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Preface

One of the enduring legacies of the twentieth century will be the advent of space
travel. This achievement has changed the way we think about our presence in the
Universe and now offers the possibility to explore beyond our own world. Nobody
experiencing the Apollo missions of the 1960s and 70s could be unaffected by the
magnitude of those achievements. Now, nearly forty years later, space travel is
almost commonplace, although man’s personal presence in space is still limited.

The pioneering edge of space exploration now lies beyond Earth and its moon,
as numerous spacecraft over the last thirty years have visited most of the planets of
the Solar System. Mars remains the focus of many such missions and is likely to be
the first planet that man visits personally, not just through robotic craft. Perhaps the
most fascinating interplanetary missions to date have been the Voyagers. Launched
in the late 1970s, these spacecraft were flung out of the Solar System after flying by
the outer planets. They have now passed far beyond Pluto as they leave the Sun’s
domain behind.

These technical achievements have inspired numerous science fiction stories,
which in turn have themselves perhaps influenced the drive for new space missions
and exploration. Although ‘warp drives’ remain for the present in the realm of
science fiction, more adventurous missions to explore our Solar System are being
planned. These include an initiative to place a man on Mars and also for a detailed
robotic exploration of Jupiter and its family of moons. This later system has already
been inspected by the Galileo spacecraft and revealed a fascinating ‘micro solar
system’ with a rich variety of features. Also, both current (Messenger) and
planned future missions (Bepi—Colombo) to Mercury will undertake the difficult
route to the innermost planet of the Solar System. In addition to the planets, the
minor bodies of the Solar System are being explored. A challenging example is ESA’s
Rosetta mission, following a complex route to achieve a rendez-vous with a comet.
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MISSION ANALYSIS AND DESIGN

This diverse range of missions require numerous techniques for their analysis and
design. These aspects will be considered in this book, including the key issues of
escaping from a planet, interplanetary transfer, and capture at a target planet.
Certain ‘classical’ methods for the design of such trajectories have been employed
for many years. As missions became more demanding, then new techniques were
developed to enable more efficient designs to be realised. These allow the efficient
utilisation of newly evolving propulsion technologies. This theme is continuing, as
both new mathematical and computational ideas are considered for the solution of
these problems.

The objective of this book is to describe a selection of techniques that may be
applied to the analysis and design of interplanetary missions. The focus is on
methods that enable the efficient solution of the problems considered. Details of
the methods are given. However, this text is not intended as a reference on astro-
dynamics. Summaries of key derivations are included.

The terms ‘mission analysis’ and ‘mission design’ can have several meanings.
The one taken here is that of the analysis and design of spacecraft transfers.
Therefore, the focus is on techniques in orbital mechanics and trajectory optimisa-
tion that may be applied to the objective. The aspects of mission analysis particularly
relevant to interplanetary missions are considered here.

This book is divided into five major chapters. The first chapter focuses on
‘conventional’ analysis and design techniques for interplanetary missions. This
includes the basic ideas of Hohmann transfers, the solution of Lambert’s problem
and the fundamentals of planetary escape and capture. These basic ideas of inter-
planetary transfers are then extended to consider return missions to the planets. The
issue of escape from Earth is also considered in more detail, in the context of the
efficient utilisation of launch vehicle capabilities. This subject is also further
expanded in Appendix 4.

The second chapter briefly considers aspects of spacecraft propulsion systems.
These systems are a fundamental factor in the nature of interplanetary mission
designs and therefore warrant some consideration in a book such as this.

The third chapter focuses on optimisation. In particular, methods for obtaining
solutions to local optimisation problems are considered. These generally require
gradient evaluations and are often called ‘gradient based” methods. These methods
are essential for the efficient design of interplanetary missions. As more complex
propulsion system types are considered, so the complexity of the optimisation
problems increases. Many developments are taking place in this area. Only
gradient-based methods are considered here. However, it should be noted that
alternative techniques such as evolutionary computing offer very interesting
prospects for the identification of globally optimal solutions. In addition to trajec-
tory optimisation problems, the nature of spacecraft optimisation is discussed, where
the design of the propulsion installation may be optimised together with the transfer
trajectory.

The fourth chapter considers a range of ‘special’ methods that may be employed
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for mission analysis and design. These methods allow the planning of more efficient
transfers. A consequence of the improved efficiency is the increased complexity of the
transfer routes. Some of these methods take advantage of interesting features of
astrodynamics. A good example of this is the phenomenon of gravitational escape
or capture at a planet, which has been observed for comets in the Solar System.
Consequently, this chapter contains an outline description of the three-body
problem and mission designs that can utilise three-body effects. Many of the tech-
niques considered in this chapter allow the efficient utilisation of advanced propul-
sion system concepts. This is particularly true for low-thrust systems. The effect of
low thrust systems on orbit evolution is considered via the application of perturba-
tion equations. Considerable attention is paid to ‘gravity assist’. This technique
allows the utilisation of combined gravity fields to enable a spacecraft to significantly
modify its orbital energy, without the need for manoeuvre.

The final chapter describes a series of mission examples that utilise the methods
described in the previous sections. These include missions using gravity assist, low-
thrust propulsion, gravitational escape and capture. Many of the examples are
generic, in that they consider typical transfers between planets. However, certain
examples are relevant to actual missions, either past, current, or future.

The appendices describe the basics of orbital mechanics, orbital reference
frames, and also the properties of the planets. The data is intended as a source of
reference for the material in the book.

A CD is included to give some examples of interplanetary missions. A simula-
tion tool is included. This is used to generate animated sequences that show inter-
planetary transfers. The missions illustrated include both transfers to the inner and
outer planets. Instructions for use are contained on the CD. The software runs on
Windows based PC systems.

Although every effort has been made to eliminate mathematical and factual
errors in the material in this book, complete accuracy cannot be guaranteed.
Please send any errors found and suggested corrections to the author.
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Nomenclature

COMMONLY USED TERMS

The following lists a series of acronyms, mathematical symbols, and phrases
frequently used in this text. This is not a comprehensive list and details of further
terms used are given in the appropriate sections.

COMMON ACRONYMS

AV Delta-V

EGA Earth Gravity Assist
GA  Gravity Assist

Isp  Specific Impulse

JGA Jupiter Gravity Assist
LGA Lunar Gravity assist
MGA Mercury Gravity Assist
NEP Nuclear Electric Propulsion
SEP Solar Electric Propulsion
SGA Saturn Gravity Assist
VGA Venus Gravity Assist

V..  Excess hyperbolic speed

GRAVITY ASSIST SEQUENCE LABELLING

E Earth
J Jupiter



xxxil  Nomenclature

L Moon (Earth’s)
M Mercury

S Saturn

v Venus

Example: V-E-E = Venus, Earth, Earth gravity assist sequence

COMMON SUBSCRIPTS TO MATHEMATICAL TERMS

C Denotes term relative to central body
I Denotes a vector expressed in an inertially oriented frame
p Denotes term relative to major body

COMMON MATHEMATICAL SYMBOLS

a Semi-major axis of ellipse

@ Velocity vector deflection angle (in gravity assist description)
Thrust vector azimuth angle in low-thrust vector modelling

AY  Transformation matrix from Y to X frame

b Semi-minor axis of ellipse

6] Angle describing the location of the intersection of the approaching
asymptotic excess hyperbolic velocity vector with the B plane (in gravity
assist description)
Thrust vector elevation angle in low-thrust vector modelling

e Eccentricity

C Jacobi constant (in three-body problem)

Constraint (in optimisation problems)

Distance

Delta-V

Eccentric anomaly (in ephemeris elements)

Energy (usually per unit mass)

Hyperbolic anomaly

Flight path angle

Angular momentum (usually per unit mass)

Inclination

Objective function

Lagrange multiplier (in non-linear programming methods)
Longitude (in orbit kinematics)

Mass

Mean anomaly

Gravitational parameter (in gravitational acceleration terms)
Mass ratio (in three-body problem)

p Orbit semi-latus rectum
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Nomenclature xxxiii

P Adjoint vector (in indirect optimisation)

r Spacecraft position (may be used as vector or magnitude)
Tplanet Major body position (may be used as vector or magnitude)
t Elapsed time

T Thrust (often per unit mass)
T Orbit period
0 True anomaly (in ephemeris elements)

Angle between approaching relative velocity vector and major body velocity
vector in gravity assist

u Control vector

U Potential

V Spacecraft velocity (may be used as vector or magnitude)

Vplanet Major body velocity (may be used as vector or magnitude)

w Angular velocity (of major body) (may be used as vector or magnitude)

Q Right ascension of ascending node

X State vector

V.  Excess hyperbolic speed

V.. Velocity relative to major body (used in two-body approximation)

NOTATION
N i=N
Z Summation abbreviated form of Z

i i=1
COMMONLY USED TERMINOLOGY

Term Description

Aerobraking The process of utilisation of a pericentre passage (or
multiple passages) through a major body’s atmosphere with
the objective of reducing the apocentre.

Aerocapture The process of utilisation of a pericentre passage through a
major body’s atmosphere with the objective of reducing the
energy of an approaching spacecraft in an initially
unbound orbit to reach a bound orbit.

Approach plane In a gravity assist, the plane containing the velocity of the
major body and the asymptotic excess hyperbolic velocity
vector.

Asymptotic excess The velocity vector whose magnitude is equal to the excess

hyperbolic velocity hyperbolic speed and direction defined by the asymptotes

vector of the hyperbola when either approaching or departing
from a major body.

B plane The plane normal to an approaching asymptotic excess

hyperbolic velocity vector and passing through the centre
of the major body.



xxxiv  Nomenclature

Central body

AV or Delta-V

Direct optimisation
method
Escape orbit

Excess hyperbolic
vector

Fly-by

Gravity assist

Gravitational escape
(or capture)

(or gravity assisted
escape or capture)
Halo orbit

Hohmann transfer

Indirect optimisation
method

Invariant manifold

Keplerian orbit

The primary body with the dominant gravity field in a
system. Examples are the Sun for transfers in the Solar
System, or Jupiter for transfers to the Jovian moons.
The speed change effected by propulsive force to implement
a change in orbit. Includes the inefficiency arising from
non-impulsive manoeuvres. Implemented by a spacecraft
propulsion system or environmental perturbation to the
orbit.

Method to determine the optimal control solution that
minimises or maximises an objective using the
approximation of a parameterisation of a continuously
variable control function.

An unbound orbit (energy > 0), resulting in a

hyperbola.

The speed remaining at infinite distance (when in a
hyperbolic orbit). In practice, approximated by the speed
after leaving the sphere of influence.

A passage close to a major body during the course of a
trajectory about a central body.

The process of utilisation of the gravity field of a major
body, during the course of a trajectory about the central
body, with the result of energy and angular momentum
modification with respect to the central body.

The process of achieving an escape orbit from an initial
bound orbit under the influence of the gravity fields of a
major and central body. (Reverse for capture.)

An ‘orbit” about a collinear Lagrange libration point whose
periods in and out of ecliptic are equal.

A two-impulse transfer over half of an ellipse. Optimal
transfer between coplanar, circular orbits.

Method to determine the optimal control solution that
minimises or maximises an objective using variational
calculus methods. Pontryagin’s maximum (or minimum)
principle is employed.

A constrained trajectory in phase space describing both the
position and velocity vectors. Used in the context of the
three-body problem to describe the evolution of a
spacecraft trajectory under the influence of combined
gravity fields (and neglecting non-gravitational
perturbations).

An orbit that is the solution of the two-body problem.
Solutions are conic sections: ellipse, parabola or
hyperbola.



Lagrange libration
point

Lambert’s problem
Lissajous orbit

Low thrust

Major body

Non-gravitational

perturbation

Non-linear

programming

Patch conic

Resonant orbit

Secular perturbation

Specific impulse
Sphere of influence

Synodic period

Nomenclature xxxv

A point of equilibrium in the three-body problem,
considering the gravity fields of two bodies and the
centrigugal force term. Five points exist, lying in the orbit
plane of the major body about the central body. Three lie
along the line passing through the central to major

body.

The problem of finding an orbit connecting two positions
over a particular time interval.

An ‘orbit’ about a collinear Lagrange libration point whose
periods in and out of ecliptic are unequal.

A propulsive force producing a small resultant acceleration
on the spacecraft (<1 g). Examples are electric propulsion
systems and solar sails.

The secondary body with the locally dominant gravity field
in a particular mission phase, such as a fly-by. Examples
are a planet encountered during the course of a trajectory
about the Sun or a moon during the course of a trajectory
about a planet.

A small acceleration term (compared with the gravity field
of the central body) applied to an orbiting object, arising
from non-gravitational sources (e.g., low-thrust
propulsion, solar radiation pressure, atmospheric drag).

A iterative method to determine the solution of an
optimisation problem by using gradient information
regarding the objective and constraints.

The method of approximating the motion of a spacecraft
under the influence of the gravity fields of a central and
major body by using a sequence of conic sections (each of
which is a solution to a two-body problem).

An orbit whose period may be expressed as an integer ratio
with the period of the orbit of the major body to which it
relates.

A perturbing term that effects a net orbit change after a
complete revolution. When considered over multiple
revolutions the mean ephemeris of the orbit undergoes a
progressive evolution.

Impulse delivered per unit mass of propellant.

Locus of points around a major body obtained by
considering the perturbing gravitational acceleration of the
central body compared with the gravitational acceleration
for the central body.

Repeat period when considering the re-occurrence of
relative longitudes of two major bodies. Assumes coplanar,
circular orbits.



xxxvi Nomenclature
Three-body problem
Two-body problem

Weak stability
boundary

The problem of motion of a spacecraft under the combined
influence of the gravity fields of two massive bodies.

The problem of motion of a spacecraft under the influence
of the gravity field of a single massive body.

Term sometimes used to describe a region under the
influence of combined gravity fields (of a major and central
body).

AXES SYSTEMS USED IN ILLUSTRATIONS

The figures illustrating transfer trajectories are often drawn over a reference grid.
The scaling of the grid is detailed for each plot. It is generally 1 AU from centre to
edge with a sub-grid size of 0.1 AU.

The grid lies in the ecliptic and the conventional X axis direction (i.e., to the first
point in Aries) is in a vertical direction (i.e., to the top of the page). Details of axes
and reference systems are given in Appendix 2.



1

Interplanetary missions

A series of well-established methods may be used for the design of interplanetary
missions. Basic tools are used to generate transfers between the planets, but the
nature of these transfers reveals a rich set of trajectory types that are available to
the mission designer. The issue of leaving a planetary orbit and capture at the target
planet must also be considered. Finally, the implications of return missions can be
considered, both in the context of robotic exploration and manned missions.

1.1 FUNDAMENTALS OF INTERPLANETARY MISSIONS

In this section, the issues of transferring from planet to another will be considered.
This includes the nature of the transfers themselves and Lambert’s problem, which is
a key aspect of such transfers.

1.1.1 Interplanetary transfers

The planets of the Solar System mostly move in near-circular orbits, remaining close
to the plane of the ecliptic. The major exception is Pluto, which not only moves in a
significantly elliptical orbit, but also has an orbital plane that is inclined to the
ecliptic by more than 10°.

When considering transfers between the planets, it would be tempting to
consider their orbits as co-planer and circular. Indeed, such approximations yield
a rough order of magnitude results. However, because the planets’ heliocentric
velocities are very high, any deviation in their direction from the assumed circular
tangents can strongly influence the final AV required for a transfer between planets.

The properties of the planets’ orbits are shown in Table 1.1.1.

Table 1.1.2 shows the orbital energy relative to the Sun as the central body. This
energy can be expressed as energy compared with Earth’s energy relative to the Sun,



2 Interplanetary missions

Table 1.1.1. Planet orbit properties.

[Ch. 1

Period Energy rel
sma (AU)  sma (km) Energy (days) Eccentricity Mu Earth
Mercury  0.38709893 5.79E+407 —1.14E+09 87.97 0.20563069 2.22E+13 —6.99E + 08
Venus 0.72333199 1.08E+08 —6.10E + 08 22470 0.00677323 3.25E+14 —1.69E+08
Earth 1.00000011 1.50E +08 —4.41E+ 08 365.26 0.01671022 3.99E+ 14  0.00E + 00
Mars 1.52366231 2.28E+ 08 —2.90E + 08 686.96 0.09341233 428E+13 1.52E+08
Jupiter 5.20336301 7.78E+08 —8.48E+07 4,335.36 0.04839266 1.27E+17 3.56E + 08
Saturn 9.53707032 1.43E+09 —4.63E+07 10,757.76 0.0541506 3.79E+16 3.95E+08
Uranus 19.1912639 2.87E+409 —2.30E+07 30,708.22 0.04716771 5.83E+15 4.18E+408
Neptune 30.0689635 4.50E+09 —1.47E+07 60,225.02 0.00858587 6.86E+15 4.27E+08
Pluto 39.4816868 S591E+09 —1.12E+07 90,613.48 0.24880766 4.42E+13 4.30E +08
Table 1.1.2. Planet orbital velocities.
Rmin (km) V at Rmin (km/s) Rmax (km) V at Rmax
Mercury 46,001,448 58.976 69,817,246 38.858
Venus 107,474,994 35.259 108,942,304 34.784
Earth 147,096,623 30.287 152,099,177 29.291
Mars 206,655,710 26.498 249,225,938 21.972
Jupiter 741,096,388 13.699 815,828,797 12.444
Saturn 1,348,673,598 10.193 1,508,110,731 9.115
Uranus 2,733,511,855 7.123 2,991,539,939 6.509
Neptune 4,440,286,960 5.497 4,538,878,194 5.378
Pluto 4,433,588,797 6.106 7,321,604,748 3.698

and is shown in Figure 1.1.1. The plot shows that a mission to Mercury requires a
greater energy change than missions to the distant outer planets.
The fundamental mechanism of an interplanetary transfer can be best under-

stood by firstly using the co-planar, circular orbit approximation and the application
of a Hohmann transfer. The Hohmann transfer is the well-known optimal elliptical
transfer technique between two circular orbits. Such a transfer is half of an ellipse,
whose perihelion lies at the radius of the inner planet and aphelion at the radius of
the outer planet.

The AV for the transfer may be evaluated by the following:

AV:(Vpe_VP1)+(VP2_Vap) (111)

where an outward transfer is assumed from planet 1 to 2, V,; and V), being the
respective planet circular orbit speeds and V), and V,, being the transfer orbit speeds
at perihelion and aphelion.

Figure 1.1.2 shows the mechanism. The Hohmann transfer is used because it is
the minimum AV transfer, which in turn minimises fuel use.
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Figure 1.1.1. Planetary orbital energy with respect to the Sun relative to Earth’s energy with
respect to the Sun.

Vap

Figure 1.1.2. Hohmann transfer between circular planetary orbits.

The period is determined by the planets defining the transfer; that is, if a is the
semi-major axis, (1, +7,,)/2, then the duration of the transfer (half a revolution) is

expressed by:

3
T a
== 1.1.2
=™ (1.1.2)
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where r,; is the radius of the orbit of planet 1 and r,, is the radius of the orbit of
planet 2. p is the Sun’s gravitational parameter.
The total AV is then:

wr = () - ) (el m) )

In this context, AV is the sum of speed changes that the spacecraft must undergo
from a state co-orbiting the Solar System with the first planet to a state where it co-
orbits with the second planet, but neglecting the effects of the gravity fields of both
planets. In fact, for small objects in the Solar System, with relatively weak gravity
fields, such as asteroids, then this calculation is very close to the actual total AV

The previous discussion is idealistic in several respects, In practice, the transfer
problem is more complex, but this type of analysis is generally a very good starting
point in assessing the manoeuvre requirements for a planet-to-planet transfer.

When the complete problem is considered, then the following factors must be
taken into consideration:

e The planets move in elliptical orbits which therefore effect the relative velocity at
departure and arrival.

e The planets all possess some degree of orbital inclination with respect to the
ecliptic, and some out-of-ecliptic velocity component is therefore needed.

e The actual locations of the planets must be considered; that is, the previously
assumed geometry that planet 2 will be at for the desired true anomaly to
rendezvous with the spacecraft.

e For transfers between large objects (any of the nine planets), this AV calculation
will not in general be the full speed change required. This is because the space-
craft will generally start its journey from an orbit bound to the first planet and
end its journey in an orbit bound to the second planet.

These factors are expanded in the following sections. This type of optimum transfer
described here is sometimes referred to as a ‘conjunction class’ transfer. This term
arises from the geometry of the location of planet 1 which is in conjunction with
planet 2’s location at arrival, although there is no true conjunction at either
departure or arrival.

Other transfer types beyond this conjunction category will also be considered.

1.1.2 Lambert’s problem

One of the fundamental problems of interplanetary missions is to devise a trajectory
for a spacecraft that leaves one planet at a certain epoch and then arrives at a second
planet at a later epoch. In principle, these departure and arrival epochs may be
chosen at will, but not without a significant implication for the AV required to
implement such a transfer.

This is a manifestation of Lambert’s problem, which may stated as follows:
given an initial and final position, together with a time of flight between these
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N

Figure 1.1.3. Lambert’s problem.

positions, determine the connecting orbit. This is shown diagrammatically in
Figure 1.1.3, where a closed orbit is assumed to link the initial position at planet
1 to the final position at planet 2, where once again r; is the radial distance in the
spacecraft’s orbit when leaving planet 1 and r, is the radial distance in the space-
craft’s orbit when arriving at planet 2.

Lambert stated that the time of flight between two such positions depends upon
three quantities, all defined in the diagram. These are:

e The semi-major axis of the connecting ellipse, ‘a’.
e The chord length, c.
e The sum of the position radii from the focus or the connecting ellipse.

The basis of this statement can be obtained from the following analysis. The
following derivation was first performed by Lagrange and is described more fully
in Battin (see references). Firstly, consider the connecting orbit where the time of
flight defines the difference in mean anomalies:

M=M=ty = 1) =\ B - ) (1.1.4)

where M, and M, are the mean anomalies at points 1 and 2 and # is the mean motion
of the connecting orbit. Then, using the relationship between mean and eccentric
anomalies given by Kepler’s equation:

[ 43
(t27ll): %(Ez*El *e(SinEzfsinEl))

=2 i((Ez;El) —e(sin(Engl) cos(Ezl—El>)> (1.1.5)
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Using intermediate variables, A, B, where
B, - E|
2

(tz—tl):2\/;;(A—sinAcosB) (1.1.6)

The triangle in Figure 1.1.3 can now be considered. The length of the chord con-
necting the two positions is given by:

E, + E

A and cos B = ecos

2 =1 45— 2rrycosb (1.1.7)

Using the relationships r; = a(l — ecos E|) and r, = a(l — ecos E,), the following
relationships can be found:

r1 +ry = 2a(1 — cos A cos B) (1.1.8)
It may be shown that:
¢ =2asinA4sin B (1.1.9)
By definition, the semi-perimeter is:
5= "14‘12724-6’ (1.1.10)

where s is the semi-perimeter of the connecting triangle between the focus and the
two points.
Then, using the intermediate variables o and [, where aa =4+ B and
08 =B — A, Equations 1.1.8, 1.1.9 and 1.1.10 plus some manipulation yields:
Y S .2 s—c¢

sin =% and sin 5=,

Using these definitions in Equation 1.1.6, the following expression is derived:

(1.1.11)

3
(tz—ll):\/i((a—sina)—(ﬁ—sinﬁ)) (1.1.12)

The solution of the above equation is potentially subject to difficulties in determina-
tion of o and § from Equation 1.1.11. Certain ancillary calculations may be made to
resolve this. The ‘minimum energy’ semi-major axis and related variables are defined
as:

s r+m+tec . B s—c al .
a,, :E:f Sll’l% = 5 t, = f(ﬂ'_ ﬂm +Slnﬂm)

Then

B=8r1>60>0 o' =a,t,>(t,—1)
B'=-p2r>0>7 o =2 —a,(th—1t;) > t,

This applies for the case of an elliptical orbit. In certain cases, such as where the
transfer time is short, the connecting orbit may be hyperbolic. In this case, the
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solution becomes modified to:

—&

(t — ;) = /— ((sinha — &) — (sinh 8 — () (1.1.13)
u
where
inh?% - 5 22— ¢
sinh 5= ", and sinh > = " (1.1.14)

noting ‘a’ is negative in the hyperbolic case.

This confirms the original theorem regarding the relationship between the time
difference, the semi-major axis, the sum of the radii and the chord length.

The semi-major axis is now evaluated iteratively from the relationship given in
Equation 1.1.12 or 1.1.13. The eccentricity of the transfer orbit may be found after
calculating the semi-latus rectum, p:

_da(s—r)(s—r) sz(a+ﬁ)

N c? 2

(1.1.15)

or alternatively,

dariry, . 50 . S a+p
p=—7"sin"5sin 3

and in the hyperbolic case,
4(1}’1}’2

.20 .
p= o sm2§ smh2(

a+ 6
2

The eccentricity may then be found using p = a(1 — ?).

Equation 1.1.12 can be solved in several ways, but all require an iterative
process. To illustrate the nature of the problem, a transfer from Earth to Mars
can be considered. The spacecraft leaves Earth on 23 October 2011, and transfer
durations of 150, 180 and 200 days are then investigated by varying the arrival epoch
at Mars. These two epochs (departure and arrival) specify two radius vectors, from
which the quantities ‘c’ and ‘s’ may be calculated.

Figure 1.1.4 illustrates the highly non-linear nature of the error function. In
principle, methods such as Newton—Raphson can be employed to find the
solution, but will not always converge, the behaviour depending on the initial
estimate of the semi-major axis. Some specialised algorithms have been developed
and are described definitively in Battin (see references for this section). Also, multi-
revolution transfers may be solved within this problem context and are also
described in the references.

The transfer orbit

Having found the semi-major axis and eccentricity of the transfer orbit, the full
ephemeris may be derived, so that the initial and final velocities may be calculated.
This allows the calculation of the change in the heliocentric velocity vector required
when departing from the first planet and then arriving at the second planet.
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Figure 1.1.4. Error function versus sma. An estimate at the value of semi-major axis solving
the equation can be made and substituted into the right-hand side of Equation 1.1.12. Then a
plot of error between the left-hand and right-hand sides versus the semi-major axis can be
obtained. The solution lies where the error equals zero.

Firstly, consider that the two positions described in the previous section as scalar
radii, are in fact vector positions. These correspond to the location of the planetary
bodies in question at the epoch of departure and arrival. Therefore r; and r, will now
be denoted as the heliocentric position vectors, r; and r,. The transfer orbit is
contained within the plane defined by these two vectors. The velocity at these two
radii and the full ephemeris of the connecting orbit may be calculated using the
following process.

The speed at each position is given by the classical relationship derived from

orbital energy:
1 1
V=y2ul-—=— 1.1.16
i(5-35) (1.1.16)

where g is the central body gravitational parameter. This is obtained for r; and r,
respectively.
The cosine of the true anomaly (f) at each of the two positions is obtained by:

2
cosf:i<a(l;e)— 1>

This is evaluated at each of the two radii, yielding cos(f;) and cos(f>). The sine of
the true anomaly at each of the two radii is obtained via the trigonometric identities:

cos(f; + ) = cosfi cosf — sinf] sin ) = cosfr

cos(f, — 1) = cosf>cosf + sin f5 sin ¥ = cos f
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Planet 2

Figure 1.1.5. Lambert’s problem for a transfer between two planetary orbits.

The flight path angle (the angle between the velocity vector and the normal to
the radius vector in the orbit plane) at each of the two radii (sine and cosine) is given
by:

VsinT = (esinf ”) (1.1.17)
a(l —e?)
and also:

1 @
V =
€08 <1 +ecosf \ a(l — ez))

The Cartesian frame velocity components may now be evaluated as follows. Firstly
calculate the normal to the orbit plane (which also contains the angular momentum
vector direction, which in turn defines the inclination vector) by:

. AR

n= =
r Al

The forwards normal to the radius vector, contained within the orbit plane, is then
given by (at the two positions):
nAar ) nA”
— and Npy = ———

= |2

1]
The velocity vector is then constructed as follows:

ﬁ: V] COSF]lel—FV] sinFlfl and &: VzCOSFzﬁpz—FVzSinrzfz (1118)
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Figure 1.1.6. The velocity change required when departing the first planet.

The velocity change is obtained from a vector subtraction of the transfer orbit
velocity at the planet and the planet’s velocity.

AV]ZEZVI and AVzZ&:V

. Vi (1.1.19)

where V), is the velocity vector of planet 1 at departure, V), is the velocity vector of
planet 2 at arrival, AV is the velocity vector increment needed to leave planet 1, and
AV, is the velocity vector increment needed to rendezvous with planet 2.

The magnitude of this velocity change is very well approximated by the excess
hyperbolic speed of the spacecraft with respect to the planet. (A more detailed
description of the motion between planet and Sun-centred motion is included in
Chapter 4).

1.1.3 Solutions to Lambert’s problem for an interplanetary transfer

The solution of Lambert’s problem is illustrated for the example of a transfer from
Earth to Mars. The transfer is approached in a series of stages. In this first illustra-
tion, it is assumed that both Earth and Mars lie in circular orbits with zero inclina-
tion with respect to the ecliptic. This means that the relative orbital phasing between
Earth and Mars is retained (the longitude of perihelion and mean anomaly at any
reference epoch are unchanged).

Figure 1.1.7 shows contours of constant excess hyperbolic speed V., for
transfers from Earth to Mars, over a two year period, starting in 2008. The plot
shows the effect of a range of launch epochs and transfer durations. The V_, values
shown are the sum of V' departing Earth and V_, approaching Mars. The contours
use steps of 2,000m/s in the V., total, with the minimum value lying in the 5,000—
7,000 m/s range.

The plot clearly shows the presence of a minimum with respect to both transfer
duration and launch date. This can be interpreted as the condition where it is



Sec. 1.1] 1.1 Fundamentals of interplanetary missions 11

Vinfinity Earth-Mars (m/s})
- 22-Aug-08
05-Oct-08

- 18-Nov-08

C01-Jan-09
~14-Feb-09
©30-Mar-09
- 13-May-09

26-Jun-09

TTTTTTT

09-Aug-09 = 23000-25000

 23-Sep-09 = 21000-23000

= 19000-21000

20.Dec.ogLanm:h epoch (MJD) “ 7000_1 9000

02-Feb-10 « 15000-17000

18-Mar-10 = 13000-15000
= 11000-13000

e - 01-May-10 #9000-11000

14-Jun-10 7000-9000

28-Jul-10 5000-7000

“11-Sep-10

25-Oct-10

~08-Dec-10

21-Jan-11

06-Mar-11

19-Apr-11

TTTTTTTT

[= N}
N ©
<+ <

500

% o oo
S F @
- = -

Tr

g8
3 8
(days)

g 260
3 300

nsfer ti

Figure 1.1.7. Transfer ¥, contours for a transfer from an idealised circular Earth orbit to an
idealised Mars circular orbit at zero inclinations.

possible to execute a Hohmann transfer between the two circular orbits. The planets
possess the correct relative orbital locations to enable such a transfer for the launch
epoch where the minimum occurs. The optimum transfer period is approximately
260 days. This corresponds to the prediction obtained using the methods of the
previous sections for a Hohmann transfer. The V_, total is 5.7 km/sec, consisting
of 3.04km/sec leaving Earth and 2.68 km/sec approaching Mars. This result will
repeat at a later launch date, when Earth and Mars once again reach the required
relative orbital geometry at launch. This interval is related to the synodic period of
the two planets (discussed later in this chapter).

The second stage of the analysis is to introduce the eccentricities of the orbits of
Earth and Mars. The major effect will be due to the eccentricity of Mars’ orbit (more
than 0.09), as that of Earth is 0.0167.
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Figure 1.1.8. Transfer V', contours for a transfer from Earth orbit to an idealised Mars orbit
possessing zero inclination, but with normal eccentricity.

The period of launch dates is extended to four years in this second example seen
in Figure 1.1.8. The main features seen in Figure 1.1.7 are still present. Two local
minima are seen, the second corresponding to a later launch case, over two years
later, when the favourable Earth—-Mars geometry repeats. However, the transfer
duration for the first minimum is longer, at approximately 320 days. The second
local minimum feature is not an exact repeat of the first, earlier launch date’s pattern.
This is because although the same favourable transfer relative geometry is obtained,
the actual positions of Earth and Mars are changed, so that rendezvous with Mars
takes place at a different true anomaly. In this case the optimum transfer duration is
approximately 300 days.

The third stage of the analysis is to represent the full martian orbit ephemeris, by
now including the inclination. This is approximately 1.85° with respect to the
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Figure 1.1.9. Transfer V', contours for a transfer from Earth to Mars.

ecliptic. The nature of the local minima now possesses a new feature and may be seen
in Figure 1.1.9. This is the occurrence of two minima at similar launch epochs, with
different transfer durations. That is, at each occurrence of favourable transfer
geometry, two local minimum solutions exist. In the examples shown, the longer
transfers have better performance than the shorter ones, but this is not always the
case, depending on the precise transfer opportunity under consideration.

This phenomenon of the two local minima can be examined in greater detail. An
example launch date is taken that lies close to the second local minimum in 2011. The
date is 23 October 2011. From Figure 1.1.9, two minima are expected as the transfer
duration evolves. Figure 1.1.10 shows the presence of these minima.
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Figure 1.1.10. Total Vinfinity (leaving Earth and approaching Mars) versus transfer duration
for a launch on 23 October 2011.

The second minimum is the lower of the two. This is expected, as the optimal
launch dates for the two local minima in Figure 1.1.9 are different. However,
these minima are separated by a sharp rise in the V total. This effect arises
from the inclination of the Martian orbit. As the transfer approaches a
conjunction-type transfer, with aphelion close to the orbital radius of Mars at the
rendezvous, it becomes increasingly difficult to achieve the out-of-plane
component of the rendezvous position. The solution is to increase the heliocentric
inclination of the transfer orbit. This effect is illustrated in Figure 1.1.11, which
details a range of transfer trajectories corresponding to different durations in
Figure 1.1.10.

Transfers with durations less than the first minimum may be seen as well as
transfers in the vicinity of the central maximum. As this maximum is approached,
the transfers acquire progressively higher and higher inclinations, until a point is
reached where they switch to a near-180-degree change in the location of the transfer
orbit ascending node. Therefore, northerly transfers switch to southerly transfers.
The upper plot in Figure 1.1.11 shows only the in-ecliptic components and the orbits
of Earth and Mars (thick lines). The very short and very long transfers are apparent,
corresponding to early and late rendezvous cases. The lower plot in Figure 1.1.11
shows the three-dimensional motion, where the extensive out-of-ecliptic motion can
be seen for transfer durations close to the central maximum ¥V, case. The orbits of
Earth and Mars are shown by the thicker lines.
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transfer durations spanning the two minima and the central maximum in V.
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Figure 1.1.12. Transfer types between planets.

1.1.4 Transfer types

If a general transfer ellipse is considered, with spacecraft and planets all rotating
about the Sun in the same direction, then four transfer options between two circular
orbits may be identified, as shown in Figure 1.1.12.

(a) Route A2 to Bl is initially radially outward bound and arrives in an outwards
radial direction at the second planet.

(b) Route A2 to B2 is initially radially outward bound and arrives in an inwards
radial direction at the second planet. This route is longer than a).

(¢) Route Al to Bl is initially radially inward bound and arrives in an outwards
radial direction at the second planet.

(d) Route Al to B2 is initially radially inward bound and arrives in an inwards
radial direction at the second planet. This route is longer than c).

This does not mean that these transfers are available via the same revolution of the
ellipse, as could be inferred from Figure 1.1.12, as the actual phasing of the planets
must be considered. It is an illustration of the possible types of transfer between two
circular orbits.

Transfer types are sometimes classified. The previous section has demonstrated
results for the case of circular planetary orbits where the minimum V_, case is a
Hohmann transfer with perihelion at Earth and Aphelion at Mars. The change in
true anomaly of the transferring spacecraft is 180°. It is possible to achieve transfers
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Figure 1.1.13. Optimum transfer between planets and accelerated and delayed arrival.

that use less than or greater than 180° in true anomaly, and these could for example
lie on either side of the local minimum shown in Figure 1.1.7.

In Figure 1.1.13, a transfer from A to B is the minimum Vinfinity transfer case,
and is the minimum seen in Figure 1.1.7. When compared with the general options
discussed previously, then this is the limiting case where Al and A2 merge for the
case of a tangential departure and Bl and B2 merge for the case of a tangential
approach. If a horizontal line (a line of constant launch dates) is considered at this
optimal epoch in Figure 1.1.6, then variation in the transfer duration means that the
spacecraft arrives at planet 2 either before or after the optimum. This is analogous to
arrival at B1 or B2, respectively, in Figure 1.1.13, although once again not both
through the same elliptical orbit as illustrated, as the phasing of the planet’s orbits
must be considered. Therefore, arrival at Bl would be via a different elliptical orbit
than arrival at B2. The change in true anomaly of the spacecraft transfer orbit is then
either less than or greater than 180°. These transfers, categorised by change in true
anomaly, are sometimes labelled type 1 and type 2 transfers. This need not corre-
spond to only the tangential departure case, but may be applied to any general
departure case.

When the full details of the planet’s orbits are considered — in particular its
inclination — it is found that there are two local optima, neither of which experiences
a 180-degree change in true anomaly for the transfer. The shorter transfer minimum
discussed will generally have a true anomaly change of less than 180° and the longer
a true anomaly change greater than 180°. Therefore, according to the previous
classification, these are type 1 and type 2 transfers respectively.
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Optimum type-1 250-day transfer Optimum type-2 310-day transfer

Figure 1.1.14. 2011 transfers from Earth to Mars.

The results in the previous illustrations show that for launches in late 2009 and
late 2011 the two local minima with respect to transfer duration have durations of
typically 250 and 310 days. Figure 1.1.14 shows the actual minimum ¥V, transfers for
launch in 2011. The half grid size is 1 AU, and the dark lines are sections of Earth
(inner orbit) and Martian orbits. The dashed lines show the longitudes of Earth at
departure and also arrival at Mars.

The ‘shorter’ and ‘longer’ transfers take just under and just over 0.5 revolutions.

These optimum transfers, short and long optima, or type 1 and type 2 optima,
are also sometimes referred to as ’conjunction class’ transfers. From the illustrations
of the transfers shown previously, it is clear that no conjunctions occur between the
planets at either the departure or arrival epochs. At departure Mars lies ahead of
Earth in terms of solar longitude, and when the spacecraft arrives, Mars lies behind
Earth in longitude. Therefore, at some point during the transfer, the Sun, Earth and
Mars will be aligned in opposition (Mars and the Sun lying in opposite directions as
seen from Earth). However, when the transfer trajectory is viewed from beginning to
end and the locations of Earth at the start of the transfer and Mars at the end of the
transfer are seen, the planets are aligned in a conjunction geometry. However, no
actual conjunction occurs.

Table 1.1.3. Short and long local minimum conjunction-type transfers from Earth to Mars
with launch in 2011.

Vinf Esc Transfer time Vinf Cap Total Vinf
Launch date (m/s) (days) (m/s) (m/s) Arrival date

19 Nov 2011 3,019 252 3,691 6,711 28 Jul 2012
10 Nov 2011 2,991 306 2,707 5,698 11 Sep 2012
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1.1.5 Launch opportunities

The previous section described the generation of minimum speed change transfers,
by comparing excess hyperbolic speed totals. These minima are generally close to a
conjunction class transfer (a half-revolution Hohmann transfer). Therefore, when a
given launch year is considered, the optimum launch epoch (the closest available
launch after a given date) will correspond to dates that approximately satisfy the
conjunction transfer condition.

A critical question is how frequently such transfer opportunities arise (when a
given pair of planets are considered), and how long the opportunities last? The
frequency is determined by the synodic period. This period is that between the
repetition of a particular relative orbit geometry between the planets in question,
such as a particular difference in solar longitude. Such repetitions occur at fixed
intervals for two circular, co-planer planet orbits. If the orbits are assumed
circular, then the synodic period is calculated as:

360 360 (1.120)

k (360360> (@1 — 1)
Tpl sz

where 7, is the orbital period of planet 1, 7, is the orbital period of planet 2, w,; is
the angular velocity of planet 1 and w,, is the angular velocity of planet 2.

The absolute locations of the planets do not repeat at these intervals; only the
relative locations repeat. The time between an exact repetition of an absolute transfer
geometry is calculated by:

Tglobal = NTg = WITp] (1121)

The time is the number of synodic periods required to generate a whole number of
orbits of the departure planet, the period of which is 7,,. This may in practice be a
very long period for a precise repeat, and therefore is often approximated, if the
‘repeat’ geometry departure longitude lies within a few degrees of the original
departure longitude.

Table 1.1.4. Planet A/Planet B synodic periods (in years) assuming circular planetary orbits.

Mercury Venus Earth Mars Jupiter Saturn  Uranus  Neptune

Mercury

Venus 0.3958

Earth 0.3173 1.5987

Mars 0.2762 09142  2.1354

Jupiter 0.2458 0.6488 1.0920 2.2350

Saturn 0.2428 0.6283 1.0351 2.0089 19.8618

Uranus 0.2415 0.6198 1.0121 1.9241 13.8324 45.5665

Neptune  0.2412 0.6175 1.0061 1.9026 12.7945 359576 170.5157

Pluto 0.2411 0.6167 1.0041 1.8953 12.4719 33.5207 126.8006 494.6005
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Figure 1.1.15. A set of transfers occurring with a given synodic period and making up a global
repeat period after three synodic repeat periods.

Figure 1.1.15 shows the approximate locations of transfer opportunities arising
at three synodic periods, globally repeating at the third case. This is the approximate
situation for transfers between Jupiter and Saturn. The three arrows indicate the
three arrival points at planet 2.

Having established the occurrence of regular launch opportunities, the next
question is how long does such a launch opportunity last. This varies with planet
to planet, but the information can be obtained from the Lambert problem generated
charts previously obtained. In general, the mission will be designed with the fuel
capability to execute the nominal transfer (at the optimal launch date) plus some
relatively small margin for non-optimal transfers at later/earlier launch epochs. This
allowed margin defines the range of possible launch dates, spreading on either side of
the optimum launch epoch. Typically a period of 20 to 30 days is considered to be
adequate for such a launch window.

1.1.6 Multi-revolution transfers

The transfers described so far involve performing approximately 0.5 revolutions
around the Sun, such as in a classical Hohmann transfer. However, many locally
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Figure 1.1.16. A 1.5-revolution transfer for a launch in 2011. Earth’s and Mars’ orbits are
shown by the thicker line. The grid is 1 AU from centre to edge.

optimal transfers are possible when the range of possible transfer durations is
extended. The key factor is the number of heliocentric revolutions. Instead of 0.5
revolutions, it is possible to use 1.5 or, in principle, n.5 revolutions.

If once again the case of co-planer, circular planetary orbits are considered, then
it is immediately apparent that minimum speed change required of the spacecraft is
independent of the number of revolutions. The optimal transfer duration is simply
incremented by ‘n’ times the transfer orbit period.

When this technique is applied to real planetary orbits, a number of factors
become significant:

e The optimal launch epochs will not be the same as the half-revolution class of
transfers, due to the extended transfer period.

e The excess hyperbolic speeds required for departure and arrival will also differ
from the half-revolution class transfers, because of the difference in planetary
location at the departure and arrival epochs (i.e., when a given departure year is
considered).

In practice, half-revolution class transfers are generally preferred to their longer
alternatives, but occasionally mission constraints may arise that may make these
longer transfers attractive. An example is the case of a mission to Mars, which
may carry a lander. It is preferable that landing takes place outside of the martian
dust-storm season. This season lasts for typically 6 months per Martian year. The
use of a 1.5-revolution transfer opens the possibility for later arrival epochs at Mars,
to avoid the dust-storms. Clearly, this depends on the probable launch epoch range.

The local minima for such long transfers occur with transfer durations of
typically 700 days. Figure 1.1.17 was evaluated using the assumption that only
two manoeuvres are used: departure and arrival. However, the insertion of an
additional revolution opens the possibility of optimally inserting a third
manoeuvre, in deep space. This may be beneficial, as it provides greater flexibility
in transfer duration by changing the period of the first revolution. The option is most
effective when a particular, non-optimal departure or arrival epoch is targeted.
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Figure 1.1.17. Extended-duration transfers in terms of Vinfinity contours, for Earth—-Mars
transfers starting 2011.

Table 1.1.5. One-and-a-half-revolution type transfers from Earth to Mars, with launch in
2011.

Vinf Esc Transfer time Vinf Cap Total Vinf
Launch date (m/s) (days) (m/s) (m/s) Arrival date

24 May 2011 2,855 710 2,782 5,637 3 May 2013
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1.2 LEAVING A PLANET

The previous sections discussed the AV required to execute interplanetary transfers,
in terms of the speed change relative to the planetary orbits. This has now to be
related to the actual manoeuvre AV's needed to achieve these conditions. The
problem of motion when leaving a planet is potentially complex, as the spacecraft
starts its journey in a region where the planet’s gravity field dominates the motion,
transfers through a zone where there are two comparable gravity fields (Sun and
planet), and then reaches a zone where only the Sun’s gravity is of importance.

In the following discussion, some basic assumptions will be made by which this
motion can be approximated. This motion will subsequently be examined in more
detail.

1.2.1 Escape orbits

More than one strategy could be considered for an escape from a planet into an
interplanetary transfer orbit. Two options are described here.

One means of calculating the manoeuvre AV would be to calculate the speed
change needed to accelerate from the first bound orbit about the initial planet to a
parabolic orbit with respect to that planet. As the spacecraft reaches a large distance
from the first planet (typically several millions of kilometres) its speed with respect to
that body tends towards zero (if the Sun’s gravity is neglected), and so a planet co-
orbiting state is achieved approximately. The position offset from the planet on
reaching this state (millions of kilometres) is relatively small when compared with
interplanetary distances (hundreds of millions of kilometres).

This would therefore imply a four-manoeuvre transfer:

Burn 1 to reach parabolic orbit from planet 1.

Burn 2 to accelerate into heliocentric transfer ellipse.

Burn 3 to accelerate to planet 2 orbit speed.

Burn 4 to decelerate from parabolic orbit with respect to planet 2.

The AV required to reach such a speed, from an initial bound orbit at the planet, is

then given by:
2
AV = 1/(“) - (1.2.1)
T'pi1 T'pi1

This applies for the example where the spacecraft is initially in a circular orbit of
radius r,;. p is the gravitational parameter for the planet.

However, such a scheme would be quite inefficient for a spacecraft with the
capability to apply near-instantaneous speed changes (an impulsive A}'). Such stra-
tegies as just described are only efficient where a spacecraft carries mixed propulsion
types, including a high specific impulse (but typically low-thrust) system to achieve
the deep-space accelerating manoeuvres.

A spacecraft with the capability to apply only high-thrust, moderate specific
impulse manoeuvres must rely on utilising the gravity field of the initial planet to
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the greatest extent. A hyperbolic orbit about a planet still has a non-zero speed even
at infinite distance from the planet (if no other gravity field than the planet’s were
considered). Therefore, when at several millions of kilometres, its speed relative to
the planet tends towards the ‘excess hyperbolic velocity’. The excess velocity targeted
is that needed to achieve the interplanctary transfer, as this now is approximately
equal to the effective departure speed from the planet within the heliocentric domain.
This quantity can be calculated from:

—p

Vi =4/— 1.2.2

o= (122)

The direction of the excess hyperbolic departure vector can be chosen by

correctly locating the orbit plane and the pericentre of the initial hyperbolic orbit.
The asymptotic departure direction within the orbit plane is given by:

e—cos—‘(—i)) (1.2.3)

where 6 is the maximum true anomaly, and where the velocity vector is asymptoti-
cally aligned with the radius vector. Any component of the required interplanetary
departure velocity vector that lies out of the planet’s equatorial plane (the declina-
tion of the departure vector) must be achieved by using an initial planetary orbit with
sufficient inclination to reach such a declination. This may depend on the launcher
capability (but is discussed in a subsequent section, ‘Interplanetary Departure
Implications’).

The AV required to reach such a speed, from an initial bound orbit at the planet,

is then given by:
2
AV = <“+ V@) - E (1.2.4)
T'pil Tpi1l

for the example where the spacecraft is initially in a circular orbit of radius r,;, or

AV = <2”+ Vgo) - 2u<1—1> (1.2.5)
Fpil Tpil (rpll +rapll)

for a general elliptical orbit with apogee a,,.

» Planet velocity
Ll

|-
Ll

v

Departure velocity Vector addition
w.r.t. planet gives heliocentric
velocity

Figure 1.2.1. Departure orbit geometry.
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The AV needed to reach a range of excess hyperbolic speeds from initially
elliptical Earth orbits is shown in Figure 1.2.2.

This illustrates the point that escape planetary transfer manoeuvres are most
efficiently performed when deep within the planet’s gravity field, rather than when
accelerating in deep space.

Figure 1.2.3 illustrates the point that injection to a high-pericentre initial orbit is
not efficient in terms of reaching a subsequent escape trajectory.

Figure 1.2.4 shows the AV needed to reach the departure excess hyperbolic
speeds for conjunction-type transfers through the Solar System. The initial Earth
orbit is 500 km perigee altitude and 36,000 km apogee altitude. The AV to capture
from the approach excess hyperbolic velocity at the target planet is also included.
The orbit at the target planet has the same altitudes as the departure orbit. The
actual radius of apocentre of the target, therefore varies considerably with the
different radii of the planets.

1.2.2 Orbiting a planet

Due to significant differences in planetary mass throughout the Solar System, con-
siderably different energies are required to reach a common orbit. In the following
example, the orbit is chosen to have a semi-major axis of 100,000 km. This therefore
implies different altitudes with respect to each planet (for the example of a circular
orbit).This bound orbit energy deficit with respect to a zero energy orbit is shown in
Figure 1.2.5.

The logarithmic plot shows that reaching this orbit about Jupiter requires a
much greater insertion energy than, for example, such an orbit about Mars (over
1,000 times more). In fact, the energy deficit below escape, for a spacecraft orbiting
Jupiter at such a radius, is comparable with that of the orbit of Venus when con-
sidered relative to the heliocentric zero-energy level.

This could imply that reaching an orbit about, for example, Jupiter is extremely
difficult. However, advantage may be taken of special techniques in reaching such an
orbit. Such methods are discussed in detail in Chapter 4.

1.2.3 Intermediate launch and apogee raising

The preceding discussion has shown that in order to reach the required interplane-
tary transfer, the spacecraft must reach a suitable speed at departure from the initial
planet. This can be provided by a launch vehicle.

Most launch vehicles consist of multiple stages, to maximise the payload mass
that they can inject into orbit. The required escape velocity is therefore achieved by
the final or upper stage of the launcher.
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Figure 1.2.2. Apogee altitude vs pericentre A}V to reach a given Vinfinity with perigee altitude
at 200km. In this first case the perigee altitude is at 200 km. Increase in the target excess
hyperbolic speed requires a much smaller change in perigee velocity than the change in
hyperbolic excess. Target V., values are 1000 to 4000 m/s in this case.

2000

1800

1600

1400

1200

1000

DV (m/s)

800

600

400

200

1

\\ : ——1000

\ —=—2000

\'\ . 3000

\ 4000

I —
—
0 50000 100000 150000 200000 250000 300000 350000

Apogee (km)

Figure 1.2.3. Apogee altitude vs pericentre AV to reach a given Vinfinity with perigee altitude
at 2000 km. A second example is taken where a much higher perigee is considered at 2000 km.
In this case, the AV needed to raise apogee to a given excess hyperbolic speed target is

increased.



Sec. 1.2] Leaving a planet 27

20000.00
18000.00
16000.00
14000.00
12000.00
10000.00
8000.00 -
6000.00 -
4000.00 -

2000.00 ] [
0.00 1

@ Arrival
W Departure

DeltaV (m/s)

Figure 1.2.4. AV required to reach required excess hyperbolic speed for conjunction-class
transfers from Earth.

1000000000.06;

100000000.004

10000000.00+

1000000.00+
—
-
N—
> 100000.00
o
@
c 10000.00+
L

1000.00+

100.00+

10.00+

Mercury  Venus Earth Mars Jupiter  Saturn Uranus  Neptune Pluto

1.00+

Figure 1.2.5. Orbital energy per unit mass of a 100,000-km semi-major-axis orbit with respect
to the planet escape condition.

There will be an upper mass limit that can be injected into a given escape orbit.
This can be predicted via application of the classical rocket equation:

mys = Mgy €X _AV
SR Tsp g

where m and m; are the initial and final masses at the start and end, respectively, of
the final stage burn. AV is the speed change implemented by the spacecraft
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propulsion system. This is determined by the time integral of the spacecraft accel-
eration due to propulsive forces. Isp is the specific impulse of the rocket engine,
determining the ratio of fuel usage to thrust:

Thrust

m * g

Isp = —

These relationships are discussed in Chapter 2.

The initial mass consists of the upper stage dry mass (mp,,), the mass of fuel
on-board the launcher upper stage (m14,,), and the total mass of the spacecraft to be
injected (mgc).

My = My py + Mpfe + Msc
The final mass (m,) is achieved when all fuel is burnt, and is therefore:

My = My p,y, + Mgc

Direct injection performance

In the following discussion it is first necessary to derive the performance available by
direct injection by the launcher. The speed change, or AV, is determined by the
difference between the required escape velocity and the speed at the start of the
final stage burn.

If this manoeuvre were effectively impulsive, then the speed change, or AV,
could be determined by the difference in perigee speeds at the start and end of the
burn. Such a burn is most efficiently applied at perigee, as the manoeuvre is effec-
tively raising the apogee. The AV would then be given by Equation 1.2.5.

This direct injection performance may be derived as follows. In this simplified
analysis it is assumed that no orbit plane changing is required. Assume that at start
of its final stage burn the launcher lies in a parking orbit, such that the perigee speed

is given by:
1 1
V, rkp — 2# ( — >
parse \/ Tparkp (}’ parkp +r parku)

where 7,4, is the pericentre radius of the parking orbit and r,,y, is the apocentre
radius of the parking orbit.
At the end of the burn needed to reach the target orbit, the new perigee speed is:

1 1
Vin p 2# ( - >
rer \/ Finterp (rint erp + Tint era)

where iy, 1s the pericentre radius of the target orbit, riy.,, is the apocentre radius
of the target orbit. If the manoeuvre were impulsive, the pericentre radius of the
intermediate orbit would be the same as that of the parking orbit. Therefore, in such
a case the AV required is AV = Viyerp — Viparip- If the manoeuvre is not impulsive,
then a loss term must be added to find the total AV to be applied by the propulsion
system.
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Here, if the target orbit is bound then the target apocentre is positive, and if an
escape orbit is targeted then the implied negative semi-major axis can be converted to
an equivalent target apocentre, which will also be negative.

The speed change is accomplished by the main engine (or engines) of the upper
stage. These engines are generally capable of delivering a high thrust-to-mass ratio,
and so the ‘losses’ due to the spatial distribution of the burn (non-impulsive burn)
are low. This issue will be considered in the following sections.

The mass directly injected by the launcher to this orbit is therefore:

—(V; - ark
my = (Mpp,y + Mgc) = mg exp< ( l;st;rf ” gop ]p> (1.2.6)
where M p,, is the dry mass of the launcher (mass after fuel is burnt to depletion),
M ¢ is the total mass of the spacecraft, m is the initial total mass of the upper stage,
and Isp; is the specific impulse of the launcher propulsion system.

It is assumed that the total all-up mass of the upper stage (including the space-
craft mass) at the start of the upper stage burn cannot exceed an upper limit. The
speed at the start of the upper stage burn is also assumed to be fixed. This would
correspond to the situation where the same parking orbit is always used.

The mass in parking orbit is then made up of the stage dry mass, the fuel mass
and the spacecraft mass. The AV required determines the ratio of spacecraft mass to
fuel mass. The fuel mass is calculated by:

AV
el = 1-— —_— 1.2.7
T m"( exp(lspL *go>) 27

The maximum spacecraft mass that can be achieved is:

—A 1.2.8

Mgc = My m/‘uel mLDry = Mo max eXP(ISpL % g()) mLDry ( cLe )

where the initial mass, m, is always the maximum mass for the upper stage — 71 yax
if the mass of the spacecraft is to be maximised.

As the AV increases, then the fuel mass increases and so the spacecraft mass that
may be injected decreases. A limiting AV is found when the spacecraft mass reaches
zero, and therefore illustrates a fundamental limit in launcher injection orbit
capability.

However, any such upper stage will in general have a fixed fuel tank size and
therefore an upper limit in available fuel mass: 71,0 max-

On reaching this limit, the required AV can be achieved only by reducing the
mass injected into the parking orbit, with implications for the achievable spacecraft
mass injected into the final orbit. If the spacecraft is fully fuelled, then the following
expression shows the relationship between the initial mass of the upper stage and the
AV that is available.

mfuel max

1 —ex mald
P Ispr * go

my =
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and therefore

—AV
Mg, €X e —
'fuel max p ISPL * 20

Mmgc = “AV — mLD,.y
)
Ispr * g

Mgc = My — Mpyeimax — MLDry

or:

The relationships between the total upper stage mass, the fuel mass and the space-
craft mass for a typical stage are shown in Figure 1.2.6. An example of an inter-
mediate performance launcher is taken. The maximum upper stage mass that can be
injected into a defined parking in this case is assumed to be ten tonnes. The parking
orbit is a 200 km altitude circular orbit. The fuel tank limit of the upper stage is
assumed to be 6.5 tonnes. The dry mass of the launcher upper stage is assumed to be
1.2 tonnes. The two parts of Figure 1.2.6 show the maximum upper stage mass of ten
tonnes can be fully utilised for this range of target, high elliptical orbits, as the fuel
mass required for the perigee speeds that must be reached does not meet the fuel tank
limit. In the lower diagram, the specific impulse assumed for the launcher was
330 sec.

The analysis can be extended to Earth escape orbits, where the perigee target
velocity is further increased. The full tank fuel mass can be used only to an injection
orbit target of approximately 1 km/sec excess hyperbolic speed, or a perigee speed of
just under 11,050 m/s. Below this target the fuel load required is less than the 6.5-
tonne limit.

This is one example of a launcher performance, and many variants are possible,
depending on:

e Maximum lift capability into the parking orbit, determining maximum upper-
stage mass.

e Fuel tank limits of the upper stage.

e Dry mass fraction of the upper stage.

e Specific impulse of the upper-stage propulsion system.

However, qualitatively similar behaviour may be found for other launcher examples.
Further examples of launcher variants are presented in the appendices. Launch
vehicle performance data may be found in the references for this section.

Optimising injection performance

Using a strategy of a launch vehicle upper stage to directly inject the spacecraft to its
target orbit may not maximise the mass that can be injected into that orbit. To derive
the maximum possible injection mass, it is necessary to consider the possibility of the
spacecraft performing its own manoeuvres, after injection into an intermediate orbit
by the launcher. Such an intermediate orbit would in general be elliptical, with an
apogee radius that must be optimised to achieve the maximum escape mass.
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Figure 1.2.6. Fuel tank limited performance for spacecraft injection to high apogee and
elliptical orbits. In the second figure, the mass components are plotted against the perigee
speed that is required to reach the apogee shown in the first figure.
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Figure 1.2.7. Fuel tank limited performance for spacecraft injection to high apogee and
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The spacecraft mass may therefore be broken down into the following
components:

—AV
Mgc = MsCpay T Mscprop + MsCfuel = Mo €XP| 7———— | — Myrpyy (1.2.9)
: ‘ Ispp * go .

Mgcpqy 18 the ‘useful mass’ of the spacecraft, in this case, the basic spacecraft mass,
including scientific payloads plus the spacecraft service modules (i.e., those equip-
ments to maintain and support the science payloads), plus the fuel mass needed to
execute any further transfer manoeuvres after the escape manoeuvre to the departing
transfer orbit is performed (e.g., injection into a target planet orbit). mgcy,, is the
mass associated with the spacecraft’s own propulsion system needed to perform the
manoeuvres from the intermediate injection orbit, to reach the target orbit. mgcp,; is
the fuel mass that the spacecraft needs to reach the departing target orbit, after
launcher injection to the intermediate orbit.

The AV here is that needed to inject the upper stage and spacecraft to the
intermediate apogee orbit, and therefore:

AV, —AV,
Mgscpay = (mo eXp (M)) - mLDry) eXp (Ispsc*bgo> — MscCprop (1.2.10)

where Ispgc is the specific impulse of the spacecraft propulsion system, AV, is the AV
applied by the upper stage propulsion, and AV, is the AV applied by the spacecraft.
Each of these terms will consist of a speed change plus a loss term.

The constraint on total AV must apply:

AV+AVaLoss+AVbLoss:AVa+AVb (1211)
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AV 1. 18 the ‘loss’ in the AV applied due to the spatial distribution of the burn, for
the upper stage. This is given a nominal value of 2.5% in these examples.

AV s 18 the ‘loss’ in the AV applied due to the spatial distribution of the burn,
for the spacecraft. The thrust available from the spacecraft’s main engine generally
tends to be more limited than that of an upper stage, but could itself be a mission
optimisable parameter. This loss depends on the orbit raising strategy and will differ
significantly with the target orbit.

This expression concerning spacecraft payload mass may be maximised with
respect to the AV split. The result will be to determine if an intermediate injection
orbit can be found into which the launcher upper stage should inject the
spacecraft.

In the following examples, the specific impulse of the spacecraft propulsion
system is assumed to be lower than that of the upper stage (at 320 sec compared
with 330sec). The mass of the spacecraft propulsion system may be treated para-
metrically. In this example, as an approximation, it is considered to be a fixed
fraction of the fuel mass used by the spacecraft. The effects of different values for
this fraction are now compared. The upper stage mass is assumed to be fixed at 10
tonnes, as in the previous examples.

The optimum intermediate injection orbit will be influenced by the choice of the
final target orbit. Therefore, the first example is that of a transfer orbit to the Earth—
Sun Lagrange points, where the target apogee is 1.5 million km.

The full mass capacity of the launcher — 10 tonnes in this example — can be used
for the full range of intermediate apogee radii considered here. The spacecraft mass
shown in Figure 1.2.8 includes the fuel and propulsion required to eventually reach
the target apogee of 1.5 million km.

The results for this choice of target orbit indicate that the optimum apogee radius
is 25,000-45,000 km, depending on the propulsion mass fraction (Figure 1.2.9).

Examples of higher-energy target orbits can now be considered. A range of
Earth escape orbits, with excess hyperbolic speeds of 1-5km/sec, are considered in
Figure 1.2.10.

In Figure 1.2.10 the AV loss assumed is 10%. This is higher than the previous
case because the speed change required to reach the target is significantly higher.
This can be mitigated to some extent by performing multiple burns, but the final
burn is a large single burn needed to accelerate the spacecraft to escape velocity.

The optimum intermediate injection orbit apogee is now higher, lying at between
50,000 and 100,000 km, the higher optimum occurring for the higher target excess
hyperbolic speed.

The gain in useful mass available to the spacecraft depends upon the propulsion
related mass fraction for the spacecraft. Gains of over 100kg may be achieved,
depending on the target orbit. However, this is also related to the launcher perform-
ance with increasing perigee speed. A key factor is the maximum launcher fuel
fraction for the upper stage (which is related to the mass efficiency of the upper
stage). In the case considered, the maximum fuel fraction is 65%. This allows good
performance in reaching higher perigee speeds, when compared with an upper stage
with a lower maximum fuel fraction.
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Figure 1.2.8. Mass components versus intermediate injection apogee radius. The above figure
shows the total upper stage mass, upper stage fuel mass and the total spacecraft mass injected
into the intermediate orbit, as a function of the apogee radius of that orbit.
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Figure 1.2.9. A case of fixed upper stage mass showing spacecraft mass versus intermediate
injection apogee radius, for a target apogee of 1.5 million km for two spacecraft propulsion
mass fractions. This figure shows the “useful mass’ of the spacecraft injected to the target orbit,
depending on the choice of intermediate orbit apogee. Two values of spacecraft propulsion
mass fraction are considered. The AV loss assumed here is 2.5% in the apogee raising by the
spacecraft.
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Figure 1.2.10. A case of fixed upper stage mass showing spacecraft useful mass versus inter-
mediate injection apogee radius, for a range of target escape orbit Vinfinity, and for a
spacecraft propulsion mass fraction of 0.15.

A second example may be considered (Figure 1.2.11), where this maximum
fraction is lower at 60%. It is also assumed that in this case, the dry mass of the
upper stage is reduced by 100 kg when compared with the previous example, due to
the lesser fuel requirement. This means that direct launcher performance, to lower
perigee speed cases, where less than maximum fuel is required, is improved when
compared with the first example shown in Figure 1.2.6. However, the performance at
higher perigee speeds will be compromised.

The effectiveness of this strategy of using intermediate apogee injection therefore
depends on the characteristics of the launch vehicle and the mission target. A more
detailed discussion on this subject may be found in Appendix 4.

Spacecraft apogee raising

In the previous section the subject of the spacecraft performing apogee raising was
considered. The main performance-related issue is the AV loss associated with this
manoeuvre.

The AV loss is related to the spatial distribution of the burn. The application of
an accelerating manoeuvre at radii greater than perigee results in inefficiency, such
that the AV required to complete the apogee raising exceeds that expected from
impulsive predictions. If Figure 1.2.12 is examined, then the low injection apogees
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Figure 1.2.11. A second case of fixed upper stage mass showing spacecraft useful mass versus
intermediate injection apogee radius, for a range of target escape orbit Vinfinity, for a
spacecraft propulsion mass fraction of 0.15. The stage maximum fuel fraction is reduced to
60%. This lower upper stage fuel fraction case, with lower dry mass also, gives better
performance at low apogee injection and worse at higher apogees, when compared with
Figure 1.2.10.

2500

2000 T

1500

1000

DeltaV (m/s)

\“\0\4

SE—
0
0.00E+00 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08

Apogee (m)

Figure 1.2.12. AV from injection orbit to 1.5-million km apogee target orbit. Perigee altitude
of 200 km is assumed
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Figure 1.2.13. Example of apogee raising from a 42,000 km apogee injection orbit to reach a
target orbit with apogee of 1.5 million km. A series of five apogee-raising burns are made to
raise the apogee to its target. The extent of the burns can be seen by the lightly shaded regions
of the trajectory around perigee. This corresponds to a thrust/mass ratio of approximately
0.1333m/s at the start of the apogee raising. Such an initial acceleration is representative of
typical spacecraft thrust/mass capabilities.

require a substantial AV to reach a target apogee of 1.5 million kilometres. Also, the
injection mass is higher in these lower intermediate orbits. Therefore for similar
propulsion system types (with comparable thrusts), the acceleration available to
the spacecraft will be lower. This double penalising effect means that injecting to
low-apogee intermediate orbits could potentially be an inefficient strategy, because of
the AV loss that may be experienced.

However, this loss can be substantially reduced by adopting a multiple-burn
apogee-raising strategy. In this way, a series of lower-apogee intermediate orbits
are used, before finally injecting the spacecraft into the target orbit. If the loss
when initially injecting to lower intermediate orbits is to be contained to low
levels, then progressively more burns are required as the injection apogee reduces.

If, for example, an intermediate apogee orbit radius of 42,000 km is considered,
with a target apogee at 1.5 million kilometres then splitting the apogee-raising to
typically three to four burns can result in a reduction in the AV loss to only a few per
cent. The actual value depends on the thrust used by the spacecraft. Figure 1.2.13
illustrates such an apogee-raising strategy.
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Figure 1.2.14. AV from injection orbit to 5km/sec excess speed. If the example of a target
excess hyperbolic speed of 5,000 m/s is considered then the impulsive speed change required is
shown in the above figure. A perigee altitude of 200 km is assumed.

The case of a higher-energy target orbit can now be considered. An excess
hyperbolic speed target of 5,000 m/s requires significantly higher AV change from
the intermediate injection orbit than the case considered previously.

Figure 1.2.14 shows that even with an intermediate orbit apogee at 400,000 km,
a AV of more than 1km/sec is needed to reach the escape orbit. In practice, apogee-
raising to intermediate targets approaching 300,000 km, before finally injecting to the
target orbit, can result in difficulties with perturbation of the intermediate orbits by
solar gravity. Furthermore, little extra speed gain is found in using, for example, a 1
million-km apogee before injecting to escape, compared with 300,000 km.

Therefore, in such a scenario it is possible to perform a series of apogee raising
manoeuvres until typically an altitude of between 100,000 and 300,000 km is reached.
However, the next manoeuvre must be sufficient to reach the escape orbit directly,
and will be over 1km/sec in this example. This manoeuvre will then generally
experience a greater AV loss. The actual loss depends on the details of the propulsion
system, but a loss of 10-20% could be expected for such a manoeuvre.

1.2.4 Interplanetary departure implications

The previous sections described the requirement for velocities relative to Earth (or
any planet) when leaving on an interplanetary trajectory. A hyperbolic orbit must be
targeted. The magnitude of this departing relative velocity determines the excess
hyperbolic speed needed when leaving Earth. The direction of the departing
relative velocity vector is expressed in terms of right ascension and declination.
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If a hyperbolic orbit is considered, then it is possible to calculate the asymptotic
direction of the departure orbit. Firstly, the semi-major axis is given by:

— Mplanet
a=—— 1.2.12
o (12.12)
The eccentricity, e, is then obtained from the perigee r,,, of the departing orbit:
T'pe Fpe Mplanet
=1 - =g 1.2.13
e p + V2 ( )

The eccentricity is therefore greater than 1. The true anomaly () corresponding to
a(l — e?)

the asymptotic direction is then calculated from the relationship r = ——, as
1 +ecosd

tends to an infinite value and is given by:

920051(—1> (1.2.14)

e

The directions of the asymptotic escape vector with respect to a frame of reference in
Earth’s equatorial plane can now be calculated.

The angle from the ascending node to the departure vector direction (the angle
in the orbit plane) is w + #, where w is the argument of pericentre. For any given
orbit plane containing the escape orbit, the two cases may be found that achieve the
same direction of the asymptotic hyperbolic escape vector. These two solutions
initially travel about the planet in an opposite sense. The geometry of the two
solutions is illustrated in Figure 1.2.16.

The line of nodes is shown in this figure. The relationship between this direction,
the argument of pericentre, the orbit inclination and the resulting asymptotic
departure right ascension and declination will be derived. The location in
Figure 1.2.16 could be that for the case of a 90-degree inclination orbit. In such a

'\
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—
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-------------------------------------------------------- Pericentre
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Figure 1.2.15. The departing hyperbolic orbit, showing the asymptotic true anomaly.
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Figure 1.2.16. The departure vector seen within the orbit plane of the escape hyperbola,
showing two alternative solutions attaining the same departure direction.

case, the direction of the escape hyperbola then lies in the vertical plane, and so the
angle between the escape vector and the line of nodes determines the declination. In
the above case, one escape orbit results after passing through the descending node,
after pericentre, case 2) and the other case through the ascending node after peri-
centre.

Further relationships may be obtained between departure direction and the
argument of pericentre. Firstly:

wy+60=~v+27
wF+O+y=m (1.2.15)

where v is the angle between node direction and departure direction in the orbit
plane. It is important to note that the argument of pericentre is always measured
relative to the ascending node. The reference direction with respect to which the
departure direction will be measured is taken as the line of nodes, and we can
arbitrarily take the ascending node for case 2 as that reference.

Having evaluated the angle between the line of nodes and the departure vector,
then the relationship between this and the two arguments of pericentre can be
evaluated:

Wy —w; =2v4+m7 (1.2.16)
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Then, by spherical trigonometry, the declination of the asymptotic departure vector
(the angle out of the equatorial plane) is given by the following identity.

sin DEC = sinisin(w + 6) (1.2.17)

This relationship applies for both of the cases discussed, because the argument
of pericentre is always measured from the ascending node, from which the inclina-
tion of the hyperbolic orbit plane is also defined.

From this relationship it can be seen that for a given inclination, i, of the initial
orbit there is a maximum achievable magnitude of declination, equal to the inclina-
tion of that initial orbit (for i < 90° or 180—i for i > 90°). This initial orbit inclination
is generally related to the launch vehicle performance and the latitude of its launch
site. In the absence of range constraints that limit certain launcher departure
azimuths, maximum launcher performance is achieved with an injection orbit incli-
nation equal to the latitude of the launch site (i.e., an easterly launch).

This equation also illustrates the point that for a given argument of perigee, two
different inclinations may be used to reach a given target declination. The sum of the
two inclination solutions is 180 degrees.

An example of two departures achieving the same declination is shown in
Figure 1.2.17, for the case of an Earth escape. These two departure solutions lie in
the same plane. The sub-grid spacings are in Earth radii. The dashed lines indicate
the projections of the two trajectories in the Earth equatorial plane. The asymptotic
departure directions become parallel at greater distance from Earth. The magnitude
of the excess hyperbolic speed is assumed to be 3,000 m/s. The inclinations of the two

orbits are 60 and 120 degrees. The arguments of perigee are calculated from
Equations 1.2.15 and 1.2.17 for the two solutions.
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Figure 1.2.17. Simulation of two hyperbolic orbits with ascending nodes separated by 180

degrees (inclinations 60 and 120 degrees) achieving a 30 degree asymptotic departure
declination.
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Figure 1.2.18. The effect of declination requirement on the hyperbolic orbit argument of
perigee for a 3km/sec excess hyperbolic speed orbit leaving Earth.

A further two solutions that achieve the same departure direction may now be
added to the previous pair. The two new solutions lie in the same plane as each other
but not the same plane as the first pair. In this case the argument of perigees are the
same as the previous pair of solutions and the orbit inclinations are 180 degrees
minus the inclinations of the previous case. The right ascension of the ascending
must be adjusted for the second pair, in order to achieve the same departure azimuth
for the second pair of hyperbolic orbits as the first pair.

The right ascension, «, of the departure vector, measured with respect to the
same inertial longitude reference as the orbit ascending node, is given by:

tan o = cositan(w + 6) (1.2.18)

Then the right ascension of the departure with respect to the equatorial reference ‘X’
direction is given by: R4 = a + Q. Note that quadrant fixing must be considered, as
the above equation does not uniquely determine the value, «.

Any required right ascension of departure may be achieved by selecting the
appropriate right ascension of the injection orbit ascending node. This is itself
determined by the time of day at which the spacecraft is launched.

It should be noted that the right ascension and declination targets discussed here
are in Earth equatorial axes. In some analyses of interplanetary transfers, these are
expressed with respect to the ecliptic and so the appropriate transformation must be
made.
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Therefore, given an inclination of the departure orbit, a target asymptotic
departure right ascension and declination can be achieved by selecting the right
ascension of ascending node and argument of perigee of that orbit, providing that
the magnitude of the target declination does not exceed the magnitude of the orbit
inclination.

In the following example, a specific Earth departure orbit is considered. The
magnitude of the excess hyperbolic speed is assumed to be 3,000 m/s. The direction
of the asymptote, 6, is then 159° (assuming a perigee radius for the departure orbit of
6,578 km). Figure 1.2.18 shows the argument of perigee that is required to achieve a
given departure declination, for a set of three different initial orbit inclinations,
ranging from 30° to 60°. The 60/120° inclination case is illustrated in
Figure 1.2.17, targeting a declination of 30°.

Both solutions for the argument of perigee are shown, for a given declination.
The sum of the inclinations for the two solutions is 180°. In this plot, the comple-
mentary inclination cases assume that the ascending node of the orbit is 180° from
the other solution lying in the same plane.

1.3 PLANET ORBIT SELECTION AND INSERTION

1.3.1 Planetary approach and capture

The approach to a planet is characterised by three parameters: excess hyperbolic
speed (the magnitude of the approach planet relative velocity vector) and the right
ascension and declination of the approaching planet relative velocity vector.

These parameters determine the range of orbits that it is possible to reach with a
single capture manoeuvre. The capture manoeuvre is a large retro-manoeuvre
performed at planet pericentre. It is essentially the reverse of an escape manoeuvre
discussed in the previous sections. This is the most efficient location for the capture
manoeuvre, performing a capture manoeuvre removed from pericentre can be very
inefficient in AV terms.

After capture, the spacecraft will generally lie in an elliptical orbit. As the
capture manoeuvre can often have a relatively large AV (similar in magnitude to
an escape manoeuvre) and the spacecraft is capable of only finite thrust, a AV loss
will occur due to the spatial distribution of the retro-burn around pericentre.

1.3.2 Target orbit options

The spacecraft approach vector lies perpendicular to a plane passing through the
centre of the planet. This is the ‘B’ plane. If the planet were to possess a negligible
gravity field, then the spacecraft would be undeflected and pass normally through the
B plane. This would be the closest approach to the planet. In the presence of
the actual planet’s gravity, the spacecraft approaches in a hyperbolic orbit and the
pericentre does not appear in the B plane. However, the concept is of value, as it
allows a categorisation of approach orbits.
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Figure 1.3.1. Definition of the B plane.

In Figure 1.3.1, the B plane is shown as the plane perpendicular to the hyperbolic
approach vector. A second plane is shown. This is a reference plane, and could for
example be either a plane parallel to the ecliptic or the planet’s equatorial plane. A
Beta angle of zero is then defined by an approach through the intersection of the B
plane and the reference plane.

The approach orbit plane includes the arriving asymptotic excess hyperbolic
velocity vector and the position offset in the B plane, defined by the Beta angle.
Therefore, the angle between this approach orbit plane and the reference plane
determines the inclination of the orbit plane with respect to that reference. To
determine this inclination, a further intermediate reference plane may be considered,
passing through the intersection of the B plane and the reference plane, but lying
parallel to the approach vector. This will be referred to as the relative approach
plane. In subsequent discussions in Chapter 4 on gravity assist this plane is a similar
concept to the approach plane. The angle between this intermediate plane and the
reference plane is given by the declination of the arrival vector — a rotation about the
intersection of these planes. The angle between the approach orbit and the inter-
mediate plane is given by the Beta angle — a rotation about a vector parallel to the
approach direction. The inclination may therefore be determined by these two
orthogonal rotations.

cosi = cosfcos DEC (1.3.1)

When at a distance of millions of km from the planet, a tiny transverse A} can
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Figure 1.3.2. The relationship between Beta angle and inclination, for a range of different
declinations. At Beta angles above 180 degrees, the negative inclination solution is applied.

allow the approach vector to intersect the B plane at any location. Such a manoeuvre
can be implemented when the spacecraft is only days away from reaching the target
planet.

When referring to the previous figure, a Beta angle between 0° and 360° can be
selected without any significant manoeuvre being required. Having seleceted the Beta
angle, the orbit plane with respect to the planet is now defined. The orbit plane then
contains the pericentre, and its inclination is determined by the Beta angle. This
situation is the reverse of the planetary departure condition described in section
1.2.4.

The angle between the asymptotic approach vector and pericentre is given by
Equation 1.2.14. A similar set of relationships to those governing planet departure
can now be used for the capture case. In the following equations, o and DEC define
the orientation of the asymptotic velocity vector approaching the planet:

sin DEC = sinisin(f — w) and tana = —cositan(f — w) (1.3.2)

Then the right ascension of the departure with respect to the equatorial reference ‘X’
direction is given by: R4 = a + (). Note that quadrant fixing must be considered, as
the above equation does not uniquely determine the value, «.

The true anomaly of the asymptotic approach vector is given by the same
relationship as the planet departure case. A wide range of inclinations about the
target planet may be reached. However, a limitation exists that is imposed by the
arrival declination.

|sini| > |sin DEC| (1.3.3)

A 360-degree range of Beta angles is possible. Therefore, for a given approach
declination and right ascension, a wide range of arguments of pericentre can be
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Figure 1.3.3. Arrival geometry seen in the orbit plane about the planet.

achieved. If cases at inclinations of £90° are considered, then maximum and
minimum latitude of the argument of pericentre can be found.

The argument of pericentre is an important parameter, as it determines key
properties about the capture orbit about the planet. If the spacecraft is to be
captured, then a retro-manoeuvre is performed at pericentre, and the pericentre of
the approaching hyperbolic and capture orbits are therefore at the same location.

Some examples of the possible pericentres can be examined. The case of a space-
craft approaching Mars is considered. Firstly, a zero-declination approach is used.
The locus of all possible pericentres can then be found via the previous equations
relating argument of pericentre to inclination and Beta angle (attention must be paid
to quadrant fixing in this calculation). The locus is expressed as a latitude and a
longitude of the pericentre. The latitude is relative to the reference plane used to
calculate inclination and argument of pericentre. The zero longitude point is defined
to lie along the azimuthal approach direction to the planet. These relationships can
be seen in Figure 1.3.4.

The effect of approach declination can now be examined. Once again, the case of
an approach to Mars is considered. The excess hyperbolic speed is 3,000 m/s, and
declinations from zero to 30° are examined. These relationships can be seen in
Figure 1.3.5.
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Figure 1.3.4. The effect of excess hyperbolic speed between 3,000 and 5,000 m/s on possible
pericentre locations for approaches to Mars and Venus at zero declination. The locus of
possible pericentres expands in size as the approach excess hyperbolic velocity increases.
The first case is an approach to Mars, in which the pericentre radius considered was
3,800km (approximately 400km above the surface). In the case of a zero-declination
approach, the plot is symmetric about zero latitude. In the second case, an approach to
Venus is considered. Venus has a considerably greater gravitational constant than Mars
(almost eight times as large). In this case, the pericentre radius considered was 6,450 km
(again approximately 400 km above the surface). The stronger gravitational field at Venus
means that pericentre experiences a greater deflection from the approach vector direction than
in the case of an approach to Mars.
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Figure 1.3.5. The effect of approach declination between 0° and 30° on possible pericentre
locations for approaches to Mars with an excess hyperbolic speed of 3 km/sec. The locus of
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Figure 1.3.6. A hyperbolic approach to Venus with a pericentre retro-burn to reach a 5-day
transfer orbit about Venus.

Figure 1.3.6 shows an example of a spacecraft approaching Venus and then
performing a retro manoeuvre at pericentre. The approach orbit is polar. The
pericentre latitude is approximately 70°, and the spacecraft is captured into a
polar orbit. The approach conditions are those from a 2005 launch and transfer
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to Venus. Therefore, the excess hyperbolic speed is approaching 5km/sec and the
declination is approximately 30°. The grid seen in the figure lies in a plane parallel to
the ecliptic. The capture burn arc is shaded lightly and occurs around pericentre.

1.4 TRANSFERS THROUGH THE SOLAR SYSTEM

In this section, examples of transfers to every planet in the Solar System are con-
sidered. The techniques are two impulse transfers; that is, one leaving and one
arriving at the target. The transfers are described principally in terms of the
required excess hyperbolic speeds. In some cases, these are translated to A}V implica-
tions for pericentre manoeuvres at planet departure and planet arrival.

1.4.1 Mercury

The synodic period of Mercury with respect to Earth is approximately 116 days. This
defines the frequency of ‘conjunction class’ transfers from Earth.

The excess hyperbolic speed, V., required for leaving Earth and arriving at
Mercury varies with successive opportunities, as the solar longitudes of launch
and arrival rotate with respect to Mercury’s elliptical orbit. The whole cycle approxi-
mately repeats after three synodic periods, or 1 Earth year.

Figure 1.4.1 shows the sum of V (V,, leaving Earth and V_, approaching
Mercury) for a range of launch epochs and transfer times. The V', shows a period
feature (with the synodic period) and also the repeat feature (at 1 year). Minimum
V., transfers can be seen between 80 and 100 days at each synodic period.

The V, then define the AV's for these transfers. In Table 1.4.1 the initial orbit at
Earth is assumed to be a GTO-like orbit with apogee at 36,000 km altitude. Capture
at Mercury is into an elliptical orbit with apogee at 12,000 km altitude. Such an
elliptical orbit at Mercury is typical of a science observation orbit at that planet.

The AVs are very high for such a transfer. High-thrust propulsion systems
(generally chemical-based systems) would require a very large fuel fraction for
such a mission, and such a scenario would effectively be unfeasible.

1.4.2 Venus

The orbital periods of Venus and Earth are more similar, with the result that the
synodic period of Venus with respect to Earth is longer than that of Mercury. The
period is approximately 1.6 years.

The V, required for leaving Earth and arriving at Venus varies with successive
opportunities, but to a much lesser extent than Mercury, as the orbit of Venus has a
much lower eccentricity. Venus’s inclination (and hence longitude of ascending node)
influences the transfer V' requirements. The whole cycle approximately repeats after
five synodic periods, or 8 Earth years.

Table 1.4.2 shows long and short optimum transfers for adjacent launch epochs,
separated by one synodic period. The first launch period considered is 2013. The AV
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Figure 1.4.1. V_, sums for conjunction type two-impulse transfers to Mercury over the launch
period 2007.

Table 1.4.1. Example of a direct transfer to Mercury.

Launch Arrival Total
Vinf DV Vinf DV Transfer Vinf
Date (m/s) (m/s) Date (m/s) (m/s) time (m/s)

11 May 2012 9,378 4,296 18 Aug 2012 7,984 5,298 158 17,362
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Table 1.4.2. Examples of optimal transfer from Earth to Venus.

Launch Arrival Total
Vinf DV Vinf DV Transfer  Vinf DV
Date (m/s) (m/s) Date (m/s) (m/s) time (m/s)  (m/s)
2 Nov 2013 2,770 1,113 9 Apr 2014 4,601 1,786 158 7,371 2,899
Long opt
15 Nov 2013 4,190 1,540 5 Mar 2014 3,265 1,303 110 7,455 2,843
Short opt
25 Apr 2015 3,023 1,177 27 Oct 2015 4,078 1,580 185 7,101 2,757
Long opt
8 Jun 2015 3,230 1,234 19 Nov 2015 2,883 1,192 133 6,113 2,426
Short opt

Table 1.4.3. Examples of optimal transfer from Earth to Venus for a one-day period target
orbit.

Launch Arrival Total
Vinf DV Transfer Vinf DV

Date Date (m/s) (m/s) time (m/s) (m/s)

2 Nov 2013 9 Apr 2014 4,601 1,413 158 7,371 2,526
Long opt

15 Nov 2013 5 Mar 2014 3,265 929 110 7,455 2,470
Short opt

25 Apr 2015 27 Oct 2015 4,078 1,207 185 7,101 2,384
Long opt

8 Jun 2015 19 Nov 2015 2,883 818 133 6,113 2,052
Short opt

requirements at pericentre are calculated using two reference orbits. The elliptical
reference at Earth has perigee at 200 km altitude and apogee at 35,787 km (GTO
characteristics) and at Venus the pericentre is at 300k altitude and apocentre at
29,950 km. This is typical of a science observation, elliptical orbit about Venus.

As shown in Table 1.4.3, a higher target orbit about Venus (with a period of 1
Earth day) reduces the AV requirements at orbit insertion. Therefore, target orbit
compromise offers a means to significant AV reduction.

As the missions show a near repeat after eight years, then the 2013 launch
parameters are similar to those used for ESA’s Venus Express transfer opportunity,
launched in 2005.

Figure 1.4.2 shows the sum of the V terms (V. leaving Earth and V
approaching Venus) for a range of launch epochs and transfer times. These
transfer times cover the range of half-revolution-type transfers from Earth to
Venus. In general, they divide into ‘short’ and ‘long’ transfers at each launch
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Figure 1.4.2. 7 sums for conjunction type 2 impulse transfers to Venus over the launch
period 2010-2013.

opportunity, and the local minimum corresponding to each type is clearly seen in the
figure. Minimum V_, transfers can be seen close to 120 days and 180 days for this
particular launch opportunity in 2010.

The excess hyperbolic speed requirements for leaving Earth to reach Venus
include the lowest for any interplanetary two impulse transfer in the Solar System.

1.4.3 Mars

The synodic period of Mars with respect to Earth is the largest of any of the planets
in the Solar System. It is approximately 2.15 years.
As in the cases of Mercury and Venus, the V, required in leaving Earth and
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Table 1.4.4. Examples of optimal transfer from Earth to Mars.

Launch Arrival Total
Vinf DV Vinf DV Transfer  Vinf DV

Date (m/s) (m/s) Date (m/s) (m/s) time (m/s)  (m/s)

29 Nov 2011 3,304 1,255 6 Aug 2012 3,491 1,375 251 6,710 2,630
Short opt

10 Nov 2011 2,990 1,169 11 Sep 2012 2,707 945 306 5,697 2,116
Long opt

18 Jan 2014 3,824 1,415 13 Aug 2014 3915 1,636 224 7,644 3,051
Short opt

5 Dec 2013 3,083 1,193 25Sep 2014 3,163 1,187 294 6,243 2,380
Long opt

11 Mar 2016 3,520 1,319 1 Oct 2016 3,739 1,525 204 7,225 2,844
Short opt

10 Jan 2016 3471 1,304 12 Oct 2016 3,679 1,488 277 7,123 2,792

Long opt

arriving at Mars varies with successive opportunities, due to the eccentricity and
inclination of Mars’ orbit. The whole cycle approximately repeats after seven
synodic periods, or 15 Earth years.

The contours of excess hyperbolic speed variation for transfers to Mars have
been closely examined for the example of solving Lambert’s problem (see section
1.1.3).

In Table 1.4.4, some examples of locally optimal transfers to Mars are given, for
both short and long transfer types. The variability over successive launch epochs is
clearly seen. The elliptical reference orbit at Earth has perigee at 200 km altitude and
apogee at 35,787 km (GTO characteristics), and at Mars the pericentre is at 400k
altitude and apocentre at 32,870 km. This elliptical target orbit has 1 Earth-day
period (just less than one Mars day, which would imply a slightly higher apocentre).

The Earth departure speeds are slightly greater than the transfers to Venus, but
remain low when compared with direct transfers to the other planets of the Solar
System.

1.4.4 Jupiter

The orbital period of Jupiter is close to 12 years, and is therefore considerably larger
than that of Earth. As a result, the synodic period becomes closer to 1 Earth-year.
The synodic period of Jupiter with respect to Earth is approximately 1.1 years. The
cycle approximately repeats after eleven synodic periods, or 12 Earth-years.

Figure 1.4.3 shows the sum of V (V. leaving Earth and V. approaching
Jupiter) for a range of launch epochs and transfer times. These transfer times
cover the range of half revolution type transfers, but are now considerably greater
than considered for transfers to Venus and Mars. They again divide into ‘short” and
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Figure 1.4.3. 7 sums for conjunction type, two-impulse transfers to Jupiter over launch
period 2009.

‘long’ transfers at each launch opportunity. Minimum ¥V, transfers can be seen
between 850 and 900 days transfer duration for the ‘short’ transfer type, and
between 1,000 and 1,200 days for the ‘long’ transfer type. However, the extension
of the local minima, in terms of transfer duration, is very wide, and therefore
indicates considerable flexibility in terms of transfer duration to Jupiter.

Direct transfers are difficult to achieve, and in many cases special techniques are
therefore required. An example of a direct transfer is given in Table 1.4.5. The
elliptical reference orbit at Earth has perigee at 200 km altitude and apogee at
35,787km (GTO characteristics). At Jupiter the pericentre is at 2,000 km altitude
and apocentre at 430,000 km. This elliptical target orbit has a 1 Earth-day period.
This orbit is not a realistic choice but is included for comparison with the Venus and
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Table 1.4.5. Examples of optimal transfer from Earth to Jupiter with insertion to a one-day
orbit at Jupiter.

Launch Arrival Total
Vinf DV Vinf DV Transfer Vinf DV
Date (m/s)  (m/s) Date (m/s) (m/s) time (m/s) (m/s)

30 Apr 2009 9,231 4,128 16 Jun 2011 6, 435 4,223 777 15,666 8,351
Short opt

14 May 2009 9,133 4,065 2 Nov 2012 6,843 4,269 1,268 15,976 8,334
Long opt

Table 1.4.6. Examples of optimal transfer from Earth to Jupiter with insertion to a high orbit
at Jupiter.

Launch Arrival Total
Vinf DV Vinf DV Transfer Vinf DV
Date (m/s) (m/s) Date (m/s) (m/s) time (m/s)  (m/s)

4 May 2009 9,321 4,186 11 Aug 2011 6,133 1,451 829 15,454 5,637
Short opt

2 May 2009 9,273 4,155 17 June 2012 6,427 1,554 1,142 15,700 5,709
Long opt

Mars cases. A more likely choice of orbit about Jupiter has pericentre at 830,000 km
altitude and apocentre at 20,000,000 km. This can then be the starting point of a
gravity-assisted tour of the Jovian system (discussed in subsequent sections). The
optimised transfers shown in the following two tables, each concerning a different
target orbit at Jupiter, show a difference in the transfer dependent on that choice of
target orbit. This is becaue the optimised parameter is the total AV. This is a non-
linear function of the excess hyperbolic speed and the target orbit. Changing this
target orbit changes the numerical relationship between A} and excess hyperbolic
speed. However, the difference in solutions is not large. This effect of target orbit
choice on the optimised transfer is particularly observable for the massive outer
planets.

1.4.5 Saturn

The orbital period of Saturn is close to 29 years and therefore its synodic period lies
even closer to 1 Earth-year; being approximately 1.04 years. This then defines the
frequency of such ‘conjunction class’ transfers. The whole cycle approximately
repeats after 28 synodic periods, or 29 Earth-years.

Minimum Vinfinity transfers take approximately 6 years with opportunities at
each synodic period. As in the case of Jupiter, direct transfers are more difficult to
achieve. An example of a direct transfer is given in Table 1.4.7. The elliptical
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Table 1.4.7. Optimal transfer examples from Earth to Saturn with insertion to a one-day orbit
at Saturn.

Launch Arrival Total
Vinf DV Vinf DV Transfer Vinf DV
Date (m/s)  (m/s) Date (m/s) (m/s) time (m/s) (m/s)

6 Dec 2009 11,547 5,715 10 Dec 2014 5,739 3,410 1,830 17,286 9,125
22 Dec 2009 10,496 4,971 7 Mar 2019 5,927 3,441 3,362 16,423 8,413

Table 1.4.8. Optimal transfer examples from Earth to Saturn with insertion to a high orbit at
Saturn.

Launch Arrival Total
Vinf DV Vinf DV Transfer Vinf DV
Date (m/s) (m/s) Date (m/s) (m/s) time (m/s)  (m/s)

13 Dec 2009 11,702 5,827 3 Oct 2015 5,295 1,617 2,120 16,997 17,445
14 Dec 2009 10, 632 5,066 2 Aug 2018 5,735 1,844 3,153 16,367 6,910

reference at Earth has perigee at 200 km altitude and apogee at 35,787 km (GTO
characteristics). At Saturn the pericentre is at 2000 km altitude and apocentre at
263,160 km. Once again, this elliptical target orbit has a 1 Earth-day period for
comparison with the Venus and Mars cases. A more likely choice of orbit about
Saturn has pericentre at 840,000 km altitude and apocentre at 20 million km. This
can then be the starting point of a gravity-assisted tour of the Saturnian system.

Figure 1.4.4 shows the sum of Vinfinities (Vinfinity leaving Earth and Vinfinity
approaching Saturn) for a range of launch epochs and transfer times. Minimum
Vinfinity transfers can be seen between 1,500 and 3,500 days transfer duration for
the ‘short’ transfer type and between 2,000 and 5,000 days for the ‘Long’ transfer
type.

1.4.6 Uranus, Neptune and Pluto

The synodic period of these planets with respect to Earth is as follows:

Uranus 370 days
Neptune 368 days
Pluto 367 days

Therefore, frequent transfer opportunities arise.

Typical conjunction-type transfers are shown in Table 1.4.9. Some variation is
seen between optimum launch epochs, due to the eccentricity of the orbits of these
planets — particularly Pluto. The further complication with Pluto is its relatively high
orbital inclination. Minimum Vinfinity transfers take approximately 16 and 31 years
respectively for Uranus and Neptune.
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Figure 1.4.4. Vinfinity sums for conjunction-type two-impulse transfers to Saturn over launch
period 2009-2010.

Table 1.4.9. Properties of conjunction type transfers to the outer planets.

Launch Arrival Total

Vinf DV Vinf Transfer time Vinf
Date (m/s) (m/s) Date (m/s) (days) (m/s)
Uranus
24 May 2010 11,504 5,684 24 Mar 2027 4,607 6,148 16,111
Neptune
10 Apr 2010 13,310 7,034 15 Sep 2040 4,122 11,116 17,432
Pluto

11 Jan 2010 19,752 12,374 15 Mar 2037 4,141 9,925 23,893
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The departure AV is measured from a reference elliptical orbit with perigee at
200 km altitude and apogee at 36,000 km altitude.

Missions to Pluto are strongly influenced by the departure epoch. The example
in the previous table is constrained by the year of departure. The optimised transfer
here is influenced by two factors: the mission AV reduction afforded by a ‘conjuc-
tion’ type transfer arriving typically 40-45 years after departure and that required to
reach a rendez-vous with Pluto at a high latitude with respect to the ecliptic. Pluto
crosses the ecliptic in 2018. Therefore, this solution is a ‘compromise’ transfer.

Such high launch energies or spacecraft AV's are not feasible for conventional
mission designs. Special techniques must therefore be employed for transfers to the
outer planets. (These will be described in Chapter 4.)

1.5 RETURN MISSIONS TO THE PLANETS

There is considerable scientific interest in the development of return missions to the
planets. They enable the return to Earth of samples of the planets of our Solar
System, or alternatively, allow the possibility of manned exploration of the
planets. The design of such missions can be considered as an extension of the
methods already studied for ‘one way’ missions.

Such a mission starts with a transfer from Earth to the target planet. The target
most often considered in this context is Mars, and this will feature in the examples
subsequently analysed. The spacecraft then stays for some specified time at the
planet and then returns to Earth.

1.5.1 Optimal stay times

The most efficient return scenario in terms of minimisation of the total AV required
for the mission is the following:

(1) Perform a ‘conjunction’-type transfer from Earth to the target. This will
minimise the outward AV

(2) Wait at the planet until the optimal epoch to initiate a return conjunction-type
transfer. This waiting period may in practice exceed the period needed to
perform science operations at the planet.

(3) Perform the return conjunction-type transfer. This will minimise the return AV,

The key question is that of the required stay time at the target to enable such a
strategy, as in general space mission designs drive towards minimising the required
total mission duration.

A simplified analysis allows some basic properties of the mission to be predicted.
It will be assumed that all trajectories are co-planar and that the planets move in
circular orbits. The following definitions can be made:

Api:  heliocentric longitude of first departure (from planet 1).
Arvi: heliocentric longitude of first rendez-vous (with planet 2).
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Outward transfer
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Return transfer

Figure 1.5.1. Return mission geometry.

Ap>:  heliocentric longitude of second departure (from planet 2).
Arvz: heliocentric longitude of second rendez-vous (with planet 1).
a;:  semi-major axis of planet 1.

a,:  semi-major axis of planet 2.

The period of planet 1’s orbit is:

3
T =27 4
I
The period of planet 2’s orbit is:
3
T = 2w &
I

59

1 1s the Sun’s gravitational parameter. The time taken for the transfer from 1 to 2 is:

3
Ty = (a1 + @)
8

The fraction of the orbital period of planet 1 (7q) is:

Typ 1 [((a+a)
o 2 2a,
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The fraction of the orbital period of planet 2 (7,) is:

ma_l (el

T 2 2612

The change in longitude of the planets over the outward transfer is given by:

3 3
A _pp =7 (M) and Ay, =7 <M> (1.5.1)
2611 2(12

The change in longitude of the spacecraft over the transfer is 7 radians.

For the outward journey, the longitude of planet 2 at spacecraft rendezvous
must lie 7 radians ahead of the longitude of planet 1 when the spacecraft leaves
planet 1.

A ry1 =Aip T (1.5.2)

where A_p; is the longitude of planet 1 at the epoch of the spacecraft’s departure
from planet 1, and \,_yy is the longitude of planet 2 at the epoch of the spacecraft’s
arrival at planet 2.
The relationship between the longitudes of the planets at the epoch of arrival at
planet 2 can be derived:
Mgyt = Mgyt — T+ AN (1.53)

where \;_gy is the longitude of planet 1 at the epoch of the spacecraft’s arrival at
planet 2.

For the return journey, which will take the same time as the outward journey,
the longitude of planet 1 must lie 7 radians ahead of the longitude of planet 2 when
the spacecraft leaves planet 2.

)\I,RV2:>\2,D2+7T:|Z}’I*27T (154)

where A;_gy» is the longitude of planet 1 at the epoch of the spacecraft’s return to
planet 1, and \,_p, is the longitude of planet 2 at the epoch of the spacecraft’s
departure from planet 2. +n revolutions can be added. The minimum value of ‘n’
is sought, to give minimum stay time (‘n’ is an integer).
Also:
Al-p2 =X pp+7T— AN (1.5.5)

where A;_p, is the longitude of planet 1 at the epoch of the spacecraft’s departure
from planet 2.

Given the angular velocity of the two planets, the following two equations apply
regarding the change in planetary longitude over the period of time spent at planet 2:

Alp2 = Ai_gy1 +wiAt (1.5.6)
Aop2 = A gyt +wAt (1.5.7)

where w is the angular velocity of planet 1, w, is the angular velocity of planet 2, and
At is the period of time between arriving at planet 2 and departing from planet 2.
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Table 1.5.1. Hohmann transfer durations and optimum stay times for return missions from
Earth to the outer planets.

Target Mars Jupiter Saturn Uranus Neptune  Pluto
Duration (years) 0.71 2.73 6.06 15.97 30.53 45.21
Stay time (days) 454 214 335 21 346 214
Mission time (years) 2.66 6.05 13.03 32.00 62.01 91.00

The elapsed time, A¢, between the arrival and departure epochs at planet 2, can be
found by subtracting Equation 1.5.7 from Equation 1.5.6 and using the relationships
Equation 1.5.5 and Equation 1.5.3:

o 27 — 2A)\1_12

W) — Wy

At (1.5.8)

In the case of an outward transfer, multiples of 27 can be added to the numerator to
make it positive. Then, further additions of 27 give longer possible stay times, each
incremented by the synodic period of planet 1-planet 2.

Some example stay time from return missions to Mars and the planets beyond
can be calculated.

The idealised transfer durations (in Earth years), using circular orbit approxima-
tions and Hohmann transfers, from Earth to each outer planet are given in

Table 1.5.1, together with the optimal stay times, calculated by the previously
described approximations.

1.5.2 Case of an optimal stay time for a Mars return mission

Return missions to Mars have received much attention in proposals for exploration
of that planet. These include both robotic missions and, ultimately, the possibility of
a manned mission.

For robotic missions there is a greater degree of flexibility with regard to the stay
time at Mars, when compared with a manned mission, which is likely to have more
strict constraints on allowable stay time.

The previous section has shown that for the idealised case of circular planetary
orbits, the minimum ¥V, solution requires a stay time at Mars of approximately 450
days. However, the more detailed discussion regarding the complete range of
transfer scenarios has shown that multiple transfer possibilities exist. Firstly, when
considering the outward transfer to Mars, the options include:

e A short conjunction-class transfer
e A long conjunction-class transfer
e A 1.5-revolution-type transfer.
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Figure 1.5.2. The effect of stay time on V, total for different conjunction-type transfers for
launch in 2011 to Mars.

This same set of options exists when considering the return scenario from Mars to
Earth. For a given transfer opportunity occurring at the frequency of the Earth—
Mars synodic period, each transfer type has its own optimal departure and arrival
dates. These can be combined to achieve a range of corresponding stay times at
Mars.

Firstly, it is possible to consider just the conjunction type transfers. Two
examples are shown in Figure 1.5.2. The Earth launch opportunity considered
here involves an Earth departure in 2011, but similar relationships can be found
at each launch opportunity. The possibility of a ‘short” conjunction-type transfer for
the outward leg of the mission and a ‘short’ conjunction-type transfer for the return
leg gives a minimum ¥V, solution with a stay time at Mars of approximately 460
days. Alternatively, a mission with a ‘long’ conjunction-type transfer for both
outward and return legs gives an optimal stay time at Mars of approximately 330
days.

The V, total considered is the sum of each of the excess hyperbolic speeds —
leaving Earth, approaching Mars, leaving Mars and approaching Earth. In terms of
an actual mission design, then a much more complex objective for minimisation
would be chosen, as the staging of transfer vehicles would be considered and also
the possibility of aero-assisted entry. However, the ¥, choice is a good representa-
tion of the essential nature of the problem.

The variation in ¥V, shown in Figure 1.5.2, with stay time can be found by
considering the variations in the arrival and departure dates from Mars, based
around optimal conjunction-type transfers. At this launch opportunity, the long
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transfers result in a lower V, total than the short transfers. However, of the four
conjunction-type transfer combinations for each launch opportunity, the best
solution varies with the particular opportunity.

Further stay time options can be obtained by considering a combination of
conjunction-type transfer and 1.5-revolution transfers. The case now considered is
a launch in 2020. Both this 1.5-revolution and the conjunction-class transfers will be
considered.

The 1.5-revolution transfer phase of the mission can be provided on either the
outward or the return leg of the mission. These may also be combined with long or
short conjunction-type transfers on the other leg. These possibilities lead to a con-
siderable variety of optimal stay durations at Mars. The AV (or V,, requirements)
for the 1.5-revolution transfers are generally similar to those for a conjunction-type
transfer, and so the local minima in the V' total are expected to have comparable
magnitudes to the cases using conjunction-type transfers on both mission legs. A
further complication of the 1.5-revolution trajectories is that for arrival or departure
epochs removed from the optimal dates, a mid-course AV is required (as discussed in
the section regarding multi-revolution transfers.)

However, an interesting factor with these missions is the total mission duration.
For the 1.5-revolution cases, the durations are typically 1,100 days and 1,250 days
for the 1.5-revolution returning case and 1.5-revolution outward cases respectively.
This can be compared with the longer stay time but shorter transfer duration
missions described previously. In these cases, the ‘long—long’ cases have a total
mission duration of just under 1,000 days and the ‘short—short’ mission approxi-
mately 950 days. Therefore, finding a low V_,, short stay-time mission does not
necessarily shorten the total duration of the mission.

1.5.3 Short-stay time missions at Mars

The previous section has shown some possibilities for low AV missions with short
stay-times. Although allowing a short stay-time at Mars, the total durations of these
missions are often longer than the conjunction return mission.

An alternative approach to short stay-time can be considered that also shortens
the total return mission duration. This uses a variation on conjunction type transfers
for both legs of the mission. However, this strategy leads to a higher A} scenario.
Stay-times of between typically 30 and 300 days can be considered in this category.

An optimal conjunction-type transfer may be used for the outward mission leg.
Then, after a short stay time (typically 60 days at Mars) the spacecraft transfers back
to Earth using a conjunction-type transfer (i.e., less than one revolution in this
context). However, because of the non-optimal departure date from Mars, the
return leg is now significantly different from a standard conjunction-type transfer
mission.

The minimum AV case for the return leg, after a 60-day stay, implies a return
trip duration of more than 500 days. Such a transfer results in the vehicle passing
outside of Mars’ heliocentric distance. The V,, leaving Mars is now increased
beyond that for a standard conjunction-type return. The V_, at Earth arrival is
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Figure 1.5.3. The effect of stay time on V, total for different transfer types for launch in 2020.
In the upper figure the conjunction-type outward and return missions for this launch epoch
show a similar characteristic to the 2011 launch case. In this launch year, the V', totals are
higher than in 2011. Near-zero stay times can be accomplished in some scenarios (the example
of a conjunction type outward leg and 1.5-revolution return leg). The second plot shows the
solutions obtained with such a transfer ‘leg’ in terms of the V totals. In the case of the 1.5-
revolutions return leg, then the minimum total ¥, solution lies at a ‘negative’ stay duration.
Clearly, such solutions are not possible so the minimum allowable ¥, solution is for zero stay

time.
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Figure 1.5.4. Transfer options from Mars to Earth leaving in 2021, with two local minima in
V., totals.

also increased. In fact, as in the case of non-optimal arrival and departure epoch 1.5-
revolution transfers, a mid-course AV can be used advantageously in some of these
modified conjunction type scenarios. That is, the total AV is reduced by using a mid-
course manoeuvre.

An example of a transfer to Mars after launch in 2020 can be considered. If a
locally optimal, short conjunction transfer is followed to Mars, the spacecraft will
arrive in late February of 2021. A stay time of 60 days at Mars then implies a
departure in late April 2021.

Figure 1.5.4, showing V_, total contours (Mars departure plus Earth arrival)
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Figure 1.5.5. A return mission to Mars with optimal conjunction-type transfer (launch in
2020) on the outward leg, 60-day stay-time, and minimum AV trajectory on the return leg.
The grid is 1 AU from centre to edge. Earth and Mars orbit sections are also shown. The sub-
grid size is 0.1 AU. Departure from Mars takes place 60 days after arrival. The optimal return
trip, with the constraint of this departure epoch, passes outside of the Mars’ orbit and takes
approximately 500 days for the return to Earth. The total mission duration is now typically
800 days.
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versus departure dates from Mars and transfer durations, indicates that a minimum
V., transfer exists for a transfer duration of just over 500 days. A second minimum
can be seen with a shorter transfer duration.

A range of stay-times at Mars can be considered with such a strategy, from short
durations, such as 60 days, up to long-duration optimal stay-time cases where an
optimal conjunction-type transfer can be used for the return leg of the mission. For
the return leg, the departure date is fixed by the stay-time requirement, but the
arrival date on return to Earth is optimised to minimise the AV for the return. As
observed for the 60-day stay-time case, two local minima exist, analogous to the
locally optimal short and long conjunction-type transfers.

The two locally minimum return solutions (for a given departure epoch from
Mars and hence stay time) differ in the A}V total. Both are evaluated in Figure 1.5.6.

However, a further impact of these return options must be considered: the total
mission duration. Figure 1.5.7 shows the mission duration for the transfer using a
mid-course manoeuvre, which is the minimum AV case. Therefore, although short
stay-times can be achieved, the total mission duration is still approximately 800 days,
compared with a value approaching 1,000 days for a 450-day stay-time.

If, alternatively, the long conjunction-class transfer were used for the outward
leg from Earth to Mars, arrival at Mars would be approximately 100 days later. In
the 2020 example, the long transfer type has a greater V', requirement than the short
case. The impact on stay-time and return AV can be seen by subtracting 100 days
from the stay-times in the plots in Figure 1.5.6.

A further option is the use of a non-optimal outward transfer, modifying the
arrival epoch at the expense of AV. The previous plots indicate that for short stay-
time missions, a change of stay time of up to 300 days has little impact on AV
However, the effect of varying the arrival epoch on the outward leg has a much more
adverse effect on AV. Therefore this approach, using an optimal outward leg, is the
best strategy in this case.

With an even higher available AV, shorter returns are possible at approximately
300 days (or even less if required). These return options now use trajectories that in
general pass inside Earth’s heliocentric radius. Such mission types are sometimes
referred to as ‘opposition-type’ missions, and offer the possibility of a return mission
to Mars with a short total mission duration.

Once again, the 2020 mission example can be used. A 30-day stay is used (longer
stay times actually increase the transfer duration in this case). This transfer requires a
greater Vinfinity when leaving Mars and also a large deep-space manoeuvre. In this
example, the return takes just over 300 days. An example is shown in Figure 1.5.8.

This type of fast return mission is sometimes described as an ‘opposition-class’
mission. It can sometimes be combined with a Venus gravity-assist manoeuvre in
place of the deep-space AV that reduces aphelion in this case (see Chapter 4).

1.5.4 Short-duration Mars return missions

Alternative transfer options, specifically applicable to manned missions, are
available to accelerate the transfer by using high-energy spacecraft propulsion
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Figure 1.5.6. The effect of stay-time on return AV and V, after a short conjunction-class
transfer from Earth, departing in mid-2020. This shows the impact of the stay time at Mars,
and hence the departure epoch, on the V', total for the transfer back to Earth. Two impulse
long and short transfer types are considered. Eventually, minimum V', transfers are reached
for both transfer types. A further option is to introduce an intermediate deep-space
manoeuvre. Then the objective to be minimised is the sum of AVs for departure, deep
space, and at arrival. AV's at departure and arrival assume initial reference orbits of 400 km
by 36,000 km altitude at Mars, and 500 km by 36,000 km altitude at Earth. The impact of this
additional manoeuvre is to reduce the total AV for the return transfer, for the shorter stay-
time cases. Although the introduction of a deep space manoeuvre reduces AV total, it does not
generally have a large impact on the return trajectory duration in such cases.
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Figure 1.5.8. A fast return transfer from Mars to Earth with a short stay at Mars after a
conjunction-class outward transfer.
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Figure 1.5.9. Examples of short transfers from Earth to Mars with short stay-time and return.
This assumes a 50-day constraint on each of the outward and return trajectory legs. The stay-
time at Mars is 30 days. The total mission duration in this case is now 130 days. The AV’s that
are required cannot be achieved by conventional propulsion systems. The sub-grid size is
0.1 AU. Earth’s and Mars’ orbital arcs are also shown.
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systems. In this way, one-way transfers of as little as 50 days can be considered.
There are high AV implications for the spacecraft/launcher. Excess hyperbolic
speeds of 10-20 km/sec for each departure and arrival may be implied. Such a
scenario can be applied with a short-stay manned mission and using a similar fast
return trip to Earth. An example is shown in Figure 1.5.9.
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Spacecraft propulsion

Nearly all interplanetary missions require the spacecraft to execute manoeuvres to
change orbit, but many mission designs are constrained in their objective by the
limitations in the capability of the spacecraft to execute such manoeuvres. This
capability depends on the type of propulsion system used. Therefore, the design of
a space mission cannot be carried without detailed consideration of the propulsion
system type. Optimisation of a mission design, including the optimisation of an
interplanetary trajectory, can involve the selection of the best parameters for the
propulsion system. This chapter provides an overview of propulsion principles and
also the performances available from different system types.

To carry out interplanetary transfers, spacecraft must achieve significant
changes in their velocity, and some form of on-board propulsion is needed to
accomplish this objective. A wide variety of propulsion types are available for space-
craft. Some are generally more suitable for certain manoeuvre types, whilst in other
cases the choice is open. In such cases, the choice is often ultimately dictated by
considerations of efficiency of the transfer and the cost.

The common theme for the application of most propulsion types is that the
spacecraft will experience a change in linear momentum, or an impulse. This
change in momentum is achieved by the expulsion of a propellant. The process of
expulsion causes an equal and opposite reaction on the spacecraft, which conse-
quently accelerates, ultimately achieving the required change in velocity.

In practice, propulsion system types are often divided into two categories: high
thrust and low thrust. This parameter — thrust — can be a key consideration in the
selection of a propulsion system type. High-thrust systems are well suited to man-
oeuvres that can only be accomplished efficiently at certain spatial locations,
requiring the thrust arc to be short.
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2.1 PROPULSION BASICS

Certain common considerations apply to almost all propulsion systems. These will
be discussed in this section. The equations presented are without derivation here, as
this is a specialist subject and details may be found in the reference texts listed.

A propulsion system utilising an expelled mass, or propellant, must obey certain
fundamental rules. Firstly, it is possible to consider the system as a ‘black box’
without having knowledge of what happens inside. The key point is that the
propellant is expelled through a reference surface. This could, for example, be a
surface enclosing the exit of a rocket engine nozzle. The shape of the surface is to
be determined. More detailed analyses of propulsion system dynamics and
rocket engine principles are to be found in Cornelisse, Schoyer and Wakker (see
references).

The rate at which mass is expelled can be described as follows:

fmzj pV -idA (2.1)
Ay

where —m1 is the rate at which propellant mass is expelled through the reference
surface (the negative sign is used here because the term dm/dt is itself assumed to
be negative; that is, fuel mass of the spacecraft is decreasing and so the rate of change
of spacecraft mass with time is negative) and p is the density of the propellant. V is
the velocity of the propellant relative to the spacecraft or ‘black box’ unit and # is the
unit vector in the direction of the outward perpendicular to the reference surface,
Aper-

If the propellant is a gas under pressure then the force acting on the spacecraft is
given by the following expression, the sum of a momentum flow term and a pressure
thrust term:

T——| Wi+ o pia 2

where T is the thrust vector acting on the spacecraft, p is the pressure of the
propellant and p, is the external ambient pressure (zero in the vacuum of space).
The thrust is in a direction opposite to the expelled momentum flow. If the propel-
lant is not a pressurised gas then the pressure thrust term may be neglected.

A detailed derivation of these expressions can be found in the references for this
section. The discussion here derives from that in Cornelisse ez al.. These generalised
expressions can be reduced by assuming that the density, pressure and velocity are
approximately constant over the reference surface. This assumption then defines the
reference surface.

The mass flow can be reduced to the following (recalling that dm/dt is a negative
qualtity):

—n = Pex VexAref (23)

where A4, is the area of the reference surface, p,, is the density of the exhaust, and
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V,. is its velocity at the reference surface. Similarly the general thrust equation

becomes:
. Vex .
I = <WZ — = (pex _pa)) J ndA (24)
Aref Ayey

The first term in this expression is generally considerably greater than the second.
The density and exhaust velocity of the propellant are therefore significant factors in
the thrust achieved. The ratio between thrust and propellant mass flow is propor-
tional to the exhaust velocity.

The integral in Equation 2.4 depends on the nature of the propulsion system, as
the nature of the reference surfaces may differ. In the simplest case, where a pro-
pellant is accelerated along a single direction, the reference area is a surface normal
to this axis. This expression can then be reduced to the following:

T = —iiV,, (2.5)

In this case the thrust-to-mass flow ratio is given identically by the exhaust
velocity.

For a rocket system in which a pressurised, compressible gas is considered, then
the system is more complex. Firstly, by assuming that the gas is approximately
stationary but at a high pressure and temperature in the combustion or heating
chamber, it is possible to obtain the following expression for the velocity of the
propellant as a function of the pressure at some point away from the chamber:

-1
2y RTC< (pex)"/)
Voo = — ] — (B 2.6
: \/7_1 7 . (2.6)

where p,, is the pressure on the exhaust reference surface and 7, and p, are the
pressure and temperature in the combustion or heat chamber, ~ is the ration of
specific heats, R is the universal gas constant and M is the mean molecular weight
of the exhaust gas. Reducing the pressure at the exit from the propulsion system
therefore increases the exhaust velocity. This expansion process can be achieved via
a nozzle. An efficient nozzle will allow expansion of the gas to a pressure close to the
ambient, external pressure. The thrust force is actually achieved by the action of the
pressure on the surface of the nozzle:

It is possible to approximate the thrust produced through such a nozzle, based
upon equation 2.4, in terms of the nozzle geometry — in particular the cone angle, 6,
shown in Figure 2.1.1. The following equation describes the magnitude of the thrust.
This acts along the horizontal axis in the figure.

T = ( - WIV(;Y@ + (pex - pa) Aex) (27)

where A4,, is now the area at the open end of the cone.

It is now possible to establish the relationship between the ideal change in speed,
propellant mass expelled and the exhaust velocity. Firstly, a new term is introduced:
the specific impulse. This is the impulse achieved per unit mass of propellant
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Figure 2.1.1. Illustration of a nozzle.

(denoted Isp). Therefore, the previous expression can be considered, over an infini-
(1 +cos)

tesimally short period of time, and so Isp = V,, — giving an expression in

m/s. The exit pressure term is now neglected. Specific impulse is often specified in
seconds and uses a scaling term: Earth surface gravitational acceleration:

Ve (1 0
Isp = Vex (1 £ cos6) (2.8)
8o 2
where gy =9.80665m/s and specific impulse is measured in seconds, and so
T=-mlispg,.
The ideal speed change can now be introduced as:
rdv (" T
AV:J—:J — dt (2.9)
o dt oM

This simple expression would represent the actual speed change when a force acts
constantly along the velocity vector and no other forces act. It represents the
maximum speed change that is achievable due the application of the force T' over

a period of time, #; — ¢.
This speed change can now be related to fuel mass usage as follows:

av T . m dV
—=— and therefore m=— —
dt  m Isp x g dt
Integrating over the manoeuvre yields:
m
Ln<f> = —Isp x goAV (2.10)
my
or alternatively
<mf> = oAV (2.11)
my

These last equations are forms of the classical ‘rocket’ equation.
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2.2 HIGH-THRUST SYSTEMS

A number of high-thrust propulsion system types are possible. These include con-
ventional chemical rockets and thermal rocket systems such as nuclear thermal and
solar thermal. These will be considered in the following sections.

2.2.1 Chemical propulsion systems

Chemical systems are currently the most commonly used propulsion system type on
spacecraft. Various types may be used, each with different characteristics.

Many such systems use a fuel and oxidant. A chemical reaction takes place, thus
releasing energy, which expands the gaseous products of the chemical reaction.
These products are then expelled at high pressure through a nozzle. Numerous
fuels and oxidants are available.

Cryogenic systems

Cryogenic propellants may be used; often liquid oxygen (LOX) and liquid hydrogen
(LH2) as the fuel. This reaction is efficient, and a relatively high specific impulse is
achievable. Values exceeding 460 sec have been achieved with some rocket engine
designs. A drawback of cryogenic systems is that the storage of the propellants is
difficult. An extended-duration space mission would need special measures to ensure
the long-term containment of these propellants until required for a manoeuvre.
Cryogenic propellants currently have their greatest application in launchers, for
which storage is less of an issue. Very high thrust is available in such cases, up to
hundreds of kN.

Storable systems

To overcome the above difficulty with cryogenic systems, storable propellants are
often used onboard spacecraft. A common oxidiser is nitrogen tetroxide (N,O4). A
fuel often used with this oxidiser in hydrazine (NH,NH,). A variant of this fuel is
unsymmetrical dimethyl hydrazine (UDMH). Although having the advantage of
storability, these chemicals are both toxic and corrosive, requiring care when the
spacecraft is loaded. This propellant combination has an intermediate specific
impulse, typically less than 330sec, and is therefore significantly less performant
than a cryogenic system.

The oxidiser and fuel may either be pumped or forced under pressure into the
combustion chamber. Spacecraft systems usually rely on pressure, either from a
dedicated pressurant tank or simply the pressure of the storage tanks. This type of
chemical propulsion system is the one most commonly used on spacecraft under-
going interplanetary transfers, and is also widely used on Earth-orbiting telecommu-
nications satellites. The thrust available from such systems is typically in the range of
tens to hundreds of Newtons for spacecraft applications. Higher thrust develop-
ments are also used for launch vehicle stages.
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Monopropellant systems

Chemical propulsion systems may use a single propellant. These are known as
monopropellant systems. A common fuel is hydrazine, which is burned by passing
it over a catalyst. Such systems are simpler than bipropellant systems, but suffer from
a reduced specific impulse (typically less than 220 sec). Thrust available from such
systems is typically in the range of tens of Newtons.

The simplest chemical propulsion system type is perhaps the cold gas system,
which involves the expulsion of a pressurised gas. Specific impulse is very low —
typically less than 70 sec.

Solid propellant systems

Solid propellants may also be used. This usually involves the packaging of the
propellant in a cylinder with an empty central core. Both fuel and oxidiser are
packaged together. Fuel/oxidiser combinations such as synthetic polymers and
ammonium perchlorate are used. The shape of this central ‘hole’” may be used to
control the burn rate. Moderate specific impulses are available: typically 250 sec. A
disadvantage of such systems is that they are nominally ‘one-shot’ devices; that is,
once initiated the system burns until all propellants are consumed. However some
developments are available that are hybrids that allow greater control of the engine.
Potentially very high thrust can be generated with such systems.

2.2.2 Thermal rockets

The principle of a thermal rocket is to use a single propellant, heated and expelled to
generate reactive thrust. Two systems are proposed for heat generation: nuclear
power and solar power.

Nuclear thermal rockets

Nuclear thermal rockets have been studied for many years, and have been considered
both in the context of launch vehicles and space vehicles. The underlying principle is
to use a nuclear reactor as a heat source to heat a propellant. The propellant is then
expanded through a nozzle, in the same way as a chemical rocket engine, producing
thrust.

The key to such a system is the development of a suitable nuclear reactor for
spaceflight. The reactor must be small enough to be contained in the spacecraft. A
number of different reactor technologies are possible, the simplest being the solid
core reactor. These are limited with regard to the temperatures that can be generated
by the melting point of the construction materials. The specific impulse attainable is
800-900sec. A preliminary development of such an engine was NASA’s NERVA
project that was tested between 1964 and 1972. The reactor developed more than
1,000 MW, and with a hydrogen propellant produced approximately 330 kN thrust.
Such a system is targeted for use with stages of launch vehicles. Similar systems were
also pursued in the former Soviet Union.
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Considerably less thrust and hence power is needed for space vehicles. An
example of a later development is the proposed MITEE system, based on a
different reactor technology. Such a system would develop approximately 75 MW
of thermal power, but achieve a specific impulse of typically 1,000sec. A recent
development is NASA’s Project Prometheus, proposing the use a nuclear reactor
to generate power in space. This could potentially be used either with a nuclear
thermal rocket system or to generate power for an electric propulsion system.

A key issue with such propulsion systems is the mass of the system itself. The
reactor mass is high, and although a significant increase in specific impulse is
available when compared with a chemical rocket, the net mass gain is moderated
by the system dry mass. A further issue is the risks associated with the use of nuclear
materials in space.

Because of the relatively high mass of such units they are more generally applic-
able to large transport vehicles, such as may be considered for interplanetary
manned missions or for large robotic explorers such as the recently proposed
NASA Jupiter Icy Moons Orbiter (JIMO) mission. Potential performance improve-
ments have been suggested by the use of liquid or gas core reactors, with which
higher temperatures and ultimately higher specific impulses can be achieved.

Solar thermal rockets

The principle of a solar thermal rocket is similar to that of a nuclear thermal rocket.
The Sun’s energy is used to heat the propellant, which is then expanded through a
nozzle. Hydrogen is most often considered for this application. To date, such
systems remain as concept studies.

The first concept involves the solar heating of a heat exchanger through which
the propellant passes, and a second alternative uses direct solar heating of the
propellant. Specific impulses in the region of 900—1,200 sec are predicted.

Due to the relatively large mass of such a system they are more suitable for
larger space transportation vehicles rather than small, lightweight satellites.

2.3 LOW-THRUST SYSTEMS

Propulsion system performance can be significantly improved if the specific impulse
can be increased, therefore reducing the fuel mass needed. Several developments
have been made to achieve this goal. However, such developments regarding
specific impulse increase have also only been able to achieve a relatively low
thrust. In fact, achieving a twin objective of high specific impulse and high thrust
is a particularly demanding task in terms of the energy that must be imparted to the
propellant.
If an impulse is calculated approximately by:

I=AmV,, (2.12)
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where Am is the mass of propellant ejected, then the kinetic energy of the propellant
that must be developed (as it is accelerated relative to the propulsion system) is given

A . o . . .
by ke = Tm V2., and so the ratio of kinetic energies needed to achieve a particular
impulse, for systems with different specific impulses, is given by:
k V.,
X _ Vex (2.13)
keZ VexZ

Therefore, if a system is developed that provides an order of magnitude gain in
specific impulse, it also requires, for any given impulse, an energy to develop that
is increased by the same ratio.

Similarly, the rate at which kinetic energy must be developed to produce a given
thrust also scales by the same ratio, for systems with different specific impulses.

2.3.1 Electric propulsion

Electric propulsion has been developed over several decades. More recently it has
been effectively applied in a series of space missions. A number of different types of
electric propulsion are available. The two main categories are gridded ion thrusters
(sometimes called Kaufman thrusters) and Hall-effect thrusters (sometimes called
plasma thrusters). A further useful type of electric propulsion is the arcjet.

In the case of chemical propulsion, the energy used to provide the impulse to the
propellant is derived from a chemical reaction. With electric propulsion, energy is
required for field generation from which the propellant obtains its energy. Following
the previous discussions regarding energy and specific impulse, a simple relationship
can be obtained between power, thrust and specific impulse (or exhaust velocity):

_ Thrust * V,
N 2
This is the ideal case where the system operates with 100% efficiency. In practice,

such efficiencies are not achievable, and so the power required for a given thrust and
specific impulse is increased above this value.

(2.14)

Gridded ion thrusters

These thrusters work on the principle of the application of an electric field to
accelerate ions between two grids. Xenon is often used as the propellant, which is
ionised by bombardment by electrons produced by a central cathode. A magnetic
field is used to confine the electrons that then collide with the propellant, causing
ionisation.

The resulting positive ions are filtered from the electrons using an extraction grid
that is slightly negatively biased. These ions are then accelerated between this and the
second grid, as the second grid is set at a large negative potential. They are then
ejected at high velocity, and the resulting reaction to the ejection process produces
thrust on the spacecraft.
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Figure 2.3.1. A gridded ion thruster in operation. Thruster diameter is typically 30 cm.
(Courtesy NASA)

Electrons are also ejected from a second cathode towards the ejected positive
ions. This neutralises the ejected ions so that a build-up of charge on the spacecraft is
avoided.

As an alternative to the use of a cathode-based system, ejecting electrons to
cause the initial ionisation, a system using radio frequency ionisation is used in
some thruster designs. This avoids erosion of the cathode.

The current thruster developments achieve target thrusts of typically 10-200 mN
and specific impulses of 3,000—4,500 sec.

These thrusters have notably been used on NASA’s Deep Space 1 mission. After
departing Earth in 1998, this spacecraft essentially ‘spiralled’, with the assistance of a
series of long-duration, low-thrust propulsion arcs, to achieve fly-bys of comets and
asteroids. The first object encountered was an asteroid, 1992 KD, and it finally flew
by comet Borrelly in 2001. The propulsion system used a gridded ion NSTAR-type
thruster, approximately 30cm in diameter and producing a thrust of 92mN. The
initial spacecraft mass was approximately 480 kg, with more than 80 kg of Xenon on
board. Given a maximum operating specific impulse approaching 3,200 sec, this
would theoretically allow a mission total A}V of more than 5km/sec. The AV's are
applied over a series of long thrust arcs. With the maximum thrust available,
approximately 60 days are needed to achieve a AV of 1 km/sec.

As well as the NSTAR unit used on Deep Space 1, a number of other gridded
ion thrusters have been developed. The T5 and T6 thruster development in the UK
provide thrust at typically 20mN and 150 mN respectively. The T5 was flown on
ESA’s Artemis mission, together with the RIT thrusters developed in Germany. The
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later thruster relies on radio frequency ionisation. The XIPS thrusters (developed in
the USA) have been used on several geostationary satellites for north—south station-
keeping.

Hall-effect thrusters

The principle of the Hall-effect thrusters (sometimes abbreviated as HET) is to use a
rotating plasma of electrons to ionise a propellant injected through an anode. The
configuration of the thruster is such that it generates a radial magnetic field, via inner
and outer magnetic coils. An axial electric field is also generated, and the combined
effect of these fields generates the Hall effect, which confines the electrons to move in
a direction given by E A B, therefore setting up the azimuthal rotation.

The ions are too heavy to be significantly effected by the magnetic fields. They
accelerate axially under the influence of the electric field and exit the thruster at high
velocity, producing thrust.

Currently available thrusters typically provide thrust in the region of 100 mN
and a specific impulse of 1,500-1,700 sec.

This type of thruster was initially successfully developed by the Soviet Union,
and has been used on a number of Soviet and more recently Russian spacecraft since
the 1970s. It was named the Stationary Plasma Thruster (SPT). It also now used for
north—south station-keeping on geostationary communications satellites.

It has also been used by ESA on the SMART-1 technology demonstration

Cathode
neutralise
emitted ions
X
Outer Magnetic
coils
Inner Magnetic
coils » lons accelerated
by axial electric
field
Anodes where
propellant
injected

Figure 2.3.2. A conceptual illustration of a Hall-effect thruster. This is a cross-section and the
electron Hall-effect current moves in the annular region between the magnets.
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mission to the Moon. SMART-1 was initially launched into an elliptical GTO Earth
orbit on an Ariane V in September 2003. The thrusters were used to provide a series
of long thrust arcs to increase the semi-major axis of the orbit until the spacecraft
could eventually approach the Moon. A thrust of approximately 70mN was
developed with a spacecraft initial mass of approximately 350 kg.

This ‘spiralling’ transfer took approximately 14 months, and the spacecraft was
finally captured into lunar orbit in November 2004 after a gravitational capture
sequence using the combined effects of the Earth’s and Moon’s gravity fields and
a passage close to the lunar L1 Lagrange point. The initially high-apocentre elliptical
orbit about the Moon was lowered with assistance from the thrusters. The target
orbit was an elliptical, polar orbit.

Arcjets

Arcjet thrusters use an electric arc discharge to heat a propellant, which is then
expanded through a nozzle to produce thrust. Hydrazine is commonly used as the
propellant for such systems. Thrust is greater than most current electric propulsion
systems, with values of up to typically 1N achievable. Specific impulse is also good
when compared with chemical systems, being typically 500 sec.

Power generation

Several sources of power are considered for electric propulsion. These are solar and
nuclear power generation systems, and also radioisotope thermal generators (RTGs).

Solar power is the most common source of energy, and is used in current-day
applications. Solar arrays efficiently convert solar energy into electrical power. A
measure of their efficiency is the specific power (power per unit array mass — W/kg).
This efficiency is related to the solar cell technology used. Typical values are in the
range 50-90 W/kg when operating at 1 AU from the Sun, depending on the type of
technology used for the solar cells. The power required to drive the electric propul-
sion therefore generates an area requirement for the solar array.

The efficiency of a solar array also depends upon where it used, as the solar
energy available varies with the inverse square of radial distance. Missions that
require electric propulsion at large distances from the Sun are often not feasible if
using solar power generation. Conversely, the use of solar electric propulsion in the
inner Solar System can be an attractive proposition.

Nuclear reactors have been discussed in the context of nuclear thermal propul-
sion. Such reactors can also be used to generate large amounts of electrical power.
They have an advantage over solar-powered systems in that they can operate at large
distances from the Sun. However, the reactor masses proposed to date are relatively
large (hundreds of kg when all the system elements including shielding and thermal
control are added), so that they are often impractical for small spacecraft design, and
more applicable to large spacecraft such as NASA’s proposed JIMO.

A second position-independent power-generation system is the RTG, which uses
radioactive decay to generate heat that is then converted to electrical energy.
However, the specific power of these systems is relatively low (typically 5 W/kg,
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with developments projected at reaching 10 W/kg), so that large amounts of
radioactive fuel would be needed to provide sufficient power. As in the case of
nuclear reactors, the environmental risks (both real and perceived) associated with
these systems are a consideration in the design of such a mission.

The use of electric propulsion at large distances from the Sun therefore poses a
number of challenges, yet to be fully resolved.

2.3.2 Solar sails

A solar sail utilises the Sun’s radiation directly to provide thrust. Photons are
reflected by the sail and the net momentum transfer executes a force on the sail.
The direction of the force is controlled by changing the attitude of the sail, and as
such has some analogies with a yacht sail. However, a solar sail spacecraft has no
mechanism analogous to the keel of a yacht and so is less versatile than a sail boat!

The force due to solar radiation that can be experienced by a reflective surface
placed normal to the Sun’s direction, at 1 AU, is given by the relationship:

F=(l +k)ﬂux*area

(2.15)
where ¢ is the speed of light (3 % 10 m/s), flux is the solar photon flux at 1 AU
(typically 1,400 W/m?), area is the area of the sail, and k is the reflectivity (1 for a
totally reflective surface). The force that can be generated at 1 AU is therefore
approximately 4.67 x 10~ Nm 2, for a non-reflective surface.

The principle of the sail is illustrated in Figure 2.3.3, which shows the possibility
for varying the direction of the force by changing the attitude of the sail. However,

Net force on sail

Incident photons

Sail
surface

Reflected photons
Figure 2.3.3. The principle of the solar sail.
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the magnitude of the force also changes with attitude. Therefore, steering laws may
be derived to calculate the optimum orientation that is needed to provide a
maximum rate of change of certain orbital elements, such as semi-major axis or
inclination. Alternatively, these steering angles (nominally 2 degrees of freedom)
can be used as control parameters in a formal optimisation problem with a
solution yielding an optimum transfer.

A solar sail provides a source of propulsion without a requirement for fuel, and
therefore has an infinite specific impulse. However, there is a system mass associated
with the sail, and the material mass and associated structure must be considered.
Furthermore, during launch, the sail cannot be deployed due to its large area and
fragile structure, and a deployment mechanism must therefore be considered. The
desire to minimise the mass per unit area of sail has led to the use of very thin
materials, of as little as 1 um in thickness. Sail material densities that are considered
are in the range 1-10 g/m>. Sails sizes needed to develop sufficient acceleration to
accomplish missions over acceptable timescales can have linear dimensions of
hundreds of metres.

Solar sails have been successfully demonstrated in space. After being deployed
from the Japanese ISAS mission in 2004, two sails were used, with thicknesses of
7.5 pm.

Applications of solar sails

‘Solar sailing’ has been used for attitude control for many years, where a system of
additional ‘flaps’ or control surface are used. This allows the generation of a torque
about the spacecraft’s centre of gravity, from the effect of the solar pressure
producing a force on the control surface. However, more recently it has been
proposed as a propulsion system for interplanetary missions, both to the inner
and outer planets.

The classical path of a solar sail in executing a planet-to-planet transfer is a
spiral, as the sail generates either an accelerating or retarding force that affects the
spacecraft’s orbital semi-major axis. However, more ambitious missions have been
proposed, venturing to the edge of the Solar System and beyond. In such cases, the
optimal trajectory involves firstly lowering the perihelion towards the Sun and then
modifying the attitude such that the sail accelerates the spacecraft at its new low
perihelion. The resulting acceleration raises aphelion, and the spacecraft then follows
a transfer to its target destination.

Other suggested applications of solar sails involve the creation of near-steady-
state, non-Keplerian orbits. The force on the sail is used to partially counteract or
assist gravity in order to create a modified but closed orbit. Examples are the
creation of false Lagrangian points between the Earth and the Sun.

Some of the ultimate sail missions proposed — perhaps being more journeys of
the imagination — have involved their use in conjunction with an Earth-bound laser
system to accelerate them on an interstellar journey. The laser is focused on the sail
at large heliocentric distances, where solar radiation is no longer effective. The laser
requires rather high energy!
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Figure 2.3.4. A solar sail concept proposed by NASA.
(Courtesy NASA)

Although posing many technological challenges, sails offer some fascinating and
relatively simple mission options that may not be feasible with other propulsion
technologies. As such, they are currently under serious consideration for future
mission designs.

2.4 CHOICE OF PROPULSION SYSTEM

The previous discussions have shown the considerable variety of systems available
for spacecraft propulsion. Some of them — such as chemical systems — are widely
used, and offer cost-effective mission designs. They are, however, limited in their
application due to the relatively low specific impulse, implying high fuel fractions.

Electric propulsion is now much more widely used in space, and has application
on commercial telecommunications satellites. Its application to deep-space missions
has also been demonstrated, and potentially offers some strong performance gains
over chemical missions because of the very high specific impulse available. The
application of electric propulsion at large distance from the Sun is adversely
affected by the difficulties of power generation, implying nuclear or RTG systems.
Nuclear systems attract considerable research and offer good performance, but tend
to have a high system mass, and so the number of missions to which they may be
applicable are limited.

Thermal rockets offer potential performance gains over chemical rocket systems,
but because of their high basic system mass they are inefficient for small spacecraft.
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The development of these systems is often considered in the context of large
transport vehicles.

At the other end of the propulsion spectrum is the solar sail, offering only low
acceleration but great mission flexibility and infinite specific impulse. At the present
time the key issue is the space demonstration of sail technologies, including low-mass
materials.
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Optimisation

Optimisation is an important component of mission design. Interplanetary missions
often have the choice of multiple routes and may use large numbers of manoeuvres.
Efficient transfers are essential in order to maximise the useful mass that may be
transported to the target.

Optimisation therefore falls into two categories: trajectory optimisation and
system optimisation. Trajectory optimisation involves the determination of the
most efficient launch and manoeuvre strategy, while system optimisation involves
the selection of optimal system performance parameters. The objective is once again
to maximise the useful mass. Such parameters are predominantly related to propul-
sion system performance.

3.1 THE TRAJECTORY OPTIMISATION PROBLEM

A trajectory optimisation problem aims to minimise or maximise a specified function
by the time that the selected target is reached. Examples could typically be the fuel
usage or AV required.
The general problem is to minimise the objective, J:
.
I =), ) + | LYo )dr (3.1)

Iy
where X is the state vector, u is the control vector, 7, and 7, are the initial and final
times of the trajectory, ® is a function of the final state and time, and L is a general
function of the instantaneous state, control and time, integrated over time, along the
trajectory. In this context, the state vector, X is a set of states whose evolution with
time describes the trajectory and any associated parameters.
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Minimisation is performed with respect to the control vector, u, which consists
of a set of mutually independent parameters. Each element of the control vector may
be a function of time that may influence the vehicle trajectory:

Also, there is a condition that the control vector must lie within an allowable control
space.

Constraints
Two types of constraint may be applied to the trajectory:

e Terminal or ‘fixed time’: functions of the state and controls at the end of the
trajectory (or at a fixed event).
e Path: functions of the state and control variables over regions of the trajectory.

Both constraint types may be divided into a further two classes:

e Equality: the function to be constrained must equal a specified value or function.
e Inequality: the function to be constrained must be less than or greater than a
specified value or function.

General form for a terminal or ‘event’-type constraint

Two types of these constraints may be considered, as follows:

Type 1: a function evaluated at a given time
C :fl (X([e)vﬂa [e)

where £, is the time at which the event takes place, f; is a specified function, and C
has a specified value.

The above is an equality constraint. The inequality contraint of this type simply
applies an upper or lower limit to the function and therefore replaces the equality
sign with an inequality sign.

Type 2: a function evaluated over the trajectory
ty
Clty) =FiXlu) 1) + | At d
)

where f; and f, are general functions that may be specified. Once again the inequality
constraint type applies an upper or lower limit to such a combination of functions.
Constraints of type 1 are more generally found than type 2.
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General form for a path constraint
This is a function specified over the duration, or a sub-section of the trajectory:
C(X,u,1) < fi(X,u,1)

where f] is a specified function, and C has a specified value at all times, 7. The above
is an inequality constraint — the most common form of path constraint.

3.2 TRAJECTORY OPTIMISATION METHODS

Trajectory optimisation methods broadly fall into two categories: direct and indirect.

Indirect methods are based on a variational calculus principle: the Pontryagin
minimum principle (which also may be called a maximum principle, depending on
the convention adopted). It is possible to formulate a two-point boundary problem
involving a set of adjoint variables, the solution of which will yield a history of the
time-dependent controls.

Direct methods differ from the indirect in that the time-dependent controls are
described by a finite set of parameters. This necessarily limits the freedom of the
control, but in many problems the effect of such a limitation on the optimal solution
is negligible.

By using an optimal control formulation that is simpler than the indirect method
the solutions obtained by the direct method are an approximation to the true
optimum solution.

3.2.1 Indirect optimisation techniques

Optimal control of a vehicle trajectory may be derived from the application of the
Pontryagin minimum principle. The following discussion outlines the principle of
solution. A more detailed exposition can be found in the references for this section.
The vehicle trajectory state at any time is defined by the state vector X.
Then a Hamiltonian function for this problem is defined to be:

H=> PX+L (3.2)
i

where X is the state vector derivative with respect to time and the summation is over
the number of states, P is an adjoint vector of the same number of dimensions as the
state vector, L is a general function of the instantaneous state, control and time, as
used in equation 3.1, and H is called the Hamiltonian.

The control vector, in the case of a trajectory optimisation problem, is generally
comprised of elements such as thrust vector steering profiles or thrust throttle terms —
the terms that determine the evolution of the trajectory.
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Pontryagin’s minimum principle derives the following conditions for the mini-
misation of the objective function:

OH
o (3.3)
OH .

The Hamiltonian, at any time, should be minimum with respect to each element of
the control vector (Equation 3.3). This statement can be augmented by the more
general statement that the Hamiltonian should be globally minimum with respect to
the control vector at every point in time.

The adjoint derivatives are defined by the partial derivatives of the Hamiltonian
with respect to the state elements.

The differential equations for the state and adjoint vectors must now be solved:

[/ .
X- J XX, ) di + X (1)

Iy

.

p=| petwnars pw)
ly

where P and u are derived from the partial derivatives of the Hamiltonian described

previously. In principle, equation 3.3 gives U.

The initial values of the state vector, X, are generally known, from the definition
of the trajectory starting point, but the initial values of the adjoint vector are not
known. However, Pontryagin gives additional conditions on the final values of the
adjoint vector and the Hamiltonian. In the case of unconstrained terminal states or
functions of the terminal states then:

00 (ty)
X, Pi(tr)
where ¢ is that used in equation 3.1. Also:
od
— = —H(t,
o1 (i)

for a free terminal time problem.
When terminal states are constrained, then the above equation for P; (where the
state, 7, is constrained) becomes:

Pi(ty) = N

where ); is an undefined constant to be determined via the terminal constraints
during the solution of the problem.

A two-point boundary value problem is now defined, the solution of which will
yield the optimal control and the optimal trajectory that minimises the objective
function. The solution of this problem in general requires numerical methods. An
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initial estimate of the adjoint variables may be made for the time, #,. Then both state
and adjoint vectors may be propagated to the termination of the trajectory.

An example could be considered where no constraints exist on the terminal
states. Forwards propagation of this initial estimate will result in an error between
the final adjoint vector and the required value. The initial values of the elements of
the adjoint vector are then corrected until the final constraints are observed. This
procedure may be implemented as follows.

A state transition matrix is evaluated relating the terminal adjoint variables to
their initial values:

[OPy() Py ]
Py 9Py
[8["(9‘)} %Py 9Pwgy (3.5)
oP, 0Py .. 0Py '
Py Py ()
[ OPyvo 9Py |

Evaluation of the state transition matrix for the adjoint vector requires the calcula-
tion of a set of partial derivatives. These are obtained most efficiently by the
numerical integration of analytically derived expressions for the state transition
rates:

OP(tr) (7 OP; ot .
: dt 2 P,(t 3.6
or = | gp Tt 5B (3.6
where:
8P,~(lf) . . .. . .. .
P - is the partial derivative of the terminal value of the adjoint element, i,
Jo wrt the initial value of the adjoint element, j,
OP;(X,u,t) . . o . .
% is the partial derivative of the instantaneous value of the adjoint
70 element, i, time derivative, wrt the initial value of the adjoint
element, j, and
Oty
8% is the partial derivative of the terminal time wrt the initial value of the
0

adjoint element, j.

The rate derivatives typically decompose in the following manner:

OP; L 0P, ax e O
=y X 5ot Z Xou ) o (3.7)
8Pj0 aX 8uk anO
where ns is the number of states, nc 1s the number of control variables and:
0X, . . o o
8Tk is the partial derivative of the state element, k, wrt the initial value of
70 the adjoint element, j,
ou . . . .
8Tk is the partial derivative of the instantaneous value of the control
Jo element, k, wrt the initial value of the adjoint element, J,
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OP,(X,u,1) . . o . -

% is the partial derivative of the instantaneous value of the adjoint
k element, 7, time derivative, wrt the state element, k, and

OP,(X,u, 1) . . . . ..

% is the partial derivative of the instantaneous value of the adjoint
U

element, i, time derivative, wrt the control element, k.

The state element partial derivatives are obtained in the same manner as the adjoint
element partials:

9X:(1) _J X v iy (3.8)

P, P,

The state vector rate derivatives decompose in a manner similar to those of the
adjoint variables:.

3X1a - 3uki
3.9
Z ax, X . Z o X 9P, (39)

where

X . L . .

op. S the partial derivative of the instantaneous value of the state element, i, time
70 derivative, wrt the initial value of the adjoint element, ;.

The instantaneous partial derivatives of the control elements with respect to the
adjoint element initial values are obtained in the following manner.
The condition that the Hamiltonian is always minimum along the trajectory;

. . . .. OH
that is, the control variables are derived from the condition that — = 0 means that
azH U;
=0, and therefore:

8Pk08u,-
Z Z O°H L P
ou; (9Xkc9ui aP OPdu; 0Py, -
— OuyOu,

unless the control element is on a limiting boundary, in which case: P L=0.
JO

Therefore, the adjoint state transition matrix given in Equation 3.5 is obtained
by numerical integration of the expressions derived here, The increments in the initial
values of the adjoint variables, needed to reach the required terminal values may
then be calculated by inversion of the state transition matrix.

The method described here presents an outline of the mathematical problem to
be solved. Any specific trajectory optimisation problem of this type must be for-
mulated to include the effects of the specific constraints and objective function for
that problem. A definitive description of the methods to formulate and solve such
problems may be found notably in Bryson and Ho (see references for this section).
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3.2.2 Direct optimisation techniques

An interplanetary transfer may, in general, be controlled by a series of manoeuvres,
which may be near-impulsive manoeuvres, or long-duration, typically low-thrust
manoeuvres. In the impulsive case, a fixed steering direction may be used to char-
acterise the manoeuvre. Such directions may be used directly as optimisable param-
eters. However, in the case of the long-duration manoeuvre, the steering profiles that
determine the thrust directions are continuously variable. This steering profile will
nominally have two independent components: azimuth or right ascension angle, and
elevation angle. Both of these may vary independently with elapsed time along the
trajectory. Further continuously variable control parameters may include the thrust
magnitude. In many traditional transfer trajectory cases, thrust magnitude tends to
the maximum that is allowed, but the application of specific constraints or propul-
sion models can change this situation.

Unlike the indirect method, from which the optimal, continuous steering profile
is obtained, the direct method requires a parameterisation of each of the independent
control elements. This is a finite set of parameters, and a number of different
methods could be used:

e A grid of values at set time intervals with interpolation at intermediate time
values.

e More general mathematical functions with time as the independent variable
(Fourier series).

The number of degrees of freedom available to each element of the control vector is
now limited by the number of parameters set for that element. In the indirect case,
there is effectively an infinite number of parameters, as the optimal control history is
continuously variable.

The objective may take the same form as that of the indirect problem, and a set
of constraints may be specified, both equality and inequality. The problem is then to
determine the values of the parameters that result in observation of the constraints
and maximise the objective function.

3.2.3 An example of control parameterisation

A simple example of a control parameterisation is given in Figure 3.2.1. The control
variable is a steering angle with a value specified at a series of set time points. The
values at these times are then the optimisable parameters that define the control
variable. At intermediate times, the value of the control angle is obtained by
linear interpolation.

This example shows a steering profile defined at seven points in time. The quality
of the optimisation is improved by using a finer grid of points. Studies are needed for
particular cases to establish satisfactory time spacing. The grid can be irregular, with
higher concentrations of points in critical areas. Such a dense control grid may, for
example, be used for manoeuvres close to pericentre of a planet fly-by. For man-
ocuvres in deep space, where the time periods of the motion are much larger, a much
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Figure 3.2.1. An example of a parameterisation of a continuously variable steering angle.

larger time interval may be used (hours or even day intervals could be considered).
The key point is that the grid spacing should be sufficient to allow an accurate
representation of the probable frequency content of the parameterised variable.

Solution of the direct optimisation problem
The following is an example of such a problem:

e Maximise the objective function, J, subject to the equality constraint set, 7eq
equality constraints and njneq inequality constraints:

C;=0 for i =1 to ng
C; <0 for i = ngg + 1 t0 neq + Nineq

with respect to the following set of control parameters (using the example of thrust
vector steering angles):

e u(1,1) to u(1, nysimum). control vector element 1, the azimuth angle, with Zimuh
parameters.

o u(2,1) to u(2, Nelevation). control vector element 2, the elevation angle, with
Nelevation parameters.

u(1,7) is the ith control parameter of the azimuth control angle.
u(2,1i) is the ith control parameter of the elevation control angle.

In practice, the trajectory will incorporate a series of such manoeuvres and so the
above parameterisation is needed for each manoeuvre. The duration and start time
of each manoeuvre are also optimisable parameters. The number of optimisable
control parameters therefore becomes (Mejevations Pazimuth + 2) * Ppurns-

Given an initial estimate of the control parameters, the solution may be found
by numerical, iterative methods using non-linear programming.



Sec. 3.2] Trajectory optimisation methods 97

Non-linear programming

Non-linear programming is a method of calculating increments in the vector of
control parameters that allows the maximum (or minimum) of the objective
function to be reached, whilst observing all constraints. These methods require at
least first-order gradient information about the objective function and the

constraints, with respect to the control parameters, Ideally, second-order

oJ
Qu(i,j)
d%J
Ou(i,) Ou(i, k)’

As an example, with only first-order gradients available, the steepest ascent
direction can be found (subject to constraints) and a ‘hill-climbing’ method used
to find the maximum by a sequence of iterations. Numerous algorithms are available
for such a task.

With additional second-order information, local quadratic models can be for-
mulated to approximate the objective function and ultimately allow determination of
the location of the maximum after a sequence of iterations.

Non-linear programming is discussed in greater detail in Section 3.3.3.

gradient information would also be available,

3.2.4 Techniques for solving direct optimisation problems

A number of methods can be used to assist in the solution of direct optimisation
problems. The common feature is that each uses some method to parameterise the
control variables and non-linear programming to achieve a solution. Three tech-
niques are commonly considered, but a number of variations of these also exist.

Single shooting algorithms

This is conceptually the simplest method. The initial state vector values are specified
and the trajectory propagated forwards in time, using the control variable values
obtained from the parameterised representation. An initial guess is made at the
control parameter values. At the end of the propagation, some of the required
final states may be met and others not. Non-linear programming is used to solve
the constrained maximisation or minimisation problem.

The number of control parameters used by the non-linear programming method
is equal to the number of parameters used to represent the continuously variable
controls plus any further free parameters, such as manoeuvre start and stop times.

Multiple shooting algorithms

Multiple shooting algorithms may be adopted for the solution of this class of
problem. They offer the possibility of an efficient solution, together with a robust
approach to the adoption of initial trajectory estimates.

The trajectory must be segmented (in time) into a set of phases or segments. The
exact choice of segmenting is arbitrary, but it is more efficient to make use of natural
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Figure 3.2.2. Trajectory segmentation used by multiple shooting algorithms.

discontinuities in the trajectory, such as coast and engine-burn phases. Further
segmentation within particularly long coast phases is also possible. After the
initial values for a segment are estimated, the trajectory is propagated forwards
(or even backwards) in time for an estimated duration.

The initial conditions for each segment (the initial values of the state vector for
that segment) are determined by the optimisation process; that is, they are treated as
optimisable controls. Clearly, the state vector at the end of the preceding phase must
eventually match this initial value. This matching requirement appears as an equality
constraint.

This treatment means that in any one evaluation of the trajectory there are
effectively ‘n’ independent trajectory evaluations: one per segment. Each segment-
starts with state vector values given by the optimisation process at the current
iteration.

The idea of multiple shooting was notably explored by Well, particularly in the
context of launch trajectory optimisation (see references for this section)

The nature of the starting points for each of the segments can be chosen in a
variety of ways. It could simply be that a very long manoeuvre can be best repre-
sented by a series of shorter segments that together make up the manoeuvre, and the
same could be true for a long coast arc (perhaps subject to a variety of perturbations;
different mathematical models may be used in different segments to best represent
the differing nature of the trajectory during a transfer). Alternatively, a starting point
could correspond to some significant event, such as when entering the sphere of
influence of a planet before the spacecraft performs a gravity-assist manoeuvre.

Figure 3.2.3 illustrates a trajectory segmented into a series of disjointed sections,
each of which contains either a thrust arc or a coast arc. Such a trajectory may be
typical of the initial guess to an optimal solution. In this case, a ‘guess’ is made
regarding the nature of the trajectory at each gravity-assist manoeuvre and the
epochs of the gravity-assist manoeuvres, together with the initial Earth departure
epoch and the Jupiter arrival epoch. A number of adjacent, multiple shooting
trajectory segments are then propagated forwards and backwards in time from
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Figure 3.2.3. Initial trajectory segmentation for multiple shooting, for the case of a transfer
from Earth escape orbit to Jupiter approach using two Earth GAs. Thrust arcs in the
trajectory are thick lines, and coast arcs are lighter. The width of the grid cells is 0.1 AU.
The orbit arcs of Earth and Jupiter are also shown.

each gravity-assist event. These propagated sequences do not meet initially. In total,
nineteen segments are used in this trajectory example. Non linear programming is
then used to link the blocks of segments associated with each gravity-assist in an
optimal manner, to minimise total fuel usage.

Method of solution

It is assumed that any time-dependent spacecraft control function history, such as
azimuth angle history during a burn, can be specified by a finite set of optimisable
parameters. Some defined function of the parameters involving time then defines the
control history.

If it were required to achieve the absolute value of the optimum (that can be
obtained with the indirect method), then in principle an infinite number of param-
eters would be needed. In practice, maxima or minima lying very close to the
absolute values can generally be obtained with only a limited number of parameters.
The driving force behind keeping to a low number of parameters is to avoid the
computational overhead imposed by the use of a large numbers of parameters.

Once the parameterisation of the spacecraft control functions has been decided
upon, the optimisation problem reduces to a non-linear programming problem, to
maximise the objective function with respect to the specified finite parameter set.

The full optimisation problem is to maximise the objective function with respect
to the parameter set, subject to the constraints, which may either be equality or
inequality constraints.
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An initial guess is made at the values of the optimisable parameters. The
trajectory segments are each integrated forwards in time from a specified initial
optimisable time, over an optimisable duration. The vehicle control functions for
each segment are derived from the applicable set of optimisable parameters. The
values of the objective function and all constraints are then evaluated.

An increment in the parameters is calculated by means of a non-linear program-
ming algorithm. This increment is calculated to increase the value of the objective
function and to ensure that the constraints are observed.

This procedure is repeated until the objective function can no longer be
increased.

When the optimum solution is obtained and all constraints are observed, the end
and beginning of adjacent phases will match, giving a continuous trajectory from the
initial to the final states.

An example of the application of a multiple shooting algorithm is given in the
references for this section.

Advantages of multiple shooting

The efficiency of a multiple shooting algorithm, compared with a single shooting
algorithm, can be understood through the following effects, which result in reduced
computing time to obtain a solution:

e Gradient evaluation. Because controls only have a ‘localised’ effect (restricted to
that segment), gradients only need be generated for that segment, rather than for
the whole trajectory.

e Linearity. Because each trajectory segment is shorter than in the single shooting
case, the effect of changing a particular control element is more predictable (the
gradients show greater local linearity). However, the algorithm may require
large changes in the initial state vector values for the segments as it progresses
towards a solution. At this point, control step size limits on these initial states
can directly prevent excessive initial state changes which would otherwise give
rise to highly non-linear behaviour of the final states. The net result is a much
improved convergence behaviour.

e The method is more robust with respect to poor initial guesses of the nominal
trajectory control parameters, as some estimation of the probable form of the
final trajectory can be included in the initial guess of the initial state values for
each segment.

There is, however, one drawback: the number of constraints is significantly
increased. This tends to lead to larger matrix inversion problems in the NLP
algorithm. If a large number of segments were to be used, the above benefits
would be outweighed by the increased computing effort in solving the associated
matrix problems. Therefore, it is important to carefully choose the number of
segments to be used.
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Time segmentation

In some applications of multiple shooting problems, time is treated as continuous
between adjacent segments. This is the best approach when the trajectory has no
dependence on absolute time. However, when the equations of motion contain terms
that are dependent upon absolute time, it can be advantageous to use a time
segmentation; that is, to use the initial time of each segment as an optimisable
control.

An example of this is the planetary fly-by case. Fly-by dynamics are critically
effected by the phasing of the approach and therefore the absolute time. In planning
a mission, it is possible to generate segments that experience close planetary encoun-
ters by specifying the correct combination of initial position/velocity and absolute
time.

A constraint is applied such that the end and start times of adjacent segments is
continuous. The convergence to a fly-by solution is much improved if the initial
estimate contains an approximation of such a manoeuvre.

The use of time segmentation is therefore employed for such problems.

Multiple shooting problem formulation

The formal problem using a multiple shooting approach can be stated as follows:
Assuming that the trajectory is divided into n segments,

e Maximise the specified objective function (e.g., mass at termination of nth
phase).

subject to the equality constraints:

e Specified functions of the state vector at the termination of the nth phase, neierm
in total: final orbit apogee height, orbit perigee height, orbit inclination, orbit
right ascension, and orbit argument of perigee.

e Specified functions of the state vector at the start of the first segment, nejpiga in
total (e.g., initial orbit apogee height, orbit perigee height).

e Specified functions of the state vector at the start of the intermediate segments,
neiner 1N total: e.g., optional osculating planet relative ephemeris elements at
start of fly-by segments.

e The error between the state vector at the termination of each segment, i, and the
initial value of the state vector at the start of the next segment, fori=1ton — 1,
ms (the number of state vector elements)+ 1(time continuity) continuity
constraints, i.e.,:

Xi(tp) = X; 1 (toi41)s 1 = toigr, for i =1 to n— 1; where X, is the state vector
evaluated for segment i, #; is the time at which segment i terminates, and ; is
the time at which the ith segment starts.

The optimisable controls are now:

e Thrust vector azimuth and elevation angles (for each segment i).
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e The initial values of the state vector for each segment, X,(fy;) for i = 1 to n (this
assumes that the initial conditions of the trajectory are optimisable, although
certain constraints are applied at this point).

e The duration and start time of each phase, ¢4, t; for 1 =1, n (or termination
time instead of start time for those phases to be numerically integrated
backwards).

For each phase, the vehicle attitude control function histories are parameterised; for
example, ma; optimisable parameters define the azimuth profile for each phase, i,
and mb; parameters define the elevation angle profile. The control function para-
meterisation can be critical in achieving good convergence to an optimal solution.
The final problem then involves (in the above control function example):
i=n
NP = » (ma; + mb; +ms+2) optimisable controls
i1

where ms is the number of states in the state vector, # is the number of segments, and

i=n—1
NE = Z (WlS + 1) + Neierm + Neipitial + Meinter
i=1

equality constraints.

It is assumed here that all inequality constraints are transformed to equality
constraints by the use of ‘slack variables’, discussed later in this chapter.

For each constraint (C;, for j = 1 to (NE)) and the objective function (J), the
gradient with respect to each control (optimisable parameter, p;, i =1, NP) is
evaluated:

o

Op; Op;

Then non-linear programming is used to solve for the NP parameters.

Collocation

The principle of collocation, when applied to trajectory optimal control problems,
involves the representation of the trajectory by a set of states and their time deriva-
tives over a grid of defined points in time. The technique removes the need for
reintegration of the trajectory over repeated iterations.

The values of the states and their derivatives at intermediate points can be
derived by interpolation using piecewise polynomials (nominally third order). Addi-
tionally, the values of the derivatives are explicitly evaluated at these intermediate
points by their dependence on the interpolated states.

The difference between the calculated and interpolated derivatives at coincident
times define a constraint set, the values of which must be iteratively reduced to zero.
The problem is initialised by selecting a set of state values over the grid, that are
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judged to approximate the final solution. This selection causes errors in the initial
constraint set.
The optimisation problem becomes the following:

e Maximise the chosen objective function (which must also be represented in terms
of the discrete grid), subject to the constraints:
e Nominal set (path and terminal constraints).
e Collocation constraints of derivatives on the grid.
o The optimisable control parameters are:
e Nominal control parameters (such as parameters defining control angle and
thrust histories).
e State vector values at the grid points.

This approach was notably developed for trajectory optimisation by Hargraves and
Paris (see references for this section). The advantages associated with this approach
are the following:

e Gradient evaluation is simplified, as the effects of a control need only be
evaluated at the local grid points.

e Numerical integration is replaced by piecewise interpolation. The interval deter-
mines the accuracy of the interpolated representation. Therefore, initial
estimates may be based on a sparse grid and accuracy refined as the solution
proceeds.

e The linearity of the problem is improved — the response of constraints and
objective function to control parameter changes — allowing larger increments
in the control parameters in the iteration.

e The method is robust with regard to poor initial guesses at the solution.

The major disadvantage is that for problems requiring a denser grid to maintain an
accurate representation of the trajectory, large numbers of controls and constraints
are required which in turn lead to large matrix inversion problems in the non-linear
programming process. However, much research has been performed on the methods
for processing the sparse matrices that are used by the NLP methods, and a number
of effective algorithms have been produced (see references for this section)

In the application to deep space missions, collocation offers the possibility of
starting the solution process, using a sparse grid. Progressive refinement of the grid,
either locally or globally, leads to an increasingly accurate solution. Multiple
shooting segments may progressively replace regions containing grid point represen-
tations. In this way, an intermediate hybrid problem can be solved, containing both
collocation and multiple shooting.

Application of collocation

The collocation-based optimisation problem has the features of any general, direct
optimisation problem (as described in Section 3.2.2). The key details specifically
relating to collocation are now considered.
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Firstly, a set of nodes must be defined, spanning the duration of the trajectory.
The state vector element, j, at node i, that applies at time ¢, is denoted as X;;.

A control vector, u, influences the state vector derivatives. This vector has K
elements, with unique values at each node.

The state vector derivatives are dependent on the state vector and the control
parameters:

Xij = X[ (leaulk lK)

In practice only a subset of the k control parameters influence X, ;- The state
vector at an intermediate time, between nodes i and i+ 1, can be obtained by
interpolation. The time is calculated as:

i = Ll
2

Several methods of interpolation are possible. One of the simplest is a piecewise
Hermite interpolation method. This uses the state vector elements and their
derivatives at adjacent nodes to obtain the state vector at the intermediate times
between nodes. Therefore:

X:‘+1/2,‘/ = (X

1]7X+ljaX

ijy

X+l jaAl)

Where A; = t;;; —t; and ' denotes an interpolated quantity. Similarly, the state
vector derivative can be obtained by interpolation:

1+1/2/ f2< ijy +lj7ijaX1+1]aA)

The state vector derivative can then be explicitly evaluated from its dependence
on the state vector:

. . ,
Xivr2) = Xivry2,j (X1, o i1 24-1,5)

The error between interpolated and evaluated derivatives can then be calculated.

Therefore, if N nodes exist, there are N — 1 intermediate points.

Note that a solution can often be found, irrespective of the spacing in the nodes.
However, an error in the solution will exist if the node spacings are too large, such
that the state vector values obtained at these nodes will not accurately represent the
trajectory. The effect arises from the limitations of the accuracy of the interpolation.

A short discussion of the interpolation problem is warranted to examine possible
ways of maximising the efficiency of the method.

Interpolation

The principle of the interpolation techniques described is based on a truncated
Taylor series, such as the following example.
o or ort or 61°

X(lo+5l):X(fo)+X(lo)51‘*')2(10)7"'/\’( )30 +X (t0) 57 a1 +X (o) = 5 +X (o) al

This example truncates at order 6. Such a series includes an error in the predicted
term that depends on the (n + 1)th derivative and a function of the time step to the
(n + 1)st power plus higher derivatives when the series is truncted at order n.
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It is generally possible to assume that terms (derivatives) beyond a given order
become negligible. It is also possible to derive similar expressions for the extrapo-
lated state vector derivative. From these expansions it is possible to obtain a series of
coefficients.

These higher derivatives are generally not known, but can be obtained by use of
lower derivatives obtained at two or more time points. An example of such an
interpolation method, well suited to this problem, is now described.

Position interpolation with respect to time can be accomplished by piecewise,
5th order Hermite interpolation. This algorithm makes better use of the available
information (than for example a 3rd order interpolator) when interpolating for the
state, X, by employing knowledge of the second derivative of the state, X. By
comparison the 3rd order interpolator uses only the state and its first derivative
when interpolating for the state. The state vector rates are denoted by X.

In qualitative terms the truncation error of a 5th order interpolator is of order 6
(when interpolating the state). The truncation error of the 3rd order interpolator is
of order 4 (when interpolating the state).

The exact equation for interpolating the state using a Sth order method is:

X (194 61) = AX(ty) + BX (19 + A) + CX (1) + DX (ty + A) + EX (1y) + FX (15 + A)
(3.11)

where 0t is the time elapsed from ¢z, at which the information is required, and A is the
full time step size.

A to F are coefficients, being dependent on 67 and A.

Solving for the coefficients 4 to F from a set of truncated Taylor series yields:

5t

8361 — A) — 6A*F
D= %

8 —3A°D — 6AF
B= X
A=1-B

C=6t—BA—-D

5t A’B
E=—-=""_AD-F
2 2

A 3th-order algorithm can be used to interpolate velocity:

X(ty + 6t) = AX (ty) + BX (ty + A) + CX (1) + DX (1o + A) (3.12)
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51> (26t
A1+A2(A3>

51> (261
B=——|"—
= (%-3)
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5t (6t
p=2(%_4
x(31)

where X now represents velocity and X acceleration.

Higher-order interpolation methods are possible. The objective is to maximise
the node time spacing, consistent with a given level of accuracy of trajectory
representation.

3.2.5 Selection of appropriate techniques

The nature of the problem to be solved influences the selection of the technique. The
first choice lies between direct and indirect optimisation methods. Some of the
features can be summarised:

Indirect:

Evaluation of state and adjoint rates.

Evaluation of optimum control variable expressions along the trajectory.
Numerical integration to obtain states and adjoints.

Evaluation of state and adjoint vector partial derivative rates.
Numerical integration of state and adjoint vector partial derivative rates.
Solution by matrix inversion and iteration.

Direct:

Evaluation of state rates.

Optimum control variable expressions along the trajectory from parameterisa-
tion.

Numerical integration to obtain states from their derivatives for shooting
methods or use of collocation methods to solve time-dependent differential
equations.

Evaluation of state vector partial derivative rates.

Numerical integration of state vector partial derivative rates for shooting
methods.

Solution by matrix inversion and non linear programming.

The comparison shows that both methods attract a considerable computational
overhead, and that the overhead per iteration can depend on the details of the
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particular problem under consideration. A further factor to be considered is the
flexibility of the algorithms. In general, indirect methods require the derivation of
a greater number of analytical expressions (unless automatic differentiation methods
are used). Therefore, if the mathematical models representing the problem are
modified, or the constraints or objective are modified, a greater effort is required
to obtain the new set of derivatives for the indirect case when compared with the
direct case. This flexibility of direct methods is a significant factor in an environment
where models and requirements change frequently.

A further selection, regarding direct methods, lies in the choice of shooting
methods or collocation. Both methods have strengths, as outlined in the previous
discussions. The choice between these methods could be made on the basis of
computational efficiency, but this could vary from problem to problem. The result
is therefore not a clear decision. The techniques require a number of common
elements, such as state vector rate evaluation and the evaluation of the partial
derivatives of these rates with respect to control parameters. These terms are
defined by the mathematical model employed, and there is scope for switching
between methods.

3.3 APPLICATION OF DIRECT TRAJECTORY
OPTIMISATION METHODS

The application of the methods discussed will now be described to enable the
solution of a general trajectory optimisation problem. Firstly, the problem must
be formulated, in mathematical terms. Then, the information needed for the
solution of the problem — including gradient information — must be assembled.

3.3.1 Formulating the mathematical problem

The mathematical problem has several components. Firstly, the fundamental
objective, constraints and optimisable controls must be identified, and then the
mathematical models that define the motion of the spacecraft must be defined.

Basic problem formulation

The trajectory optimisation problem has the following format, as described pre-
viously:

Minimise the objective function, J, subject to the equality constraints, C; = 0,
i = 1 to n, and the inequality constraints, C; <=0, i = n + 1 to n + ¢, with respect to
a control vector, u.
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The objective function can take the general form, as given previously:

T= S ) ate). )+ [ 100 e

where X;, i = 1 to m, are the elements of the state vector, X; u;, j = 1 to p, are the
elements of the optimisable control vector, u; and #, is the time at which the
trajectory terminates. f, is the time at which the trajectory starts, and X; are
obtained by integrating the state vector rates, recalling that:

o
X:g(zo)jtj X(X,u,1)dt

lo

An objective that often occurs in the context of interplanetary missions is the
minimisation of fuel mass, therefore:

J =m(ty)

where m is the fuel mass used, which may be a component of the state vector,
together with position and velocity vectors. This can be expressed equivalently as:

"
J = —J/ m(X,u,t)dt
lo

where the integrand is the fuel mass flow rate which is a negative quantity. This will
generally depend upon thrust and specific impulse. Thrust may have a positional
dependence, and is controlled in magnitude by the throttle that is applied.

In the context of a multiple shooting algorithm, sections of the trajectory where
thrusting occurs may often form separate segments. Therefore, the objective effec-
tively becomes:

i=NT fi
s==3 |
i=1 J10i

where i represents the thrusting segments, of which there are NT. However, because
the multiple shooting formulation links the adjacent segments through equality
constraints, the objective can be specified simply as:

J = Wl(lﬂ\r)

where fy is the terminal time of the last multiple shooting segment.

In some trajectory optimisation problems, the total duration of the transfer may
be the objective to be minimised. Such an example could apply to a spacecraft using
solar sails, where no fuel is used, but the minimum transfer time is sought for a given
sail size.

Yet another form of objective is the minimisation of AV for a transfer, where the
spacecraft manoeuvres may be represented as impulsive velocity changes. These
velocity changes then form components of the control vector, and so the objective

is of the form
J=f"(ulty))
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where the elements of u are now the individual AV vectors per manoeuvre, and so

i=Nm
J=Y AV AV AV
i=1

X

and AV, AV, AV, are the Cartesian components of the AV for manoeuvre

number i, Nm manoeuvres in total.

Equality constraints

The equality constraints for this type of optimisation problem are generally
functions that can be associated with particular events during the evaluation of
the trajectory, Ci=f"(X(t,),u,t,), where ¢, can be a fixed intermediate time or
the trajectory termination time. It may be convenient to arrange the function such
that each constraint becomes C; = 0.

Examples of such constraints are final orbit injection constraints at a target
planet. Alternatively, a planet rendezvous constraint implies that the locations of
the spacecraft and planet must coincide at termination of the trajectory.

In the case of multiple shooting, further equality constraints arise from the
matching of the state vector at the end and beginning of adjacent segments.

Alternatively, some function or element of the state vector reaching a required
value may determine the event, which then imposes a further equality constraint on
other elements or functions of the state vector. The optimisation process determines
the time at which the event ultimately occurs. An example could be that the trajec-
tory is terminated when the spacecraft reaches a particular distance from the Sun.

Inequality constraints and slack variables

These constraints are of the form Ci < 0. They may be conveniently handled by
employing slack variables to convert the inequality to an equality constraint. The
constraints therefore become:

Ci+Si=0

A constraint is applied on the control parameter, Si, such that:
Si<0

This approach uses additional controls, but is often a more convenient formulation
for such constraints, because the inequality can be handled more simply for a control
parameter that is handled directly in the iterative solution of the problem.

Examples of such constraints may be the distance that a fly-by takes place at a
planet, as some minimum altitude may apply. Alternatively, in the context of
multiple shooting, the duration of each trajectory segment should not be less than
Zero.

There are also inequality path constraints. Examples of this type of constraint
are restrictions in the aspect angle of a spacecraft (for example, where direct solar
illumination may cause difficulty). In these cases, a grid of inequality constraints
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could be specified. Alternatively, an integral of the excursions of the constraint above
its allowed limiting value can be made equal to zero.

Control parameters

The optimisable control parameters now include a range of different parameter
types. In this context, control variables are distinguished from control parameters.
Control variables are typically the actual control methods that make up the vector u,
while control parameters are used to define the time histories of the control variables
where appropriate. Therefore, a control vector exists:

Uy
u=|u
us
where the components, u; ... are free variables that have a physical significance for

the control of the trajectory, such as thrust vector steering angles or throttle param-
eters.

Direct methods then express the control variables, u;, in terms a set of optimi-
sable control parameters, so that u; = u;(p;1, P, - - -, P, !) Where n parameters are
used to represent the control variable, i and the independent variable in this case is
the time, ¢ (although other options such as range angle could be employed). A
control parameter vector, Py is therefore used to generate the value of the control
variable, u; at any time.

Further control parameters include the start and end times of thrust segments,
and in the case of multiple shooting algorithms, the initial states of each segment that
is propagated, X ().

These control parameters form the optimisable control parameter vector. A
vector can be assembled for each segment, in the case of a multiple shooting
algorithm, as the control parameter vector elements for one segment do not in
general directly influence the trajectory in another segment.

A typical control parameter vector for a single segment would appear as follows:

r=|= (3.13)

where ¢ is a vector containing the segment start and end times. These vectors are then
collected together to form the total control parameter vector.

Mathematical models for optimisation

A mathematical model is required to represent the detailed evolution of the thrust or
coast arcs. In addition to the full mathematical models, requiring numerical integra-
tion for the propagation of the trajectory, approximation models can be used to
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represent particular regions of trajectory, such as Keplerian arcs and fly-by patched
conics.

The forces acting on the spacecraft can be divided into two categories: environ-
mental terms and propulsion terms. These will both now be described.

Environmental terms

For general interplanetary transfer modelling, the Sun is taken as the origin of this
reference system. The orientation of the system is inertially fixed.

The primary effects are gravity, and so the gravity fields of the Sun and a
specified planet (or a number of planets) are taken into consideration in this
model. The locations of the planets must therefore be evaluated. A number of
such models of planet position exist, each with different degrees of accuracy.
Probably the most accurate model is the JPL ephemeris model (see references for
this section).

The model used depends on the type of analysis to be performed. If the man-
ocuvres for a particular spacecraft during flight operations are to be evaluated, the
most accurate models are used. Conversely, if in the earlier stages of a mission
design, where computing speed is a greater issue (because many alternative trajec-
tories are evaluated), mean ephemeris models can be used. These assume that the
ephemeris of a particular planet remains fixed between a specified reference epoch
and the mission period of interest. In such a model the Sun may be assumed to be at
the origin. The subsequent motions of the individual planets can then each be
specified by six mean orbital elements given at a reference epoch.

The planet’s state (position and velocity vectors) at any subsequent time is then
by determined by calculating the new mean anomaly as a function of the elapsed
time from the reference epoch. These elements are converted to Cartesian coordin-
ates to determine the velocity and position with respect to the Sun.

Now that the motion of the major bodies has been established, it is possible to
calculate the motion of the spacecraft, which is assumed to be of negligible mass in
comparison to the mass of the planets.

The equations of motion for the spacecraft under the influence of gravity are the
following:

d’r  Force p = [ Hpi Hpi
2 —aL- 3 10t T Trelpi (3.14)
dt mass r i=1 rpi - ’relpi

dr

7’; —y (3.15)

where r is the spacecraft position with respect to the Sun, V is the velocity of the
spacecraft relative to the Sun, r,; is the planet, i position with respect to the Sun, r,,,
is the spacecraft position with respect to the planet, i, x is the Sun’s gravitational
constant, and p,,; is the i planet’s gravitational constant. N is the number of planets
represented. Force is a non-gravitational force arising from perturbations or
manoeuvres.



112 Optimisation [Ch. 3

The above terms in r,, are present so as to include the acceleration of the Sun
caused by the planet’s gravity field. It should be noted that the term is generally very
small in magnitude in comparison with the other gravity terms.

Further environmental terms can be considered:

e The effects of forces in close proximity to the planets; namely atmospheric drag,
and harmonic terms in the planet’s gravity field.
e Solar radiation pressure.

The inclusion of these terms depends on the nature of the mission under considera-
tion. For interplanetary transfers these are often neglected (unless solar sailing,
where solar radiation pressure is required).

Propulsion terms

The key aspects of a propulsion model are the generation of the thrust vector and
any fuel usage. For general models, a nominal thrust and specific impulse are
specified. It is often assumed that this thrust and specific impulse remain constant
for the transfer — which would often be true for a chemical system. Solar electric
systems are discussed later. Nuclear electric propulsion systems may also be assumed
to provide constant thrust (although in practice some form of degradation often
occurs).
The rate of fuel mass usage is calculated (from Chapter 2) as:

—Thrust
m=———
Isp = gg

with thrust specified in Newtons and Isp is the specific impulse in seconds. g is
constant, normally 9.80665 m/sz.

(3.16)

Solar electric propulsion

An ideal solar array can be assumed for power generation in this example, so that
maximum available power varies with the inverse square of the distance to the Sun.
A reference thrust and specific impulse are then specified, applying at some reference
distance from the Sun.

The actual power available is used to scale the nominally specified thrust or
specific impulse, dependent on the selection of the power utilisation. For example,
the thrust can be scaled with available power:

2

Thrust = 2%« Thrust,,, (3.17)
r

where r,,,, 1s a specified radius at which scaling is unity.
Alternatively, thrust may be constant and specific impulse scaled with available

power:
2

Isp =2 s I5pr (3.18)
r
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Optimal control formulation for low thrust

The physical controls in these problems, in addition to the locations and durations of
the thrusting segments, are the thrust vector steering angles and also, in some
scenarios, the magnitude of the thrust.

A number of parameterisations of such profiles are possible. The simplest is to
represent, for example, the steering angles by polynomials in time. The steering
angles are then measured with respect to the velocity vector of the spacecraft, or
alternatively a vector perpendicular to the radial position vector. These are expressed
as an azimuth in the orbit plane and an elevation perpendicular to the plane. A
sufficiently large number of parameters allows the generation of complex control
profiles.

In the case of the radial referenced set, the directions of the unit vectors are
obtained by:

T — (G 0) %4

V—(Xp-V)Xr

<

Ir=XrAJr
The propulsion force components in the above defined x7, yr and zy directions
are then calculated from the optimisable steering angles by:

Fx¢ = Thrust x cos(elevation) x cos(azimuth)
Fyr = Thrust x cos(elevation) x sin(azimuth)

Fzy = Thrust x sin(elevation)

Velocity, V

:

Forward normal

Position, r

X1,YT Vectors are in the orbit
plane
zris perpendicular to the orbit
plane

XT
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where thrust is the spacecraft thrust, azimuth is the spacecraft thrust vector azimuth
angle measured in the radius vector frame (azimuth is in the orbit plane, measured
from the normal to the radius vector), and elevation is the spacecraft thrust vector
elevation angle measured out of the orbit plane.

The thrust force in an inertially oriented reference frame is then obtained by
Force = [A]} Forcer where [A]} is the transformation matrix between the orbit
frame set and the inertial set. The elements of this matrix are obtained from the
unit vector direction cosines of Equation 3.19.

Some examples of parameterisations are now considered.

(1) The azimuth and elevation steering angles are measured with respect to the
velocity vector or transverse radial vector, and are obtained from polynomials
of the form:

Angle = Do +p1t+p2t2 +p3t3

where the p terms are four optimisable parameters, in this third order example.

(2) Insituations where the spacecraft undergoes many revolutions, such as spiralling
lunar transfers from initial low Earth orbit, two approaches are possible. The
first is to split the trajectory into many, relatively short-duration segments and
provide a simple parameterisation similar to that of the previous example. The
second is to schedule the control history against range angle or another orbital
parameter, so that the periodic nature of the control can be readily implemented.
This later approach allows the use of fewer segments but with longer duration.

(3) A number of expressions in azimuth and elevation steering angles, «, 3, can be
obtained to instantaneously maximise terms such as semi-major axis rate of
change, apogee altitude rate, argument of perigee rate, and inclination and
node rates.

The problem is then to represent the optimal control history in terms of these
solutions:

i=N
E Cliumax” E Cz,»umaXZi
_ =1 ]
o i=N i
> Cii > Cy
i=1

where #maxy;, umax,; are the individual optimal control profiles relating to specific
manoeuvre types labelled i. In these cases, the steering laws, u max, depend upon the
instantaneous ephemeris of the spacecraft. Such steering laws are described in
Chapter 4 regarding low thrust.

Cy;, Cy; ... are coefficients that may themselves be made up of functions of the
optimisable control parameters, p;, and, for example, trigonometric functions of the

u =«
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true anomaly:
J=N/2

Zp,sm;&+ Z pjcosjo

Jj=N/2+1

In this way the weighting of a given control law may be varied with true anomaly
in the spacecraft’s orbit.

3.3.2 Evaluation of gradients

The non-linear programming algorithm requires gradients of the objective function
and the constraints. These gradients are those with respect to the optimisable control
parameters.

Gradient evaluation can potentially be one of the most computationally
intensive tasks performed by an optimisation procedure. Particular attention
should therefore be paid to the ways in which this may be achieved.

First-order gradients can be calculated in a number of ways:

e Numerical differencing by re-evaluating the trajectory with perturbations in
each of the control parameters and using the difference to calculate the gradient.

e Numerical integration along the trajectory of analytically derived gradient rate
terms. This is a variational calculus method.

The second method can be shown to be considerably more efficient in terms of
computing time, and is therefore examined in some detail here. Such methods also
necessitate the evaluation of the partial derivatives of the state vector components
with respect to the control parameters. When using a general mathematical model to
define state vector derivatives, all states are often obtained via numerical integration.
To obtain gradients of the states with respect to control parameters, partial deriva-
tives of the state vector time derivatives with respect to the control parameters are
required.

The gradients are therefore to be derived from the application of variational
calculus methods. Further details of such methods can be found in the references for
this section. The functional forms of the objective function and constraints, whose
gradients are required, are similar: a function of terminal state and control values
and the integral of a further function of the state and control elements, or a function
of the state and control vector elements at a given time.

Variational methods require the numerical integration of expressions that define
the gradient’s time derivatives. These expressions may either be obtained by analy-
tical methods or alternatively by numerical techniques such as automatic differentia-
tion. For a typical objective function (as in equation 3.1) the gradients with respect
to a control parameter, p;, as defined by equation 3.13, are expressed as:

oJ(ty) J’f’ oL oty o0(t;) Ot

o, Bp[( )dt+ap L(ty) + 8p} ap,L(")) (3.20)

0}
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where
oJ(t . . o . _ .
8( /) is the partial derivative of the terminal value of the objective function,
Pi wrt the control vector element, i,
OL(X,u,t) . . L . .
% is the partial derivative of the instantaneous value of the objective
Py Pi function derivative, wrt the control parameter, i,
8—f is the partial derivative of the terminal time wrt the control parameter,
Di i, and
o0(1 . . o . o
8(f ) is the partial derivative of the terminal component of the objective
Pi

function, J, wrt the control parameter, i.
The rate derivatives typically decompose in the following manner.

8L 8L an had auk

where ns is the number of states and nc is the number of control variables and:

0X, . ) .
k is the partial derivative of the state element, k, wrt the control

Opi parameter, i,

ou . . o .

3 k is the partial derivative of the instantaneous value of the control

Pi variable, k, wrt the control parameter, i,

OL(X,u,1) . . L . o

—ox. is the partial derivative of the instantaneous value of the objective
k function time derivative, wrt the state element, k, and

OL(X,u,t) . . L . o

o is the partial derivative of the instantaneous value of the objective
U

function time derivative, wrt the control variable, k.

In general, the gradient of some function evaluated at termination of the trajectory
(such as the objective function, J) with respect to a control parameter, p;, is required.
The function J may be the result of integration of a function of state (X) and control
variables (u).

The gradients of the propagated state vector are therefore required to obtain the
gradients of the constraints and objective function.

The final state for any element of the state vector is obtained by integration as
follows:

() = () + || (FEED ) a

The state element partial derivatives are obtained in the same manner as described in
the indirect optimisation methods case:

: L X, Ot
oXi(1) :J 0X; ; t _Ony i(t0) (3.22)
)

(X, uf)de + =L X, !
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where

oxX; . . . . .

3 is the partial derivative of the instantaneous value of the state element, 7, wrt
Pi " the control parameter, j, and

ox; . . o . L

. is the partial derivative of the instantaneous value of the state element, 7, time
Pj

derivative, wrt the control parameter, j.

The state vector rate derivatives then decompose as follows:

) (RN ¢ aX , Ouii
P L(X,u k’ + Z Xou, 1) % — (3.23)
op; 0X, Buk apj
where
OX:A(X,u, 1) . . . .
% is the partial derivative of the instantancous value of the state vector
) k element, i, time derivative, wrt the state element, k, and
8X,~ (X, u, l) . . . . .
—op. 8 the partial derivative of the instantaneous value of the state vector
U

element, 7, time derivative, wrt the control variable, k.

The various partial derivatives of this state vector with respect to different types of
control parameter will now be considered.

Initial state dependence

Firstly, the state transition matrix of the final Cartesian states with respect to the
initial states is evaluated.

OXi(t;)  9Xi(1o) Jff O(X;(X,u, 1)) d

t

0X;(19)  0X;(19) ), 0X;(10)
O (X ulty), 1) — O (X () ul)t)  (3.24)
8X/(ZO) INANYS ) B0 b a)(;(lo) i 0/ 0/5%0 .

where
0X(ty) . ) L ) ]
X is the partial derivative of the value of the state element, i, at time 7,

J (10) wrt the state vector element j at time £y, and

X;(X,u,t .. .
W is the partial derivative of the instantaneous value of the state

J element, i, time derivative, wrt the state vector eclement j at time
to. This term is obtained from the previously defined mathematical
model of the state vector derivatives by the following expansion:

O(Xi(X,u,1) _ i {B(Xi(hm 1) 0X (X, u, 1)

0Xj(1o) Xy 9X;(10) (3.25)

k

The partial derivatives of the initial and final epochs wrt the initial states are
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assumed to be zero for a multiple shooting application, and can therefore be elimi-
nated.

A matrix of partial derivatives of the state vector rates with respect to the state
vector components is required to evaluate the preceding expressions:

X, X, 1
“liy L. 2Oy
8X1 (7, ﬂ? l) aXl (7, ﬂ7 t)
oX(X,u,)] | 9%\ L.
X, X,
_8/\/”3 (szv t) aan (Xaﬂaz)_

These expressions will be discussed later in this section.

The above state transition is with respect to the initial Cartesian states. In a
multiple shooting problem, the initial states of a segment may themselves be opti-
misable control parameters, or alternatively be derived from optimisable control
parameters that determine the initial state vector. These could be an ephemeris set
used to specify the initial state. The initial control parameters will in general either
be:

e Heliocentric referenced osculating ephemeris for motion in deep space.

e Planet-relative osculating ephemeris for those segments that occur close to a
planet, such as, for example, where a gravity-assist manoeuvre is to be
performed.

The state transition with respect to these optimisable control parameters is then
required, and is achieved by the following:

oXi(ty) & oX; 90X (1)

where Ej, are now the initial ephemeris set (j = 1 to 6), for a particular segment.

These parameters form a part of the optimisable parameter set.
oX(t
The Jacobian, #3 must therefore be evaluated, and can be obtained

analytically. Oy

In practice, an intermediate stage may be necessary, as in the case of planet
relative ephemeris, it may be referenced to a local equatorial plane. This must then
be transformed to ecliptic co-ordinates:

ox; Z [ 0X;(19) 90X " (1) (3.28)

8Ej0_ k 8Xf”(t0) OEj



Sec. 3.3] Application of direct trajectory optimisation methods 119

Initial time dependence

The partial derivatives of the final states wrt the initial epoch is also required. The
total dependence of the final state on ¢, is given generally by:

0X(ty) 0X(tr) 0X(t,) 0X(17) oty X (1)

* + *
oty X (1) . oty 8lf Xo.to a1 Ity 7. Xo

—o>ly

(3.29)

In this expression the subscripts after a partial derivative specifically indicate the
terms that are fixed in the partial derivative to which they are assigned.
The final term is a state transition term given by:

aA;l(Otf-)t/.XO ) J/- Wf((f;;w% dt — (X(X (1), u(to), 7)) (3.30)

ly

for each element i, where

oKX .0) _ - {am(x, 1)) 9X;

iy oX, 01y (3.31)

3
The first term of equation 3.29 includes any explicit dependence of the initial

state vector on the initial time, ¢,.
0X (1)
ot
However, planetary positions, for example, are modelled with explicit time depen-
dence, and so these terms contribute.

The dependence of the initial state on the initial epoch is dependent on the initial
state specification. The partial derivative with respect to time means with constant
values for all other control parameters (including control initial states). If, however,
the initial control states are relative to the major body at which the fly-by occurs, the
absolute time dependence arises from the dependence of the major body state on
absolute time:

does not include the time rate of change of the initial state vector.

X(IO) = Xplanet(tO) + XREL(ZO)

Final time dependence

The partial derivatives of the final states wrt the final epochs is also required. The
final state dependence on final time, 7, is given by the final derivative rate:

OXhr) _ (%, (x (1), ), 1) (3.32)
g —

Thrust control parameter dependence

The state transition matrix of the propagated Cartesian states with respect to the
thrust vector steering control parameters is now described. The gradient can be
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found as follows:

t/ 6
dt 3.33
ap, j (3.33)
where
8 e auk :l
= 3.34
Ip; zk: { auk Ip; (334

where k represents the steering parameters, azimuth and elevation, in this case, and
noting that each control, u, is a function of an optimisable parameter set and time.
The initial and final times do not depend on the thrust control parameters, and are
omitted here.

A matrix of partial derivatives of the state vector rates with respect to the
control variables is required to evaluate the preceding expressions:

—8X1 6‘X/n.v )
oy (X,u,1) o (X,u,1)
oX(X,u0)] | 9% L0y
[&{] = | o (X, u,1) s (X, u,1) (3.35)
oX, X,
| Ou., (X, u,1) D, (X, u, 1) ]

The control variables are terms such as thrust steering angles and throttle controls.

State vector derivative partials

The previous sections have shown the need for a series of derivatives of the state
vector time derivatives. These time derivatives are defined by the mathematical
model employed. Therefore:

XX u, 1)  OXi(X,u 1)
an ’ 8uk

are required.

This series of partial derivatives of the components of the state vector rates and
any constraints will be evaluated by analytical methods. These partial derivatives are
with respect to the state vector elements themselves and also with respect to the
control variables, such as thrust steering angles.

This method, requiring the analytical derivation of many partial derivatives,
leads to an initial overhead in the development time of the algorithms, when
compared with a numerical differencing method. However, once established, the
gains due to improvements in computing time to reach a solution are large. A
typical overhead in obtaining the partial derivatives with respect to the state
variables is a factor of 3 to 4 on numerical integration of the standard state vector
rates and constraint evaluations. The evaluation of partial derivatives with respect to
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a steering control parameter then requires only a fractional increase in the total
overhead.

As an illustration of this principle, a series of partial derivatives for a typical
mathematical model are now obtained. Firstly, the partial derivatives with respect to
position are given by the following expressions. When the applied propulsive force is
zero, only gravitational forces are assumed to act, and therefore the partial deriva-
tives of acceleration, or the velocity time derivative, are given by:

o _
X,

Vyelni +
4 reipt 3
rrelpi an r relpi 8Xk

or 1% 8[ i\[ |:_ 3 :upi arrelpi ,u'pi a@ (336)

12
1’4 Kan }’38Xk

where the position vector is given by:
r=rXx+rny+rz

and the state vector is constructed as follows: X =r,, Xo =r,, X3 =71., X4 =V,
XS = Vy, X6 = Vz
The following results are then obtained:

o ry Or r, Or 1, Or or or
8X1 r 76X2 r ’8X3 r ’8X4 (‘3X5 aX(, ( )
and
or or or or or or
S == =5 = = () — =0.— =0 3.38
X, oX, T 0Xs 0X, 0Xs  0X, (3.38)

The relative position vector is given by (dropping subscript i for this evaluation):
rrelpx = (’ﬁx - rpx) x + (ry - Vm,)f/ + (rz - rpz) z

where X, y, Z are a set of unit vectors defining an inertial axis set.
Therefore:

arr‘elp o r relpx or relp r relpy or relp Trelpz 8rrelp - or relp or relp

= = = = 0 3.39
0X\  rpp  0Xy ey  0X3 1y 0Xy o 0Xs  0X (3:39)
8rre/p R or relp . or relp . or relp or relp arrelp
=X, =) =2z =Y, =Y, = (340)
09X, X, X, X, OXs 9X,

When a propulsive force is considered — such as a low-thrust force with steering
angles — the following state vector derivatives are obtained. Firstly, the prolusion
force is defined by:

F=FgXr+ Fryr+ Forir

where the propulsion force components are expressed in terms of its own axis set
(defined by 3.19). In case of a radial-based set, as described previously, for the
specification of the thrust vector directions, the directions of the unit vectors are
obtained by:

|a2T:)ACT/\)>T
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The partial derivatives of this force with respect to a state vector element, X,
are:
oF 8F¥T “ aFyT ~ 8F—T “ 8)27 8_)/]" 827
— = F F, F.
ox, ~ ox, T oy, YTt gy, T gy T hr gy Ty

and the partial derivatives of this force with respect to a control vector element, u;,
are:
OF OF.r n OF,r . OF.r OxXr Dr Ozr

OF _ St Fop F Fir 3.42
0= o T G ST Ty r T Bt Br gt Py (342)

The partial derivatives of the unit vector set with respect to the state vector elements,
X, must therefore be evaluated as follows:

Oxp  r Or or 1 oF

(3.41)

—r__ -z 4 7= 3.43
8Xk anXk+anr 8Xk ( )
and then using 3.37 and 3.38 to complete the expression.
Using the identities:
b Ox
|x| = xx and %';' = 7_};
then:
oV or oV orF
— — Y e _— F—(FV)—
99y Xk <8X,C L axk> F= Yoy
X \Vr —(%-Vr) %
Vie—(F V)P [0V or )4 or
_ — — | —" pe _— |1 — A.V (V- A.V 7
|I/T—(>3'I/T)>%|3(8X/< (an = an)r ¢ )8ch> SER e
(3.44)
and finally:
627 6)27 R N 8yT
— 4
ox, _ox. VT N oy, (3.45)

The partial derivatives of the unit vector set with respect to the control variables are
zero.

The partial derivative of the force components may also be obtained as follows
from the following force component definitions:

F.r = Thrust % cos ¢ cos ¢

F

yr = Thrust x cos ¢ sin ¢

F.p = Thrust x sin @

where ¢ is elevation and ¢ is azimuth of the thrust vector in the local reference frame.
These angles are control variables, and can be denoted as u; and u,, respectively, in
this example.
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The partial derivatives of these force components with respect to the general
control variables, u, are given by:

F . .
OFr _ —Thrust * smgoa—@cos ¢ — Thrust * sin ¢%cos<p
Guk 8l/lk 8uk
aF/ . 8 . a
YT — _ Thrust  sin go—@sm ¢ + Thrust x cos ¢—¢cos 0]
Buk 8uk 8uk
OF, 10
BquT = Thrust * cos ¢ a:jk (3.46)
. 0 19 .
The expressions 4 and <%~ are then 1 or 0, depending on k.
81/{]( 8uk
The partial derivatives of the control variables with respect to the control

Ou . . .
K are obtained from the parametric expression that relates the thrust

i
vector steering angle to the optimisable parameters, py.
An example would be where:

¢ =po +pit + pat® + pst’

parameters

and then

130) ¢ op 5 0p 5
7:17721’7:[ ’7:[ 3.47
dpo op op» Ops (3:47)

It can be seen from the example of equation 3.47 that for a large set of param-
eters defining a given control variable, the additional evaluations per optimisable
parameter are very small.

The partial derivative of the force components with respect to the state vector
elements depends on the specification of the propulsion system. In the example of a
radially dependent thrust, such as a solar electric propulsion system, the thrust
depends upon the state vector. The following expressions may be derived:

OF. .0 ., O OThrust
T — _ Thrust * sin wa—;fkcos ¢ — Thrust x sin qba—;(ékcos Y+ s

* COS (0 COS @

8Xk 8Xk
OF, . Op . 0 OThrust .
8;’; = —Thrust * sin <p8—;ks1n ¢ + Thrust * cos ¢a—;ﬁkcos o+ (MZ:S * COS (o Sin ¢
OF.r Op  OThrust

=L — Thrust - 3.48
X, rus *cosgoan—k X, (3.48)

In the case of the steering angle definitions given previously, there is no depen-
dence on the state vector and so these partial derivative terms are zero.
However, using the model described previously (3.17), the thrust dependence on
radial distance results in:
OThrust Faom Thrust

o -2 3 x Thrust,,, = —2 .

(3.49)
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and
OThrust _ OThrust  Or

an or * T/Yk

(3.50)

or . . .
where . is given by equation 3.37.
.6

The spacecraft mass is an element of the state vector when fuel-using propulsion

systems are considered. Mass flow then varies with thrust and specific impulse, and
its derivative with respect to state vector elements is therefore:
om —1  OThrust

— = 3.51
oX, Ispxgy 0Xj (3.51)

3.3.3 Non-linear programming

When the gradients of all states, constraints and the objective function are available,
an increment in the control parameters can be calculated, by using a non-linear
programming (NLP) algorithm to approach the optimum solution.

The form of algorithm that is most applicable is dependent on the information
available. In complex trajectory optimisation problems it may be the case that only
first-order gradient information is available about the objective and constraints. This
is due to the computational overhead in obtaining higher derivatives, but depends on
the detail of the optimisation method employed. However, good performance is
available using only first-order gradient information.

Many NLP methods have been developed, and this is a specialised subject with
application to many fields of optimisation. Further information is available in the
references for this section. An illustration of a relatively simple method is outlined
here to illustrate some of the principles and considerations when using such
algorithms.

Lagrangian method

The method chosen here is a first-order method based on a constrained steepest
descent idea. It can be applied to a wide range of problems.

The problem is once again stated as the following:

Find the optimisable control parameters, p, required to meet the final state
constraint vector condition, C = 0, and minimise the objective, J.

Given an initial estimate for p, C will not equal zero, but will be equal to an
error, E. It is possible to define an augmented objective by adjoining the constraint
vector to the objective as follows:

Jr=J+MC (3.52)

where A is a vector of undetermined Lagrange multipliers.
A change in J” is such that:
AT =AJ+A"-AC (3.53)
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For a control increment, Ap, then, AJ = i *Ap to first order, where g is the
gradient vector of J w.r.t. p:

o
Ip,
g=|
oJ
P
for m parameters.
Also to first order:
AC=A4"Ap (3.54)
where 4 is the gradient matrix of C:
oc, o,
dp1 9Opy
A i P cee
oc, o,
O Opm

The problem specified is such that the number of optimisable control param-
eters, m, is greater than the number of constraints, 7.
A steepest descent step in J* can therefore be made by making AU be parallel to
the gradient vector:
Ap=k(g+[A4™]") (3.55)

where k is a positive constant, and AJ* = k[(g + A\)]? to first order in AU.

If an error exists in the constraint vector (C = E), then we can require that the
step in p is such that AC = —F.

Therefore —E = kA" (g + [4)]), and so the Lagrange multipliers are now found
from the following expression:

E
A= [ATA]1<—k—ATg> (3.56)
Consequently, ) is found that both reduces J* and removes the error E.
However, reduction in J* in the presence of an error E does not imply reduction
in J.
The choice of the constant, k, has so far been arbitrary. Expansion of Ap gives:

Ap:k<g+A[ATA]1(—f—ATg>> (3.57)
and hence to first order:
E
AJ:gT.k<g+A[ATA]1(—k—ATg>) (3.58)

However, the system is not linear. Therefore, the size of the step in p may be
deliberately limited in size and then the gradient re-evaluated before a subsequent
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step is taken. In this way a series of steps in p can be made until the gradient in J*
reduces to zero. Alternatively, a line search method can be used to find the minimum
along a direction indicated by the calculated gradient. The gradient calculation is
then updated at that point and the process repeated until the gradient of J* reaches
zero. It could then be assumed that a constrained minimum is located. However, this
is not guaranteed.

When the situation is reached within the iteration process that Ap is zero, then
no improvement in the constrained objective is possible. However, equation 3.57 also
indicates that it is in principle possible to obtain values Ap of zero when E is non-
zero, depending on the choice of k. o

A more robust approach can be taken that first guarantees that E is reduced to
zero and is then maintained at its zero value as iteration towards the constrained
minimum is made.

If k is very small then equation 3.57 gives:

Ap = —(A[A"4)'E)

In a linear system such a step would reduce the error in C to zero. However, in
this non-linear system a series of limited steps may be taken until £ reduces to zero.
The variation in J is determined by the step made to satisfy the constraints, but J
does not necessarily improve with such a step.

Now that the error £ has been reduced to zero, the step Ap is found by the
following method. o

Inspection of equation 3.57 shows that when E is zero:

Ap=k(g—A[4T4)'4"g) (3.59)
Also, equation 3.58 gives:
A =k(g'-g—g"-A[a"4]'A"g)

This is a steepest descent in J subject to maintaining the constraint C = 0 (note
that AJ also reduces to zero in the case where A is square: n = m).

The condition that the calculated value of Ap is zero now indicates that the
constrained minimum has been found. A rigorous treatment of non-linear program-
ming methods can be found in the references for this section.

Other methods

This discussion has indicated how an iterative, gradient-based strategy can be used to
find the solution of a constrained optimisation problem. However, a range of non-
linear programming strategies are possible, the selection of which may be influenced
by the formulation of the problem. For example, a solution using collocation
methods leads to the need for large numbers of optimisable parameters and also a
large number of constraints. Certain methods that make use of sparse matrix-based
systems can be used efficiently for this type of problem. These may be found in the
references for this section.



Sec. 3.4] Combining system and trajectory optimisations 127

3.4 COMBINING SYSTEM AND TRAJECTORY OPTIMISATIONS: THE
OPTIMAL TRANSPORT PROBLEM

The previous sections have considered trajectory optimisation problems and
methods of their solution. However, when a spacecraft undergoes an orbital
transfer it is possible to go beyond just trajectory optimisation. In principle it is
possible to maximise the net useful mass transported to the target orbit. This leaves
the maximum possible amount of mass available for scientific payloads and the
spacecraft bus to support those payloads.

The extent to which the transfer optimisation may be extended beyond just the
trajectory depends strongly on the nature of the spacecraft design, and in particular
the nature of the propulsion system.

It should be noted here that in some literature an optimal transport problem
may be related to the rate at which useful mass is transported to the target, and so
the objective can be defined as useful mass divided by time taken. In the examples
discussed here, only useful mass is considered in the transportation problem.

3.4.1 Propulsion system optimisation parameters

Some of the various types of propulsion that are available have been discussed in
Chapter 2. They generally break down into two categories: high-thrust, near
impulsive systems based on chemical propulsion, and low-thrust systems, of which
there are a number of types. It is this latter category that has the greater number of
system optimisation parameters, due to the greater complexity of their design.

The propulsion system may be optimised in two ways. The first is a design
optimisation problem, regarding the combined optimisation of the system config-
uration with the transfer trajectory. The second is the optimal utilisation of a given
system during the different phases of a transfer. The utilisation is therefore optimised
for a given system design. Some examples of the potential for such optimisation will
now be discussed.

Design optimisation: solar electric propulsion system optimisation

This concept is best illustrated through the example of a solar electric propulsion
system, for which power generation is a key factor. Furthermore, this power must be
converted to a useful form for the thrusters. The following fundamental relationship
describes the power requirement P:

Thrust  I.
p _ Thrus * Isp 4

T (3.60)

where 7 is an efficiency-related factor and Isp, is the specific impulse measured in
m/s. The power available from a solar array varies with solar flux and so with
distance from the Sun. The previous equation can therefore be used to define the
power requirement when at a nominal distance from the Sun (e.g., Py at 1 AU). It
can then be assumed that variations in this power when not at 1 AU are translated to
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variations in either thrust or specific impulse, or both. For example, assuming a fixed
specific impulse:

2
B o\ Thrust = Isp,
pep () < Tt can
and

r 2
Thrust = Thrust, <>
r

Here it assumed that power varies with the inverse square of distance from the
Sun. Thrust, is therefore the nominal thrust, or thrust at 1 AU and Isp; a constant
specific impulse. Alternatively, thrust may be constant and a varying specific impulse
used, characterised by a nominal specific impulse. A general relationship can be
assumed:

P=P1(“)2=M (3.62)
r 2n
and

ry Vo r \2 kT
Thrust = Thrust, <> Isp, = Isp, <>
r r

where k7(< 2) is a constant with a value which may be determined to optimise the
total transfer performance.

Increasing nominal thrust and nominal specific impulse for the low thrust pro-
pulsion therefore increases the power required. The development of a parametric
mass model describing the relationship between power required and the system mass
is a complex task, and is closely related to the particular design under consideration.
However, certain simplifying approximations can be made, and a generic relation of
the following type could be assumed as the simplest model:

m,,mp = 0 —+ kpl * Pl (363)

where k, and k,; are system-dependent constants, and P, is the power required at
the nominated reference radius.

A further mass related term arises from the mass of the fuel tanks needed to
store the propellant. This can be approximated as:

Mygni = ko * Myl (3.64)

where k7 is a constant, my,, is the fuel mass. In the case of a constant specific
impulse over the trajectory, the fuel mass is obtained by the standard rocket
equation:

AV

" _ o T (3.65)
my

where my and mj are the final and initial spacecraft masses, and AV is the total AV
for the transfer. Note that Isp x gg = Isp,.
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The fuel mass is therefore given by:
_ AV
M1 = My <1 —e ISP*A’()) (366)

For the case of a variable specific impulse, then the fuel mass must be obtained
by numerical integration of the rate of fuel usage, which depends upon the instanta-
neous specific impulse. The total mass of the propulsion system is:

Mys = Mprop + Myan g (367)

and using the previous relationships yields

Thrust, * Isp,

Myys = Kpo + kpl * 277

_ AV
+ kyimy (1 —e fsr*go) (3.68)

The total propulsion-related mass is the sum of the masses of the propulsion
system and the fuel for the transfer, and so:

Thrust, * Isp;
2n

Two key parameters dominate the total propulsion related mass in this system
type: specific impulse and the thrust.

However, the AV for the transfer must be considered further (and is described in
greater detail in subsequent sections). At this point it is sufficient to state that the AV’
is generally made up of a term needed to accomplish the ‘impulsive’ transfer,
assuming a series of point impulses (implying infinite thrust) and a loss term
related to the fact the thrust is applied over a region of space and so is not all
applied at the optimal location. Therefore:

AV =A Videar + A Vioss (37())

AV
Myransprop = pr + kpl * + (1 + le ) my (l —e€ Isp*g“) (369)

This second term is principally related to the thrust that is available. Lower
thrust generally implies a greater loss. The exact relationship depends on the
nature of the transfer. It is minimised by the application of trajectory optimisation.
The loss term is generally weakly dependent on specific impulse, because fuel mass
usage determines the remaining mass and thus the instantaneous acceleration that is
achieved for a given thrust. This type of dependence is greatest when the fuel mass
fraction is high. A further factor effecting the loss is the power distribution term, k,
described previously, as this determines the ratios of thrust and specific impulse
change with distance from the Sun. The previous equation 3.69, describing the
transfer propulsion mass, is multiply dependent on both specific impulse and
thrust, and also on k7.

It is therefore possible to define an objective of the form of equation 3.69 and
extend the optimisable control parameter set to include thrust and specific impulse. If
the following form is used it is possible to demonstrate how such an objective can be
linked with the optimisation methods described previously:

Thrust, * Ispy

mtramprup = pr + kpl * 277

+(1 +kT1)mﬁ¢el (371)
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The key issue is to calculate the gradient of the objective with respect to the new
control set. The gradients of all constraints must also be evaluated. The objective has
an explicit dependence on thrust and specific impulse, and also a dependence arising
from the fuel fraction:

Isp,

amue
+kpl*%+(l+k711) Juel

om transprop
OThrust,

= 12
OThrust, 0 (3.72)

with a similar expression regarding the specific impulse parameter and radial power
0X; 0X; 0X;
OThrust,” dlsp, Ok
amfuel amfuel amfuel
OThrust,” Olsp,’ Okyp
mass — final mass) — the final mass being a component of the state vector. The
calculation of this term is achieved by the methods described in the previous sections.

term. Therefore the terms must be evaluated to determine the

components of the objective

. The fuel mass is simply (initial

Design optimisation: nuclear electric propulsion system optimisation

The optimisation problem previously discussed considered the power being
generated by a solar-power generator such as the solar array of a spacecraft. This
introduced an optimisable radial distribution term in equation 3.60. However, in the
case of power generation by a nuclear-based system, the power remains constant. (In
practice, some variations may result from reactor or RTG performance variations,
but the power variation is generally less pronounced than with a solar power
generator.)

The previous methodology for using system optimisation parameters may be
equally applied to this constant power case, with the exception that k; is no longer a
relevant parameter.

Performance optimisation

It has been seen that for a given system design, power is limited by the performance
of the power-generating system (that is, solar arrays for solar electric propulsion).
Furthermore, there is a relationship between power, thrust and specific impulse that
may be exploited to optimise the local performance of the system. For a given
available power it is in principle possible to locally vary the thrust and specific
impulse to satisfy equation 3.62. Such variability is not always possible in a ‘real
world’ system, but some variation is possible and so will be explored here.

The principle of local thrust optimisation will now be considered. If a transfer is
implemented by a series of manoeuvres, then each manoeuvre could be optimised
with respect to the thrust used for that manoeuvre. The objective would be to
minimise the fuel mass used for the manoeuvre. It is therefore a local optimisation,
not considering the full transfer. It will be assumed in the following discussion that
the power available over the manoeuvre remains constant.

A local manoeuvre — such as providing a given change in apocentre, for
example — is characterised by an ideal AV. There is also a loss that is associated
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with a non-ideal manoeuvre (i.e., finite thrust). The fuel fraction for such a
manoeuvre is given by equation 3.66.
This may be rewritten, using equations 3.60 and 3.70, as:

_ (AVigea+AV os;) Thrust
(3.73)

My = My <1 —e P

where my;,.; here is the fuel mass for the local manoeuvre (part of the total transfer).
The gradient of this local fuel usage, with respect to thrust, can be evaluated as
follows:

61’}’1/ uel A Videul + A V/ass) O0A V/oss Thrust o™ (AVidear +§ V}l)o.m) Thrust (3 74)
OThrust 2nP OThrust 2nP 0 ’

It is, in principle, possible to minimise this local fuel fraction by requiring this
expression to be equal to zero and solving for the Thrust value. Having determined
the thrust in this way, the specific impulse to be used for the manoeuvre is obtained
from equation 3.60.

Alternatively, if this is one element of a series of fuel fractions (manoeuvres)
making up a whole transfer, the local fraction need not be minimised, but the
gradient is required to solve the full optimisation problem, which may be to
minimise the total fuel usage.

The AV loss will vary with the type of manoeuvre being performed, and will be
strongly influenced by the thrust. An example can be considered to demonstrate the
point. The following is an evaluation of the raising of the apogee of an elliptical orbit
which may perform a part of an escape orbit targeting sequence. This case has a
perigee at 200 km altitude and apogee at 36,000 km. The objective is to raise the
apogee by 100 km, using a low-thrust manoeuvre. The actual AV — which includes
the ideal and loss terms — is evaluated.

Figure 3.4.1 shows the significance of the length of the thrust arc as thrust drops
from 300 mN to 200 mN. The manoeuvre now takes place much closer to apocentre,
where it is far less efficient at achieving its purpose.

Figure 3.4.2 shows the percentage loss with varying thrust/mass.

It is then possible to evaluate the optimum thrust for this manoeuvre.

For this apogee-raising example, the fuel-fraction dependence on thrust, for a
fixed available power, is shown in Figure 3.4.3.

Where the range of thrust and/or specific impulse variation does not allow the
minimum case to be achieved, the constrained minimum can be taken; that is, the
lowest allowable fuel fraction case.

Although this example relates to an example in Earth-bound orbit, the same
principle applies to manoeuvres applied to interplanetary orbits. In these cases, the
power availability may vary over the manoeuvre, due to the change in distance from
the Sun.

It is now possible to consider the full potential of this method. This is an
extension of the principle described in the previous discussion. Having illustrated
the principle of finding locally optimal thrust with a fixed power availability (or more
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Figure 3.4.1. Thrust arc dependence on thrust/mass for an apogee raising manoeuvre of
100 km.
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Figure 3.4.2. The relationship between A loss and thrust for a low-thrust apocentre raise
manoeuvre of 100 km.

literally, a given solar array size for a solar electric propulsion system), it is possible
to consider how to achieve an optimal end-to-end transfer. This is achieved, in the
context of the direct parameterisation methods previously discussed, by describing
the thrust as a time-dependent function with optimisable parameters, in a similar
manner to the optimisable steering angle parameterisation. Having obtained the
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Figure 3.4.3. The relationship between fuel mass, specific impulse and thrust for a low-thrust
apocentre raise manoeuvre of 100 km with an initial mass of 1,000kg. In this example it is
assumed that 5kW of power per tonne of spacecraft is available and an efficiency of 80% is
achieved. The variation in specific impulse with thrust is also shown. In practice, such a wide
range of thrust and specific impulse variation would not be possible with a single thruster.

thrust from the parametric expression (which may be limited between specified
bounds), the specific impulse to be used for the manoeuvre is obtained from
equation 3.60. In this case, the system design is not considered within the optimisa-
tion problem, and so the objective would typically be the minimisation of the final
total fuel mass. This can be achieved by non-linear programming with the methods
described previously; and with an additional set of optimisable parameters (and
constraints limiting thrust).

Combining system and performance optimisation

In the previous discussion, system and propulsion performance optimisation are
considered separately; but it is possible to combine these into a single problem.
This is achieved by using the thrust parameterisation method described in the
previous case, in conjunction with a new system optimisation parameter: the
power available (nominally defined at a reference radius of 1 AU for SEP or a
fixed constant for NEP).

The objective is again given by:

Miransprop = Kpo + kpl * P+ (1 + le) Myl
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The optimisable extended parameter set now contains, in addition to the thrust

parameterisation, the nominal power term, P;.
The instantaneous specific impulse is then derived from the instantaneous thrust,

which in turn is derived from the thrust profile and the optimised nominal power.



4

Special techniques

The design of an interplanetary mission can utilise a number of special techniques
that are aimed at improving the efficiency of the transfer. These methods include the
exploitation of multiple gravity fields, and the application of low-thrust propulsion.
Such high specific impulse systems can be particularly effective in interplanetary
missions.

This chapter describes a variety of these techniques, giving details both of the
nature of the method and also descriptions of certain mission types that may benefit
from such techniques.

4.1 MOTION IN MULTI-BODY GRAVITY FIELDS

One of the key differences between interplanetary missions and Earth-orbiting
missions is the significant influence of multi-body gravity fields. Analytical results
for this problem are limited, but a number of important derivations and conclusions
may be drawn. These concern establishing the dominant gravity field and methods of
approximating the motion as the spacecraft passes through regions where the
dominant field changes. A further very significant aspect is the consideration of
motion in regions where two gravity fields are in near equilibrium.

4.1.1 The multi-body problem

The multi-body problem discussed here is the description of motion of a number of
objects where each exerts a gravitational force on all of the others. A number of
conserved properties may be derived for such a system. Detailed descriptions of this
problem may be found through the references for this chapter.
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Firstly, defining R,.;; = R; — R; as the relative position vector between two such
bodies, the acceleration of any body, labelled i, is given, from Newtonian gravity, by:

rell
ZGm,m, L A (4.1.1)

)(’/l]

considering that R,.; = R; — R; = —R,;.

Then sum of all rates of change of momentum is zero:

> miRi=0 (4.12)

This equation may be integrated twice with respect to time, to obtain two vector
constants:

> omiR=C, (4.1.3)

and
> mR = Cit+ Gy (4.14)

These six constants of motion express the conservation of linear momentum of the
total system, and that the centre of gravity of the system moves at a constant
velocity, because:
> mR;=MR (4.1.5)
1

where >, m; = M is the total mass of the system and R is the position of the centre
of gravity.

Further constants of the motion may be identified as follows. If the vector
products of position and acceleration are summed (after substituting the relationship
equation 4.1.1), they are found to equal zero:

> miRi AR =0 (4.1.6)
i

This may be integrated again with respect to time to obtain a further vector constant
of motion:
> mRi AR =Cy (4.1.7)
i

This relationship expresses the conservation of angular momentum for the system.
The vector, Cs, defines a plane, known as the Laplace invariable plane of the system.
For the Solar System, this plane lies close to the ecliptic. Its slight inclination is
strongly dependent on Jupiter’s orbital inclination about the Sun.

One further constant of motion may be derived for this system: the total energy,
obtained as follows. The scalar products of velocity and acceleration are now
summed. Using equation 4.1.1, the following relationship is obtained:

R — R,
ZmRR ZZGmmR =0 i) (4.1.8)

relij
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The equation may be integrated with respect to time to yield a constant. This is
found to be the total energy of the system; namely, the total kinetic energy and the
total potential energy.

1 ) 1 ijmi . .

EZm,V,» _EZZ/:TW:EWF@} [ # ] (4.1.9)

where V; = |R)|.

Ten constants of motion are therefore available to define the macro-system
behaviour. However, no more quantities are conserved in this general case. In
order to find any more conserved values, special cases must be examined with par-
ticular assumptions regarding the nature of the motion. Some of these cases will be
examined in subsequent sections.

4.1.2 Identifying the dominant gravity field

The masses of the planets in the Solar System are significantly lower than the mass of
the Sun. However, when relatively close to a planet, its gravity field may far exceed
that of the Sun in magnitude. It is beneficial to be able to categorise motion in such a
way that the dominant gravity effect is identified. This ultimately allows approxima-
tions to the motion to be developed.

This zone could be identified in different ways. Each of these will be discussed.

Gravitational equality

The simplest way would be to identify a region around a planet where its gravity field
is greater than that of the Sun. It is the ‘sphere’ of gravitational equality.

The zone is defined as the locus of points where the gravity fields of the central
body and the orbiting major body are of equal magnitude. Such a zone is not a
sphere centred on the major body, but is slightly distorted due to the fall-off in the
gravity field of the central body with increasing radius. The principle is shown in
Figure 4.1.1.

The maximum and minimum radii of the ‘sphere’ of influence are therefore
calculated by:

Heentral _ Mmajor and Heentral _ Mn1q/0r

(rmajor - rmin)z rgnin (rmujar + rmax)z r?nax

where r;, and r,,, are the radii with respect to the major body of the ‘sphere’ of
influence. 7,4, is the orbital radius of the major body.

However, such an idea does not describe the true effect on the motion, in terms
of the perturbation by the second gravity field.

The sphere of influence

A Dbetter idea arises from consideration of the perturbing acceleration due to the
second gravity field, when motion about the first body is considered. This is the
formulation originally developed by Laplace and is the conventionally adopted
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Figure 4.1.1. Illustration of gravitational equality ‘sphere’.

definition. The objective is to express the ratio of the perturbing acceleration (from
the second body) to the main acceleration (from the first body). This may be
obtained for both the Sun’s perturbation on motion about the planet and the
planet’s perturbation on motion about the Sun. A surface may then be found
where these ratios are equal. An elaboration of this subject may be found in Corne-
lisse, Schoyer and Wakker (see references), and is summarised here.

Firstly, the perturbing effect of the Sun’s gravity on motion about a planet must
be calculated. In the following analysis, r,, is the vector from planet to spacecraft,
is the vector from central body to spacecraft, r,, is the vector from planet to central
body, pu. is the gravitational constant of the central body, and y, is the gravitational
constant of the planet (see Figure 4.1.2).

The acceleration of the spacecraft relative to the planet is given by the gravita-
tional acceleration minus the acceleration of the planet, i.c.,:

. . q L Helpe

ip=g=fy and Ry =

Similarly, the acceleration of the spacecraft relative to the central body is given by
the gravitational acceleration minus the acceleration of the central body, i.e.,:
HPpe

3
pe

fo=g—Fc and  Fc=-—
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D

planet

spacecraft

Central body

Figure 4.1.2. Motion in the presence of two gravity fields.

The gravitational acceleration of the spacecraft with respect to the planet, p, is

HpTps  per Helpe .
== csﬂ — —— in the presence of a second gravity field from

3
r rog Foe

ps . . . .
the central body, ¢. The gravitational acceleration of the spacecraft with respect to
Meles  HpTps  Hplpe
= -3 s— in the presence of a
cs s Fpe

given by i, = —

the central body, ¢, is given by 7., = —

second gravity field from the planet, p.
The magnitude of the disturbing acceleration for motion with respect to the

planet is given by:
. el es 'uCrIJC Heles 'U“Cr/’f
= = = |- = — 4.1.10
\/ (2 = )5 ) (41.10)

where ¥, is the disturbing acceleration of motion with respect to the planet caused
by the central body gravity.

Series expansions may be obtained, and neglecting terms of order greater than

o2
<ps) , the following result may be found:
Fpe
r \)
Fosp = tte 5+ (1 4 3cos a) (4.1.11)
The
The angle ‘a’ is defined in Figure 4.1.2.
This may be compared with the magnitude of the nominal acceleration with
respect to the planet:

A (4.1.12)

Tps

where 7,y is the nominal gravitational acceleration of motion about the planet. The
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ratio of disturbing to nominal accelerations is then:

r T
"D _ el (14 3¢0s2 a)" (4.1.13)
rpsN p*p ”1310

The magnitude of the disturbing acceleration for motion with respect to the Sun is

given by:
.. HpTps  HpT'pc HpTps  Hpl'pe
FesD = <_ 5 t—3 )\ 3 t—5
Ips I'pe Fps I'pe

.. 1
Tesp = ,u'p (7’2> (4114)

23

This becomes:

This may now be compared with the magnitude of the nominal acceleration with
respect to the Sun (neglecting again small terms):

fcsN:‘LL; (4115)
rC.Y
Assuming that the difference between r., and r,. is much less than either distance,
then the ratio of disturbing to nominal accelerations is:
.. 2
P r
Tab _trle (4.1.16)
FesN He T'ps

On equating these ratios (equations 4.1.16 and 4.1.13) to establish a surface where
the perturbation proportions are of equal magnitude, the relationship defining this
distance from the planet is obtained:

/’6127 1 1/5
rl?s_rpc(lﬁ(l_’_:;cosza)OAS) (4.1.17)

There is a small angular dependence, given by the angle a. Even when « is zero, this
term (raised to the power of 1/10) lies close to 1. Therefore, the surface of ‘equal
disturbance ratios’ is close to a sphere.

Hill’s sphere

Hill obtains a further definition of a sphere of influence equivalent to the Roche
limit. This value may be derived as follows.

Firstly, consider the acceleration of the satellite with respect to the planet. There
are two components: the Sun’s differential acceleration with respect to the planet,
and the gravitational force of the planet itself (neglecting the effect of the planet’s
gravity on the Sun). This net acceleration was calculated in the previous section by:
Hplps  peles  Hclpe

r,e =
=Ps 3 3 3
Tps Tes T'pe

A point may be found between the Sun and planet where this acceleration is zero;
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differential acceleration is in equilibrium with the gravitational force from the planet.
The above equation can be solved to find r,, that meets this criterion, along the Sun—
planet axis.

Roche devised a criterion for the break-up of a fluid natural body orbiting the
Sun (or more particularly, a moon orbiting a planet) whereby the perturbing accel-
eration from the Sun exceeds the attractive force from the rest of the planet. This
limit is reached (in terms of distance from the centre of the planet) when this net
acceleration towards the planet, at its surface, reaches zero. It presupposes that there
is no internal rigidity to the orbiting body.

The net acceleration along the planet—Sun axis, at the hypothetical surface of the
planet, may be approximated by use of the Sun’s gravity gradient at the planet, so
that:

_ M 2(1e1pg

Fpe = (4.1.18)
s ra o I
Setting this to zero gives the condition that:
213,
B (4.1.19)
T'pe He

This criterion can be refined by assuming that the planet rotates at a rate that is
locked with the rate of rotation of the planet about the Sun (it always presents the
same face to the Sun). This effect is common in orbiting natural moons.

The criterion for stability is now extended to take into account the required
centripetal force on the surface of the planet.

2u.r .
@ - H; 2> raw’  where W= M; (4.1.20)
Fs Fe Tpe

for the planet maintaining a circular orbit about the Sun. Therefore:

3pteTps
Lo N (4.1.21)
Fps I'pe
ps pe

This criterion is comparable to that for the condition that a spacecraft maintains a
circular orbit about the Sun under the combined gravity fields of the Sun and planet.
This effectively defines two points along the Sun—planet axis, that are the first two
colinear libration points. The idea of libration points is discussed more fully in
subsequent sections.

This distance is used to define the radius of Hill’s sphere, which is an alternative
type of the sphere of influence of a planet.

4.1.3 Motion in the three-body problem

The three-body problem is often the name given to the problem where a spacecraft
passes through a combined gravity field. The first body is the central body, the
second is the orbiting, major body, and the third is the spacecraft itself, the mass
of which is considered to be negligible in comparison to the other two.
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Table 4.1.1. The radius of various spheres of influence, including Hill’s sphere, calculated by
gravity gradient approximation.

Conventional sphere

Gravitational equilibrium of influence Hill’s sphere radius
Mercury 23697 112837 221387
Venus 169035 616277 1011199
Earth 258814 924648 1496629
Mars 129387 577131 1083965
Jupiter 23333186 48216966 53150917
Saturn 23749258 54615354 65244392
Uranus 18849552 51747112 70038854
Neptune 32058928 86634373 115989405
Pluto 3391752 15079253 28259593

No known analytical solutions exist to describe the subsequent motion (unlike
the case of the two body problem), although generalisations that describe the overall
properties of the motion in certain circumstances have been obtained. Also, approx-
imation methods exist that enable certain classes of motion to be described by
analytical expressions. The precise motion can be obtained only by numerical inte-
gration of the spacecraft state vector derivatives, including both gravity vectors.
More detailed descriptions of this problem may be found in the references for this
chapter — notably Roy and Cornelisse, Schoyer and Wakker (this later derivation is
outlined below).

The circular restricted three-body problem

Firstly, a reference frame is considered, the origin of which lies at the centre of mass
of the set of two major bodies. Position relative to this origin is denoted r. The
acceleration of the spacecraft is given by:

d? r r
72[:_/“73—1_‘”27%—2 (4.1.22)
dt i r

where | and r, are the radial distances from bodies 1 and 2 respectively, and p; and
1, are the gravitational parameters of those bodies.

The general three-body problem describes the motion of a spacecraft under the
influence of two major gravitational sources. In an attempt to characterise the
motion, certain simplifying assumptions can be made. If the two gravity sources
are assumed to move in circular orbits about a common barycentre, then the
possible motions of a satellite can be analysed. This is known as the circular,
restricted three-body problem. In such a situation, the two bodies move about a
common barycentre.

A rotating reference frame may be used where x lies in the direction of the
barycentre to body 2, y is perpendicular in the orbit plane of the two major
bodies, and z completes the right-handed axis set and is therefore perpendicular to
the motion plane.
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The acceleration of the spacecraft with respect to such a rotating frame is
obtained from the classical relationship:

d? r r dr
<2r> ——M13—M232—w/\(w/\r)—2w/\(’> (4.1.23)
dt* Jp i r dt Jx

where subscript R denotes a time derivative with respect to the rotating frame.
A potential may be defined as:

2
I %) w2 2
U= -F_ = s 4.1.24
( . ,,2) ) (4.1.24)

where r,, r, and r. are the components of position with respect to the barycentre, or

centre of mass of the two major bodies. The angular velocity is given by w = wi,.
Then, equation 4.1.23 can be expressed in terms of the grad function of this

potential:
2
(dz’> = VU -2wA (‘”) (4.1.25)
dt Jp dt Jp

If this equation is multiplied by the rotating frame velocity (as a scalar product),

then:
(55, (@) (@) (e (5)

The last term on the right-hand side of the equality is identically zero, and the first
term is the time derivative of the potential, U:

du d
v _ (V) U
dt ),

and therefore integration of equation 4.1.26 yields the following expression:

dt

Vig2U=-C (4.1.27)

where C is a constant of the motion known as the Jacobi constant, and V' is the speed
with respect to the rotating frame, in this case defined by the motion of the planet

about the central body.
| - @ . ﬂ
dt Jp \ dt Jp

In this context:
This expression may be used to derive boundaries of the possible motion for a given
value of the constant, C, but is not effective in predicting the detailed motion of the
spacecraft in such an environment.

Expansion of the expression for Jacobi’s constant

The speed in the rotating frame may be converted to speed in an inertial frame.
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Expanding the Jacobi integral and introducing a new notation as follows gives:

V2+2U:—C: V2—2</;L17+‘;LC>—(W/\I‘)‘(W/\I’) (4128)
P c

where, 7, is the distance of the spacecraft from the planet (or body), p, orbiting the
central body c, r, is the distance of the spacecraft from the central body, and r is the
distance from the system barycentre of bodies p and c.

The various expressions for the velocity of the spacecraft are:

Vie=VrtwAr, (4.1.29)
Vip=Vr+wAhrp (4.1.30)
Vie = Vie + Vbianes (4.1.31)
P =7C = I'Planet (4.1.32)

The following formal notations are used:

Subscript p denotes a quantity measured with respect to the planet.

Subscript ¢ denotes a quantity measured with respect to the central bodies state.

Subscript I denotes a quantity expressed with respect to an inertial frame of
reference.

Subscript R denotes a quantity expressed with respect to a rotating state of
reference (with the planets angular velocity about the central body).

Also, pgner and Vi, are the planet’s position and velocity with respect to the
central body. This notation is abbreviated, as fully it would be V; ¢ ianer-
Also, velocities with respect to the inertial frame may also be abbreviated in
some cases: from V;p to Vp and also rjp to rp, and from V- to V- and also rjc to r.
Because the planet is in circular motion, then:

Vplanet =W A rp[anet (4 1 33)

The Jacobi integral may now be expressed in terms of velocity with respect to the
central body, and so becomes:

€= Wi ~wnr) (i —wnr) -2 245 ) “wan-@rn @134
J2 ¢

If the central body is much more massive than the planet, the barycentre can be
assumed to lie very close to the centre of the central body, and so r becomes rc.

—C= V%C2(V1C°w/\rc)2<up+u") (4.1.35)
— - I’p re
The Jacobi integral may also be expressed in terms of velocity with respect to the

planet body, and so becomes:

—C= (V,P—w/\r,,)°(V,P—w/\r,,)—2<¢p+'l:”) —(wAr)(wAr) (4.1.36)
p p ) 3
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Major body

@  Barycentre

Central body

Figure 4.1.3. Orbital geometry in the circular, restricted three-body problem.
And so, again assuming that r equates to r,:

—C= Vi 20prahny) +enry)-an) - 2( 2+ 5) — @Ar)- @)

Iy 7.
(4.1.37)
If the motion is close to the ecliptic, then this expression becomes:
—C=Vip=2Vprwhr,) +w’r, — 2<“"+“"> — e (4.1.38)
- - }"p re

4.2 ESCAPE FROM A PLANET

The previous sections described the principles of the many-body problem and
motion in the presence of multiple gravity fields. Particular attention was paid to
results that may be obtained with a set of approximations known as the circular,
restricted three-body problem. Also, when departing from a planet, approximations
to the motion in the presence of multi-body gravity fields have also been discussed in
the context of interplanetary transfers with an escape orbit from a planet into a
heliocentric trajectory (Chapter 1).

In this section, a series of more detailed analyses are performed that allow
comparison of the approximated motion with the true motion. This allows an
assessment of the effectiveness of the approximation techniques and any implications
arising from them. It also provides an insight into the nature of the motion when a
spacecraft leaves or approaches a planet from the heliocentric domain.
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4.2.1 Analysis of escape

In Chapter 1, the principle of escape orbits was discussed. In order to reach a given
heliocentric orbit, the required speed relative to the planet must first be achieved.
This translates into the departing excess hyperbolic velocity vector required for a
planetary escape orbit. In this section the details of the motion of the spacecraft
leaving the planet with such an escape orbit will be evaluated. This will be compared
with the motion resulting from the simple assumption of a velocity vector addition
occurring at the planet’s location. In this latter case, the gravitational effect of the
planet is not included in the details of the motion. Firstly, the problem is analysed
using the three-body formulation described in the previous section.

Analysis using the three-body problem basis

First, a more detailed analysis of the predicted properties of the motion can be made.
In section 4.1 the Jacobi constant is identified as a constant of motion, for the case of
the circular, restricted three-body problem.

Jacobi’s integral is given by

V242U =-C

where C is a constant of the motion known as the Jacobi constant, and V' is the speed
with respect to the rotating frame, which is defined by the motion of the planet about
the central body. U is a potential combining gravitational potential and a rotational
term, and w is the angular velocity of the rotating frame.

In section 4.3 Tisserand’s criterion is derived by considering the conservation of
this integral to compare heliocentric orbits before and after a gravity-assist
manoeuvre. The integral may also be used to compare motion close to a planet
and at large distance.

If the expression for motion with respect to the planet is examined, obtained
from section 4.1.3, then it may be expressed in terms of the osculating excess
hyperbolic speed:

—C= VA -2V nn) + whn)-wany) -2 ) - @Ar)-@An)

rC
(4.2.1)
where V2, =V, - 2%

The first objective is to obtain a simplified expression that applies when the
spacecraft is close to the planet, in terms that apply at the pericentre. This expression
contains components of very different magnitudes, and so some further expansion is
required.

The term (wAr)-(wAr,) can be expanded to yield w?r? — (w-r.)?. Then,
because the angular velocity is assumed to be perpendicular to the planet’s orbit,

this becomes w?r? — (g-rl,)z. Also, (wAr,):(wAr,) becomes wzri - (g-rl,)z.
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A series expansion for 1/r. may be obtained as follows:

1 1

Te \/(rplanet + Q) * (rplaner + ’;p)

2 2 . —1/2

1 1 r rplanet rp

- 1+ 524+ = (4.2.2)

Fe Fplanet ’ planet r planet

becomes
1 1 Fplanet * LP 1 }"[2, 3 ([ Tplanet ";p 2 p 3
I 1 - P —E ) +§ B +0 , (423)
Te Tplanet rplanet rplcmet rplanet T'planet
2 2

Furthermore, geometry gives wz(rc —rp) = wz(rf,;ane, + 2rp,am,-l).
Using these expressions in equation 4.2.1 gives:

r *r,\2
planet " "'p
—C = Vgo —2(ViprwArp) — 2(”0 ) — w2r12,,ane, —I—wzrlz, —3w? ( )
7 T'planet

rplzmet

(4.2.4)

When the spacecraft is very close to the planet, for example, at the pericentre of the
departure orbit, r, is relatively small, and using the angular momentum per unit
mass, i, = (r, A Vjp), the following is obtained:

—C = VgoO — 2@’(@) - 2< He ) - V1271m1et + 0(“‘)2”127) (425)

r planet

where VicO is the osculating excess hyperbolic speed (or /(2 * energy)) evaluated at
a position close to the major body or planet, and /4, is the angular momentum per
unit mass at that point. The angular momentum * angular velocity term is in general
much smaller for an escape orbit than the excess hyperbolic speed (or initial energy)
term.

If the expression for the Jacobi constant in terms of central body relative terms is
considered, at a distance r, that may be distant, then the following expression is
obtained from section 4.1.3:

-C= V%C—Z(I/Ic-w/\rc)—2</:“> —2(‘:”) (4.2.6)
¢ )4

Equating and rearranging these two expressions (4.2.5 and 4.2.6) yields:

V%C - Z(VIC'Q/\F(?) + V]%Zanet = 2<M_M() +2<ILL/7) + V?X}O - 2Q'(hp0)
- 7 re Tplanet Ty I

(4.2.7)
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yplanet
Figure 4.2.1. Relative velocity geometry.

The previous expression may be rewritten as:

Be M
V%C - 2(VIC planet) + Vplanet = VgoO - 2@‘(@) + 2( - C)

¢ rplanet
Hp
+2(I/1C-w/\rp)+2(r> (4.2.8)
- p

Although r, here is still considerably smaller than r,,,, it is not a negligible
quantity, because it may be typically at a value beyond the radius of the sphere of
influence of the body. Therefore, this expression reveals the nature of the evolution
of the velocity relative to the planet. It can be seen in a more obvious form by
returning to completely planet-relative terms, as shown through the following
discussion.

It is possible to evaluate an expression for the evolution of the velocity relative to
the planet, and to compare this with the initial departure, osculating excess hyper-
bolic speed.

In vector terms: V), = Vic — Ve (Figure 4.2.1).

The geometric relationship from Figure 4.2.1 is therefore:

V%C - 2(Q' Vplanet) =+ szﬂanel = Vﬁ (429)

Equation 4.2.8 then becomes:

T'planet — T'¢
Vi = Voo = 2 Che) + 22 (P (Vg 4 V) +2( 22
c

planer F

The planet velocity term may be expanded as follows:

rp : fplam’r
2V paned @ A7) = 2V der ()

'planet

Also

planet re planet
2 Vplanet =2 Vp/anet -1
re re

) V planet : ’;p 1 1'12, 3 planet rl 2 0 1‘13,
- planet \ ™ V2 - E }"2 5 + }‘3
planet planet planet planet

(4.2.11)
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1 -
¢ for a circular

Then using the relationships Vs = Wrpianer and Vﬁ,‘me, =
planet

planet orbit, and also recalling that /2, = (r, A Vp), equation 4.2.10 becomes:

1 3 [ Vplanet ' Tp \? , 3
Vf,Vicozw-(/z,,O)Jrzwz(zrf,Jrz(W) +0< 2 >>

Fplanet T planet

+ 2w+ () +2<‘:;’) (4.2.12)

or alternatively:

1 3 [ Tolanet T 2 3
Vgo—ch(hp):V§00—2W'(hpo)+2w2<—§r[2,+§(w) +0( il ))

rplanet r planet

(4.2.13)

This equation represents a relationship between the osculating V,, and angular
momentum and the position relative to the planet.

Analysis using the two-body problem basis

The preceding expression may be compared with that which is implied by the
approximation of the escape orbit excess hyperbolic velocity vector addition to the
velocity of the body, p. This is analysed on the basis of Keplerian motion predictions
from the two-body problem. The central body is the Sun. Figure 4.2.2 shows an
idealised planet relative velocity vector added to the planet’s velocity to achieve the
heliocentric velocity.

However, an additional notation must be introduced, as these terms are those
existing at the instant of the relative velocity vector addition, which takes pace at the
planet position defined by that epoch. Therefore, Vo and Ve are the velocity
vectors at the epoch of the escape, and V,, is the relative velocity with respect to the
planet at the escape epoch. o

The vector addition gives the following expression:

V%CO - 2(V1C0 : p/anetO) - V%elO + Vilanezo =0 (4214)

[
P>

yplaneto
Figure 4.2.2. Idealised planetary escape geometry by vector addition of an instantaneous
excess hyperbolic departure vector.
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[Qlanet

Figure 4.2.3. Motion relative to the planet after departure.

Given that this vector addition occurs at the planet at the escape epoch, then at a
subsequent time the relative velocity will be modified. This can be found by the
process shown in Figure 4.2.3.

At this instant, some time after the initial epoch, the velocity relative to the
planet is given by the same geometrical relationship as equation 4.2.9:

V%C - 2(Q' Vp/anet) =+ V[%lanet = V%el = V% (4215)

Note that V), and V,, are equivalent expressions for the velocity relative to the
planet. As purely Keplerian motion of the two body problem is under consideration,
the heliocentric velocity is given by:

1 1
2 _ -
VIC = 2/.1,(, ( . 2a> (42 16)
and so
1 1
Vie=Vico = Z,Uc( — - ) (4.2.17)
re ’p/anct

Recalling that Ve = Vip + Vpjgner and rp = r¢c — 'pner, and because the planet is in
circular motion, Ve = W A F'pjaner- Then:

(Q' Vpl{mel) = Q' (ﬂ A (Q - rﬂ)) =wh. - (Vplanel + &) : (Q /\Q) (4218)
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where /1, is the angular momentum vector (per unit spacecraft mass) relative to the
central body. This is a constant of motion in the two-body problem, and as the
angular velocity of the planet or major body is also constant for this problem, then
the quantity w+/, is a constant of motion. Equation 4.2.14 then becomes:

Vico — 2weh, — Voo + Vﬁ/aneto =0 (4.2.19)
The velocity relative to the planet can now be expressed as:
1
Vﬁ = Vo4 2u, ( — > +2(Vptaner + V) - (wAT,) (4.2.20)
re rplanet I -

Comparison of two-body and three-body solutions

Comparing Equation 4.2.20 — which is obtained from equation 4.2.15 by considera-
tion of the evolution of the motion in the central body system (from the two-body
problem) — with equation 4.2.8, leading to equation 4.2.10, obtained from the Jacobi
constant conservation (from the three-body problem), it is clear that they both
possess the same dependence on position relative to the planet. However, these
two expressions may not be equated, as they describe motion in two different situa-
tions: the two-body problem and the three-body problem. In the three-body
problem, the details of the V), r, evolution is not the same as those for the two-
body problem.

Examination of the evolution of the motion may lead to series of simplifications.
These depend on the details of the initial orbit and the resulting planet departure.

In the two-body problem, equation 4.2.20 describes the motion relative to the
planet. This may be expanded to yield the following expression for the case where
r, < 1. (as in the derivation of equation 4.2.12):

1 3 [ Tplanet *Tp 2 r 3
V2= V3€,0+2w2<_2,12,+2(1”1> +0< . >)+2w-hp (4.2.21)

rplanct r planet

The last term is initially zero, as the spacecraft moves away from the point mass
representing the planet in the initial phases two-body representation. Eventually, at
large r, this statement becomes untrue as the heliocentric gravitational term
dominates the evolution of the motion.

However, in the three-body problem, the motion is described by equation 4.2.12:

Vo= Viw+2w: (hy) = 2w ()

1 Tplanet ° T 2 3
(a0 o)) ()
2 2 rplanet rplanet rp

These equations are both evaluated over a region where r, < 7y One of
the differences between the two cases is the term 2w+ (/4,) — the scalar product of
the planets angular velocity vector with the angular momentum vector relative to the
planet. In the three-body case this is a constant of motion in the regions dominated
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by the planet’s gravity field, and so the term 2w-:(h,) — 2w*(h,,) should remain
relatively small in this region and will achieve a more significant magnitude as the
spacecraft passes beyond the sphere of influence. As the spacecraft passes beyond the
sphere of planetary gravitational influence, this term will become progressively
perturbed. In the two-body case the term 2w- (/) is initially zero. However, as the
spacecraft moves further away from the planet, this term will also eventually achieve
a significant magnitude.

The other difference in the two equations is the presence of the Earth’s
gravitational potential term. However, at large distances, when the spacecraft has
effectively left the gravitational influence of the planet, this term will become
negligible.

The term 2w- (/,) may be examined more closely. Using the definition of planet
relative angular momentum: hp =r, ANV, its time derivative is:

dh, dr, av,

?_WAQ—FVP/\W (4.2.22)
The first term is identically zero, and so any change in planet relative angular
momentum is caused by the second term.

Then, using the planet velocity term, V, = Vic — Vyaers

dﬁ d Q d Vplanet
dt — dt dt
It is assumed that the central body is much more massive than the major body, and
so the acceleration of the spacecraft with respect to the central body equates to the

inertial acceleration arising from the gravitational forces. The value depends on
whether the two-body or three-body problem is being considered:

(4.2.23)

dv, re Myt
g _ _Hee PR three-body problem (4.2.24)
dt Pl r

d VIC Hele
—=——x two-body problem (4.2.25)
dt re

Similarly, the acceleration of the planet or major body is given by:

dv Ne
planet el planet
TR (4.2.26)
planet
If the two-body problem is first considered, then
dav, 7 Iyl
4 ¢ planet
—=—u | 5-== 4.2.27
dt e (7(3 r;lanet ) ( )

Then, recalling equation 4.2.2, the following is derived:

1 1 Tplanet*Tp 3 V2 15 ( Tplanet*Tp 2 r 3
- = 1-3 =__-_7 — = 0 1 4.2.28
I"? } < 2 2 r2 * 2 ( 2 ) * Fplanet ( )

r})lanet r planet planet r planet
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Then

d VP — e Pplanet*Tp 3 7'12, 15 [ Tplanet*Tp \? r 3
dt =3 1-3 2 7_5 2 +7 2 +0 r T'e = T'planet
r planet rplanet r planet 7 planet planet

Using the definition of w, the rate of change of angular momentum is given by:

dﬁ > ' planet °’;p 3 rﬁ 15 [/ Tplanet* LP 2 p 3
IhA—=—=—w||l-3=—= +— +0 o N Fplaner
PO dr r2 272 2 r? r £

planet planet planet planet

(4.2.29)

When considering the three-body case, then the planet or major body gravity term
does not contribute to the rate of change of angular momentum with respect to that
body. Therefore, when considering the terms 2w-(h,) and 2w-(h,) — 2w (/)
appearing in the velocity expressions in the two-body and three-body cases
(equations 4.2.21 and 4.2.12) then the zero difference at the epoch of departure
would be expected to be maintained if both models lead to the same position
evolution of the spacecraft with respect to the planet. This is because in both
cases the rate of change is the same, both being given by equation 4.2.29. The
time derivative depends on r,. However, in practice the history of r, varies
between the two-body and three-body cases because the initial relative velocities
are different (due to the presence of the planet’s gravity field), and so the integral
of equation 4.2.29 will accrue a difference.

The mathematical description of the departure in the two-body and three-body
cases is therefore very similar. A difference between two-body and three-body pre-
dictions of relative velocity when leaving the planet may arise from the difference in
the evolution of this angular momentum related term. When compared with the
square of a typical excess hyperbolic speed, for a direct, high-energy escape orbit,
the effect on the actual relative velocity is generally very small. However, this con-
sideration will be revisited when techniques utilising gravitational escape methods
are considered in Section 4.8.5.

Analysis in central-body terms

The departure may also be considered from the central body perspective.

If a two-body case is considered then the fundamental relationships can be
calculated. The heliocentric angular momentum, discussed previously, is given by
the initial velocity:

Vico = Vieo + VplanetO and then @ = Tplanet0 A Vico

where V00 and 74,00 are the position and velocity vectors at the epoch of the
application of the planet relative velocity increment, V.

The previous expression (equation 4.2.19), gives a relationship between the
velocity and angular momentum terms:

V%CO = Vlz'eIO + 2&'&(’0 - VlzzlaneIO (423())
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The velocity with respect to the central body is therefore dependent on the initial
angular momentum with respect to the central body, because of the importance of
the direction of the velocity when leaving a planet.

The energy with respect to the central body E,, is then obtained as:

, -3
2EL-O=V%CO—2( “‘) of  2Eg-2w hg=—tC+ Vi o (4231)

rplcmet rplanet

In the two-body analysis case then these heliocentric terms remain constant,
However, this is not the case in the three-body model. The evolution of heliocentric
energy and angular momentum can be considered in detail.

In the case of the three-body problem, the conservation of the Jacobi constant
may be expressed in heliocentric terms as:

’:”+“") = 2Ec —2wh, 2

p T

Hp

r

~C=Vie—2VicrwAr,) —2(
P

(4.2.32)

The variation in the term 2E,. — 2w+, depends on the planet potential energy and is
only a function of distance from the planet. It tends to zero as the spacecraft leaves
the planet. When far removed from the planet’s gravitational perturbation the
heliocentric energy and angular momentum terms will each reach a constant
value. This effect can be examined by closer inspection of the heliocentric angular
momentum term.

Using the definition of heliocentric, or central body, relative angular
momentum, /. = r, A Vjc, then its time derivative is:

dh, dVie dr,

— e 42,
a N g T Me (4.2.33)

As in the analysis with respect to the major body, the second term is identically zero,
and so any change in angular momentum is caused by the first term. This accelera-
tion in the three-body problem is restricted to gravitational terms, as so (neglecting
acceleration of the central body):

dVic — pere  Mplp
R 3
dt r; I

(4.2.34)

Therefore, using this expression in the previous one the rate of change of angular
momentum is given by:

dhe —  Iplp Kyl Fp

dr Te A 7'37 = _(rplaner +rl) A = _(rplanet) A
P E—

N
‘\9

a 3 3

Tp p

Therefore, the rate of change of angular momentum depends on the direction of
escape. A resultant escape in a radial direction will quickly see the angular
momentum reach its asymptotic value. In a tangential direction the perturbation
reduces with 1/ ri.
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4.2.2 Examples of escape
Hlustration of a low-energy departure from Earth

The actual motion of a spacecraft leaving a planet in a moderate-energy escape orbit
can be simulated by numerical integration in the multi-gravity field and compared
with the approximated cases discussed in the previous section. The first example to
be considered is that of a spacecraft leaving Earth. An idealised case is initially
considered, where the Earth’s orbit is approximated as a circular orbit. Departures
both tangential and perpendicular to the Earth’s velocity are analysed. The tangen-
tial case is then considered further with a departure from the true Earth’s orbit.

Tangential escape using circular-Earth initial orbit

In this case the orbit of Earth is modified to be circular, so that the details may be
closely examined, with the knowledge that the Jacobi constant must be constant
throughout the simulation.

A tangential departure is generated by targeting a high circular heliocentric
orbit. The transfer is optimised in terms of obtaining a minimum AV. This means
that the impulsive AV needed to transfer from an initially Earth-bound orbit, to
reach the required excess hyperbolic velocity needed to achieve the transfer, is
minimised. The resulting transfer after leaving Earth will be a Hohmann transfer
between the Earth’s represented circular orbit and the target circular orbit.

The following example is taken.

e Planet of departure is Earth. Earth’s orbital radius at departure is 1.0 AU.

e Target a heliocentric orbit (not a planetary rendezvous). This orbit is circular at
approximately 207 million km (1.383 AU) and in the ecliptic.

e The transfer is optimised to minimise the departure AV. This means that the
departure excess hyperbolic velocity lies very close to tangential to the Earth’s
orbit.

The optimised transfer orbit has the following parameters:

e Semi-major axis: 1.1917 AU.

e  Eccentricity: 0.16049.

e Aphelion: 1.383 AU.

e Perihelion: 1.00 AU.

The following shows a comparison between theoretical and actual (numerical simu-
lation) heliocentric terms after departing from Earth. The ‘theoretical’ values are
calculated by performing a tangential velocity vector addition of the osculating
excess hyperbolic speed (calculated at perigee) to the planet’s velocity.

Theoretical Actual

Heliocentric sma 1.779E+ 11 m 1.783E+ 11 m
Eccentricity 1.591E-01 1.605E—01
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Figure 4.2.4. Transfer from Earth to raised aphelion orbit with Earth Vinfinity at 2.3 km/sec.
The transfer is a half ellipse in the ecliptic, moving from perihelion at Earth to the target
aphelion radius. Departure from Earth is tangential. The grid is 1 AU from centre to edge,
with a sub-grid size of 0.1 AU. Earth’s circular orbit is shown in addition to the transfer
trajectory.

Alternatively this allows the excess hyperbolic velocity required to achieve the
actual transfer to be calculated, by the previous approximations on Hohmann
transfers, as 2.3 km/sec (if the initial and final orbits are considered circular). The
actual optimised value is found to be 2.28 km/sec. This is the osculating value at
Earth-orbit pericentre of the departure orbit. Therefore, agreement between the
prediction using the two-body case and the actual departure using a three body
case are very close. Figure 4.2.4 shows the transfer trajectory and Earth’s orbit
about the Sun.

The evolution of the osculating orbital parameters may be monitored during the
escape and transfer phase. The Earth relative semi-major axis and energy are shown
in Figure 4.2.5.

The variation in energy with respect to the Sun follows a different trend as the
spacecraft leaves Earth. This is shown in Figure 4.2.7. The heliocentric term initially
undergoes a significant variation when within the Earth’s sphere of influence (within
a radius of 1 million km).

Figure 4.2.8 shows the evolution of the heliocentric angular momentum of the
spacecraft. The total value plotted is the value less the component due to the Earth’s
velocity component. It clearly tends to an asymptote as the spacecraft leaves the
Earth’s sphere of influence beyond 1 million km.

The heliocentric angular momentum may be broken down into its constituent
components.

& = (rplanet + ’;p) A (Vplanel + &) =T A Q (4235)

The dominant term is (7pane;) A (Vpianer)» Which remains constant. As a ‘bias’ term it
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Figure 4.2.5. Semi-major axis and energy with respect to Earth, evolution over distance from
circular orbiting Earth. The semi-major axis and energy stay approximately constant whilst
leaving the Earth’s sphere of influence (within a radius of approximately 1 million km). As the
spacecraft enters the heliocentric sphere the variation becomes more pronounced. Energy is
plotted against the right axis.
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Figure 4.2.6. Osculating excess hyperbolic speed evolution with respect to Earth, evolution
over distance from circular orbiting Earth. The excess hyperbolic speed profile follows the
energy trend as the spacecraft leaves Earth, and stays approximately constant when within
Earth’s sphere of influence.
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Figure 4.2.7. Energy with respect to Sun, evolution over distance from a circular orbiting
Earth. In the upper figure, the total energy (the sum of kinetic and both body potential
energy terms) and Sun-relative energy differ initially due to the Earth’s gravity potential but
converge at greater distance from Earth. The energy asymptotically tends to its final value that
corresponds to a semi-major axis of value 1.192 AU. Similarly (in the lower figure) the
heliocentric semi-major axis asymptotically tends to its predicted value as the spacecraft
leaves the Earth’s sphere of influence. ‘Hyper’ indicates the two-body predicted value from
vector addition of the initial osculating excess hyperbolic velocity.
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Figure 4.2.8. Angular momentum with respect to Sun, evolution over distance from circular
orbiting Earth.

is removed from the total angular momentum shown in Figure 4.2.8. The remaining
terms shown are:

(';p) A (Vplaner)v (rplanet) A (&)7 (’;p) A (Vp)

However, neither of these quantities — the spacecraft’s heliocentric energy and the
angular momentum — is expected to be conserved during the course of such a
planetary departure. The quantity that is conserved is the Jacobi constant. This
conservation depends upon the assumption of a circular orbital motion for the
planet, which is the case here in the representation of the Earth’s orbit.

Using equivalent Earth circular initial orbit and radial escape direction

The orbit of Earth is again modified to be circular in this case, so that the Jacobi
constant will remain constant throughout the simulation. The direction of the initial
orbital line of apses is rotated by 90° when compared with the previous example.
This will result in a near radial ‘escape’ direction when seen in an Earth centred
frame. An outward radial direction is chosen.

The resulting heliocentric orbit is shown in Figure 4.2.10. The evolution of
energy is shown in Figure 4.2.9.

Case of tangential departure from the true Earth orbit

The tangential departure case is now examined for a departure from a more accurate
representation of Earth’s orbit. That is, the eccentricity is set to its nominal value at
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Figure 4.2.9. Semi-major axis and energy with respect to Earth, evolution over distance from
circular orbiting Earth, for a radial Earth relative departure case. In the upper figure the semi-
major axis and energy (with respect to the planet) now show a different radial dependence to
that seen in the tangential departure case. This is predicted by the effect of the transition to the
central body dominated motion described in the previous section. Energy is plotted against the
right axis. In the lower figure the excess hyperbolic speed (based on planet relative energy)
once again follows the same trend as the energy, increasing significantly with radial distance
when beyond the Earth’s sphere of influence.

0.0167, and the motion, then modelled as a Keplerian arc about the Sun. The same
circular heliocentric orbit is targeted. The transfer is optimised by minimising the AV’
from a reference Earth-bound orbit.

The resulting optimised transfer orbit has the following parameters:

Semi-major axis: 1.196 AU.
Eccentricity: 0.1685.
Aphelion: 1.397 AU.
Perihelion: 0.9943 AU.
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Figure 4.2.10. Transfer from Earth to increased eccentricity orbit with Earth relative radial
Vinfinity at 2.3km/sec. The principal effect of a radial vector addition is to increase the
eccentricity with respect to the central body but leave the semi-major axis almost
unchanged. Earth’s orbit is shown. The grid is 1 AU from centre to edge.
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Figure 4.2.11. Energy with respect to Sun, evolution over distance from circular orbiting
Earth, for a radial Earth departing case. The heliocentric energy quickly approaches an
asymptote as the perturbing effect of the planetary gravity field becomes negligible. This is
reached at a lesser distance in this radial case than in the tangential case. This was predicted
previously from considerations of motion relative to the central body.

This allows the excess hyperbolic velocity required to be calculated, by the previous
approximations on Hohmann transfers, as 2.33 km/sec (if the initial and final orbits
are considered circular). The actual optimised value is found to be 2.32 km/sec,
which is the value at Earth perigee for the departure orbit. This transfer includes
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Figure 4.2.12. Comparison of Earth relative semi-major axis evolution for two-body and
three-body departure cases. The upper plots show the evolution of the speed relative to
Earth versus distance. The lower plot shows the evolutuion relative to elapsed time. Both
two-body and three-body cases are shown. The long-range evolution shows the convergence at
large distances. When closer to Earth, a greater difference is observed due to the effects of
Earth gravitation in the three-body case. However, once a range of typically 3 million km is
reached, the profiles are very similar.

the small effect of the Earth’s initial orbital eccentricity. Therefore, a similar degree
of agreement is seen as in the circular Earth orbit case.

Comparison of the two-body and three-body problems of tangential departure from
the true Earth orbit

A comparison can be made between two optimised transfers, one using the combined
Earth—Sun gravity fields, and one using only solar gravity. Both target the same orbit
from Earth and leave at the same epoch. Therefore, the two-body transfer also
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Figure 4.2.13. Comparison of Earth relative range evolution for two-body and three-body
departure cases. The plots of range to Earth, with time from departure, show considerable
similarity between the two-body and three-body solutions, when viewed over the whole
transfer timeline. When examined more closely (in the lower figure), in the vicinity of
Earth, a difference is seen, as in this early phase motion is strongly influenced by the
Earth’s gravity.

reaches a heliocentric orbit with the same semi-major axis and aphelion as that
described for the three-body solution.

A departure from Jupiter

Jupiters’s gravity field is significantly greater than that of Earth, and an examination
of a departure from such a massive body is of interest. Jupiter’s true orbit is taken.
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Figure 4.2.14. Comparison of Earth relative angular momentum evolution for two-body and
three-body departure cases. The plots of Earth relative angular momentum (per unit mass)
versus distance from Earth, also show the anticipated behaviour. The initial difference is the
spacecraft’s Earth relative angular momentum of the three-body problem. This term is
identically zero at start of the two-body problem departure.

N

Figure 4.2.15. Transfer from Jupiter to reduced perihelion orbit with Jupiter osculating
Vinfinity at 5.86km/sec. This figure shows the transfer trajectory and Jupiter’s orbit about
the Sun. The initial departure from Jupiter and the resulting heliocentric orbit over a full orbit
period can be seen. Close inspection shows that the aphelion lies slightly below Jupiter at the
departure point, and the linking transfer through the gravitationally perturbed region can be
seen. Jupiter’s orbit is also shown. The grid is 1 AU from centre to edge.
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Its orbital eccentricity is approximately 0.048, approximately three times greater
than that of the Earth, but still relatively small.
The following example is taken.

e Planet of departure is Jupiter. Jupiter’s orbital radius at departure is 4.965 AU.
This lies very close to Jupiter’s perihelion. Jupiter’s orbital eccentricity results in
a perihelion passage at 4.95 AU and aphelion at 5.45AU.

e Target a heliocentric orbit (not a planetary rendezvous). This orbit is circular at
approximately 149.6 million km (1 AU) and in the ecliptic.

e The transfer is optimised to minimise the departure AV. The departure excess
hyperbolic velocity must therefore lie very close to being tangential to Jupiter’s
orbit.

The optimised transfer orbit has the following parameters:

e Semi-major axis: 2.965 AU.

e  Eccentricity: 0.666.

e Aphelion: 4.937AU.

e Perihelion: 0.992 AU.

These transfer orbit parameters are evaluated when far away from Jupiter (outside
its gravitational influence).

This transfer may be compared with an idealised impulsive transfer (the two-
body problem), from a departure at the above radius to reach a perihelion of 1 AU
from Jupiter. The velocity relative to Jupiter (the excess hyperbolic speed) is approxi-
mately 5,930 m/s.

The actual optimised value of excess hyperbolic speed is also found to be
5,860 m/s. This is the osculating value at Jupiter orbit pericentre of the departure
orbit, and so determines the manoeuvre required to implement the transfer. This
lower value than the impulsive case results from the effect of the combined gravita-
tional perturbations of the Sun and Jupiter when leaving the planet. The eventual
aphelion of the transfer orbit (at 4.937 AU) is also less than the radius at which the
spacecraft left Jupiter (4.965 AU). This effect is also a result of the combined gravity
fields. Therefore, the three-body-problem effects on the departure orbit, when
compared to merely the vector sum of the excess hyperbolic velocity with Jupiter’s
orbital velocity, shows a larger difference in Jupiter’s case than in that of Earth.
Figure 4.2.15 shows the transfer trajectory and Jupiter’s orbit.

The evolution of the osculating orbital parameters may once again be monitored
during the escape and transfer phase. The Jupiter relative semi-major axis and energy
is shown in Figure 4.2.16. The radius of Jupiter’s sphere of influence is just under 50
million km, and the planet relative ephemeris terms are therefore not expected to
show strong deviations within such a radius. Energy is plotted on the right axis.

Figure 4.2.17 shows that this initial semi-major axis is equivalent to a hyperbolic
orbit with the Vinfinity of 5.86 km/sec. As the spacecraft passes through and out of
Jupiter’s sphere of influence, this energy is eventually increased as the spacecraft
moves into the heliocentric domain. This energy only shows a large deviation
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Figure 4.2.16. Semi-major axis with respect to Jupiter, evolution over distance from Jupiter.
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Figure 4.2.17. Excess hyperbolic speed with respect to Jupiter, evolution over distance from
Jupiter.

from the pericentre values when distances of approximately 1 AU from Jupiter are
reached.

The quantity that is again most conserved is the Jacobi constant. Jupiter’s actual
orbit has an eccentricity of more than 0.048. The variation in the angular velocity, a
key component in the Jacobi constant therefore shows greater variation over an
orbital period than in the Earth departure case. Because the orbit is slightly elliptical
the angular velocity of Jupiter about the Sun changes with its orbital location and
the elapsed time. The conditions of the circular, restricted three-body problem are
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Figure 4.2.18. Semi-major axis and energy with respect to Sun, evolution over distance from
Jupiter. In the upper figure, evolution of the semi-major axis asymptotically tends towards the
expected value — the value calculated by the tangential vector addition of the initial excess
hyperbolic speed. However, as previously seen, the effective escape velocity is higher than
might be expected from the pericentre prediction and so the perihelion of the transfer is
slightly lower. The semi-major axis therefore reaches an asymptote slightly below the
predicted value. In the lower figure total and Sun relative energy values converge towards
an asymptote. This convergence is slower than the Earth departure case. Examination of this
evolution close to Jupiter again shows that considerable variation in Sun relative energy occurs
when inside Jupiter’s sphere of influence.
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therefore no longer observed and the quantity C (the Jacobi constant, as defined
previously) will no longer be a constant of the motion. However, the eccentricity is
low and so a large deviation from the circular case is not observed.

4.3 PRINCIPLES OF GRAVITY-ASSIST MANOEUVRES

One of the most effective and elegant methods that may be employed in interplane-
tary mission transfer design is the gravity-assist manoeuvre. The technique can be
used both in transfers from planet to planet and also for transfers between bound
planetary orbits by using orbiting moons. Certain terms used previously will be
retained: central body is the body about which the secondary body orbits. This
secondary could be a planet or moon and is referred to as the major body.

4.3.1 Analysis of patched conics

The effect on a spacecraft of a fly-by of a major body within a dominant central
gravity field can only be predicted precisely by numerical integration, when flying
within the domain of the combined gravity fields. However, approximation is
possible by considering the motion as a sequence of phases with dominant influences.

The first phase is the approach to the major body. This is an arc of an orbit
about the central body. Far from the major body its gravity field can be neglected.
The second phase starts when the spacecraft reaches the sphere of influence of the
major body. Now the gravity field of that body dominates the gravitational forces.
Eventually the spacecraft will pass outside of this sphere of influence and return to a
region where its motion is dominated by the central body. These three phases —
approach, fly-by and departure — can be analysed independently to predict the
total effect on the motion of the spacecraft. The major interest lies in the change
in orbit (with respect to the central body) from before to after the fly-by.

This technique is known as the patched conic method, because three conic
sections are generated to describe the orbital phases. The first is that of the
approach orbit, expressed in terms with respect to the central body. This may be
any kind of orbit (elliptical or hyperbolic). The second is the fly-by orbit, expressed
in terms relative to the major body. This will be a hyperbolic orbit (otherwise a fly-by
could not occur). The third is again expressed in terms relative to the central body
and may once again be any kind of orbit.

The different phases of this event can be evaluated to obtain a method for
prediction of the effect of a gravity assist at a major body. A discussion on
patched conics can be found in the references for this section.

The approach phase

A number of terms may be derived regarding the spacecraft orbit approaching the
rendezvous with the planet, by considering only Keplerian motion with respect to the
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central body. This approximation is good when the gravity field of the central body
is significantly greater than that of the major body under consideration.
The speed of the spacecraft with respect to the central body, when at the major

1 1
body’s location, is given by V =, [2 % uc* ( )

rpl(met 2a
Here, 74, 1s the radius of the planet at the fly-by and p, is the gravity constant
of the central body. This need not imply a circular orbit for the major body, but the
analysis is simplified if circular orbits may approximate the major body’s orbit. If the
major body’s orbit is elliptical, then r,,,,., will be determined by the intersection of its
orbit with the approach orbit.
The true anomaly at the rendezvous (in the example of an initially elliptical orbit

1 /a(l —é?
with respect to the central body) is cosf = ’ (a(e) — 1).

rp/anel
The flight path angle (T') at rendezvous with the major body is given by
esinf
tanl = ————
an I +ecosf

The major body’s speed at rendez-vous is given by:

1 1
V/ae = 2*”1'*(_ >
pranet \/ rplaner 2aPlaner

where a4, 1s the semi-major axis of the planet or major body. The relative velocity
between spacecraft and major body is given by:

V%el = V]%luner + V2 -2 Vp/aner °K (431)
In the case of a simplified, 2D analysis, where it is assumed that the major body and
spacecraft orbits are coplanar, the speed relative to major body at rendezvous is
given by geometry as:

Viee = \/V127[anet + V:— 2Vplm1et VCOS(F - rp/ane[> =V (432)

where the flight path angle of the planet (I',,,,) at the rendezvous is found by:

eplaner sin gplanet
1+ eplanet Cos Qplanel

tan rp/unet =

where e,,4,., 18 the eccentricity of the planet’s orbit, and 6, is the true anomaly of
the planet at the rendezvous.

This relative velocity is also the excess hyperbolic speed (as discussed in earlier
sections regarding planetary escape orbits and the approximation therein).

The ephemeris relative to the major body or planet can now be found from the
following expressions. The semi-major axis relative to the major body or planet is
Hplanet

VZ

rel

Qo) = — , Where fi,/,me; 18 the gravitational parameter of the planet.
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Figure 4.3.1. The principle of patched conics.

The planet relative eccentricity is €,y = 1 — Fyepirer/ rer» Where rpe,ipe; is the required

pericentre radius of the major body’s relative orbit. This is a parameter that can be
specified in the design of the gravity assist.

Velocity with respect to the major body or planet at pericentre can also be found
(although is not needed to model the gravity assist by patched conics):

1 1 2% Hplane
Vperirel = \/2 * Uplaner * <Vz - 2611) \/}’p/t + Vﬁc (4.3.3)
perire. re. perire.

The fly-by phase for a 2D case

A 2D’ fly-by is a case where all orbits are assumed to be coplanar: spacecraft, major
body and the spacecraft orbit relative to the major body. The B plane is defined as
the plane that is perpendicular to the asymptotic approach velocity vector, which is
also the excess hyperbolic velocity vector. If the spacecraft were undeflected by the
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major body’s gravity (e.g., if the gravity field is negligible) then the minimum
approach distance (the fly-by pericentre) is the closest approach in the B plane.

Once the gravity field of the body becomes significant, the approach velocity
vector is deflected, by following its hyperbolic path about the planet. Now from
conservation of angular momentrum a different relationship can be obtained
between fly-by pericentre and B plane distance (Bgy,):

o Hplanet 2 Hplanet 2
Bdist* \/<rperirel+ Vgo ) ( V%c > (434)

where 7,00 18 the specified pericentre radius with respect to the major body, and
Hpianer 18 the gravitational constant for the major body. The eccentricity is given by:

Tperirel
4 =1

a

2
e— 1 Tperirel * Voc

- (4.3.5)

:uplanet

The deflection angle of the relative velocity vector with respect to the major body is
obtained from the true anomaly of the asymptotic departure vector. That is, if

L 1 —e? o
position is given by r = 7( IC:(_ coz ()0)), then as r tends to an infinite value the true
e
. 1 . . .
anomaly is given by cos# = ——. If the relationship between the approaching and
e

departing asymptotic vectors is considered, the deflection of this velocity over the fly-
by can be found. This is shown in Figure 4.3.2.

It can be seen that 27 — 20 = m — «, where « is the deflection angle of the
aproaching hyperbolic vector. Using the previous expression for the true anomaly
of the hyperbolic departure vector, an expression for the deflection angle is obtained:

1
a:2*sin1<> (4.3.6)
e

The deflection is clearly dependent on the excess hyperbolic speed with respect to the
major body and its gravitational constant.

In Figure 4.3.3, I, is the angle between the planet velocity vector and the
approaching relative velocity vector. For the sace of a 2D fly-by, deflection can
take place in one of two possible directions, depending on which side of the the
planet the spacecraft approaches. This is seen in Figure 4.3.4.

The flight path angle of the relative velocity vector wrt the major body’s velocity
vector is:

(4.3.7)

_ Vossin(l' — T paner)
r,, =tan"' ( L
“» lanet

Vs cos(I' = Tpner) = V)

The flight path angle of the departure velocity vector is obtained by velocity vector
addition, as illustrated in Figure 4.3.5. This is given by:

Voo *sin(a + F,Ae,l,) )
Vplanet + Voo * cos(a + l—‘relp)

Fdeparlure = tan71 < (438)
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Figure 4.3.3. Geometry of the 2D fly-by with coplanar planet and spacecraft orbits.

The departure velocity is given by:
Vdeparture = Sqrt((Voc * sin(a + Frelp))2 + (Vplaner + Voc * COS(OZ + Frelp))z) (439)
The departure energy per unit mass is given by:

2
_ Vdeparture e
E departure — P -

The departure semi-major axis is given by:

Adeparture = — ( K ) (43 1 1)

E departure *2

(4.3.10)

r planet

The departure angular velocity is given by:

hdeparture = (( Vdeparture * COS(Fdeparture) * rplanet)) (43 12)
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The departure eccentricity is given by:

hdeparture 2
edeparture = 1+ 2Edeparture T (4313)

If the departure energy is less than zero (a bound orbit), the aphelion radius is given
by:

Fap departure = adepurture(l + edeparture) (43 14)

If the energy is greater than zero, then escape from the central body is indicated. The
corresponding excess hyperbolic speed is given by:

Vo departure — m (4315)

The osculating perigee in both cases is given by:
Fpe departure = adeparture(l - edeparture) (4316)

The departure state has been calculated as if the velocity undertook an instantaneous
change in direction during the flight through the centre of the planet. Yet, the
asymptotic arrival and departure excess hyperbolic velocity vectors only take their
specified values at large distances from the planet. However, the previous discussions
on escape from a planet (Section 4.2), have shown that the excess hyperbolic velocity
when leaving a planet in a hyperbolic orbit may be treated as a velocity vector
addition at the position of the planet. The same situation applies for an approach
to a planet. The previous assumptions are therefore very effective in modelling the
effects of a gravity assist manoeuvre.

If a more precise model is required, still using the ideas of patched conics, a time
delay may be introduced to the departure, corresponding to the time taken for the
spacecraft to traverse the sphere of influence of the planet. This is a relatively short
time when compared with interplanetary mission durations, and often need not be
included in the early stages of a mission design. In later stages, when planning actual
manoeuvres at a planet, the motion of the spacecraft is obtained by numerical
integration of the trajectory under the influence of the combined gravity fields.

When the geometry of the two orbits relative to the central body are considered,
there are two opportunities for fly-by corresponding to the two orbit intersections
seen in Figure 4.3.6. A special case arises when the orbit of the major body or planet
is a circle.

If the orbit of the major body is circular, then at both intersections the relative
velocity between spacecraft and planet (the asymptotic approach velocity vector) is
the same in magnitude. The flight path angles of the spacecraft change sign at the
two intersections. If both cases are subjected to identical fly-bys (in terms of the
pericentre radius and on which side of the planet the fly-by takes place, relative to the
forwards planet velocity direction), the deflection angle is the same in magnitude but
opposite in direction. However, two fly-by solutions are possible using different sides
of the planet (and the 2D gravity assist assumption) Equations 4.3.7 and 4.3.8 show
that the departing flight path angles change in sign at the two cases, when the
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Figure 4.3.6. Two possible locations for a fly-by.

appropriate sign for the deflection angle is chosen. Also, in this situation, the
magnitude of the departing velocity is the same in both cases. Hence both fly-bys
produce the same change in semi-major axis. The departing angular momentum
relative to the central body is the same in both cases, and both produce the same
eccentricity. The difference is that the two fly-bys result in a different location for the
longitude of the pericentre relative to the central body.

The example in Figure 4.3.7 shows a fly-by at location 1 close to the pericentre.
The resulting gravity assist results in an increase in semi-major axis. Both apocentre
and pericentre with respect to the central body are raised. The fly-by takes place after
the new pericentre (which must lie at a radius relative to the central body less than
that of the fly-by). The true anomaly of the post fly-by orbit is reduced in this
example, and so the apse line of the new orbit is rotated, as shown in the
diagram. The true anomaly after the fly-by, when still very close to the planet is
given by:

cos01<a(l_ez)— 1> (4.3.17)

e rplzmet

The longitude (A) in the orbit plane of the spacecraft is almost unchanged over the
fly-by (in this 2D case), and so as A = w + 6 then the argument of pericentre must be
increased as depicted in Figure 4.3.7.

The same analysis can now be performed for a fly-by at location 2, as identified
in Figure 4.3.6. In this case, the fly-by takes place before pericentre of the initial
orbit. The same apocentre and pericentre raising of the post-fly-by orbit occur. The
pericentre is now rotated towards the fly-by location again, but in an opposite sense
to the previous example.



176 Special techniques

Spacecraft orbit 2

Spacecraft orbit 1

Planet orbit

Figure 4.3.7. The rotation of the line of apses after a gravity assist at location 1.
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Figure 4.3.8. The rotation of the line of apses after a gravity assist at location 2.
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The fly-by altitude and the gravitational constant of the major body have a

significant effect. Close fly-bys result in much greater orbit deviation. This is
trated in Figure 4.3.9.

illus-

The effectiveness of the gravity assist can be assessed by the change in the orbit
ephemeris relative to the central body that is achieved after the fly-by. In the case of a
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Figure 4.3.9. The effect of fly-by altitude on the final orbit. The plot shows the effect of the fly-
by altitude for a gravity assist at Venus. In this plot, sma-0 is the initial semi-major axis, sma
that after the fly-by and Ap and Pe the post fly-by aphelion and perihelion. It is assumed here
that the initial aphelion lies at 1 AU and perihelion at 0.5 AU. The closest fly-by altitude
considered is 400 km.

planar fly-by, the objective is generally to increase or decrease the energy of the
spacecraft with respect to the central body. Figure 4.3.10 shows the effect of
varying the approach orbit parameters and hence the excess hyperbolic speed
relative to the major body.

The orbit in these cases is initially elliptical, with perihelion below the major
body and aphelion higher than the major body’s orbital radius. Different initial
orbits are studied with different perihelions. The initial aphelion is the same in
each case, and the objective of this gravity assist is to raise it.

In the first example, a gravity assist at Venus is considered. The aphelion is
1.0 AU, and perihelion is varied from just below Venus’s orbital radius — 0.7 AU
to 0.4 AU. This is typical of a spacecraft departing Earth and crossing Venus’s orbit.
In this case the fly-by altitude above the surface of Venus is 400 km.

The value of excess hyperbolic speed at which the maximum energy change
occurs is dependent on the details of the initial orbit under consideration. The
effect of repeating the above analysis for a case where the initial aphelion is at
1.2 AU is shown in Figure 4.3.11.

A similar analysis can be performed for Earth (Figure 4.3.12). The initial
aphelion is assumed to be 1.1 AU, and this is then compared with a case at
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Figure 4.3.10. The effect of initial orbit perihelion and eccentricity on gravity assist effective-
ness at Venus. In the upper figure, as the perihelion of the initial orbit is lowered a maximum
in the achievable post-gravity assist semi-major axis is found. In the centre figure the presence
of the maximum is related to the excess hyperbolic speed of the Venus approach orbit, and so
in this example the maximum semi-major axis after the gravity assist is reached at 9 km/sec
V. The lower V_, corresponds to the higher initial perihelions shown in the upper figure. In
the lower figure the variation in excess hyperbolic speed at the fly-by reveals an optimum
value, in terms of maximising the energy change from before to after the gravity assist. The
maximum is at approximately 10 km/sec V.
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Figure 4.3.11. The effect of initial orbit excess hyperbolic speed on gravity assist effectiveness
at Venus for different initial aphelions. In the upper figure, different initial orbit aphelion—
perihelion relationships result in variations in the relationship between speed with respect to
the central body (at major body orbital radius) and excess hyperbolic speed at the major body.
In the lower figure, the optimum excess hyperbolic speed that maximises energy change is
dependent on the details of the initial orbit (aphelion and perihelion). The lower initial
aphelion is more effective at energy change at lower ¥, when compared with the higher
aphelion case.
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Figure 4.3.12. The effect of initial orbit perihelion and eccentricity on gravity assist effective-
ness at Earth. The upper figure shows that, as in the example of Venus, lowering the perihelion
of the initial orbit results in a maximum in the achievable post-gravity assist semi-major axis.
The centre figure shows that when related to the excess hyperbolic speed of the Earth approach
orbit the maximum semi-major axis occurs at between 6 and 7 km/sec. In the lower figure, in
the case of Earth gravity assist, the optimum excess hyperbolic speed that maximises energy

varies between 8 and 10 km/sec for aphelions between 1.1 and 1.3 AU.
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1.3 AU, for a range of perihelions and thus excess hyperbolic speeds. In this case the
fly-by altitude above the surface of the Earth is 400 km.

The effect of fly-by gravity assists at a range of bodies will now be considered
and compared. A higher speed for the major body is advantageous in achieving a
greater change in the spacecraft orbit. This implies that major bodies at lower orbital
radius may be used beneficially when compared with those at greater radii. However,
the total scenario must be taken into account, as for a given orbit the excess hyper-
bolic speed and flight path angle will vary with the orbital radius of the major body
at which the gravity assist is executed.

The efficiency of various major bodies in effecting orbital change can be illus-
trated within the Jovian moon system. The comparisons can be made in two ways.
The first is to consider the four major Jovian moons in terms of their different orbits.
However, to explore the effects of the fly-by geometry and orbital location, each
moon is notionally assigned the same gravitational constant and radius (that of
Ganymede for the results presented in Figure 4.3.13). A comparison can then be
made using the true gravitational constants and radii. The properties of these moons
are shown in Table 4.3.1.

The following comparisons (Figures 4.3.13 and 4.3.14) were made using an
initial orbit with apocentre at 5 million km and pericentre varied from just below
the moon’s orbital radius down to approximately 200,000 km. The fly-by altitude in
all cases is 400 km.

If the equal mass case is examined, then for a given pericentre the inner moons
provide greater orbit-raising than the outer moons. As the pericentre is raised, the
outer moons eventually provide the greatest orbit-raising, as the pericentre is raised
above that of the inner moons. However, this is a compound effect and not just a
function of the orbital velocity of a given moon, because the comparison is made
with the same initial orbit and so the excess hyperbolic speed is different at each
moon considered.

When the true gravity fields and fly-by radii are considered, the relative effec-
tiveness of Europa is reduced in comparison with lo, as lo is considerably more
massive than Europa. However, the relative effectiveness of Ganymede is improved,
as it has the greatest mass of the set. Figure 4.3.14 shows the change in orbital energy
when the true gravity fields are considered.

Case of a 2D gravity assist with AV applied at pericentre

The velocity at pericentre of the fly-by can be incremented with an impulsive AV
VDVperire/ = Vperirel +AV (4318)
The modified excess hyperbolic speed is given by:

2 12 :uplanet
VDVoc - VDVperire] -2
Tperirel
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Figure 4.3.13. The effect of gravity assists at different Jovian moons for the same spacecraft
orbits. The upper figure compares the effectiveness of orbit-raising at three notionally identical
Jovian moons, in terms of their mass. Each is given the mass of Ganymede. The initial semi-
major axis (sma-0) is shown for comparison with the post-gravity assist values at Ganymede
(sma-G), Europa (sma-E) and lo, (sma). The corresponding post fly-by apocentres are also
shown (Ap-). The lower figure compares the effectiveness of orbit-raising for the three real
Jovian moons, including the different local gravity and fly-by radius effects. The initial semi-
major axis is shown for comparison.

Table 4.3.1. Properties of the Jovian moons.

Semi-major Inclination Radius Gravitational Period
Moon axis (km) Eccentricity (deg) (km) parameter (m3s—2) (days)
To 421,600 0.0041 0.04 1,821 5.960 % 1012 1.77
Europa 670,900 0.0101 0.47 1,560 3.203 x 1012 3.55
Ganymede 1,070,000 0.0015 0.195 2,634 9.887 %1012 7.15
Callisto 1,883,000 0.007 0.281 2,400 7.180 % 1012 16.69
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Figure 4.3.14. The effect of gravity assists on orbital energy at different Jovian moons for the
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The implied B plane distance for such a departure speed is:

B o Mplanet 2 Mplanet 2
dist — Fperirel + 12 - 12
DVoo DVoo

where 7, 18 the specified pericentre radius for the flyby, and g4, is the gravita-
tional constant for the major body.

2
The eccentricity of the departing orbit is eppy = 1 + M .
Kplaner
The total deflection angle of the modified excess hyperbolic velocity vector, if the
spacecraft had possessed the corresponding approach velocity to yield the modfied
velocity at pericentre, is given by:
o = 2xsin”! (1> (4.3.19)
€py
Here a,/2 is the deflection of the asymptotic departure vector from the pericentre
velocity vector direction. The flight path angle of the approach relative velocity
vector with respect to the major body velocity vector is that of the non-AJV
assisted case:

r B tan71 ( V % sin(F - Fplam’t) )
relp —
? V x COS(F - F[)[anct) - Vplanet

However, the flight path angle of the departure velocity vector now uses a modified
deflection:

(4.3.20)

r _ tanl( Voveo *¥sin((a+ ay)/2 + ) >
departure Vp[anet + VDVoo * COS((Oé + O‘2)/2 + rrelp)
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Figure 4.3.15. Velocity vector addition at the AV assisted fly-by.

This is illustrated in Figure 4.3.15. The departure velocity is given by:

Vdeparmre = Sqrt((VDVoc * Sin((a + 012)/2 + Fre/p))2

+ (Vplanet + VDVoo * COS((Oé + 042)/2 + rre/p))z) (4321)
Examples of the effectiveness can be seen by considering the example of a Jupiter
gravity assist. This is illustrated in Figure 4.3.16. The method would be expected to
be most beneficial when it is possible to apply the manoeuvre at pericentre in a strong
gravity field. Jupiter gravity assist is well suited to such a manoeuvre.

An example is taken of a Jupiter-crossing orbit, typical of that obtained after a
gravity assist from a two-year Earth-resonant orbit with aphelion AV applied (see
Chapter 5 for details of such a mission). The nominal parameters at Jupiter are:
aphelion, 5.012 AU; perihelion, 0.997 AU; Vinfinity at Jupiter, 6,176 m/s. Jupiter

rendezvous is at 4.95 AU in this example.

4.3.2 Plane-changing by gravity assist

The preceding analysis is confined to the case where the fly-by takes place in the same
plane as the body’s orbit about the central body. However, this is not the only
possibility. For a given, targetted fly-by pericentre radius, the intersection of the
forward projection of the approach hyperbola with the B plane can take place at
any point on a circle around the planet. A plane can be defined — the approach
plane — as that plane containing the velocity vectors of the planet or major body
targetted for the fly-by, and the asymptotic approach velocity vector of the space-
craft. This plane definition assumes an approach towards the centre of the target
planet. The approaching velocity vector relative to the target major body (calculated
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Figure 4.3.16. The effectiveness of AV at pericentre of Jupiter fly-by. The upper plot show the
post-gravity assist orbit aphelion for two example fly-by altitudes at Jupiter (400,000 and
500,000 km). As the applied Jupiter fly-by AV is increased, the post-gravity assist aphelion
increases such that it passes through plus and then minus infinity as a heliocentric escape
condition is reached. A significant increase in the departure V', relative to Jupiter is also seen
as the AV is increased. This is seen in the lower plot, for two fly-by altitudes. The last plot
(seen on next page) shows the effect of the fly-by altitude with respect to Jupiter on the
departure V. In this example, a AV of 100 m/s at Jupiter pericentre is assumed. Reducing
this altitude significantly increases the effectiveness of the manoeuvre. The ratio of increase in
departure V to AV varies between approximately 3.5 and 6.8 as fly-by pericentre altitude
reduces from 500,000 km to 60,000 km.
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Figure 4.3.16. (cont.)

from the centre of the major body target) is therefore also contained within this
approach plane. The approach plane and B plane are therefore perpendicular.

In Figure 4.3.17 an axis set, Xp, Yp, Zp is shown. The X axis lies along the
intersection of the approach and B planes and the Y axis parallel to the direction of
the approaching relative velocity vector. The Z axis is perpendicular to the approach
plane. The Z axis is aligned with that subsequently defined in Figure 4.3.19. The Beta
angle, f3, is the angle between the X axis and the location of the intersection of the
approach relative velocity vector with the B plane. Cases 1 and 2 in the figure are
therefore at 3 of 0 and 90°.

In order to achieve an offset in the B plane, such as shown in approach case 2 in
Figure 4.3.17 a small manoeuvre is performed by the spacecraft when at a very large
distance from the major body. The resulting angular deviation in the approaching
relative vector direction may be effectively neglected for this initial planning purpose.
The key point is the ability to achieve a 360-degree range of Beta angles.

In certain situations it may be that the spacecraft’s initial orbit is co-planar with
that of the planet or major body, in which case the approach plane and the orbit
plane of the major body are the same. The plane of the fly-by, with respect to the
approach plane, is given here by 3. Angles of 0° and 180° correspond to the 2D case
described previously. Angles of 90° and 270° achieve a maximum out of approach
plane deflection after the fly-by (a deflection relative to the approach plane).

The deflection angle of the fly-by relative velocity vector remains unchanged
from that in the 2D fly-by case:

1
a=2x%sin"! ()
e

where the eccentricity of the approach orbit relative to the major body, e, depends on
the pericentre and approach excess hyperbolic speed.
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Figure 4.3.17. Definition of the B plane and approach plane.

Changes in this angle vary the effect of the fly-by-induced gravity assist on the
departure orbit. The key parameter in this generalised 3D case is, as well as the post
fly-by semi-major axis and eccentricity, the inclination of the departure orbit with
respect to the central body.

It is now necessary to define a further plane, the fly-by plane, as the plane
containing the approaching asymptotic velocity vector relative to the major body
and also the departing asymptotic relative velocity vector. This plane is defined by
the Beta angle, described previously.

It may be assumed that this deflection angle can be expressed in terms of two
orthogonal rotations, firstly an angle «, in the approach plane, and then an angle «
perpendicular to this plane. The relationship between the Beta angle, 3, and these
rotations can be seen in Figure 4.3.18.

The relationship between the deflection angle components and the angle in the B
plane, /3, is now obtained by spherical trigonometry. It should be noted that oy is
negative as shown in Figure 4.3.18. A Beta angle between 90° and 270° would be
needed to achieve a positive angle.

Spherical trigonometry gives the following relationships:

tan ay = tan acos(m — ) = —tanacos (4.3.22)
and

sin o, = sin asin(m — 3) = sin asin 3 (4.3.23)
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Figure 4.3.18. The fly-by plane and the relationship between Beta angle, deflection angle,
deflection angle components and the approach plane.

These equations give the two angles defining the deflected direction of the departing
body relative velocity relative to the approach plane.

Once the fly-by plane is known, by specification of the Beta angle, the deflection
is effectively assumed to take place at the centre of the planet (as assumed in the
previous 2D case calculations).

In Figure 4.3.19, the planet velocity, Ve, and the initial relative velocity
vector lie in the approach plane. The initial angle between these two vectors, in
the co-planar, 2D case was given by I',,. In the 3D case where the approach
plane is not necessarily the orbit plane of the planet a more general notation is
adopted, and this angle is defined as 6. V' is the departing velocity in Figure 4.3.19.

The previous expressions are now modified as follows. Firstly, a frame of
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Figure 4.3.19. Definition of deflection angles and axis set.

reference is defined where X lies along the major body’s velocity vector. Y is per-
pendicular to this and lies in the approach plane, and Z is orthogonal to the
approach plane and completes the right-handed axis set. For near circular planet
orbits Z is almost aligned with the negative spacecraft orbital angular momentum
vector.

The fly-by Beta angle is allowed to take any value, by allowing the spacecraft’s
approach velocity vector to be displaced slightly from, but parallel to, the approach
plane. The fly-by plane is defined in this way, but the effect of the fly-by will be
evaluated by calculating the change in relative velocity vectors with respect to the
major body. In this regard, the actual displacement of the approaching relative
velocity vector does not play a role in the vector geometry that determines the
subsequent departure calculations.

A vector algebra approach is now used to evaluate the effects of the fly-by. The
approach velocity vector is expressed in the above frame as follows:

Vap = Vape + Va9 + Vepe?

Vapx = Vplaner + V., cosf (4324)

V

apy = Voosind and Vip- =0 (4.3.25)

where V)4, is the speed of the major body and V is the excess hyperbolic speed of
the spacecraft with respect to that body. 6 is the angle between the approaching
relative velocity asymptote and the major body velocity vector. It is therefore an
angle contained in the approach plane. In the previous co-planar, 2D case notation
this is the angle T',,;.

The departing velocity vector can now be expressed in the previously defined
frame as follows:

V=rx+ VyJ} +V.z
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Vy = Vitaner + Voo €08 iy c08(60 4 ) (4.3.26)
Vy = Vi cosay,sin(f + ay) (4.3.27)
Vy = Vysina, (4.3.28)
The departure velocity is given by:
Viepariwe = \/ (V3 + V3 + V) (4.3.29)
Therefore:
Vdeparture = \/( Vilmr + V2 + 2V ptaner Voo €08 0 cOS(6 + ) (4.3.30)

The angle of the departing relative velocity vector with respect to the major body
velocity vector is:
0" = cos ' (cos a,; cos(d + ay)) (4.3.31)

The rotation of the plane containing the spacecraft and major body velocity vectors,
about an axis along the major body’s velocity vector, is given by:

V
¢ =tan"! (Z) (4.3.32)
Vy
If the analysis is first performed by assuming that the spacecraft’s initial orbit is co-
planar with that of the fly-by body, the velocity vector of the spacecraft initially lies
in the body’s orbit plane. The approach plane and major body orbit plane then
coincide. The resulting post fly-by inclination relative to the major body’s orbit
plane can then be calcuated by:
. -V
ideparture = Sln_l ( z ) (4333)
Vdepariure
This assumes that the node of the new orbit lies at the planet’s location at the fly-by.
The evaluation of inclination however, can be performed for any orientation of
the approach plane with respect to the major body’s orbit plane.

Calculation of initial relative conditions

In the previous discussion the evaluation of the actual initial relative velocity vector
that defines the initial excess hyperbolic velocity was not considered. The co-planar,
2D case may rely on the use of flight path angles. However, in a general 3D case, the
orbits of the spacecraft and planet will not be co-planar.

Firstly, the notation will be slightly modified such that the initial approach plane
axis set, x, y, z, is now re-named Xy, Vo, zo. This will become useful when multiple
gravity assits are considered in a subsequent section. A new frame of reference is
defined where X, lies along the major body’s velocity vector. Y, is perpendicular to
this and lies in the plane containing the major body velocity and position (its orbit
plane), and Z,, is orthogonal to this plane and completes the right-handed axis set.

In Figure 4.3.20, 6,, is angle between the projection of the initial relative velocity
vector into the body’s orbit plane and the body velocity vector, and ¢,, is the angle
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Figure 4.3.20. Definition of relationships between the initial approach plane and major body
orbit plane.

between this projection and the actual initial relative velocity vector. The angle
between the major body orbit plane and the initial aproach plane is given by v,,.

For such a fly-by, it is assumed that the initial velocity vectors of the spacecraft
and major body will be defined. The orbital ephemeris will define these values at the
epoch of the fly-by. Clearly, the orbits must intersect at that epoch. The direction
cosines of the initial approach velocity vector to the planet, V,,, relative to the planet
orbit frame, then allow the calculation of the angles depicted in the figure.

ap:(@°XM)XM+(Vap°?M) }}M+(Vap°ZM)ZM (4334)

The relative velocity (the excess hyperbolic speed) is expressed in this frame as:

Vrel = (Vap°XM) XM + (Vap' YM) )}M + (Vap'ZM) ZAM - VplanetXM (4335)
Then:
(Vap Y1)
tanf,, = —= M
(@'XM - Vplanet)
Vap*Zua)
taan = LA]W
(Vap* Ynmr)
(Vu .ZAM)
sin ¢y, = == (4.3.36)

\/(@'XM - Vplanet)2 + (@' YM)2
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The angle between the initial relative velocity vector and the planet or major
body velocity vector is given by:

0 = cos ' (cos ¢y, cos by) (4.3.37)
Calculation of the post-fly-by orbit

The previous expression for inclination, given in equation 4.3.33, is the inclination of
the post-fly-by orbit relative to the approach plane. This can be converted to an
inclination relative to the major body’s orbit plane using the angle v, derived
previously and the values of the departure velocity, Vy, Vy and V, calculated
previously in a frame defined by the initial approach plane. Recalling that previously
X, y, z notation is now xo, yo, zg, ¥y, = V)9 and V. = V', (i.e., equations 4.3.27 and
4.3.28).

Vym = Vyocos(Par) — Vzosin(thy) (4.3.38)
VZM = VZ() COS(wM) + Vy() Sln(wM) (4339)
. . -V
ldeparmre = Sin 1 (Vd,pjjurl> (4340)

The node of this inclined orbit (relative to the major body orbit plane) is defined by
the position of the fly-by. The inclination may also be calculated with respect to the
ecliptic, from consideration of the major body’s orbit plane and the location of the
fly-by with respect to the ascending node of the major body orbit.

The departure velocity has already been found from equation 4.3.29. This allows
the energy and semi-major axis of the post fly-by orbit to be calculated.

Having now obtained the departure velocity with components relative to the
major body’s orbit plane it is possible to calculate the eccentricity of the departure
orbit. The angular momentum of the departure orbit, per unit mass, is given by:

h= Tplanet N4 (4341)

where 7,4, 18 the position vector of the major body. This can be expressed in the
X, Yy, Zyy axis set as:

rplanet = rplanel sin rplzmel XM - rplanel Cos Fpl(mel YM
where I, 1s the flight path angle of the major body. For a circular orbit this will

be zero.
The magnitude of the angular momentum is given by:

h= p[anet\/szM + (VXM COsS 1—‘p[anet + VYM sin rplanet)z (4342)
which reduces to

h= planet (VZZM + V%(M) (4343)
for the case of a circular planetary orbit.

The eccentricity of the spacecraft departure orbit may now be calculated from
the expression:

h=\/pa(l —e?)
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Examples of 3D gravity assist at the Jovian moons

Having seen the analytical predictions regarding orbit change for a 3D gravity assist,
the effects of plane-changing gravity assists can best be assessed be examining specific
cases. An example is a gravity assist at the Jovian moon Ganymede, which lies in a
near circular orbit about Jupiter, with semi-major axis at 1.07 million km.

A range of initial orbits can be considered, each crossing Ganymede’s orbit. In
the following examples, the apocentre is 5 million km, and a range of pericentres
from 500,000 km to 900,000 km are considered. The object is to generate a range of
excess hyperbolic speeds with respect to Ganymede.

It is instructive to examine the change in orbital ephemeris for each pericentre.
The initial orbits are then as shown in Table 4.3.2. The flight path angles and speeds
are those of the initial Jupiter-centred orbit, when crossing Ganymede’s orbit.

Figure 4.3.21 shows the effect of Beta angle on post-fly-by speed relative to
Jupiter. This is done for a range of initial orbits about Jupiter given in
Table 4.3.2, each defined by a different pericentre and therefore different hyperbolic
speed relative to Ganymede. In each case it is assumed that the initial spacecraft
orbit is co-planar with the orbit of Ganymede.

Figure 4.3.22 shows the affect of Beta angle on apocentre, pericentre and inclina-
tion after the fly-by.

An alternative visualisation (Figure 4.3.23) of the effect shows the achievable
apocentre and inclination in a polar plot against Beta angle. Apocentre is along the
radial axis and Beta the polar angle. Loci of semi-major axis/inclination for different
pre-fly-by pericentres are shown in Figure 4.3.24.

It is possible to find a Beta angle that maintains the Jupiter relative speed, after
the fly-by (that is, the semi-major axis is unchanged). This idea is useful if the
spacecraft is to stay in a resonant orbit (the same orbital period about Jupiter).
This strategy is described in detail in the next sections regarding multiple gravity
assists. A 90-degree § angle (that maximises inclination change) results in some small
change in the departure speed relative to the central body. Constant departure speeds
(relative to the major body) that are needed to maintain the same resonance can
generally be maintained by high 3 angles (approaching 90°). The exact value of 3
required depends on the approach orbit.

Table 4.3.2. Approach orbit parameters for plane-changing gravity assist at Ganymede.

Pericentre (km) Speed at Ganymede Vinfinity Flight path angle
(km) (m/s) (m/s) (deg)

500,000 13,803.64 9,853.09 43.445

600,000 13,833.40 8,900.53 38.140

700,000 13,862.06 7,954.81 32.829

800,000 13,889.67 6,990.59 27.282

900,000 13,916.30 5,975.76 21.114




194  Special techniques [Ch. 4

14800

14600

14400

14200 —e—500000
% 14000 —=— 600000
E —+— 700000
> 13800 x 800000

13600 —%— 900000

13400

13200

13000 A

0 50 100 150 200 250 300 350 400
Beta(deg)

Figure 4.3.21. Post-Ganymede gravity-assist Jupiter-centred speed versus fly-by Beta angle,
evaluated for a range of approach orbit pericentres from 500,000 to 900,000 km. Values of 3 at
zero and 180° result in minimum and maximum velocity after the gravity assist.

4.3.3 Multiple gravity assists and resonance

The previous sections have shown the limitations on orbit change that may be
achieved with gravity assist manoeuvres. However, gravity assists can be used in
sequence to perform large modifications to the spacecraft orbit.

A particularly interesting phenomenon may be utilised involving repeated
gravity assists at the same planetary body or moon.

This is the resonant gravity assist sequence. If a spacecraft executes a gravity
assist its orbit on departure from that body will be modified. Generally the semi-
major axis and thus the orbital period will be modified. It is possible to plan that the
spacecraft revisits this same body at some subsequent epoch. Clearly, the phasing of
the two orbits must be considered. A simple solution is for the spacecraft to reach,
after its previous gravity assist, an orbit that is resonant with the body in question, so
that after an integer number of revolutions the spacecraft will re-encounter the body.
Resonance ratios of n : 1 (n revolutions by the spacecraft, 1 revolution by the body),
n:m (m revolutions by the body) or 1 : m can be used for this purpose. An inter-
esting application is discussed in the references for this section.

In such a scenario, at the re-encounter the spacecraft will approach the body
with the same relative velocity vector (or excess hyperbolic velocity vector) as it left
after the previous gravity assist. A coplanar, 2D case is considered in the following
analysis. The scenario is illustrated in Figure 4.3.25.

If the spacecraft now passes by the body with the same pericentre radius as the
last, the hyperbolic deflection will also be the same as the last fly-by. However, the
departing flight path angle will once again be modified with respect to the approach-
ing flight path. Therefore, the absolute velocity, and consequently the semi-major
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195

apocentre and
pericentre change, versus fly-by Beta angle, evaluated for a range of approach orbit
pericentres from 500,000 to 900,000 km. A 3 angle of 90° maximises the inclination change,
but yields a small change in the subsequent apocentre and pericentre (and speed or semi-major
axis). Inclination change here is measured with respect to the initial approach plane, which
coinsides with Ganymede’s orbital plane.
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Figure 4.3.23. Post-Ganymede gravity-assist Jupiter-centred inclination and apocentre
change, polar plot versus fly-by Beta angle, evaluated for a range of approach orbit
pericentres from 600,000 to 900,000 km. In the upper illustration the Beta angle in this plot
ranges through 360°. Apocentre radius is plotted for a range of initial orbit pericentres and
therefore excess hyperbolic speeds at the target moon. In the lower figure, inclination is plotted
(radial axis) for a range of initial orbit pericentres. Beta is the polar angle. Inclination change
varies between approximately +5° over the range of Beta angles.
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Figure 4.3.24. Post-Ganymede gravity-assist Jupiter-centred inclination and apocentre change
loci, evaluated for a range of approach orbit pericentres, between 700,000 and 900,000 km.
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Figure 4.3.25. Relative velocity in a resonant orbit.
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Figure 4.3.26. Limiting fly-by geometry. In this case the approach flight path is zero but after
deflection the velocity is reduced. Therefore, speed after fly-by cannot be increased.

axis is further modified. Close inspection of the following equations for post fly-by
speed shows that when the approaching flight path is zero or 180° it is no longer
possible to progress in the previously accomplished increase or decrease of the speed
after the fly-by. This phenomenon is illustrated in Figure 4.3.26. The flight path
angle of the departure velocity vector in the case of a zero flight path angle is
given by:

—1
Fdeparture = tan (

Vo *sin(a 4 Tyyp) ) ~tan! ( V. * sin(a) )
Vplaner + Vi * COS(a + Frelp) Vp/anet + Vo * COS(a)

(4.3.44)
The departure velocity is given by:
Vdeparture = Squ((Voc * Sil’l(O{ + rrelp))z + (Vphmet + Voo * COS(Oé + rrelp))z)
= 5qrt((Voo # 5in(a))? + (Vpianer + Vo * c08(ar))?) (4.3.45)

Where the flight path angle is zero and so the approach speed is greater than the
major body speed, the result after fly-by is always to reduce the post-fly-by speed.
Such a scenario arises when the initial orbit has pericentre below the fly-by body and
apocentre above. Progressive fly-bys are used to increase the semi-major axis until
this limiting case is met. This occurs when the pericentre radius reaches the orbital
radius of the major body (in a circular orbit case for the major body).

The location of the fly-by is fixed (with respect to the central body) by the
resonance requirement. The maximum semi-major axis that may be obtained is:

Vmax = ((V:)o + Vplanet)) (4346)

and therefore:
1

A — (4.3.47)
o 2<1_Vr2nax>
roon
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Figure 4.3.27. Apocentre and pericentre evolution for a Ganymede gravity assist sequence in
the Jovian system. The initial orbit is apocentre = 20 million km, pericentre = 900,000 km.
This orbit is typical of a capture orbit after the initial insertion manoeuvre. Ganymede’s
orbit = 1.07 million km.

Conversely, if a semi-major axis reduction sequence is being employed, the minimum
apocentre speed is given by:

Vinin = ((Vplanet - Voo)) (4348)

defining the minimum semi-major axis. In this case the flight path angle is 180°.

An example of a resonant series is shown in Figure 4.3.27. The initial pericentre
lies just below Ganymede’s orbit, and the excess hyperbolic speed with respect to
Ganymede is 6.65km/sec. In order to maintain resonance, the post-gravity assist
semi-major axis is tuned by adjusting the altitude of the fly-by pericentre. A
minimum altitude of 200 km above Ganymede’s surface is allowed. The resonant
sequence adopted is shown in Table 4.3.3.

The evolution of the Jupiter relative orbit for such a sequence of resonant
gravity assists is shown in Figure 4.3.28. Only the first four gravity assists and the
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Table 4.3.3. Example of a resonant gravity assist sequence at Ganymede.

Target revs Orbit Revs Time between fly-bys
(days)

221.70
58.41
30.74
20.04
12.53
21.23
77.85
61.68
20.33
13.00
19.05
25.05

6.93
22.35
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Figure 4.3.28. Examples for four resonant gravity assists at Ganymede.
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resulting orbits are shown. The near circular orbits of the four major jovian moons —
Io, Europa, Ganymede and Callisto — are shown. As the pericentre radius with
respect to Jupiter is progressively reduced after each fly-by, the argument of peri-
centre is also changed, causing a progressive rotation of the line of apses.

4.3.4 Tisserand’s criterion

Comets in the outer Solar System often pass close to Jupiter. In this situation a
gravity assist fly-by takes place. Such encounters are not always precisely predicted
or even observed. Therefore, if a comet is observed before and after a suspected
gravity assist, some verification is helpful to determine if indeed this is the same
comet under observation.

Tisserand derived a criterion from which it is possible to compare such
perturbed orbits and deduce whether the relationship between them may be due to
a gravity assist at a planet. The basis of the method is the circular, restricted three-
body problem, details of which are described in previous section of this chapter. A
discussion of Tisserand’s criterion may be found in the references given for this
section.

Recalling Jacobi’s integral, V> +2U = —C — where C is a constant of the
motion known as the Jacobi constant, V" is the speed with respect to the rotating
frame, defined by the motion of the planet about the central body in this case, and w
is the angular velocity of that frame — Tisserand’s criterion may be derived.

When motion is considered at a sufficiently large distance from the fly-by planet,
its gravity field may be neglected. Also, the speed in the rotating frame may be
converted to speed in an inertial frame, V;-. Here r, is the distance from the
central body. u is the gravitational parameter of the central body.

2
Vie—2w(re AVig) 2 —F=—C (4.3.49)

I'c
This relationship is obtained from equation 4.1.35 but now the gravity potential of
the major body is neglected.

. . . . 2 .
Then, using the basic relationships, V%C — 2t fom orbital energy (where ‘a’
a

rc
is the semi-major axis) and the angular momentum per unit spacecraft mass,

h=+/pa(l —e?), (where ‘e is the eccentricity) the above equation becomes
_E  ouhcosi=—C (where ‘1’ is the inclinaion), and so a relationship between
a

semi-major axis, eccentricity and orbital inclination can be found that is preserved
when comparing orbits before and after the gravity assist. If the motion is assumed
to be planar (and the inclination is zero), the relationship simplifies further:

LD N D Y _ g2
“u 2wy pa (1 —ey) = “ 2w/ pay (1 — e3) (4.3.50)

where 1 and 2 denote the states before and after gravity assist. This relationship can
be used to examine the relationship between orbital period and pericentre before and
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after a gravity assist. As such, it may be used as a design aid in planning a sequence
of gravity assist manoeuvres. This may be particularly useful when all the permuta-
tions of gravity assist routes are considered, either in the case of an interplanetary
transfer, or sequences of gravity assists at the Jovian moons. This technique has been
used in the application to the design of gravity assist sequences at Jupiter, notably
developed at JPL (Bonfiglio et al.) and Purdue University (Longuski et al.) (see
references for this section).

If a particular planet is targeted for a gravity assist, and an initial, intersecting
orbit defined, then the relative speed, or excess hyperbolic speed, may be calculated.
This is a useful way to categorise the orbit. This may be obtained as follows.
The planet or major body orbit is assumed circular, and the calculation simplifies

2
to Vi= KB for the spacecraft and Vlz,,am — P for the planet, where
Fse Ay r planet
subscript ‘s¢’ denotes the spacecraft orbit.
Then V2, = V2 + Vlz,,am = 2V Vpianes €08 ', where the flight path angle of the

spacecraft orbit at the planet radius is given by:

a‘vc( 1— e%l,‘)

r
planet
rplanet <2 - )
g

The velocity relative to the planet may therefore be calculated. This is equivalent to
the excess hyperbolic speed (in the patch conic approximations).

For a given initial spacecraft orbit and therefore for a given excess hyperbolic
speed corresponding to the initial semi-major axis and eccentricity, the evolution of
the possible orbits under repeated gravity assists at the target major body may be
evaluated. The locus of the evolution of the orbital elements is given by the previous
relationship, Tisserand’s criterion, equation 4.3.50. This result defines a relationship
between semi-major axis and eccentricity, or may be expressed as an apocentre—
pericentre or orbit period—pericentre relationship. The use of the orbit period—peri-
centre relationship has been proposed as a useful relationship for transfer design (see
references for this section).

This relationship can be evaluated at the Earth, for a range of excess hyperbolic
speeds. Figure 4.3.29 shows the evolution of orbital period against pericentre radius.

Clearly, the sequence terminates when the perihelion rises to the orbital radius of
the Earth at 1 AU.The equivalent relationship may be in terms of apocentre relation-
ship to pericentre, shown in Figure 4.3.30.

The second, apocentre, plot shows the effect of the apocentre limit (it must
exceed Earth radius), and as such limits the minimum pericentre radius for a given
excess hyperbolic speed.

The maximum ‘step’ along such a curve, achieved at a gravity assist at the major
body in question, is limited by the closest allowable fly-by distance. Close fly-bys
result in greater progress along the curve. Also, because the same body is used for the
fly-bys, resonance must be considered. Therefore, arbitrary steps are not possible but
must be targeted to the closest resonant orbit. In fact when a general n: m resonance

cosI' =
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Figure 4.3.29. Orbital period—pericentre relationship for gravity assist at Earth for a range of
excess hyperbolic speeds between 3,000 and 5,000 m/s.
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Figure 4.3.30. Apocentre—pericentre relationship for gravity assist at Earth for a range of
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Figure 4.3.31. Apocentre—pericentre relationship for gravity assist at Venus for a range of
excess hyperbolic speeds from 3,000 to 7,000 m/s.

is considered, it is possible to achieve a return at a second intersection of the two
orbits and this therefore increases the flexibility of the sequence.

The same type of relationship for gravity assist may be found at Venus, as shown
in Figure 4.3.31, for a range of excess hyperbolic speeds in which the limiting
apocentre radius is that of Venus orbital radius. A sequence of gravity assists,
starting from Earth and progressing to Venus, can be considered. Figure 4.3.32
shows the overlap of the orbits with the associated excess hyperbolic speeds at
Earth and Venus.

For a given excess hyperbolic speed at Earth, an apocentre—pericentre relation-
ship may be found crossing the excess hyperbolic speed curves at Venus. An example
would be to consider the 4 km/sec excess speed at Earth. With aphelion at 1.5¢8 km
(1 AU) a perihelion of approximately 9.2e7km can be achieved. This orbit crosses
Venus, where an excess hyperbolic speed of 7 km/sec can be achieved (in fact, greater
excess speeds at Venus are possible in this case). This curve may be followed
(implying a sequence of gravity assists at Venus), until perihelion is lowered to
just over 5¢7km. This is sufficient to achieve a rendezvous with Mercury. This
analysis relies on the assumption that all orbit are co-planar.

This technique allows the achievable transfers to be quickly assessed, and as
such is a valuable aid to planning gravity assist sequences.

A further interesting example can be considered at Jupiter’s moons. Gravity
assist loci at Callisto, Ganymede and Europa may be evaluated, and in this case
the overlapping loci indicate the multitude of options for gravity assist combina-
tions. If the target is to inject to an orbit at Europa (from an orbit with initially high
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Figure 4.3.34. Period—pericentre relationship for gravity assist at Europa, Ganymede and
Callisto for a range of excess hyperbolic speeds. The same range as Figure 4.3.33 is considered.

apocentre), gravity assist sequences at Ganymede are clearly effective in reducing
pericentre and achieving reduced apocentre. As pericentre drops below Europa’s
orbital radius, gravity assist there can be considered, as for a subsequent pericentre
a lower apocentre is achieved than when following the locus at Ganymede.

This case is discussed further in the context of a detailed mission design example
in a later chapter.

4.3.5 Multiple gravity assists for plane-changing

The previous sections discussed multiple gravity assists in the context of targeting
large changes in semi-major axis and eccentricity. However, this phenomenon can
also be utilised to achieve an accumulated inclination change for the spacecraft.

A particularly useful effect may be achieved from repeated gravity assists at the
same planetary body or moon. A fly-by may be designed such that the effect of
the gravity assist is to increase inclination and also to achieve a velocity relative to
the central body that yields a resonant orbit with respect to the major body used. In
this situation, the spacecraft will return to the major body, after some integer
number of revolutions about the central body, with the same relative velocity with
which it previously departed, providing that no intermediate manoeuvres are applied
or perturbations from other sources occur. A second fly-by then occurs, which may
be used to further increase inclination. The post-fly-by velocity relative to the central
body can be maintained by choosing an appropriate Beta angle (as discussed in
Section 4.3.2).
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It is assumed that in the case of the first gravity assist of the sequence, the
approach plane is defined by the spacecraft’s velocity and that of the target major
body. It is possible for the approach velocity to lie in the orbit plane of the major
body, in which case the approach plane is co-planar with that of the orbit of the
major body. However, in general these planes will by separated by a rotation about
the major body velocity vector, the angle v, discussed in Section 4.3.2.

After a gravity assist, the plane containing the spacecraft and major body
velocity vectors is rotated by and angle, ¢, out of the approach plane, as previously
given by equation 4.3.32 in Section 4.3.2. The details of such a fly-by are described in
that section. The fly-by Beta angle is allowed to take any value, by allowing the
spacecraft approach vector to the major body to be displaced slightly in a direction
perpendicuar to the approach plane. If the plane change is to be maximised then the
Beta angle will be 90°. In the case of resonance, a solution is sought that will also
preserve the velocity of the spacecraft. This constraint will define the Beta angle, and
it will no longer be 90°, but in practice it is still likely to lie close to 90°. If the
examples in Section 4.3.2 are examined, a Beta angle of 90° results in a small change
in velocity relative to the central body.

The geometry of the new approach plane and second fly-by after such a resonant
orbit are illustrated in Figure 4.3.35. The initial axis set used in conjuction with the
first approach plane prior to the first fly-by was denoted X, Yy, Z,. After the gravity
assist a new set, X', Y’ and Z’, may defined, simply rotated by the angle, ¢, about
the major body velocity vector. This is the departure plane — the plane containing the
velocity vector of the spacecraft after the fly-by and the velocity vector of the major
body. For a resonant case where the spacecraft returns to the same major body, with
no intermediate manoeuvres, then this is also the new approach plane for the second
fly-by at that planet. The approach geometry of the second fly-by is now defined by
the departure geometry from the first fly-by.

Recalling that V., is the speed of the major body, V', is the excess hyperbolic
speed of the spacecraft with respect to that body, and 6’ is the angle between
the approaching relative velocity and the major body velocity vector. In

Vp!:mul

Plane containing spacecraft and major body
velocity vectors pre second fly-by
The second approach plane

Figure 4.3.35. The definition of deflection angles in a multi-gravity assist case.
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Section 4.3.2 the value of this angle was found to be 6’ = cos ™' (cos a,cos(f + ay)),
where o and a, are the deflections from the first fly-by.

In a similar manner to the single fly-by case, the departing velocity vector can be
expressed in the approach plane defined frame as follows:

VX’ = V[’l{met + Voo Cos Ol¢2 COS(G/ + (152) (4351)
Vyr = Vg cos agsin(0 + ag) (4.3.52)
sz = Voo sin (7% (4353)

where ay, and «y, are the deflection angles from the second fly-by. X', Y', Z' are
directions defined by the previous departure plane, such that X’ and Y’ lie in that
plane. The deflection angles are not necessarily the same as in the first fly-by, as the
Beta angle may be different, or the total deflection angle, «, could also be modified
(for example, by change in pericentre altitude of the fly-by).

The flight path angle of the departing relative velocity vector with respect to the
major body velocity vector is:

0" = cos ™! (cos gy cos(0 + apy)) (4.3.54)

If resonance is to be maintained then the departure velocity relative to the central
body must equal the arrival velocity. Also, the relative velocity is maintained. Con-
sidering the velocity vector triangle describing the relationship between relative
velocity, departure velocity and major body velocity, it may be seen that the angle
between the relative velocity vector and the major body velocity vector must remain
a constant. Therefore, in the previous expression, #' = 0",

This implies the following relationship between the two deflection angles:

cos®’

(cos(8" + ay)) (4.3.55)

CoSayy =

These two angles are also related via the Beta angle (Equations 4.3.22 and 4.3.23),
and in this way a Beta angle may be obtained that ensures that resonance is main-
tained.

The velocity of the departing spacecraft is transformed into the initial approach
plane axis system (denoted by subscript 0) by a single axis transformation, defined by
the angle ¢ (calculated for the first gravity assist). The initial approach plane
geometry is described in Section 4.3.2.

VYO = Vy/ COS ¢ — VZ/ sin 2] (4356)
Vzy=Vzcosp+ Vysing (4.3.57)

In Figure 4.3.36, V,,; is shown as constant, which is the case when the spacecraft
returns to the same major body in a resonant orbit. The departing velocity vector
relative to the central body is also shown as constant. This will be the case if the
spacecraft stays in the same resonant orbit after the two fly-bys. However, in
principle it could switch from one resonance to another, in which case, although
V., remains constant, the velocity relative to the cental body changes.
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Figure 4.3.36. Two gravity assists maintaining resonance, showing both approach planes.

The departure velocity is given by:

Vieparture = \/(ng + VZY’ + sz') = \/(V§(o + V2Y0 + szo) (4.3.58)

The rotation of the new velocity vector departure plane (defined by the major body
velocity and the departure velocity vector) about an axis along the major body’s
velocity vector, relative to the initial aproach plane, is given by an updated value of

the angle :
¢ =tan"! (VZO> (4.3.59)
Vyo

This angle will define the relationship between the next approach plane and the
initial approach plane if this gravity assist also results in a resonant orbit and
subsequent return to the same major body.

Finally, the inclination of the spacecraft’s new orbit, with respect to the initial
approach plane, is given by the prevously established relationships (Section 4.3.2):

. T | _VZO
ldepurture = Sin Vd )
eparture

The inclination relative to the orbit plane of the major body can also be calculated
using the previously established relationship between the initial approach plane and
the orbit plane.

Vym = Vyocos(thy) — Vzosin(iyy)
Vo = Vzoc08(Yar) + Vygsin(yyy)

. o “Vzu
ldeparture = Sin Vd )
eparture

Then:
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Figure 4.3.37. Effect of progressive deflection of the fly-by plane for resonant orbits targeted
at inclination increase.

In this case, the angle v;, is obtained from equation 4.3.36. The eccentricity may also
be calculated as described in Section 4.3.2.

Such a sequence of gravity assists may be repeated at the same major body if the
spacecraft maintains a resonant orbit with the major body and therefore the same
orbital period. The effect of such repeated gravity assists is to progressively rotate the
approach plane of the spacecraft about the velocity vector of the planet or major
body. This is shown in Figure 4.3.37. In this example the initial velocity of the
spacecraft is greater than that of the planet, and so its orbital period is greater
than that of the planet. If this velocity is such that resonance is achieved, then the
selection of the appropriate Beta angle at each fly-by will eventually result in a large
rotation of the relative velocity vector out of the initial plane containing the planet
and spacecraft velocity vectors.

The definition of the Beta angle used here is such that the fly-by targeting is
defined with respect to the plane containing planet and spacecraft velocity vectors
(the current approach plane).

Figure 4.3.38 shows the plane containing planet and spacecraft velocities
reaching 90° relative to the initial approach plane, and the initial approach plane
which in this case is chosen to be co-planar with the planet or major body orbit
plane. If resonant fly-bys are maintained then this plane will continue to rotate past
90°. The case of a rotation through 180° is shown in Figure 4.3.7. However, this 90-
degree case is a limiting case with respect to achieving maximum inclination of the
spacecraft orbit relative to the initial approach plane. If the spacecraft is to remain in
the resonant orbit, then the maximum inclination achieved is shown in Figure 4.3.38.

The maximum inclination with respect to the fly-by body orbit plane is given by:

. _1 V. siné
ax =1 4.3.60
fmax . ( Vplanet + Voc cost ( )
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Vplancl

Body Major body orbit plane

Figure 4.3.38. Limiting case defining maximum inclination relative to the major body orbit
plane when in a resonant orbit.

If resonance need not be maintained then a further fly-by may be performed (with
Beta close to 0° or 180° in the approach plane). With this value of Beta angle, no
deflection perpendicular to the approach plane occurs, and the velocity vector is
instead rotated in the approach plane. The subsequent velocity vector deflection,
in the approach plane, means that initial velocity magnitude is no longer maintained,
but the rotation is such that inclination may increase. One possibility is to target a
further resonant orbit with the planet, such that a subsequent gravity assist may be
targeted, if inclination can still be increased further.

There is ultimately a geometrical limitation if the spacecraft always returns to
the planet with the same excess hyperbolic velocity. This is illustrated in
Figure 4.3.39. The maximum inclination is reached when the central body relative
velocity is modified from its value, V| from the resonant sequence, to a value Vy;.

The maximum inclination is given by:

V
. a1 00
Imax = SN ( V,,/gn,> (4.3.61)

These observations are still based on the assumptions of patch conics and a space-
craft orbit with a node that lies at the fly-by with the planet or major body.

In Figure 4.3.40, a maximum inclination is reached whilst maintaining the same
resonant orbit with Ganymede. The orbits of Io, Europa, Ganymede and Calisto are
shown on the plot.

Multiple plane-changing gravity assists at Venus

A heliocentric example of plane changing with multiple gravity assists is now con-
sidered. This can be an important consideration for missions that are required to
perform out-of-ecliptic observations. A single gravity assist at Jupiter can achieve a
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Figure 4.3.39. A maximum inclination case when central body relative velocity may be varied
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Figure 4.3.40. Example of multiple resonant gravity assists at Ganymede, with excess
hyperbolic speed at Ganymede of 9.5km/sec. The orbits of Jupiter’s four inner moons are

also shown.
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90-degree inclination with respect to the ecliptic, but such a transfer may not be
practical. Considerable time and/or fuel is needed to reach Jupiter. Then, after the
gravity assist, the spacecraft aphelion is still close to 5.2 AU. An alternative strategy
to reach high inclinations could therefore be considered at planets within the inner
Solar System. Venus is a good choice, as it is relatively massive and easily reached.

The maximum total inclination change that is achievable is dependent on the
excess hyperbolic speed with respect to Venus. Repeated gravity assists will be
required to achieve high inclinations.

An example of a sequence is evaluated in Figure 4.3.41. The theoretical
maximum inclination that may be reached in the case presented in Figure 4.3.41,
if remaining in the 2:1 resonance orbit example chosen, would be 39 degrees. The
velocity vectors are close to orthogonal at this point and so this resonant solution at
this excess hyperbolic speed is close to optimal. If this excess hyperbolic speed is
maintained, then there is little scope for increasing the inclination by changing the
resonance. This sequence requires a low perihelion and results in an extreme en-
vironment for spacecraft.

A resonant plane changing sequence is currently considered as an option for the
European Space Agency’s SOLO mission (more details can be obtained through the
references given). The objective of this mission is to observe the Sun from high
latitudes when relatively close to the Sun. Therefore, such a sequence is well suited
to this type of Solar observing mission.

Figure 4.3.42 illustrates a second sequence of gravity assists at Venus, generated
after a transfer from an initial Earth departure and intermediate gravity assists to
build up the required excess hyperbolic speed at Venus. In this case a 3:2 resonant
orbit is used with lower excess hyperbolic speeds at Venus. The perihelion is higher
which benefits the spacecraft. The inclination is progressively raised until a value of
over 30 degrees is reached with respect to the ecliptic plane. The orbital inclination of
Venus itself is also a factor in the final inclination here. Such strategies have been
proposed by Janin et al. for the future SOLO mission (see references for this section).

4.3.6 Gravity assist at planetary moons for escape and capture

A gravity-assisted fly-by at a major moon of a planet may be used to help a space-
craft either escape from or be captured by the planet. The gravity assist either
increases or reduces the orbital energy of the spacecraft with respect to the planet,
such that a transition from a bound to unbound orbit (or vice versa) occurs.

Gravity-assisted escape

Lunar gravity assist can be used to increase the Earth relative speed of the spacecraft.
However, there are limitations to the final escape velocity that can be obtained by
such a method, when starting from an initially bound orbit. These arise from con-
sideration of the spacecraft’s closest approach distance and the approach velocity at
the moon. An initially elliptical Earth-centred orbit can be utilised to engineer the
lunar encounter.
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Figure 4.3.41. Inclination, aphelion and perihelion evolution for a sequence of gravity assist at
Venus with Vinfinity at 22.4km/sec. The initial orbit is: apocentre = 121 million km,
pericentre = 15 million km. The orbital period is 112.5 days. Therefore, a 2:1 resonance
may be reached with Venus. This means that fly-bys occur approximately every 225 days.
This orbit results in an excess hyperbolic speed with respect to Venus of 22.4km/sec. Six
gravity assists are used in reaching a maximum inclination of approximately 39°. This
procedure will therefore take approximately 1,350 days from reaching an initially zero
inclination orbit, or approaching 3.7 years.
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Figure 4.3.42. Orbit evolution for a sequence of gravity assist at Venus. In this figure the
orbits of Venus and Mercury can be seen. The repeated gravity assists at Venus can be seen
in the same location.

If the orbit perigee altitude is fixed and apogee altitude increased beyond lunar
altitude, the effect of lunar gravity assist can be to generate an escape velocity.
However, as higher apogee altitudes are considered, an asymptote is reached. The
analysis in Figures 4.3.43 and 4.3.44 assumes co-planar spacecraft and moon orbits
and a patch conic analysis.

This technique has been discussed in the context of ESA’s Bepi-Colombo
mission. Also, lunar gravity assists were used for the Hiten mission (More informa-
tion can be found in the references for this chapter.)

Gravity-assisted capture

A gravity assist manoeuvre may be utilised to achieve planetary capture by executing
a close fly-by at the moon, after starting from an initially hyperbolic approach orbit
with respect to the planet (and a hyperbolic approach with respect to the moon). The
subsequent deflection of the moon-relative asymptotic departure velocity vector
causes a change in the energy of the spacecraft with respect to the planetary
system. This is the reverse of the method described previously for escape from a
planet. The example considered here is a capture using one of Jupiter’s moons.

After such a gravity assist the energy of the spacecraft in Jupiter’s system may be
reduced or increased, depending on which side of the moon the spacecraft passes.
The possibilities for energy reduction are dependent on certain parameters at
approach:
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Figure 4.3.43. The effect of apogee altitude on Earth excess hyperbolic speed after lunar fly-by
for a fly-by altitude of 260 km. Increasing apogee altitude of the lunar rendezvous orbit tends

to increase Earth escape velocity after lunar fly-by, but also tends to an asymptote with respect
to apogee altitude as the initial orbit becomes parabolic.
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Figure 4.3.44. The effect of AV for apogee raising on Earth excess hyperbolic speed. The same
effect of increasing V', can be observed with increase in perigee speed (i.e., with respect to an
initial GTO-like orbit with 42,165km radius apogee). The initial perigee velocity can be
increased beyond that required for Earth escape and advantage sill be obtained by using a
gravity assist at the Moon.

(1) The initial approach velocity direction and hence excess hyperbolic speed.
(2) The targeted pericentre with respect to the moon and the orientation with
respect to the local equator (the Beta angle discussed in Section 4.3.2).

The possibilities for transfer from an initially hyperbolic orbit with respect to Jupiter
to a highly elliptical, captured orbit are shown in Figures 4.3.46. Co-planar motion is
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Jupiter with Excess hyperbolic speed
typically 5.6 km/sec

Hyperbolic orbit velocity at Moon radius
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Figure 4.3.45. The principle of planetary capture using gravity assist at a moon.

assumed at all times. Capture apocentres assessed here range from 25 million km to
50 million km. The assumed pericentre altitude at Ganymede is 300 km.

The effectiveness of the gravity assist at the moon is related to the pre-fly-by
pericentre (and hence excess hyperbolic speed at the moon). This in turn determines
the post fly-by pericentre. Therefore, the following figure illustrates the effect of this
post fly-by pericentre on the excess hyperbolic speed (approaching Jupiter) from
which the spacecraft may be captured into the specified apocentre orbit at Jupiter.

A similar result can be obtained for Callisto. The excess hyperbolic speeds for
capture to a bound orbit are less than 3km/sec. The different apocentre curves
denoted are in millions of km.

In the case of a standard, bi-impulsive transfer to Jupiter using a semi-elliptical
orbit, the excess hyperbolic speed with respect to Jupiter is typically 5.6 km/sec. This
clearly exceeds the possibilities for capture at Jupiter’s largest moons in a single
gravity assist manoeuvre. Figure 4.3.46 indicates that no more than 4 km/sec is
possible.

When approaching at 5.6 km/sec then after the gravity assist, the spacecraft may
still posses an osculating excess hyperbolic speed of typically 2 km/sec. Additional
manoeuvres must therefore be considered to achieve capture at Jupiter.
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Figure 4.3.46. Approach excess hyperbolic speed versus target Jupiter pericentre altitude after
Ganymede fly-by for a range of post-gravity assisted captured apocentre altitudes. These
altitudes range from 25 million to 50 million km.
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Figure 4.3.47. Approach excess hyperbolic speed versus target Saturn pericentre altitude after
Tital fly-by for a range of post-gravity assist captured apocentre altitudes. These altitudes
range from 25 million to 50 million km. The assumed pericentre altitude of the fly-by at Titan
is 300 km.
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(1) Apply a near impulsive AV at pericentre of the gravity assist at the moon to
further reduce the excess hyperbolic speed

(2) Apply an additional retarding AV at Jupiter pericentre passage to reduce the
velocity and achieve capture. Pericentre passage is assumed to take place after
the fly-by. This speed reduction then results in capture. In this case, an optimal
post-gravity assist pericentre altitude may be obtained, that minimises AV to
reach a given apocentre target.

(3) Apply a retarding AV to reduce the excess hyperbolic velocity on approaching
Jupiter, such that the moon gravity assist can be effective in achieving capture.

A second gravity assist manoeuvre can also be arranged with a second moon before
the spacecraft recedes from the planet. This can further reduce the excess hyperbolic
speed.

This analysis may be repeated for the case of capture using Titan at Saturn. This
is shown in Figure 4.3.47.

In the case of a standard bi-impulsive transfer to Saturn using a semi-elliptical
orbit, the excess hyperbolic speed with respect to Saturn on approach is typically
5.4 km/sec. This again exceeds the possibilities for capture at Titan in a single gravity
assist manoeuvre. The osculating excess hyperbolic speed after the gravity assist will
be typically 3 km/sec.

A second capture gravity assist is not feasible in the case of Saturn, as the other
moons are much smaller, with only small asymptotic deflection available. However,
the other strategies described for the Jupiter case can be considered.

Further moon-assisted capture possibilities exist with Neptune’s moon, Triton.

4.3.7 Modelling gravity assist manoeuvres

Fly-by gravity-assist manoeuvres are modelled either by numerical integration of the
dynamics of the three body problem or by a patched conic approach.

Numerical integration

This approach is the most accurate model, as any errors arising in the simulation are
a function of drift in the numerical integrator or the accuracy of the gravity model.
The dynamics of a gravity assist in a heliocentric system are basically described

by:
d2
r Hr MMr Har Frot
2~ 3~ 3 M T3 lrelM
dt r "y P

where r is spacecraft position wrt the Sun, r,, is the major body position wrt the Sun,
and r,s is spacecraft position wrt the major body.

The start of the fly-by manoeuvre may generally be defined by a specified
osculating ephemeris with respect to the major body. This ephemeris is referred to
a specified start epoch of the fly-by, and would start at or outside the sphere of
influence of the planet.



220 Special techniques [Ch. 4

This initial ephemeris must be converted to a heliocentric state, for subsequent
propagation using the above equations of motion expressed in a heliocentric form.
Alternatively, the simulation may be performed in a planet-centred system.

The initial Cartesian state relative to the central body is evaluated by
X(t0) = X punes(t0) + X, (20), where ¢ is the initial epoch, X ., is the planet state,
and X, is the state relative to the planet.

After numerical integration of the trajectory, the final Cartesian state relative to
the major body is found. This can be found from the state relative to the central
body.

The initial distance from the major body, for start of the simulation, and also the
final distance, are chosen such that the gravitational influence of the major body is
negligible. This is the most accurate method to model a fly-by.

Patched conic over specified sphere of influence

In this option, a sphere of influence over which the fly-by patched conic is applied is
specified. This could be the classical ‘sphere of influence’ discussed at the beginning
of this chapter.

To evaluate the initial fly-by body relative Cartesian states, a similar procedure
to that described in the previous method is used to convert the osculating ephemeris.
However, due to the specification of the initial radial distance, the initial anomaly is
calculated rather than specified. The process is as follows.

Calculate the initial true anomaly:

1 _ 2
A=)
"V ere
cosfh = —"
e

where 7 is the radius of the sphere of influence, and @ and e are the semi-major
axis and eccentricity of the hyperbolic orbit. Mean anomaly can be calculated to
determine the time spent within the sphere of influence.

The value of the true anomaly is assumed to lie between 0° and —180°.

Then, evaluate the hyperbolic anomaly:

F
tanh— —
A= Ve

and the initial mean anomaly:
My =esinhF — F

where M, is the initial mean anomaly at the defined sphere of influence, and F is the
hyperbolic anomaly.

To evaluate the Cartesian states at a subsequent time, the mean anomaly must
be updated to take into account the elapsed time, as follows:

M:MOJH/—%*(t—tO)

where i, 18 the gravitational constant of the major body or planet.
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The period of the fly-by manoeuvre (the time spent within the sphere of
influence) is calculated as follows:

3
T = 2% My | &
I

Using the mean or true anomaly on exiting the sphere of influence allows the
calculation of the Cartesian states relative to the major body.
The final Cartesian state relative to the central body is evaluated as before:

X(lf) = Xplanet(lff) + Xp(lf)

The state of the major body must be evaluated at the terminal epoch, #;. An error in
the modelling of a gravity assist in this way arises from the approximation that the
evolution of the spacecraft motion after leaving the sphere of influence is no longer
effected by the major body’s gravity. This results in an error in the velocity change
predicted by the gravity assist. However, the error is relatively small and the method
offers a good approximation.

Link conic method

The link conic method is a variation on the patch conic method. The patch conic
method identifies a boundary where the single central field can be switched, and
‘patches’ the Keplerian orbital arcs together. With the link conic method, the fly-
by or gravity assist is specified in a similar way, generally by ephemeris with respect
to the major body. From this ephemeris it is possible to evaluate the asymptotic
approach and departure velocity vectors; that is, the relative velocity at infinite
distance from the planet. 1

The asymptotic directions are determined by 6§ = +cos ™! ( — ), where e is the
eccentricity of the hyperbolic orbit (>1) ¢

The velocity is given by:
vV — —Mplanet
V'«

The flight path angle is +90°, and so the following expressions yield the asymptotic
approach or departure velocity vector, depending on the sign of 6.

The velocity vector components calculated in an intermediate reference frame
are:

e
V;——Vcos<w+9—2—l">

V}:—Vsin<w+9—;—l“> sin i

. m .

V.= —V51n<w+9—2—F> oS i
where T is 90° and 6 is given by the expression above and is positive (i.e., departing)
Arrival implies negative f and negative I'. These components are now calculated with
respect to an axis set relative to the reference planet system, with X pointing to Aries,
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Y perpendicular to X in the ecliptic plane, and Z perpendicular to the ecliptic:

V,=V\cos(Q) — V,sin(Q)
V, = Visin(Q) + V' cos(Q)
V,=V".

The initial and final central body relative states are updated with the above velocity
values and a planet-relative position vector of zero. It is assumed that the effect of
the gravity assist is an instantaneous change in direction. This method is therefore
equivalent to the method of modelling planet escape with an instantaneous hyper-
bolic velocity vector.

4.3.8 Anatomy of a gravity assist

The motion of a spacecraft performing a gravity assist about a planet may be
simulated by numerical integration in the multi-gravity field and compared with
the patched conic approximation. The following example uses the same type of
Earth escape trajectory as in Section 4.2, but is preceded by an Earth approach
phase and gravity assist. A higher excess hyperbolic speed at Earth is compared
with the analysis in the previous section.The sequence is summarised as follows:

e Planet of gravity assist is Earth. Earth’s orbital radius at gravity assist is
0.9944 AU.

e Target heliocentric orbit (not a planetary rendezvous) after EGA is circular at
approximately 390 million km (2.6 AU), and in the ecliptic.

e The gravity assist is such that this fly-by reaches the maximum possible aphelion
with the given excess hyperbolic approach speed. The departure excess hyper-
bolic velocity lies very close to tangential to the Earth’s orbit.

The approach and departure orbits, obtained from a full simulation by numerical
integration, have the parameters shown in Table 4.3.4.

The expected excess hyperbolic velocity is calculated by the intersection of the
approach orbit with Earth’s orbit as 5.97 km/sec. This value includes the effect of
Earth’s orbital eccentricity, and so implies a particular true anomaly for the rendez-
vous. This velocity is close to the osculating value when at Earth orbit pericentre of
the fly-by hyperbolic orbit, the value here being 5.96 km/sec. The pre and post fly-by
orbits are shown in Figure 4.3.48 with the energy evolution in Figure 4.3.49.

Table 4.3.4. Orbits obtained by numerical integration before and after gravity assist.

Approach orbit Departure orbit
Semi-major axis 1.21AU 1.80 AU
Eccentricity 0.258 0.447
Aphelion 1.52AU 2.60 AU

Perihelion 0.897AU 0.9946 AU
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[l L+

Figure 4.3.48. Gravity assisted transfer at Earth to reach raised aphelion with Earth V at
6 km/sec. The illustration shows the gravity-assisted heliocentric trajectory and Earth’s orbit
about the Sun (bold). The grid is 1 AU from centre to edge. The initial orbit is the lower one,
and the post-gravity assist orbit the higher aphelion.
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Figure 4.3.49. Semi-major axis and energy with respect to Earth during an Earth gravity
assist, evolution over distance from Earth. The evolution of the osculating orbital
parameters may be monitored during the approach, fly-by and departure phases. Energy is
plotted against the right axis.
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Figure 4.3.50. Excess hyperbolic speed with respect to Earth during an Earth gravity assist,
evolution over distance from Earth. The Earth relative energy may be equivalently expressed
as the osculating excess hyperbolic speed. The evolution of the parameter is shown.
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Figure 4.3.51. Semi-major axis with respect to Sun during an Earth gravity assist, evolution
over distance from Earth. The ‘hyper’ value is the semi-major axis of the eventual departure
orbit. It this case it corresponds to the semi-major axis calculated from the aphelion as
calculated by adding the excess hyperbolic speed at Earth perigee to Earth’s orbital velocity.

Figure 4.3.50 shows that the osculating V., at Earth perigee is 5.96 km/sec. As
the spacecraft passes into, through and out of the Earth’s sphere of influence, the
Earth relative energy and hence excess hyperbolic speed first decreases as perigee is
approached and then eventually increases after fly-by as the spacecraft again moves
into the heliocentric domain.
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Figure 4.3.52. Energy with respect to Sun, evolution over distance from Earth. The maximum
energy occurs just after Earth perigee, because of the orientation of the Earth relative velocity
vector at perigee. Perigee location is determined by the required asymptotic departure
direction.

This gravity assist is such that no further subsequent aphelion raising would be
possible if further fly-bys were to occur at Earth (assuming that no intermediate
manoeuvres occur) as the departure direction is tangential to Earth’s orbit.

When the energy with respect to the Sun is examined (Figure 4.3.51 shows semi-
major axis), it evolves firstly from a state corresponding to the initial heliocentric
orbit, experiences a strong perturbation during the fly-by, and then during departure
asymptotically reaches the value required for the eventual heliocentric orbit. The
evolution of the spacecraft energy close to the Earth is shown in Figure 4.3.52, and is
an extension of the behaviour seen in the Earth escape example described in the
previous section.

As in the analysis of planetary departure, neither of these energies is expected to
be conserved during such a planetary fly-by. The total energy is again conserved, but
this includes the Earth’s energy with respect to the Sun, which experiences a slight
modification during the fly-by.

This observed dynamic behaviour may be compared with the predictions of a
patched conic analysis. Table 4.3.5 shows the results from a patched conic analysis.

Table 4.3.5. Orbits obtained by patch conic analysis
before and after gravity assist.

Before After
Aphelion 1.522 2.603
Perihelion 0.897 0.994

Semi-major axis 1.209 1.799
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The altitude of the fly-by is assumed to be 600 km (the value used in the preceding
simulation).

Earth rendezvous occurs at 0.994 AU (true anomaly of 71°) for this analysis. The
relative velocity at rendezvous is calculated as 5.97 km/sec. The results in the table
clearly show very close agreement with the actual change in orbit parameters after
the fly-by, shown in Table 4.3.4.

4.4 THE VARIATIONAL EQUATIONS OF LAGRANGE AND GAUSS

4.4.1 Orbital perturbations

If unperturbed by any external forces or internally generated reaction forces, a
spacecraft orbiting a single, uniform-density central body will remain indefinitely
in that orbit. In reality, this situation does not exist, as some form of perturbation
will always be present, whether generated externally or internally.

Examples of external perturbations include the effects of multi-body gravity
fields, non-uniformity in the density of the central body, radiation pressure
(nominally from the Sun) on the spacecraft, and, depending on the local environ-
ment, the effects of atmospheric drag.

The effects of such perturbations generally result in a gradual evolution of the
spacecraft orbit parameters or ephemeris. The perturbations have short-term,
periodic effects and long-term secular effects. In this context, the term ‘secular’
describes a perturbation whose effect accumulates over successive orbits, and the
term ‘periodic’ a perturbation that sees the orbit return to its nominal state after a
complete orbit.

The perturbations of most interest to spacecraft designers are generally the
secular terms — the exception being where very precise orbital position control is
required. Very well known secular terms are, for example, the effect of Earth’s
J2 gravity potential harmonic on the right ascension of the ascending node. (A
detailed description of the effects may be found in many of the references for this
section.)

A second source of perturbations is those deliberately generated by the space-
craft itself. Clearly, a high-thrust main engine cannot be regarded as a perturbation,
but a low-thrust propulsion systems can. Examples of such low-thrust systems are
electric propulsion and solar sails. Typical orders of magnitudes of the accelerations
generated by electric propulsion are 0.0001 m/sz, and the accelerations from a solar
sail spacecraft could be even smaller.

Such propulsive terms can be classed as perturbations, being much less than the
gravitational acceleration from the central body (0.0059 m/s> from the Sun at 1 AU).

4.4.2 Lagrange’s planetary equations

A mathematical formulation was developed by Lagrange to describe the effects of
such perturbations on an orbit. These are known as Lagrange’s planctary equations.
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The following is a summary of the derivation (treated more fully in the references,
notably Battin and Roy).
Firstly, the differential equation for the orbital position vector r is given by:

@— and @—ﬁ—j}ﬂ_‘_ aiR '
a " dt —dr* P - | or

(4.4.1)
where R is a position-only dependent potential term generating the perturbation, r
and v are position and velocity vectors.

In the unperturbed case, the solution of equation 4.4.1 yields a set of six constant
parameters of integration, denoted by the vector a:

r=r(a,t) and v=v(a,1)

The elements of « could therefore be the orbital ephemeris. The solution of the
perturbed equations will assume that the parameters, «, in fact vary with time.
Time differentiation of the perturbed vectors, r and v, gives:

dr_or orda o dv 0y Ovda 44
dt 9t Oadt dt 9t da dt o

The time derivatives of the parameter set, o, arise from a perturbation to the
acceleration, which is the rate of change of velocity. The velocity of the spacecraft
is obtained directly from the current parameter set:

dr_or
dt Ot

that is, velocity is obtained from the explicit time dependence of the parameter set.
Therefore:

or da
T 0 (4.4.3)
Similarly, the unperturbed acceleration is:
Pr_ov_ p
o ot T

The partial derivative here signifies that the parameters, «, are constant. Therefore:

(4.4.4)

dvda_[0R]
da dt | Or

A set of six variational equations therefore define the time derivatives of the param-
eters, a.
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The solution of this set of equations was first performed by Lagrange. Details of
the derivation may be found in the references for this section. The result is Lagran-
ge’s planetary equations, given by the following equations:

da 2 OR

E_%ﬁ
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dt~ nd? e(

di 1 1 OR .
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dr ~ hsini 0i
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(4.4.5)

The orbital elements are here defined as: @, semi-major axis; e, eccentricity; i, inclina-
tion; Q, right ascension of ascending node; w, argument of perigee; A: A = —nr,
where 7 is the time of pericentre passage and n is the mean motion; that is,

n= ﬁ, and therefore the mean anomaly is referenced to this event by
\ a

M = nt+ XA =n(t— 7). h is the angular momentum per unit mass.

A number of different expressions may be used to describe the location in the
orbit plane at a given time. If, alternatively, the initial mean anomaly is used as a
variational parameter, a slightly modified set of equations is obtained:

M:n(l—lo)+M0
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These sets of equations were derived for the case in which the disturbing acceleration
is given by the gradient of a potential function. However, this need not be the case,
and the equation can be derived for any perturbing acceleration:

dr dv  d*r —pu
— =y and —=—=—1r+a

e~ 3=
The equations obtained previously to describe the time derivatives of the parameter
set, «, are simply modified to:

Orda

o da 0 do
Ao dt

and o di

=da

Details of the solution of this system of equations can be found in the references for
this section, notably Battin. The original derivation is attributed to Gauss, and hence
the solution is therefore known as Gauss’s solution.

The perturbing acceleration is best expressed in the local orbit frame co-
ordinates, the axes of which correspond to the directions, r, normal to r, and in
the orbit plane (in the forward velocity direction), and completing the right-handed
set, perpendicular to the orbit plane. Thus for example, in this frame the position
vector r is (r,0,0).

The perturbing acceleration will be expressed in this frame as a = (a,,ay, ay).
The result is the following equations:

da 2a° .

il (es1n0*ar+1:*ag>

de 1, .

E:E(psmﬂ*aﬂr ((p+r)cosf +re) * ay)

di _reosw+6)

i~ h ¢

dQ  rsin(w+0)

—— = *dy

dt hsin i

dw 1 . rsin(w 4+ 6) cos i
E—%(—PCOW*%‘F ((p +r)sin) * ay) T hsni %
amM 1 .
T —&—m((pcow —2re)xa, — ((p+r)sinf) x ay) (4.4.7)

where M is the mean anomaly, € is the true anomaly, p is the semi-latus rectum,
a(1 — ¢*), and & is the angular momentum, per unit mass. h = \/au(l — €2).

These equations suffer the drawback of singularities when eccentricity or inclina-
tion is zero. However, alternative non-singular forms can be derived to eliminate this
problem.
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The variation in eccentric or true anomalies (£ and ) can also be derived to give
the following:

dE na 1 ry .
dl—r+nae<(cosﬁ—e) *d, — ((l +a> s1n0) *a,,) (4.48)

%Zrﬁzﬁ-i(pcow*ar—(p+r)sin9*a9) (4.4.9)
These expressions may be rearranged into a more convenient format and using
the assumption of a steerable thrust vector, with magnitude 7, angle o from
the normal to the radius vector in the orbit plane, and angle § out of the orbit
plane (azimuth and elevation angles as descirbed in Section 3.3.1). The quantity T
is the thrust per unit mass, or perturbing acceleration due to the propulsion.

In this case, then:

da 24
— = T cosB(esinfsina + cosa(l + ecosd
= e ( )
de 'p
= . cos [(cos(a — 6) + cos acos E)
di  rcos(w+0) .
E7T*Tsmﬂ
dQ  rsin(w+6) .
dr — hsini *Tsinf
dw 1 . . . rsin(w+ 6)cosi
dt_T<hecosﬁ(—pcos@*51na+((p—i—r)sm@)*cosa)—smﬁhsinl_)
amM 1 . .
= n+%Tcos B((pcosf —2re) x sina — ((p + r) sinf) * cos @) (4.4.10)
and
do h | . .
—=—+ TcosB—(pcostx*sina— (p+r)sinb * cos a) (4.4.11)
dt r he
dE:M+1Tcosﬁ((cos@—e)*sina—<<1+r>sin9>*cosa> (4.4.12)
dt r  nae a
where
a(l — e?)
=B 7)1 —ecosE
1 +ecosd a(l —ecos )

4.4.3 Secular effects

The previous equations express the instantaneous rate of change of the ephemeris of
a spacecraft. The effect of a perturbation can often be expressed as the sum of two
components: a periodic effect (with the frequency of the orbital period of the space-
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craft) and a secular effect. In this context, ‘secular’ implies a slowly varying or even
constant rate of change.

Secular effects are of particular importance to the long-term evolution of an
orbit. They tend to occur in the presence of constant perturbing terms, when
expressed in the local orbital frame. Therefore, in the context of the previous expres-
sions, this would imply a constant or slowly changing steering angle in the applied
thrust vector.

This secular effect can be derived by integrating over the changing anomaly of a
spacecraft over an orbital period. A suitable choice is eccentric anomaly.

Using the relationships:

cosE —e ) sin EV'1 — ¢2
cosf) = ———— and sin = —
1 —ecosFE 1 —ecosE

the secular rates may be derived for each orbit element. Some examples follow.

This area was notably researched by King-Hele and Burt at the Royal Aircraft
Establishment in the 1960s, with the objective of application to electric propulsion
systems. The following derivations regarding secular rates are based upon those
methods.

Semi-major axis

The expression for the rate of change of the semi-major axis can be modified to be in
terms of eccentric anomaly. This may ultimately allow some rationalisation of the
derived expressions.

2
@ 2 osﬂ( ! esmE\/l—e sina +cosa(l —e ))) (4.4.13)
dt — \/pp

da dE  da

The relationship — TEdl = dr

The following is the approximation for rate of change of eccentric anomaly:
dE na n ]
dt r (1—ecosE)
included, and the perturbation effect on this rate is small, therefore implying that
eccentricity is not too small.

The relative effect of the 1/eccentricity dependent term on the rate of change of
eccentric anomaly can be approximated as follows by comparing the relative magni-
tudes of the first and second terms in equation 4.4.12:

may then be used.

that is, only the rate due to Keplerian motion is

Terml _ na T 1 n“a‘e

Term2  r @ T r T T T4

For the first to significantly exceed the second there is the condition that:

(4.4.14)
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The ratio of the thrust per unit mass to gravitational acceleration should be a small
fraction for such analyses to apply, and the above condition will therefore be
satisfied for a wide range of scenarios. Alternatively, non-sigular formulations
may be used for cases with v:/rLlow eccentricity.

Then, recalling that n = %, the rate of change of semi-major axis with respect
a

to eccentric anomaly reduces to:

da  2a’ o
d—g:iTcosﬂ(esmEsmoﬁ—cosa\/1 —e?) (4.4.15)
1
The change in semi-major axis over an orbit period (0 to 27 in eccentric anomaly) is
(assuming that the thrust magnitude and direction with respect to the orbit frame
remain constant) given by:

4ra’

Aa = (1 —e?) T cos Bcos (4.4.16)
I

3
The orbit period is given by 7 = 27 a—, and the mean rate of change of semi-major
]

axis over that period is therefore:

Aa la? 5
7—2 ;\/(l—e ) T cos Bcosa (4.4.17)

This is the secular rate of change of the semi-major axis.
As implied previously, this analysis could alternatively be performed in terms of
the true anomaly, leading ultimately to the same result regarding secular rates.

Eccentricity

Sl . .., d
Considering the change in eccentricity, i = \/15 T cos B(cos(aw — 0) + cosacos E)
L

d 1 . .
may be expanded as é = \/IZdE T cos B(cos accos 8§ + sin asin 6 + cos accos E)
dr

This results in the following:

de a*V1-e? o
d%:uTcosﬁ(\/l—ezsmE31na+cosa(2cosE—e—ecoszE))

(4.4.18)

The change in eccentricity over an orbit period (0 to 27 in eccentric anomaly) is
(again assuming that the thrust magnitude and direction with respect to the orbit
frame remain constant) given by:
2,/ 2
aVvl—e
Ae = —3nxe——— T cosfcosa (4.4.19)
I
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In a similar manner to that for the semi-major axis, the secular rate of change of
eccentricity can be expressed as:

Ae_

3 Ja(l —e?)
T 2

ey|———=T coscosa (4.4.20)
L

A constant radial thrust component (o = 90°) would therefore mean that the eccen-
tricity secular rate is zero. Conversely, a thrust direction in the orbit plane and
perpendicular to the radius vector (o = 0°) maximises the secular rate.

A change in the plane thrust direction when passing through the minor axis leads
to an increased secular rate in eccentricity; that is, using o = 0° switched to
a = 180°. The switching therefore occurs at eccentric anomaly of £90°. If it is
further assumed that 5 = 0 and so the change per revolution is given by:

2 2
Ae — 8a"vV1—e T
W
or the secular rate is given by:

Ae 4 a(1—e
e_4 jall=¢)p (4.4.21)
™

I

The corresponding secular rate in semi-major axis is zero. It may be seen that
equation 4.4.21 will in general yield a substantially greater rate of change in eccen-
tricity than equation 4.4.20, and is therefore an effective strategy for producing such
a change.

4.5 LOW-THRUST TRANSFERS

The techniques discussed in the previous section can now be applied to evaluate the
possible orbit changes that may be effected.

4.5.1 Low-thrust transfer fundamentals

Analytical methods can be applied to the prediction of some of the properties of
transfers using low thrust. The previous section evaluated the secular rates in the
ephemeris elements that depend on the strategy for application of the low thrust
vector. In this section some locally optimal steering laws will be derived that may be
used with full solution (i.e., including periodic terms).

A particularly interesting case is that of a spiral transfer between circular orbits
of different radii. Recall that the osculating rate is given by:

da 2d*
—=——"Tcosf(esinfsina + cosa(l + ecosf
TN ( ( )

where « is the semi-major axis, e is the eccentricity, y is the gravitational constant, T’
is the magnitude of the applied thrust (assumed applied in the orbital plane in this
case), and « is the offset of the thrust vector from the normal to the radius vector.
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Then, if the initial condition is taken that thrust is only applied normal to the
radius vector, then the osculating rate of change of semi-major axis and eccentricity
will reduce to:

da 2d° de 'p
7 7 (1 +ecosf) 7 . (cosf + cos E) (4.5.1)

The osculating eccentricity will therefore experience periodic fluctuations, as will the
semi-major axis, even with zero initial eccentricity.

However, it has been demonstrated that the secular rate of change of the semi-
major axis is, for the steering angle case here, given by:

Aa @’ a’
— =24/—y/(1 —e*)TcosBcosa =24/—/(1—eX) T
o[- Vaya=e)

This may be treated as a continuously evolving time derivative of semi-major axis for
small perturbing acceleration and times significantly greater than a single period.
The secular rate of change of eccentricity is given by:

A — 2 _ 02
T 2 I 2 I3

In the case where the initial eccentricity is zero, and only ‘secular’ derivatives are
considered, a simple integral may be obtained. For the case of constant thrust and
mass (recalling that in this expression 7 is thrust/mass):

Vﬁ—¢E:Mt (4.5.2)
4o ar

This is equivalent to the following statement:

AV =TAt = | [E \/’E = Veircy — Veires (4.5.3)
5 af :

where AV is the equivalent AV given by acceleration x time, and Vcirc is the speed in
a circular orbit. This assumes that fuel mass is very small.

Therefore, a secular analysis will predict, by approximation, the evolution of the
semi-major axis with time. The following numerical evaluation describes the effect
with full perturbations included. Figure 4.5.1 illustrates the case of an initially near
circular orbit with radius at 24,371 km. A constant perturbing acceleration of
0.0004 m/s/s is applied in a direction perpendicular to the radius vector.

Continuing the secular analysis, if mass is varying with fuel usage then:

.
7 B (7T my

R N | P Ln| = 4.5.4
ag ar L)M P& n(’”o) ( )

where Isp is specific impulse (expressed in seconds), and g is the reference gravita-
tional acceleration at 9.80665 m/s/s.
It is possible to obtain further interesting results, and these are now described.
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Figure 4.5.1. Evolution of a near circular orbit with constant perturbing acceleration perpen-
dicular to the radius vector. In the upper figure the semi-major axis shows a steady increase
with time, as predicted by the secular equations. In the lower figure the eccentricity maintains
an average close to its initial value, as predicted by the secular rates. A small secular draft is
also present. The periodic nature of the full solution results in the small-amplitude oscillation
seen here.
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The strategy is to devise steering laws that can instantaneously maximise the rate of
change of a given orbital element. Such a steering law can then be applied in a
particular phase of a transfer. This analysis will consider the full perturbation
equations.

Maximum rate of change of orbital energy

In this case, the objective is to provide a steering law that will maximise the rate at
which the spacecraft’s orbital energy changes.
The orbital energy is given by:

1
E =——
nergy %
Therefore:
dEnergy  p da
dt  2a*dt
Consequently, the rate of change of energy is maximised for maximum rate of
d
g
change of the semi-major axis. Applying the condition that 3 L—0ata max/
o
min, the following expression for optimum « is obtained:
esinf
t = 4.5.5
amae=q +ecosd ( )

Comparison with the expression for flight path angle (I, the angle by which the
velocity is offset from the normal to the radius vector) reveals that o = I'; that is, the
thrust must take place along the velocity vector. This is an alternative derivation of
the classical result for maximising the energy increase of a system; that is, applying
an acceleration along the direction of the instantaneous velocity vector.

This optimum rate of change can be compared with the case of a constant
steering angle, perpendicular to the radius vector (o =0). In Figure 4.5.2, the
orbit considered is GTO (i.e., low perigee and apogee at geostationary radius), the
thrust/mass is assumed constant at 0.0001 m/s/s, and the ephemeris is assumed to
remain constant throughout the revolution. The plots simply illustrate the effect of
using the optimum thrust direction and shows the instantancous apogee rate in the
given orbit.

An example of the application of this optimum steering law is now considered.
The example evaluated here is the case of a spacecraft again in a standard geosta-
tionary transfer orbit. The thrust/mass in the following trajectory is 0.0004 m/s/s.

The low-thrust AV applied in this case is approximately 300 m/s. The semi-major
increases to approximately 28,000 km. Comparison of the effects of optimum and
zero in plane steering angles is shown in Figure 4.5.4.

As the orbit under consideration becomes less eccentric, the effect of using the
optimum steering angle diminishes, as expected.

In this second example (Figure 4.5.5), the perigee is the same as in the first case,
but the apogee is reduced. Not only is the effect of optimal steering reduced, but the
rate of change of the semi-major axis is reduced at all points in the orbit.
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Figure 4.5.2. A comparison of optimum and zero steering-angle options for increasing the
semi-major axis for an initial elliptical orbit with an eccentricity of 0.73 (GTO). The two
steering-law solutions provide the same rate of change of semi-major axis at zero and 180-
degree mean anomalies. Between these, significant variations in rate are observed. Thrust/
mass = 0.0001 m/s>.
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Figure 4.5.3. A low-thrust trajectory with maximum rate of change of semi-major axis
steering over a period of nearly 9 days. The application of an optimum semi-major axis
steering profile results in a secular increase in both apogee and perigee. Thrust/
mass = 0.0004 m/s>.
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Figure 4.5.5. A comparison of optimum and zero steering-angle options for increasing the

semi-major axis for an initial elliptical orbit with an eccentricity of 0.37. Thrust/
mass = 0.0001 m/s>.
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Maximum rate of change of apogee altitude
In this second case of an optimal steering law, the objective is to maximise the rate at

which the spacecraft’s apogee altitude changes.
The osculating apogee is given by rapogee = a(l + ¢)
The time derivative is therefore:

drapogee  da de
——=—(1 — 4.5.
7 dt< +€)+adt (4.5.6)
This results in the following expression:
. 2
drapogee _ T cos ﬁa— (14 e)(cos a(24+(1—e) cos E)+(1+e) cos(a—0)) (4.5.7)

dt
In the same way that, in the previous discussion, the rate of change of semi-major
axis, or energy, was maximised, the rate of change of apogee radius can now be

maximised. Taking the partial derivative and finding the stationary point, to obtain
the expression for « that gives the max/min rate of change of apogee yields the

following expression for the optimal steering angle:
sinf(1 + e)(1 + ecos b)
t = 4.5.8
ana (14 cos6)(2 + e(1 + cosf) + e*(cos§ — 1)) (4.5.8)

The effect of this steering law is shown in Figure 4.5.6, and compared with a
maximum semi-major axis rate steering law. It can be seen from this figure that

7
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Figure 4.5.6. A comparison of optimum apogee raising and optimum semi-major axis raising
steering-angle options for increasing apogee for an initial elliptical orbit with an eccentricity of
0.73 (GTO). The application of Equation 4.5.8 may be used to examine the maximised rate of
change of apogee altitude. The maximised rate of change of apogee is here shown as a function
of mean anomaly, and is compared with the rate of change that results from the maximum

semi-major axis rate law. Thrust/mass =0.0001 m/sz.
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major axis raising steering-angle options for increasing apogee for an initial elliptical orbit
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Figure 4.5.8. A low-thrust trajectory with maximum rate of change apogee altitude steering
over a period of nearly 9 days. The application of an optimum apogee raising steering profile
results in a secular increase in apogee but only a very small change in perigee. This behaviour
can be contrasted with the semi-major axis maximisation case. Thrust/mass = 0.0004 m/s>.

using thrust aligned along the velocity vector results in an apogee rate only slightly

reduced from the optimum case.
The steering profiles used in Figure 4.5.6 are shown in Figure 4.5.7. The

evolution of the orbit using the maximum apogee rate steering law is shown in
Figure 4.5.8.
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Figure 4.5.9. A comparison of optimum apogee raising and optimum semi-major axis raising
steering angle options for increasing apogee for an initial elliptical orbit with an eccentricity of
0.37.

Reducing the eccentricity to 0.37 results in the apogee change rate being sig-
nificantly reduced when compared to the higher-eccentricity case. This is seen in
Figure 4.5.9.

Maximum rate of change of inclination

In this third case the objective is to provide a steering law that will maximise the rate
at which the spacecraft’s orbital inclination changes.

The rate of change of inclination can be maximised by using an out-of-plane
steering angle set at +90°, with a direction that switches at crossings of the orbit
antinode (w + 6 reaching +90°):

di  rcos 0
& reos(w+6) « T * sign(cos(w + 6)) (4.5.9)
dt h

In this situation (out-of-plane steering at 90°), the semi-major axis and eccentricity
remain approximately constant. The right ascension of the ascending node and the
argument of pericentre will be influenced by the thrust with such a steering law:

dQ  rsin(w+0)
dr ~ hsini
dw  rsin(w+0)cosi
dr hsini

« T sign(cos(w + 6)) (4.5.10)

« T % sign(cos(w + 0)) (4.5.11)
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Figure 4.5.10. Low-thrust GTO trajectory evolution with thrust/mass at 0.0004 and initial
inclination at 1°. An out of phase steering law is applied to increase inclination.

For low inclinations, the node and pericentre rotate in opposite directions at almost
the same rate.

Such an example can be illustrated for the following, initially GTO. The thrust/
mass is set to a constant value of 0.0004 m/s/s. The orbit is propagated for approxi-
mately 9 days, with out-of-plane thrust vectoring to maximise the rate of change of
inclination. The evolution of the trajectory is shown in Figure 4.5.10. The semi-
major axis and eccentricity remain constant, but the orbital inclination shows a
secular rate of change.
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Figure 4.5.11. Low-thrust GTO trajectory evolution with thrust/mass at 0.0004 and initial
inclination at 1°. The periodic rates of right ascension of the ascending node and argument
of pericentre are almost opposite, As the inclination increases, the periodic excursions reduce
in amplitude as predicted by Equations 4.5.10 and 4.5.11.

100

80

60 /
40

\
\

| — Inclination

—=—omega
200 400 600 800 | —— peri

angle (deg)
o

N}
o

\

\VP\/’\/-\,

A
o

&
o

-80

-100

time (days)

Figure 4.5.12. Low-thrust heliocentric 1-AU orbit ephemeris evolution with thrust/mass at
0.0004 m/s/s and initial inclination at 1°. The inclination increases more quickly than in the
previous example (per orbit period). The periodic excursions reduce in amplitude more sig-
nificantly as the inclination increases.
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Figure 4.5.13. Low-thrust heliocentric 1-AU trajectory evolution with thrust/mass at
0.0004 m/s/s and initial inclination at 1°, over a period of two years. Motion both in (upper
figure) and perpendicular to (lower figure) the eliptic is shown.

In Figure 4.5.11, the relationship between the right ascension of ascending node
and the argument of perigee is explored. The AV applied by the low thrust system to
achieve this transfer is 300 m/s.

A similar example can be demonstrated for an interplanetary spacecraft in a
circular orbit at 1 AU with an initial inclination of 1°. A constant thrust/mass of
0.0004 m/s/s is again applied, for a period of two years. The results are shown in
Figure 4.5.12 and 4.5.13. The thrust is applied over a long period of time and so the
inclination change per revolution is relatively high. The AV applied by the low-thrust
system to accomplish this transfer is 26 km/sec.
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4.6 LOW-THRUST FOR PLANETARY ESCAPE AND CAPTURE
Low thrust may be used to transfer from an initially Earth-bound orbit to reach

escape. Many strategies are available to execute such a manoeuvre, and it is therefore
important to first analyse their efficiency.

4.6.1 Using thrust-coast arcs for energy gain

In the previous section, analysis of semi-major axis steering laws shows that the most

. D . d
effective area of application is at perigee. The term ﬁ may be evaluated as follows:
da
da gt where dAV  Thrust
dAV — dAV dt — Mass
dt

for an extremely high specific impulse system (in which the mass remains approxi-
mately constant).

This expression may now be evaluated. It is similar to that shown in
Figure 4.5.2, but now it is illustrated with respect to true anomaly rather than
mean anomaly. The following example uses a GTO. The thrust/mass is assumed
constant at 0.0001 m/s/s. The result may be seen in Figure 4.6.1.

The time average over a range of true anomalies over which the burn is applied
may be calculated:

' da
da JOdAVd’

AV [
dAV sz
0
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Figure 4.6.1. The change in semi-major axis per unit applied AV versus true anomaly.
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Figure 4.6.2. The change in semi-major axis per unit applied AV (time averaged over an
applied true anomaly range) versus true anomaly range from perigee. Here the true
anomaly is half of the thrust arc, as it is assumed to be applied symmetrically about
perigee. The use of a short thrust arc over a small range of true anomaly is far more
effective than thrusting over 180° of true anomaly (half thrust arc angle). The orbit is GTO
in this example.
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Figure 4.6.3. The change in semi-major axis per unit applied AV (time averaged over an
applied true anomaly range) versus true anomaly range from perigee. Different orbit
apogees are considered (at 42,000 and 142,000 km). Perigee is an altitude of 200 km.

This average quantity is now evaluated over a range of thrust arc lengths, assuming a
constant orbit ephemeris (except anomaly). This means that the effect of the perturb-
ing acceleration is neglected over the application of the thrust arc. The effect is
shown in Figure 4.6.2.

As the orbit becomes more eccentric, the sensitivity to true anomaly is even
further exaggerated. This can be seen in Figure 4.6.3.
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4.6.2 Application of a low-thrust strategy for escaping Earth

Having considered the theoretical basis for efficiently raising the apocentre, consid-
eration can be given to a number of practical examples of escaping Earth’s influence.

Use of continuous thrust

Firstly, continuous thrust is considered. It has been shown previously that when
using a very-low-thrust system, certain analytical predictions are available for
circular orbit transfers. Transfers from both initially circular and elliptical orbits
may be considered.

In the case of initially circular orbits, a series of analytical predictions may be
made. These are analysed in Figure 4.6.4.

Transfers from the initial elliptical injection orbit to Earth escape points can be
simulated using continuous thrust directed along the velocity vector. This is the
optimal direction to obtain the greatest instantaneous rate of increase of energy of
the orbit, and as such is a good approximation to any globally optimal apogee
raising strategy.

For the following simulations the initial elliptical orbit considered corresponds
to an orbit with an apogee altitude equivalent to GTO: semi-major axis: 24,000 km;
eccentricity, 0.72.

Other ephemeris components (inclination, node and perigee) are generally
optimised on an individual mission basis depending on the requirement on the
departure vector.

Semi-major axis raising is then performed until escape is reached. Two possible
escape conditions are considered. The escape points are defined as follows:

(1) The spacecraft reaching a lunar crossing and performing a gravity assist.
Assuming that a lunar encounter is possible, then the post-fly-by orbit may be
calculated by patched conics. In general, this post-fly-by orbit will be an escape
orbit relative to Earth. However, due to the low speed in approaching the Moon
(due to the perigee raising effect in spiralling), only low V,, escapes from the
Earth system are possible (i.e., the energy marginally exceeds zero).

(2) The spacecraft reaching a point where eccentricity first exceeds 1.0 (assuming
that lunar gravity assist is not available). This point is often reached after
crossing the lunar radius (except in higher-thrust cases).

Simulation shows that typically a AV of 4,000 m/s is required to reach escape directly
and 3,200 m/s to reach the lunar crossing orbit from which escape may be achieved
after gravity assist. These results clearly show the penalty incurred by low thrust.
These numbers can be compared with the impulsive AV required for such a marginal
escape, being typically 750 m/s. The AV loss lies between the two loss factors implied
by the two apogee cases shown in Figure 4.6.3. Such a loss factor is obtained by the
ratio of values at 180 degrees true anomaly thrust application about perigee (i.e.,
constant thrust) and zero true anomaly thrust arc (i.e., impulsive thrust application).



248 Special techniques [Ch. 4

9000
8000
7000
6000
5000
4000
3000 =
2000
1000

0

DV (m/s)

0 10000 20000 30000 40000 50000
Altitude (km)

2000
1800
1600
1400
1200 —50

1000 o100
800 + 200
600

o W
400 T
200

Time (days)

0 10000 20000 30000 40000 50000
Altitude (km)

Figure 4.6.4. Transfer duration and AV dependence on initial circular orbit altitude in
reaching Earth escape. In the upper figure, if transfer is started in low Earth orbit (for
example, a 200 km altitude parking orbit) then a large AV (over 7km/sec) is required to
reach escape (where the orbit speed is effectively zero at a very high radius). Increasing this
initial orbit altitude to GEO (36,000 km) the AV requirement drops to approximately 3 km/
sec. The other aspect of such a transfer is the time taken. If it is assumed that the specific
impulse is so high that the fuel mass is negligible, the results in the lower figure are obtained.
Three different acceleration levels are considered, in terms of mN per tonne. With a typical low
thrust available at 100 mN/tonne, it takes three years to reach escape from LEO.

The actual loss of course depends on the average of the loss factor over the complete
range of intermediate apogee altitudes in the sequence.

In the case of direct thrust to achieve escape, the actual AV s and times to escape
are greater than for the lunar crossing case, indicating that considerable advantage
can be taken of an escape generated by employing a lunar gravity assist manoeuvre.

A typical AV saving of 800m/s is obtained by use of lunar gravity assist. In
practice, it is possible to engineer a lunar gravity assist for almost any launch date,
because of the extended transfer time required to reach the Moon (many revolutions
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of the Moon about the Earth occur during the transfer). The encounter is achieved
by the introduction of a series of coast arcs to achieve the required phase with respect
to the Moon.

However, the post-gravity assist state must be considered. In general it is not
sufficient to simply engineer an encounter with the Moon. In order to achieve the
required post-fly-by conditions (escape in the required direction with respect to the
Earth—Moon system) it is necessary to control the location of the lunar encounter.
Without this constraint, marginal escape conditions can result in subsequent
recapture under the influence of solar perturbations. To ensure the desired escape
conditions requires additional phasing manoeuvres and, in some circumstances,
restrictions on the launch window.

It is possible to utilise lunar gravity to assist in the orbit raising prior to lunar
encounter. This takes the form of a ‘gravitational pumping’ effect if the correct phase
with respect to the Moon can be established. However, launch window restrictions
are again implied.

Utilisation of this type of orbit raising is particularly attractive when very-low-
thrust (and thus long transfer times) are considered. An example of such a mission is
ESA’s SMART-1.

Figure 4.6.5 shows a continuous thrust spiral, starting from GTO until Earth
escape is reached.

Figure 4.6.5. Transfer from GTO to earth escape. Initial acceleration = 100 mN/tonne.
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The effect of coast arcs on the transfer from GTO to Earth escape

Insertion of coast arcs allows the apogee raising input to be concentrated closer to
perigee and hence increase efficiency of the transfer (in terms of AV required).
However, there is inevitably a penalty in terms of the time taken to reach escape.

The coast arcs considered are centred about apogee. Such a thrust-coast arc
trajectory is illustrated in Figure 4.6.6. Figure 4.6.7 shows the effect of these arcs
on AV for both the case of thrust until Lunar encounter and thrust to direct Earth
escape.

The results obtained here can be compared qualitatively with the previous
prediction for the efficiency of different thrust arc lengths for a given orbit eccen-
tricity. In the case in Figure 4.6.7, the results are obtained from simulation, and the
eccentricity of the orbit changes through the course of the transfer. If it is possible to
increase the transfer time to escape by approximately 120 days (from the continuous
case), then these results show that a AV saving of 1 km/sec is possible (in the Lunar
gravity assist case). The analysis can be expressed as AV /thrust relationships, seen in
Figure 4.6.8.

It should once again be noted that when considering lunar gravity assist, restric-
tions on the launch window may be implied. There is, in fact, a greater potential
restriction when coast arc transfers are considered, in that the initial direction of the
apse line requires greater control. This is because the eventual lunar encounter will

Figure 4.6.6. Transfer from GTO to Earth escape with 60-degree coast phase at apogee. In the
figure the thrust arcs are the light shaded segments of the trajectory.
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Figure 4.6.7. The effects of coast arcs on AV and the time to escape for the transfer to Earth
escape using lunar gravity assist and direct thrust to Earth escape. The initial orbit is again a
GTO case. There is a strong relationship due to the relatively high initial eccentricity of the
initial orbit. The comparison with the continuous thrust case (denoted by the arc = 0 case)
shows that considerable AV savings are possible in the transfer to lunar radius. The penalty is
the effect on transfer time, which increases as the coast arc length increases. The results here
assume a thrust per tonne of approximately 165 mN.

tend to occur close to the apse line, the direction of which remains relatively unaf-
fected by the progressive apogee raising.

Launch window restrictions also apply in the non-gravity assist case, as the
direction of the initial elliptical injection orbit apogee direction is closely related to
the final escape direction.

The evolution of the trajectory shows that initially the apogee is raised, and the
perigee is also progressively raised. This factor contributes to the AV loss in reaching
the target escape orbit.
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Figure 4.6.8. AV versus thrust and transfer duration for low-thrust Earth escape from GTO.
The upper figure shows the relationships between AV, thrust and transfer duration,
determined by the length of the coast arc employed. A distinct trade-off exists between AV
and thrust, for a given target transfer duration. Alternatively, if a given thrust level is
considered, the trade-off is between transfer duration and AV. The lower figure shows the
relationship between AV to reach escape and transfer time (for given thrust per tonne levels).
Each AV/time curve is obtained from use of different coast arc lengths around apogee. These
results apply to a direct escape case.

The analysis here illustrates the wide variation in transfer strategies with regard
to selecting coast arcs in an apogee raising strategy. Once a given area of interest has
been established it is possible to proceed from these initial solutions to a formally
optimised solution in which a precise escape target orbit is specified and the location
and duration of each coast arc is optimised, together with details of the steering
profile during the thrust arcs. In fact, such optimal solutions often possess a second,
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shorter thrust arc at each apocentre, to maintain a low pericentre. This would
otherwise rise and reduce the efficiency of the apocentre raising.

4.6.3 Planetary capture and orbit insertion with low thrust

The reverse of this escape procedure may be performed to insert the spacecraft into
orbit about a target planet. The previous analyses have considered the manoeuvre
required to reach escape (zero energy). Therefore, in the capture and orbit insertion
strategies the starting point is a parabolic approach condition.

The initial pericentre target is much higher than in a chemical, high-thrust case,
because the low-thrust spiral will result in considerable pericentre reduction before
the final target orbit about the planet is reached.

4.6.4 Optimal utilisation of low-thrust for interplanetary transfers

Low-thrust systems may be used effectively for an interplanetary transfer. A number
of questions exist regarding the most effective utilisation of such a system. There are
three phases to consider for a basic interplanetary mission: escape from the original
planet, the transfer between planets, and the capture at the target planet.

The previous section considered the options for escaping and capturing at
planets. Having reached an escape condition (an osculating parabolic orbit), the
spacecraft must be further accelerated to gain sufficient velocity change in the helio-
centric system to reach the target planet. Then, when approaching the planet, a
reverse of this procedure is employed to remove the planet relative approach
velocity and so allow capture into a bound orbit.

Use of low thrust for planetary escape and/or capture has a significant implica-
tion for the duration of the transfer. Such manoeuvres generally imply a large speed
change to be imparted by the low-thrust system. Therefore, an attractive alternative
is to consider using low thrust only for the interplanetary phase and conventional
high-thrust chemical propulsion to achieve the escape and capture manoeuvres. In
such a scenario the key question is which orbit the spacecraft should be injected into
by the high-thrust system, and at the end of the transfer, from which approach orbit
it should be captured. This problem was analysed by Hechler (see references for this
chapter).

Therefore, a well-defined optimisation problem may be posed:

e Minimise the fuel usage for an interplanetary transfer given upper limits on the
transfer duration.

The fuel usage then has three components:

(1) Chemical fuel used for escaping the planet, after initial injection to a low bound
orbit about the planet.

(2) Solar electric propulsion fuel used for the deep-space transfer manoeuvres.

(3) Chemical fuel to capture at the destination planet into a specified, bound target
orbit.

A first estimation may imply that the chemical system should inject into the lowest
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Figure 4.6.9. AV needed to reach a given Vinfinity from an initial GTO orbit about Earth.
The AV increases as the perigee of the initial orbit is raised. The initial orbit considered in this
case is an Earth bound GTO-like orbit with apogee at 42,165 km. Target V', values from 500
to 3,000 km are considered.

possible energy escape orbit (parabolic). However, this is not necessarily the optimal
solution. The use of a high-thrust manoeuvre at pericentre of a low planet orbit is
very effective in achieving low-energy escape orbits. The AV to reach a given V,

from a perigee, r,;, is given by the following:

24 ) ( 1 1 )
AV = =412 —4/2 _—— 4.6.1
\/< rpl ookl \/ s rpl (rpl + rapl) ( )

where Vg is the excess hyperbolic speed with which the planet, 1, is left. 7, is the
pericentre radius of the initial orbit and r,, the apocentre radius. Also y; is the
gravitational parameter of the initral planet. Figure 4.6.9. shows the effect of the
choice or pericentre on A}V needed to reach a target orbit.

When approaching the planet, the capture AV is given by:

2 ) ( 1 1 >
AV = (P24 V2in) - 2m — — 4.6.2
\/( rp2 2 \/ = rp2 (rp2+rap2) ( )

where V , is the excess hyperbolic speed with which the planet, 2, is approached
after relative speed reduction by the low-thrust system. Also r,, is the pericentre
radius of the final orbit about the target planet, r,,, is the apocentre radius and y,
the gravitational parameter of the target planet.

The interplanetary phase is now considered. It was previously shown that the
relationship between the excess hyperbolic speeds at the planets, assuming idealised
circular planet orbits, is given by the following:

1 1 m
Vier =420 ——=— | — /— 4.6.3
: M<rle 20) I'pL1 ( )
I 1 1
Vor = — 2M<—> 4.6.4
? T'prL2 rpr2 24 ( )
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where r,; and r,;, are the planet orbital radial, ‘a’ is the transfer semi-major axis
and p the gravitational parameter of the central body.

As a first approximation it could be assumed that the initial AV required of the
low-thrust system is that needed to increase the initial excess hyperbolic speed to the
value required in Equation 4.6.3. At the other end of the transfer the low thrust
system AV is that needed to reduce the above approach excess velocity in Equation
4.6.4 to the value from which capture ultimately occurs at the planet. A A} loss term
can also be added to this sum.

The total fuel use is then derived via the following three mass fractions:

AV
mf] = exp ¢
AVE
mfy =exp ™
AV,
mfy = exp W<

where IspC is the specific impulse of the chemical system, and IspL is that of the low-
thrust system. AV, and AV, are given by the previous equations for impulsive
escape and capture manoeuvres. Also the transfer AVy is given by
AVp = Vot = Vaort) + (Va2 = Vo)

The total mass fraction is then given by:

AV AVT AV,

I’Vlf =exp “ISpC exp “TIpL exp “IpC (465)

A maximum final mass (i.e., minimum fuel mass) can be sought with respect to the
injection and capture excess hyperbolic speeds. The maximum with respect to the
departure V., must satisfy the following:

877/1)( . 1 Avy 8V1 Avp APy

= - exp wc exXp L exp W
aVooEl IVPC V:)OE]
srr OAV ar AVy
~ Il exp Tt VocETl exp*ﬁ exp m¢ (4.6.6)
exp T 0AV; exp Tt exp Tt = 0
— X spC ———— X spC @X spl. —
ISPC P 8V00E1 p p
where
aA V] V:)QE] aA VT 8A V]
= y = — 17 = 0
aVooEl 2 aVooEl aVooEl
(r,/]l + Vc2>cEl)

The solution of this optimal problem can be examined over a range of examples. A
transfer from Earth to Mars will be considered. In this case it is approximated
that the excess hyperbolic speeds leaving Earth and approaching Mars are both
3,000 m/s. The behaviour of the minimum fuel use with respect to Earth departure
excess hyperbolic is first considered. The effect of the specific impulse of the low-
thrust system (compared with the high-thrust chemical system) is a significant aspect
of this problem. In the following example in Figures 4.6.10 and 4.6.11, the initial
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Figure 4.6.11. The effect of Mars approach V_ on total transfer fuel usage for an Earth
departure V,, of 1,000m/s. Low-thrust specific impulses of 3,500 to 5,500 seconds are
considered. The location of the optimum (minimum total fuel mass) with respect to Mars
departure V', can be seen to lie between 0 and 500 m/s, depending on the specific impulse of
the low-thrust system. This is lower than the Earth departure case, as Mars has a weaker
gravity field than that of Earth.

mass is taken as 1,000 kg. The specific impulse of the low-thrust system is that of a
typical bi-propellant system at 320 seconds. The initial orbit at Earth is assumed to
be a 200 km perigee altitude, GTO like orbit (such that only apogee raising is rquired
to reach escape, i.e., no plane changes). The target orbit at Mars has a pericentre
altitude of 400 km and an apocentre radius of 30,000 km.
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4.7 COMBINING LOW THRUST WITH GRAVITY ASSIST

4.7.1 Use of manoeuvres between gravity assists

In previous sections the use of gravity assist manoeuvres has been discussed with
regard to improving transfer efficiency, and the use of low-thrust propulsion to effect
orbit change. These tools of mission design may be combined to provide a much
more flexible and potentially more efficient transfer strategy. Large deep-space man-
oeuvres are made possible with high specific impulse propulsion. These manoeuvres
may be used in conjunction with gravity assist manoeuvres in several ways.

The simplest use is to apply a high specific impulse system to carry out the deep-
space manoeuvres already identified for more conventional gravity assisted transfers,
that generally use modest AV's. However, only limited fuel savings are available, as
the AV's are low.

An alternative use is to increase the magnitude of the deep-space manoeuvres to
provide greater approach velocity changes when the next gravity assist takes place.
This can result in, for example, transfers using fewer gravity assists, because each one
is more effective. The traditional dependence on resonant orbits is removed, as
significant orbit period change is caused by these larger deep-space manoeuvres.

Another option is to use the deep-space manoeuvres to reduce the approach
speed at the target planet after a series of gravity assists. In this way, the insertion
manoeuvre — often carried out with a high-thrust (but low specific impulse) system —
can be significantly reduced.

A number of such mission options are discussed in the following sections.

4.7.2 The Earth gravity assist escape loop

An alternative strategy to that of a direct Earth escape to initiate an interplanetary
transfer can be sought. Launcher mass injection performance is generally signifi-
cantly penalised when high-energy escape orbits are targeted. The possible
injection to a low-energy escape orbit followed by deep-space manoeuvres using a
high specific impulse, low-thrust system has been previously discussed. It was estab-
lished that an optimum escape velocity could be derived in such situations. However,
even further improvement may be sought with the use of high specific impulse, low-
thrust propulsion systems. A strategy may be devised that enables injection to a
much less energetic Earth-bound orbit, and therefore has the potential for a sig-
nificant mission performance gain.

One option that may be considered is the use of a lunar gravity assist. Previous
sections have indicated that it is possible to achieve Earth-departing excess hyper-
bolic speeds of 1,000-1,700m/s from a lunar gravity assist following an approach
from an initial high-apogee, trans-lunar orbit. However, unassisted lunar fly-bys
from initial Earth bound orbits do not produce sufficient speed to reach either
Mars or Venus. Typical excess hyperbolic speeds required for these targets are 3
and 2.8 km/sec respectively (dependent on launch date). The extra AV can be
provided by assisted fly-bys (burns at periselenium with a high thrust system), or
in deep space after Earth departure.
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Figure 4.7.1. Example of a scheme for utilisation of Earth gravity assist.

A further option is to use Earth gravity assist manoeuvres, which can be effi-
ciently used after a lunar fly-by yielding a low-energy Earth escape. An intermediate
deep-space burn is applied to increase the eccentricity of the heliocentric orbit after
first leaving the Earth—-Moon system. This increases the fly-by speed when returning
to Earth, and so increases the potential gain from the gravity assist manoeuvre. (This
strategy is discussed in the references for this section)

The strategy is as follows:

()
(@)
(€)
“)

®)
(6)

Inject to a high elliptical Earth orbit.

Perform a lunar gravity assist.

Alternatively inject directly to a low-energy Earth escape orbit.

Use the escape velocity achieved after the lunar gravity assist to place the space-
craft in an eccentric heliocentric orbit, with semi-major axis close to 1 AU.

A deep-space burn is then implemented to increase the excess hyperbolic speed
on returning to Earth. A combination of two manoeuvres can be used.
Subsequent Earth rendezvous is achieved by planning correct ratios of semi-

major axes after initial Earth escape and the intermediate deep-space
manoeuvre(s).

The significantly increased excess hyperbolic speed may now be sufficient to
execute an interplanetary transfer.

@)

A number of free parameters are available to optimise such a strategy. The basic
problem is given an initial Earth departing V', and a target Earth departing V', to
minimise the deep space AV that is required. It can be assumed that the direction of
the initial departing V, is optimisable, by choosing the appropriate point in the
lunar orbit to perform the fly-by. The complete range of possible departure right
ascensions are therefore attainable over a 28-day period, and repeat at that interval.
This means that the initial aphelion and perihelion are optimisable, within the
constraint of a given initial ¥, leaving the Earth/Moon system. One potential
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compromise is that in achieving a given departure direction and waiting for the
associated epoch for implementation of the lunar gravity assist can have a detri-
mental effect on the remainder of the mission, as the resulting final Earth gravity
assist and subsequent interplanetary transfer do not in general occur at an optimal
epoch. However, the effect of such a waiting period for Lunar position is generally
acceptable in terms of AV penalty.

Other free variables that may be optimised are the magnitudes of the deep-space
burns. Two burns may be considered — one at aphelion and one at perihelion — to
modify both the intermediate perihelion and aphelion, respectively. A measure of the
efficiency of the transfer is the ratio of deep space AV to the V', gain achieved at
Earth. This is because if the gain were not obtained by this method, a direct deep-
space manoeuvre would be needed with the low-thrust system. This would be at least
equal to the V_ difference (i.e., that required minus injection V), and in practice
greater because of AV loss.

In a particular example considered, the initial ¥ is assumed to be 1,500 m/s on
initially leaving the Earth—-Moon system, and a range of target V_’s between 5,000
and 8,000m/s on returning to Earth are chosen. In these examples the deep-space
AVs are assumed to be impulsive. An analysis is then performed to optimise the
deep-space AV required to meet these return targets for a range of initial departure
geometries. These may be categorised by the aphelion of the departure orbit for an
initially inwards departure, or perihelion for outwards departure. This, combined
with the magnitude of the initial V', defines the opposite apse. There is then an
implication for the azimuth of the initial departing excess hyperbolic vector. The
optimisation finds the optimal burn, split between manoeuvres, that is required to
achieve the change in orbit. The analysis here makes no allowance for phasing
restrictions on return to Earth. This will be considered later. Figure 4.7.2 shows
the effect of initial aphelion on the AV requirement. For an initially inwards
departure optimum aphelion is at 1 AU when leaving Earth. The AV distribution
changes as the injection aphelion is varied. At the optimum case, with minimum
departure aphelion, the AV used for lowering perihelion is zero. Figures 4.7.3 and
4.7.4 show the same analysis for an initially outwards departing transfer.

An important aspect of a total mission optimisation lies in the selection of a
number of key parameters in this phase of the mission. Clearly, minimum initial
aphelion or maximum perihelion are targeted. However, further factors are the
choice of initial V. This may be the result of a lunar gravity assist, and so
depends on the pre-fly-by apogee. The penalty in reaching higher apogee leading
to greater initial ¥, must be considered in the context of increased deep-space AV'.

The trade-off is further complicated by the fact that the apogee-raising AV is
generally performed by chemical propulsion or a launcher, and the deep space AV is
performed by electric propulsion.

4.7.3 Examples of raising aphelion with single Earth gravity assist

The previous discussion has shown that an optimum strategy can be used to magnify
the achievable ¥, when returning to Earth. This analysis made certain idealised
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Figure 4.7.2. AV implications to reach alternative targets by varying initial orbit aphelion, the
initial ¥ is 1,500 m/s and inwards departure is used. The upper figure shows the ratio of the
V., change to the AV that is required to reach the target return V. A set of target values from
5 to 8km/sec are considered. The lower figure shows the actual optimised A} needed to
achieve the return V. It is clear that the optimum AV solution occurs with the aphelion at
that of the Earth. The initial departure ¥ is therefore applied entirely to reduce the initial
perihelion.

assumptions, including the impulsive nature of the manoeuvres and also that a
perfect phasing can be achieved when returning to Earth. In practice, neither of
these assumptions are completely true.

Therefore, the ‘real world’ case of such a transfer can be studied to assess the
true effectiveness of this strategy. The previous section indicated that in the case of
an initial inwards departure, the minimum AV strategy involves injection to a low
perihelion orbit with initial aphelion at 1 AU. A perihelion manoeuvre then raises
aphelion to increase the V, on return to Earth. However, the analysis also shows
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Figure 4.7.4. AV implications to reach alternative targets by varying initial orbit aphelion.
Initial V is 1,500 m/s and outwards departure is used. The figure shows the optimised AV
needed to achieve the return V. The illustration shows clearly that the optimum AV solution
occurs with the perihelion at that of the Earth. The initial departure ¥ is therefore applied to
increase the initial aphelion.

that the optimum is rather ‘flat’, such that initial aphelion at greater that 1 AU and a
combination of aphelion raising and perihelion lowering manoeuvres can be used.
This is important, as it may be used to advantage in obtaining the correct phasing on
return to Earth. Initial outwards departure offers a second strategy that may be
optimised

A series of transfers can be studied that start from a typical state after a lunar
gravity assist and optimise the deep-space AVs in reaching a subsequent Earth fly-by
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and eventually a particular heliocentric target orbit that is assumed to be effectively
circular. The problem is to minimise the deep-space AV in raising aphelion to
rendezvous with this target. This simplification means that problems of phasing
with a target planet can be avoided in this analysis.

A series of strategies can be identified, and will be compared in their effective-
ness. They all use the previously described idea of amplification of the V,, at Earth,
but differ in their approach to the problem of achieving the correct phasing with
Earth.

The strategies are as follows:

Case A: nominal

Inject to low perihelion orbit.

Perform aphelion-raising manoeuvre after approximately half a revolution.

Perform perihelion-lowering manoeuvre after approximately a further half a

revolution.

Rendezvous with Earth for gravity assist after approximately a further quarter
revolution.

Time taken from lunar gravity assist to Earth rendezvous is approximately 1.25
years.

Case B: initial perihelion-reducing manoeuvre

Inject to high-aphelion orbit.

Perform perihelion-lowering after approximately a half revolution.

Perform aphelion-raising manoeuvre after approximately half a revolution.

Rendezvous with Earth for gravity assist after approximately a further three quarter
revolution.

Time taken from lunar gravity assist to Earth rendezvous is approximately 1.25
years.

Case C: extended transfer

Inject to low-perihelion orbit.

Perform aphelion-raising manoeuvre after approximately one-and-a-half revolu-
tions.

Perform perihelion lowering manoeuvre after approximately half a revolution.

Rendezvous with Earth for gravity assist after approximately a further quarter
revolution.

Time taken from lunar gravity assist to Earth rendezvous is approximately 2.25
years.

It also possible to consider an additional manoeuvre approximately 0.5 years after
leaving Earth. This would also be aphelion-raising.

Each of these three strategies can be modified by adding a third manoeuvre after the
Earth gravity assist to further boost the aphelion.



Sec. 4.7] Combining low thrust with gravity assist 263

. ——_
- > i
Y N -
g N \‘ d N
#1 y\\ ! v,
)Y i
i \ )
Ay
| { \
] !
\ ’ { l
!
/ / i : /
Ari / Y 7 /
4 S/ S /
K 7] ' AN y /
K n r N V4
N T A - s
- L - ] o v
- N o S S
sy P T 7
— — -~
T T

Figure 4.7.5. Thrust-mass of 0.2 and 0.1 N/t for transfer to a 2.2-AU orbit. Earth’s orbit is
shown as a thick line and the trajectory thrust and coast arcs as thick and thin arcs. The grid is
1AU from centre to edge, and the sub-grid size is 0.1 AU.

A study of case A

The first case can be examined in greater detail. The effect of a range of target orbits
and the effect of different thrust/mass ratios can both be considered. The initial Earth
departing V, after lunar gravity assist is assumed to be 1,200 m/s.

Firstly, a target at 2.2 AU is considered. This requires a relatively high V_, at
Earth of approximately 5km/sec. The transfer begins with injection such that
aphelion lies at approximately 1 AU and perihelion at 0.86AU. Aphelion is then
raised to 1.15AU and, eventually, perihelion lowered to 0.83 AU. The first
manoeuvre (aphelion raising) is the largest at approximately 1,120m/s, and the
second perihelion lowering manoeuvre is 230 m/s. Rendezvous with Earth occurs
approximately 15 months after lunar gravity assist. The total AV is therefore
1,380m/s, and the V_ gain is 3,800m/s — a ratio of 1:2.75. Thrust/mass is
assumed to me near impulsive.

The effects of different thrust/mass ratios can also be considered. Figure 4.7.5
shows the transfers for thrust/initial mass ratios of 100 mN per tonne and 200 mN
per tonne. In the case of 100mN a significant proportion of the Earth-to-Earth
transfer is taken up with thrust application. The effect of changing the thrust/mass
ratio, in terms of AV, is shown in Figure 4.7.6.

The effect of different energy target orbits can now be considered. A relatively
high thrust/mass is considered so that very low-thrust effects do not obscure the
nature of the problem. The initial Earth departing V', is 1,200 m/s.

For cases of target aphelions up to approximately 2.33 AU (Figures 4.7.7 and
4.7.8) the required AV follows the expected trend observed in the previous analysis
that was based upon the approximation of neglecting phasing. However, as the
target aphelion increases significantly beyond this, more AV is required than
predicted. This effect occurs because of the increasing difficulty in achieving a
rendezvous with the Earth after the two manoeuvres. Their efficiency is compro-
mised in establishing the required phasing.
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Figure 4.7.7. Comparison of observed and predicted AVs for reaching target aphelion or
equivalently targetting Earth relative V. ‘Predicted’ is the AV required when leaving
Earth to reach the target V. when phasing is neglected. ‘Observed’ is the A}V when time
orbits are considered, making phasing a significant factor. A significant divergence occurs
between the initial prediction and the actual AV at approximately 5,500 m/s in V, at Earth
return, which is approximately equivalent to a target aphelion of 2.33 AU after leaving Earth.
Initial 7 is 1,200 m/s.

The same effect is shown in Figure 4.7.9, but in terms of a target aphelion radius
rather than a Vinfinity when returning to Earth.

The effect of the additional manoeuvre offers significant A} saving as higher
orbits are targeted.

A study of case B

The second case can also be examined in more detail. The effect of a range of target
orbits can be considered. The initial Earth-departure V', after lunar gravity assist is
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Figure 4.7.8. Comparison of observed AV using final manoeuvre after EGA and predicted
AVs for reaching target aphelion or equivalently targetting Earth-relative V. This
performance degradation (seen in Figure 4.7.7) can be mitigated to some extent by
introducing a further aphelion-raising burn after the Earth gravity assist. This enables a
lower V,, at Earth to be targeted and the final target aphelion reached by the final
manoeuvre immediately after Earth gravity assist.
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Figure 4.7.9. Comparison of AV's for reaching target aphelion for a two-burn strategy (pre
EGA) and the effect of introducing a third burn after Earth gravity assist.

again assumed to be 1,200 m/s. In practice, when lower Vinfinities are targeted at
Earth, little difference in time or AV is seen between this method and that of case A;
but as the V', increases, some differences appear.

A target aphelion at 2.87 AU is considered in detail. This requires a higher V' at
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-

Figure 4.7.10. Transfer to a 2.87-AU orbit using strategy B. The plot shows the two burn arcs.
The first thrust arc starts close to aphelion after leaving Earth. The second then occurs at
perihelion. The grid is 1 AU from centre to edge, with a sub-grid of 0.1 AU.

Earth of approximately 6.7 km/sec. The transfer begins with injection such that
perihilion lies at approximately 1 AU and aphelion at 1.18 AU. Perihelion is then
lowered by the first burn to 0.81 AU, and aphelion is raised by the second burn to
1.29AU. The first manoeuvre (perihelion-lowering) is now the Ilarger at
approximately 1,560 m/s, and the second, aphelion-raising manoeuvre is 660 m/s.
Rendezvous with Earth occurs approximately 15 months after lunar gravity assist.
The transfer is shown in Figure 4.7.10.

The total AV is therefore 2,220 m/s and the V_, gain is 5,500 m/s — a ratio of
1:2.47. A third burn after EGA can be considered, as in case A, but at this target
aphelion it is non-optimal. As aphelion is raised further, then a third burn is
advantageous, as found in case A. The effect of this post EGA manoeuvre is
shown in Figure 4.7.11.

This can be compared with the two-burn case A for the same target. The AV
here is 3,270m/s. In this case a burn after EGA is optimal, reducing the AV to
2,630 m/s. This strategy (type B) allows some AV reduction when compared with
type A, depending on the target orbit after EGA.

A study of case C

The third case is now examined, and the effect of a range of target orbits is again
considered. The initial Earth departing ¥ after lunar gravity assist is assumed to be
1,200 m/s. This method is advantageous when compared with cases A and B at
higher aphelion targets.

A target aphelion at 2.87 AU is considered in detail. This requires with this
strategy a V,, at Earth of approximately 6.5km/sec. The transfer begins with
injection such that aphelion lies at approximately 1 AU and perihelion at 0.85 AU.
Perihelion is then lowered slightly by the first burn to 0.83 AU, and aphelion is raised
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Figure 4.7.11. The effect of a final post-EGA burn for case B. The effect of the additional
manoeuvre after EGA offers significant AV saving as higher orbits are targeted.

Figure 4.7.12. Transfer to a 2.87-AU orbit using strategy C. Earth’s orbit is shown, and the
grid is 1 AU from centre to edge with a sub-grid of 0.1 AU. The second revolution with raised
aphelion, and the corresponding perihelion thrust arc, are also shown.

by the second burn to 1.3 AU. The first manoeuvre (perihelion-lowering) is now the
smaller at approximately 150 m/s, and the second, aphelion-raising manoeuvre is
2,040 m/s. Rendezvous with Earth occurs approximately 27 months after lunar
gravity assist. The transfer is shown in Figure 4.7.12.

The total AV is therefore 2,220 m/s and the V gain is 5,300 m/s — a ratio of
1:2.39. A third burn, after EGA, can be considered, as in case A. At this target
aphelion, it is non-optimal, but as aphelion is raised further it is again advantageous,
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Figure 4.7.13. The effect of a final, post-EGA burn for case C.

as found in cases A and B. The effect of the post EGA manoeuvre is shown in
Figure 4.7.13.

This can be compared with the two-burn cases A and B for the same target
aphelion. The AV here is 3,270 m/s for case A and 2,220 m/s for case B. A burn after
EGA is optimal in case A, reducing the AV to 2,630 m/s. Therefore, strategy C
allows some reduction in AV when compared with A.

Comparisons between all three cases are shown in Figure 4.7.14. The compar-
ison is made allowing the three burn strategies (two before EGA and one after
EGA).

4.7.4 Examples of raising aphelion with double Earth gravity assist

The previous section described the use of a low excess hyperbolic velocity escape,
followed by a deep-space manoeuvre and Earth gravity assist. The strategy provides
an efficient technique for achieving greater effective escape energy than applying
deep-space manoeuvres directly. Therefore, when considered in conjunction with
low-thrust, high specific impulse propulsion systems a fuel-efficient method of
reaching distant planets is achieved.

The strategy does, however, become naturally less efficient as the required excess
velocity on finally leaving Earth increases. A further factor reducing efficiency is that
as the deep-space AV's increase, so do the demands on the propulsion system. Low-
thrust systems that provide large AV's eventually suffer a loss due to the extended
spatial distribution of the thrust. Therefore, a modified strategy may be sought to
achieve high escape energies, which also retains a high efficiency.
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Figure 4.7.14. Comparison of AV's and EGA Vinfinities for the three alternative cases over a
range of target aphelions. Manoeuvre is allowed after EGA. Strategy B is the optimal. At
lower aphelion targets there is much less difference between strategies. The effect of the

optimal V, at EGA for the three strategies is compared in the lower figure. Strategy B is
able to utilise a higher V', for the higher target aphelion orbits.

This strategy is the introduction of a second Earth gravity assist manoeuvre,
after a two year Earth resonant orbit. An intermediate manoeuvre is applied at
aphelion to increase the excess hyperbolic speed on returning to Earth for the
second time. An idealised analysis regarding the effectiveness of such a manoeuvre
may be performed, in a similar manner to the previous single EGA case. The
approximation is once again that the phasing of the return trajectory with Earth
is not considered, and the V' is just calculated when the return orbit crosses Earth’s
orbit. The effectiveness of the AV at raising aphelion is demonstrated in
Figure 4.7.15.
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Figure 4.7.15. Effect of manoeuvre on achievable excess hyperbolic speed at Earth and post-
GA aphelion in a 2-year Earth resonant orbit. In the upper figure, increasing the AV applied at
aphelion of the two-year orbit progressively increases the excess hyperbolic speed on return to
Earth. The ratio of excess hyperbolic speed gain to AV is higher than the previously
considered EGA loop with a lower period. This is plotted against the right axis. In the
lower figure, increasing the AV applied at aphelion of the two-year orbit also initially
increases the aphelion that is achieved after the second EGA, but perihelion also reduces.
The result is that eventually the final aphelion no longer rises with applied AV. Perihelion is
plotted against the right axis in the lower figure.

The fact that the aphelion stops increasing with increasing applied AV implies a
limitation to the strategy. If this second EGA were used to enter a higher-period,
Earth-resonant orbit, then a subsequent EGA would result in a large increase in
aphelion after that gravity assist. However, this would add significant extra time to
the transfer.

An alternative strategy can therefore be used, similar to that of the single EGA
case. A manoeuvre is allowed after the second EGA to assist in raising aphelion.
Such a transfer is shown in Figure 4.7.16
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Figure 4.7.16. The use of a double EGA to raise aphelion to a target at 10 AU, using
manoeuvres in the two-year resonant loop and also after the final EGA. Earth’s orbit is
shown with an intermediate-thickness line, the coast phases of the trajectory with the
lighter line, and thrust phases with a thick line. The grid is 1 AU from centre to edge.

——

Figure 4.7.17. The use of a double EGA to raise aphelion to a target at 80 AU, using
manoeuvres in the two-year resonant loop and also after the final EGA.

Earth’s orbit is shown with an intermediate-thickness line, the coast phases of
the trajectory with the lighter line, and thrust phases with a thick line. The grid is
1 AU from centre to edge. The motion of the spacecraft may be observed first in the
one-year resonant orbit with two deep-space manoeuvres to increase the hyperbolic
excess speed on returning to Earth to typically 5.2 km/sec (the precise value depends
on where the Earth’s orbit is crossed, as the planet’s eccentricity has a small effect).
After the first EGA the spacecraft enters a two-year resonant loop. A deep-space
manoeuvre is applied near aphelion. The excess hyperbolic speed on returning to
Earth is now approximately 10.7 km/sec. A deep-space manoeuvre is then applied
after the second EGA to assist in aphelion-raising to the target value of 10 AU.
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Figure 4.7.18. The deep-space AV required to reach a target aphelion after a low-energy
escape after lunar gravity assist and 2 EGAs.

The aphelion target may be progressively raised and achieved by the application
of additional deep-space manoeuvres. Figure 4.7.17 illustrates an example of a target
at 80 AU. The strategy is identical to the 10-AU target case, with the difference that
the manoeuvre AV after the second EGA is increased. Also, a namoeuvre just prior
to the second EGA is applied.

The relationship between target aphelion and deep space AV is shown in
Figure 4.7.18. The thrust/mass used in this analysis is given a constant value at
300 mN/tonne The initial AV is 1,200m/s. Lower thrust/mass values will require
greater AV’s, as discussed in Section 4.7.3.

4.8 USING MULTI-BODY GRAVITY PERTURBATIONS

4.8.1 The three-body problem

Motion in multiple gravity fields is best described in terms of the framework of the
three-body problem. Analysis of the three-body problem shows that the motion can
be characterised in terms of the Jacobi constant. An understanding of the character-
istics of this motion suggests methods for prediction of the requirements for
planetary approach and escape under which multiple gravity field perturbations
may be effectively used for mission design.
The constant of motion is:
V242U =-C

where C is the Jacobi constant and V' is the speed with respect to the rotating frame.
The generalised potential is:

2
2] w2 2
U= ———"— | —— i+
( r r2> z(r.\ Vy)
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where w = wry; r; and r, are the radial distances from body 1 and body 2 respec-
tively; ry, r,, r. are the components of position w.r.t. the system barycentre;
1 = Gm,, the gravitational parameter for mass m;; u, = Gm,, the gravitational
parameter for mass m,; and G is the universal gravitational constant.

The limiting regions of the motion can be obtained by considering the case

where speed is zero:

2(—”1—'@) P+ +C=0
r ry

Such surfaces clearly show limitations of the possible motion. Figure 4.8.1 shows
contours of zero velocity for different values of the constant, C. Only motion in the
ecliptic is considered (r. = 0). This is now a case of a planar, circular, restricted
three-body problem. In the figure, motion is excluded within a particular shaded
area that corresponds to a given value of C. Here X lies along the Sun-to-planet
vector, and Y (vertical axis, in km) lies perpendicular to X in the ecliptic.

In the first example, Earth lies on the X axis at 1.496e8 km. A series of constant
velocity surfaces may be evaluated over a range of values of the Jacobi constant, C,
starting with Cmaximum = 2,641,000,000 (m/s)?.

This value (Cmaximum) results in a case where escape from Earth is not
possible. However, a series of further surfaces may be generated with reducing C
(—C increasing). With such a reduction there is no longer a barrier to an initially
Earth-bound state moving away from Earth and into the heliocentric domain. These
surfaces of constant velocity are plotted in the figure. The contours represents the
absolute value of the reduction in the Jacobi constant below the maximum
(Cmaximum). Therefore, a large value for the contour shows that C now lies sig-
nificantly below Cmaximum.

The plot shows clearly that as C is reduced, the inaccessible regions shrink, until
eventually motion becomes possible through the locations of the first two co-linear
Lagrange points, L1 and L2, at approximately £1.5 million km along the X axis
from Earth.

This analysis is repeated for Jupiter, as its gravity field is far more expansive than
that of Earth. Qualitatively, the same behaviour as in the Earth case will result.
Figure 4.8.2 shows these surfaces plotted over a wide area. Only motion in the
ecliptic is considered. Here, X again lies along the Sun-to-Jupiter vector, and Y
(vertical axis, in km) lies perpendicular to X in the ecliptic.

These surfaces are evaluated a range of values of the Jacobi constant, C, with
Cmaximum = 516,000,000 (m/s)>.

As in the Earth example, the plot shows a case just below the limiting case for
escape from Jupiter (C = Cmaximum), and progresses to a range of cases allowing
escape from Jupiter.

In this analysis the ‘idealised’ circular orbit of Jupiter lies at approximately
7.8e8 km from the Sun, on the X axis of the figure. The locations of Jupiter’s first
two co-linear Lagrangian points can be seen on the X axis.
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Figure 4.8.1. Zero-velocity boundaries for the Earth—Sun system, showing the zone centred on
Earth on the rotating system X axis. The vertical axis is the rotating system Y direction.

4.8.2 The Lagrange libration points

The Jacobi constant of motion for the restricted circular three-body problem has
been found to be V? 42U = —C, where C is a constant and V is the speed with
respect to the rotating frame (the rotating frame being defined by the motion of the
planet about the central body).
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Figure 4.8.2. Zero-velocity boundaries for the Jupiter—Sun system, showing a wide area zone
centred on the Jupiter and Sun co-linear Lagrange points. X is Sun—Jupiter direction, vertical
axis is the rotating system Y direction.

The expression for acceleration in this frame was obtained previously as:

2
(d;> :—VU—2w/\<dr>
i ) dr ),
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Figure 4.8.3. The positions relative to the two bodies in the rotating reference frame. d; and d,
are the scalar distances of body 1 and body 2 from the barycentre, r; is the position of the
spacecraft relative to body 1, and r, is the position of the spacecraft relative to body 2.

The positions relative to the two bodies are shown in Figure 4.8.3. It can be noted
that:
ry =1y +d and Fyy =1y —dy

Positive x is measured from the barycentre towards m,, y lies perpendicular to x in
the ecliptic and is positive in the direction of rotation; and z is perpendicular to the
ecliptic.

It is possible to identify the presence of points where a particle, if placed there,
with no velocity in the rotating frame, will experience no resultant acceleration with
respect to this rotating frame. The condition is therefore:

VU =0 (4.8.1)
where
2
H1 M2 w2 2
U= -2 =) - Z (4
< r "2> 2 (rxtry)
Therefore:
ou _ (p 7
,:(§m+m%—ﬁ@—m>—ﬁu= (48.2)
Iy Lt L)
oU o 12%) 2
= (2L, 422, =0 483
81’}, (1? Ty + r% Ty wry ( )
ou (| _
aT}— (r:;’12+r% r. | = (484)

The last equation indicates that r. must be zero. Equation 4.8.3 gives the condition

that either r, must be zero, or (M; + H—f —w?=0.
3

7
Recalling that the combined 'mass’ of the central and major body and their
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Figure 4.8.4. Locations of the Lagrange libration points.

Hy =+ o

m a further solution to
1 2

separation define the angular velocity, wz(dl +dy)) =
equation 4.8.3 is that:
r=r=d+d (4.8.5)

The first solution is therefore a location at the vertex of an equilateral triangle with
the central and major body forming one side. Two such solutions exist, and are
denoted L4 and LS.

Using the solution, r, = r. = 0 with equation 4.8.2, the following equation is
obtained:

H L
<|r.+1d]|3(r" ) - m(dz - rx)> —w’re =0 (4.8.6)

The solution of this equation for r, yields the locations of three collinear points,
denoted L1, L2 and L3. Therefore, in total, five solutions are obtained for the
Lagrange libration points.

Table 4.8.1 shows the locations of the first two co-linear points for the planets of
the Solar System with the Sun. Two values are calculated for Earth: the first for
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Table 4.8.1. The location of the L1 and L2 planetary Lagrange libration points.

WQ/(WZ]WQ) L1 (km) L2 (km)
Mercury 1.660E-07 2.204E + 05 2.210E+05
Venus 2.448E-06 1.008E + 06 1.014E 4 06
Earth 3.003E-06 1.492E + 06 1.501E + 06
Earth-Moon 3.040E-06 1.498E + 06 1.508E + 06
Mars 3.227E-07 1.082E + 06 1.086E + 06
Jupiter 9.537E-04 5.209E + 07 5.418E+ 07
Saturn 2.857E-04 6.425E + 07 6.606E + 07
Uranus 4.366E-05 6.954E + 07 7.061E + 07
Neptune 5.150E-05 1.150E + 08 1.169E + 08
Pluto 6.607E-09 7.594E + 06 7.537E+ 06

Earth alone with the Sun, the second with the combined mass of the Earth-Moon
system with the Sun. Distance is towards the Sun (L1) and away from the Sun (L2).

This analysis assumes that each planet lies in a circular orbit about the Sun at a
value corresponding to its semi-major axis. The semi-major axis used is that from
JPL mean ephemeris (J2000) (see appendix). It is possible to perform an analysis
where the major body lies in an elliptical orbit with respect to the central body. This
is then the elliptical three-body problem, In this case, there is no corresponding
integral of the motion to the Jacobi constant. Techniques have been devised to
explore this phenomenon in detail, and references to such analyses are given in the
references for this chapter.

Stability of the Lagrange libration points

The stability of the Lagrange points may be examined. Such an analysis also
provides a first indication of the nature of some of the possible motions about a
Lagrange point. Recalling that the acceleration is given by:

2
<d§) :—VU—2w/\(dr>
d? )y dt ),

A notation may be introduced to represent a perturbation about the location of a
given Lagrange point.
or=r—rp, (4.8.7)

where r;,, is the location of the nth Lagrange point. Then:

ds ds
dt> Jp dt Jp
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The potential gradient term, VU, can be expanded by a Taylor series about its zero
value at the Lagrange point.

oU _ 82U+6r O°U s U

or, o2 Y oror,, “or.or,,,

a—U* r U + or O’y + or ru

or,  “toror,, 0%, ~ Coror,,

ouU o*U o*U o*U

— =or or, or. 4.8.8
or, Fx oror, +ory or,or. o o, ( )

Higher order terms are neglected. It is implicit in the notation assumed here and
subsequently that the second derivatives of the potential term, U, are evaluated at
the Lagrange point in question, at the point ry,,.

Substituting this into the previous acceleration expression gives:

d*6r, débr, 9*U R U
Py v s 51 or, =
d[2 v dt + o ar,%,./_n - Ty 81’},8'},1,, " arzarxmn
d26rV dér 82 U 62 U 62 U
L)) LA ory o =0
dr? T dt +or or.or, o 9 2",»',.Ln o Or:0ry,,
L. Pu v 0’y
] ) i 5 =0 4.8.9
dr? + oy a}’xa}’ Zrin * Ty ar ya”zrm o azrzr'Ln ( )

Then, using the previously obtained expressions for the potential gradients
(Equations 4.8.2, 4.8.3 and 4.8.4) and also the fact that all of the Lagrange point
solutions lie in the x—y plane, it may be seen that:

o’U o’U o*U

= =0 d al >0
arxarzr'Ln 8”.‘"8"21'er o e 62 ‘ZV‘L” >
The motion perpendicular to the ecliptic reduces to:
d*6r. o°U
=+ or, =0 4.8.10
dlz + r‘ 82rZan ( )

This is a simple harmonic motion, and therefore motion in the z direction is stable.
The remaining expressions in x and y become:

d’6r, | dér, _ OU o’U
X 2 ) 6, (5 = 0
ar o T o, T oo,
6. dér 0*U iRY
) 3 X6 &r =0 4.8.11
dtz e dt + fx 8’1’68’”}’,-[1; " ’}' 82ry/‘Ln ( )

At this stage it is convenient to consider a dimensionless form of these equations that
facilitate solution.
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m m
2 and 1 —p= !
my + ny my + ny

" = wt, and let all of the positions be scaled by separation between m; and m, (ie
d, + d»), such that r = r'(d, + d,). The more massive central body is nominated to be

Let pu= ; define a new time-related parameter,

1
my, and therefore p < —.
Therefore, ri,=g+ry, ri,=r, r=r. and ri=1—p—ry, ry=r),

2¢.0 !
TN _ gy g (P (4.8.12)
dr? Jp dr' Jp

where the potential is now modified to:

1 — | /
U = _(( = ) +’“> — 32 +r7) (4.8.13)
1 2
Therefore:

ou (1—p) p
(9}’;( r/? (rfrJFN)*@(r./x*(l*,u)) *l‘; (4.8.14)
ou (I—p) 7
o _<‘ )T (48.15)
ou _ (1-p) , neoy
or’ = ( r,? r; @ r; (4.8.16)

The minus sign is used in front of the previous expressions to facilitate comparison
with some references that express U as the negative of the function used here.

Then, using equations 4.8.14, 4.8.15 and 4.8.16, the second derivatives may be
evaluated:

o*U’ l—p) p 1—w, Ko
= (U G s - - ) -
2

8}*’,% B ry rs '
(4.8.17)

82U/ (1—,[1,) 7 (1_/J/) 5 L 5

org _<_ 3 _@+3 PR 3y ) -1 (4.8.18)

)

U’ (I—p) u (1—p) 0o,

8r?:_<_ I _@+3 FERRRE +3r/§'r/z) (4.8.19)
o’U’ (1—p) o
o=\ 3 3~ (=), 4.8.20
6}"}?6;‘)( < rl? (rx + ,LL) I}, + r25 (rx ( /U,)) r)) ( )
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Also, the modified expression equation 4.8.11 is:
d*sr, dory, - 9*U' o*u’

T [ sr =0
dt’? dr' +or arxfm tory oror'
d*er, _der, o’ o’u’
- 22— 46 o, =0 4.8.21
dt’? e o orlor, tony o, ( )

Using equations 4.8.17, 4.8.18, 4.8.19, 4.8.20, in equation 4.8.21 evaluated at each of
the five Lagrange point solutions allows the corresponding expressions to be
obtained for the coupled differential equations at each Lagrange point.

The values of the second partial derivatives must therefore be obtained at each
of the Lagrange points of interest.

Firstly, a rationalisation of these equations is to substitute auxiliary constants as

follows:

1 —

o = (( ) +%) (4.8.22)
"1 3
1—

¢ = 3(( ) +%> (4.8.23)

r 1 r 5

1 - / /

=3 (L + Je- - ) (4829

1 2

This results in the following:

%2;?= —(— cn +3(1r7?“) (r+p)? +3%(r§ - 1)2) ~1 (4.8.25)
882}/%’ =—(—cn + Clz"/i) -1 (4.8.26)
i);rg = —(—en +enr'?) (4.8.27)
;Zg;\_ =—(ci3r)) (4.8.28)

These partial derivatives must now be evaluated at the Lagrange point of interest.
Therefore, r, ;; and r. must now be the rotating frame x co-ordinate of the
Lagrangian point that is the subject of the local expansion.

The co-linear points may be considered, 1; =r. =0, and C,, is evaluated for the
particular Lagrange point under consideration.

o*U’
or'2

823’”
Yrin
o*U’
— 4.8.31
aror,, " -
o*u’
67”72: Cl1 (4832)

Zrin

= —(1+2e1) (4.8.29)

where n — 1, 2 or 3 for the above partial derivatives (i.e., for L;, L, and L3).
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These linear, second-order differential equations (Equation 4.8.21) may be

solved using a standard exponential function substitution. The general solutions
then become:

4 4
Sl =" A &= BeM (4.8.33)
i=1 i=1

The terms A; and B; and )\, are constants. Then:

o*u MU’ o*u *u AU

Mt (44 + A+ — =0 4.8.34

( arlgc/‘Ln a /i'Ln ar/“%ru? ar,}z‘an 8;’378}’;—’1” ( )

and so substituting the previous expressions for the second partial derivatives at the
Lagrange points gives:

M+ Q= )A + (1 +2¢)1—¢y) =0 (4.8.35)

This yields solutions for A as follows:

A2 :g(c“ —24,/9¢, —8c11) (4.8.36)

Evaluating ¢;; at the co-linear Lagrange points results in the value (1 —¢;;) < 0.
Therefore, the resulting two solutions for A> may have both positive and negative
values, yielding exponential and oscillatory solutions for equation 4.8.33.

The presence of exponential terms in the solution means that the solution has an
unstable motion component about the three, co-linear Lagrange points.

The analysis may be performed at the L4 and L5 points. In these cases, it may be
shown that the solutions are stable provided that p < 0.0385. This can be compared
with a value of approximately 0.001 for the Sun—Jupiter system, and so all of the
planetary L4 and L5 Lagrange points satisfy this criterion for stability.

4.8.3 Orbits at the Lagrange libration points

The previous analysis considered the nature of the motion at the Lagrange points. It
is possible to consider this further by examining the solutions to the locally linearised
equations obtained in the previous section. At the collinear Lagrange points, these
become:

d*sr’, _dor),

= 6r\(1+2¢n)

de’? T dr
d*erl, _der.
d[/; + d[; = 5r§(1 — C“)
2¢. 1
a0 _ e, (4.8.37)

d[l2
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The general solutions may be obtained (as described by Cobos, Masdemont and
Hechler, see references for this section), and are as follows:

5 = A" + Are ™ + A cos Wiyt + Ay sinwy, 1’

! !
6r, = ade’ —adye™ —bAycosw,, i’ + bAssinw,,’

6r. = C,cosw.t' + Cysinw.t’ 4.8.38
z 1 z 2 z

The two frequencies for the harmonic motion in the xy plane and in the z plane can
be calculated. For the motion in the ecliptic, equation 4.8.36 gives:

Wy = \/; (2= i +/9¢3, — 811 ) (4.8.39)

For the motion out of the ecliptic, equations 4.8.10 and 4.8.32 give:

w, = /oy (4.8.40)

The exponential term, s, may also be found:

s:\/;(cll—2+\/9c%1 —8c11) (4.8.41)

It also possible to calculate the constants ¢ and b in equation 4.8.38:

l + 2611 + w,zc )
p=——— T H 4.8.42
o (4.8.42)

and
2
sT—1-— 2C11

S 1 4.8.43
a % ( )

The values of the coefficients A, A4,, A3 and A, are determined by the initial states of
the x and y displacements and their time derivatives. Therefore, it is possible to
obtain solutions where 4; and A4, are both zero, leaving only oscillatory motion.

The relative amplitudes of the oscillating motion in the rotating x and y direc-
tions is determined by the previously established constant, b. This means that an
orbit about a given planetary Lagrange point always has the same ‘shape’ when seen
in the rotating xy plane, irrespective of its amplitude in the x direction.

This constant, together with the periods of the in-plane motion on which it
depends, can be calculated for the planets of the Solar System, neglecting the
masses of the planetary moons, as shown in Table 4.8.2.

The table gives both the values for angular velocity xy and z components, in the
normalised units described previously. These are also given in terms of time periods
(Ty, and T.), converted into standard units. In this calculation, the planets are
assumed to move in circular orbits about the Sun. Similar values are found for
the L2 Lagrange points.

Halo orbits

The previous analysis is based upon a linearisation of the motion about the co-linear
Lagrange points. This result is a prediction that closed orbits are not in general
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Table 4.8.2. Periods of in-ecliptic and out-of-ecliptic motion for orbits about the planetary co-
linear L1 Lagrange libration points derived from second order expansion of potential
gradient.

I wxy wz Txy (days) Tz (days) b
Mercury 1.660E-07 2.077 2.006 42 44 3.216
Venus 2.448E-06 2.085 2.014 108 112 3.228
Earth 3.003E-06 2.086 2.015 175 181 3.229
Mars 3.227E-07 2.079 2.007 330 342 3.218
Jupiter 9.537E-04 2.170 2.100 1,998 2,064 3.349
Saturn 2.857E-04 2.138 2.068 5,031 5,201 3.304
Uranus 4.366E-05 2.108 2.037 14,570 15,076 3.260
Neptune 5.150E-05 2.110 2.039 28,542 29,531 3.263
Pluto 6.607E-09 2.099 2.028 43,173 44,683 3.247

possible, because of the difference in the periods of motion in two orthogonal
directions. The motion appears closed in the xy plane, but when viewed in the yz
plane the orbit will follow a Lissajous orbit.

However, when motions further removed from the Lagrange points are consid-
ered, the approximations for the linearisation introduce significant errors. Tech-
niques have been developed to include higher-order terms in the motion, noteably
by Richardson (see references for this section). An example is the following:

d*er’. _dér, wr [ OF
e —2d,—6r (142¢,) = 86¥z>;c6;P<6r)
d*erl, _deér', or
i P
e +2— —or,(1 —cyy) = 3677 ‘;c 1O ,1< 5r>
d>or, n or'
e +orley = BT _;Cnél P, ( 5 ) (4.8.44)

where &> = 6r'2 + §r '+ 6r'2, P, is a Legendre polynomial and ¢, is a constant.

The series on the rlght hand side of the equation results in a non-linear differ-
ential equation. Solutions have been obtained, for a third-order case, using the
Lindstedt—Poincaré method, notably by Richardson. Many contributions on this
subject have also been made by Farquhar.

One practical consequence of this solution is that it is found that the period of
the two components of motion vary with the amplitude of that component. The
result is that for in-plane motion amplitude exceeding approximately 640,000 km, it
is possible to find an amplitude of an out-of-plane motion that gives the same period.
Therefore, closed orbits can be found in the rotating reference frame. These are
called ‘halo’ orbits, because with the selection of the appropriate phasing between
the motions, the motion, when viewed in the yz plane, forms a ‘halo’ about the
Lagrange point and remains in this orbit (providing that other perturbations are
neglected).
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An example of such a halo orbit was adopted for ISEE3, with in-plane
amplitude of 665,000 km and out of plane amplitude of 110,000 km.

Stable and unstable motions

The solutions given in equation 4.8.38 indicate that in addition to the oscillatory
solutions already discussed, there are exponential time-dependent terms. These com-
ponents may be suppressed by suitable selection of the initial states such that the
constants 4; and A, are zero. However, in situations where this is not the case, the
nature of the motion may be considered.

If the constant A4; takes a non-zero value, an exponentially increasing time-
dependent term is present in the solution. The result is that a small perturbation
to an oscillatory solution will eventually lead to a complete departure from that
orbit. Such motions are unstable. This process of applying a perturbation to an
oscillatory solution vyielding non-zero values for the constant A4; is one of
‘stepping’ onto the ‘unstable manifold’ of the orbit at the Lagrange point.

If the constant 4, takes a non-zero value, an exponentially decreasing time-
dependent term is present in the solution. In this case a small perturbation to an
oscillatory solution will eventually lead to the perturbation reducing to zero and
returning to the oscillatory solution. This process of applying a perturbation to an
oscillatory solution yielding non-zero values for the constant A, is one of ‘stepping’
onto the ‘stable manifold’ of the orbit at the Lagrange point. An interesting feature
of a stable manifold is that when propagated backwards in time, the solution
diverges from the oscillatory solution.

This stable manifold may be used to execute transfers to reach the oscillatory
solution, by starting at a point on the stable manifold that is far removed from the
target orbit. The forward propagation of the trajectory with time then results in the
spacecraft approaching the orbit described by the oscillatory solution, as the expo-
nential term tends to zero.

The conditions for the constant 4; remaining at zero in the presence of a velocity
perturbation to an oscillatory solution can be found in terms of a direction in which
this velocity perturbation may be applied. This direction lies in the ecliptic plane. A
perturbation that has a component that is perpendicular to this direction, and in the
ecliptic, will lead to an unstable solution where A4, is non-zero. This fact may be used
as a feature of orbit generation and maintenance strategies, and has been used
notably by Hechler, Cobos and Masdemont et al. (see references).

4.8.4 Transfers to the Lagrange libration points

The previous section discussed the existence and use of periodic orbits at the co-
linear Lagrange points. Such orbits are being increasingly proposed and utilised for
deep-space observatory missions. In the context of mission design, a particularly
attractive feature of such orbits is that they may be reached efficiently from
initially bound Earth orbits. Analysis of transfers here will be restricted to the L1
and L2 points of the Earth—Sun system.
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Invariant manifolds

The key aspect of this problem is the understanding of the nature of the invariant
manifolds of such orbits. This may still be addressed in the context of the circular,
restricted three-body problem. The constant integral of motion is then the Jacobi
constant. An invariant manifold of such a system describes all possible locations of a
spacecraft in a six-parameter phase space; that is, three position and three velocity
co—ordinates:f”(Xp, Yp, C) =0, where X),, Xp are the position and velocity relative to
the planet. o o

The nature of these manifolds is complex, and they require numerical simulation
for any detailed exploration. An important aspect is, however, the spatial connection
of the manifolds of halo or Lissajous orbits with low-perigee orbits about the Earth.
This principle opens the possibility of a direct transfer from a low Earth orbit via a
single manoeuvre.

Such a manifold will now be examined. For simplification it will be assumed that
the Earth moves in a circular orbit about the Sun, and so the Jacobi integral will
remain constant. The initial orbit starts at a perigee altitude of 500 km, with an
osculating semi-major axis (at Earth perigee) of 700,000 km. This results in an
osculating apogee (again evaluated at perigee) of nearly 1.4 million km. As the
spacecraft leaves perigee and moves towards apogee, solar gravity perturbs the
motion. The effect is such that the perigee is raised and the energy and angular
momentum with respect to Earth are modified. The extent of this perturbation is
strongly dependent on the location of the apogee with respect to the Earth—Sun
direction. The manifold here examined is such that the solar gravity perturbation
results in the spacecraft entering a Lissajous orbit about the L1 Lagrange point.

This transition can be accomplished by finding a suitable direction for the line of
apses of the initial orbit, implying a particular longitude of the initial oscilating
apocentre. Methods for locating such a direction are discussed subsequently. An
example of such a manifold is shown in Figure 4.8.5. The ‘free injection’
behaviour can be explained in terms of a trajectory that at perigee lies on a stable
manifold of a Lissajous orbit.

Examination of the osculating orbital ephemeris terms shows the effect of the
solar gravity perturbations. The key terms, semi-major axis (and hence energy) and
angular momentum (and hence eccentricity) undergo significant variations over the
manifold. These are shown in Figure 4.8.6.

Properties of Lissajous orbit manifolds

The previous discussion showed the general characteristics of an invariant manifold
that links a close Earth approach with a Lissajous orbit at the Lagrange point. An
infinite number of such manifolds exist, each differing in the exact detail of the Earth
perigee motion and the motion close to the Lagrange point. However, there are
restrictions on the possible motions. The motion in the ecliptic (XY rotating
reference frame) will be considered.

The previous example illustrated a manifold where the Lissajous orbit amplitude
is approximately 1.2 million km. This amplitude (the extension measured along the
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Figure 4.8.5. A manifold at the Earth—Sun L1 Lagrange point exhibiting Lissajous and high
Earth elliptical orbit behaviour. In the upper figure, the trajectory, seen in the Earth-Sun
rotating reference frame (X in the Sun—Earth direction) shows the spacecraft entering a
periodic Lissajous orbit from an initial perigee at 500 km above the Earth. The amplitude
of the Lissajous orbit (the maximum extent of the motion in the Y direction of this plot) is
approximately 1.2 million km. The period of this simulation is one year. In the lower figure,
the velocity profile, transformed to the Earth—Sun rotating reference frame and measured
relative to the rotating frame (X in the Sun—Earth direction) shows the spacecraft exibiting
periodic behaviour after entering the Lissajous orbit, from a much higher velocity at initial
perigee. The maximum speed in the rotating frame, when in this Lissajous orbit, is approxi-
mately 500m/s, and occurs in the Y direction. The inertial/rotating velocity relationship is

. d dr . N
given by (i) = (j’;) + w A r, where R denotes rotating frame and [ inertial.
1 R
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Figure 4.8.6. Energy and angular momentum variation over a manifold at the Earth—Sun L1
Lagrange point exhibiting Lissajous and initial high Earth elliptical orbit behaviours. In the
upper figure, the semi-major axis (relative to Earth, plotted against the left axis) and the
corresponding energy (plotted against the right axis) are significantly increased as the
spacecraft enters the Lissajous orbit, where they exhibit a periodic behaviour. In the lower
figure the Earth relative angular momentum also experiences a significant increase on entering
the Lissajous orbit. Its evolution then demonstrates periodic behaviour.

Y axis measured in the rotating reference frame) is a design parameter for certain
classes of science mission, where restrictions on the size of the Lissajous orbit are
often desirable. Therefore, the range of such manifolds can be examined to assess the
consequences of the size of the Lissajous orbit. Figure 4.8.7 shows comparisons
between members of a family of manifolds, each with a different size of Lissajous
orbit.
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Figure 4.8.7. Manifolds at the Earth-Sun L1 Lagrange point exhibiting Lissajous and initial
high Earth elliptical orbit behaviours, for a range of initial orbit osculating semi-major axes
from 575,000 to 700,000 km. In the upper figure the trajectories are seen in the Earth—Sun
rotating reference frame (X in the Sun—Earth direction). Examination of the three different
manifolds shows the spacecraft entering different-amplitude periodic Lissajous orbits, each
starting from an initial perigee at 500 km above the Earth. The amplitude of the Lissajous
orbit varies between approximately 1.2 million km and 790,000 km. The period of this
simulation is one year. The lower figure shows the velocity profile, transformed to the
Earth—Sun rotating reference frame (VX is the velocity component in the Sun—Earth direc-
tion). The different manifolds display different velocities when in the periodic Lissajous orbit.
The maximum speed in the rotating frame, when in the Lissajous orbit, lies between approxi-
mately 500 m/s and 300 m/s for the different orbits under consideration.
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Figure 4.8.8. Energy and angular momentum variation over manifolds at the Earth—Sun L1
Lagrange point exhibiting Lissajous and initial high Earth elliptical orbit behaviours, for a
range of initial orbit osculating semi-major axes between 575,000 and 700,000 km. In the upper
figure the semi-major axis (relative to Earth), as the spacecraft enters the Lissajous orbit, is
significantly different for the three manifolds examined here. The initial difference becomes
amplified. In the lower figure, the Earth relative angular momentum in the Lissajous orbit
phase of the motion also shows significantly different values over the three manifolds
illustrated, but with almost identical values at Earth perigee.

In these cases, the initial orbit inclination at Earth perigee is set to a near-zero
value, relative to the plane of the ecliptic, so that the motion out of the ecliptic is
limited. This is not a requirement, and out-of-ecliptic effects will be examined sub-
sequently. For each manifold, the initial Earth perigee altitude is fixed at 500 km.
The manifolds are generated by assigning different values of the osculating initial
apogee. As well as the initial semi-major axis of 700,000 km in the previous example,
lower values at 600,000 km and 575,000 km are used. These correspond to apogees of
approximately 1.2 million km and 1.1 million km respectively (that is, their
osculating values measured at perigee). The evolution of the ephemeris is shown in
Figure 4.8.8.

The lowest initial Earth relative energy manifold shown here results in the
smallest Lissajous orbit amplitude (or semi-major axis). However, any significant
further reduction in the initial energy (at perigee) of the manifold is not possible if a
Lissajous orbit target is to be reached. Below a range of critical values (this value
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depending on the precise detail of the other orbital elements at perigee that
determine, for example out-of-ecliptic motion as well as in-ecliptic motion under
discussion here), the apogee is insufficiently high to allow the solar gravity perturba-
tion to enable a free transition to a Lissajous orbit. The consequence of this is that
there is a minimum initial apocentre that realises free injection. Associated with this
is a minimum amplitude of Lissajous orbit that may be achieved by free transfer
from an orbit with a given initial perigee altitude. The value of this minimum
amplitude will be seen to depend on the details of the Earth perigee state and the
type of transfer route taken to the orbit at the Lagrange point.

The relationship between the Earth perigee state and the minimum achievable
amplitude of the Lissajous orbit, with initial Earth perigee values at 500 km,
18,000 km and 36,000 km, will now be considered. Each has the same initial semi-
major axis (osculating value at perigee) of 575,000 km. Figure 4.8.9 shows a compar-
ison of the three manifolds. The evolution of the ephemeris for the three cases is
shown in Figure 4.8.10.

In the previous illustrations, the semi-major axis value is close to the minimum
value from which it is possible to achieve free injection to an orbit about the
Lagrange point. In fact, the minimum value of semi-major axis varies with the
initial perigee altitude, as this influences the osculating apogee altitude. Furthermore,
the minimum amplitude of Lissajous orbit for a given initial semi-major axis is also
found to depend on the transfer route. For example, a transfer consisting of multiple
revolutions (i.e., apogee perigee passages) may be capable of reaching smaller
amplitude orbits at the Lagrange point.

Finding Lissajous orbit manifolds

The previous discussion regarding invariant manifolds containing Lissajous orbits
described certain features of the manifolds. A crucial element of mission design lies
in obtaining these manifolds and deciding upon which ones are best suited to the
current mission. This decision will generally be influenced by two main factors:

e The ease of a transfer to such a manifold.
e The operational properties of the Lissajous orbit (amplitude in and out of
ecliptic, plus phasing of the two motions).

Two general approaches to finding the best transfer orbit can be considered. It is
nominally assumed that the initial orbit has a low perigee. This enables the transfer
orbit to be reached efficiently from a typical injection orbit from a launch vehicle.

(1) Generate the target Lissajous orbit about the Lagrange point and explore the
evolution of the orbit by backwards propagation to perigee.

(2) Start from a given perigee and search over a state space consisting of a subset of
the full initial orbit ephemeris. Forwards propagation from the initial state is
continued for a period within which a Lissajous orbit can be reached.

These approaches will now be considered in greater detail. They can be summarised
as a backwards or forwards propagation method.
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Figure 4.8.9. Manifolds at the Earth-Sun L1 Lagrange point exhibiting Lissajous and initial
high Earth elliptical orbit behaviours, for a range of initial orbit osculating perigee altitudes
from 500 to 36,000 km. The upper figure shows the transfer trajectories and orbits, in the
Earth—Sun rotating reference frame (X in the Sun—Earth direction). As progressively higher
perigees are considered, the lower is the resulting Lissajous orbit amplitude. The period of this
simulation is one year. The lower figure shows the velocity profile, transformed to the Earth—
Sun rotating reference frame (VX is the velocity component in the Sun—Earth direction).
Higher initial perigees result in lower, rotating frame relative velocities when in the
Lissajous orbit state. This corresponds to the reduced size of these orbits, which all have
approximately the same period.
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Figure 4.8.10. Energy and angular momentum variation over manifolds at the Earth—Sun L1
Lagrange point exhibiting Lissajous and initial high Earth elliptical orbit behaviours, for a
range of initial orbit osculating perigee altitudes from 500 to 36,000 km. The upper figure
shows the semi-major axis (relative to Earth). As the spacecraft enters the Lissajous orbit the
energies of the three orbits diverge, having had near-identical values at the initial perigee. The
lower figure shows the Earth relative angular momentum. The different initial perigee altitudes
result in significantly different angular momenta, but these tend to converge as the Lissajous
orbit state is approached.
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Forwards propagation method This method relies on the partial specification of the
initial orbit properties, and allows exploration over the range of the free parameters.
Several ‘search’ methods can be considered. These range from global optimisation
techniques to simple nested parameter loops or even a single parameter search. The
initial state vector is defined by the following:

Parameter Influence

Apogee Classifies the possible solution types.
It must exceed a minimum value to achieve a Lissajous
orbit, and its value strongly influences the amplitude or
in-plane semi-major axis of the Lissajous orbit.

Perigee This will often be fixed to enable linking to an initial
low Earth orbit or launch injection orbit.
This may be determined by the launch vehicle capability.

Inclination Influences the achievable, maximum out of ecliptic motion.
In practice it may again be fixed by considerations
regarding the initial injection orbit.

Argument of perigee In conjunction with the inclination, this strongly influences
the actual out-of-ecliptic motion.

Right ascension of In conjunction with the argument of perigee, this

ascending node determines the longitude of the line of apses. It is
therefore a key parameter, as it determines whether a
Lissajous orbit may be achieved for a given apogee
altitude.

Mean anomaly Nominally set to zero to achieve a start at perigee.

The six potentially free parameters are therefore generally reduced to typically two
or three. This would assume that perigee altitude and inclination are fixed. Higher
out of ecliptic motions than those that can be reached efficiently by the launch
vehicle are often only considered when there is a specific mission design requirement.

The period of propagation for each initial condition of the search should be
between 180 and 360 days to establish that a Lissajous orbit is achieved. The final
state sensitivity to the initial parameters described is high.

The sensitivity can be analysed in terms of the state transition matrix, defined as:

[0X 1y OXyr ]
X,y 0Xy
0X, 0Xy 0X s
{m}‘ O | O
0Xy 0X s
L0Xyo  9Xno

That is, the state transition matrix of final Cartesian states with respect to initial
Cartesian states. This matrix may be obtained by numerical integration, as described
in the section 3.
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Figure 4.8.11. State transition elements showing final position sensitivity to initial velocity, for
a manifold linking low Earth perigee to a Lissajous orbit at L1. The sensitivity of the final
Cartesian X component with respect to initial velocity perturbations increases exponentially
with time. After one year (3.1e7 secs) the sensitivity approaches 10e+ 14 m/s.

An example of such a state transition matrix is shown in Figure 4.8.11, in which
the modulus of the final ‘x” component of the matrix is plotted. The initial state is at
Earth perigee.

This high sensitivity immediately indicates the difficulty in obtaining a solution
in this way. If a parametric search method is used, tiny steps must be used in order to
capture the range of possible evolutions of the motion. If an optimisation or iteration
method is used then the sensitivity to the control parameters is extremely high.

However, robust search techniques are able to locate solutions, and particularly
effective methods that have been used are rule-based systems. An example of such a
procedure has been developed by Bello-Mora (see references for further details).

The effects of a search in initial argument of perigee can be seen in Figure 4.8.12,
starting from a high elliptical orbit (the osculating value defined at Earth perigee).
The possible motions in this example, after leaving perigee, include reaching
Lissajous orbits, completing a revolution of the Lagrange point, and then
returning to perigee and also escaping beyond a Lissajous orbit into the heliocentric
domain after a partial revolution of the Lagrange point. This later class of
trajectories can be seen in Figure 4.8.12 and are discussed in the section regarding
gravitational escape.

This figure clearly demonstrates the high sensitivity to the initial direction of the
line of apses. Radically different orbit types result from a variation of 0.05°. This
corresponds to a perpendicular velocity increment, at initial perigee, of less than
0.5m/s.

Figure 4.8.12 has demonstrated a spectrum of possible orbits that may be
reached with small variations in initial orbit ephemeris. In fact, allowing a greater
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Figure 4.8.12. Transfer evolution starting from near Earth perigee with variations in
argument of perigee of 0.05°. The perigee altitude is 500km and the semi-major axis
575,000km. The grid is 1 million km from centre to edge, with a sub-grid size of
100,000 km. The axis set is rotating, with the vertical axis in the Earth-Sun direction. The
grid lies in the ecliptic. Initial orbit inclination is low.
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Figure 4.8.13. Transfer evolution of a 775000 semi-major axis initial orbit starting from near-
Earth perigee, with variations in right ascension of ascending node of an approximately 110
degrees, reaching free injection Lissajous orbits. In this figure the perigee is rotated through
approximately 110 degrees to illustrate two free injection solutions to similar free injection
Lissajous orbits. The grid is 1 million km from centre to edge, with a sub-grid of 0.1 AU. The
initial apogee/perigee is the same in both cases; only the right ascension of ascending node is
changed, which in turn causes a corresponding rotation in the perigee in this low-inclination
orbit.
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variation in the initial ephemeris can reveal some interesting features of this type of
motion. This includes the presence of an alternate ‘free injection’ transfer route, for a
given value of initial apogee and perigee. The only difference in initial orbit
ephemeris is the direction of the line of apses, generated for example by a
variation in the right ascension of ascending node. This is seen in Figure 4.8.13.

Backwards propagation method 1f representative simulations of a suitable Lissajous
orbit are available, they may be used as the starting point for a backwards propaga-
tion. The propagation is continued until the spacecraft passes through perigee. At
this point the state can be captured and compared with that available from a suitable
launch orbit. This will ultimately determine the manoeuvre requirement.

A possible problem is that the backward propagation from a particular starting
point may lead to unacceptable perigees. Reaching a high-perigee orbit either
directly with a launch vehicle or by a spacecraft manoeuvre is generally
demanding in terms of the manoeuvre AJ that must be applied. Therefore, a
means must be sought that allows an acceptable perigee to be reached (assuming,
of course, that the initial Lissajous orbit amplitude is compatible with a low perigee;
see the discussion in the previous section).

The backwards trajectory propagation from each of a number of locations
around the nominal orbit may be evaluated, after applying a small perturbation to
the trajectory at each point. This allows the generation of a range of possible perigee
passage states. The back-propagated cases may then be examined and the best match
to the initial orbit/injection orbit found. There may also be a concern about the
inclination when perigee is reached and the match with possible launcher orbits. This
factor can also be included in finding the best match.

Several techniques have been developed for establishing the invariant manifolds
associated with such orbits about the Lagrange points, by propagation methods.
This area of research has been a source of much recent analysis by several
groups (including Lo, Marsden, Ross, Koon et al., and Simo, Cobos, Masdemont
et al.). Further details are given in the references for this section.

Reaching small-amplitude Lissajous orbits

When lower-amplitude orbits are required, the strategy must be modified. This is
because it has been observed that the minimum free injection orbit amplitude is
typically over 750,000 km when starting from an initial low Earth perigee (and
only considering a single revolution transfer route). A significantly higher perigee
is needed to reach lower amplitudes via free injection. This is often expensive to
reach in AV terms, from an initial injection orbit with a relatively low perigee
altitude. When starting from such a low perigee initial state, a dedicated
manoeuvre sequence is required to inject into the target orbit when approaching
the vicinity of the Lagrange point. This can be accomplished by typically two space-
craft manoeuvres — one approaching the target orbit at the Lagrange point and the
other as a final injection manoeuvre into the required orbit.

The total AV required for this injection is dependent on the amplitude of the
target orbit. Small orbits require higher AV's. For in-plane amplitudes of typically
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750,000 km and above, a free injection orbit can generally be found. However, for
much smaller-amplitude orbits, such as 400,000 km, a typical injection AV of 150 m/s
would be required.

Generation of transfers to a target Lissjous orbits with high out-of-ecliptic
components

The transfer examples discussed so far have concentrated on the motion in the
ecliptic. However, Lissajous orbits may be found with significant motions perpen-
dicular to the ecliptic. Section 4.8.3 has discussed the nature of such orbits. It is
therefore of some interest to analyze the nature of transfers to such orbits. Previous
discussions, regarding linearisations of the motion about the Lagrange point have
indicated that the motion perpendicular to the ecliptic dose not cross couple to in-
ecliptic motion. This factor may be of use in discovering the nature of the transfer
orbits to such target orbits about the Lagrange point.

It has been shown that the manifolds of Lissajous orbits may reach low-perigee
conditions that may be used for free injection transfers. Such low-perigee orbits can
also be used to achieve transfers to Lissajous orbits with high out-of-ecliptic ampli-
tudes. The orbit at perigee now has an out-of-ecliptic plane velocity component,
established through the inclination and argument of perigee.

These transfers are shown in Figures 4.8.14 and 4.8.15, where X is the Sun—
Earth direction, Y is the perpendicular in the ecliptic, and Z is perpendicular to the
ecliptic.

The figures show two alternative transfers to a Lissajous orbit with a high out-
of-ecliptic amplitude. Both final orbits have a similar in-ecliptic amplitude in the
rotating Y direction approaching 750,000 km (in this example). Both have a similar
out-of-ecliptic component (approximately 400,000 to 600,000km). However,
different transfer orbits are used. Both use the same initial inclination, but one
takes a northerly passage and the other a southerly one. This is achieved by using
different argument of perigees to determine the declination of the outward traverse
of the transfer orbit. An interesting feature of the resulting Lissajous orbit is that
although the in-plane motions are similar, the out-of-plane motions are reversed,
such that when viewed from the X axis, one moves in a clockwise and the other in an
anti-clockwise direction.

Such orbits, with high out-of-ecliptic components, enable efficient communica-
tions solutions with Earth, if, for example, a fixed Sun pointing attitude is used for
the spacecraft. Such an attitude is typical of an observatory-type mission at the
Lagrange points. An example of this type of mission is ESA’s planned LISA Path-
finder technology demonstration mission (see references for this section).

4.8.5 Gravity-assisted planetary escape and capture

The discussions in the previous sections have shown that many types of motion are
possible when the three-body problem is considered. It has been demonstrated that
for typical escape orbit trajectories, where the excess hyperbolic speed is relatively
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Figure 4.8.15. Transfers from a 500-km perigee orbit to Lissajous orbits about the Earth—Sun
L1 point, showing transfers both north and south of the ecliptic and motion in the rotating YZ
plane.

high and the effects of solar perturbations are limited before the spacecraft leaves the
planet’s influence, the approximation of the addition of an impulsive velocity vector,
equal to the excess hyperbolic velocity vector (derived from the osculating pericentre
condition) is a good approximation to the actual resulting motion after leaving the
planetary sphere of influence.

However, the preceding analyses of the motions of spacecraft in the vicinity of
the Lagrange points has shown that a spacecraft may experience significant changes
to key orbit parameters. Energy shows significant variations under the influence of
central body gravity perturbations. These changes could potentially allow the space-
craft to escape from the planet, when starting from an initially planet-bound orbit,
or conversely, experience capture from an interplanetary orbit approaching the
planet.

The problem now is to find a methodology to exploit this motion domain to the
advantage of a spacecraft transfer.

Analysis of velocity surfaces

For a spacecraft to experience the significant effects of combined gravity perturba-
tions, the zero-velocity surfaces must allow motion between the Sun and planet.

In the case of the circular, restricted three-body problem, when considering the
accessible regions, the range of possible velocities at given locations can be obtained
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from the expression of the Jacobi constant, C: Vi42U=-C (as discussed in
section 4.8.1), where V' is the velocity with respect to the rotating reference frame.
This frame rotates with the planet’s motion about the central body and is such that
X lies along the Sun-to-planet direction and Y lies in the orbit plane of the planet
about the central body, perpendicular to X. Z lies normal to the orbit plane.

For motion in the ecliptic (in the case of Earth) the velocity at a given location
can be obtained from the following expression, as a function of radial distance from
the major body and the X component of that position:

vi=2 . 05 +£2 + W (d3 + 13 + 2ry0dy) — C

2
Fox 2 )
di+d)[1+2 - 4
( 2)( d +dy (d1+d2)2>

(4.8.45)

where subscript 2 denotes the major body or planet, d; is the distance from bar-
ycentre to the central body, d, the distance from barycentre to major body, 5., 3,
and r,. are the components of position with respect to body 2, expressed in the
rotating reference frame, and w is the angular velocity of the rotating reference
frame. Also, r% = r%x + r%y + r%z, so that if r,. is zero, r,, and r,, define the location.

At a given r,, the variation in J' with r,, can be found from the above relation-
ship, until the limiting case is reached where V' becomes zero. This analysis will
concentrate on cases where the motion lies in the ecliptic, and so r,. is zero.

Note that this is the velocity with respect to the rotating frame. For motion close
to the planet the velocity with respect to the rotating frame is similar to the inertial
planet relative frame velocity, but diverges at greater distance.

As the value of the constant —C increases, the surfaces of zero velocity change in
their nature. From a value where motion is confined either to an Earth-centred or a
Sun-centred domain, further increase in —C allows transference from the Earth-
centred domain to the Sun-centred domain. The value of the rotating frame
velocity may be evaluated over the permissible regions of motion. These are
shown in Figures 4.8.16 and 4.8.17 for motion close to Earth. The evaluation here
is made in the X, Y rotating reference plane (the plane containing the Earth’s motion
about the Sun). The X axis lies in the direction from Sun to Earth. The origin of the
XY axes is at the centre of the Earth. A locus of the zero velocity values corresponds
to the location of the surface of zero velocity discussed in section 4.8.1.

In Figure 4.8.16 the Jacobi constant, C, takes a values that allows a limited
degree of motion between geocentric and heliocentric domains. This reference case is
used in subsequent comparisons in this section. The value of Jacobi constant used is
2,640,500,000 (m/s)>.

The nature of these surfaces contains several features of interest. The first is the
significant change in velocity with distance from Earth in both the X and Y direc-
tions. When Jacobi constant values are considered where motion is possible between
Earth-centred and Sun-centred orbits, inspection of the evolution of the velocity in
the Y direction shows a characteristic initial decrease with distance that is similar in
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Figure 4.8.16. Variation in rotating frame relative velocity with X and Y displacement in the
Earth—Sun system for Jacobi: constant at the reference value.

nature to the behaviour of a classical escape orbit. However, in Figure 4.8.16 this
motion in the Y direction is ultimately limited by the zero-velocity surface.

Inspection of the velocity evolution along the X axis shows the presence of a
minimum at the co-linear Lagrange points, L1 and L2. Moving along X beyond
these points results in an increase in the velocity. A case with an increase in —C can
also be examined. This is shown in Figure 4.8.17, in which the zero-velocity surface
does not appear. The value of Jacobi constant used here is 2,639,000,000.

The corresponding planet relative velocity can be obtained at any of the above
locations in the previous figures for a given Jacobi constant by making assumptions
about the direction of motion with respect to the rotating reference plane. In this
context, the planet relative velocity is the velocity relative to the planet measured in a
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Figure 4.8.17. Variation in rotating frame relative velocity with X and Y displacement in the
Earth—Sun system for the case of the incremented Jacobi constant.

frame whose axes directions are inertially fixed (i.e., non-rotating). The preceding
analysis gives no information on the rotating frame relative velocity direction, only
its magnitude.

The planet relative velocity is obtained by a vector velocity addition, as shown in
Figure 4.8.18. The velocity and the corresponding position may be converted into an
energy relative to the planet or major body. In Figure 4.8.19, showing this energy,
the limits of motion imposed by the surface of zero velocity are arbitrarily assigned a
value at —1e6. It may be seen that in the vicinity of Earth the energy is negative but
rises, reaching escape levels at greater distances from Earth. The plot assumes a
rotating reference frame with X again in the Sun—Earth direction. The velocity in
the rotating reference frame is assumed to be radial at all points, so defining the
planet relative velocity.

This energy value may in turn be converted into an excess hyperbolic speed. In
the following plots a zero value is used where the energy remains negative (Earth-



304 Special techniques

Rotation velocity, or,

Total planet relative
Velocity, Vip

Position, rp

Figure 4.8.18. Planet relative velocity.

38006

2 Ges006

14e+005

2064005

10000006

2000000,

4000000,

T (m)

3000000, -

Rotating frame relative velocity, V,

[Ch. 4

320406
32064006
2E60eH06
200eHIDG
1406406
200105
2004005
-4 0064005

10084006

Figure 4.8.19. Variation in Earth relative energy (using rotating frame radial velocity vector
direction assumption and reference Jacobi constant value) with rotating frame X and Y

displacement.

bound). In these plots the central ‘forbidden’ zone excluded by the zero-velocity

surface is also assigned a zero value.

As examples of some of the possibilities, three cases can be considered to
illustrate the energies that are achievable with a given magnitude of Jacobi
constant. The first case of Jacobi constant (Figure 4.8.16, the reference value), is
used as the basis. The first illustration in Figure 4.8.20 assumes that the velocity with
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respect to the rotating frame is always radial. A vector addition of the rotating frame
velocity yields the total velocity. The figure therefore shows the variations in energy
if the spacecraft were able to maintain such a constant velocity direction in the
rotating frame. However, this is clearly not possible, as any spacecraft will experi-
ence a continuous variation in the velocity vector direction. The figure therefore
provides an indication of the possible variations in energy for a given Jacobi
constant, but needs to be considered in conjunction with other admissible velocity
vector directions to explore the full range of possibilities regarding energy evolution.

The second illustration in Figure 4.8.20 assumes that the velocity with respect to
the rotating frame is in a prograde direction, perpendicular to the radial position
vector. Once again a vector addition of the rotating frame velocity yields the total
velocity. The third illustration in Figure 4.8.20 assumes that the velocity with respect
to the rotating frame is in a retrograde direction, again perpendicular to the radial
position vector. These three options span the range of possibilities for the energy at a
given location. Prograde and retrograde directions for the rotating frame relative
velocity direction yield the maximum and minimum energy.

The energy contours show that at radial distances beyond the Lagrange point
distances (1.5 million km) the velocity in the X direction at a given radius is sig-
nificantly greater than that in the Y direction. The prograde case yields greater
velocities at a given XY location, as expected. This set of figures illustrates the
total extent of the variation in energy that is possible. Even in the worst-case (i.e.,
minimum energy) velocity vector direction a transition from bound to escape orbit is
achieved with this value of Jacobi constant.

The details of spacecraft trajectory evolution depend on its initial state with
respect to the planet and the central body. These initial values will result in a
trajectory in the XY plane, and will also provide a given direction of the velocity
with respect to the rotating frame at each XY location.

These analyses show that there are significant variations in energy with respect
to the major body that are possible for the same value of Jacobi constant. They also
indicate that if suitable trajectories can be devised, then there is a possibility for a
spacecraft to acquire significant gains in energy with respect to the major body as it
moves away from that body. Examples of trajectories that achieve such energy
changes are given in the subsequent section.

A qualitative analysis therefore demonstrates the possibilities for the phenom-
enon of escape or capture at a planet via multi-body gravity perturbations.

Analysis of gravity-assisted escape

When previously discussing the departure of a spacecraft from a planet on a direct
escape trajectory, the evolution of the planet relative velocity vector was considered.
This enables a comparison of the achieved heliocentric orbit with the predicted orbit
by using the osculating excess hyperbolic speed at the pericentre of the departure
orbit. This same analysis may be repeated with regard to gravitational escape, but
with certain modifications. The following discussion is a qualitative analysis with the
objective of identifying the key features that contribute to energy change.
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Figure 4.8.20. Variation in Earth relative energy using radial (top) and prograde (middle) and
retrograde (bottom) rotating frame velocity vector directions, with X and Y rotating frame

displacement and reference Jacobi constant value.
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In the case of gravitational escape, then when at the initial pericentre, the space-
craft is in an osculating bound orbit, and there is no directly predicted excess
hyperbolic speed, as in a standard escape scenario. However, an analysis may be
made regarding the mechanism of the energy increase that may eventually lead to
escape.

The gravitational escape trajectory has previously been described as a variation
on a transfer orbit from the planet to an orbit about its Lagrange point. The key
feature of such a gravitational escape trajectory lies in the solar gravity perturbation
of the spacecraft orbit as the spacecraft transfers towards the vicinity of the L.1 or L2
Lagrange points.

The initial orbit for this type of escape will initially be a highly elliptical orbit,
ideally with a low pericentre. This allows an efficient injection into this orbit directly
from a standard launch vehicle. If the apocentre lies beyond the sphere of influence
of the planet, it will traverse a domain where solar gravity perturbations have an
effect on the orbit that is comparable with the planet’s gravity field. During this
perturbation period, the spacecraft orbit parameters may be strongly modified due to
the effects of the gravity perturbation. The same perturbation will not occur for any
initial high-apocentre orbit. The location of the apocentre with respect to the Sun’s
direction must be such that the effects of solar gravity perturbations strongly
influence the orbit. Strong perturbations are found for the ‘free injection’ class of
trajectory in reaching orbits about the Lagrange points, described previously, and
also for a range of neighbouring trajectories that do not result in free injection to
orbits at the Lagrange points.

Eventually, as the spacecraft gains energy, it may become feasible for the space-
craft to escape from the initial bound planet orbit. It then passes outside of the
region of influence of the planet’s gravity field, and its motion becomes dominated
by solar gravity. If enough energy is gained, the spacecraft enters a heliocentric orbit
free from the planet’s gravity.

It is possible to perform some qualitative analyses regarding the mechanisms for
spacecraft energy increase. The key issue is to examine the energy of the spacecraft as
it becomes free of the planet’s gravitational influence and enters the domain of the
central body. The equivalent excess hyperbolic speed can then be evaluated. The
effects of the central body disturbances on the trajectory apply strongly over a range
of radial distances, and so the spacecraft state should be assessed when at typically
2-3 times the Lagrange point distance. At this point the state relative to the central
body will reveal the equivalent excess hyperbolic speed with which the spacecraft
may be said to have departed the planet.

The prediction of the planet relative speed from the conservation of the Jacobi
constant was determined in Section 4.2 as:

V2= 12— 2wl + 2(“—“) + 2wl + 2(‘%)

re r planet r P

where in this case V. is the initial osculating excess hyperbolic speed at the initial
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pericentre (assumed to lie close to the planet). However, this initial orbit is bound
and so no initial escape condition exists. The excess hyperbolic speed term can
therefore be replaced by an initial energy term, 2E.

In the above V), is the speed relative to the planet in an inertially oriented
reference frame, £, is the angular momentum per unit mass (also the subscript 0
denoting the initial value at planet pericentre), r, is the position relative to the planet,
po and p, are the gravitational constants for the central body and planet, and w is the
angular velocity of the planet’s orbit about the central body.

The energy relative to the major body or planet, evaluated at some later stage in
the trajectory after leaving the initial pericentre, is given (using substitutions defined
in Section 4.2) by:

Viro = 2Ep10 = 2Eg — 2w hyo + 2(w*hpro) — & (rpro) + 307 (Pptanerro *Tpro)

o (4.8.46)

where the subscript L0 indicates a state evaluated at a time of passage close to the
Lagrange point, assuming that an escape energy is reached at this point. In some
situations this may not be the case. Assuming that escape does occur then a later
point in the trajectory must be used such that the excess hyperbolic speed becomes
real. This expression does not allow a value to be calculated for the escape energy
that may be achieved, as the selection of the reference point is not well defined. It
does, however, show the dependence of the energy on the evolution of the orbit and
so offers an insight into the nature of trajectories that are effective in achieving such
an escape.

One of the key terms in equation 4.8.46 in achieving energy gain is the angular
momentum. Initially the planet relative energy was negative, but to achieve a positive
value for escape, the angular momentum must generally increase. The potential for
such an increase can be assessed qualitatively. The rate of change of angular
momentum was obtained previously as:

%_}’ /\ﬁ_ — e _3Iﬂ1’lan€t.’;p_§ Vi +E rP/anet'rl 2
d L7 di 2 2 2 2

rplanet rp/anet 2 rplanet rplanet

rp 3
+ 0( N ) >rp A plcmet)
’plunet -

Then, taking only the dominant term (neglecting terms in rf,/ri,am,,), this rate
becomes:

dh, e rp[anet 'rp — e 3 .
dt1 = < =3 ) panes Ny = 3 Eri sin 26 (4.8.47)

r planet r planet

3
planet
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where 6 is the angle between the planet position vector and the position relative to
the planet. Therefore, the rate is maximised at large r, and an angle of 45°, reducing
as the angle reaches 90°. Integration of this rate along the trajectory is required to
obtain the angular momentum change. The spatial regions of a transfer trajectory to
the Lagrange point orbit where this rate is highest are the approach phases to the
orbit at the Lagrange point.

The second terms contributing to energy change are the radial position
dependent terms. The first (in 4.8.36) results in an energy reduction with increasing
distance, and the second is dependent on the relationship of the planet relative
position vector with respect to the planet position vector. It is maximum when
these are parallel or anti-parallel.

This term shows a different behaviour for trajectories that reach a gravitational
escape than for those that follow a typical high-energy escape orbit. In this latter case
the departure is relatively fast and the angular relationship between planet relative
and planet positions does not show significant deviation when distant from pericen-
tre, as the spacecraft escapes the planet’s gravitational influence. However, in the
classes of trajectories where gravitational escape is achieved, the motion is much
slower and the planet relative position vector experiences a significant series of
changes in direction. The increase in energy will be maximised when a near radial
(or anti-radial) escape passage can be achieved. However, the motion in a classical,
higher energy escape orbit in a radial direction also experiences this planet relative
energy change due to radial position. Such an escape direction does not by itself
result in a significant increase in escape energy. Therefore, the phenomenon of the
energy gain in a gravitational escape is primarily related to the combination of
angular momentum gain and the position vector evolution.

Designing a gravity-assisted escape or capture

Previous parametric analyses regarding transfers to the Lagrange points (L1 or L2)
from initially high elliptical orbits have shown that many of the generated transfers
do not enter free injection orbits about the Lagrange points. Some of these return to
the planet, and others pass beyond the Lagrange point and move into interplanetary
space.

The characteristics of these orbits are such that they have a nominally low initial
pericentre and a high apocentre, with a value close to that of the distance Lagrange
point. When this is combined with a line of apses such that the spacecraft physically
approaches the vicinity of the Lagrange point, the multiplicity of solutions described
are encountered. Only small changes in the osculating ephemeris values at the initial
pericentre are needed to generate radically different transfer trajectories, which obey
the criteria, described in the previous section, for experiencing angular momentum
gain.

Therefore, to generate an escape trajectory, shooting methods — such as those
used to generate free injection transfer orbits about the Lagrange points — can be
used. The key parameters are as follows:
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Parameter Observations

Apocentre Close to or beyond the distance from planet to Lagrange
point to enable trajectory perturbation by the central body.

Pericentre Close to the planet to enable injection directly from a

launcher parking orbit or intermediate transfer orbits.
Higher pericentre can sometimes be considered, for special
cases such as lunar gravity assist related transfers.

Longitude/right Determined by right ascension of ascending node,

ascension of pericentre inclination and argument of pericentre. Should be such as
to allow the apocentre passage to pass sufficiently close to
the vicinity of free injection orbit transfers about the
Lagrange points.

Declination of Generally close to ecliptic to ensure that trajectory at

pericentre apocentre passes sufficiently close to the vicinity of free
injection orbits about the Lagrange points. Determined
by inclination and argument of pericentre.

Inclination Often constrained by the launcher under consideration.

If a given apocentre is chosen, of sufficient attitude, then varying the longitude of the
pericentre allows a range of escape orbits to be generated, with different degrees of
escape energy. This latter quantity is measured effectively by the orbit ephemeris
relative to the central body, the spacecraft having left the gravitational influence of
the planet. Therefore, a direction for the initial perigee may be found that maximises
this energy.

By increasing the apocentre, the maximum energy obtainable may increase,
although the apocentre increase is limited if trajectories are to be generated that
maintain the characteristic of a passage that moves slowly through the vicinity of
an orbit about the Lagrange point. The difference in the initial perigee speed to effect
large changes in apogee are only a few metres per second, because the orbit is
relatively close to a parabolic orbit state.

The near-infinite number of escape possibilities, due to variations in apocentre
altitude and longitude of the line of apses means that the possibility exists for a
number of locally minimum solutions that maximise the departure energy.

The options described above have focused on cases where the spacecraft makes a
single pass close to a Lagrange point orbit. However, more complex trajectories are
possible when the spacecraft makes more than one revolution in this region, or even
traverses from the vicinity of one Lagrange point to the other (L1 to L2), and
ultimately escapes after passing by the second point. However, an important con-
sideration of such transfers is the additional time that is taken. The spacecraft is
relatively slow-moving when traversing these regions (the period of an orbit about a
co-linear Lagrange point is close to half of the orbital period of the planet).
Therefore, even the use of a single pass adds considerable extra time to the escape
process. Multiple revolutions could lead to extremely long transfer durations
(especially when such manoeuvres are considered at the outer planets).

Currently, considerable research is taking place in this area (see references for



Sec. 4.8] Using multi-body gravity perturbations 311

this chapter particularly Lo et al.) to attempt to classify the possible motions in this
complex domain and to seek ways to exploit the full potential of this type of motion.

The idealised problem of Earth escape

After the previous discussions regarding the potential for gravitationally assisted
planetary escape (or capture), an example is now considered in detail. This
concerns an escape from Earth. To ensure conservation of the Jacobi constant,
the Earth’s orbital eccentricity is set to zero in this example, although in practice,
similar effects are also found for the true Earth orbit case.

The initial orbit is: perigee, 500 km; apogee, 3.2 million km; inclination (with
respect to the ecliptic. 0°; line of apses, optimised). The escape is generated by
starting at perigee of an initially (osculating) high-apogee orbit. The direction of
the line of apses is optimised to generate the greatest possible change in heliocentric
energy (with respect to Earth’s orbit) after escape from Earth.

Figures 4.8.21, 4.8.22 and 4.8.23 show such an example. The motion is plotted
both in an Earth—Sun rotating reference frame and an Earth-centred inertial frame.
The spacecraft eventually passes close to the L1 Lagrange point before escaping
from Earth. It can be seen that this passage close to the Lagrange point lies close
to a new raised perigee of a modified Earth-relative orbit.

The changing energy can be compared with the prediction previously obtained:

2EP =2E — 2@'%4' 2(&'}1717) - wz(r%’) + 3w2(fplanet";p)2

where E), is the orbital energy relative to Earth.

The energy plot (Figure 4.8.22) of predicted and actual energy shows that good
agreement is obtained over this range of distances from Earth. The modified excess
hyperbolic speed at the raised perigee can therefore be obtained from this previous
term (or from the usual expressions for orbital energy depending on current velocity
and position) and is approximately 450 m/s.

The sharp increase in the angular momentum term (Figure 4.8.23) occurs as the
spacecraft moves first to the apocentre and then remains approximately constant
over a radial distance of several million km. The energy has not increased signifi-
cantly by the time the spacecraft reaches apocentre, but increases and becomes
positive as the spacecraft descends to a new, raised pericentre close to the
Lagrange point radius. The mechanism for the energy increase after apoocentre
now arises from the two radial dependent energy terms: one increases energy
because the radius is reduced, and the other increases energy because the position
becomes close to parallel with the planet position vector.

The initial Earth bound orbit considered here has a semi-major axis of 1.8
million km and perigee at 500 km altitude. It is therefore a feasible initial injection
orbit, in terms of being able to be reached efficiently from an initial launch from
Earth, where the initial perigee is typically several hundreds of km, depending on the
launcher.

The spacecraft reaches an Earth escape orbit as a result of the gravitational
perturbation when moving in the vicinity of the Earth—Sun L1 point. The effect of
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Figure 4.8.21. Escape from an initial Earth-bound orbit with a semi-major axis of 1.8 million
km, using gravitational assistance. In the upper figure, motion is in the Earth-Sun rotating
reference frame. X lies in the Sun-to-Earth direction, and Y is the perpendicular in the ecliptic.
The Earth—Sun L1 Lagrange point lies at X' = —1.5 million km. In the lower figure, motion is
in the Earth centred inertial frame. X and Y are in the ecliptic, and X is defined by first point
of Aries.
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Figure 4.8.22. Evolution of Earth relative semi-major axis and energy from initial bound orbit
to escape. In the upper figure, as the spacecraft first moves to apogee and then returns to a
modified, high Earth perigee, the solar gravity perturbation increases the orbital energy. The
energy becomes positive, in this case, at approximately 1.7 million km from Earth. The actual
energy and that predicted by approximation are compared in this plot. In the centre figure, the
energy gain results in the semi-major axis asymptotically moving towards positive and
negative infinite values before reaching a finite negative value. In the lower figure, the Earth
relative osculating excess hyperbolic speed achieves a real value as the Earth relative energy
becomes positive.
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Figure 4.8.23. Evolution of angular momentum and position—velocity angle from the initial
bound orbit to escape. The angular momentum (per unit mass) experiences a significant
perturbation from the influence of solar gravity. The term plotted here in the upper figure
is actually 2w (/,), and would be constant under the two-body Keplerian motion problem.
However, as the spacecraft passes close to the Lagrange points a significant increase occurs.
This may be contrasted with the conventional hyperbolic escape orbit in Section 4.2.1. The
scalar product of Earth, relative position and velocity is shown in the lower figure. As the
spacecraft departs perigee in its initially highly elliptical orbit, the directions of r, and v,
converge. Then, as the spacecraft reaches apogee, r, and v, become perpendicular. The
return to the new, raised perigee occurs at a radius of 1 million km, where position and
velocity vectors again become perpendicular. After the final perigee, the directions converge
as the spacecraft departs in a hyperbolic orbit.
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this orbital energy on the heliocentric motion must be considered. The escape, in this
case takes, place after a passage close to the L1 Lagrange point, and the subsequent
heliocentric orbit moves inwards towards the Sun.

Two key parameters of the heliocentric motion are the semi-major axis (or
energy) and the angular momentum. The latter term determines the eccentricity
and thus the perihelion that may be achieved. The values achieved in this
example, when far removed from Earth’s sphere of influence, are:

Semi-major axis: 1.402E+ 8 km

Eccentricity: 5.596E-02
Apbhelion: 1.480E + 8 km
Perihelion: 1.323E+ 8 km

The aphelion lies slightly below Earth radius at | AU. The most significant effect is
the perihelion reduction. The excess hyperbolic speed relative to Earth to reach such
a perihelion would be 928 m/s. This impulsive calculation is made for leaving Earth
orbital radius directly and reaching the above perihelion. This is considerably higher
than the value identified at the raised perigee, but the fact the perigee itself is at
nearly 1 million km from Earth (towards the Sun), and that further perturbations
apply as the spacecraft leaves the vicinity of the Lagrange point, means that this
perigee value of excess speed underestimates the eventual performance.

Figure 4.8.24 shows the evolution of heliocentric semi-major axis and angular
momentum as the spacecraft leaves Earth. The heliocentric energy and thus semi-
major axis initially show a significant variation as the spacecraft moves from perigee
due to its absolute velocity reduction when climbing the Earth’s gravity potential.
This is a typical feature of any Earth bound orbit.

Reduced energy case

The sensitivity of such an Earth escape to the initial orbit apogee can also be
observed. Such a lower energy example is considered (Figure 4.8.25). The initial
semi-major axis is now 1 million km and apogee approximately 2 million km. The
direction of the line of apses is again rotated to maximise the change in heliocentric
orbital energy after escape.

However, although the Earth orbital energy is much lower in this case, the actual
manoeuvre AV that must be applied at perigee to reach the previous higher orbit is
only 8 m/s.

As Earth orbit initial apogee is further reduced, a cut-off point exists where
escape is no longer achieved. This occurs when the apogee falls significantly below
the Lagrange points. For example, an apogee at 1 million km will not achieve escape.
Intermediate values show a high sensitivity of the final orbit to small changes in
apogee.

The case of a neighbouring bound Lissajous orbit

The escape orbit described in the previous sections can now be compared with a
neighbouring manifold of the three-body problem. Previous discussions have
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Figure 4.8.24. Evolution of Sun-relative semi-major axis and angular momentum from initial
Earth bound orbit to escape. In the upper figure, as the spacecraft passes through apogee and
returns towards Earth the heliocentric energy continues to reduce. After the new perigee is
passed (at approximately 1 million km) the heliocentric energy reaches a near-constant level.
In the lower figure, the angular momentum follows a similar trend to the semi-major axis,
almost reaching its asymptotic value as the spacecraft passes through its raised Earth perigee.

indicated the similarity between gravitational escape orbits and free injected transfers
to orbits about the Lagrange points.

In this case (Figure 4.8.26), the same apogee and perigee as the previous escape
example (osculating values at perigee) are used, but the right ascension (and the
azimuth of the line of apses) is rotated by approximately 5°. This can be
compared with the escape case in Figure 4.8.21.
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Figure 4.8.25. Escape from lower energy initial Earth bound orbit and evolution of Sun-
relative semi-major axis. The upper figure shows motion in the Earth-Sun rotating
reference frame. X lies in the Sun-to-Earth direction and Y is the perpendicular in the
ecliptic. The Earth-Sun L1 Lagrange point lies at X = —1.5 million km. When compared
with the previous example, it can be seen that the excursion in the ‘Y’ direction is reduced
in this lower-energy case. The lower figure shows the achieved semi-major axis of 141 million
km which results in perihelion at 134 million km. Therefore, a significant reduction in initial
Earth orbital energy still leads to similar (although slightly less energy change) heliocentric
orbits.
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with a semi-major axis of 1.8 million km. The upper figure shows motion in the Earth—Sun
rotating reference frame. X lies in the Sun-to-Earth direction, and Y is the perpendicular in the
ecliptic. The Earth-Sun L1 Lagrange point lies at X = —1.5 million km. The lower figure
shows motion in an Earth-centred inertial frame. X and Y are in the ecliptic, and X is defined
by the first point of Aries.
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Figure 4.8.27. Evolution of energy and semi-major axis with distance from Earth, for a
transfer to a large amplitude free injection Lissajous orbit. The semi-major axis is plotted
against the vertical axis on the left, and the energy against the vertical axis on the right.

The resulting motion is a free injection into a large-amplitude Lissajous orbit
about the L1 point. The initial evolution of the semi-major axis and Earth relative
energy is qualitatively similar to the escape case (Figure 4.8.27). As the spacecraft
first moves to apogee and then returns towards Earth, the solar gravity perturbation
increases the orbital energy. As the spacecraft approaches the modified, raised Earth
perigee, the orbital energy becomes positive. This is achieved at a distance from
Earth of approximately 500,000 km. The Earth relative energy then returns to a
negative value as the spacecraft moves away from its raised perigee and back
towards the modified apogee at over 2.5 million km.

The evolution of the heliocentric energy and angular momentum also follows a
similar initial trend as the escape case (Figure 4.8.28). As the spacecraft passes
through apogee and returns towards Earth the heliocentric energy (and hence
semi-major axis) continues to reduce and reaches a minimum as the new, raised
perigee is reached.

The idealised problem of Jupiter escape

Jupiter has the strongest gravity field in the Solar System, after that of the Sun.
Therefore, an example of escape from Jupiter is an interesting case to study. The
initial Jupiter bound orbit considered here has a semi-major axis of 25 million km
and perigee at 1.1 million km altitude. This could be typical of an orbit with
pericentre above the radiation belts.

The initial orbit parameters are: pericentre, 1.1 million km; apocentre, 49 million
km; line of apses, optimised. The direction of the line of apses is optimised to
generate the greatest possible change in heliocentric energy after escape from Jupiter.
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Figure 4.8.28. Evolution of Sun relative semi-major axis and angular momentum from initial
perigee to free injection orbit. In contrast with the escape case, the energy rises as the
spacecraft moves away from its new, raised perigee back towards apogee. This is because
the planet position becomes non-aligned with the planet position vector as it proceeds through
the Lissajous orbit. In the lower figure, the angular momentum follows a similar trend to the
semi-major axis, reaching its minimum value as the spacecraft passes through its raised Earth
perigee.

Figures 4.8.29 and 4.8.30 show an example of gravity-assisted escape from
Jupiter. The motion is plotted both in a Jupiter—Sun rotating reference frame and
a Jupiter-centred inertial frame. The evolution of energy and semi-major axis are
shown in Figure 4.8.30.

After the first apocentre, pericentre is raised significantly by solar gravity per-
turbation, to approximately 47 million km. The solar gravity perturbation increases
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Figure 4.8.29. Escape from an initial Jupiter-bound orbit with semi-major axis of 25 million
km, using gravitational assistance. The upper figures shows motion seen in Jupiter—Sun
rotating reference frame. X lies in the Sun-to-Jupiter direction, and Y is the perpendicular
in the ecliptic. The Jupiter—Sun L2 Lagrange point lies at X = 50 million km. The lower figure
shows motion in the Jupiter-centred inertial frame. X and Y are in the ecliptic, and X is
defined by first point of Aries.
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Figure 4.8.30. Evolution of Jupiter relative semi-major axis and energy from initial bound
orbit to escape. The energy becomes positive at approximately 49 million km from Jupiter. The
semi-major axis is plotted against the vertical axis on the left, and the energy against the
vertical axis on the right.

the orbital energy with respect to Jupiter, as the spacecraft moves to apocentre and a
further increase on descending to the modified, raised pericentre.

The initial orbit here is similar in nature to that considered in the Earth escape
example. Apocentre is at or above the Lagrange point. One difference is that in this
case a second type of transfer route is used (Section 4.8.4, Figure 4.8.13)

The spacecraft reaches a Jupiter escape orbit as a result of the gravitational
perturbation when moving in the vicinity of the Jupiter—-Sun L2 Lagrange point.
The escape in this case takes place near the L2 Lagrange point and the subsequent
heliocentric orbit moves away from the Sun.

The heliocentric orbit values achieved in this example, when far removed from
Jupiter’s sphere of influence, are:

Semi-major axis 1.394E +9km

Eccentricity 3.878E-01
Aphelion 1.934E + 9 km
Perihelion 8.534E + 8 km

The perihelion lies above Jupiter’s orbital radius at 7.785E + 8 km. The most sig-
nificant effect is the aphelion increase. The excess hyperbolic speed relative to Jupiter
that is needed to reach such a aphelion would be 2,530 m/s.

Figure 4.8.31 shows the evolution of heliocentric semi-major axis and angular
momentum as the spacecraft leaves Jupiter. As in the Earth escape case, the helio-
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Figure 4.8.31. Evolution of Sun relative semi-major axis and angular momentum from initial
Jupiter bound orbit to escape. In the upper figure, after the new pericentre is passed (at
approximately 47 million km) the heliocentric energy reaches a near-constant level. This can
be compared with Jupiter’s semi-major axis at approximately 7.78e8 km. In the lower figure,
the angular momentum follows a similar trend to the semi-major axis, almost reaching its
asymptotic value as the spacecraft passes through its raised Jupiter pericentre.
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centric energy and semi-major axis initially show a significant variation as the space-
craft moves from pericentre. Then, as the spacecraft passes through its initial
apocentre and returns towards its raised pericentre the heliocentric energy increases.

This behaviour is a reverse of the Earth escape case, as here the spacecraft is
escaping to an orbit with raised aphelion rather than lowered perihelion. Such an
escape orbit is suitable to initiate a transfer to the outer planets.

4.8.6 Use of low thrust and gravitational escape

The previous examples have examined the use of gravitational perturbations to assist
in escape. In the case of an escape from Earth it is necessary to reach an orbit with
apogee at at least 1.2—1.5 million km (close to the Lagrange point). Such an apogee
may be reached by direct injection from the launch vehicle or by apogee raising. This
second strategy, when executed with a high-thrust chemical system, eventually
results in a transfer that is eventually (after a final apogee raising manoeuvre)
similar to the direct injection case.

Alternatively, the transfer may be executed with a low-thrust system after
injection to a lower-apogee orbit. There will be a transfer duration penalty in
achieving such a sequence, but if time constraints are not paramount, then such a
strategy is potentially attractive. It could of course be reversed at the target planet.

A strategy is considered that is similar to that discussed in Section 4.6.2, by

Figure 4.8.32. Using low-thrust apogee-raising for gravitational escape from initial GTO. The
trajectory is seen in an Earth centred, rotating reference frame.
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FAH

Figure 4.8.33. Gravitational escape after low-thrust apogee-raising. This figure shows the
continuation of the previous trajectory, still seen in the same rotating reference frame. The
grid is now 1 million km from centre to edge (a sub-grid of 100,000 km), and the thrust arcs are
now the dark shaded regions of the trajectory, which passes close to the Earth—Sun Lagrange
point and then escapes from Earth, as previously observed in the direct transfer examples.

which a series of alternating thrust and coast arcs is used. Each main thrust arc is an
extended manoeuvre around pericentre, and small apocentre arcs may also be
applied to increase efficiency by controlling the otherwise rising percentage.

The time taken to raise apogee to the required value will be less than that needed
to reach an escape condition (perhaps 2/3 of the time). It will be slightly longer than
the time to reach a lunar-crossing orbit, where a lunar gravity assist could be
performed. Such a gravity assist would only result in a marginal escape, because
the relative velocity at the Moon is reduced due to the raised perigee (that auto-
matically results from such a low thrust transfer). The use of low thrust to reach the
region of the Lagrange points also results in a raised perigee. However, this does not
penalise the subsequent escape energy after the gravitational perturbation.

Figure 4.8.32 shows such a low-thrust transfer, in which the thrust arcs are the
light shaded regions of the trajectory. The transfer is viewed in an Earth—Sun
rotating reference frame, with L2 at the top of the figure. The inner grid is
100,000 km from centre to edge. An equivalent Earth escape V', of 900-1000 m/s
is achievable in this way.

4.8.7 Summary of gravitational escape and capture techniques

The previous analyses have shown the potential for the use of gravity perturbations
to increase the energy of an initially bound orbit, to the extent that a spacecraft
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passing along such a trajectory may escape from the planet with a moderate-energy
departure orbit. Conversely, capture can occur in the reverse circumstance.

Examples at Earth have shown equivalent escape orbit excess hyperbolic speeds
of typically 1 km/sec with a single pass in the vicinity of a Lagrange point. The time
penalty is therefore approaching 180 days for such an escape, when compared with a
more traditional route. Similar analyses performed at Jupiter show a greater equiva-
lent escape excess hyperbolic speed of over 2.5km/sec. Only single passes by the
Lagrange points have been examined in detail, as these limit the duration spent in
these regions to more practical levels for mission design. More complex, longer-
duration departure or capture strategies could be considered, with potentially
greater energy gain. The shortest extra duration added to a mission for utilising a
gravitational escape phenomenon at Jupiter is typically five years. Therefore, when
the outer planets are considered, although significant performance gain can be
achieved, the time penalties are too great to make this method feasible.

Examples of capture at Venus have shown equivalent approach orbit excess
hyperbolic speeds of typically 1km/sec, subsequently capturing through a
single pass in the vicinity of a Lagrange point orbit. The time penalty is therefore
approaching 120 days for such a manoeuvre. An analysis of such a transfer is given
in the examples of Chapter 5. The excape process is effectively reversed for capture.
Capture at Jupiter could be achieved from approach orbits with energies similar to
those in the escape cases examined.

Regarding the utilisation of this technique for assisting mission design, it can be
seen that it offers the most attractive performance for the inner planets of the Solar
System, where the time penalties are limited. Also, when considering such man-
oecuvres at Jupiter and Saturn, escape and capture manoeuvres can be more effi-
ciently achieved via the use of gravity assist at the moons of those planets. Use of
lunar gravity assist at Earth is also more effective than the gravitational methods
described here for Earth.

A number of interesting options for mission design using these techniques have
been explored for transfers between the moons of Jupiter. Here the escape and
capture possibilities principally exploit the combined gravity fields of Jupiter and
the moon in question. The four inner moons have significant gravity fields. Details of
such mission options can be found in the references listed for this section; much work
in this area has notably been performed by Gomez, Koon, Lo ef al.

The approach described in this section enables the generation of trajectories that
experience gravitational escape or capture. Locally optimal trajectories may be
obtained by optimisation of the ephemeris at pericentre of the planet or moon
under consideration. Further examples of these trajectory types are given in
Chapter 5, where interplanetary transfers utilising these techniques are considered.

A number of methods are available for generation of such trajectories. Con-
siderable research has been undertaken on the properties of the invariant manifolds
of orbits about the Lagrange points (L1 or L2). These were introduced in the
previous section in the context of generating free injection transfers from initial
planet pericentre to an orbit about the Lagrange point. The same procedure can
be considered to identify those trajectories that result in escape from the planet. This
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means that the spacecraft may depart along the unstable manifold. Conversely, on
approaching a planet, capture may be achieved by approaching on the stable
manifold to an orbit about one of the co-linear L1 or L2 Lagrange points. This
area has notably been researched by Lo, Koon et al., and more information may be
found in the references for this chapter.

4.9 AEROCAPTURE AND AEROBRAKING

The retarding effect of an atmosphere can be used to assist in insertion to a target
orbit about a planet. Most of the planets of the Solar System have an atmosphere
that can, in principle, be utilised. The main exceptions are Mercury, with an almost
non-existent atmosphere, and Pluto, with an atmosphere that is thought to be
extremely rare. Venus, Earth and Mars all have atmospheres that may assist orbit
insertion, and the outer four gas giants can also be used for this purpose.

These planets possess atmospheres of very different densities, but all may poten-
tially be effective. There are two major techniques that can be considered to assist in
target orbit insertion: aecrocapture and aerobraking. A further category of atmo-
spheric assistance (not applicable here), is aerogravity assist, which may be used in
conjunction with planetary gravity assist manoeuvres to provide additional retarda-
tion or even plane change.

Before these concepts are discussed further, certain key terms must be defined.

Atmospheric drag is the retarding force arising from the density of the atmo-
sphere of the planet:

Drag = %szCDS

where p is the atmospheric density, V is the speed of the spacecraft relative to the
atmosphere, Cp is the drag coefficient, and Sggf is a reference area, typically equal to
the area of the spacecraft that is normal to the direction of flight through the atmo-
sphere. The value of Cj depends on the geometrical configuration of the spacecraft.
Dynamic pressure:

0=1p1?
Kinetic heating, caused by passage through the atmosphere:

q=kp"V"
where k is a constant related to the local curvature of the surface of the spacecraft,
and the values n and m are typically 0.5 and 3 respectively, although vary with the
nature of the flow and surface properties.

A detailed discussion on these subjects (hypersonic aerothermodynamics) may
be found through the references for this chapter.

4.9.1 Aerocapture

A spacecraft approaching a target planet has a significant excess hyperbolic speed.
Insertion to a captured orbit about the planet generally requires a significant pro-



328 Special techniques [Ch. 4

pulsive AV applied at perientre. This retards the spacecraft to the extent that the
energy reduction ensures that a bound orbit is reached. This will generally be a high
elliptical orbit in which the spacecraft may spend some time before subsequent
manoeuvres are used to inject it to the final target orbit.

The same effect may, in principle, be achieved by a retarding passage through
the planet’s atmosphere. The pericentre of the approach orbit is set to an altitude
such that the atmospheric drag experienced by the spacecraft is sufficient to retard
the spacecraft into an orbit with the desired intermediate apocentre, after emerging
from the atmosphere on its new, elliptical orbit. This process is aerocapture. The
pericentre must then be raised above the atmosphere (at the subsequent apocentre) in
order to ensure that a second atmospheric passage does not occur. Such a passage
could result in loss of the spacecraft as its trajectory may be sufficiently retarded to
impact the surface of the planet.

The speed reduction required for capture depends on the target planet and the
speed with which the spacecraft approaches the planet. However, for example at
Venus, Earth and Mars, a speed reduction of typically 700—1,000 m/sec could be
required. The spacecraft approach orbit is such that the time spent close to pericentre
is relatively short, and so the retardation must be sufficient to achieve this speed
change in a short time period (the main period of atmospheric influence may only
last for minutes). This means that the atmospheric density must be relatively high in
order to ensure that the peak deceleration is high enough to effect capture. The
spacecraft could experience peak deceleration loads exceeding 1g. The correspond-
ing dynamic pressure will also be high. Simultaneously, kinetic heating of the space-
craft will result from the passage through the atmosphere. This combination of
factors represents an extreme environment for a typical satellite configuration.
Therefore, in many cases acrocapture will require the use of a specialised heat-
shield by the spacecraft.

An important consideration with aerocapture is knowledge of the atmosphere
before entry occurs. The pericentre is targeted by assuming a particular density
profile with respect to altitude above the planet. Variations in the density from
that expected at pericentre have a significant effect on the trajectory. These variations
could arise either because the local atmospheric conditions are not as expected (for
example, local solar weather effects on the atmosphere) or because navigation errors
cause dispersion in the achieved pericentre.

If the spacecraft passes through a denser region than expected, it could start to
progressively enter the denser regions of the atmosphere and ultimately impact the
planet’s surface. If the maximum density is less than expected, the spacecraft may
exit the atmosphere with less retardation than expected and consequently fail to
enter into a captured, bound orbit about the planet.

This spectrum of possibilities is covered by only a few kilometres in pericentre
altitude, or the corresponding density variability at the nominal altitude. Therefore,
for aerocapture to be feasible, closed loop control systems are generally considered.
This allows the spacecraft to monitor its deceleration profile and implement changes
to its trajectory to correct deviations from nominal. Such trajectory changes could
either be implemented by aecrodynamic means or spacecraft propulsion.
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Figure 4.9.1. The principle of aerocapture.

Aerocapture has not as yet been implemented on interplanetary missions, and
requires technology developments on the control systems to establish confidence in
the technique. The potential gains are high, as large AV and hence fuel mass savings
are possible.

4.9.2 Aerobraking

Once captured, the spacecraft will generally be in a highly elliptical orbit about the
planet. However, the target orbit will have a much lower apocentre, which would
normally require one or more retro-burn manoeuvres at pericentre. The AV for this
process can also be relatively high, depending on the target orbit.
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As an alternative to propulsive manoeuvres, acrobraking can be used to apply
the required retardation. This requires that the pericentre be lowered into the upper
atmosphere, where atmospheric drag will reduce the spacecraft velocity and lower
the apocentre. The retardation could, in principle, be accomplished with a single
passage through the atmosphere. However, in such a circumstance the spacecraft
would encounter all of the problems applicable to aerocapture.

It is therefore possible to perform repeated passes through the atmosphere and
slowly, repeatedly, reduce the apocentre. This means that the first passage can be
high enough to include a safety margin, in the presence of the expected variability in
maximum atmospheric density. Successive passes can adjust the pericentre as greater
knowledge regarding the spacecraft and atmospheric state is gained. In this way, the
riskier aspects associated with aerocapture are mitigated. The penalty is that the time
taken to reach the target orbit is increased, as the spacecraft is now making multiple
revolutions in what are initially high-period orbits (of several days). Aerobraking
was performed by NASA’s Mars Global Surveyor in the Martian atmosphere in
1997, and later by Mars 2001 Odyssey.

An example of an aerobraking sequence would be the following:

(1) Capture to high apocentre orbit (for example, at Mars, 100,000-200,000-km
apocentre by 400-km pericentre). This may be propulsive or even by aerocap-
ture.

(2) Lower pericentre to a value that ensures passage through the upper atmosphere
(but at an altitude higher than the nominally expected value).

(3) Perform aerobraking to lower apocentre.

(4) Monitor change in orbit and adjust the pericentre via small apocentre man-
oeuvres, to target the nominal aerodynamic deceleration expected.

(5) Further small pericentre altitude maintenance manoeuvres may be required at
apocentre to preserve the pericentre altitude under solar gravity perturbations to
the highly elliptical orbit.

(6) Raise the pericentre via a small prograde manoeuvre at apocentre when the
apocentre reaches the required altitude.

The time taken for apocentre reduction is dependent on the aero-thermal loads that
are allowable. High loads imply the use of a specialised shield, whereas low loads can
be experienced without significant modification to the standard spacecraft. A space-
craft can present a large drag surface to the atmosphere by the correct orientation of
the solar arrays, as these generally represent the largest surface area of the space-
craft. They can be rotated as the velocity changes direction through the pericentre
passage.

In the examples shown in Figures 4.9.2 and 4.9.3, the apocentre is reduced from
nearly 200,000 km to almost 39,000 km over a period of 100 days. The peak decel-
eration is typically 0.02 m/s/s, and so places only modest loads on the spacecraft. The
AV that would otherwise have been required to implement this apocentre reduction
is approximately 150 m/s.

If the aerobraking sequence is continued for another 40 days, the apocentre can
be reduced much further, to an altitude below 9,000 km, as shown in Figure 4.9.4.
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Figure 4.9.2. Aerobraking drag and altitude profile during a typical pericentre passage.
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Figure 4.9.3. Aerobraking velocity and altitude profile over a period of 100 days.
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Figure 4.9.4. Aerobraking velocity and altitude profile over a period of 100-140 days.

However, the AV needed for this apocentre reduction is approximately 400 m/s.
Therefore, if a faster apocentre reduction is required but some AV saving needed
compared to an all propulsive insertion, a relatively small AV can be applied to
reduce apocentre until the orbit periods are sufficiently short to make aerobraking
much more time-efficient over the remainder of the apocentre reduction that is
required.
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Figure 4.9.5. Aerobraking at Mars from a 100,000-km apocentre insertion orbit over a 100-
day period.



S

Missions to the planets

The previous chapters have described a range of techniques that may be applied
when designing missions to the planets of our Solar System. In this chapter, a
number of such missions are considered. The aim is to demonstrate the application
of the methods described. Techniques such as gravity assist and gravity capture are
considered, as well as the applications of low-thrust propulsion.

The examples considered include cases of missions to many of the planets of our
Solar System, as well as exploration of the Jovian moons. In those cases where
particular launch epochs are considered, these often relate to the next decade
when future missions may be planned. In some cases, current epochs are considered
where the transfers may be related to current missions.

The objective is to find efficient transfers and to show how many of the special
transfer techniques previously discussed can assist in this aim. One of the key param-
eters that indicate the efficiency of a mission is the AV, and so this quantity is
evaluated for a wide range of missions and transfer types. A mission places require-
ments on the initial planetary escape and capture, and so the AV implications of
these phases of the mission must also be included. In many cases, a direct launch into
interplanetary transfer orbit may form the basis of the mission design. However, in
order to assess the nature of the penalty to the mission implied by a given escape
velocity requirement, the AV to raise the orbit from an initial reference ellipse to the
required escape orbit is considered. The same philosophy may be applied to capture
at a planet.

5.1 INTERPLANETARY MISSIONS USING GRAVITY ASSIST

5.1.1 Routes through the inner planets: mission to Mercury

Mercury is in some respects the most difficult planet to reach from Earth, as it
requires a greater energy change than a transfer to any other planet. A further
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complication is its elliptical orbit and inclination. These are key considerations that
influence the mission design.

In order to achieve an efficient transfer to Mercury with traditional propulsion
systems, it is mandatory to consider gravity assists. The main possibilities for gravity
assist in reaching Mercury include Venus, Mercury and the Earth. As the only
intermediate planet, Venus is clearly significant. The launch opportunities
therefore tend to be driven by Earth—Venus transfer opportunities. The synodic
period is 1.6 years.

The key features of these transfers globally repeat with an eight-year period, as
this is the global repeat time for transfers from Earth to Venus. In this context
‘global’ means that the same transfer geometry applies, in terms of absolute long-
itudes of the planets. Mercury does not repeat precisely at eight years, but because
multiple phasing orbits are generally used between Venus and Mercury, this lesser
variation can be accommodated with less overall mission design implications.

A number of preliminary strategies can be assessed by means of simplified, co-
planar transfer approximations. This effectively means that the inclinations of Venus
and Mercury are not at first considered. As the eccentricity of Earth’s and Venus’s
orbits is low, it will be further assumed that these are circular.

Strategies at Venus

If the first gravity assist occurs at Venus, then the possibilities here must be explored.
These can range from using a single VGA to directly rendezvous with Mercury, to
using multiple VGAs before rendezvous.

As the transfer is simplified by assuming that the planetary orbits (Earth, Venus
and Mercury) are co-planar, then the transfer manoeuvres are dominated by helio-
centric orbit raising and lowering operations rather than plane-changing. The
simplest strategy that could be considered uses a single gravity assist at Venus.
The interplanetary orbit after leaving Earth has the perihelion lower than Venus’s
orbit. The gravity assist at Venus will further reduce the perihelion so that a rendez-
vous at Mercury can occur. Mercury’s orbit is eccentric, such that aphelion lies at
0.47 AU and perihelion at 0.31 AU. In the case of a direct transfer the optimum
rendezvous location is at perihelion, and this is also the target with the gravity-assist
transfer.

The V,, requirements can be converted to AV requirements. To perform this
calculation, some reference orbits must be defined:

e The Earth-bound initial reference orbit has a perigee altitude at 200 km and
apogee altitude at 35,787 km (GTO standard apogee altitude).

e The Mercury bound reference orbit has a pericentre at 400 km and apocentre at
39,760 km (same apocentre radius as Earth GTO orbit).

Table 5.1.1 shows the transfer details and compares direct with VGA transfers.
Rendez-vous at Mercury aphelion and perihelion are compared.
Table 5.1.2 shows the significant AV savings that will result from such a transfer
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Table 5.1.1. Comparisons of direct and single VGA transfer to Mercury with rendezvous at
Mercury aphelion and perihelion. Co-planar planetary orbits are assumed. /% is the altitude of
the fly-by.

V. at Intermed Intermed V,, at Intermed Intermed V at

Earth Apo Peri Venus /4 fly-by Apo Peri Mercury

(m/s) (AU)  (AU)  (m/s) (km) (AU)  (AU)  (m/s)
Peri RV 9,356 n/a n/a n/a n/a n/a n/a 7,453
Apo RV 6,023 n/a n/a n/a n/a n/a n/a 12,052
Peri RV+VGA 5,796 1.00 0.48 12,558 400.00 0.80 0.31 5,659
Apo RV+VGA 2,812 1.00 0.70 4,563 400.00 0.73 0.47 9,292

Table 5.1.2. AV comparisons of direct and single VGA transfer to Mercury with rendezvous
at Mercury aphelion and perihelion.

AV Earth departure AV Mercury approach Total AV

(m/s) (m/s) (m/s)
Peri RV 4,208 4,592 8,801
Apo RV 2,310 8,834 11,144
Peri RV +VGA 2,202 3,062 5,264
Apo RV +VGA 1,123 6,251 7,375

strategy using a single VGA. It further confirms the preference for rendezvous at
Mercury perihelion for both direct and VGA cases.

A second gravity assist may now be considered, to take place at Venus. In order
to facilitate such a second rendezvous, an intermediate resonant orbit will be used.
Resonance ensures that no manoeuvres are needed when returning to Venus for the
second time.

The first requirement is that the spacecraft must reach a Venus resonant orbit
after the first VGA. Two main options that could be considered are 1:1 resonance
and 4: 3 resonance. These provide a range of transfer performances but also limit the
transfer duration extension to no more than three Venus orbits. A 3:2 resonance
with Venus can also be considered, but this requires a greater energy change, as the
semi-major axis of that orbit is lower.

The maximum perihelion with which a 1: 1 resonant orbit can be reached with a
minimum energy transfer from Earth lies only just lower than Venus’s orbit. The
aphelion after the gravity assist is then, however, only just above Venus. Conse-
quently, any subsequent gravity assists are limited in the perihelion reduction that
can be achieved. Mercury perihelion cannot be reached in this way, because the
excess hyperbolic speed at Venus is insufficient to achieve the energy change
needed to transfer from the 1:1 resonant orbit to one with a perihelion that lies
at Mercury.

Table 5.1.3 shows the resonant orbits that may be reached with the minimum
excess hyperbolic velocity departing Earth. Greater excess speed implies a lower
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Table 5.1.3. 2D patch conic analysis of Earth transfer orbits to reach Venus resonance after
VGA. Co-planar planetary orbits are assumed.

Vo at Apo Peri V4 at Resonant Resonant
Resonant Earth leaving leaving  Venus /i fly-by  orbit Apo  orbit Peri
orbit (m/s) Earth Earth (m/s) (km) (AU) (AU)
V-1:1 2,531 1.000 0.720 2,978 25,000 0.785 0.662
V-3:4 2,828 1.000 0.694 4,638 400 0.731 0.463
V-2:3 6,934 1.000 0.417 14,649 400 0.827 0.277

Table 5.1.4. 2D patch conic analysis of alternative Earth transfer orbits to reach Venus 1:1
resonance after VGA. Co-planar planetary orbits are assumed.

Vs at Apo Peri Vs at Resonant Resonant
Resonant Earth leaving leaving  Venus & fly-by  orbit Apo orbit Peri
orbit (m/s) Earth Earth (m/s) (km) (AU) (AU)
V-1:1 2,531 1.000 0.720 2,978 25000 0.785 0.662
V-1:1 3,346 1.000 0.650 6,635 31800 0.860 0.587
V-1:1 4,404 1.000 0.570 9,572 39600 0.919 0.527
V-1:1 5,304 1.000 0.510 11,573 67500 0.959 0.488

perihelion and therefore greater excess hyperbolic speed at Venus. V3:4 means
3 Venus revolutions and V2:3 implies 2 Venus revolutions.

However, many 1:1 resonant orbit solutions are available at Venus. These may
be reached with increased excess hyperbolic speeds when approaching the planet.
Resonance is then achieved in one of two ways:

(1) A gravity assist is used to achieve a significant out-of-ecliptic motion whilst
maintaining a semi-major axis at the value needed for resonance. Such tech-
niques are described in the previous section on 3D gravity-assist design.

(2) A higher altitude fly-by is used whilst maintaining the post fly-by orbit close to
the ecliptic, such that even with the high V', the semi-major axis can be main-
tained at the required value. These solutions are shown in Table 5.1.4.

With such higher V_, solutions in 1:1 resonant orbits, a much lower perihelion can
be achieved after the second gravity assist at Venus. However, the price to pay is that
the launch ¥V, is also considerable higher to achieve this greater excess speed at
Venus. The achievable perihelions after the second gravity assist are shown in
Table 5.1.5.

The transfer, using 11.5km/sec V', at Venus can be converted to A}V to transfer
to Mercury, via a rendezvous after the second VGA (Table 5.1.6).

This case shows that the use of the second VGA in a 1: 1 resonant orbit results in
a gain over the single VGA case. However, more efficient strategies are available
when using double VGA. Now the case of a 4:3 resonant orbit is considered and
shown in Table 5.17.
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Table 5.1.5. 2D patch conic analysis of transfer orbits after the second gravity assist from a
Venus 1:1 resonance.

Vo at Venus h fly-by  Transfer orbit Apo Transfer orbit Peri
Resonant orbit (m/s) (km) (AU) (AU)
V-1:1 2,978 300 0.728 0.540
V-1:1 6,635 300 0.728 0.367
V-1:1 9,572 300 0.754 0.324
V-1:1 11,573 300 0.781 0.307

Table 5.1.6. AV implications for a double VGA transfer to Mercury with a Venus 1:1
resonant orbit and V, at Venus of 11.5km.

Total AV
(m/s)

AV Earth departure
(m/s)

AV Mercury approach
(m/s)

Table 5.1.7. 2D patch conic analysis of Earth transfer orbits to reach Venus 3:4 resonance
after VGA. Co-planar orbits are assumed.

V. at Apo Peri Vo at Resonant Resonant
Resonant Earth leaving leaving  Venus /i fly-by  orbit Apo orbit Peri
orbit (m/s) Earth Earth (m/s) (km) (AU) (AU)
V-3:4 2,828 1.000 0.694 4,638 400 0.731 0.463
V-3:4 3,224 1.000 0.660 6,219 2,600 0.749 0.445
V-3:4 3,857 1.000 0.610 8,168 3,150 0.776 0.419

Table 5.1.8. 2D patch conic analysis of transfer orbits after the second gravity assist from a
Venus 3:4 resonance.

V+ at Venus h fly-by  Transfer orbit Apo Transfer orbit Peri
Resonant orbit (m/s) (km) (AU) (AU)
V-3:4 6,219 300 0.729 0.387
V-3:4 8,168 300 0.724 0.303

Once again, by using higher V_, solutions in 3:4 resonant orbits a much lower
perihelion can be achieved after the second gravity assist at Venus. The achievable
perihelions after the second gravity assist, for the last two cases in Table 5.1.7, are
shown in Table 5.1.8.

The table shows that a Mercury rendezvous at perihelion may now be achieved
with much lower excess hyperbolic speed departing Earth than the 1:1 resonant
case. The value here is 3,857m/s. The energy change between the Venus 4:3
resonant orbit and a Mercury rendezvous orbit is less than was the case with the
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Table 5.1.9. AV implications for a double VGA transfer to Mercury with a Venus 3:4
resonant orbit and V, at Venus of 8.2 km/sec.

AV Earth departure AV Mercury approach Total AV
(m/s) (m/s) (m/s)
1,425 2,228 3,654

Table 5.1.10. Earth to Venus stage with 4:3 Venus resonance using full 3D geometry.

Vs at Apo Peri Vs at h Resonant Resonant
Earth leaving leaving Venus fly-by orbit Apo orbit Peri Inclin
(m/s) Earth (AU) Earth (AU) (m/s) (km) (AU) (AU) (deg)

Earth to VGAI 3,639 1 0.627 7,858 2,890 0.779 0.428 3.39

Table 5.1.11. Venus to Mercury stage with 4:3 Venus resonance using full 3D geometry.

Apo Peri
Resonant  Resonant V at leaving leaving V. at
orbit Apo  orbit Peri Venus / fly-by Venus Venus Inclin Mercury
(AU) (AU) (m/s) (km)  (AU) (AU)  (deg) (m/s)
VGA2to 0.779 0.428 7,858 4,080  0.728 0.327 6.37 5,730

Mercury

Table 5.1.12. AV implications for a double VGA transfer to Mercury with a Venus 4:3
resonant orbit including full 3D effects of Mercury’s and Venus’s orbits.

AV Earth departure AV Mercury approach Total AV
(m/s) (m/s) (m/s)
1,355 3,120 4,476

Venus 1:1 resonant orbit. However, the transfer is longer, as an additional two
Venus years are included in the transfer. The AV implications are shown in
Table 5.1.9.

However, a term so far neglected is the effect of Mercury’s orbit inclination. The
node lies close to the line of apses, and so an additional speed relative to Mercury
exists due to the inclination difference. As Mercury’s orbital inclination is 7°, this is a
significant term.

The next double VGA strategy considers an intermediate 4 : 3 resonant orbit that
achieves inclination change as well as perihelion reduction. The example in Tables
5.1.10 and 5.1.11 are taken from an actual transfer that includes the full orbit
ephemeris of the planets. An effect from the relative phasing of the planet’s orbits
is also present. The transfer can again be converted to AV requirements as shown
in Table 5.1.12. These results show an increase in A}V when compared with the
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previous 3 : 4 resonant case, but this is due to the effect of accommodating Mercury’s
inclination and the Earth departure implications for Venus rendez-vous.

Strategies at Mercury

Having lowered the transfer orbit perihelion to Mercury perihelion, it is possible to
rendezvous with Mercury. The practical matter of obtaining the correct phasing
between orbits is not at first considered. In the following analysis, the transfer is
again simplified by assuming that the orbit of Mercury and the spacecraft orbit after
the last VGA are co-planar.

After the final VGA the transfer orbit perihelion lies at or close to Mercury
perihelion, but the aphelion must lie at or above Venus. The excess hyperbolic speed
at Mercury will therefore be high (typically 4-7km/sec, as seen in the previous
section).

The evolution of the orbit via a sequence of gravity assists at Mercury can be
obtained. The case of an initial orbit with aphelion at 0.8 AU and perihelion close to
Mercury perihelion is considered. The V,_, at Mercury is then 7.18 km/sec. This is
similar to the 1:1 resonance case in Table 5.1.5.

Table 5.1.13. Gravity assist sequence at Mercury with constant V., leading to a final 1:1
resonant orbit.

Apo Peri Semi-major axis Duration
(AU) (AU) (AU) (days)
0.8080 0.3049 0.556
3:2 0.8080 0.3049 0.507 395.63
4:3 0.7112 0.3029 0.469 469.25
6:5 0.6370 0.3010 0.439 634.24
8:7 0.5759 0.2991 0.423 804.31
1:1 0.5482 0.2981 0.387 87.93

The apohelion and perihelion evolution are seen below.

W Apo
m Peri
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Table 5.1.14. Gravity assist sequence at Mercury with manoeuvres to reduce V., when
arriving at final 1: 1 resonant orbit. Co-planar orbits are assumed for spacecraft and Mercury.

Apo Peri Semi-major axis Duration AV Voo

(AU) (AU) (AU) (days) (m/s) (m/s)

0.8080 0.3049 0.556 7,184.67
3:2 0.7112 0.3070 0.509 395.63 130 4,823.88
4:3 0.6337 0.3070 0.470 470.18 50 3,759.83
6:5 0.5684 0.3070 0.438 633.30 45 2,701.96
1:1 0.4688 0.3070 0.388 88.01 51 1,440.29

Table 5.1.15. Gravity assist sequence at Mercury from lower initial aphelion orbit with man-
oeuvres to reduce V,, when arriving at final 1: 1 resonant orbit. Co-planar orbits are assumed.

Apo Peri Semi-major axis Duration AV V.

(AU) (AU) (AU) (days) (m/s) (m/s)

0.7260 0.3070 0.517 5.044.40
3:2 0.7074 0.3070 0.507 395.59 10 4,825.31
4:3 0.6337 0.3070 0.470 470.15 50 3,761.77
6:5 0.5683 0.3070 0.438 633.19 43 2,760.59
1:1 0.4680 0.3070 0.388 87.87 56 1,379.74

The resonance of the orbits must be considered. After the first gravity assist at
Mercury, a 3:2 resonance can be achieved (3 Mercury revolutions to 2 spacecraft).
No manoeuvres are performed nominally, so the ¥ at Mercury remains constant.
In this way, the semi-major axis can be progressively reduced to reach 4:3 and then
6:5 resonances. However, with this V_, at Mercury a 1:1 resonance cannot be
reached from 6:5. An intermediate resonant orbit is required at 7:6 or 8:7. Such
high resonance numbers add considerable extra duration to the transfer. The V, at
Mercury remains constant at 7.18 km/sec throughout this sequence. This sequence
can be seen in Table 5.1.13.

Strategies can be sought to reduce the V', at Mercury. The principle of a gravity
assist ‘ladder’ (described in the previous chapter) can be adopted. Mercury may now
be approached via a series of gravity assists that progressively lower the transfer
orbit aphelion. With this new strategy the approach speed to Mercury is also pro-
gressively reduced, as intermediate AV's are applied to reduce this speed with respect
to Mercury. In Table 5.1.14 the perihelion is raised after each gravity assist to 0.307
AU, the Mercury fly-by occurring at 0.3075 AU in this example.

Alternatively, a sequence may be obtained starting from an initial orbit with
lower aphelion, as would result from using an intermediate Venus 4:3 resonant
orbit. This can be seen in Table 5.1.15.

This clearly shows the potential for reduction in the V', at Mercury with such a
technique. The sequence can be terminated after any fly-by, and an orbit insertion
manoeuvre performed at pericentre. It is an issue of transfer duration trade-off
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versus total AV. These analyses include the approximation that any pericentre-
raising manoeuvres still allow a rendezvous manoeuvre with Mercury at the
optimal perihelion location for the next fly-by. This is slightly optimistic, particularly
for the 1: 1 resonant orbit case. However, the principle is clearly demonstrated, and a
more detailed sequence for an actual mission design is considered in the next section.

Optimised transfers to Mercury

The previous discussion identified a number of good methods to achieve efficient
transfers to Mercury, in terms of minimum AV requirement. These can be sum-
marised, in terms of the gravity assist sequences used, as —V-V-M". The choice of
n depends on the AV reduction required and the allowable transfer duration. These
options all result in an increase in transfer time when compared with a direct,
conjunction-type transfer.

It may be assumed that the launch vehicle will inject the spacecraft into the
required Earth escape orbit. Alternatively, this escape orbit could be reached after
injection to an intermediate Earth-bound orbit, and the spacecraft performs apogee-
raising manoeuvres, followed by an escape manoeuvre.

The initial optimisable properties of the Earth departing relative velocity vector
are as follows:

Property Value

V., of hyperbolic escape vector Optimisable

Right Ascension: Optimisable via selection of launch epoch
Declination: Optimisable via selection of injection orbit

argument of perigee and right ascension
The objective function for this analysis is defined as the sum of impulsive AV’s:

e Departure AV (from a specified Earth-bound reference orbit, to reach the
required excess hyperbolic departure speed).

e Approach AV (to a specified Mercury orbit, from the approach excess hyper-
bolic arrival speed).

o Deep-space AVs.

The Earth departure AV can in practice be supplied either by the launcher or space-
craft, and is the subject of a separate trade-off.

The strategy that is adopted, in terms of the number of gravity assists, has a
strong influence on the objective function. In principle, a global optimisation
problem may be defined, with a solution that identifies the ideal sequence of
gravity assists. This problem could be solved in conjunction with an upper limit
on transfer duration. However, the solution of such a global problem is a complex
task requiring substantial computational resources. Therefore, in practice the
problem is often simplified and a series of parametric solutions are often studied.

The first parameter to be considered is the launch epoch. In practice, there will
be a general target launch date for a space mission (or at least a target launch year,
typically determined by programmatic considerations). Also, an upper limit on the
transfer duration is likely to be considered. However, if this parameter has a strong
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bearing on mission AV requirements, then a range of transfer durations may be
considered and compared; solutions being sought for each duration under considera-
tion.

Now a series of problems reduced in scope is defined for solution. Even so, there
may be more than one gravity assist sequence that is compliant with the problem
constraints.

In the following examples, several transfers to Mercury are considered. They
vary in the upper limit applied to the transfer duration and the strategy. The problem
is further constrained by specifying the launch year. In this case, the year 2004 is
chosen for a detailed analysis. The reason for choice will become significant in the
subsequent discussion on current missions.

Table 5.1.16 shows a series of transfer routes, each leaving Earth in 2004. Each
transfer option uses two gravity assists at Venus. Between them, a 4 : 3 resonant orbit
with Venus is used (3 Venus years). This gravity assist sequence has been chosen after
the previous discussion, illustrating the efficiency of this route in allowing low
mission AVs. The transfers then vary in the gravity assist sequence that is
performed at Mercury. For each transfer the gravity assist sequence is given,
together with the excess hyperbolic speeds leaving Earth and arriving at Mercury.
Deep-space manoeuvres are also used to reduce the excess hyperbolic speed at
Mercury. The total minimised AV (making up the objective function) for each
transfer is given.

The Earth orbit assumed is a GTO-like orbit with apogee at 42,165 km radius
and perigee at 200 km altitude. The Mercury orbit is elliptical, with pericentre at
400 km altitude and apocentre at 12,000 km altitude. A lower limit is placed on the
fly-by altitudes during the gravity assist phases. A value of 300 km is used here to
allow for potential navigation uncertainties in the pericentre passage.

The shortest sequence uses a single MGA, entering a 2:3 resonant orbit with
Mercury before rendezvous. This orbit may be reached directly via gravity assist at
Mercury from the initial approach orbit from Venus. A deep-space manoeuvre close
to aphelion reduces the excess hyperbolic speed at Mercury to minimise the objective
function. A longer transfer, that significantly reduces the objective AV uses a further
MGA. A 3:4 Mercury resonant orbit may be reached directly via gravity assist at
Mercury from the initial 2: 3 resonant orbit.

The greatest possible change in orbit period is sought at each fly-by, but is
constrained by the need to enter Mercury resonant orbits. Therefore, instead of
targeting a 3:4 Mercury resonant orbit, a 4:5 resonance could be sought.
However, this is not achievable directly by the gravity assist and may only be
reached if an additional deep-space manoeuvre is performed. Therefore, the
objective function value for this sequence is greater than the case using a 3:4
resonance.

The sequence may now be extended to further reduce the objective AV by
seeking even lower-period resonant orbits after further gravity assists. The excess
hyperbolic approach speed at Mercury can then be further reduced by the assistance
of deep-space manoeuvres. A 4:5 resonance at Mercury is considered after the 3:4
resonance. However, at this point it is possible to reach a 5: 6 resonance with a single
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Table 5.1.16. AV implications of different Mercury gravity assist sequences for launch in
2004.

Total AV

after

leaving

Injection Earth to  Total AV
Earth Intermediate Mercury to Mercury Mercury from GTO
depart deep-space approach elliptical elliptical  to Mercury Transfer
Vo AV Voo orbit orbit elliptical time
Route (km/s) (m/s) (km/s) (m/s) (m/s) orbit (m/s) (years)

V-V

M3:2 3.84 243 4.80 2,594 2,837 4,257 4.07
V-V-

M3:2 3.84 304 3.37 1,574 1,878 3,298 5.05
M4:3

V-V-
M3:2 384 929 2.77 1.208 2.137 3,557 5.29
M5 :4
M3:2 384 394 2.64 1,134 1,528 2,948 6.27
M5 : 4

M3:2 3.84 475 2.17 892 1,367 2,787 6.54

M3:2 3.84 475 1.50 611 1,086 2,506 6.87

3.84 540 1.06 477 1,017 2,437 8.80

<
N
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MGA from the 3:4 resonance. These sequences have been extensively evaluated by
Yen (see references for this chapter). After 5:6, a 1:1 resonance with Mercury can
be reached after the next gravity assist.

Optionally, a 7: 8 Mercury resonant phase can be included between the 6: 5 and
1:1 resonances, to explore the possibility for further reduction in the objective.
However, it may be seen that although the final Mercury approach excess hyperbolic
speed is reduced and so the capture AV is less, the additional deep-space manoeuvre
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Figure 5.1.1. Transfer to Mercury in 2004: leaving Earth for Venus. The transfers start with a
departure from Earth to Venus. In 2004 two conjunction-type transfer opportunities to Venus
exist (the ‘short” and ‘long’ transfer options). The ‘short’ transfer, shown here, forms the basis
for this locally optimal transfer. Departure is in March 2004, arriving at Venus in late June
2004. Earth’s and Venus’s orbits are shown (thick lines). The inner grid segments are 0.1 AU
from side to side.
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Figure 5.1.2. Transfer to Mercury in 2004: Venus to Venus 4: 3 resonant orbit. Each transfer
option uses two gravity assists at Venus. Between these, a 4: 3 resonant orbit at Venus is used
(3 Venus years). The spacecraft crosses Venus’s orbit at two locations. On returning to Venus,
the first crossing opportunity is targeted in this particular example, and Venus is reached in
slightly less than 3 Venus years. The spacecraft returns to Venus in March 2006. Earth’s and
Venus’s orbits are shown (thick lines). The grid is 1 AU from centre to edge.

needed from the low-aphelion orbit is greater, resulting in only a small net objective
function decrease, at the expense of a further two years in transfer.

Some examples of the different phases of such sequences are illustrated in
Figures 5.1.1 to 5.1.5.
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Figure 5.1.3. Transfer to Mercury in 2004: Venus to Mercury rendezvous after 1.5
revolutions. After returning to Venus in March 2006 the spacecraft performs a fly-by
resulting in a gravity assist that lowers its perihelion to be located close to that of Mercury.
The spacecraft seeks a rendezvous with Mercury, and so the problem of the phasing between
Venus and Mercury must be considered. The 4:3 Venus resonant orbit crosses the orbit of
Venus at two locations. The selection of the first Venus crossing location for the second Venus
fly-by is made, as this locates the line of apses of the subsequent heliocentric orbit such that
perihelion lies close to the perihelion of Mercury. The spacecraft then makes approximately
3.5 revolutions about the Sun before reaching Mercury close to Mercury perihelion in July
2007. Earth’s and Mercury’s orbits are shown (thick lines). The inner grid segments are 0.1 AU
from side to side.
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Figure 5.1.4. Transfer to Mercury in 2004: Venus to Mercury and Mercury 2:3 and 3:4
resonant orbits. On reaching the first Mercury rendezvous the spacecraft executes a gravity
assist manoeuvre. This is used to target a 2:3 resonant orbit with Mercury. The spacecraft
again reaches Mercury in April 2008, and performs a further gravity assist to reach a 3:4
Mercury resonant orbit.
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Figure 5.1.5. Transfer to Mercury in 2012: motion relative to Mercury during the last two 1: 1
resonant orbits. The grid is 1.5 million km from centre to edge and lies parallel to the ecliptic.
The trajectory and its projection in the ecliptic (dashed line) are shown. The first 1: 1 resonant
orbit at Mercury returns after one Mercury year after an excursion of several million km. The

second resonant orbit returns after approximately 44 days and experiences a relative motion
mostly perpendicular to the ecliptic.

Ultimately a 1: 1 resonance can be achieved. In fact, a second 1 : 1 resonance can
be used, as proposed by Langevin (see references for this chapter). This uses the
MGA to increase (or reduce) the spacecraft’s inclination such that a return to
Mercury is achieved after a half heliocentric revolution. The result is that rendezvous
is achieved at Mercury aphelion. Here the approach speed is naturally reduced as
both Mercury and spacecraft orbits slow towards aphelion.

The details of a complete end-to-end mission are shown in Table 5.1.17.

The table also shows the optimal values of excess hyperbolic speed. These
parameters are important in characterising the fly-bys.

The departure AV at Earth is calculated relative to an initial GTO-like altitude
orbit (200 km perigee altitude). The target orbit at Mercury is now lower than
considered in the previous section, taking an altitude of 12,000 km — typical of a
science observation orbit about the planet. Pericentre altitude at Mercury is still low;
in this example, 400 km. The complete transfer is shown in Figure 5.1.6. The thicker
black line shows Earth’s orbit. The sub-grid elements are 0.1 AU from edge to edge.
The orbit of Mercury is omitted for clarity. The final rendezvous point is close to

Mercury aphelion, and the small modifications due to manoeuvres within the
Mercury resonant orbit phases, can be seen.



Sec. 5.1] Interplanetary missions using gravity assist 349

Table 5.1.17. Transfer fly-bys and manoeuvres for Mercury transfer with launch in 2004.

Event Parameters Description AV

Launch Vo = 3.84km/s Transfer orbit to Venus 1,420 m/sec
19 Mar 2004 RV after 0.5 revs

GA 1 at Venus to a Voo = 8.07km/s Achieve 4:3 resonant orbit

4:3 resonant orbit 25 Jun 2004

GA 2 at Venus to 3.5 Ve = 8.04km/s Transfer orbit to Mercury

heliocentric revolution 16 Mar 2006 RV after 3.5 revs

transfer to rendezvous
with Mercury

GA 3 at Mercury to Voo = 5.7km/s Achieves 3:2 resonant orbit ~ 50m/s
3:2 resonant orbit 22 Jul 2007

GA 4 at Mercury to Ve = 5.3km/s Achieves 4:3 resonant orbit 254 m/s
3:4 resonant orbit 12 Apr 2008

GA 5 at Mercury to Ve = 3.4km/s Achieves 6:5 resonant orbit

6:5 resonant orbit 6 Apr 2009

GA 6 at Mercury to Vo =2.2km/s Achieves 1:1 resonant orbit 172m/s
1:1 resonant orbit 21 Sep 2010

GA 7 at Mercury to Voo =2.2km/s Achieves 1:1 resonant orbit

1:1 resonant orbit over 19 Dec 2010 over half rev

0.5 revs

Inject to Mercury Vo = 1.5km/sec 611 m/s
elliptical orbit 31 Jan 2011

Total AV inc Earth 2,507 m/sec

escape from GTO
altitude orbit

Previous discussions have shown that Earth-to-Venus transfers show a near-
eight-year global repeat period. The initial phases of this transfer are therefore
expected to repeat every eight years. For launches in 2012 and 2020, the launch
date and first two fly-bys at Venus have very similar characteristics to the 2004
launch. Mercury does not show this eight-year repeat property, and the number of
revolutions about the Sun between VGA-2 and MGA-1 differs from the 2004
solution. In 2012, only 1.5 revolutions are needed, but in 2012 4.5 revolutions are
required.

Further examples using a Venus 4:3 resonant orbit can be considered. In the
2004 example, the Venus resonant phase Venus fly-bys are at different locations (the
orbit not quite in 4: 3 resonance) to control the location of the subsequent longitude
of perihelion. This technique is not in general required. The following example is for
a launch in 2009, where the two Venus fly-bys occur at the same location.

Figure 5.1.8 and Table 5.1.18 show the features of this mission. It can be seen
that many of the characteristics are the same as the 2004 launch case. This example
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Figure 5.1.7. Transfer with VGA/VGA/MGA/MGA/MGA/MGA/MGA for 2004 case,
showing out-of-ecliptic motion. The outer thicker black line shows Earth’s orbit, and
Mercury’s orbit is also shown. The sub-grid elements are 0.1 AU from edge to edge. The
dashed lines show the projection of the orbit in the ecliptic. Therefore, the inclination
achieved in the 4:3 Venus resonant phase can be seen and also that in the Mercury
resonant phases.
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Figure 5.1.8. Transfer with VGA/VGA/MGA/MGA for 2009 launch case. Earth and
Mercury orbits are shown as bolder lines. The sub-grid elements are 0.1 AU from edge to edge.

Table 5.1.18. Transfer fly-bys and manoeuvres for short Mercury transfer with launch in

20009.

Event Parameters Description AV

Launch Voo = 3.93km/s Transfer orbit to Venus 1,450 m/sec
9 Jan 2009 RV after 0.5 revs

GA 1 at Venus to a 4:3 Voo = 7.47km/s Achieve 4: 3 resonant orbit

resonant orbit 14 Apr 2009

GA 2 at Venus to 3.5 Ve = 7.47km/s Transfer orbit to Mercury

heliocentric revolution 17 Feb 2011 RV after 3.5 revs

transfer to rendezvous

with Mercury

GA 3 at Mercury to 3:2 V= 5.8km/s Achieves 3:2 resonant orbit 20 m/s

resonant orbit 7 Nov 2012

GA 4 at Mercury to 3:4 V= 5.8km/s Achieves 4:3 resonant orbit  340m/s

resonant orbit 28 Jul 2013

Inject to Mercury Ve = 3.45km/sec 1,627 m/s

elliptical orbit 24 Jul 2014

Total AV inc Earth 3,437 m/sec

escape from GTO

altitude orbit
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only uses two MGAs to achieve a faster transfer but with a greater capture
manoeuvre requirement. Consequently, the total AV is therefore significantly
higher than the 2004 example. It is a truncated version of the 2004 transfer type
described previously, but could be extended in the same way with additional gravity
assists at Mercury into lower resonant orbits.

The AV would then be similar to the 2004 case.

5.1.2 Messenger to Mercury

A second mission to Mercury will now be considered, similar to the NASA
Messenger mission design. A launch in March of 2004 is a feasible option.
However, Messenger was actually launched in August 2004 and will arrive at
Mercury in 2011. The spacecraft will perform a series of gravity assists at Earth,
Venus and Mercury, as well as a number of manoecuvres in deep space, before
capturing into Mercury orbit. A mission description may be found in the references
for this section.

Departure in 2004 is into a 1:1 resonant orbit with Earth, so that it returns in
August 2005 to perform an Earth gravity assist where it changes its departure
declination. The spacecraft therefore finally leaves Earth in 2005 after the gravity
assist, with an excess hyperbolic speed of just over 4km/sec. For a final Earth
departure in 2005, two routes to Venus are possible:

e A direct, conjunction-type transfer
e A 1.5-revolution transfer.

This later option is effective in arranging a Venus rendezvous in a favourable
location for a subsequent transfer to Mercury. The components of this transfer
can now be examined.

Figure 5.1.9 shows a high energy one point five revolution transfer, leaving
Earth with a Vinfinity of typically 5.9 km/sec. No deep space manoeuvres are con-
sidered at this point, which can in fact be used to reduce this departure speed. The
corresponding excess hyperbolic speed at Venus is then approximately 9.5 km/sec.

This sequence forms a key part of the Messenger mission. After reaching its first
rendezvous with Mercury, a sequence of gravity assists are performed as in the case
described previously for a March 2004 launch. Intermediate orbits have a 2:3, 3:4
and 5:6 resonance with Mercury. Orbit insertion about Mercury then occurs at the
next rendezvous.

Figures 5.1.10 and 5.1.11, and Table 5.1.19 show an optimised route to Mercury,
finally leaving Earth in August 2005 and using the building blocks just described.
This trajectory follows the same type of route to Mercury as Messenger.

Deep-space manoeuvres are included to improve the efficiency of the mission.
Firstly, the excess hyperbolic speed leaving Earth can be reduced from 5.9 km/sec,
used in the first example, to 4.1 km/sec by including a deep-space manoeuvre close to
first perihelion to raise aphelion, before reaching Venus. Then, a sequence of
aphelion manoeuvres are included after the final VGA and between the MGAs, to
reduce the excess hyperbolic speed at Mercury. The transfer inclination is increased
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Figure 5.1.9. Messenger type mission: initial Earth to Venus and Venus 1: 1 resonant phases.
The grid is 1 AU from centre to edge with a sub-grid size of 0.1 AU. On reaching Venus a high-
altitude fly-by allows a gravity assist to reach a 1:1 resonant orbit with Venus. On return to
Venus a second gravity assist results in perihelion being lowered to approximately 0.32 AU,
which is sufficient to rendezvous with Mercury close to its perihelion. Mercury is reached after
a further 1.5 revolutions.

to approximately 7° after the first VGA, which reduces the eventual excess hyper-
bolic speed when approaching Mercury.

Insertion into Mercury orbit is made from a heliocentric orbit in 5: 6 resonance
with Mercury. A trade-off in the mission design would allow a reduction in the
approach speed by using the 1:1 resonances described in the previous transfer
example. However, if the launcher can inject a spacecraft with sufficient fuel, then
there is no requirement for further fuel saving which is associated with an increased
duration.

Also, in principle, launch in August 2005 can be considered, omitting the Earth
1:1 resonant orbit. The departure declination from Earth in that case must be that
required to transfer to Venus. The achievable declinations for a given launch vehicle
depend upon its launch site latitude and any path constraints on the launch
trajectory.



354 Missions to the planets [Ch. 5

Figure 5.1.10. Messenger type mission. Transfer with VGA/VGA/MGA/MGA/MGA for
final Earth departure in August 2005. Earth and Mercury orbits are thick line traces. The
grid is 1 AU from centre to edge, with a sub-grid of 0.1 AU.

Figure 5.1.11. Messenger type mission. Transfer with VGA/VGA/MGA/MGA/MGA for
final Earth departure in August 2005, showing motion out of the ecliptic. The projection of
the trajectory in the ecliptic is a dashed line.
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Table 5.1.19. Summary of a Messenger type of transfer to Mercury.

Event Parameters Description

Earth departure Ve = 4.1km/s 1:1 resonant orbit with Earth
August 2004

Earth departure Voo = 4.1km/s Transfer orbit to Venus

August 2005 RV after 1.5 revs

GA 1l at Venustoa 1:1 Voo = 9.5km/s Achieve 1:1 Venus resonant orbit
resonant orbit with 7.5-deg inclination

October 2006

GA 2 at Venus to 1.5 Voo = 9.5km/s Transfer orbit to Mercury
heliocentric revoluton transfer RV after 1.5 revs

to rendezvous with Mercury

June 2007

GA 3 at Mercury to 3:2 Ve = 5.7km/s Achieves Mercury 3:2 resonant orbit

resonant orbit

January 2008

GA 4 at Mercury to 4:3 Voo = 6km/s Achieves Mercury 4: 3 resonant orbit
resonant orbit

September 2008

GA 5 at Mercury to 6:5 Ve = 3.7km/s Achieves Mercury 6:5 resonant orbit

resonant orbit
September 2009

Inject to Mercury elliptical orbit ¥V, =2.2km/s
March 2011

5.1.3 Gravity assist for Mars return missions

A key feature of return missions to Mars is the stay time that is needed before an
efficient return to Earth can be arranged. This subject is discussed in Chapter 1.
However, the return transfer from Mars to Earth is often subject to stay-time
constraints in the vicinity of Mars. As a result, the spacecraft is required to return
at non-optimal epochs. This has implications on the mission A} and transfer time.

An attractive option is to use a Venus gravity assist manoeuvre on the return
route. Such scenarios have a characteristic return time of typically 300 days. This
offers an additional transfer opportunity, supporting shorter stay-times at Mars. AV
is higher than the nominal conjunction case, but for a comparable return time,
less than the case without the gravity assist. Such return options are described in
Chapter 1.

These options can be found for many launch epochs from Mars to Earth.
Alternatively, this option can be used for an outbound Venus gravity assisted
transfer, short stay time, and a standard conjunction-type return transfer from
Mars to Earth.
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Figure 5.1.12. Return from Mars via Venus gravity assist. Mars departure in September 2014.
The grid is 1 AU from centre to edge, with a sub-grid of 0.1 AU. The orbits of Earth and Mars
are shown as thicker lines.

The principle is to depart from Mars and transfer to Venus. A gravity assist at
Venus then allows a return to Earth. At certain epochs it is possible to generate such
a transfer without the need for any deep-space AV's. However, deep space man-
ocuvres are often needed to enable such a transfer at non-optimal launch periods.

Figure 5.1.12 illustrates the characteristics of such a mission option. A higher
escape velocity from Mars is required than in a standard conjunction-type return to
Earth, as Venus’s orbit must be reached. The effect of the Venus gravity assist is to
lower the aphelion, such that the arrival excess hyperbolic speed is reduced.

5.1.4 Reaching Jupiter

Previous sections have shown that a direct conjunction-type transfer to Jupiter
results in large AV requirements on the spacecraft and launcher. However, gravity
assist is a well known strategy for alleviating the problems of a transfer to Jupiter.
The objective is to reduce the AV requirements, whilst still maintaining an acceptable
total transfer time.

The basic strategy is to increase the excess hyperbolic speed, at the last gravity
assist planet, to a value and direction that allows transfer to Jupiter. At Earth, this
would be typically 8 km/sec.
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The main options that can be considered are:

Option Comment
Use of EGA or multiple EGA to Use of EGA potentially provides large
provide aphelion-raising AV reduction. If used alone, a

deep-space manoeuvre is needed to
increase the fly-by velocity on returning
to Earth. Transfer time will increase
because of the requirement for
resonance between manoeuvres.

Use of VGA to provide aphelion-raising  Use of VGA in addition to EGA allows
increase in the V., on returning to
Earth. VGA or multiple VGAs can be
considered, in a similar manner to
multiple EGAs.

Use of a Jovian moon gravity assist to

assist in capture

Although EGA alone or VGA alone can be considered, substantial deep-space
manoeuvres or manoeuvres at the pericentre of the fly-by are needed to reach
Jupiter. These are not particularly effective strategies.

A combination of a single VGA and a single EGA can be considered, but the
cases offering most AV reduction use multiple EGA or VGA. Examples of such
missions are the Galileo mission, launched in 1989, reaching Jupiter six years
later, and Cassini, launched in 1997. Cassini flew by Jupiter en route to Saturn.

Mars can also be used to provide a gravity assist in such transfers. However, as
Mars is significantly less massive than Venus, the gains from gravity assist are more
limited and so many mission designs focus on Venus and Earth as gravity-assist
targets.

Such transfers offer many permutations of transfer routes. Precise repeats of a
given route recur very infrequently, because the synodic periods of Earth, Venus and
Jupiter must be considered. A given mission will reoccur after 24 years, although the
repeat is not exact; but is similar in AV magnitude and duration. However, launch
possibilities occur much more frequently than this. The synodic period of Earth and
Venus is a driving factor, as the first gravity assist in the sequence usually involves
Venus.

A number of transfer possibilities will now be discussed, focusing on Venus and
Earth gravity assists to aid the transfer.

The V-V-E sequence

This sequence of gravity assists was used by Cassini to reach Jupiter. It then
performed a gravity assist at Jupiter to reach Saturn. However, the strategy is
easily modified to ensure a lower-speed approach at Jupiter, suitable for capture.
Table 5.1.20 shows the portion of the transfer from Earth to arrival at Jupiter.
(The Cassini mission is described more fully in the references for this chapter.) The



358 Missions to the planets [Ch. 5

total transfer time for this trajectory in reaching Jupiter is approximately 3 years, but
the speed relative to Jupiter in this case is high. A deep space AV (~450m/s) is
required to increase the orbital eccentricity prior to the second Venus fly-by. The
spacecraft has high energy at Jupiter as it is heading for Saturn and not capture at
Jupiter. Initial Earth departure is at an excess hyperbolic speed of approximately
5km/sec.

A modification to achieve rendezvous at Jupiter results in the sequence shown in
Table 5.1.21 and Figure 5.1.13. In this modified transfer the deep-space manoeuvre
reduces to approximately 200 m/s. The arrival excess hyperbolic speed at Jupiter is
now reduced to just over 6 km/s, but the time taken to reach Jupiter is now longer.
The total mission takes just under 5 years to reach a Jupiter rendezvous.

The V-E sequence

With this transfer option only two gravity assists are involved, and it is therefore
potentially a faster route to Jupiter than those involving more gravity assists. It is
possible to carry out a first gravity assist at Venus and then return directly to Earth
for a second gravity assist. A transfer to Venus with perihelion at 0.65 AU results in a
Vinfinity at Venus of typically 6.5km/sec. A close fly-by would result in aphelion
being raised to over 1.7 AU, with perihelion just below Venus at 0.72 AU. If phasing
between Earth and Venus is neglected (or many intermediate revolutions allowed),
then return to Earth would result in an excess hyperbolic speed of approximately
12km/sec. A gravity assist at Earth would result in aphelion raised to 4.5 AU, with
perihelion at 0.9 AU (assuming a close fly-by at 300 km altitude). A AV of approxi-
mately 500 m/s would result in aphelion being raised to 5.2 AU, so that a rendezvous
with Jupiter would be possible.

Table 5.1.20. The Cassini mission to Saturn.

Launch (into low-energy Earth—Venus transfer) October 1997
First Venus fly-by April 1998
Deep-space manoeuvre December 1998
Second Venus fly-by June, 1999
Earth fly-by August, 1999
Jupiter fly-by December 2000
Saturn rendezvous 2004

Table 5.1.21. Adaptation of a Cassini-like mission to rendezvous at Jupiter.

Launch (into low-energy August 1997 Voo = 5.3km/s
Earth—Venus transfer)

First Venus fly-by April 1998 Ve = 6.1km/s

Deep-space manoeuvre October, 1998 0.2km/s

Second Venus fly-by July 1999 Voo = 7.9km/s

Earth fly-by August 1999 Voo = 13.8km/s

Jupiter arrival January or July 2002 Voo = 6.2km/s
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Figure 5.1.13. The V-V-E Cassini mission launched in 1989 and adapted to terminate at
Jupiter. The two fly-bys at Venus are separated by a two Venus-year resonant orbit. After
finally leaving Venus, the spacecraft flies by Earth before making a rendezvous with Jupiter.
Earth and Jupiter orbits are shown. The grid is 1 AU from centre to edge, with a sub-grid of
0.1 AU.

Table 5.1.22. Example of transfer to Jupiter with a V-E sequence. In this case the total deep-
space AV is approximately 2,100 m/s.

Launch (into low-energy Earth—Venus transfer) Vinfinity = 3.2 km/sec

April 2012

Venus fly-by Vinfinity = 6.6 km/sec
October 2012 (fly-by altitude = 16,500 km)
Earth fly-by Vinfinity = 9.8 km/sec
August 2013 (fly-by altitude = 5,800 km)
Jupiter arrival Vinfinity = 5.5 km/sec

July 2016

However, with this semi-major axis and orbital period, the phasing of the Earth
return is made difficult, and multiple revolutions may be needed before an encounter
is possible. The fastest transfer solution can be found by using an aphelion, after the
gravity assist at Venus, of typically 1.4 AU. This allows Earth to be re-encountered
during the first revolution after VGA. However, in this case the maximum aphelion
that may be reached is approximately 3.4 AU (with a fly-by at Earth at 300 km
altitude). A deep space AV of 1,500-2,000 m/s is required to ensure a Jupiter ren-
dezvous (see Table 5.1.22).

The V-E-E sequence

The previous transfer can be extended by use of a second gravity assist at Venus.
Firstly, the case of the Galileo mission will be considered.

Table 5.1.23 shows the Galileo transfer parameters (see references for this
section). The total transfer time for this is approximately 6 years. The nature of
this particular transfer is such that no deterministic deep space AV is required. The
excess hyperbolic speed leaving Earth is also low, at approximately 3 km/sec. When
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Table 5.1.23. The Galileo transfer to Jupiter.

Launch (into low-energy Earth—Venus transfer) October 1989
Venus fly-by February 1990

(fly-by altitude = 19,400 km)
First Earth fly-by December 1990

(fly-by altitude = 3,700 km)
Second Earth fly-by December 1992

(fly-by altitude = 300 km)
Jupiter arrival December 1995

Figure 5.1.14. The V-E-E Galileo mission, launched in 1989. The orbits of Earth and Jupiter
are shown. The grid is 1 AU from centre to edge, with a sub-grid of 0.1 AU. The Galileo
transfer started in 1989 and first performed a Venus gravity assist. Two Earth gravity assists
followed, separated by a two-year Earth resonant orbit. The total transfer took approximately
6.2 years, and required no deterministic deep-space manoeuvres.

compared with the previous Cassini adaptation this is a more efficient route, but
takes just over one year longer to reach Jupiter. The transfer is seen in Figure 5.1.14.

A near-identical launch and transfer is possible with a launch in October 2013,
following a V-E-E route to arrive at Jupiter in December 2019. This transfer is
almost the same as the Galileo transfer of 1989, as it would leave 24 years after
Galileo left Earth.

Many future launch opportunities using this strategy are possible. A launch in
2012 is a particularly efficient case (see Table 5.1.24 and Figure 5.1.15).
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Table 5.1.24. A V-E-E transfer to Jupiter after launch in 2012.

Launch (into low-energy Earth—Venus transfer) Vinfinity = 3.4 km/sec
April 2012
Venus fly-by October 2012
(fly-by altitude = 9,000 km)
First Earth fly-by August 2013

(fly-by altitude = 5,800 km)

Vinfinity = 9.8 km/sec
Second Earth fly-by December, 2015

(fly-by altitude = 300 km)

Vinfinity = 9 km/sec
Jupiter arrival October 2018

Vinfinity = 5.5 km/sec

Figure 5.1.15. Multiple gravity assist transfer with a launch in 2012. This uses the efficient
strategy of gravity assists at Venus followed by two at Earth, as did Galileo. The orbits of
Earth and Jupiter orbits are shown. The grid is 1 AU from centre to edge. The near two-year
resonant orbit returns to Earth after 2.3 years, so that rendezvous occurs at the second
intersection point of the transfer orbit with Earth’s orbit. This strategy allows better
phasing between Venus, Earth and Jupiter than a two-year return to Earth at the fixed
intersection.
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5.1.5 Gravity-assisted tours of Jupiter’s moons

The objective of this analysis is to find an efficient way to reach an orbit about the
Jovian moon, Europa, from an initial hyperbolic approach orbit to Jupiter. The aims
of the transfer are to reach the target in an acceptable period of time and to use low
AV to reach the final target orbit about Europa.

The assumptions are:

e The initial Jupiter bound orbit is reached after a Ganymede fly-by to reduce
energy with respect to Jupiter, followed by application of a retro-AV at the
subsequent Jovian pericentre.

e The target apocentre after orbit capture (retro-burn) is approximately 20 million
km.

e The pericentre after the Ganymede gravity assist is 900,000 km (see discussion in
Chapter 4).

e Inclination: ecliptic.

Firstly, an approximated sequence is generated via a 2D patched conic analysis
within the jovian system and by examination of loci of the orbit evolution using
Tisserand’s criterion. All orbits are assumed to be co-planar.

The first problem is to decide on the best route to reach Europa. If a plot of
period/pericentre loci for a gravity-assist sequence at the different moons is made,
then Ganymede presents a good option for initial orbit energy reduction. Initially,
Europa is ineligible because the pericentre lies above the moon’s orbital radius (see
Figure 5.1.16).

The initial excess hyperbolic speed with respect to Ganymede, for the first
Jupiter bound orbit described is approximately 6.5 km/sec. The pericentre becomes
lower than Europa when the orbital period is close to 15 days (or apocentre at
typically 2.3 million km). At this point, Europa gravity assists may be considered.
Numerous examples of mission designs using multiple gravity assists in the Jovian
system have been developed. These have been of particular interest for the Galileo
mission, and some examples are given in the references for this chapter.

As the ultimate objective is to insert into orbit about Europa, the excess hyper-
bolic speed there should ultimately be low to reduce orbit injection AV requirements.
The lowest Europa Vinfinity loci are reached if the first Europa gravity assist in the
sequence is initiated when pericentre falls just below Europa’s orbital radius. A
sequence of gravity assists at Europa would then result in further orbital energy
reduction. However, it is desirable to reduce the excess hyperbolic speed at
Europa. This can be achieved in a number of ways. Some attractive options are:

(1) A manoeuvre to raise pericentre so that it lies closer to Europa.

(2) Further gravity assists at Ganymede (or even Callisto) to raise pericentre so that
it lies closer to Europa (performed after a number of Europa gravity assists are
made).

Both options are effective at reducing excess hyperbolic speed at Europa. The second
option uses less (or potentially even zero) AV in reducing the speed, but intermediate



Sec. 5.1] Interplanetary missions using gravity assist 363

) - f / /
) 7% / /
14 T
4 A G-7000
1 —4— G-6000
o Ay
2 —a&— G-5000
) 10 I . ——— E-4000
o - —E-3000
o
2 g —E-2000
o g
a > z% - E-5000
~ —a— G-4000
6 s ///://" /
4 e C // ,/
///’_/
2
0
3.00E405 4.00E+05 5.00E+05 6.00E+05 7.00E405 8.00E+05 9.00E+05 1.00E+06

Pericentre (km)

Figure 5.1.16. Period—pericentre loci for a range of Ganymede and Europa Vinfinities.
Ganymede Vinfinities from 4,000 to 7,000m/s are shown and those of Europa from 2,000
to 5,000 m/s.

phasing orbits are needed to accomplish the transfer between rendezvous at the
different moons involved. The first option requires no additional phasing orbits,
but requires AV to execute the reduction. Both routes can be assessed in greater
detail.

Both will start with a sequence of gravity assists at Ganymede until pericentre is
lowered below Europa. Resonant orbits with Ganymede are generated by selection
of the appropriate fly-by distance at Ganymede. No AV is needed in this sequence. A
key factor here is the Jupiter pericentre radius at the first Europa gravity assist. This
should lie as close as possible to Europa’s orbital radius to minimise the excess
hyperbolic speed at Europa, but the constraints of resonant orbit sequences at
Ganymede means that there are limitations as to how closely this condition can
be achieved without using excessively long transfer durations. Therefore, a compro-
mise is reached in this example. It is possible to obtain slightly lower AV solutions.

Having reached Europa, the manocuvre option (1, above) is first considered.
The sequence used is shown in Table 5.1.25. As apocentre is reduced further by
gravity assist at Europa, the excess hyperbolic speed may be reduced by small
manoeuvres at the apocentre, raising the pericentre to just below Europa’s orbital
radius. The first manoeuvre is the largest in the sequence, as the initial pericentre lies
quite a way below Europa as a result of the previous resonant orbit required at
Ganymede. Resonant orbits with Europa are generated by seclecting the fly-by
distance to achieve the required semi-major axis.
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Table 5.1.25. Gravity assist and manoeuvre sequence in the Jovian system for orbit insertion
strategy 1 at Europa.

Apocentre Pericentre Period Voo AV
Event (km) (km) (days) (m/s) Resonance (m/s)
Capture 20,218,103 900,000 221 31:1
Ganymede 7,712,518 847,482 57 6,553 8:1
Ganymede 4,604,948 787,514 29 6,553 4:1
Ganymede 3,223,221 718,692 18 6,553 5:2
Ganymede 2,321,376 618,442 12 6,553
Europa 2,177,449 613,607 11 4,969 3:1
AV 2,177,449 664,000 11 3,383 3:1 157
Europa 1,916,281 657,025 9 3,383 8:3
AV 1,916,281 664,000 9 3,119 8:3 23
Europa 1,696,509 656,797 8 3,119 7:3
AV 1,696,509 664,000 8 2,847 7:3 25
Europa 1,465,975 654,441 7 2,847 2:1
AV 1,465,975 664,000 7 2,495 2:1 37
Europa 1,284,558 654,625 6 2,495 7:4
AV 1,284,558 664,000 6 2,152 7:4 38
Europa 1,094,256 651,110 5 2,152 3:2
AV 1,094,256 664,000 5 1,707 3:2 57
Europa 893,021 643,557 4 1,707 5:4
AV 893,021 664,000 4 1,102 5:4 99
Europa 765,826 644,755 4 1,102 11:10
AV 765,826 664,000 4 624 11:10 98

As the sequence progresses, the accumulated apocentre manoeuvre AV increases
but the hyperbolic excess velocity with respect to Europa decreases (and so the orbit
insertion AV from such a hyperbolic approach decreases). After a certain number of
fly-bys, a minimum total A}V is reached (accumulated apocentre plus orbit insertion).
The total AV is given by:

2ig, I
AVipad = D AV g+ 4 [ 4 V2 = [——— (5.1.1)
i ¥ EuropaOrbit ¥ EuropaOrbit

where AV,,; is the AV applied at the apocentre, i to raise the pericentre. Vo, is the
excess hyperbolic speed at Europa from which insertion to Europa orbit is made, and
" Europaorbic 18 the radius of the circular orbit about Europa.

The total AV for this sequence, including insertion to a 200-km circular orbit at
Europa, is approximately 1,100 m/s. Using more gravity assists at Europa increases
this AV, due to increases in the pericentre raising AV eventually outweighing the
effect of the excess hyperbolic speed reduction. The period-pericentre laws for this
sequence is illustrated in Figure 5.1.17.

The Ganymede gravity assist option is now considered. The sequence used is
shown in Table 5.1.26 and Figure 5.1.18, plotted on loci of constant excess hyper-
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Figure 5.1.17. Gravity assist and manoeuvre sequence in the Jovian system for orbit insertion
strategy 1 at Europa plotted over period—pericentre loci at Ganymede and Europa.

Table 5.1.26. Gravity assist and manoeuvre sequence in the Jovian system for orbit insertion
strategy 2 at Europa.

Apocentre Pericentre Period Voo AV
Event (km) (km) (days) (m/s) Resonance (m/s)
Capture 20,218,103 900,000 222 31:1
Ganymede 7,712,518 847,482 57 6,553 8:1
Ganymede 4,604,948 787,514 29 6,553 4:1
Ganymede 3,223,221 718,692 18 6,553 5:2
Ganymede 2,321,376 618,442 12 6,553
Europa 1,873,702 600,456 9 4,969
Ganymede 2,147,032 664,506 11 5,883
Europa 1,973,573 660,187 10 3,210 11:4
Europa 1,654,999 648,966 8 3,210 9:4
Europa 1,319,465 629,092 6 3,210
Ganymede 1,360,010 662,086 6 3,733
Europa 1,222,197 653,882 6 2,209 5:3
AV 1,222,197 664,000 6 1,847 —43
Europa 1,094,256 655,272 5 1,847 3:2
AV 1,094,256 664,000 5 1,533 -39
Europa 893,469 644,110 4 1,533 5:4
AV 893,469 664,000 4 945 -96
Europa 771,907 648,514 4 945 11:10
AV 771,907 664,000 4 479 —78
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Figure 5.1.18. Gravity assist and manoeuvre sequence in the Jovian system for orbit insertion
strategy 2 at Europa plotted over period—pericentre loci at Ganymede and Europa.

bolic speed at Ganymede and Europa. Firstly, the energy-reducing sequence occurs
at Ganymede, where excess hyperbolic speed remains constant. The sequence then
switches to Europa and then back to Ganymede to raise pericentre. A sequence of
three gravity assists at Europa follows, with excess speed reduced following the
Ganymede gravity assist. This sequence reduces the apocentre before the pericentre
is once again raised by switching back to a Ganymede gravity assist. On returning to
Europa the excess speed is reduced further, to approximately 2 km/sec. The next two
gravity assists at Europa lower the apocentre to approximately the orbital radius of
Ganymede, so further gravity assists there are no longer possible.

Once again, as the apocentre is reduced further by gravity assist at Europa, the
excess hyperbolic speed there may be reduced by small manoeuvres at the apocentre,
raising the pericentre. The sequence is terminated when the excess hyperbolic speed is
again reduced to approximately 500 m/s.

The total AV for this sequence, including insertion to a 200-km circular orbit at
Europa, is approximately 1,000 m/s. As in the previous example, using more or less
gravity assists at Europa increases this AV
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This sequence contains approximations, because:

e Only 2D motion is considered.
e The phasing between Ganymede and Europa is not considered. An ideal transfer
with no AV to assist (or speed up) the phasing is assumed.

Therefore, the use of Ganymede in controlling pericentre results in some significant
AV reduction, but only a fraction of that needed for final orbit insertion. The
durations of the two idealised sequences is similar. However, when the insertion of
additional phasing orbits between Ganymede and Europa rendezvous are consid-
ered, the Ganymede pericentre raising option will generally become longer. Also,
with the manoeuvre option used for pericentre control, the minimum radius remains
higher on average throughout the sequence. This can be a significant issue in the
presence of Jupiter’s radiation belts.

The sequence may be verified by a full 3D simulation and optimisation in the
Jovian system. This is shown in Figure 5.1.19 for strategy 1 in the previous examples.

The total AV is minimised (the sum of apocentre manocuvres plus insertion
AV). The total AV is 1,260 m/s, and the total time from first pericentre to Europa
orbit insertion is 546 days.
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Figure 5.1.19. Sequence of gravity assists at Ganymede and Europa. The unit grid size is 1
million km in width. Jupiter is not to scale. Ganymede’s and Europa’s near-circular orbits are
shown. Eleven gravity assists take place: four at Ganymede, then the pericentre can be seen to
pass below Europa such that the sequence of seven gravity assists may begin there.
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These results are similar to the approximated 2D analysis. The AV is slightly
higher because additional manoeuvres to establish phasing and plane-change
between Ganymede and Europa sequences are needed (totalling approx 100 m/s).

5.1.6 Transfers to the outer planets

Reaching the outer planets can be a formidable problem, and is often impractical
without the use of gravity-assist manoeuvres. For the four planets beyond Jupiter,
gravity assist at Jupiter itself is an attractive possibility. Being the most massive
planet, considerable orbit modification is possible through a Jupiter gravity assist.
A classical example of such a transfer is Voyager. This mission is described more
fully in the references.

The objective is to achieve moderate AV requirements, whilst still maintaining
an acceptable total transfer time. The major options that can be considered are an
extension of the Jupiter mission options, and can be summarised as follows:

Strategy Observations
Use of EGA or multiple EGA  Use of EGA potentially provides a large AV
to provide aphelion-raising reduction. If multiple EGA are used, a deep-space

manoeuvre is needed to increase the fly-by
velocity on returning to Earth.

Use of VGA to provide Use of VGA may provide a AV reduction. VGA

aphelion-raising or multiple VGAs can be considered, in a similar
manner to multiple EGAs, and also in
conjunction with subsequent EGA to provide
further AV reduction.

Use of JGA to provide Use of JGA is very effective in raising both

aphelion-raising aphelion and perihelion. This has two benefits:
1. reduces the transfer AV to reach the target
planet. 2. Reduces the approach V. at the target
planet and so reduces the AV for orbit insertion.
Although Jupiter is very effective in assisting
transfers to the outer planets, the synodic period
between Jupiter and any planet beyond Jupiter is
relatively high. Optimal opportunities arise
relatively infrequently.

Although EGA alone or VGA alone can be considered, substantial deep-space
manoeuvres or manoeuvres at the pericentre of the fly-by are needed to reach the
outer planets. These are not particularly effective strategies. A combination of VGA,
EGA and JGA can be considered, but the cases offering most A}V reduction
generally use multiple EGA, VGA and a single JGA.

Such transfers offer many permutations of transfer routes. Repeats of a given
route only recur very infrequently, because the combined synodic periods of Earth,
Venus, Jupiter and the target planet must be considered.
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Some examples of transfers to the outer planets will now be considered, to
demonstrate the use of the various strategies.

Mission to Neptune

An effective route for reaching Neptune is first to use the often-considered strategy of
V-E-E gravity assists to reach Jupiter. This is followed by a gravity assist at Jupiter,
after which Neptune is approached directly. The synodic period of Jupiter and
Neptune is 12.8 years, and therefore optimal utilisation of a Jupiter gravity assist
arises at this frequency.

The following example (Figures 5.1.20 and 5.1.21) considers a launch in 2013.
The first gravity assist is at Venus.

Table 5.1.27 shows the nature of these two transfers. The Injection AV is from
an initial orbit with GTO-like parameters (apogee radius at 42,165km and perigee
altitude 200 km) and an assumed optimal orbit plane to reach the required declina-
tion. The insertion AV is to an orbit at Neptune with pericentre at 25,000 km radius
(altitude approximately 240 km) and apocentre at 1 million km. Although this orbit
has a very high apocentre, it could subsequently be reduced via a series of gravity-
assist manoeuvres using Neptune’s moon Triton.

The table shows the details of the minimum AV case and an accelerated transfer.
Fly-by at Jupiter occurs at approximately 400,000 km radius in this accelerated
transfer.

The transfers can be further accelerated, the most significant effect being the
increased excess hyperbolic speed at Neptune and the consequent increased AV for
capture. Examples of such highly accelerated transfers are discussed in the subse-
quent section describing missions to Pluto.

Table 5.1.27. Examples of minimum AV and accelerated mission to Neptune.

Total Vo at
Launch Depart  Depart Duration deep-space Neptune Capture Total
date Voo (m/s) AV (m/s) Arrival (years) AV (m/s) (m/s) AV (m/s) AV (m/s)
8 Oct 2013 3,910 1,440 50Oct 2051  38.0 0 2,640 440 1,880
15 Oct 2013 4,230 1,560 19 Dec 2034 21.2 70 6,850 1,270 2,890

V-E-E-J-S mission to Neptune

A variation on this strategy uses a further gravity assist at Saturn. An unusual
alignment of the planets is required to enable such a transfer, and as such this
opportunity arises infrequently. The synodic period of Saturn and Neptune is 36
years, and the synodic period of Jupiter and Saturn is approximately 20 years.
Therefore such a geometry will reoccur at rare intervals, although an opportunity
does exists with an extension of the previously described 2013 launch. In fact, a range
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Figure 5.1.20. Minimum AV} transfer to Neptune with a V-E-E-J sequence after launch in
2013. In the upper figure the transfer trajectory and Earth’s and Neptune’s orbits are shown.
The inner grid is 10 AU from centre to edge, with a sub-grid size of 1 AU. The transfer to
Neptune is similar to a Jupiter—Neptune conjunction-class transfer after JGA. This transfer
type minimises the AV objective at the expense of a long transfer duration, which in this case is
approximately 38 years. The minimum allowed fly-by altitudes at Earth and Venus are 300 km.
At Jupiter, a lower limit of 500,000 km is initially imposed, to limit the period of exposure to
Jupiter’s high radiation environment. In the lower figure, the inner part of the transfer
trajectory and Earth’s and Jupiter’s orbits are shown. The grid is 1 AU from centre to edge
with a sub-grid of 0.1 AU. The inner transfer follows a conjunction-type transfer from Earth
to Venus, where it performs a gravity-assist manoeuvre. The spacecraft then returns to Earth,
and after the resulting gravity assist there enters a two-year resonant loop before returning to
Earth again for a further gravity assist, allowing the spacecraft to reach Jupiter. The Jupiter
gravity assist raises the aphelion to Neptune’s orbital radius and also raises the perihelion to
49AU.
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Figure 5.1.21. Minimum AV transfer to Neptune with a V-E-E-J sequence after launch in
2013 but with an upper limit on transfer duration. The transfer can be accelerated by con-
straining this upper limit on duration. The same transfer strategy as the minimum A} case is
used in this accelerated mission. Although much faster transfers are achieved, the spacecraft
meets Neptune with a significantly increased approach speed. Consequently, the capture AV is
also increased. In this example the upper limit on duration is set to 21 years — almost half of
the unconstrained optimal case. The transfer trajectory and Earth’s and Neptune’s orbits are
shown. The inner grid is 10 AU from centre to edge, with a sub grid size of 1 AU.

of launch epochs are possible around 2013 as the geometry of Jupiter, Saturn and
Neptune changes relatively slowly over 2-3 years. The Venus—Earth geometry does,
however, change relatively quickly and therefore an initial sequence before reaching
Jupiter could be restricted to use only Earth gravity assists.

Such a mission using a Saturn fly-by will be expected to take longer for the
minimum AV solution. However, the opportunity to combine multiple fly-bys in a
single mission enhances the scientific interest through the additional observation
opportunities. Such a transfer is shown in Figures 5.1.22 and 5.1.23.

Table 5.1.28 summarises the key features of an accelerated transfer example with
upper limit on transfer duration. This mission uses approximately the same AV as
the non-Saturn fly-by case, for a similar transfer duration.
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Figure 5.1.22. Multi-gravity assist transfer with Saturn fly-by, approach a 2013 launch and
low V, at Neptune. The transfer trajectory and Earth’s and Neptune’s orbits are shown. The
inner grid is 10 AU from centre to edge, with a sub-grid size of 1 AU. This transfer to Neptune
is similar to the V-E-E-J route described previously. After the Saturn gravity assist the
perihelion is raised to approximately 7 AU, and as a result the approach speed at Neptune
may be reduced. The optimum transfer duration is approximately 42 years.

Table 5.1.28. Transfer to Neptune using V-E-E-J-S gravity assist sequence.

Total Vo at
Launch Depart  Depart Duration deep-space Neptune Capture Total
date Voo (m/s) AV (m/s) Arrival (years) AV (m/s) (m/s) AV (m/s) AV (m/s)
2 Oct 2013 4,160 1,530 28 Jun 2036 22.75 160 6,350 1,130 2,820

Missions to Pluto

Pluto presents a formidable challenge in mission design, due in part to the large
spacecraft-energy change needed to reach the planet, but also due to the vast
distance and its implications for transfer duration. A further complication is the
Pluto’s orbital inclination and eccentricity. The inclination generally requires a
considerable plane-change manoeuvre to allow a rendezvous, unless a rendezvous
close to the nodes can be arranged. The eccentricity and long orbital period of Pluto
imply that at some launch epochs the spacecraft will have to traverse significantly
greater distances.

Low-energy transfers to Pluto will be considered, as well as accelerated missions
that allow the transfers to be accomplished in acceptable timescales.

Minimum AV transfers

Pluto may be reached in a similar manner to Neptune by considering the strategy of
V-E-E gravity assists to first reach Jupiter. This is followed by a gravity assist at
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Figure 5.1.23. Inner loop detailed for a multi-gravity assist transfer with Saturn fly-by a 2013
launch and low V', approach at Neptune, showing details of Jupiter and Saturn gravity assist.
The inner part of the transfer trajectory and Earth’s and Saturn’s orbits are shown. The grid is
1 AU from centre to edge, with a sub-grid of 0.1 AU. The portion of Jupiter’s orbit at the
gravity assist there is also shown. The fly-by at Saturn occurs approximately 3.25 years after
the Jupiter fly-by. The minimum allowed fly-by altitudes are as before, with the addition of a
minimum radius at Saturn of 100,000 km. However, in this case the inequality constraint is not
active, as the fly-by distance is approximately 2 million km at Jupiter and 5 million km at
Saturn.

Jupiter, after which Pluto is approached directly. Alternatively, strategies using
single or multiple gravity assists at Earth may be considered, and a gravity assist
at Mars may also be advantageous. However, the key to the transfer efficiency is
Jupiter, which may be used to raise the aphelion of the transfer orbit to Pluto’s
orbital radius and also to execute a plane change such that a rendezvous with
Pluto’s inclined orbit may be achieved.

The synodic period of Jupiter with respect to Pluto is approximately 12.5 years,
thus defining the main transfer opportunity intervals for such a route. However, this
period is calculated on the assumption of circular orbits, and Pluto’s orbit has
significant eccentricity. In practice, therefore some deviation from this repeat
period is expected, depending on the location of Pluto at arrival.

A minimum AV transfer is considered, which arrives at Pluto with a low excess
hyperbolic speed. The objective is to minimise the total transfer AV, being the AV
needed for Earth escape from a reference, elliptical orbit (GTO-like), deep-space
AV's and the AV needed to capture to an elliptical orbit about Pluto.
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Figure 5.1.24. A high-thrust optimum transfer to Pluto taking 62 years after a 2013 launch
using an E-J gravity assist sequence. The transfer trajectory, plus Earth’s and Pluto’s orbits
and Pluto’s orbit projection in the ecliptic are shown. The inner grid is 10 AU from centre to
edge. The sub-grid size is 1 AU. The gravity assist at Jupiter implements aphelion-raising and
plane-change. The transfer inclination after JGA is 4.5°, in this example with a launch in 2013
and JGA in 2018. Rendezvous with Pluto occurs in 2075, with an approach velocity of
approximately 2.2 km/sec. The altitude at Jupiter fly-by is approximately 1.4 million km.

This principle is illustrated in the following example (Figure 5.1.24), which uses a
single Earth gravity assist before reaching Pluto. The spacecraft is injected into a 3-
year Earth resonant orbit. After EGA the aphelion is raised sufficiently high that is
crosses Jupiter’s orbit with a relative velocity of approximately 9 km/sec. This is one
of several possible strategies to reach Jupiter. Routes using only EGA are less
constrained in terms of departure epochs, offering opportunities for transfer to
Jupiter every year.

The E-J sequence requires an initial V' leaving Earth of nearly 7 km/sec, and a
deep-space manoeuvre is performed before returning to Earth to increase the V' to
9.6 km/sec. More efficient alternatives could be considered using, for example, a V-E-
E-J sequence with much lower launch V, (typically 3.5 km/sec). This allows a total
AV reduction at the expense of increased transfer duration.

Faster transfers

The previous example demonstrates the prohibitively long transfer durations asso-
ciated with a minimum AV transfer. However, it is possible to considerably speed up
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the transfer, by making a closer fly-by at Jupiter to achieve a greater energy gain. A
Solar System escape orbit may be achieved, and in this way the transfer to Pluto may
be accomplished much more quickly. The implication is, however, that the approach
speed at Pluto is consequently much higher, although, a trade-off may be established
relating total mission AV to transfer duration. Alternatively, if a fly-by mission at
Pluto is considered, no injection manoeuvre is required there.

If the capture at Pluto is no longer required, then an alternative AV objective
may be considered, being the sum of the Earth departure and deep-space AV’s.

The transfer to Pluto is unlike transfers to the other planets of the Solar System,
in that additional local minimum solutions can be found. In particular, if a faster
transfer is sought, a local minimum AV trajectory, with unconstrained arrival epoch,
exists, offering a fast transfer from Jupiter to Pluto. The presence of these additional
local minima arises from the highly inclined and eccentric orbit of Pluto. Even faster
transfers may be obtained by constraining the Pluto arrival epoch. The nature of
these minima depends on the launch epochs considered. It has been mentioned
previously that a key feature of the transfer is driven by the synodic period of
Jupiter with respect to Pluto. However, although this period is 12.5 years, launch
opportunities in adjacent years with moderate AV's can generally be found.

In the subsequent analyses it is assumed that all manoeuvres are impulsive
(implying a high-thrust system). It is also possible to allow these manoeuvres to
take place either in deep space or at the planet pericentre when a fly-by takes
place. This latter option can be particularly effective for Jupiter fly-bys.

In the first analysis, manoeuvres are not performed at planet pericentre (no
powered fly-bys). The following example uses an initial injection to a three-year
Earth resonant orbit, followed by EGA and then JGA, before the transfer to
Pluto. Other options for the transfer to Jupiter will also be considered. A close
fly-by occurs at Jupiter. The case of a 14-year transfer is seen in Figure 5.1.25.

The locally optimum transfer duration for this launch epoch was found to be
just over 14 years. The previous analysis may be repeated, but with powered fly-bys
at Jupiter and Earth allowed instead of using only deep-space manoeuvres. Also, if
the same launch year is maintained but the arrival epoch brought forward, the
relationship between AV and even shorter transfers can be established. The V, at
Pluto also rises as the transfer duration is shortened. This is seen in Figure 5.1.26.

The AV considered is the AV needed for Earth escape from a reference, elliptical
orbit (GTO-like) plus the deep-space AV's. GTO perigee altitude is 200 km.

It has been assumed that a three-year Earth resonant loop is included in the
transfer. This allows a significant change in Earth excess hyperbolic speed, when
finally leaving for Jupiter, to be achieved with only a modest deep-space AV
performed close to aphelion of the three-year orbit. However, other transfer
options are possible. A two-year Earth resonant loop can allow shorter transfers
to be accommodated with a lesser AV penalty. The comparison may be seen in
Figure 5.1.27, in which it is assumed that powered fly-bys are allowed.

The two-year resonant orbit case uses a launch in 2013, and the three-year case a
launch in 2012. The launch epoch may be delayed in either case for approximately
one year (approximately one Earth—Jupiter synodic period). The impact on AV is
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Figure 5.1.25. A high-thrust locally optimum short-duration transfer to Pluto taking 14 years
after a 2013 launch, using E-J gravity assist sequence. In the upper figure, the spacecraft leaves
Earth, entering a 3-year resonant orbit in 2012. Arrival at Pluto is in 2026, after JGA in 2017.
The aphelion after the gravity assist at Earth is now raised further such that the approach
speed at Jupiter reaches more than 11 km/sec. When combined with a fly-by at approximately
170,000 km altitude, a heliocentric V,, of 15km/sec is achieved after JGA. The transfer
trajectory and Earth and Pluto orbits are shown. The grid is 10 AU from centre to edge,
with a sub-grid of 1 AU. In the lower figure, Jupiter gravity assist can be seen to cause a
large plane-change, the inclination reaching almost 5.5°. In this plot, the orbit of Pluto (bold
line) and its projection in the ecliptic are seen. The spacecraft trajectory and its projection are
shown. The spacecraft now reaches Pluto earlier than the minimum AV case described
previously, and Pluto consequently lies closer to the ecliptic.
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Figure 5.1.26. The AV duration relationship for powered and unpowered fly-by cases for a
fast transfer type to Pluto, after launch in 2012. The AV increases significantly away from the
local minimum (at nearly 14 years) for the powered gravity assist and deep-space manoeuvre
cases. Powered fly-bys can be seen to give a significant gain for the shorter transfers. This is
due to the need for a manoeuvre in the vicinity of Jupiter, which is most efficiently performed
in Jupiter’s gravity field.
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Figure 5.1.27. The AV duration relationship for powered fly-bys with two-year and three-year
Earth resonant orbits for a fast transfer type to Pluto. Both powered fly-bys and deep-space
manoeuvres are allowed. The AV required for the shorter transfers increases more quickly
with the three-year Earth resonant orbit than in the two-year case. However, the minimum AV
is less with the three-year orbit. The V', at Pluto is also plotted against the right axis.

typically a few hundreds of m/s, depending on the transfer duration required.
However, the minimum A}V does not change significantly.

A slower but more AV -efficient route can be used, involving gravity assist at
Venus. The relatively conventional route of Venus—Earth—Earth gravity assists is
used to reach Venus. However, it is still possible to achieve relatively fast transfers
by using a close Jupiter fly-by. This particular transfer will now be considered in
slightly more detail (Table 5.1.29 and Figure 5.1.28). The transfer is qualitatively
similar to the case using a single EGA. The details of the transfer can be seen in the
figure.

The transfer after the gravity assist at Jupiter is similar to that with the single
EGA missions or direct transfer to Jupiter. After leaving Jupiter the spacecraft takes
9.3 years to reach Pluto.
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Table 5.1.29. Short duration V-E-E-J transfer to Pluto after 2012 launch. This case does not
use any powered fly-bys.

Event Parameters Description AV

Launch Voo = 3.3km/s Transfer orbit to Venus 1,270 m/s from

17 Apr 2012 RV after 0.5 revs GTO injection
reference orbit

GA 1 at Venus Vo = 6.89km/s Transfer to an Earth return

8 Oct 2012 orbit via aphelion of 1.4 AU

GA 2 at Earth Voo =9.76km/s  Transfer to a 2-year 350m/s deep-space

22 Aug 2013 Earth resonant orbit; apply manoeuvre

GA 3 at Earth
9 Dec 2015

GA 4 at Jupiter
15 Jun 2017

Rendezvous with
Pluto

15 Oct 2026

Total AV inc.
Earth escape from
GTO-altitude orbit
to fly-by of Pluto

Voo = 11.61 km/s

Ve = 11.28km/s

Voo = 15.4km/s

AV at aphelion to lower
perihelion

Raise aphelion to 9.1 AU for
high-speed Jupiter rendezvous

Jupiter fly-by at 163,000 km
to reach Solar System escape
velocity

High-speed rendezvous with
Pluto

Total transfer duration
14.5 years

290 m/s deep-space
manoeuvre after
EGA

1,910 m/sec

Figure 5.1.28. Inner section of a short duration V-E-E-J transfer to Pluto, after launch in
2012. Earth’s and Jupiter’s orbits are shown. The inner grid is 1 AU from centre to edge. The
inner gravity assist sequence raises aphelion to 1.4 AU after VGA and then to 2.4 AU after
EGA. Jupiter rendezvous occurs approximately 5.2 years after launch. The grid is 1 AU from

centre to edge.
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Figure 5.1.29. The AV—duration relationship for powered fly-by cases, for a fast transfer type
to Pluto, after launch in 2012. Both powered fly-bys and deep space manoeuvres are allowed.

If speed of transfer is to be considered, then the transfer route to Jupiter also has
a significant impact, as seen in the previous examples of faster transfers. A direct
transfer from Earth to a Jupiter crossing may take typically two years, where an
intermediate gravity assist can extend this by two to three years. A V-E-E sequence
can take over five years before crossing Jupiter. The AV versus transfer duration can
be assessed for all of these strategies.

The trade-off considers three transfer routes:

e Jupiter alone.
e Earth (1:2 resonant orbit)-Jupiter.
e Venus—Earth—Earth—Jupiter.

The following AV's are considered: AV from GTO to Earth escape orbit, and AV for
all deep-space manoeuvres including powered fly-bys.

Figure 5.1.29 shows the relationship between AV and transfer duration. The
efficiency of a given transfer route depends on the required transfer duration. Fast
transfers are best implemented by a direct injection from Earth to Jupiter, whereas
slower transfers (greater than 12 years) are best implemented using the V-E-E-J
route.

5.1.7 Missions to minor bodies

The missions so far considered have had the objective of reaching other planets or
our Solar System. Missions to other bodies such as comets and asteroids present
different problems.

The first issue with a mission to a small body is that it does not possess a
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significant gravity field, compared with a planet. Orbital speeds about even a large
asteroid or comet are only a few m/s. When capturing into an orbit at a planet, the
planet’s gravity field allows a AV for the capture manoeuvre that is in generally
much less than the approaching excess hyperbolic speed. At a minor body, the
capture manocuvre requires a AV that is almost equal to the approach excess
hyperbolic speed.

A second point regarding such a mission is that many of the minor bodies of the
Solar System lie in elliptical, inclined orbits. Even in the main asteroid belt between
Mars and Jupiter, many asteroids possess eccentricities significantly greater than the
planets. This means that in order to execute the transfer most efficiently, the peri-
helion of the spacecraft approach orbit should lie close to perihelion of the asteroid
orbit. In this respect, there are similarities with a mission to Mercury, previously
described. This consideration can restrict the number of launch opportunities to a
particular target. However, as so many targets exist there is still a good chance of
finding a suitable target for a given launch year.

A comet explorer mission: Rosetta

Rosetta is an ambitious rendezvous mission designed to reach one of the distant
family of comets that orbit with aphelion close to Jupiter’s orbital radius and
perihelion close to 1 AU. When the mission was originally designed, Rosetta’s
target was the Comet 46P/Wirtanen. This was due for launch in January 2003,
but the unfortunate circumstances surrounding the first launch of the Ariane 5
meant that it was not feasible to schedule Rosetta for launch at that time.

After studies at ESA, an updated mission was developed for Rosetta. The
preferred option was to target the same comet, Wirtanen. However, due to the
delayed launch and the motion of the comet in this time, this proved to be too
demanding for the original Rosetta spacecraft design, which, to maximise efficiency,
had a limited fuel capacity. Therefore, an alternative comet target was selected, with
similar properties to Wirtanen: Comet 67P/Churyumov—Gerasimenko. As a result,
Rosetta was finally launched on an Ariane 5 in March 2004.

The new mission profile follows a type of transfer similar to that scheduled for
the 2003 launch. It includes an additional Earth gravity assist, occurring approxi-
mately one year after launch, in March 2004. This is effective in providing a sig-
nificant out-of-ecliptic component to the Earth relative motion, for the subsequent
transfer to Mars. This mission is described more fully in the references to this
chapter.

After the first Earth gravity assist, the spacecraft accomplishes approximately
1.25 revolutions about the Sun before a rendezvous with Mars in March 2007. A
Mars gravity assist then takes place, such that return to Earth is achieved in approxi-
mately half a revolution about the Sun, and this second Earth gravity assist takes
place in November 2007. The Mars gravity assist lowers perihelion to below Earth’s
orbital radius, and so the excess hyperbolic speed at Earth is increased significantly
when compared with the departure value. The Earth gravity assist may therefore be
used to enter a two-year resonant orbit with Earth. On its return after a further two
years, in November 2009, the third gravity assist at Earth raises aphelion to a value
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Figure 5.1.30. The early phases of the final Rosetta mission profile, showing transfer to Mars
and return to Earth to carry out a further two EGAs. The grid is 1 AU from centre to edge
with a sub-grid of 0.1 AU. The orbits of Earth and Mars are shown in addition to the
trajectory.

close to the orbital radius of Jupiter, eventually enabling a rendezvous with the target
comet, after a series of deep-space burns.

The initial phases of the mission are shown in Figure 5.1.30. This is the sequence
after the first Earth gravity assist to the Mars gravity assist and two subsequent
Earth gravity assists.

The resulting spacecraft orbit then has a perihelion location that is compatible
with the target. Rendezvous with the comet occurs before perihelion is reached. This
is to allow an extended period of scientific observations of the comet as it approaches
its perihelion passage. The transfer route therefore involves four gravity assist man-
ocuvres. This strategy allows the final rendezvous manoeuvres with the comet to be
limited to a manageable AV with a chemical propulsion system.

The basic mission timeline is shown in Table 5.1.26.
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Table 5.1.26. The Rosetta transfer to Comet 67P/Churyumov—

Gerasimenko.

Event Epoch

Launch March 2004
First Earth gravity assist March 2005
Mars gravity assist March 2007
Second Earth gravity assist November 2007
Third Earth gravity assist November 2009
Rendezvous manoeuvre May 2014
Global mapping August 2014
Lander delivery November 2014
Perihelion passage August 2015

5.1.8 Escaping the Solar System

Missions have been proposed to explore the region outside our Solar System and
beyond, including the interstellar heliopause and in particular its ‘nose’. (The inter-
stellar heliopause is described more fully in the references for this section) Such a
mission target is a demanding objective for a spacecraft, and requires extraordinary
transfer methods.

The nose is located at approximately 200 AU from the Sun, at a longitude of
254° and a declination of 7°. Some tolerance in the precise longitude for a spacecraft
exploring this region is possible, as the area of scientific interest covers a large zone.

In considering the design of a mission to reach this objective, a number of key
issues will be explored that are generic for such high-energy missions beyond the
Solar System.

In practice, transfer durations are to be limited. A typical maximum mission
period would be 15-25 years. The longer the transfer may take, the easier is the
mission design. In order to achieve a transfer in such periods, the spacecraft must
achieve a Solar System escape condition; that is, exceed some minimum excess
hyperbolic speed with respect to the Solar System.

The key issue with this mission is how to reach the required Solar System escape
velocity. In practice, the spacecraft will need to perform large manoeuvres, which
may be in deep space or as powered fly-bys at a large planet. If a high-thrust
propulsion system is available, energy-amplifying manoeuvres may be applied effi-
ciently when passing through the pericentre of a fly-by at a major body, or in making
a close approach to the Sun and performing a manoeuvre at perihelion.

A number of scenarios will be considered. High-thrust-based transfers can be
achieved efficiently in two main scenarios: powered Jupiter gravity assist, or powered
solar fly-by. In both of these scenarios, a Jupiter fly-by is used during the early
mission phases, either as assistance in reaching the required V_ or in lowering
perihelion close to the Sun to implement a powered solar fly-by.
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Figure 5.1.31. Heliocentric range versus time for 7, between 20 and 40 km/sec, perihelion at
5.2 AU. Such Solar System departure orbits are typical of those that may be achieved with a
powered gravity assist at Jupiter.

Basic mission drivers

It is possible to evaluate the characteristics of high-energy orbits to assess their
suitability in reaching large heliocentric distances in a short period of time.

Figure 5.1.31 illustrates that with such high-energy departure orbits, the
Keplerian orbital motion can be approximated as a linear relationship between
position and time. Furthermore, to achieve a transfer in the 20-25-year timescale
an excess hyperbolic speed with respect to the Solar System of typically 40 km/sec is
required. This may be extrapolated to shorter transfers, such as 15 years, where a
speed of 64 km/sec would be required.

Performance available with a powered Jupiter gravity assist

The preceding discussion has assumed that the planetary departure condition can be
such that the planet relative departure velocity is tangential to the planet orbit. This
requires a particular range of approach directions.

The constraints of optimised approach orbits are often such that this ideal
geometry will not be fully realised. A typical approach orbit is the example of a
Jupiter crossing orbit, with perihelion close to Earth and a very high aphelion.

This requirement on ¥, can be compared with the results achievable with such a
Jupiter gravity assist manoeuvre. Jupiter is very effective at modifying heliocentric
orbits, and it is possible to directly reach a Solar System escape orbit with a single
Jupiter gravity assist. The energy that may be gained depends on the approach
velocity at Jupiter. For a Jupiter crossing orbit, with typically a perihelion at
1 AU, raising the aphelion of the transfer orbit increases the approach velocity, as
seen in Figure 5.1.32.

A means must therefore be found to increase this escape energy. Increasing the
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Figure 5.1.32. Solar System relative V', available from Jupiter crossing orbits. A solar system
V., approaching 25 km/sec may be achieved from an initially bound Solar System orbit, the
value depending on the radius of the fly-by at Jupiter. A gravity assist at Jupiter, from any
Solar System bound orbit, is not sufficient to reach the required escape velocities to reach
200 AU in an acceptable timescale. Two fly-by pericentres are considered at Jupiter, the closer
fly-by giving a significant gain in achievable Solar System escape energy.

initial energy of the Jupiter crossing orbit could do this, such that the spacecraft
already possesses an excess hyperbolic speed relative to the Solar System when
Jupiter is reached. This would mean, for example, leaving Earth or the inner Solar
System with a very high energy. It could imply either a direct escape from Earth with
such energy or alternatively assume that it is achieved after a series of gravity assist
manoeuvres in the inner Solar System. Such energies are not achievable by gravity
assist alone, and large manoeuvres are implied.

Alternatively, a manoeuvre may be performed at Jupiter pericentre during the
fly-by. This enables an increase in the excess hyperbolic speed when leaving the Solar
System. Comparing these two strategies it is found that making a manoeuvre at
Jupiter pericentre is more efficient than similar manoeuvres at any of the inner
planets.

Therefore, in order to reach even moderately acceptable transfer durations to
the heliopause (20-25 years), a pericentre AV at Jupiter in the region of 8-10 km/sec
is required. Such a large manoeuvre has significant implications for the propulsion
system, in that sufficient acceleration is needed to prevent excessive AV loss arising
from the extended duration of the manoeuvre around Jupiter.
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Figure 5.1.33. Jupiter pericentre AV versus Solar System V, for Jupiter crossing orbits with
aphelion at 10 and 1,000 AU and fly-by distance at 100,000 km. The perihelion is assumed to
be initially 1 AU (as an approximation to the properties of such crossing orbits). The resulting
Jupiter relative V', (on approach) are —12.2km/s 10 AU, —17.3km/s 1,000 AU.

Designing a mission using a powered Jupiter fly-by

The direction of escape from the Solar System is determined by the location of the
heliopause. Only one Jupiter longitude for the gravity assist is optimal for a required
final V', vector magnitude and direction (some adjustment is possible by changes in
perihelion, but these are relatively small). Otherwise, meeting the target V_, vector
direction requires large AV manoeuvres applied after leaving Jupiter.

The choice of the transfer route to Jupiter determines the possible launch epochs
to rendezvous with Jupiter at the desired time (and solar longitude). Transfers from
Earth to Jupiter have a synodic period of approximately 1.1 years, and these
approximately repeat in terms of geometry of arrival at Jupiter after eleven such
opportunities, or after almost 12 years.

The transfer routes to Jupiter can include single or double EGAs, VGA-EGA-
EGA scenarios, and direct transfer from Earth to Jupiter. The most AV efficient
route to Jupiter does not necessarily yield the best solution, as this is a longer transfer
(5-6 years, using V-E-E) and there will be an upper limit on the total transfer
duration. The effect of a long transfer to Jupiter means that a larger solar-relative
V. 1s needed after leaving Jupiter to reach the heliopause in the same time as a case
with a direct transfer to Jupiter. This in turn needs a greater AV at the powered JGA.
The best choice of transfer route depends on the required transfer duration. For the
slower transfers (typically 30 years), the best (minimum A}’) route uses a single EGA
and therefore a relatively fast transfer route to Jupiter. For faster transfers, the
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Figure 5.1.34. Transfer using a single EGA followed by a powered JGA with launch in 2011
and 38.3km/s ¥, leaving the Solar System. The grid is 1 AU from centre to edge.

overhead of the long transfer phase to Jupiter results in large A} requirements at
Jupiter fly-by, so that a direct transfer to Jupiter becomes the most efficient route.

An example of a direct transfer route uses Earth departure in August 2012, with
JGA in 2016. For a total transfer duration of 30 years, the resulting Solar System
escape velocity vector has an error of approximately 1°, compared with the ideal
direction to rendezvous with the target longitude. For a faster transfer of 25 years, a
4-degree error in direction is the result. This angular variation arises from the
difference in the asymptotic departure direction after JGA due to different
departure energies.

Nominally, the optimum departure declination after the Jupiter fly-by (maximis-
ing the escape velocity) lies in the ecliptic, The required departure latitude of 7° can
be achieved with an additional AV penalty of a few hundred m/s.

Figure 5.1.34 shows the inner section of such a transfer using a single EGA. It
shows the orbits of Earth and Jupiter, illustrating the A}V aided gravity assist at
Jupiter. The JGA AV required reduces with the fly-by radius. Close approaches are
needed to obtain an efficient manoeuvre. Therefore, fly-bys at nominally 80,000 km
altitude are considered to be the baseline. Jupiter’s equatorial radius is over
71,000 km.

Figure 5.1.35 shows a range of transfer AV's for alternative mission durations.
Each uses the single-EGA route to Jupiter. The orbit after EGA has an aphelion of
12 AU. Most of the AV occurs at Jupiter fly-by but other deep-space manoeuvres are
also used. In Figure 5.1.36 the EGA and direct transfer routes to Jupiter are
compared. As the transfer duration is reduced, the direct transfer becomes progres-
sively more efficient.

Using a transfer route involving Venus gravity assist can improve the efficiency
with which Jupiter may be reached, and this can be attractive for the longer allowed
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Figure 5.1.35. Results for single-EGA transfer with Jupiter fly-by at 80,000 km for a range of
transfer durations. Solar System relative V, is plotted against the right axis.
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Figure 5.1.36. Results for single-EGA transfer compared with a direct transfer with Jupiter
fly-by at 80,000 km for a range of transfer durations.

transfer durations. The number of rendezvous opportunities with Jupiter is reduced
in comparison with the previously described routes. This has the consequence of
Solar Escape vectors in non-optimal directions.

Using a powered solar fly-by

An alternative to the powered gravity assist missions at Jupiter is to use a powered
solar fly-by. This is not a gravity-assist manoeuvre, but simply makes use of a close
passage to the Sun as an efficient location to apply a large AV. Achieving such a low
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Table 5.1.31. Examples of single-EGA transfers with solar fly-by at 0.018 AU for a range of
transfer durations.

AV at solar fly-by Total AV Final V,,  Transfer time post-JGA  Total transfer time

3,000 6,490 39,200 24.27 29.97
4,380 7,860 49,300 19.30 25.00
6,730 10,210 66,500 14.31 20.01

perihelion is in itself a challenge, and is most efficiently accomplished with a gravity
assist at Jupiter. Such a mission concept is described in the references for this section.

The solar fly-by mission may use one of several possible routes to achieve the
Jupiter crossing orbit. An unpowered JGA is used to lower perihelion close to the
Sun. On reaching perihelion, the spacecraft applies a prograde AV to reach Solar
System escape. The passage from Jupiter to perihelion takes just over 2 years.

For such a fly-by to be effective, the spacecraft must fly close to the Sun at
distances less than 0.05 AU, although distances as low as 0.018 AU have been con-
sidered. This is approximately 4 solar radii.

As in the Jupiter powered fly-by case, a similar set of options exists in reaching
Jupiter. However, because the solar fly-by AV's are lower than those at Jupiter, the
sensitivity to transfer time to Jupiter is reduced. This means that a V-E-E mission
potentially offers good performance for some of the greater allowed transfer
durations.

Table 5.1.31 shows some results for a single EGA transfer, assuming that the
spacecraft injects directly into a two-year Earth resonant orbit. To enter this orbit
requires an excess hyperbolic speed on leaving Earth of approximately 5.5 km/sec (or
a AV from a GTO-like orbit of 2,180 m/s. A further deep-space AV of approximately
1,350 m/s is then used before eventually reaching the solar fly-by.

The transfer for the example of a double EGA is shown in Figure 5.1.37. This
example is for a launch in 2015, so that the optimum departure direction lies close to
the required longitude, with an error of 13°.

The solar fly-by mission therefore offers considerable AV savings over the
powered Jupiter fly-by cases, particularly for the shorter transfer durations,
providing that a very close approach to the Sun is allowed. Increasing this
minimum solar fly-by distance to larger distances reduces the efficiency of the
solar fly-by mission. A solar fly-by at 0.054 AU is no more AV -efficient than the
powered Jupiter fly-by mission for longer transfers at 30 years, but still remains more
efficient than the Jupiter option for shorter transfer.

The AV's required for these high-thrust transfers are large. The fuel fraction
requirements for a conventional chemical propulsion system are extremely high.
Alternative technologies can be considered, offering higher specific impulse, such
as nuclear thermal propulsion.

Alternatively, different mission scenarios may be considered that use low-thrust
propulsion. Powered gravity assists are then no longer possible, but are replaced by
extended deep-space manoeuvres. Nuclear electric propulsion systems can be
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Figure 5.1.37. Transfer with launch in 2015, 38.3km/s V', and solar fly-by at 0.018 AU. The
orbits of Earth and Jupiter are shown. The grid is 1 AU from centre to edge.

considered for such a mission. A variant on a powered solar fly-by mission uses solar
sails to accelerate out of the Solar System after a close approach to the Sun. These
propulsion systems are discussed in Chapter 2.

5.2 LOW-THRUST MISSIONS

5.2.1 Analysis of a low-thrust, multi-gravity assist mission to Mercury

Missions to Mercury have previously been examined in the previous section in the
context of designing a multi-gravity assist mission. In that scenario the use of deep-
space manocuvres was restricted in its scope. Here the transfer possibilities may be
expanded by considering the possibilities with much larger manoeuvres. The use of
low-thrust systems and the corresponding high specific impulse means that fuel use
will still be low.

Firstly, it is useful to consider the nature of a transfer to Mercury using low
thrust alone. A scenario may be considered where a continuous low-thrust spiral is
used to spiral from Earth orbit to Mercury orbit. As a first approximation, Mercury
could be considered to lie in a circular orbit. The AV required for such a transfer is
given approximately by the difference in circular orbit speeds. This difference
between Earth and Mercury is close to 20 km/sec. This would be a large AV even
for a low-thrust solar electric propulsion system. Furthermore, the transfer duration
would depend on the acceleration available from the system, but would be expected
to be typically of the order of 100-200 mN/tonne. The transfer duration would
therefore be approximately 3-6 years, depending on thrust/mass.

Gravity-assist manoeuvres can be used to significantly reduce the transfer AV
requirement. The key issues for such a transfer are therefore the total transfer time,
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the total AV, the system thrust, and therefore the power generation mass
requirements.

The main gravity assist options are, as in the ‘ballistic’ mission option, the
Moon, Earth, Venus and Mercury. The previous analyses have shown that Venus
is the key target for gravity assist. Therefore, launch opportunities are again driven
by Earth—Venus transfer opportunities. The synodic period is 1.6 years.

Gravity-assist sequences that may be expected to be most effective with inter-
mittent low thrust arcs are as follows:

Sequence Description

1) -V-v-M" Use a Venus 3:4 resonant orbit to lower perihelion to Mercury.
A series of gravity assists at Mercury and low-thrust
manoeuvres is then used to reduce approach speed.

2) -V-V-M" Use a Venus 1:1 resonant orbit to lower perihelion. However,
perihelion may be higher than Mercury’s perihelion. Therefore,
a manoeuvre is required to lower perihelion before rendezvous
may take place. Subsequently a series of gravity assists at
Mercury and low-thrust manoeuvres are used to reduce
approach speed. This scenario uses a greater AV than 1), but
is potentially faster, as the 1:1 Venus resonant phase takes
450 days less than the 3:4 resonant phase.

3) L-E-V-V-M" This strategy is the same as 2), but the departure from Earth is
preceded by a Moon—Earth AV 14 year resonant phase (as
described in Chapter 4), after which the V' at Earth is amplified
sufficiently to achieve a transfer to Venus. This sequence will
take approximately 15 months longer than 2), but allows the
spacecraft to start its mission from a Lunar crossing orbit,
rather than an escape hyperbola to Venus. Consequently,
significantly more injection mass is available from the launcher.
This strategy is used here to lower aphelion rather than raise it
as was shown in the examples of Chapter 4.

4) L-E-V-M" This strategy is the same as 3), but uses only a single gravity
assist at Venus. The objective is to achieve a high V' at Venus
after a high ¥V, departure with the Earth gravity assist.

These options allow AV's to be significantly reduced (compared with non-gravity
assist routes), and could lie in the 2-8 km/sec range, depending on the upper limit on
transfer duration that is allowed. These options allow a compromise between AV
and transfer time to be found. Use of additional gravity assists at Mercury can
reduce AV, but at the expense of greater transfer time.

Propulsion assumptions

The key characteristic of the low-thrust propulsion unit for such a mission is thrust/
mass. For an SEP system, maximum thrust is dependent on available power, which
in turn is dependent on radial distance from the Sun. The exact relationship depends
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upon the performance of the solar arrays and power conversion units. Such mission
designs may be optimised by using detailed mathematical models of the power and
propulsion system performance. For preliminary mission designs, approximations
can be considered. In the examples considered here, a fixed value of 200 mN/tonne
will be assumed.

The availability of large amounts of power as the spacecraft approaches the Sun
makes a mission to Mercury a very good application for an SEP mission.

A further feature of low-thrust propulsion is its specific impulse, which is once
again dependent on the type of propulsion used, but could be expected to be several
thousands of seconds for a typical gridded ion thruster system. With such high
specific impulse the fuel mass usage is generally low, and so the major change in
propulsive acceleration over the course of the transfer arises from thrust dependence
on available power.

Mercury SEP transfer examples

A series of transfers will now be examined to illustrate effective strategies for such a
mission.

The first transfer considered corresponds to option 2. Such a mission has pre-
viously been described, notably by Langevin (see the references). The details of the
principle of the sequence are as follows:

Event Comments

A direct transfer from Earth to Venus  Excess hyperbolic speed; optimisable.
Right ascension of departure vector;
optimisable.
Declination of departure vector:
optimisable.
These parameters are targeted by
the launcher or through an apogee-raising
sequence, as discussed in previous

sections.
Venus GA to reach a 1:1 resonant Use an intermediate resonant orbit to
orbit with Venus assist in eventual perihelion reduction.
Venus GA to lower perihelion close
to Mercury perihelion
SEP manoeuvre sequence to lower Enables eventual rendezvous with
perihelion and lower aphelion Mercury and reduces approach speed at

Mercury. The manoeuvre sequence may
be performed over multiple revolutions
about the Sun. This allows phasing with
Mercury for the eventual rendezvous and
the possibility to apply the low-thrust arcs
in the most efficient locations rather than
experience large AV loss.
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Event Comments
Mercury GA to a half-revolution This phase is the same as the ballistic
resonant orbit with Mercury mission opportunities described in section

S5.1.1. It results in a reduced approach
speed to Mercury at aphelion.

Mercury GA to ‘propulsive’ 1:1 This is essentially a reverse

resonant orbit with Mercury implementation of the type of manoeuvre
such as the Moon—Earth gravity assist
escape loop described previously (i.e., a
AV -gravity assits loop). The result is
to further reduce approach speed
at Mercury.

Hyperbolic approach to Mercury With such a large reduction in approach
speed at Mercury, a relatively small
(compared with ballistic transfers) capture
manoeuvre may be made at Mercury
pericentre to inject into an elliptical orbit
about the planet.

It is clear that there are a number of parameters that may be traded off in this
mission design, with the objective of identifying an optimum solution. In this
context this is one that maximises the useful mass in the target orbit at Mercury.
Useful mass is used here to refer to the total delivered mass minus any elements of
dry mass dedicated to the propulsion system. This concept has been described in
Chapter 3.

Examples of mission parameters that may be considered for trade-off are:

The injection V., from the launcher.

The capture V,, at Mercury.

The number of revolutions about the Sun before Mercury is first approached.
The number of MGAs used between VGA and Mercury capture.

The reference thrust/mass assumptions described previously are used. The transfer
details are shown in Table 5.2.1.

It is also possible to achieve this transfer with a single gravity assist at Mercury.
The half-revolution 1 : 1 resonant phase is omitted. The transfer is approximately 44
days shorter, but uses an additional SEP AV of approximately 340 m/s.

Alternatively, additional gravity assists at Mercury may be used to assist in
aphelion reduction, rather than relying on propulsion to accomplish this. This
would lead to an increase in transfer duration and also a AV reduction.

The transfer is shown in Figure 5.2.1. This illustrates the transfer from Earth to
a Venus rendezvous, where the spacecraft enters the 1:1 Venus resonant orbit. The
low-thrust arcs begin after the second Venus gravity assist.

The aspects of the motion out of the ecliptic can be seen in Figure 5.2.2. The
significant inclination of the Venus 1: 1 resonant orbit can be seen and also after the
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Table 5.2.1. Low-thrust, multi-gravity assist transfer to Mercury with launch in 2009.

Event Parameters Description AV

Launch Ve = 3.8km/s Transfer orbit to Venus

20 Jan 2009 RV after 0.5 revs

GA 1 at Venus Voo = 6.78 km/s Achieve 1:1 resonant orbit

20 Apr 2009 Inclination 11.3°

GA 2 at Venus Voo = 6.78 km/s Lower perihelion to 0.36 AU  SEP AV 4,520m/s
1 Dec 2009 and inclination of 7°.

SEP manoeuvres to achieve
Mercury RV after 4.5 revs
GA 3 at Mercury V= 2.40km/s Achieves 1:1 resonant orbit
5 Jun 2011 over 0.5 revs
Inclination 4.7°
GA 4 at Mercury V= 1.81km/s Achieves 1:1 AV resonant SEP AV 450 m/s
10 Jul 2011 orbit
Inject to Mercury V= 0.45km/s Transfer duration 2.8 years

elliptical orbit
30 Oct 2011

Total SEP 4,970 m/s
manoeuvres

second Venus gravity assist, the achievement of the 7 degrees inclination to match
Mercury’s orbit plane.

A reduction in the launcher injection V', can be achieved with the use of further
SEP AV between Earth departure and Venus rendezvous. A reduction to 2.6 km sec
V., results in the need for an additional 1.2km/sec AV

The solution is dependent on the transfer duration. If an additional revolution
between Venus and Mercury is inserted, then the duration of the major individual
thrust arcs can be expected to reduce due to shorter burn-arc durations per revolu-
tion. Adding a further revolution about the Sun will reduce the SEP AV by approxi-
mately 230 m/s, but increase the transfer duration by 88 days.

Use of lunar and Earth gravity assists

In the previous cases with a launch ¥, below 3.8 km/sec, the optimal transfer mass
solutions utilise thrust arcs in the early phase of the transfer. The higher-energy
launch case (V. at 3.8km/sec) removes the need for these arcs. An alternative
means of obtaining a greater V', on leaving Earth is to use an Earth gravity assist
manoeuvre after a deep-space manoeuvre. The strategy is that described in Chapter 4
regarding the AV gravity assist loop.

In this scenario, launch can be into an initially highly elliptical orbit, followed by
a lunar gravity assist to reach a low Earth escape velocity (V,, with respect to Earth
system typically 1.1 to 1.4 km/sec). The Earth gravity assist manoeuvre then occurs
approximately 15 months later, after an intermediate manoeuvre increasing the ec-
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Figure 5.2.1. 2009 low-thrust transfer with Venus—Venus—Mercury—Mercury gravity assist.
The orbit of Earth is shown (thick line). The spacecraft coast arcs are depicted by a light
line and thrust arcs by a bold line. The grid is 1 AU from centre to edge, with a sub-grid of
0.1 AU. Mercury’s orbit is omitted for clarity. Its orbit lies close to that of the final coast phase
seen in the transfer trajectory.

Figure 5.2.2. 2009 low-thrust transfer with Venus—Venus—Mercury—Mercury gravity assist,
showing out-of-ecliptic motion. The orbits of Earth and Mercury are shown (thick lines).
The spacecraft coast arcs are depicted by a light line and thrust arcs by a bold line. The
projection of the motion in the ecliptic is shown by dashed lines. The sub-grid size is 0.1 AU.
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centricity of the orbit and therefore the Earth fly-by speed. After the Earth gravity

assist, the spacecraft follows a route similar to the previously described case, with

two Venus and two Mercury gravity assists. Such a strategy has been proposed for

ESA’s Bepi-Colombo mission (see references for this section). Table 5.2.2 shows the

characteristics of such a transfer. The key features are summarized below.

Event Comments

Injection to trans-lunar elliptical orbit ~ Apogee altitude typically
410,0000—600,000 km depending on the
target V., after gravity assist at the Moon.

Lunar gravity assist to reach Fly-by altitude 200-300 km,
low-energy Earth escape depending on navigation accuracy
achievable.

Deep-space burn to increase orbital
eccentricity

Earth gravity assist Target to achieve V,, >3 km/sec on
transfer to Venus.

A direct transfer from Earth to Venus  Excess hyperbolic speed optimised by
Earth gravity assist; right ascension of
departure vector optimised by Earth
gravity assist; declination of departure
vector optimised by Earth gravity assist.

Venus GA to reach a 1:1 resonant Use an intermediate resonant orbit to

orbit with Venus assist in eventual perihelion reduction.

The transfer is shown in Figure 5.2.3. The initial inwards departure is efficient in this
case. The transfer trajectory, after the Earth gravity assist, can be seen to be almost
identical to the previous case using direct injection. However, between first departing
Earth’s sphere of influence (after the lunar gravity assist) and the subsequent Earth
gravity assist, a large thrust-arc can be seen. The result is that the spacecraft returns
to Earth with an excess hyperbolic speed of approximately 3.6 km/sec. The motion
out of the ecliptic is shown in Figure 5.2.4. The initial LGA-EGA loop lies close to
the ecliptic plane.

Sensitivity of the solution

The LGA-EGA-based solution sensitivity with respect to certain factors may be
assessed. Thrust magnitude influences the AJV. Reducing thrust below 200 mN/
tonne penalises AV at a rate of typically 6 m/s per mN for the transfer type in
Table 5.2.2.

The AV solution is less dependent on specific impulse. Its effect is manifest
through the thrust/mass variation with variations in fuel usage through the
transfer. Reoptimisation shows that (for constant thrust):

Isp =3,500sec AV 5.75km/sec
Isp =4,200sec AV 5.79 km/sec
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Table 5.2.2. Low-thrust multi gravity assist transfer to Mercury with launch in 2007 using
EGA.

Event Parameters Desctioption AV
Launch Trans-lunar orbit, Transfer orbit to Moon
24 Oct 2007 apogee at
460,000 km
GA 1 at Moon Vs wrt Earth Achieve 1:1 AV resonant SEP AV 830m/s
24 Nov 2007 system at 1.2km/s orbit
GA 2 at Earth Vs = 3.63km/s Transfer orbit to Venus
12 Jan 2009 RV after 0.5 revs
GA 3 at Venus Voo = 6.70 km/s Achieve 1:1 resonant orbit
19 Apr 2009 Inclination 11.5°
GA 4 at Venus Ve = 6.70 km/s Lower perihelion then perform SEP AV 4,470 m/s
30 Nov 2009 SEP perihelion manoeuvres
GA 5 at Mercury Vo, =2.46km/s Achieves 1:1 resonant orbit
4 Jun 2011 over 0.5 revs
GA 6 at Mercury V., = 1.87km/s Achieves 1:1 AV resonant SEP AV 445m/s
10 Jul 2011 orbit

Inject to Mercury Vi, = 0.47km/s Transfer duration 3.9 years

elliptical orbit

30 Oct 2011

Total SEP 5.75km/s
manoeuvres

Using a single VGA

The previous transfer strategy utilises a given gravity assist sequence during the
transfer to Mercury: L-E-V-V-M-M. The V-V phase is a 1:1 resonant orbit
with Venus, taking 225 days.

Many other transfer variations are possible. Alternative routes may be
developed to explore possible AV savings and/or thrust reduction possibilities.
One option is to maximise the potential of the Moon—Earth phase by achieving a
high Earth fly-by speed. This requires a larger AV before Earth gravity assist.

There are then implications for the following VGA, as a high Earth departure
speed results in potentially higher fly-by speeds at Venus, and it may not be possible
or desirable to enter a resonant orbit at Venus. It is possible to directly lower
perihelion close to the perihelion of Mercury. Not using a Venus resonant orbit
has the advantage of saving time. These factors can be used to achieve a lower
AV transfer sequence to eventual Mercury rendezvous but a large manoeuvre is
required before EGA. An example is shown in Figure 5.2.5.
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Figure 5.2.3. Low-thrust transfer with LGA/EGA and two Venus GAs for the 2009 case. The
grid is 1 AU from centre to edge. Earth’s orbit is shown as the thick outer circle, in addition to
the spacecraft transfer trajectory. Thrust arcs are bold lines.

Figure 5.2.4. Low-thrust transfer with LGA-EGA and two Venus GAs for the 2009 case,
illustrating out-of-ecliptic motion. Dashed lines show the projection of the transfer in the
ecliptic.

5.2.2 Analysis of missions to Jupiter and Saturn using low thrust

Multi-gravity assist transfers to the outer planets typically use gravity assists at
Venus and Earth before proceeding to Jupiter or beyond. Therefore, injection
must take place into a Venus crossing orbit after leaving Earth. Several such
missions are descirbed in Section 5.1. A simple application of low-thrust propulsion
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Figure 5.2.5. A single VGA based transfer after launch in 2010. The transfer uses an L-E-V-
M-M-M-M sequence and takes 4.75 years. Thrust /mass is constant at 200 mN/tonne and deep
space, low-thrust AV approximately 5.28 km/sec.

is to use the system to apply the deep-space AV's instead of a high-thrust chemical
propulsion system. This can result in a significant reduction in fuel mass, but the
basic mass of the low-thrust system must also be considered.

A Dbetter use of a high specific impulse, low thrust system is to consider the
lunar—Earth gravity-assist routes described in the Chapter 4 and referred to in the
previous section on transfers to Mercury. This enables the utilisation of an injection
to a low-energy lunar crossing orbit. This mechanism, applied to transfers to Jupiter
and Saturn, will now be considered.

Reaching Jupiter with LGA and EGA transfer

This strategy starts with utilisation of a lunar gravity-assisted low-energy Earth
escape. The spacecraft return to Earth occurs typically 15 months later, after an
intermediate deep-space AV to increase eccentricity and therefore Earth approach
speed.

After the second gravity assist of the mission, taking place at Earth, aphelion is
raised considerably, but further thrust arcs are generally needed to optimally raise
aphelion to Jupiter radius. Capture at Jupiter can then be implemented by any of a
number of techniques (including impulsive pericentre manoeuvres and Jupiter moon
gravity assisted capture). Low-thrust propulsion could be considered to assist
capture, but the reduction in solar intensity (a factor of more than 25 compared
with Earth radius) means that an SEP system would only be able to operate at a
much reduced thrust level. However, a nuclear electric propulsion system would be
able to apply a constant thrust throughout the mission.
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Figure 5.2.6. Transfer to Jupiter with low-thrust plus LGA and single EGA and thrust/mass
at 150 mN/tonne. Thick line arcs denote the low thrust manoeuvres. Earth’s and Jupiter’s
orbits are shown. The grid is 1 AU from centre to edge.

The first scenario to be considered is the raising of aphelion to approximately
5.2 AU, via EGA and low thrust, to ensure a rendezvous with Jupiter. Orbit insertion
at Jupiter is then achieved with either a direct high-thrust manoeuvre at Jupiter
pericentre, or the AV's may be reduced by using a gravity assist at one of Jupiter’s
moons.

In Figure 5.2.6, two thrust arcs prior to EGA are shown, together with a thrust
period after EGA. The thrust/mass is 150 mN/tonne. The greatest distance from the
Sun at which a thrust arc occurs is approximately 2.5 AU. The initial LGA uses an
initial trans-lunar orbit with apogee above the Moon at approximately 500,000 km.
After the LGA, the spacecraft escapes from the Earth-Moon system with a V' of
approximately 1,200m/s. An initial outward departure is efficient in this case (after
LGA)

Higher apogee trans-lunar orbits are possible, which yield greater Earth
departure V. In such cases, the subsequent low-thrust AV is reduced, but the
mass in the trans-lunar orbit is also reduced.

The trans-lunar orbit is reached either by direct injection by the launcher, or
injection into a lower elliptical orbit and the spacecraft performs perigee manoecuvres
to raise apogee. In the second case, high-thrust propulsion is implied and thus typical
chemical system specific impulses. An optimum apogee, altitude for the trans-lunar
orbit can be obtained from these considerations. This is typically in the range
400,000-500,000 km.

The transfer AV is dependent on the thrust/mass used. Figure 5.2.7 shows the
relationship, based on the assumption that thrust remains constant throughout the
transfer. This figure does not include the Jupiter orbit insertion AV
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Figure 5.2.7. Transfer AV to reach Jupiter with LGA and single EGA thrust. This is the ‘low-
thrust” AV applied after LGA and before Jupiter rendez-vous. The low-thrust AV increases

sharply as thrust/mass is reduced below 200 mN/tonne. An initial outward departure is
assumed (after LGA).

The transfer time is not significantly effected by the thrust within the above
range. Transfer times from LGA to the vicinity of Jupiter are 3.7 years.
Therefore, although the low-thrust AV is quite high, the transfer duration is rela-
tively short.

LGA plus double EGA transfer

It is possible to reduce the low thrust AV by introducing a second gravity assist at
Earth. This strategy starts with utilisation of a lunar gravity-assisted low-energy
Earth escape. Return to Earth once again occurs typically 15 months later after
an intermediate deep-space AV to increase eccentricity and therefore Earth
approach speed.

After the Earth gravity assist, the spacecraft enters a near-resonant orbit with
Earth, returning after typically two years. Prior to return, a deep-space manoeuvre is
performed near aphelion to reduce perihelion and so increase Earth approach speed.

After the second Earth gravity assist, aphelion is raised to Jupiter radius. As in
the single EGA case, capture can be implemented by any of a number of techniques
(including impulsive pericentre manoeuvres).

The initial LGA uses an initial trans-lunar orbit with apogee above the Moon at
approximately 500,000 km. After the LGA the spacecraft escapes from the Earth—
Moon system with a V_ of approximately 1,200 m/s. The total low-thrust AV is
therefore 2,350 m/s. This transfer is illustrated in Figure 5.2.8 and Table 5.2.3. An
initial outward departure is assumed.

In Figure 5.2.9 a variable thrust (assuming a 1/ r? dependence) increases the low-
thrust AV slightly. This is a result of the effect of the slightly reduced thrust in some
regions of the first Moon-to-Earth loop, as well as the effect of the reduced thrust in
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Figure 5.2.8. Double EGA transfer to Jupiter with constant thrust at 100 mN/tonne. Thick
line arcs denote the low-thrust manoeuvres. Earth’s and Jupiter’s orbits are shown. The grid is
1 AU from centre to edge.

Table 5.2.3. Low-thrust transfer to Jupiter using double EGA and constant thrust of 100 mN/
tonne. Initial outward departure is assumed (after LGA).

Epoch Low-thrust AV Voo
Launch March 2008 Voo = 1.2km/s after LGA
First EGA May 2009 1,800 m/s Voo = S5.4km/s
Second EGA July 2011 550m/s Voo = 9.2km/s
Jupiter Arrival Nov 2013 Voo = 5.8km/s

the Earth-to-Earth loop. The details of the sequence are shown in Table 5.2.4,
illustrating that the V. and epochs do not change significantly. The total low-
thrust AV is therefore 2,520 m/s. The AV/thrust relationship, for a case of
constant thrust, is shown in Figure 5.2.10, using double EGA and a two-year
resonant orbit. The low-thrust AV increases sharply as thrust/mass is reduced
below 100 mN/tonne, but is much less sensitive to lower thrust levels than the
single EGA case.

The transfer time is not significantly effected by the thrust within the above
range. Transfer times from LGA to the vicinity of Jupiter are 5.7 years.

This transfer depends on the relative locations of Earth and Jupiter, and so is
dependent on the synodic period of 1.1 years. Optimum launch opportunities
therefore arise at this interval. Furthermore, the transfer AV will not change sig-
nificantly between these optimum launch epochs. After 11 such opportunities, the
sequence approximately repeats as one Jupiter orbital period is reached.
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Figure 5.2.9. Inner circuits of two-EGA transfer to Jupiter with 100 mN thrust per tonne at
1 AU and reducing with 1/r%.

Table 5.2.4. Low-thrust transfer to Jupiter using double EGA and radially dependent thrust.
Initial outward departure is assumed.

Epoch Low-thrust AV Voo
Launch March 2008 Voo = 1.2km/s after LGA
First EGA May 2009 1,970 m/s Vo = 5.4km/s
Second EGA July 2011 550m/s Ve =9.2km/s
Jupiter arrival Nov 2013 Voo = 5.8km/s
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Figure 5.2.10. Transfer AV to Jupiter with LGA and double EGA Vs thrust. This is the low-
thrust AV after LGA and before Jupiter. An initial outward departure is assumed.
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Table 5.2.5. Double EGA low-thrust mission to Saturn with constant thrust at 100mN/tonne
and initial outward departure after LGA. AV's are applied between previous and current
events.

Epoch Low-thrust AV Voo
Launch + LGA Feb 2018 Voo = 1.2km/s after LGA
First EGA April 2019 1,780 m/s Voo = 5.4km/s
Second EGA March 2021 890 m/s Ve = 10.9km/s
Saturn arrival Dec 2026 1,330 m/s Voo = 5.6km/s

juil

Hh

Figure 5.2.11. Two-EGA transfer to Saturn with constant thrust at 100 mN/tonne. Thick line
arcs denote low-thrust arcs. The orbits of Earth and Saturn are shown. The grid is 1 AU from
center to edge.

Transfers to Saturn with LGA and double EGA

Saturn lies at almost twice the distance from the Sun than Jupiter, and the use of
solar-powered propulsion to assist in capture at Saturn can therefore be discounted.
However, such a system may still be used to raise aphelion for Saturn rendezvous in
the same way as a transfer to Jupiter.

The extra AV required now places very large demands on a single EGA strategy,
and a double EGA strategy will therefore be considered as the preferred option (see
Figure 5.2.11 and Table 5.2.5). The total low thrust A} is 4,000 m/s, where an initial
outward departure after LGA is adopted.
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Figure 5.2.12. Transfer AV to Saturn with LGA and double EGA Vs thrust for the case of
initial outward departure after LGA.

The initial LGA uses an initial trans-lunar orbit with apogee above the Moon at
approximately 500,000 km. After the LGA, the spacecraft escapes from the Earth—
Moon system with a V', of approximately 1,200 m/s. Two EGAs are used. Thrust is
used after the second EGA to boost aphelion to reach Saturn. The excess hyperbolic
speed on arriving at Saturn is approximately 5.6 km/sec.

The AV/thrust relationship is shown in Figure 5.2.12 using double EGA and a
two-year resonant orbit. Thrust is constant over the transfer. The AV rises rapidly
when below 100 mN/tonne. It is considerably higher than the case of transfer to
Jupiter.

The transfer time is not significantly effected by the thrust within the above
range. Transfer times from LGA to the vicinity of Saturn are nearly 8.8 years. As
in the case of a transfer to Saturn, opportunities arise almost every year; that, is the
Earth-Saturn synodic period of 1.1 years.

In Figure 5.2.13, using a 1/ r? thrust dependence results in a redistribution of the
AV profile. There is an increase in the AV between EGAs, rather than after the final
EGA where thrust is rapidly decreasing as the spacecraft leaves Earth radius. The
total AV is increased over the constant thrust case, and is similar to the situation in
the transfer to Jupiter.

The total low thrust AV is 4,310 m/s (Table 5.2.6).

A further option with such transfers is to use low thrust to assist in the insertion
at the target planet. The excess hyperbolic speed at Saturn is approximately 5.6 km/
sec. This could be substantially reduced by using an accelerating low-thrust
manoeuvre when approaching Saturn. However, there are certain consequences.

Firstly, a constant-thrust system must be considered, as a radially dependent
system would only achieve very low thrust at Saturn’s distance from the Sun. This
therefore implies, for example, a nuclear electric system. Secondly, the total AV for
the electric propulsion system will increase. This may be significant if a near-
parabolic approach is required at Saturn. The third point is that the optimal
transfer duration will increase slightly over the direct approach cases.
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Figure 5.2.13. Two-EGA transfer to Saturn with radial dependent thrust at 100 mN/tonne at
1 AU. Thick line arcs denote low thrust arcs. The orbits of Earth and Saturn are shown. The
grid is 1 AU from center to edge.

Table 5.2.6. Double-EGA low-thrust mission to Saturn with radially dependent thrust at
100mN/tonne at 1 AU. AV's are applied between previous and current events. An initial
outward departure after LGA is used.

Epoch Low-thrust AV o
Launch + LGA Feb 2018 Voo = 1.2km/s after LGA
First EGA April 2019 2,000 m/s Ve = 5.4km/s
Second EGA March 2021 1,380 m/s Voo = 11.4km/s
Saturn arrival Dec 2026 930m/s Voo = 5.6km/s

In the transfer shown in Figure 5.2.14 and Table 5.2.7, a large accelerating
manoeuvre is implemented with the low-thrust system when approaching Saturn.
The thrust arc is apparent, as approximately 5km/sec is applied here. With the
thrust/mass used at 100 mN/tonne, this manoeuvre takes approximately 1.3 years.
The excess hyperbolic speed (the corresponding insertion manoeuvre) at Saturn is
constrained to be just above a parabolic approach condition; that is, 200 m/s. A
small capture manoeuvre to a high elliptical orbit may then be performed with a
chemical propulsion system.

Therefore, total AV is approximately 8,850 m/s. The spacecraft arrives at Saturn
one year later than the direct approach case. Such a scenario could be utilised with a
minimal chemical propulsion element as the capture manoeuvre is now much
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Figure 5.2.14. Two-EGA transfer to Saturn with constant thrust at 100 mN/tonne at 1 AU
and low-V, approach at Saturn. Thick line arcs denote low-thrust arcs. The orbits of Earth
and Saturn are shown. The grid is 1 AU from center to edge.

Table 5.2.7. Double-EGA low-thrust mission to Saturn with low-speed arrival and using
constant thrust at 100 mN/tonne.

Epoch Low-thrust AV before event Vi
Launch Feb 2018 Voo = 1.2km/s after LGA
First EGA April 2019 1,780 m/s Voo = S5.4km/s
Second EGA March 2021 850m/s Voo = 10.7km/s
Saturn arrival Dec 2027 1,220 m/s leaving Earth Voo =0.2km/s

5,000 m/s approaching Saturn

reduced. Transfer from the high elliptical capture orbit can be assisted with gravity
assists at Saturn’s moon Titan. The additional low-thrust AV required for the
transfer approximates to the change in excess hyperbolic speed at Saturn
compared with the previous case.

A range of such approach strategies may be considered. It has been shown
previously that a gravity-assisted capture may be performed at Saturn using Titan.
A high elliptical capture orbit may be reached with an approach excess hyperbolic
speed of typically 3—3.5 km/sec. Therefore, an improved strategy at Saturn would be
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to reduce the excess hyperbolic speed to approximately 3 km/sec and then use a
Titan-assisted capture. The approach AV required for this manoeuvre would be
approximately 2.5 km/sec.

If gravity-assisted capture is not used, then a minimum total fuel utilisation
capture would also use a higher approach excess hyperbolic speed. In this scenario
a more substantial chemical propulsion system is implied. Such optimum approach
excess hyperbolic speeds are discussed in Chapter 4.

This strategy, in conjunction with a nuclear powered electric propulsion system,
may be repeated at any of the outer planets to reduce the insertion manoeuvre.

5.2.3 Missions to Pluto with low-thrust

A series of options for missions to Pluto have previously been discussed in Chapter 1
and also earlier in this chapter. A number of intermediate-duration transfers were
identified, all with relatively high approach velocities at Pluto, consistent with fly-by
missions, rather than a Pluto rendezvous. A means of accomplishing a rendezvous is
to use a low-thrust propulsion system with high specific impulse, such that the fuel
fraction is feasible.

A large manoeuvre is therefore required when approaching Pluto, to reduce the
relative velocity. Typical approach velocities for Pluto fly-by-type missions are
10-15km/sec. An optimal approach velocity, to be followed by a high-thrust peri-
centre insertion manoeuvre, is only several hundreds of m/s, and a large speed
change must be accomplished by low-thrust propulsion.

At Pluto’s distance from the Sun, solar-powered electric propulsion is not
feasible, and nuclear-powered systems would be required. Therefore, a constant
thrust system is implied. A similar mission profile may be considered to that
described previously for high thrust missions. The use of a single Earth gravity
assist, a Jupiter gravity assist and a 14-year mission constraint can be used. This
could also be modified to a double Earth gravity assist scenario, before the transfer
to Jupiter is made, in the same way as described for the missions to Jupiter and
Saturn.

In this example (see Figure 5.2.15 and Table 5.2.8) an initial three-year Earth
resonant orbit is used. Multiple low-thrust arcs are used throughout the mission.

A large decelerating manoeuvre is implemented with the low-thrust system when
approaching Pluto. The thrust arc is apparent in the figure; approximately 15 km/sec
is applied here. The thrust/mass used is 200 mN/tonne, and the manoeuvre takes
approximately 2.7 years. The excess hyperbolic speed at Pluto is constrained to be
approximately 100 m/s. On arrival, a small capture manoeuvre to a high elliptical
orbit about Pluto may be performed with a chemical propulsion system.

The lower illustration in Figure 5.2.15 shows the out-of-ecliptic rendezvous with
Pluto. The in-ecliptic projection is also shown (without thrust arcs added), as is the
projection of Pluto’s orbit in the ecliptic.

This mission can be modified using a double EGA after an initial LGA. The
strategy to instead use a double EGA sequence includes a lower energy launch to a
Iunar crossing orbit, then perform a gravity assist at the Moon, enter a near-one-year
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Figure 5.2.15. EGA and JGA transfer to Pluto with constant thrust at 200 mN/tonne and low
V., approach at Pluto. The orbits of Earth and part of Pluto’s orbit are shown. The grid is
10 AU from centre to edge. In the second plots the projections of motion into the ecliptic are
seen.

Table 5.2.8. Single EGA, single JGA low-thrust mission to Pluto with a 14-year transfer and
constant thrust at 200 mN/tonne.

Epoch Low-thrust AV before event Voo
Launch Oct 2012 Voo = Tkm/s
First EGA Nov 2015 360m/s Voo = 10.4km/s
First JGA June 2017 2,000m/s Vo = 13.2km/s

Pluto arrival Nov 2026 15,000 m/s approaching Pluto Voo = 0.1km/s
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Table 5.2.9. Double EGA, single JGA low-thrust mission to Pluto with constant thrust at
200 mN/tonne.

Epoch Low thrust AV before event Voo
Launch/post LGA state Aug 2012 Voo = 1.2km/s
First EGA Nov 2013 2,000 m/s
Second EGA Nov 2015 800 m/s Vo = 10.4km/s
First JGA June 2017 2,000 m/s Voo = 13.2km/s
Pluto arrival Nov 2026 15,000 m/s approaching Pluto Voo = 0.1km/s

Earth resonant orbit with intermediate low-thrust manoeuvres, followed by a two-
year resonant orbit with an intermediate low-thrust manoeuvre. After the second
EGA, a further low-thrust arc is needed to provide the optimal rendezvous con-
ditions with Jupiter for gravity assist there. This would result in the mission char-
acteristics shown in Table 5.2.9. In this case the low thrust AV is further increased,
but the launch energy is much less, resulting in a significantly more efficient mission
design.

In either scenario this is a large AV, even for an electric prolusion system, and
high specific impulse would be required to achieve an efficient transfer. If the mission
duration constraint is relaxed, then the low-thrust AV can be significantly reduced.
For example, a 17-year transfer can be achieved with a low-thrust AV reduction of
approximately 3,000 m/s.

5.3 MISSIONS USING GRAVITY ESCAPE AND CAPTURE

Chapter 4 examined the possibilities of escape and capture by the use of gravitational
perturbations, and some examples of escape orbits were shown. These principles can
now be used in a complete mission design, and three examples are considered in this
section.

The first examples start from Jupiter, which is the most effective planet for
utilisation of gravitational escape. The first case considers a transfer to Saturn
with capture at Saturn also achieved by gravitational capture. The second case
targets Uranus, and gravitational capture is also used there. The missions are
optimised from end to end, in terms of AJV. The optimisation of the departure
and arrival phases uses the strategy described in Chapter 4, with regard to the
selection of the key orbital parameters at the osculating pericentre.

Finally, an example of a mission to Venus is considered. The missions from
Jupiter show good performance in terms of AV, but are not feasible as true
mission designs due to the long transfer durations required. However, this type of
transfer strategy, when used with a mission to Venus, is attractive both in terms of
AV and transfer duration. A number of options are considered for Venus.
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5.3.1 Transfer from Jupiter to Saturn

The two most massive planets in the Solar System are Jupiter and Saturn. In the
previous analyses in Chapter 4, it is clear that a moderate energy escape may be
obtained from Jupiter using gravitational methods, the aphelion achieved being
approximately 13AU in the examples considered. Therefore, Saturn may be
reached, in principle, using such an escape. A gravitational capture at Saturn may
then be used to lower the energy of the spacecraft with respect to Saturn and reach a
bound orbit.

Intermediate manoeuvres may be used to assist in the link of these two gravity-
perturbed phases. In this example, low-thrust manoeuvres are used, although the
same effect is achievable with a high-thrust system. The optimisable parameters that
define this transfer must be considered. These are summarised as follows:

Parameters at Jupiter pericentre.

Pericentre: 1 million km The direction of the line of apses is
Apocentre: 43 million km optimised to generate a change in
Inclination (with respect to ecliptic): heliocentric energy required to interface
optimisable with an approach trajectory to Saturn.
Argument of pericentre: optimised The inclination of the initial Jupiter orbit

is optimised to generate an out-of-ecliptic
component so that the Jupiter escape and
Saturn capture arcs may link.

Deep-space electric propulsion manoeuvres.
Two manoeuvres are possible with Manoeuvre AV's and directions are
intermediate coast arc optimised.

Parameters at Saturn pericentre.

Pericentre: 0.6 million km The direction of the line of apses (at
Apocentre: 59 million km Saturn pericentre) is optimised to generate
Inclination (with respect to ecliptic): a capture from a heliocentre approach
optimisable orbit, that interfaces with the departure
Argument of pericentre: optimised trajectory from Jupiter. The inclination of

the final Saturn orbit (at pericentre) is
optimised to generate an out-of-ecliptic
component so that the Jupiter escape and
Saturn capture arcs may link.

The choice of orbits at Jupiter and Saturn both have relatively low pericentres. These
are chosen as being practical values that may be used to connect with target orbits of
interest, without change being required to the pericentre. Otherwise, such man-
ocuvres could be expensive in terms of AV,

A small deep-space manoeuvre is needed to complete the transfer. When the
departure and arrival phases are optimised as described above, this manoeuvre is
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Figure 5.3.1. Transfer from Jupiter to Saturn using gravitational escape and capture. Jupiter’s
and Saturn’s orbits are shown. Grid size is 10 AU from centre to edge with a sub-grid of 1 AU.

approximately 65m/s for the launch epoch considered in Figure 5.3.1. This is in
September 2012.

Such a transfer could potentially be further improved by including the Jupiter
and Saturn apocentres as optimisable parameters. The AV required for a change in
apocentre at Jupiter by 10 million km is 33m/s. These small AVs can be used to
further ‘tune’ the interplanetary transfer orbit. The effect of higher-apocentre orbits
(the osculating value defined at planet or major body initial pericentre) on helio-
centric orbits was discussed in Chapter 4. The apocentre values chosen here (as being
close to the Lagrange points) are typical of values that are suitable for achieving
escape trajectories.

This transfer, from Jupiter pericentre to Saturn pericentre, takes approximately
22 years. The aphelion after leaving Jupiter is approximately 1.3 billion km,
requiring an excess hyperbolic speed at Jupiter of 1.49km/sec if gravitational
escape methods were not used. The perihelion when approaching Saturn is approxi-
mately 930 million km, requiring an excess hyperbolic speed at Saturn of 1.21 km/sec
if calculated by velocity vector subtraction. In Figure 5.3.1, the transfer from Jupiter
to Saturn is dominated by the gravity perturbed escape and capture phases. A small
linking manocuvre is performed in deep space. The details of the motion relative to
Jupiter in the departure phase are shown in Figure 5.3.2.
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Figure 5.3.2. Escape from a Jupiter bound orbit with a semi-major axis of 22 million km,
using gravitational assistance. In the upper figure, the gravitational escape phase from Jupiter
is shown here in a Jupiter—Sun rotating reference frame. X is the positive in the Sun—Jupiter
direction.In the lower figure the gravitational escape phase shown in a Jupiter-centre inertially
oriented reference frame.
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Figure 5.3.3. Energy departing Jupiter for transfer to Saturn. The energy relative to Jupiter is
shown in the upper figure. The Jupiter relative energy becomes positive at approximately 110
million km from Jupiter. This is plotted against the right axis. This radius is considerably
higher than the gravitationally-raised pericentre of the evolved orbit (at approximately 50
million km). In the lower figure the heliocentric relative semi-major axis achieved is 1,100
million km. This is the value required for the transfer to a Saturn capture orbit.
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Figure 5.3.4. Gravitational escape from Jupiter plotted in a rotating reference frame over the
Jacobi potential surface. The centre of the potential well is Jupiter. The two saddle points are
the Sun—Jupiter L1 and L2 points. The spacecraft trajectory is plotted over the potential
surface. The spacecraft may be seen close to L2 in reaching an escape trajectory to Saturn.
The distance from centre to edge is 500 million km.

The characteristics of such a departure from Jupiter can be seen by examining
the trajectory plotted over a potential surface. This is shown in Figure 5.3.4. The
potential surface here is that related to the Jacobi constant — the gravitational poten-
tials of Sun and Jupiter plus the angular velocity term arising from Jupiter’s orbital
velocity. The trajectory is expressed in a Jupiter—Sun rotating reference frame.

The characteristics of the approach and capture at Saturn may now be consid-
ered (Figure 5.3.5). Such a process is essentially the reverse of the Jupiter escape
trajectory. Although Saturn does not possess such a large gravity field as Jupiter, it
still provides a strong gravitational influence at this large solar distance. Its colinear
Lagrange points are, in fact, at a slightly greater distance from Saturn than those of
Jupiter from the planet, at approximately 65 million km.

In Figure 5.3.6, the gravitational capture at Saturn occurs from an effective
approach excess hyperbolic speed of approximately 1,200 m/s.
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Figure 5.3.5. Capture to a Saturn bound orbit with a semi-major axis of 30 million km, using
gravitational assistance. The upper figure shows the gravitational capture phase at Saturn in a
Saturn—Sun rotating reference frame. Approach is from the sunward side of Saturn. X is
positive in the Sun—Saturn direction. The lower figure shows the gravitational capture phase
in a Saturn-centred, inertially oriented reference frame.
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Figure 5.3.6. Energy approaching Saturn after transfer from Jupiter. In the upper figure the
energy with respect to Saturn is shown. The Saturn relative energy becomes positive at
approximately 70 million km from Saturn. This is slightly higher than the intermediate
pericentre of the approaching orbit (before final low pericentre is reached). Energy is
plotted against the right axis. The maximum possible energy change at capture is not
needed for a transfer required to intersect with the Jupiter escape orbit. In the lower figure
the semi-major axis relative to the Sun is shown. The heliocentric semi-major axis approaching
Saturn is 1,100 million km. This is the value required to interface with the departure from
Jupiter and the small connecting deep-space manoeuvre.
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5.3.2 Transfer from Jupiter to Uranus

A more demanding target for a transfer from Jupiter is Uranus, as it has a semi-
major axis of 2,860 million km and as such is considerably higher than the aphelion
achievable from the high-energy-change escape cases examined in Chapter 4.

Intermediate manoeuvres may be used to assist in the link of these two gravity-
perturbed phases. In this example, low-thrust manoeuvres are used, although the
same effect is achievable with a high-thrust system. The strategy is described as
follows:

Parameters at Jupiter pericentre.

Pericentre: 1 million km The direction of the line of apses is
Apoentre: 49 million km optimised to generate the greatest
Inclination (with respect to ecliptic): heliocentric energy. The inclination of the
optimisable Jupiter orbit is optimised to generate an
Line of apses: optimised out-of-ecliptic component so that the

Jupiter escape and eventual Uranus
capture arcs may link with a minimum AV
requirement for the intermediate transfer
section.

Deep-space electric propulsion manoeuvres.
Two manoeuvres are possible with an ~ Manoeuvre AV's and directions are
intermediate coast arc optimised.

Parameters at Uranus pericentre.

Pericentre: 0.7 million km The direction of the line of apses is
Apocentre: 69 million km optimised to generate a maximum change
Inclination (with respect to ecliptic): in heliocentric energy. The inclination of
optimisable the final Uranus orbit is optimised to
Line of apses: optimised generate an out-of-ecliptic component so

that the Jupiter escape and Uranus
capture arcs may link with minimum
intermediate AV.

The departure from Jupiter is very similar to the case discussed in the previous
section. The transfer to Uranus demands the greatest possible energy after
departure from Jupiter in order to minimise the deep-space manoeuvre requirements.
Therefore, a higher apocentre is selected for the initial Jupiter orbit. This enables a
higher-energy escape orbit to be reached. As in the Jupiter-to-Saturn case, this
transfer could potentially be further improved by including the Jupiter and
Uranus apocentres as optimisable parameters. These small AV's for apocentre
manipulation can once again be used to further ‘tune’ the interplanetary transfer
orbit. In this regard, apocentre can be further raised, although the energy gain is
relatively low and transfer period tends to increase. As discussed in Chapter 4, these
transfer options have numerous locally minimum solutions. Using a much longer
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Figure 5.3.7. Transfer from Jupiter to Uranus using gravitational escape and capture.
Jupiter’s and Uranus’s orbits are shown. The deep-space manoeuvres are indicated by bold
regions of the transfer trajectory. The grid is 10 AU from centre to edge, with a 1 AU sub-grid.

transfer duration, implying additional revolutions, can potentially further improve
the departure energy from Jupiter.

Similarly, the approach to Uranus also demands the greatest possible use of
gravitational perturbation in reducing orbital energy. As in the Jupiter escape
case, some manipulation of the apocentre at final pericentre can be used to further
improve the solution; but, as in the Jupiter escape case, the local minimum solution
shows only a limited degree of gain in response to increases in this parameter.

Between the gravity perturbed departure and approach arcs is a coast segment
bounded by two low-thrust manoeuvres. These achieve an orbital arc that is almost
analogous to a Hohman transfer between the Jupiter and Uranus linked trajectories
(i.e., those trajectories that achieve gravitational excape and capture).

The aphelion after leaving Jupiter is approximately 1.93 billion km, requiring an
equivalent excess hyperbolic speed at Jupiter of 2.53km/sec. The perihelion
approaching Uranus is approximately 2,240 million km, requiring an equivalent
excess hyperbolic speed at Uranus of approximately 0.37 km/sec. Therefore, a pair
of deep-space manoeuvre is needed to complete the transfer. When the departure and
arrival phases are optimised as described above, this manoeuvre is 2.55 km/sec. The
total transfer duration from pericentre to pericentre is approximately 66 years. This
transfer leaves Jupiter in July 2015.

The transfer is shown in Figure 5.3.7. The connecting arc bounded by deep-
space manoeuvres may be observed. The longest phase of the transfer occurs after
the second deep-space manoeuvre, whist the spacecraft experiences gravitational
capture in the vicinity of the Uranus—Sun L1 Lagrange point.

The gravitational capture phase at Uranus shown in Figure 5.3.8.

In Figure 5.3.9, the gravitational capture at Uranus occurs from an equivalent
approach excess hyperbolic speed approaching 400 m/s.
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Figure 5.3.8. Gravitational capture to a Uranus bound orbit with a semi-major axis of 35
million km. The upper figure shows the approach to Uranus. Motion is seen in Uranus—Sun
rotating reference frame. Approach is via the L1 point. X is in the Sun—Uranus direction. Free
capture occurs at an orbit with apocentre at approximately 70 million km. Capture pericentre
is less than 1 million km. In the lower figure the approach to Uranus is seen in a Uranus-
centred inertial frame. The spacecraft is moving slowly in this phase of the mission, which
takes approximately 40 years over the trajectory segment illustrated.
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Figure 5.3.9. Energy approaching Uranus after transfer from Jupiter. In the upper figure the
energy relative to Uranus is shown. The Uranus-relative energy becomes positive at
approximately 57 million km from the planet. Energy is plotted against the right axis. This
is at approximately the pericentre of the evolved orbit. In the lower figure the heliocentric-
relative semi-major axis approaching Uranus is almost 2,500 million km. This is the greatest
energy-change achievable with the initial orbital characteristics described previously.
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5.3.3 Analysis of a mission to Venus using capture via the Lagrange points

In the previous sections transfers from Jupiter to the outer planets have been con-
sidered. In this section a transfer from Earth to Venus is described. It demonstrates a
practical use of gravitational escape and capture. The transfer is built upon a similar
strategy to that described previously for the transfer from Jupiter to Uranus; grav-
itational escape and capture with linking deep-space thrust and coast arcs.

This is considered to be a practical application because it enables a transfer to be
achieved in a more reasonable timescale. A further aspect of the mission is that it
employs low-thrust, high specific impulse propulsion to provide the deep-space
manoeuvres. This mission could be contrasted with a standard, conjunction type
transfer using high-thrust, pericentre manoecuvres for escape and capture.

Several transfers can be considered, using variations on the basic transfer theme
of gravitational escape and capture. These include:

e Use of a lunar gravity-assisted escape with a Venus gravitational capture. This is
one of the shortest low-transfer scenarios.

e FEarth gravitational escape with Venus gravitational capture. This scenario is
similar to the previous one, but generally takes slightly longer.

e Lunar gravity assist, followed by Earth gravity assist, to start the transfer, with
Venus gravitational capture. This allows a significant AV saving at the expense
of additional transfer time.

e Lunar gravity assist, followed by Earth gravity assist, to start the transfer with
Venus gravity assist and Venus gravitational capture. This allows a further
significant AV saving, but again at the expense of additional transfer time.

Such transfer types may be obtained at approximately 1.6-year launch intervals (the
synodic period of Earth and Venus). The key features of these transfers are repeated
with an eight-year period; that is, five synodic periods. Some of these are now
considered in more detail.

Earth gravitational escape and Venus gravitational capture

This transfer uses two gravitationally perturbed phases. In the initial phase the effect
of solar gravity on the initially Earth bound trajectory is used to achieve a low-
energy Earth escape, after injection to an initially highly elliptical Earth orbit.
Escape V_, may typically approach 1km/sec. The total transfer time is generally
increased, because of the additional time taken during the Earth gravitational escape
phase.

The key orbit injection parameters that may be chosen, and their relationships,
are shown below. The optimum direction of the line of apses will in general lie close
to the ecliptic, although this does vary with each launch epoch under consideration.
The relationship between these parameters and the launcher injection orbit must be
considered, as this effects the feasibility of such a transfer.
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Property
Apogee altitude

Right ascension

Argument of
perigee and
inclination

Value
Example at 2,000,000 km

Optimisable to achieve
required direction of the line
of nodes with respect to Sun/
Lagrange point direction.
Choice is cross-coupled with
the initial inclination/argument
of pericentre in determining
the azimuth of the line of
apses.

Individually optimisable to
achieve the optimal orientation
of line of apses with respect to
Sun/Lagrange point direction.

[Ch.5

Initial orbit implications

Must be sufficiently high to
experience gravitational
perturbations from Sun (>1.2
million km). Pericentre is low,
to be reached by a typical
launcher injection orbit.
Right ascension of ascending
node is primarily determined
by launch time epoch and is
generally a free launch
parameter.

Argument of perigee is
determined by the upper-stage
reignition point, and for many
launchers is a freely choosable
parameter, with no AV/
injection mass penalty.
Inclination is primarily
determined by the launch site
and attracts a performance
penalty to change this from the
optimal value for a particular
launcher. High-latitude sites
imply high inclination, but,
when coupled with the
appropriate selection of
argument of perigee, allow a
wide range of declinations of
the line of apses to be achieved
without AV /injection mass
penalty. Inclination and
argument of pericentre also
contribute to azimuth of the
line of apses.

The nature of these transfers is such that often several local minima may be
obtained. The example below shows an efficient strategy in terms of both low AV
and a moderate total transfer duration, and the optimised transfer results for this
minimum case. A baseline assumption of 230 mN thrust per tonne is assumed.

This transfer takes approximately 1.5 years. The trajectory is seen in Figure 5.3.10.



Sec. 5.3]

Missions using gravity escape and capture 423

Table 5.3.1. Earth gravitational escape and Venus gravitational capture with low thrust.

Event Parameters Description AV
Launch Injection apogee = High apogee orbit to No deterministic
2,000,000 km, perigee achieve strong Solar manoeuvre.
at 200 km. gravity perturbations.
Example launch
epoch 16 Apr 2013.
Gravitational Equivalent 7, Gravitational escape No deterministic
escape achieved after Earth achieved after manoeuvre.
escape: 1 km/sec. passage close to L1
Lagrange point.
Deep space Two optimisable low- Thrust arc 1: provides Low-thrust AV
manoeuvres thrust arcs separated further perihelion 3.78 km/sec.
by an optimisable reduction to achieve a
coast arc. Venus rendez-vous.
Thrust arc 2: reduces
approach velocity to
Venus.
Gravitational Reach an elliptical Gravitational capture No deterministic
capture at capture orbit: 250 km from low V,, approach manoeuvre.
Venus by 2,400,000 km. to Venus to high-
Reaches pericentre apocentre orbit.
at 31 Aug 2014. Pericentre targeted at
200 km.
Summary Transfer duration 502 3.78 km/sec.

days.

One option to speed up such a transfer would be to replace the Earth gravitational

escape phase with a lunar gravity assist.

The Earth gravitational escape phase has already been discussed in demonstrat-
ing the principle of gravitational escape (Chapter 4).
Figures 5.3.11 and 5.3.12 show the approach phase at Venus, illustrating capture

through the Lagrange point. The approach orbit to Venus has an aphelion of
1.2e8 km and an equivalent approach V, at Venus of 850 m/s.

This transfer can be compared with a transfer between parabolic orbits at Earth
and Venus (excess hyperbolic speed of zero). The low-thrust AV in such a case is
approximately 5.5 km/sec. In practice, such a transfer would use an optimised V', at
Venus and Earth to minimise total fuel usage, but the gravity-assist case is then
compensating for the fuel required for apocentre raising beyond the parabolic case
and to a lesser extent the low-thrust system AV. The transfer AV may be reduced by
increasing thrust, but as a result would also increase propulsion mass. The value used
here is representative of an achievable system. This transfer can be compared with an
idealised case with circular, co-planar planet orbits, where the AV reduced to
3.1 km/sec with a thrust at 200 mN/tonne.
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Figure 5.3.10. Transfer using Earth gravitational escape, Venus gravitational capture and two
low-thrust arcs. This figure shows the heliocentric transfer and Earth and Venus orbits. The
grid is 1 AU from centre to edge, with a sub-grid of 0.1 AU. The thrust arcs are the thick lines.
The first thrust arc is considerably longer than the second in this optimised solution. At the
end of the second thrust arc the spacecraft enters a gravitational capture approach via the
Venus L2 point.

Figure 5.3.11 shows the approach phase at Venus, illustrating capture after a
passage close to the Venus—Sun L2 Lagrange point.

Capture to an osculating bound orbit may be achieved at Venus. A further
retrograde AV is needed to lower the apocentre to reach the final operational
orbit. If the manoeuvre does not occur at pericentre (for example, if there is a
failure onboard the spacecraft) the spacecraft would subsequently experience an
energy increase as it leaves pericentre. In this example it will escape from its
temporarily bound Venus orbit. However, using a lower apocentre (1.4 million
km) results in a modification of the behaviour after first Venus pericentre. The
spacecraft remains in a bound orbit for two complete orbits about Venus and
only escapes on the third revolution. The equivalent approach hyperbolic speeds
are slightly reduced for capture to the less energetic bound orbit (by approximately
50 m/s). This feature may significantly improve the robustness of planetary capture,
offering multiple possibilities for performing an orbit insertion manoeuvre, before
final escape from the planet. Such strategies are described in the references for this
section (Campagnola et al.).

The orbit evolution from approach and after first pericentre is shown in
Figure 5.3.12. This shows the approach trajectory, passing close to the Sun—Venus
L2 point, and subsequent passage by Venus pericentre. The spacecraft then passes



Sec. 5.3] Missions using gravity escape and capture 425

SIS ’%5@?\'*’?’ STetete:
S S RS TTICIT
"

e
7 N
SIS

Lol
Pl 0&'4?,-;} CEITICLD
T R N ¥ e & !
S \\‘&PW
d T
SRS e W

£ 7 e 3
e

! ' 4 '% LSO, CoE

1’”{!#;&;&. S =

e g

e

o

Figure 5.3.11. Approach to Venus, showing capture through the Lagrange point, for short
transfer type (2013 launch), plotted on a potential surface. The motion is plotted on a
potential surface (gravitational and rotating motion effects), with a rotating frame of
reference. This phase is preceded by an approaching thrust phase, which is also shown
terminating on this plot. This phase is in a darker line, and Venus is at the centre of this
potential function. The Venus—Sun Lagrange points may be seen as the shallow saddle points
(in the Venus—Sun direction). These lie at approximately one million km from Venus. The
frame rotates with the Venus—Sun system.

into a ‘weakly bound’ orbit around Venus for two revolution, it eventually escapes
from the influence of Venus.

Earth gravity assist, Venus gravity assist and Venus gravitational capture

The possibility of using lunar and Earth gravity assists (as described in previous
sections) to increase escape energy from the Earth may be used here. In addition, the
benefits obtained from the use of VGA can be considered.

This technique for using Venus gravity assist is essentially the inverse of the
lunar and Earth gravity assist sequence. The principle is as follows. On approaching
Venus for the first time, use a Venus gravity assist to lower aphelion. A deep-space
burn is subsequently applied to reduce the eccentricity of the heliocentric orbit. This
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Figure 5.3.12. Approach to Venus showing capture through the Lagrange point, and
subsequent motion over a period of one Venus year. The grid is 1.5 million km from centre
to edge. The reference frame is rotating with the Venus—Sun direction.

has the effect of reducing the excess hyperbolic speed at Venus to a level where
gravitational capture at Venus may be employed (to 800-900m/s V)

This technique can be compared with the previous cases that use gravitational
capture at Venus. Table 5.3.2 shows the optimised transfer results. A baseline
assumption of 200 mN thrust per tonne in high elliptical Earth orbit is assumed.

The total low-thrust AV is approximately 2.31 km/sec in this example. The
heliocentric transfer is shown in Figure 5.3.13.
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Table 5.3.2. Transfer from Earth to Venus with EGA, VFA and gravitational capture at

Venus.

Event Parameters

Description

Launch May 2012

GALl at Moon
June 2012

GA2 at Earth
October 2013

GA3 at Venus
March 2014

Gravitational capture at Venus.
Reaches pericentre at
Nov-2014

Apogee = 600000 km
Vs = l.4km/sec

Voo = 1.9 km/sec
Ve = 3.3km/sec

Elliptical capture orbit

250 km by 2000000 km

Trans Lunar orbit

Transfer to near 1:1 resonant
orbit with Earth

Achieve Venus RV Earth
departure orbit

Transfer to near 1:1 resonant
orbit with Venus

Transfer duration 1024 days

Total SEP Manoeuvres 2.3km/sec
EGA,
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Figure 5.3.13. Launch in 2012 with LGA, EGA escape in 2013 and VGA in 2014; 200 mN per
tonne constant thrust. The grid is 1 AU from centre to edge. Low-thrust arcs are bold. Planet
orbits are omitted for clarity.
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Keplerian orbits

This appendix reviews the key properties of Keplerian orbits; that is, orbits that
result from the solution of the Newtonian equations of motion with a central,
attractive, inverse square field. Perturbations to such motion are not considered here.

Al.1 GEOMETRY OF CONIC SECTIONS

Keplerian orbits may be expressed in terms of conic sections. Therefore, the
geometry of such entities is of some importance.

The ellipse is shown in Figure Al.1.

The following relationships are used in describing orbits:

Semi-major axis, a.
Semi-minor axis, b.
Semi-minor axis, p.
Eccentricity, e.

The geometry of an ellipse is such that:

S8}
S8}

s =1

QN‘ =
s

It may be seen that b = a+/(1 — ¢2), and that p = a(l — e?).

In the case of an ellipse, the eccentricity is such that 0 < e < 1. In the case of the
hyperbola, the geometry is shown in Figure Al.2.

Two solutions are possible for the hyperbola, such that in the figure the mirror
image about a vertical axis through the origin gives the second solution.



Appendix 1

430

T T DT T P

Focus

ac

o

Semi-minor axis, ‘b’

L

¢—— Semi-major axis, ‘a’

Figure Al.1. Geometry of the ellipse.
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Figure A1.2. Section of a hyperbola.
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The geometry of an hyperbola is such that:

S8}
S8}

xXT oy
i 1
a
where b* = a*(e* — 1).
The eccentricity is such that: e > 1.

Al1.2 SUMMARY OF ORBIT NOTATIONS

The following elements are conventionally used to describe the orbit of a spacecraft.
The origin of the reference frame is assumed to be the centre of the central body
under consideration. A reference plane is assumed. In the case of motion about the
Sun, the plane of the ecliptic is taken as the reference. For Earth-relative motion the
equator is used. A more detailed discussion on reference systems may be found in
Appendix 2.

a = semi-major axis of the orbit ellipse.

e = eccentricity of the orbit (e = 0 for circular orbits).

i = inclination of orbit with respect to the equatorial plane or reference plane.
Q = right ascension of ascending node.

w = argument of perigee.

0 = true anomaly of satellite.

The central body lies at the focus of the ellipse or hyperbola.

Figure Al.3 illustrates the orbital elements used to describe the plane of a
satellite orbit:

The ascending node is defined by the point where the spacecraft passes through
the reference plane, in a northerly direction (i.e., positive velocity component in the z
or ‘polar’ direction). It is measured from the reference axis X direction. This is often
nominally the “first point of Aries’. The right ascension is the angle in the reference
plane between X and the ascending node. Further definitions related to this idea are
the descending node, where the spacecraft moves through the reference plane in a
southerly direction, and the anti-node, where the latitude of the spacecraft’s motion
reaches its maximum or minimum values. Inclination is measured as the rotation
about the ascending node from the reference plane to the orbit plane (positive
rotation in Figure Al.3). The inclination vector is a vector normal to the orbit
plane and a rotation about this vector is in the direction of the orbit of the space-
craft. In Figure A1.3, the projection of the orbit into the reference plane is drawn as
the lighter line.

In Figure Al.4 the argument of pericentre is the angle in the orbit plane
measured from the ascending node to the pericentre. It is a rotation about the
inclination vector (positive rotation in Figure Al.4). In this figure the projection
of the orbit into the reference plane is drawn as the lighter line. Pericentre is the point
of closest approach, and the apocentre the extreme point in the orbit. The apocentre
seen in the figure therefore lies below the reference plane (Earth equatorial plane in
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Figure A1.3. Inclination and the ascending node. The light dashed line is the projection of the
orbit into the reference plane.
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Figure Al.4. Right ascension and argument of pericentre. The light dashed line is the
projection of the orbit into the reference plane.
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this example). The true anomaly of the orbiting body is the angle, measured in the
orbit plane, between the pericentre and its current location. Note that alternative
representations of the location in the orbit are possible. In this previous definition,
true anomaly is used.

Alternatively, mean anomaly can be used. In the case of a bound orbit, mean
anomaly describes the fraction of an orbital period since the subject passed
pericentre. It takes values in the range 0 to 2w. One period is completed when
mean anomaly is incremented by 27. A useful quantity associated with mean
anomaly is the mean motion, n:

n= /5 (1.1)

IN]

such that the orbit period is expressed as:
27
T=— 1.2
: (12)
where p is the gravitational parameter of the central body.
To calculate true anomaly from mean anomaly, when the eccentricity of the
orbit is less than 1, an intermediate variable, the eccentric anomaly, is required.
This angle is illustrated geometrically in Figure A1.5.

Figure A1.5. Eccentric anomaly.
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The relationship between the two quantities is the following:
M =E—esinE (1.3)
where M is mean anomaly and E is eccentric anomaly. This is known as Kepler’s

equation, which may not be solved analytically for E. An iterative solution is
therefore employed. A Newton—Raphson method may be used as follows:

M' =E —esinE

where M’ is the current evaluation of mean anomaly given the estimate, E of the
eccentric anomaly.

M= M) oM
E—E—i—T and aT—I—ECOSE (14)
OE

Various schemes have been devised for the solution of the above equation, of which
this particular iterative method is only one. The equation may present numerical
difficulties when eccentricity approaches 1. A detailed discussion may be found in
Battin (see references).
True anomaly is obtained by:
0 l+e E

tanE: 7 _etanz (L.5)

Alternative expressions for the relationship between true and eccentric anomalies

are:
cosE —e sin EV1 — ¢2

0 =—"= " d in=—— 1.6

€08 1 —ecosE an s 1 —ecosE (1.6)

In the case of a hyperbolic orbit, where the eccentricity exceeds 1, the mean anomaly
is converted to true anomaly by use of an intermediate variable known as the
hyperbolic anomaly. The relationship between the two quantities is the following:

M =esinhF — F (L.7)

where M is mean anomaly and F is hyperbolic anomaly. An iterative solution is
again employed, using the Newton—Raphson method as follows:

M' =esinhF— F

where M’ is the current evaluation of mean anomaly given the estimate, F of the
hyperbolic anomaly:

B (M —M") oM
F—F‘FT and ﬁ—eCOSthl
OF
The true anomaly is now obtained from:
0 1 F
tans = /< * tanh — (1.8)

2 e—1 2

A special case exists for the parabola, where eccentricity is equal to 1. In this
situation, Barker’s equation gives the relationship between true anomaly and time.
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Non-singular elements

It can be seen that the previous expressions are singular. When the inclination is
zero, the ascending node is not well defined. When the eccentricity is zero and
therefore the orbit circular, the pericentre is not well defined.

To alleviate these problems, non-singular elements may be used to describe the
orbit. The elements e, i, w and Q are replaced as follows:

P =esin(Q+ w)

Py, =cecos(Q+w) (1.9)
0, = tan(é) sin Q
Qz—tan<é> cosQ (1.10)

Furthermore, the ‘true longitude’ can also be used, being defined as:
L=w+Q+6 (L.11)

It should be noted that this is not a ‘real’ longitude with a physical meaning; the right
ascension of the ascending node lies in a different plane to the argument of pericentre
and true anomaly. It is a mathematical construction of convenience.

The transformation to conventional elements is given by:

e’ = P% + P%
tanz(é> - 01+03
tanQ = 9

0>
tan(w + Q) = %

Such forms are useful when considering the effects of perturbing forces on orbits
close to the singular values. The evolution of the non-singular elements can be
monitored in preference to classical elements.

Al1.3 MOTION IN AN ATTRACTIVE CENTRAL INVERSE
SQUARE FIELD

The motion of a body under the influence of an inverse-square attractive field may be
analysed to obtain analytical expressions for the motion. This motion is often
referred to as the solution of the two body problem, or Keplerian motion. It is
the motion to which Kepler’s laws apply.
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The gravitational force exerted on a body of mass m, by a body of mass, m; is
given by:
Gmymyr

. (1.12)

I’)’lzfz = —
2 ’
where r is the vector from the centre of mass of the body 1 to the centre of mass of
the body, 2, and r, is the vector from the centre of mass of the system (i.e., body 1
plus body 2) to body 2. Similarly:
G
i = — (1.13)
— r
where r is the vector from the centre of mass of the system to body 1.
The acceleration of body 2 relative to body 1 is given by:

G(my +my)r

- (1.14)

P=-
p

In the following it will now be assumed that body 1 is much more massive than body
2. The gravitational constant for this body is defined as: p = Gmy:

. m; +m r mym . r
g:—Mu—; or #z:—mz% (1.15)
m 7 (my + my) r
miniy . . ¢ )
where is sometimes referred to as the ‘reduced’ mass.
(my 4 my)

If the mass of body 2 can be neglected in comparison with body 1, the subscript
2 will be omitted when referring to the motion of the spacecraft.
Then equation 1.15 becomes the following:

Fe - (1.16)
B
The force acting only along the separation of the two bodies means that:
rAmi=0
and therefore a constant of motion is the angular momentum of the spacecraft, &:
r A mi = constant = A (1.17)

Therefore, the motion remains in the same plane. This conclusion allows a simplifica-
tion to be made in the description of the motion such that polar co-ordinates (r, 6)
can be used. Then:
V=i=i+r00 (1.18)
v =i? 4+ r0? (1.19)
where 7, § are unit vectors in the radial and transverse directions respectively, and:
h = mr*f (1.20)
The energy of body 2 is given by the sum of potential and kinetic energies:

E— T(;"Z 4207 - Gmym

5 ; (1.21)
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Using equation 1.21 it is possible to derive further information regarding the motion
of body 2. Substituting for angular momentum gives:

;2 2
mr h um
E=— —— 1.22
2 + 2mr? r ( )
where p = Gm,;. Then, using equation 1.20 and equation 1.22
d 2 2
Qé);ﬂ@Emﬂ+2m#r#) (1.23)

In the following, the expressions for energy and angular momentum will be used as
those relating to unit mass, m =1, or ‘specific energy’ and °‘specific angular
momentum’:

ar\2 2 ) 5 2h
i :ﬁ(zEr + 2ur —h) and h=r0
h

which may be integrated to give:

1w 2Eh?
rhz<1 + 1+HZCOS(900)> (1.24)
where 6, is a constant. This is the equation of a conic section with eccentricity given
by:

2Eh?
e= 1+——ﬁL (1.25)
1

The point of closest approach occurs when 6 = 6. This is the pericentre of the orbit,
and the true anomaly may be substituted for 6 — 6.
The semi-major axis can be shown to be given by:

"
= - 1.26
a=-7 (1.26)
The semi-latus rectum is defined geometrically as:
p=a(l —é?) (1.27)
and is therefore:
02
p=— (1.28)
I
such that:
2
jo P al-e) (1.29)

(I+ecos(f)) (1+ecos(h))

where 6 is used to represent the angle measured in the orbit plane from pericentre,
previously denoted as 6 — 6.
The relationship between velocity and radius is found through the energy per
unit mass:
v N
E=—-—-=
2 r
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Velocity vector, V

Flight path
angle

Position vector, r

Forward normal
to Position vector,
rin the orbit

Figure A1.6. Flight path angle geometry.

and therefore

V= zu(l—zla) (1.30)

The direction of the velocity with respect to the forward normal to the radius vector
(Figure A1.6) is defined by the flight path angle. This is obtained from the radial
velocity component:

Vsinll = (esin9 a(lljez)) (131)

Also, the velocity component Vj is given by /i/r, and an alternative expression for
flight path angle is:

V., Vsinl' in 6
tanl =L =0 ¢S50 (1.32)
Vo VecosI' 1+ecosb

Therefore, the flight path angle depends only on eccentricity and true anomaly.
Three cases of eccentricity may be considered.

0 < e < I: elliptical orbits
e=1: parabolic orbits
e>1: hyperbolic orbits

If the eccentricity exceeds 1, the energy is positive and the spacecraft will depart from
the central body under consideration. Conversely, with an eccentricity of less than 1
the energy is negative and the spacecraft remains in a closed orbit. In the special case
of eccentricity being equal to 1, the result is a parabolic orbit and zero energy. The
spacecraft reaches zero velocity at infinite distance from the central body.

In the cases of hyperbolic orbits, additional parameters of interest may be
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evaluated as follows. The first is the excess hyperbolic speed — the speed remaining
when the spacecraft reaches infinite distance from the central body under
consideration:

v =P (1.33)

The escape velocity may be defined as the speed, when at a given radial distance from
the planet, with which the spacecraft achieves a positive energy:

y2>2k (1.34)
r
If it is in an initial circular orbit about the planet, then:

y2>aok
a

Al.4 GENERATION OF CARTESIAN CO-ORDINATES FROM
ORBITAL ELEMENTS

Given an orbit ephemeris, it is possible to derive a set of Cartesian co-ordinates and a
velocity vector. The Cartesian position and velocity vector are an alternative repre-
sentation of the instantaneous state of an orbit (six components are required to
represent the state).

Cartesian co-ordinates are illustrated in Figure Al.7.

The procedure for conversion of ephemeris to Cartesian co-ordinates is as
follows. The radial distance is given by:

(1-&)
~ (T ¥ ecosh)

(using the same rotation as the previous section, Al.3)

Z (perpendicular to equatorial plane)

Position vector, r

» Y (in equatorial plane)

X (Aries)
Figure A1.7. Cartesian components of a position vector. In this figure X points to the inertial
reference direction.
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The speed is given by

1 1
V= 2“(r‘za)

where p is the central body gravitational parameter.

X, Y and Z components of the position vector are calculated in an intermediate
reference frame (X’ lies in the equatorial plane and the orbit plane, along the
direction of the ascending node, Y’ lies in the equatorial plane, and Z’ completes
the right-handed set, being perpendicular to the equatorial plane):

= rsin(w + 6) * cos i
r. =rsin(w+ 0) xsini (1.35)

These co-ordinates are now calculated with respect to an axis set with X pointing to
Aries, Y perpendicular to X in the equatorial plane, and Z unchanged:

ry = rycos(Q) — r, sin(Q)
r, = risin(Q) + r, cos(Q)
r,=r. (1.36)

The Cartesian co-ordinates are therefore obtained.
The flight path angle (the angle between the velocity vector and the normal to
the radius vector, in the orbit plane) is given by:

. _1( sinf m 1 esinf
I'= HeZ, | —F I'=te _— 1.37
S (e vV \a(l - ez)) o an (1 + ecos&) (1.37)

The velocity vector components calculated in the intermediate reference frame are:

V/

Vcos<w+9+72TF)

Vi, = Vsin(w—f—&—i—g—l") sin i

V;:Vsin<w+9+7zr—l“) cosi (1.38)
These components are now calculated with respect to an axis set with X pointing to
Aries, Y perpendicular to X in the equatorial plane, and Z unchanged:
V,=Vicos(Q) — V' sin(Q)
V, = V'sin(Q) + V', cos(Q)
V.=V. (1.39)



Appendix 1 441

Al1l.5 GENERATION OF ORBITAL ELEMENTS FROM CARTESIAN
COMPONENTS

The six orbital elements can be derived from the Cartesian state vector (three
position and three velocity vector components). Firstly, the angular momentum is
calculated (assuming unit mass) from the relationship:

h=rnV (1.40)

where r and V are the position and velocity vectors and therefore 1> = h2 + h% +hZ,
where /., h, and h. are the components in x, y, and z directions.

This is used to find the inclination and right ascension of ascending node. The
location of the ascending node is given by:

Q:tan1< hZ > (1.41)
—h,
and the inclination is given by:
\/ 2+ R
i =tan"! T} (1.42)

The Laplace—Range—Lenz vector may now be obtained as follows:

E=VAh-t (1.43)

;
and E = /E3+ E} + E? = pe.

The Laplace-Range-Lenz vector allows the calculation of the argument of

pericentre, which is now calculated from:

E.
iNw=—— fori#0 1.44
Sinw = +—— or i # (1.44)
COSW:Ex+EsincucosisinQ (145)
EcosQ
w:tan1<smw> (1.46)
cosw
This formulation allows the pericentre to be located correctly over a 360-degree
range.
The semi-major axis is calculated from the orbital energy. Then,
2
Energy = — — H
2 r
giving
—p
== 1.47
“ 2Energy ( )

The eccentricity is now obtained by:

h\2
e—\/l+2Energy<M) (1.48)
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Having obtained the main orbital parameters, the location within the orbit is given
by the true anomaly, which may be obtained geometrically by using an intermediate
transformation:

ry =rycosQ+r,sinQ

r,=r,cosQ —r,sinQ

ry =r,cosi+r,sini (1.49)
Then
: 1y cosw — 1’ sinw
sinf = — (1.50)
p
rsinw + 1’ cosw
cosf =2 x (1.51)

) r
sin @

and 6 = tan~! <
cosf
correctly over a 360-degree range.

). This formulation allows the true anomaly to be located

If e < 1, the mean anomaly is calculated using the eccentric anomaly:

e+ cosf
F=—-——— 1.52
cos 1+ecost ( )

and
sinf(1 — ecos E)
2

sin E =

— (1.53)

smE) and M = E —esinE.

then E = tan '
(cosE

If e > 1, the mean anomaly is calculated via the hyperbolic anomaly, F:

~
F:2tan1<tan<§> 2+1> (1.54)

M = —F + esinh F (1.55)

and
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Frames of reference

Our Galaxy is one of many in a rapidly expanding Universe. Within our Galaxy the
Sun moves at a velocity of approximately 250 km/sec with respect to the Galactic
centre. However, when considering the motion of spacecraft executing interplanetary
transfers, these velocities are not considered, as the key reference point for motion is
the Sun. The gravitational forces exerted by distant objects outside the Solar System
are small, and usually need not be considered. Furthermore, because of their great
distances they impart a near-constant acceleration on all of the bodies within our
Solar System; that is, the gravity gradient is so small that differential acceleration
terms are negligible.

A2.1 REFERENCE AXES

The usual origin considered for motion within the Solar System is referenced to the
centre of the Sun. An inertially oriented axis set is used. A reference plane is defined,
being the ecliptic. This plane contains the Sun and the Earth’s orbit. However, as the
Earth’s orbital plane is perturbed by the other planets of the Solar System, such a
plane would very slowly change its orientation with time. Therefore, the ecliptic is
often referred to that pertaining at a particular reference epoch.

Within the ecliptic plane exists a reference direction, nominally aligned with the
direction of a distant star, the first point in the constellation of Aries. Such a celestial
alignment is chosen as it defines a near fixed, inertial direction. This direction defines
the X axis direction of a reference frame, and is chosen as it lies very close to the
direction of the Sun, as seen from Earth, at the northern hemisphere Spring or
Vernal Equinox (21 March). It therefore lies along the intersection of the Earth’s
equatorial plane with the ecliptic. However, this direction also shows a small drift
over time and is again referenced to a particular epoch (discussed subsequently). The
second, Y, axis is chosen to lie in the ecliptic plane, and is orthogonal to X. This
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Z axis

Y axis

@ >
Earth’s at Vernal / X axis
equinox To First point in Aries
Earth’s orbit

N

Figure A2.1. Reference axes in the ecliptic plane.

Plane of the ecliptic

means that the right-handed axis set is completed by Z, which is perpendicular to the
ecliptic. The ambiguity of this choice is removed by relating this direction to the
direction of a celestial pole. Also, the choice of X and Y axes (as a rotation about the
Z axis from X to Y) is consistent with the direction of the rotation of the planets
about the Sun. This is sometimes considered to be an ‘inertial’ reference set. It is
inertial in the sense that its direction is fixed inertially, although its origin in this case
moves with the centre of the Sun, which is accelerated by the other planets of the
Solar System and (as discussed previously) by bodies outside the Solar System. The
axis set is illustrated in Figure A2.1.

Further frames of reference are used when motion with respect to a particular
planet is considered. The natural choice for the X—Y plane is the planet’s equatorial
plane. In Earth’s case, the X axis again lies in the direction of Aries, which is
contained both within the ecliptic plane and Earth’s equatorial plane. As in the
case of the ecliptic plane, Earth’s equatorial plane does not remain fixed, but experi-
ences a small motion over long periods of time. Therefore, as in the ecliptic case, its
orientation may be defined at a reference epoch.

The relationship between equatorial and ecliptic axes is defined by the inclina-
tion of the ecliptic with respect to the Earth’s equatorial plane, otherwise known as
the obliquity of the ecliptic. This is illustrated in Figure A2.2.

Drift in the reference directions

The X direction has been chosen to correspond to the intersection of the ecliptic and
equatorial planes. This corresponded to the direction of the first point of Aries
approximately 2,000 years ago. The intersection of the two planes slowly changes
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Z ecliptic Z equatorial
North Ecliptic Pole North Celestial Pole
A
/ Y ecliptic
Y equatorial
Obliquity, €
X axis

equatorial and ecliptic
to first point of Aries

Figure A2.2. Relationship between ecliptic and Earth equatorial planes.

because of a precession and nutation of the Earth’s axis of rotation, and also because
of a slow change in the orientation of the plane of the ecliptic.

An axis set may therefore be referred to a particular epoch, which defines the
orientations of the two planes. The ‘mean’ equinox, ecliptic and equatorial planes, at
a particular date, are the orientations obtained by neglecting the local effect of the
short-period nutation of the Earth’s axis of rotation. The date chosen may be either a
commonly adopted epoch or the current epoch. A reference epoch given by 1
January 1950 is sometimes adopted. The frames are then defined as ‘mean of
1950’ or ‘mean of date’. In more recent years a reference epoch of 1 Jan 2000 is
generally chosen. The reference epochs are actually at noon (Universal time) on these
dates. The year 2000 case is sometimes denoted ‘J2000’.

A2.2 ROTATING REFERENCE FRAMES

A commonly used axis is that of a planet’s rotating reference frame. The X axis is
defined by the instantaneous direction from the Sun to the planet. The Y axis is in
the plane of the planets orbit (which is usually close to the ecliptic), and the Z axis
lies close to the ecliptic pole and completes the right-handed set. The origin is usually
considered to be the centre of the planet, or could alternatively be the Sun. Such a set
is shown in Figure A2.3.

A standard transformation may be obtained to transform from ‘inertial’ to
‘rotating’ axes.
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X axis

g
v

Planet’s orbit

Orbit plane

Figure A2.3. Illustration of a rotating reference plane.

The unit vector triad is obtained by:

V- (1) s
V- (& V)5
where r and V are the Cartesian states for the position and velocity of the planet with

respect to the Sun. The transformation matrix between inertial and rotating axes is
so obtained:

N I N
X = — =
i y

F=%AP

R AAA
[4]7 = [x74]
where AR is the transformation matrix from rotating to inertial reference frames and
X, y Z are the above triad expressed in the inertial frame.

A2.3 TIME REFERENCES

The standard unit of time is the SI unit the second. This is based on a definition
based upon the time kept by atomic clocks. However, other time intervals are defined
in different ways. The passage of sidereal time is defined by the hour angle of the
Vernal equinox. When the meridian of the Vernal equinox is directly overhead at a
point on the Earth’s surface, the local sidereal time is 00:00. Greenwich sidereal time
is the hour angle of the Vernal equinox with respect to the Greenwich Meridian,
which is the ‘prime’ meridian on Earth. However, the Vernal equinox itself has
alternative orientations as described in Section A2.1. Therefore, the ‘true’ equinox
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defines the passage of ‘apparent’ sidereal time. The ‘mean’ equinox defines the
passage of ‘mean’ sidereal time.

There are two main types of ‘day’; the solar day and the sidereal day.

A sidereal day, measured by an observer on the surface of the Earth, is the
interval between two successive passages of the Vernal equinox across the observer’s
meridian. It is a measure of the true period of the Earth’s rotation about its axis, with
respect to a fixed inertial reference attitude system. As in the definitions of sidereal
time, both apparent and mean sidereal days are defined by the respective definitions
of the equinox. The mean sidereal day is currently 86164.09054 seconds. A steady
increase of approximately 0.0015 seconds per century exists. This variation is due to
the steady reduction in the Earth’s angular rotation rate.

The passage of solar time is defined by the hour angle of the Sun. When the Sun
reaches its highest elevation seen from a point on the Earth’s surface (i.e., local
‘noon’) the local solar time is 12:00.

A solar day, measured by an observer on the surface of the Earth, is the interval
between two successive passages of the Sun’s direction across the observer’s
meridian. However, the direction of the Sun varies by approximately one degree
per day. Therefore, a solar day is slightly longer than a sidereal day. The Earth’s
orbit is slightly eccentric (0.0167), therefore does not travel around the Sun at a
constant angular rate. Therefore, the solar day, as defined here, varies with the
location of the Earth with respect to this perihelion. Therefore, an average may be
taken, known as the mean solar day, being 86400+ 0.0015*(Year — 1900)/100
seconds. This steady variation in mean solar day is due to the steady state
reduction in the Earth’s angular rotation rate. A constant reference time is taken
as the Julian day, namely 86400 seconds.

An abosolute time reference is needed. The system used is that of the Julian Date
(JD). This is the number of mean solar days elapsed since noon at Greenwich on 1
Jan 4713 BC. A second absolute reference system is also used: the Modified Julian
Date (MJD), which is used to allow the use of small numbers to describe current

epochs.
MIJD = JD — 2400000.5

Therefore, MJDs start at midnight (Greenwich local time).

The year

There are several definitions of a year. The tropical year is the period between two
successive crossings of the Sun through the Vernal equinox and is 365.2422 days.
This year varies from the sidereal year because of the precession of the equinoxes. A
sidereal year is defined by the directions of the fixed stars and is 365.2564 days. A
calendar year is 365 days except for ‘leap’ years with 366 days, every 4 years. This is
the Julian calendar and the average length of this year is 365.25 years. The Gregorian
calendar introduces an additional modification to the occurrence of leap years; one is
skipped when the year is a century and is not divisible by 400. This then defines the
average length of the Gregorian year as 365.2425 days (i.e., closer to othe true period
of the tropical year).
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The planets

The nine planets of the Solar System have a spectacularly diverse set of properties.
As well as inspiring scientific exploration, many of these properties influence the
possibilities for mission to the planets.

The following constants and units are used:

Astronomical Unit (AU) 1.49597870691 x 10'" (£3) m

Julian day (day) 86,400 secs

Julian year (year) 365.25 days

Mean Sidereal day 86,164.09054 secs = 23:56:04.09054 hours:min:sec
Sidereal year 365.25636 days

Gravitational constant 6.67259 (£0.00030) x 10 kg ' m3s~2
(courtesy NASA)

A3.1 PROPERTIES OF THE PLANETS

The properties are given in Tables A3.1 to A3.4. These include the key physical
properties of the planets and also the orbital data.
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A3.1.1 Inner planets

Table A3.1. Physical properties of the inner planets.

Mercury Venus Earth Mars
Mass (10**kg) 0.3302 4.869 5.9736 0.6419
Volume (10'9km?) 6.085 92.843 108.321 16.318
Equatorial radius (km) 2,440 6,052 6,378 3,397
Polar radius (km) 2,440 6,052 6,356 3,375
Volumetric mean radius 2,440 6,052 6,371 3,390
Ellipticity 0 0 0.0034 0.0065
Mean density (kg/m?) 5,427 5,204 5,520 3,933
Surface gravity (equatorial) (m/s?) 3.7 8.87 9.78 3.69
Escape velocity (km/s) 4.3 10.36 11.2 5.03
GM (x10°km?3/s?) 0.02203 0.3249 0.3986 0.04283
Bond albedo 0.056 0.72 0.385 0.16
Visual geometric albedo 0.11 0.65 0.367 0.15
Solar irradiance (W/m?) 9,214 2,660 1,380 595
Black-body temperature (K) 442.5 238.9 247.3 216.6
Moment of inertia (I/MR2) 0.33 0.33 0.3308 0.366
J2 (x107%) 60 4.458 1,082.63 1,960.45
Table A3.2. Orbital data of the inner planets.

Mercury Venus Earth Mars
Semi-major axis (106 km) 57.9 108.2 149.6 227.9
Sidereal orbit period (days) 87.969 224.701 365.257 686.960
Perihelion (10° km) 46.0013 107.4760 147.0981 206.6446
Aphelion (10° km) 69.8171 108.9419 152.0977 249.2288
Synodic period (days) 115.88 583.92 — 779.94
Mean orbital velocity (km/s) 47.87 35.02 29.79 24.13
Sidereal rotation period (hrs) 1407.6 5832.5 23.9345 24.6229
Obliquity to orbit (deg) ~0.1 177.3 23.45 25.19
Semi-major axis (AU) 0.38709893 0.72333199  1.00000011  1.52366231
Semi-major axis rate (AU/century) 0.00000066 0.00000092  —0.00000005 —0.00007221
Orbital eccentricity 0.20563069 0.00677323  0.01671022  0.09341233
Orbital eccentricity rate (”/century) 0.00002527 —0.00004938 —0.00003804 0.00011902
Orbital inclination (deg) 7.00487 3.39471 0.00005 1.85061
Orbital inclination rate (”/century) —23.51 —2.86 —46.94 —25.47
Longitude of ascending node (deg) 48.33167 76.68069 —11.26064  49.57854
Longitude of ascending node rate —446.3 —996.89 —18228.25 —1020.19

(" [century)
Longitude of perihelion (deg) 77.45645 131.53298 102.94719 336.04084
Longitude of perihelion rate 573.57 —108.8 1198.28 1560.78
(" [century)

Mean Longitude (deg) 252.25084  181.97973 100.46435 355.45332
Mean Longitude rate ("/century) 538,101,628 210,664,136 129,597,741  68,905,103.8




A3.1.2 The outer planets

Table A3.3. Physical properties of the outer planets.
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Jupiter Saturn Uranus  Neptune Pluto
Mass (10**kg) 1,898.60 568.46 86.83 102.43 0.0125
Volume (10'%km?) 143,128 82,713 6,833 6,254 0.616
Equatorial radius (km) 71,492 60,268 25,559 24,766
Polar radius (km) 66,854 54,364 24,973 24,342
Volumetric mean radius 69,911 58,232 25,362 24,624 1137
Ellipticity 0.0649 0.098 0.023 0.0171
Mean density (kg/m?) 1,326 687 1,318 1,638 2050
Surface gravity (equatorial) (m/s?) 23.12 8.96 8.69 11 0.66
Escape velocity (km/s) 59.5 35.5 21.3 23.5 1.1
GM (x10°km?3/s?) 126.686 37.931 5.794 6.8351 0.00083
Bond albedo 0.7 0.75 0.9 0.82 0.145
Visual geometric albedo 0.52 0.47 0.51 0.41 0.3
Solar irradiance (W/m?) 51 15 3.71 1.47 0.9
Black-body temperature (K) 90.6 63.9 35.9 33.2 42.7
Moment of inertia (I/MR2) 0.254 0.21 0.225
J2 (x107%) 14,736 16,298.00 3,343.43 3411
Table A3.4. Orbital data of the outer planets.
Jupiter Saturn Uranus Neptune  Pluto

Semi-major axis (10° km) 778.4122 1,426.7257 2.,870.9728 4,498.2538 5,906.3774
Sidereal orbit period (days) 4,335.3558 10,757.739 30,708.169 60,224.921 90,613.3324
Perihelion (10° km) 740.7427 1,349.4676 2,735.5556 4,459.6324 4,436.8255
Aphelion (10° km) 816.0816 1,503.9837 3,006.3900 4,536.8752 7,375.9294
Synodic period (days) 398.88 378.09 369.66 367.49 366.73
Mean orbital velocity (km/s)  13.07 9.66 6.82 5.48 4.75
Sidereal rotation period (hrs) 9.9250 10.500 17.24 16.11 153.2928
Obliquity to orbit (deg) 3.12 26.73 97.86 29.56 122.46
Semimajor axis (AU) 5.203363 9.53707 19.19126  30.06896  39.48169
Semimajor axis rate 0.000607 —0.00302 0.00152 —0.001252 —0.0007691

(AU /century)
Orbital eccentricity 0.048393 0.054151  0.047168  0.008586  0.248808
Orbital eccentricity rate —0.00013 —0.00037 —0.00019  0.0000251 0.00006465

(/century)
Orbital inclination (deg) 1.3053 2.48446 0.76986 1.76917 17.14175
Orbital inclination rate —4.15 6.11 -2.09 —3.64 11.07

(" [century)
Longitude of ascending node 100.5562 113.715 74.22988  131.7217  110.3035

(deg)
Longitude of ascending node 1217.17 —1591.05 —1681.4 —151.25 —37.33

rate (”/century)
Longitude of perihelion (deg) 14.75385 92.43194  170.9642  44.97135  224.0668
Longitude of perihelion rate ~ 839.93 —1948.89  1312.56 —844.43 —132.25

(" Jcentury)
Mean Longitude (deg) 34.40438 49.94432  313.2322  304.88 238.9288
Mean Longitude rate 10,925078 4,401,053 1,542,548  786,449.21 522,747

(" [century)
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The reference data commonly adopted for high-accuracy models of the ephemeris of
the planets is NASA’s JPL ephemeris model (courtesy NASA), available for
download at http://ssd.jpl.nasa.gov/eph_info.html. These files allow the Cartesian
components of planetary positions to be obtained at a given epoch, via the use of a
program supplied with the model.

Less accurate data, used typically in the preliminary phases of mission design,
can also be obtained from NASA. These are included in Tables A3.2 and A3.4,
which contain mean orbit solutions from a 250-year least-squares fit of the NASA
DE 200 planetary ephemeris to a Keplerian orbit where each element is allowed to
vary linearly with time. This solution fits the terrestrial planet orbits to ~25” or
better, but achieves only ~600” for Saturn. Elements are referenced to mean ecliptic
and equinox of J2000 at the J2000 epoch (2451545.0JD = 51544.5M1JD).

A3.1.3 The Sun
The key property of the Sun required in mission design is the gravitational constant:

132712440018 x 10%°(4£8 x 10?)m’ s>

A3.2 GUIDE TO THE PLANETS

A short description of each of the planets of the Solar System is now presented,
including some of the key properties of each planet and a brief history of its
exploration.

A3.2.1 Mercury

Mercury is the smallest planet in the Solar System and is closest to the Sun. It has
been known since prehistoric times. It is not significantly larger than Earth’s Moon.
The rotational period is approximately two thirds of its year, which results in
extremes of surface temperatures between local noon and midnight. Temperatures
reach a maximum of approximately 450°C. It has a very thin atmosphere, with a
surface pressure of 10~ bar (0.001 picobar), and its equator is not far removed from
the ecliptic (approximately 7°).

Exploration

Mercury was explored by Mariner 10, launched by NASA in 1973. Following a
Venus gravity assist to help reach Mercury, the spacecraft performed a series of
three gravity assists at Mercury, affording multiple observational opportunities.
NASA'’s Messenger is planned to reach Mercury in 2011.

A3.2.2 Venus

Venus is almost the same size as the Earth. It is often visible in the evening or early
dawn. It has been known since prehistoric times. It possesses a dense atmosphere —
predominantly carbon dioxide, which acts as a ‘greenhouse’ gas. The dense atmo-
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sphere of Venus results in surface temperatures exceeding 450°C. The surface
pressure is also very high, at typically 92 bar.

Venus’s day is longer than its year, lasting approximately 243 days. Further-
more, its rotation is opposite to that of Earth (it is reversed when compared to the
direction of its orbital motion). The obliquity of the equatorial plane to the planet’s
orbit is approximately 177° (compared with 23° for Earth).

Exploration

Venus has been visited several times. NASA’s Mariner 2 arrived there in 1962,
followed by Mariner 5 in 1967. It was then explored in greater detail by further
NASA missions: Pioneer Venus and Magellan. The Pioneer Venus mission had an
orbiter and also probes to enter the Venusian atmosphere. Both orbiter and probes
arrived there in 1978. The probes were carried by a second spacecraft, arriving at
Venus approximately five months after the orbiter’s arrival, which remained in orbit
until 1992, before entering the planet’s atmosphere. Magellan reached Venus in 1990
and carried out a four-year mission orbiting the planet. The satellite generated radar
maps of approximately 98% of the surface. The Soviet Venera series of missions
visited Venus. Venera 14 deployed a lander and Venera 16 orbited in 1983. In late
2005, ESA’s Venus Express mission left for Venus and plans to enter Venus orbit in
the spring of 2006.

A3.2.3 Earth

Earth is the third innermost planet of the Solar System and the fifth largest. It
possesses many unique features when compared with the other planets. These
include the substantial presence of water on the surface, and an atmosphere with
large oxygen content. No other planet is known to possess life. The obliquity of the
equatorial plane to Earth’s orbit is approximately 23.4°. The moon orbits Earth
with a semi-major axis of approximately 384,000km and an inclination to the
ecliptic of 5°.

A3.2.4 Mars

Mars has been known since prehistoric times. The planet is relatively small, its mass
being only roughly one tenth that of Earth. However, its smaller radius means that
the surface gravitational acceleration is approximately one third that of Earth, giving
rise to extensive speculation regarding the development of a future manned presence
on Mars.

The Martian atmosphere is much thinner than that of Earth, with a surface
pressure of typically 610 mbar. The main component of the atmosphere is carbon
dioxide, at over 95%. The atmosphere does, however, extend to approximately
120 km. It can therefore be used to brake the approach of landers heading for the
planet’s surface. The angle between the Martian equatorial plane and the ecliptic is
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similar to that of Earth. The obliquity of the equatorial plane to the planet’s orbit is
approximately 25°.

Exploration

Mars has attracted considerable interest as the subject of interplanetary missions.
Many spacecraft have orbited the planet, and several landers have successfully
reached the surface. A similar number of landers have also failed to successfully
reach the surface, as planetary landing is a difficult and risk-prone task. A series of
missions is planned over the next decade, and so martian exploration is set to
continue.

Mars was first visited by NASA’s Mariner 4, which flew by the planet in 1965. It
was subsequently visited by Mariners 6, 7 and 9. The NASA Viking missions landed
on the surface: Viking 1 and Viking 2 were launched within a small time interval
(approximately two weeks). Each launch carried an orbiter with a lander attached.
They arrived in 1976, and the landers were deployed after the landing sites were
selected. The orbiter continued operations until 1980 and the landers until 1983.

The NASA Pathfinder mission was launched in 1996 and landed on Mars in
1997. The lander directly entered the atmosphere from its interplanetary approach
trajectory. It also deployed a rover to explore the vicinity of the landing site. NASA
later followed with two further rover missions, Spirit and Opportunity, both arriving
in 2004 and with the capability to carry out long excursions across the Martian
surface.

NASA used an aerobraking technique to reach the target orbit about Mars for
both Mars Global Surveyor and Mars 2001 Odyssey. Surveyor arrive at Mars in
1997, and Odyssey in 2001.

Several Soviet probes have visited Mars. Phobos 2 orbited the planet in 1988.

In 2003 ESA launched Mars Express, which successfully entered orbit about
Mars at the end of 2003. This mission also carried a lander named Beagle 2, but
contact was lost after separation from the mother-ship.

The moons of Mars

Mars has two small moons: Phobos and Deimos, each of which is the size of a large
asteroid. Both of them were discovered by Asaph Hall in 1877.

Table A3.5. The moons of Mars.

Radius Orbital
Semi-major Inclination  (median axis)  Mass period
axis (km)  Eccentricity (deg) (km) (105kg)  (days)
Phobos 9,380 0.0151 1.075 11.2 10.6 0.319

Deimos 23,460 0.0002 1.793 6.1 24 1.262
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A3.2.5 Jupiter

Jupiter is the fifth and most massive planet in the Solar System. It has been known
since prehistoric times. It is the first of the family of the outer gas giants. Its radius at
a pressure of 1 bar exceeds 70,000 km. Below this radius the pressure rises rapidly.
The major constituent of the Jovian atmosphere is hydrogen (90%), with significant
helium content. Its equator lies close to the ecliptic, the obliquity being 3° with
respect to the orbital plane. Jupiter also possesses a vast magnetosphere, which
extends far into the outer Solar System. Its gravity field is so intense that orbital
velocities around the planet are particularly high. This has significant implications
for exploration of the atmosphere.

The major moons of Jupiter

So far, 63 Jovian moons have been discovered. The outer objects were probably
asteroids captured by the Jovian gravity field. The inner moons are massive. Table
A3.6 shows the four large moons orbiting within approximately 2 million km of the
planet. They each have interesting individual characteristics. o, the innermost of
these moons, is volcanically active. Europa is the subject of much debate, perhaps in
part inspired by science fiction novels of the last century. It is thought to possess an
icy surface with an ocean below. Ganymede is the largest moon in our Solar System.

Exploration

Jupiter has been explored by several spacecraft. It was first visited by NASA’s
Pioneer 10, launched in 1972, which performed a gravity assist at Jupiter en route
to the outer Solar System and beyond. Pioneer 10 has now left the Solar System and
is travelling in a direction opposite to that of the Sun through the Milky Way. This
probe was followed by Pioneer 11, launched in 1973. This spacecraft also performed
a gravity assist at Jupiter, en route to Saturn and beyond.

NASA'’s Voyager 1 and Voyager 2 were both launched in 1977, with 1 leaving 16
days later than 2. However, Voyager 1 reached Jupiter first, in March 1979. It flew by
en route to Saturn, and is now heading beyond the Solar System. Voyager 2 flew by
Jupiter in September 1979, and continued to perform a ‘grand tour’ of the outer
planets, passing Saturn, Uranus and Neptune.

Table A3.6. The major moons of Jupiter.

Semi-major Inclination Radius Gravitational Orbital period
axis (km) Eccentricity (deg) (km)  parameter (m3s~2) (days)
Io 421,600 0.0041 0.04 1,821  5.960 % 102 1.77
Europa 670,900 0.0101 0.47 1,560  3.203 % 10'2 3.55
Ganymede 1,070,000 0.0015 0.195 2,634 9.887 x 1012 7.15

Callisto 1,883,000  0.007 0.281 2,400  7.180 % 10'? 16.69
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NASA'’s Galileo mission was launched in 1989, reaching Jupiter after a longer
transfer than the Voyagers, by performing gravity assists at Venus and Earth. It was
particularly successful in exploring the planet and also its system of moons. A probe
was deployed into Jupiter’s atmosphere. Galileo was eventually deliberately crashed
into Jupiter to avoid any potential contamination of Europa after accidental
collision. Recently, Cassini flew by Jupiter on its way to Saturn.

A3.2.6 Saturn

Saturn is the sixth planet in the Solar System and the second most massive (after
Jupiter). It is sometimes described as the ‘jewel of the Solar System’ because of its
spectacular ring system. Like Jupiter, it is predominantly composed of hydrogen and
helium. The equator of Saturn lies at approximately 27° from its orbital plane. Its
largest moon is Titan (Table A3.7).

Exploration

The recent NASA-ESA Cassini-Huygens mission has explored the planet, its rings,
and also Titan. This is the first spacecraft to orbit Saturn, as earlier visitors only flew
by en route to the outer Solar System. The spacecraft arrived at Christmas 2004, and
deployed the atmospheric probe, Huygens, which eventually descended through
Titan’s atmosphere.

Table A3.7. Saturn’s largest moon, Titan.

Semi-major Inclination Radius Gravitational Orbital period
axis (km)  Eccentricity (deg) (km)  parameter (m3s~2) (days)
Titan 1,221,800 0.0292 0.33 2,575 8978 % 10!2 15.945

A3.2.”7 Uranus

Far beyond Saturn lies Uranus, the seventh planet of the Solar System. Unlike the
planets orbiting closer to the Sun, Uranus was discovered only relatively recently, by
William Herschel in 1781. Uranus is another gas giant, composed of hydrogen with
helium and methane as minor constituents. However, it is far less massive than
Jupiter and Saturn, being approximately fifteen times the mass of Earth. One of
the most unusual features of Uranus is that its equatorial plane lies at 98° from its
orbital plane, and it is effectively toppled onto its side.

Exploration

Uranus was visited by Voyager 2 during its tour of the outer Solar System. The
spacecraft flew by in 1986, at a distance of approximately 100,000 km
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A3.2.8 Neptune

Neptune lies in the outer reaches of the Solar System. It was discovered in 1846 by
Johann Gottfried Galle (based on the orbital predictions made by John Couch
Adams and Urbain Leverrier). It is slightly more massive than Uranus, with a
composition similar to the other gas giants. Its equator has a more conventional
orientation than Uranus, lying at approximately 29° from its orbital plane. Its largest
moon, Triton, is of significant interest. Several smaller moons are also present.

Exploration

Voyager 2 flew by Neptune in 1989. It is the only spacecraft to visit the planet to
date.

A3.2.9 Pluto

Pluto is, on average, the most distant planet, but because of its elliptical orbit, it
sometimes moves inside the orbit of Neptune. Pluto was discovered by Clyde
Tombaugh in 1930. It is the smallest planet in the Solar System. It may also be
the largest of a group of objects known as Kuiper belt objects. This region consists of
thousands of small icy objects with diameters reaching over 1,000 km. An interesting
feature of Pluto is that its orbital inclination (at 17°) is significantly higher than that
of any other planet in the Solar System. This, combined with its extreme distance,
makes it a difficult target for spacecraft exploration, and it has not yet been visited.

Pluto’s equator also lies in an unusual attitude, at approximately 122° from its
orbital plane. The planet has a very thin atmosphere composed of methane and
nitrogen. It is orbited by its moon, Charon, which is more than 1,000km in
diameter and has an orbital inclination of approximately 97°.
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Optimising launcher injection

A4.1 LAUNCHER PERFORMANCE

Recalling Chapter 1, the maximum spacecraft mass than can be injected directly by
the launcher upper stage is:

—A
mgc = My — My — Mppry = Momax CXP (IspL*Vg0> — Mppyy
where the initial mass, 7, is always the maximum mass for the upper stage, mympay» if
the mass of the spacecraft is to be maximised. Also m, p,, is the dry mass of the
launcher upper stage (the mass after fuel is burnt to depletion), mgc is the total mass
of the spacecraft, m, is the initial total mass of the upper stage, and Isp; is the
specific impulse of the launcher propulsion system.

The maximum fuel tank capacity imposes a restriction on the above described
performance. On reaching this limit, the required A} can be achieved only by
reducing the mass injected in parking orbit, with implications for the achievable
spacecraft mass injected into the final orbit. When the launcher upper stage is
fully fuelled:
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Figure A4.1. Launcher injection performance versus injection perigee speed for a tank mass
capacity at 65% of upper-stage mass.

In Chapter 1 examples were given using typical intermediate launcher character-
istics. This and other examples will now be considered.

In the first case, the maximum upper-stage mass that can be injected into a
defined parking orbit is 10 tonnes. The parking orbit is a 200 km-altitude circular
orbit. The fuel tank limit of the upper stage is assumed to be 6.5 tonnes. The dry
mass of the launcher is assumed to be 1.2 tonnes.

Figure A4.1 then shows the spacecraft mass that the launcher may inject, as a
function of the target perigee speed. Evaluating performance as a function of perigee
speed enables a continuous plot to be achieved over the transition from bound to
escape orbits. The transition occurs in this perigee altitude case at a perigee speed of
approximately 11,008 m/s.

Figure A4.1 shows that the maximum upper stage mass of 10 tonnes can be fully
utilised for this range of target, high-elliptical orbits (perigee speeds less than
11,000 m/s). However, at a speed of just over 11,000 m/s, the fuel-tank limit of the
launcher is reached.

In the second case to be considered, the maximum upper stage mass that can be
injected into a defined parking orbit is again 10 tonnes. The parking orbit is a 200-
kme-altitude circular orbit. The fuel tank limit of the upper stage is assumed to be 6
tonnes. The dry mass of the launcher is assumed to be 1.108 tonnes. This maintains
the same dry mass-to-fuel mass ratio for the launcher. Although not a precise
relationship, this is a first estimate of the dry mass dependence for such a stage.
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Figure A4.2. Launcher injection performance versus injection perigee speed for a tank mass
capacity at 60% of upper-stage mass.

Figure A4.2 shows that the maximum upper stage mass of ten tonnes can again
be fully utilised for a range of target, high apogee elliptical orbits. However, at a
speed of just over 10,600 m/s, the fuel tank limit of the launcher is reached. This is
lower than the case with greater fuel capacity, as it corresponds to an apogee in the
region of 100,000 km.

The result is that at low-injection speeds, the spacecraft mass injected is greater
than the previous case, because of the lower launcher-stage dry mass. However, at
greater target speeds, the mass is lower because of the fuel mass limitations.

The procedure may be repeated for a higher fuel fraction, at 70%. The fuel tank
limit of the upper stage is assumed to be 7 tonnes. The dry mass of the launcher is
assumed to be 1.29 tonnes. This again maintains the same dry mass-to-fuel mass
ratio for the launcher.

The result now is that at low injection speeds, the spacecraft mass injected is less
than in the first case, because of the higher launcher-stage dry mass. However, at
greater target speeds, the injection mass is higher. The spacecraft masses for all these
cases are compared in Figure A4.4.
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Figure A4.3. Launcher injection performance versus injection perigee speed for a tank mass
capacity at 70% of upper-stage mass.
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A4.2 OPTIMUM INJECTION PERFORMANCE

In the case of using an intermediate injection orbit, the “useful spacecraft mass’ may
be expressed by the relationships from Chapter 1 as:

—AV, —AV,

where Ispgc is the specific impulse of the spacecraft propulsion system, AV, is the AV
applied by the upper stage propulsion, and AV, is the AV applied by the spacecraft.
Each of these AV terms will consist of a speed change plus a loss term.

The constraint on total AV must apply:

AV+AVaLusx+AVbL0m = AVa+AVb

The launcher injection capability for the spacecraft is then shown in Figure A4.5, for
the 65% fuel capacity case. This is an extension of the previous figure (A4.1), to
include lower injection perigee speeds that could be chosen for intermediate orbit
injection.

This figure also shows injection at speeds beyond 11 km/sec, where escape takes
place. It would not be practical to use such a launcher injection condition (i.e.,
escape) to an intermediate orbit, as the spacecraft manoeuvre, to reach the target
escape orbit, would have to take place immediately after separation from the launch
vehicle. Although possible in principle, current spacecraft design and operation
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Figure A4.5. Launcher injection performance versus injection perigee speed for a tank mass
capacity at 65% of upper stage mass, for use as an intermediate injection orbit.
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Figure A4.6. Spacecraft useful mass performance versus injection perigee speed for a launcher

upper-stage tank mass capacity at 65% of upper stage mass, for three target excess hyperbolic
speeds.

methods eliminate these options. However, their inclusion shows the principle of this
method more clearly.

Figure A4.6 shows the useful spacecraft mass that is obtained, versus the
injection perigee speed. In the following examples, the specific impulse of the space-
craft propulsion system is assumed to be lower than that of the upper stage, at
320sec. The spacecraft propulsion mass fraction considered is 0.15. The AV loss
assumed here is 10% in the apogee raising by the spacecraft, as this includes the
escape manoeuvre that must be performed in a single burn. This manoeuvre would
generally be a combination of smaller manoeuvres to raise apogee to a high elliptical
orbit and then a final, larger escape manoeuvre. The 10% in this case can be
regarded as average over these manocuvres. The performance is evaluated for
three target excess hyperbolic speeds, between 1 and 5 km/sec.

The figure clearly shows that the optimum injection perigee speed increases with
the target excess hyperbolic speed. In the 5 km/sec case, the optimum corresponds to
an intermediate orbit apogee at approximately 100,000 km (perigee speed at
10,660 m/s). The performance then falls off significantly as the injection perigee
speed increases beyond the escape velocity (at 11,008 m/s). The maximum perigee
speed shown in the figure, for each excess hyperbolic speed target, corresponds to a
direct injection to that orbit.

The effects of variations in the launcher design should also be considered. The
effects are shown in Figures A4.7 and A4.8.

When considering a given target excess hyperbolic speed, using a smaller fuel
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Figure A4.7. Spacecraft useful mass performance versus injection perigee speed for a launcher
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mass fraction in the upper stage not only penalises the direct injection performance
(the performance at maximum perigee speed) but also moves the optimum injection
apogee. The optimal performance capability at lower fuel fractions exceeds that at
the higher fuel fraction case, because of the reduced dry mass of the upper-stage fuel
tanks.

Therefore, a launcher design that enables a reduced upper-stage mass depen-
dence on fuel mass could allow the optimal performance to switch to the higher fuel
fraction case.

All cases demonstrate a significant improvement when using intermediate orbit
injection, compared with a direct injection.
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