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Preface

This book is the latest contribution to the Chip Design Languages series and
it consists from selected papers presented at the Forum on Specifications and
Design Languages (FDL’06), which took place in September 2006 at Techni-
sche Universität Darmstadt, Germany.

FDL, an ECSI conference, is the premier European forum to present research
results, to exchange experiences, and to learn about new trends in the applica-
tion of specification and design languages as well as of associated design and
modelling methods and tools for integrated circuits, embedded systems, and
heterogeneous systems. Modelling and specification concepts push the de-
velopment of new methodologies for design and verification to system level,
they thus provide the means for a model-driven design of complex information
processing systems in a variety of application domains. The aim of FDL is
to cover several related thematic areas and to give an opportunity to gain up-
to-date knowledge in this fast evolving area. FDL’06 is the ninth of a series
of successful events that were held previously in Lausanne, Lyon, Tübingen,
Marseille, Frankfurt am Main, and Lille.

Embedded systems are meanwhile in the focus of industry in quite differ-
ent application domains such as automotive, avionics, telecom, and consumer
products. The need for a shift in design methodologies towards system level de-
sign is widely recognised and design flows aimed to an integration of software
and hardware specification and implementation approaches are being devel-
oped. Standardization efforts, such as SystemC Transaction Level Modelling
and Model Driven Architecture of the OMG, provide the foundations of these
new design flows. Design and specification languages are of utmost interest
in the area of embedded systems and the Forum on Specification and design
Languages has been once again been the main European event for the embedded
systems and chip design community.

ix
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This book presents a collection of the best papers from FDL’06, which were
selected by the topic area programme chairs Dominique Borrione, Christoph
Grimm, Frank Oppenheimer, and Piet van der Putten. The book is structured
into four main parts:

Part I – Analog, Mixed-Signal, and Heterogeneous System Design: De-
sign methodologies that exploit a mix of continuous-time and discrete-event
modelling languages such as VHDL-AMS, Verilog-AMS, SystemsC–AMS, or
Modelica for the design and verification of heterogeneous systems.

Part II – C/C++ Based System Design: Design methodologies that use C/C++
or dedicated modelling languages such as SystemC, SystemVerilog, Verilog,
and VHDL jointly with verification languages such as ‘e’ or PSL/Sugar for the
design and verification of hardware/software systems.

Part III – Formalisms for Property-Driven Design: Verification of functional
behaviour, generation of test stimuli, model checking on the reachable state
space, and direct synthesis.

Part IV – UML-Based System Specification and Design: Specification and
design methodologies such as the Model Driven Architecture that rely on UML
to map abstract models of complex embedded systems to programmable hard-
ware platforms and to System-on-a-Chip architectures.

The 20 chapters of this book present recent and significant research results in
the areas of design and specification languages for embedded systems, SoC, and
integrated circuits. I am sure that this book will be a valuable help and reference
to researchers, practitioners, and even to students in the field of design languages
for electronic components and embedded systems.

Finally, I would like to express my special thanks to Felix Madlener, who
put a lot of work into the preparation of this book.

Sorin Alexander Huss
General Chair of FDL’06
Technische Universität Darmstadt
Darmstadt, Germany, December 2006



I

ANALOG, MIXED-SIGNAL,
AND HETEROGENEOUS SYSTEM DESIGN



Introduction

The following part of the book focuses the design of analogue and mixed-
signal circuits and systems. Compared with the design of digital systems, tools
for synthesis are not yet mature or even used in industry. Design of analogue
systems is done mostly interactive and done using modelling and simulation.
One might think that simulation of analogue circuits with now nearly 50 years
of practice and research is mature and stable. However, this is not the case
and we see even new challenges. In the following we give a selection of five
excellent contributions to hot topics in the modelling, simulation, reuse and
verification of analogue and mixed-signal systems.

New technologies like nanotubes are currently emerging and require of
course new device models. The first contribution describes the modelling of de-
vices in such emerging technologies and gives the reader an interesting insight
into new challenges for at least the next 10 years.

Compared with the design of analogue circuits in the past, we have to analyse
the overall behaviour of systems where DSP methods and analogue hardware
are interwoven. Today, this is a problem especially when we combine RF
components with digital and DSP hardware. The area of baseband modelling
is tackled in the second contribution.

Furthermore, system simulation requires behavioural models to get suffi-
cient simulation performance. However, the speed-up of using behavioural
models is not yet sufficient. The third contribution describes possible simulator
improvements to increase simulation performance of behavioural models.

For the design of analogue systems, there are not yet established tools for
synthesis, and analogue design is therefore expensive. An important mean
to increase productivity is reuse at different levels of abstraction. The fourth
section describes a platform to support the reuse of analogue (and mixed-signal)
components by a well-designed web interface with database.

Finally, verification is an important issue – especially with increasing com-
plexity. The fifth contribution describes methods for behavioural modelling
with special focus on system verification.

Christoph Grimm
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Chapter 1

COMPACT MODELING OF EMERGING
TECHNOLOGIES WITH VHDL-AMS

Fabien Prégaldiny1, Christophe Lallement1, Birahim Diagne1,
Jean-Michel Sallese2, and François Krummenacher2

1InESS (Institut d’Électronique du Solide et des Systèmes)
Parc d’innovation, BP 10413
67412 Illkirch Cedex, France
fabien.pregaldiny@iness.c-strasbourg.fr

christophe.lallement@ensps.u-strasbg.fr

birahim@iness.c-strasbourg.fr

2IMM-EPFL
CH-1015, Lausanne, Switzerland
jean-michel.sallese@epfl.ch

francois.krummenacher@epfl.ch

Abstract This paper deals with the compact modeling of several emerging technologies:
first, the double-gate MOSFET (DG MOSFET), and second, the carbon nanotube
field-effect transistor (CNTFET). For CNTFETs, we propose two compact mod-
els, the first one with a classical behavior (like MOSFET), and the second one with
an ambipolar behavior (Schottky-barrier CNTFET). All the models have been
compared with numerical simulations and then implemented in VHDL-AMS.

Keywords Compact model, double-gate MOSFET, CNTFET, VHDL-AMS

1. Introduction
Since the introduction of transistors, continuous reduction of electronic cir-

cuit size and power dissipation have been the ongoing theme in electronics
industry. The well-known “Moore’s law” represents this evolution. However,

5
S.A. Huss (ed.), Advances in Design and Specification Languages for Embedded Systems – Selected
Contributions from FDL’06, 5–21.
© 2007 Springer.
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as the feature size becomes smaller, scaling the silicon MOSFET becomes in-
creasingly harder. This increasing challenge is often attributed to: (1) quantum
mechanical tunneling of carriers through the thin gate oxide; (2) quantum me-
chanical tunneling of carriers from source to drain and from drain to body;
(3) control of the density and location of dopant atoms in the channel and
source/drain region to provide high on/off current ratio.

There are many solutions proposed to circumvent these limitations. Some
solutions include modifications on the existing structures and technologies in
hopes of extending their scalability. The DG MOSFET is recognized as one
of the most promising candidates for future very large-scale integrated (VLSI)
circuits [1, 2]. In DG MOSFETs, short-channel immunity can be achieved with
an ideal subthreshold swing (60 mV/dec). Other solutions involve using new
materials and technologies to replace the existing silicon MOSFETs. Among
them, new device structures as carbon nanotube-based transistors (CNTFETs)
are regarded as an important contending device to replace silicon transistors [3].

These new technologies and devices require the creation of accurate compact
models, suited to the circuit design and easily translatable into a hardware
description language (HDL) such as VHDL-AMS.

This paper is organized as follows. In Section 2, we present an explicit
model for the symmetric DG MOSFET that is simple, inherently continuous,
and computationally efficient. By introducing useful normalizations as in the
EKV MOSFET model, we have derived simple and clear relationships which are
really helpful for the circuit designer [4]. In Section 3, we propose two compact
models for CNTFETs, the first one with a conventional behavior (i.e. a MOSFET
behavior), and the second one with an ambipolar behavior. The former is based
on an existing model developed at Purdue University [5]. Unfortunately, in
its present form, this model is not appropriate for circuit simulation. In this
paper, we propose an efficient compact model for the designer, with a range of
validity clearly defined. The second model is devoted to compact modeling of
the CNTFET with an ambipolar behavior (n- or p-type depending of the gate
voltage value). This characteristic is quite different from a classic behavior,
namely a MOSFET behavior. To our best knowledge, this compact model is
the first analytical ambipolar model for CNTFET introduced in the literature.
It is a behavioral compact model that simulates in a realistic way the ambipolar
characteristic observed with Schottky-Barrier (SB) CNTFETs.

2. Double-Gate MOSFET
A Compact Model Dedicated to the Design

For the last decade, a significant research effort in this field has led to the
development of physical models for the DG MOSFET [6–8]. These mod-
els are of major interest for the design of the device itself but less useful for
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circuit simulation since they rely on very complicated formulations. Among
the proposed models, Taur’s model [9] is one of the best candidates for building
a compact model. An exact solution for both charges and current has been
proposed and successfully validated. However, such a model, in its current
form, is not really suited for circuit simulation because it requires an iterative
procedure to compute the mobile charge density, which is generally considered
to be time consuming.

The main assumptions of our new model are the following: the body (i.e.
the silicon layer) is undoped or lightly doped, the mobility is constant along the
channel and both quantum effects and polydepletion effect are neglected. The
last assumption is valid for silicon layer thicknesses down to at least 20 nm. For
thinner layers, quantum effects start to play a role [6, 8], but might actually be
considered as a correction to the classical derivation. The schematic diagram
of the DG MOSFET considered in this work is shown in Fig. 1.1.

Using the normalization of charges, potentials, and current proposed in [4]
leads to an important relationship between charge densities and potentials,
given by

v∗g − vch − vto = 4 · qg + ln qg + ln
(

1 + qg ·
Cox1

Csi

)
(1.1)

where v∗g is the effective gate voltage (= vg −∆φi with ∆φi the work function
difference between the gate electrode and intrinsic silicon), vch is the electron
quasi-Fermi potential, vto is the threshold voltage, qg is the charge density per
unit surface of each gate, Cox1 is the gate oxide capacitance per unit surface of
each gate and Csi is the silicon layer capacitance per unit surface.

Such a normalization represents an efficient tool for the analog designer
because it is done taking into account the design methodologies requirements
[10]. However, (1.1) needs to be solved numerically and this is not desirable

Gate

Gate

Source
(n+) (n+)

Drain

tox

tox

tsiL

VG

VG

VDVS

Figure 1.1. Schematic of the DG MOSFET structure.
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for circuit simulation (it requires at least several iterations). To overcome this
drawback, we have developed a new methodology to compute without any
iteration the mobile charge density as an explicit function of bias voltages (vg

and vd or vs) [11]

qg = f(vg, vch) with vch = vs or vd (1.2)

Without entering into details, the numerical inversion of (1.1) can be performed
using a reduced set of precomputed parameters that depend only on the “form
factor” α (= Cox1/Csi). Let us emphasize that our algorithm of numeri-
cal inversion fully preserves the physics of (1.1), and therefore its validity is
technology-independent [11].

Then, noting that the mobile charge density is twice the gate charge density
(qm = −2 qg) and assuming that the drift-diffusion transport model is valid,
the normalized drain current i can be expressed as

i = −
∫ vd

vs

qm · dvch (1.3)

Integrating (1.3) from source to drain yields

i = −q2
m + 2 · qm +

2
α
· ln
(
1 − α · qm

2

)∣∣∣∣
qmd

qms

(1.4)

Finally, the drain current ID is obtained after denormalization of (1.4) as out-
lined in [11].

To conclude this brief description of the model, it should be said that in
addition to the static part, a more complete compact model should include the
dynamic part, i.e. the transconductances and the whole set of transcapacitances.
The derivation of the dynamic model is not within the scope of this paper and
the reader is referred to references [12, 13] for full details. However, let us
emphasize that the VHDL-AMS code of our model includes both static and
dynamic models [11].

VHDL-AMS Implementation
VHDL-AMS [14] is an HDL which supports the modeling and the sim-

ulation of analog and mixed-signal systems. It supports the description of
continuous-time behavior. For compact modeling, the most interesting feature
of the language is that it provides a notation for describing Differential Alge-
braic Equations (DAEs) in a fairly general way [15]. The == operator and the
way the quantities (bound to terminals or free) are declared allow the designer to
write equations in either implicit or explicit format. VHDL-AMS supports the
description of networks as conservative-law networks (Kirchhoff’s networks)
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and signal-flow networks (inputs with infinite impedance, outputs with zero
impedance). As such, it supports the description and the simulation of multi-
discipline systems at these two levels of abstraction. Conservative-law rela-
tionships assume the existence of two classes of specialized quantities, namely
across quantities that represent an effort (e.g. a voltage for electrical systems),
and through quantities that represent a flow (e.g. a current for electrical systems).

Listing 1 presents the entity part of the VHDL-AMS code for the DG MOS-
FET model. The code first contains references to libraries needed to parse the
model (lines 1–3). For the model end user (circuit designer), the most impor-
tant part of the model is the interface, contained in what is called an entity in
VHDL-AMS (lines 4–11).

(1) library ieee; library disciplines;
(2) use disciplines.electromagnetic_system.all;
(3) use work.all;
(4) entity dg_mosfet is
(5) generic(W :real:= 1.0e-6; -- Gate width [m]
(6) L :real:= 1.0e-6; -- Gate length [m]
(7) tox1 :real:= 2.0e-9; -- Gate oxide thickness [m]
(8) tsi :real:= 25.0e-9; -- Si film thickness [m]
(9) mu0 :real:= 0.1); -- Low-field mobility [m^2/Vs]
(10) port (terminal g1,g2,d,s :electrical);
(11) end;

Listing 1. Interface of the DG MOSFET VHDL-AMS model: the entity.

The model interface includes the specification of generic parameters (lines
5–9) and interface ports (line 10). The generic statement allows the designer
to define its own values for the model parameters. Typically, geometrical W and
L transistor parameters are defined as generic. The dg_mosfet entity contains
four terminals (g1, g2, d, and s stand for the top gate, bottom gate, drain, and
source terminal, respectively), all of electrical type. All the terminals are part
of a port statement. The second part of the VHDL-AMS code is self-explicit.
The device behavior is defined in an architecture named symmetric (130 lines
of code [11]).

Results and Discussion
To conclude this section, we present the results obtained with the VHDL-

AMS simulations of the DG MOSFET model. Figure 1.2 illustrates the com-
putation of the drain current ID at VDS = 50 mV and 1 V. The VHDL-AMS
simulation gives evidence for the good numerical behavior of the model in all
regions of operation. In particular, the phenomena of volume inversion (i.e. the
weak-inversion region) is well described.

Figure 1.3 shows a common set of normalized transcapacitances (with respect
to COX = 2WLCox1) versus the gate voltage. An important point is that all
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transcapacitances are continuous between all operating regions without using
any fitting parameter, which makes our explicit model numerically robust as
well as close to physics. It appears that the model predictions are accurate and
fit the 2D simulations in all cases, namely at VDS = 0 and VDS �= 0. The
slight deviation in the subthreshold region results from the increasing influence
of the overlap capacitance as the channel length decreases. For devices with
L � 1 µm, the overlap capacitance is negligible. A further development of the
model will include the extrinsic capacitances.
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3. CNTFETs
Carbon nanotubes (CNTs) are currently considered as promising building

blocks of a future nanoelectronic technology. CNTs are hollow cylinders com-
posed of one or more concentric layers of carbon atoms in a honeycomb lattice
arrangement. Single-walled nanotubes (SWCNTs) typically have a diameter
of 1–2 nm and a length up to several micrometers. The large aspect ratio
makes the nanotubes nearly ideal one-dimensional (1D) objects, and as such
the SWCNTs are expected to have all the unique properties predicted for these
low-dimensional structures [3]. In addition, depending on the detailed arrange-
ment of the carbon atoms the SWCNTs can be metallic or semiconducting.
Two types of semiconducting CNTs are being extensively studied. One of
these devices is a tunneling device, shown in Fig. 1.4(a). It works on the prin-
ciple of direct tunneling through a Schottky barrier at the source-channel (and
drain-channel) junction. The barrier width is modulated by the application of
gate voltage and thus the transconductance of the device is dependent on the
gate voltage. To overcome these handicaps associated with the SB CNTFETs,
there have been attempts to develop CNTFETs which would behave like nor-
mal MOSFETs [Fig. 1.4(b)]. In this MOSFET-like device, the ungated portion
(source and drain regions) is heavily doped and the CNTFET operates on the
principle of barrier-height modulation by application of the gate potential. In
this case, the on-current is limited by the amount of charge that can be induced
in the channel by the gate. It is obvious that the MOSFET-like device will give
a higher on-current and, hence, would define the upper limit of performance.

Transport through short nanotubes has been shown to be free of significant
acoustic and optical phonon scattering and thus is essentially ballistic at both
high and low voltage limits. In the following, we consider MOSFET-like mode
of operation, and assume ballistic transport.

The theory of CNT transistors is still primitive and the technology is still
nascent. However, evaluation of such high-performance transistors in digital

(a) (b)

Figure 1.4. Different types of CNTFETs: (a) Schottky-barrier (SB) CNTFET with ambipolar
behavior, and (b) MOSFET-like CNTFET with classic behavior.
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circuits is absolutely essential to drive the device design and devise new archi-
tectures. However, from the circuit designer’s point of view, circuit simulation
and evaluation using CNTFETs is challenging because most of the developed
models are numerical, involving self-consistent equations which circuit solvers
like SPICE are not able to handle.

MOSFET-like CNTFET
First, we present a compact model for CNTFETs with a classical behavior.

This compact model is based on a CNTFET model developed at Purdue Univer-
sity [5]. To our best knowledge, Purdue’s model is the first compact model (i.e.
fully dedicated to circuit simulation) of CNTFET available in the literature. It
is a surface potential-based SPICE compatible model that enables to simulate
CNTs with ballistic behavior. It has been incorporated in HSPICE but is not
well-suited for circuit simulation due to some convergence issues.

In this paper, we propose a modified model with fundamental improvements
solving the convergence problems of the original model. The new model is
applicable to a wide range of CNTFETs with diameters between 1 and 3 nm
and for all chiralities as long as they are semiconducting. The model uses
suitable approximations necessary for developing any quasi-analytical, circuit-
compatible compact model (see Fig. 1.5). Quasi-static characteristics (I–V )
have been modeled and validated against numerical models, with an excellent
agreement.

The computional procedure to evaluate the drain current ID and the total
channel charge QCNT is illustrated in Fig. 1.6. The main quantities used in the
model are the surface potential ψS (or control potential) and the specific voltage
ξS(D) that depends on the surface potential, the subbands energy level ∆p and
the source (drain) Fermi level µS(D). The conduction band minima for the first
subband is set to half the nanotube bandgap ∆1 with ∆1 � 0.45/diam (in eV).

Gate

Drain

Source

CGS

CGD
RD

RS

ID

VFB

CGD
  
gate-drain capacitance

CGS   gate-source capacitance
RD drain resistance
RS     source resistance

VFB   flatband voltage
ID drain current

Figure 1.5. Schematic of the CNTFET compact model.
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diam, VFB, TYP, p (only for test purpose)

Precomputed
parameters: α, ∆VFB

VG, VD, VS
Subband minima ∆p 

Control potential: ψS Source/Drain Fermi
level: µS, µD

Specific voltage:  ξS, ξD
ξS/D = (ψS-∆p-µS/D)/(kB.T)

Drain current: ID Channel charge: QCNT 
Capacitances: CGS, CGD

Figure 1.6. Structure of the CNTFET compact model.

The physical parameter diam is the nanotube diameter (in nm); it is one of the
only three intrinsic parameters of our model, with the flatband voltage VFB and
the TYP parameter (= +1/ − 1 for n- or p-type device). Let us emphasize
the number of subbands p has been added as an input parameter only for test
purpose [16].

Determination of the surface potential. An important step in the model
development is to relate the control potential with the gate bias voltage (see
Fig. 1.6). The knowledge of ψS is useful to calculate the specific voltage ξ.
This allows us to determine the drain current and the total charge. In [5], the
following approximation has been proposed

VGS − ψS =
{

0 for VGS < ∆1,
α · (VGS − ∆1) for VGS � ∆1.

(1.5)

where the parameter α is given by

α = α0 + α1 · VDS + α2 · V 2
DS (1.6)

where α0, α1, and α2 are dependent on both CNTFET diameter and gate
oxide thickness [16]. Eq. (1.5) is correct to model the relationship between
the gate voltage and the surface potential, but is not well-suited for a compact
model (problem of discontinuity, as shown in Fig. 1.7). Therefore, we propose
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Figure 1.7. Derivative of surface potential ψS vs. VGS .

an equivalent solution, given by (1.7), but with an excellent behavior of the
derivative (see Fig. 1.7)

ψS = VGS −
α(VGS − ∆1) +

√
[α(VGS − ∆1)]

2 + 4ε2

2
(1.7)

where ε = 5 · 10−2 is a smoothing parameter.
Then, the total drain current ID is obtained as

ID =
4 q kB T

h

∑
p

[ln (1 + exp(ξS)) − ln (1 + exp(ξD))] (1.8)

where p is the number of subbands, kB and h are the constants of Boltzmann
and Planck, respectively.

Quantum-Capacitance Derivation. With the knowledge of charge and
surface potential as functions of gate bias, the gate input capacitance CG can
be computed in terms of the device parameters and terminal voltages. The gate
input capacitance is given by

CG =
∂QCNT

∂VGS
⇒ CG =

∂QCNT

∂ψS
· ∂ψS

∂VGS
(1.9)

The total charge QCNT can be split up into QS and QD and, hence, the total
gate capacitance can also be split up into CGS and CGD (see Fig. 1.5).

To elaborate an efficient expression of CG for a compact model, it is important
to first have a closed-form expression of QCNT (ψS) and continuous derivatives
of (1.9) as well. As it is not possible to obtain a closed-form relationship for the
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quantum-charge in the channel, an empirical solution (fit) has been proposed in
[5]. Noting that the number of carrier n increases almost linearly as ξ increases
and falls off exponentially as ξ becomes negative, the following relationship
has been derived

n =
{

N0 · A · exp ξ for ξ < 0,
N0 · (B · ξ + A) for ξ � 0.

(1.10)

where the parameters A and B are dependent on the energy level ∆ [5].
Eq. (1.10) is unfortunately not appropriate for circuit simulation because

its derivatives are not continuous (Fig. 1.8). Accordingly, the different capac-
itances determined by (1.10) would not be correct to elaborate the CNTFET
dynamic model. In addition, this would lead to numerical problems during sim-
ulation and wrong results. In order to solve the numerical problems, we have
elaborated a new equation for n, similar to the interpolation function of the
EKV MOSFET model [10]. This new expression and its derivatives (Fig. 1.8)
are continuous and well-suited for circuit simulation, especially in dynamic
operation

nnew(ξ) = N0 · 1.2 · B ·
{

ln
[
1 +

A

1.2 · B · exp
(

ξ

0.96

)]}0.96

(1.11)

Figure 1.8 shows a comparison between the derivatives of (1.10) and (1.11).
Let us note that the greatest difference can be observed around zero, where
actually the former overestimates the quantum-charge (see Fig. 4 in [5]). The
VHDL-AMS simulation of the capacitances computed with our continuous
model is shown in Fig. 1.9.

Figure 1.10 shows the drain current of a 1.4 nm diameter CNTFET with
Cox = 3.8 pF/cm as a function of gate voltage. The dots correspond to the

4

3

2

1

0
−4 −2 0 2 4

ξ 

∆  = 0.15 eV [5]
∆  = 0.35 eV [5]
∆  = 0.15 eV [this work]
∆  = 0.35 eV [this work] 

d(
n/

N
0)

/d
ξ 

Figure 1.8. Improvement of the numerical behavior.
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numerical solutions performed with the FETToy simulator [17] whereas the
lines correspond to our analytical compact model. A good agreement is found,
which supports the validity of our approach.

VHDL-AMS Implementation
First, we have calibrated the model of Purdue with respect to numerical

simulations [18, 17]. The best fits were obtained with p = 1 (i.e. one subband)
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which is coherent because the FETToy simulator only accounts for the lowest
subband. So, at the beginning, we fixed p = 1 in our model in order to validate
it with respect to the numerical simulations. Then, if we consider CNTFETs
with diameters ranging from 1 to 3 nm, and with a power supply lower than
1 V, we can set p = 5 to accurately describe all cases [16].

The whole VHDL-AMS code of the model requires about 90 lines. Only
three intrinsic parameters are necessary: diam, TYP (+1 for n-type, −1 for
p-type) and VFB (lines 5–7 in Listing 2).

(1) library ieee; library disciplines;
(2) use disciplines.electromagnetic_system.all;
(3) use work.all;
(4) entity CNTFET is
(5) generic(diam : real := 1.4; -- Nanotube diameter [nm]
(6) TYP : real := 1.0; -- n/p-CNTFET (+1/-1)
(7) VFB : real := 0.0; -- Flatband voltage [V]
(8) p : positive := 1; -- Number of subbands [-]
(9) Rseries : real := 50.0e3); -- Series resistance [ohm]
(10) port(terminal g,d,s : electrical);
(11) end;

Listing 2. Interface of the CNTFET VHDL-AMS model: the entity.

Let us note that the number of subbands p has been defined as a generic
parameter only for test purpose [16]. Rseries corresponds to the total series
resitance, that is Rsource+Rdrain with Rsource = Rdrain. The parameters α0, α1,
and α2 [see (1.6)] are determined in a precomputed module, with the help of
one equation for each of them. For all details about the computation of the
parameters α, the reader is referred to [16].

To conclude this section, Fig. 1.11 shows two VHDL-AMS simulations per-
formed for different values of the parameters diam and p, in order to show the
effect of the nanotube diameter on the number of subbands p to be accounted for.
This behavior may be useful to create novel multiple-valued logic design [19].
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Figure 1.11. VHDL-AMS simulations of ID vs. VGS at low drain bias.
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Ambipolar CNTFET
We present, for the first time to our best knowledge, a behavioral compact

model that allows to describe the ambipolar characteristic of SB CNTFETs.
This model is built using the new model of CNTFET previously presented. As
shown in Fig. 1.12, an additional part has been added to the “unipolar” model.
The entity (VHDL-AMS) corresponding to this new model is the same as the
classical CNTFET model one.

The very particular ID–VGS characteristic of the ambipolar CNTFET is
illustrated in Fig. 1.13. It should be noted that this behavior is quite simi-
lar to the numerical simulation results recently published in [20] and [21]. This

Unipolar CNTFET model (e.g., n-type)

VGS_EFF = −VGS + VDS

Input voltage: VGS

pseudo ID_p  ID_n

+

 Ambipolar drain current model: ID

Figure 1.12. Structure of the behavioral model for the ambipolar CNTFET.
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Figure 1.13. VHDL-AMS simulation of the drain current as a function of gate voltage for the
ambipolar SB CNTFET (p = 1, diam = 1.4, TYP = +1, VFB = 0, Rseries = 0).
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ambipolar characteristic should allow circuit designers to devise new architec-
tures using that specific behavior [22, 23]. Our compact model may be of help
to this issue.

4. Conclusion
In this paper, different VHDL-AMS models for emerging technologies have

been proposed. The DG MOSFET model is still under development, it will
be completed with the modeling of additional effects such as quantum effects,
extrinsic capacitances, in order to simulate accurately ultra short-channels DG
MOSFETs. The second part of the paper dealt with the compact modeling
of the CNTFET with VHDL-AMS. Two CNTFET compact models have been
presented, the first one for carbon nanotubes with a classical behavior (like
MOSFET), and the second one for devices with an ambipolar behavior. Al-
though CNTFET technology is still nascent, these compact models developed in
VHDL-AMS are useful tools to help the designers to devise new architectures.
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Abstract Baseband models are widely used to describe the behavior of RF systems. They
suppress the RF carrier. Thus, they are many times faster than passband mod-
els that evaluate every carrier cycle during the simulation. Nevertheless, pass-
band models are necessary for the component design. To support the top-down
design approach, consistent models at baseband and passband level are required.
The paper shows how the consistency can be achieved using consequently the
possibilities of overloading functions and operators in VHDL-AMS. The math-
ematical basis is a consistent usage of the describing function theory for base-
band modeling. The classical approach of baseband modeling can be extended
by completing the waveforms that carry the in-phase and quadrature component
by a time-discrete or time-continuous waveform that saves the carrier frequency
information. This allows to handle systems with different carriers in different
parts of a system or to sweep the carrier frequency during the simulation.

Keywords VHDL-AMS, baseband modeling, describing function

1. Introduction
Standard languages as Verilog-A, Verilog-AMS, and VHDL-AMS [1] are

available to model the behavior of mixed-signal circuits and systems. They
provide greater understanding of systems early in the design process. In order
to be able to compare different system architectures a high execution speed
of the simulation is required.

23
S.A. Huss (ed.), Advances in Design and Specification Languages for Embedded Systems – Selected
Contributions from FDL’06, 23–35.
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Baseband models fulfill these requirements for a wide class of RF systems
[3, 7]. They are not as accurate as passband models but they are much faster.
The idea behind baseband descriptions is that narrow band analog waveforms
with the carrier frequency f can be represented by the following equation

x (t) = A (t) · cos (ωt + ϕ (t)) = I (t) · cos (ωt) − Q (t) · sin (ωt) (2.1)

that means
x (t) = Re

(
(I (t) + j · Q (t)) ejωt

)
(2.2)

where ω = 2π ·f and Re gives access to the real part of a complex number. All
the waveforms x, A, f, I, and Q are scalar real-valued time-continuous wave-
forms. A special waveform x(t) is characterized by a 3 tupel (I (t) , Q (t) , f).
x is called the passband representation and the 3 tupel carries the information of
the baseband representation of the waveform. The set of all waveforms that can
be described in this way shall be indicated by XPB(f) for the passband repre-
sentation and XBB(f) for the baseband representation. The sum I(t)+j ·Q(t)
be interpreted as a slowly varying phasor [3]. In the following we will try to
define the baseband operations so that passband functionality can be mapped
in an easy way to the baseband description.

The next section introduces the mapping in a formal way. Afterward, the
implementation in VHDL-AMS is described and illustrated with the help of
two examples.

2. Baseband Modeling Approach
Linear operations as addition, subtraction, multiplication with a constant,

and differentiation (see [10], [3]) in the passband can be easily assigned to
linear operations in the baseband.

Functions Without Frequency Shifting
Considering a unary nonlinear passband map mPB , then in the general case

the range can be built up by the union of the sets characterized by the funda-
mental, its harmonics, and a static contribution

mPB : XPB(f) → XPB(0) ∪ XPB(f) ∪ XPB(2 · f) ∪ . . . (2.3)

Subharmonics are not considered. Baseband modeling usually introduces the
simplification that the associated baseband map mPB only describes the map-
ping onto the set of fundamentals. That means

mBB : XBB(f) → XBB(f) (2.4)



Baseband Modeling Using Multidimensional Networks in VHDL-AMS 25

The modeling decision is whether this simplification can be accepted or not.
Many linear and nonlinear maps can be represented using describing functions
[5]. The describing function is the phasor representation of the output of a
scalar (nonlinear) map at frequency f divided by the phasor representation of
the argument of the map at frequency f .

Modeling procedure. Assume the describing function N(A, f) ∈ C can
be assigned to a passband map mPB then the associated baseband map mBB

can be carried out in the following way

mBB : XBB(f) → XBB(f)
with
(I (t) , Q (t) , t)
�→ (Re (N (A (t) , f) ⊗ B (t)) , Im (N (A (t) , f) ⊗ B (t)) , f)

with A(t) =
√

I(t)2 + Q(t)2, B(t) = I(t)+j ·Q(t), the multiplication sign⊗
in the complex area and access to the real and imaginary part of a complex num-
ber with Re and Im resp. �

Example 1
Figure 2.1 shows a nonlinear characteristic that can be used for modeling of

low noise amplifiers [3].

m̃PB : x(t) �→

⎧⎪⎨
⎪⎩
−Amax for x(t) ≤ Alim

A1 · x(t) − A3 · x(t)3 for others

Amax for x(t) ≥ Alim

with the real numbers A1, A3, Alim =
√

A1
3·A3

and Amax = 2
3 ·A1 ·Alim. The

describing function based on [5] is given by

N(A, f) =

{
2

3·A ·
(
m̃PB (A) + m̃PB

(
A
2

))
for A > Alim

A1 − 3
4 · A3 · A2 for others.

Figure 2.1. Graph of function m̃PB .
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Thus, the baseband characteristic can easily be expressed using the procedure
introduced above (N (A, f) ∈ R)

m̃BB : XBB(f) → XBB(f) with
(I (t) , Q (t) , t) �→ (N (A, f) · I (t) , N (A, f) · Q (t) f)

where A(t) =
√

I(t)2 + Q(t)2. This approach seems to be more conve-
nient than only clamping the output amplitude for higher input amplitudes (cf.
e.g. [3]) �

It should be considered that using this approach baseband models for sev-
eral functions as quantizers, general piecewise-linear nonlinearities, limiters,
exponential saturation, algebraic saturation, ideal hysteresis functions, and oth-
ers can be established in a very simple way. This approach also offers the
opportunity to start in some of these cases with table-look up descriptions (see
also [8]).

Frequency Shifting
Looking at equation (2.3) it should be mentioned that also X(0) and X(n ·f)

(with n = 2, 3, Ě) are possible ranges of a baseband map. This way down- or up-
conversion of the carrier frequency between the system’s parts can be handled.

Example 2
In the case of a multiplier two alternatives exist. The passband map is des-
cribed by

m̄PB : XPB(f) × XPB(f) → XPB(0) ∪ XPB(2 · f)

with

(A1 (t) · cos (ωt + ϕ1 (t)) , A2 (t) · cos (ωt + ϕ2 (t)))

�→ 1
2 · A1 (t) · A2 (t) · (cos (ϕ1(t) − ϕ2(t)) + cos (2ωt + ϕ1(t) + ϕ2(t)))

and ω = 2πf . Thus, the down-conversion baseband characteristic is

m̄BB : XBB(f) × XBB(f) → XBB(0) with

((I1, Q1, f) , (I2, Q2, f)) �→
(

1
2 (I1 · I2 + Q1 · Q2) , 0, 0

)
�

Baseband modeling can be applied in an easy way if the carrier frequencies of the
operands of the baseband characteristics are equal. To shift a representation with
carrier frequency f1 to a representation with carrier frequency f2 the following
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equation for the passband representation should be considered (compare (2.2))

Re
(
(I (t) + j · Q (t)) ejω1t

)
= Re

(
(I (t) + j · Q (t)) · ej·(ω1−ω2)·t · ejω2t

) (2.5)

Based on (2.5) a shift map for the baseband representation can be defined

shiftBB : XBB(f1) → XBB(f2)

with

(I (t) , Q (t) , t) �→
(I(t) · cos ψ(t) − Q(t) · sinψ(t), I(t) · sin ψ(t) + Q(t) · cos ψ(t), f2)

and

ψ(t) = (ω1 − ω2) · t or

ψ(t) = (ω1 − ω2) · t mod 2π (2.6)

This map should only be applied in baseband modeling for small (ω1−ω2)
ω1

(see
also [7]). Shifting can be interpreted as a map with the describing function
N(A, f) = cos ψ(t) + j · sinψ(t).

Differentiation
It is evident that the time domain differential operator DPB in the passband

is given by

DPB : XPB(f) → XPB(f)
with
I(t) · cos(ωt) − Q(t) · sin(ωt) �→
(I ′(t) − ω · Q(t)) cos(ωt) − (Q′(t) + ω · I(t)) sin(ωt)

(2.7)

where I ′(t) and Q′(t) are the time derivatives of I(t) and Q(t) resp. (ω = 2πf ).
Thus, the associated differential operator DBB in the baseband is

DBB : XBB(f) → XBB(f)
with
(I(t), Q(t), f) �→
((I ′(t) − ω · Q(t)) , (Q′(t) + ω · I(t)) , f)

(2.8)

If only the steady state is of interest, the time derivatives I ′(t) and Q′(t) can be
assumed to be 0. In this case, DBB is characterized by the describing function
n(A, f) = j · ω. (2.8) is used in [10] to derive baseband descriptions of basic
elements as capacitances and inductances. The function can also be used to
express general linear transfer functionality in the baseband as will be shown
in the following example.
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Example 3
A Laplace transfer function is given by

H(s) =
b0 + b1 · s + · · · bk · sk

a0 + a1 · s + · · · an · sn
=

Y (s)
U(s)

(k < n, an �= 0)

where s is the Laplace operator. It is well known that a system of ordinary
differential equations represents the same behavior in the time domain (see,
e.g. [4]). This system of equations describes the behavior using the passband
approach

x′(t) = A · x(t) + B · u(t)
y(t) = C · x(t) (2.9)

with
x(t) = (x0(t), x1(t), · · ·xn−2(t), xn−1(t))

T ∈ R
n

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

...
0 0 0 · · · 1
− a0

an
− a1

an
− a2

an
. . . −an−1

an

⎞
⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠

C = (b0, b1, . . . , bk, 0, . . . , 0)

Considering (2.8), the equivalent baseband description can easily be derived.
The structure of the system of equations is given by
(

x′
I(t)

x′
Q(t)

)
=
(

A ω · E
−ω · E A

)
·
(

xI(t)
xQ(t)

)
+
(

B · uI(t)
B · uQ(t)

)
(2.10)

(
yI(t)
yQ(t)

)
=
(

C 0
0 C

)
·
(

xI(t)
xQ(t)

)
(2.11)

Figure 2.2 shows a bit stream modulated by a 1.575 GHz sinusoidal waveform
that is filtered by a bandpass. The magnitude of the output baseband waveform
represents the envelope of the passband output waveform as expected.
The main consequences of the considerations in this section is that the baseband

representation of a waveform should combine I- and Q-components and the
carrier frequency. It seems that it is not necessary to save the phase as proposed
in [7]. In case of different carrier frequencies, the operators used in baseband
descriptions must define how to handle shifting of the carrier frequency. Last
but not least, it should be mentioned that the strong application of the results
from the describing function theory simplifies baseband modeling.
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Figure 2.2. Input u(t), passband output y(t), and baseband waveform.

3. Baseband Modeling Using VHDL-AMS
The connection point in the baseband description should carry the informa-

tion about in-phase, quadrature component, and carrier frequency. To handle
this, nature BB NATURE VECTOR is declared as follows:

nature BB NATURE is

REAL through

BB RER reference;

nature BB NATURE VECTOR is

array (NATURAL range <>)

of BB NATURE;

A multidimensional connection point T in a baseband model can then be declared
by

terminal T : BB NATURE VECTOR (1 to 2);

signal F : REAL;

When the dependency of transfer characteristics with respect to the carrier
frequency shall is analyzed, a quantity port instead of the signal port should be
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Table 2.1. Operators for passband and baseband descriptions.

Passband Baseband
x : R

++ → R (see (2.1)) X = I + j · Q represents x

x1 + x2 X1 + X2

x1 − x2 X1 − X2

h
(
x, dx

dt

)
N(A, f) · X
where N : R × R → C is the describing
function associated with h (see ([5])

used. Furthermore, we assume that the constitutive relations of the branches in
the passband description can be expressed in the following manner

g(i, v, s) with g : R
n × R

m × R
p → R (2.12)

where i, v, and s are vectors that combine branch voltages and currents and
free quantities. It should be possible to express g using the operators given in
Table 2.1. The same carrier frequency is used for all operands.

To assign a baseband model to a passband model the following main steps have
to be carried out:

• Replace ELECTRICAL terminals by connection points as described by the
code example for the multidimensional connection point T. If a terminal
is connected to a voltage or current source branch the signal port is of
mode out.

• Instead of real scalar free quantities in the passband description two-
dimensional real vectors that carry the in-phase and quadrature compo-
nent are declared.

• The passband constitutive relations (2.12) should be transformed to base-
band relations using Table 2.1. Arguments are mapped to complex num-
bers. The baseband operations are carried out in the complex area.

• If necessary a frequency shifting is carried out in the model (see equation
(2.6)).

• ′DOT attributes can be replaced considering (2.7) and (2.8).

Auxiliary functions and constants that support the conversion between different
types and representations can be summarized as well as the baseband nature
descriptions in an additional package.
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Example 4

The main part of the passband model of a low noise amplifier (see Fig. 2.3)
is given by
entity LNA is

generic (

A1, A3, RIN, ROUT : REAL);

port (

terminal N1, N2 : ELECTRICAL);

end entity LNA;

architecture BASIC of LNA is

quantity VIN across IIN through N1;

quantity VOUT across IOUT through N2;

begin

0.0 == VIN - RIN*IIN;

0.0 == VOUT - ROUT*IOUT - MPB(VIN);

end architecture BASIC;

The main parts of the associated baseband model are
entity LNA is

generic (

A1, A3, RIN, ROUT : REAL);

port (

terminal N1:BB NATURE VECTOR(1 to 2);

signal F1:REAL;

terminal N2:BB NATURE VECTOR(1 to 2);

signal F2:out REAL);

end entity LNA;

architecture BASIC of LNA is

...

function B OUT(

I :BB NATURE VECTOR’THROUGH;

V :BB NATURE VECTOR’ACROSS;

VCTRL :BB NATURE VECTOR’ACROSS)

return REAL VECTOR is

variable RESULT : COMPLEX;

begin

RESULT

:= CMPLX(V) - ROUT*CMPLX(I)-

DF(ABS(VCTRL))*CMPLX(VCTRL);

return (RESULT.RE, RESULT.IM);

end function B OUT;

quantity VIN across IIN through N1;

quantity VOUT across IOUT through N2;

begin

ZERO == B IN(IIN, VIN);

ZERO == B OUT(IOUT, VOUT, VIN);

F2 <= F1;

end architecture BASIC;

ZERO is a constant (0.0, 0.0) of type REAL VECTOR (1 to 2). The type
COMPLEX is declared in the package MATH COMPLEX of the IEEE library. In this
package, overloaded functions for + and − in the complex area and multiplica-
tion with a real constant are also declared. DF is the complex describing func-
tion associated with N(A, f) (see example 1). ABS and CMPLX are overloaded
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Figure 2.3. Structure of a LNA model.

Figure 2.4. Analog PLL.

functions of complex maps. The passband model and the baseband model are
compiled into different resource libraries. The structural descriptions that use
these models have to be modified with respect to the different connection points.

4. Further Illustrative Examples

Analog PLL
The FM modulator (see Fig. 2.4) is controlled by an electrical voltage source.

The carrier frequency of the FM signal is 1 MHz. This is also the center
frequency of the VCO. The phase detector is a multiplier that realizes a down-
conversion to f = 0 Hz.

Figure 2.5 shows the demodulated waveform VC using passband and base-
band models. The example demonstrates the usage of different carrier frequen-
cies in a baseband description.
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Figure 2.5. Voltages VC of passband and baseband model.

Exited Duffing Oscillator
An excited Duffing oscillator is described by

d2x

dt2
+ 2γ · dx

dt
+ ω2

0 · x + β · x = k · cos (ωt) (2.13)

Then, the associated baseband description is

DFDUFF

(√
I2 + Q2, ω

)
· (I + j · Q) = k (2.14)

with DFDUFF (A, ω) = −ω2 + j · 2γω + ω2
0 + 3

4 · A2

It is known that for some ω more than one solution (I, Q) of (2.14) can be
determined [2]. That means, there may exist multiple steady state solutions of
(2.13). Combining (2.13) with a curve tracing algorithm these characteristics
can be determined [11, 6]. Using the describing function, the basic equation
(2.14) to determine the frequency response can easily be established. Figure 2.6
shows the magnitude for γ = 0.05, ω2

0 = 1, β = 1, k = 0.2. In this example
the carrier frequency is not fixed.

5. Summary
The verification of front ends for digital communication requires efficient

modeling and simulation methods. In order to be able to compare different
system architectures a high execution speed of the simulation is required. One
possibility to reduce simulation time is a higher level of abstraction of the analog
models. Baseband models can be used for this purpose. Other approaches are
summarized in [9, 12].
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Figure 2.6. Magnitude of Duffing oscillator.

Baseband models are a low-pass waveform representation of passband wave-
forms. The passband waveforms are characterized by a narrow frequency spec-
trum around a carrier frequency. With this baseband representation, in-band
distortions for nonlinear blocks can be investigated, for instance.
This chapter formally defines a relation between passband and equivalent base-
band models. Thus, it formally describes how to write consistent passband and
baseband models. This approach can easily be implemented using behavioral
description languages. It is shown how the approach works using VHDL-
AMS. Some implementation details were discussed. The approach can be used
with other languages and description methods as for instance Verilog-AMS or
SystemC-AMS in a similar way.

The main passband functionality can be expressed using linear transfer func-
tions and static nonlinearities. There exists a simple relation between linear
transfer functions in the passband and baseband representations. Using describ-
ing functions for baseband modeling helps to establish consistent baseband and
passband descriptions of the nonlinear parts. This approach makes it possible
to access the former results from the describing function theory. The idea is
formally described as Modeling procedure in Section 2. Example 1 shows how
it works.

A special waveform representation that also considers the frequency makes it
possible to switch the carrier frequency between different parts of a system. The
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carrier frequency is usually constant in a part of a system. Thus in VHDL-AMS,
it is represented by a time-discrete signal.
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1. Introduction
In today’s circuit designs, the integration of analog parts on system-on-chips

(SoCs) and ASICs is common practice. Usually in such designs the analog
parts comprise a comparatively small fraction of the overall chip area. On the
contrary, a large part of the development time of a mixed-signal circuit is spent
on the analog parts.

Using well-established formal verification techniques, digital circuit designs
can be formally verified in order to find design errors. In contrast to simulation-
based verification, these techniques reach a 100% coverage of the functionality
of a circuit design. Currently there are no tools allowing for the formal veri-
fication of analog and mixed-signal circuits. In today’s verification flows the
analog and digital parts are verified separately by simulation and formal ver-
ification techniques, respectively. The verification of the overall behavior of
a mixed-signal circuit and, hence, the connection of the analog and digital
parts is then carried out based on simulation. All simulation-based verification
methods have the disadvantage of requiring a testbench and simulation stimuli.
Despite the high manual effort to provide both of them, due to the complexity
of today’s designs only a relatively low coverage of a circuit’s functionality can
be achieved.

To simplify matters, those parts of a mixed-signal circuit that are represented
by continuous-time, continuous-valued behavioral models are in the following
referred to as ‘analog components’. An approach to the verification-oriented
modeling of analog components is presented. Starting from a behavioral descri-
ption of an analog component in terms of nonlinear differential-algebraic equa-
tions a digital model is derived by discretizing the time and quantizing the
continuous values. Based on the resulting digital behavioral model some proper-
ties of practical relevance can be proved using commercially available bounded
model checking tools. The presented work extends the class of mixed-signal
circuits that can be verified with the help of formal methods that are commonly
used for the verification of digital circuits.

The remainder of the paper is organized as follows: In Section 2 related
work is reviewed. Section 3 describes the proposed modeling approach and the
application of formal verification techniques. An example of the application
of the proposed flow is given in Section 4 and some concluding remarks are
presented in Section 5.

2. State of the Art
Simple mixed-signal circuits can be represented by hybrid automata [1, 10].

The verification of a circuit design is carried out by performing a reachability
analysis over the state-space of the corresponding hybrid automaton. Even
under strong restrictions, such as piecewise constant derivatives of the variables,
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the reachability problem remains undecidable for this class of automata, for the
state-space is infinite in general [11]. Recent approaches to the verification
of hybrid automata utilize different techniques to approximate the reachable
state sets. Standard model checking algorithms are then applied to these finite-
state approximations [8, 9]. The approach proposed in [3] suggests to perform a
reachability analysis on a certain class of hybrid systems that can be represented
as mixed logical dynamical or piecewise affine systems to get a piecewise linear
approximation of the exact solution. Drawbacks of these approaches are that
they introduce an approximation error, are not sound [9], or their performance
strongly depends on the shape of the reachable sets of states [3].

An approach to the verification of linear analog circuits is presented in [2].
The circuit’s specification is given in terms of its transfer function. Based on
the state equations, the transfer function of the implementation of the circuit is
derived. Both transfer functions are transformed into the discrete-time domain
using Z-transform. The continuous values denoting voltages and currents are
quantized. The resulting discrete-time, discrete-valued transfer functions of
both the specification and the implementation can be represented by finite
deterministic automata, respectively. The verification is then carried out by
an equivalence-check, an approach to property-checking is not mentioned in
this work. The proposed verification flow is restricted to linear analog circuits.
The problem of arithmetic overflows that might occur during verification is
mentioned; however, overflows are not recognized or treated by this approach.

In [12] an approach to the semiformal verification of the static behavior of
mixed-signal circuits is presented. The proposed approach is based on SAT-
based property-checking. Starting point of the described verification flow is
the static behavioral description of a mixed-signal circuit in VHDL. In such a
circuit description, VHDL’s floating point type real is used to characterize the
analog behavior. Given such a mixed-signal circuit description, a verification-
oriented model is derived for which SAT-based property-checking is carried out.
In the verification-oriented model the floating point type real used to describe
analog behavior is approximated by integer numbers of a finite interval. Such
a model can be represented by a finite Mealy automaton and thus be verified
using well-established formal verification methods. Possible overflows due to
arithmetic operations are recognized during the verification process and cause
the corresponding property to fail. The quantization error that is introduced
when the verification-oriented model is derived has to be considered in the
properties to be verified.

A similar approach to the verification of the static behavior of mixed-signal
circuits is proposed in [6]. In this approach the rational numbers Q are used
to represent analog values. The mixed-signal circuit is given as an infinite
automaton that is described in a simple XML. A validity checker that allows the
usage of arithmetic expressions in the formulae is utilized to prove properties
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based on the automaton. The accuracy of the internal representation of the
rational numbers is only limited by the amount of memory that is available so
that arithmetic overflows do not occur in practice.

Both of the last two mentioned approaches use a behavioral description of a
mixed-signal circuit that abstracts from the dynamic analog behavior to static,
piecewise linear behavior with respect to the clock-cycle of the digital part of
the mixed-signal circuit. Neither of these two approaches describes how such
a static behavioral model of an analog component can be derived.

Based on [9], the authors of [7] propose an approach to the verification of
nonlinear analog circuits. The state-space of an analog circuit that is given
by the circuit’s inputs and independent state-variables is restricted to a finite
region that is approximated using hyperboxes. Discrete state-transitions of
randomly chosen representatives of the discrete states are determined by over-
approximating the solutions of differential-algebraic equations. Additionally,
these transitions are annotated with timing information so that timing constraints
can also be verified. Due to complexity issues the presented approach is only
applicable for comparatively small analog circuits. The verification of mixed-
signal circuits is not considered in this approach.

3. Verification-Oriented Modeling and Verification
This work proposes to model the behavior of the analog components of a

mixed-signal circuit with the help of finite automata. The different modeling
steps, starting from the behavioral description of an analog component in terms
of a differential-algebraic equation system, are depicted in Fig. 3.1.

The result of the proposed modeling flow is a digital behavioral model
(“single-step automaton”). Using this representation some practically relevant
properties of an analog component can be semiformally verified by bounded
model checking through property-checking using the approach presented in
[12]. Arithmetic overflows that might occur due to an inappropriate quantization
of the continuous values are recognized during verification and appropriately
treated so that no false-positives occur because of overflows. Based on a
single-step automaton another, more abstract model (“n-step automaton”) can
be derived. By replacing the continuous-time, continuous-valued behavioral

time discretization

algebro-differential
equation system
continuous-time,

continuous-valued

quantization

difference
equation system

discrete-time,
continuous-valued

encoding

digital single-
step automaton

state transition
function

difference equation 
system

discrete-time,
discrete-valued

Figure 3.1. Proposed modeling flow.
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models of the analog components by their corresponding n-step automata in
the interconnection with the digital parts, a verification-oriented model of the
whole underlying mixed-signal circuit can be created.

Discretization and Quantization
The presented approach to the derivation of verification-oriented models of

analog components is illustrated using the example circuit shown in Fig. 3.2.
Without loss of generality a linear, single-input, single-output analog compo-
nent has been chosen for illustrating the approach.

Based on the circuit’s netlist a behavioral model in terms of a differential-
algebraic equation system is derived. Such an equation system is the starting
point for the proposed modeling flow. The behavior of the circuit depicted in
Fig. 3.2 is described by a first-order linear differential equation system:

[
İ(t)

V̇out(t)

]
=

[
−R

L − 1
L

1
C 0

]
·
[

I(t)
Vout(t)

]
+

[
1
L

0

]
· Vin(t). (3.1)

The state equation system (3.1) can be solved analytically, however, in general
this is not the case, especially for practically relevant analog components. Due
to that fact such a behavioral description of analog components is not suitable
for the practical application of formal verification techniques. The result of the
proposed approach to verification-oriented modeling is a behavioral description
of an analog component that both represents dynamic analog behavior and can
be verified using the well-established formal tools from the verification of digital
circuits.

Based on the behavioral description in terms of a differential-algebraic equa-
tion system, in a first step the time is discretized (cf. Fig. 3.1). Linear differential
equation systems like (3.1) can be time-discretized using Z-transform. In gen-
eral, particularly regarding nonlinear analog components, different numerical
integration methods like, e.g. implicit or explicit Euler or the trapezoidal rule

L

Vin VoutC

I
R

Figure 3.2. RLC circuit.
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can be applied. The difference equation system (3.2) results from (3.1) by
applying the trapezoidal rule:[

I(k + 1)
Vout(k + 1)

]
=

1
K1

·
[[

K2 − 1
L · h

1
C · h K3

]
·
[

I(k)
Vout(k)

]

+

[
1
L · h

2
1

L·C · h2

4

]
· (Vin(k) + Vin(k + 1))

]
, k ∈ Z

(3.2)

with the constants:

K1 = 1 +
R

L
· h

2
+

1
L · C · h2

4
, (3.3)

K2 = 1 − R

L
· h

2
− 1

L · C · h2

4
, (3.4)

K3 = 1 +
R

L
· h

2
− 1

L · C · h2

4
. (3.5)

In these formulae the constant h ∈ Q
+ denotes the time step used for the

numerical integration, i.e. the difference between two consecutive points in time
that are represented by the sequences that determine Vout and I , respectively.
In order to be able to represent the discrete-time behavioral description of the
example circuit (cf. Fig. 3.2) given by (3.2) with the help of a finite automaton,
the continuous-valued currents and voltages have to be quantized and restricted
to finite ranges of values, respectively. This step is necessary to get finite
sets of input, state, and output symbols for the automaton. The resolution
of the quantization and the finite intervals’ boundaries are determined by the
environment the analog component is used in.

The choice of these parameters has an impact on the complexity of the
resulting automaton and, hence, on the complexity of the subsequent verifi-
cation task. Both the resolution of the quantization and the time step h for the
numerical integration have to be appropriately chosen to get an automaton that
sufficiently reflects relevant aspects of the underlying analog behavior. Accord-
ing to a class of numerical integration techniques the automaton representing
the analog behavior for one time step h is referred to as “single-step automaton”
(cf. Fig. 3.1).

Building a Single-Step Automaton
Any possible combination of input values and initial states of an analog

component has to be taken into account when building a single-step automaton
to represent the analog behavior. The state-variables of an analog component
are in general represented by currents through inductors and voltages across
capacitors. Considering the example circuit depicted in Fig. 3.2 there are two
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state-variables: the current I through the inductor L and the voltage Vout across
the capacitor C. The voltage Vout also denotes the output variable of the circuit.

According to the behavioral description of the circuit in terms of the differ-
ence equation system (3.2), the current I and the voltage Vout at the time-point
denoted by k + 1, k ∈ Z, depend on the values of the input voltage at the same
time-point and the previous one. To simplify matters, four different sequences
of the input voltage Vin of length two have been chosen to build the single-step
automaton. Any sequence of 0.0 V and 3.2 V over two time-points has been
considered. Using these values, Vin could, for example, represent a digital
control input with 0.0 V denoting logical “0” and 3.2 V denoting logical “1”.

The following constant device parameters have been used to build the single-
step automaton for the example circuit: R = 1 kΩ, L = 1 µH, C = 0.8 pF.
The voltages are quantized with a resolution of 0.4 V/bit over the finite interval
−6.4 V . . . 6.0 V, the currents are quantized with 1.25 · 10−1 mA/bit between
−2.0 mA and 1.875 mA. This way, the variables representing voltages or cur-
rents can be implemented in an HDL using bit vectors of width five. The time
step has been set to h = 0.7 ns.

The difference equation system (3.2) must be solved for any possible com-
bination of the four mentioned input sequences and any possible initial assign-
ment of the circuit’s state-variables I and Vout. The results are rounded and
mapped to their appropriate quantization interval. With the parameters chosen
as aforementioned, there are altogether 4 · 25 · 25 = 4096 different combina-
tions of input sequences and initial states the difference equation systems has
to be solved for. The result of this step is the discrete-time, discrete-valued
representation of the analog behavior as a table of values. Figure 3.3 shows an
extract of the example circuit’s table of values. Using an appropriate encoding,
the real-valued currents and voltages within finite ranges can be represented by

Vin(k) Vin(k + 1) I(k) Vout(k) I(k + 1) Vout(k + 1)
0.0 0.0 −1.250 0.8 −0.750 0.0
0.0 0.0 −1.250 1.2 −1.000 0.4
0.0 0.0 −1.375 2.8 −1.750 1.6

...
...

...
...

...
3.2 3.2 −1.375 2.4 −0.125 1.6
3.2 3.2 −1.875 2.8 −0.375 1.6
3.2 3.2 −1.750 3.2 −0.625 2.0

Figure 3.3. State-transition function of the example circuit from Fig. 3.2 as a table of values,
V in [V] and I in [mA].
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bit vectors. The resulting digital representation embodies the state-transition
function of the single-step automaton. Within such an automaton the time is
represented by the automaton’s implicit clock whose period corresponds to the
time step h that was chosen for the numerical integration.

With the help of the presented flow the digital behavioral representation as
single-step automaton of an arbitrary nonlinear analog component for arbitrary
input sequences can be derived. The computational effort of the approach grows
exponentially with the number of inputs, state-variables, and the number of
quantization steps. It is also possible to utilize a netlist simulator in conjunction
with initial conditions to get the state-transition function in terms of a table of
values.

A state-transition function represented as a table of values can easily be
implemented in a hardware description language. For the verification described
in the following, the example circuit’s table of values (cf. Fig. 3.3) has been
implemented in VHDL using the approach presented in [12].

To the best of our knowledge there is currently no way of formally proving the
correctness of the derivation of the digital behavioral model from a behavioral
description in terms of a differential-algebraic equation system as described
above. For that reason whether the abstraction performed to derive the digital
model, i.e. the choice of the modeling parameters like the time step h and the
quantization parameters has been feasible is validated by simulating/executing
both behavioral models for some input sequences and comparing the corre-
sponding traces. Though the derived digital model is not meant to be used for
simulation but formal verification, the VHDL implementation is simulated for
validation purposes. For this validation task, the initial behavioral description
as differential-algebraic equation system can, for example, be implemented and
simulated using VHDL-AMS. As expected, there is a significant speedup when
the single-step automaton is simulated compared to simulating the differential-
algebraic equation system for the same input sequences.

Verification of a Single-Step Automaton
The VHDL implementation of a single-step automaton can be formally ver-

ified using well-established bounded model checking techniques, for example,
with the 360 MV (formerly GateProp) tool [4] from OneSpin Solutions GmbH.
With the help of this tool formal properties describing the expected behavior
over finite intervals of time are checked for the single-step automaton represent-
ing the dynamic behavior of the analog component. However, some restrictions
have to be made. A single-step automaton is only valid for input values that
have been considered when the automaton was built. Input values that are not
valid in this sense are recognized by the model and cause a property to fail.
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1 p r o p e r t y steady_state i s
2 assume:
3 d u r i n g [t, t+1]:
4 e i t h e r
5 V_in = VDD_0V0; or -- constant denoting 0.0V
6 V_in = VDD_3V2; -- constant denoting 3.2V
7 end e i t h e r ;
8 d u r i n g [t+2, t+14]: V_in = p r e v ( V_in );
9 prove :

10 a t t+14: V_out = p r e v ( V_out );
11 a t t+14: I = p r e v ( I );
12 end p r o p e r t y ;

Figure 3.4. Example VHI property for the transient response of the RLC circuit.

Basedonasingle-stepautomaton, somepropertiesaboutthedynamicbehavior
of analog components can be verified. An example property could state that
the output voltage does not fall below or exceed certain values.

A formal property (cf. Fig. 3.4) written in 360 MV’s property specification
language VHI consists of two main parts: a (possibly empty) set of assumptions
and a set of commitments. Typically, the assumptions are used to express
restrictions on the values at the inputs or the state-variables. The commitments
describe the behavior the circuit must exhibit under these restrictions to be
correct, mainly in terms of expected values at the outputs and input–output
relations. In the assumptions as well as in the commitments it is possible to
reference to the value of any signal at any time-point of the trace. A property
holds iff the implication assumptions =⇒ commitments holds for each trace
of the circuit starting from any arbitrary state and allowing arbitrary values at
the inputs at any time-point.

With the property shown in Fig. 3.4 could be proved, that independent of its
initial state, the example RLC circuit settles to a steady-state after 12 clock-
cycles of the single-step automaton. Here it is assumed that the steady-state
is reached iff both the state-variable denoted by the current I and the output
voltage Vout do not change provided the input voltage Vin is constant.

Further Applications of Single-Step Automata
Based on a single-step automaton, another abstraction step can be performed.

The aim is the derivation of a behavioral model of an analog component that
represents its behavior with respect to the clock-cycle of the digital part of
the mixed-signal circuit. This kind of model can replace the continuous-time,
continuous-valued representation of an analog component in the interconnec-
tion of the analog and digital parts of a mixed-signal circuit.
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Figure 3.5. Building an n-step automaton based on a single-step automaton.

Let the time step h used for creating the single-step automaton be chosen
such that h · n = T, n ∈ N, with T being the period of the clock-cycle of the
mixed-signal circuit’s digital part the analog component is connected to. The
time step h corresponds to the period of the single-step automaton’s implicit
clock. The single-step automaton is executed n-times in series as illustrated in
Fig. 3.5. The state that is reached after one execution step is the initial state of
the consecutive step. Arbitrary but fixed sequences of values inN are chosen for
the automaton’s inputs (cf. Fig. 3.5) within the bounded interval of time denoted
by [0, n − 1]. The restriction to fixed input sequences is necessary to be able
to summarize n consecutive execution steps of the single-step automaton. This
way the mapping of the input sequences and initial states to the states and output
values after n clock-cycles of the single-step automaton can be summarized in
another table of values. This table represents the state-transition function of the
corresponding n-step automaton.

An n-step automaton is a digital representation of an analog component’s
behavior with respect to the clock-cycle of the digital circuitry the analog
component is embedded in. Building an n-step automaton abstracts from the
dynamic analog behavior in between two capturing edges of the digital clock.
In case all output values after n steps of the single-step automaton are inde-
pendent from the automaton’s initial state, the corresponding n-step automaton
represents a combinatorial behavior, sequential behavior otherwise.

There are different application scenarios for the verification-oriented repre-
sentation of a mixed-signal circuit’s analog component by a single-step automa-
ton. Well-established formal verification techniques from the field of digital
verification can be applied in different ways:

• Formal verification of properties about the transient response of the ana-
log component represented by the single-step automaton.

• Composition of different single-step automata in order to get a
verification-oriented model of the corresponding analog component’s
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interconnection. The result of such a composition of single-step automata
is again a single-step automaton.

• Derivation of an n-step automaton and replacing the continuous-time,
continuous-valued behavioral model in the interconnection with the dig-
ital parts of the mixed-signal circuit. The resulting digital behavioral
model of the mixed-signal circuit can be formally verified using the
approach presented in [12].

• Composition of different n-step automata. The resulting digital behav-
ioral description can be used to replace the continuous-time, continuous-
valued behavioral description in order to get a verification-oriented model
of a mixed-signal circuit.

In case the characteristic time constant of an analog component is larger
than the period of the digital part’s clock-cycle, i.e. the digital part is faster
compared to the analog part, the time step h must be chosen such that it is a
multiple integer of T , that is h = T ·m, m ∈ N. For this kind of mixed-signal
circuit, the digital model covering the overall behavior has two clock inputs:
one is the original clock input of the digital part and another one for the analog
part that has a clock period which is equal to h. For the verification of such
a model, the utilized bounded model checker needs to support some kind of
clocking-scheme where two clock inputs and their fixed ratio denoted by m can
be defined. The 360 MV tool does provide this feature.

Using the presented approach to represent analog behavior with the help of
single-step automata and/or n-step automata extends the class of mixed-signal
circuits formal verification techniques are applicable to.

4. Example Circuit: Pixel Cell
The method presented in Section 3 has been applied to create a verification-

oriented model of the analog component depicted in Fig. 3.6. The figure shows
a pixel cell together with an analog switched current (SI) cell. This kind of
pixel cell can, for example, be part of an image sensor matrix where an SI cell
as a readout circuit is assigned to each column.

The photocurrent INW through the photodiode DNW of the pixel cell that is
excited by a light source is considered as the input of the analog component.
For the depicted equivalent network for analyzing the transient behavior, the
voltage VCSI across CSI is the analog component’s output. The remaining input
voltages denoted by VBias, VSel, and VAct are of constant value for the considered
configuration.

For the application of the presented approach to verification-oriented model-
ing the circuit depicted in Fig. 3.6 has been divided into two feedback-free par-
titions 1 and 2(ab). The assumption about these partitions being feedback-free
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Figure 3.6. Equivalent network of the modeled pixel cell with SI memory cell.

is valid with sufficient accuracy for the application considered here. However,
finding a partitioning for an arbitrary circuit that exhibits this property requires
careful investigations and a deep understanding of the circuit’s behavior. In
terms of the derivation of the verification-oriented model of the depicted circuit,
the two partitions 1 and 2(ab) can be considered separately. The partitioning
step is necessary as the dominant time constants of these partitions differ by
six orders of magnitude. The time constants determine the time step h so that
an approximation of the dynamic analog behavior with reasonable accuracy
can only be achieved with the help of two different single-step automata with
the time steps h1 and h2, respectively. The parameters for the quantization of
the continuous values in terms of the resolution and the intervals were cho-
sen equally for both of the single-step automata in order to allow for the later
composition of them.

The behavioral descriptions in terms of nonlinear differential-algebraic equa-
tion systems for both of the two partitions are derived using modified nodal
analysis. For the transistors simplified EKV models [5] are used in this initial
behavioral description. In comparison to the original EKV models, the ap-
plied EKV models neglect channel length modulation and velocity saturation
as these parameters have a negligible impact on the circuit’s behavior in the
configuration considered here.

The parameters for the photocurrent’s (INW) resolution and the quantization
interval are determined. Based on these parameters the single-step automata
representing the behavior of partition 1 and partition 2(ab), respectively, are
built. The output of the automaton representing partition 1 is the voltage at node
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1© which is in turn the input for the second single-step automaton representing
partition 2(ab).

The behavior of the analog component depicted in Fig. 3.6 with respect to
the digital clock of the surrounding circuitry can be represented by an n-step
automaton. Therefore, at first the n2-step automaton for partition 2(ab) that
settles six times faster compared to partition 1 is built. For partition 1, the
n1-step automaton is built whereas the number of consecutive executions of the
corresponding single-step automaton is equal to the quotient of the period of
the digital clock T and the time step h1; T needs to be an integer multiple of h1.
Finally, the composition of the n1-step automaton with the n2-step automaton
represents the behavior of the pixel cell with respect to the digital clock.

Due to complexity reasons, it is not feasible to represent the whole relevant
value domain for the input photocurrent within one verification-oriented model.
Instead, the relevant value domain was covered with the help of several different
models each representing the behavior for disjoint intervals of the input current
according to the divide and conquer principle. Any input values violating
the allowed ranges are recognized in the VHDL implementation and cause a
property to fail during verification. Using the 360 MV tool, some properties
about the transient behavior of the output voltage VCSI of the modeled circuit
(cf. Fig. 3.6) could be proved. Proving a single property took about 40 minutes
of CPU time on state-of-the-art computer hardware.

5. Conclusion
Based on behavioral descriptions of the analog components of a mixed-

signal circuit in terms of – in general nonlinear – differential-algebraic equa-
tion systems an approach to verification-oriented modeling has been presented.
The result of the modeling process is a digital behavioral model, the so-called
single-step automaton. A single-step automaton can be implemented using the
synthesizable subset of a digital hardware description language.

A single-step automaton represents an analog component’s behavior for a
certain time step. Provided that the parameters for the numerical integration
and the resolution for the quantization have been chosen appropriately, the
single-step automaton represents the dynamic analog behavior with reasonable
accuracy. The computational effort of the presented flow grows exponentially
with the number of inputs and state-variables of the analog component under
consideration and the number of quantization steps.

Based on a single-step automaton, some practically relevant properties about
the transient behavior of an analog component can be proved using well-esta-
blished digital bounded model checking tools. In this work, the 360 MV tool
from OneSpin Solutions GmbH has been used for property-checking. Despite
the utilization of formal verification techniques, due to the discretization of
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time and the quantization of the electrical quantities the presented flow has
to be characterized as semiformal. Based on a single-step automaton another,
more abstract model of an analog component can be derived that represents the
analog behavior with respect to the clock-cycle of the digital part of the underly-
ing mixed-signal circuit. By replacing the continuous-time, continuous-valued
behavioral descriptions of all analog components with their representation as
n-step automata, a verification-oriented model of the mixed-signal circuit can
be derived. Thus, the class of mixed-signal circuits formal verification tech-
niques are applicable to has been extended with the presented approach. In
particular, also nonlinear analog components can be modeled and verified by
applying this flow.
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Abstract In behavioral simulation, performance and robustness are often crucial issues.
This paper presents approaches to improve both simulation efficiency and con-
vergence for bottom-up generated behavioral models of nonlinear analog circuits.
The strategy is based on an automated modeling flow and focuses on reformula-
tion as well as restructuring of the underlying equations with respect to sequential
equations.

Keywords Behavioral modeling, symbolic analysis, nonlinear analog circuits

1. Introduction
Simulation performance is an important issue in the verification of nonlinear

analog circuit designs. A promising approach to reduce high simulation times
on system level is bottom-up behavioral modeling. As manual modeling is
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time-consuming and error prone and requires a high level of modeling knowl-
edge, an automated modeling technique is desirable for future verification.

Symbolic analysis [1] offers good opportunities to automatically generate
accurate behavioral models from a circuit. The tool Analog Insydes [2, 3] is
designed to derive differential-algebraic equations (DAE) directly from a cir-
cuit to generate behavioral models based on those equations. Various model
reduction techniques [3–5] can be applied to reduce the high complexity of
the nonlinear circuit equations. Finally, a behavioral model in an analog hard-
ware description language (AHDL) like VHDL-AMS [6], Verilog-AMS [7], or
MAST can be generated from the reduced DAEs.

In the presented research, a modeling flow based on Analog Insydes is used
for the model generation. The derived (purely analog) equation-based models
are of user-specified accuracy and can be parameterized with circuit parameters.
They accurately represent the circuit’s behavior also including higher order
effects.

Although there are highly efficient model reduction techniques, these behav-
ioral models are of exceptional high complexity. Previous research indicated
that the performance mainly suffers from the missing consideration of the used
simulation algorithms and the ability of simulators to deal with behavioral
models of such high complexity as efficiently as with netlist-based simulations
[8, 12].

Nevertheless, device models (e.g. BSIM) show that simulators can deal
efficiently with complex DAE. Some “clever tricks” within the device model’s
implementation prepare the contained equations in an adequate form for numer-
ical analysis. To name just a few of these, there are:

• Procedural evaluation of equations (reducing the number of equations to
be solved simultaneously)

• Preevaluation of common subexpressions (to avoid multiple evaluation)

• Convergence aids and limiting functions (to improve robustness and avoid
floating exceptions) and

• Approximated derivatives (to reduce complexity)

Some of these strategies may also be applied to behavioral models [9] always
assuming the behavioral simulator supports the needed modeling features.

In this paper we present algorithms for the automatic reformulation and
restructuring of differential-algebraic equations for modeling purposes. Key
issues are the recognition of sequential equations from general DAEs and their
usage to improve the simulation efficiency and robustness. Furthermore, un-
necessary multiple evaluation of subexpressions during the simulation will be
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addressed by recognizing common subexpressions and substituting them by
additional sequential equations.

The paper is structured as follows: Section 2 describes the used bottom-up
modeling flow. A brief introduction to sequential equations will be given in
Section 3. In Sections 4 and 5, automated reformulation strategies for DAEs
will be presented. The resulting models’ efficiency in numerical analyses will
be shown in Section 6. Finally, Section 7 summarizes the presented research
and points out future aspects.

2. Bottom-Up Behavioral Modeling Using Analog Insydes
Automatic bottom-up generation of behavioral models by symbolic analysis

allows to derive accurate behavioral models. The model generation process
in this paper is based on the symbolic analysis tool Analog Insydes [2]. This
powerful tool offers the functionality to automatically set up circuit equations
for a circuit netlist and to use them as basis for a behavioral model. Figure 4.1
visualizes an exemplary process for the bottom-up model generation.

Symbolic device models (corresponding to the simulator’s device models)
are used to make the strategy as accurate as the circuit simulation itself. The
circuit equations are usually set up in an extended modified nodal analysis
(MNA) for nonlinear equations. The resulting nonlinear equations contain the
network equations in MNA (as used in most circuit simulators) as well as the
nonlinear element relations resulting from the device model.

The complexity of the circuit equations is increasing proportionally to the
circuit’s size, which is again amplified by the complexity of the used device
models. Therefore, the achieved equation sets are often extremely complex
impossible to set up manually. Model reduction methods can be applied to
reduce the complexity of the equations by term reduction techniques [3, 14]. The
benefit of this symbolic approximation technique is to ensure a user-specified
accuracy. Hence, this is one of the very few methods that allows satisfying a
predefined accuracy.

As the equations’ complexity decreases while the resulting error increases
with the degree of the model reduction, it is up to the user to find a suitable
trade-off between size and accuracy of the model. Experiments show that for
reasonable error margins (5–10%) the complexity can be reduced by a factor
of 10 to 100.

Finally, the behavioral model can be generated from DAEs by using Analog
Insydes’ model export function. It generates several AHDLs (VHDLAMS,
Verilog-A, MAST, etc.) and hence supports the creation of models for almost
every behavioral simulator.
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Figure 4.1. Bottom-up modeling process.

3. Modeling with Sequential Equations
From the implementation of device models for common circuit simulators

(e.g. SPICE) it is obvious that only a relatively small amount of the contained
equations is copied into the simulator’s Jacobian matrix and solved iteratively
with Newton’s method. The main fraction is internally preprocessed in a proce-
dural way and subsequently used to compose the so-called stamp that is needed
to set up the system’s Jacobian via MNA. The main intention of this handling is
to keep the system as small as possible as the complexity for solving a system
of linear equations is dominated by its dimension (and sparsity).

The presented reformulation of behavioral equations focuses on handling
as many equations as possible in a similar way. We define an ordered set of
sequential equations as follows:
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Definition 3.1. Sequential Equations G(x, y) with
x1 = G1(y) (first equation)
xn = Gn(y, x1...xn−1) (any following equation)
where
x : sequential variables
y : simultaneous variables

Hence, sequential equations have to be explicitly solvable for their corre-
sponding sequential variable and must only depend on simultaneous as well as
previously determined sequential variables. The resulting system

∑
(x, y) is the

union of sequential equations G(x, y) and simultaneous equations F (x, y) = 0.
The special case of multiple independent blocks of sequential equations could
be of advantage for parallel processing, but will not be explicitly treated in this
publication.

The (arbitrary) equations Eq. (4.1) to Eq. (4.5) give an example for a system
of sequential structure:

x1 = y1 − y2 (4.1)

x2 =
√

ẋ1 + 1 + x1e
y1 (4.2)

x3 = x2 − 5x1 (4.3)
y1 + 3y2 + x1e

y1x3 = 5 sin(t) (4.4)
√

y1 + 2x2 + x1e
y1 + y2 = 0 (4.5)

The sequential variables x1, x2, x3 can be determined by evaluating the
sequential equations Eq. (4.1) to Eq. (4.3). In fact, they could also be sub-
stituted into the simultaneous equations Eq. (4.4) and Eq. (4.5) to reduce the
system’s dimension. However, substituting all sequential expressions results in
expressions of enormous complexity and is of major disadvantage for numerical
solving strategies.

Although we do not have any detailed information on how sequential equa-
tions are handled in commercial simulators, we suppose that they will not be
solved by Newton iteration. The resulting diagonal block in the Jacobian matrix
will probably be used by the simulator to reduce the size of the system (e.g.
by applying a Schur-like method or eliminating matrix entries). Hence, they
will not influence the dimension of the remaining linearized system that has to
be solved iteratively. This leads to a reduced complexity for the linear solver.
Additionally, procedural evaluation reduces convergence problems during sim-
ulation as the values for sequential variables can be accurately determined.

Starting the modeling from a general system of DAE, the information about
which equations to handle sequentially and simultaneously respectively has to
be introduced. In the next section, this problem will be addressed by a recogni-
tion and ordering algorithm. In bottom-up modelling, there is also an alternative
way to derive the information about sequential equations: As the equations are
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set up from a netlist, the used symbolic device models are implemented such
that they provide model-internal sequential equations directly.

Once the partitioning into sequential and simultaneous equations/variables is
determined, the information has to be passed on to the simulator. In Verilog-A,
procedural assignments as defined in Section 6.4 of [7] are suitable for modeling
sequential equations. The VHDL-AMS standard also provides a simultaneous
procedural statement (see Section 15.4. of [6]), but unfortunately this feature
does not seem to be supported by any simulator available to the authors.

4. Recognition of Sequential Equations
Using sequential equations for improvements in modeling was previously

presented in [10, 13]. In [11] an algorithm for taking advantage from sequential
equations was presented. The recognition was done during the MNA-like set
up of the circuit equations in a bottom-up modeling strategy.

In this section, a general algorithm to identify sequential equations from a
system of DAEs will be presented. In contrast to [11], this approach is also
suitable for manual modeling and more general in the recognition.

The algorithm’s objective is to find a partitioning and ordering of the equa-
tions of a system of DAEs to be compliant with Definition 3.1 and have as many
sequential equations as possible. An additional criterion for a good partitioning
is to handle a maximum of the contained nonlinear equations in a procedural
way. This helps to prevent convergence problems during the iteration of the
remaining simultaneous system. Generating independent blocks of sequential
equations is also beneficial but will not be addressed in this context, as it is
conflicting with the main objective of finding as many sequential equations as
possible.

During the identification process, the equations and variables of the orig-
inal system are successively separated into sequential and simultaneous sets.
Identifying a sequential equation in this context means to

• Identify the equation to be sequential

• Determine its corresponding sequential variable

• Identify and ensure that the equation may be explicitly solved for this
variable

• That it can be inserted into the ordered set of sequential equations without
conflicting with the desired lower diagonal structure (rf. Definition 3.1)

To ensure that a new sequential equation is explicitly solvable for its se-
quential variable a symbolic solving method is applied. As several inverse
functions are of disadvantage for numerical methods, a user-specified black list
of functions not to invert can be provided.
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The identification process can be roughly divided into two phases – the
identification of independent and dependent sequential equations.

Initially, the algorithm starts with all equations and variables unclassified.
Optionally, it is possible to start with a user-defined initial set of simultaneous
variables simplifying the identification process and/or an initial set of sequential
equations which will be kept during the processing. The algorithm itself is based
on the analysis of dependency matrices having the same structure as a Jacobian
matrix and indicating for each equation which variables are referenced. To
derive the dependency matrix the symbolic Jacobian of the system is set up and
filtered for linear, nonlinear, and structural zero entries. Contained derivatives
with respect to time can be handled like the variable itself and hence also result
in entries within the dependency matrix.

Independent sequential equations do not depend on simultaneous variables.
They can be evaluated directly during the numerical solving of the equations.
Alternatively, they may be substituted into the remaining equations. A typical
example for equations of this type are parameter calculations. They can be
identified from the dependency matrix by searching rows containing only one
unknown variable – the sequential variable. Once a row satisfying this criterion
is found, the corresponding equation is added to the set of sequential equations.
Its variable is added to the set of sequential variables and henceforth treated as
a known variable. The phase is repeated until no additional equation fulfills the
above criterion.

A dependent sequential equation may additionally contain simultaneous vari-
ables. As it is advantageous to identify as many nonlinear equations as possi-
ble, the remaining unclassified equations are preordered giving the nonlinear
equations a higher priority to be used as sequential equations. In this phase,
simultaneous variables are also included in the set of known variables. Similar
to the previous phase, rows with only one dependency on an unknown variable
will be extracted repeatedly. A key feature in this phase is to also identify fa-
vorable variables that can be handled simultaneously as this will almost always
allow to solve some more unclassified equations sequentially. Every time the
identification loop is stuck, the algorithm heuristically determines a variable to
be kept simultaneously by the number of unclassified equations depending on
the same variable. The higher the number of dependent equations for a variable,
the better this variable is suited to be treated simultaneously as this reduces the
number of unknowns for as many remaining unclassified equations as possible.

Once all variables have been classified or no more sequential equations can
be identified the identification process terminates. All remaining equations and
variables are declared simultaneous.

Figure 4.2 illustrates the algorithm in six steps for an arbitrary system
(diagram 1) of nine equations (numbered 1 to 9) depending on the variables
A to I. Each diagram represents the dependency matrix of the equations on
the corresponding variables. Light gray boxes represent linear nonzero entries
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Figure 4.2. Example for the sequential identification algorithm.

of the Jacobian matrix whereas dark gray boxes mark nonlinear dependencies.
The white boxes depict structural zero entries. The arrows indicate rows or
columns which have been identified to be swapped in the next process step.
The used equation and sets of variables are visualized at the right and bottom
sides of the matrices. The crosses indicate entries to be identified as sequential
variables in the next step. These entries are moved to the correct position by
row and column swapping and the corresponding equation is reformulated into
an explicit formulation. Hence, the diagonal entry becomes one (assuring good
pivot elements).

Within the example, six equations and variables have been identified to be
sequentially solvable (see diagram 6). To emphasize some special behavior,
two transitions will be discussed in detail:

In diagram 2, the algorithm is stuck as no equation is depending on less than
two unclassified variables. To solve this problem, one variable with as many
dependencies on unclassified equations is declared to be solved simultaneously.
Choosing variable H as simultaneous variable enables the algorithm to identify
equation 1 with variable D.

At the stage of diagram 5, both equation 9 or 2 could be used as sequential
equations for variable F. As equation 2 contains F in a nonlinear context, it is
more useful to select equation 9. Otherwise, the inverse of a nonlinear function
would have been needed or (even worse) no explicit formulation would be
possible.

The algorithm allows to automatically derive an ordering of general equations
and variables, which is of advantage for numerical solving of the system of DAE.



Improving Efficiency and Robustness of Analog Behavioral Models 61

As will be presented in Section 6, the algorithm has been successfully applied to
systems of up to 1,600 equations. It can be easily applied in bottom-up modeling
as well as in postprocessing of DAEs derived from any other modeling strategy.

5. Identification of Common Subexpressions
Another preprocessing step for generating efficient behavioral models is the

extraction of common subexpressions within a system of DAE. The strategy
of Common Subexpression Elimination (CSE) is known from compiler design
and reduces the computational effort by avoiding the multiple evaluation of
common expressions. These expressions are assigned to a temporary variable
and referenced multiple times instead of evaluating the expression multiply.

A similar approach can be used for refactoring DAEs: Expressions that are
used multiple times in a set of equations do not need to be evaluated repeat-
edly. After identifying such expressions additional sequential variables will be
introduced with the corresponding expressions assigned to the new variables.
Consequently, each occurrence of the corresponding expression in the set of
equations is substituted by the newly introduced sequential variable.

Within the example given in Section 3, there is a common subexpression
that could be represented by an additional y sequential equation x4 = x1e

y1 .
It would be added to the equation system and all occurrences of the subexpres-
sion within the original system would be substituted by x4.

For integrating this strategy into the modeling flow two essential steps had
to be performed:

• The recognition of common subexpressions

• Their substitution by additional sequential equations

The first step is based on finding matching subtrees within the expression
trees of all equations. The intention is to efficiently find as many maximum
matching subtrees as possible.

In an initialization phase, expression trees for the equations are set up. After
that, all leaves with multiple appearance of those trees are extracted as a start-
ing set for the algorithm. Hence, this set contains repeatedly used variables,
parameters, and constants of the original DAEs.

Recursively, the algorithm then extends the set of subtrees by one level of
hierarchy and check, whether the extended subtrees are still contained multiple
times. The recursion terminates once all subtrees are processed and no bigger
common subexpressions are found.

The second step of the handling for common subexpressions is the substitu-
tion. For all common subtrees exceeding a user-specified minimum depth addi-
tional sequential equations and variables are introduced and the occurrences are
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substituted. To keep the sequential structure of the DAEs, each new sequential
equation is inserted before its first usage within the equation set. Additional
equations which have only been used within the simultaneous equations are
inserted at the end of the sequential equation block.

Although the strategy increases the number of (sequential) equations, it
reduces the complexity of the original equations and avoids repeated evalu-
ation. Thus, the overall performance during the simulation is increased.

Figure 4.3 shows an exemplary structure of a Jacobian matrix containing
nine equations, six of them being sequential. Assuming the algorithm found
two common subexpressions in equations 3/5 (being a function of variable B,
dark gray) and in 8/9 (function of G/I, black), Fig. 4.4 visualizes the structural
changes and insertion points for the new equations 10 and 11. The variables
J and K represent the extracted subexpressions and are used to substitute the
expressions in 3/5 and 8/9, respectively.

A minor drawback of this strategy may arise if multiple independent blocks of
sequential equations should be kept. Identifying common subexpressions used
within different blocks and substituting them with an additional equation may
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affect the independence of the blocks in some special cases: If a subexpression is
only dependent on parameters and constants, it creates an additional sequential
variable that interconnects independent blocks. As partitioning is not (yet) used
within our approach, there is no unfavorable effect of such substitutions.

6. Results
In this section, the results of applying the refactoring algorithms described in

Sections 4 and 5 will be shown. Front end and back end of the model generation
flow used to prepare the equations and behavioral models shown in this section
were similar to the flow shown in Fig. 4.1. In contrast to that process, no model
reduction was applied. Additionally, the algorithms for recognizing sequential
equations as well as the optimization of common subexpressions were applied
to the circuit equations. In the modeling process, fully symbolic device models
of the dynamic Gummel-Poon bipolar model and the BSIM3v3 MOS model
were used to set up the circuit equations. For the presentation of the refactoring
results, three exemplary circuits have been selected. Table 4.1 shows some
statistics for the examples.

The example opamp741 contains the well-known µA741 operational ampli-
fier. The second example named cfcamp is a complementary folded-cascode
operational amplifier designed in Infineon’s 130nm technology. Finally, the
vco example is implemented as a current-starved ring oscillator (3 stages) and
modeled with the full BSIM3 model.

During model generation, the identification algorithm was applied to the
circuit equations to identify sequential equations in three different use cases:

(1) Identification starting without initial information (the general case)

(2) Trying to identify additional sequential equations keeping the sequential
equations from device models

(3) Additionally constraining the algorithm to keep the block structure of
existing sequential equations

Table 4.1. Statistics for the examples.

Examples Transistors Device Model Model
Model Equations Parameters

opamp741 26 Gummel-Poon 368 564
cfcamp 19 BSIM3 1158 1760
vco 16 BSIM3 858 1285
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Table 4.2. Identification results for opamp741.

opamp741 Seq. Eqs. Sim. Eqs. Reduction
(0) Original Equations 182 186 Reference
(1) Identification without Ini- 252 116 38%
tial Information (+70) (−70)
(2) Identification Keeping 208 160 14%
Original Sequential Eqs. (+26) (−26)
(3) Identification Keeping 206 162 13%
Block Structure (+24) (−24)

Table 4.3. Identification results for cfcamp.

opamp741 Seq. Eqs. Sim. Eqs. Reduction
(0) Original Equations 1026 132 Reference
(1) Identification without Ini- 1083 75 43%
tial Information (+57) (−57)
(2) Identification Keeping 1081 77 42%
Original Sequential Eqs. (+55) (−55)
(3) Identification Keeping 1038 120 9%
Block Structure (+12) (−12)

Tables 4.2 and 4.3 summarize the identification results for both circuits. The
respective first line shows the ratio of sequential and simultaneous equations
resulting from the symbolic device models. In the following rows, the results
of the above stated different application modes are shown. The last column
presents the reduction of the dimension of the remaining simultaneous equations
(relative to (0)).

The results in (1) indicate that even without any initial sequential information
the identification achieves the best results. Applying the algorithm to a system
of DAE already containing a large part of sequential equations in addition
to (1) further reduces the dimension of the remaining simultaneous equations
(as shown in (2)). A minor drawback is that the independency of the blocks
(originally: opamp741 – 26× 7 seq. eqs.; cfcamp – 19× 54 seq. eqs.) cannot
be retained. Constraining the algorithm to retain the block structure (see (3))
reduces the efficiency of the identification algorithm.
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The recognition rate for the vco example is given in Table 4.4 and confirms
the efficiency of the algorithm.

The elimination of common subexpressions can preferably be used after the
identification of sequential equations. Table 4.5 shows that for both examples a
relatively high number of repeatedly used expressions was extracted and defined
in additional sequential equations.

Finally, the effect of this refactoring on the simulation performance was
measured. The generated Verilog-A models were simulated using Cadence’s
AMS Designer (Spectre kernel) and the CPU time of the transient analysis was
used for the benchmarking of the refactoring results.

For all examples no convergence was achieved when modeling all equations
simultaneously. Possible reasons for this are the extremely high number of
equations and the (especially for the BSIM3 model) highly nonlinear contained

Table 4.4. Identification results for vco.

opamp741 Seq. Eqs. Sim. Eqs. Reduction
(0) Original Equations 756 102 Reference
(1) Identification without 787 71 30%
Initial Information (+31) (−31)
(2) Identification Keeping 796 62 39%
Original Sequential Eqs. (+40) (−40)
(3) Identification Keeping 766 92 10%
Block Structure (+10) (−10)

Table 4.5. Results of common subexpression elimination.

Seq. Eqs. Sim. Eqs. Total
206 162 368

opamp741 787 71 30%
(+31) (−31)
1038 120 1158

cfcamp 1753 120 1873
(+715) (+715)

796 62 858
vco 766 92

(+10) (−10) 10%
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Table 4.6. Simulation performance after refactoring.

Performance Original Identification Identifica-
Equations tion and CSE
9.07 s 8.06 s 7.17 s

opamp741
Reference (−11 %) (−20.9 %)
3.9 s 3.5 s 1.5 s

cfcamp
Reference (−10%) (−61.5%)
760 s 504 s 233 s

vco
Reference (−34%) (−69%)

expressions. When sequential equations were used in the model generation,
good convergence, and identical simulation results to the corresponding netlist-
based simulation have been obtained. Table 4.6 summarizes the performance
improvements for both examples. The identification (3) of additional sequential
equations resulted in a speedup of 11% for the opamp741. Extracting 104
common subexpressions with the presented algorithm further improves this to a
total speedup of 21% compared to the simulation containing only the sequential
equations derived from the symbolic device models (0).

For the cfcamp, even better results have been achieved: The identifaction of
sequential equations resulted in a reduction of 12 simultaneous equations (9%)
and improved the simulation efficiency by 10%. Extracting common subex-
pressions additionally introduced 715 new sequential equations. In combination
with the sequential identification algorithm, the CPU time for the transient sim-
ulation was significantly reduced by 61.5%. The simulation performance of
the vco example was enhanced by 69% by preprocessing the equations. These
statistics show that the speedup caused by identifying sequential equations is
roughly proportional to the reduction rate of the linear system’s dimension.
Improvements through common subexpression elimination are scaling some-
how proportionally to the number of saved expression evaluations.

7. Conclusions and Future Aspects
In this publication, two algorithms for preprocessing large systems of DAEs

for efficient and robust modeling have been presented: The identification of
sequential equations from DAEs allows to use procedural statements for
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modeling the major portion of typical bottom-up generated circuit equations.
Hence, the number of equations to be solved with iterative methods is reduced
significantly resulting in increased efficiency and robustness in numerical analy-
sis. The algorithm presented in Section 5 extracts common subexpressions
within DAEs and introduces additional sequential equations to avoid multiple
numerical evaluation of those subexpressions during simulation. Both methods
were integrated into an automated bottom-up modeling flow based on symbolic
analysis. The efficient application for refactoring DAEs has been demonstrated
considering as example circuit blocks of typical size. The achieved results
show that the methodology can successfully be applied in model generation
and significantly improves the simulation performance. Future aspects of this
research cover the automatic insertion of convergence aids into model equations
as well as partitioning sequential equations into independent blocks for further
performance improvements. Another aspect is the realization of a sequential
solving strategy for Infineon’s inhouse simulator Titan to support the usage of
VHDL-AMS simultaneous procedural statements.
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Abstract This chapter describes ModelLib, a web-based platform for collecting models
from different domains (e.g. electrical, mechanical, or electromechanical) and
levels of abstractions (e.g. system, circuit, or device level). Use cases for this
tool are presented, which show how it can support the design process of complex
heterogeneous AMS systems through better reuse of existing models for tasks
like architecture exploration, system validation, and creation of more and more
elaborated models of the system. The current state of the implemented Model-
Lib prototype is described and an outlook on its further development is given.

Keywords Heterogeneous SoC, AMS design process, model library, model meta-infor-
mation, relational database, Apache, PHP, subversion, wiki.

1. Introduction
Systems-on-Chips (SoCs), as combinations of computer and communication

hardware and software equipped with autonomy based on perception, cognition,
and control capabilities, are key parts of a perpetually broadening range of

69
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applications, from industrial equipment to personal appliances. The design of
SoCs has currently to address a number of significant issues:

Increasing complexity, due to the integration of significant computing and
communication power (intelligent systems).

Significant heterogeneity, due to the variety of integrated components (ana-
logue/RF/digital hardware, embedded software, sensors, actuators).

Increasing environmental awareness, due to energy saving, battery-operated
systems, environmental monitoring capabilities, and continuous interac-
tion with the working environment.

Increasing impact of modern silicon technologies, due to deep sub-micron
and nanometer technological processes.

Increasing reuse of subsystems, due to ever shrinking time to market and
rapid product obsolescence.

The fast progressing advances in manufacturing technology allow the inte-
gration of more and more functionality from different disciplines into a single
complex heterogeneous SoC. This leads to a continuous growth in the needed
design effort, where at the same time product cycles get shorter. The resulting
increase in the “design productivity gap” is especially notable in semiconduc-
tor industry. There, the technological production capacity (measured by the
number of available transistors) has increased since 1985 yearly between 41%
and 59%, whereas the design capacity (measured by the efficient use of tran-
sistors) has increased only at a yearly rate of 20% to 25% [9]. To allow the
control of the design costs and to prevent them to get prohibitively expensive,
new design technologies have to be continuously introduced, like block reuse
or IC implementation tools.

The design of heterogeneous Analogue and Mixed-Signal (AMS) systems is
still a highly manual work and not as automatised as the design of digital sys-
tems using logic synthesisers and place and route tools. Their design requires a
diversity of description formalisms, also called Models of Computation (MoCs),
analysis and simulation methods provided by specialised simulators for differ-
ent physical disciplines and levels of abstraction, as well as CAD tools for the
design and layout of the physical realisation of each heterogeneous system com-
ponent. For example, the design of a typical Micro-Electro-Mechanical System
(MEMS) like an inertial yaw rate sensor [8] requires, among others:

• Optimisation and characterisation of the micromechanical resonator and
(separately) of the electrostatic field distribution of the comb drive struc-
tures, which are driving and sensing the movement of the flexible struc-
ture, using a FEM tool like ANSYS from mechanical engineering
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• Simulation of the whole system on the circuit level, taking into account
the coupling between mechanical and electrostatic domain within the
MEMS transducer and feedback from the analogue and digital driving and
sensing circuits using behavioural simulators and modelling languages
like VHDL-AMS from electrical engineering

• Layout of the mechanical structure and of the electronic circuits using
IC layout tools

These tools originate from different engineering fields, which leads to problems
when exchanging models and other design data. The designers are forced to
bridge the gaps between tools and methodologies using manual conversion of
models, proprietary tool couplings, and tool integrations. It is still difficult to
handle all the different design aspects of a mixed-signal system simultaneously.
An efficient tool support for the AMS design flow (Fig. 5.1) is thus missing and
rendering it overly complicated, error prone, and time consuming.

The challenge for the EDA industry in the short term is to improve the links
between the existing tools. Here, one research area, which relates to the given
yaw rate sensor example, is the development of reduced-order modelling meth-
ods that allow the extraction of fully coupled behavioural models for circuit
level simulation from detailed FE models of the device [8]. In the long term,
new design methods and integrated tool chains are needed to support the whole
process of specification, design, integration, validation, verification, and inte-
gration of the components of a complex AMS system. First approaches for the
specification, synthesis, and automated layout generation exist for moderate-
complexity analogue circuits (device count less than 100), e.g. the AMGIE
approach and the Mondriaan tool described in [16].

Behavioural modelling of analogue/RF/MEMS blocks is a methodology that
is being increasingly used in industry today during the design of integrated sys-
tems. Behavioural models describe the functionality of a component as input–
output behaviour augmented with major non-idealities of real implementations,
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72 ADVANCES IN DESIGN AND SPECIFICATION OF EMBEDDED SYSTEMS

but without requiring a complete description of real implementations. The
purpose is mostly to verify the correct functionality of the system in accept-
able CPU times by replacing (some) analogue/RF circuit schematics or 2D/3D
models with behavioural models. The usage of behavioural models is beneficial
on both sides of the V-shaped design process (Fig. 5.1):

• During top-down design, to develop a system architecture that meets the
system specifications. Although automatic formal refinement or synthe-
sis methods for analogue/RF/MEMS systems are still mostly lacking, the
existence of a well-defined library of behavioural models and area/power
estimation models combined with fast high-level simulation methods may
considerably help the designers during architecture exploration and allow
optimal mapping of the top-level performance specifications among the
different blocks in the system architecture, trading off different specifi-
cations and implementation cost (e.g. area, power). An example is given
in Fig. 5.2, which shows a possible realisation of the receiver front end of
a digital telecommunication link and the block specification parameters,
which have to be derived from the overall system specifications.

• During bottom-up design, to allow the overall system verification, where
the detailed circuit netlists are replaced by more abstract models that
are characterised against their respective circuit implementations. The
behavioural models for that kind of task may be the same as the ones used
in the top-down phase or they may be different, if they are obtained by
extracting/simplifying the circuit or device behaviour using the already
mentioned reduced-order modelling methods, which involve typically
symbolic equation manipulation or the generation of look-up tables.
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The management of models of a device, component, or the whole system on
different abstraction levels is thus an important aspect of an AMS design flow.

The behavioural modelling is facilitated through standardised mixed-signal
and mixed-technology behavioural description languages like VHDL-AMS
or Verilog-AMS [13], which are implemented by several commercial simu-
lators. The SystemC-AMS modelling framework [15] extends the capabili-
ties of VHDL-AMS at the system level by supporting Models of Computation
(MoCs) that allow the development of abstract models and efficient simulation
of complete heterogeneous systems. However, the development of a model for
a specific block is not an easy task because of several issues:

• The block heterogeneity requires specific knowledge of all the different
involved physical domains.

• The model is the formalisation of the designer’s intent and is thus requir-
ing from him the knowledge of the modelling language, the methodology,
and the used design tools.

• The model needs to be adapted to the tools and for the specific design
task, e.g. simulation, (formal) verification, optimisation, or synthesis.

• The abstraction level needs to be adapted to the specific design task
to choose the right trade-off between level of detail (accuracy) and the
execution speed of the model.

To speed-up the creation of these models, it is advantageous to reuse existing
models and to possibly adapt them further. Nowadays, designers often reuse
only their own models or those provided by the design environment for two im-
portant reasons, which need to be addressed. First, an exchange of the models
between designers is complicated by the fact that they are often not aware if and
where a similar model is already existing. Second, the designer has to gain trust
in the validity of the model for his specific design task, which is more difficult
to achieve for foreign models because of the “Not invented here” syndrome.
To overcome these problems, the models need to be documented regarding
their interface, implementation, extend of covered effects, how they were veri-
fied, and other general properties. The designer needs to understand from this
information the model structure and its functionality as well as to judge, if it
is suitable for a given task. It has to be clear with which tools the model is
expected to be compatible. The Engineering Society for Advancing Mobility
Land Sea Air and Space International (SAE) covers the documentation issues in
the SAE J2546 Model Specification Process Standard [14]. There are ongoing
activities to develop collections of verified models for different design languages
like Modelica [6] and VHDL-AMS [4]. Those libraries are often available as
archives from the Internet. They usually provide some documentation besides
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the model source code, which can be, to some degree, automatically extracted
from the model sources using a documentation generator.

There are also tool-specific library managers, e.g., the Library Manager in
the Cadence IC Design Environment or the Workspace in Mentor Graphics
ModelSim, to handle the various models of a project and the design-kits. How-
ever, these tools cannot cope with the management of the models over the tool
boundaries, as it is required for heterogeneous AMS system designs. Hand-
written websites documenting and linking to model archives are a solution, but
can only partly address these issues and require a lot of manual maintenance
to stay up to date. The ModelLib project addresses these problems through the
development of a web-based platform with the following objectives:

• Creating a platform for collecting and distributing models independently
of the design tools

• Establishing a validation process for the collected models through col-
laborative review and development

• Supporting the designer’s decision for the right model for each task (e.g.
architecture exploration, performance analysis, verification)

• Realising this in an open-source framework, but with appropriate IP pro-
tection for the stored documentation and models

This chapter describes the ModelLib platform that is being developed to
address the described needs. It will also offer features supporting the design of
complex heterogeneous AMS systems. Section 2 presents the basic use cases
for a model library and how it can support the work of the AMS designer. From
this, requirements for the ModelLib platform are developed. The architecture
of a prototype implementation is described in Section 3. Conclusions are given
together with an outlook on further developments in Section 4.

2. Use Cases and Requirements for a Model Library
A model library like ModelLib can be set up on different organisational

levels, like within a project group, a company, or as a community portal on
the Internet. The basic use cases (Fig. 5.3) for the AMS designer accessing the
ModelLib server through a client on his computer for submitting, retrieving, and
collaboratively developing the models over the Internet remain the same, while
the demands for security and required detail of access control will rise with each
level of broader access. The communication between client and server needs to
be done through an encrypted channel. Users have to authenticate themselves
in front of the model library so that the information stored in the library can be
selectively made available to the different users. This is needed to protect the
Intellectual Property (IP) of the authors and to support the conformance to their
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Figure 5.3. Use cases of a model library.

licence terms, under which they are making their work available to the public
or a restricted group of users.

Users of the model library can be categorised into five different roles, each
with a different profile of allowed actions on the library (Fig. 5.3). The guest
is anonymous and has thus the minimum rights. He can only browse for a
limited collection of public models, send queries about their meta-information,
and retrieve their source code by checking it out from a public repository. By
authenticating himself with a valid user name and password, he can become
an authorised user, who gains further rights dependent on his membership in
different groups. These groups grant or deny him access to the different parts
of the library (the different models, testbenches, and documents themselves, as
well as the supplementary meta-information about them). He can participate in
the review process by discussing the models, testbenches, and documents stored
in the library. He can also actively contribute to their development by submitting
new models, adding/editing of the meta-information about them, and organis-
ing them into different categories called model classes. Also EDA tools need
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also a direct access to the model library and are a special form of an authorised
user. There are two privileged roles. The content manager configures accounts
and access rights of the users, reviews their submitted models, testbenches, and
documents, and adds commonly used information about supported design lan-
guages and tools. The system administrator is responsible for the maintenance
and the further development of the model library platform.

In the following, the use cases for retrieving a model (through browsing or a
more complex query) are discussed in more detail, since they show which meta-
information need, to be stored in the library alongside the models to support the
designer’s decisions. Then follows the description of the remaining use cases
regarding submission, updating, and jointly developing models.

One way to access the models in the library is to directly browse through the
collection of available models. For this they need to be sorted into a hierarchy
of model classes. A model can be at the same time member of different classes,
e.g. to reflect that a model is part of some IP library and that it is modelling
effects from a particular physical domain. In [14, Appendix A] a list of auto-
motive EE commodities structured into a hierarchy of EE Commodities, Class,
Sub Class I, and Sub Class II is given. It illustrates the diversity of automotive
EE commodities that may be subject to modelling and simulation. It could
serve as a guide to structure the model library. After selecting a model, the user
is presented the meta-information describing the properties of the model, which
can be detailed into structural meta-information describing “How the model is
built?” and semantical meta-information describing “How the model can be
used?”. The structural meta-information describes the following aspects:

• Name and storage place of the model within the model class hierarchy

• Interface, including detailed information about all parameters and ports
as well as the assertions associated to it

• One or more model implementations (architectures) in the form of
behavioural description(s) and/or structural description(s) along with the
assertions associated to it/them

• Design entities, each one gathering the interface and one model imple-
mentation using a particular design language (e.g. VHDL-AMS) and
tested against particular tools (e.g. simulators or synthesisers)

• Testbenches, which are stored with the models and refer to some de-
sign entities. They are implemented using a design language version and
stored in a number of files, which are known to work together with some
design tool versions. Test data and expected results can be included.

To each of these aspects, an arbitrary number of references to external docu-
ments can be given. These are information, which can be directly extracted
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from the model sources. To support the porting of design entities and test-
benches to other design tools, it is required to store additionally information
about the different versions of available design languages and design tools, as
well as which tool versions support which language versions. Figures 5.6, 5.7,
and 5.8 from the ModelLib prototype described in Section 3 show one way of
presenting the structural meta-information to the user.

The semantical meta-information further characterises a model regarding its
fidelity, performance, and usage. The SAE J2546 Model Specification Process
Standard [14] discusses some of these aspects. It recognises that models can be
classified according to their sophistication, capability, and captured intelligence
and that the many dimensions of fidelity make the classification challenging,
since these dimensions may be sequential, parallel, independent, contradictory,
and/or redundant. Properties of a model may be related to the entire model, a
particular feature it implements, or the way of its execution. The semantical
meta-information includes for example:

Model refinement level: The SAE J2546 standard proposes a number of model
refinement levels, of which some are of interest in the context of a model
library:

Pins: The model consists only of an interface with ports, parameters, and
assertions. An instance of the model can be created, but cannot be
executed since the model does not implement any internal feature.

Static: The model implements time-invariant, steady-state internal be-
haviour using some primary quantitative properties suitable for DC
or steady-state AC analysis. An amplifier could be represented
on this level through a controlled source; a piezoresistive pressure
sensor only through its stiffness, the stress-free resistance, and the
piezoresistive coefficient.

Dynamic: The model implements time-varying behaviour, possibly
including non-linear characteristics, but neglecting smaller second
order effects to capture only the primary time-dependent behav-
iour. For example, the amplifier model could include its limited
bandwidth and a slew rate. A pressure sensor model could include,
stress-stiffening, inertia, and damping effects.

Precision: The model implements a significant amount of second or-
der effects in addition to the effects necessary to capture its pri-
mary time-varying behaviour. For an amplifier model, this could
mean that it includes noise and thermal effects like self-heating and
temperature-dependent gain variation. A pressure sensor model
could include cross-sensitivity to other physical quantities like tem-
perature as well as fatigue or hysteresis effects.
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Vector: The model implements directional or spatial interfaces to its
environment in contrast to the previously one-dimensional lumped
connection points. This could be achieved, e.g. through a distri-
bution function or multiple connection points. Typical examples
are models with spatially distributed parameters, e.g. a MOSFET
device model taking into account its geometry and doping profiles
or a 3D FE model of a pressure sensor.

Model of Computation (MoC): on which the model is based, may it be a dis-
crete MoC (Discrete-Event (DE), Finite State Machine (FSM), Petri net,
Data Flow (DF), . . . ), continuous MoC (signal flow, conservative net-
work, bond graph, Finite Element Method (FEM), . . . ), or in some way
a synchronised mix of discrete and continuous MoCs.

Physical disciplines: the function of a modelled component is based on, elec-
trical, mechanical, thermic, hydraulic, optic, etc.

Validity of the model: describes under which assumptions and operating con-
ditions a model is valid.

Suitability for design tasks: e.g. architecture exploration, area/power estima-
tion, connectivity verification, or bottom-up verification (using back-
annotated or calibrated models).

Keywords: to index the model.

Feature properties: A model has individual features, each capturing a differ-
ent aspect of the component with a varying level of detail: the nominal
behaviour (e.g. amplification or signal filtering) of the component, plus
secondary behaviour (e.g. temperature dependency or noise) caused by
its interaction with the operation environment. A captured model feature
can be mapped, e.g. through global variables, the parameters, or the ports
of the instantiated model on the internal variables of a model.
A feature is often based on a physical effect, e.g. variation with T , man-
ufacturing tolerances, aging, self-inductance, or noise. It influences the
performance criteria of a component, e.g. filter characteristic, filter order,
cut-off frequency, bandwidth, sample frequency, or the noise figure.
The feature refinement level describes how far a model feature is
implemented (levels 0–7 in SAE J2546): None (not included), Named
(acknowledged but unimplemented), Fixed (adjustment only through
editing the model or a non-related parameter), Index (offers discrete
choice of discrete values or modes), Static (accepts parameter value
prior simulation run), Dynamic (adapting to internal conditions during
simulation), Mutual (adapting to external influences during simula-
tion), Directional (adapting to directional external influences during
simulation).
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Execution capabilities: Depending on its implementation, a model is suitable
for different types of execution, notably simulation and synthesis. The
results obtained from the model execution need to be characterised.

A model can support for simulation different analysis types like Continu-
ity and Loads Analysis, Nominal Analyses (DC, transient, small signal,
and stability analysis), Stress Analysis, Perturbation or Sensitivity Analy-
ses, Worst-Case Analyses, Failure Modes and Effects Analyses (FMEA),
or Sneak Circuit Analysis (SCA). For each analysis type, the model can
give different results (e.g. current, voltage, temperature, force, power,
failure), obtainable either dynamically during or only after completion.
Each result can be in a different form like Flag, Message, Scalar, Wave-
form, or Relation (non-time series, describing in the form of, e.g. an
equation or a table of the interaction of two or more variables).

Synthesis transforms a model through an algorithm into another model.
During top-down design, details are added in each synthesis step. For
example, a program implementing an algorithm (C, MATLAB, VHDL,
etc.) can be transformed into an Register Transfer Level (RTL) descrip-
tion (VHDL, Verilog, etc.), then into a gate level description (SPICE
or Verilog netlist), and finally into a layout. During bottom-up design,
models can be simplified through reduced-order modelling methods to
make them suitable for simulation on higher levels of abstraction.

It is possible to include all this supplementary information into free-form
description fields, but for large model collections, like they are intended for
ModelLib, it is better to structure them as far as possible and to store them in an
adapted data structure. This has to be done as general as possible because not
all properties, which a designer might think of storing for a model, are known in
advance. It allows the AMS designer to better manage the models for different
levels of abstraction of the same physical component.

A large collection of models also requires a more efficient access to the
models, besides browsing, to support the designer in selecting the model with the
right fidelity for reuse in the design tasks (e.g. architecture exploration, detailed
component characterisation, system validation). To do that, the designer has
to send queries to the model library. In simple cases, this means querying for
a model name, key words, and full text search in the description fields of the
interfaces, architectures, etc. If this is not sufficient enough, more complex
queries for certain properties of the model to be in a specified range (e.g. detail
level, modelled effects, design language, component properties) can be made.

The use cases for browsing and querying of models showed which informa-
tion has to be provided by the model developer when submitting a new model
to the library. First, the files containing the source code, testbenches, test data,
simulation results, and other documents of the model must be made accessible
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through Uniform Resource Locators (URLs), preferably by submitting them
to the repository of a revision control system. This eases their further (coop-
erative) development, keeps track of the modification history of each file, and
keeps thus all model revisions accessible. Then, the meta-information about the
model, testbenches, etc., needs to be extracted from these files and entered into
the library using structured input forms. This process can be partially automa-
tised using similar techniques like the ones used by documentation generation
tools [4]. During the further development of the model, the meta-information
needs to be continuously updated to keep it in sync with the changes made. The
library supports the development process by providing a forum for discussing
the model and jointly improving its implementation and documentation.

The newly submitted model is stored, in the beginning, in one of the private
model classes of the model developer, for which he can specify the access
rights. To publish the model to the other users by including it into the official
collection of the library, he has to contact one of the content managers. They
will do a first review to evaluate if the model has reached a level of quality
to be made public. This review includes checks if the model source code is
following some suggested coding rules (e.g. no syntax errors, well-structured
and well commented code, consistent naming scheme, . . . ) as well as if the
supplied meta-information and documentation is correct (consistent with the
model source code) and complete enough (permitting understanding and usage
of the model by a third party). The content manager gives feedback to the
author until the requirements for the publication of the model are met. Then,
the new model is sorted into the appropriate public model classes and announced
to be available under certain licence conditions. This formalised submission
process shall insure a basic quality standard of the available models in the
library. Subsequently, other authorised users can comment on the different
parts of the model, can give a rating of the model, and can contribute to its
further development by providing patches and documentation. Rating charts of
the models may be implemented to motivate the developers through a sense
of competition. The goal of these measures is to create an active community
of model developers, which help and motivate each other while constantly
improving the model library.

3. Implementation of the ModelLib Prototype
Several software components have to be integrated to meet the requirements

arising from the use cases presented in Section 2. The core component of
ModelLib is a database that stores the meta-information about the models.
All files that contain the models and their accompanying documents are man-
aged by a revision control system to allow their collaborative development.
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A wiki provides an open platform to discuss the models and collaborate on the
improvement of their implementation and documentation.

A running prototype of ModelLib [7] is being implemented, which is using
PostgreSQL [12] to manage the database that stores the meta-information, Sub-
version/WebSVN [2] to handle the model repository, YaWiki [5] to discuss and
jointly develop the documentation of the models, and PHP [11] to implement
the web interface served out by an Apache 2 web server [1]. This section
describes the current state of the prototype.

Figure 5.4 shows the architecture of the prototype and how its different
components interact. The lower part of the figure shows the different user-
created documents managed by the ModelLib server. The file revisions of the
documents are stored in the repository. The meta-information about models
and accompanying documents are stored in the meta-information database.
Informal texts, like discussions and HOWTOs, are stored in the wiki database.
On the server side implemented user interfaces provide the access to these
three storages, which has the advantage that users can access ModelLib over
the Internet using a standard web browser. The file revisions of the models
and documents are managed on the user side by the Subversion client. It also
provides the possibility to commit them to and update them from the repository.

Model
source code

Testbenches
and their results

Meta informationFile revisions

File 
repository 

(Subversion)

Meta information 
database 

(PostgreSQL)

Wiki 
database 

(PostgreSQL)

Storage
backend

User web
interfaceModelLib

Subversion client Web browser Client

User created
documents

Informal texts, e.g., 
discussions, HOWTOs

WebSVN YaWiki

ModelLib server HTTP/WebDAV

Aux. Documents
regarding models

languages,
and tools

Figure 5.4. Architecture of the ModelLib prototype and the communication links between its
different components.
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The meta-information describing the properties of the models is stored in
a relational database. Figure 5.5 shows the Entity-Relationship (ER) diagram
of the database that has been designed for the prototype. It currently consid-
ers the model class hierarchy, the information about referenced external docu-
ments, the information about available design language and tool versions, and
the meta-information about interface, architectures, assertions, design entities,
testbenches, and files of the models. This fully covers the structural meta-
information described in Section 2. The structural meta-information is not yet
implemented in the database structure and can be stored, currently, only as free-
form descriptions. PostgreSQL [12] has been chosen to implement the database
for the ModelLib project because of its (among others) full ACID compliance,
good ISO SQL standard coverage, and its handling of foreign key constraints.

The ModelLib web interface provides access to the model collection over
the Internet. It queries the meta-information about models, testbenches, design
languages, design tools, and document references from the Relational Database
Management System (RDBMS) and outputs it to a CSS formatted HTML page.
In the prototype, it is implemented in the server side scripting language PHP,
using library packages from the public PEAR repository [10], which ease the
development of web applications. For example, the ModelLib prototype uses
DB and Text_Wiki to access the database on the PostgreSQL server and format
the HTML output of the free-form description fields using a wiki-like syntax.
Currently, the web interface implements the following features:

• Logging in as different database users

• Browsing the model class hierarchy for a model

• Displaying and editing of all information related to the interface, archi-
tectures, design entities, and testbenches of a model (Fig. 5.6)

• Displaying of the information about the available design languages and
their different versions (Fig. 5.7)

• Displaying of the information about the available design tools and their
different versions (Fig. 5.8) and

• Displaying/editing of the document references

The files containing the models, testbenches, and their accompanying docu-
ments are stored in a repository, which is managed by a revision control system
to allow their collaborative development. The meta-information database refers
to the files in the repository using URLs. The Subversion system has been cho-
sen for the ModelLib prototype since it provides most features of the widely
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Figure 5.6. Meta-information about a selected model.

used CVS and overcomes some of its known drawbacks by supporting, among
others, versioned directories, renames, and meta-data; truly atomic commits;
efficient handling of binary files; and more efficient handling of tags and
branches. An Apache 2 web server, using the module mod_dav_svn.so from
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Figure 5.7. Meta-information about design languages.

Figure 5.8. Meta-information about design tools.
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Subversion, makes the repository available to the clients via the WebDAV
protocol [17], which is an extension to the HTTP 1.1 protocol that adds
versioned-writing capabilities. This provides key features like authentica-
tion, path-based authorisation, wire compression, and basic repository brows-
ing using a web browser or WebDAV client. The PHP-based web interface
WebSVN improves the browsing of the repository via a web browser consider-
ably, with features like viewing the file/directory logs; listing of all changed,
added, or deleted files in a queried revision; log message searching; Blame
support; Tar ball downloads; Directory comparisons; and RSS Feed support.

A wiki provides an open platform to discuss the models and to collaborate
on their implementation and documentation. An access rights management has
to be established to control the read and write access to the different models.
YaWiki [5] was chosen for the ModelLib prototype because it adds logical
name spaces, Access Control Lists (ACLs), navigational elements, and more
to the traditional wiki; each wiki page can be instantly commented through a
web form; it is written in PHP like the other parts of the ModelLib web interface;
its formatting engine Text_Wiki is a PEAR module, which is also used in the
ModelLib web interface to format the free-form description fields.

4. Conclusions and Outlook
The ModelLib prototype presented in Section 3 implements basic features

of a model library as described in Section 2. Its web interface allows browsing
for a model through the model class hierarchy. The meta-information about
models, testbenches, design languages, design tools, and external documents
that are stored in the meta-information database can be displayed. New models
can be added by committing them into the repository and adding/editing their
meta-information in the meta-information database using the web interface.

Currently under development is a unified authentication and a fine-grained
access control mechanism using ACLs to allow the public usage of ModelLib
over the Internet, while keeping control of who has read and write access to
the different parts of the library. The web interface is being reimplemented
on the base of the Java Platform, Enterprise Edition (Java EE), to improve
the modularity of the data storage, application logic, and presentation layers
and to realise direct EDA tool access through an Application Programming
Interface (API). This will also give the opportunity to improve the usability
and to complete the functionality of the web interface. The three main com-
ponents, i.e., repository, meta-information database, and wiki, will be better
integrated to offer the user a coherent interface. The main task for the further
development of the ModelLib prototype is to support the structured storage of
the semantical meta-information, which characterise the fidelity, usage, perfor-
mance, and other properties of the model. This implies an extension of the
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current database scheme. The querying of models is currently only supported
through direct SQL queries to the meta-information database. This use case
needs to be implemented into the web interface, so that it will offer the designer
elaborated query schemes to guide him/her in the selection of a suitable model
for his current task. The efficiency of the model import and update can be
improved by automatising the input of the meta-information in the ModelLib
database by extracting the information from the model source code.

In the near future, the approach presented in this chapter shall be validated
through the support of practical design cases such as the design of RF trans-
ceivers and multichannel A/D converters.
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Introduction

The five papers selected for this part of the book are not only excellent
contributions to the C/C++-based System Design (CSD) workshop, but also
reflect the different aspects covered in the workshop. These aspects include
modelling and design techniques for simulation, debugging, transformation,
and analysis of hardware/software systems. The lion share of the papers use
C/C++-based languages like SystemC.

The first paper presents an approach called “Quiny” which allows to analyse
and transform SystemC models by introspection at run-time. The approach is
illustrated by a SystemC to VHDL translation. In the second paper the method-
ology and a tool are described to extract metadata from (a library of) SystemC
IP components. The metadata describe the (hierarchical) structure and com-
munication interface of components to enable system level IP-composition.
The techniques presented in the third paper enable more efficient debugging
of SystemC designs without changing the models. With minor modifications
to the SystemC kernel the GNU debugger has been extended by high level
debugging commands. The case study presented in the fourth paper demon-
strates how TLM techniques can be applied in HW/SW co-design to shorten
the design time. The experiment shows that the required changes in design
methodology are acceptable compared to the benefits. The final paper in this
part describes a mechanism to combine object-orientation with OSCI TLM by
introducing “active objects”. A small case study illustrates the use and results
of the approach.

I hope that this brief introduction will draw your attention to the scientific
articles in the following chapters and stimulate you to participate in the next
CSD workshop at FDL 2007 in Nice.

Frank Oppenheimer
OFFIS e.V.

R&D division Embedded Hardware/Software Systems
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Abstract In this article we address the problem of parsing SystemC designs. We present
how a reflection-like technique – as an alternative to classical parsers – can be
used to obtain a complete representation of a SystemC design. Such a represen-
tation can be the basis for further analysis, transformation or synthesis tasks. We
illustrate this technique by means of an automatic SystemC to VHDL translation.
Furthermore, we compare our approach to classical parsers.

Keywords SystemC parser, reflection, introspection

1. Motivation
SystemC emerged as promising approach for system-level design coping

with the ever-increasing complexity of today’s and tomorrow’s systems. Tech-
nically SystemC is a C++ class library which provides a discrete event simula-
tor, specific data types, and an infrastructure for describing hierarchical designs
and communication on different levels of abstraction. This makes SystemC an
attractive platform for research on new design methodologies. For example,
new (experimental) language constructs can be introduced by simply extend-
ing the library. Since there is no need for a separate simulator, the extensions

∗This work was done in the ICODES project and supported by the European Commission.
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can be experimented immediately by just compiling and executing the design
under test in conjunction with the extended library. When it comes to automat-
ing certain tasks of the design process, however, the problem of processing, i.e.
reading and transforming SystemC designs arises. Especially, parsing SystemC
is challenging and many approaches have been proposed to tackle this problem.

The rest of this article is structured as follows: Section 2 describes and
analyses the problem of parsing SystemC and Section 3 takes a closer look at
existing approaches. In Section 4 we present a new technique to (partially)
solve the problem and discuss its pros and cons in Section 5. We conclude with
Section 6.

2. Problem Statement
In order to build tools which can analyse, transform, synthesise, or perform

any other kind of processing of SystemC designs it is obviously necessary to
read the SystemC source code as input and to build an appropriate data structure
for further processing.

Goals
Depending on the concrete analysis or transformation task, a subset of the

following properties of a SystemC design have to be determined:

• The hierarchical structure of a SystemC design: (sub-)modules, ports
signals, processes

• A process’ sensitivity, accessed ports, statements, and expressions

• The types of ports, signals, variables, etc.

• Type information about user-defined types, i.e. data members, methods,
constructors, destructors, and inheritance relations

As an exemplary application to illustrate our approach we chose the task
of transforming a given RTL SystemC design into an equivalent RTL VHDL
description. That is, the input is SystemC source code and the output is VHDL
source code.

In order to realise such a translator we need access to all of the properties
listed above except for the last one. This can be achieved with an intermediate
representation (IR) as shown in Fig. 6.1. The IR is a representation of a whole
SystemC design after the elaboration phase as opposed to an abstract syntax
tree (AST) which only reflects the static source code structure.

Further potential application scenarios are, for example, documentation gen-
eration, visualising a design’s structure, state-machine visualisation, fixed-point
to integer conversion, or behavioural synthesis.
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Figure 6.1. Intermediate representation of a SystemC design.

Analysis
The task of creating an AST from source code is usually done by a parser. The

creation of parsers is well understood and even largely automated. However,
parsing SystemC is still a complex and challenging task. The reason for this is
that SystemC is not a language on its own, but a C++ class library. SystemC
models which are solely intended to be used for simulation can in fact use all
C++ features. As correctly stated in [11]

Any tool using a dedicated grammar for SystemC would have to include all
the grammar and typing rules of the C++ standard in the tool to have a correct
parser.

What makes the situation even more complicated is the fact that an AST does
not provide all necessary information. It is usually an abstract representation
of the static source code structure. In order to infer the hierarchical structure of
the design, it is necessary to mimic the elaboration phase, i.e. to perform some
kind of interpretation of the code located in the constructors.

Even restricting to hardware synthesis, i.e. imposing certain constraints on
the input concerning the allowed language features and code structure, does
not significantly lower the complexity. This is due to the fact that (a) a tool
provider usually wants to provide a powerful and convenient to use synthesis
subset and (b) in principle nearly every C++ feature except for those constructs
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involving dynamic (de-)allocation of memory, unrestricted usage of pointers,
and exception handling can be synthesised. An example for such an extended
synthesis subset especially regarding the object oriented features can be found
in [5].

The specific problem we address in this article is the creation of the IR from
the SystemC source code. The VHDL generation is pretty straightforward since
input and output are RT-level models and hence no (complex) transformations
are required. However, using a more complex backend – which is not the focus
of this article – our approach enables truly self-synthesising SystemC designs.

For our purposes we assume the following requirements on a tool (also called
front-end) which creates such an IR:

• Large accepted language subset (ideally arbitrary SystemC models)

• Non-intrusiveness: no parser-specific constructs have to be inserted into
the user’s code

• Modularity: user-defined backends, convenient API for accessing the IR,
extensibility to new language constructs

• Generation of meaningful error messages for ill-formed programs

• Efficiency

• Low costs, i.e. implementation effort and/or royalties

3. State of the Art
In principle, two different categories of approaches can be distinguished:

(1) those parsing SystemC source directly and (2) those making use of the
run-time features of the SystemC kernel. The former category can further
be distinguished into those approaches treating SystemC as language having
certain keywords and the ones treating SystemC designs as C++ programs
adhering to a certain style and using predefined classes.

Parsers
Commercial SystemC tools, which need detailed information about SystemC

designs, most probably rely on commercial C++ frontends like [2]. This can
also be an option for research projects depending on the constraints on licensing
conditions and the available development resources.

In [1] a doxygen-based SystemC parser is described. The XML output
available from doxygen is processed and the structure of the design is inferred.

The SystemPerl tool-suite [12] includes a lex/bison/Perl-based parser com-
ponent which provides basic information about the SystemC design, but does
not handle process bodies.
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The SystemC2Verilog translator [7] also uses a lex/yacc-based approach to
parse SystemC source code. Due to its focus on translating RTL SystemC to
RTL Verilog, rather than being a SystemC parser, its subset is limited. For
example, module instantiations have to be done via new, signal, and port
accesses have to use the read and write methods, and no C data types are
allowed.

The SystemC parser ParSyC [3] is also written from scratch using the Pur-
due Compiler Construction Tool Set (PCCTS/ANTLR). The parser is able to
determine the structure as well as the behaviour defined by the method bodies.
The supported language subset is not explicitly stated in [3].

KaSCPar [4] is a SystemC parser which was written from scratch using
JavaCC and JJTree. Its output is an AST and an XML representation of the
SystemC design after elaboration.

Reflexive Approaches
As stated in Section 5.2.20 of the SystemC language reference manual [9], the

method sc_module::get_child_objects() can be used to obtain a vector
of:

[...] every instance of class sc_object that lies within the module in the
object hierarchy. This shall include pointers to all module, port, primitive chan-
nel, unspawned process, and spawned process instances within the module and
any other application-defined objects derived from class sc_object within the
module.

Note, that this also includes hierarchical channels as these have to be derived
from the class sc_module. Hence, it is possible to extract the structure of a
given SystemC design by simply compiling and running the model until the end
of the elaboration phase and then querying its structure. However, neither does
this method allow us to analyse the processes on statement- and expression-
level, nor does it provide information about non-sc_object objects like local
variables or data members along with their types.

Regarding the possibility to examine types at run-time, the SystemC Verifi-
cation Library [13] offers interesting capabilities, i.e. data introspection. Data
introspection basically allows a program to deal with types as run-time ob-
jects. For instance, a program can query a variable’s type, check whether it
is a struct and then query its elements and further query their types, names,
bit-widths, etc. This technique allows for writing very generic code and was
proposed for writing transaction-level testbenches. Therefore, the SCV does
not immediately help for the given parsing problem, but gives an idea on how
to extend the reflective capabilities of SystemC.
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Hybrid Approaches
The Pinapa approach [11] can be considered as hybrid approach. It uses the

SystemC simulation kernel in order to determine the structure of the SystemC
design after elaboration and a modified gcc in order to parse the process bodies
at statement- and expression-level. In a final step, both models are combined
into a complete intermediate representation of the whole SystemC design.

Discussion
The parser approaches listed in Section 3.0 in principle are able to meet all

the requirements listed in Section 2.0 except the last one: A parser which is able
to determine all the properties listed in Section 2.0 requires considerably high
implementation effort, which is caused by the complexity of C++ underlying
SystemC.

The reflexive approaches cited in Section 3.0 are quite limited with respect
to the properties they are capable to derive from a SystemC design. However,
they do not have to cope with the complexity of C++ the way parsers do.
Instead, reflexive approaches even benefit from the expressiveness of C++:
The features of a design which shall be extracted later, e.g. its structure, are
directly integrated into the modelling library and hence, make use of C++.

The Pinapa approach combines the advantages of both approaches. The
implementation effort is reduced by a high degree of reuse, thereby making
itself dependent on the reused components.

We extend the reflexive approaches concerning the extractable design fea-
tures while keeping their advantage of dealing with the complexity of C++ with
moderate implementation effort.

Referring again to Fig. 6.1 we will focus on the middle part of the IR, that is
the extraction of the statements and expressions.

4. The QUINY Approach
The approach we propose in this article is a completely reflexive or, more

precisely, run-time approach. That is, Quiny is a library which is linked against
the user’s code instead of a stand-alone tool. For our exemplary SystemC to
VHDL translation tool built on top of Quiny, the usage is illustrated in Fig. 6.2.
The user takes the SystemC design, compiles, and links it using the Quiny

library instead of the original SystemC library. When starting the resulting
executable, the original design prints itself out as equivalent VHDL code.

The execution of the user model in conjunction with the Quiny library
and a backend, i.e. the execution of synth.x shown in Fig. 6.2, basically
consists of two phases: a build-up phase which roughly corresponds to the
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Figure 6.2. Quiny usage.

elaboration phase of the original SystemC simulation and a code generation
phase performed by the backend.

The phrase “quiny SystemC front end”, or Quiny for short, is a conjunction
of “Quine” and “tiny” SystemC front end. A Quine is a program which prints
out its own source code. More thoughts on such self-referential systems can be
found in [6] by which Quiny was inspired.

Another way to look at it is to say replacing the original SystemC library
by the Quiny library can also be seen as replacing the standard simulation
semantics by translation or synthesis semantics.

Note that there are two kinds of Quiny users. Firstly, there is the end-user
which, for example, wants to do a SystemC to VHDL translation of a certain
design. Ideally, the fact that the translation “tool” was implemented using
Quiny should be totally transparent to him or her.

The second class of Quiny users are the backend developers. They use
Quiny as SystemC front end to obtain an IR of a given SystemC design. The
IR is then the basis for the custom analysis, transformation, or synthesis task.

Also note, that Quiny completely replaces the SystemC library, i.e. the
header files and the link library. The complete replacement is especially neces-
sary for the scenario where the end-user can take an unmodified design for use
with a Quiny-based tool. This scenario is called unintrusive mode.

Unintrusive Mode
As stated in Section 3.0 SystemC already provides an infrastructure for query-

ing a design’s structure. Hence, the remaining problem is to extract the structure
of the processes on statement and expression level for which C++ does not of-
fer any built-in features. Looking from the C++ point of view at a SystemC
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design, an SC_METHOD is a member function of a struct or class, which is
derived from sc_module. The body of such a method operates on user-defined
(as seen by the compiler) template classes like sc_in<T>, sc_signal<T>,
sc_uint<N>, and so on.

Expressions. The central idea behind Quiny is to redefine the Sys-
temC classes in such a way that, for example, a signal read expression like
m_Count.read() does not produce a value, but a special expression object
(EO). Therefore Quiny provides its own definition of sc_signal<T> includ-
ing the read() method1:

template<typename T>
Expression& // The return type is not T,
sc_signal<T>::read() // but Expression&
{

// Return an IR node
return *(new SignalReadValue(this));

}

Additionally, EOs provide constructors which allow the compiler to do im-
plicit type conversions. For instance, simple integer literals like 42 or even
explicitly converted ones like sc_uint<8>(1) are automatically converted to
EOs which represent the corresponding constant expression. Furthermore, EOs
have properly overloaded operators. For example, the operator +which takes
two EOs as parameters and yields a further EO as result. The resulting EO then
represents the sum of the two expressions – as opposed to actually evaluat-
ing its value. Since C++ allows to overload nearly all operators, in this way,
EOs can be created for arbitrarily complex expressions. The construction and
destruction of these EOs can be monitored by Quiny and used to build up an
internal expression tree which reflects the original code.

Statements. In order to obtain a process’ statements some more work
is necessary. The first thing to find out is which of the methods are actually
processes. Fortunately, SystemC requires the user to explicitly mark these meth-
ods via macros. Quiny uses these macros as hook and defines own versions
for them. Basically, the Quiny versions of the macros each create a process
node in the IR. This node is registered as current process, which is necessary for
Quiny-internal bookkeeping. After that, the corresponding method is called.

During the execution of the method it is necessary to detect statements like
if and while instead of actually executing them with their original meaning.
This is achieved by macros which redefine these keywords. The very first
approach was to create special statement objects similar to the expression objects
described in the previous section. For example, such an if statement object
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would have a constructor that expects an expression object which represents
the condition and would look like this:

#define if(cond) {IfStatement *tmp=new IfStatement(cond);}

Hence, when the compiler processes the code, there are effectively no control
structures. The process is simply executed once – creating and destroying
various expression and statement objects.

The main drawback of this approach is that it is unable to correctly detect the
statements which make up the following then part and the optional else part.
This is due to the fact that the following statement can be a single statement
or a compound statement enclosed in curly braces {}.2 Unfortunately, it is not
possible to redefine the curly braces via macros or some other mechanism in
order to detect the beginning and the end of a block. What makes the situation
even more complicated for if-statements is the fact, that the else-part is op-
tional. Especially in nested if-statements it is tricky to associate an else part
to the correct if-statement.

One possible workaround is the (mis-)use of a for statement. We exploit
the property that a variable or an object can be declared in the initialisation part
and that its lifetime matches the execution of the loop body, which in turn can
be a single statement or a compound statement. If we can ensure that the loop
body is executed exactly once, we do have the desired effect. Hence, a better
if-replacement looks like this:

#define if(cond) for(BlockHelper b(BLOCK_IF, (cond)); \
b.runOnce == false; \
b.runOnce = true)

The effect of this macro and a similar replacement for else is shown in
Fig. 6.3.

In addition to the control structures, we need to detect the declaration of
local variables. Such declarations of SystemC types like sc_uint<N> can be

if(a<b)
{

x = 0;
y = 0;

}
else x = 100;
C++;

for (BlockHelper b(BLOCK_IF, (a<b));
b.runOnce == false;
b.runOnce = true)

{
x = 0;
y = 0;

}
for (BlockHelper b(BLOCK_ELSE);

b.runOnce == false;
b.runOnce = true) x = 100;

C++;

Figure 6.3. Effect of the macros contained in the Quiny header files: before (left) and after
(right) standard C++ preprocessing.
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detected by providing Quiny-specific replacements of these classes. Instances
of these classes can either be local variables or temporary objects. In order
to distinguish local variables like sc_uint<8> myVar(1); from temporary
objects which are created in expressions like x+sc_uint<8>(1), it is necessary
to carefully monitor an object’s usage. If the very same object is referenced
more than once, it must be a named variable. Unfortunately, the names of local
variables cannot be recovered3 – as opposed to ports, signals, and modules,
which carry a run-time name.

To keep track of variables of built-in types like int, Quiny provides re-
placement classes and defines macros which map the built-in types to their
replacements. Unfortunately, the built-in types can consist of multiple tokens
like unsigned int which cannot be handled by our macro approach in unin-
trusive mode. Furthermore, we currently see no unintrusive way to correctly
identify array and pointer declarations. Examples for such declarations are:

sc_int<8> myArray[3];
sc_int<8> *myPointer;
unsigned long int myULong;

Although it is possible to overload the operator * and operator [] in
user-defined classes that operate on the instantiated objects, we see no way to
influence the declarator * or []. Only in the special case of heap-allocated
arrays, however, a possibility would be to use the operator new [] as hook.

Intrusive Mode
The unintrusive mode has the advantage that it does not require any inter-

vention by the end-user beyond exchanging the SystemC library in the compile
command. However, the unintrusive mode has some limitations which can only
be overcome with a little help from the end-user. First of all, it is necessary to
include a special header file in the end-user’s design. Furthermore, the Quiny

data types have to be used instead of the native ones. For example, the macro
Q_ULONG has to be used instead of writing unsigned int. This macro serves
as hook – the same way as the macro int did in the unintrusive mode. Further-
more, no C/C++ keywords are redefined by macros in unintrusive mode: The
end-user must use macros like IF and WHILE instead of if and while. Hence,
it is possible to escape the “quinyfication” of certain parts of the code, e.g. the
constructor code of a module. In the normal SystemC simulation mode these
macros are simply expanded to their original meanings.

Another issue which can be solved by the intrusive mode, is the detection
of pointer and array variables. By requiring the user to use special array and
pointer classes which are provided by Quiny and whose instances exactly
behave like the built-in arrays and pointers. For instance, the declarations from
the previous example would look like this when using the intrusive mode:
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Array<sc_int<8>, 3> myArray;
Pointer<sc_int<8> > myPointer;
Q_ULONG myULong;

Implementation
As can be seen in Figs. 6.4 and 6.2, an executable of a SystemC design

compiled and linked against Quiny consists of three parts: the end-user’s
SystemC design, the Quiny library, and a backend. To enhance the modularity,
the Quiny library and the backend library are two independent link libraries.
Hence, for our exemplary SystemC to VHDL translation, the user compiles the
design with Quiny’s SystemC headers and links it to the Quiny library as
well as to the VHDL code generation backend.

The actual control flow is also shown in Fig. 6.4. Execution starts in the main
function, which is located in the Quiny library. After internal initialisation, it
calls the function sc_main which is part of the user’s SystemC design. Execut-
ing the sc_main function triggers the elaboration phase in which Quiny builds
up its internal data structures through the mechanisms described in the previous
sections. Calls to sc_start are also intercepted by Quiny. When sc_main
is finished, Quiny passes control to the backend by calling quiny_start.

The most important parameter passed to the backend is root. It is the
entry point to the IR. An excerpt of the class hierarchy of the IR nodes is
shown in Fig. 6.5. The simulation commands sc are a kind of container for all
sc_trace and sc_start calls. In our exemplary VHDL generation backend,
these commands are converted to a ModelSim script file with equivalent logging
and start commands.

  int argc, char *argv[],

1

3

2

  int argc, char *argv[])
int main(

  SimulationCommdands *sc)
  StructuralObject *root,

int quiny_start(

  int argc, char *argv[])
int sc_main(

Quiny

Backend

Design

Figure 6.4. Control flow within Quiny.
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  SimpleType
  SystemCType
  ClassType
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  WhileStmt
  ForStmt

  IfStmt

Figure 6.5. Excerpt of Quiny’s IR class hierarchy.

Remarks
The techniques we use bear some similarity with reflection [10]. Essentially,

reflection is a technique which enables a program to figure out or even modify
its own structure to perform its intended operation. The main difference of our
approach to classical reflection is that it can be considered to be destructive.
That is, the program loses its original functionality for the purpose of finding
out its structure.

An alternative technique for deconstructing expressions are expression tem-
plates proposed by [14]. As opposed to our approach which is performed
at run-time, expression templates are a compile-time technique and mainly
intended for optimisation.

5. Evaluation
In order to evaluate our approach with respect to the requirements formulated

in Section 2.0, we implemented the ideas presented in Section 4 in a proof of
concept prototype.

Currently, it is able to process the simple counter shown in Fig. 6.6 including
the stimulus module shown in Fig. 6.7 and the surrounding sc_main function
(not shown).

A prototypical VHDL generating backend was implemented. The backend
in conjunction with the Quiny core library realises the exemplary SystemC
to VHDL translation tool. It creates syntactically correct VHDL code, which
produces signal traces identical to those of the SystemC version. The resulting
VHDL code of the counter and the stimulus module is also shown in Figs. 6.6 and
6.7. The VHDL code of the top-level module which results from the sc_main
function is left out in this article, but can be obtained from the ICODES project
home page [8].

Comparing our reflexive approach to a classical parser, which directly processes
the source code in text form, we see the following advantages and disadvantages.
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#include <systemc.h>

SC_MODULE(Counter)
{

sc_in<bool> pi_bClk;
sc_in<bool> pi_bReset;
sc_in<bool> pi_bUpDown;
sc_out<sc_uint<8> > po_Count;

sc_signal<sc_uint<8> > m_Count;

SC_CTOR(Counter)
: pi_bClk("pi_bClk")
, pi_bReset("pi_bReset")
, pi_bUpDown("pi_bUpDown")
, po_Count("po_Count")
, m_Count("m_Count")
{
SC_METHOD(main);
sensitive << pi_bClk.pos();

SC_METHOD(updateOutput);
sensitive << m_Count;

}

void main()
{
if (pi_bReset.read() == true)
{
m_Count.write(sc_uint<8>(0));

}
else
{
if (pi_bUpDown.read() == false)
{
m_Count.write(m_Count.read() +

sc_uint<8>(1));
}
else
{
m_Count.write(m_Count.read() -

sc_uint<8>(1));
}

}
}

void updateOutput()
{
po_Count.write(m_Count.read());

}
};

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;

ENTITY Counter_c_entity IS
PORT (
pi_bClk : IN BOOLEAN;
pi_bReset : IN BOOLEAN;
pi_bUpDown : IN BOOLEAN;
po_Count :
OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

);
END Counter_c_entity;

ARCHITECTURE behaviour OF
Counter_c_entity IS

SIGNAL m_Count :
STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN

main : PROCESS(pi_bClk)
BEGIN
IF pi_bClk’EVENT AND
pi_bClk = TRUE THEN

IF (pi_bReset=TRUE) THEN
m_Count <=

CONV_STD_LOGIC_VECTOR(0,8);
ELSE
IF (pi_bUpDown=FALSE) THEN
m_Count <= m_Count+
CONV_STD_LOGIC_VECTOR(1,8);

ELSE
m_Count <= m_Count-
CONV_STD_LOGIC_VECTOR(1,8);

END IF;
END IF;

END IF;
END PROCESS main;

updateOutput : PROCESS(m_Count)
BEGIN

po_Count <= m_Count;
END PROCESS updateOutput;

END behaviour;

Figure 6.6. SystemC implementation of an up/down counter and the output generated by the
exemplary VHDL to SystemC translation backend.
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#include <systemc.h>

SC_MODULE(Stimulus)
{

sc_out<bool> po_bClk;
sc_out<bool> po_bReset;
sc_out<bool> po_bUpDown;

SC_CTOR(Stimulus)
: po_bClk("po_bClk")
, po_bReset("po_bReset")
, po_bUpDown("po_bUpDown")
{
SC_THREAD(clockProcess);
SC_THREAD(resetProcess);
SC_THREAD(upDown);

}

void clockProcess()
{
while(true)
{

po_bClk.write(true);
wait(sc_time(10, SC_NS));
po_bClk.write(false);
wait(sc_time(10, SC_NS));

}
}

void resetProcess()
{
po_bReset.write(true);
wait(sc_time(50, SC_NS));
po_bReset.write(false);
wait(sc_time(100000, SC_NS));

}

void upDown()
{
while(true)
{

po_bUpDown.write(false);
wait(sc_time(100, SC_NS));
po_bUpDown.write(true);
wait(sc_time(80, SC_NS));

}
}

};

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;

ENTITY Stimulus_s_entity IS
PORT (

po_bClk : OUT BOOLEAN;
po_bReset : OUT BOOLEAN;
po_bUpDown : OUT BOOLEAN

);
END Stimulus_s_entity;

ARCHITECTURE behaviour OF
Stimulus_s_entity IS

BEGIN

clockProcess : PROCESS
BEGIN

WHILE TRUE LOOP
po_bClk <= TRUE;
WAIT FOR 10 ns;
po_bClk <= FALSE;
WAIT FOR 10 ns;

END LOOP;
END PROCESS clockProcess;

resetProcess : PROCESS
BEGIN

po_bReset <= TRUE;
WAIT FOR 50 ns;
po_bReset <= FALSE;
WAIT FOR 100000 ns;

END PROCESS resetProcess;

upDown : PROCESS
BEGIN

WHILE TRUE LOOP
po_bUpDown <= FALSE;
WAIT FOR 100 ns;
po_bUpDown <= TRUE;
WAIT FOR 80 ns;

END LOOP;
END PROCESS upDown;

END behaviour;

Figure 6.7. SystemC implementation of the stimulus module for the up/down counter (Fig. 6.6)
and the output generated by the exemplary VHDL to SystemC translation backend.
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Language subset. Concerning the supported language subset our cur-
rent prototypical implementation is quite limited and not a real alternative to a
parser. However, we see no fundamental limitations of our approach in unintru-
sive mode over parsers which are dedicated to finding out the design hierarchy or
processing low-level SystemC models. In some aspects we expect our approach
to be more robust than parsers which treat SystemC as language. For example,
modules are recognised by the fact that they are derived from sc_module as
opposed to detecting the convenience macro SC_MODULE. In this respect, our ap-
proach does not impose more constraints on the user’s model than the SystemC
standard does. Another example is designs where the structure is parameterised,
and the number of created submodules depends on a command-line parameter
or is read from a file.

Intrusiveness. For higher-level SystemC models which also utilise user-
defined class types, our approach requires user intervention due to the lack of
built-in reflection capabilities of C++. Another way to look at it is to say we can
trade off unintrusiveness for a larger language subset. However, an SCV-like
extension-mechanism [13] could be considered as “semi-intrusive”. The user
does not have to modify the original code, but has to provide additional code
with the extensions.

Modularity. We consider the modularity aspect to be independent of the
parsing approach as it is primarily a design decision concerning the implemen-
tation of the front end. For our approach we have shown in Section 4.0 how the
build-up phase which heavily interferes with the user’s code can effectively be
decoupled from the access to the IR.

Error messages. Regarding the generation of error messages we have to
distinguish two cases. The first case is the compilation of an ill-formed C++
program in conjunction with Quiny. In this case our approach is inherently
inferior to a real parser. The user ends up with error messages referencing
Quiny-internals. Hence, the error messages do not refer to the real source of
the problem from the user’s point of view. Basically, the same problem occurs
when compiling SystemC models.

The second case is the compilation of well-formed C++ programs which do
violate certain restrictions. For example, OSCI’s standard SystemC simulation
kernel reports unbound ports at run-time. Similarly, a Quiny-based synthesis
backend could report a synthesis subset violation if the design contains dynamic
memory allocation.

Efficiency. For a fair comparison of the efficiency, i.e. the performance
of the parser, we have to take into account, that Quiny requires a complete
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compilation of the user code before the “parse” process – in our case the model
execution – begins. In our simple example design (the aforementioned counter),
the model execution including VHDL generation is negligible compared to the
preceding compilation phase: On a 3 GHz Linux PC using gcc, compilation in
SystemC mode took approximately 4 s, compilation in Quiny mode approxi-
mately 3 s, and model execution less than could be reliably measured with the
time command (<0.02 s). Although the Quiny headers are not yet fully com-
pleted, we expect the final compilation times still to be slightly shorter than in
SystemC mode, because Quiny’s SystemC headers are less complex than the
original ones, hence implying less work for the compiler.

A further interesting point is the fact that Quiny indirectly supports the
compilation of separate translation units, as long as the host compiler does.
Hence, it is not necessary to recompile the whole design each time a small
change was made.

To conclude the efficiency aspect, we can say, that we are roughly as fast as
the host compiler.

Costs. Currently we are not able to quantify the development costs and
compare them to the development costs of a real parser, since (a) Quiny is still
in a prototypical stage and (b) the development effort of the other approaches
is rarely published.

Looking at Quiny qualitatively, we can say that we offload almost all of the
complex parsing and processing to the host compiler, e.g. type checking, name-
space and overload resolution, operator precedences in complex expressions,
template instantiations, and so on. Harnessing the host compiler’s capabilities
comes at the price of finding tricks to make a C++ program find out its structure
at run-time and providing replacements for all SystemC classes.

6. Conclusion
In this article we presented the first fully reflexive approach to parsing Sys-

temC designs down to statement and expression level. We presented tech-
niques to obtain the missing information about processes bodies at run-time.
We sketched our implementation called Quiny, including an exemplary appli-
cation, both of which can be downloaded from the ICODES project home page
[8]. Finally, we discussed its pros and cons compared to its existing approaches.

Notes
1. The Quiny-internal code examples should be considered as pseudo-code illustrating the underlying

principles. The actual implementation is a little bit more complex.
2. Actually it could also be an empty statement, which does not make much sense, but which is legal.
3. An idea to overcome this problem is to let the executable read its own debug information and try to

deduce the name from the debug information. The disadvantage of this approach is that it is platform and
compiler dependent.
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MINING METADATA FROM SYSTEMC
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Abstract Exploring the design space when constructing a system is vital to realize a
well-performing design. Design complexity has made building high-level system
models to explore the design space an essential but time-consuming and tedious
part of the system design. Reduction in design time and acceleration of design
exploration can be provided through reusing IP-cores to construct system models.
As a result, it is common to have high-level SoC design flow based on IP library
promoting reuse. However, the success of these would be dependent on how
introspection and reflection capability is provided as well as the interoperabil-
ity standard are defined. This leads to the important question of what kind of
metadata on these IPs must be available to allow CAD tools to effectively maneu-
ver these designs as well as allows for a seamless integration and exchange flow
between tools and design methodologies. In this chapter, we describe our tool and
methodology that allow introspection of SystemC design, so that the extracted
metadata enables IP composition. We discuss the issues related to extraction of
metadata from IPs specified in an expressive language such as C++ and show
how our methodology combines C++ and XML parsers and data structures to
achieve the above.

Keywords Metadata, metamodeling, component composition framework, IP composition,
reflection, introspection and interoperability

1. Introduction
Metadata is defined as “data about data” and is the kind of information that

describes the characteristics of a program or a model. Information ranging from
the structure of a program in terms of the objects contained, their attributes,
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methods, and properties describing data-handling details can be exemplified as
metadata. This class of information is necessary for CAD tools to manipulate
the intellectual properties (IPs) within system level design frameworks as well
as to facilitate the exchange of IPs between tools and SoC design flows. For
such exchange they express integration requirements, performance, and con-
figuration capabilities.

We classify EDA related metadata into two broad categories: (i) interop-
erability metadata and (ii) introspection metadata. Interoperability metadata
enables easier integration of semiconductor IP and IP tools as shown by the
consortium named SPIRIT [9], which allows design flow integration by uti-
lizing metadata exchanged in a design-language neutral format. Consider the
SPIRIT enabled flow from the ARM RealView SoC Designer tool to core-
Assembler, the Synopsys SoC environment in [6]. The transfer is illustrated
with a ARM1176JZ-STM processor subsystem design and the metadata cap-
tured through SPIRIT include: RTL I/O signals, support for bus-interfaces,
parametric configurations, abstraction levels, memory map or remap informa-
tion, interconnect layout, etc. This information exported from the SoC Designer
allows a seamless import of the ARM1176JZ-STM processor subsystem into
the Synopsys coreAssembler. Therefore, interoperability metadata serves as a
common standard for exchange of multivendor IPs between tools and design
flows.

Introspective metadata on designs in system level design frameworks allow
CAD tools and algorithms to manipulate the designs as well as capture inter-
esting properties about them. These features are also useful for debuggers,
profilers, type/object browsers, design analyzers, scheme generators, composi-
tion validation, type checking, compatibility checking, etc. Introspection is the
ability of an executable system to query internal descriptions of itself through
some reflective mechanism. The reflection mechanism exposes the structural
and run-time characteristics of the system and stores it in a data structure. The
data stored in this data structure is called the metadata.

Consider a component composition framework (CCF) such as MCF [3].
MCF employs introspective metadata reflected from SystemC IPs to analyze and
select implementations that can be used to create an executable for the abstract
specification. The metadata that would facilitate IP selection and composition
includes: register-transfer level (RTL) ports & datatypes, transaction-level (TL)
interface signatures, hierarchy information, polymorphic characterization, etc.

In order to reflect metadata from IPs, the important questions that need to
be answered are: “what is the metadata of interest?” and “how accessible is
it?”. The first question would depend on how the extracted information will be
used. The second question depends on how the metadata is specified. If the
information is given through annotations to the implementation such as com-
ments and pragmas, then the reflective mechanism would easily extract these.
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In most cases, the information of interest is not available in a straightforward
manner and therefore, extraction techniques would require mining the design to
infer the metadata. This is a much harder problem and through this chapter, we
show some of the challenges involved in mining metadata from designs written
in a highly expressible language such as C++. Our work mainly focuses on
SystemC and the metadata of interest would be used by a CCF for IP selection
and composition.

2. Related Work
Several tools may be used for implementing reflection in SystemC. Some

of these are SystemPerl [8], EDG [4], SystemCXML [1], or C++ as in the
Pinapa [7], and KarSCPar [5].

SystemPerl [8] requires the user to provide annotations into the source file
and it yields all SystemC structural information. EDG [4] is a commercial
front-end parser for C/C++ that parses C/C++ into a data structure, which can
then be used to interpret SystemC constructs.

SystemCXML [1] uses an XML-based approach to extract structural infor-
mation from SystemC models, which can be easily exploited by back end passes
for analysis, visualization, and other structural analysis purposes. It uses the
documentation system Doxygen [2] and an open source XML parser [10] to
achieve the structural extraction. Pinapa [7] is an open source SystemC front-
end that uses GCC’s front end to parse all C++ constructs and infer the structural
information of the SystemC model by executing the elaboration phase. How-
ever, Pinapa is a very intrusive approach. It requires modifications of the GCC
source code which makes it dependent on changes in the GCC codebase.

KaSCPar [5] is a SystemC parser that consist of two components for generat-
ing either the abstract syntax tree (AST) or a description of the SystemC design,
both in XML. The output of the first tool (SC2AST) is an AST that contains a
token for each C/C++ and SystemC construct in XML. These tokens capture
meta-information about the construct into attributes of the token. These tokens
are generated by parsing the output of the preprocessor of GNU gcc. Our work
uses this tool to parse SystemC and we show the meta-information extracted
is insufficient for composition. Therefore, we further mine the information
to infer metadata that are lost in the high-level specification capability of the
langauge.

MCF [3] is a metamodeling-based component composition framework that
allows designers to (i) describe components and their interactions with a seman-
tically rich visual front end, (ii) automatically select IPs based on sound type
theoretic principles, and (iii) perform constraint based checks for composability.
An XML based schema is used to store and process meta-information about
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the IP and facilitate automatic IP selection, composition, and generation of an
executable specification for an abstract specification.

3. Metadata for IP Composition
MCF performs IP composition by selecting an implementation for an abstract

specification of the design. The abstract specification contains components
and channels described at different abstraction levels. In order to facilitate
IP composition, we need to select an appropriate implementation that can be
plugged in for the abstract specification. We are given a library of SystemC
design and in order to perform selection, we need to reflect composition-related
metadata. The metadata can be classified into data related to components and
channels.

The metadata on an RTL component contains the set of input–output (I/O)
ports and clock ports. For these ports, information related to the datatype and
bitwidth are essential constituents of the metadata. Therefore, it is important to
correctly extract these through different mining techniques. For a componen-
t/channel at TL, it contains a set of interface ports, clock ports, and interface
access methods. Therefore, the metadata would contain the function signatures
that embed the function arguments and return types. For these arguments and
return types, the datatype and bitwidth need to be correctly extracted. The
hierarchical structure of a component is also essential for IP selection.

Furthermore, the abstract specification can describe polymorphic compo-
nents/channels, therefore, we also reflect the metadata of polymorphic imple-
mentations from the SystemC library. However, the genericity of an IP can be
restricted by providing constraint on the possible type instantiations. There-
fore, if the SystemC IP has been annotated with type-constraints, then it is also
reflected as a part of the metadata on these polymorphic implementations.

4. SystemC Metadata
SystemC is a library of C++ classes and every design is an instantiation of

some of these classes. Therefore, class-based extraction is the primary task
during metadata mining. The extracted classes as shown in Fig. 7.1 helps in
identifying the different modules, interfaces and further which of these mod-
ules describe components and which of them implement interfaces to describe
channels. In order to find this kind of information, we extract every class and
the associated inheritance tree from the design.

A module is identified in a straightforward manner, either it is an sc module
(base module) or a class that inherit the sc module publicly (derived module).
In Fig. 7.2, we illustrate two common structural description styles for an module
X. We search the associated inheritance tree looking for an sc module and if
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C++

class

module

interface (inherits sc_interface)

(inherits sc_module)

component channel
(inherits interface)

Figure 7.1. Extraction of classes.

// Description Styles
SC_MODULE(X) { ... };
class X : public sc_module { ... };

Figure 7.2. Module description styles in SystemC.

class CompA : public sc_behavior { ... };

Figure 7.3. Component description in SystemC.

one is encountered, the class gets tagged as a module. An interface in SystemC
fulfills the following requirement:

• Must be an abstract base class (in C++)

• Inherits from sc interface

• Specifies a set of access methods for a channel, but provides no imple-
mentation

Therefore, identifying first-level interfaces require searching the inheritance
tree for an sc interface and tagging them as interfaces. It is common to have
interfaces that inherit first-level interfaces that we call next-level interfaces.
This type of interface inheritance can span to any depth and therefore cannot be
extracted in a single pass of the design. We implement an interface extraction
procedure that recursively identifies and extract the metadata on an interface
irrespective of the inheritance hierarchy.

The extraction of metadata from a module class is very different from an
interface class, as their internals differ. A module contains ports and processes,
whereas the interface declares function signatures. Modules are categorized
into computational components and communicative channels. A component
describes a behavior through its I/O assignments, whose implementation in
SystemC is enabled with classes. It can be identified by searching for a
sc behavior as shown in Fig. 7.3.
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A channel serves the purpose of a communication media and models the
interaction between components. In SystemC, a channel fulfills the following
requirements:

• Must derive from sc channel

• Must derive from one (or more) classes derived from sc interface

• Provide implementations for all pure virtual functions defined in its parent
interfaces

The first requirement helps in structurally identifying a channel, which boils
down to searching for sc channel in the inheritance tree of the class. The second
requirement helps in figuring out the list of interfaces this channel implements.
The last requirement is very important as it helps in extracting the access meth-
ods of the identified channel, which is essentially the metadata captured for a
channel.

As illustrated in Fig. 7.4, we have two interfaces namely read if and write if
and a channel fifo that implements the interfaces. The reason for categorizing
modules into components and channels is shown in Fig. 7.5, which allows us
to structurally distinguish the different modules.

However, it is common practice so simply inherited from the sc module to
describe both components and channels, in this case we structurally distinguish
the two under the following requirement:

• Requirement 1: A channel derives from one (or more) class(es) derived
from sc interface and a component does not.

// Interface description
class write_if : public sc_interface {};
class read_if : public sc_interface {};

//Channel description
class fifo : public sc_channel,

public write_if,
public read_if

{ ... };

Figure 7.4. Interface and channel description in SystemC.

// Channels
typedef sc_module sc_channel;
//Components
typedef sc_module sc_behavior;

Figure 7.5. Module classification.
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Another reason for categorizing modules is that the internals of a channel and
component differ and mandates the parser to perform different extractions.

Metadata on interfaces. In order to avoid problems with multiple inheri-
tance and provide safe interfaces in SystemC, interfaces never implement meth-
ods or contain data members. Given the way of describing of an interface in
SystemC, the only metadata of interest is function signatures of access meth-
ods as shown in Fig. 7.6. To obtain a function signature, the parser extracts
the return type and function arguments of the method in terms of their name,
datatype, and bitwidth.

Metadata on components. A component in SystemC is a collection of
ports and processes. Ports play a crucial role in describing the structure of a
component, whereas processes describe the computation. Therefore, the main
task while mining metadata of a component is to correctly extract its ports
and port-level details. The ports can be classified into two types based on the
abstraction level of the component. A component could be described at the
RTL level of abstraction, which would require it to have I/O ports. It can also
be described at the transaction level, where it communicates through interface-
level ports. A component’s port-level RTL description is facilitated through the
constructs such as sc in, sc out, and sc inout in SystemC as shown in Fig. 7.7.
A component’s interface-level TL description is facilitated through the construct
sc port construct in SystemC, which gives the component access to the methods
of the interface. Similar to the I/O ports, we extract the clock port, which is
provided using the sc in clk and sc out clk constructs in SystemC.

//1st level interface
class simple_bus_blocking_if : public sc_interface {
// Interface access method
virtual void read(unsigned int unique_priority, int *data,
unsigned int address, bool lock) = 0; ... }

Figure 7.6. Interface access method read in SystemC.

// Input port
sc_in<sc_int<16> > in_real;
// Interface port
sc_port<read_if> data_in;

Figure 7.7. Ports in SystemC.
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SystemC allows for structural hierarchy by instantiating modules within a
module. The metadata on hierarchical structure of a component boils down to
its module hierarchy.

Metadata on channels. The main purpose of channels in SystemC is to
facilitate transaction-level modeling, where the communication semantics is
rendered through the interface-level function calls. As a result while mining
for metadata on a channel, we extract its interface-level function declarations,
interface ports and clock ports to describe its structure. Looking at the interfaces
that a channel inherits, we can separate the interface access methods from all
the function declarations.

It is commonly seen as an industry practice to avoid the usage of sc port
construct during TL modeling (TLM) due to issues related to synthesis. How-
ever, to facilitate TLM, it is common to have a component inherit a channel
implementing the interface. This would violate our first requirement that makes
it possible to distinguish a component from a channel. Therefore, we make an
addendum to the requirement.

• Requirement 2: If a component derives from one or more classes (besides
the sc module) then these classes should be channels.

Metadata on polymorphic components & channels. In C++-based HDLs
such as SystemC, a component/channel described using a partially specified
C++ template is polymorphic and uses type variables as place holders for con-
crete types that are resolved during instantiation. Some examples of such imple-
mentation are buffers, fifos, memories, and switches (Fig. 7.8).

In order to capture metadata on these polymorphic descriptions we start by
extracting the template expression. Then for the implementation, the polymor-
phic parts are the ports or interface functions. Examples of such an I/O and
interface port is shown in Fig. 7.9. Therefore, we need to extract the polymor-
phic nature of these as a part of the metadata of ports.

For an interface function, the polymorphic nature can be attributed to function
arguments or return type (Fig. 7.10) and is dealt with in a similar manner as
polymorphic ports. Another place, where the effect of templates need to be
taken into account is during hierarchical embedding. If the submodules of a
module are templated, then during the extraction of the metadata on structural
hierarchy, the polymorphic nature of submodules should be captured.

//Polymorphic component description
template < class DataT, unsigned int size >
class fifo : public sc_module { ... };

Figure 7.8. Generic FIFO.
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//Polymorphic I/O port
sc_in<DataT> data_in;
//Polymorphic interface port
sc_port<read_if<DataT> > data_in;

Figure 7.9. Polymorphic ports.

//Polymorphic function argument
void read(DataT &);
//Polymorphic return type
DataT & write();

Figure 7.10. Polymorphic interface functions.

Metadata from annotations. Designer can explicitly annotate the code
with metadata and it is commonly carried out through comments or pragmas.
We allow the designer to insert comment-level annotations into the implemen-
tation, that would guide the constraining aspect of the polymorphic componen-
t/channel. The user inserts hints through comments of a certain format into the
code from which we obtain the metadata used for constraining a generic imple-
mentation. A comment that specifies a constraint on some component/channel
has the format shown below:

constraint : name < arg1, . . . , argn >, where argi = type1; type2; . . .

The comment-level constraint has a format similar to the template expression.
The name describes the component on which the constraint is enforced. argi

has a one-to-one correspondence to a template argument based on its position in
the template expression. However, argi captures legal C++ or SystemC types
that could be instantiated instead of the place holder in the template expression.
The designer inserts the specialized comments into the pertaining IPs. These
are extracted as a part of the metadata on the component/channel on which the
constraints are specified.

Mining metadata. We extract fragments of the implementation, which are
language-level specifics that are processed to guide the extraction of certain
metadata that not available in a straightforward manner. The language-level
specific are indirections that ease the designer’s implementation process. C++
provides many high-level constructs (indirections) to eliminate the repetition or
tediousness associated with the usage of other level-constructs. These indirec-
tions hide metadata from the straightforward extraction of the implementation.
Therefore, we extract these language-level specifics and process these to reveal
the hidden metadata.
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An example in C++ is name aliasing introduced through constructs such as
typedef. The usage is to insert a simple alias for a long statement that is used
in multiple places in the implementation. We call the usage of these constructs
as type indirection, since they hide the actual type of a port or interface during
reflection. As a result, we perform a search & replace of the alias with the actual
legal type. This requires identifying a name alias, the actual type associated
with the alias and then updating the tokens with the actual type. Therefore,
we extract are the usage of the following access modifiers #define, typedef, and
const. The need to extract these constructs such that they can be processed
in search of any indirection is not trivial. We achieve this by implementing a
replacement procedure that incrementally replaces the type indirection to arrive
at the actual datatype.

5. Tools and Methodology
Given a library of SystemC IPs, we achieve automated extraction of metadata

from these designs using tools such as KarSCPar and Xerces-C++ parsers and a
methodology built on top of two languages: C++ and XML. The objective is to
facilitate IP selection and composition by the CCF making use of the extracted
metadata from the IP library. The methodology has different stages that extract,
infer and constraint the metadata from the given library of IPs. The design flow
for our methodology is shown in Fig. 7.11. It has three stage, which begins
with a library of SystemC designs and ends at an XML document object model
which embeds the metadata of these designs. It is called the component DOM
(cDOM) and serves as a primary input to the CCF. In the following subsections,
we elaborate on the various stages.

Stage 1: SystemC Parsing
The input to this stage is designs written in SystemC and compiled using a

C++ compiler. We use the KaSCPar SystemC parser to traverse the designs
and print out the corresponding XML, which is an AST. It contains some meta

SystemC
IPs AST scDOM

Stage 1 Stage 2 Stage 3

KaSCPar
Parser

Populate
scDOM

cDOM

Process &
Constraint scDOM

Figure 7.11. Design flow of the methodology.
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information like column number, line number, and file name as a reference to
the original SystemC file and are saved as attributes of each AST token. The
comments of source files are also saved as special token comment in the AST.

In this stage, we obtain a more generic C++-based extraction than a specific
SystemC metadata reflection that can be geared for CCF usage. As a result,
the AST is too detailed and contains irrelevant information. Furthermore, to
reflect certain metadata of a design, we need to process the first-level extract
and perform analysis. This analysis tries to decipher the indirection caused by
high-level constructs of the language. Therefore, all further processing is based
on the AST.

Stage 2: AST Parsing & sc DOM Population
In this stage, we parse the AST using the Xerces-C++ parser [10] to extract

a subset of meta-information necessary for IP composition and populate the
internal data structure of the parser. The data structure is a Document Object
Model (DOM) that serves as a platform- and language-neutral interface that
will allow programs and scripts to dynamically access and update the content
of the DOM. Therefore, attaching the DOM with an introspective architecture
that implements the querying interface can be achieved with ease. The output
of this stage is called the sc DOM, which is given as input to the last stage.
We briefly describe the subset of the AST extracted to populate the sc DOM
below.

The primary task as explained in the previous section is the extraction of
classes, which is categorized into components, channels, and interfaces. The
class information is extracted from the AST and used to populate the sc DOM
through a class specifier token. This token has an internal structure that cap-
tures the data members and member functions associated with the class. It also
captures the inheritance tree of this class, which is essential for the categoriza-
tion of the SystemC modules. We illustrate some of the tokens and the metadata
captured during the population of the sc DOM.

Interfaces. The metadata captured for an interface is the function signa-
tures. For the simple bus blocking if read access method shown in Fig. 7.6,
the metadata is captured by a function declaration token shown in Fig. 7.12
and wrapped in an interface token.

Components. The metadata captured for a component is the port-level
specifics. The parser generates a port declaration token for each port encoun-
tered in the component, which embeds the name, datatype and bitwidth of the
port in its attributes. The extraction of an interface port for a component at TL, is
performed very similar except that the datatype attribute of the port declaration
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<interface name="simple_bus_blocking_if">
<function_declaration name="read" partial_spec="false"
return_type="void">

<argument datatype="unsigned int" name="unique_priority"
partial_spec="false"/>
<argument datatype="int" name="data"
partial_spec="false" ptr="true"/>
<argument datatype="unsigned int" name="address"
partial_spec="false"/>
<argument datatype="bool" name="lock"
partial_spec="false"/>

</function_declaration>
</interface>

Figure 7.12. function declaration token read in XML.

// Input port
<ports_declaration IOtype="sc_in" bitwidth="16" datatype="sc_int"
name="in_real" partial_spec="false"/>
// Interface port
<ports_declaration IOtype="sc_port" datatype="read_if"
name="data_in" partial_spec="false"/>

Figure 7.13. ports declaration token in XML.

captures the interface name. In Fig. 7.13, we illustrate the port declaration
token for the input port in real and interface port data in shown in Fig. 7.7.

Channels. The metadata captured for a channel pertain to port-level
specifics and function signatures for the implemented access methods. For
each access method encountered, we generate a function declaration token
similar to Fig. 7.12 and for each interface port, we generate port declaration
as shown in Fig. 7.13.

Polymorphic components & channels. We extract the template expres-
sion that describes a polymorphic entity and express its arguments as
template parameter tokens. These tokens capture three essential details about
any argument besides the datatype and name. The attributes of a template para-
meter token that embeds these details are:

1. partial spec – Determines whether the argument is partially specified.

2. has constraint – Determines whether the partially specified attribute is
type constrained.
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3. position – Captures the argument position in the template expression,
which acts as the key for the processing and constraining performed on
the component in stage 3.

In Fig. 7.14, we show the template parameter tokens used to capture the
essentials of each argument in the template expression on the fifo compo-
nent in Fig. 7.8. The following observations about the fifo can be made from
this example: (i) fifo is polymorphic w.r.t the data it stores (DataT & par-
tial spec=“true”) and (ii) it is a generic implementation with no specified con-
straints (has constraint=“false”).

During extraction of polymorphic ports, the port declaration token cap-
tures the template argument as its datatype and uses the partial spec attribute to
state that the port transmits/recieves a template type. Extracting interface func-
tions requires worrying about polymorphic function arguments or return types
(Fig. 7.10) and is dealt with in a similar manner as polymorphic ports. If the
submodules of a module are templated, then during the extraction of the module
hierarchy, the corresponding template parameter tokens are generated.

General extraction. Here we extract, high-level constructs, which under-
goes mining techniques to identity hidden metadata. Figure 7.15 illustrates
the usage of typedef and its token representation in XML, where the attribute
access modifier captures the type of construct.

Comments. The corresponding XML generated is called the constraint
entry token. It consists of a set of argument tokens and identifies with the
template arguments through an attribute that captures its position in the template
expression. For each argument, we insert a dt entry token that captures the

<component name="fifo">
<template_parameter has_constraint="false" datatype="class"
name="DataT" partial_spec="true" position="1">
<template_parameter datatype="unsigned int"
name="size" partial_spec="false" position="2"/>
</component>

Figure 7.14. Template parameter token.

// High-level construct
typedef sc_int<16> DataT;
// Type_declaration token
<type_declaration access_modifier="typedef" bitwidth="16"
data_type="sc_int" name="DataT" template_type="false"/>

Figure 7.15. Type declaration token for typedef .
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//constraint : fifo < int; sc_int<32>; sc_int<64>, NA >
<constraint_entry class="fifo">

<argument position="1">
<dt_entry type="int"/>
<dt_entry length="32" type="sc_int"/>
<dt_entry length="64" type="sc_int"/>

</argument>
</constraint_entry>

Figure 7.16. Illustration of comment-level constraint & corresponding constraint entry token.

datatype and bitwidth for all the legal types allowed through the constraint.
Note that in Fig. 7.16, the second argument of the template expression is fully
specified and is mapped to ‘NA’ in the constraint implying that it has no bearing
on the second argument.

Stage 3: Processing & Constraining sc DOM
This is a two phase stage with the populated sc DOM given as input. The

sc DOM can be abstractly seen as a collection of components, channels, and
interfaces. In this stage as shown in Fig. 7.17, some of the sc DOM con-
stituents undergo a processing that results in updating/modifying some of the
tokens. The processing is followed by a constraining phase where the stored
implementations are type-restricted by propagating the effect of the specified
constraint on the generic aspects of the implementation. The output of this
stage IP Library DOM called cDOM.

Phase 1: Processing sc DOM In this phase, we identify some ignored infor-
mation from the AST parsing stage that requires analyzing the contents of the
sc DOM. Secondly, we process the sc DOM to remove any indirection that
hides the structural aspects of the design through place holders. The discarded
information that try to revive in this phase pertain to next-level interfaces. As
mentioned in stage 2, we only identify first-level interfaces, however, it is com-
mon to have next-level interfaces. Figure 7.18 shows a second-level interface
rdwr if that inherit first-level interfaces read if and write if of Fig. 7.4.

In stage 3, when we encounter a class element during the parsing of the AST,
we try to identify it as a second interface. If successful, then the correspond-
ing interface token is generated and appended to the sc DOM. It is necessary
to identify both first- and second-level interfaces, for the correct extraction of
the TL behavior of a channel. The reason being, one of the key step in the
extraction of a channel is to separate interface access methods from internal
function definitions, which would require knowledge to all the interfaces that
this channel implements. Therefore, after the extraction of the second-level
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Processing
sc_DOM

sc_DOM

Constraining
sc_DOM cDOMAST

Figure 7.17. Stage 3: Processing & constraining sc DOM.

//Inherits 1st level interfaces read_if and write_if
class rdwr_if : public read_if, public write_if { ... }

Figure 7.18. Second-level interfaces.

interfaces, we perform another round of extraction for the channels that imple-
ment this interface. This results in addition of more interface function tokens
to the channel token.

An interesting point to note is that second-level interfaces can give rise to
third-level interfaces, and so on. This unidirectional chain can continue to any
depth and therefore we implement an extraction procedure shown below, which
helps in navigating the chain and extracting the interfaces correctly. SystemC
only allows for interfaces through safe usage of multiple inheritance, therefore
no cyclic dependency exist in the chain. Therefore, we implement the algorithm
shown below to correctly extract the interface hierarchy.

Interface extraction

{Given C set of all classes and IF = OC = φ}
Step 1 For each c ∈ C,

Step 1.1 If c inherits sc interface then insert(IF,c) else insert(OC,c)
Step 2 For each oc ∈ OC

Step 2.1 If oc inherits an interface intf s.t. intf ∈ IF ∧ oc /∈ IF,
then insert(IF,oc)

Consider the following code snippet in Fig. 7.19, the tokens shown are gen-
erated at the end of stage 2. The datatype extracted for the port is DataT,
which basically is an alias for the actual type. Therefore, to update such incor-
rect extractions, we apply the type-replacement procedure on the sc DOM that
removes all type indirections. Some of the structural entities that are affected
by type indirection are:

• I/O and interface ports

• Interface function arguments and return types
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//Type indirection
typedef sc_int<16> DataT;

// IO Port
sc_in<DataT> in_real;
// Type_declaration token
<type_declaration access_modifier="typedef" bitwidth="16"
data_type="sc_int" name="DataT" template_type="false"/>

// Port_declaration token
<ports_declaration IOtype="sc_in" bitwidth="16" datatype="DataT
name="in_real" partial_spec="false"/>

Figure 7.19. Example of type indirection & tokens generated.

• Template expression and template arguments

• Submodule instantiations

The replacement procedure runs through these entities searching for any
indirection and replacing it with the actual type. This problem is further convo-
luted due to the same deep-chain problem associated with interfaces. The type
indirection can be repeated to any level, which requires iterating through the
complete chain to find the actual type. The replacement procedure takes this
problem into account and through an iterative scheme manages to replace all the
type indirections at any depth with their respective datatypes. The procedure is
shown below:

Replacement procedure

{Given
T an ordered set of all type indirections,
P set of all IO/interface ports,
I set of all interface functions,
E set of all template expressions,
S set of all submodule instantiations}
Step 1 For each type indirection ti ∈ T,
Step 2 For each type indirection tj ∈ T,

Step 2.1 If search(tj , ti) = true then replace(tj , ti)
Step 3 For each port p ∈ P,

Step 3.1 If search(p, ti) = true then replace(p, ti)
Step 4 For each interface n ∈ I,

Step 4.1 If search(n, ti) = true then replace(n, ti)
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Step 5 For each template expression e ∈ E,
Step 5.1 If search(e, ti) = true then replace(e, ti)

Step 6 For each submodule instant s ∈ S,
Step 6.1 If search(s, ti) = true then replace(s, ti)

This simple procedure works well, because of the order in which the type de-
claration tokens are generated. In C++ to insert a typedef instance, the state-
ment has to be valid, therefore the order in multilevel typedef-ing is very
important and necessary for this procedure to terminate. We generate tokens
and populate T in the same order in which the typedefs are specified in the
implementation. In Fig. 7.20, we make use of a 2D templated fifo example to
illustrate the application of the replacement procedure. The outcome of this
phase is the updated sc DOM, which is more complete and correct in terms of
metadata.

Phase 2: Constraining sc DOM We discussed the extraction of comment-
level constraints that a library engineer specifies to restrict the genericness of
the IP. In this phase, these constraints captured as constraint entry tokens are
propagated through the IP. The propagation limits some polymorphic structural
aspect of the IP to a set of legal types specified in the constraint.

In Fig. 7.16, we had illustrated a comment-level constraint on the storage
type of the fifo in Fig. 7.8. The resultant after propagating the constraint is
shown in Fig. 7.21, which appends to the template paramter token for DataT,
a set of dt entry tokens that capture the possible types for substitution.

typedef unsigned int FifoSizTy;
typedef sc_int<64> DataT;
typedef stl::vector <DataT> DataTList;

template<DataTList, FifoSizTy>
class fifo_2d : public sc_module { … }

T = {FifoSizTy, DataT, DataTList}

DataTList = (DataT)
fifo_2d = (DataTList, FifoSizTy)

DataTList = (DataT)
fifo_2d = (DataTList, unsigned int)

DataTList = (sc_int<64>)
fifo_2d = (DataTList, unsigned int)

DataTList = (sc_int<64>)
fifo_2d = (sc_int<64>, unsigned int)
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Figure 7.20. Application of the replacement procedure.
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<template_parameter constrainted="true" datatype="class"
name="DataT" partial_spec="true" position="1">

<dt_entry type="int"/>
<dt_entry length="32" type="sc_int"/>
<dt_entry length="64" type="sc_int"/>

</template_parameter>

Figure 7.21. Constrained template parameter token.

The polymorphic aspects of an IP range from I/O ports to structural hierarchy.
Therefore, the constraint propagation would require appending all of these
aspects with the appropriate dt entry tokens. The outcome of this phase is the
cDOM.

6. Conclusion
We have illustrated the extraction of introspective metadata from SystemC

IPs. Our methodology combines the KarSCPar SystemC Parser, XML tools,
and the DOM data structure to enable reflection and introspection of SystemC
designs. The metadata serves as input to a CCF which allows for IP selection
and composition to create an executable given an abstract specification and a
library of SystemC IPs. Furthermore, we have outlined some of the challenges
in terms of multistage processing required to mine metadata for composability
of IPs from designs specified in C++.
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Abstract We present a nonintrusive high-level SystemC debugging approach to be used
with SystemC v2.0.1 and GNU debugger GDB. Our approach is integrated into
an industrial design flow and enables developers to debug designs at high-level
working with signals, ports, events, and processes. Thus, one gets quick and
concise insight into static structure and dynamic behavior of the design without
the burden of gaining detailed knowledge of the underlying SystemC simulation
kernel. Only minor transparent changes to SystemC kernel source code are
required, whereas there is no need to touch the flow or the designs. Practical
experiences show promising results.

Keywords High-level Debugging, validation, system level design, SystemC, GDB

1. Introduction
System level design methodologies promise to address major challenges

in modern System-on-Chip (SoC) designs. System level design embraces
various abstraction levels, different components (IP, SW/HW), diverse tools,
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and methodologies which further complicate design comprehension. Studies
revealed that today often more than 50% of design time is spent to verify a com-
plex design that means to identify, understand, localize, and correct errors [3].

Many system level languages and design environments were proposed over
the last years, e.g. [2, 10]. One of the most popular languages of this type is
SystemC [11]. It has become a de facto standard in industry and in the academic
field. SystemC provides concepts such as object-orientation, concurrency, and
high-level modeling.

Currently SystemC does not comprise debugging aspects. It solely defines
functions to trace module level variables and signals. Traced values are written
to file during simulation, and analyzed with standard tools afterwards. Stan-
dard C++ debuggers are applied to analyze a functions local variables during
simulation run. Unfortunately, both debugging approaches operate on very
low abstraction level. Especially, standard C++ debuggers do not understand
specific SystemC constructs. Besides, SystemC maps modules onto individual
threads of execution which leads to nonlinear execution sequences. This makes
predicting which module will be active next extremely difficult.

As working at appropriate abstraction levels is an essential means to under-
stand designs and to fix bugs quickly, several commercial and research tools
have been developed dealing with high-level SystemC debugging. Some of the
available commercial solutions and academic prototypes are listed and assessed
below.

MaxSim Developer Suite [1] comprises a block level editor, and simulation,
debugging, and analysis tools. It addresses architectural analysis as well as
SystemC component debugging at low level and at transactional level. Conver-
genSC System Verifier [12] targets SystemC system level design and verification.
It utilizes a simulation kernel which is specially adopted to fit SystemC needs.
Its integrated debugger offers SystemC specific commands supporting break-
points and SystemC QThreads at source level. CoCentric System Studio [13]
supports SystemC design, simulation and analysis at system level, and partly
synthesis from behavioral and RT level. It utilizes standard C++ debuggers
(e.g. GDB), i.e. it does not handle SystemC constructs in a specific way.

[7] presents a method to extract structural data from SystemC designs auto-
matically, and to pass it to a commercial visualization tool using an application
programming interface (API). The SystemC kernel has been modified to inter-
face to the API. [9] uses SystemC simulation results to create Message Sequence
Charts to visualize SystemC process interaction at a high level. Filters cut out
parts of interprocess communication in order to reduce information complexity.
[4] applies the observer pattern [8] to connect external software to the SystemC
simulation kernel. This general method facilitates loose coupling and requires
just minimal modifications of the SystemC kernel.
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None of the tools mentioned above fully meets the requirements to integrate
high-level SystemC debugging into the existing design flow at AMD, namely to

• Integrate into the flow where designers used to apply GDB either at
command line or through a GUI

• Easily access static and run-time design information at system level

• Work with an existing SystemC kernel

• Avoid changes to the design to support debugging

• Exercise high-level breakpoints

So we decided to implement high-level SystemC debugging as a set of GDB
user commands to avoid patching of GDB source code. C++ routines and shell
scripts collect required data from SystemC or GDB run-time, respectively, and
present the information to the designer. Only minor transparent changes to
SystemC kernel source code were made to enhance debugging performance.

The remainder of this paper is organized as follows. Section 2 proposes
our high-level SystemC debug methodology derived from the given industrial
requirements. Section 3 introduces implementation details, and explains mod-
ifications made to improve performance. Section 4 presents some practical
experiences gained. Section 5 concludes the paper.

2. Methodology
Requirements and Design Issues

The most important industrial requirement was the demand for a nonintrusive
debugging facility that fits seamlessly into the existing design flow. That means,
the solution should work with the available SystemC kernel and avoid any
changes to present designs or (third-party) IP blocks. On the tool side, the
already applied GNU debugger GDB [6] should be extended without any need
for patching its sources. Advantages are a familiar, intuitive, and unchanged
debugging flow combined with a minimal learning curve for the user. Moreover,
maintenance and customization of the flow are reduced to a minimum.

Debugging at system level requires various kinds of high-level information
that should be retrievable fast and easily. According to [5], one main information
category is of interest in the debugging context:

Run-time infrastructure information can be divided into three subcate-
gories. (i) Static simulation information describes the structure of the architec-
ture that means the number of modules, the number of processes and signals,
the I/O interfaces and their connections, etc. (ii) Dynamic simulation infor-
mation includes among other things the triggering conditions of processes, the
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process sensitivity lists, and the number and types of events in the simulation
queue. (iii) Debugging callbacks (here, high-level breakpoints) allow the sim-
ulation environment to break on certain events such as process activation, value
changes on signals, or the ongoing simulation time.

Studies at AMD indicated several debug patterns typically used in daily work.
A pattern describes the steps (in GDB) to enquire needed debugging information
at system level. Based upon characteristic debug patterns, high-level commands
were implemented (Table 8.1).

At top level, commands are classified in examining and controlling types.
In a distributed development flow, many designers are working on different
components at the same design. In case of an error, it is essential to get a fast
insight into external components and their interaction with your own ones. For

Table 8.1. High-level debugging commands.

Examining commands
Static simulation information

lss list all signals in given hierarchy
lsm list all modules in given hierarchy
lse output all events instantiated in modules
lsio list I/O interface in given hierarchy
lsb list all bindings of specified channel

Dynamic simulation information

lpt list all trigger events of all processes (w.r.t. a specific time
stamp)

lst output code line a process is currently pending
lpl show all processes listening on given event
lsp output all [c]thread and method processes

Controlling commands

ebreak break on next invocation of processes that are sensitive to
specified SystemC event

rcbreak break on next invocation of processes that are sensitive to
rising edge of given clock

fcbreak break on next invocation of processes that are sensitive to
falling edge of given clock

pstep break on next invocation of given process
dstep break on processes which will be active in the next simu-

lation delta cycle
tstep break on processes which will be active in the next simu-

lation time stamp
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this reason, examination commands retrieve either static or dynamic simulation
information. Controlling commands provide high-level breakpoints to reach a
point of failure at system level very quickly. They stop program execution
at certain conditions, such as the next activation of a specific process or all
processes which are sensitive to a given SystemC event.

General Architecture
Figure 8.1 illustrates the layered architecture of our high-level debugging

environment. Due to the demand for a nonintrusive extension of GDB, all high-
level debugging commands are implemented on top of it. Command sequences
are encapsulated as a unit in a user-defined command composing the so called
macro instruction set at the user layer. A macro instruction implements a
desired debug functionality by using built-in GDB commands (e.g. examining
the symbol table, or the stack), and a set of additionally provided auxiliary
functions at the API layer. Auxiliary functions are C++ or script helpers that
evaluate and process information supplied by the debug data pool representing
the data layer. The pool obtains its content either from redirected output of GDB
commands (temporary log files), data structures of SystemC kernel classes, or a
debug database holding preprocessed information collected during initialization
of the actual debug session.

Debug Flow
Examining commands (Table 8.1) mostly just process directly accessible

information provided by the debug data pool. In contrast, a controlling com-
mand comprises a complex interaction between data provided by the pool and
GDB. Here, execution starts usually with a redirection of a GDB command

Macro Instruction Set

gdb

Auxiliary Functions

Debug Data Pool

High-level Debugging
Extension

High-level Debugging
Environment

User Layer

API Layer

Data Layer

Figure 8.1. High-level debugging environment.
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output (e.g. backtrace) into a temporary log file. The log content is evaluated
by an affiliated auxiliary function. According to the specific debugging task,
extracted log data trigger various actions:

• Storing or updating data into the debug database

• Caching data in temporary data structures

• Retrieving enquired debug data from the database

• Generating a temporary GDB command file

A generated temporary GDB command file is sourced subsequently. Its
execution releases either an instant action or it creates a (temporary) breakpoint
which is triggered in the future. According to the specific task the loop of writing
and evaluating log files, and performing various actions can run some further
times. As a result, data are stored in the debug database, or enquired information
is output at GDB console. In addition, oncoming debugging commands and
data collection actions can be prepared by caching data, or setting (temporary)
breakpoints. Figure 8.2 sketches the exemplary execution of an imaginable
debugging command. There, each participating component belongs to one of
the three layers.

(gdb) ‘cmd’ <opts>

<result/actions>
(gdb)

write

source

Macro
Instruction
Set

access

call

call

Command
Files

generate

read

API
Functions

User Layer

API Layer

Data Layer

SystemC
Kernel

Database

Temporary
Log-files

Figure 8.2. Exemplary debug flow.
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3. Implementation
User Layer

The user layer acts as the interface to the high-level debugging capability. It
comprises the macro instruction set which is summarized in several GDB script
files. Furthermore, this layer contains GDB scripts to setup and to initialize the
debugging environment.

Example. The lsb command (Table 8.1) presents the common command
implementation template at the user layer.

define lsb
if ($hd_elaborated)

echo ---lsb: list all bound ports---\n
call hd::list_bound_ports($arg0)
echo -------------------------------\n

else
echo not elaborated yet\n

end
end
document lsb
list all bindings for the specified channel
end

API Layer
The API layer supports the implementation of high-level debugging com-

mands at the user layer. It divides into an auxiliary function API and a database
API. The auxiliary function API comprises in addition to awk/shell scripts,
particularly C++ functions which realize more sophisticated helper function-
ality. Scripts are normally used to straightforward process text files. Imple-
mentations of the same functions showed a significant performance yield of the
C++ over the script-based realization.

The database API supplies functionality to store data into, and to retrieve
data from the debug database. For each database type a set of access functions
is provided.

Example. A call of the lsb command invokes the C++ auxiliary function
hd::list bound ports(const char*) which retrieves the corresponding sc interface
instance using the SystemC method sc simcontext::find object(). Afterwards it
calls hd::list binding(sc interface*). This database API function fetches the
static binding information from the debug database and formats them accord-
ingly for output (Fig. 8.3).
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Aux. Function API:

.hd::list_bound_ports

1) .sc_simcontext::find_object

1) .sc_interface*

2) .hd::list_binding

2) ostringstream

3) .get_bindinfo

3) ostringstream

Database API: Debug DB : SystemC kernel:

Figure 8.3. lsb command at the API layer.

Data Layer
Three data sources compose the data layer supplying either static or dynamic

simulation information.

SystemC kernel. The SystemC kernel provides some basic introspection
capabilities useful for retrieving design and run-time information. Various
global registration classes allow to query static simulation information, such
as port, module, channel, or SystemC object registry. For instance, the object
hierarchy can be easily browsed using the following loop:

sc_simcontext* c = sc_get_curr_simcontext();
sc_object* o = c->first_object();
while (o) {

if(!strcmp(o->kind(),"sc_module")) {
// module specific actions

}
else if(!strcmp(o->kind(),"sc_signal")) {

// signal specific actions
}
...
o = c->next_object();

}
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The simulation control, implemented by the kernel class sc simcontext,
supplies many valuable dynamic simulation information such as runnable pro-
cesses at the next delta cycle, or the delta event queue.

Temporary log files. Such log files will be created by redirecting the output
of GDB commands (e.g. thread, backtrace) providing dynamic simulation
information only accessible at debugger side such as the assigned GDB thread
ID of a SystemC thread process.

Debug database. During setup of a new debug session, static simulation
information is logged and stored into the debug database using GDB (at least
in the first implementation approach). Here, we utilize particularly the ability
of a debugger to fetch private class data in the SystemC kernel which do not
have public access methods. Required debug functionality (Table 8.1) bases
on four information classes: event, binding, method, and thread process infor-
mation. Each class is represented by its own datatype holding preprocessed
(e.g. process entry function name), kernel-private (e.g. process handle private
to sc process table), or special debug session data (e.g. GDB thread ID).
Figure 8.4 sketches the UML class diagram of the debug database showing only
the datatypes representing the information classes together with their attributes.

Example. The following lsb call retrieves the binding information for a
channel of an example application referenced by its hierarchical object name
i0 count hier.count sig. The database API queries for the proper hd db bindinfo
instance using the corresponding sc interface object, fetches, and formats
its data.

(gdb) lsb "i0_count_hier.count_sig"
---lsb: list all bound ports---
bindings of channel i0_count_hier.count_sig
Driver:

i0_count_hier.i_counter.outp <sc_out>
Drivee:

i0_count_hier.i_signal2fifo.inp <sc_in>
-------------------------------

Performance Issues
Practical tests on real-world AMD applications revealed a considerable

performance problem using the pure nonintrusive implementation approach.
Especially, the setup phase of the extended GDB takes an unacceptably long
time (Table 8.2). Investigations indicated particularly the assemblage of the
high-level debugging information as the bottleneck. Here, hidden breakpoints
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Figure 8.4. Debug database class hierarchy.

in the SystemC kernel registered and triggered actions to handle the instantiation
of processes and events. So, we developed a second approach to accelerate the
data assemblage phase. The idea is to reduce the number of breakpoints while
moving their functionality into the kernel methods where the breakpoints were
formerly set. Normally, one has to patch these methods to create callbacks
forwarding required information into the high-level debugging environment.
To remain kernel patch-free, we use library interposition and preload a shared
library which overwrites appropriate SystemC kernel methods. There, the orig-
inal implementation is extended by a callback into the debugging environment.
A setting of LD PRELOAD instructs the dynamic linker to use this library
before any other when it searches for shared libraries (Fig. 8.5).
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Figure 8.5. Preloading a SystemC kernel method.

Table 8.2. High-level debugging environment setup.

Test GDB memory usage Setup time
w/o Nonintrusive Preloaded

A1 45 MB <1 s 2.25 min 1.2 s
B2 202 MB ∼10 s 26 min 25 s
C3 208 MB ∼10 s > 40 min 31 s

1Test system: AMD Opteron 248 processor @2200 MHz, 3 GB real memory, Test application: multiple
instances of a simple producer/consumer application, #threads: 204, #methods: 1010, #sc events: 3638.
2Test system: AMD Athlon XP processor @1800 MHz, 3 GB real memory, Test application: bus interface
controller for various protocol implementations, #threads: 29, #methods: 56, #sc events: 306.
3Test system: see 2., Test application: serial interface, #threads: 31, #methods: 136, #sc events: 701.

Preloading works only for noninlined class methods. Hence, minor transpar-
ent changes to SystemC kernel source code were necessary, i.e. moving inlined
constructors of classes sc signal, and sc event from header to implementa-
tion files. Time measurements (Table 8.2) document the efficiency of the new
approach.

4. Practical Application
Debug Problem

As a short example we try to investigate why an interface bus of our design
under test (DUT) has a value contention during simulation. It seems that there
are two processes concurrently driving data onto the bus.

We know of the first process in our SystemC environment driving an
initialization value after reset, namely, tb.bif.fsm. fsm reset(). This thread
is sensitive to the negative edge of the reset signal fsm rst l, being a low active
input to our DUT.
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Conventional Debug Procedure
To find the second, yet unknown, process colliding with ours, we would set

a breakpoint into the unique driver function that is invoked by every module
that wants to stimulate the interface bus.

On any stop at this breakpoint we then had to trace back the invoking module,
e.g. with the up command in GDB. This can turn out to be a time consuming
task, potentially ending in different modules not involved in this specific issue.
Since we know the signal event on which the problem occurs, a tracing of the
signals SystemC event fsm rst l.m negedge event would help a lot.

High-level Debug Procedure
So we restart GDB with the high-level debugging environment to use the

provided commands for event tracing (Table 8.1). First, we set a breakpoint
onto the observed signals negative edge event:

(gdb) ebreak "tb.bif.fsm_rst_l.m_negedge_event"
*** scheduled break on event
*** type <continue> to set breakpoint(s)
(gdb) continue

which, on the breakpoint stop, gives us two thread processes sensitive to it:

*** event "tb.bif.fsm_rst_l.m_negedge_event"
triggered ...
breakpoint at thread 21
breakpoint at thread 16
(gdb)

Knowing that thread 21 is the FSM reset process, we look into the source
code thread 16 is pending with lst:

(gdb) lst 16
--lst: list active source of [c]thread/method---
process tb.bif.if_bfm._update is currently
at /home/hld/project/tb/src/if_bfm.cpp:128
in if_bfm::_update
126 get_bus_val(bus_val);
127 if_bus->write(bus_val && 0xff);
128 wait();
129 }

In line 127 we find a concurrent writing of a wrong value onto the bus. With
the lpt command we review the threads sensitivity list:
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(gdb) lpt
thread process sensitivity list
-------------------------------
tb.bif.if_bfm._update

<dynamic> tb.bif.ch_m._update.m_value_changed
<static> tb.bif.fsm_rst_l.m_negedge_event
<static> tb.bif.fsm_tx_w.m_posedge_event

We see that the sensitivity falsely includes also the reset signal, which is not
desired and turns out to be an environment bug. Compared to the conventional
debug procedure we needed far less debug steps and straighter tracked down
the issue.

5. Conclusion and Future Work
In this paper, we presented an environment to debug SystemC applications

at a high level working with signals, ports, processes, and events. High-level
debugging commands realize debug patterns typically used at AMD. The spe-
cial feature of our approach is its nonintrusive implementation that means it
avoids real patches of the SystemC kernel or GDB sources. We apply library
interposition to preload a shared library that allows to smoothly gather required
debugging information provided by the SystemC kernel. Practical experiences
in an industrial design flow show promising results with only a marginal increase
of debug setup time.

Future work will improve the overall performance, and implement additional
commands. Also, it would be necessary to increase the abstraction level of the
commands in order to further simplify debugging at SystemC level. Further-
more, establishing a methodology or cookbook to apply high-level debugging
commands could help the designer finding bugs more quickly.
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Chapter 9

TRANSACTION-LEVEL MODELING
IN COMMUNICATION ENGINE DESIGN

A Case Study

Vesa Lahtinen, Jouni Siirtola, and Tommi Mäkeläinen
Nokia Research Center

Abstract This chapter presents a case study of using transaction-level modeling (TLM) for
architecture exploration and hardware/software (HW/SW) codesign in develop-
ing communication engines. It will be shown that considerable time savings are
possible in analyzing architecture modification effects and providing early infor-
mation from HW designers to SW designers, and vice versa. What is required is a
standard and well-documented way to do the modeling. Some modifications and
additions to the traditional design flows are needed, but the benefits far outweight
the drawbacks. Both the HW and the SW designers found this new approach
appealing and well worth the extra effort.

Keywords Transaction-level modeling, system-level design

1. Introduction
One of the most demanding tasks in developing complex embedded systems

is the coordination of hardware (HW) and software (SW) efforts. In an ideal
situation, these two efforts could progress in parallel without delaying each
other. In addition, the early analysis of various architecture choices is a prob-
lematic task: on the one hand, the results need to be reliable, but on the other,
the analysis needs to be conducted with tight time schedules.

These problems are particularly apparent in designing communication
engines, which are extremely complex embedded systems with tightly coupled
HW and SW parts, highly optimized structures, and a wide range of internal and
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external HW/SW intellectual property (IP) components. The SPIRIT (Structure
for Packaging, Integrating and Reusing IP within Tool-flows) standard [1] is an
attempt to ease some of these issues. An additional problem is caused by the
mixture and evolvement of the standards that these engines support. Support of
new features needs to be added to the HW rapidly and the effect on SW needs
to be visible immediately after the modifications without any low-level HW
redesign time.

Transaction-level modeling (TLM)[2, 3, 4] has been proposed as a way to
tackle both of the presented problematic design issues: HW/SW codesign and
early architecture analysis. Two standards that are closely related to TLM are
the open SystemC initiative (OSCI) [5] and the open core protocol (OCP)[6],
that standardize a modeling language and an IP interface, respectively. The
existence of two standards with slightly different approach to TLM has been
problematic although some propositions to combine these two have emerged
[7].

This Chapter presents a case study of utilizing TLM in designing communi-
cation engines. The structure of the Chapter is as follows. Section 2 describes
the methodology used after which Section 3 presents the test case. The experi-
ences of the case example are given in Section 4 after which Section 5 concludes
the Chapter.

2. Transaction-Level Modeling
Background

The goal of transaction-level modeling is to speed up simulation time and the
time it takes to develop the models. The TLM style advocated here is referred
to as layer 2 in OCP and programmers’ view with time (PV+T) in OSCI TLM
[7]. After this, the term TLM is used as a synonym of combined layer 2 and
PV+T style modeling. The main difference to the traditional register transfer
level (RTL) model is the removal of clock and pin accuracy. Where RTL is
clock cycle and pin accurate, TLM is event-based (cycle approximate with
annotated delays) and models data as a collection of signals. Because of the
simplifications, TLM models are faster to design than the corresponding RTL
ones.

One drawback of the TLM model is that it cannot be used as an input to a
traditional synthesis flow. This implies that two separate models of the system
components are required: RTL model for implementation and TLM for HW/SW
codesign and early architecture analysis. The benefits and drawbacks of this
approach are discussed in Section 4.

It should also be noted that there is nothing unique or outstanding in the ability
of SystemC to model inherently concurrent HW systems. In fact, the debug-
ging and timing behavior have some apparent limitations. The crucial thing



Transaction Level Modeling in Communication Engine Design 147

here is, however, that SystemC has evolved into a standard with a developing
community and few agreed-upon styles in which to model.

Separation of concerns has been the key thesis of many platform-based
design approaches. Usually this refers to the separation of communication
from computation but it can also be used to refer to the separation of the phys-
ical and the logical architecture. This is an important aspect of architecture
specification in a platform development process.

Related Work
Many research groups have presented their own viewpoints on the basic

principles of SystemC usage. The use of SystemC for cosimulation and emu-
lation has been documented by Benini [2]. In addition, an overview of TLM is
presented by Cai [3] and an overview of TLM flows by Donlin [4]. Different
approaches to SystemC modeling are presented by Colgan [7] and Kogel [8].
The differences between RTL and TLM have been studied by Calazans [9].

SystemC-based transaction level modeling has been widely adopted in the
recent years. Many of the presented use cases have concentrated on one aspect
of the whole system. These include the scheduling [10] and modeling [11] of
operating system, bus architecture modeling [12], communication architecture
exploration [13], and multiprocessor system exploration [14].

The capability of SystemC to help in capturing the behavior of complex
systems has been demonstrated with many test cases. In the communication
device field, these test cases include a WLAN (Wireless Local Area Network)
system [15] and an UMTS (Universal Mobile Telecommunication Services)
modem [16]. In addition, Xu [17] presents a system-level TLM example for
mixed language simulation.

3. Case Study: NeMo Project
Project Background

The new modem (NeMo) project was an experiment in the presented system
modeling issues. It was conducted during the years 2002–2005 in the Nokia
Research Center. The goal of the project was to develop a new platform archi-
tecture for communication engines and to model it with SystemC. The primary
goal was a WCDMA (Wideband Code Division Multiple Access) modem but
also multimode issues were taken into account in the architecture design.

The targets for the architecture development experiment were:

• Support for early SW development
• Support the modular composition of an architecture
• Separate logical and physical architecture development
• Early integration and verification of the platform
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• Coordinated management of design objectives and requirements
• Maintenance of multiple abstraction levels for architecture models
• Support for architectural exploration and performance evaluation

Of the targets the first was seen as the most important one. The use of model-
ing for architecture exploration and performance evaluation was given a smaller
weight. The use of multiple abstraction levels was a practical requirement due
to the various models offered by the IP vendors.

The NeMo Architecture
Figure 9.1 depicts a simplified block diagram of the actual NeMo platform

architecture. Modularity was seen as a key point, because of the requirement to
support multiple wireless standards. It was emphasized in the architecture with
separated clusters for all standards. In addition, the use of shared memory for all
the clusters was studied to make the memory utilization more efficient compared
to using dedicated memories for each cluster. Two controllers handled the high-
level control of the platform: one was used for resource management and the
other for controlling the data communication in the system. In addition to the
shared memory and the controllers, also external interfaces to DRAM/FLASH,
application engine (APE), and RF platform are common for all the clusters.

The modularity was also emphasized in the example design of the WCDMA
cluster. It had four receiver (Rx) and two transmitter (Tx) side processing
blocks and one internal block for the RF connection. The Rx blocks were used
for medium access control (UMAC), transport channel decoding for normal
(TrCH) and high-speed channels (HS-TrCH), and symbol rate processing (SR).
The Tx blocks, on the other hand, were used for medium access processing
(UMAC) and encoding and symbol rate processing (TrCh). All the blocks had
a similar internal structure with an algorithm data path, a control unit, and a
common communication scheme using a component-internal communication
block, the OCP-based interconnect, and the shared memory. Particularly OCP
as a standardized communication interface was a key enabler for the modular
design of the architecture.

The blocks shown with gray shading in Fig. 9.1, were external IP blocks.
SystemC models of them were also provided by the vendors, but they used
a more accurate (clock-cycle accurate) timing than was used for the internal
modeling. This required special transactor blocks to the crossover points which,
unfortunately, slowed down the simulations.

The Utilized Modeling Process
The modeling process utilized in the NeMo project is depicted in two phases

in Figs. 9.2 and 9.3. The basic idea was to change from “bottom-oriented” to
“top-oriented” design flow. This implies that some extra work is required in the
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Figure 9.1. The architecture developed in the NeMo project.

start, but also, that it should result in easier integration and testing in the final
stages of the design process. Another characteristic is that the design process is
not only seen as HW and SW development. A new phase, entitled architecture
development precedes and steers them both.

The platform architecture is developed mainly in the cospecification phase.
The inputs to this phase include objectives and requirements of the project.
They are used to formulate the operational concept and to find out what kind
of algorithms and protocols are required. After this, the main phase of the
platform architecture development, namely cospecification can start.
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Figure 9.2. NeMo design process: Cospecification.

In the cospecification phase, the logical architecture, and the physical archi-
tecture development progress in parallel. The logical architecture defines the
functionality and the functional clustering used; in this case using pure C++.
The physical architecture, on the other hand, defines the physical resources,
such as processing units, storage units, and interconnects, of the platform. The
result is the platform architecture, which contains the HW/SW partitioning of
the logical architecture and the mapping of it to the physical architecture. The
SW parts remain as C++ and the HW is described in (TLM) SystemC.

The main task of the cospecification phase is to conduct early architecture
analysis. This requires that modifications to the architecture are easy and,
therefore, extensive HW/SW mapping and component allocation experiments
can be conducted. The accuracy of the results is, however, not a top priority at
this stage.

The platform architecture is represented as a virtual platform, which acts as an
executable specification to the HW development process, and as an environment
for SW development. Therefore, it forms the basis for the codesign phase, which
produces the actual communication engine architecture implementation using
the standard HW and SW implementation flows.
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The main requirement to the virtual platform is the functional accuracy from
the SW point of view. This means that the utilized modem blocks could be
modeled with only their register interface and the internal algorithm behavior.
Timing accuracy is based on delay estimates, rather than clock-cycle accu-
racy. This implies that short run-times of sufficiently extensive simulations (as
required by e.g. the porting of operating systems) is preferred over accurate
modeling of time.

4. Experiences of the Study
Feedback From Designers

The feedback from HW and SW design teams was very positive. The virtual
platform for SW designers gave them a development environment before the
RTL was ready for RTL simulations and emulations. On the other hand, the
early feedback from SW designers was perceived to be extremely important by
the HW designers. Getting feedback only at the emulation phase had previously
been seen as a serious problem.

The benefits seen in the approach were:

• SW development can start early. This enables early feedback to HW
designers before they have reached the prototyping phase. This makes it
possible to do faster design iterations.
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• The model acts as an executable HW specification and testbench and
enables early, although rough, performance estimates. This minimizes
the number of required iterations.

• It makes derivative product creation very fast. In these cases the models
are inherited from previous platform design projects and only require a
small amount of redesign.

• The model enables fast simulation times compared to RTL simulations
or even emulation using dedicated HW.

The perceived drawbacks of the approach were:

• The approach is too slow for analyzing radical changes in the architec-
ture. The initial work to build the required models takes a long time and
modifications are not always straightforward.

• Maintaining and writing the models causes extra work to the traditional
design flows. In order to make the model creation and simulation time
fast they have to be made separately from HW design. The responsibility
for the model and implementation equivalence was also seen problematic.

• The biggest obstacle was the addition of new phases to the traditional de-
sign flow which means new tools, new methodologies, new licenses, and
so on. A new mind-set and a lot of training are required for a successful
adoption of these new design techniques and their integration into the
current design flows.

In addition, some practical issues were raised during the development process.
In order for the modeling to be possible, tight control over the used modeling
style is required. Internally, it is possible to define a common modeling style
and model interface, but the use of external models leads, in practice, to the use
of different abstraction levels and definitions. Although adapters exist to get
around this, it causes extra work, problems, and slows down the simulations.
For some of the IP blocks, it proved to be very difficult to acquire the required
models.

The standardization of interfaces is a key requirement for successful plat-
form design. However, it can be troublesome if all the IP providers do not
support the same set of standards and features. This requires protocol adapters
and strict internal specifications on preferred interface standard and the fea-
tures that can and should be used. In addition, some IP providers offered cycle
accurate models that did not behave in the same manner as their RTL imple-
mentation. The verification of the equivalence between the IP model and the
actual implementation is one thing that needs to be developed further.

The synthesis of RTL descriptions from TLM SystemC is sometimes seen as
a required feature for the whole approach to be accepted. Several commercial
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tool sets have emerged for this purpose. Although it is unclear whether this
can happen in a system scale, at least the synthesis of algorithm blocks from
their C-based models has been demonstrated to work. At least some form of
synthesis would be beneficial in order to gain the support of traditional HW
flow supporters for TLM.

There are also some issues in the available toolsets. They are still quite
immature, although developing all the time. A problematic issue is that the
tools have some proprietary solutions for features that are not covered by stan-
dards yet. This is an understandable way in the development phase of these
methods but unacceptable when they are to be brought into production use.
Also the licensing can be expensive, since the goal is to use these tools for SW
development with potentially a large number of users.

To introduce TLM into a design process, a standardized and well documented
modeling style is needed. This includes specification of the used coding struc-
tures, abstraction levels, timing models, and interfaces. These kind of modeling
guidelines are well developed in the RTL space but still require effort in TLM,
particularly since the chosen language is C++-based SystemC which offers
numerous ways to model in an undebuggable and cryptic way.

Benefits of the New Design Style
Figure 9.4 depicts what can be achieved with the SystemC-based TLM mod-

eling. The upper part of the figure represents the traditional approach where
functional specification of the system is followed by HW design. SW design
can only start when RTL of the HW is ready. The HW/SW integration and
verification is done in RTL level and emulation. This is quite slow and if prob-
lems arise they are quite troublesome to solve. In addition, some errors found
in this last stage can lead to modifications of the functional design. All in all,
this approach can lead to unacceptably long design iteration times.

The first modification to the original flow is to start the design process with
architecture specification. This can prolong the functional design phase, but
the SW development can start months before in the traditional approach due
to shorter HW development times. In addition, early architecture exploration
should diminish the number of functional modifications.

The last modification introduces fast processor models. These enable the
parallel advancing of HW design, SW development, and HW/SW integration
and verification. The most crucial thing that this modification offers is the ability
to do early SW development before the RTL is ready. The use of fast processor
models makes it possible to run complex SW simulations in acceptable speeds,
i.e. close to real-time. The goal of this approach is to cut the design time of a
communication engine in half.
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Figure 9.4. Benefits of logical architecture and architecture exploration.

5. Conclusions
The problems of traditional design flows that rely on RTL for cosimulation

and emulation in any large-scale design projects are evident. Too much time is
spent in waiting for the RTL to finish and iterations are too costly. One solution
to these issues is the use of transaction level modeling and SystemC.

Separation of logical and physical architecture enables an efficient architec-
ture specification process that is the starting point of a TLM based modeling
flow. This specification can then be used as a platform for SW development
and an executable specification and testbench for HW design. Because the
SW development and HW/SW integration and verification can start much ear-
lier, significant amount of time is saved although the initial architecture design
requires extra work.

To introduce TLM into a design process, a standardized and well-documented
modeling style is needed. This includes specification of the used coding
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structures, abstraction levels, timing models, and interfaces. With these guides,
both the HW and SW designers found it easy to adapt this new approach, and
they both saw the extra work it requires justified.
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Abstract This chapter presents a contribution to the methodology of transaction-level
modelling (TLM) based on SystemC and the TLM standard of the Open SystemC
Initiative (OSCI). Different from previously published approaches to the use of
TLM in conjunction with SystemC, we employ object-oriented features to rep-
resent transactions, namely an inheritance relationship of transaction classes,
transaction polymorphism, and dynamic binding of transactions to methods of
SystemC modules. Advantages of this new modelling style include reduced
programming effort for transaction dispatch, easier extensibility, and guaranteed
consistency. The extension of a simple transaction model to cover burst trans-
actions is demonstrated. We make use of concepts adapted from the concurrent
object-oriented design pattern known as active object. Our approach allows to
fully utilize SystemC / TLM features and is in no conflict with the standardized
aspects of this methodology.

Keywords Transaction-level modelling, SystemC, object-oriented, embedded systems

1. Introduction
The complexity of developing up-to-date embedded systems makes it neces-

sary to model these systems prior to their implementation. This helps to ensure
functional correctness and to estimate performance requirements posed upon
the implementation platform by the application before starting the costly and
time-consuming implementation process. Besides system-level languages such
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as SpecC [2] and SystemVerilog [6], the C++ class library SystemC [5] together
with the Transaction-Level Modelling (TLM) library [11] provide a basis for
these modelling activities.

SystemC allows the user to specify modules that encapsulate functionality.
An instance of a module is an object in the C++ sense. SystemC mechanisms
are available to specify that a module has one or more threads. An instance
of a module with at least one thread is called active object in this context,
meaning that the object has computational resources of its own. Moreover,
SystemC provides communication mechanisms such as ports and channels.
These can be utilized to model classic signal communication as in hardware
description languages (HDL) or to let objects communicate via the so-called
interface method call (IMC) paradigm. Using the latter, the user is free to derive
any desired communication interfaces from a SystemC interface class.

The TLM methodology by the Open SystemC Initiative (OSCI) intentionally
restricts this freedom, aiming to give users more guidance and to achieve better
interoperability of models. For this purpose, the SystemC TLM library pro-
vides standardized communication interfaces for transaction-level modelling of
digital systems.

Transaction-level models consist of SystemC modules that initiate trans-
actions (masters, initiators) and modules that receive and may respond to
transactions (slaves, targets). A network that connects the initiators and targets
enables their communication. This network may more or less closely resemble
bus architecture and timing behaviour of the implementation platform, depend-
ing on the purpose of modelling:

• Functional view (FV) models employ untimed point-to-point communi-
cation, focusing purely on functional behaviour.

• Programmer’s View (PV) models use blocking transactions and passive
targets to provide a basis for early software development. Timing may
be modelled coarsely, bus arbitration is typically not modelled.

• Architecture View (AV) – also called cycle-approximate (CX) – models
resemble the bus architecture and arbitration of an implementation plat-
form with approximated timing. They are used for timing / performance
estimation.

• Verification View (VV) – also called cycle-accurate (CA) – models are
clocked and represent the exact bus behaviour in each cycle. Such models
serve as a reference against which synthesizable RTL implementations
are verified.

In AV and VV, typically non-blocking transactions are modelled, meaning
that the initiator can resume its operation while a transaction is transported to and
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processed by a target module. This makes it necessary for the target to have
computational resources of its own, i.e. to be modelled as an active object.
Such an object must receive transaction messages from the bus system and
invoke the corresponding internal functionality. In the following, we present a
new, advantageous way of modelling the transactions, their initiation, and their
dispatch in SystemC.

An overview of related work is given in the Section 2. In Section 3, our
solution is presented with a focus on modelling of simple transactions and its
differentiation from the state-of-the-art TLM. Section 4 shows an extension to
cover non-blocking burst transactions in the model. Section 5 presents exper-
imental results, in particular on simulation performance in relation to other
approaches, and Section 6 concludes the presentation of our work.

2. Related Work
The Active Object Design Pattern

The concurrent object-oriented design pattern known as active object is
described, among other sources, in [15]. It enables concurrent objects (clients)
to request the execution of services by a target object (server) that has a control
flow (thread) of its own. To this end, the following roles are defined as part of
the design pattern and have to be implemented by respective classes:

• Servant: implements the functionality and the thread of the server. This
corresponds to the role of a target (bus slave) in a transaction-level model
while the client is an initiator (bus master).

• Proxy: provides to the clients an interface for requesting services. This
role is assumed by the bus in our modelling approach.

• Method request: message sent by the proxy to the scheduler in order to
initiate the execution of a service, corresponding to a bus transaction.

• Scheduler: determines which service is executed by the servant at which
point in time and arbitrates concurrent requests. In the bus model, the
arbitration scheme of the bus assumes this responsibility.

• Future: an object provided by the proxy to the client in order to enable
the client to obtain the results of a requested service at a later point in
time, when these results are available. This enables the client to proceed
after requesting a service without having to wait for the service results. In
the bus model, the future concept is implemented as part of a transaction.
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Object-Oriented System Modelling
In the context of approaches towards the object-oriented extension of HDL,

in particular of VHDL, concepts from concurrent object-oriented program-
ming have been considered and adapted to the field of hardware modelling and
design [17].

A mechanism for initiation and dispatch of service requests has been
described in [4] as part of a SystemC extension on which the ODETTE System
Synthesis Subset (OSSS) is based. This mechanism is built into a class/macro
library so that the user does not have to write or modify dispatch code. Thereby,
extensibility issues are addressed. Moreover, message dispatch to polymorphic
objects – objects whose exact class type is not known at the time of compila-
tion – is provided as a feature that supports flexible and extensible models. With
proprietary tools, the message exchange can even be synthesized. However,
the OSSS library is neither an OSCI standard nor compatible with the TLM
methodology and library. It covers modelling of communication on a level
comparable to the programmer’s view (PV) but is not suitable to model actual
bus structures.

Active objects have been described as a feature of Objective VHDL [8, 13],
an object-oriented extension to VHDL. Message passing to active objects is
not built into that language, but can be modelled in an object-oriented fashion
as described in [12]. This approach features the idea of using object-oriented
mechanisms to model messages and their dispatch. It has inspired the solu-
tion presented in the remainder of this chapter. New aspects of our contribu-
tion include the adaptation to C++ and SystemC, use of the TLM library in
accordance with TLM methodology, a systematic path from passive objects
(PV models) to active objects (AV models), and the modelling of non-blocking
transaction communication.

Transaction-Level Modelling
Transaction-level modelling (TLM [3]) is a methodology independent of a

specific language. It is supported by system description languages such as
SystemC [10], SpecC [2] and SystemVerilog [6]. In this contribution, we use
SystemC in conjunction with the SystemC TLM library [11] (in the current
version 1.0) to implement our approach towards object-oriented transaction-
level modelling.

Bus protocols, e.g. the AMBA AHB protocol by ARM [1] or the Open Core
Protocol (OCP [9]) have been described with SystemC. An investigation of the
resulting models shows that, while their interfaces are described on transaction
level, the underlying implementation often is on a significantly lower level
that hardly yields an abstraction from the signal/RT level. In this case, high
simulation performance is not achieved by abstraction but by an implementation
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of optimized simulation mechanisms, e.g. cycle-based simulation. It is our goal
to gain higher abstraction by means of consistent application of object-oriented
techniques. We will investigate in Section 5 to which extent this leads to the
desired increase in performance.

The modelling framework given by the SystemC TLM standard is currently
so broad that unification of transaction-level modelling and interoperability
of models have not yet been achieved. A generic approach towards a unified
description of busses on transaction level is proposed by the GreenBus initiative
[7]. The GreenBus approach features the concept of so-called quarks that allow
to model the detailed structure of interactions within a transaction (referred to
as atom). The quarks can be identified with signals of typical bus protocols.
Different from that, our approach aims at an abstraction from that level of detail.

3. Modelling Basic Transactions
Passive Targets

To develop a transition from passive to active objects, we start with a UML
class diagram (Fig. 10.1) of a SystemC model that employs passive targets and
transaction communication via the SystemC paradigm of interface method call
(IMC).

In this model, an abstract interface class bus if is derived from the Sys-
temC class sc interface. In the interface class, the transactions are declared as
abstract methods (pure virtual methods in C++ jargon), i.e. methods that are

«interface»
sc_interface

+read(in addr : unsigned int, out data : unsigned int)
+write(in addr : unsigned int, in data : unsigned int)

«interface»
bus_if

bus_pv
passive
target

initiator

sc_port
bus_if

sc_export

1 11
bus_if

Figure 10.1. Class diagram with passive target.
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not implemented in the class itself. For the basic model, let us assume that there
are two transactions:

• A read transaction that has an unsigned integer parameter to represent the
address to be read, returning the data by reference via a second parameter

• A write transaction with parameters for address and data to be written

The passive target is derived from the interface class and must implement
all abstract interface methods. Hence, the target, e.g. a RAM model, would
implement the read and write functionality. While not strictly necessary, it is
good practice in SystemC 2.1 to export this functionality via an sc export that
is parameterized with the interface type.

For sending transactions to a target, an initiator has an sc port of type bus if.
A thread inside the initiator is able to call the interface methods (read and
write) via the port and can thereby initiate a transaction. In the simplest case,
if only point-to-point communication is modelled, the target’s export can be
bound directly to the initiator’s port. The SystemC IMC mechanism directs
each transaction to the corresponding method within the target.

If the communication of multiple initiators with multiple targets shall be
modelled, a bus model must be inserted between the initiators and the targets.
The bus, as depicted in Fig. 10.1, is derived from the bus if. It acts as a proxy and
implements transactions by decoding the address and passing on the transactions
to the addressed target. For this purpose, it has an sc port to which the targets’
exports can be connected. Figure 10.2 shows an object diagram of the resulting
system model, using a notation popular in the SystemC world that deviates from
standard UML. The character P stands for a port and E denotes an export. The
bus can, but does not need to have an export towards the initiators.

In the system, as described so far, a read or write method in the bus or in the
addressed target is executed by the thread of the initiator of the corresponding

M1 : initiator

B2 : bus_pv

P

provided interfaceport (with required interface) binding

Mn : initiator P

S1 : targetE

P

Sk : targetE

... ...

Figure 10.2. Object diagram with passive targets.
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initiator initiator
port bus_pv target

port target

read(…)

read(…)

return

return

return

read(…)

return

read(…)

master
stalled

Figure 10.3. Message sequence with passive target.

transaction. This is depicted in Fig. 10.3. As a consequence, the initiator
(master) is stalled while the transaction is being processed. This is acceptable
in a PV model. However, in a CX or CA model, an initiator would typically
be modelled so that it continues with other operations before it retrieves the
transaction result. This makes it necessary to give each target a thread of its
own and leads to the issue of transaction dispatch.

Active Targets
The need to execute a target’s methods by a thread of its own requires a change

of the communication mechanism. It is no longer possible to model a transaction
as a method call from outside into the target because this implies the execution
of the corresponding method by an external thread. Instead of transferring
the control flow, communication must be performed by data flow from the
initiator to the target (message passing). This is where the TLM communication
mechanism as shown in Fig. 10.4 comes into play.

The SystemC TLM standard defines blocking and non-blocking interfaces to
put and get transaction onto/from a bus. These unidirectional interfaces can be
used to model non-blocking bidirectional transactions such as a read transaction
as follows: The initiator uses operation put to initiate a transaction request
consisting of transaction type and transaction payload. The target actively
retrieves transaction requests from the bus using the get interface via its port.
After processing the transaction, the target puts the results onto the bus as a
transaction response. This response can be obtained by the initiator using the
get operation. If the get operation is invoked before the result is available, it may
block the initiator or fail (in the non-blocking case). Between the initiation of a
transaction and the retrieval of the results, however, the initiator is not blocked.
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initiator initiator
port bus_pv target

port target

put(read,addr)

return

(read,addr)

put(read,addr)

get(…)get(…)
return

get(data) get(data)

put(data)put(data)

returnreturn datareturn data

(read,addr)

return

Figure 10.4. Message sequence with active target.

Note that in the case of passive targets (Fig. 10.3) we could have used the
bidirectional blocking interfaces of SystemC TLM, but this has been omitted
for simplicity.

The SystemC TLM API is parameterized with a type template, leaving to the
user the choice of the data structures for representing transactions. Previous
approaches to the use of TLM [14] suggest to model all transaction types and
all involved data as a single C++ struct or to split the transaction request and
response into two C++ structs. For the latter case and the above read and write
transactions, this would result in code like the following:

1 enum t _ t r a n s a c t i o n { read , w r i t e } ;
2 enum t _ s t a t u s { va l i d , e r r o r } ;
3 struct REQUEST
4 {
5 t _ t r a n s a c t i o n mode ;
6 unsigned i n t addr ;
7 unsigned i n t data [ s ize ] ;
8 } ;
9 struct RESPONSE

10 {
11 unsigned i n t data [ s ize ] ;
12 t _ s t a t u s s ta tus ;
13 } ;

In the case of a read request, the attribute data of struct REQUEST would be
unused. In response to a write request, the attribute data of struct RESPONSE
would be unused. Moreover, these attributes are declared as arrays in order to
be able to model the transmission of a burst as a single transaction, of which at
most one data field is used in case of simple transactions. Hence, this approach
suffers from the transfer of unnecessary data items.

In our proposed modelling style, there are either two classes (for split request
and response) or one class (merging request and response) for each individual
transaction. In the following, we specialize in the latter case for the sake of
simplicity.
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All transaction classes are derived from a common abstract base class called
bus transaction. This allows us to employ polymorphism to transfer the dif-
ferent transactions over the same TLM channel. The base class has an abstract
method execute which is implemented by each derived transaction so that it calls
the method of the target which corresponds to the transaction. For example,
the execute method within class read calls the read method of a target module.
In order to enable this call, the target module is passed to the execute method
via a reference parameter. The type of the parameter, i.e. the interface that is
implemented by the target, is a template parameter of all transaction classes.
This leads to the class hierarchy shown in Fig. 10.5.

In addition, each transaction class has attributes representing the data values
involved in the transaction, but – different from the above source code excerpt –
no data values belonging to any other transaction. Attributes and convenience
methods common to all transactions, e.g. a status value and a method ready to
query the transaction status, are declared in the base class. Further members,
e.g. constructors, can be added as required.

An example of an implementation of execute, dispatching the transaction to
the target’s corresponding method, is given below. Depending on the degree of
modelling detail, features may be added:

1 void read : : execute ( IF& t a r g e t )
2 {
3 t a r g e t . read ( addr , data ) ; / / c a l l to t a r g e t ’ s method
4 s ta tus = DATA;
5 / / f u r t h e r p ro toco l code , t iming , . . . here
6 }

+is_ready() : bool
+is_split() : bool
+set_status(in s : t_tx_status)
+execute(inout target : IF)

-status : t_tx_status

bus_transaction

IF:bus_if

+WAITING
+ADDRESS
+DATA
+SPLIT
+ERROR
+FINISHED

«enumeration»
t_tx_status

+read(in addr : unsigned int)
+result() : unsigned int
+execute(inout target : IF)

-addr : unsigned int
-data : unsigned int

read

+write(in addr : unsigned int, in data : unsigned int)
+execute(inout target : IF)

-addr : unsigned int
-data : unsigned int

write

Figure 10.5. Transaction class hierarchy.
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We now show how to use TLM mechanisms in order to transport transactions
from initiators to targets. Polymorphism is employed to handle all transactions
derived from the base class bus transaction in a uniform way. In C++, poly-
morphism requires the use of pointers. Hence, we have to transmit pointers to
transactions rather than transactions themselves. This requires some program-
ming discipline because we have to take care of the creation and destruction of
transaction objects. Alternatively, smart pointers might be used. A definitive
advantage of the use of pointers is that the amount of data transmitted is limited
to the size of a pointer, regardless of the size of transaction objects.

It is important to note that the above is perfectly in line with the TLM standard.
All other aspects of communication modelling follow principles described in
the SystemC TLM standard. In particular, channels such as tlm fifos and the
interfaces from the TLM library are used. For example, the target has TLM
ports to receive transactions (via pointers):

1 sc_port < t lm : : t lm_b lock ing_ge t_ i f <bus_t ransact ion <bus_ i f >∗ > > t a r g e t _ p o r t ;

In order to dispatch incoming transactions, we add a thread dispatch to the
target, making it active. Note that this can be done by deriving an active target
from the passive target class as shown in Fig. 10.6; in this step, also the above
port can be added.

The thread receives a transaction via a call to a TLM interface and then
dispatches it by simply invoking the transaction’s execute method, passing the
target itself as a parameter:

1 SC_THREAD( d ispatch ) ;
2 . . .
3 void a c t i v e _ t a r g e t : : d ispa tch ( )
4 {
5 bus_t ransact ion <bus_i f > ∗btx ;
6 for ( ; ; )
7 {
8 btx = ta rge t_po r t −>get ( ) ; / / TLM
9 btx−>execute (∗ th is ) ; / / d ispa tch

10 }
11 }

In comparison to the approach described in [14] which suggests using a
hand-coded switch statement for explicit transaction decoding and dispatch,
we achieve the following advantages:

«interface»
bus_if

+dispatch()
+active_target()

+target_port

active_target

+read(in addr : unsigned int, out data : unsigned int)
+write(in addr : unsigned int, in data : unsigned int)

passive_target

Figure 10.6. Derivation of active target by extending passive target.
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• Decoding and dispatch are implicitly done by the C++ dynamic binding
mechanism of the virtual method execute, relieving the user of program-
ming effort

• The introduction of a new transaction class or a new target method into the
model does not affect the dispatch thread, i.e. the model can be extended
more easily

• The C++ compiler ensures that a corresponding method exists and is
called in the target for each transaction, i.e. the pitfall of accidentally not
dispatching a transaction is avoided

4. Extension To Burst Transactions
This section describes the extension of the above model in order to model –

burst transactions, i.e. transactions that comprise the transfer of multiple data
accessed at successive addresses. The concept of burst transfers is a feature in
many relevant bus protocols, e.g. AMBA AHB [1] and OCP [9].

Extended Class Model
In order to initiate burst transactions as a single operation, the interface of

the bus (proxy) has to be extended. This is done by deriving a new interface
class, burst if, from the bus if and declaring additional methods read and write
for communication using bursts, as shown in Fig. 10.7. The parameters of
these methods comprise the start address of the burst, length of the burst, and
information about the kind of burst (e.g. in the case of the AMBA protocol,
wrapping vs. incremental). In addition, the first data (d0) to be transferred has to
be provided when initiating a write burst. The burst methods return a transaction
object as a future. Via this object, an initiator shall provide further data words
in case of a write burst or obtain the results of a read burst. This is explained
in more detail in the next subsection. The proxy interface is implemented by

+read(in addr : unsigned int, out data : unsigned int)
+write(in addr : unsigned int, in data : unsigned int)

«interface»
bus_if

+read(in addr : unsigned int, in size : unsigned int, in wrapping : bool = false) : *bus_transaction
+write(in addr : unsigned int, in size : unsigned int, in d0 : unsigned int, in wrapping : bool = false)
+burst_finish(in ftx : *bus_transaction)

«interface»
burst_if

slave bus_cx

Figure 10.7. Inheritance hierarchy of components, supporting bursts.
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+is_ready() : bool
+is_split() : bool
+set_status(in s : t_tx_status)
+execute(inout target : IF)

-status : t_tx_status

bus_transaction

IF

+write_burst(in addr : unsigned int, in size : unsigned int, in data0 : unsigned int, in wrap : bool)
+execute(inout target : IF)
+put(in data : unsigned int)

-start_addr : unsigned int
-data[] : unsigned int
-size : unsigned int
-wrap : bool
-pos_c : int
-pos_p : int

write_burst

IF:bus_if

+read_burst(in addr : unsigned int, in size : unsigned int, in wrap : bool = false)
+execute(inout target : IF)
+get() : unsigned int

-start_addr : unsigned int
-data[] : unsigned int
-size : signed int
-wrap : bool
-pos_p : int
-pos_c : int

read_burst

IF:bus_if

read

write

Figure 10.8. Inheritance hierarchy of transactions, supporting bursts.

the class bus cx which represents a cycle-approximate model of the AMBA
AHB bus.

From the abstract base class of all bus transactions, bus transaction, new
burst transaction classes, read burst and write burst, are derived (cf. Figure
10.8). These classes encapsulate all information that belongs to a burst: start
address, size, kind (wrap), and the burst data (array data). Further attributes
store the number of data words already produced (pos p) and consumed (pos c)
for a burst transaction. The constructors write burst and read burst facilitate
the initialization of a transaction, in case of a write transaction requiring to
provide the first data word (parameter data0).

The method execute describes the execution of a transaction by calling the
respective method of a bus slave. For example, to implement a burst–read
transaction, execute invokes method read of the target repeatedly. The resulting
sequence of operations is described in the following subsection. All further
aspects of message dispatch are as described in Section 3.

1 void read_burst : : execute ( IF& t a r g e t )
2 {
3 for ( pos_p = 0; pos_p < s ize ; pos_p++)
4 {
5 t a r g e t . read ( wrap ? base_addr + ( ( s ta r t _add r + pos_p ) % s ize )
6 : s t a r t _add r + pos_p ,
7 data [ pos_p ] ) ;
8 s ta tus = DATA;
9 }

10 pos_p = s ize ;
11 s ta tus = FINISHED ;
12 }
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Method get of transaction read burst allows an initiator to obtain the results
of a read burst word by word at times of its own choice. Hence, the transaction
object serves as a future for the transaction result. In analogy, method put of
transaction write burst allows an initiator to supply the data words following the
first word so that when initiating a write burst transaction, it is not necessary
to have all burst data available. The following subsection gives a detailed
description of the respective interactions.

Dynamics of the Burst Model
Figure 10.9 depicts the execution sequence, as in our model, of a write burst

transaction followed by a read burst. In the assumed scenario, the size of each
burst equals four data words.

A bus master initiates a write burst by invoking method write, declared in
interface burst if and implemented by an instance B of the bus model bus cx.
This method creates and initializes a transaction object tx of class write burst
and returns a reference to that object as a future to the invoking bus master.

Figure 10.9. Message sequence chart, write burst followed by read burst.
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The transfer of the transaction object to the addressed bus slave follows the
mechanisms presented in Section 3 and is not shown in Fig. 10.9.

The bus slave now fetches the transaction and uses its thread to invoke the
transaction’s method execute. This method implements the repeated write oper-
ations modelled by the burst transaction class by repeated invocation of method
write of the bus slave with successive word addresses. In the first invocation,
the data word supplied at the time of burst initiation is used. Further data words
have to be supplied by the master in time by calling method put of the transac-
tion future. If that timeliness is violated, an error could be reported or the burst
could be blocked until data are available. In our model, the latter is the case. A
transaction is finished if the transaction object has reached status FINISHED,
and the object is deleted as soon as the future is released by the master using
method burst finish.

Following this write burst, the dynamics of a read burst transaction in our
model is shown in Fig. 10.9. Burst initiation by the master and start of execution
by the slave are performed in analogy to the write burst. In the shown scenario,
the master tries to read the first data word of the burst by invoking method
get with the transaction future before this data is available. Consequently, the
master is blocked until the first execution of method read is finished by the
slave and the data can be returned. All further calls to get occur after the read
operation of the data concerned and are therefore non-blocking. Again, the
burst transaction is deleted when it has reached status FINISHED and has been
released by the master via burst finish.

5. Experimental Results
The object-oriented transaction-level model presented in the previous sections

has been implemented in SystemC [10] using the transaction-level modelling
(TLM v1.0) library [11]. Our implementation consists of 267 lines of code,
which is less than half of the 582 lines of code required by the corresponding
sections of the cycle-true model we used as a reference. The functionality
of our model has been validated by simulation. In this section, we present
experimental results on simulation performance.

Experimental Setup and Measurements
An experimental setup for determining the simulation performance of

transaction-level models has been described in [16]. We have reproduced this
setup for our model. The setup incorporates the simulation of the bus model
with one bus master and one bus slave. The master creates pseudo-random
data packets of increasing size and sends them to the bus as transactions. Data
packet size is varied from 1 to 1,000. The following cases are distinguished:
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Figure 10.10. Measured simulation performance.

• In a first simulation run, bursts of arbitrary size, i.e. from 1 to 1,000 data
words, are permitted.

• In another simulation run, data packets are split into bursts of size 4 and
16 as well as simple transactions carrying one data word. Thereby, the
model is closer to the bus implementation which restricts burst sizes.

The second case has also been simulated with a cycle-accurate model of
the AMBA AHB bus. In all cases the same simulation system has been used:
SystemC v2.1 OSCI reference simulator, compilation using Microsoft Visual
C++ 7.0 (release build, optimization level O2), simulation on a computer with
Pentium M 1,5 GHz, and 512 MB RAM under Windows XP.

Figure 10.10 shows simulation performance over data packet size. Simula-
tion performance is measured as the number of data words, the transmission of
which was simulated per second of CPU time. Data packet size ranges from 1
to 1,000 data words of 32 bits.

Interpretation and Comparison
For the cycle-approximate model with bursts of arbitrary size (upper curve)

simulation throughput rises with increasing data packet size. This is because
the number of SystemC events to be simulated is dominated by the number of
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transactions, not by the number of words transmitted as part of a transaction,
since the latter cause no additional events. The more data are transmitted in
a burst, the smaller the relative effort that goes into the SystemC simulation
mechanism. An upper limit is given by the effort for transmission of words
within a transaction. In this model, the limit is at approximately 35 million
bus word transmissions that can be simulated per second of CPU time. Hence,
simulation is just about one order of magnitude slower than operation of a bus
implementation clocked at 350 MHz. Note that the inclusion of further bus
components would of course reduce performance.

More realistic, however, is the splitting of data packets into bursts of size
16, 4 and simple transactions (middle curve). For data packets of less than
16 words, simulation performance is limited by the simulation throughput of 4
beat bursts; for longer packets by throughput of 16 beat bursts. The sawtooth
shape of the curve results from the inclusion of shorter bursts if a data packet
cannot be transported by an integer multiple of a long burst. The upper limit of
simulation performance is at about 9 million simulated data word transmissions
per second CPU time.

For comparison, the performance of a cycle-true AMBA AHB model with
optimized cycle-based simulation has been measured (lower curve). The result
is a simulation throughput of less than 1 million data words per second.

Another comparison can be done with the results from [16]. In that publi-
cation, a maximum simulation throughput of 2.29 MByte/s has been achieved
with a cycle-approximate model (there called arbitrated TLM, ATLM) and a
more powerful simulation system. This performance is clearly exceeded by our
model.

In [7] the simulation performance of a GreenBus model of the OCP bus
protocol [9] is reported. After conversion into the units used in the publication
at hand, that performance equals 482 kwords/s when transmitting 16 beat bursts
as compared to 9 Mwords/s for our model. When simulating transfer of larger
data packets, GreenBus performance rises up to 722 kwords/s compared to a
maximum value of 35 Mwords/s for our model.

The significant performance benefit of the presented object-oriented
transaction-level model is due to its increased degree of abstraction. The other
models may achieve better simulation accuracy. Accuracy has up to now been
determined quantitatively for just one of the investigated models [16]. Respec-
tive measurements are pending for our model.

6. Conclusions and Future Work
We have presented an object-oriented methodology for modelling transac-

tions in SystemC and dispatching them to methods of active objects. The
benefit of this methodology over previous approaches is in simpler dispatching,
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better extensibility and higher consistency of the resulting system models. The
methodology is fully compatible with the TLM standard.

The model has been extended to cover burst transactions. Concepts from the
concurrent object-oriented design pattern active object have been applied to this
modelling situation. Using these modelling concepts, a cycle-approximate sim-
ulation model of the AMBA AHB protocol has been implemented in SystemC.
Its simulation performance has been measured using a setup that allows com-
parison with some previous work. The results show a significant performance
advantage of our approach that is caused by the high degree of abstraction
achieved with the object-oriented modelling style. In particular, the encapsu-
lation of transaction details within transaction objects reduces the amount of
events to be handled by the SystemC simulation kernel.

In our future work, we will extend the modelling methodology to more
modelling situations, including modelling of split (interrupted) and pipelined
transactions and the combination of these features with simple as well as burst
transaction. Furthermore, work is under way to model standard components
and bus protocols based on the methodology and to provide a connection with
instruction set simulators. The development of a tool that automates the gener-
ation of the transaction inheritance hierarchy is under consideration.
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III

FORMALISMS FOR PROPERTY-DRIVEN DESIGN



Introduction

The assertion of properties is essential to the specification, documentation,
and command of software tools for a variety of design tasks, including the
verification of functional behavior, the generation of test stimuli, the synthe-
sis of observation monitors and online tests, the model checking of essential
characteristics on the reachable state space, direct synthesis from assertions, etc.
Standardized formalisms such as PSL and SystemVerilog, with trace operational
semantics, are widely used in combination with more traditional hardware de-
sign languages, primarily at the synthesizable RTL level; their application to
more abstract design levels and to mixed system designs becomes relevant.
Other formal languages such as DE2 or B are deeply embedded in a theorem
prover, providing a “correct by construction” top-down design methodology
supported by proven correct refinements and automatically generated proof
obligations. Finally, some efforts aim at defining mathematical semantics and
formal processing capabilities for time-dependant properties and specifications
expressed in a more intuitive and human-friendly graphical syntax.

The following five articles were selected from the research contributions
presented in the context of the FPD technical area. They discuss RTL generation
of hardware modules from properties, system-level verification.

The first paper “On Consistency and Completeness of Property-Sets:
Exploiting the Property-Based Design-Process” by Martin Schickel et al. de-
scribes a technique for generating hardware from properties written in PSL.
Properties are first transformed into a normal form, and then “Cando-Objects”
are synthesized, the behavior of which is only restricted by the normalized prop-
erties. Among the applications of this technique, the authors insist on property
coverage and consistency checking.

The second paper “Online Monitoring of Properties Built on Regular Expres-
sions Sequences” by Katell Morin-Allory et al. presents a new principle for
the automatic synthesis of monitors for checking properties written under the
form of temporal regular expression sequences, in PSL or SVA. The triggering
is modeled by a token, and multiple triggers that are concurrently evaluated by
the same monitor appear as tokens of different colors.

177
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The third paper “A Verification Tool Implementation Using Introspection
Mechanisms in a System-Level Design Environment” by Michel Metzger et al.
discusses the ESys.NET system-level simulator, and its capability of offering
hook points to independent tools. This feature is used to bind observers for LTL
properties, under the form of software automata that are executed together with
the simulation. The technique was applied to a lightweight AMBA bus model.

The fourth paper “Formalizing TLM with Communicating State Machines”
by Bernhard Niemann et al. raises again the abstraction level. A system is
modeled as the composition of behavioral modules that communicate through
bidirectional interfaces. The identification of initiator and target modules spec-
ifies the data flow while the scheduling of communication events is modeled by
abstract state machines, for verification by model checking.

The fifth paper “System Description Aspects as Syntactic Sugar of the Syn-
chronous Language Quartz” by Jens Brandt et al. discusses the unification
of structural descriptions, guarded commands, and temporal property specifi-
cations in a synchronous programming paradigm, derived from Esterel. The
Quartz language of the authors allows to execute both the system and its speci-
fication, and supports model refinement as well as a range of formal verification
methods.

We trust that this selection of research results will provide a valuable under-
standing of the state of the art and ongoing issues in the domain of property-
driven specification, verification, and design.

Dominique Borrione
Grenoble University, France

Dominique.Borrione@imag.fr
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AN EFFICIENT SYNTHESIS METHOD
FOR PROPERTY-BASED DESIGN IN FORMAL
VERIFICATION

On Consistency and Completeness of Property-Sets

Martin Schickel, Volker Nimbler, Martin Braun, and Hans Eveking
Darmstadt University of Technology
Darmstadt,Germany
schickel@rs.tu-darmstadt.de; nimbler@rs.tu-darmstadt.de; braun@rs.tu-darmstadt.de;
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Abstract The verification of a design’s adherence to its specification has been and still is a
major problem within the EDA community. Multiple issues like completeness,
consistency, and the speed of the verification process are being researched with-
out any feasible solution at hand.
This article introduces a technique of normalizing properties and transforming
those normalized properties into an executable design description. During this
process or from the derived design description further information on complete-
ness and consistency can be obtained. Additionally, the generated design descrip-
tion may be used in the course of a verification process to speed up the operation.
This technique also enables the test of specifications without having to build an
implementation first.

Keywords Model checking, property-based design, Cando-Objects, verification, property
checking, compositional verification, synthesis

Introduction
The formal verification of large designs is limited by the number of gates,

the complexity of the circuit, and the property to be verified. Although it is
possible to verify parts (modules) of a design with sets of module properties, the
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formal verification of the whole design often will not complete within a tolerable
amount of time. One of the reasons for this is the complexity of the modules,
which may for instance be optimized for speed and are therefore implemented
in a very sophisticated way which is hard to verify.

Our primary goal was to find a conservative abstraction mechanism capable
to transform highly optimized modules into more verification-friendly circuits,
thus enabling the formal verification of large designs consisting of such mod-
ules. Our solution is a grey-box-approach:

First the modules themselves must be verified using a defined set of module
properties. Then grey-box-models of the verified modules can be generated
from the properties used to verify the modules. We call these models “Cando-
Objects”, since they can do anything, show any behavior, not expressively
forbidden by the set of properties from which they were generated. The original
models can then be replaced by the respective Cando-Objects.

If the full design – including the replacements – can be verified, the design
is correct, since the Cando-Objects are a fault-conserving abstraction of the
original modules. Also, it proves that the set of module properties is complete
with respect to the architectural properties. If the verification fails, the reasons
responsible are numerous and will be discussed later on. The relation between
architectural properties, module properties, and Cando-Objects is shown in
Fig. 11.1.

In the next sections we will introduce a normalization technique for properties,
the transformation algorithm used to generate Cando-Objects, and present some
of these techniques’ applications in the design flow. We will also give some
experimental results on how this normalization technique help to generate a
working consistent property-set without having a hardware description of the
underlying circuit.

Master 2Master 1 Slave 1

Architectural Property

Slave 2 Arbiter

Prop 3 Prop 4 Prop 5

Cando-
Master 1

Cando-
Master 2

Cando-
Slave 1

Cando-
Slave 2

Cando-
Arbiter

Prop 2Prop 1

Figure 11.1. Verification using Cando-Objects.
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1. Related Work
There have been many efforts in the area of property-based synthesis up to

this point. The Prosyd-Project has dedicated itself to Property-based Synthesis
and Design and has been quite successful with small designs [8]. The main
difference to our approach is that we try to solve the problem not on the bit-
level but on the bit-vector-level, enabling us to synthesize 32-bit and wider data-
paths without problems. In addition, while Prosyd aims at generating hardware
that satisfies a set of properties, our main goal is to generate hardware exactly
implementing a set of properties including all ambiguities not resolved therein.
Lastly, while Prosyd aims at implementing full PSL support, our approach is
restricted to properties that can be proven or disproven on finite paths.

At the MIT, a patented way to synthesize large designs solely from properties
written in the Bluespec-SystemVerilog language was developed [6]. It uses a
term-rewriting-system (TRS) in order to transform properties into a hardware
description written in a standardized hardware description language. However
efficient, the property coding style required by the above approach differs sub-
stantially from properties normally written by verification engineers in order
to prove the formal correctness of a design. It would be therefore necessary to
either transform the “verification properties” into “design properties” or use a
different approach to synthesize hardware from arbitrary finite properties.

With respect to property normalization, there exists a technique of normal-
izing sets of LTL properties into the SNF [5]. This technique is partly identical
to our normalization approach; however, our goal was not the normaliza-
tion of properties written in LTL, but general properties written in arbitrary
VHDL/Verilog-flavored languages. In addition, the style of the normalized
properties is related to the monitor style proposed by Shimizu [9].

Our work is in general related to the generation of monitors from properties,
and some of the problems that are present when generating monitors are also
present when generating hardware from properties. Monitor generation from
PSL is described in [3] and [7].

In [4], a way of detecting coverage holes of module properties with respect
to architectural properties was presented. We will show in the course of this
paper that not only does our approach fulfill the same goal but it also does not
have the drawbacks of that approach.

2. The Normalization of Safety Properties
Most safety properties do not adhere to the style required by the hardware

generation process described below. Therefore, we have developed a technique
of normalizing some existing types of properties common in Bounded Model
Checking into a format that not only satisfies the requirements of the generation
process, but also allows some further analysis of the property-sets.
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assert always {r; s} | ⇒ {x; y[∗1 : 2]; z}
≡

rt−1 ∧ st → xt+1 ∧ yt+2 ∧ ((yt+3 ∧ zt+4) ∨ zt+3)

Figure 11.2. PSL Boolean expression example.

In order for the normalization process to work, the input properties must be
in the form either A → P or P (essentially true → P ). A and P must be
logical constructs written in a property specification language (e.g. in PSL)
which can be resolved to true or false and therefore be represented by a
Boolean expression that comprises of temporally indexed variables (Fig. 11.2).
A describes all combinations of state and input variables in which P must hold
true and will be called assumption in the following sections. It may include
assumptions on the behavior of the environment. P must hold true in all cases
where A does also hold true and will be referred to as proof part or commitment.

In general, every property must only cover a finite time window within the
basic implication. The only infinite LTL construct allowed is G(ϕ), but only
when it has the meaning “a finite property ϕ must always hold”. In particular,
constructs like F (ϕ) (finally) or the unbounded [*]-operator in PSL cannot be
supported. The simple subset of PSL as defined in [1] is – within the restrictions
above – fully supported.

The Normal Form
Definition: A property-set is called normalized, if the following principles

hold true for the property-set and all properties therein:

1. Every property consists of an implication A → P which must hold true
at all times.

2. The implication A → P is written in a temporally logical, non-prophetic
style: The commitment contains only signals at the timepoint t + 1 (the
“next state”), whereas the assumption only contains signals at earlier
timepoints (the “present state” t and earlier).

3. The property-set must be disjoint, i.e. for any combination of state and
input variables there may be only one property that commits a particular
signal to a value.

4. A commitment can only be split (as described in 2.0.0) if it does not
violate one of the other principles.
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The Normalization Process
In the following we describe the normalization process applicable to any

arbitrary property A → P . Transformations of X into Y will be denoted by
X

T−→ Y . The normalization process will not lose any information contained
in the initial property-set, if step 1 (as described in 2.0.0) was applied correctly.
The final step of the normalization, the disjunction algorithm, will be presented
separately in Section 2.0.

Prevent prophetic behavior. Depending on the property coding style,
all signals in the assumption A which are from the same or a later timepoint
than the timepoint t of the latest signal in the commitment P , are eliminated
by existential abstraction, since they should not be able to influence earlier
behavior of the design.

Note that equal timing may be allowed in certain cases where overlapping is
desired as in case of the �→ operator in PSL, when input signals are not sampled
according to some clocking scheme, but are direct inputs to a combinatorial
network.

A → P
T−→ (∃v1..vn : A) → P (11.1)

(v1..vn being the variables from timepoints equal or later than tP , which is the
earliest timepoint occurring in P .)

This step is aimed at the users of specification languages supporting multi-
cycle overlap of assumption and commitment (e.g. OneSpin Solution’s ITL);
it is normally not necessary for PSL properties and will destroy information
contained within the properties if applied incorrectly.

Split the assumption. Next, the assumptions and commitments are separated
in order to obtain small properties that can be handled easier: Every assumption
is transformed into its disjunctive normal form (DNF). This transformation is
potentially costly in terms of time, but this cost can usually be neglected due to
the small size of the expressions. Then the theorems are split into n separate
theorems, where n is the number of product terms in the assumption.

(
n∨

i=1

xi

)
→ P

T−→
n∧

i=1

(xi → P ) (11.2)

(Every xi being a product term of the assumption and n the number of product
terms in the assumption.)
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Split the commitment. Likewise, the commitments are being transformed
into the conjunctive normal form (CNF) and the theorems are split again into
n separate theorems, where n is the number of sum terms in the commitment.

A →
(

n∧
i=1

xi

)
T−→

n∧
i=1

(A → xi) (11.3)

(Every xi being a sum term of the commitment and n the number of sum terms
in the commitment.)

Normalize timing. The original properties may contain various signals at
different points of time. Whether a signal’s time is adjusted by n time steps
does not matter as long as the signals’ relative order is preserved. In every
property the signal references are adjusted by the same number of time steps
such that t + 1 is the latest timepoint occurring in a property. This preserves
the relative order of the signals.

Tnew(si) = Told(si) + 1 − Tmax (∀i ∈ {1..n}) (11.4)

(si being a signal in the property, n being the number of signals in the property
and T (s) denoting the timepoint of a signal s, Tmax is the latest timepoint in
the property before the timing adjustment.)

All theorems are now in a form A → P such that

1. A is a single product term.

2. P is a single sum term.

3. The latest timepoint contained in the property is t + 1.

Order implications by timing. The signals need to be adjusted in a way
that all the signals at the timepoint t + 1 are in the commitment and all earlier
signals in the assumption, such that an assumption can be observed true or false
before any implied commitment must be enforced. For the signal adjustment
the following equivalences can be used:

A1 ∧ A2 → P ≡ A1 → ¬A2 ∨ P (11.5)

A → P1 ∨ P2 ≡ A ∧ ¬P1 → P2 (11.6)

(A, A1, A2, P , P1, and P2 being arbitrary Boolean expressions.)
Since A is a single product term and P is a single sum term, we can transfer

any signal in a property from the assumption to the commitment and vice versa
quite easily.
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The Disjunction Algorithm
By now a set of properties which adheres to all the requirements of the trans-

formation process except disjointness has been obtained. In order to achieve this
last goal one must basically compare every theorem with every other theorem
to see whether they logically overlap and eventually draw conclusions from the
overlap.

This can for instance be implemented by using a list of disjoint properties
which is filled one by one with properties from the to-do-list obtained as a
result of the previous operations. One theorem is taken from the to-do-list,
compared with every theorem in the disjoint list and then added to the disjoint
list itself, if it was not discarded for reasons described below. Any theorem
additionally created in this process is added to the to-do-list, since it may add
new information and restrictions to properties already in the disjoint list.

The comparison works as follows: There are two theorems T1: A1 → P1

and T2: A2 → P2, where T1 is already listed in the disjoint list and T2 is the
theorem from the to-do-list currently being compared to T1.

The comparison yields three different results:

1. The commitments have no common variables.

2. The assumptions do not overlap logically (i.e. may not become true at
the same time).

3. The assumptions and commitments do overlap logically.

For case 1, obviously nothing has to be done. If there are no common
variables, the theorems do not have anything in common as of yet.

If the assumptions do not overlap, which is, if A1 ∧ A2 = ∅ (case 2), also
nothing needs to be done, since the properties do not have to hold at the same
time.

In case the assumptions are true at the same time and the commitments
interfere with one another, the states in which both assumptions are true have to
be taken care of in particular and will be excluded from the original properties.
A new property will be generated to deal with these states.

The comparison will therefore have three general effects:

1. T1 is modified in a way that T2 does not have to hold at the same time:

P1 : A1 → P1
T−→ P1 : A1 ∧ ¬A2 → P1 (11.7)

2. T2 is modified in a way that T1 does not need to hold at the same time. All
further comparisons will be executed using T2, the previous comparisons,
however, do not have to be repeated.

P2 : A2 → P2
T−→ P2 : A2 ∧ ¬A1 → P2 (11.8)
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3. Lastly, at least one new property T3 is created and added to the to-do-list.
It covers the case in which both T1 and T2 are true:

P3 : A1 ∧ A2 → P1 ∧ P2 (11.9)

There may be more than one resulting properties, if a logic reduction has
occurred while creating T3, generating terms that do no longer contain common
variables: Assuming P1 = (a∨ b)∧ (b∨ c) and P2 = (a∨¬b), the result of the
generation would be P3 = a∧(b∨c). However, this would violate requirement
4 of the normal form, since there are no longer variables common in the two
sum-terms and the theorem might be and therefore must be split. Thus, there
will be not one, but two newly generated theorems, T3a: A3 → a and T3b:
A3 → b ∨ c, which will both be added to the to-do-list.

If P3 = ∅ , then an inconsistency between two properties has been detected
(can be done, e.g. by using BDDs or SAT). In this case, after drawing the
consequences, it might be useful to continue the algorithm in order to generate
environmental constraints or to resolve the inconsistency. The property T3:
A3 → ∅ must in this case be completely restructured according to the rules
described from Section 2.0.0 to Section 2.0.0, potentially generating a number
of new properties in the to-do-list. An example for this is displayed in Fig. 11.3.
The algorithm’s pseudocode is displayed in Fig. 11.4.

What can be Learned During and after Normalization?
There are two basic types of information that can be gathered during the

normalization procedure:
First of all it can be discovered whether the property-set is consistent or prop-

erties contradict each other. This may become obvious when the properties are
tested on a particular design, since only one of several contradictory properties
can be proven. Using the described technique, contradictions can be detected
solely by normalizing the properties. This information is therefore available
at a much earlier timepoint in the development process, e.g. when the formal
specification is being prepared and there are no prototype implementations
available.

Contradictions mostly result from missing restrictions in the assumption,
e.g. a general property was written, stipulating that ϕ must be true at all times,
but another property states, that after a reset ϕ must be false. Thus, obviously,
the restriction for the general property “if not after a reset” was missed. Our
algorithm displays the consistency violations, but allows overcoming these con-
tradictions by preventing the states preceding a contradiction, which means that
the assumption is basically forced to be false at all times.
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Base theorems: At → Bt+1

At → Ct+2

Bt → ¬Ct+1

DNF and KNF split not necessary.
After timing normalization: At → Bt+1

At−1 → Ct+1

Bt → ¬Ct+1

Applying Disjunction ...
Possible inconsistency: At−1 ∧ Bt → ∅
Normalized inconsistent property: At → ¬Bt+1

Property-set is now: At → Bt+1

At−1 ∧ ¬Bt → Ct+1

Bt ∧ ¬At−1 → ¬Ct+1

At → ¬Bt+1

Applying Disjunction ...
Possible inconsistency: At → ∅
Normalized inconsistent property: true → ¬At+1

Resulting property set: true → ¬At+1

At−1 ∧ ¬Bt → Ct+1

Bt ∧ ¬At−1 → ¬Ct+1

TODO: invariant application ...
Resulting final property set: true → ¬At+1

Bt → ¬Ct+1

Figure 11.3. Inconsistency removal example.

Secondly, we can derive assertions for the behavior of the environment,
which is required for the design to be able to work correctly. When writing
module properties, the properties often contain information on how we expect
the environment to behave which are then added to the assumption part of the
properties.
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while( todolist �= ∅ )
{

t2 = theorem from todolist;
delete t2 from todolist;
for ( i=0 ; i<#theorems in donelist ; i++ )
{

t1 = donelist[i];
if not commonvars( t2->p2 , t1->p1 ) continue;
ca = bool and( t2->a2 , t1->a1 );
if ( ca==bool zero ) continue;
cp = bool and( t2->p2 , t1->p1 );
t2->a2 = bool and( t2->a2 , bool not( ca ) );
t1->a1 = bool and(t1->a1,bool not(ca));
t3 = new theorem( t3->a3 = ca , t3->p3 = cp );
add to todolist( theorems created from( t3 ) );

}
add to donelist( t2 );

}

Figure 11.4. Disjunction algorithm pseudocode.

However, there might be certain environmental behavior which would lead to
a contradiction as described before. When this contradiction is caused by input
signals rather than state signals, we can derive rules which the environment
must adhere to for the design to work correctly. By this we can identify critical
properties, which – if not adhered to – might cause other components, which
do adhere to the specification, to fail.

3. Cando-Objects: The Transformation of a Normalized
Set of Properties into a Hardware Description

Cando-Objects are grey-box-representations of circuits, with behavioral
restrictions not imposed by the original design, but the underlying set of proper-
ties. The process of generating a Cando-Object is therefore basically a property-
based abstraction mechanism.

One of the major difficulties encountered during the development of this
technique is nondeterminism. While a completely designed circuit is fully
deterministic, specifications – and therefore property-sets – may provide the
designers with a certain degree of freedom, e.g. stipulating that a request
must be answered within 5 cycles, allowing for a number of different correct
implementations.
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While this problem may be safely ignored when the goal is to generate func-
tioning hardware (either because the specification must be fully deterministic
or because it is sufficient to pick one possible solution), it must be taken into
account in this case. This is, because any nondeterminism contained in the pro-
perties must be resembled by the Cando-Object, otherwise its behavior would
deviate from the properties and therefore not be a conservative abstraction.

We overcome the obstacle of nondeterminism by adding free inputs to the
original design (at most one per signal bit). Since free inputs may take any
value, we can use them as random number generators, which work especially
well in the area of Bounded Model Checking and will be detailed below.

The Transformation Process
The transformation process uses an empty shell of the original model (a

black-box), extends it and fills it with circuitry.
The transformation process starts with the generation of the free inputs. For

every output and state variable v an additional input signal v r of the same type
is generated. This input must not be connected to any outside signal during
the verification process (i.e. on the testbench) in order to ensure that it can
take any possible value. At any time, at which no restrictions are imposed by
the properties, the free input signal is assigned to the corresponding variable,
allowing also the variable to assume any possible value.

A free input signal may only be omitted if the signal it corresponds to is
determined to one specific value depending on state and input variables for
every combination of state and input variables.

Such a signal we call fully determined (Fig. 11.5a). If a signal is completely
unrestricted by any property we call it fully nondetermined and directly connect
the free input to the signal (Fig. 11.5b). In any other case, the signal is partially
nondetermined. There are multiple cases, in which this might happen and each
warrants our attention (the extension to combinations of two or more cases
should be obvious and is therefore not explicitly described):

1. A signal is determined in certain states, but not in others.

2. A signal is logically nondetermined.

3. A signal is temporally nondetermined.

Case 1 appears frequently, since for some signals the behavior is undefined
for at least some states (e.g. after reset). The solution is a multiplexer, for-
warding a defined assignment where needed and the free input value otherwise
(Fig. 11.5c). If the property specifies, that either x or y must happen, case 2
is at hand. This problem can be solved by checking whether the free inputs of
both x and y satisfy the requirement and forward these values if they do. If
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c) Somestates non-determined

Source Properties:

Generated Circuit:
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0x_randominput
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d) Logically non-determined

Source Properties:

Generated Circuit:
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Source Properties:
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Figure 11.5. Circuit example for partial nondeterminism.

not, the the values must be set to one particular solution that will satisfy the
requirement (Fig. 11.5d). Lastly, a property may specify that some event must
happen within a number of cycles. In this case the property will be satisfied at
the latest possible point of time. (If a property specifies “x must happen within
5 cycles”, that can be translated into “if x has not happened within the last 4
cycles, x must happen in the next cycle”.) This case is already solved by means
of the normalization, which transforms a property in such a way. This kind of
nondeterminism does not correspond to the normal-form-input restrictions of
this transformation and therefore may not occur directly.

Any accesses to variables that are located at a time earlier than the current
time t will be realized by means of shift registers. Every state, input and output
variable’s value will be preserved for as many cycles as necessary to satisfy the
properties’ needs.

The Result of the Transformation
The resulting Cando-Object corresponds to the properties from which it was

generated. Any behavior uncovered by the properties will result in nondeter-
ministic behavior of the hardware description. Although the Cando-Object is
an abstraction of the underlying design, it is not necessarily smaller. The intent
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was to create an abstraction that is easier to verify. By means of this trans-
formation, e.g. an 8-step arithmetic pipeline would be transformed into 30 or
more multiplier units. This may sound bad at first, but considering the cone-of-
influence reduction used in formal verification tools, only one path containing
probably not more than one multiplication unit should be activated during the
verification of one command. This multiplication unit, however, can be verified
much simpler than the original optimized design.

Using Predicates for Complexity Reduction
Obviously the bit-level normalization (every signal bit is one variable) will

take a very long time when the properties consist of algebraic expressions. This
is due to the increasing complexity of the functions determining the variables’
contents. Neither a 16-bit multiplier unit is very handy on the bit-level, nor is a
32-bit-adder. In order to increase the usability and speed of the initial algorithm,
a predicate-based normalization approach was developed:

A predicate is any expression that can be evaluated to true or false. This will
regularly be relational expressions (=, >, <, ≥,≤) or Boolean signals. Every
predicate found in the property will be evaluated as a whole and is represented
by a single Boolean value in the property expression. Therefore the number of
signals in this expression and also the time needed to build the expression can
be drastically reduced.

All predicates are stored in a normalized form (the latest timepoint is t+1) in a
list to avoid duplicates. The original timing is reflected by the predicate’s timing
attribute within the expression. The predicate-based properties (all Boolean
expressions have been replaced by predicates) can then be normalized using
the normalization procedure as before. Unlike before, the normalization is not
completed after that:

Because different predicates may contain the same signals at t+1, only one of
those properties’ assumptions may evaluate to true in any state. If this is not the
case, the predicate-based approach will not work for that particular signal and
the bit-level normalization procedure will be used. After identifying all signals
whose values will be influenced by more than one property at the same time,
all properties containing the signal at t+1 will be transformed to bit-level. All
signals appearing in one of these properties at t+1 are added to the list of signals
identified before and the procedure is repeated until no more signals are found
that are interconnected with the properties that are transformed back to bit-level.
Only by doing this, we can be sure that there are no interdependencies between
the signals assigned bitwise and the ones assigned by a vector operation.

The list of properties on bit-level must be normalized again. In the course of
this operation, all former interdependencies between properties are removed.
Both lists of normalized properties can now be transformed into a Cando-Object.
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Dealing with Asynchronous Control Signals
The Cando-Object consists of two parts: The external interface (in VHDL:

the entity), which is copied from the original component or modeled in a fashion
as to match the interface of a component to be designed and augmented by free
inputs used to generate random signal assignments in case there is no defined
behavior.

The component’s interior (in VHDL: the architecture) is automatically gen-
erated from the properties. The generated VHDL corresponds to a modified
mealy machine layout as displayed in Fig. 11.6. Some characteristic features
have been extracted from the combinatorial net for better understanding.

Now, how can asynchronous resets or, in general, control signals that require
an instantaneous reevaluation of signal values once they change their value, be
dealt with?

At first glance this does not seem to be much of a problem: These signals
are fed into the combinatorial net like all other signals, too. However, two
questions arise: How can such signals be recognized by looking at a property
and what impact do those signals have on the predicate-based normalization?

The answer to question one is simple: The desired behavior is part of the
specification and therefore needs to be specified within the properties. However,
most property-specification languages do not provide mechanisms to specify
which behavior is desired, but only evaluate signal values once per cycle. There-
fore, it is impossible to distinguish whether the reset in the PSL properties
displayed in Fig. 11.7 is meant to be synchronous or asynchronous without

direct control
inputs

Combinatorial
Net

Sampler

Shift-
Register

- Registers

CLK

sampled
inputs

direct data inputs

MUX

direct
outputs

Figure 11.6. Internal layout of a Cando-Object.

assert always {a[∗9]}| ⇒ {b}abort reset;

assert always {{a[∗9]}&&{!reset[∗9]}}| ⇒ {b};

Figure 11.7. PSL example for indistinguishable reset behavior.
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extending the vocabulary of the specification language. Since we are somewhat
free to add data to the signal specification (which is not part of the property set),
we decided to introduce additional signal attributes, specifying, whether a sig-
nal needs to be sampled at a rising or falling clock (which is the default) or will
directly impact the signal values.

The impact of non-sampled control signals on the property-based approach
is severe. Since in many cases the signal assignment in case of a reset severely
deviates from the assignments made without an active reset signal, all such
signal assignments could not be determined without examining the assignments
on the bit-level. We have modified the original approach to deal with this
problem in a very efficient manner:

Before any normalization is started, the property set is being split into 2n

parts, with n being the total number of bits contained in the non-sampled control
input signals. It is obvious that the approach is unsuitable for wide control
signals, but the number of control signal bits (in contrast to data signals) which
are not sampled at a clock edge is usually very small. Therefore this restriction
is not overly problematic.

The split operation uses cofactorization in order to generate distinct property-
sets which will hold all the necessary information to generate signal assignments
for one particular value of a non-sampled control input signal. A multiplexer will
then determine, which set of signal assignments will be in effect at a particular
point of time. The generated circuit may look like the one presented in Fig. 11.8.

The split of an arbitrary Property P : A → B(R) (A: Boolean expression
for the assumption, B: Boolean expression for the commitment, dependent on
an asynchronous reset signal R) is conducted in the following manner:

1. Cofactorize B by R and ¬R, resulting in two cofactors BR and B¬R.

2. Create two new properties P1: A → BR and P2: A → B¬R.

3. Add the properties to the appropriate property-sets (Set R and Set ¬R).

Combinatorial
Net for R

Combinatorial
Net for ¬ R

R

1

0

Figure 11.8. Circuit design for cofactorized property-sets.
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The cofactorized property-sets are then separately normalized and trans-
formed into two separate pairs of combinatorial nets and register sets. This
approach theoretically works with signals of any bit length, resulting in larger
number of cofactorized property sets and combinatorial nets. Obviously, for
complexity issues, more than 8–12 control signal bits will make this approach
infeasible.

4. Applications and Experimental Results
As already mentioned, there are multiple applications for Cando-Objects.

In this article we focus on completeness and consistency checking. Other
applications like compositional verification of system-level properties using
property-based abstraction will be presented in other publications.

When we try to develop a property-set from scratch, our normalization tech-
nique will enable us to detect contradictions and environmental constraints on
the fly. We have been using this technique during the creation of a set of PSL-
properties to verify ARM’s AMBA AHB protocol [2], in particular the master
device. The synthesis process (normalization + generation) itself is completed
within a few seconds even for huge sets of normalized properties.

The time-consuming part of the synthesis is the normalization of the property-
sets, which will complete fast on rather disjoint sets of properties, but can take
a long time, especially, when properties are written as arithmetic invariants,
e.g. G(a < b) with a and b being 32-bit-variables. The normalization of the
properties of the ARM AHB master into a Cando-Object took place in less than
a minute (see Fig. 11.9).

During the normalization process, 14 consistency violations were detected
that resulted from missing constraints in the assumptions. Likewise, we dis-
covered three consistency violations in our AHB slave property set.

Besides the consistency check, our technique is able to detect completeness
holes with respect to “intent coverage” as described in [4]. In contrast to [4],
our approach does not need a design to prove that there is a way to satisfy the
module properties without satisfying the architectural properties: We can prove
that a property-set will satisfy an architectural property simply by verifying the
latter on the Cando-Object generated from the former.

We also do not have problems with complicated connections between the
modules since we translate the component properties into a design description
and are therefore able to include the inter-component-design (multiplexers,
connections, etc.) into the verification/testing process.

If we can prove an architectural property on a Cando-Object-based design,
which is any design that is or contains a Cando-Object, then the property-
set from which the Cando-Object was generated is obviously complete, i.e.
the architectural property is covered by this property-set. If the architectural
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Property Set #Props orig #props normal runtime [s]
AEC 5 7 0,04
AMBA Slave 7 60 1,554
AMBA Master 18 104 1,915

Figure 11.9. Results of the generation process.

property cannot be verified on the design, then at least one of three things has
happened:

1. The parts of the design, which are not part of a Cando-Object, are faulty
with respect to the architectural property.

2. The architectural property itself is faulty.

3. The property-set for at least one of the Cando-Objects of which the de-
sign consists of is incomplete, which means that it deviates from the
designer’s intent specified by the architectural property. In this case at
least one property is missing, which would close the gap between the
actual specification and the designer’s intent. What this particular prop-
erty might contain can be derived from the minimized counterexample
generated by the verification.

Once all consistency violations have been removed and all incomplete
property-sets have been completed, a design can be verified by the modules
previously replaced by Cando-Objects using the corresponding sets of prop-
erties: It was proven that the modules have the properties demanded by the
respective sets of module properties and that the architectural properties will
hold if the property-sets hold true for their respective modules. Thereby the
design has been verified.

We have proven a number of architectural level properties on the AHB design
and were able to show that omitting but one of the properties would lead to the
failure of the proof.
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Chapter 12

ONLINE MONITORING OF PROPERTIES BUILT
ON REGULAR EXPRESSIONS SEQUENCES
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Abstract We present an original method for generating monitors that capture sequence of
events specified by logical and temporal properties under the form of assertions
in declarative form written either in PSL or in SVA. The method includes an el-
ementary monitor, a library of primitive connectors, a technique to interconnect
them, and tokens either monochrome or polychrome. This results in a synthe-
sizable digital module that can be properly connected to a digital system under
verification. The complexity of the generation is proportional to the size of the
sequence expression.

Keywords PSL, hardware monitoring, VHDL, SVA, synthesis, debug

1. Introduction
The context of our work is assertion-based verification. We aim at providing

methods that can efficiently help the designer verify and debug an ongoing
design across description levels and refinements. To this aim, the use of standard
languages such as PSL or SVA is getting recognition for its flexibility and
descriptive power. Logic and temporal properties can be written inside or
outside a design, and be submitted together with the design for simulation,
emulation, formal verification, or synthesis purposes.

A great variety of tools are already available, both in academia and in industry
[9, 10, 5, 13, 11, 7]. Among the various CAD tools that focus on processing as-
sertions, we are particularly interested in those which compile properties under
the form of synthesizable modules, for either the generation or the monitoring
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of signal values: this approach automates the debugging using both simulation
and emulation, and still can be founded on formal techniques. The first tool
that took this approach is FoCs from IBM, which automates the generation of
monitors from PSL, producing synchronous VHDL, Verilog, or SystemC that
can be linked to the circuit under verification [7]. To our understanding, the
method is based on an automata theoretic approach [1]: an accepting nondeter-
ministic finite automaton is first built for the language of the regular expression;
in a second step the automaton is determinized. Other approaches directly con-
struct a deterministic module (referred to as monitor) that recognizes sequences
of signals that satisfy the property at hand. A group in Sweden developed an
operational semantics for PSL and based a production of monitors on it [6].
The details of the monitor construction were not disclosed. Our group previ-
ously developed a method to construct monitors from the syntactic structure
of the property: the temporal operators of PSL were directly implemented as
primitive modules [2] and the monitor construction for regular expression was
based on the idea of derivatives defined by Brzozowski [4, 8].

We recently discovered the assertion checker generator developed by [3]:
they also produce hardware monitors based on the syntax tree of the property,
and their technique is efficient for some styles of regular sequences, but limited
to temporal repetitions with a fixed upper bound.

The work reported here is an improvement of our previous monitor generation
for sequential extended regular expressions (SEREs), which elegantly solves the
problem of unbounded repetitions and multiple triggering of the same operator
by a sequence. The solution we propose covers all operators of PSL SEREs,
and is as well applicable to the SVA properties. In the following, we use the
PSL syntax for brevity.

The rest of this paper is organized as follows. The next section presents the
difficulty we solve. Section 3 gives the principle of our method. Section 4
shows some practical results on our implementation. We end the paper with
our conclusions and perspectives.

2. The Property Specification Language
SERE Essentials

PSL is a standard formal language to specify logic and temporal properties in
a declarative style, under the form of assertions. A SERE defines a finite-length
regular pattern (called sequence) of Boolean expressions.

SERE operators can be classified in three categories:

• SERE construction operators: the temporal concatenation “;”, the con-
secutive repetition 0 or more times “[*]”, the consecutive repetition 1
or more times “[+]”, the nonconsecutive repetition “[= n]”, and the
GOTO repetition “[-> n]”;
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• Sequence composition operators: the sequence fusion “:”, the sequence
disjunction “|”, the non-length-matching sequence conjunction “&” and
the length-matching sequence conjunction “&&”

• Implication operators: the overlap “|->” and the next cycle “|=>” suffix
implication.

In this paper, we present our method on a subset of SEREs operators:
;, *, :, |-> and SEREs expressions. Our work is based on the formal
semantics of the operators, defined on traces, and given in [12]. To make this
paper self-contained, and understandable, we briefly give an intuitive definition.

• Temporal concatenation “;”. The sequence {a;b;c} holds, if a holds at
the current cycle, b holds at the next cycle and c holds at the following
next cycle.

• Consecutive repetition “[*]”. b[*] stands for an arbitrary sequence of
consecutive b’s, including none. In other words, b[*] holds either if the
trace is empty, or if b holds and b[*] holds on the next cycle.

• Sequence fusion “:”. It constructs a SERE in which two sequences
overlap by one cycle. The sequence S1:S2 holds on a trace T , if S1
holds on a prefix trace T1, and S2 holds on the suffix trace T2 such that
T1 ends and T2 begins on the same cycle.

• Suffix implication with overlap “|->”. The sequence S1|->S2 holds
on a trace T , if either S1 does not hold on any prefix of T , or if S2 holds
on all subtraces T2 that start on the ending cycle of a prefix subtrace T1,
such that S1 holds on T1.

We illustrate the different operators on the following example:

Property P1 is
{a;b[*];c} |-> {d;e[*];f}@rising_edge clk;

Property P1 holds means that starting from the current cycle t, each time
{a;b[*];c} is recognized (holds) on a prefix ending at t1, {d;e[*];f} must
be recognized on the suffix subtrace starting at t1.

Figure 12.1 gives a possible sequence of values observed on signals a, b,
c, d, e, f. The vertical dotted lines represent the successive rising edges of
the clock signal, which have been numbered for the purpose of this explanation.
The sequence {a;b[*];c} is recognized on the two trace prefixes ending re-
spectively at cycles �4 and �6. The sequence {d;e[*];f} must be recognized
for the suffixes starting at cycles �4 and �6 to satisfy P1. Since both e and f
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{d;e[*];f} holds for the subtrace starting at �6
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Figure 12.1. Waveforms.

take value “0” at cycle �6, {d;e[*];f} fails on the suffix started at cycle �4
(and on any extension), and thus Property P1 fails on the whole trace.

Let us note that {d;e[*];f} holds twice, at cycles �7, and �8, on the suffix
starting at cycle �6.

SERE Recognition
For a sequence S1 that is an operand of a suffix implication operator, its

monitoring depends on whether it is on the left or on the right hand side (this
idea was borrowed from [3]):

• Left hand side: S1 |-> S. If the monitoring of S1 leads to a failure, the
whole property is verified. The problem is just to recognize a sequence
of events, and notify when the sequence holds (and not fails). We have
no constraint on the syntactic structure of S1.

• Right hand side: S |-> S1. This case is more tricky. We need to ensure
that each time we start the monitoring of S1 the property holds at least
once before the end of the trace. For Property P1, the monitoring of
{d;e[*];f} is started first at �4, then at �6, and holds at �7 to �8, but
the sequence is recognized (twice) only for the second start. Thus, it
is not enough to recognize a sequence: a sequence recognition needs
to be linked to a start. For this paper, we will restrict ourself to SERE
expressions such that S1 contains only one [*].
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3. Principle of Our Method
The main idea of our method is to build a monitor that recognizes a sequence

of events. The construction is split in two cases according to the side of the
implication; both cases follow a similar scheme, based on:

• An elementary monitor that recognizes a Boolean operand

• A library of connectors: one for each temporal operator

• An interconnection method

• Tokens: for the left side of the implication, tokens are monochrome; for
the right side they are polychrome.

Monochrome Monitor
Monochrome monitors are used to recognize sequences of values that satis-

fies SEREs on the left side of an implication.
An elementary monitor takes as input a Boolean operand op and a token

token in; it outputs a token token out, if op and token in both meet. In
Figs. 12.2 and 12.3, elementary monitors are represented by circles.

Connectors have a common interface. They are synchronized by a clock
signal and initialized by a reset. They take as input one or two tokens and
output a token. They are represented by squares on the figures.

The elementary monitors and the connectors are interconnected, following
the syntax tree of the formula, to produce a monitor.

A monitor is triggered each time a token is transmitted to its token in
input(s). The token is then transmitted from elementary monitors to connectors.
The presence of a token at the output of a monitor means the sequence of values
starting at the cycle when the monitor was triggered has been recognized so far.

As an example, for the sequence {a;b;c} if there is a token after the monitor
of b, then we have met a sequence recognizing a;b.

Tokens can be transmitted, multiplied, lost, or merged. Figure 12.2 illustrates
the token transmission for a monitor implementing {a;b[+];c}. The left
part of the figure shows the monitor structure, in which circles stand for the
components that recognize the a, b, c Boolean operands, and rectangles are the
connectors for the sequence and repetition operators. How and when tokens
circulate in the structure is shown on the example waveform for a, b, c. We
use numbers next to a token to animate the token transmission; we refer to that
number between parentheses in the following explanation. An oral presentation
uses a true animation.

Assume a token is transmitted to the monitor to trigger it at cycle �1. Token
(1) is input to the elementary monitor A. This monitor recognizes signal u°a and
transmits the token to the input of connector ;. Token (1) disappears and token
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Figure 12.2. Waveforms for a monochrome monitor.

(2) is created, meaning that at cycle �0 we have recognized a sequence satisfying
a. Due to the semantics of ;, the token is delayed for one clock cycle, then
transmitted to the monitor of b[+] (meaning that b must be recognized at least
once) (3). Since b is “1” the token is transmitted (4) and we have recognized
a sequence satisfying a;b[+]. Signal b may be recognized several times since
we have the consecutive repetition operator ;, thus the token is transmitted with
one clock cycle delay to the input of the elementary monitor B (6) and to the
input of C (5). We have a multiplication of tokens. The C elementary monitor
does not recognize value “1” on c thus token (5) is lost. The transmission of
token (6) follows the same scheme as token (3): b is “1”, so a token is passed
to the output of elementary monitor B, which in turn is multiplied. At cycle �3,
monitor C recognizes c and token (7) is transmitted to its output (8) that is also
the overall monitor primary output: a sequence of values is recognized. The
monitor is triggered several times at cycles �3 and �6, the tokens are transmitted
with one clock delay on the same scheme as token (1). It is important to note
that at cycle �6, two tokens (9) and (10) are transmitted to the input of monitor
B. We get a merge of tokens into token (11), and token (12) at the output of B
means a sequence satisfying a;b[+] has been recognized: more precisely we
have recognized the sequences starting at cycles �3 and �6.

Polychrome Monitor
Polychrome monitors are used to recognize sequences of values that satisfy

SEREs on the right side of an implication. They are implemented in a way
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Figure 12.3. Waveforms for a polychrome monitor.

similar to monochrome monitors except that the transmitted token is colored.
The meaning is as follows: each time, a triggering token is sent to the input
of a monitor, the sequence holds only if that token is propagated all the way
through the monitor and a corresponding output token is produced. Since a
monitor may be triggered several times, and tokens may be lost and multiplied,
the correspondence between output and input tokens cannot be ensured if all
tokens look alike. The solution is to use polychrome tokens.

As for monochrome monitors, tokens can be transmitted, multiplied, lost, or
merged. The first three cases are handled like monochrome monitors and are
represented in Fig. 12.3. The merge of tokens is more delicate, it is represented
in Fig. 12.3 by tokens (9) and (10) merged in (11). Two cases occur:

• The two merged token have the same color: we just transmit one of them.

• Tokens have different colors: for the sake of reasoning, assume that
the two tokens are kept: later they may be lost, or transmitted. The
two tokens at position (12) mean that we have recognized a sequence
satisfying a;b[+]. In both cases, we now need to recognize the rest
of the sequence and the tokens will progress together. If we keep only
one token and if this token reaches the monitor output, the sequence
will be satisfied for both subtraces started at cycles �3 and �6. Since the
token corresponding to the earlier trigger (the triangle) has already been
transmitted further to the rest of the monitor, we keep the fresher token
(the circle), the one that has not yet been transmitted to the rest of the
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monitor. This is the only way to ensure that the monitor will recognize
also the trace starting at cycle �6.

Global Monitor
The global monitor of a property with an implication is just the connection

of the monochrome monitor corresponding to the left SERE to the polychrome
monitor of the right SERE. Each time the monochrome monitor outputs a token,
this token is turned into a fresh colored one. The color is memorized until either
a token of this color outputs the monitor, or a token of this color is merged to
another token and erased. The sequence recognition fails if and only if, for one
memorized token, there is no token of this color in the monitor: the token is
lost. A sequence is recognized if and only if no color is memorized, i.e. each
memorized color has been erased.

4. Implementation
Figure 12.4 illustrates the implementation of our monochrome monitor and

connectors:

• A primitive monitor is implemented by an AND gate.

• The connector ; is a D flip-flop.

• The connector : is a wire.

• Finally, the connector * is just the interconnection of a D flip-flop (to
delay the monitor output by one clock cycle) and an OR gate (to take into
account the presence of a new token).

For polychrome monitors, the implementation is quite similar except that
tokens are colored. They are represented by a natural number. At most one
token of a given color is used in each elementary monitor. In the worst case, all
elementary monitors have a token of a different color. The number of colors is
thus bounded by the structural depth D of the property.

The token is represented by a bit-vector of length D. The implication con-
nector is implemented in the following way: a register new token holds the
next color to be used, it is rotated each time we need a new color and the color
is memorized in the register pending color. Each “1” bit in this register
represents the fact that a sequence is being monitored but not yet recognized.

An additional register used token holds the colors of all the tokens present
in the monitor. It is the disjunction of all the tokens at the output of an elementary
monitor. The value of the valid signal is “1” when the Boolean expression
pending color =⇒ used token is different from the bit-vector ZERO.
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Figure 12.4. Implementation of monochrome connectors and monitor.

With these output signals, we can tell when a SERE is strongly or weakly
satisfied, i.e. when the property holds on any extension of the considered trace
or when it can be falsified on some extensions.

Figure 12.5 illustrates a trace for signals a,b,c,d,e,f that is shown by our
monitor to not satisfy the expression a;b[*];c |-> d;e[*];f. The property
is triggered on the first rising clock edge when reset is “1”, i.e., at time 30.
A token is input to the monitor of a (tk_in_a), and three subtraces satisfies
a;b[*];c (at times 50, 70, and 90, tk_out_c is “1”). The tokens are turned
into colored tokens represented by values “001”, “010”, “100” at times 50, 70,
and 90 (tk_in_d). The last token “100” is transmitted at time 90 and is lost
at time 105: indeed signals e and f take value “0”. The monitoring fails and
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Figure 12.5. Waveforms for the monitoring of {a;b[*];c }|− > {d;e[*];f}.

valid is turned to “0” at time 110 but its value is effective only at 130 (at the
next clock cycle).

5. Conclusion
In this paper, we have presented a new solution to monitor SERE’s. This

method can be applied to a subset of PSL regular expressions or SVA asser-
tions. Our proposal is based on an elementary monitor, a library of connectors,
an interconnection method, and colored tokens. Our current prototype imple-
mentation is still partial. We are now developing extensions to cover the and,
the or, and the not operators over SEREs, and the bounded repetition. The
case of several, not necessarily nested, unbounded repetitions ([*] operator) is
slightly more complex than what has been explained in this paper, but similar
in principle: new kinds of tokens are needed, and the merge process is delayed.

Ongoing work includes the systematic synthesis1 of the monitors on FPGA,
and comparisons with [3].

Future work will include the formal correctness proof of the monitors. We
intend to proceed with a formal definition in higher-order logic, and use the same
mechanized theorem proving technology, that we already applied to a previous
version of the monitor construction. We expect no particular difficulty since
most of the proof strategy is reusable.

Notes
1. The property shown on Figure 12.5 has been synthesized with Quartus II on a cyclone II EP2C35F672

(max frequency 464 MHz). The number of Flip-Flop is 16, the number of LUT is 35, and the frequency is
236.
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Abstract Verification tools are part of a new generation of CAD tools, mandatory to cope
with the growing complexity of Systems-On-Chip. We believe that all these
tools should be built on top of a modern and standard framework. ESys.NET
is a design environment based on the .NET Framework. It takes advantage of
advanced programming features which facilitate the integration of external tools,
such as verification tools.

This work presents the implementation of an observer-based verification tool
for ESys.NET. We show that our tool’s verification capabilities, relying on in-
trospection mechanisms, does modify neither the model nor the simulator while
retrieving the state of the model during simulation or checking a set of user-
defined rules.

Keywords Verification tool, observer, introspection, system-level.

1. Introduction
Efficient verification techniques are the key features of modern design plat-

forms to cope with complexity of today’s electronic systems. Although tradi-
tional hardware description languages (e.g. VHDL and Verilog) are well suited
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to address hardware synthesis, their low level of abstraction is often highly
discouraging. SystemC [1] and SystemVerilog [2] constitute promising evolu-
tions that provide higher level modeling and verification constructs taken from
object-oriented programming and assertion-based verification. ESys.NET [3]
is an open-source system-level modeling and simulation environment, based
on the .NET framework [4]. It hence enables introspection using the .NET re-
flection API, multilingual model definition, remote processing, and refinement
of models.

Advanced programming features like introspection can greatly facilitate the
development of such environments as well as their cooperation with external
tools [5]. Introspection is the ability of a program to provide information
about its own structure during execution. This work demonstrates how the
conception of a verification tool is facilitated by ESys.NET’s architecture and
its inherited .NET’s introspection capabilities. This tool uses an approach based
on observers. Observers watch the model during simulation and make sure that
it conforms to the properties specified by the designer. It is important to mention
that the verification process modifies neither the model nor the simulator. In fact,
the source code of the system model is not needed to perform verification since
introspection on a standard intermediate format can retrieve all the required
information.

The paper is organized as follows. Section 2 introduces the verification
environment based on ESys.NET. Section 3 details the implementation of the
verification process and tools. Section 4 presents the case study and the analysis.
Section 5 concludes this work.

2. Esys.net Verification Flow
The .NET Framework and ESys.NET

The .NET Framework is a modern environment created to ease the devel-
opment and the deployment of distributed applications [4]. The core of .NET
standardizes the development and execution of applications. It includes:

• A Common Intermediate Language (CIL), which is an instruction set for
a virtual machine. This enables portability and interoperability across
multiple programming languages such as C# and C++.

• Metadata definitions, which are additional information about the program
embedded into the CIL code. Metadata include description of types and
attributes. Description of types provides information about the structure
of the application such as class hierarchies, interface implementations,
and members. Attributes annotate different data structures. Metadata can
be inspected using the .NET’s reflection API. Built on top of the .NET
Framework, ESys.NET is a system-level modeling and simulation
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environment which therefore benefits from the above facilities. Systems
are modeled by a hierarchy of modules communicating via communi-
cation channels [3]. The behavior of a module is defined by processes.
With regard to programming, ESys.NET is a class library. The following
classes constitute the core of ESys.NET:

BaseModule. This is the base class of all user modules. It is also the base
class of most model components (signals and channels). During
model elaboration, all subcomponents of a module are registered
by the simulator, using the .NET reflection mechanism.

BaseSignal. This is an abstract class that models the transmission of a
single data on a bus. ESys.NET provides a set of specialized signals
for common datatypes (integers, strings, characters, floating-point
numbers). Designers can implement signals for their own datatypes
by extending BaseSignal.

Event. It is used to synchronize processes.

To indicate that a particular method must be considered as a process, the
designer tags it with attributes. Attributes indicate the process’s type and the
events it is sensitive to. Attributes can also be used by designers to request
the execution of a method at given points in a simulation (e.g. beginning of
simulation, end of a simulation cycle, etc.). External tools can also be plugged
in the simulator by registering callback methods. ESys.NET offers a set of
hook-points where callbacks can be inserted. Using callbacks is one way to
implement the observer paradigm. For instance, our verification tool requires
to be notified at the end of each simulation cycle. It will thus hook on to
the simulator. This mechanism allows one to extend the ESys.NET simulator
without recompiling it.

Overview of the ESys.NET Verification Flow
The verification layer we propose for Esys.Net is based on the observer

paradigm. The state of the model under simulation is verified by the verifica-
tion engine which observes the runtime evolution of the system and checks it
against a set of formal properties: the observers. Figure 13.1 shows the links
between simulation and verification flows:(A) represents the actual ESys.NET
simulation process while (B) describes our verification process. As illustrated,
the simulation flow of Esys.Net (A) remains independent of the verification
process (B). The properties to be verified are expressed using linear temporal
logic (LTL) [10] (see Section 3.0). LTL formulae are stored in a text file apart
from the model. Each formula is then transformed into an automaton (i.e. an
observer) to be later executed in parallel with the simulation. An event of the
system model, such as the rising edge of a clock signal, is used to synchronize
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Figure 13.1. Simulation and verification flows.

the system model under simulation with observer automata. When an event
occurs, each observer automata executes a transition whose label matches the
new current state of the model. If an automaton has no such transition, the exe-
cution fails and the property observed by this automaton is declared “invalid”.

ESys.NET Simulation Flow
An ESys.NET system model can be written in any language supported by

.NET such as C#, J#, managed C++, etc. The model is compiled into CIL code
by existing compilers. CIL code is used during the transformation of properties
into automata to perform syntax and type checking (operation 1, Fig. 13.1) and
thus ensure, for example, that some given signal exists in the model. Prior to
simulation, the class describing the model is instantiated and elaborated by the
ESys.NET environment. The resulting executable model is browsed (Fig. 13.1,
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step 2) to retrieve data that will be used during simulation to evaluate the state
of the model. The callback methods registered within the ESys.NET simulator
are called when the verification engine applies the observers on the simulated
model (Fig. 13.1, step 3).

Comparison with SystemC
Other frameworks such as SystemC are more difficult to interact with. This

is mainly due to the fact that SystemC is based on C++ which has limited intro-
spection capabilities [5]. Additional libraries to support reflection are needed.
In SystemCXML [6] Doxygen’s parser is used to extract an abstract system
level description (ASLD) and capture it into a XML file. The PINAPA project
[7] adds a patch to the GNU C++ compiler and to SystemC. The compiler is
used to get the abstract syntax tree (AST) of SystemC processes. This approach
is justified by the fact that the binary format resulting from a compilation highly
depends on the compiler used and the architecture of the computer it targets
and a lot of information about the model is lost during this process. Devel-
oping a tool to directly explore the object file would be tedious. Thus, it is
quite inevitable to use the source code files to get the information. However,
SystemC core library allows basic introspection thanks to the get child objects
method [1] which returns all subcomponents of a given element in a design.
This approach only allows one to retrieve SystemC objects (modules, signals,
clocks, etc.), while internal variables remain hidden. Beside this, the design of
SystemC’s simulator makes it difficult to integrate external tools. The modifica-
tion of the simulator source code is often the only solution [6]. Basic callbacks
are available inside the design but are not usable from external libraries. The
SystemC Verification (SCV) standard provides an API to develop testbenches at
the transaction level [8]. It is black-box verification since the internal behavior
of the system is not taken into consideration, contrary to the approach presented
here. Nonetheless, introspection is used on input data to support arbitrary data-
types. The strategy exploits template mechanisms to extend datatypes with
introspection capabilities. The drawback is that one needs to describe manu-
ally user defined types. As noted, some significant effort is required to provide
introspection and extend SystemC. On the opposite, developing a verification
tool with ESys.NET is facilitated since introspection and hooks are directly
available in the libraries.

3. Implementation of the Verification Layer
Construction of the Design Structure Tree

The structure of the model is needed for the construction of the observers.
This information is available in the type structure that defines the model. To
avoid redundant introspection operations, a design structure tree is built which
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1. object BuildTree(Type moduleType){
2. foreach(FieldInfo f in
3. moduleType.GetFields()){
4. if(f.FieldType == typeof(Event))
5. AddEvent(f.FieldType)
6. else if(f.FieldType == typeof(Clock))
7. AddClock(f.FieldName);
8. else if(f.FieldType==typeof(BaseSignal))
9. AddSignal(f.FieldName,f.FieldType);
10. else if(f.FieldType==typeof(BaseModule))
11. {
12. AddModule(f.FieldName);
13. BuildTree(f.FieldType);
14. }else{
15. AddVariable(f.FieldName,f.FieldType);
16. }
17. }
18.}
19.BuildTree(typeof(MyTopLevel));

Figure 13.2. Design tree construction using introspection API.

represents the modules hierarchy and contains the signals, the events, and the
observable variables of the model. The pseudocode above (Fig. 13.2), which
is very close to the actual one, shows the basic structure of the exploration
algorithm used to build the tree.

The core of the algorithm is a loop that iterates through all of the subcom-
ponents of a module ( 2). A Type object contains the information offered by
.NET about a specific type. The GetFields() method returns a collection of
objects that describes all the instance variables of a given type. Depending on
the type of the field, a node is added to the abstract tree. Event and Clock
objects are added to the tree (lines 4 to 7). For signals, we must keep the type of
the signal since it defines the data type carried by the signal. It will be used to
perform type-checking. If a field is a module extending the BaseModule, it is
recursively explored (line 13). Other variables are simply registered in the tree
along with their type. Line 19 shows the initial call of the method on the root
of the model defined by class MyTopLevel. The tree construction is greatly fa-
cilitated by the use of reflection. It does not require the tedious implementation
of a parser. All the information is extracted from the compiled version of the
model, no matter the language being used, as long as it is supported by .NET.
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Building Observers
Observers are built from linear temporal logic (LTL) formulae. LTL and

boolean logic are among the base layers of the Property Specification Language
(PSL). LTL was originally designed to express complex requirements on infinite
execution paths [10, 11]. But it can be used for semiformal verification [12, 13].
LTL allows designers to formalize the temporal behavior of the model. It is
composed of atomic properties, boolean operators (and, or, not, imply), and
temporal operators (Next, Always, and Eventually). The semantics of temporal
operators in a simulation context is the following:

• The Next operator is denoted by ©: ©φ holds if φ holds in the next
simulation state.

• The Always operator is denoted by �: �ϕ holds if ϕ holds until the end
of the simulation.

• The Eventually operator is denoted by ♦: ♦ϕ holds if ϕ holds in some
future state before the end of the simulation.

• The Until operator is denoted by U : ϕ U ψ holds if ψ eventually holds
and if ϕ holds until ψ holds.

As an example, the following property specifies that a request must occur
and be followed by an acknowledgment some time after:

♦(sig(req) == true && ©♦sig(ack) == true)

sig(req) == true and sig(ack) == true are atomic propositions. They
are evaluated during simulation and reflect the state of the system model. The
evaluation of a property is performed on its corresponding automaton. The
automata corresponding to the formula given above is shown in Fig. 13.3. An
automata consists of a set of states and a set of transitions between states. A
subset of states is said to be accepting and is used to determine the result of the
verification. These states are represented with a double-line in figures.

The construction of observers is divided in two parts, the transformation of
LTL formulae into automata and the construction of atomic properties. The
first part is achieved by the LTL2BA algorithm [14]. The second one consists

Figure 13.3. An example of automata.
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of building the labels of automata’s transitions. These labels are comparisons
between objects or with constant values like: my module.clk(my clock) ==
true.

Algorithms to transform LTL formulae into automata are well known, but
the result is a nondeterministic Büchi automata (NBA). Since NBA are more
expressive than deterministic Büchi automata, they cannot be determinized
without altering the recognized language. It implies that a special algorithm is
required for the execution of NBA. This is detailed in Section 3.0.

Concerning the construction of atomic properties, the first step consists in
building the two operands. We use the abstract tree presented in Section 3.1 to
check that references to model objects are correct (e.g. the my clock signal of
my module exists) and to retrieve the type of objects. If the right operand is
a constant, the type must be resolved according to the type of the left operand
(e.g. if the left operand is a clock signal and the right operand is “true”), we
must build a Boolean object from the “true” string. The following algorithm
(Fig. 13.4) is used to cast a string to the correct type using introspection.

The value parameter contains the value of the literal (“true” in the previous
example) and t is the type of the object to build (i.e. the type of the left operand).
On line 3 we try to find a constructor that takes a string parameter. If such a
constructor is found, it is invoked and the result is returned (line 5). If we cannot
find a suitable constructor, we look for a Parse method (line 7) and invoke it to
build the operand (line 9). When the two operands are built, the whole property
can be constructed. Two checks are required. First the types of the two operands
must be identical. Then one needs to make sure that the comparison operation
can be performed, which means that the CompareTo or Equals methods are
implemented. This mechanism allows implicit support of all .NET primitive

1.object CastLiteral(string value, Type t){
2. ConstructorInfo c =
3. t.GetConstructor(typeof(string));
4. if(c != null)
5. return c.Invoke(value);
6. MethodInfo m =
7. t.GetMethod("Parse", typeof(string));
8. if(m != null)
9. return m.Invoke(null, value);
10. throw new Exception("Cant cast literal");
11.}

Figure 13.4. Method to cast a string using introspection.
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datatypes (integers, booleans, strings, floating point numbers, etc.) as well
as a wide range of other types (DateTime, IPAddress, enumerated types, etc.).
Custom types can also be used in the verification process as long as they comply
with object construction and comparison methods, as previously presented.

Binding Observers to the Model
While the observers are built, the model is instantiated and elaborated by the

ESys.NET kernel. Atomic properties need to be connected to the elaborated
model before the beginning of the simulation. For now, property operands only
contain paths to model objects but are not bound to an instance of the model.
The current reference to the object is required to get the value of the operands
and thus evaluate the property. To get a reference to an object from its path we
use the Resolve method presented below (Fig. 13.5).

The path object is a data structure which stores the path to a given object
of the model, e.g. producer.clk.posedge refers to the posedge event of a
clk signal. As for root, it is a reference to the top level object. The Path.Root
property returns the name of the path root. The first step is to find the field
by its name (lines 2 and 3). The recursion stops when the end of the path is
reached (line 4). At line 5, method FieldInfo.GetValue() is used to get the
actual field value. The parameter of the method is a reference to the object that
contains the field. If the recursion has to be pursued, we remove the root of
the path (line 7) and we go down into the hierarchy (line 8 and 9). Once again
static introspection is used. Given a reference to an object and the name of one
of its field, .NET offers a mechanism to obtain the value of the field. Since a
reference to the toplevel and the path of the operands are available, a reference
to the object pointed by the path can be obtained.

1.object Resolve(Object root, Path p){
2. FieldInfo f =
3. root.GetType().GetField(path.Root);
4. if(p.Length == 1)
5. return f.GetValue(root);
6. else{
7. p = p.GetTail();
8. object newRoot = f.GetValue(root);
9. return Resolve(newRoot, p);
10. }
11.}

Figure 13.5. Connecting properties to the model.
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simulator.BindMethod(new RunnableMethod(EventHandler),
eventObject, methodID);

Figure 13.6. Binding a procedure to an event.

Binding Observers to the Simulator
Each observer is synchronized by an event of the model. This defines the

execution step of the automaton and a sampling of tested variables and signals.
When the synchronization event occurs, properties of the executable transitions
are evaluated and valid transitions are performed. The ESys.NET simulator
offers a method to bind a procedure to any event of the model (Fig. 13.6). To do
so, a reference to the event object is needed. The Resolve method presented
in Section 3.0 is used. Once a reference to the event is retrieved, a method is
bound to it as follows.

Let EventHandler be the name of the method to bind, let eventObject be
the event to bind to, and let methodID be a unique string used to identify the
link between the event and the method. When the synchronization event occurs,
the observer is flagged to be executed once the model is stable. The state of the
model during a simulation cycle is difficult to evaluate since it highly depends
on the scheduling of processes. The ESys.NET simulator provides a cycleEnd
hook-point triggered when the model is stable [3]. The following statement is
used to bind a method to it:

simulator.cycleEnd += new
RunnableMethod(UpdateAutomata)

The UpdateAutomata method will run all flagged observers.

Evaluation of Properties
As explained in Section 3.0, atomata are nondeterministic. It implies that

we have to consider a set of current states instead of only one state with a
nondeterministic set of transitions [12]. The algorithm used to compute the set
of current states is given Fig. 13.7.

For one oberver, at each step of simulation, all enabled transitions are exe-
cuted (Fig. 13.7 - lines 2 to 5) and new states are updated (line 8). If no transition
is possible, this means that the rule is not respected, and we stop the simulation
(lines 6 and 7). The verification succeeds if at the end of the simulation the set
of current states contains at least one accepting state.

The evaluation of transition validities consists of retrieving values of each
operands from the model and calling the Equals or CompareTomethods. Note
that only a few introspection operations are done at this time in order to minimize
the overhead.
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1. newStates = {}
2. foreach(state in currentStates)
3. foreach(transition in state)
4. if(transition.isValid)
5. newStates.add(transition.destination)
6. if(newStates.isEmpty())
7. reportViolation()
8. currentStates = newStates

Figure 13.7. Execution algorithm for nondeterministic automata.

Figure 13.8. Observer designer screenshot.

Tools
The verification layer is made of two separated applications: an advanced

editor to specify properties and a simulation application. The editor provides
advanced features such as syntax highlighting, auto-indentation, and auto-com-
pletion. A screenshot is presented in Fig. 13.8. As the formalization of complex
LTL properties can be difficult, a pattern instantiation mechanism was imple-
mented to ease the specification of LTL properties. Presented in [15], patterns
are typical combinations of properties which often occur in formal specifi-
cations. The use of these formula templates reduces the risk of errors in the
specification process. Moreover, the editor offers a graphical tree representation
of the system model, using the information collected in the Design Structure
Tree (Section 3.0). LTL properties are stored in a text file and are read by the
simulation application. This simulation application provides a graphical user
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Figure 13.9. Simulation and verification application screenshot.

interface to the ESys.NET simulation engine and to the verification engine.
It displays the list of observers and their associated automata (Fig. 13.9). A
waveform viewer is also implemented to display the evolution of signal values
during simulation.

4. Experimentation
The verification layer implementation has been validated on a case study de-

scribing an AMBA bus model. The case study aims to validate the verification
flow proposed, to find its limitations and to show the usefulness of this type of
verification. An evaluation of performances was also realized to identify bottle-
necks in the verification engine. The properties to be checked were formulated
by a well-known EDA company that used them to validate its own AMBA bus
model.

The AHB-Lite Model
Our case study is based on a light version of the AMBA bus, called AHB-Lite

[16]. It only implements one master process and does not support split trans-
actions. The model implements burst transfers, single clock edge operations
and, a data width of 8 to 1024 bits. Additional features implemented by the
full AHB AMBA bus concern the support of split transactions, the handover
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Figure 13.10. High-level representation of an AHB-lite model.

to the master in a single clock cycle and the support of up to 16 masters. It
was optimized to decrease the simulation time. The model contains a master
process, a decoder process, and as many as 16 slave processes (Fig. 13.10).

Verification Process
The system model was first debugged using classic in code assertions and

trace analysis. Thus, minor and obvious bugs were fixed. Then a set of prop-
erties written in English as formalized in LTL using the editor mentioned in
Section 3.0. An example of a property description and its corresponding LTL
formula are given below.

Property:

In a write transfer, after the address phase of the transfer is sampled,
the master should provide valid data in the next immediate cycle.

Translates to :

ltl observer prop2(clk.event(posedge)){
�(( (sig(htrans) == "NSEQ" || sig(htrans) == "SEQ")

&& sig(hwrite) == true
&& sig(hready) == true)

→©(sig(hwdata) == "DATA"))
}
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!p3

!p0 && !p1

!p2 && p4

!p0 && !p1 && p4

!p3 && p4

true p4

!p2

init final

Figure 13.11. Another example of automata.

The formula is made of two parts. The first one checks that the model is in
a transfer phase. The htrans signal identifies the type of the frame currently
transferred. It can either be sequential or not sequential, depending whether
the frame is the first of a burst sequence or not. The hwrite signal indicates
that the master is writing data to a slave and the hready signal is the answer
of the slave to signify it is ready to transfer. The second part of the formula
(©(sig(hwdata) == "DATA") checks that a valid data is provided by the
master. The two parts are connected by an implication operator. The always
(�) operator is put in front of the formula to ensure that it is valid during the
whole simulation. The final specification file contains 23 main properties and 19
additional properties to ensure the functional coverage of the simulation (e.g.
each slave has been activated; all transaction types have been performed...).
The specification file is loaded by the simulation application, which initiates
the transformation of each LTL formula into an automaton. Fig. 13.11 shows the
nondeterministic automata generated from the formula given above.

Labels p0, p1, p2, p3, and p4 respectively denote the following proper-
ties: sig(htrans) == "NSEQ", sig(htrans) == "SEQ", sig(hwrite)
== true, sig(hready) == true, and sig(hwdata) == "DATA". Just be-
fore the simulation, automata are bound to the model and to the simulator. After
the simulation, the user is informed of the validity of each formula.

Discussion
Performance analysis was achieved on the AHB-Lite model with 16 slaves

and a set of 42 observers. A profiler was used to record execution time and
memory allocation. The overhead due to observers’ execution was evaluated
during simulation. Approximately 67% of the simulation time was dedicated
to observers. A simulation of 20,000 clock cycles took approximately 1.6 s
without observers (250k events/s). Adding observers raised the execution time
to 5 s. At first sight, the simulation time rate used by observers can seem quite
important. The situation can however, be explained by the important number
of observers compared to the fairly low complexity of the model. Indeed, the
time overhead is directly proportional to the number of observers (to be more
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precise, it is proportional to the number of atomic properties). The case study
implied many observers (i.e. LTL formulae to check) verifying a fairly simple
model. Of course, verifying the same properties on a more complex model
would lower the impact of the observers overhead. Furthermore, the size of
each formula tends not to exceed a certain size in practice. On the other hand,
to evaluate advantages of doing introspection during the initialization phase
(i.e. static introspection), the simulation was also performed using dynamic
introspection (i.e. introspection during the evaluation of properties). In this
case, the overhead rate due to introspection is increased to 90%. Concerning the
model, the verification allowed us to find limit cases and synchronization bugs
in our implementation. The hardest and longest part was not the construction
of the observers but the construction of the model itself. Correction of bugs
remains especially difficult. This case study was also a good opportunity to
pinpoint weaknesses of the verification engine and find solutions to improve its
performances. Among others, the formulation of complex behaviors with LTL
is a difficulty, frequently encountered in formal verification. However, the use
of formula patterns [15] alleviates this task. Our LTL formula editor was thus
extended to propose a set of such patterns to assist the designer.

5. Conclusion
This work presents a verification method and tools with their implementation

in a system-level design environment. Our approach brought to light the steps
of the verification process which could benefit from introspection and thus
greatly simplify the development of modeling and simulation environments.
Introspection is used to get the structure of the model and to retrieve data
during simulation. ESys.NET can easily be extended thanks to hook-points to
synchronize the execution of observers with model simulation.
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Abstract Transaction Level Models are widely being used as high-level reference mod-
els during embedded systems development. High simulation speed and great
modeling flexibility are the main reasons for the success of TLMs. While mod-
eling flexibility is desirable for the TLM designer, it generates problems during
analysis and verification of the model. In this paper we formalize the notion of
Transaction Level Models by introducing a set of rules that allow the transfor-
mation of TLMs to a set of communicating state machines. SystemC being the
most popular TLM language, we additionally present a finite state model of the
SystemC scheduler. Finally, we demonstrate that using our modeling approach,
a standard model checker can be employed to formally prove properties on the
finite state model.

1. Introduction and Motivation
Transaction Level Modeling [13] using SystemC [7] has become a standard

way of implementing high-level reference models for embedded systems as
it allows to implement efficient and flexible virtual prototypes. Over the past
years, research activities were mainly focused on exploiting modeling flexibil-
ity and exploring different levels of communication and behavior abstraction
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(see, e.g. [1]). More recent work concentrates on formalization and verifi-
cation. The aim of our work is to introduce enough formalism to Transaction
Level Modeling to allow the application of formal methods like model checking
but to retain enough flexibility to be able to apply our methodology to a wide
range of different models.

While existing work is mostly focused on the translation of C++ function-
ality and SystemC constructs, we aim at a strong emphasis on communication
and transactions. To this end, we translate a SystemC TLM to a set of commu-
nicating state machines. The automata proceed synchronously, meaning that
a transition of the overall system consists of the simultaneous transition of all
automata in the system. The state of a module in our approach is composed
of behavior state, initiator state, target state, and object state. SystemC pro-
vides events, time-outs, and a scheduler to enable modeling of a wide variety of
communication styles. Therefore, in addition to the modules itself, we provide
rules for a finite state representation of scheduler, timed, and untimed events.

The result of the transformations presented in this work is a finite state model
which is functionally equivalent to the original TLM and can be used as the
input to a standard model checker. Contrary to other approaches, our model ex-
plicitly separates behavior from communication and transaction initiation from
the target of a transaction. The advantage is a concise and standardized way of
formulating properties reasoning about transactions and transaction sequences.

In the remaining part of the paper, we survey related approaches in Section 2
and formally define the terms Transaction Level Model and finite state machine
as used in this work in Section 3. Section 4 is dedicated to the transformation
of modules, while in Section 5, the rules for the transformation of scheduler
and events are presented. Experimental results are discussed in Section 6.

2. Related Work
Related approaches are split into two closely linked fields both being subject

of current research. Firstly, as we enable the formulation of properties for
Transaction Level Models, work carried out in the area of assertions for TLMs
has to be considered. Secondly, existing methods to apply formal verification
to SystemC designs are discussed.

Regarding assertions, Ruf et al. [14] convert FLTL properties to C++ which
can directly be integrated into a SystemC design. Dahan et al. [3] convert PSL
properties to deterministic finite automata which are converted to VHDL or
SystemC. Habibi et al. [6] propose static program analysis and genetic algo-
rithms to increase coverage of assertions specified in PSL. All these approaches
require a system clock. In [11] the application of assertions to timed and untimed
TLMs is proposed. Every transaction is associated with a Boolean signal, so
that abstract system properties can be specified using temporal assertions.
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In the area of formal verification, Groβe et al. [4] apply bounded model
checking to SystemC designs at the Register Transfer Level (RTL). Habibi and
Tahar [5] convert an AsmL model of the TLM to SystemC. A set of properties
specified in PSL is converted via AsmL to C#. At the AsmL level the properties
are encoded in every state of the design and can be checked on the fly during the
finite state machine generation. Peranandam et al. [12] use symbolic simulation
of a Message Sequence Model to verify LTL properties and obtain coverage
information. Their approach does not consider event notification and event
sensitivity. Karlsson et al. [8] use a Petri net-based approach. They translate
the SystemC design to PRES+ which can be used for CTL model checking after
a conversion to hybrid automata. Even though translation of TLMs is possible
using this approach, there is no mechanism to easily identify transactions. The
focus is modeling of behavior and not communication.

Two approaches using, similarly to our approach, a set of communicating
parallel automata can be found in Kroening and Sharygina [9] and Moy et al.
[10]. In [9], Labeled Kripke Structures are used to represent a SystemC design.
The work is focused on the application of abstraction techniques to the behav-
ior. They do not take into account communication through transactions and
restrict their discussion to clocked models communicating over signals. Trans-
lation of SystemC to Heterogeneous Parallel Input/Output Machines (HPIOM)
is presented in [10]. While their model of the scheduler is similar to ours, the
intention of the model and the treatment of transactions differ. They propose
to use translation patterns for different TLM channels, and aim at proving the
validity of safety properties reasoning about implementation behavior. We sug-
gest a pattern for the transfer of control from the initiator to the target and treat
transaction functionality like any other C++ code. Our aim is to provide a for-
malism to reason about transactions using temporal logics with the transactions
itself being atomic propositions used within the properties. This makes our
model well suited for the formulation of temporal properties reasoning about
transactions.

Our methodology differentiates from the related work by presenting a model
for TLMs, where an easy identification of initiator, target, and transaction is
possible. While previous methodologies have focused on behavior, we make a
strong emphasis on communication, and preserve the separation from commu-
nication and behavior of the SystemC TLM within our formal model. More-
over, we can handle overlapping executions of the same transaction and model
arbitrary primitive channels.

3. Prerequisites
Transaction Level Models are characterized by communication through

interface method calls, i.e. calling a method implemented in one module (the
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target) from within another module (the initiator). Moreover, their level of
abstraction is above RTL, even though the communication, or parts of it,
may be cycle-accurate. Formally, in this work, a TLM is a six-tuple S :=
(M, MI , MT , N, T, I), where M is a set of modules, MI ⊂ M the set of
initiator modules and MT ⊂ M the set of target modules. A module need
not necessarily belong to only one category, however, MI ∪ MT = M . N is
the set of all interface method names. The set of transactions is described as
T ⊆ MT ×N and associates target modules and interface method names. Note
that the same interface method may be implemented differently in different
target modules. Thus it is necessary to associate the name of the target module
with the name of the interface method to uniquely identify a transaction. The
function I : T �→ 2MI maps each transaction to a set of initiators.

A finite automaton. is a six-tuple A := (Σ, Ω, S, δ, λ, s0). The input
alphabet is given by Σ, the output alphabet by Ω. The transition relation δ ⊆
S×Σ×S describes the evolution of the state with the inputs, the output relation
λ ⊆ S × Σ × Ω maps a letter of the output alphabet to each state transition.
The set of initial states is given by s0 ⊆ S. If the transition relation and output
relation are replaced by the functions δ : S × Σ �→ S and λ : S × Σ �→ Ω
and the automaton only has one initial state s0 ∈ S, the automaton is called
deterministic. We also use the term finite state machine (FSM) for a finite
automaton.

Nondeterminism. As the execution of a SystemC TLM exhibits determin-
istic behavior, most of the automata in our model are deterministic. There are,
however, two important exceptions. One exception is the automaton used for
process activation in our model of the SystemC simulation kernel (see Section
5). Even though the SystemC Language Reference Manual [7] states that process
activation has to be deterministic, the actual order of activation is left open to the
implementation of the simulation kernel. To prove a property for all possible
implementations of the SystemC simulation kernel and therefore for all legal
executions of the TLM, process activation is performed non-deterministically
in our model. The other exception is to use nondeterminism to replace data or
address dependent conditional statements. This is an optional modification of
the deterministic model, reducing the number of reachable states for the price
of introducing new executions not present in the original model (see Section 6).

4. A Finite State Model for TLMs
Using the FSM model presented in this section and the model of the Sys-

temC scheduler from section 5, it is in principle possible to describe non-TLM
SystemC models. This, however, is not the intention of our approach; it is much
more a consequence of the need to support multiple types of TLMs. Through
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its explicit modeling of initiator, target, and communication channel, it is well
suited to describe TLMs but will not be the optimum choice for other modeling
styles. When formally modeling, e.g. a system at RT-level, there will be no
need for a scheduler or explicit modeling of the sc_signal<> communication
channel.

A module of a Transaction Level Model is built from four basic types of
FSMs: behavior, initiator, target, and object (see Fig. 14.1). Processes are
described with a Behavior FSM, Ab. An initiator FSM, Ai, is needed for each
process initiating a transaction, i.e. each initiator module has at least one initiator
FSM. On the other hand, each initiator FSM needs a corresponding target FSM,
At, which resides in the respective target module. Initiator and target FSM
model the communication through transactions. Using one initiator-target pair
per process is important to allow multiple processes to initiate overlapping
executions of the same transactions. This is, to our knowledge, not currently
handled by other methodologies. The object FSM, Ao, finally represents the
internal state of a module and keeps track thereof. The state space of Ao is
spanned by the member variables of the module, i.e. a state so ∈ So is an n-
tuple so = (v1, v2, ..., vn) with n ∈ N , where the vi with 0 < i ≤ n represent
the individual member variables. The state of Ao can either be modified by Ab

or At (indicated by the dotted arrows in Fig. 14.1).
Even though the current work does not explicitly deal with building hier-

archical models, model checkers like NuSMV [2] have a notion of hierarchy
and modules allowing to partition the above described FSMs in such a way that
behavior, initiator, target, and object FSM of one SystemC module are grouped
into one NuSMV module.
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Figure 14.1. Model of a transaction level module composed of behavior, initiator, target, and
object FSM. The solid arrows indicate transfer of control from one automaton to another, the
numbers denote the order of the transfer. The dotted arrows show that the object state may only
be changed by the behavior or target automaton.
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Transfer of control between the FSMs. Let A1 and A2 be two FSMs.
Transfer of control from A1 to A2 means that A2 is in a state si

2, where only
output ωl

1 of A1 can trigger a transition, denoted by: si
2 −→?ωl

1 sj
2. After A1

has generated output ωl
1 by a transition from sl

1 to sm
1 , formally written as

sl
1 −→!ωl

1 sm
1 , it is in a state sm

1 with sm
1 −→?ωk

2 sn
1 , where only ωk

2 from A2 can
trigger a transition.

The solid arrows in Fig. 14.1 indicate a transfer of control from one automaton
to another automaton. The numbers at the arrows indicate the order of the
transfer. The behavior FSM, for example, transfers control to the initiator FSM,
from where control is transfered back to the behavior FSM. It is important to
note from Fig. 14.1 that At of module M2 is waiting for an appropriate input
from Ai of module M1, while Ai itself is waiting for an appropriate input from
Ab of M1. Therefore, only the behavior FSM, or the process, may finally initiate
a sequence of control transfers that constitutes a transaction.

The dotted arrows in Fig. 14.1 indicate that the object state may be changed
from either the target FSM At or the behavior FSM Ab. Translated to SystemC,
this means that the member variables of a module may either be changed by a
process or an interface method of this module. This requires that the member
variables of the module are not accessible from the outside world.

Example: Data flow source module. To discuss the basic concepts and
illustrate our methodology, a simple source module of a data flow system is used
in the following (see Fig. 14.2). The module issues blocking write transactions
to a FIFO channel. The values written to the FIFO are incremented after each
write; the usage of a three bit unsigned integer results in a wrap-around from
seven to zero. The sc_fifo<> implementation from the SystemC reference
implementation is used for the FIFO.

Behavior. Processes are modeled with the behavior FSM Ab. A state
sb ∈ Sb is a two-tuple sb = (ν, λ), where ν is a program counter identifying
the statement to be executed and λ represents the local variables of the process.
Common to every behavior automaton is that it has to remain in its initial state

Initiator Target

sc_uint<3> d = 0;
...
void proc() {

while(1) {
outp->write(d++);

}}

sc_fifo<>

Figure 14.2. A data flow source module using blocking write.
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Figure 14.3. State diagram for
the behavior FSM of the data
flow module from Fig. 14.2.
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Figure 14.4. State diagram for
the object FSM of the data flow
model from Fig. 14.2.

until control is diverted to the process by the SystemC scheduler (for a detailed
explanation of the scheduler see Section 5.0.0.0). The rest of the behavior FSM
depends on the SystemC process to be modeled.

Figure 14.3 shows an example of state diagram of Ab for the module of
Fig. 14.2. For the sake of simplicity, the program counter states are labeled
with expressive names instead of numbers. Moreover, the process in the exam-
ple does not have any local variables. The behavior FSM remains in its initial
state I until input run is asserted by the simulation kernel. This models explicit
selection of the running process by the scheduler. In state WR, output wr is
generated and control is transfered to the initiator state machine; Ab will re-
main in state WR until the initiator FSM signals the end of communication with
end com. The initiator FSM Ai asserts output end com whenever a transaction
has been completed, thereby signaling to Ab that it can continue. After end com
has been received, state CALC is entered from where an unconditional transi-
tion to WR is initiated. This transition generates an output calc.

Object state. The object state, represented by Ao is composed from all
the member variables of the module. The internal state of a module may only
be changed by a process or by calling a transaction implemented inside the
module. Formally, this means that Σo ⊆ Ωb ∪ Ωt, i.e. the input alphabet of Ao

is a subset of union of the output alphabets of Ab and At.
In the example of Fig. 14.2, the only member variable is the three bit

unsigned integer d. A transition of the object FSM Ao incrementing the value
of d, see Fig. 14.4, is initiated at every occurrence of calc.

Initiator. Communication between the modules in a Transaction Level
Model is modeled with an initiator FSM Ai and a target FSM At. We use 〈Ti

to denote the initiating state of a transaction Ti and Ti〉 for the terminating state
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NOP 〈WR

 ? wr

? wr ! 〈wr

!  〈wr

! end_com

Figure 14.5. Initiator FSM, Ai, for the write transaction of the data flow example from Fig.
14.2.

NOP W_ER

 WR〉
! wr〉

?(〈wr ∧ f )
! w_er

?(〈wr ∧ ¬f )
? run

Figure 14.6. Target FSM, At, corresponding to the initiator FSM from Fig. 14.5. The target
FSM implements the blocking write transaction requested by the initiator FSM.

of the transaction. The initiator FSM for the data flow example is shown in
Fig. 14.5. From its initial state NOP it steps to the transaction initiator state
〈WR, if wr is asserted by Ab. In the transaction initiator state, the output 〈wr is
generated. The initiator FSM remains in 〈WR, until the end of the transaction
is signaled from the target FSM At by wr〉. Finally, on leaving the transaction
initiator state and returning to the initial state, end of communication is signaled
to the calling process by output end com. As each process may only request the
initiation of one transaction at a time, it is sufficient to use one output end com
to indicate the end of all transactions that may be initiated by Ai.

Target. The target FSM At corresponding to the initiator FSM of Fig. 14.5
is shown in Fig. 14.6. It remains in the initial state NOP , until the execution of
a transaction is requested by 〈wr. If the FIFO is full (f is true), the automaton
proceeds to the blocking state W Er, modeling the blocking behavior of the
write transaction. Note that the corresponding SystemC code to state W Er is
a wait() statement, in which the process having called the write transaction is
suspended until a read event er occurs, i.e. until at least one sample has been read
from the FIFO. Any wait() statement can be modeled following the pattern
described for state W Er. After having entered the blocking state W Er,
output w er is generated, signaling to the scheduler that the corresponding
process should be suspended and only reactivated upon the occurrence of er.
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The automaton remains in state W Er until run is asserted by the scheduler.
The output run is generated by the scheduler after event er has been triggered
and the process has been selected for execution (see Section 5). The end of
transaction state, WR〉, can be reached in two ways. Either by leaving the
blocking state W Er on the occurrence of run or directly from the initial state
NOP , if the FIFO is not full. Upon transition from WR〉 to NOP , the end
of transaction output, wr〉, is generated. Therefore, this transition initiates a
transfer of control back to the initiator FSM.

5. Scheduling
To preserve the cooperative multitasking simulation semantics of SystemC

[7] in the finite state model, a scheduler has to be included into our modeling
effort. The scheduler in SystemC maintains a list of runnable processes and
selects one of them nondeterministically to be running. This process is executed
without interruption until either its end (method processes) or the occurrence of a
wait() statement (thread processes). As every method process can be replaced
by a functionally equivalent thread process, we will restrict our discussion to
thread processes without loss of generality.

A process that has reached a wait() statement returns control to the sched-
uler, is removed from the list of runnable processes and is said to be suspended.
Now, the scheduler selects another process from the list of runnable processes
until the list is empty. The process of executing one runnable process after the
other is called evaluation phase.

Once all processes are suspended, the scheduler calls the update() method
of all primitive channels that have requested an update during the evaluation
phase. A primitive channel is a channel that does not have its own processes or
ports. Examples for primitive channels are hardware signals or FIFOs.

The next step of the scheduler is to check for events that have been notified
during the evaluation phase and to add processes that are sensitive to one of
the notified events to the list of runnable processes. Note that here we mean
both kinds of sensitivity; static sensitivity (the event is in the sensitivity list)
and dynamic sensitivity (the process waits for an event at a wait() statement
embedded in the code). This phase is called delta notification phase.

The cycle of evaluation phase, update phase, and delta notification phase is
called a delta cycle. If no processes are runnable at the end of a delta cycle,
simulation time is advanced. Currently, we do not maintain a global simu-
lation time, however, waiting for a specified amount of time and timed event
notification is supported. Note that we deliberately do not support immediate
notification, as it introduces nondeterminism into the design.

Modeling the Scheduler . Our model of the scheduler differs from the one
presented in [9] by adding a notion of time and supporting dynamic sensitivity.
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In [10] no clear separation between update phase and delta notification phase
is made. The Petri net-based scheduler of [8] is closest to our model, however,
they use a subscription scheme to associate processes and event notifications
where we handle this association in the scheduler automaton.

A scheduler for N processes P0, P1, ..., PN−1 is represented by an automa-
ton As. It maintains a process selector state σ ∈ {none, P0, ..., PN−1}, for
each process Pi a process state πi ∈ {runnable, running, suspended}, and a
global phase selector stateφ ∈ {evaluate, update, delta ntfy, timed ntfy}.

The scheduler is initialized to s0
s = (σ = none, (∀i ∈ {0...N − 1} : πi =

runnable), φ = evaluate), meaning that the scheduler starts in the evaluation
phase with no process being run but all processes being runnable. Then, an
arbitrary runnable process Pj is selected for execution, i.e. the process selector
is set to σ = Pj and the process state is changed to πj = running. The process
is executed until the occurrence of a wait statement after which it is suspended.
The process state is changed to πj = suspended and the process selector is set
to σ = none. This procedure is repeated until no process remains runnable,
meaning until ∀i ∈ {0...N − 1} : πi = suspend and σ = none.

Next, the scheduler switches to the update phase, φ = update. All primitive
channels receive an update signal in this phase. Each channel has the respon-
sibility to decide whether it wants to execute its update method. Only after all
updates have been carried out, the scheduler proceeds and changes the phase
selector state to φ = delta ntfy.

In the delta notification phase, events that have been notified during the eval-
uation phase are triggered. All processes that are sensitive (either statically or
dynamically) to one of the triggered events, change their state from suspended
to runnable.

Now, the phase selector changes to φ = evaluate and the next delta cycle is
started. If no processes become runnable at the end of a delta cycle, the phase
selector is set to φ = timed ntfy and simulation time is advanced.

run- 
nable

run- 
ningsus- 

pended

? t_er

? wt_er

! run

?(σ = P0)

Figure 14.7. Process state for the example shown in Fig. 14.2.
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In Fig. 14.7 the transitions of the process state for the example from Fig. 14.2
are shown. Once the process is selected for execution (σ = P0), the process
state changes from runnable to running. Execution of the behavior automaton
Ab is triggered by the assertion of run. The process remains in this state until
the wait() statement in the blocking write transaction triggers a transition to
suspended by asserting w er. Upon occurrence of t er, the process state is
changed to runnable again. The input t er corresponds to triggering event er.
See Paragraph Modeling Events and Time-Out for details.

Modeling channel updates. The request-update mechanism for primitive
channels requires an additional automaton Au (see Fig. 14.8). The automaton
starts in state rdy. On an update request req up from within the channel,
the automaton changes its state to pend. This happens during the evaluation
phase of the scheduler. During the update phase of the scheduler, the automaton
receives an input update that initiates execution of the update functionality if the
automaton is in state pend. The update functionality depends on the primitive
channel being modeled. After having carried out the update, the automaton
returns to its initial state, thereby signaling the end of the update.

Modeling events and time-out. Events are modeled by means of an
automaton Ae (see Fig. 14.9). It has two states, Se = {ntfy, cncl}, an input
alphabet Σe = {ν, γ, δ}, an output alphabet Ωe = {nil, trig}, and an initial
state s0

e = cncl. The occurrence of an event notification (a notify statement)
is modeled by an input ν, a cancellation (a cancel statement) by γ. On a
notification, the state is set to ntfy, on a cancellation to cncl. When the
scheduler is in the delta notification phase and has added all processes sensitive
to a notified event, to the list of runnable processes, the corresponding event
automaton is reset by input δ. This assures that the same event notification does
not trigger a process twice. The output of Ae is set to trig if it is in state ntfy
and to nil if it is in state cncl.

rdy ? req_up

?  update

pend

...
!up_rdy

Figure 14.8. Generic state di-
agram for the update FSM.

cncl

ntfy

? ν

? ν

?(γ ∨ δ)

?(γ ∨ δ)

Figure 14.9. Event automa-
ton.
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Suspending a process for a certain amount of time, i.e. the wait(<time>)
statement is supported with the help of a counter. At the occurrence of a time-
out, the process state is changed from running to suspended. Moreover, a
counter is incremented each time the scheduler enters a timed notification phase,
φ = timed ntfy. If the counter has reached the value specified as an argument
to the wait(<time>) statement, the process state is changed from suspended
to runnable and the counter is reset to zero.

6. Experimental Results
In the following, we will demonstrate the applicability of our approach using

several examples. All experiments were carried out using NuSMV [2] running
on a 3.2 GHz Linux PC. For property specification, Computation-Tree Logic
(CTL) has been used.

Writing properties. The advantage of the explicit modeling of initiator
FSM, Ai, and target FSM, At, is the easy identification of transactions. A
transaction Ti, for example, lasts as long as the output 〈Ti of Ai is asserted.
The end of a transaction Ti is marked with Ti〉. Stating in CTL that transactions
T1 and T2 should never interfere, is as simple as AG( ¬( 〈T1 ∧ 〈T2 ) ). A CTL
property that checks if a condition cond in the target module holds after trans-
action T1 has been executed can be formulated as AG( T1〉 → AX(cond) ).
As a last example, specifying that a blocking transaction T1 initiated under a
certain condition cond should block until that condition is false, is stated as
AG(( 〈T1 ∧ cond ) → A[ ¬T1〉 U ¬cond ]).

Traffic light system. A relatively simple example of a TLM is the traffic
light system presented in [11]. A controller changes the status of two traffic
lights by using transactions. We have modified the original model to have
an additional red-yellow state. We have proven the usual safety and liveness
properties:

P1 If one traffic light is green, the other one has to be red.

P2 Each traffic light has to be green infinitely often.

P3–P6 Verify the correct sequence of transaction calls, e.g. after a red light,
red-yellow has to occur.

All properties could be verified within a fraction of a second.

Vending Machine. Another simple example is the vending machine pre-
sented in [12]. A user can insert a coin and select coffee or tea. This can be
done in arbitrary order. After both transactions, inserting a coin and selecting a
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product, have been committed, the vending machine responds with delivering
either coffee or tea to the user. The following properties were verified:

P1 After first inserting money and then selecting a product, the vending ma-
chine has to deliver the product.

P2 After first selecting a product and then inserting a coin, the vending machine
has to deliver the product.

P3/P4 No product must be delivered without having inserted a coin/having
selected a product.

Again, all properties could be verified within a fraction of a second.

Untimed data flow system. As a more complex example, we have imple-
mented a simple data flow system. In its least complex version it consists of
a source (SRC) connected to a sink (SNK) through a FIFO channel. In other
versions, we have inserted a different number of feedthrough (FT) models be-
tween source and sink. The feedthrough models read data from the input FIFO
and write it back to an output FIFO.

Source, sink, and feedthrough modules are implemented with SC_THREAD
processes using blocking write and read access to the FIFO. The FIFO im-
plementation we used is the sc_fifo<> primitive channel from the SystemC
distribution. As we are mainly interested in communication, we have only
modeled the number of samples stored into the FIFO and have abstracted from
their values. The following properties were checked using different FIFO sizes:

P1/P2 The blocking write/read of the source always finally returns.

P3 A write to a full FIFO always blocks.

P4 A read from an empty FIFO always blocks.

The run-times needed to check those properties for different numbers of feed-
through modules and different FIFO sizes are shown in Table 14.1.

Timed data flow system. As an example of a timed, but unclocked system,
we have modeled a different version of the data flow system using nonblocking
read and write transactions. The source issues two consecutive nonblocking
write accesses to the FIFO and then waits for T0, while the sink always only
issues one nonblocking read attempt before waiting for T1. We assume that a
non successful read or write attempt results in a loss of data. Therefore it is
important to check whether every read or write attempt was successful. The
properties that have been checked are summarized below:

P1/P2 Every write/read attempt was successful.

P3/P4 If the FIFO is full/empty, a write/read attempt fails.
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Table 14.1. Run-times needed to check properties of the untimed data flow system. All times
are measured in seconds. The size of the FIFOs is given in brackets, [].

P1 P2 P3 P4
SRC-SNK [64] 2 s 1 s 1 s <1 s
SRC-SNK [256] 366 s 62 s 11 s 11 s
SRC-FT-SNK [16] 2 s 2 s <1 s <1 s
SRC-FT-SNK [64] 1176 s 1452 s 4 s 4 s
SRC-FT-FT-SNK [4] 95 s 115 s 2 s 2 s

Table 14.2. Run-times needed to check properties of the timed data flow system. All
properties were verified for a FIFO size of 16. All times are measured in seconds.

P1 P2 P3 P4
T0 = 40, T1 = 20 <1 s <1 s <1 s <1 s
T0 = 40, T1 = 21 13 s 5 s 5 s 5 s

Table 14.2 shows the run-times measured for checking the different properties.
Note, that property P1 for T0 = 40 and T1 = 21 fails because the source
issues its write transactions with a higher frequency than the sink issues its read
transactions.

Case study: simple bus system. The examples presented in the previous
paragraphs are relatively simple and have mainly served as a pipe-cleaner during
the development of the finite state formalism. They are very suitable for that
purpose as they are easy to understand and can be used to study the basic
transaction types — blocking and nonblocking — in a simple environment.

To demonstrate the applicability of the presented approach and to investigate
limitations, a more elaborate example is needed. TLM, nowadays, is mostly
used to model systems comprising several components communicating over a
bus. A well-known, publicly available, reasonably complex TLM example is
the Simple Bus system contained in the SystemC distribution. The Simple Bus
is a cycle accurate model of a bus allowing multiple masters and multiple slaves
to be connected to the bus. It supports single and burst requests. A request can
either be a read or a write. The system contains models of a blocking master,
a nonblocking master, an arbiter and two slaves, a fast memory, and a slow
memory.

We have used the bus configuration shown in Fig. 14.10 as a case study. It
consists of six modules. The bus itself is implemented inside the Simple Bus
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Blocking Master Non-Blocking Master

Simple Bus

Target

Arbiter

Target

Initiator

Target

Fast Memory

Target

Fast Memory

i_master_b i_master_nb

i_arbiteri_mem2i_mem1

i_bus

Initiator

Target

Initiator

Initiator

Initiator

Figure 14.10. Block diagram of the simple bus system used as a case study. It has two masters,
one blocking and one nonblocking, and two fast memories as slaves.

module. Two masters; the Blocking Master and Non-Blocking Master, can issue
requests to the bus. Simultaneous or overlapping requests are handled by the
Arbiter. The bus requests can have one of two Fast Memory slaves as targets.
Three of the six modules have processes, namely the two masters and the bus
itself. The two masters issue their requests at the positive clock edge, while the
bus processes the requests at the negative clock edge. The model comprises
three events, two of which are timed. The timed events are used to model
time-outs between bus transactions issued by the masters. The untimed event
signals the end of a transaction in the Simple Bus module. As communication
over the bus is modeled at a cycle-accurate level, two additional timed events
are needed, one to generate the positive clock edge, the other to generate the
negative edge.

The SystemC code for the two masters, the bus, the arbiter, and the fast mem-
ory slave was converted to our finite state formalism. To reduce the translation
effort, our finite state model does not support a lock mode for bus transaction
which is present in the original SystemC model. The lock mode in the Sys-
temC model prevents a burst request from being interrupted by another request.
Moreover, to be able to apply model checking using NuSMV with reasonable
run-times for the individual properties, some simplifications were made:

• We have abstracted from the data transfered over the bus.

• We have applied address abstraction, making use of the existence of an
address map.
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In the case of the simple bus, the first simplification is straight forward as the
system behavior does not depend on the data values transfered over the bus.
Abstracting from the data, therefore, does not introduce any nondeterminism.
The introduction of an address abstraction does, however, introduce nondeter-
minism in some places. Instead of using integral address values, we only make
a distinction whether an address value refers to the first or the second slave
memory. Whenever it is not clear to which slave an address refers to, which,
e.g. is the case after having applied an arithmetic operation on the address, one
of the two slaves is chosen nondeterministically. This is similar to the address
abstraction presented in [10].

We have checked more than 15 properties, some of which are listed below:

P1/P2 A read/write transaction from the nonblocking master always reaches
the slave.

P3/P4 A read/write transaction from the blocking master always reaches the
slave.

P5 The nonblocking master does not issue a request if the old request is still
being processed.

P6/P7/P8 None of the three processes ever encounters a deadlock.

All properties could be verified within seconds up to several minutes, depending
on the property.

The results presented so far are encouraging enough to motivate the applica-
tion of the methodology to even more complex systems. This has been done by
replacing one of the fast memories by a slow memory that takes several clock
cycles to complete a read or write request. Unlike the fast memory, the slow
memory contains its own process, increasing the total number of processes in
the model from three to four. The resulting increase in run-time to more than one
hour for some properties suggests that the simple bus system is an upper bound
for the system complexity that can currently be handled by our methodology.

7. Conclusions
We have presented a finite state formalism for Transaction Level Models

that allows to formulate properties based on transactions. We have shown the
applicability of this approach with several simple examples and a more complex
case study. It has been demonstrated that properties based on transactions can
be formulated to prove the correctness of the system. Our methodology has
three main advantages:

1. It is a native finite state model that does not need an additional translation
step before being able to apply model checking. It can directly be used
with existing model checkers like, e.g. NuSMV.
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2. The emphasis is on the communication aspect, allowing convenient iden-
tification of transactions. Transactions can be used as atomic propositions
within properties, thereby enabling a concise formulation of properties
at a raised level of abstraction.

3. It can handle timed and untimed models at levels of abstraction above
RTL.

Currently, the approach is mostly limited by the complexity of the behavior
automata Ab used to model processes. The simple bus, for example, contains
three processes and therefore three behavior automata. One is used to describe
the bus itself, the other two are used to describe the blocking and the nonblock-
ing master, respectively. As long as the two masters are simple and limited
in their functionality, the system can be described using a finite state model.
However, this will fail due to the state space explosion problem if the behav-
ior processes in the masters contain complex algorithms and data dependent
conditional statements. Also, programming techniques like dynamic memory
allocation, recursion, or self modifying programs cannot be handled appropri-
ately by the finite state approach.

Future work will therefore concentrate on abstraction methods for behav-
ior automata in the masters. As our approach is focused on communication,
abstraction, or simplification of the behavior automata in the communication
resources is not desirable. Another direction for future work is to investigate
possibilities to remove the explicit modeling of the SystemC kernel, as checking
the correctness of the simulation kernel is not the objective of our model.
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Abstract Many different system description and specification languages are used in mod-
ern design flows to emphasize different aspects like modular architecture, mul-
tithreaded behavior, abstract action-oriented behavior, and the desired temporal
properties. However, the use of many specialized languages complicates the
development of seamless and robust design flows. In this article, we show that
synchronous languages are powerful enough to capture the mentioned aspects of
system descriptions as simple syntactic sugar. In particular, we show how hard-
ware structures, multithreaded and action-oriented programs as well as property
specification languages can be incorporated in a synchronous programming lan-
guage so that a single core language with a powerful compiler can handle all
design descriptions in a consistent way.

Keywords Synchronous languages, specification languages, system design

1. Introduction
Many embedded systems are heterogeneous in the sense that they consist of
parts that are currently developed by totally different design flows and lan-
guages. The most relevant distinction is thereby the partition into application-
specific hardware and software. Different hardware architectures like DSPs or
standard microprocessors moreover require different ways for the implementa-
tion of the software part, which often implies the use of specialized languages
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and compilers. Various levels of abstraction make use of different modeling
paradigms like action-oriented or multithreaded system behavior. Moreover,
specialized languages are used to describe the desired functional and tempo-
ral properties for the simulation and verification phases. The set of languages
used in modern system design therefore includes languages like system descrip-
tion languages as UML [29], SystemC [27], and SystemVerilog [2], hardware
description languages like VHDL [40] and Verilog [26], property specifica-
tion languages like PSL [1], and of course, traditional programming languages
like C.

However, the plethora of languages currently used in many design flows is
simply unmanageable. Many tools and licenses are required to update designs
almost all the time; this makes the overall design process inefficient. Moreover,
it is a big disadvantage that specialized languages force the designer to think
already about a later realization (in software or hardware), which makes late
design changes concerning the hardware–software partitioning or even weaker
modifications of the architecture practically impossible. Specialized languages
like Accellera’s property specification language PSL [2] became moreover very
complicated languages. However, the most difficult problem that results from
the use of so many languages is that the underlying models of the languages
do not always match: For example, hardware description languages usually
rely on an event-based simulation, while software programs usually rely on a
sequential uniprocessor execution, and property specifications consider formal
models like transition systems.

For this reason, we propose in this article a unified approach that focuses
on a single programming paradigm. This consolidation is the result of many
bad experiences made with complex design flows. To this end, we propose the
synchronous programming paradigm [3], since synchronous languages have
already proved to be able to generate both application-specific hardware and
software from the same synchronous program. Moreover, the underlying se-
mantics match with the models used in formal verification like model checking.

However, synchronous languages currently do not offer much support for
the temporal specifications. Usually, observers are written as synchronous
programs that are then run in parallel with the system and report whether some-
thing bad has happened. Compilers for synchronous languages are able to
traverse the state space and check whether such a situation can occur, so that
checking safety properties is already comfortably embedded in synchronous
programming environments. However, checking more complex specifications
like liveness, different kinds of fairness, or even assume-guarantee reasoning is
not yet available in commercial tools.

Based on the Esterel language, we developed our own experimental lan-
guage called Quartz and implemented an entire tool framework called Averest
for this language. The current version of Averest that is available under
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www.averest.org can be used to translate synchronous programs to hard-
ware (netlists given in VHDL or Verilog) or software (programs written in C)
[38, 37], and to verify given specifications written in temporal logics like LTL,
CTL, and even in the full µ-calculus [36]. In this article, we present the new
version of Averest that is currently in an experimental status, and therefore
not yet publically available. During the development of this version, we also
discussed additional special syntactic means to describe the modular architec-
ture of a system, and also more powerful specifications to support development
processes based on refinement techniques. However, having considered many
languages and approaches, we came to the conclusion that most of these aspects
can be implemented without much effort as simple syntactic sugar on top of
our existing language.

This article therefore demonstrates the expressive power of the synchronous
programming model in that we show how different aspects like the description
of the modular architecture, complex properties as given by ω-regular prop-
erties similar to PSL and assume-guarantee reasoning can be incorporated in
a synchronous language. In particular, we show that regular expressions and
temporal logics can be easily translated to even more readable synchronous pro-
grams. Besides the better readability of the specification, the main advantage
is the possibility to use existing tools for synchronous languages to simulate,
verify, and debug the specified properties as well as the program. Moreover,
all translations to hardware and software already offered by compilers for syn-
chronous languages can still be used for hardware-software codesign.

The outline of the article is as follows: In the next section, we briefly con-
sider the core of our synchronous language Quartz, which is the input language
of our Averest system. In the following sections, we then show how struc-
tural descriptions, action-oriented descriptions, and property specifications are
easily obtained in Quartz, so that these aspects can all be handled in a unique
framework. For this reason, it is very simple to check their equivalence by
means of verification or simulation.

2. The Averest System
Averest is a set of tools for specification, verification, and implementation of
reactive systems. It includes a compiler for synchronous programs, a symbolic
model checker, and a code generator for hardware and/or software synthesis.
Further tools for simulation as well as for supervisor synthesis are currently
under development. Averest can be used for modeling and verifying finite as
well as infinite state systems at various levels of abstraction and with different
kinds of descriptions. In particular, Averest is not only well suited for the
design of integrated circuits, but also for developing communication protocols,
concurrent programs, software in embedded systems, etc.
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Systems descriptions for Averest are given in the imperative synchronous
programming language Quartz [33–35, 37]. Quartz is an imperative synchro-
nous language that was derived from the Esterel language [6, 5]. The common
paradigm of synchronous languages is the perfect synchrony [17, 3], which
means that most of the statements are executed as micro steps in zero time.
Consumption of time is explicitly programmed by special statements which
partition the micro steps into macro steps. In the programmer’s view, all macro
steps take the same amount of logical time. Thus, concurrent threads run in
lockstep and automatically synchronize at the end of their macro steps. The
introduction of micro- and macrosteps is not only a convenient programming
model, it is also the key to generate deterministic single-threaded code from
multithreaded synchronous programs. Thus, synchronous programs can be ex-
ecuted on ordinary microcontrollers without complex operating systems. As
another advantage, the translation of synchronous programs to hardware cir-
cuits is straightforward [4, 32]. Moreover, the formal semantics of synchronous
languages makes them particularly attractive for reasoning about program se-
mantics and correctness. Therefore, synchronous languages are well suited
for the design of safety-critical embedded systems that consist of application-
specific hardware and software.

In this article, we mainly focus on the core of the Quartz language that is
powerful enough to define many other statements as simple syntactic sugar.
This core language consists of the following basic statements:

Definition 2.1. [Basic Statements of Quartz] The set of basic statements of
Quartz is the smallest set that satisfies the following rules, provided that S, S1,
and S2 are also basic statements of Quartz, � is a location variable, x is an event
variable, y is a state variable, σ is a Boolean expression, and α is a type:

• nothing (empty statement)
• y = τ and next(y) = τ (assignments)
• � : pause (consumption of time)
• if (σ) S1 else S2 (conditional)
• S1; S2 (sequential composition)
• S1 ‖ S2 (synchronous concurrency)
• do S while(σ) (iteration)
• [weak] suspend S when [immediate](σ) (suspension)
• [weak] abort S when [immediate](σ) (abortion)
• {α y; S} (local variable y with type α)
• choose S1 else S2 (nondeterministic choice)
• assume(ϕ) (inline assumption)
• assert(ϕ) (inline specification)
• name(τ1, . . . , τn) (module instance)
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Many other statements can be defined as macro statements, e.g. the following
always statement:

always S :≡ do S; pause; while true

In addition to many Esterel statements that can be defined in the above spirit
as syntactic sugar, the Quartz language features moreover generic programs
(compile time parameters), different forms of concurrency (synchronous, asyn-
chronous, interleaved), explicit nondeterministic choice, fixed bitwidth integers
with a complete set of arithmetic operations, arrays, infinite integers, and tem-
poral logic specifications.

In Quartz, there are two kinds of (local and output) variables, namely event
and state variables. State variables y are persistent, i.e., they store their current
value until an assignment changes it. Executing a delayed assignment next(y) =
τ means to evaluate τ in the current macro step (environment) and to assign the
obtained value to y in the following macro step. Immediate assignments update
y in the current macro step and are therefore rather equations than assignments.

Event variables do not store their values, hence, an assignment y = τ to an
event variable just gives y the value τ for this moment of time (unless there is
another assignment in the next instant with the same value). If no assignment
takes place, the value is not stored, instead, a default value is taken. As most
events are of Boolean type, we use the statements emit x and emit next(x) as
macros for y = true and next(y) = true, respectively.

There is only one basic statement that defines a control flow location, namely
the pause statement.1 For this reason, we optionally2 endow pause statements
with unique Boolean valued location variables � that are true iff the control is
currently at location � : pause.

The semantics of the other statements is essentially the same as in Esterel.
Due to lack of space, we do not describe their semantics in detail, and refer
instead to [37] and, in particular, to the Esterel primer [5], which is an excellent
introduction to synchronous programming.

Moreover, Quartz supports generic programming in that sequences, and
parallel statements can be described via compile-time parameters. For example,
it is therefore possible to implement a system with n similar threads or with
n-bit wide variables, or with arrays of length n. Moreover, statements can be
given by primitive recursion so that n if-then-else statements can be nested in
each other.

In addition to the above statements, there are many more statements that
are, however, simply reduced to the above core language. For example, using
oracle inputs with nondeterministic choice, different kinds of concurrency like
asynchronous and interleaved concurrency can be easily reduced to synchronous
concurrency.
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module BehaveDETECT110(event i,&o)
implements SpecDETECT110(i,o) {

event prv_i, prv_prv_i;
loop {

if(i) emit next(prv_i);
if(prv_i) emit next(prv_prv_i);
if(!i&prv_i&prv_prv_i) emit o;
pause;

}
}

Figure 15.1. Behavioral description of a 110-detector.

Quartz programs are simply a list of modules, where only the first (main)
module is considered by the compiler. The other modules are either instantiated
in the first module or they are simply not used. A Quartz module consists of
a header that contains the name of the module, the declaration of the inputs
and outputs,3 as well as the body statement. A very simple example module is
shown in Fig. 15.1 that describes a module that checks whether the boolean-
valued input stream i contains 110 as a subsequence. In case this subsequence
has been read, the output o is made true.

3. Structural Descriptions
Structural descriptions emphasize the hierarchy that is obtained by the compo-
sition of modules to new modules at the next level of the hierarchy. Structural
descriptions are particularly popular in classic hardware design. In Quartz,
module instances can be used as ordinary statements, so that instances can run
in sequence or in parallel, and can interact with each other.

It is therefore straightforward to describe modular hardware structures by
Quartz modules. To this end, no special syntax is necessary, all that is required
is a restriction to certain statements: Basic structural modules, which form the
leaves of the hierarchy, are constructed by a behavioral description, i.e. their
modules’ bodies contain a Quartz statement. Figure 15.2 shows some simple
definitions of basic hardware gates.

Composed structural modules simply consist of a local declaration of the in-
ternal variables (wires in the case of hardware circuits), and a parallel execution
of the instantiated hardware modules. It might seem to be wastefull to run a sin-
gle thread for each hardware gate, but this may not be the case in the generated
code: The compiler is able to merge all the loops that are obtained by expansion
of the modules, so that a single thread can simulate the gate netlist in software
(if wanted). A similar argument holds for hardware code generation, so that
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module AND(event a,b,&out) {
always

if(a&b) emit out;
}

module OR(event a,b,&out) {
always

if(a|b) emit out;
}

module NEG(event a,&out) {
always

if(!a) emit out;
}

module DFF(event a,&out) {
always

if(a) emit next(out);
}

Figure 15.2. Behaviors of basic hardware gates.

the number of location variables is reduced to only one pause statement (all the
location variables are easily detected to have the same transition relations, so
that the compiler can unify them all).

An example is shown in Fig. 15.3, where we implemented a hardware cir-
cuit for detecting a 110 subsequence in the input stream. As can be seen,
structural descriptions are naturally obtained in a synchronous language like
Quartz. Moreover, no special treatment is required for the compiler: it is obvi-
ously still possible to generate hardware and software from these modules. In
case of hardware design, this offers the benefit of a highly efficient simulation
at the synchronous level by compiling the obtained C programs individually for
the particular design. For hardware synthesis, the compiler essentially gener-
ates the gates that have been used in the description. Hence, there is no loss of
the hardware structure and neither a loss of efficiency due to the compilation.

4. Action Languages
Action languages are frequently used for modeling software or hardware sys-
tems at an abstract level. Examples of action languages are Unity [11], DisCo
[22], TLA [24], sublanguages used in UML4 as well as languages used in model
checkers like Murphi [14] or ALF [9].
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module DETECT110_Structure(event i,&o) implements
DETECT110_Spec(i,o){

event w1, w2, w3, w4, w5, w6, w7;
{

NEG(i,w1);
|| AND(i,w7,w2);
|| DFF(w2,w3);
|| NEG(w7,w4);
|| AND(i,w4,w5);
|| DFF(w5,w6);
|| OR(w3,w6,w7);
}

}

Figure 15.3. Structural implementation of a 110-detector.

The general model of computation of these languages is thereby that a pro-
gram consists of a set of actions that are executed whenever an associated con-
dition holds. In this sense, this computation model is related to the “guarded
commands” that were already considered by Dijkstra [12].

The translation of Quartz programs consists of computing also a set of
guarded commands [38]: The compiler computes for each assignment x = τ
the guard condition, i.e. the condition that holds iff the assignment is executed.
Then, for each variable x, the hardware code generation will generate a case
construct that checks the different guards and assigns the corresponding right
hand sides.

It is therefore straightforward to directly integrate action languages in the
Quartz language. The compiler is thereby even simplified, since the conditional
actions can be directly used for the intermediate data structures of the compiler.
Moreover, it is very simple to implement a given set of conditional actions
as a Quartz module: given actions (γ1, α1), . . . , (γn, αn), we simply use the
following module:

module ModuleName(. . .){
always{
if(γ1) α1;
...
if(γn) αn;

}
}
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The above scheme is very simple, but nevertheless very powerful. In particular,
the combination of other Quartz statements like parallel execution, abortion,
suspension, etc. allows us to capture also complex module transformations [23]
like merging of action modules and many others.

5. Property Specification
In this section, we consider the main ingredients of property specifications
available in Quartz. Quartz offers additional constructs to specify complex
temporal properties which we have to omit due to lack of space. In particular,
temporal logics like CTL, LTL, special fragments of CTL*, as well as the full
µ-calculus can be used for this purpose. In particular, past temporal operators
are often very convenient as can be seen even with the simple example given in
Fig. 15.4: s1 means that at all points of time (G) on all computation paths (A) of
the system, o holds iff currently i is false, and i was true at the preceeding two
points of time. s2 is another temporal specification stating the same property
with only future operators. Finally, s3 considers only one implication, and
can therefore make use of the CTL logic and its more efficient model checking
algorithms.

Besides the possibility to simply list temporal logic specifications as shown
in the specification module given in Fig. 15.4, Quartz offers also inline spec-
ifications that refer to the corresponding control flow location of the program.
These inline specifications are similar to those developed for VHDL in [31].
Moreover, it is possible to make use of regular and ω-regular expressions similar
to Accellera’s industry standard property specification language PSL. In con-
trast to PSL, we make use of Quartz statements to replace regular expressions
by more readable program statements.

In the remainder of this section, we first present the possibilities of inline
specifications and assumptions to support readable specifications as well as
assume-guarantee reasoning. Then, we show how regular expressions can be
translated to Quartz statements, and finally we briefly discuss similar transla-
tions for temporal logics.

spec SpecDETECT110(event i,&o) {
s1 : A G (o <-> !i & PSX (i & PSX i));
s2 : A G (i & X i & X X !i <-> X X o);
s3 : A G (i -> A X (i -> A X (!i -> o)));

}

Figure 15.4. Temporal specification of a 110-detector.
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Inline Assertions and Assumptions
Verifying a system aims at ensuring that the system has exactly the specified
behavior. Traditionally, two kinds of specifications can be distinguished: White
box specifications may refer to internal states or local variables of a module,
while black box specifications only describe the external behavior of a module
without referring to internals. In general, black box specifications should be
preferred to support a hierarchical reasoning that is independent of a particular
implementation. However, a specification may not hold all the time, but only
after reaching some point of the computation which is conveniently defined
with inline (white box) specifications.

In traditional programming languages, which lack a built-in verification sup-
port, programmers are used to employ assertions for this task: They specify a
condition that should hold at a particular control flow location by means of
assertion statements. Whenever the control flow hits such a statement during
the execution of the program, the given condition is checked and the program
is aborted if the condition is violated.

Quartz supports both black box and white box specifications by means of
assume and assert statements. Like any statement, they can be used at an ar-
bitrary point of a Quartz module and both statements take a list of labelled
conditions, where the conditions can be given in the temporal logic LTL. How-
ever, their semantics is completely different: Assume statements list conditions
that the programmer assumes to hold at the corresponding control flow loca-
tion, whereas assert statements list conditions that have to be checked at that
location. The verification tool trusts the programmer and uses the assumptions
to check the other conditions. The task of assume statements is to give the
verification tool additional information that can not be derived from the pro-
gram alone. For example, knowledge about the environment and possible input
values or complex mathematical relations can be added in this way. In many
cases, it is possible to check the given assumptions if the final context is given
by other modules, but some assumptions are directly given by the environment
and can therefore not be checked unless a model of the environment is provided.

Of course, assume guarantee reasoning [19, 28, 41] is directly supported
by the assume and assert statements. Moreover, statements in a module can
be annotated with classical pre/postconditions and loop invariants [15, 20, 13].
The task of the compiler is the extraction of the given assumptions and proof
obligations and their hand-over to a model checker. Additionally, it creates
specifications for common program errors: For example, for bitvectors, it is
checked whether an overflow occurs due to arithmetic expressions, and for
arrays, it is checked that the index expressions remain in the declared bounds.

Assume/assert statements implement a white box specification. Specifica-
tion of the black box behavior is achieved by defining a specification module
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(an example is shown in Fig. 15.4). The body of a specification module does
not consist of a statement; instead, a list of temporal specification is given that
have to be fulfilled by any concrete module that implements the specification
module. The implements clause in the header of a concrete module tells the
compiler to set up also proof obligations to check the temporal properties of the
referred specification module.

Abstract modules are again only syntactic sugar: In principle, they consist
of a sequence of assert statements that list the temporal specifications. For code
generation, assume and assert statements are implemented in an observer that
will set an error flag in case the property is violated during run-time.

In this way, Quartz allows the programmer the step-wise refinement of a
given system. Starting with a pure temporal specification, proceeding with an
intermediate action-oriented description, and finally concluding with a behav-
ioral Quartz statement, a programmer can refine a given model of a system so
that each refinement step can be proved to be correct. Moreover, as Averest
is capable to handle unbounded integers, one can first start with unbounded
integers, then one could check how large the values may grow to finally deter-
mine sufficient bitwidths. Hence, also the datatypes can be refined during this
process.

Regular Expressions and Finite Automata
In the previous section, we have shown where specifications can be placed in a
module, but we left open, which logic is used to write down the formal speci-
fications. Quartz allows one to use temporal logic specifications, in particular,
the linear temporal logic LTL and the branching time temporal logic CTL.
Moreover, certain fragments of the more powerful logic CTL* are considered,
and even the full µ-calculus is supported, which is currently one of the most
expressive specification logics [36].

We discussed also the use of Accellera’s property specification language PSL
for future versions of Averest, but came to the conclusion that synchronous
languages can be used to make such specification much more readable: While
PSL also provides LTL and CTL, it additionally considers regular expressions
and finite as well as infinite paths in order to support both simulation and
verification, respectively.

Regular expressions can also be added to Quartz as syntactic sugar: It is
well known that regular expressions, right- and left-linear grammars, and finite
automata in different variants are equivalent to each other [21, 7, 8, 18, 10,
30]. Regular expressions are a very simple, yet powerful formalism to describe
languages that can be accepted by finite state automata. Note that regular
expressions describe languages of finite words over a fixed alphabet Σ. For the
specification of reactive systems, however, also infinite computations have to
be taken into account, which can be done by ω-regular expressions [39].
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In the following, we demonstrate that, using our language Quartz, we are
able to write powerful specifications that are as readable as programs. We
believe that a programming approach to specification is more appreciated by
programmers and engineers. To this end, we will consider a finite fixed set of
variables V . The alphabet ΣV of V is then simply the powerset of V , hence,
ΣV :≡ 2V . Then, regular expressions are defined as follows:

Definition 5.1 (Regular Expressions). The set of general regular expressions
RegExp(Σ) over the alphabet Σ is defined as the smallest set that satisfies the
following properties (where α, β ∈ RegExp(Σ)):

• ∅ ∈ RegExp(Σ) and 1 ∈ RegExp(Σ)
• ϑ ∈ RegExp(Σ) with ϑ ⊆ Σ (letters)
• α + β ∈ RegExp(Σ) (union)
• α�β ∈ RegExp(Σ) (intersection)
• αβ ∈ RegExp(Σ) (concatenation)
• α∗ ∈ RegExp(Σ) (finite iteration)

The above definition of regular expression contains already some syntactic
sugar. The semantics of a regular expression r is a set of finite words Lang(r) ⊆
Σ∗
V that is recursively defined as follows (ε is the empty word):

• Lang(∅) := {} and Lang(1) = {ε}
• Lang(ϑ) := {ϑ} for every letter ϑ ⊆ Σ
• Lang(α + β) := Lang(α) ∪ Lang(β)
• Lang(α�β) = Lang(α) ∩ Lang(β)
• Lang(αβ) := {ab | a ∈ Lang(α), b ∈ Lang(β)}
• Lang(α∗) :=

⋃∞
i=0 Lang(α)i

It is well known how to translate a given regular expression r to a finite state
automaton Ar that accepts the language Lang(r) [21, 8, 18, 10, 30]. It is even
possible to compute a symbolic representation of such an automaton in time
O(|r|) of length O(|r|) [36]. As Quartz programs are also a way to symbolically
describe automata, we can directly translate regular expressions to equivalent
Quartz statements, which is done by the following function Q:

• Q(∅) :≡ assert(false)
• Q(1) :≡ assert(true)
• Q(ϑ) :≡ assert ϕϑ; pause;

with ϕϑ :≡
(∧

a∈ϑ a
)
∧
(∧

a �∈ϑ ¬a
)

for ϑ ⊆ V
• Q(α�β) :≡ Q(α) ‖ Q(β)
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loop
choose {

assert(a&!b)
pause;

} else {
assert(a&!b);
pause;
assert(!a&b);
pause;

}

Figure 15.5. Quartz program for ({a} + {a}{b})ω .

• Q(α + β) :≡ choose Q(α) else Q(β)
• Q(αβ) :≡ Q(α); Q(β)
• Q(α∗) :≡ finloop Q(α)
• Q(αω) :≡ loop Q(α)

finloop is thereby a loop that only finitely often iterates its body statement, but
the number of iterations is nondeterministic. Using nondeterministic Quartz
statements, it is possible to implement such a loop together with a temporal
assertion statement:

finloop S :≡ {event d;
choose emit d else nothing;
while(d){

S;
assert F�;
choose emit d else nothing;

}}
� : pause;

As an example, consider the regular expression ({a}+{a}{b})ω that describes
all infinite words over the alphabet {{}, {a}, {b, }, {a, b}} that does not contain
two succeeding occurrences of b. It is translated to the Quartz program given
in Fig. 15.5.

Observers for Temporal Logic
Although Quartz allows one to use full temporal logic formulas5 as specifica-
tions, it is sometimes more convenient to write observers with some reachability
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or fairness constraints. This is the classic approach that is used in many synchro-
nous programming environments. Moreover, it is straightforward to compute
for temporal past properties an equivalent deterministic (!) finite state automa-
ton that can be used as an observer [36]. It is even straightforward to implement
temporal past operators by means of equivalent Quartz modules that can then
be simply called to “execute” the specification.

module PastAlways(event phi, &failure) {
while(phi) {

pause;
}
emit failure;

}

module PastUntil(event phi,psi, &failure) {
bool q;
q = false;
loop {

next(q) = psi | phi & q;
pause;

}
}

It is well known how to translate LTL formulas ϕ to equivalent ω-automata Aϕ,
and even translations to symbolic or alternating automata exist that work in
linear time (see [36] for further references). We can also use these algorithms
to directly generate nondeterministic Quartz statements with assert statements
to capture the fairness requirements that are generated by these translations.

6. Summary and Conclusions
In this article, we have shown that different kinds of system descriptions can
be obtained on the basis of a unique programming paradigm. We use the
synchronous programming paradigm to describe modular concurrent systems
like hardware gate netlists, action-oriented modules, as well as temporal as-
sertions (even extended by ω-regular expressions) in form of simple syntactic
sugar. Hence, synchronous programs may not only serve as realization inde-
pendent descriptions for either hardware or software; they can also be used as
alternatives to complex property specification languages like PSL. In addition
to increased readability, the approach offers also simulation and execution of
these specifications on different architectures.
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Notes
1. To be precise, immediate forms of suspend also have this ability.
2. In case the programmer does not provide a location variable, the compiler will automatically generate

one.
3. Outputs are distinguished from inputs by prefixing their name with a & symbol.
4. see www.omg.org
5. Full temporal logic includes also past time operators, which makes the logic not more powerful, but

exponentially more succinct and in general more readable [16, 25, 36].
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IV

UML-BASED SYSTEM SPECIFICATION
AND DESIGN



Introduction

This fourth part of the book is a selection of the most interesting results in
the thematic area ‘UML-Based System Specification & Design’ This FDL’06
thematic area addresses specification and design methodologies such as the
Model Driven Architecture (MDA) approach, that use UML (Unified Modeling
Language) to map abstract models of complex embedded systems to highly
programmable hardware platforms and heterogeneous systems on chip.

The first three papers in this part of the book have been presented in the
session ‘Design Flows for Systems-on-Chip’. The first paper ‘A Model-driven
co-design flow for Embedded Systems,’ by Elvinia Riccobene, Patrizia Scan-
durra, Alberto Rosti and Sara Bocchio, reports on results of the realization of
a model driven design path from UML to C/C++/SystemC. The second paper
describes ‘A Method for Mobile Terminal Platform Architecture Development’
and is by Klaus Kronlöf, Samu Kontinen, Ian Oliver and Timo Eriksson. This
paper presents a method for developing service oriented platform architectures
starting from end user requirements. The aim is to develop executable mod-
els suitable for stakeholders validation. The third paper, ‘UML2 Profile for
Modeling Controlled Data Parallel Applications’ by Ouassila Labbani, Jean-
Luc Dekeyser, Pierre Boulet and Èric Rutten proposes a UML solution for
modeling control automata that can be applied in parallel systems.

The last two papers selected for this part of the book have been presented
in the session ‘Models for Design Space Exploration’. ‘MCF: A Metamod-
eling based Visual Component Composition Framework’ by Deepak Math-
aikutty and Sandeep Shukla describes a framework for architecture exploration
on various levels of abstraction. The last paper in this part is not least. It re-
ceived the FDL’06 best paper award and is by Henk Corporaal, Marcel Verhoef,
Oana Florescu, Jeroen Voeten. ‘Reusing Real-Time Systems Design Experi-
ence Through Modelling Patterns’ addresses exploration of real-time properties
of architectures. Patterns enable easy composition of alternative architectures.

Piet van der Putten
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Technische Universiteit Eindhoven
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Abstract The UML (Unified Modeling Language), with the enhancements in UML2, is re-
ceiving interest by an increasing number of industrial and academic groups from
the embedded software and hardware areas, who look at it and at its extension
mechanisms as a practical and standard means to define family of languages tar-
geted to specific application domains and levels of abstraction, while providing
unification. In the Embedded Systems and SoC (System-on-Chip) area, we de-
fined a model-driven design methodology based on UML 2.0, UML profiles and
C/C++/SystemC. In this chapter, we extend this design flow in order to support
the platform-based design principles. We also present the architecture of a pro-
totype tool, which provides a graphical representation in UML (from a high-level
functional model down to RTL) of HW and SW components, C/C++/SystemC
code generation from UML models, and a reverse engineering process from
C/C++/SystemC code to UML.

Keywords Embedded systems, SoC design, UML, SystemC, model-driven engineering
(MDE), model-driven architecture (MDA), refinement

1. Introduction
System-on-Chip (SoC) design may involve the mixing on a single integrated

circuit of one or more microprocessor cores (e.g. ARM, MIPS.), bus interface,
analog components, and numerous digital processing functions. Designers are
increasingly reusing portions of previous designs to reduce the time to market
which generally results in greater revenue for the product. In the past few years,
major functions have been implemented as virtual components [5]. To minimize
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effort and risk in a new design, some organizations are internally standardizing
on a set of virtual components and any related software to develop their own
SoC platforms. Platform-based design allows an organization to develop a
complete SoC that is central to its product line. Once the SoC platform is
fully operational, derivative designs in which only a few virtual components
are added or dropped are accomplished rapidly.

In [33, 12], the authors identify two layers for platform definitions: the
micro-architecture platform and the application programming interface (API)
platform. A micro-architecture platform is defined as a specific family of micro-
architectures, oriented toward a particular class of problems, which can be
modified (extended or reduced) by the system developer. API platform usually
consists of a software layer that wraps the essential parts of the architecture
platform and defines the services that the platform offers. It includes, among
other things, RTOS and device drivers, that can be preferably modeled as a
separated layer. In this chapter, we present a systematic approach through UML
2.0 for assembling micro-architecture platform and for defining the connection
among the micro-architecture, the API, and the application tasks.

In the embedded design community, UML 2.0 and its extension mechanism
are receiving significant interest as standard approach to define family of lan-
guages targeted to specific application domains and levels of abstraction. This
is confirmed by current standardization activities controlled by the OMG such
as: the Schedulability, Performance, and Timing Analysis (SPT) profile [27];
the recent UML for SoC Forum (USoC) [32] in Japan founded by Fujitsu, IBM,
and CATS to define a set of UML extensions to be used for SoC design; the
SysML proposal [28] which extends UML toward the Systems Engineering
domain, and the recent MARTE (Modeling and Analysis of Real-Time Em-
bedded systems) profile initiative [26]. Moreover, several reported experiences
and contributions to the theme UML for Embedded Systems exist in literature
(see [11], [13], [7]).

In accordance with the OMG Model-driven Architecture (MDA) [14] – a
framework for Model-driven Engineering (MDE) [3, 4] – in [22] and [1] we
defined a model-driven SoC design methodology which involves the UML 2.0,
a UML 2.0 profile for the C and the SystemC language [18, 29], and some other
UML profiles primarily related to the SW implementation. Here we extend
this design flow in order to support the platform-based design principles in
[33] [12], an important paradigm for the future embedded system development
based on the reuse of generic hardware platforms.

This chapter is organized as follows. In Section 2, we describe the design
flow, while in Sections 3 and 4, we present the two UML profiles for the HW
and SW descriptions, respectively. In Section 5, we describe the environment
architecture and its components features that we developed to assist the designer
across the refinement steps in the UML modeling activity starting from a
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high-level functional model of the system down to RTL. In Section 6, we dis-
cuss some case studies. In Section 7, we quote some related work. Finally, in
Section 8, we sketch some future directions.

2. The Model-driven Design Flow
Figure 16.1 summarizes the most significative phases of our new design

flow. Essentially, the UML – or the Systems Modeling Language (SysML)
[28] or the MARTE proposal [26] – in a platform-independent manner is used
as schematic entry to provide a first specification of the system in terms of
an executable model suitable to perform high-level functional validation and
eventually performance analysis.

At this point, an available generic hardware platform for the physical
architecture is selected and then the mapping – dictated by the sense and expe-
rience of expert engineers – of the software components on the given hardware
platform is done.

This mapping phase is a meet-in-the-middle process. It is carried out through
an iterative activity. The platform model is configured appropriately according
to a given HW/SW partitioning, and then executed to check whether the QoS
requirements (delays, power consumption, hardware resources, real-time, and
embedding constraints) imposed by the system requirements are satisfied. The
result is a particular platform instance with software embedded (the Embedded
System platform model) at a specific level of abstraction (functional untimed/-

Figure 16.1. A model-driven design flow for ES.
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timed, transactional, behavioral, bus-cycle accurate, RTL) depending on the
amount of details of the provided platform model and on the description level
of the SW components.

At UML level, the mapping of the application model on the given platform
model is intended as model weaving, i.e. an operation which establishes seman-
tic links between models at specific joint points. As input, this task requires
also a reference model of the mapping (the Mapping model or Weaving model)
to try, which is specified in terms of UML component and deployment diagrams
to denote and annotate the partitioning of the original system in HW and SW
components. This mapping model establish the relationships (joint points) of
the platform resources and services with the application-level functional com-
ponents. The components assigned to the HW partition are mapped directly
onto a HW resource (i.e. a HW node in the UML deployment diagram) of the
micro-architecture platform. The components in the SW partition are imple-
mented by the SW designer as SW tasks that use the services provided by the
API platform; this is reflected at UML level by the interface usage/realization
dependencies between the application components and the components of the
API platform.

After mapping, two different design flows start for the software and the
hardware parts respectively. The hardware platform is modeled at different
levels of abstraction (functional untimed/timed, transactional, behavioral, bus
cycle accurate) on top of the RTL level by constructs from the UML profile for
SystemC; so it can also be refined down to the RTL, modeling the details of the
implementation platform.

The application can be modeled in software at three levels of abstraction:
functional, transactional, or instructional level. This does not necessarily im-
ply a software refinement path, but just a mapping on more detailed platforms
to analyze better the performances of the overall application. At functional
level, the C application is divided in threads running on a host machine – Host
Functional simulation: in this first phase the SW designer decides the thread
partition according to the inner application parallelism. At transactional level,
the application is modeled using the same UML profile for SystemC. In this
case, it works as a library encapsulated in a SystemC module; processes are as-
sociated to the software functional description to sustain its concurrent activity
within the system, whereas communication is implemented by transactions that
model the interactions with the hardware architecture – Transactional simu-
lation. This level allows testing the correctness of the application on a high
level description of the hardware, focusing on the communication and perfor-
mances. Finally, the application can be also represented at instruction level by
integrating an instruction set simulator (ISS) of the target processing unit within
the SystemC environment, to execute the compiled application code together
with the model of the hardware – cycle-accurate HW-SW co-simulation.
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Figure 16.2. Platform model.

In this last case, the application software can be viewed as organized in different
layers on top of the micro-architecture platform, as shown in Fig. 16.2. The
lower layer provides the driver and the architecture controller: this layer is the
application programming interface (API) platform and it is typically provided
by the platform designer. The upper layer are the OS and the SW application
developed by the SW designer.

3. The UML Profile for the HW
The UML 2.0 profile for SystemC [21] is a consistent set of modeling con-

structs designed to lift both structural and behavioral features of the SystemC
language (including events and time features) to UML level. Based on the
UML 2.0 specification [31] and on the SystemC 2.0 specification [29], the pro-
file is defined at two distinct levels – the SystemC core layer (or layer 0) and
the SystemC layer of predefined channels, ports, and interfaces (or layer 1) –
which reflect the layered-architecture of SystemC. The complete UML profile
definition for SystemC is described in [21, 24].

The core layer – the basic SystemC profile – is the foundation upon which
specific libraries of model elements or also other modeling constructs can be
defined. It is logically structured to reflect the core layer (or layer 0) of Sys-
temC. A Structure and Communication part defines stereotypes for the prim-
itive building blocks of SystemC like modules, interfaces, ports and channels.
Fig. 16.3 shows an example of a SystemC module having a multiport, an array
port, and a simple port, together with the port type and interface definitions of
the simple port.

UML class diagrams are used to define modules, interfaces, and channels.
The internal hierarchical structure of composite modules, especially the one of
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Figure 16.3. Examples of ports.

the topmost level module (which represents the structure of the overall system),
is captured by UML composite structure diagrams; then, from these diagrams
several UML object diagrams can be created to describe different configuration
scenarios. This separation allows the specification (also partial) of different
HW platforms as instances of the same parametric model (i.e. the composite
structure diagram).

A Behavior and Synchronization part defines special state and action
stereotypes which lead to a variation of the UML state machine diagram, the
SC Process State Machines. This formalism has been appositely included in
the profile definition to model the control flow and the reactive behavior of
SystemC processes (methods and threads) within modules. A finite number of
abstract behavior patterns of state machines [20] have been identified and can
be used for modeling. Fig. 16.4 depicts one of these behavior patterns for a
thread that: (i) is not initialized, (ii) has both a static (the event list e1s, . . . , eNs)
and a dynamic sensitivity (the wait state), and (iii) runs continuously (by the
infinite while loop).

Figure 16.5 shows a module class count stim containing a thread process
stimgen, two input ports dout and clock, and two output ports load and
din. In particular, clock is a behavior port since it provides events that trigger
the stimgen thread process within the module. The stimgen thread state
machine is shown in Fig. 16.6. It is a realist example of the behavior pattern
presented in Fig. 16.4.

A Data types part defines a UML class library to represent the set of SystemC
data types. In addition, the predefined channels, ports and interfaces of the layer
1 of SystemC are considered. These concepts are provided either as a UML
class library, modeled with the basic stereotypes of the SystemC core layer, or
as a group of stand alone stereotypes – the extended SystemC profile – which
specializes the basic profile. Currently, we have been working to include also
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Figure 16.4. A thread process pattern.

Figure 16.5. Example of a module, its attributes, ports, functions, and processes.

the OSCI TLM 1.0 library of channels and interfaces [18], in order to provide
a UML class library for modeling at the TLM level of abstraction.

Using SystemC to link the system level SoC design flow to the consolidated
VLSI design flow is a well-known issue. What is innovative is the idea to
rely on low-cost customized (by a standard profiling technique) UML visual
modeling tools in the early stages of the design process as front ends of lower
level HW/SW codesign frameworks (these last would be used therefore for the
final exploration and synthesis only).

Our goal is raising the level of abstraction to develop more complex systems
by manipulating models only along the refinement steps from a high functional
level down to RTL. To give an idea on how to perform refinement at UML level
by the use of the SystemC UML profile, below we present an example of model
refinement.
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sm α thread α stimgen():void

α dont_initialize α

α while α

α endif α

α if α

αstatic_waiteα

RUNNING

[else]

[else]

[dout =  _maxcount-1]

[true]

do/ load = true; din = 0;

do/ load = false; do/ load = true;
din = 0;

Figure 16.6. A thread process state machine.

A refinement example. We show here how to apply a refinement strategy
to refine the communication aspects of a simple abstract (functional timed) pro-
ducer/consumer system taken from [29]. In general, in the refinement process
we not only refine the model’s internal structures, its timing, or the datatypes
being used; we also need to think about how components communicate with
their environment. Communication refinement refers to mapping an abstract
communication protocol into an actual implementation related to a given target
architecture.

Before taking a closer look at the specific example, we clarify the process of
communication refinement in a more general way. To this purpose, we assume
to have two high level modules M1 and M2 communicating over a channel
C via some abstract protocol. As suggested in [29], one possible approach to
refining this basic communication scenario toward an implementation consists
of the following steps:

1. Select an appropriate communication scheme to implement

2. Replace the abstract communication channel C with a refined one
CRefined which realizes the selected communication protocol
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3. Enable the communication of the modules M1 and M2 over CRefined

by either: (a) wrapping CRefined in a way that the resulting channel
CWrapped provides the interfaces required by M1 and M2 (wrapping), or
(b) refining M1 and M2 into M1Refined and M2Refined, respectively,
in order their required interfaces match the ones provided by CRefined

(adapter-merging)

The two cases (not the only ones) are similar. Both include an intermediate
step to build two further modules (i.e. two SystemC hierarchical channels),
say adapters, to map one interface to another: one, say A1, between M1 and
CRefined, and one, say A2, between CRefined and M2. In the case (a), the result-
ing channel CWrapped encloses CRefined and the two adapters; while, in the case
(b) these adapters are merged to the calling modules M1 and M2 resulting in the
refined modules M1Refined and M2Refined. Deciding whether to use wrapping
or merging depends on the methodology and chosen target architecture.

We can now come back to our specific example. The design of a working
producer/consumer module that writes and reads characters to/from a FIFO
channel is shown by the UML composite structure diagram in Fig. 16.7. The
top composite module is defined to contain one instance of the consumer mod-
ule, one instance of the producer module, and one FIFO channel instance. The
FIFO channel permits to store characters by means of blocking read and write
interfaces, such that characters are always reliably delivered. Two processes,
the producer and the consumer (see the thread processes main within the pro-
ducer and the consumer modules in Fig. 16.8), respectively feed and read the
FIFO. The producer module writes data through its out port into the FIFO by a
sc fifo out if interface, the consumer module reads data from the FIFO through

<<sc_module>>

<<sc_module>>

prod_inst:producer fifo_inst:sc_fifo<char> cons_inst:consumer

<<sc_port>>

<<sc_port>>
<<sc_prim_channel>> <<sc_module>>

top

out
in

Figure 16.7. A producer/consumer design.

Figure 16.8. Producer/consumer modules communicating via a primitive FIFO.
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Figure 16.9. Clocked RTL HW FIFO.

its in port by the sc fifo in if interface. These two interfaces are implemented
by the FIFO channel (see the sc fifo channel in Fig. 16.8). Because of the block-
ing nature of the sc fifo read/write operations, all data are reliably delivered
despite the varying rates of production and consumption.

Now, let us assume to replace the (abstract) FIFO instance above with a
(refined) model of a clocked RTL hardware FIFO named hw fifo<T> for an
hardware implementation. The new hardware FIFO uses a signal-level ready/-
valid handshake protocol for both the FIFO input and output (see Fig. 16.9). It
should be noted that we cannot use hw fifo directly in place of sc fifo, since
the former does not provide any interfaces at all, but has ports that connect to
signals, i.e. has ports that use the sc signal in if and sc signal out if inter-
faces.

Following the wrapper-based approach (3.b) of the refinement procedure
described earlier, we can define a hierarchical channel hw fifo wrapper<T>
(CWrapped) which implements the sc fifo out if and sc fifo in if interfaces
and contains an instance of hw fifo<T> (CRefined). In addition, it contains
sc signal instances to interface with hw fifo<T> and a clock port (since hw fi-
fo<T> has also a clock port) to feed in the clock signal to the hw fifo<T>
instance (see Fig. 16.10). Finally, we need to add a hardware clock instance
in the top-level design to drive the additional clock port that is now on the
hw fifo wrapper<T> instance (see Fig. 16.11). The hw fifo wrapper<T> im-
plements the required signal-level ready/valid handshake protocol whenever a
read or write operation occurs; this protocol will properly suspend read or write
transactions if hw fifo<T> is not ready to complete the operation. Details on
the SystemC code can be found in [29].
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Figure 16.10. The hw fifo wrapper hierarchical channel.

Figure 16.11. A clocked producer/consumer design.

4. The UML Profile for the SW
We model the software by using a UML profile for a multithread C/C++

programming language. We describe the structure of the software application by
class diagrams, eventually exposing interfaces. The software architecture can be
better described by composite structure diagrams. A class is considered active
if it contains a thread that generates activity within the model. In the profile
we introduced the stereotype thread to denote active threads as specialized
class operations. For the description of the threads behavior, the UML profile
for C/C++ supports a state-chart formalism which is similar to the one of the
SystemC UML profile, but with some simplifications to take away sensitivity
mechanisms like wait states and other SystemC-specific concepts.

The SW application model can be executed at different levels of abstraction.
The target platforms are basically three:
(i) the host, i.e. a Linux platform – it is used to provide a fast functional
validation of the SW application only;
(ii) SystemC – a transactional level model of the application runs within the
SystemC environment and interacts with the hardware parts of the architecture
platform model;
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(iii) a multiprocessor platform, made of a few instances of ISSs – a compiled
version of the application runs on a set of ISSs which can interact with hardware
parts of the architecture platform model. Depending on the target platform, we
produce therefore a functional implementation running on Linux, a transactional
SystemC model, or an instruction level model for ISSs. We choose among
the possible implementations by drawing a stereotyped mapping dependency
between active classes and the components representing the target platform
(see Fig. 16.12). The reactive behavior of a thread within an active class of the
application model is modeled by a state machine diagram and admits alternative
implementations. On Linux the thread is mapped onto a Linux thread, on
SystemC it is mapped on a SystemC thread, and on the ISS it is mapped on a
thread handled by the OS layer.

As in the UML profile for SystemC, the communication among functional
parts is modeled through ports and interfaces which can be easily translated into
function calls to the API platform. The communication can be also modeled
through shared variables in the scope of a class or of a common ancestor class;
in this case the API platform provides the mechanism to implement a mutual
exclusion access policy.

Figure 16.12. Software mapping to implementation.
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Figure 16.13. Multiprocessor environment.

Communication in MP-environment. In a multiprocessor environment,
the mapping relation is used to denote the embedding of parts of the application
to the processing elements. In the example in Fig. 16.13, the software is refined
down to instruction level by mapping it on two processing elements. In this case,
we provide an over simplified view of the hardware architecture just showing
the processing elements and their associations; in a more general case it is
possible to express also the memory architecture and the memory map.

With a more complex communication it is possible to map the software
directly on the host, e.g. on Linux. In the other cases (SystemC and ISS), it is
possible to mix the levels of abstraction in the implementation, it is thus possible
to map part of the application on SystemC and part on one or more ISSs: in any
case a SystemC simulation engine can manage the whole application model by
wrapping the needed ISSs.

The three software views differ in the way that the application threads
communicate with each other, therefore the refinement between one view and
another implies mainly changes in the communication. For example, for the
host target view we generate code containing pthreads, as needed by the Linux
pthrread.h library, and we rely to the pthreads synchronization mechanism.
For example, the pthread mutex t could be the data to be associated to the
communication and the relative interface includes the pthread mutex lock,
pthread mutex unlock, pthread mutex init. On the other hands, if we
consider a SW application that runs on a Shared Memory Processor had-
ware platform, where the API platform follows the OpenMP standard [17], the
same mutex communication will require a omp lock t data and an interface
that includes the function omp init lock, omp destroy lock, omp set lock,
omp unset lock, and omp test lock.
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Figure 16.14. Tool architecture.

5. The Codesign Environment
We developed a prototype tool which works as front end for consolidated

lower level codesign tools. A more detailed description of this tool is provided
in [23]. Figure 16.14 shows the tool architecture. Components visualized inside
dashed lines are still under development. The tool consists of two major parts: a
development kit (DK) with design and development components, and a runtime
environment (RE) represented by the SystemC execution engine. The DK
consists of a UML 2.0 modeler supporting the UML profile for SystemC [21],
translators for the forward/reverse engineering to/from C/C++/SystemC, and
an abstraction/refinement evaluator to guarantee traceability and correctness
along the refinement process from the high-level abstract description to the final
implementation. This last component is under development.

The modeler. We decided to rely on tools supporting UML 2.0 with the
standard extension mechanism of UML profiles. Our current implementation is
based on the Enterprise Architect (EA) tool [6] by SparxSystems, but any other
tool supporting UML 2.0 can be also used and easily customized. The open API
of EA allows us to settle the modeling environment to introduce the SystemC
UML profile definition (including the definition of the stereotypes and of the
metaclasses they apply to, as well as tagged values, constraints and alternative
stereotype images) and use C/C++ and SystemC as action languages.

Figure 16.15 shows a screenshot of EA. The SystemC data types and prede-
fined channels, interfaces, and ports are modeled with the core stereotypes, and
are available in the Project View with the name SystemC Layer1.

The translators. The EA supports forward/reverse engineering to/from
C++. We added to the EA the capability to generate complete C and SystemC
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Figure 16.15. Generate SystemC code from EA.

code from UML models for both structural and behavioral aspects. There is,
therefore, a unique code generator that makes use of translators to transform
parts of the UML model either to SystemC or to C/C++. The generation flow
is complemented by a reverse engineering flow that transforms a mixed C/-
C++/SystemC program into a UML model. These add-ins were implemented
exploiting the automation/scripting interface and the XMI (XML Metadata In-
terchange) format supported by the EA tool.

6. Case Studies
We have developed several different case studies, some taken from the

SystemC distribution like the Simple Bus design, and some of industrial in-
terest. The Simple Bus case study is a well-known transactional level example,
designed to perform also cycle-accurate simulation. It is made of about 1,200
lines of code that implement a high performance, abstract bus model. The com-
plete code is available at the official SystemC website [18]. We modeled the
Simple Bus system in a forward engineering flow. The code generator has been
tested primarily on this example.

To test the expressive power of our profile in representing a variety of
architectural and behavioral aspects, we modeled the On Chip Communication
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Network (OCCN) library [16]. The OCCN project [16] focuses on modeling
complex on-chip communication networks by providing a highly-paramete-
rized and configurable SystemC library. This library is made of about 14,000
lines of code and implements an abstract communication pattern for connecting
multiple processing elements and storage elements on a single chip.

The OCCN design has been imported automatically from the C++/SystemC
code into the EA-based modeler exploiting the reverse engineering facility, then
it was refined using the modeling constructs of the SystemC UML profile. We
have been using this example to test the reverse engineering flow.

In [1] we provide an application example related to a system composed of a
VLIW processor developed in ST, called LX, with some dedicated hardware for
an 802.11b physical layer transmitter and receiver described at instruction
level. The UML model of this application is a function library encapsulated in
a UML class, which provides through ports the I/O interface of the software
layer to the hardware system. This class is then translated to C/C++ code and
the resulting application code is executed by the LX ISS wrapped in SystemC
to allow HW/SW cosimulation at cycle accurate level. The UML wrapper of
the LX ISS is modeled with the SystemC UML profile.

7. Related Work
The possibility to use UML 1.x for system design [9] started since 1999,

but the general opinion at that time was that UML was not mature enough as a
system design language. Nevertheless, significant industrial experiences using
UML in a system design process soon started leading to the first results in design
methodology, such as the one in [30] that was applied to an internal project for
the development of a OFDM Wireless LAN chipset. In this project SystemC
was used to provide executable models.

Later more integrated design methodologies were developed. The paper in
[19] proposes a methodology using UML for the specification and validation
of SoC design. It defines a flow, parallel to the implementation flow, which is
focused on high-level specs capture and validation. In [12], a UML profile for
a platform-based approach to embedded software development is presented. It
includes stereotypes to represent platform services and resources that can be
assembled together. The authors also present a design methodology supported
by a design environment called Metropolis, where a set of UML diagrams (use
cases, classes, state machines, activity, and sequence diagrams) can be used to
capture the functionality and then refine it by adding models of computation.
Another approach to the unification of UML and SoC design is the HASoC
(Hardware and Software Objects on Chip) [8] methodology. It is based on
the UML-RT profile [25] and on the RUP process [10]. The design process
starts with an uncommitted model and after a committed model is derived by
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partitioning the system into software and hardware, and then mapped onto
a system platform. From these models a SystemC skeleton code can also
be generated, but to provide a finer degree of behavioral validation, detailed
C++ code must be added by hand to the skeleton code. All the works men-
tioned above could greatly benefit from the use of new constructs available
in the UML 2.0.

SysML [28] is a conservative extension of UML 2.0 for a domain-neutral
representation (i.e. a PIM model as in MDA [14]) of system engineering appli-
cations. It can be involved at the beginning of the design process, in place of the
UML, for the requirements, analysis, and functional design workflows. So it
is in agreement with our UML profile for SystemC, which can be thought (and
effectively made) a customization of SysML rather than UML. Unluckily, no
tool support exists for SysML. Similar considerations also apply to the MARTE
proposal [26]. The standardization proposal [32] by Fujitsu, in collaboration
with IBM and NEC, has evident similarities with our SystemC UML profile,
like the choice of SystemC as a target implementation language. However, their
profile does not provide building blocks for behavior modeling and does not
adopt any time model.

Some other proposals already exist about extensions of UML toward C/C++/-
SystemC. All have in common the use of UML stereotypes for SystemC con-
structs, but not rely on a UML profile definition. In this sense, it is appreciable
the work in [2] attempting to define a UML profile for SystemC; but, as all the
other proposals, it is based on the previous version of UML, UML 1.4. More-
over, in all the proposals we have seen, no code generation, except in [15], from
behavioral diagrams is considered.

8. Conclusions and Future Work
The work presented here is part of our ongoing effort to enact design flows

that start with system descriptions using UML-notations and produce full im-
plementations of the SW and HW components as well as their communication
interfaces. Currently, we are defining a unified process called UPES (Uni-
fied Process for Embedded Systems) which is intended to assist the designers
across the UML modeling activity from a high-level functional model of the
system down to a RTL model by supporting current industry best practice in
platform-based design [33, 12]. The MDA [14] principles are aimed at pro-
viding executable models and at supporting automation of the primary UPES
activities.

We are still exploring the possibility to implement MDA-style transforma-
tions for both the HW and the SW descriptions to allow a PIM to be transformed
into a PSM, and an abstract PSM to be transformed into a refined PSM accord-
ing to the levels of abstraction: functional, transactional, behavioral, BCA,
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and RTL. In particular, we are defining a formal refinement methodology
with precise abstraction/refinement rules for the transactional-level modeling.
Transactional models are used for functional modeling of the communication
enhanced with actual timing information. To achieve this goal, we have been
working to a revision of the SystemC UML profile to include the OSCI TLM
1.0 library [18] and the new features provided by SystemC 2.1 (like sc export
ports, the event queuemechanism, dynamic processes, fork/join synchroniza-
tion) for modeling at the TLM level of abstraction.
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A METHOD FOR MOBILE TERMINAL
PLATFORM ARCHITECTURE DEVELOPMENT
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Abstract We introduce a novel architecture, called the Network-on-Terminal Architecture
(NoTA), for mobile terminal platforms. This paper concentrates on the platform
development and validation flow adopted for NoTA. Platform requirements are
expressed as use cases that are modelled using UML2 with Telelogic’s Tau G2
tool. Models are executable so that use case behaviour can be animated. Use
cases are used as test cases in the platform architecture development for which
use case information is transferred as execution traces. We use CoFluent Studio
tool for platform architecture specification and performance analysis. The use
case execution trace is fed into a functional model that represents the computa-
tion load. NoTA is service oriented and thus the functional model consists of
platform services. The computation and communication resources are modelled
with a separate platform architecture model. The tool allows exploring different
configurations and allocations of the functional and platform models quickly and
provides extensive performance information, including power consumption.

Keywords Platform architecture, service-oriented architecture, model-based engineering,
web services, UML, MCSE.

1. Motivation
Digital convergence and mobile device industry horizontalisation are creating

pressure for companies to renew their competences as well as the device archi-
tecture. Current CPU centric highly integrated one-for-all-platforms have come
to the end of the road. Future mobile device architectures are system-wise
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modular and service based. Network On Terminal Architecture (NoTA) is such
an architecture.

The development of mobile terminal platforms should start from end-user
needs. In our company we have traditionally expressed them as use cases. For
NoTA we have developed a more rigorous model-based method of presenting
use cases and using them to guide platform architecture development. The
method also utilises the service oriented nature of NoTA to form an intermedi-
ate functional model between abstract use cases and the platform architecture
solution.

In the method we use commercial tools and standard modelling languages
as much as possible. The innovation is in integrating them to support use case
driven development of service oriented platform architectures.

2. Introduction to Nota
NoTA is an interconnect centric modular service-oriented architecture for

today’s and future mobile device platforms. NoTA claims to provide superior
performance and to make effective horizontalisation possible via eased integra-
tion. The development method associated with NoTA ensures that designs are
stepwise verifiable against end-user requirements. The method is also flexible
and scaleable with reuse on different levels. NoTA allows the use of novel
technologies and open innovation, and shortens the R&D cycle.

A NoTA platform consists of loosely connected services running on top of
heterogeneous subsystems. In NoTA based systems all service and data com-
munication is routed via the network stack as shown in Fig. 17.1; this approach is
similar to that taken formerly by CORBA [7] and lately in a more sophisticated

Figure 17.1. NoTA logical architecture consisting of three types of foundation elements called
ApplicationNodes, ServiceNodes, and Interconnect.
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Figure 17.2. Example of physical implementation of NoTA based platform.

form by web services [8]. NoTA takes these principles and specialises them
for use in a highly embedded system. The NoTA method includes a platform
development flow that ensures that services, subsystems and the interconnect
topology are matched to end-user requirements. It also provides formal reusable
specifications for the platform entities.

NoTA defines two main level of protocols for the interconnect, called H IN
and L IN. H IN is a high level protocol stack providing communication func-
tionality for platform services and applications. L IN is the low level protocol
that provides the physical connection between subsystems.

A NoTA subsystem implements a set of services. It is an architectural concept
that does not necessarily align with chip boundaries. So, we may have several
subsystems on a chip and a subsystem may extend outside the boundaries of a
chip, as illustrated in Fig. 17.2.

3. Nota Platform Architecture Development Method
The industrial practice in platform architecture development is quite informal

and heavily relies on system architect’s experience. This is feasible when
changes in successive generations of the architecture are relatively small, but is
problematic when dealing with truly novel architectural concepts that call for
systematic exploration of quite different alternatives. Furthermore, platform
requirements are typically expressed in technical terms that are not properly
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connected to end-user needs. The NoTA platform architecture development
method aims at overcoming these pitfalls of industrial practice.

NoTA-based systems are engineered in a systematic requirements driven
manner. It is characterised by the following principles.

Separation of concerns. We want to be able to develop different aspects of
the system independently from each other in order to manage complexity and
to facilitate reuse. In the NoTA method we separate the domains of:

• End-user requirements

• Platform functionality, i.e. services provided by the platform

• Platform architecture, i.e. definition of subsystems and communication
infrastructure [5]

• Implementation of subsystems (SW and HW) and interconnect protocols
(SW and HW)

Each of the domains has their own self-contained models. Eventually, in the
final system, these domains are of course related to each other, but we want to
be able to postpone fixing these relations until the time we actually define the
system instance (that can be a product or a product platform).

Model-based engineering. In the NoTA method the artefacts developed in
different phases of the process are models with well-defined semantics. We want
to avoid misunderstandings and the consequent errors caused by ambiguousness
and hidden meanings of informal documentation. We also want to be able to
use analysis, verification, transformation, code generation, and synthesis tools
that operate on models.

Reuse of models. We believe that the possibility to effectively reuse models
in different contexts gives a big improvement of design productivity compared to
conventional methodologies. In the NoTA method different kinds of models are
stored in repositories from where they can be retrieved and used to compose new
system configurations. We have put special emphasis on modelling techniques
that enable easy composition of models.

Early validation and verification. One motivation of model-based engi-
neering is early validation and verification of specifications and designs. In
the NoTA method the validation and verification [13] start already at end-user
requirements phase with executable use case models. Later on, its focus is on
the correctness of platform specification and performance analysis at both speci-
fication and implementation phases. In the NoTA method, the validation and
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verification is not limited to logical correctness, but covers also non-functional
aspects, such as real-time performance and energy consumption.

4. Requirements Modelling
In NoTA we have taken a use case driven approach to requirements modelling.

Generally speaking, a use case captures a contract between the stakeholders of
a system about its behaviour [1]. It describes the system’s behaviour under
various conditions as it responds to a request from one of its stakeholders,
called the primary actor. The primary actor initiates an interaction with the
system to accomplish some goal.

The classical use case approaches [1] concentrate on specifying system func-
tionality by means of action sequences. We have developed these approaches
further because we feel that it is essential to be able to express concurrency
in functional requirements and relationships between different requirements
aspects (functional, non-functional, user interface, and interoperability). The
process of capturing and modelling requirements is depicted in Fig. 17.3.

Classical use case descriptions are textual. We believe that in some cases
graphical forms, such as sequence diagrams, are a more natural form to describe
a use case. We see that textual and graphical forms are just two alternative
presentations for the same thing. Ideally the tool environment should support
different presentation forms of a coherent underlying use case model.

End-user needs and
requirements collection

Use case capture

Functional
requirements

Non-functional
requirements

User interface
requirements

Use case refinement

Refined/distributed
functional 

requirements

Refined/technical
non-functional
requirements

Refined
device specific
user interface
requirements

Interoperability
requirements

Refined
interoperability
requirements

 

Figure 17.3. Requirements capture and modelling process.
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Functional Requirements
Classical use case approaches are quite developed in the functional aspects,

so we adopt these concepts directly. Basically we define different kinds of
actors and the actions they take in the use case.

In the textual form we first define the actors (primary actor, other exter-
nal actors, subject), and then describe the actions and their ordering in the
main success scenario [1]. Actions are written in active form so that the
(initiating) actor that takes the action, and the possible receiving actors, are
explicitly named.

In the graphical sequence diagram, form actors are represented by vertical
lines and actions are represented by horizontal arrows that extend from the
initiating actor to the receiving actor. The ordering of actions is from top to
bottom. More complex ordering (concurrency, alternative) can be expressed
with special notations.

Hierarchy is a useful way to hide details in a complex use case. Hierarchy
can be used in both textual and graphical forms. In the action dimension we
can define composite actions that represent a sequence (or other ordering) of
lower level actions. In the actor dimension we can define composite actors in
basically the same way. However, representing actor hierarchy in textual form
is non-trivial (while in graphical form it is straightforward) and, therefore, we
limit the hierarchy in our method to the action dimension. Note that composite
actions can be applied recursively to create a hierarchy of arbitrary depth.

Classically the actions follow each other sequentially in the main success sce-
nario. This is fine for simple use cases, but sequential definition becomes very
complicated or almost impossible when we need to combine loosely coupled
(almost independent and concurrent) functionalities in the same use case. We
feel that it is very important to allow concurrency in order to avoid over-
constraining the use case. After all, ordering of the steps is an additional
requirement that has to be explicitly justified, because it limits the implemen-
tation possibilities.

Non-functional Requirements and User Interface
Requirements

Most non-functional requirements concern a specific part of the use cases
(e.g. response time to a user request or quality of picture at a specific point). This
is true for real-time requirements as well as for user interface requirements and,
for example, security requirements. We want to attach this kind of requirements
explicitly to the relevant actions of the use case instead of specifying them
separately from the use case. On the other hand, we also want to have a purely
functional view of the use case available, since the amount of information in the



A Method for Mobile Terminal Platform Architecture Development 291

use case tends to grow so big that it obscures the essential function (hierarchical
definition of actions is another way to hide details).

Ideally the tool would allow adding non-functional and user interface require-
ments to either textual or graphical presentation of the main success scenario.
For example, it is convenient to represent a response time as a line segment in
the sequence diagram. Furthermore, the tool should support multiple views of
the use case for different purposes. All these should be based on a coherent
model so that the consistency of different views is guaranteed.

General End-user Requirements and Business Requirements
It is difficult to associate to a single use case. A typical such requirement

refers to the size/weight of the device (e.g. pocket-size), robustness (e.g. water-
proof), battery life (although this is actually dependent on the use cases), etc.
In use case descriptions non-functional requirements are primarily intended for
requirements that are specific to that use case (or part of it). Normally we do
not include general requirements in the use case description.

Some technology and component choices depend almost exclusively on
business environment and have very little to do with the actual end-user
requirements. Business requirements refer to legacy technologies, partners,
other leading business players, etc. We omit this kind of requirements com-
pletely in our method, although we understand that it can be very important
from business perspective.

Executable Use Case Models
We use UML2 [9] as the syntax of executable use case models for the purposes

of clarification or demonstration that is often necessary in the negotiations with
the stakeholders. The semantics of executability is provided by the SDL [2]
profile of the UML2 embedded in the chosen toolset, i.e. Telelogic’s Tau G2.

The ability to execute a use case makes it more demonstratable to the cus-
tomer and allows the modeller to obtain early feedback regarding how that
particular piece of functionality works and how it interacts with other aspects
of the system in question [10, 11]. One disadvantage here is that use cases are
specified in an imperative way thus guiding the modeller to a certain implemen-
tation path; this is opposite to approaches based upon declarative specification
which makes no or very little architectural choices. However, imperative mod-
elling is more common and the modeller easily educated in how to avoid implicit
architectural decisions [12].

In our approach we create a separate model for each of the actors (we use
the term “actor” here in the same way as in [1]) of the use case, and the actions
themselves are modelled as interactions between these models. In UML2, each
actor is modelled as an active class associated with a state machine diagram.
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Figure 17.4. An executable UML2 model of a simple use case.

A composite structure diagram [3] expresses configuration of the use case.
Interactions are modelled as message (or signal) interchanges (asynchronous
communication). A simple example is shown in Fig. 17.4.

In a simple use case each actor is modelled with a single state machine.
Complex use cases are often composed of simpler ones so that the model of each
actor is a composition of simpler actors’ models. The primary actor (normally
the user) is composed in a way that expresses the sequential, concurrent, or
alternative composition of simpler behaviours. The semantics is analogous to
the corresponding composite actions of the textual use cases. Fig. 17.5 shows
an example of sequential composition.

In most cases the communication between the actors in the use case is ess-
entially synchronous in the sense that the initiating actor normally waits for
some kind of response before continuing its behaviour (e.g. the user wants to
see something happening on the display of the device). We model synchronous
communication with two-way asynchronous communication, that is, with a
request-confirmation message/signal pair.
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Figure 17.5. Example of a composite primary actor with sequential composition.

Non-functional requirements are treated as attributes of specific elements of
the model. For example, real-time requirements are refined as (allowed) state
transition durations and communication latencies.

As mentioned in the previous chapter, in a practical business situation there
are non-functional and user interface requirements that have nothing to do with
the end-user needs or even with the use case. Our method does not cover such
requirements at the moment.

Abstract and Refined Use Case Models
An abstract use case treats all actors of the use case as black boxes. We are

only interested in the externally observable behaviour of the actors. Further-
more, we consider only high level actions that are meaningful to the end-user
to accomplish her or his goal.

Use case refinement splits the end-user actions into smaller technical/internal
actions of the target system. The goal is to eventually map all the actions to
predefined NoTA services of the execution platform. Refinement is typically
done in many steps. The number of step depends on the size and complexity
of the use case. The nature of the target services (primitive versus. high level)
also affects the number of refinement steps needed. Each refinement step is
verified, which means ensuring that the functional behaviour is preserved as
well as that the non-functional constraints are satisfied. The particular tech-
nique used for verification also affects the number of refinement steps needed.
Currently, refinement here means that the behaviour of the system remains con-
stant through decomposition rather than the stricter mathematical notion [14]
and similar [15].
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The refinement steps concern the subject actor only; all the other actor models
remain the same. In these refinement steps the state machine model of the
subject is split hierarchically and recursively into multiple state machines that
communicate with each other. In each refinement step we must ensure that the
externally observable behaviour (i.e. the message communication at external
interfaces) of the subject remains the same.

The goal of the refinement is to finally express the use case subject’s behav-
iour using predefined NoTA services. Each predefined service is also modelled
as a state machine with a communication interface. The fully refined subject
model consists of a hierarchical structure where the leaves (lowest level objects)
are predefined services (with predefined state machine models). Fig. 17.6 shows
an example of a refined subject.

A use case often involves some kind of end-to-end system behaviour that
may extend outside the borders of the target system (e.g. a single terminal).
We have to accommodate to this in our method, while at the same time translate
the required behaviour into requirements for the terminal system. For example,
we need to decide what part of the functionality goes into the terminal or how
to divide an end-to-end performance requirement between the devices on the
network. These high level architectural design decisions are done in the first
refinement step. The second refinement step splits further the functionality
allocated to the terminal and maps it to predefined services.

Figure 17.6. A composite structure diagram of a refined subject.
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5. Architectural Modelling
We have adopted the MCSE method [4] for architectural modelling in NoTA.

According to it, an architectural model is developed by building the functional
architecture (timed behavioural model, e.g. functional model of the system
with timing information) and the platform architecture (executive structure) and
mapping the functional blocks onto the executive structure. The CoFluent studio
toolset [6] includes tools that support model creation and mapping according
to MCSE.

The requirements for a NoTA based platform come from the end-user
requirements expressed as use case models as described above. The selected
collection of use cases is first studied and all services used in the refined use
case models (called primary services) are identified. Next, the set of required
services is reduced to minimize overlap and redundant services. Also, at this
point, if there are several versions of the same service needed, the version that
fulfils all the needs is selected and others discarded. As a result of this process,
the set of required primary services is defined.

The use case models together with the set of required primary services are
used to build the functional architecture model. It consists of Service Node
(SN) models and Application Node (AN) models. A SN model represents an
instance of a service (there may be several instances of the same service) and
an AN model defines the way the application uses the services in a particular
use case.

In NoTA, a service is specified in a special format called Service Interface
Specification (SIS). SIS includes the interface signature of the service in ques-
tion and a description of its externally observable behaviour expressed as a Finite
State Machine (FSM). SIS also includes the relevant non-functional attributes
of the service, such as timing and power consumption. In architectural mod-
elling, SN models are derived directly from the SIS. AN models are derived
from the execution traces of use case models.

The platform architecture model consists of blocks representing the subsys-
tems and routing switches. Mapping the SNs and ANs into the subsystems and
defining the communication network topology among the subsystems yields
the architectural model. The Interconnect Node (IN) functionality is integrated
into the components of the platform architecture model.

In the following subsections and in Fig. 17.7 we explain how the MCSE
method is applied to NoTA using CoFluent.

Functional Architecture
The functional or timed behavioural model describes the logical partitioning

and behaviour of the system. As said before, in NoTA the functional model
consists of Service Nodes (SN) and an Application Node (AN). The SNs include
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Figure 17.7. The MCSE method is applied to NoTA. CoFluent Studio is used as the platform
modelling tool.

all primary services of the use case and any additional secondary services used
by the primary services.

The functional editing tool of CoFluent Studio captures the graphical des-
cription of the SNs and AN. The internal model of each SN is derived directly
from the corresponding SIS. The behaviour of the AN is defined by the use
case and we use the generated XML trace here. The service requests to SNs
are modelled as messages. In NoTA all service requests are passed over the IN.
The functional behaviour of a system consisting of AN, SNs and ideal IN can
be simulated independently without a definite platform architecture.

In NoTA, the behaviour of SNs are modelled as finite state machines. As
parts of a CoFluent model they must be represented either as SystemC models or
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as functional structures (CoFluent functions), which are lower hierarchical level
models used as “black boxes” within the model. The behaviour of the CoFluent
functions can be further defined with algorithms written in C or C++. We
have adopted the latter approach with additional C++ algorithms to read in and
interpret the XML files. A parser module extracts the needed information from
the XML-model and assigns them to the correct placeholders in the CoFluent
SN template.

As mentioned earlier, there are two main types of communication in the
NoTA network. Models for the data object communication is added to the SNs
to get insight about the data amount between different nodes. In practice the
same functional link is used for both the service communication and the data
traffic. The type of the link and the message that is sent into it are modelled as a
C++ class. It contains fields for routing, message type and size and sub classes
for the content.

The use case behaviour is imported to the CoFluent model as a XML-trace
file. The file consists of a sequence of service requests with possible additional
parameters. In CoFluent the file is read in the AN and corresponding service
requests are sent to the correct services.

Platform Architecture
The platform model is an abstract representation of the physical architecture.

CoFluent provides a set of building blocks for platforms: processors, shared
memories, signals, and connections that use communication nodes. At this
design step the subsystems are outlined as placeholders for the SNs and the AN.
One subsystem consists of one processor, where the SNs are run in parallel. The
actual implementation of the subsystem is not modelled. The Routing Switch
(RS) is modelled with a routing model of CoFluent which contains built-in
performance statistics gathering functionalities. One processor is reserved for
each RS and the subsystems are connected to the RS with communication
nodes. The resulting network topology represents the accurate interconnect
that is needed in the architectural simulations.

It should be noted that the SN and AN models contain performance data (e.g.
time to process a service call). Hence, the CoFluent processor type should be
selected as hardware processor capable of running the SN models independently
of each other. Later on when running real SW models for certain SNs, the SW
processor models become handy.

The platform models themselves have tuneable parameters that affect the
overall system performance. For example, the bandwidths of the RS’s can be
configured independently.
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Architectural Exploration
The architecture design consists of three main parts, namely decision about

the number (and type) of subsystems in the device, Interconnect topology bet-
ween the subsystems and finally mapping of the SNs and ANs into the subsys-
tems.

A subsystem can be defined as a collection of SNs that has an IN connection.
One subsystem can contain several SNs. For example: a storage subsystem can
act as a conventional mass storage or as a streaming media server. These require
completely different services but as they use the same hardware resources it is
beneficial to locate them inside the same sub-system. The SNs can be distrib-
uted across the sub-systems in several different ways and accordingly several
architectural configurations can be evaluated to identify the potential bottle-
necks and to maximize the system performance.

Network traffic analysis is a key output in verifying the designed architecture.
The way to present the analysis results is one of the topics to be defined later
on. Each designed architecture needs to be simulated against all the use cases.
There are certain parameters related to the SNs, ANs, INs and RSs and that could
be optimised during the architecture design. Local buffer sizes are maybe the
most important of such parameters.

Steps within the architectural exploration:

1. Define the number and types of subsystems

2. Define the interconnect topology to connect the subsystems (number and
types of routing switches to be decided here)

3. Map SNs and ANs into the subsystems

4. Run simulations against the original use cases

5. Analyse results

6. Go back to step 3 to optimise the current architecture

7. Go back to step 1 to try different architectures

8. Choose the most optimal case(s)

9. Virtual architecture

After exploration of different architectures and decision on the most optimal
case, the architecture solution consists of the following:



A Method for Mobile Terminal Platform Architecture Development 299

• A set of sub-systems connected together with a certain interconnect
topology

• Mapping of the decomposed use case originated services into the above
subsystems

• Verified and refined performance parameters for the services

• All of the above verified against the original end-user use cases

• These set the requirement specifications for each subsystem.

6. Discussion
We have presented our method for developing service oriented platform

architectures for mobile terminals starting from end-user requirements. In many
cases the choice of a particular technique depends on the product development
culture in the company and also on the constraints of available tools.

We express end-user requirements as use case because it is the company prac-
tice. However, we wanted to add rigor to the approach. We wanted executable
models that can be animated, because this facilitates validation with the stake-
holders. The decision to use UML 2.0 for modelling was quite obvious since it
is becoming the system level modelling standard in the company. Telelogic’s
Tau G2 tool was available at the time, so we took it.

The characteristics of the tool have sometimes unwanted consequences in
the method. The only practical way to create executable models in Tau G2 is
through state machines. This is a quite operational and implementation oriented
way. UML 2.0 offers activity diagrams and sequence diagrams that might suit
better here. Some non-UML methods, such as CSPs, might be even better. In
principle we would prefer declarative methods but at the same time we want
the model to be executable.

The choice of CoFluent Studio for architectural exploration was also straight-
forward for many reasons, including company practices, ongoing cooperation,
and certain excellent capabilities of the tool. However, the tool is not based on
UML. The link between UML-based requirements modelling and non-UML
architecture exploration is realised as execution traces. This is a rather weak
link. It is a one-directional link, so it does not allow true model-based testing.

Ideally we would like to use the use case model directly, so that we could
repeat the animation at any point of development and see the impact of design
decisions. This could be achieved through deep tool integration based on a
common meta-model shared by all tools. The integration task would be easier
if all tools were UML-based, so the meta-model could be specified as a UML
profile.
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Abstract In this paper, we present a UML2 profile introducing control in the Gaspard2 data
parallel applications using the synchronous approach. This concept allows to take
the change of running mode into account in the case of parallel applications. It
is then possible to study more general systems mixing control and data parallel
processing.

Keywords Data parallel applications, reactive models, UML profile

1. Introduction
Computation intensive multidimensional applications are more and more

present in several application domains such as image and video processing
or detection systems. The main characteristics of these applications are that
they perform intensive computations, they operate in real-time conditions and
are generally complex and critical. They are also multidimensional since they
manipulate multidimensional data structured into arrays, and their data can
generally be executed in parallel.
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In this paper, we are interested in modeling embedded applications mix-
ing control and data parallel processing. We propose a UML profile for these
systems which allows and facilitates their high-level study. Our proposition is
applied to the Gaspard21 environment and studies the control introduction in
Gaspard2 models using the synchronous approach.

2. Data Parallel Applications Modeling
Some computation models and design methodologies have been proposed to

study and model parallel applications. In this paper, we will focus on the high
level modeling of this kind of applications by using the Gaspard2 UML profile.

Gaspard2 Environment
Gaspard2 is an Integrated Development Environment for SoC (System on

Chip) visual comodeling. It extends the Array-OL model [1] and allows mod-
eling, simulation, and code generation of SoC applications and hardware archi-
tectures. The Gaspard2 environment is mainly dedicated to the specification of
signal processing applications. It is based on a model oriented methodology
according to a Y design flow. Concepts of each design level in this model are
represented independently of the execution or simulation platforms.

The Y model in Gaspard2 is mainly defined around three metamodels: the
application which allows to specify the functionality of the system, the hard-
ware architecture which will be used to model the hardware platform sup-
porting the execution of the application and to perform its functionalities, and
the association which allows to specify the mapping of the application on a
given hardware architecture. In this approach, the concepts and semantics of
each model are abstract since no component is associated with an execution,
simulation, or synthesis technology.

The starting point in Gaspard2 consists in modeling the application, the hard-
ware architecture, and the association by using the Gaspard2 UML profile [2, 5].
These models are then imported and studied by applying mapping and schedul-
ing algorithms and automatic SystemC code generation. The model definitions
of the Gaspard2 environment are based on a component oriented methodology.
This methodology makes it possible to clearly separate the different parts of the
Y model, and facilitates the reuse of existing software and hardware IPs.

Gaspard2 UML Profile
To model the different Gaspard2 concepts, a first UML2 profile version has

been proposed [2, 5]. In that version, the profile is defined around five packages:
component, factorization, application, hardware-Architecture, and
association as shown by Fig. 18.1.
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hardwareArchitectureapplication

factorization

association

component

<<import>> <<import>>

<<import>><<import>>

<<import>> <<import>>

Figure 18.1. Different packages of the Gaspard2 UML profile.

The application and the hardwareArchitecture packages specify resp-
ectively the software application of the system and the hardware architecture
used for the execution of the functionalities of this application. These two
packages share the same component definition introduced in the component
package. The component and the factorization packages are introduced
to gather the common concepts used in the different parts of the Y model.
The association package introduces some basic directives for mapping an
application on a given hardware architecture.

The general philosophy of this hierarchy is to define a maximum of common
parts for the various aspects of the Y model. The Gaspard2 UML profile is
based on a component oriented approach which allows to support as much
as possible the reuse of software and hardware components. To do that, the
different software and hardware elements of the studied system are represented
by a component structure independently of their environment. We propose
here several enhancements allowing to improve and fortify the Gaspard2 UML
profile description by introducing some new concepts and OCL constraints [3].
In the following, we present in more details the different packages of the profile
(by using the MagicDraw UML modeling tool).

Component Package. The component package gathers the common con-
cepts for the application and the hardware architecture metamodels. The main
objective of this package consists in defining a support for the component
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<<stereotype>>
GaspardComponent

[Component]

<<stereotype>>
ElementaryComponent

[Component]

<<stereotype>>
CompoundComponent

[Component]

<<stereotype>>
RepetitiveComponent

[Component]

Figure 18.2. component package.

<<CompoundComponent>>
AB

<<ElementaryComponent>>
b : B

input : int [1]
output : boolean [2]

<<ElementaryComponent>>
a : A

input : int [2]
output : int [1]

input : int [2]
output : boolean [2]

Figure 18.3. Example of a CompoundComponent component.

oriented methodology by allowing the definition of a component indepen-
dently of its environment. Figure 18.2 shows the different concepts defined
in the component package. In this package, we have introduced three basic
stereotypes to specify the Gaspard2 components: ElementaryComponent,
CompoundComponent, and RepetitiveComponent. These stereotypes extend
the metaclass component to specify special elements relating to the Gaspard2
models.

Each Gaspard2 component can be either elementary, compound, or repetitive
as expressed by the OCL constraint:

inv : self.stereotype → exists ( name = ElementaryComponent xor name =
CompoundComponent xor name = RepetitiveComponent )

The ElementaryComponent concept represents a particular component
which does not have any Gaspard2 component description as specified by the
OCL constraint:

inv : self.part → select ( stereotype → exists ( name = GaspardComponent ) )
→ size() = 0

In the example of Fig. 18.3, the component A specifies an elementary compo-
nent which defines a function taking as input a pattern of two integer elements
and produce as a result a pattern of only one integer element.

The CompoundComponent concept is used to define compound components.
This concept can facilitate the hierarchical composition of the various Gaspard2
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models, and contains only GaspardComponent components as expressed by
the OCL constraint:

inv : self.part → exists ( p|p.stereotype→exists ( name=GaspardComponent ))

For example, if the result of the A elementary task is used by another B
elementary task which produces a pattern of two boolean elements, then the
AB CompoundComponent concept is used to group and represent the relation
between the two tasks A and B as shown by Fig. 18.3. Figure 18.3 gives a
simple example of a CompoundComponent contaning two ElementaryComp-
onent components.

The RepetitiveComponent concept allows to describe the repetition of
the component modeled inside it. This repetition is defined according to the
repetitive concept of the Array-OL model, and represents a repetition field on
only one GaspardComponent component as specified by the OCL constraint:

inv : self.part → select ( stereotype → exists ( name = GaspardComponent ) )
→ size() = 1

Figure 18.4 gives a simple example on the repetition of an elementary task A.
In this example, the model receives as input an integer array of two dimensions
6 × 2, and produces as result an integer array of two dimensions 3 × 2. Inside
the RepA component, the A component is repeated 3 × 2 times. More details
on these concepts are presented in the factorization package.

ApplicationPackage. Theapplicationpackage, presented in Fig. 18.5,
introduces a new stereotype, ApplicationComponent, which extends the
metaclass component, and generalizes the GaspardComponent abstract
concept.

TheApplicationComponent concept refines the GaspardComponent con-
cept by adding an applicative connotation. It can be seen as a set of functions
which perform calculations on the input data coming from their external envi-
ronment through input ports, and produce results to their environment through
output ports.

<<RepetitiveComponent>>
RepA

<<ElementaryComponent>>
a : A [3;2]

input : int [2] output : int [1]

input : int [6;2] output : int [3;2]
<<Tiler>>

{origin = [0;0] ,
paving = [[1;0];[0;2]],
fitting = [0;1]}

<<Tiler>>

{origin = [0;0] ,
paving = [[1;0];[0;1]],
fitting = [ ] }

Figure 18.4. Example of a RepetitiveComponent component.
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HardwareArchitecture Package. In a similar way to the application
package, the hardwareArchitecture package refines the GaspardCompo-
nent concept by adding a hardware architecture connotation. This package
introduces a new stereotype which extends the metaclass component to allow
the description of various hardware architecture concepts used as support for
the execution of the application. A global view on this package is given by
Fig. 18.6.

AssociationPackage. Theassociationpackage, presented by Fig. 18.7,
is used to specify the different allocation mechanisms used to associate an
application component to a hardware architecture component. In this package,
we can mainly find two kinds of allocation: DataAllocation and TaskAllo-
cation.

The DataAllocation concept is used to map the different data available on
the ports onto hardware components such as memory, while the TaskAlloca-

<<stereotype>>
GaspardComponent

[Component]

<<stereotype>>
ApplicationComponent

[Component]

Figure 18.5. application package.

<<stereotype>>
GaspardComponent

[Component]

<<stereotype>>
HardwareComponent

[Component]

<<stereotype>>
Communication

[Component]

<<stereotype>>
Processor

[Component]

<<stereotype>>
Memory

[Component]

<<stereotype>>
IO

[Component]

Figure 18.6. hardwareArchitecture package.

<<stereotype>>
Distribute

[Dependency]

+hardwareArchitecture : Tiler
+application : Tiler

Tiler

+paving : String = IDENTITY
+fitting : String = IDENTITY

+origin : String = ZERO

<<stereotype>>
TaskDistribute

[Dependency]

<<stereotype>>
DataAllocation
[Dependency]

+portName : Port

<<stereotype>>
DataDistribute
[Dependency]

+portName : Port

<<stereotype>>
TaskAllocation
[Dependency]

<<stereotype>>
Allocation

[Dependency]

Figure 18.7. association package.
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tion concept is used to map the application tasks onto hardware components
such as processor.

The Distribute concept is introduced to specify the mapping of a repetitive
application onto a repetitive hardware architecture by using Array-OL concepts.
This specification is expressed by the following OCL constraint:

inv : self.participant → size() = 2 and self.participant → forAll (stereotype →
exists ( name = RepetitiveComponent ) )

Factorization Package. The factorization package contains struc-
tural factorization mechanisms inspired by the Array-OL model. These mecha-
nisms represent the multidimensional multiplicity and the different link
topologies used to specify the repetitive concept in the Gaspard2 models.

The multidimensional multiplicity concept allows to give some directives
on the number of element repetitions. The multiplicity concept already exists
in the UML metamodel, and can be seen as an array of elements with only one
dimension. In the Gaspard2 metamodel, we generalize this concept to consider
the potentially multidimensional multiplicity. In this case, a Gaspard2 element
having a multidimensional multiplicity can be seen as an array of elements with
several dimensions2. This multidimensional multiplicity concept requires an
extension of the UML metamodel and does not appear in the Gaspard2 UML
profile description. In the example of Fig. 18.4, the multidimensional multiplic-
ity [3, 2] defined on the component part a : A specifies that this elementary task
is repeated 3× 2 times. The multidimensional multiplicity on the ports allows
to specify multidimensional arrays like in the case of the input port, presented
in the same example, which specify an integer array of two dimensions 6 × 2.

The Link topology concept is used to specify an information set associated
to the relation between Gaspard2 components. This concept takes the multidi-
mensional multiplicity into account. It allows to express the relation between
the different element repetitions, and the Array-OL basic concepts. Figure 18.8
shows the different link topologies defined in the factorization package.

The InterRepetitionLinkTopology concept is used to specify a special
regular link between the different repetitions of the same element as expressed
by the OCL constraint:

inv : self.participant → size() = 2 and self.participant[0] = self.participant[1]

This kind of topology can be used for example to specify a toric grid topology
when each instance of the element is connected to its four neighbors, or in the
case of the calculation of a particular function such as:{

Yn = f(Yn−1, X)
Y0 = initV alue

In this case, each repetition n of the elementary function f depends on the
result provided by the repetition n − 1. A simple example of this function is
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a discreet integral given by Fig. 18.9. The repetitionSpaceDependence
attribute is used to specify the neighbor position of the element on which the
inter-repetition dependency is defined. Since the InterRepetitionLink-
Topology connection specifies a relation between the different repetition of
an element and a uniform dependency, this link must be only defined inside a
repetitive component as expressed by the OCL constraint:

inv : self.owner.stereotype → exists ( name = RepetitiveComponent )

As shown by Fig. 18.9, the InputDefaultLink connector is used to specify
the default values of the input port in the case of an inter-repetition dependency.
This concept represents a special connector which has only significance when
the iteration domain does not give values. In a similar way, theOutputDefault-
Link connector can be used to assign values to output ports when the iteration
domain does not give values.

The InterRepetitionLinkTopology and the DefaultLink connectors
must be defined inside a repetitive component, and between two ports of the
same type and multiplicity as specified by the OCL constraints:

+repetitionSpaceDependence : String

<<stereotype>>
InterRepetitionLinkTopology

[Connector]

<<stereotype>>
Tiler

[Connector, ConnectorEnd]

+paving : String = IDENTITY
+fitting : String = IDENTITY

+origin : String = ZERO

<<stereotype>>
RepetitionLinkTopology

[Connector]

<<stereotype>>
Reshape

[Connector]

+pavingLimit : String = ONE
+fittingLimit : String = ALL

LinkTopology
[Connector]

+modulo : boolean = false

<<stereotype>>
DefaultLink
[Connector]

+paving : String = NULL
+origin : String = ZERO

+fitting : String = NULL

<<stereotype>>
OutputDefaultLink

[Connector]

<<stereotype>>
InputDefaultLink

[Connector]

Figure 18.8. factorization package.

<<ApplicationComponent>>
<<RepetitiveComponent>>

DiscreetIntegral

<<ApplicationComponent>>
<<ElementaryComponent>>

+ : Sum

PreResult : int [1]

Result : int [1]Zero : int [1]
Result : int [*]

<<InterRepetitionLinkTopology>>
{repetitionSpaceDependence = [1]}

<<Tiler>>

{fitting = [ ] ,
origin = [0] ,
paving = [1]}

<<InputDefaultLink>>

{fitting = [ ],
origin = [0],
paving = [ ] }

Figure 18.9. Simple example on the use of link topologies.
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Figure 18.10. Simple example on the use of Reshape link.

inv : self.owner.stereotype → exists ( name = RepetitiveComponent )

inv : self.connectorEnd → forAll ( x,y | x.multiplicity = y.multiplicity and
x.type = y.type )

Another link topology defined in the factorization package is the Repet-
itionLinkTopology. This topology is mainly based on the repetition concepts
used in Array-OL models, and mainly defines two connection kinds: Tiler
and Reshape.

The Tiler link is used to define a repetitive link between two compo-
nents according to the Array-OL model. The origin, paving, and fitting
attributes are used to specify necessary Array-OL information for the processing
of input and output patterns as shown in the example of Fig. 18.9.

The Reshape link is used in special cases to specify the redistribution or
the reorganization of some array elements on another array as illustrated in the
example of Fig. 18.10. To do that, we need to specify Array-OL tiler information
on the two ConnectorEnds of the link. The Tiler concept must then be defined
on the two ConnectorEnds of the Reshape connector as specified by the OCL
constraint:

inv : self.connectorEnd → forAll ( stereotype → exists ( name = Tiler ) )

Moreover, the Reshape link has only significance between two repetitive com-
ponents as indicated by the OCL constraint:

inv : self.participant → size() = 2 and self.participant → forAll ( stereotype →
exists ( name = RepetitiveComponent ) )

Two attributes are defined on the Reshape connector: pavingLimit and
fittingLimitwhich represent respectively the pattern number of used arrays,
and the element number of each pattern.

3. Introducing Control in the Data Parallel Application
Modeling

As shown above, the construction of the Gaspard2 UML profile is mainly
made for systematic data parallel algorithms, and parallel architectures.
It allows to describe the data dependencies and all the potential parallelism
present in the studied applications. However, this profile does not contain
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any representation of control or reconfiguration concepts which make difficult,
even impossible, the modeling of applications containing control concepts and
changing modes. For this reason, we propose to introduce the control concepts
in the Gaspard2 UML profile in order to take more general parallel applica-
tions, mixing control and data processing, into account. The introduction of
control into a parallel application can be done by giving a reactive behavior to
these applications which has been largely studied in the case of the synchronous
reactive systems.

Synchronous Approach for Reactive Systems
Reactive Systems are computer systems that react continuously to their envi-

ronment, by producing results at each invocation. In the beginning of the 80s,
the family of synchronous languages and formalisms has been a very important
contribution to the reactive system area [6]. Synchronous languages have been
introduced to make programming reactive systems easier. They are based on
the synchrony hypothesis that does not take reaction time in consideration since
each activity is seen as instantanous and atomic.

Synchronous languages, like Lustre, Esterel, and Signal [6], are devoted
to the design, programming, and validation of reactive systems. They have
a formal semantics and can be efficiently compiled into C code, for instance.
Moreover, these formalisms make it possible to validate and verify formally
the behavior of the system. In this field, we often speak about tools and
approaches for simulation, verification, and code generation for reactive sys-
tems specified in a synchronous language. These languages can be declarative
or imperative depending if the system’s behavior is respectively mainly regular
or discrete. However, the most used embedded systems are generally hybrid,
and combine control and data processing. For this reason, we need efficient
tools and methods taking into consideration this kind of behavior. Declarative
or data flow languages, like Lustre, are used when the behavior of the system
to be described has some regularity like in signal-processing. Imperative or
control flow languages, like Esterel, are more appropriate for programming
systems with discrete changes and whose control is dominant. However, the
most realistic and used embedded systems have rarely an exclusively regular
or discrete behavior. These systems are generally hybrid, and combine control
and data processing. For this reason, we need efficient tools and methods taking
in consideration this kind of behavior.

Related Work
Several approaches have been proposed to facilitate the study of hybrid sys-

tems. We can find the multilanguages approach which combines imperative and
declarative languages, like using Lustre and Argos [7]. However, when using
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several languages it is very difficult to ensure that the set of corresponding
generated codes will satisfy the global specification.

Another design methodology consists in using a transformational approach
which allows the use of both types of languages for specification but, before
code generation, the imperative specifications must be translated into declar-
ative specifications, or vice versa, allowing to generate a unique code instead
of multiple ones. This approach is efficient for describing reactive systems
combining control and data processing. However, there are systems whose
behavior is mainly regular but can switch instantaneously from a behavior to
another. The most adapted method to describe this kind of system consists in
using a multistyles approach which makes it possible to describe with only one
language the various running modes of the system. The Mode-Automata [8]
represent a significant contribution in this field. They are used to clearly express
the different running modes of an application and the conditions of switching
between modes.

Presented works study the control and data processing combination. How-
ever, all these studies do not take the data parallel processing into account. The
parallel processing represents generally a set of tasks which can be executed
in parallel to define the global behavior of the system like in signal and image
processing. In the literature, few works have been proposed to introduce the con-
trol in the parallel computation field. For instance, using Signal relational lan-
guage and the Alpha functional language for the application codesign [9] do not
define any specification model allowing the modeling of parallel applications
with control concepts. Another example can be found in Ptolemy [10] which
proposes a multidimensional computation model (MDSDF) and an automata
model (FSM). However, the combination of these two concepts has never been
studied.

In our work, we choose to use the Mode-Automata [8] concept and the
control/data flow separation methodology [11] to introduce the control and
the reactive behavior in the Gaspard2 UML profile. In this study, we are only
interested in the control introduction for the Gaspard2 application part. This
approach allows to have a more readable model since it is based on a modular
specification of the different parts of the system. This facilitates the reuse of
existing applications, the modification, the introduction, and the deletion of
modes. It can also facilitate the simulation and the modular verification of the
system.

Introducing Control in the Gaspard2 Application UML
Profile

The introduction of control in the Gaspard2 application part is mainly based
on the synchronous approach and the control/data flow separation methodology.
The introduction of the control into data parallelism applications requires the
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definition of a degree of granularity for these applications [12]. This concept
allows to delimit the different execution cycles or clock signals in which it
becomes possible to take the control values into account. To do that, we intro-
duce new concepts to specify control in Gaspard2 application models. These
concepts are gathered in the control package.

The control package represents the basic elements used to express an
automaton structure and the different running modes of the studied system.
The question which arises now is: how to model the control automaton and the
different running modes in the Gaspard2 UML profile?

Modeling the control automaton. The control automaton structure that
we propose to use is inspired by the one of Mode-Automata [8] and Moore-
Automata. The use of the Mode-Automata concept allows to well specify the
different running modes of the system and the switch conditions between modes,
while the Moore-Automata concept is used to limit the output of the control
automaton to its current state. In this case, the transition function only specifies
a set of events that allow the switch between states without having any effect
on the output result of the automaton.

To introduce control concepts in the Gaspard2 application models, we must
take the Gaspard2 model semantics into account. The Gaspard2 semantics do
not express any flow concept since the time is represented by an unordered
and infinite dimension. However, in the control automaton structure, the flow
concept is present and significant for the definition of its behavior. For this
reason, it becomes important to propose a model representation of the automaton
structure by respecting as much as possible the Gaspard2 model semantics.

A possible solution consists in using a dependency relation between the dif-
ferent repetitions of the automaton transition function. This dependency makes
it possible to memorize the previous state of the automaton and then to respect
the general automaton structure semantics. To model this dependency relation,
we use the InterRepetitionLinkTopology concept already existing in the
Gaspard2 UML profile definition. This link topology allows the introduction
of the flow concept in the Gaspard2 models, and makes possible the modeling
of an automaton structure without changing or modifying the basic Gaspard2
semantics. To introduce the automaton structure in the Gaspard2 UML profile,
we define new concepts in the control package as shown by Fig. 18.11.

The TransitionComponent abstract stereotype is used to specify the transi-
tion function of an automaton, while the RepetitiveTransitionComponent
stereotype is used to define the repetition of the transition function. To model
the repetition on the transition function, an InterRepetitionLinkTopology
connection must be specified on the different repetitions of the transition func-
tion as specified by the OCL constraint:
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<<stereotype>>
ElementaryTransitionComponent

[Component]

<<stereotype>>
RepetitiveTransitionComponent

[Component]

<<stereotype>>
ActivityTransitionComponent

[Component]

<<stereotype>>
AutomatonComponent

[Component]

<<stereotype>>
ModeEnumeration
[EnumerationLiteral]

<<stereotype>>
TransitionComponent

[Component]

<<stereotype>>
ModePort

[Port]

Figure 18.11. Gaspard2 UML modeling for the control automaton.

inv : self.connector → select ( stereotype → exists ( name =
InterRepetitionLinkTopology ) → size() = 1 )

The description of the automaton transition function can be done in two
different ways: by using an ElementaryTransitionComponent or an Acti-
vityTransitionComponent components. In the case of an Elementary-
TransitionComponent, the behavior of the automaton transition function is
regarded as a black box without using any Gaspard2 component description as
specified by the OCL constraint:

inv : self.part → select ( stereotype → exists ( name = GaspardComponent ) )
→ size() = 0

In the case of an ActivityTransitionComponent, the behavior of the tran-
sition function must be specified by a UML activity diagram as specified by the
OCL constraint:

inv : self.feature → forAll ( oclIsKindof ( Activity ) ) and self.part → size() = 0

Other OCL constraints are also added to the profile definition to express the
link between the transition function and the repetition on this function. For
example, each RepetitiveTransitionComponent component must contain
only one TransitionComponent component as expressed by the OCL con-
straint:

inv : self.part → size() = 1 and self.part.stereotype → exists ( s | s.name =
ElementaryTransitionComponent or s.name = ActivityTransitionComponent )

and eachTransitionComponent component must be defined inside a Repeti-
tiveTransitionComponent component as specified by the OCL constraint:

inv : self.owner.stereotype → exists ( name = RepetiveTransitionComponent )
and self.owner → size() ≥ 1
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To specify the execution mode, the AutomatonComponent abstract con-
cept must have only one output ModePort port of ModeEnumeration type as
expressed by the OCL constraint:

inv : self.ownedPort.required→ size() = 1 and self.ownedPort.required.stereotype
→ exists ( name = ModePort )

This port provides the mode value used by the calculation part to choose the
running mode to activate among several exclusives.

Modeling the different running modes. The output mode value provided
by the control automaton is used by the calculation part controlled by this
automaton. This calculation part represents the various running modes of the
studied system, and allows the activation of the corresponding mode.

The controlled part represents a special component having a switch behavior.
To model this part in the Gaspard2 application profile, we introduce a new
Gaspard component that we called ControlledComponent (Fig. 18.12). This
component specifies the switch between several exclusive calculation parts, and
must have one input ModePort port used for the activation of the corresponding
calculation mode as expressed by the OCL constraint:

inv : self.ownedPort.provided → select ( stereotype → exists ( name =
ModePort ) → size() = 1 )

To model the different running modes, we introduce a new concept Alter-
nativeComponentPart which is only applied to the UML component part.
This concept gives a particular behavior to the component parts by specifying
that they can be activated only if their activationCondition value is equal
to the mode value. In other words, the controlled component will only contain
the alternative component part to activate as expressed by the OCL constraint:

inv : self → includes ( p:part | p.activationCondition.value =
ownedPort.provided → select ( stereotype → exists ( name = ModePort )
).value ) and self → excludes ( p:part | p.activationCondition.value <>
ownedPort.provided → select ( stereotype → exists ( name = ModePort )
).value )

To express the switch behavior, the controlled component contains only
alternative component parts as expressed by the OCL constraint:

inv : self.part → forAll ( stereotype → exists ( name =
AlternativeComponentPart ) )

<<stereotype>>
AlternativeComponentPart

[Property]
+activationCondition : EnumerationLiteral

<<stereotype>>
GaspardComponent

[Component]

<<stereotype>>
Controlledcomponent

[Component]

Figure 18.12. Gaspard2 UML modeling for the controlled part.
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The different alternative parts of a controlled component must have the same
interface to facilitate the reuse and the manipulation of the existing components
as expressed by the OCL constraint:

inv : self.part → forAll (p1,p2 | ( p1.ownedPort.provided =
p2.ownedPort.provided ) and ( p1.ownedPort.required = p2.ownedPort.required
) )

To certify the correct functioning of the controlled part, the various alternatives
components must be exclusive as specified by the OCL constraint:

inv : self.part → select ( taggedValue.name = activationCondition implies
forAll ( p1, p2 | p1.taggedValue.value <> p2.taggedValue.value ) )

Figure 18.13 gives a simple example on the modeling of a controlled appli-
cation. In this example, the system can operate in two different modes AMode
and BMode. The activation and the switch between these two modes are done
by the control automaton according to the event value. This example shows
the relation between the control part and the controlled calculation part through
the mode value. It also specifies the modeling of the different alternative modes
having the same interface.

<<RepetitiveComponent>>
RepAorB

<<Controlledcomponent>>
ab : AorB

executionMode [1]

input [2]
output [1]

<<AlternativeComponentPart>>
a : AMode
{activationCondition = A}

<<AlternativeComponentPart>>
b : BMode
{activationCondition = B}

modes [*]

input [2;*]

output [*]

<<RepetitiveTransitionComponent>>
Automaton

<<ElementaryTransitionComponent>>
t : Transition [*]

event [1]

currentMode [1]

executionMode [1]

event [*]

initialMode [1]

executionMode [*]

<<Tiler>>

<<InterRepetitionLinkTopology>>
{repetitionSpaceDependence = [1]}

<<Tiler>>

<<Tiler>>

<<InputDefaultLink>>

<<Tiler>>

<<Tiler>>

Figure 18.13. Simple example on the modeling of a controlled application.
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4. Conclusion and Future Work
In this paper, we have proposed a UML2 profile allowing the introduction of

the control concepts in the Gaspard2 application profile. The proposed profile
is based on a clear separation between control and data parallel parts. It respects
the concurrency, the parallelism, the determinism, and the compositionality of
the studied systems.

The main goal of our work consists in proposing a UML solution for modeling
the control automata, the different running modes of an application and the
link between the control and the computation parts in the case of a parallel
applications. This specification allows to study more general parallel systems
mixing control and data parallel processing. Our profile proposition, notably
hardware architecture and association parts, participates in the definition of
ProMARTE profile [4]. In future work, we will propose the introduction of
the control concepts in the architecture and the association Gaspard2 profiles
allowing to take the configurability concept into account for the architecture
models, and to have a better use of the mapping and scheduling algorithms for
the association models. There is also ongoing work to introduce clock concepts
in Gaspard2 models. This study will allow us to use UML state machine to
model the control part.
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Notes
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MCF

A Metamodeling-based Visual Component Composition
Framework

Deepak A. Mathaikutty and Sandeep K. Shukla
FERMAT Lab, Virginia Tech, Blacksburg, USA
mathaikutty@vt.edu; shukla@vt.edu

Abstract Reusing IP-cores to construct system models facilitated by automatic generation
of the glue-logic, and automated composability checks can help designers to
create efficient system level models quickly and correctly for faster design space
exploration. With the rise of multiple transaction level (TL), and register-transfer
level (RTL) abstractions, constructing models with mixed abstraction levels is
also important for designers. This chapter presents a framework that allows
designers to (i) describe the structure of components, their interfaces, and their
interactions with a semantically rich visual front end, (ii) automated selection
of IPs from a component library based on sound type theoretic principles, and
(iii) constraint based checks for composability is highly desirable in this context.
Furthermore, using an XML based schema to store and process meta-information
about the IP models, as well as the schematic visual model helps the process of IP
selection and composition. With these in mind, we present MCF, a metamodeling-
based component composition framework for SystemC based IP core composition
at multiple and mixed abstraction levels, with all the advantages stated above.

Keywords Metamodel, metamodeling framework, architectural template, component com-
position framework, IP composition, reuse

1. Introduction
One recent industrial trend in system level design is to use high-level pro-

gramming languages such as C++ to build custom design exploration and analy-
sis models, especially with the increased usage of SystemC. The proliferation
of SystemC IP cores necessitates CAD frameworks that support IP core com-
position to build system models. One of our goals is to reduce much of the
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software engineering (SE) and C++ programming burdens that a designer has
to face in creating models from existing cores. Some of the SE problems arise
due to strong typing requirements, lack of a rigorous compositional semantics
of SystemC, and the ad hoc mode of reusability associated with the compile-
link-test methodology. Therefore, we need a framework that allows designers
to architect the system in terms of components and their composition. Such a
component composition framework (CCF) makes the designer oblivious to the
specifics of the software language and allows realizing a system through design
templates and tool support. The design template may structurally reflect the
modeling abstractions such as register-transfer level (RTL), transaction level
(TL), mixed-abstractions (RTL-TL) and structural hierarchy. The tools would
facilitate selection and connection of the correct components, automatic cre-
ation of correct interfaces and transactors, simulation of the composed design
and finally testing and validation for correctness of composition.

In Figs. 19.1 and 19.2, we illustrate the use of design templates through
examples such as the RTL model of the AMBA AHB and TL model of the simple
bus from the SystemC distribution. The AMBA bus model shown in Figure 19.1
consists of three masters and four slaves with similar interface descriptions
that communicate through multiplexed signals selected by an arbiter and a
decoder. For creating this model as a description and later instantiating as an
executable using reusable components, the CCF should allow for the following
in its description process: (i) generic RTL components that would be reused for
the masters and slaves; (ii) generic mux and demux with automatic interface
inference for (de-)multiplexing; (iii) RTL components that describe the arbiter
and decoder; and (iv) signal-level connectivity of the components.

Figure 19.2 describes the TL model, which consists of three bus masters with
distinct protocol-level interfaces (blocking, non-blocking, and direct read-write

ADDR
MUX

WDATA
MUX

RDATA
MUX

Master_2

Master_1

Master_3

Slave_1

Slave_2

Slave_3

Slave_4

Addr

Addr

Addr

Rdata

Wdata

Wdata

Wdata

Rdata

Rdata

Arbiter Decoder

Figure 19.1. RTL AMBA AHB bus model.
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arb_inf

sl_inf

arb_inf

sl_inf

sl_inf
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clock

Fast Slave

Slow Slave

ArbiterBus

Figure 19.2. TL simple bus model.

access) and an arbiter to schedule their transactions. It consists of two slaves,
one with instantaneous read-write access and the other with slow read-write
access due to its clock-based activation. For this the framework should facili-
tate the following in its description process: (i) TL components with function
calls that describe the distinct masters, (ii) a bus channel that implements the
read-write interface of the masters, (iii) an arbiter channel that implements the
arbitration interface, (iv) a channel that implements the read-write interface for
the fast slave and which is reused to describe the slow slave, (v) insertion of clock
ports for the components and channels, and (vi) transaction-level connectivity.

If the designer wants to explore the simple bus model to analyze various
trade-offs, then an alternative description could be replacing the slave chan-
nels with RTL slaves from the AMBA bus in order to determine the loss in
simulation efficiency due to the gain in precise timing from the extra handshak-
ing introduced. For such an alternative the framework’s description process
should allow: (i) modification through reusability of slave components from
the AMBA bus and (ii) insertion of transactors that map the TL and RTL in-
teraction of the bus channel and the RTL slaves. Furthermore for the three
scenarios explained above, the framework in general should allow design visu-
alization and enforce checks that look for inconsistencies, datatype mismatches,
incompatible interfaces, and illegal component or channel description.

Once such checks are done, the CCF tool support should provide automatic
selection of IPs at different abstraction levels, code generation for insertion of
transactors to bridge the abstraction gap, testbench generation, and composing
all the above to arrive at a simulation model. The selection is performed at both
the structural as well as the behavioral level to obtain all plausible implemen-
tations that match the CC model.
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We define the problem statement in terms of what is needed for a CCF: (i)
visual language for describing component composition models; (ii) modeling
abstractions such as RTL, TL, and mixed; (iii) formal constraints to enforce
different kinds of checks to catch discrepancy in the model; (iv) consistency
check to ensure system-level design constraints; (v) type checking and propa-
gation to automate type inference; (vi) intermediate representation of the CC
model; (vii) library of compiled C++ objects of different IPs; (viii) reflection
of structural and behavioral types of these IPs, and (ix) introspective composer
that performs IP selection and connection, insertion of bridges, validation of
functionality, and produces an executable model.

Design Flow
An abstract view of the design flow is shown in Fig. 19.3, where the user

begins by creating a component composition model using the CC language.
Upon conformance to the various constraints and completion of the model, it
is converted to an intermediate representation (IR), which is given as input to
our introspective composer (IComp). On the other hand, we have a library of
compiled objects of C++ IPs from which the meta-level information (structure,
timing, etc.) is extracted through our automated reflective mechanism and
expressed into XML. This XML library is also given as input to the IComp,
which is responsible for constructing an executable model by querying the
reflected database and selecting the appropriate IPs, inserting the transactors
and composing them. The main focus of this paper is the CC language and
model.

Main Contributions
Our main contributions in this paper can be summarized as follows: (i)

a visual language (CCL) and framework for component composition using

CC Model

IR

IP Library

Introspective 
Composer

Executable
Model

CCL

Reflected 
XML Library

Figure 19.3. Abstract design flow.
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the metamodeling paradigm of the generic modeling environment (GME) [5];
(ii) design-time constraints on objects and connections in a CC model based
on the hardware design language (HDL) and software requirements expressed
using the Object Constraint Language (OCL); (iii) consistency checker that
performs static analysis of the CC model; (iv) type checker that performs
datatype checking; (v) type propagation engine that derives the interface types
based on different type inference algorithms used; and (vi) translation of the
CC model into an intermediate XML representation that will be given as input
to the introspective composer. The metamodeling framework of GME allows
representing the syntax, semantics, and constraints into visual language and
modeling framework. Various checkers and engines are developed using GME
APIs and integrated into the modeling framework as analyzers.

Organization
The rest of the paper is organized as follows: In Section 2, we briefly outline

the related work and the following section introduces the background and some
of the relevant terminologies. Section 4 describes the CC model description
with examples. In Section 5, we briefly describe the consistency checker, type
checker, type propagation engine, and the XML translation. Finally, we con-
clude by summarizing our modeling experience and discussing our future work.

2. Related Work
In this section, we briefly introduce related work on CCF and distinguish our-

selves. Balboa [3, 2] is a framework to compose components and is not based
on a metamodeling framework. Components are connected and their inter-
face specified via the component integration language (CIL). Before beginning
simulation, the framework performs type inference to select appropriate
implementation based on the port-connectivity. The CIL is a script-like lan-
guage used to manipulate and assemble C++ components with constructs that
provide an abstraction over C++. Our CCL is built on top of a UML-based
visual language therefore, it is rich in object oriented features and has for-
malism attached that enforces HDL constraints on the model and allows for
structural hierarchy. Our checkers perform different kinds of static analysis
and inference to remove inconsistencies. As a result, our CCL is far more
expressive than the CIL. Furthermore, we envision MCF to select components
based on behavioral types of the components in the system. Furthermore, our
CCL provides design templates for various abstraction levels as opposed to
Balboa, which is meant for RTL. Our component reuse methodology is dis-
tinct (uses an automated reflective mechanism based on XMLized extraction
of meta-info) and much simpler to use than BALBOA’s ad hoc methodology
(user-written interface descriptions called BIDLs).
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SPIRIT [8] enables system design using a generic metadata model [6] that
captures configuration and integration-related specifics (interoperability meta-
data) of an IP into a XML library. This enables an SoC design flow in which
the modeler instantiates and characterizes these IPs to create the system design.
The modeler is required to perform the tedious characterization process, which
could be automated by a CCF through selection and composition techniques.
As a part of the SoC design flow, SPIRIT provides API standards that should
be implemented to export the design and configure the actual IPs to create
the executable. Therefore they do not have a tool, instead provide the stan-
dards for the metadata capture and the configuration and integration APIs. For
interoperability of MCF and SPIRIT-based tools, we plan to develop a generic
metamodel that imports the SPIRIT metadata and implements the respective
APIs as plugs-ins to facilitate the IP integration, as part of our CCF.

The Liberty Simulation environment [11] is a framework for construction
of micro-architectural simulation models. A model is structural and concurrent
consisting of a netlist of connected instances of components, which commu-
nicate through ports. The Liberty framework has a language similar to our
CCL, but is devoid of any formalism and the main distinction being that our
metamodel driven formalism is rigorous and extensible. They perform type
inference and support polymorphic types for their components [10], which is
also handled as a part of our modeling framework. Our modeling language is
abstract and does not associate any simulation semantics with the components,
but this is part of our future work. Furthermore, they do not allow different
modeling abstraction besides RTL.

Ptolemy II is a modeling environment designed to support multiple models of
computation. It has a type system [12] that supports type inference in the pres-
ence of parametric polymorphism and subtyping. Metropolis [9] is an example
of a metamodeling-based design environment for embedded systems. Vendors
are beginning to support higher-level synthesis with behavioral modeling and
automatic IP selection and insertion [4].

3. Background
Metamodeling A metamodeling framework facilitates the description of a
modeling domain by capturing the domain-specific syntax and static semantics
into an abstract notation called the metamodel. This metamodel is used to
create a modeling syntax that the designer can use to construct domain-specific
models by conforming to the metamodeling rules governed by the syntax and
static semantics of the domain. A framework that enables this is called a
modeling framework. Static semantics refer to the well-formed-ness of syntax
in the modeled language, and are specified as invariant conditions that must
hold for any model created using the modeling language. We identify two
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distinct roles played in a metamodeling framework. The role of a meta-user who
constructs domain-specific metamodels and the role of a user who instantiates
these metamodels for creating domain-specific models.

Generic Modeling Environment (GME) The Generic Modeling Environ-
ment (GME) [5] is a configurable toolkit that facilitates the easy creation of
domain-specific modeling and program synthesis environment. The metamod-
eling framework of GME provides a set of generic concepts, which are abstract
enough such that they are common to most domains. These concepts can then
be customized into a new domain such that they support that domain description
directly. The generic concepts describe a system as a graphical, multiaspect,
attributed entity-relationship (MAER) diagram. Such an MAER diagram is
indifferent to the dynamic semantics of the system, which is determined later
during the model interpretation process. The generic concepts supported are
hierarchy, multiple aspects, sets, references, and explicit constraints. The mod-
els created are either used to generate applications or to synthesize inputs to
different COTS analysis tools.

Preliminary Definitions
A leaf component is a representation of a hardware block without embedding

other components. A hier component is a hierarchical hardware block that
embeds other leaf or hier components. The interface of these components
differs based on the level of abstraction. The different modeling abstractions
provided are the RTL, where components contain input–output (IO) ports that
describe their interface behavior and use signals. In TL abstraction, the com-
ponents interact through read-write function calls and use channels to dictate
the transaction at the interface. Furthermore, we provide a mixed abstraction,
where component at RTL and TL communicate through transactors that bridge
the two abstractions. The modeler instantiates a component and then charac-
terizes it by specifying the attributes and defining its internals. The allowable
characterizations and possible containments of an object and the relations that
it can participate in, defines its static requirement which is fulfilled by the
modeler and enforced by the modeling framework. The type-contract of a
component describes the type bindings of its interface and internals. The type
bindings at the RTL are the datatypes specified on the input and output ports
and at TL are the datatypes specified on the parameters of the read and write
function calls. A component is partially typed, when the type-contract consists
of one or more unspecified (UN) type bindings. A component is untyped when
all the type bindings in the type-contract are UN. Two components are said to be
structurally equivalent when their type-contracts can be related through some
notion of equivalence.
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long long int

short intfloat

double

long double

long int int

Figure 19.4. Part of the C++ type-structure.

In order to allow for extensive type checking and type propagation, we rep-
resent the basic types of the design domain into a type-structure that is given
as input to the different checkers and engines. Figure 19.4 shows a part of the
type-structure for C++. The structure is used to perform two types of checking
defined below:

Definition 3.1. Type-structure: It is a directed acyclic graph, which represents
the hierarchy for the basic types supported by the design language.

Definition 3.2. Type equivalence: Two types are said to be type equivalent, if
they map to the same node of the type-structure.

Definition 3.3. Type subsumption: A type ti is a subsumption of tj if both
belong to the same connected subgraph of the type-structure T and ti is a child
of tj or both have a common parent.

4. CC Metamodel and Model
The design environment is built on top of a GME [5] and captures the syntax

and semantics of a visual composition language (CCL) into an abstract notation
called the CC metamodel (CCMM). It allows different design templates that
facilitate a description in terms of component instantiations, characterization,
and their composition that we call the CC model (CCM). The CCMM is devel-
oped using UML class diagrams and OCL constraints which is translated into
visual syntax by GME [5]. The visual design environment allows a modeler
to construct codesign models conforming to the underlying semantics of the
CCMM.

CCMM is represented as CCMM = 〈E, R, EC , RC , A〉 where, E is a
collection of entities and R is a collection of relationships that relate two objects.
EC is a collection of constraints described on the entities, whereas RC is a
collection of constraints on the relationships in the metamodel. Real-world
objects are often represented and analyzed in different ways (e.g. multiple
views). Similarly, a metamodel can also have multiple aspects, where each
aspect reveals a different subset of entities and their relations. A is the set of
aspect that defines the possible visualizations for the CCMM given by:
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LEAF
<<Model>>

RWPort
<<Model>>

portname:field

INPUTPORT
<<Atom>>

CLKPort
<<Atom>>

datatype : field
portname:field

IOPort
<<Atom>>

datatype: field
size        : field
portname:field

OUTPUTPORT
<<Atom>>

WRITEPORT
<<Model>>

READPORT
<<Model>>

ICLK
<<Atom>>

OCLK
<<Atom>>

LEAF2LEAF
<<Connection>>

Parameter
<<Atom>>

datatype : field
parmname : field
iotype : enum

0..* 0..*
0..*

0..*0..*dst  0..* src0 ..*

Figure 19.5. UML Diagram of a LEAF Object.

A = {DesignView, ComponentView, Point2PointView, ChannelView,
MixedView, BusView, NetworkView}

Where, for example Point2PointView is meant for RTL-specific visualization
and ChannelView is for TL-specific visualization.

The three main entities in the CCMM are LEAF, HIER, and TRANSACTOR.
We discuss an entity and a relation defined in the CCMM and the complete de-
scription of the CCMM grammar is provided in [1]. Figure 19.5 shows the class
diagram of a LEAF entity that acts as a containment of three kinds of objects
namely IOPort, RWPort and CLKPort. The IOPort is of two types INPUTPORT
and OUTPUTPORT that represents the input and output ports of an RTL com-
ponent. The static nature of such a port is captured through attributes namely
portname and datatype. Certain other requirements are expressed through the
entity relationships. The LEAF2LEAF <<Connection>> is one such relation
that associates two instances of the LEAF entity, which represents the commu-
nication between two components. It should be noted that an IOPort does not
have an internal structure.

The second type of object a LEAF can contain is a RWPort, which is of two
types READPORT and WRITEPORT that describes the read-write function
calls of a TL component. These objects have an internal structure that allows
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the object to act as a container for objects of type Parameter. These internals
capture the static requirements of read-write function calls namely function
arguments and return type. The attributes that characterize a Parameter are
parmname, datatype, and iotype. The third object that a LEAF can contain is a
CLKPort, which is also of two types namely ICLK and OCLK, which denotes
the clocking behavior of an RTL/TL component. The datatype attribute of a
CLKPort is predefined with an unalterable value boolean.

During modeling, the user begins by instantiating the LEAF entity to describe
a component and proceeds to describe the internals. Based on whether the user
wants an RTL or TL behavior, the internals would be described by instantiating
one or more IOPort or RWPort objects. These internal are then characterized by
filling in the attributes, which describes the type of data communicated through
these ports. Furthermore, the component can be clocked by instantiating CLK-
Port objects. Even though the LEAF instance in the CCM can contain three
different types of objects, at model time it is not allowed to have both IOPort and
RWPort objects, since a component can either be at RTL or at TL. This static
requirement is enforced through OCL constraints in the CCMM. An example
of an abstract RTL CCM specified using the CCL is shown in Fig. 19.6, where
the blocks with the centered ‘L’ are LEAF instances with IOPort objects (black
squares) and CLKPort objects (red squares).

Therefore, an entity is the encapsulation of a set of associated objects that is
generic enough to be seen as a template for a hardware component. For exam-
ple, a LEAF entity structural represents any elementary hardware component
specified at the RTL or TL abstraction. A HIER entity is used to represent a

C5

C1 C4

C3
clkgen

C2

I7 O7

icl
I1

ocl
O1
O2

clk
I6

O6

I3
I4
I5

O4
O5

clk
I2

O3

Figure 19.6. An abstract RTL CCM example.
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hierarchical hardware component with an internal structure consisting of other
LEAF or HIER instances. Finally a TRANSACTOR entity represents a com-
ponent at mixed RTL-TL abstraction and is used to model components that
interface RTL and TL components.

A CCM is the instantiation and connection of entities from the CCMM to
create an architectural template of the system. It is represented as CCM(a)1=
〈d, I, IC , C, CC〉, where d describes the design style, which is one of the fol-
lowing RTL, TL, or RTL-TL (mixed). I is a set of instances of entities from the
CCMM. The entry IC collects the activated constraints on the instances, which
are enforced by CCMM as metamodeling rules and checked during design-
time (instantiation and characterization). A metamodeling violation will undo
the incorrect modeling step performed by the user, thereby promoting a design
process that is correct-by-construction. C is a set of connections, where a con-
nection associates two objects through a relationship defined in the CCMM.
We use connections in our CCM primarily for composition of entities such as
LEAF2LEAF <<Connection>>. CC collects the activated constraints on the
connections, which are also enforced by CCMM and checked during design-
time while connecting two entities. Furthermore, the parameter ‘a’ is for ren-
dering a particular visualization for CCM and given a value from A.

The instances in the CCM are grouped into three distinct categories namely
components (CE), medium (ME), and clock generators. Every instance of
an entity is associated with a name that is predefined with the name of the
entity been instantiated. The user characterizes this instance with a unique
name as a part of its description (C1, C2, etc. in Fig. 19.6) unless an already
existing instance is being reused. CE is the collection of LEAF, HIER, and
TRANSACTOR instances, where every LEAF instance is a collection of input-
output ports or read-write function calls and clock ports. Each input/output
port is characterized by their attributes namely portname (id), datatype (dt),
and size (sz).

Let T be the type-structure, then dt ∈ T and sz ∈ N . The size attribute
is used to allow a port encapsulation. Consider an example of a 2-input adder
being described using an instance of the LEAF entity. It has two input ports
(i1 and i2) and two output ports that provide the sum and carry. Characterization
of an integer datatype input port (i1) of size 1 is shown below:

fid(INPUTPORT, i1), fdt(i1, integer), and fsz(i1, 1)

The functions fid, fdt, and fsz are used to assign the attributes with user-defined
values such as the function fdt that takes two arguments namely an object and
a value and places the value in the datatype attribute of the object. At model
time, the user selects the instantiated entity that needs to be characterized within
the visual framework and textually specifies the values for the attributes of the
entity in the fields attached to the instance.
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The TL description of a leaf has read-write function calls, where each of these
have a set of parameters that represent function arguments, which are read from
or written to through these function calls during a transaction. A read interface
allows access to its values, whereas a write interface modifies its values. These
parameters are characterized by the following parmname, datatype, and IOtype
(iotype) attributes. The characterization of a read function call is shown below:

fid(READPORT, read data)
fid(read data.Parameter, data) and fid(read data.Parameter, addr)

fdt(data, string) and fiotype(data, output)
fdt(addr, integer) and fiotype(addr, input)

This example instantiates a read function call read data, with two parameter
values data and addr. The data is a string parameter that is output by the
read data port given an input for the addr parameter.

ME is a collection of communication primitives used for different styles
of communication. The different communication entities allowed through the
CCMM are Splitter, Merger, Channel, Switch, and Bus. The Splitter and Merger
media are used for (de-)multiplex RTL-level components, whereas Channel is
an abstract channel media for TL communication. An example of an abstract TL
CCM communicating through a channel (Channel 0) specified using the CCL is
shown in Fig. 19.7, where the blocks are LEAF instances with RWPort objects
(green squares). Some of the communication mediums are allowed to have both
RTL and TL based description, similar to CEs. The entities Bus and Switch
that provide bus-based and network-on-chip (NoC) style communication are
examples of such multi-purpose communication primitives.

r1 w1

M1
r3 w3

M3

r2 w2

M2

r1
r2
r3

w1
w2
w3

Channel_0

Figure 19.7. An abstract channel-based TL CCM example.
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A channel is a mode of communication that implements a set of abstract inter-
faces to facilitate implicit data and control transfer. Every interface that a chan-
nel inherits has a set of virtual read-write functions that is implemented through
the channel. Therefore, a channel has a set of concrete read-write function
implementations for the methods defined through the different interface inher-
ited by the channel. It is also allowed to have clock ports to describe the clocking
nature of the channel. In our metamodel, the inheritance relationship between
the interface and the channel is described by a set of <<CONNECTION>>s.
A connection between an abstract port pintf of the interface and a concrete port
pch of the channel implies that port pintf is being implemented by the channel
through pch.

In Fig. 19.8.b, we illustrate the block diagram of the FIFO modeled using
our CCL. The FIFO (fifo) is described as an instance of a CHANNEL entity
with functions fifo read and fifo write that are instances of READPORT and
WRITEPORT objects. The fifo implements the interface intf that is described as
an instance of an INTERFACE object. The connections c1 and c2 are instances
of the CHANNEL2INTERFACE relationship that represents the implemen-
tation of the virtual read-write functions of the intf by the fifo. The textual
description of the visual model of the FIFO is shown in Figure 19.8.a.

Another integral part of the metamodel is the constraints specified using
OCL. Constraints are specified on entities (EC) as well as on relationships
(RC), which are activated during instantiation/characterization in the case of an
entity or during connection in the case of a relation. The activated constraints
are checked during modeling to enforce conformance to the metamodel and
are collected through IC and CC . We discuss a few constraints on an entity
and relation for the purpose of illustration. The activation of leaf abstraction

fid(CHANNEL, fifo)
...
fid(fifo.READPORT, fifo read) . . .
fid(fifo.WRITEPORT, fifo write) . . .
fid(fifo.INTERFACE, intf)

fid(intf.WRITEPORT, write) . . .
fid(intf.READPORT, read) . . .

...
fid(CHANNEL2INTERFACE, c1);
fid(CHANNEL2INTERFACE, c2);
c1(fifo.fifo read, intf.read);
c2(fifo.fifo write, intf.write);

a) Textual description of FIFO

fifo

intf

read

fifo_read

write

fifo_writec1 c2

b) Block Diagram of FIFO

Figure 19.8. Fifo Channel implementing an interface.
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constraint on a leaf instance (l) checks the following: (i) if d is RTL, then l
is only allowed to contain IO ports, (ii) if d is TL, then l is only allowed to
contain read-write ports, and (iii) l is not allowed to have a mixed RTL-TL
description. Consider a connection c ∈ C of type LEAF2LEAF that connects
two LEAF instances namely l1 and l2 and therefore activates the oport to iport
constraint when it connects the output port po of l1 to the input port pi of
l2. The oport to iport constraint checks whether the connected ports match in
their datatype through type-equivalence or are unspecified and is formalized as
shown below:

po.dt = pi.dt or po.dt = UN or pi.dt = UN

5. CC Analysis and Translation
Developing a CCL on top of a UML-based visual language brings in the

advantages associated with visualization and object-oriented features. However,
the flip-side is that the static requirements need to be explicitly formalized for
such a framework. Some of these requirements are formalized and enforced
using OCL and some require analysis of the complete model through inference
and propagation. We enforce these through checkers. We have implemented
three different checkers, namely a consistency checker that disallows any dis-
crepancies in the CCM. The type propagation engine performs type assignment
through type inference and type checking. A type checker looks for type incon-
sistencies through inference and propagation. Finally, a translator that converts
the visual CCM into an intermediate representation that will serve as input to
IComp.

Consistency Checking
Some of the HDL related consistency checks performed are whether con-

nected components match in terms of port sizes, interfaces calls, whether
unbounded ports or duplicate ports exist, etc. In this respect, the checker is
similar to a linting tool for an HDL language. However, the components are
devoid of an implementation, as a result, behavioral syntax and semantic checks
cannot be performed by this checker. On the other hand, automatic selection of
an implementation from the IP library requires the component to be annotated
with sufficient metadata. For example, if the user wants to perform selection on
a name basis, then the checker will enforce that the components have a unique
identity. If two components have the same identity, then they are inferred as
instances of the same component and checked for identical signatures. A con-
sistency checker is an important part of the description and selection process
since it finds inconsistency early in the specification that reduces design time.
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Type checking and Propagation
Systems described with a strong-typed language such as C++ requires com-

ponents to be implemented using interfaces that are type compatible. The
programming effort associated with manually ensuring such type compatibility
results in significant overhead that hinders the design process. A component’s
interface description using our CCMM is dependent on the level of abstrac-
tion and so are our checks. At the RTL-level, type-compatibility boils down
to checking whether output and input ports of the communicating components
match in terms of datatype. At the TL, type checking resorts to verifying that
the read and write calls match in terms of function signatures (return values,
argument types, and number of arguments).

We perform type checking at two levels firstly at design time using OCL
constraints and during CC analysis. Some of the type checks are expressed
as OCL constraints on the connections, which at the RTL enforces that ports
of connected components are type equivalent (Definition 3.2). Figure 19.9
illustrates an RTL component C1 connected to C2 in Ex1 and to C3 and C4 in
Ex2. if C1 is fully typed with a 8-bit integer OUT port of size 2 in Ex1 then the
constraints enforced on C2 due to their connection are as follows:

C2.IN.dt = C1.OUT.dt and C2.IN.sz = C1.OUT.sz

However in Ex2, if C1 has a partially typed port of size 2 and C3, C4 are fully
typed with inputs of size 1 and unrelated types, then their connections to C1

will flag a violation. The type checker cannot infer a consistent type for the
OUT port of C1; therefore the OCL constraints will catch these types of errors
at design time rather than having the type checker catch it later during analysis.
The type checking at the TL resorts to verifying that function signatures match.

In the second phase, our checker is given a type-structure (Definition 3.1) and
it achieves type propagation through inference algorithms and checking tech-
niques. If the designer wants to use other type relations besides equivalence,
then the constraints serve as notification that the user has connected two ports

OUT IN

C1 C2

OUT

IN1

C1

C3

C4

IN2

Ex1 Ex2

Figure 19.9. Abstract examples.
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that are not type equivalent. Consider a SystemC example, if an adder’s output
of type sc int<16> and the input of a multiplier of type sc bigint<16> are
connected, then the type checking will not flag an error, since they are related
through type subsumption. In order, to allow type checking based on subsump-
tion, we require a predefined type-structure, that the checker consults similar to
Ptolemy’s type system [12]. The checking based on type subsumption (Defini-
tion 3.3) is performed by our type checker that derives the type relations given
a type-structure. Upon completion of type checking, the engine propagates the
inferred type. One of the objectives of MCF is to promote reusability through
abstract specification and provide an easy and fast specification. If the user
wants to describe a generic adder, then the component is not bounded to a type-
contract. Having a component conforming to an interface for manipulation and
integration, restrict its reusability as it becomes dependent on the context of
usage. Therefore, we allow partial specification, where a component does not
have a fully typed interface. Consider the generic adder shown in Fig. 19.10,
based on whether it is connected to two floating-point multipliers or two 16-bit
integer adders, the type-contract derived are different.

Another reason for allowing partial-typed components is to avoid the tedious-
ness associated with characterizing every component in the CCM. The types for
some of the components can be inferred based on their static requirements or
from their associations. For example, our CCMM provides communication me-
dia such as splitter and merger for muxing and demuxing. Their input-output
types are inferred based on the component’s output being (de-)multiplexed.
Furthermore, inferring the type of one port of the splitter/merger would require
that the other ports adhere to it through equivalence or subsumption. Therefore,
for such media a single-port inference is used to propagate types for all the other
partially typed (de-)multiplexing ports associated with it.

Similarly, another place where our type propagation comes handy is when
dealing with hierarchical ports that serve as transfer ports between their inter-
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Figure 19.10. A generic Adder 2 1.
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nals and externals. The details of the type inference algorithm for different
components and medium have been provided in [1]. Our type propagation
engine does a type inference and follows that up with a type assignment to
propagate the inferred type. The type assignment necessitates another round
of type checking to look for inconsistency that might have risen. These are
type conflicts that crop up when the propagation engine tries to assign a type
to component/media’s internals which violates its type-contract. This conflict
indicates that there exists a component/media that is not correctly specified or
that participates in an illegal composition. Therefore a fix-pointing takes place
when the type propagation tries to fully type the CCM.

Another reason for allowing partial typing and failure of type propagation
to provide a type assignment is to allow for polymorphic components in the
CCM. The modeler uses the CCMM for modeling a generic template of the
architecture and various IP components can be used to instantiate different sim-
ulation models. This flexibility allows an automatic exploration of alternatives
that best suits a CCM from a library of IPs. In C++ based HDLs such as Sys-
temC, a component built using a C++ template are polymorphic and use type
variables that are place holders for concrete types and resolved during instantia-
tion. Some examples of such components/medium are buffers, fifos, memories
and switches. Consider the Adder 2 1 in Fig. 19.10 that is partially typed.
Depending on whether Adder 2 1 is connected to floating point multipliers or
integer adders, the type specification and the instantiated implementation from
the IP library differ.

XML Translation
The translator generates an XML representation (XML-IR) for the CCM de-

scription. This representation is validated against a Document Type Definition
(DTD) for well-formed-ness. The translator uses a templated code genera-
tor that when given a component or media, prints out its corresponding XML
representation. Upon completion, an XML graph is generated that describes
their connectivity. The XML generation serves as input to the next stage of IP
selection process.

The DTD for a LEAF component is shown in Listing 5.0.

1 / / LEAF e n t i t y
2 <!ELEMENT Leaf ( I n p o r t | Output | Inpu tC lockPor t | OutputClockPort | Readports
3 | Wr i t epo r t s )∗ >
4 <!ATTLIST Leaf name CDATA #REQUIRED>
5

6 <!ELEMENT Inpu tPo r t EMPTY >
7 <!ATTLIST Inpu tPo r t name CDATA #REQUIRED datatype CDATA #REQUIRED s ize
8CDATA #REQUIRED >
9

10 <!ELEMENT OutputPort EMPTY >
11 <!ATTLIST OutputPort name CDATA #REQUIRED
12 datatype CDATA #REQUIRED s ize CDATA #REQUIRED >
13
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14 <!ELEMENT Readports ( Parameter )∗ >
15 <!ATTLIST Readports name CDATA #REQUIRED >
16

17 <!ELEMENT Wr i tepo r t s ( Parameter )∗ >
18 <!ATTLIST Wr i tepo r t s name CDATA #REQUIRED >
19

20 <!ELEMENT Parameter EMPTY >
21 <!ATTLIST Parameter name CDATA #REQUIRED datatype CDATA #IMPLIED
22 IOtype CDATA #REQUIRED >
23

24 <!ELEMENT InputC lockPor t EMPTY >
25 <!ATTLIST InputC lockPor t name CDATA #REQUIRED datatype CDATA #REQUIRED >
26

27 <!ELEMENT OutputClockPort EMPTY >
28 <!ATTLIST OutputClockPort name CDATA #REQUIRED datatype CDATA #REQUIRED >

6. Conclusion and Future Work
Our experience from using MCF is summarized as follows: (i) drag-and-drop

environment with minimal effort in designing systems; (ii) fast design explo-
ration; (iii) easy to model at different abstractions as well as at mixed levels;
(iv) natural way to describe hierarchical systems; (v) incremental design process
through rigorous design-time checks; and (vi) highly extensible using GME for
future requirements. As future work, we would equip our CCL with the Open
Core Protocol (OCP) [7] to express a large variety of hardware communication
behaviors that promotes reusability at different abstraction levels within RTL
and TL. Furthermore, we will implement the automated reflective mechanism
and the IComp to facilitate a full fledge CCF. The reflective mechanism would
include extracting both structural and behavioral information from all the IPs in
the library and constructing a data structure containing these meta-information.
We will use a SystemC XML parser to annotate the SystemC-based IP with
XML tags and a XML parser to extract the required information and populate
our data structure. This data structure and the IR of the CCM from our visual
front end will be given as input to our IComp to allow automatic IPs selection on
two accounts, firstly structural versus behavioral and secondly flattened versus
hierarchical.

Final goal An MCF modeler creates an abstract architectural specification
of the system that is independent of any IP implementation specifics and then
through a few user initiated actions on the GUI, creates executable models.
The task of the MCF besides enabling a specification is to take the architec-
tural template of the system and automatically plug in matching IPs from a
library through type inference. The type inference facilitates automatic selec-
tion of matching IPs for the abstract components in the architectural template
and composes them to create simulation models for the design alternatives. The
advantage is the reduction in design time and tediousness associated with con-
structing high-level models for design space exploration through the automated
tool support.
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Notes
1. CCM = CCM(“DesignView”) for complete design visualization
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Abstract Basedondesignexperiencefor real-timesystems, weintroducemodellingpatterns
to enable easy composition of models for design space exploration. Our proposed
approach does not require deep knowledge of the modelling language used for the
actual specification of the model and its related analysis techniques. The patterns
proposed in this paper cover different types of real-time tasks, resources and
mappings, and include also aspects that are usually ignored in classical analysis
approaches, like task activation latency or execution context switches. In this
paper, we present a library of such modelling patterns expressed in the POOSL
language. By identifying the patterns that are needed for the specification of a
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system, the POOSL model can be automatically generated and analysed using its
related tools and techniques as illustrated in two case studies.

Keywords Real-time systems, modelling patterns, design space exploration models

1. Introduction
Complex real-time embedded systems are usually comprised of a combina-

tion of hardware and software components that are supposed to synchronise and
coordinate different processes and activities. From early stages of the design,
many decisions must be made to guarantee that the realisation of such a complex
machine meets all the functional and non-functional (timing) requirements.

One of the main problems to address concerns the choice of the most suitable
architecture of the system such that all the requirements are met. To properly
deal with this question, the common approaches are design space exploration
and system-level performance analysis. An extensive overview of such method-
ologies is given in [2] and [14]. They range from analytical computation
to simulation-based estimation. These are oft-specialised techniques which
claim that general purpose languages are ill-suited for system-level analysis.
However, due to the heterogeneity and complexity of systems, for the analy-
sis of different aspects different models need to be built and their coupling is
often difficult. Therefore, a unified model, covering all the interesting aspects,
is actually needed to speed-up the design process. This is how the Unified
Modelling Language (UML) [20] came to be conceived. The language was
designed mainly for object-oriented software specification, but recently it was
extended (UML 2.0) to include (real-time) systems as well.

During the development of new systems, common problems are encountered
again and again, and experienced designers apply the solutions that worked
for them in the past [11]. These pairs of problem-solution are called design
patterns and their application helps in getting a design “right” faster. With the
increase in the development of real-time systems, design patterns were needed
for dealing with issues like concurrency, resource sharing, distribution [6]. As
UML has become the industry standard language for modelling, these patterns
are described in UML. However, the semantics of the language is not strong
enough to properly deal with the analysis of real-time system behaviour. There-
fore, an expressive and formal modelling language is required instead in order
to capture in a compact model timing, concurrency, probabilities and complex
behaviour.

Design patterns refer to problems encountered in the design process it-
self, but problems appear also in the specification of components that are
commonly encountered in complex systems [13]. Although components of
the analysed systems exhibit some common aspects for all real-time systems
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(e.g. characteristics of tasks like periodicity or aperiodicity, processors, sched-
ulers, and their overheads), they are built everytime from scratch and similar
issues are encountered over and over.

Contributions of the paper. To reduce the amount of time needed to con-
struct models for design space exploration, we propose modelling patterns to
easily compose models for the design space exploration of real-time embedded
systems. These modelling patterns, provided as a library, act like templates that
can be applied in many different situations by setting the appropriate parameters.
They are based on the concepts of a mathematically defined general-purpose
modelling language, POOSL [25], and they are presented as UML diagrams.
These boilerplate solutions are a critical success factor for the practical applica-
tion in an industrial setting and are a step towards the (semi-) automated design
space exploration in the early phases of the system life cycle.

This paper is organised as follows. Section 2 discusses related research work.
Section 3 briefly presents the POOSL language, whereas Section 4 provides the
modelling patterns. The composition of these patterns into a model is discussed
in Section 5 and their analysis approach in Section 6. The results of applying
this approach on two case studies are presented in Section 7. Conclusions are
drawn in Section 8.

2. Related Research
An extensive overview of performance modelling and analysis methodologies

is given in [2] and [14]. They range from analytical computation, like Modular
Performance Analysis [26] and UPPAAL [3], to simulation-based estimation,
such as Spade [18] or Artemis [21]. The techniques for analytically computing
the performance of a system are exhaustive in the sense that all possible behav-
iours of the system are taken into account. For this reason, the models are built
at a high level of abstraction and they abstract away from the non-deterministic
aspects, otherwise the state space explosion problem is faced.

On the other hand, simulation of models allows the investigation of a limited
number of all the possible behaviours of the system. Thus, the obtained analysis
results are estimates of the real performance of the system. To obtain credible
results, these techniques require the models created to be amenable to mathemat-
ical analysis (see [23]), using mathematical structures like Real-Time Calculus
[5], timed automata [1] or Kahn process networks [16]. As in general, ana-
lytical approaches do not scale with the complexity of the industrial systems,
simulation-based estimation of performance properties is used more often. In
this context, the estimation of performance is based on statistical analysis of
simulation results.
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The analysis technique described in this paper is based on simulation of
models expressed in the formally defined modelling language POOSL. Due to
the semantics of the language, analytical computation of the properties of a
real-time system is possible. However, the type of models that we shall present
throughout the paper, though compact, they incorporate non-determinism. Due
to the state space explosion problem, estimation of the system performance is
used instead of analytical computation.

With respect to the idea of using patterns for building a model based on
previous experience with modelling systems from a particular application area,
this is not new. As an example, in [13], the authors propose patterns to deal
with the complexity of system models by reusing structures expressing expert
modelling experience at a higher level of design and abstraction than the basic
elements. In a similar manner, we propose modelling patterns for real-time
systems that capture their typical components and characteristics, like tasks,
computation and communication resources, schedulers, and input and output
devices. The use of them prevents the building of system models from scratch
over and over and enable the possibility of automatic generation of such models
based on a textual representation.

3. POOSL Modelling Language
The Parallel Object-Oriented Specification Language [25] lies at the core

of the Software/Hardware Engineering (SHE) system-level design method.
POOSL contains a set of powerful primitives to formally describe concurrency,
distribution, synchronous communication, timing, and functional features of a
system into a single executable model. Its formal semantics is based on timed
probabilistic labelled transition systems [22]. This mathematical structure guar-
antees a unique and an unambiguous interpretation of POOSL models. Hence,
POOSL is suitable for specification and subsequently, verification of correct-
ness and evaluation of performance for real-time systems.

POOSL consists of a process part and a data part. The process part is used
to specify the behaviour of active components in the system, the processes, and
it is based on a real-time extension of the Calculus of Communicating Systems
[19]. The data part is based on traditional concepts of sequential object-oriented
programming. It is used to specify the information that is generated, exchanged,
interpreted, or modified by the active components. As mostly POOSL processes
are presented in this paper, Fig. 20.1 presents the relation between the UML class
diagram and the POOSL process class specification. The name compartment of
the class symbol for process classes is stereotyped with <<process>>. The
attributes are named <<parameters>> and allow parameterising the behav-
iour of a process at instantiation. The behaviour of a process is described by
its <<methods>> which may include the specification of sending (!) and/or
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<<class>>

ClassName

<<attributes>>

Attribute:Type

<<methods>>

Method()

(a) UML class

<<process>>

ProcessName

<<parameters>>

Parameter:Type

<<methods>>

Method()()

<<messages>>

port?message

(b) POOSL process class

Figure 20.1. UML vs. POOSL process class.

receiving (?) of <<messages>>. More details about the UML profile for
POOSL can be found in [23].

The SHE method is accompanied by two tools, SHESim and Rotalumis.
SHESim is a graphical environment intended for incremental specification,
modification and validation of POOSL models. Rotalumis is a high-speed
execution engine, enabling fast evaluation of system properties. Compared
with SHESim, Rotalumis improves the execution speed by a factor of 100.
Both tools have been proved to correctly simulate a model with respect to the
formal semantics of the language in [12].

4. Modelling Patterns
One of the approaches for performing systematic design space exploration

is the Y-chart scheme, introduced in [17]. This scheme makes a distinction
between applications (the required functional behaviour) and platforms (the
infrastructure used to perform this functional behaviour). Although we are
concerned only with the realisation of the software part of a real-time system,
the hardware part must also be taken into account in the analysis in order to
predict the behaviour of the system as a whole and the impact each part may have
on the others. Moreover, as real-time systems are typically reactive systems,
meaning that there is a continuous interaction with the outside world, in [10]
we added the model of the environment to the Y-chart scheme, as depicted in
Fig. 20.2. The design space can be explored by evaluating different mappings
of applications onto platforms.

To reduce the amount of time needed to construct models for design space
exploration, we propose modelling patterns to easily compose models of real-
time embedded systems. They are provided as a library and act like templates
that can be applied in many different situations by setting the appropriate
parameters. These modelling patterns emerged from previous experience with
real-time systems modelling (see [9], [7], and [24]). Moreover, they reflect
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Application 
model

Platform 
model

Mapping

Analysis

Modify 
application

Modify 
platform

Modify 
mapping

Environment 
model

Figure 20.2. Y-chart scheme.

Y-chart Part Pattern Name Parameter Names
Application PeriodicTask period (T) latency (l)

Model deadline (D) iterations
load

AperiodicTask deadline (D) latency (l)
load

Platform Resource initial latency throughput
Model Scheduler scheduling policy

Environment InputGenerator event type generation stream
Model OutputCollector event type desired throughput

Figure 20.3. Modelling patterns.

the approach assumed in classical scheduling analysis [4] for modelling such
systems. The library of patterns contains templates for different types of tasks,
resources, schedulers, and input and output devices, which are presented in
Fig. 20.3. This figure shows the Y-chart components to which each of these
patterns belongs, the names of the patterns and their parameters. Each of these
patterns are explained in the remainder of this section.

Application Model
The functional behaviour of a real-time embedded system is implemented

through a number of tasks that may communicate with each other. Task activa-
tion requests can be periodic (time-driven), being activated at regular intervals
equal to the task period T, or aperiodic (event-driven), waiting for the occurrence
of a certain event. There are three types of uncertainties, showed in Fig. 20.4,
that may affect a task:
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Reference
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BEHAVIOUR

Ready for
execution
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jitterlatency

Starts
execution output

jitter

Figure 20.4. Real-time task parameters.

• Activation latency: It may be caused, for example, by the inaccuracies
of the processor clock that might drift from the reference time because
of temperature variations. For event-driven tasks, the performance of the
run-time system, which cannot continuously monitor the environment for
events, may also have influence.

• Release jitter: It may be caused by the interference of other tasks that,
depending on the scheduling mechanism, may impede the newly activated
task to start immediately its execution.

• Output jitter: It may be caused by the cumulated interference of other
tasks in the system, the scheduling mechanism that may allow pre-
emption of the executing task, the variation of the activation latency,
and even of the execution time of the task itself, which may depend on
the input data.

In classical real-time scheduling theory [4], the release jitter and, to some
extent, the output jitter can be computed, but the activation latency is usually
ignored. As in control-oriented systems the effect of this latency might be of
significant importance, the POOSL specification of the task modelling patterns
overcomes this problem. The two task patterns that we have conceived are
visualised using the POOSL equivalent of UML class diagrams in Fig. 20.5.

The PeriodicTask pattern is to be used whenever a periodic independent
task is required. Its parameters are the period T, the deadline D, the load, which
represents the worst-case value of the number of instructions the task imposes
on a target processor and can be obtained based on previous experience, the
activation latency l specified as a distribution, and the number of iterations
for the case the task is not infinitely running. The AperiodicTask pattern
should be applied for the specification of a task triggered by an event from the
environment or by a message from another task in the system. Its parameters are
the deadline D, the load, and the activation latency l. Each of these two patterns
has two methods. One is called Periodic, and respectively Aperiodic, and
contains the specification of the task according to the type of triggering it has,
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<<process>>

PeriodicTask

<<parameters>>

T:Real

D:Real

load:Integer

l:Distribution

iterations:Integer

<<methods>>

Periodic()()

Behaviour()()

<<messages>>

out!output

(a) Periodic task pattern

<<process>>

AperiodicTask

<<parameters>>

D:Real

load:Integer

l:Distribution

<<methods>>

Aperiodic()()

Behaviour()()

<<messages>>

in?event

out!output

(b) Aperiodic task pattern

Figure 20.5. Application model patterns.

such as waiting for the next period, respectively for the next incoming event, to
be activated, whereas the Behaviour method contains the specification of the
actual computation the task needs to perform. In the templates provided with
our library, the specification of this method is empty for two reasons. The first
one is that it depends on the application what a task is supposed to compute,
hence the designer who is using this library has to supply the right specification.
The second reason is that for the type of analysis we are interested at a high level
of abstraction, which will be discussed in Section 6, the actual computation of
a task is not important and can be left out.

Platform Model
The modelling patterns we have conceived for describing the platform part

of the Y-chart model of a system provide a unified way of specifying communi-
cation and computation resources by exploiting their common characteristics.
This modelling approach is possible as at a high level of abstraction there is no
large conceptual difference between a processor and a bus: they both receive
requests, execute them (either by transferring the bits of a message or executing
the instructions of an algorithm) and send back a notification on completion.
As a resource is typically shared, a scheduler is needed in order to arbitrate the
access to a resource.

Figure 20.6 visualises the Scheduler and the Resource modelling patterns
that are needed for the specification of the platform model. The scheduler has
one parameter which is the name of the scheduling policy desired to be used
on a certain resource. Amongst the scheduling policies that we provide within
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<<process>>

Scheduler

<<parameters>>

schedulingPolicy:String

<<methods>>

Init()()

Schedule()()

<<messages>>

fromTask?schedule

toResource!execute

fromResource?stopped

toResource!preemption

toTask!executed

(a) Scheduler pattern

<<process>>

Resource

<<parameters>>

initialLatency:Real

throughput:Integer

<<methods>>

ResourceRun()()

<<messages>>

sch!stopped

sch?execute

sch?preemption

(b) Resource pattern

Figure 20.6. Platform model patterns.

<<process>>

InputGenerator

<<parameters>>

eventType:String

generation:Distribution

<<methods>>

Generate()()

<<messages>>

out!event

(a) Input generator pattern

<<process>>

OutputCollector

<<parameters>>

eventType:String

throughput:Integer

<<methods>>

Collect()()

<<messages>>

in?event

(b) Output collector patterns

Figure 20.7. Environment model patterns.

the POOSL library are: earliest deadline first, rate monotonic, first come first
served, and round-robin. The resource is characterised by a throughput,
which is the number of instructions a processor can execute per time unit or
the transfer bit rate on a bus, and an initial latency, which incorporates the task
context switch time or the communication protocol overhead.

Environment Model
The model of the environment is composed by input generators and output

collectors, as showed in Fig. 20.7. The input generators model the generation
of environmental events of a certain eventType with a certain generation
pattern which can be chosen amongst periodic, periodic with jitter, or sporadic
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with a certain distribution of occurrence, such as uniform or normal. These
events trigger the activation of tasks in the application model and are collected
by output collectors which model the output devices in the environment. The
collector receives the events of a certain eventType exiting the system and
compares the end-to-end delay of the system against the desired one expressed
as the throughput.

5. Model Composition
To build a model of a real-time system for design space exploration, its

specific components that correspond to the modelling patterns described in the
previous section must be identified together with their parameters. The names
of the necessary patterns and their parameters, together with the specification of
the mapping (which task is scheduled on which processor, etc.) and the layout
of the platform (which processor is connected to which bus) can be provided as
the configuration of the system. From such a configuration, the POOSL model
of the system can be automatically generated based on the library of modelling
patterns and fed to SHESim or Rotalumis tools for analysis.

As an example, a producer-consumer system is showed in Fig. 20.8(a). The
system is made of a periodic task producer, TASK1, and an aperiodic task con-
sumer, TASK2, whose activation is triggered by the production of a new item by
TASK1. The specification of the system may look like the one in Fig. 20.8(b)
structured along the Y-chart scheme, expressing the application components,
the platform, and its interconnections, and the mapping. The structure of the
generated model is showed in Fig. 20.8(c). As it can be seen, it differs somewhat

TASK
1

TASK
2

CPU1 CPU2BUS

TASK1 = PeriodicTask(6, 6, 100, 0.2, 10, EVENT)
TASK2 = AperiodicTask(6, 200, 0.3, EVENT)

CPU1 = Resource(0.01, 50, EDF)
CPU2 = Resource(0.02, 50, RM)
BUS = Resource(0.04, 10, FCFS)
Connection(CPU1, BUS)
Connection(CPU2, BUS)

Map(TASK1, CPU1)
Map(TASK2, CPU2)

TASK
2

BUFFERTASK
1

CPU1 CPU2
BUS

(a)

(b)

(c)

Figure 20.8. Model specification based on modelling patterns.
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from the original system in the sense that the model generation tool is able to
detect that the communication between the two tasks is done over a bus, hence
a buffer to contain the message and to transport it across the communication
medium is required.

For design space exploration, different configurations must be compared.
To do this, changes in the initial configuration may be done and the POOSL
model regenerated in order to analyse them. To specify a different mapping,
the Map specifications must be changed according to the new task-to-resource
mapping. To change the architecture components, simply change the Resource
specifications and/or their parameters. Similarly, the interconnections of the
platform can be changed in the Connection specification tags. In this way,
the model can be easily tuned to specify different possibilities in the design
space without any knowledge about the underlying formal model that will be
generated in accordance with the description of the new configuration.

6. Model Analysis
By composing together the necessary modelling patterns, the complete model

of a system can be built and validated. For each configuration specified and
generated, during the execution of the model, the scheduler, which also acts as
a monitor for the system schedulability, can report if there are any tasks that
miss their deadlines. Furthermore, based on the formal semantics of POOSL,
it can be analysed if there is any deadlock in the system. If all the deadlines
are met and there is no deadlock, then the corresponding architecture is a good
candidate that meets the system requirements.

However, for soft real-time systems, it is allowed that some deadlines are
missed (usually there is a given threshold). Therefore, in this case, it is
especially useful that in the specification of the tasks their computations are
decoupled from the activation mechanism, in the sense that the analysis of the
model could handle tasks with multiple active instantiations that are likely to
miss their deadlines. The percentage of deadlines missed can be monitored and
checked against the requirements if, according to this criterion, the underlying
platform is suitable.

To correctly dimension a system (the required CPUs and BUSes perfor-
mance) such that it works in any situation, the worst-case behaviour of the
system must be analysed. This usually means to consider the worst-case exe-
cution times for all the activities in the system. On the other hand, the analysis
of the average behaviour, based on probabilities, which can be enabled in the
proposed patterns, as showed in [8], gives a measure of the suitability of the
design. If the dimension of the system, needed for the worst-case situation that
appears only once in a while, is far bigger than the one needed in average, that
could give useful hints for a redesign (e.g. split tasks into smaller ones in order
to spread the load onto different CPUs).
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Some other useful results the analysis of the proposed model can provide are
the release and the output jitter of tasks, which is useful for control applications,
the number of active instances of a task type, which influences the missed of
deadlines, the throughput of the system, important in streaming applications.

7. Case Studies
In this section, two case studies are presented for which worst-case analysis

and design space exploration have been performed using the modelling patterns
proposed in this work. The characteristics of the systems and the results of their
analysis follow.

A Printer Paper-Path
The first case study is inspired by a system architecture exploration for the

control of the paper-path of a printer.
The high-level view of the system model, visualised using SHESim tool, is

given in Fig. 20.9. User’s printing requests arrive at the high-level control (HLC)
of the machine which computes which activities need to take place and when in
order to accomplish the request. The HLC tasks activate the tasks representing
the low-level control (LLC) of the physical components of the paper path, like
motors, sensors, and actuators. As HLC tasks are soft real-time, whereas LLC
tasks (Fig. 20.10) are hard real-time, a rather natural solution was to consider
a distributed architecture. LLC can be assigned to dedicated processor(s) and
connected through a network to the general-purpose processor that runs HLC.

Under these circumstances, the problem was mainly to find an economical
architecture for LLC, whose task parameters are showed in Fig. 20.11. For the
models of the time-driven tasks of type T1, T3, and T4, we took into account a
latency of up to 10% of their period. Although tasks of type T2 are activated

Figure 20.9. High-level printer control POOSL model.
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Figure 20.10. POOSL low-level control model.

Task type No. of instantiations Load [instr.] T [ms] D [ms]
T1 3 3200 2 2
T2 8 1200 2 2
T3 1 2000 2 2
T4 3 800 0.66 0.1
T5 4 160 – 0.064

Figure 20.11. Low-level control task parameters.

based on notifications from HLC, they behave completely periodic until the next
notification arrives. Therefore, their dynamical behaviour was captured using an
aperiodic task which triggers a periodic task with a finite number of activations.
Tasks of type T5 are event-driven; therefore, a model of the environment was
needed (PhysicalComponents), for which we considered event streams with a
uniform distribution in [1, 20] ms.

Given the frequency of events and the task execution times, we have analysed
three commercially available low-end processors, a 40 MIPS, a 20 MIPS, and
a 10 MIPS, and compared their utilisations under different schedulers.
Figure 20.12 presents the results obtained using the earliest deadline first
scheduling algorithm [4]. Although the 10 MIPS processor seems to be used
the most efficiently (close to its maximum capacity), the analysis of the model
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Figure 20.12. CPU workload comparison.

Task type Release jitter [ms] Output jitter [ms]
T1 0.466 1.852
T2 0.466 1.852
T3 0.414 1.884
T4 0.042 0.128
T5 0.472 1.094

Figure 20.13. Tasks jitter for the 20 MIPS.

showed that some of the deadlines are missed; thus this processor is not a good
candidate. For the other two, all the deadlines are met. Due to the fast execu-
tion engine Rotalumis, tens of hours of system behaviour could be covered in
less than one minute simulation. Moreover, the analysis of the model gave the
values of the maximum release jitter, respectively output jitter of the tasks (for
the 20 MIPS they are showed in Fig. 20.13) which could be checked against
the expected margins of errors of the control design.

An In-Car Navigation System
The second case study is inspired by a distributed in-car navigation system

described in detail in [26]. The high-level view of the system is presented in
Fig. 20.14(a). There are three clusters of functionality, as the picture suggests:
the man–machine interface (MMI) that handles the interaction with the user; the
navigation functionality (NAV) that deals with route-planning and navigation
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Figure 20.14. In-car radio navigation system.

Scenario Task Load [instr.] T [s] D [s]
I T1 1E5 1/32 1/32

T2 1E5 1/32 1/32
T3 5E5 1/32 1/32

II T4 1E5 1 1
T5 5E6 1 1
T6 5E5 1 1

III T7 1E6 3 3
T8 5E6 3 3
T9 5E5 30 30

Figure 20.15. In-car navigation systems tasks.

guidance; the radio (RAD) which is responsible for basic tuner and volume con-
trol, as well as receiving traffic information from the network. Three application
scenarios are possible. Users are allowed to change the volume (scenario I) and
to look addresses up in the maps in order to plan their routes (scenario II);
moreover, the system needs to handle the navigation messages received from
the network (scenario III). Each of these scenarios has its own individual time-
liness requirements that need to be satisfied. They all share the same platform,
however, not all three of them can run in parallel due to the characteristics
of the system (only I with III, or II with III). The characteristics of tasks for
each scenario are given in Fig. 20.15. They are all periodic tasks with infinite
behaviour. Notice that, in comparison with the previous case study, the timing
requirements of this system are in the seconds domain and the loads imposed
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on the resources are much larger, as this case study combines control with data
streaming.

The problem related to this system was to find suitable platform candidates
that meet all the timing requirements of the application. For exploration of
the design space, a few already available platforms (see Fig. 20.14(b)) were
proposed for analysis. Two approaches have been applied for the analysis
of this system, Modular Performance Analysis (MPA) in [26] and UPPAAL
in [15].

MPA is an analytical technique in which the functionality of a system is
characterised at a high level of abstraction by quantifying the incoming and
outgoing event rates, message sizes, and execution times. Based on Real-Time
Calculus, hard upper and lower bounds of the system performance are com-
puted. Although these bounds are always hard, they are in general not tight,
meaning that the technique derives conservative estimates of worst and best
case.

The UPPAAL model checker is a tool for modelling and verifying networks
of timed automata. The analysis results obtained by applying this technique are
exact computations of the performance properties. Nevertheless, the method
suffers severely from the state space explosion problem. Limitations, stating
for example that tasks can be preempted only up to a certain number of times,
are necessary, otherwise model checking is not possible anymore. Moreover,
combination of scenarios with large difference in the time scale of the require-
ments (milliseconds versus seconds) proved to be another problem for the model
checker.

In the rest of this section, we show that the model of the in-car navigation
system, which can be easily built using the modelling patterns (see Fig. 20.16),
can also be accurately analysed. All the tasks in the system are event-driven,
hence we could easily use just the AperiodicTask pattern with the parameter
values showed in Fig. 20.15 for the construction of the application model,
whereas for the environment we assumed streams of events with periodic arrival
patterns. The end-to-end delay for each scenario on each of the

proposed platforms, in the presence or absence of other scenarios, was mon-
itored. The analysis shows that all the timing requirements are met for all
scenarios in all configurations. As an example, the results obtained for the
worst case end-to-end delay for different combinations of scenarios on archi-
tecture A are presented in Fig. 20.17 next to the results obtained using MPA and
UPPAAL techniques. As MPA is an analysis technique which finds hard upper
bounds, this explains why its results are larger than the other techniques. On
the other hand, the results computed by UPPAAL are exact values of the worst
case end-to-end delay. It is interesting to observe that our results are very close
to UPPAAL (∼1% difference which also represents the accuracy of the results),
except for scenario III for which the difference is 7%. For this situation, there
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Figure 20.16. POOSL model of the in-car navigation system.

Measured Other active POOSL MPA UPPAAL
scenario scenario [ms] [ms] [ms]

I III 41.771 42.2424 41.796
III I 357.81 390.086 381.632
II III 78.89 84.066 79.075
III II 171.77 265.849 172.106

Figure 20.17. Architecture A worst case end-to-end delays.

was a mismatch in the conceiving of the models with respect to the modelling
of jitter in the incoming events.

Furthermore, the processor(s) and bus(es) utilisations were monitored and,
as an example, Fig. 20.18 shows the results obtained for architecture A. All
together, such results help the designer in detecting if there is any scenario
likely to miss its deadline, or which processor or bus might be a bottleneck, and
in choosing an appropriate platform.

Due to the easiness of using the patterns and going to different configurations
in the design space by just changing their parameters, the construction of models
for each of the proposed combinations took several minutes. Moreover, as
mentioned for the previous case study as well, due to Rotalumis, the engine for
the model execution, the analysis results could be obtained also fast.
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Scen. I Scen. II Scen. III MMI % NAV % RAD % Bus %
YES NO NO 87 0 30 3
NO YES NO 3 5 0 1
NO NO YES 1 2 4 1
YES NO YES 88 2 33 4
NO YES YES 4 6 2 2

Figure 20.18. Processors and bus utilisations in architecture A.

8. Conclusions
In this paper, we have presented a library of modelling patterns, specified

using the Parallel Object-Oriented Specification Language, that enables the
automatic construction of models for the design space exploration of real-
time embedded systems. To build such models, knowledge about the POOSL
language itself is not needed as system models consisting of real-time tasks,
computation and communication resources and their associated schedulers are
specified in terms of the necessary patterns and the values of their parameters.
Due to the expressiveness of POOSL, important aspects like task activation
latencies and context switches can be taken into account, enabling the build-
ing of realistic models without sacrificing their conciseness. Moreover, due
to this reason, the analysis can provide more realistic results than the classical
scheduling techniques can.

The use of the patterns presented in this paper reduces both the modelling and
the analysis effort. Although completeness cannot be claimed, the efficiency of
the model simulation allows exploration of a substantial part of the design space.
As future work, we aim at extending the modelling patterns to cover for complex
platforms like networks-on-chip, by taking into account memory components,
routing algorithms and even batteries for the analysis of energy consumption.
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