
l+y Pr oy

(9.42)

The mean temperature 7,,, is defined in Section 6.6.2. Since density and
specific heat are assumed invariant with respect to y, the mean temperature
takes the form

H/2

Iquy
0

Tp=0. (9.43)

Iua’y
0

Thus, equations (v), (9.42) and (9.43) show that axial velocity, u(x, y),
and temperature distribution, 7'(x, »), are required for the determination of
the Nusselt number. We consider first velocity distribution u(x, y). The
solution obtained above, equation (9.30), is limited to isothermal flow, as
indicated in assumption (11) listed above. To proceed with the solution,
additional assumptions are made. However, in the heat transfer aspect of
this problem the temperature is not uniform. We assume that the effect of
temperature variation on the velocity distribution is negligible. Continuing
with the list of assumptions, we add

(14) Axial velocity distribution is approximated by the solution to the
isothermal case.

Temperature distribution is governed by energy equation (2.15)
2 2
pc, a—T+ua—T+va—T):k(a—T+a—T)+ﬂT(ua—p+va—p)+,ud§.
ot Ox oy oy ox 0Oy

(2.15)
To simplify this equation, additional assumptions are made:

(15) Negligible dissipation, @ =0
(16) Negligible axial conduction, 6°T /dx? << 8T / 6y*

(17) Negligible effect of compressibility on the energy equation
(18) Nearly parallel flow,v =0
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Equation (2.15) becomes

pc u—=k—-—. (9.44)

This equation requires two boundary conditions. They are:

0T (x,0) _0. W)
y
and
oT(x,H/2)
AR g )
oy

To proceed with the solution to (9.44), we follow the analysis of Chapter 6
and introduce the following important assumption:

(19) Fully developed temperature. Introducing the dimensionless tempera-
ture ¢

_ T(x,H/2)-T(x,y)

/ T(x,H/2)~T,(x)

(9.45)

Fully developed temperature is defined as a profile in which ¢ is
independent of x. That is

P=9(y). (9.46)
Thus

_,
Ox

Equations (9.45) and (9.46) give

(9.47)

op 0| T(x,H/2)-T(x,y) _o
ox  ox| T(x,H/2)-T,(x) |

Expanding and using the definition of ¢ in (9.45)

dT(x,H/2) _8_T
dx Oox

dT (x,H/2) B dT,, (x)
dx dx

- ¢(y){ } =0. (9.48)
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The relationship between the three gradients, 07 (x,y)/0x,
dT(x,H /2)/dx, and dT, (x)dx will be determined. The heat transfer
coefficient 4, is given by

L OT(xH/2)

_ oy
S RCEE Y

where T (x)is given in (9.42). Temperature gradient in (y) is obtained
from (9.45)

T(x,y)=T(x,H/2)=[T(x,H/2)=T,(x)]¢.
Differentiating the above and evaluating the derivative at y = H /2

OT(x,H/2)

B B d(H /2)
P [T, H /2) =T, (0] == ==

Substituting (z) into (y) and using (9.42) for T (x)

 KT(x,H/2)~T,(x)] dg(H /2)

= (9.49)
T (x) =T, (x) dy

Newton’s law of cooling gives another equation for /

n

h=—e s
T (x) =T, (x)

Equating the above with (9.49) and rearranging
T(x,H/2)-T,(x)= —W = constant. (9.50)
dy
Differentiating
oT(x,H/2) oT,,(x)
Ox Ox

0.

Combining this with (9.48), gives
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dT(x,H/2) dT,(x) T

(9.51)
dx dx Ox

This is an important result since "

OT /Ox in partial differential equa-
tion (9.44) can be replaced with
dT,, /dx. The next step is to
formulate an equation for the mean m m
temperature gradient d7,,/dx by i
applying conservation of energy. For )
the element shown in Fig. 9.8, qe
conservation of energy gives Fig. 9.8

|3
|
'
k
&

dT,
2qWdx +mc T, = mcp{Tm +—’”dx} .
dx
Simplifying
dr, 2wq!

dx mc,

= constant. (aa)

However,
m=WHpu,,, (bb)
where u,, is the mean axial velocity. Substituting (bb) into (aa)

dl _ 245
dx  pcyu,H

= constant. (9.52)

Substituting (9.52) into (9.51)

dT(x,H/2) dT,(x) oT _  2q;
dx dx ox  pcyu,H '

(9.53)

Equation (9.53) shows that 7'(x,r), 7,,(x) and T, (x) vary linearly with
axial distance x. Substituting (9.53) into (9.44)

O°T _2q5 u_

_ . (9.54)
6)}2 kH u,,
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The velocity u is given by (9.30) and the mean velocity is defined as

u,, =% J‘Oudy. (cc)

Substituting (9.30) into (cc)

2 H/2 2
u,, :_H_d_pJ' 1+4Kn—42— dy.
4p dx J, H?

Integration gives

2
U, = —H—d—p[l +6Kn]. (9.55)
121 dx
Combining (9.30) and (9.55)
2
S T B Sy (9.56)
u, 1+6Kn|4 H?
(9.56) into (9.54)
2 " 2
OT_ 12 g5 o V" | (9.57)
oy? 1+6KnkH |4 H?

Integrating twice

_ 12‘];, l l 2 y4 dd
T(x’y)_(1+6Kn)kH{2 3ty 12H2}+f(x)y+g(x)’( )

where f{x) and g(x) are “constants” of integration. Boundary condition (w)
gives

f(x)=0.

Solution (dd) becomes

124" 1,1 !
T(r,y)=——35 | 2 (C 4 Kn)y? - L a(x). (958)
() (1+6Kn)kﬂ[2 rat e AECE
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Boundary condition (x) is automatically satisfied and thus will not yield
g(x). To proceed, g(x) will be determined by evaluating the mean
temperature 7, using two methods. In the first method, (9.52) is integrated
between the inlet of the channel, x = 0, and an arbitrary location x

Tm " X

_ 2q4
dTl,, = ————— | dx,
T,

pepu, H Jy
where
T,0)=T,;. (9.59)
Evaluating the integrals
2 n
T, (x)=—25 4T . (9.60)
pc,u,H

In the second method, 7,, is evaluated using its definition in (9.43).
Substituting (9.30) and (9.58) into (9.43)

H/2 2 " 4
_ﬁdﬁj lrakn—a2 |l 124 L gy VL oy
81 dx % H* ||+ 6Kn)kH | 2 "4 12H2

Tm(x) = Hi2
H dp

2
y
1+ 4Kn—42
8u dx J, { Hz:ldy

Evaluating the integrals

3qs H
k(1+ 6Kn)?

{(Kn)z By i} +g(x).  (9.61)

T ()= 40 560

Equating (9.60) and (9.61) gives g(x)

13 13

295 34 H {(Kn)er%KnnL%} (9.62)

pep,H - k(1+6Kn)?

gx)=T,,; +

Surface temperature 7 (x,H /2) is determined by substituting tempera-
ture solution (9.58) into (9.42)
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3"H "H
T, (x)= —2s FKn + i} L2 A ). 9.63)
k(1+6Kn) | 2 48 | y+1 kPr

Substituting (9.61) and (9.63) into (v), gives the Nusselt number

Nu= 3 2 5 ’
lKn+i— ! [(Kn)2+l3Kn+l3} +—7/iKn
(1+6Kn) |2 48 (1+6Kn) 40 560 || y+1Pr
(9.64)
Using (9.64), the Nusselt num- 9
ber variation with Knudsen
number for air, with y =14 8
and Pr = 0.7, is plotted in Fig.
9.9. The following remarks are 7
made: Nu \
6
(1) The Knudsen number in ~—_
(9.64) is a function of local 5
pressure. Since pressure varies
along the channel, it follows 4
) 0.04 . 0.12
that the Nusselt number varies 0 Kn 0.08

with distance x. This is Fig. 9.9 Nusselt number for air flow between

contrary to the no-slip macro- parallel plates at unifrorm surface
channels case where the heat flux for air, =14, Pr=0.7,
Nusselt number is constant. 0, =0r=1

(2) Unlike macrochannels, the
Nusselt number depends on the fluid, as indicated by Pr and y in (9.64).

(3) The effect of temperature jump on the Nusselt number is represented by
the last term in the denominator of (9.64).

(4) The corresponding no-slip Nusselt number for macrochannel flow,
Nu,,, is determined by setting Kz =0 in (9.64)

0°

140
=—=8.235. 9.65
0= (9.65)

Nu

This is in agreement with the value given in Table 6.2.
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(5) Rarefaction and compressibility have the effect of decreasing the
Nusselt number. Depending on the Knudsen number, using the no-slip
solution, (9.65), can significantly overestimate the Nusselt number.

Example 9.2: Microchannel Heat Exchanger: Uniform Surface Flux

Rectangular microchannels are used to remove heat from a device at
uniform surface heat flux. The height, width, and length of each channel
are H=126 um, W =90 um,andL =10 mm, respectively. Using air
at T, = 20°C as the coolant fluid, determine the mass flow rate and the
variation of Nusselt number along the channel. Assume steady state fully
developed conditions. Inlet and

Gl 7
outlet pressure are: s L H

Y,
p; =210 kPa= 210,000kg/s*—m \ Lx /
5

P, =105kPa = 105,000kg/s*~m

i Tq!

(1) Observations. (i) The problem can be modeled as pressure driven
Poiseuille flow between two parallel plates with uniform surface flux. (ii)
Assuming fully developed velocity and temperature, the analysis of Section
9.6.3 gives the mass flow rate and Nusselt number. (iii) The Nusselt
number depends on the Knudsen number, Kn. Since Kn varies along the
channel due to pressure variation, it follows that pressure distribution along
the channel must be determined.

(2) Problem Definition. Determine the flow and temperature fields for
fully developed Poiseuille flow.

(3) Solution Plan. Apply the results of Section 9.6.3 for the mass flow rate,
pressure distribution, and Nusselt number.

(4) Plan Execution.

(i) Assumptions. (1) Steady state, (2) laminar flow, (3) two-
dimensional (no variation along the width W), (4) slip flow regime (0.001 <
Kn <0.1), (5) ideal gas, (6) constant viscosity, conductivity and specific
heats, (7) negligible lateral variation of density and pressure, (8) the
accommodation coefficients are equal to unity, o, =o, =1.0, (9)
negligible dissipation, (10) uniform surface flux, (11) negligible axial
conduction, and (12) no gravity.

(ii) Analysis. Assuming isothermal flow, the results of Section 9.6.3
give the mass flow rate as
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1 WH?p? | p}
m-=— ———— | —
24 uLRT,

2—1+12Kn0(ﬁ—1):|. (9.39)
Do Po

The Knudsen number at the exit, Kn,, is

Kn cMPo) M7

, 9.34
° H Hp 2 ° 034

o

where the temperature 7, at the outlet is assumed to be the same as inlet
temperature and the viscosity 4 is based on inlet temperature.

The Nusselt number, Nu, is given by

Nu= 3 2
R — 1Kn+5—1{(Kn)2+13Kn+13} +2—7/iKn
(1+6Kn) (2 48 (1+6Kn) 40 560 y+1Pr
(9.64)

The local Knudsen number, K#n, depends on the local pressure p(x)

according to
Kn =i=L1/ZRT . (9.33)
H Hp\2

Equation (9.35) gives p(x)

o

2 2
PO _ _6gn + {6Kno+ﬁ} =Ty 4 12Kn, (1= 21y |7
Po Po Po L

(9.35)

Thus, (9.35) is used to determine p(x), (9.33) to determine Kn(x), and
(9.64) to determine the variation of the Nusselt number along the channel.

(iii) Computations. Air properties are determined at 20°C. To
compute p(x), Kn(x), and Nu, the following data are used

H =126 um
L=10mm
p; = 210x10° kg/s* —m
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p, =105x10° kg/s* —m
Pr=0.713
R=287J/kg-K=287m? /s’ —-K
T=T,=T,=20°C

W =90 uym

y=14

1 =18.17x10"% kg/s —m

Substituting into (9.34)

%287(m2/s2 -K)(293.15)(K) = 0.05

n,

B 18.17x107% (kg /s — m) \/
1.26x107%(m)105%10° (kg /s> — m)

Using (9.39) and noting that p, / p, =2

I 90x107° (m)(1.26 x10~%)3(m*)(105x10%)? (kg? /s* —m?)

= . — [(2)2—1+12><0.05(2—1)
24 18.17x107% (kg/s —m)0.01(m)287(m? /s% —K)293.15(K)

m=19.476 1012 kg/s

Axial pressure variation is obtain from (9.35)

M:_6x0.05+\/(6x0.05+2)2 +[1—(2)2 +12><0.05(1—2)% ,

Po
M=—0.3+1/5.29—3.6£ . (a)
Po L

Equation (a) is used to tabulate
pressure variation with  x/L. x/L| PIPy|  Kn Nu
Equations (9.33) and (9.64) are used 0 |2.000 | 0.0250 | 7.333
to compute the corresponding 0.2 |1.838 | 0.0272 | 7.259

0.4 |1.662 0.0301 7.163
Knudsen and Nusselt numbers. 0.6 11460 10.0340 17035

(iii) Checking. Dimensional check: 0.8 |1.252 | 0.0399 | 6.850
Units for equations (9.33), (35), 1.0 ]1.000 | 0.0500 | 6.549
(9.39), and (9.64) are consistent.

Limiting check: No-slip macrochannel Nusselt number is obtained by
setting Kn =0 in (9.64). This gives Nu = 8.235. This agrees with the value
given in Table 6.2.

(5) Comments. (i) To examine the effect of rarefaction and compressibility
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on the mass flow rate, equation (9.41) is used to calculate m/m,, :

ﬂzl{ﬁﬂﬂzmo}:%(2+1+12x0.05)=1.8.

m() p()

Thus, neglecting rarefaction and compressibility will underestimate the m
by 44%.

(i1) No-slip Nusselt number for fully developed Poiseuille flow between
parallel plates with uniform surface heat flux is Nu = 8.235. Thus, no-slip
theory overestimates the Nusselt number if applied to microchannels.

(iii) It should be noted that the equations used to compute m, p(x),and
Nuare based on the assumptions of isothermal conditions in the
determination of the flow field. This is a reasonable approximation for
typical applications.

9.6.4 Fully Developed Poiseuille Channel Flow: Uniform Surface
Temperature [14]

The uniform surface flux of Section 9.6.3 is now repeated with the plates
maintained at uniform surface temperature 7, as shown in Fig. 9.10. We
invoke all the assumptions made in solving the uniform flux case. Since
the flow field is assumed independent of temperature, it follows that the
solution to the velocity, pressure, and

mass flow rate is unaffected by changes AV /7;

in thermal boundary conditions. Thus,

Equation (9.30) for the axial velocity u, H2

(9.35) for pressure variation p(x)/p,, - ¥ -

(9.39) for mass flow rate 2, and (9.44) H/2 X

of the governing energy equation for y

temperature, are applicable to this case. Fig. 9.10 \];

However, thermal boundary condition at

the surface must be changed. Therefore,

a new solution to the temperature distribution and Nusselt number must be
determined. This change in boundary condition makes it necessary to use a
different mathematical approach to obtain a solution. The solution and
results detailed in [14] will be followed and summarized here.

Temperature Distribution and Nusselt Number. Using Newton’s law of
cooling, the Nusselt number for this case is given by
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2Hh  —2H OT(x,H/2)

Nu = =
k T,(x)-T Oy

9.66a)

Thus, the problem becomes one of determining the temperature distribution
T'(x, y)and the mean temperature 7, (x). One approach to this problem is

to solve the more general case of Graetz channel entrance problem and
specialize it to the fully developed case at x — oo [14]. This requires
solving a partial differential equation. Although axial conduction was
neglected in the uniform heat flux condition, it will be included in this
analysis [14]. Thus energy equation (9.44) is modified to include axial
conduction

or . ,0*T o°T
pcpuazk(—+— : (9.67a)

The boundary and inlet conditions are

0T (x,0) _ 0, (9.68a)
y
T H/2) =T, -2 H g, T H/2) (9.692)
y+1Pr oy
70,y)=T;, (9.70a)
T(0,y)=Tj. (9.71a)
The normalized axial velocity is given by (9.56)
2
S TS Ry (9.56)
u, 1+6Kn|4 H?

Equations (9.66a)-(9.71a) are expressed in dimensionless form using the
following dimensionless variables

_T—TS X y

£ _ 2pu,H
Ti _Ts ,

n=-—, Re , Pe=RePr.

0 = 3 b
H RePr H U

(9.72)
Using (9.56) and (9.72), equations (9.66a)-(9.71a) are transformed to
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Nu=_ 2906.n/2) (9.66)
0, 0on
6 /1 00 1 9% 0%0
— 4+ Kn-— = = , 9.67
1+6Kn(4+ e )ag (Pe)? a§2+an2 oen
M:0, (9.68)
on
O(E,1/2) = _Z_VLKnm’ 9.69)
+1 Pr on
0(0,n) =1, (9.70)
6(0,7)=0. 9.71)

In Section 6.6.2, the criterion for neglecting axial conduction is given
as

Pe = PrRe 2100, ‘

where Pe is the Peclet number. 1
Because the Reynolds number is 7 5
usually small in microchannels, §<
the Peclet number may not be

large enough to justify neglecting 6
axial conduction. By including the

axial conduction term in (9.67), \
the effect of Peclet number on the
Nusselt number can be evaluated. 0 0.04 0.08 012

This problem was solved using Kn

the method of separation of
variables [14]. The solution is
specialized to the fully developed
temperature case far away from

Fig. 9.11 Nusselt number for flow between
parallel plates at uniform surface
temperature for air, Pr=0.7,
y=14, 0, =0y =1 [14]

the inlet. The variation of Nusselt number with Knudsen number for air at
various values of the Peclet number is shown in Fig. 9.11. Examination of
Fig. 9.11 leads to the following conclusions:

(1) The Nusselt number decreases as the Knudsen number is increased.
Thus using no-slip results to determine microchannel Nusselt number can

significantly overestimate its value.



9.6 Analytic Solutions: Slip Flows 389

(2) Axial conduction increases the Nusselt number. However, the increase
diminishes as the Knudsen number increases.

(3) The limiting case of no-slip (K»n = 0) and negligible axial conduction
(Pe =) gives

Nu, =7.5407 . (9.73)

This is in agreement with the value given in Table 6.2.

(4) If axial conduction is taken into consideration at Kn = 0, the Nusselt
number increases to Nu, =8.1174 . Thus the maximum error in neglecting

axial conduction is 7.1%.

(5) With the Nusselt number known, the heat transfer rate, ¢, is
determined following the analysis of Section 6.5

ds =mcp[Tm(x)_Tmi]’ (6-14)

where the local mean temperature is given by

Ph_ .

p

T, (x) =T +(T,,; —T;)exp[—- (6.13)

The average heat transfer coefficient, h, is determine numerically using
(6.12)

E:%Jumw. (6.12)

0

Example 9.3: Microchannel Heat Exchanger:
Uniform Surface Temperature

Repeat Example 9.2 with the

channel surface maintained at T w e
uniform temperature T, 5° yT L
(1) Observations. (i) Since the g L 7x
flow field is assumed inde- " 7
S

pendent of temperature, it
follows that the velocity, mass flow rate and pressure distribution of
Example 9.2 are applicable to this case. (ii) The variation of the Nusselt
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number with Knudsen number for air is shown in Fig. 9.11. (iii) The
determination of Knudsen number as a function of distance along the
channel and Fig. 9.11 establish the variation of Nusselt number. (iv) The
use of Fig. 9.11 requires the determination of the Peclet number.

(2) Problem Definition. Determine the Nusselt number corresponding to
each value of Knudsen number of Example 9.2.

(3) Solution Plan. Use the tabulated data of Knudsen number and pressure
in Example 9.2, compute the Peclet number, and use Fig. 9.11 to determine
the Nusselt number variation along the channel.

(4) Plan Execution.

(i) Assumptions. (1) Steady state, (2) laminar flow, (3) two-
dimensional (no variation along the width W), (4) slip flow regime (0.001 <
Kn <0.1), (5) ideal gas, (6) constant viscosity, conductivity and specific
heats, (7) negligible lateral variation of density and pressure, (8) the
accommodation coefficients are assumed equal to unity, o, = o, =1.0,
(9) negligible dissipation, (10) uniform surface temperature, and (11)
negligible gravity.

(ii) Analysis and Computations. Since the velocity and pressure
distribution of Example 9.2 are based on the assumption of isothermal
conditions, the variation of Knudsen number and pressure with axial
distance x/L for uniform surface flux is the same as that for uniform surface
temperature. Thus, the tabulated results of Example 9.2 will be used with
Fig. 9.11 to determine the variation of Nusselt number with axial distance.
The Peclet number is defined as

Pe = Re Pr, (a)
where the Reynolds number is given by

_pu,2H  (m/HW)2H _ 2m

Re .
U U uw

(b)

Using the data of Example 9.2, equation (b) gives

19.476 x 1072 (kg/s)

Re=2 S S
18.17 x107° (kg/s - m) 90 x10° (m)

=0.0238

Using (a)
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Pe=0.02382x0.713 =0.01698

Examination of Fig. 9.11 shows a small change in the Nusselt number as
Pe is increased from zero to

unity. Thus, we assume that the ‘Xithf (1110 4
. _ conduction| conduction

curve corresppndmg to Pe = 0 YL plp,| Kn Nu Nu
applies to this example. The

.. 0 |2.000 | 0.0250 7.38 6.83
variation of pressure, Knudgen 02 11838 00272 731 677
number and Nusselt number with |4 11662 | 0.0301 | 722 6.70
axial distance x/L is tabulated. 0.6 |1.469 | 0.0340 712 6.60
Also tabulated is the Nusselt 0.8 |1.252 | 0.0399 6.91 6.41
number corresponding to negli- |10 |1.000 | 0.0500 |  6.65 6.18

gible axial conduction (Pe = ).

(5) Comments. (i) Taking into consideration axial conduction, the no-slip
Nusselt number for fully developed Poiseuille flow between parallel plates
with uniform surface temperature is Nu = 8.1174. The tabulated values of
Nusselt numbers are lower due to rarefaction and compressibility. Thus,
no-slip theory overestimates the Nusselt number.

(i1) Neglecting axial conduction underestimates the Nusselt number by less
than 10%.

(iii) The effect of axial conduction is to shift the values of the Nusselt
number for constant surface temperature closer to those for constant
surface flux of Example 9.2.

9.6.5 Fully Developed Poiseuille Flow in Microtubes:
Uniform Surface Flux [20]

We consider now Poiseuille flow in microtubes at uniform surface heat
flux. This problem is identical to Poiseuille flow between parallel plates at
uniform flux presented in Section 9.6.3. Fig. 9.12 shows a tube of radius 7,
with surface heat flux ¢ .
Velocity and temperature

are assumed fully develop- g v Jrqs\L Y " v,
ed. Inlet and outlet pressures
are p; and p,, respective- I -
ly. We wish to determine
the following: 0 Tq” T 1
S
(1) Velocity distribution Fig. 9.12

(2) Nusselt number
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As with pressure driven flow between parallel plates, rarefaction and
compressibility alter the familiar flow and heat transfer characteristics of
macro tubes. Slip velocity and temperature jump result in axial velocity
variation, lateral velocity component, non-parallel streamlines, and non-
linear pressure gradient.

Assumptions. We apply the assumptions made in the analysis of Poiseuille
flow between parallel plates (see Section 9.6.3).

Flow Field. Following the analysis of Section 9.6.3, the axial component
of the Navier-Stokes equations for constant viscosity, compressible flow in
cylindrical coordinates simplifies to

10,00y 1o

ror - or U oz’ ®

where ©v,(r,z) is the axial velocity. Assuming symmetry and setting

o, =1, the two boundary conditions on v, are

0v,(0,z)
6;/- - 09 (b)
0. (r,,2) = 402 0:2) ©
or

Integration of (a) and application of boundary conditions (b) and (c) give
(Problem 9.13):

z

2 2
__ Lo dp 1+4Kn—"—|. (9.74)
4,Ll dz r,

The Knudsen number for tube flow, K#, is defined as

A
Kn=——-. (9.75)
2r,
The mean velocity v, is defined as
(e
U,y =—— | 27rv,dr.
Tr, <%

Substituting (9.73) into the above, gives
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> d
- —L—p(l +8Kn). (9.76)
8u dz

zm

Combining (9.74) and (9.76)

v, :21+4Kn—(r/r0)2. ©.77

1+8Kn

vzm

Note that the Knudsen number varies with pressure along the channel. It
represents the effect of rarefaction on the axial velocity. Following the
derivation of Section 9.6.3 for the analogous problem of Poiseuille flow
between parallel plates, axial pressures distribution is given by (Problem
9.14):

Po p

0 o

2 z
p(z) _ —8Kn, + {8Kn0+ﬁ} J{a— 2Ly +16Kn, (1——}% :

(9.78)

Using (9.76) and (9.78), and assuming7 =7, gives the mass flow rate
(Problem 9.15):

4 2
_ %P p_l_1+16[{n (&—1) (9.79a)
16 uLRT,

o

The corresponding mass flow rate for incompressible no-slip (macroscopic)
flow is given by

”rpo (pl_).

m 9.79b
° 8 uLRT "p, (.758)

Note that since (9.79a) accounts for rarefaction and compressibility, setting
Kn, =0 in (9.79a) does not reduce to the incompressible no-slip case of

(9.79b).

Nusselt Number. Following the analysis of Section 9.6.3, the Nusselt
number is defined as

Nu=—2>—. (d)
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The heat transfer coefficient 4 for uniform surface flux gj is

ho s
T, s T, m
Substituting into (d)
2 14
u=-tods ©)
k(Ts =T,)

where T is tube surface temperature determined from temperature jump
condition (9.11)

2y A 01(r,,2)

T.=T(r ,z)+
* ("%.2) l+y Pr  or ®
The mean temperature 7,, for tube flow is given by
rO
J- v, Trdr
T, =2 (9.80)
rO

Ivzrdr
0

Thus, the solution to the temperature distribution is needed for the
determination of the Nusselt number. Based on the assumptions made,
energy equation (2.24) simplifies to

o k o, oT
c, v, —=——I\r—o)- 9.81)
Plr 0z ror  or (
The boundary conditions are
0T (0,z)
— =0, (9]
or
oT(r, ,z ”
p 00D _ (h)
or
We introduce the definition of fully developed temperature profile
T, ,z)-T(r,
g T002)-T2) o)

- T(ro9z)_Tm(Z) ‘
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For fully developed temperature, ¢ is assumed independent of z. That is

d=¢(r). (9.83)
Thus
99 _
P 0. (9.84)

Equations (9.82) and (9.84) give

%_i I(r,,z)-T(r,z) | _
oz I(r,,z)-T,(2) -

Expanding and using the definition of ¢ in (9.82)

dI'(r,,z) oT

1z — ()

dT(r,,2) dT,(2)
Z

=0. .
- } (9.85)

The relationship between the three temperature gradients 07 (r,z)/ 0z,
dT(r,,z)/dz, and dT, (z)dz will be determined. The heat transfer
coefficient 4, is given by

6T( ,Z)
or )
TT,0-1,) »

where T (z)is given in (9.11). Temperature gradient in (i) is obtained from
(9.81)

I(r,z)=T(r,,2)=[T(r,,2)=T,(2)]¢.

Differentiating the above and evaluating the derivative at  =r,

T2 _ L)

o 7 (%,,2) =T, (2)]—

()
Substituting (j) into (i)

y__MT0,,2)-T,,(2)] dg(r,) ©
T,(2)-T,(2) dr
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Newton’s law of cooling gives another equation for 4

A [
T,(2) =T, (2)

Equating the above with (k) and rearranging

I(r,,z)-T,(z)= . a6(r,) constant. (9.86)

dr
Differentiating

oT(r,,z) B or,,(z)
oz oz

0.

Combining this with (9.85), gives

dT(r,,2) dT,(z) T
dz  dz 0z

(9.87)

Equation (9.87) will be used to replace 07 /0z in partial differential
equation (9.81) with dT,,/dz. Applying conservation of energy to the
element dx in Fig. 9.13 gives

N

2zr,qidz +me T, =mc, [Tm +didz} :

dz
Simplifying ,
s
dr, 2nzr,q; 0
dz mc,, L . dr, &
m m
However, dz
2
m= prr, v, ., (m)
Fig. 9.13

where v, is the mean axial velocity.

Substituting (m) into (1)
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Al _ 245 (9.88)
dz  pc,r,v.,
Substituting (9.88) into (9.87)

dz dz 0z PC,lyv,,

Equation (9.89) shows that 7(r,z), T,,(z) and T;(z) vary linearly with
axial distance z. Substituting (9.89) into (9.81)

0Ty 245 v- (9.90)
or - or” kr, v,,
Equation (9.77) is used to eliminate v, /v, in the above
" 2
Q(rﬁ_T L S /S PN (9.91)
or  or” 1+8Knkr, r?
Integrating twice
T(r,z):q—‘g (1+4Kn)r* i +f(2)y+g(z). @)
(1+8Kn)kr, 42
Boundary condition (g) gives
f(z)=0.
Solution (n) becomes
T(r,z) [ (1+ 4Kn)r? 1 +g(z).  (9.92)
2 T 0 8Kn)kr, 4,2 | 8

Boundary condition (h) is automatically satisfied. To determine g(z) the
mean temperature 7, is evaluated using two methods. In the first method,
(9.88) is integrated between the inlet of the tube, z =0, and an arbitrary
location z
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m 20" z
dr, =—=s Idz,

i PCpUzm’s

where
7,0)=T,;. (9.93)
Evaluating the integrals
2 n
7, =—2s 7 (9.94)
pcpvzmro

In the second method, 7,, is evaluated using its definition in (9.80).
Substituting (9.74) and (9.92) into (9.80) and simplifying

JJG 1+4K ——2 S (— )r2—L +g(2)} rd
A " A+ 8Kmir, |8 TR g 2 T ED T

o
m = 7
J {1 + 4Kn —} rdr
0 To

Evaluating the integrals, gives

m

_ 457, : ‘:16Kl/12 +EKn+l}+g(Z), (9.95)
k(1+8Kn) 3 24

Equating (9.94) and (9.95), gives g(2)

2 ”n ”n
g@) =T+ — By Tsle {161@2 +5Kn+l](9.96)
PERTVzm k(1+8Kn) 3 24

Surface temperature 7, (7,,z) is determined using (f) and (9.92)

4 "
Ts(ro,z):L[Kn+i}+ Y Do gt o(z). (9.97)
k(1+8Kn) 16 y+1 kPr

Finally, the Nusselt number is determined by substituting (9.95) and (9.97)
into (e)
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Nu=—, 3 1 ; 14 71 4y 1
(Kt 2)- 16kt ke L |+ L K
(1+8Kn) 16" (1+8Kn)? 3 24| y+1Pr

(9.98)

Using (9.98), the Nusselt number variation with Knudsen number for air,
with y =14 and Pr=0.7, is plotted in Fig. 9.14. The effect of
rarefaction and compressibility is to decrease the Nusselt number.

As with Poiseuille flow 4.5
between parallel plates, the \
Nusselt number for fully 4.0
developed flow depends on
the fluid and varies with 3.5
distance along the channel.  Nu \
The variation of Nu with 3.0
respect to z in (9.98) is T~
implicit in terms of the 23
Knudsen number, which is 20
a function of pressure. The 0 0.04 0.08 0.12
variation of pressure with Kn

axial distance can be Fig. 9.14 Nusselt number for air flow through
determined following the tubes at unifrorm surface heat flux

. for air, =1.4, Pr=20.7, 0,=07=1,[20
procedure of Section 9.6.3. orair g u=07=1,[20]

The corresponding no-

slip Nusselt number, Nu,_, is obtained by setting Kz =0 in (9.98)

0°

48

Nuty == 4.364. (9.99)

o

This agrees with equation (6.55) of the macro tube analysis of Chapter 6.
Example 9.4: Microtube Heat Exchanger: Uniform Surface Flux

Microtubes of radius r, =0.786 um and length L =10mm are used to
heat air at T, =20°C. Assume uniform surface temperature and fully
developed conditions; determine the axial variation of Nusselt number.
Inlet and outlet pressures are:

p; = 315kPa = 315,000kg/s*—m
P, =105kPa = 105,000kg/s*~ m
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(1) Observations. (i) This is a pressure driven Poiseuille flow problem
through a tube. (ii) Axial Nusselt number variation is given in equation
(9.98) in terms of the local Knudsen number, Kn. Local Knudsen number
depends on local pressure. It follows that pressure distribution along a tube
must be determined. (iii) Pressure distribution is given by equation (9.78).

(2) Problem Definition. Determine the axial pressure distribution in a
microtube for fully developed Poiseuille flow.

(3) Solution Plan. Use the results of Section 9.6.5 to compute axial
variation of pressure, Knudsen number, and Nusselt number.

(4) Plan Execution.

(i) Assumptions. (1) Steady state, (2) laminar flow, (3) two-
dimensional (no angular variation), (4) slip flow regime (0.001 < Kn <0.1),
(5) ideal gas, (6) constant viscosity, conductivity and specific heats, (7)
negligible radial variation of density and pressure, (8) the accommodation
coefficients are assumed equal to unity, o, = o, =1.0, (9) negligible
dissipation, (10) uniform surface flux, (11) negligible axial conduction, and
(12) negligible gravity.

(ii) Analysis. Assuming isothermal flow, The Nusselt number, Nu,is

given by
Nu=—4 3 1 : 14 77 4y 1
2 (Kn+>)———— | 16Kn* +—Kn+— |+~ kn
(1+8Kn) 16" (1+8Kn)? 3 24| y+1Pr
(9.98)

The local Knudsen number, Kn, depends on the local pressure p(z)
according to

Kn=2o#_ |Zpr (a)
2r, 2r,p\2

o

2 2
PE) _ _gkn, + {81@0 +ﬁ} +{(l—p—i2)+l6Kn0(l—ﬁ E
Po

o 0 o

(9.78)

(iii) Computations. Equation (9.78) is used to determine the axial
variation of pressure. Equation (a) gives the corresponding Knudsen
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numbers. The Nusselt number is determined using (9.98). Air properties
are evaluated at 20° C. Computations are based on the following data;

r, =0.786 ym

L=10mm

p; = 315x10° kg/s* —m

p, =105x10% kg /s> —m
Pr=0.713

R=2871/kg-K =287m?/s* -K
T=T,=T,=20°C

y=14

1 =18.17x10"kg/s —m

Substituting into (a)

Kn - 18.17x107° (kg /s —m)
"~ 2%0.786x10 *(m)105x10° (kg /s” —m)
=0.04

\/’2’287(m 2 /82 -K)(293.15)(K)

Axial pressure variation is obtain from (9.78)

PG _ gy0.04+ \/(8 x 0.04+3) + [1 —(3)* +16x0.05(1 —3)]%
Po

This gives

P _ 435, \/1 1.0224-928=% . (b)
Po L

Equations (a), (b), and (9.98) are used
to tabulate pressure, Knudsen number ZL| PP, | Kn Nu

and Nusselt number at various values of 0 13.000 | 0.0133 | 4.182
z/L. 0.2 12.708 | 0.0148 | 4.161

0412384 | 0.0168 | 4.130
(iii) Checking. Dimensional check: 0.6 |2.016 | 0.0199 | 4.083
Computations confirmed that pressure 0.8 1.577 | 0.0254 | 3.997
ratio, Knudsen number and Nusselt 1.0 | 1.000 | 0.0400 | 3.766
number are dimensionless.

Limiting check: No slip macrochannel Nusselt number is obtained by
setting Kn = 0 in (9.98), giving Nu = 4.364. This is close to 4.182 at
z/ L = 0. The difference is due to compressibility effect.
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(5) Comments. No-slip Nusselt number for fully developed Poiseuille flow
through tubes at uniform surface heat flux is Nu = 4.364. The tabulated
values for this example show that no-slip theory overestimates the Nusselt
number if applied to microchannels.

9.6.6 Fully Developed Poiseuille Flow in Microtubes:
Uniform Surface Temperature [14]

The wuniform surface flux of

Section 9.6.5 is repeated with the 7 r
tube maintained at uniform surface o
temperature 7, as shown in Fig. 3&

9.15. The assumptions made in the z #

solution of the uniform flux >
condition are applied to this case.
The flow field solution is identical Fig. 9.15

for the two cases since it is based

on isothermal flow condition. Changing the boundary condition from
uniform flux to uniform temperature requires using a different
mathematical approach to obtain a solution. Results obtained in [14] are
summarized here.

Temperature Distribution and Nusselt Number. The Nusselt number is
given by

2r h_ —=2r, 0I(r,,2)
k T (2)-T, or

(9.100a)

This requires the determination of the temperature distribution 7'(r,z) and
the mean temperature 7),(z). Following the analysis of Section 9.6.4, the
solution is based on the limiting case of Graetz tube entrance problem.
This approach requires solving a partial differential equation taking into
consideration axial conduction. Energy equation (9.81) is modified to
include axial conduction

oT kﬁ(aT

2
k(a—T . (9.101a)
r or 0z2

sz

The boundary and inlet conditions are
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aT0,2) _ . (9.102a)
or
T(r,,2)=T, _ 2y 2 g, 0T 02) (9.103a)
y+1 Pr or
T(r,0)=T;, (9.104a)
T(r,o)=T,. (9.105a)
The normalized axial velocity is given by (9.76)
1+4Kn—(r/r,)*
v: _ IHakn=(r/r,)” (9.77)
v 1+8Kn

zm

Equations (9.100a)-(9.104a) are expressed in dimensionless form using the
following dimensionless variables

T-T 2
0= s g2 R=L Re=ZP"o  po_ Repr.
T, =T, 2r,RePr I, u

o

(9.106)
Using (9.77) and (9.106), equations (9.100a)-(9.105a) are transformed to

N = —2200:8) (9.100)
6, OR
2 2
1+4Kn—R" 00 1 0 (p00y 1 070 444
202 +16Kn) 8 ROR" OR"  (2Pe)? o>
9000¢) _ . (9.102)
oR
0(1,&) = - 2y @89(1’5), (9.103)
y+1 Pr  OR
O(R,0) =1, (9.104)

O(R, ) =0. (9.105)
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Equation (9.100) shows that 45 |
axial conduction becomes Pe=0
important at low Peclet 40 N 1
numbers. This problem was ‘ 5 00
solved using the method of I~

separation of variables [14]. 35

The infinite series solution is Nu \\

truncated to determine the

3.0
Nusselt number for the fully
developed case. Fig. 9.16 \§
shows the effect of Peclet 25
and Knudsen numbers on the
Nusselt number. Neglecting 20

axial conduction corresponds 0 0.04 0.08 0.12

. Kn

to Pe=o. A

© € . ccording . to Fig. 9.16 Nusselt number for flow through
Fig. 9.16, axial conduction

) tubes at uniform surface tempera-
increases the Nusselt number ture for air, Pr = 0.7 [14]

while rarefaction decreases

it. Although axial conduction increases the Nusselt number, its effect
diminishes as the Knudsen number increases. The maximum increase
corresponds to the no-slip condition of Kn=0. Fig. 9.16 gives the
limiting case of no-slip and negligible axial conduction (Pe = ) as

Nu, =3.657 . (9.107)

This agrees with equation (6.59) obtained in Chapter 6. If axial conduction
is taken into consideration at Kn = 0, the Nusselt number increases to
Nu, =4.175. Thus the maximum error in neglecting axial conduction is
12.4%.
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PROBLEMS

The speed of sound, ¢, in an ideal gas is given by

c=4yRT ,

where y is the specific heat ratio, R is gas constant and 7 is temper-

ature. Show that
M
Kn= |~ y —,
2° Re

where M is mach number defined as

M=V/c.
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Problems 407

Reported discrepancies in experimental data on the fiction factor fare
partially attributed to errors in measurements. One of the key
quantities needed to calculate fis channel diameter D. Show that

foch.

Consider shear driven Couette flow between parallel plates separated
by a distance H. The lower plate is stationary while the upper plate
moves with a velocity #,. Assume that no heat is conducted through
the lower plate and that the upper plate is maintained at uniform
temperature 7. Taking into consideration dissipation, velocity slip
and temperature jump, determine the Nusselt number. Assume steady
state ideal gas flow.

A large plate moves with constant velocity u parallel to a stationary
plate separated by a distance H. An

ideal gas fills the channel formed / T, ug
by the plates. The stationary plate ———>
is at temperature 7, and the LU 5
moving plate is at temperature 7T . —> H
Assume laminar flow and take into X
consideration  dissipation  and \ T

o

velocity slip and temperature jump:

(a) Show that temperature
distribution is given by

y+1Pr H

o

2 2

T.-T

L Mg . 27ﬁ+l_y72+ s~ T, 2y Kn_y 1.
2k(1+2Kn)* | y+1Pr H H*| | ,2r Kn

y+1 Pr

(b) Determine the heat flux at the plates.

Consider Couette flow between two parallel plates separated by a
distance H. The lower plate moves with velocity u#g; and the upper
plate moves in the opposite direction with velocity #g,. The channel
is filled with ideal gas. Assume velocity slip conditions, determine
the mass flow rate. Under what condition will the net flow rate be
zero?

9.6 Determine the frictional heat generated by the fluid in Example 9.1.
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9.7

9.8

9.9

9 Convection in Microchannels

Consider shear driven T
Couette flow between A £
parallel plates. The upper
plate moves with velocity u H
ug, and is maintained at y
uniform temperature 7. T X qu T

The lower plate is heated

with uniform flux ¢,. The fluid between the two plates is an ideal
gas. Taking into consideration velocity slip, temperature jump, and
dissipation, determine the temperature of the lower plate.

Pressure distribution in Poiseuille flow between parallel plates is given
by

2 2
PO _ _6kn + [61@0 +&} +|:(1—p—12)+12Kn0(1—& F.
Po Po Po L
(9.35)
This equation was derived in Section 9.6.3 using the continuity
equation to determine the y-velocity component v. An alternate
approach to derive (9.35) is based on the condition that for steady
state the flow rate is invariant with axial distance x. That is

H/2
dm :i{ZWJ‘ pudy} =0.
dx 0

o

dx

where W is channel width. Derive (9.35) using this approach.

One of the factors affecting mass flow rate through microchannels is
channel height H. To examine this effect, consider air flow through
two microchannels. Both channels have the same length, inlet
pressure and temperature and outlet pressure. The height of one
channel is double that of the other. Compute the mass flow ratio for
the following: H; =5um, H, =10 um, T; =30 °C, p, =420 kPa,
p, =105 kPa.

9.10 A micro heat exchanger consists of rectangular channels of height

H =25pum, width W =600um,and length L =10 mm. Air enters
the channels at temperature 7; =20 °C and pressure p; = 420 kPa.
The outlet pressure is p, =105 kPa. The air is heated with uniform
surface heat flux ¢§ =1100 W/m?. Taking into consideration
velocity slip and temperature jump, assume fully developed

conditions and compute the following:
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(a) Mass flow rate, m.

(b) Mean outlet temperature, 7.

(c) Heat transfer coefficient at the outlet, 4(L).
(d) Surface temperature at the outlet, 7 (L).

Rectangular microchannels are used to remove heat from a device at
uniform surface heat flux. The height, width, and length of each
channel are H =6.29 ym, W =90 um, and L =10 mm, respective-
ly. Using air at 7; = 20°C as the coolant fluid, determine the mass
flow rate and the variation of

Nusselt number along the qfs'l w 7
channel. Inlet and outlet y 2
pressures are p; =410 kPa, ‘ T/,x [

p, =105 kPa.  Assume L= =

steady state fully developed i T%

slip flow and temperature
jump conditions.

9.12 A micro heat exchanger consists of

rectangular  channels of  height

H=6.7ym, width W =400 um, and

length L=8mm. Air enters the HE A ]
channels at temperature 7; =30 °C and n T

pressure  p; =510 kPa. The outlet

pressure is p, =102kPa. Channel surface is at uniform temperature
T, =50°C. Assume fully developed flow and temperature, compute:

(a) Mass flow rate, m.

(b) Heat transfer coefficient at the inlet, /(0),and outlet, 2(L).
(c) Mean outlet temperature, 7,,,.

(d) Surface heat flux at the outlet, g5 (L).

9.13 Consider isothermal Poiseuille flow of gas in a microtube of radius

r,. Taking into consideration velocity slip, show that the axial
velocity is given by

2 2
_ o Wy agn T (9.74)
4/,1 dz r2

o

z

9.14 Consider fully developed isothermal Poiseuille flow through a

microtube. Follow the analysis of Section 9.6.3 and use the continuity
equation in cylindrical coordinates to derive the following:
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(a) The radial velocity component v,.
3 3
1 1 1
Aupoz| dz|2r, 4y 03 r,
where Kn(p) is the local Knudsen number.

(b) The local pressure p(z)

2 2
PG _ ggn + [8Kn0+&} -5y 116 Kn, - L1y | 2
pO po po pO L

(9.78)

where p; is inlet pressure, p, outlet pressure, and Kn, is the outlet
Knudsen number.

9.15 Taking into consideration velocity slip, show that the mass flow rate
for laminar, fully developed isothermal Poiseuille flow in a microtube

is given by
T ryps | P pi
m=-— Lo | L _1116Kn,(—--1)] . (9.79a)
16 uLRT 3 Po
9.16 Pressure distribution for fully developed Poiseuille flow through tubes
is given by
2 2
PG _ gk + {SKnO +ﬁ} +l =20y +16Kn,0- L1y |2
Po Po Po Po L
(9.78)

Derive this equation using the condition that, for steady state, the mass
flow rate is invariant with axial distance z. That is
rO

dm_d 2n | pv,rdr|=0.
dz dz :

9.17 Air is heated in a microtube of radius7, =5 um and length L =2 mm.
Inlet temperature and pressure are 7; =20 °C and p; = 600 kPa.
Outlet pressure is p, =100 kPa. Uniform surface flux, ¢g =1500
W/m?, is used to heat the air. Taking into consideration velocity slip
and temperature jump and assuming fully developed flow and

temperature, compute:



Problems 411

(a) Mass flow rate, m. . "

(b)Mean outlet temperature, v ‘qu vy r v,
T,,.

(c) Heat transfer coefficient B _

at the outlet, #(L). I

(d) Surface temperature at 4s

the outlet, 7 (L).

9.18 Determine the axial variation of the Nusselt number and heat transfer
coefficient of the microtube in Problem 9.17.

9.19 A micro heat exchanger uses microtubes of radius r, =3 um and
length L =6 mm. Inlet air temperature and pressure are 7T; =20 °C
and pressure p; = 600 kPa. Outlet pressure is p, =100 kPa. Each
tube is maintained at

uniform surface tempera- d r r
ture T, =60 °C. Taking ’
into consideration veloc-  --F—=rmi——r 1
ity slip and temperature
jump and assuming fully N I, T

N

developed flow and tem-
perature, determine the following:

(a) Heat transfer coefficient at the inlet, 4£(0), and outlet, /(L).
(b) Mean outlet temperature 7,,, .

9.20 Air enters a microtube at temperature 7; =20 °C, and pressure
p; =600 kPa. Outlet pressure is p, =100 kPa. Tube radius is
v, =lum and length is L =6 mm. The surface is maintained at
uniform temperature 7, =40 °C. Taking into consideration velocity
slip and temperature jump and assuming fully developed conditions,

determine the variation along the tube of the following:
(a) Nusselt number, Nu(z).

(b) Heat transfer coefficient, /4(z).
(c) Mean temperature, 7, (z).
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APPENDIX A

Conservation of Energy: The Energy Equation

The derivation of energy equation (2.15) in Y dz
Section 2.6 is presented in detail. We g
consider the element dxdydz in Fig. A.l 2 dx
and apply conservation of energy (first law
of thermodynamics). We assume contin- / c
uum and neglect nuclear, electromagnetic z
and radiation energy transfer. Our starting Fig. A.1
point is equation (2.14) [1]:
A B
Rate of change of Net rate of internal and kinetic
internal and kinetic —  energy transport by convection
energy of element
C > (2.14)
Net rate of heat added __ Net rate of work done by
by conduction element on surroundings

Note that net rate in equation (2.14) refers to rate of energy added minus
rate of energy removed. We will formulate expressions for each term in
equation (2.14).

(1) A =Rate of change of internal and Kinetic energy of element

The material inside the element has internal and kinetic energy. Let

u = internal energy per unit mass
V' = magnitude of velocity
Thus

A= %[p @+ V2 12)|dvdvds . (A-1)
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(2) B = Net rate of internal and kinetic energy transport by convection

(i +V?12) pwdxdy + 4 [(a+7? /2)pW] dxdydz
Z

[}
[}
@+V?/2) pudydz : G+V?12) pudydz +
1
—> | a .
dy T 2{@+r?/2)pu]dsdvaz
\N_[~"""""- . Ox
dZ dx \\
T (G +V?12) pwdxdy
Fig. A.2

Mass flow through the element transports kinetic and thermal energy. Fig.
A.2 shows energy convected in the x and y-directions only. Not shown is
energy carried in the z-direction. To understand the components of energy
transport shown in Fig. A.2, we examine the rate of energy entering the
dydz surface. Mass flow rate through this area is pudydz . When this is
multiplied by internal and kinetic energy per unit mass, (7 + V2 /2), gives
the rate of energy entering dydz due to mass flow (21 + V% /2)pudydz.
Similar expressions are obtained for the energy transported through all
sides. Using the components shown in Fig. A.2 and including energy
transfer in the z-direction (not shown) we obtain

B= +V?/2) pudydz+Gi+V?/I2)vdxdz+ @ +V?12) pwdxdy
—@G+V? /2)pudydz—§[(ﬁ +V? /2)pu]dxdydz
X

—@+V?/2) pvdxdz —83[(& +V? /Z)pv]dxdydz
y

—@+V? /2) pwdxdy —g[(ﬁ +V? /2)pw]dxdydz.
z
Simplifying

B=- i[(z?+V2 /2)pu]+i[(a+r/2 /2)pv]+i[(12+V2 /2)pw] x dxdyde.
ox oy Oz
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Making use of the definition of divergence (1.19) the above becomes
B=—1{V.|a+v?/2)pr| fxva:. (A-2)

(3) C = Net rate of heat addition by conduction

Let oa"
(q; + aqy dy)dxdz

q" =heat flux = rate of heat conduc- g J

tion per unit area qydydz | g, (g7 + % )dydz
— > Ox
Fig. A.3 shows the z-plane of the dx
element dxdydz. Taking into consid- T "
. L. . . q'dxdz
eration conduction in the z-direction, 7
the net energy conducted through the Fig. A.3

element is given by

a n
C =g dydz + qdxdz + q dxdy — (g + 0:]; dx)dydz

"

0’7 ”
—(q+ ﬁiyydy)dxdz o a;z d=)dxdy.

z
Simplifying

" 6 4 "
C=- 04 + 9y I 94 dxdydz .
ox 0Oy 0z

Introducing the definition of divergence

C=—V. q_" )dxdydz . (A-3)
(4) D = Net rate of work done by the element on the surroundings
Rate of work is defined as force x velocity. Thus
Rate of work = force x velocity.
Work done by the element on the surroundings is negative because it
represents energy loss. We thus examine all forces acting on the element
and their corresponding velocities. As we have done previously in the

formulation of the equations of motion, we consider body and surface
forces. Thus
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D =Dy, + Dy, (A-4)
where
D), = Net rate of work done by body forces on the surroundings

D¢ = Net rate of work done by surface forces on the surroundings

Consider Dy, first. Let g,, g, and g be the three components of

gravitational acceleration. Thus Dy, is given by

Dy=—-(gu+g,v+g,w)dxdydz,
or

Dy=-p(V-g) (A-5)

The negative sign is introduced so that when the product of gravity and
velocity is positive, work is done on the element and when it is negative,
work is done by the element.

Next we formulate an equation for rate of work done by surface stresses
Dy . Fig. A.4 shows an element with some of the surface stresses. For the
purpose of clarity, only stresses on two faces are shown. Each stress is
associated with a velocity component. The product of stress, surface area

and velocity represents rate of work done. Summing all such products, we
obtain

u
> Ty
O € 4
¥ Y
Tz |dz
dy
dx
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8
Dg=—u +Z—udxj( - axx dx}dydz u(- o, dydz

- w+——d0( ”cu}wk— w(— 17, )dydz

[roZafe,

_ +_dzj(o' +—= Tz dzjdxdy w( O, )dxdy

dx]dydz - (— Tyy )dydz

Oz ¥ Z

or,
- v+@dz T, + aydz]dxdy—v(—rzy)dxdy

ov 6(Tyy
—|lv+ 50’)} o,y + Wdy)dxdz - v(— o )dxdz

ou aTyx
—|u+ 5dy Ty §dy]dxdz - u(— Ty )dxdz

or,,
—|w+ Z—W dyj[r ye T 6_; dy]dxdz - w(— Ty, )dxdz

y

—|u+ a—”dzj{rzx + a(;zx dzjdxdy —u(- 1, )dxdy.
Z

oz

Note that negative sign indicates work is done by element on the
surroundings. Neglecting higher order terms the above simplifies to

Dy =—u 0, Ot L Oty Y+ 0 + 0ty +
Ox oy oz ox Oy oz

or
W(arx2+ yy+ao'zzj+ o i H. 8_u]+

ox Oy oz Yo Moy Toz

T @-FO' —+7 & +| 7 6—W+T a—W+O' ow dxdydz .
Yo oy Ter o oy oz

(A-06)
Substituting (A-5) and (A-6) into (A-4)
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v-g) a
D=—p\V - g)dxdydz - a—x(uaxx + 0T, +WTy )+

%(uryx +00,, +Wr,)+ a%(urzx +0T,, + WO, )}dxdydz. (A-7)

Substituting (A-1), (A-2), (A-3) and (A-7) into (2.14)

8 A 1 2 ~ 1 2 i o > -
— +=V||==-V-[lu+=V"|pV | =V-qg"+plV-g|+
atH” 2 H H" 2 jp} i+olfg)

0 0
a(uaxx +UT,, + W) +5(uryx +00,, +WT,,)

+£(urzx+vrzy +wo,,). (A-8)
0z

Note that equation (A-8) contains the nine normal and shearing stresses that
appear in the formulation of the momentum equations (2.6). We will now
use (2.6) to simplify (A-8). Multiplying equations (2.6a), (2.6b) and (2.6¢)
by the velocity components u, v and w, respectively, and adding the
resulting three equations, we obtain

Du Dv Dw
Yo, u—t+v—+w— :p<ugx+vgy+wgz)

+u[ao-xx + 8Z'yx + aTZXJ-'_U[dey + aO'yy + arZY]+M{asz + a‘[yz + 80‘22 ]

Ox oy 0z Ox oy 0z Ox oy 0z
(A-9)
However,
2
D D D D
o w0 P _p DV (A-10)
Dt Dt Dt 2 Dt
and

(A-11)

I
=
oQ

(ugx +0g, + wgz)

Substituting (A-10) and (A-11) into (A-9)
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00 N 0T N aszj+v(aTxy 90, N arzy]

(CRh

+
ox oy oz Ox oy oz

( az-xz aTyZ aO-zz j
+ W + +

DV -
—=pV-g+u
g

ox oy oz
(A-12)

Returning to (A-8), the first and second terms are rewritten as follows

0 .~ 1 2 .~ 1 2 8,0 a(,\ 1 2]
—|plu+=V"||=lu+=V"|—+p—|u+=V~"|, A-13
az{p( 2 ﬂ ( 2 jaz Pl T2 (A1)
~ 12 5 ~ 1. 5 — - ~ 1 5
V. u+EV oV |= u+5V V.-pV+pV-V u+5V . (A-14)
Substituting (A-12), (A-13) and (A-14) into (A-8)
B[mezj
0 Dt 2
| 8 fa(. 1 1 5Y]
B S 7 /AR v N 7 N il [ S 7 I 7 v/ e S V.q"
[ +2Vj[at+v ij p{at[HZV}FV V[u+2VﬂVq

+£DV2+ o a—u+r 6—u+r é’_u+ T @+a @+z’ g
2 Dt T Mo Ta Yoax oy

<>

ow ow ow _0
+ sza‘l"[yza‘l‘o'zzg =V.

The above equation simplifies to

D—ﬁ——V-_’7+ o a—M+z' a—u+2' 8_u+ T @+0' a—v+r g
th 1 Yo oy Yoz Yo oy Yoz

ow ow ow
+[sza—x+fyzg+0'22 gj (A—15)

Equation (A-15) is based on the principle of conservation of energy. In
addition, conservation of mass and momentum were used. Note that the
only assumptions made so far are: continuum and negligible nuclear,
electromagnetic and radiation energy transfer. We next introduce
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constitutive equations to express the heat flux ¢” in terms of the
temperature field, and the normal and shearing stresses in terms of the
velocity field. For the former we use Fourier’s law (1.8) and for the latter
we apply Newtonian approximation (2.7). Application of Fourier’s law
(1.8) gives the heat flux in the n-direction as

oT

"=k, —, A-16
9n " (A-16)

where k,, is thermal conductivity in the n-direction. Assuming isotropic

material, we write

ky =k, =k, =k, =k. (A-17)

Using the operator V , equation (A-16) is expressed as

—

q"=-kVT. (A-18)
Substituting (A-18) and (2.7) into (A-15) and rearranging, we obtain
Dii _
—ijz—V-kVT—pV~V+,u¢, (A-18)

where # internal energy and @ is the dissipation function defined as

(aujz oo (awf oo oul [au awT
Q=2 |—| +|—| +|—| |[*|=—F+=—]| +|=—+—
ox oy 0z ox Oy oz dx

2 2
+ @+@ _2 8_u+@+8_w . (A-19)
oy Oz 3|ox oy Oz

Equation (A-18) is based on the following assumptions: (1) continuum, (2)
negligible nuclear, electromagnetic and radiation energy, (3) isotropic
material, and (4) Newtonian fluid.

The next step is to express (A-18) first in terms of enthalpy and then in
terms of temperature. Starting with the definition of enthalpy 4
. P
h=u+—. (A-20)
yo,
Differentiating (A-20)
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Dh _Di 1Dp_P Dp (A21)
Dt Dt p Dt p* Dt

Substituting (A-21) into (A-18)

0
R f—J%
pD_h:v-kVT+@+y@—£[@+pv-I7j. (A-22)
Dt Dt p\ Dt

Application of the continuity equation (2.2¢) to (A-22) eliminates the last
two terms. Thus (A-22) simplifies to

Dh Dp
— =V AkVT+—+ ud. (A-23)
P Dt Dt “
We next express enthalpy in (A-23) in terms of temperature using the
following thermodynamic relation [2]

. 1
dh = c,dT + ;(1 — BT )dp, (A-24)

where [ is the coefficient of thermal expansion, defined as

5= _l(a_pj . (A-25)
p\aT),
Taking the total derivative of (A-24)
Dh DT 1 D
—hch—+—(1—ﬁT)—p. (A-25)
Dt Dt p Dt
Substituting (1-25) into (A-23)
DT Dp
c,— =V -kVT + T —+ ud. 2.15
Per T, AT StH (2.15)

REFERENCES
[1] Bird, R.B., W.E. Stewart and E.N. Lightfoot, Transport Phenomena,
John Wiley & Sons, 1960.

[2] Van Wylen, G. J. and R.E. Sonntag, Fundamentals of Classical
Thermodynamics, 2ndd ed., John Wiley & Sons, 1973.



422 APPENDIX B: Pohlhausen’s Solution

APPENDIX B: POHLHAUSEN’S SOLUTION

The transformed energy equation is

d’0 Pr

i —f( )—= (4.61)
The boundary conditions are
6(0)=0, (4.62a)
O(o)=1, (4.62b)
O(0)=1. (4.62¢)

Note that boundary conditions (4.60b) and (4.60c) coalesce into a single
condition, as shown in (4.62b) and (4.62c). Equation (4.61) is solved by
first separating the variables as

),
do ~ 5 /Umdn.
d
Integrating the above from 7 =0 to 7
4Gy o {
J Y Jf(n)dn-
0 d777 0
Evaluating the integral on the left-hand-side
do .
dZZ» ) _% If ndn:
dn 0

Taking the anti log of the above
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7]
do _doe©) | Pr
dn - dn eXp{ 5 '[f (n)dn} :

Integrating again from 77 to 77 = oo and using boundary condition (4.62b)

] 0 77
J‘dﬁz@“‘ exp —ﬁj‘f(n)dn dn.
n g n 2 0

0 77
9(n)=1—@j explﬁ If(ﬂ)dn] dn. (a)
noJ 2 )

The constant d@(0)/dn in (a) is unknown. It is determined by satisfying
boundary condition (4.62a), which gives

This gives

00 77
d0(0) _ j exp-ﬂj fopdn| dnt . )
dﬂ 0 2 0

Substituting (b) into (a)

00 r 77 7]

] Pr ]
eXpl =~ S(mdn | dn
077 L 00 |
O(n)=1- P 7 - - ()
Pr
eXpl =~ f(mdn | dn
) L 00 |

The integral in (¢) can be simplified using the transformed momentum
equation (4.44)

d’ d’
2—{ + f(n) —j: =0. (4.44)
dn dn

Solving (4.44) for f(n) and integrating
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d’f d*f

1 dn3 dn2
L dn = dn =1 .
5 J_O”f(n) " Jj ey n ndzf(o)

dnz dnz

Multiplying both sides of the above by Pr and taking the anti log of the

above

P’
f

7
d
w{f;jﬂwm}————g.
0

V%@}
| dn’
Substituting (d) into (c) gives
o 5 T Pr
d-f dn
O(n) =1 7 Ldn” |
77) T o ° - 5 Pr
af dn
d Ldn |

(d)

(e)

Similarly, substituting (d) into (b) gives the temperature gradient at the wall

) Pr

Fifmq

o) _ | dn’

d77 B > Pr ’
2
n Ldn
2
The constant % in (f) is obtained from Table 4.1
n

d*f(0)

S~ =0.332.
dn

(4.63)
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Thus (f) becomes

do©) _ [0332]"

dn S PV ’
j ﬁ dn
d772

(4.64)
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APPENDIX C

LAMINAR BOUNDARY LAYER FLOW OVER SEMI-INFINITE PLATE:
VARIABLE SURFACE TEMPERATURE [1]

Surface temperature varies with distance along the plate according to
T,(x)-T, =Cx". 4.72)

Based on the assumptions listed in Section 4.3, temperature distribution is
governed by energy equation (4.18)
or ~or  oT
U—+v—=a——.

(4.13)
Ox oy o’

The velocity components # and v in (4.18) are given in Blasius solution

w9 (4.42)
Ve dn

o L[v( @ ) )

Vo 2\Vyx\ dn

The boundary conditions are:

T(x,0)=T, =T, +Cx", (4.74a)
T(x,0)=T,, (4.74b)
T70,y)=T,. (4.74¢)

The solution to (4.18) is obtained by the method of similarity
transformation. We define a dimensionless temperature € as

T-T
0= 5 (a)
T, -T,
We assume that
O(x,y)=0(n), (b)

where
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Voo
n=y : (©)
VX

Equation (4.18) is transformed in terms of #(77) and 7. Equation (a) is
solved for T(x,y)

T=T,+(T,-T,)0.
Substituting (4.72) in the above
T=T,+Cx"-Cx"0. (@

The derivatives in (4.18) are formulated using (b)-(c) and the chain rule:

o _ Cnx"1 —Cnx"19 - Cx" %
ox Ox
However,
20 _doon__n do
Ox dn ox 2xdn
Substituting into the above
or _ Cnx"! —Cnx"_16?+£xn_177ﬁ. (e)
ox 2 dn
Similarly
A __ndOon o [V do 0
oy dn oy vx dn
2 2
V.
a_T — —Cx"! ;‘Oﬁ (2)

Py v dn?
Substituting (4.42), (4.43) and (¢)-(f) into (4.18)
Ve 9 {Cnxn_1 —Cnx"'0+ < x" 1y ﬁ}
dn 2

Ve | v | df 0 Voo dO V, d*6
—-—— & | = —a——F.
2 \V,x| dn vx dn VX dn?
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This simplifies to

2
d f +11Pri(1—¢9)+ﬂf(77)ﬁ =0, (4.75)
dn dn 2 dn

where

pr="

REFERENCE

[1] Oosthuizen, P.H. and D. Naylor, Introduction to Convection Heat
Transfer Analysis, McGraw-Hill, 1999.



APPENDIX D: Properties of Air at Atmospheric Pressure

APPENDIX D: Properties of Air at Atmospheric Pressure

429

T C, P U v k Pr
°C  Jkg-°C kg/m® kg/s-m m*/s W/m-°C

—40  1006.0 1.5141 15.17x10°° 10.02x107° 0.02086 0.731
—-30  1005.8 1.4518 15.69x10°° 10.81x10°° 0.02168 0.728
-20  1005.7 1.3944 16.20x10°° 11.62x10°° 0.02249 0.724
—10  1005.6 1.3414 16.71x10°° 12.46x10°° 0.02329 0.721
0 1005.7 1.2923 17.20x10°° 13.31x107° 0.02408 0.718
10 1005.8 1.2467 17.69x107° 14.19x107° 0.02487 0.716
20 1006.1 1.2042 18.17x10°° 15.09x107° 0.02564 0.713
30 1006.4 1.1644 18.65x107° 16.01x107° 0.02638 0.712
40 1006.8 1.1273 19.11x107° 16.96x107° 0.02710 0.710
50 1007.4 1.0924 19.57x107 17.92x107° 0.02781 0.709
60 1008.0 1.0596 20.03x10° 18.90x107° 0.02852 0.708
70 1008.7 1.0287 20.47x10° 19.90x107° 0.02922 0.707
80 1009.5 0.9996 20.92x10° 20.92x107° 0.02991 0.706
90 1010.3 0.9721 21.35%x10°° 21.96x107° 0.03059 0.705
100 1011.3 0.9460 21.78x107° 23.02x107° 0.03127 0.704
110 1012.3 0.9213 22.20x107° 24.10x107° 0.03194 0.704
120 1013.4 0.8979 22.62x107° 25.19x107° 0.03261 0.703
130 1014.6 0.8756 23.03x107° 26.31x107° 0.03328 0.702
140 1015.9 0.8544 23.44x107° 27.44x107° 0.03394 0.702
150 1017.2 0.8342 23.84x107° 28.58x107° 0.03459 0.701
160 1018.6 0.8150 24.24x107° 29.75%x107° 0.03525 0.701
170 1020.1 0.7966 24.63x107° 30.93x107° 0.03589 0.700
180 1021.7 0.7790 25.03x107° 32.13x107° 0.03654 0.700
190 1023.3 0.7622 25.41x107° 33.34x107° 0.03718 0.699
200 1025.0 0.7461 25.79x10°° 34.57x107° 0.03781 0.699
210 1026.8 0.7306 26.17x10°° 35.82x107° 0.03845 0.699
220 1028.6 0.7158 26.54x107° 37.08x107° 0.03908 0.699
230 1030.5 0.7016 26.91x10°° 38.36x107° 0.03971 0.698
240 1032.4 0.6879 27.27%10°° 39.65%107° 0.04033 0.698
250 1034.4 0.6748 27.64x107° 40.96x107° 0.04095 0.698
260 1036.5 0.6621 27.99x107° 4228107 0.04157 0.698
270 1038.6 0.6499 28.35%x107° 43.62x10°° 0.04218 0.698
280 1040.7 0.6382 28.70x107° 44.97x10°° 0.04279 0.698
290 1042.9 0.6268 29.05%107° 46.34x107° 0.04340 0.698
300 1045.2 0.6159 29.39x10°° 47.72x10°° 0.04401 0.698
310 1047.5 0.6053 29.73x10° 49.12x10°° 0.04461 0.698
320 1049.9 0.5951 30.07x107° 50.53x107° 0.04521 0.698
330 1052.3 0.5853 30.41x10° 51.95x107° 0.04584 0.698
340 1054.4 0.5757 30.74x107° 53.39x107° 0.04638 0.699
350 1056.8 0.5665 31.07x10°° 54.85%x107° 0.04692 0.700




430

APPENDIX E: Properties of Saturated Water

APPENDIX E: Properties of Saturated Water

T C, P M v k a B Pr
°C Iikg°C kg/m®  kglsm m’ls  Wm°C  ms VK

0 4218 9998 1791x107  1792x107° 035619 1332x107  .00853x107° 1345
5 4203 10000  1520=10%  1520x10%° 035723 1362<107  00052x107 11.16
10 4193 999.8 1308x10"  1308x10° 05820  1389x107  opo0s2x0 942
15 4187 9992 1.139=107  1140x10¢ 03911 1413x107  0148x107  8.07
20 4182 9983 1003x107%  1004x107% 035996  1436x107  0207x10° 6.9
25 4180 9971  08908x10° 08933x10° 06076 1.458<1077  0259x107° 613
30 4180 9957  07978x10  02012x107° 06150 1478107 0306x10° 542
35 4179 9941  07196x107  07238x10% 06221 1.497x107  0349x107 483
40 4179 9923 06531=107  06582x107° 06286  1516x107  0389x107° 434
45 4182 9902  05962x107°  D6021x107° 06347 1533x107 0427107 393
50 4182 9880  05471x107  05537x10° 06405  1550x107  0462¢102 357
55 4134 9857 05043x10  05116x10° 06438  1.566x107  0496<107 327
60 4136 9831  04663x107°  04743x107° 06507 1581x107  0520x10° 300
65 4187 9805  04338x107°  04424x107° 06553  1596x107  0.560x10° 277
70 4191 9777 04044x107  04137x107° 06594  1609x107  0590x107° 257
75 4191 9747  03783x107°  03881x10° 06633  1624x107  0619x10° 2.3
20 4195 9716  03550x107°  03653x107° 06668  1636x107  0647x107 2.1
85 4201 9624  03339x107°  03448x107° 06699  1647x107  0675<10° 209
90 4203 9651  03150x107°  03264x107° 06727  1659x107  0702¢107° 197
95 4210 9617  02978x107>  03097x10° 06753 1663107 0728<10°  1.86
100 4215 9581  02822x107  02945x10° 06775  1677x107  07ss<10% 176
120 4246 9428  02321x107  02461x10°¢ 06233  1707x107  085ex107 1.44
140 4282 9259 0.1961x107  02118x107¢ 06845 1727107 0966x107°  1.23
160 4339  907.3  0.1695x107°  0.1869x10° 06815  1731x107  1084x107°  1.08
180 4411 8869  0.14%4x10  0.1684x10% 06745  1724x107  1216x10°  0.98
00 4498 8647  01336x107  01545x10° 06634 1706x107  1372¢107 091
220 4608 2404  0.1210x107F  0.1430x107° 06483  1674x1077  1363x107 0.8
240 4770 2136  0.1105x10°  0.1358x10° 06202 1622¢107  1306x107°  0.34
260 4991 7839  0.1015x107  0.1295x10° 06059  1.549x1077  2.130x107  0.34
280 5294 7505 00934x10~  0.1245x10° 05780  1455<1077  2589x107  0.36
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absorptivity, 8

accuracy
correlation equations, 295
integral method, 163

axial conduction, 109, 113, 213
223,228, 233, 236, 242, 262,
345, 348, 353, 376, 387, 389,
391, 400, 402

Blasius, 118, 119-131, 140, 144

body force, 28, 39

boundary conditions, 48, 204, 264,
temperature jump, 354
velocity slip, 354

boundary layer, 99
thermal, 100
thickness, 103, 108, 110, 116,
117,121, 123, 125, 128
viscous, 100, 101, 118, 269

Boussinesq approximation, 46,
261

C

Cartesian coordinates, 22, 27, 37,

40
coefficient of thermal expansion,
39, 46, 47, 260
compressibility, 39, 345, 349,

353, 356, 368, 373-376, 386,
391- 393, 399, 401

conservation of
energy, 37, 38, 379, 413
mass, 22
momentum, 27
constitutive equations, 29
continuity equation, 22
Cartesian coordinates, 22
cylindrical coordinates, 24
spherical coordinates, 25
continuum, 2, 343-351
convective derivative, 11
correlation equations, 293-296,
348
accuracy, 295
enclosures, 319-324
external forced convection,
294, 296
cylinders, 302
plates, 296-298
spheres, 303
external free convection, 311
horizontal cylinders, 315
horizontal plates, 314
inclined plates, 313
spheres, 316
vertical cylinders, 315
vertical plates, 311
internal forced convection, 303
entrance region, 303, 304
fully develop, 309, 310
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non-circular channels, 310
limitations, 295
other correlations, 328
procedure for selecting, 295
Couette flow, 71, 345-355, 356,
365, 368
Cylindrical coordinates, 24, 32,
41, 42,392

differential formulation, 21, 161

dimensionless variables, 52

dissipation, 39-43, 53, 350, 353,
356, 362

divergence, 9

Eckert number, 53, 353

emissivity, 8

energy equation, 37-48, 53, 69,
101, 109-111, 123, 125, 141,
146, 165, 175, 179, 180, 183,
186, 190, 228, 233, 236, 243,
252,261,263, 343, 348, 352,
361, 376, 386, 394, 402, 413

entrance length, 205-209

entrance region, 203-207, 225

exact solution, 69, 71, 161, 185,
288

external flow, 99, 115, 164, 166,
167, 206, 207, 225, 295, 302

film temperature, 130, 271, 275,
295,299, 314

flow classification
continuum, no-slip, 347
continuum, slip, 347
free molecular, 347
transition, 347

forced convection, 21, 54
correlation, 293-310

Fourier’s law, 3

free convection, 21, 259
correlations, 311-316, 319-324
enclosures, 319-324
inclined plates, 313

free molecular flow, 347

friction coefficient, 117, 122, 172,
351

friction factor, 310, 350

fully developed flow, 70, 205,
214, 236, 238, 243, 350, 351,
399

fully developed temperature, 206,
229-237, 3717, 388, 394, 395

governing equations, 51, 54, 260,
349

gradient, 10

Graetz, 242, 402

Grashof number, 53, 260, 264

heat flux, 4, 123, 204, 212, 225,
231, 236, 237, 387, 391, 402

heat transfer coefficient, 6, 55, 86,
123, 128, 136, 148, 177, 180,
190, 222, 226, 245, 267, 273,
285, 290, 297, 306, 346, 375

hydrodynamic entrance length,
206-209

hydrodynamic entrance region,
206, 209

ideal gas, 41, 371, 374
inclined plates, 279, 313
integral
formulation, 161, 279
method, 161, 279
solutions, 170, 283
isotropic, 5

joule, 13

Knudsen number,2, 343, 347,
349, 364, 370, 373, 382, 388,
391, 399, 404

laminar boundary layer, 99, 116,
140, 143, 426

local derivative, 11

local Nusselt number, 55, 124,
129, 142, 149, 178, 179, 184,



254,268, 269, 275, 276, 285,
296,298, 311

Mach number, 353, 354

mass flow rate, 357, 359, 361,
368, 374, 375, 386, 389, 393

mean free path, 2, 343-349, 369

mean temperature, 211-220, 233,
235, 244-246, 269, 304, 306,
360, 361, 375, 376, 379, 381,
387, 389, 394,397, 402

microchannels, 343, 346-348, 370,
389

micron, 346

Navier-Stokes equations, 27, 31,
32, 53,99, 343, 348, 352, 392

Newton, 13

Newton’s law of cooling, 6

no-slip condition, 48, 100

no-slip flow, 368

no-temperature jump, 343, 347

no-velocity slip, 343

Nusselt number, 55, 129, 142,
149,177, 179, 186, 224, 227,
230, 231, 235, 237, 245, 246,
253,268, 285, 287, 288, 296,
298,303, 304, 311, 312, 315,
316, 352, 360, 364, 375, 382,
384,393, 404

operator V , 9
other correlations, 328

Peclet number, 100, 112, 228,
302, 353, 404

Pohlhausen, 125, 127, 130, 298,
422

Poiseuille, 77, 355, 368, 386, 391,
402

Poiseuille number, 351

Prandtl number, 53, 54, 66, 68,
101, 126-129, 143, 147, 148,
175, 187,192, 207, 212, 225,
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