

SOFTWARE-IMPLEMENTED
HARDWARE FAULT TOLERANCE

SOFTWARE-IMPLEMENTED
HARDWARE FAULT TOLERANCE

O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante

Politecnico di Torino - Dipartimento di Automatica e Informatica

Springer

Olga Goloubeva, Maurizio Rebaudengo,
Matteo Sonza Reorda, and Massimo Violante

Politecnico di Torino
Dip. Automatica e Informatica
C.so Duca degli Abruzzi, 24
10129 Torino, ITALY

Software-Implemented Hardware Fault Tolerance

Library of Congress Control Number: 2006925117

ISBN-10: 0-387-26060-9 ISBN-10: 0-387-32937-4 (e-book)
ISBN-13: 9780387260600 ISBN-13: 9780387329376 (e-book)

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed m the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

Preface

Processor-based systems are today employed in many applications where
misbehaviors can endanger the users or cause the loss of huge amount of
money. While developing such a kind of safety- or mission-critical
applications, designers are often required to comply with stringent cost
requirements that make the task even harder than in the past.

Software-implemented hardware fault tolerance offers a viable solution
to the problem of developing processor-based systems that balance costs
with dependability requirements but since many different approaches are
available, designers willing to adopt them may have difficulties in selecting
the approach (or the approaches) that best fits with the design's
requirements.

This book aims at providing designers and researchers with an overview
of the available techniques, showing their advantages and underlining their
disadvantages. We thus hope that the book will help designers in selecting
the approach (or the approaches) suitable for their designs. Moreover, we
hope that researchers working in the same field will be stimulated in solving
the issues that still remain open.

We organized the book as follows. Chapter 1 gives the reader some
background on the issues of fault and errors, their models, and their origin. It
also introduces the notion of redundancy that will be exploited in all the
following chapters.

Chapter 2 presents the approaches that, at time of writing, are available
for hardening the data that a processor-based system elaborates. This chapter
deals with all those errors that modify the results a program computes, but
that do not modify the sequence in which instructions are executed.

Chapter 3 concentrates on the many approaches deahng with the
problems of identifying the errors that may affect the execution flow of a
program, thus changing the sequence in which the instructions are executed.

Chapter 4 illustrates the approaches that allow developing fault-tolerant
systems, where errors are both detected and corrected.

Chapter 5 presents those approaches that mix software-based techniques
with ad-hoc developed hardware modules to improve the dependability of
processor-based systems.

Finally, chapter 6 presents an overview of those techniques that can be
used to analyze processor-based systems to identify weakness, or to validate
their dependability.

Authors are listed in alphabetic order.

Contents

CHAPTER 1: BACKGROUND
1. Introduction 1
2. Definitions 4

2.1 Faults, errors and failures 4
2.2 A taxonomy of faults 6
2.3 Classifying the effects of faults 7
2.4 Dependability and its attributes 9

3.Error models for hardware and software components 10
3.1 Error models for hardware components 10

3.1.1 Hardware-level error models 12
3.1.2 System-level error models 13
3.1.3 Hardware-level errors vs. system-level errors 15

3.2 Error models for software components 19
3.2.1 Error models at the source-code level 20
3.2.2 Error models at the executable-code level 21

4. Origin of single-event effects 22
4.1 Sources of highly energized particles 22

4.1.1 Space radiation environment 22
4.1.2 Atmospheric radiation environment 23
4.1.3 Ground radiation environment 23

4.2 Physical origin of single-event effects 24
4.2.1 Direct ionization 24
4.2.2 Indirect ionization 25

4.3 Single-event effects in memory circuits 25
4.4 SEU mechanisms in DRAMs 25
4.5 SEU mechanisms in SRAMs 27

viii Table of Contents

4.6 Single-event effects in logic circuits 28
4.7 Propagating and latching of SETs 30

5.Redundancy techniques 30
5.1 Hardware redundancy 31
5.2 Information redundancy 32
5.3 Time redundancy 33
5.4 Software redundancy 34

6. References 35

CHAPTER 2: HARDENING THE DATA
1. Introduction 37
2. Computation Duplication 3 8

2.1 Methods based on instruction-level duplication 38
2.1.1 High-level instruction duplication 38
2.1.2 Selective instruction duplication 42
2.1.3 Assembly-Level Instruction Duplication 45

2.2 Procedure-level duplication 49
2.2.1 Selective procedure call 49

2.3 Program-level duplication 54
2.3.1 Time redundancy 54
2.3.2 Simultaneous multithreading 56
2.3.3 Data diversity 57

3. Executable assertions 59
4. References 61

CHAPTER 3: HARDENING THE CONTROL FLOW
1. Introduction 63
2. Background 63
3.Path identification 70

3.1 The approach 70
3.2 Experimental results 73
3.3 Advantages and limitations 73

4.CFE detection in sequential and parallel programs 74
4.1 The approach 74
4.2 Experimental results 75
4.3 Advantages and limitations 75

5.BEECandECI 76
5.1 The approach 76
5.2 BEEC 76
5.3 ECI 78
5.4 Experimental results 78
5.5 Advantages and limitations 79

Table of Contents ix

6. Exploiting instruction level parallelism: ARC technique
6.1 The approach
6.2 Experimental results
6.3 Advantages and limitations

7.VASC
7.1 The approach
7.2 Experimental results
7.3 Advantages and limitations

8.ECCA
8.1 The approach
8.2 ECCA-HL
8.3 ECCA-IL
8.4 Experimental results
8.5 Advantages and limitations

9.Plain inter-block errors detection
9.1 The approach
9.2 Experimental results
9.3 Advantages and limitations

10. CFc via regular expressions resorting to IPC
10.1 The approach
10.2 Experimental results
10.3 Advantages and limitations

11. CFCSS
11.1 The approach
11.2 Experimental results
11.3 Advantages and limitations

12. ACFC
12.1 The approach
12.2 Experimental results
12.3 Advantages and limitations

13. YACCA
13.1 The approach
13.2 Experimental results
13.3 Advantages and limitations

14. SIED and its enhancements
14.1 The approach

14.1.1 Intra-block detection
14.1.2 Inter-block detection

14.2 Experimental results
14.3 Advantages and limitations

15. References

79
79
81
81
82
82
83
85
85
85
86
88
89
90
91
91
92
92
93
93
94
94
95
95
98
98
99
99

101
102
103
103
105
107
108
108
108
111
113
114
114

Table of Contents

CHAPTER 4: ACHIEVING FAULT TOLERANCE
1. Introduction 117
2. Design diversity 117

2.1 N-version programming 119
2.1.1 Time redundancy 121

2.2 Recovery Block 122
2.2.1 Distributed recovery block 125

3. Checkpointing 13 0
4. Algorithm-based fault tolerance (ABFT) 132

4.1 Basic technique 132
4.2 Matrix multiplication 132

4.2.1 Method description 132
4.2.2 Comments 138

4.3 FFT 138
4.3.1 Method description 139

4.4 Final comments 141
S.DupHcation 142

5.1 Duplication and checksum 142
5.1.1 Detecting and correcting transient faults

affecting data 142
5.1.2 Detecting and correcting transient faults

affecting the code 144
5.1.3 Results 145

5.2 Duplication and hamming code 147

CHAPTER 5: HYBRID TECHNIQUES
1. Introduction 153
2. Control flow checking 154

2.1 Assigned run-time signature control-flow checking 157
2.1.1 Structural integrity checking (SIC) 157

2.2 Derived run-time signature control-flow checking 159
2.2.1 Embedded signature monitoring 159
2.2.2 Stored reference 165
2.2.3 Reference program 167

3. Memory access checking 169
4. Reasonableness checking 171

4.1 Watchdog methods for special purpose applications 172
4.2 Watchdog methods for general purpose applications 172

5. Combined techniques 173
5.1 Duplication and watchdog 174
5.2 Infrastructure-IP 176

5.2.1 Support for control flow checking 178

Table of Contents xi

5.2.2 Support for data checking
5.2.3 Error detection capabilities
5.2.4 Experimental results

5.2.4.1 Analysis of fault detection capabilities
5.2.4.2 Faults affecting the code
5.2.4.3 Faults affecting the data
5.2.4.4 Faults affecting the processor

memory elements
5.2.4.5 Overhead analysis

CHAPTER 6: FAULT INJECTION TECHNIQUES
1. Introduction
2.The FARM Model

2.1 Fault injection requirements
2.2 Intrusiveness
2.3 Speed

2.3.1 Speeding-up the single fault-injection
experiment

2.3.2Reducing the fault list size
2.4 Cost

3. Assumptions
3.1 SetF
3.2 Set A
3.3 SetR
3.4 SetM

4. The fault injection environments
4.1 Simulation-based fault injection

4.1.1 Golden run execution
4.1.2 Static fault analysis
4.1.3 Dynamic fault analysis
4.1.4 Checkpoint-based optimizations

4.2 Software-implemented fault injection
4.2.1 Fault injection manager
4.2.2 Implementation issues

4.3 Hybrid fault injection
4.3.1 The fault injection interface
4.3.2 Injecting faults
4.3.3 Memory blocks
4.3.4 Applying stimuli and observing the

system behavior
4.3.5 The FI process

5. References

180
183
187
188
188
189

190
190

199
199
200
200
201

201
201
202
202
202
204
205
205
207
207
209
210
210
212
213
214
216
218
219
220
221

222
223
223

Contributing Authors

Dr. Olga Goloubeva
Politecnico di Torino - Dipartimento di Automatica e Informatica
C.so Duca degli Abruzzi 24
10129 Torino, ITALY
E-mail: olga.golubeva@polito.it

Prof. Maurizio Rebaudengo
Politecnico di Torino - Dipartimento di Automatica e Informatica
C.so Duca degli Abruzzi 24
10129 Torino, ITALY
E-mail: maurizio.rebaudengo@polito.it

Prof. Matteo Sonza Reorda
Politecnico di Torino - Dipartimento di Automatica e Informatica
C.so Duca degli Abruzzi 24
10129 Torino, ITALY
E-mail: matteo.sonzareorda@polito.it

Dr. Massimo Violante
Politecnico di Torino - Dipartimento di Automatica e Informatica
C.so Duca degli Abruzzi 24
10129 Torino, ITALY
E-mail: massimo.violante@polito.it

Chapter 1

BACKGROUND

1. INTRODUCTION

Today we are living in a world where processor-based systems are
everywhere. Sometimes it is easy to recognize the presence of a processor-
based system, like in the automatic vending machine where we can select
and buy the train ticket we need, the digital kiosks where we can post our
digital pictures for printing, as well as in the desktop or laptop computer we
have. Sometimes the presence of a processor-based system may not be so
easily recognizable, like in the electro-mechanical unit controlling the
operations of the engine or brakes of our car, the opening and closing of the
car's windows, or even the microwave oven we use to warm the dinner.

Very often, processor-based systems have been already used to
implement safety- or mission-critical applications, where any failure may
have or already had dramatic impacts in terms of loss of money or of human
lives. The recent history already recorded several cases where a problem
within processor-based systems caused dramatic outcomes, as for example
the computer-controlled Therac-25 machine for radiation therapy that caused
the massive overdose of six patients [1].

A processor-based system can be used in safety-critical applications in
several ways [2]. It may provide information to a human controller upon
request. It may interpret data and display it to the controller, who makes
decisions on them. It may issue commands directly, while a human operator
controls the operations issued by the processor-based system, with the
possibility of intervention on them. It may even replace the human control
completely.

2 Chapter 1

No matter the application scenario, the correct operations of the
processor-based system are mandatory. In case a human operator has to take
decisions on the basis of information produced by the processor-based
system, he/she has to relay on the available information. More obvious is the
case where the processor-based system is the only responsible for the
operations carried out by the system.

As a result of the widespread adoption of processor-based system in
mission- and safety-critical applications, there is an urgent need for
developing products the user can reasonably rely on.

The literature makes available several approaches to meet such a
demand, which are based on a massively use or redundant modules
(redundant hardware, and/or redundant software) [3], and which have been
developed to cope with the stringent dependability requirements of
developers of traditional mission- or safety-critical applications: control
systems for nuclear reactors, military and space applications.

Although effective in achieving the dependability requirements, these
methods are becoming very difficult to be exploited today.

On the one hand, developers of traditional mission- or safety-critical
applications have seen their budgets shrinking constantly, to the point that
commercial-off-the-shelf components, which are not specifically designed,
manufactured, and validated for being deployed in critical applications, are
nowadays mandatory to cut costs.

On the other hand, the advancement in manufacturing technologies has
set available deep-sub-micron circuits that pack tens of millions of
transistors, operates in the GHz domain, and are powered by 1 Volt power
supply, which open the frontiers for unprecedented low-cost computing
power, but whose noise margins are so reduced that the obtained products
are expected to experience (and some already are experiencing) problems
when deployed in the field, even if they are designed, manufactured, and
operated correctly. For such a kind of systems, which are intended for being
deployed in commodity sea-level applications the correct behavior has to be
guaranteed, although there are not necessarily mission- or safety-critical
systems. For such a kind of commodity applications cost is one of the
primary concerns, and therefore the techniques for guaranteeing high
dependability coming from traditional critical domains are not affordable.

Finally, developers of mission- or safety-critical applications can benefit
from the usage of commercial-off-the-shelf components not only for reasons
related to component's cost, but also for performance reason. Indeed,
commercial-off-the-shelf components are usually one generation behind
their hardened counterparts (i.e., components that are certified for being
deployed safely in critical applications), which means that they are in
general more powerful, less power demanding, etc. As a result, developer of

Background 3

mission- or safety-critical application can produce better designs by using
commercial-off-the-shelf components, provided that they have a low-cost
way to design dependable systems from unreliable components.

The quest for reducing development costs, while meeting high
dependability requirements, has seen the raise of a new design paradigm
known as software-implemented hardware fault tolerance for developing
processor-based systems the user can reasonably rely on. According to this
paradigm, commercial-off-the-shelf processors are used in combination with
specially crafted software. The processor executes the software whose
purpose is twofold. It performs the original functionalities the designers
implemented to satisfy the user's requirements, as well as monitoring
functionalities that detect, signal, and possibly correct, the occurrence of
hardware errors.

By using commercial-off-the-shelf processors, the designers can use the
state-off-the-art components that guarantee the best performance available.
Moreover, designers can cut costs significantly: commercial-off-the-shelf
components come indeed at much lower costs than their hardened
counterparts (even orders of magnitude lower). Moreover, hardware
redundancy is not used, since all the tasks needed to provide dependability
are demanded to the software.

According to this paradigm, the software becomes the most critical part
of the system, since it is its duty to supervise the correct behavior of the
whole system. On the one hand the software must be correct, i.e., it should
implement correctly the specifications. Moreover, it should be effective in
coping with errors affecting the underlying hardware.

The focus of this book is on describing the techniques available today for
developing software that are effective in detecting, signaling, and (when
possible) correcting hardware errors. The techniques needed for
guaranteeing that the software is correct are out of the scope of this book
and, although some of the techniques that will be presented can be also used
for this purpose, they are not addressed here.

This chapter aims at giving the reader the background information
needed for reading fruitfully the reminder of the book.

The chapter initially introduces some definitions. Then, it describes the
error models that are used in the following of the book, as well as the main
causes of transient faults in electronic systems. Finally, it introduces the
readers with the concept of redundancy.

The intent of this chapter is to give to the reader an introduction to the
issues that have stimulated the research community in the past years, and
which are at the basis of the techniques we will describe in the following
chapters.

4 Chapter 1

2. DEFINITIONS

2.1 Faults, errors and failures

Before exploring error models, it is important to introduce some
terminology that will be exploited in the following of the book, and that is
mainly taken from [2] and [4].

In this book we will refer to the scenario depicted in Fig. 1-1, where we
can recognize three components:
• The system, which is a physical entity that implements the functionalities

needed by one or more users. In the following of this book the system
will always be a processor-based systems, where software and hardware
entities cooperate to implement the needed functionalities.

• The user, which is the entity that interacts with the system by providing
input stimuli to the system, and by capturing and using the system's
output responses. In this book, the user may be a human being, i.e., the
user of a personal computer, as well as a physical entity, i.e., a
processing module (the user) that reads and processes the data sampled
by an acquisition module (the system).

• The environment, which is the set of external entities that may alter the
system's behavior without acting on its inputs directly.

Figure 1-1. The scenario considered in this book, and its components: the systems, the user,
and the environment

Due to the alterations induced by the environment (thermal stress, impact
with ionizing radiations, etc. .) a correct system may stop working correctly
(either permanently, or by a period of time only).

In this book we will use the tGvm failure to indicate the non-performance
or inability of a system or a system's component to perform its intended
function for a specified time under specified environmental conditions.

Background 5

Given this definition, di fault can be defined as the cause of a failure. A
fault can be dormant or passive, when it is present in a system, but the
functioning inside the system is not disturbed, or it can be active when it has
an effect on the system functioning. We refer to an active fault as an error.
An error creates a failure as soon as it is propagated from the inside of the
system to the system's outputs. As noted in [4], once a fault has been
activated as an error in one system's module, several degradation
mechanisms can propagate this error through the system's structure until the
error reaches the system's outputs, thus producing a failure. This
propagation process is conducted through error propagation paths, which
depend on the system's module where the fault originates, the structure of
the system, and the input sequence that is applied to the system.

Input

Output
^
%

. . ^
^

f

CPU

Instruction
1 cache

J jData
1 A:ache

Pi pelii le 7

1 Register file |

1 Fault f 1

1]\
Error ^" • — ^

Figure 1-2. Example of error propagation

Fig. 1-2 reports an example of how a fault may propagate within a
system up to the system's outputs. The considered system is a Central
Processing Unit (CPU), whose Input is the program the CPU is executing,
and its Output is the result of the executed instructions. In this example the
fault is originated within one register in the Register file module. As a
consequence of the program the CPU is executing, the fault remains passive
for some clock cycles, after which it propagates through the Register file and
it finally becomes active as an error when, as an example, it exits the
Register file and enters the Pipeline module. After propagating through the
different stages composing the CPU's Pipeline, the error affects the Data
cache, and finally the CPU's Output, thus becoming a failure.

The same fault can produce different errors and different failures at
different moments of the system's life. These effects depend on the fault
location, and on the activity of the system during and after the fault's

6 Chapter 1

occurrence. In particular, faults do not necessarily become errors, and errors
do not necessarily become failures. Fault propagation depends on the
structure of the system and the input sequence that is applied to the system
during its use. As an example, let us consider the code fragment reported in
Fig. 1-3.

if(RO == Rl)
result = fl(RO, Rl);

else
result = f2(RO, Rl);

Figure 1-3. A simple code fragment

Due to a fault, function f 1 is executed erroneously instead of f 2. The
following situations may be envisioned:
• The two functions f l and f2 give the same result on the basis of the

current value of RO and Rl. In this case, the fault does not become an
error, and thus the error propagation process is stopped.

• The two functions f 1 and f 2 give different results. In this case the fault
becomes an error as soon as it propagates to the variable r e s u l t , and it
can possibly propagate through the system becoming a failure.

A fault may remain passive until an error is produced in a module of the
system. The first occurrence of an error provoked by a fault is called initial
activation. The term latency is used to identify the meantime between the
fault occurrence and its initial activation as en error.

2.2 A taxonomy of faults

As suggested in [5], we can identify two types of faults: natural faults,
and human-made faults.

Natural faults are faults affecting the hardware of a system that are
caused by natural phenomena without human participation. In this type we
may have production defects, which are natural faults that originate during
development. During operation the natural faults are either internal, due to
natural processes that cause physical deterioration, or external, due to natural
processes that originate outside the system boundaries and cause physical
interference by penetrating the hardware boundary of the system (e.g.,
radiation) or by entering via use interfaces (power transients, noisy input
lines, etc.).

Human-made faults are the result of human actions, and may be omission
faults when they are originated by absence of actions (that it is not

Background 7

performed when it should be), and commission faults when wrong actions
are performed. If we consider the objective of the human interfering with the
system, we can identify two further categories for the human-made faults:
• Malicious faults, which are introduced during either system development

or during system use. The objective of who introduced malicious faults
is to cause harm to the system during its use.

• Nonmalicious faults, which are introduced in the system without
malicious intent. In this case we can find nondeliberate faults that are
caused by mistakes of which the human interacting with the system (the
developer, the operator, the maintainer) is not aware. We can also find
deliberate faults that are caused by wrong intended actions.

2.3 Classifying the effects of faults

To describe the possible impact of faults in a processor-based system, we
may refer to the following classification.

1. Effect-less fault. The fault does not propagate as an error neither as a
failure. In this case the fault appeared in the system and remained
passive for a certain amount of time, after which it was removed from
the system. As an example, let us consider a fault that affects a
variable x used by a program. If the first operation the program
performs on x after x was affected by the fault is a write operation,
then a correct value is overwritten over the faulty one, and thus the
system returns in a fault-less state.

2. Failure. The fault was able to propagate within the system until it
reached the system's output.

3. Detected fault. The fault produced an error that was identified and
signaled to the system's user. In this case the user is informed that the
task the system performs was corrupted by a fault, and the user can
thus take the needed countermeasure to restore the correct system
functionalities. In systems able to tolerate the presence of faults, the
needed countermeasures may be activated automatically. Error
detection is performed by means of mechanisms {error-detection
mechanisms) embedded in the system whose purpose is to monitor the
behavior of the system, and to report anomalous situations. When
considering a processor-based system, error-detection mechanisms can
be found in the processor, or more in general in the hardware
components forming the system, as well as in the software it executes.
The former are usually known as hardware-detection mechanisms,
while the latter are known as software-detection mechanisms. As an
example of the hardware-detection mechanisms we can consider the
illegal instruction trap that is normally executed when a processor

Chapter 1

decodes an unknown binary string coming from the code memory.
The unknown binary string may be the result of a fault that modified a
valid instruction into an invalid one. As an example of the software-
detection mechanisms we can consider a code fragment the designers
inserted in a program to perform a range check, which is used to
validate the data entered by the systems' user, and to report an alert in
case the entered data is out of the expected range. To further refme our
analysis, it is possible to identify three types of fault detections:

• Software-detected fault. A software component identified the
presence of an error/failure and signaled it to the user. As an
example, we can consider a subprogram that verifies the validity of
a result produced by another subprogram stored in a variable x on
the basis of range checks. If the value of x is outside the expected
range, the controlling subprogram raises an exception.

• Hardware-detected fault. A hardware component identified the
presence of an error/failure and signaled it to the user. As an
example, we can consider a parity checker that equips the memory
elements of a processor. In case a fault changed the content of the
memory elements, the checker identifies a parity violation and it
raises an exception.

• Time-out detected fault. The fault forced the processor-based
system in an unexpected state from which the system does not
provide any output results (examples of this state are an endless
loop, or the halt state processors usually have). This fault type can
be detected by monitoring the processor's activities, and by
signaling the occurrence idle periods longer than usual. As an
example, the occurrence of this fault type may be detected thanks to
a watchdog timer that is started at the beginning of the operations of
the processor-based system, and that expires before the system
could produce any result.

4. Latent fault. The fault either remained passive in the system, or it
became active as an error, but it has not been able to reach the
system's outputs, and thus it has not been able to provoke any failure.
As an example, we can consider a fault that modifies a variable x after
the last usage of the variable. In this case, x holds a faulty value, but
since the program no longer uses x, the fault is unable to become
active and propagate through the system. The fault/error may
transform into a failure (or any other category) later in the system's
lifetime.

5. Corrected fault. The fault produced an error that the system was able
to identify and to correct without the intervention of the user.
Corrected faults are indistinguishable from effect-less ones unless the

Background 9

system collects and transmits to its user suitable status information
informing that a fault was detected and later corrected.

At the end of the propagation process, if the error propagation has not
been stopped, the fault transforms into a failure. As a result, the system does
not deliver the expected functionality. As noted in [4], it is possible to
identify four grades of consequences of failures:
• Benign. The failure has no serious consequences on the task the system

performs.
• Significant. The task the system performs is disturbed and the efficiency

of the delivered service is reduced.
• Serious. The task the system performs is disturbed greatly.
• Catastrophic. The task the system performs is stopped with the

destruction of the controlled process, or with human injuries or deaths.

2.4 Dependability and its attributes

The term that is normally used to characterize a processor-based system
involved in safety- or mission-critical applications is dependability, for
which we can give two definitions [5]. The term dependability is defined as
that ability of a processor-based system to deliver a service that can
justifiably be trusted. Although effective, this definition mandates the
capability of justifying the trust in a system, and thus it is somewhat
subjective: one user may accept a delay of 1 second for providing a correct
answer from a system intended for responding in 100 milliseconds, while
another user may not accept this case. In this example the first user sees the
system as dependable, while the system is not dependable for the second
user. A more objective definition, which is presented in [5], states that a
system is dependable if it is able to avoid service failures that are more
frequent and more severe that is acceptable. Under this definition, being the
system of the previous example able to provide a correct answer, we can
consider it as dependable.

The dependability is a concept that integrates several attributes of a
system:
• Availability, which is the readiness for a correct service. It can be also

defined as the probability that a system is able to deliver correctly its
service at any given time.

• Reliability, which the capability of providing the continuity of a correct
service. It can be also defined as the probability of a system to function
correctly over a given period of time under a given set of operating
conditions.

• Safety, which is the capability of avoiding catastrophic consequences on
the users or the environment.

10 Chapter 1

• Integrity, which is the capability of avoiding improper alterations. As
suggested in [6], we can define two types of integrity:

1. System integrity defined as the ability of a system to detect faults in its
own operations and to inform a human operator.

2. Data integrity defined as the ability of a system to prevent damage to
its own database and to detect, and possibly correct, errors that do
occur as consequence of faults.

• Maintainability, which is the capability of undergo modifications and
repairs. Alternatively, we can define the term maintenance as the action
taken to retain a system in, or return a system to, its designer operating
condition, and the maintainability as the ability of a system to be
maintained.

3. ERROR MODELS FOR HARDWARE AND
SOFTWARE COMPONENTS

In this book we mainly consider faults and errors affecting the hardware
of a processor-based system, only. We will thus present several techniques
able to detect the occurrence of hardware faults, and when possible correct
them, before they become failures. Although our discussions are focused on
hardware faults/errors only, some of the techniques this book presents could
be used effectively to deal with software errors (e.g., bugs), too. For this
reason we will briefly outline in this section the most important error models
introduced to account for software errors.

Given the behavioral properties of a system, i.e., the knowledge about the
function the system performs, it is possible to define an error model as a set
of faults that are active and originate an error.

3.1 Error models for hardware components

In the literature several error models can be found. Some of them are
listed here, organized in several categories.

Error models can be obtained by observing the modifications faults
introduce in the values the system manipulates. In this case we have:
• Logical errors: they are characterized by transformations of logical

values. For example a '0 ' becomes a ' T, or vice versa.
• Non-logical errors: they are characterized by transformations of logical

values outside the specification domain. For example, the altered value
is between *0' and ' 1 ' .

Background 11

Other error models can be obtained by observing the time a fault needs to
alter a fault-free system, thus having:
• Static errors', they correspond to stable undesired situations. For example

the output of a gate is ' 1' instead of '0 ' .
• Dynamic errors: they correspond to transient and unstable undesired

situations. For example the output of a gate oscillates before reaching a
correct and stable value.

Moreover, other error models may be defined by observing the duration
of faults, thus having:
• Hard errors: they correspond to permanent modifications to the expected

functioning of systems. For example, the output of a gate is stuck at '0 '
o r ' l ' .

• Soft errors: they correspond to temporary modifications to the expected
functioning of systems. For example, a memory element stores a wrong
' 1' value instead of correct *0' value for one clock cycle.

Finally, we can define error-models by observing the multiplicity of
effects produced by faults in a system, thus having:
• Single errors: they disturb only one element of a system.
• Multiple errors: they disturb several elements of a system.

In order to define the hardware error models used in this book, we
adopted a two-tier hierarchical approach. At the bottom of the hierarchy lie
the hardware components implementing the processor-based system (i.e.,
memory modules, arithmetic unit, control unit, etc.). At the top of the
hierarchy we find the information the system handles: program's data, and
program's instructions. The elements of the two hierarchy levels we
considered are outlined in Fig. 1-4.

12 Chapter 1

Hardware level System level

CPU

Instruction
cache

Data
cache

Pipeliihe

Register file

LOOP

Instructions

MOV
MOV
ADD
SUB
BNZ

RO,
Rl,
Rl,
RO,

10
1
Rl
1

LOOP

Bus

Main
memory

Data
010010101001001010000
001010100100001000000
11111010101000

Figure 1-4. The elements in the two levels of our abstraction hierarchy

As far as the hardware level is considered, we consider the systems as
composed of three main elements: the central processing unit (CPU), the
main memory, and the bus connecting them. In order to analyze fault effects
more carefully, we further partition the CPU in its main components. We
adopted as a reference model that of a modern Reduced Instruction Set CPU
(RISC CPU), where the main components are: the instruction cache, the data
cache, the pipeline and the register file. Please note that the considerations
reported in the following of this chapter, although based on this reference
model, can be extended easily to different CPU's architectures, spanning
from simpler ones (like those of not-pipelined microcontrollers) to more
complex ones (like those of superscalar processors).

As far as the system level is considered, its two components are the data
the program manipulates, and the program's code.

3.1.1 Hardware-level error models

When considering the system's hardware we can define hardware-level
error models, no matter which type of function the hardware implements. In

Background 13

this book we consider the following hardware-level error models that can be
described as a combination of the previously introduced ones:
• Single stuck-at: it is defined as logical, hard and single error resulting

from hardware faults that affect system's components. As an example,
let us consider the system component C depicted in Fig. 1-5 having one
out Cout and one input Cm. In case a single stuck-at affects the
component, C may have Cout permanently stuck either at 1 or at 0, and
the same may happen to its input Cin.

• Single bit-flip: it is defined as logical, soft and single error resulting from
hardware faults that alter one of the system's memory elements. When
the memory element is affected by the bit-flip its content is changed
from 1 to 0 or vice-versa.

Cin C Cout

Figure 1-5. A simple component of the system

Hardware faults leading to single stuck-at errors are well known, and
discussions about them can be found in [7]. Conversely, hardware faults
causing single bit-flips, known as single-event effects, are relatively new,
and they are becoming of great interest today due to the evolution of
semiconductor manufacturing technologies [8]. For these reasons, we leave
the discussion of hardware faults causing stuck-at to other texts (like [7]),
and we will address in the sections 4, and 4.3 single-event effects, only.

3.1.2 System-level error models

When considering the information the system handles we can identify the
following system-level error models:
• Single data error, it is defined as a single logical error affecting the

program's data stored in the system. Please note that this definition does
not consider the location in the system where the data are actually
stored: they may be stored either in the system's main memory, or in the
processor's data cache, or in the processor register file.

• Single code error, it is defined as a single logical error affecting one
instruction of the program's code. As previously done, we do not
consider where the erroneous instruction is located within the system: it

14 Chapter 1

may either be in the system's main memory, or in the processor's
instruction cache, or in the processor's pipeHne. In order to model
accurately the errors that may affect one instruction of the program's
code, we defined two types of code errors:

o, o,
o o Error-free

LOOP

MOV
MOV
ADD
SUB
BNZ

RO,
Rl,
Rl,
RO,

code

10
1
Rl
1

LOOP

o, g.
0 O Erroneous

LOOP

MOV
MOV

: SUB
SUB
BNZ

RO,
Rl.
Rl,
RO,

code

10
1
Rl
1

LOOP

Figure 1-6. Example of system-level code error of type 1, where an ADD instruction is
modified in a SUB instruction. The hardware-level error modified the code of the original
instruction in such a way that it was transformed in another-one, but no change to the program
flow is introduced.

• Type T. it is defined as a single code error that modifies the operation
the instruction executes, but that does not change the expected
program's execution flow. Examples of this error model are reported
in Fig. 1-6 and Fig. 7-7: a first example is given where an ADD
instruction is replaced with a SUB one, and a second example is given
where the addressing mode of the instruction is changed from an
immediate addressing to a direct addressing. We remark that in both
the examples, the expected program's execution flow is not modified.

o, g,
o o Error-free

LOOP:

MOV
MOV
ADD
SUB
BNZ

RO,
Rl,
Rl,
RO,

code

10
1
Rl
1

LOOP

"6 "6 Erroneous

LOOP:

MOV
MOV
ADD
SUB
BNZ

RO,
Rl,
Rl,
RO,

code

10
1
[Rl]
1

LOOP

Figure 1-7. Example of system-level code error of type 1, where the addressing mode of an
ADD instruction is modified. The hardware-level error modified the code of the original
instruction in such a way that it was transformed in another-one, but no change to the program
flow is introduced.

Type 2\ it is defined as a single code error that modifies the expected
program's execution flow. Examples of this error models are reported
in Fig. 1-8 and l-9\ a first example is given where the displacement

Background 15

field of a branch instruction is changed, and a second example is given
where the condition upon which a conditional branch is taken is
changed.

%% Error-free code

MOV RO, 10
MOV Rl, 1

LOOP: ADD Rl, Rl
SUB RO, 1
BNZ LOOP

%% Erroneous code

MOV RO, 10
MOV Rl, 1

LOOP: ADD Rl, Rl
SUB RO, 1
BNZ elsewhere

Figure 1-8. Example of system-level code error of type 2, where the target address of a
branch is changed. In this case, the hardware-level error modified the code of the original
instruction in such a way that the expected program's execution flow is changed.

%% Error-free code

MOV RO, 10
MOV Rl, 1

LOOP: ADD Rl, Rl
SUB RO, 1
BNZ LOOP

%% Erroneous code

MOV RO, 10
MOV Rl, 1

LOOP: ADD Rl, Rl
SUB RO, 1
BZ LOOP

Figure 1-9. Example of system-level code error of type 2, where the branch condition of a
conditional branch is changed. Again, the hardware-level error modified the code of the
original instruction in such a way that the expected program's execution flow is changed.

3.1.3 Hardware-level errors vs. system-level errors

Although the software techniques to harden processor-based systems
presented in the following of this book aims at detecting, and when possible
correcting, hardware-level errors, they have been developed by researchers
reasoning on system-level errors. System-level errors are an abstraction of
hardware-level errors that simplify the task of researchers that can work to a
level closer to that of programs and programs' data, while still providing a
good modeling accuracy: in most cases system-level errors correspond
indeed to hardware-level ones.

As an example, let us consider a hardware-level single bit-flip affecting
the memory elements of a processor-based system. The following situations
can be envisioned, depending on the affected components.
• System's main memory. The main memory of a processor-based system

is normally organized in at least three segments: the data segment

16 Chapter 1

(storing program's data), the code segment (storing program's
instructions), and the stack segment (storing the program's stack).
According to the segment the single bit-flip affects, we can identify the
corresponding system-level errors. The possibilities are:

• Data segment, the hardware-level single bit-flip error in the memory
area storing the data segment corresponds to a system-level single data
error.

• Code segment: the hardware-level single bit-flip error in the memory
area storing code segment corresponds to a system-level single code
error. It may be either of type 1 or of type 2 depending on the location
of the bit-flip in the instruction. As an example of a hardware-level
single bit-flip producing a system-level code error of type 1, let us
consider Fig. 1-10. In Fig. 1-10 the format of a SPARC v9 data-
manipulation instruction is reported, where the field named rd is a
binary code that specifies which register in the register file is affected
by the instruction. Any hardware-level single bit-flip changing the rd
value produces a system-level single code error of type 1, since it
changes the register the instruction affects, without changing the
expected program's execution flow.
To illustrate an example of a hardware-level single bit-flip
corresponding to a system-level code error of type 2, let us consider
Fig. 1-11, where the format of a SPARC v9 branch instruction is
reported. The field named disp30 is a binary code specifying the
relative address where the program execution should continue. Any
hardware-level single bit-flip in this field will modify the expected
program's execution flow, thus corresponding to a system-level code
error of type 2.

31 29 24 21 0

op r d op2 imm22

Figure 1-10. The format of a data-manipulation instruction according to the SPARC v9
instruction set

Background 17

31 29 0

op d i sp30

Figure 1-11. The format of a branch instruction according to the SPARC v9 instruction set

• Stack segment the hardware-level single bit-flip error in the memory
area storing stack segment corresponds either to a system-level data
error (in case the affected memory location corresponds to data
exchanged between procedure calls or temporary variables), or to a
system-level code error of type 2 (in case the affected memory
location corresponds to an address stored in the stack by a procedure
call).

• Processor's data cache. Similarly to what happened for the memory's
data segment, any hardware-level single bit-flip error in the data cache
corresponds to a system-level data error.

• Processor's instruction cache. Similarly to what happened for the
memory's code segment, any hardware-level single bit-flip error in the
instruction cache corresponds to a system-level code error either of type
1 or of type 2.

• Processor's register file. Hardware-level single bit-flip errors may
correspond to the following types of system-level errors, depending on
the affected register, as well as the processor's architecture:

• Single data error, in case the bit-flip affects a register storing the data
the program elaborates.

• Single code error of type 1, in case the register contains an address
used by a load/store instruction.

• Single code error of type 2, in case the register contains the address of
a branch target.

• Processor's control registers. Hardware-level single bit-flip errors
affecting processor's control registers may correspond to any type of
system-level errors. We may have:

• Single data error in case the bit-flip modifies a temporary register used
by computations, or a forwarding register used by a pipelined
computing unit. As an example, let us refer to Fig. 1-12, which reports
the conceptual architecture of a RISC CPU, showing the layout of the
CPU pipeline's five stages. In this architecture, registers named Opl,
Op2, m. r e s u l t , and w. r e s u l t store the operands and the results
needed and produced by data-manipulation instructions. Any
hardware-level single-bit flip in these registers corresponds to a
system-level single data error since it affects program's data.

Chapter 1

Single code error of type 1 in case the bit flip modified the processor's
instruction register, or a boundary register within the pipeline storing
the instruction code. Examples of this correspondence can be found in
Fig. 1-12 by considering the hardware-level single bit-flip in the
registers named d . i n s t r , e . i n s t r , m . i n s t r , and w . i n s t r which
contain the binary code of the instructions in the CPU's pipeline.
Some of these hardware-level errors (i.e., all those bit-flips that do not
transform a data-manipulation instruction in a branch one, or a branch
one in a different one) correspond to system-level code errors of type 1
since they affect, and possibly change, the instructions that the CPU
executes.

Fetch

Decode

Execute

Memory

'"write""

Instruction

cache

d.instr

e.instr

m.instr

w.instr

Branch

Unit

j f .pc

d.pc

e .pc

m.pc

w.pc

Op 1 Op 2

LJ
ALU

m.result

w.result

Register

File

Data
cache

Figure 1-12. Conceptual architecture of a RISC CPU

Single code error of type 2 in case the bit-flip modifies the instruction
register, or a boundary register of the pipeline, changing the target of a
branch, or the condition of a conditional branch. The same type or error
may be produced by bit-flip in the processor's status word, or in the
program counter. Example of this type of hardware-level errors can be
found in Fig. 1-12 by considering the registers named d . i n s t r .

Background 19

e . i n s t r , m . i n s t r , and w . i n s t r , and those named f .pc , d .pc,
e .pc , m.pc, and w.pc. The former may be subject to hardware-level
single bit-flips that change data-manipulation instructions in branch
ones, or that change the register's bits defining upon which condition the
branch should be taken or not. The latter may be subject to hardware-
level single bit-flips that modify the processor's program counter. In
both cases, these hardware-level errors correspond to system-level code
errors of type 2.

When needed, in the following of this book we will discuss the
capabilities of software detection and correction techniques in terms of
system-level errors, and when required we also provide hints on the
corresponding hardware-level errors.

3.2 Error models for software components

Although this book addresses specifically hardware faults, some of the
techniques that will be presented in the following chapters are useful to cope
with software faults, too. For this reason we present here a brief discussion
about error models for software components.

The general error models introduced in section 3.1 for hardware
components are applicable to software components, too; in particular, the
following parameters are relevant:
• Static or dynamic errors. In order to describe this type or error, let us

refer to an example taken from [4]. Let us consider a system which
handles sampled data coming from a sensor, which acquires a new input
value every 10 ms and stores it in a variable called x. If the program that
implements the sampling function sets x to a null value at the end of the
usage of the last sampled value, the variable x will store an incorrect
value until a new sample is acquired. This is an example of dynamic
error since the variable x stores an incorrect value only for a limited
amount of time, after which its value becomes correct as a new sample is
acquired. An example of a static error would be an erroneous analog to
digital conversion that would store a wrong value in x.

• Permanent or temporary errors. Let us consider a multi-tasking
environment, where a task Tl uses a shared variable x written by a
second task T2 [4]. When the program execution starts, x is not assigned
to a correct value. If T2 assigns to x a correct value before Tl reads it,
no problems occur. Conversely, if Tl reads the value before is has been
assigned by T2, an error occurs. If the tasks Tl and T2 are cyclically
executed, the error disappears at the next cycle (after x has been assigned
by T2). Conversely, if ;c is read by Tl only once, the error is permanent.

20 Chapter 1

• Single or multiple errors. Single errors are errors that affect only one
element of the software component [4]. The term element depends on
the model used to describe the component. At the programming level, it
may be a variable, or a function. At the system level, it may be an object,
or a resource. Conversely, multiple errors occur when several elements
are affected.

3.2.1 Error models at the source-code level

A program is a structure made up of an assembly of features provided by
a language. These features are defined by their syntax, allowing fault models
to be expressed, and their semantics specifying their behavior.

The negation of the properties associated with the semantics of a
programming language defines an error model: negating the language's
semantic is indeed general and it is applicable to any program independently
from its fimctionality. The following five examples, taken from [4], can be
used to clarify this issue.
• Let us consider a programming language that defines functions, and well

as procedures. Both are subprograms, but the former is expected to
return a value, accordingly with the language's semantic, while the latter
is not expected to return a value. In this case, a possible error is a
ftmction that does not return a value. Several faults may be at the origin
of this error. It may be a human-made omission fault due to the
negligence of the programmer: the programmer forgot to write the return
statement. It may also be an external natural fault: the return statement
may exist, but a fault resulted in a control flow path that does not
conclude the execution of the function with the execution of the
expected return statement.

• An input parameter of a subprogram is not assigned by an actual value at
subprogram call. As an example, this error occurs if a call push (X) is
called with a non-initialized value of x. Similarly, this error may be the
result of either a human-made fault or a natural fault.

• An output parameter of a subprogram is not assigned at the subprogram
body execution completion. For instance, no value is returned in Y after
the execution of pop (&Y). As before, this may be due to the negligence
of the programmer, or due to the environment.

• A variable whose type is constrained is assigned by a value not belonging
to the range specified by this type. In this case, the error is likely to be
caused by the programmer.

• A first task calls the service of a second task that does not exist. This
occurs when the second task was not previously created or if, when

Background 21

being created, it was then terminated. The potential faults that are at the
origin of this last error are many:

• The source program design explicitly express that the second task
must be completed before the call.

• The second task was terminated due to an error raised during its
execution.

• The second task was unintentionally terminated by another task.
Some researchers analyzed the properties of a given programming

language, and identified a set of error models at the source-code level. As an
example, [9] reports a study of the C language, and proposes the following
error models that the programmer may introduce into a program:
• Errors affecting assignments: it is provoked either by missing or wrong

local variable assignments.
• Errors affecting conditional instructions: it is provoked by one of the

following faults:
• An assignment statement is coded instead of a comparison one (e.g.,

i f (a=b) instead of i f (a==b)).
• A wrong Boolean function is coded (e.g., i f (a<b) instead of

i f (a<=b)).
• A wrong number of iteration is coded (e.g., whi le (a<b) instead of

whi le (a<=b))).
• Errors affecting function call/return: it is provoked by one of the

following faults:
Coding of the wrong usage of parameters in function calls.
Omission of the needed r e t u r n statement.
Coding of the wrong r e t u r n statement.

Errors affecting algorithms: it is provoked by one of the following faults:
Miss aligned else due to erroneous use of parenthesis.
Usage of binary operators instead of logical ones (e.g., a & b instead
of a && b).
Coding of wrong Boolean expressions due to erroneous use of
operator's precedence.
Missing statements.
Missing function calls.

3.2.2 Error models at the executable-code level

As before, the error models highlight the violations of expected
properties, which now concern the executable code. As example of such a
kind of error models, we may refer to the case where the execution of a
subprogram is not terminated by a return instruction. This instruction is
mandatory to restore the caller context. Several causes can be at the origin of

22 Chapter 1

this error. For instance, it may be due to the execution of a jump instruction
of the subprogram body whose associated address was corrupted. The fault
that provoked such a situation may be:
• A bad expression used to calculate the branching address due to a

compiler failure.
• A bad constant address coming from an erroneous memory word where

this data is stored.
The execution stack overflow is a second example of this error model. A

stack is used at runtime to manage subprogram calls, to handle interruptions,
etc. Various faults can be at the origin of this class of errors:
• Infinite recursion of a subprogram due to bad design or programming.
• Bad assessment of the stack memory size due to the compiler whose

generated code does not optimize the stack use, or the runtime execution
environment (e.g., the operating system) that does not master correctly
the dynamic memory allocation.

4. ORIGIN OF SINGLE-EVENT EFFECTS

Single-event effects arise when highly energized particles present in
natural space environment strike sensitive regions of circuits. Depending on
several factors, the particle-strike may cause no observable effect, a transient
disruption of circuit's operation, a change of logic state, or a permanent
damage to the integrated circuit [10].

In Sub-section 4.1, we will describe the source of highly energized
particles, while in Sub-section 4.2 we will describe the physical origin of
single-event effects.

4.1 Sources of highly energized particles

The sources of highly energized particles can be classified in different
ways, depending on where the system is deployed. We can consider three so-
called radiation environments', space, atmospheric, and ground radiation
environments [11].

4.1.1 Space Radiation Environment

The space radiation environment is composed of two types of particles:
particles trapped by planetary magnetospheres in "belts", which include
protons, electrons, and heavier ions, and transient particles that include
protons and heavy ions of all the elements of the periodic table. The transient
particles belong to transient radiations, which consist of galactic cosmic ray

Background 23

particles and particles from solar events, such as coronal mass ejection and
flares. These two types of solar eruptions produce energetic protons, alpha
particles, heavy ions, and electrons [11].

Table 1-1 reports the maximum energies of particles that can be observed
in the space radiation environment. Energies are expressed by using the eV
(electron volt unit of measure). By definition, a single electron that is
accelerated though a potential differential of one volt gains a kinetic energy
of 1 eV, which is equivalent to 16-10"̂ ^ joules.

Table 1-1. Maximum Energies of Particles
Particle Type Maximum Energy
Trapped Electrons
Trapped Protons and Heavy Ions
Solar Protons
Solar Heavy Ions
Galactic Cosmic Rays

lOMeV
100 MeV
IGeV
IGeV
ITeV

As remarked by the authors of [11], the space radiation environment is
composed of particles with very high energy, and therefore shielding may
not be effective in protecting circuits.

4.1.2 Atmospheric radiation environment

When cosmic ray and solar particles enter the Earth's atmosphere, they
are attenuated by interactions with atoms of nitrogen and oxygen. The
attenuation process produces protons, electrons, neutrons, heavy ions,
muons, and pions. Among them, the most important ones are neutrons,
which are present in measurable quantities starting from 330 Km of altitude.
Their density increases with decreasing altitude, and it reaches its peak
density at about 20 Km of altitude. Below than 20 Km, the neutron density
starts to decrease, and at the ground level its density is about 1/500 of the
peak one [12].

The maximum energy observed for the particles in the atmospheric
radiation environment is about some hundreds of MeV.

4.1.3 Ground radiation environment

At the ground level both natural and man-produced radiations are
present. Beside nuclear facilities, the most important source of radiations are
galactic cosmic rays, which are capable of inducing single event effects.

Cosmic radiation at the ground level is the product of several generations
of interactions of galactic cosmic rays and solar particles in the atmosphere.
The density of radiations is strictly related with the 11 -year solar cycle that

24 Chapter 1

modulates the density of galactic cosmic rays, and it can increases up to
5000% during large solar events.

4.2 Physical origin of single-event effects

Radiations can interact with materials producing two types of
interactions: atomic displacement and ionization. The former corresponds to
modifications to the structure of struck materials, which may show for
example displaced atoms, and it is out of the scope of this chapter.
Conversely, the latter corresponds to the deposition of energy in the struck
materials [13], and it is focused in this chapter.

Ionizing radiations may interact with a circuit through two methods:
direct ionization by the particle that strikes the circuit, or ionization by
secondary particles created by nuclear reactions between the incident
particle and the struck circuit. Both methods are critical, since both of them
may produce malfunctions to the struck circuit [10].

4.2.1 Direct ionization

When an energetic particle passes through a semiconductor material it
frees electron-hole pairs along its path, and it loses energy. When all its
energy is lost, the particle rests in the semiconductor, after having traveled a
path length that is known as particle's range. The term that is often used to
describe the energy loss per unit path length of a particle as it passes through
a material is linear energy transfer (LET). The unit of measure of LET is
MeV/cmVmg: the energy loss per unit path length (whose unit of measure is
MeV/cm) is indeed normalized by the density of the traversed material
(whose unit of measure is mg/cm^) so to be able to express the LET
independently by the traversed material. The LET of a particle can be related
quite easily to the charge it deposits into the traversed materiale. In silicon,
an LET of 97 MeV/cmVmg deposits a charge of 1 pC/|um.

Direct ionization is the primary charge deposition mechanism for upsets
caused by heavy ions (i.e., any ion with atomic number grater then or equal
to two) [10]. Lighter particles such as protons do not usually produce enough
charge by direct ionization to cause single-event effects. However, recent
studies showed that as devices become smaller and thus more sensitive to
particles, single-event effects due to direct ionization by means of protons
are possible [14][15].

Background 25

4.2.2 Indirect ionization

Indirect ionization is the primary mechanism through which Hght
particles, such as protons and neutrons, may produce single-event effects. As
a high-energy proton, or a neutron, enters a semiconductor lattice it may
have an inelastic collision with atom's nucleus, provoking one of the
following nuclear reactions: elastic collision that produces silicon recoils, the
emission of alpha or gamma particles and the recoil of a daughter nucleus,
and spallation reactions, in which the target nucleus is broken into two
fragments, each of which can recoil. Any of these reaction products can
deposit energy along their paths by direct ionization. Because these particles
are much heavier than the original proton or neutron, they deposit higher
charge densities as they travel the semiconductor, and therefore they may be
capable of causing single-event effects [10].

4.3 Single-event effects in memory circuits

Single-event effects in memory circuits have the macroscopic effect of
changing the content of a memory bit, provoking the so-called Single Event
Upset (SEU). When ionizing radiations hit a memory circuit, the injected
charge may indeed change the status of one bit that flips either from 1 to 0,
or vice versa.

The SEU generation mechanisms are different depending on the
memory's technology. Section 4.4 presents how SEUs may be generated
within dynamic random access memories (DRAMs), which usually are the
building blocks of the main memory in processor-based systems.
Conversely, section 4.5 presents the generation mechanisms for static
random access memories (SRAMs), that are the building blocks for the
memory elements processors embed for implementing instruction and data
caches, register file, and internal registers (control registers, pipeline
boundary registers, etc.).

4.4 SEU mechanisms in DRAMs

As explained in [10], DRAM technology refers to the broad class of
information storage devices, usually one-transistor designs, which store
passively packets of charge to represent binary information. The key to
understand the SEU generation mechanisms in DRAMs is that the
information storage is passive (indeed no active information regeneration
path exists), and any disturbance of any magnitude of the stored information
provoked by ionizing radiations is persistent until it is corrected by a new
write operation. In DRAMs there is no inherent refreshing of this charge

26 Chapter 1

packet, and no active regenerative feedback exists. As a result, a
degeneration of the stored charge packet corresponding to a signal level
outside the noise margin of the read circuit is sufficient to lead to erroneous
interpretation of the stored information.

Two parameters are related to DRAM SEUs: the noise margin associated
with a bit signal and a critical time window (since DRAM is a dynamic
circuit, its sensitivity to SEUs changes with time). The noise margin is
related with the concept of critical charge, igcrit- QQXM is usually defined as the
minimum amount of charge collected at a sensitive node that is necessary to
cause a circuit to change its state (i.e., to upset).

Single-event
strike

Storage
capacitor

Figure 1-13. A cell of a DRAM array and its SEU generation mechanism.

The most prevalent SEU source in DRAMs is the single-event charge
collection within each binary cell forming the DRAM array. These cell
errors are caused by a single-event strike in or near either the storage
capacitor or the source of the access transistor, as shown in Fig. 1-13. Such a
strike affects directly the stored charge and the information integrity by the
collection of induced charge. A cell upset due to charge collection is usually
observed as a 1 to 0 transition [16]. A further effect known as ALPEN [17]
was later observed, which consists in the shunting of charge onto the storage
capacitor. Thus a 0 to 1 transition can also be introduced by single-event
strike.

SEUs can also occur in DRAMs due to bit-line strikes. When bit-lines are
in a floating voltage state (e.g., due a read cycle), DRAMs are sensitive to
the collection of charge into diffusion regions that are electrically connected
to the bit line. This collection could arise from any of the access-transistor
drains along the bit-line length or from a direct strike to the differential sense

Background 27

amplifier. The bit-line SEU mechanism is the reduction of the sensing signal
due to a charge imbalance introduced on the precharged bit lines, either prior
to or during the sensing operation [10] [18].

Bit-line strikes are only possible during the floating precharge and
sensing stages of operation, and therefore temporal characteristics of the
strike in relation to the clocking of the DRAMs are critical. Because the duty
cycle of these stages to the overall cycle time increases with increasing the
overall clock frequency, the bit-line soft error rate is inversely proportion to
DRAM cycle time. Conversely, cell upsets are independent of the DRAM
cycle time. Bit-line errors also show a strong inverse correlation with the
signal charge. As chip densities and speeds grow, bit-line errors are expected
to be increasingly important [10].

A different failure mode was observed in 1988, due to a synergetic effect
of bit-line and storage cell charge collection [19]. Both processes
individually resulted in less charge collection than gcrit, but the combined
effect during a read operation caused an error. This effect, called combined
cell-bit line (CCB) failure mode, was shown to dominated both the cell and
bit-line error components at very low cycle time.

Another very important factor in determining the SEU sensitivity of
DRAMs is the storage cell technology [20].

4.5 SEU mechanisms in SRAMs

The SEU generation mechanisms in SRAMs is quite different from
DRAMs, due to the active feedback in the cross coupled inverter pair that
forms a typical SRAM memory cell, as shown in Fig. 1-14, When ionizing
radiations strike a sensitive location in a SRAM (typically the reverse-biased
drain junction of a transistor biased in the "off state, the "off n-channel
transistor in Fig. 1-14), charge collected by the junction results in a transient
current in the struck transistor. As this current flows through the struck
transistor, the restoring transistor ("on" p-channel transistors in Fig. 1-14)
sources current in an attempt to balance the radiation-induced current. The
restoring transistor has a finite amount of current drive, and a finite channel
conductance. Current flow through the restoring transistor therefore induces
a voltage drop at its drain. This voltage transient in response to the single-
event current transient is actually the mechanisms that can cause SEU in
SRAM cells. The voltage transient is similar to a write pulse and can cause
the wrong memory state to be latched into the memory cell.

28 Chapter 1

"on" p-channel
restoring transistor

Single-event
strike

"off" n-channel
strucktransistor

Figure 1-14. A cell of a SRAM array and its SEU generation mechanism.

SRAM cells have four possible sensitive strike locations corresponding
to the four transistors' drains interior to the SRAM circuit [10].

4.6 Single-event effects in logic circuits

Due to the dramatic shrinking of devices' feature size, the reduction of
power supply, as w êll as the increase of operating frequency, the noise
margin of today logic circuits is extremely reduced. Although these
technology advancements can be beneficial from the performance point of
view (more transistor can be fit in a die, allowing systems performing more
functions, quicker, and with less power consumption) they can have
dramatic drawbacks from the dependability point of view.

In a logic circuit charge collection due to a single-event strike may
generate a low-to-high or high-to-low voltage transition on a circuit line.
This transition is known as Single Event Transient (SET), and it may
provoke circuit misbehaviors in case its magnitude is compatible with the
circuit's voltage swing.

A SET is originated when highly energized particles strike a sensible area
within a combinational circuit. In deep sub-micron CMOS devices, the most
sensible areas are depletion regions at transistor drains [21]. The particle
strike produces several hole-electron pairs that start to drift under the effect
of the electric field. As a result, the injected charge tends to change the state
of the struck node with a short voltage pulse. As the depletion region is
reformed, the charge-drift process decays, and the expected voltage level at
the struck node is restored.

Background 29

In deep sub-micron circuits the capacitance associated to circuit nodes is
very small, therefore non-negligible disturbances can be originated even by
small amounts of deposited charge, i.e., when energized particles strike the
circuit. Considering a typical deposited charge of 3 pC and a node
capacitance of 4 pF, we have that the largest possible voltage disturbance is
0.75 Volt [21]. In old 5 Volt CMOS technologies, the magnitude of the
voltage swing associated to a SET is about 15% of the normal voltage swing
of the node and thus its impact is quite limited, in terms of both duration and
magnitude. Conversely, if the technology is scaled to a 3.3 Volt one, the
disturbance becomes 22% of a normal swing and thus the transistor that
must restore the correct value of the struck node will employ more time to
suppress the charge-drift process. Given the considered figures of deposited
charge and node capacitance, SET effects on a 1.8 Volt technology will be
certainly critical [21]. In very deep sub-micron technologies SET effect may
become a critical issue since the duration of the SET-induced voltage pulse
may become comparable to the gate propagation delay and thus the voltage
pulse may spread throughout the circuit, possibly reaching its outputs. Two
consequences may be produced:

• The affected outputs control the clock or the asynchronous reset/preset
signals of a number of flip-flops. As a result, the SET is immediately
latched by the affected memory elements that change their state.

• The affected outputs are sampled by memory elements thus provoking
effects similar to those of SEUs. As described in section 4.7, the latching
of a SET depends by several factors.

As measurements reported in [21] show, SET can be conveniently
modeled at the gate level as erroneous transitions (either from 0 to 1 or from
1 to 0) on the output of combinational gates. An example of SET is depicted
in Fig. 1-15.

1/0/1

1/0/1

Figure 1-15. An example of Single Event Transient

The circuit primary inputs are set to 1, thus the expected output value is 1
on both g4 and g5 outputs. When g3 is struck by a particle with sufficient
energy, its output switches to 0 for a period of time long enough for the

30 Chapter 1

spurious transition to propagate through the outputs gates. As a result, we
observe a transition on both g4 and g5, whose outputs are set to 0. As soon
as the SET effects disappear, the outputs switch back to the expected value.

4.7 Propagating and latching of SETs

Following the terminology introduced in [22], the occurrence,
propagation and latch of a SET on a node « to a latch / depends on three
factors:
• RsEE(n), which is the probability that a single event having enough energy

to produce a SET (which is compatible with the circuit voltage swing)
affects the node n. This depends on the device characteristics of the gate
driving node n, the amount of capacitance at node n, as well as the
sensitive area of node n.

• Psensitized(n,l), which is the probability that at least one path in the circuit
from node n to latch / is sensitized, i.e., the SET is free to propagate
from the struck node to the latch without being blocked. Whether or not
node n is sensitized to latch 1 depends on the input pattern being
applied. Thus, the probability that node n is sensitized to latch 1 depends
on the probability of each input pattern being applied to the circuit while
it is operating.

• Piatched(f^J), which is the probability that the SET on n is lacthed by /. In
order to be captured in latch /, the SET must arrive at the latch during
the latching-window in time. The probability of the pulse being present
during the latching-window depends on the width of the SET relative to
the clock period, and therefore on the amount of the particle's energy.

The sensitivity of a node n with respect to latch / can be expressed as the
product of the above terms:

Sensitivity(n, I) =RsEE(n) -Psensitizedin, I) -Piatchedin, I) (1)

5. REDUNDANCY TECHNIQUES

All the available techniques to cope with the detection and possibly
correction of errors are based on adding to the system some functionalities
that are not strictly needed for satisfying the user whishes, i.e., the added
functionalities are not involved in carrying out the duties the user demands
to the system. The added functionalities' only purpose is to guarantee that
any error affecting the system will not harm the system's user, and they will
take care of guaranteeing that the system continues to work at least safely if
not correctly.

Background 31

The term that is used to identify the functionahties added to these
purposes is redundancy, and when used it usually implies the addition of
information, resources or time to the system beyond that is needed for
normal system operations [3].

Before proceeding with a discussion of the different types of redundancy
one can adopt while providing to a system the capabilities for detecting, and
correcting possible errors, it is important to remark that redundancy always
implies additional costs. Redundancy is not used to implement the
operations the system is supposed to perform; conversely, redundancy is
used to guarantee that the intended system's functions are performed safely,
or correctly even in the presence of errors that may, or may not happen. This
implies that, when the occurrence of errors has to be taken into account, the
system's user has to pay some extra costs.

In case hardware or information redundancy is used, the user has to pay
an extra cost consisting in additional hardware resources that are needed to
implement the system.

In case time redundancy is used, the extra cost consists in additional time
needed for carrying out the operations the system performs.

5.1 Hardware redundancy

Hardware redundancy consists in the physical replication of the hardware
components of a system. Three approaches have been proposed to
implement hardware redundancy:

Input

Module 1

Module 2

Module 3

Output

Figure 1-16. The concept of Triple Modular Redundancy

Passive redundancy, which relies upon a voting mechanism to mask the
occurrence of errors in a system. A conceptual representation of passive
redundancy is presented in Fig. 1-16, where three identical versions of
the system that needs to be protected against errors are connected to a
majority voter. This basic concept, known as Triple Modular
Redundancy (TMR), exploit a majority voter to decide the system's

32 Chapter 1

output on the basis of the outputs produced by three identical modules. It
one of the module is faulty, the majority voter is still able to decide the
system's output by relying upon the two fault-free modules. Passive
redundancy is normally used to provide tolerance to errors: since the
voter masks errors, they never reach the system's output, which is
always correct.

• Active redundancy splits the problem of tolerating errors in three phases:
error detection, error location, and error recovery. The major difference
with respect to passive redundancy is that active redundancy does not try
to mask errors. This implies that the output of the system may be
erroneous while the system is trying to detect, locate and correct the
error. An example of active redundancy is the approach known as
standby sparing: the system is composed of one operating module, and
one or more spare modules. As soon as an error has been detected and
localized in the operating module (no matter which fault detection, and
location approach is used) the operating module is replaced with one of
the spares. The switching between the faulty operating module and one
of the fault-free spares implements the recovery phase needed to restore
the correct operations. Sparing can be either cold or hot. In cold standby
sparing spares are idle, and the selected spare is powered up only when
it is needed to replace the faulty operational module. During the
switching, the service delivered by the system is momentarily disrupted.
In case the recovery time needs to be minimized the hot standby sparing
can be exploited. According to this approach, the spares are powered up
and work in parallel to the operating module. As soon as the operating
module produces an error, one of the spares can immediately replace it.

• Hybrid redundancy combines passive and active redundancy. Error
masking is used to inhibit the system to produce erroneous output, while
error detection, location and recovery are used to restore the faulty
module to a fault-free state.

5.2 Information redundancy

Information redundancy consists in adding redundant information to a
data to allow error detection, masking and possibly tolerance [3].
Information redundancy is based on the concept of code, which is a mean to
represent data using a self-defined set of rules. A piece of data represented
according to the rules of a code is known as codeword, which me be valid in
case it adheres to all the rules the code defines, or invalid in case it violates
at least one of the code's rules. Given a piece of data, the encoding operation
translates it in a valid codeword. Conversely, the decoding operation
translates a codeword in the corresponding piece of data.

Background 33

By selecting the proper rules, it is possible to define:
• Error-detecting codes, which allow detecting the occurrence of errors by

forming a codeword in such a way that any error affecting it transforms
a valid codeword in an invalid one.

• Error-correcting codes, which allow identifying from an invalid
codeword the corresponding valid one that was corrupted by an error.

As an example of codes, we can consider the single-bit parity code. The
code mandates the addition of an extra bit to a binary data in such a way that
the resulting codeword has an even number of Is (even parity) or an odd
number of Is (odd parity). If a codeword with odd parity (in contains an odd
number of Is) is affected by an error changing one of its bits, the parity will
become even. As a result, known the type of parity (even or odd), it is
possible to perform error detection by simply counting the number of Is in
the codeword.

5.3 Time redundancy

The basic concept of time redundancy consists in performing the same
operation two or more times, and to compare the results to detect if an error
occurred.

Data

To

— >

Hafra

Computation

1

^
^ LOmpUtdLlOn r~~

3/ Error
1 ^ 1

Lompdre ^
1

Time

^

To+A

Figure 1-17. Time redundancy for detecting transient errors

In case an error has been detected, the same computation can be repeated
again to verify if the error is still present in the system or if it disappeared.
Two versions of time redundancy can be envisioned:
• Time redundancy for transient error detection is intended for detecting

the presence in the system of an error that affected the correct system's

34 Chapter 1

operations for a finite period of time. In this case, the scheme of Fig. 1-
17 IS used, where the same computation is repeated twice, one at time
To, and one at a later time TQ+A. The outcomes of the two computations
are compared, and in case a mismatch is found an error is signaled. In
order to be effective, the technique relies upon designers to identify a
suitable delay A between the executions of the two computations in such
a way that only one of the two computations is erroneous.
Time redundancy for permanent error detection is an extension of the
previous technique, whose aim is to detect permanent errors, i.e., errors
that modify the correct system operations for an infinite period of time.
The concept at the base of this technique is depicted in Fig 1-18'. the first
computation is performed as usual, while before the second computation
occurs, the input data are encoded, then elaborated by the computation,
and finally the results are decoded and compared with those produced by
the first computation. Decode and encode operations are selected in such
a way that permanent errors can be detected. Typical operators are
complementation and shift [3].

uaK.a

^ Computation

1 1

Data
^

Encode | > Computation

^ Error
1 ^ 1

v̂ ompare ^
L

—>[Decode 1—^

[Time

^
Tn To+A

Figure 1-lS. Time redundancy for detecting permanent errors

5.4 Software redundancy

Software redundancy is the general term under which the Software-
implemented Hardware Fault Tolerance techniques presented in the
following chapters falls. Several different approaches have been proposed,
which all share the same concepts: additional instructions are added to the
original program to implement in software information redundancy and time
redundancy.

Background 35

Since software redundancy is the scope of this book, and it is unfeasible
to summarize here all the available techniques, we forward the reader to the
following chapters.

i. REFERENCES

1. N. G. Levenson, C. S. Turner, "An investigation of the Therac-25 accidents", IEEE

Computer, Vol. 26, No. 7, 1993, pp. 18-41

2. N. G. Leveson, Safeware. System safety and computers. Addison Wesley, ISBN 0-

201-11972-2

3. D. K. Pradhan, Fault-tolerant computer system design. Prentice-hall, ISBN 0-13-

057887-8

4. J. C. Geffroy, G. Motet, Design of Dependable Computing Systems, Kluwer Academic

Publishers, ISBN 1-4020-0437-0

5. A. Avizienis, J.-C. Laprie, B. Randell, C. Lanwehr, "Basic Concepts and Taxonomy of

Dependable and Secure Computing", IEEE Transactions on Dependable and Secure

Computing, Vol. 1, No. 1, 2004, pp. 11-33

6. N. Storey, Safety-Critical Computer Systems, Pearson/Prentice-Hallp, ISBN 0-201-

42787-7

7. M. Abramovici, M. A. Breuer, A. D. Friedman, Digital System Testing and Testable

Design, Wiley-IEEE Press, ISBN 0-7803-1062-4

8. E. Dupont, M. Nicolaidis, P. Rohr, "Embedded robustness IPs for transient-error-free

ICs", IEEE Design & Test of Computers, Vol. 19, No. 3, May-June 2002, pp. 54-68

9. J. Duraes, H. Madeira, "Emulation of Software Faults by Educated Mutation at

Machine-level", IEEE International Symposium on Software Reliability Engineering,

2002, pp. 329-340

10. P. E. Dodd, L. W. Massengill, "Basic Mechanisms and ModeHng of Single-Event

Upset in Digital Microelectronics", IEEE Transactions on Nuclear Science, Vol. 50,

No. 3, June 2004, pp. 583-602

11. J. L. Barth, C. S. Dyer, E. G. Stassinopoulos, "Space, Atmospheric, and Terrestrial

Radiation Environments", IEEE Transactions on Nuclear Science, Vol. 50, No. 3, June

2004, pp. 466-482

12. A. H. Taber, E. Normand, "Investigations and characterization of SEU effects and

hardening strategies in avionics", Defense Nuclear Agency, Alexandria, VA, DNA-

TR-94-123,Feb. 1995

13. A. Holmes-Siedle, L. Adams, Handbook of radiation effects, 2^^ edition, Oxford

University Press, ISBN 0-19-850733-X

14. J. Barak, J. Levinson, M. Victoria, W. Hajdas, "Direct process in the enrgy deposition

of protons in silicon", IEEE Transactions on Nuclear Science, Vol. 43, No. 12, Dec.

1996, pp. 2820-2826

36 Chapter 1

15. S. Duzellier, R. Ecoffet, D. Falguere, T. Nuns, L. Guibert, W. Hajdas, M. C. Calver,

"Low energy proton induced SEE in memories", Vol. 44, No. 12, Dec. 1997, pp. 2306-

2310

16. T. C. May, M. H. Woods, "Alpha-particle-induced soft errors in dynamic memories",

IEEE Transactions on Electronic Devices, Vol. 26, Feb. 1979, pp. 2-9

17. E. Takeda, K. Tacheuhi, D. Hisamoto, T. Toyabe, K .Ohshima, K. Itoh, "A cross

section of a-particle-induced soft-error phenomena in VLSIs", IEEE Transactions on

Electronic Devices, Vol. 36, Nov. 1989, pp. 2567-2575

18. R. J. McPartland, "Circuit simulations of alpha-particle-induced soft errors in MOS

dynamic RAMs", IEEE J. Solid-State Circuits, Vol. 16, Feb. 1981, pp. 31-34

19. T. V. Rajeevakumar, N. Lu, W. Henkels, W. Hwang, R. Franch, "A new failure mode

of radiation-induced soft errors in dynamic memories", IEEE Electronic Device

Letters, Vol. 9, Dec. 1988, pp. 644-646

20. L. W. Massengill, "Cosmic and terrestrial single-event radiation effects in dynamic

random access memories", IEEE Transactions on Nuclear Science, Vol. 43, Apr. 1993,

pp. 576-593

21. K. J. Hass, J. W. Gambles, "Single event transients in deep submicron CMOS", IEEE

42"'* Midwest Symposium on Circuits and Systems, 1999, pp. 122-125

22. K. Mohanram, N. A. Touba, "Cost-effective approach for reducing soft error failure

rate in logic circuits", IEEE International Test Conference, 2003, pp. 893-901

Chapter 2

HARDENING THE DATA

1. INTRODUCTION

This chapter presents the methods for hardening a system against faults
affecting the data it elaborates.

The methods exploit operation and information redundancy and are based
on program modifications. The techniques described in the following
paragraphs present the following general characteristics (some cases present
exceptions emphasized in the specific descriptions):
• The size of the memory area containing the data is at least 2 times the

size of the original program.
• The computation time of the resulting program is at least 2 times slower

than the original program.
• The programmer has to follow some strict programming rules,

concerning the usable data structures and statements.
This means that the adoption of these techniques is rather expensive in

terms of memory size, execution slow down, and programming limitations.
On the other side, they offer a very good coverage of the addressed faults.

2. COMPUTATION DUPLICATION

Computations can be duplicated at four levels of granularity: instruction,
instructions block, procedure or program.

The smallest granularity is instruction-level, in which an individual
instruction is duplicated. For example, the duplicated instruction is executed
immediately after the original instruction is executed; the duplicated
instruction may perform the same computation carried out by the original
instruction, or it can even perform a mutation of the original operation.

The coarsest level of duplication is the program-level, in which the whole
program is duplicated: the duplicated program may be executed after the
original program completes its execution or it can be executed concurrently.

38 Chapter 2

Whatever the level of granularity is adopted the technique is able to
detect faults by executing a check after the duplication is executed. With the
instruction-level duplication a check compares the results coming from the
original instruction and its duplication; with the procedure-level duplication
the results of the duplicated procedures are compared; with the program-
level duplication a comparison among the outputs of the programs is
executed in order to detect possible faults.

2.1 Methods based on instruction-level duplication

2.1.1 High-level instruction duplication

A simple method to achieve error detection capability is based on
introducing data and code redundancy according to a set of transformations
to be performed on the high-level source code [23]. The transformed code is
able to detect errors affecting both data and code: the goal is achieved by
duplicating each variable and adding consistency checks after every read
operation. Other transformations focus on errors affecting the code, and
correspond from one side to duplicating the code implementing each write
operation, and from the other to adding checks for verifying the consistency
of the executed operations.

The check operation is executed at every read operation in order to
reduce the effect of possible error propagations.

The main advantage of the method lies in the fact that it can be
automatically applied to a high-level source code [24], thus freeing the
programmer from the burden of guaranteeing its correctness and
effectiveness (e.g., by selecting what to duplicate and where to put the
checks). The method is completely independent on the underlying hardware,
and it possibly complements other already existing error detection
mechanisms.

The rules mainly concern the variables defined and used by the program.
The method refers to high-level code, only, and does not care whether the
variables are stored in the main memory, in a cache, or in a processor
register. The proposed rules may complement other Error Detection
Mechanisms that can possibly exist in the system (e.g., based on parity bits
or on error correction codes stored in memory). It is important to note that
the detection capabilities of the rules are significantly high, since they
address any error affecting the data, without any limitation on the number of
modified bits or on the physical location of the bits themselves.

The basic rules can be formulated as follows:
• Rule #1: every variable x must be duplicated: let XQ and Xi be the names of

the two copies

Hardening the data 39

• Rule #2: every write operation performed on x must be performed on XQ
andx/

• Rule #3: after each read operation on x, the two copies XQ and Xi must be
checked for consistency, and an error detection procedure should be
activated if an inconsistency is detected.
The check must be performed immediately after the read operation in

order to block the fault effect propagation. Please note that variables should
be checked also when they appears in any expression used as a condition for
branches or loops, thus allowing a detection of errors that corrupt the correct
execution flow of the program.

Every fault that occurs in any variable during the program execution can
be detected as soon as the variable is the source operand of an instruction,
i.e., when the variable is read, thus resulting in minimum error latency,
which is approximately equal to the temporal distance between the fault
occurrence and the first read operation. Errors affecting variables after their
last usage are not detected (but do not provoke any failure, too).

Two simple examples are reported in Fig. 2-1, which shows the code
modification for an assignment operation and for a sum operation involving
three variables a, b and c.

Original code

a = b ;

a = b + c ;

Modified Code

^0 ~ bo;
ai = b i ;
i f (bo != bi)

e r r o r () ;

ao = bo + Co/
ai = bi + Ci;
i f ((bo!=bi) 1 1 (co!=Ci))

e r r o r () ;
Figure 2-1. Example of code modification.

The parameters passed to a procedure, as well as the returned values,
should be considered as variables. Therefore, the rules defined above can be
extended as follows:
• every procedure parameter is duplicated
• each time the procedure reads a parameter, it checks the two copies for

consistency
• the return value is also duplicated (in C, this means that the addresses of

the two copies are passed as parameters to the called procedure).
Fig. 2-2 reports an example of application of Rules #1 to #3 to the

parameters of a procedure.

40 Chapter 2

Original code

r e s = sea rch (a) /

i n t sea rch (i n t p)
{ m t q;

q = p + 1;

r e t u r n (1) ;
}

Modified code

s e a r c h (aoA ^ i , &reso^ &resi) ;

v o i d s e a r c h (i n t p o , i n t p i , i n t ' ' 'ro,
{ m t qo, q i ;

qo = po + 1;

qi = Pi + 1;
i f (po != Pi)

e r r o r () ;

^ro = 1;
* r i = 1;
r e t u r n ;

}

i n t * r i)

Figure 2-2. Example of code transformation for errors affecting procedure parameters.

In order to assess the effectiveness of the proposed transformation rules,
a set of fault injection campaigns has been reported in [25]. They have been
performed on a prototypical board (called Transputer board) which has been
originally designed for carrying out the injection of transient faults.

The Transputer board mainly includes:
• a T225 Transputer (a reduced instruction set microprocessor with

parallel capabilities). The T225 is the main core of the board, being in
charge of all the operations related with data transfer to/from the user
and the implementation of test programs;

• a 4 Kbyte PROM, containing the executable code of the programs related
with the operation of the board (boot, result transfer, program loading)

• a 32 Kbyte SRAM, used for the storage of T225 program workspaces,
programs and data. The last 2 Kbytes are reserved to data transfer
to/from the user;

• an anti-latchup circuit, for the detection of abnormal power consumption
situations and the activation of the corresponding recovering
mechanisms;

• a watch-dog system, refreshed every 1.5 seconds by the T225, which has
been included in order to avoid system crashes due to events arising on
critical targets such as the T225 internal memory cells (registers or flip-
flops) or the external SRAM memory areas associated to the program
modules (process workspaces).

The board can easily support fault injection experiments. Faults are
randomly injected in the proper locations during the program execution. To

Hardening the data 41

be consistent with the characteristics of transient errors, the injection of
single faults has been performed on randomly selected bits belonging to the
code and data area. The injection mechanism is implemented by a dedicated
process, which runs in parallel with the tested program. The two programs
(the injection program and the program under test) are loaded in the
prototype board memory and launched simultaneously. The injection
program waits for a random duration, then chooses a random address and a
random bit in the memory area used by the program under test and inverts its
value. After each injection, the behavior of the program is monitored, the
fault is classified, and the results are sent to the PC acting as a host system.

The performed experiments are based on carrying out extensive fault
injection sessions on three benchmark programs:
• Matrix: multiplication of two 10x10 matrices composed of integer values
• BubbleSort: an implementation of the bubble sort algorithm, run on a

vector of 10 integer elements
• Quicksort: a recursive implementation of the quick sort algorithm, run on

a vector of 10 integer elements.
For each benchmark two fault injection sessions have been executed: one

on the original version of the program, the other on the modified one. Faults
are injected in the memory area containing the program data. The number of
faults injected in each session is 1,000 for the original and the modified
versions of the program.

Faults were classified according to the categories already presented in
Chapter 1.

Obviously, the goal of any fault detection mechanism is to minimize the
number of faults belonging to the last category.

Table 2-1. Results of Injecting Faults in the Data Area

Matrix

Bubble Sort

Quick Sort

Version

Original
Modified
Original
Modified
Original
Modified

Effect-Less

199
188
235
259
240
236

Software
detected

0
812

0
741

0
764

Failure

801
0

765
0

760
0

Table 2-1 reports the results of fault injection experiments performed on
the memory area containing the data.

Note that for the original program an average percentage of 77% of faults
injected in data areas led to wrong program results; on the other hand,
considering the modified program, an almost equivalent average percentage

42 Chapter 2

of 77% of faults are detected by the software detection mechanism and there
are no faults injected in the program data that provoke failures.

Experimental results reporting average area and performance overheads
for the above mentioned programs are given in [26] and are shown in Table
2-2.

Table 2-2. Area and performance overheads with duplication and check hardening approach
Code Segment Size Data Segment Size Executable Code Performance Slow-

increase increase size increase down
3̂ 64 2̂ 0 3̂ 4 2̂ 92

2.1.2 Selective instruction duplication

The previous approach presents high levels of fault coverage at a cost of
high memory and performance overhead. A selection of the duplicated
variables and instructions can be defined in order to tune the trade-off
between the level of dependability improvement and the performance
degradation due to the code modification.

Reliable Code Compiler (RECCO) [27] supports the designer in
identifying both the most critical portions of the code and its most critical
variables, suggesting the best modifications towards a safer code. RECCO
operates through the following three phases:
• Code Reliability Analysis: For each variable a reliability-weight is

computed, which takes into account the variable lifetime and its
functional dependencies with other variables.

The life period of a variable is defined as the period starting from a write
operation and ending with the last read operation on the same data
preceding the next write operation or the end of the program execution.
Fig. 2-3 reports a graphical representation of the life period where ai, a2,
..., a„ corresponds to the time instants when a given variable is accessed
and w represents a write operation and r a read operation.
The lifetime is defined as the sum of all the variable life periods. Data
stored in variables with higher lifetime have higher probability of being
corrupted, since they are stored in memory for a longer period of time.
RECCO performs a static analysis of the code and evaluates the life
period parameter as the number of lines of code between the write and the
read operation.
A variable v is descendent of a given variable w if it is written with the
result of an expression which includes w. Variables with a lot of
descendent represent a potential criticality for the system: faulty data
stored in them are propagated to a large set of other variables. RECCO
computes the list of descendents for each variable, analyzing the whole

Hardening the data 43

program and building the correspondent Variable Dependencies Graph
(VDG). VDG is a direct graph, in which nodes represent variables and
direct edges represent variable dependencies, as shown in an example in
Fig. 2-4.
The reliability weight is computed assigning to each variable a linear
function of the two parameters (lifetime and functional dependencies).
RECCO sorts all the variables according to their reliability weights.

• Code Re-ordering Phase: RECCO modifies the original code and
generate a more reliable one, functionally equivalent to the original one,
but improved in terms of dependability characteristics. The adopted
approach consists in performing local optimization aiming at reducing
the reliability weight of the variables identified during the Code
Reliability Analysis. RECCO applies the code re-ordering technique on
portions of code named domains. No read/write dependencies exists
among operations belonging to the same domain, i.e., inside a domain no
operation reads/writes a variable that is written/read by another
operation in the same domain. Therefore, within a domain all the
operations can be freely re-ordered without affecting the global program
behavior. Inside a given domain, each operation is labeled with a
reliability weight, which is a function of the reliability weights of the
involved variables. The operations are sorted for decreasing reliability
weights and then rescheduled inside the domain itself, in order to
minimize the whole reliability weight.

• Variable Duplication Phase: RECCO introduces ad-hoc modifications
through the variable duplication phase, consisting in coupling some of
the variables with shadow variables. The original and the shadow
variable behave in the same way, storing the same type of data and being
updated, with the same values, at the same time. Periodically monitoring
the consistency between the two copies of the variables, it is possible to
detect the occurrence of faults in one of the two replicas of the data.
Variables coupled with a shadow variable are therefore reliable
variables.

RECCO allows the user to trade-off between code reliability level and
performance degradation, appropriately setting the reliability
requirements: e.g., the user specifies the percentage of variables to be
duplicated, and RECCO selects, among all the variables, the ones that are
more critical for the application safety.

44 Chapter 2

0

- E

^3 ^4 %

I Z J 1—\—\—\—I—h
W
-<

Life period

r w r r
• -< •

Life period

I i " i - I ' " I I t »

Figure 2-3. Variable's lifetime definition.

d

e

f

g

= a *b + c;

= d + a;

= b*c + 1;

= e + f;

Figure 2-4. Vnriabic Dcncndcncics Graoh.

Experimental results gathered through fault injection experiments on a
set of benchmark programs demonstrate that duplicating 30% of the
variables, the failures are reduced by 68% with respect to the original code;
duplicating the 10% of the variables allows to reach a reduction of failures
of 70%). Performance degradation and memory overhead depends strictly on
the percentage of variables duplicated: performance slow down by 6% is

Hardening the data 45

observed with 30% of variables duplicated; while 18% of memory overhead
is needed with 30% of variables duplicated.

2.1.3 Assembly-Level Instruction Duplication

Trends in processor architecture have shown an increasing use of
Instruction-Level Parallelism (ILP) to improve performance. In addition to
pipelining individual instructions, it has become very attractive to fetch
multiple instructions at the same time, and execute them in parallel to use
functional units whenever possible. This form of ILP is called super-scalar
execution. It provides a way to exploit available hardware resources in the
system. When superscalar processors are used, it is possible to exploit ILP
for error detection.

The basic idea presented by the EDDI {Error-Detection by Duplicated
Instructions) technique [28] is to duplicate the original instructions in the
original assembly source code using duplicated registers and variables, too,
according to the following basic rules:
• A master instruction (MI) is the original instruction in the source code.
• A shadow instruction (SI) is the duplicated instruction added to the

source code.
• General purpose registers and memory are partitioned into two groups for

MI and SI instructions.
• The registers and memory for MI instructions should always have the

same values as the corresponding registers and memory for SI
instructions. If there has been a mismatch between a pair of registers for
MI and SI, an error can be detected by comparing the values stored into
the two registers. A compare instruction (CI) compares the values of the
two registers, and invokes an error handler if they do not match.

A simple example of source code containing just one MI instruction is
the following:

ADD R3, R l , R2 ; R3 <- Rl + R2
The corresponding SI and CI instructions can be the following:

ADD R23, R21 , R22 ; SI
BNE R3, R23, g o t o E r r o r ; CI

Let registers Rl, R2, R3 be the master registers, and R21, R22 and R23
the shadow registers that contain the same value as Rl, R2, R3, respectively.
The CI instruction is executed comparing the values stored in the registers
containing the result of the sum (R3 and R23), and if a mismatch is found
the control is transferred to an error handler (labeled g o t o E r r o r) .

The description of the method requires the following preliminary
definitions. A store instruction is an instruction that stores the value of a
variable in memory. According to this definition, a Storeless Basic Block

46 Chapter 2

(SBB) is a sequence of instructions in which there is no store instruction
except for the last one, which can be a store, or a branch instruction. An
example of SBB is shown in Fig. 2-5.

kOD
SUB
kND
MUL
ST

Rl, R2, R3
R4, Rl, R2
R5, Rl, R2
R6, R4, R5
R6

Figure 2-5. Example of SBB.

Within a SBB, the SI instructions are scheduled to maximize resource
use by attempting to use idle resources, which are not used by MI
instructions. A detailed description of the scheduling algorithm is not under
the scope of this book, and is presented in details in [28].

If the last instruction of an SBB is a store instruction, then a CI
instruction is placed before the store instruction to compare the master and
shadow values that are going to be stored in memory.

The EDDI method has been experimentally evaluated on a SGI Octane,
that uses the 4-way super-scalar RIOOOO MIPS processor. Eight benchmark
programs were used: FFT, matrix multiplication, Fibonacci, Hanoi,
compress, shuffle. Quick sort and Insert sort. The method has been evaluated
through a fault injection approach that forces 1 bit-flip in the code segment
of the machine code. The location of the bit-flip is determined randomly for
each iteration.

On average, in the original programs, 20% of the injected faults produced
incorrect outputs and were not detected. On the other hand, only 1,5% of the
injected faults in a program hardened with EDDI produce incorrect outputs
and were not detected.

Because extra instructions are added to the original assembly code, the
program with EDDI suffers from an increase in code size and loss of
performance. The execution-time overhead depends on the parallelism
available, too, and varies from 13% to 105%. The size overhead strictly
depends on the program type, too, and varies from 44% to 113%. The
authors made a comparison with [23] and showed that EDDI presents a
better error detection capability, thanks to its assembly-level application.
EDDI presents a fmer grain error detection capability and lower latency.
Consequently, it has higher chance of detecting faults that might cause cases
of undetected errors that can propagate or get masked.

Hardening the data Al

Detection capability can be obtained exploiting idle cycles of a fme-grain
parallel architecture composed of multiple pipelined functional units, where
each functional unit is capable of accepting an instruction in every clock
cycle. This approach is called instruction re-execution [29] and addresses the
performance degradation caused by time redundancy. With instruction re-
execution, the program is not explicitly duplicated. Rather, when an
instruction reaches the execution stage of the processor pipeline, two copies
of the instruction are formed and issued to the execution units. Since
instructions are duplicated within the processor itself, the processor has
flexible control over the scheduling of redundant computations. Dynamic
scheduling logic combined with a highly parallel execution core allows the
processor to exploit idle execution cycles and execution units to perform the
redundant computations. This is possible because there are not always
enough independent operations in the program to fully utilize the parallel
resources.

A further strategy exploiting parallelism are Very Long Instruction Word
(VLIW) processors, that are becoming popular for their ability to process
more than one operation per clock cycle. The intrinsic redundancy of the
data path units in VLIW processor architectures provides the resources for
executing the detection capability concurrently with respect to the nominal
program (i.e., the original unhardened program).

The insertion of redundant operations for fault detection directly in the
source code is not a viable approach since optimization policies tend to
detect such redundancy and collapse the original and added operations into a
single one, this making the modification useless. Furthermore, by acting on
the compiled code, specific optimizations can be performed to minimize
code growth and performance degradation.

The approach proposed by Bolchini [30] proposes a second flow of
operations created and executed concurrently. This approach considers faults
in the register files, thus covering faults in the processor data-path.

Duplication and comparison is the adopted redundancy scheme for
achieving the desired hardware fault detection properties. Each operation
concerning data path functional units is executed twice and compared in
order to detect possible mismatches. The method does not provide the
straightforward execution of the same operation on two different functional
units, but create a similar operation on a copy of the data stored in the local
memory unit. Once data are loaded from main memory, a copy is made and
a parallel flow of operations is carried out on the copy, concurrently with
respect to original values. A comparison of the produced values is then
performed via additional software operations.

The method is based on the implementation of three key elements:
• The compiled application source code {nominal).

48 Chapter 2

• A parallel flow of computation on a copy of the nominal values
{checking).

• Additional operations for comparing corresponding nominal and
checking results {checker).

The proposed approach that maintains the original hardware architecture
consists in compiling the application source code on a reference architecture
with one half of the hardware resources and VLIW width. This solution is
transparent to both user and system. The checking and checker operations
are introduced to fill the unused VLIW word and use the remaining
resources. The checking code performs the same operation as the nominal
one on a different subset of the register files and on different functional
units. The parallel checking code is generated according to the kind of
operation.

This approach provides an initial scheduling of the application code on
an architecture that has one half of the actual hardware resources, but the
experimental results showed the performance degradation ranges from 2% to
25% with respect to the nominal application code. The limited impact can be
related to the low average number of operations per clock cycle, which
leaves several empty space for duplicated operations.

Full duplication may cause an unacceptable overhead in terms of
performance and energy consumption. This is particularly true for large
segments of embedded markets where performance and power will continue
to be as important as dependability. The approach proposed in [31] presents
a technique that fills empty execution slots with duplicate instructions under
a performance bound. The compiler determines the instruction schedule by
balancing the permissible performance degradation with the required degree
of duplication. The objective is to maximize the number of duplicated
instructions with a fixed performance overhead. The algorithm considers for
each instruction / its duplication range that is the range of cycles within
which its duplication can be scheduled. This range is determined by the
instructions that / depends on as well as the instructions that overwrite the
register read by /. The duplicated instruction cannot be scheduled before the
source operands for the instruction are read. The algorithm considers each
instruction in turn, identifies its duplication range, and creates a duplicate for
it if the duplication does not exceed the schedule length by a fixed limit. The
experimental results reported figure out that the fiill duplication incurs an
average increase of 42% in the original schedule length, while the method is
able to duplicate more than 40% of the instructions without an increase in
the original schedule cycles. The percentage of duplicated instructions
increases as the performance bound is relaxed. As a consequence, this
approach allows the designer to conduct tradeoff analyses between
performance and dependability.

Hardening the data 49

2.2 Procedure-level duplication

2.2.1 Selective Procedure Call

The Selective Procedure Call Duplication (SPCD) [32] technique is
based on the duplication of the procedure execution. The major goals of this
approach are the improvement of the system reliability by detecting transient
errors in hardware, taking into account the reduction of the energy
consumption and of the overhead.

Some industrial experimental results show that significant energy is
consumed in clock circuitry and in caches. Therefore, reducing the number
of clock cycles and cache access as well as memory access is important to
reduce energy dissipation in the system.

SPCD minimizes energy dissipation by reducing the number of clock
cycles, cache accesses, and memory accesses by selectively duphcating
procedure calls instead of duplicating every instruction. The number of
additional clock cycles is reduced because the number of comparisons is
reduced by checking the computation results after the original and duplicated
procedure execution, instead of checking the results immediately after
executing every duplicated instruction. The code size is reduced because
some of the procedures are not duplicated. If the code size is reduced the
probability of an instruction cache miss can be lowered and energy
consumption can be reduced for fetching instructions from the cache to the
processor, or moving instructions from the memory to the cache. Also,
reducing the number of comparisons decreases the number of data accesses
to the data cache and the memory, resulting in reduced energy consumption.

However, there is a trade-off between energy saving and error detection
latency: longer error detection latency reduces the number of comparisons
inside the procedure and, therefore, saves energy. The shortest error
detection latency can be achieved by instruction-level duplication. In
procedure-level duplication, comparison of the results is postponed until
after executing the called procedure twice; then, the worst case error
detection latency corresponds to the execution time of the original and
duplicated procedure and the comparison time.

A procedure is a sequence of statements, with an identifying name,
executed as a unit through its call in any part of the program. Fig. 2-6 shows
the original sample source code where procedure A calls procedure B.

50 Chapter 2

int a,c
void A

{

}
int

{
int

}

a
c

B (

d;
d

' /

0

= B(b); 1
= c

int

= 2

+ a;

b)

* b;
return(d);

Figure 2-6. Sample source code.

int a, al, c, cl;
void A2 0

{

\
1
int

1
int

}

a = B2(b, bl);
al = a;
c = c + a;
cl = cl + al;
if (c <> cl) errorHandler0;

B2 (int b, bl)

d, dl;
d = 2 ^ b;
dl = 2 ^ bl;
if (d <> dl) errorHandler0;
return(d);

Figure 2-7. Instruction-level duplication.

With instruction-level duplication, all the instructions in the procedures
A and B are duplicated as reported in Fig. 2-7. The code size of the
procedures A2 and B2, including comparison statements, is more than twice
the original code size of A and B.

Hardening the data 51

A procedure-level duplication is obtained calling twice the procedure; the
procedure is called with the original parameter first and then with the
duplicated variable as a parameter. Fig. 2-8 shows the resulting source code:
the code size of procedure A2 (containing the duplication of the called
procedure B) is more than twice the original code size of A, but the size of
procedure B is the same in the original and in the modified programs. As a
consequence, in a procedure-level duplication program the resulting code
size is lower than in an instruction-level duplication one.

i n t 3if alf Cf c l ;
|void A2 0
{

a = B(b) ;
a l = B (b l) ;
i f (a <> a l) e r r o r H a n d l e r () /
c = c + a ;
c l = c l + a l ;
if (c <> cl) errorHandler0;

}
int B (int b)
{
int d;

d = 2 ^ b;
return(d);

Figure 2-8. Procedure-level duplication

If the called procedure modifies a global variable the duplicated
execution of the procedure can introduce an incorrect behavior. Let consider
the example shown in Fig. 2-9, where the procedure B updates the values
stored in the global variable g.

52 Chapter 2

i n t a , c ;
i n t g;
|void A 0

a = B(b) ;
c = c + a;

i n t B (i n t b)
{
i n t d;

d = 2 ^ b ;
g = g + 1;
r e t u r n (d) ;

}

Figure 2-9. Sample source code with a global variable modified by the called procedure.

If the procedure B is executed twice, the global variable called g is
increased twice instead of once. In this case, as shown in Fig. 2-10, one
needs to duplicate the global variable gl and the duplicate procedure Bl that
modifies this gl. The procedures B and Bl are functionally identical, except
that B modifies g and Bl modifies gl.

The basic rules to be considered in a procedure-level duplication
approach are the following:
• Every procedure should either be repeated twice or contain duplicated

instructions. A procedure that has duplicated instructions can detect an
error. A procedure that does not have duplicated instructions should be
executed twice, so that an error can be detected.

• If a procedure has no duplicated instructions, all the procedures called by
it should have no duplicated statements.

SPCD presents an heuristic algorithm developed to satisfy the previous
rules and involving 2 objectives: reducing error detection latency and
minimizing energy consumption. In particular, the algorithm presented in
[32] minimizes energy consumption under a given error detection latency
constraint.

SPCD was simulated with some benchmark programs.
Fault injection experiments were executed injecting single-bit flip faults

in the adder unit. Experimental results show that:
• As the error detection latency increases, the energy consumption is

reduced

Hardening the data 53

• The data integrity (i.e., the correctness of the outputs) reported is always
100%

• The number of detected faults decreases as the error detection latency
increases, but the undetected faults don't cause any failure because they
don't affect the final results.

In order to evaluate the feasibility of the approach in terms of energy
consumption saving, SPCD is compared with the hardened program obtained
applying an instruction-level duplication approach [28]. The obtained results
show that SPCD allows an energy saving of 25% with respect than the
energy consumption required by an instruction-level duplication approach.

int â al, c, cl;
int g, gl;
void A2 0
'{

a = B(b) ;
al = Bl(bl)
if (a <> al)
c = c + a;
cl = cl + a;
if (c <> cl)

}
int B (int b)
{
int d;

d - 2 ^ b;
g = g + 1;
return(d);

}
int Bl (int b)
{
int d;

d = 2 ^ b;
gl = gl + 1;
return(d);

b

errorHandler();

errorHandler();

Figure 2-10. Sample source code with a duplicated global variable modified in the called
procedure.

54 Chapter 2

2.3 Program-level duplication

2.3.1 Time redundancy

Time redundancy is a technique in which a computation is performed
multiple times on the same hardware. A particular application of time
redundancy is the duplication of the processing activity as a proper
technique to detect faults of the underlying hardware. A particular form of
such duplication is a virtual duplex system (VDS), where the duplicity is
achieved by temporal redundancy, obtained by executing two programs
performing the same task with the same input data twice. Virtual duplex
systems provide a cost advantage over duplex systems because of reduced
hardware requirements: VDS only needs a single processor, which executes
both software variants. Transient hardware errors are covered due to time
redundancy, as only a single variant is affected. Permanent hardware errors
are covered due to design diversity: the program variants of a VDS are
diversified in order to reduce the probability that both variants are affected in
the same way.

The disadvantage of time redundancy is the performance degradation
caused by repetition of tasks.

There are different kinds of duplication: one option consists in running
entire programs twice, whereby another option is to execute the duplicated
processes in short rounds and switch between them. The switching
introduces extra overhead, but can be used to compare intermediate results
more frequently in order to reduce the fault latency.

The structure of a VDS is reported in Fig. 2-11. Each version of program
is called variant. A VDS built to calculate a specified function f consists of
two diversified program variants Pa and Pb calculating the functions fa and
fb, respectively. In absence of faults f = fa = fb holds. If an existing fault
affects only one of the two variants or both of them in different ways, then
the fault can be detected comparing the results fa(i) and fb(i).

Hardening the data 55

input i

- • Variant Pg
fa(i)

VDS

Variant P̂
fb(i)

*

Result
Comparison

U\) - ^b(i)

y) ^ t b (i)

• f (i)

"•• error

Figure 2-11. Structure of a VDS.

The kind of faults to be detected by a VDS highly depends on the
diversity techniques used to generate the VDS.

As far as VDS is considered, if, for example, two independent teams are
developing different variants of a program, then the resulting VDS may have
the ability to detect specification or implementation faults. If, as a second
example, two different compilers are used to compile the same source code,
then the resulting VDS may have the ability to detect faults stemming from
compiler faults. The capability of diversified program variants to detect
hardware faults has been mentioned and investigated in [33]. The basic idea
is that two diversified programs often use different parts of the processor
hardware in different ways with different data.

Variants can also be generated by applying manually different diversity
techniques. However, some algorithmic approaches have been proposed in
order to properly generate effective software variants.

In [38] a systematic method is presented based on the transformation of
every instruction of a given program into a modified instruction or sequence
of instructions, keeping the algorithm fixed. The transformations are based
on a diverse data representation. Since a diverse data representation also
requires a modification of instructions that may be executed, new sequences
of instruction have to be generated, that calculate the result of the original
instruction in the modified representation. The transformations are generated
at the assembler and the high-level programming language. Some examples
of the modification rules are:
• logical instructions can be modified according to the de Morgan Rules

(e.g., a o r b = NOT (NOT (A) AND NOT (B)))
• arithmetic instructions can be modified according to the two's

complement properties (a+b = - (-a) + (- b))) .
In [35] a method for the automated generation of variants is proposed.

The tool is able to generate two different but semantically equivalent pieces

56 Chapter 2

of assembler code, exploiting a set of modification rules. Some examples of
modification rules are:
• Replacement of jump instructions (e.g., replacement of conditional jump

instructions by appropriate combinations of other jump instructions)
• A consistent register permutation
• Substitution of a multiplication statement by a subroutine that performs

multiplication in a different way.

2.3.2 Simultaneous multithreading

Simultaneous multithreading (SMT) is a novel technique to improve the
performance of a superscalar microprocessor. A SMT machine allows
multiple independent threads to execute simultaneously, i.e., in the same
cycle, in different functional units. VDS can be effectively exploited on a
SMT machine, executing two threads in parallel, shifting time redundancy to
spatial redundancy [36]. Because of the improved processor utilization and
the absence of a context switch the time execution is reduced with respect to
the correspondent duplicated implementation on a conventional processor.

With the Active-Stream/Redundant-Stream Simultaneous multithreading
(AR-SMT) [37] approach two explicit copies of the program run
concurrently on the same processor resources as completely independent
programs, each having its own state or program context. The entire pipeline
of the processor is conceptually duplicated. As described in Section 2.1.3, in
superscalar processors often there are phases of a single program that do not
fully utilize the microprocessor architecture, so sharing the processor
resources among multiple programs will increase the overall utilization.
Improved utilization reduces the total time required to execute all program
threads, despite possibly slowing down single thread performance. AR-SMT
is based on 2 streams: active stream (A-stream) and redundant instruction
stream (R-stream). The active stream corresponds to the original program
thread and as instructions from the A-stream are fetched and executed, and
their results committed to the program's state, the results of each instruction
are also pushed on a FIFO queue called Delay Buffer. Results include
modifications to the Program Counter by branches and any modifications to
both registers and memory. The second stream (R-stream) is executed
simultaneously with the A-stream. As the R-stream is fetched and executed,
its committed results are compared to those stored in the Delay Buffer. A
fault is detected if the comparison fails, and the committed state of the R-
stream can be used as a checkpoint for recovery. Simulations made on a
processor composed of 8 Processing Elements show that AR-SMT increases
execution time by only 10% to 40% over a single thread thanks to the
optimized utilization of the highly parallel microprocessor.

Hardening the data 57

2.3.3 Data Diversity

The method exploits data diversity, by executing two different programs
with the same functionality, but with different data sets and comparing their
outputs. This technique is able to detect both permanent and transient faults.

This approach needs two different programs starting from the original
program and transforming it into a new one in which all variables and
constants are multiplied by a diversity factor k. Depending on the factor k,
the original and the transformed programs may use different parts of the
underlying hardware and propagate fault effects in different ways. If the two
programs produce different outputs due to a fault, the fault can be detected
by examining if the results of the transformed program are also k times
greater than the results of the original program. The check between the two
programs can be executed in two different ways:
1. another concurrent running program compares the results
2. the main program that spawns the original program and the transformed

program checks their results after they are completed.
The program transformation changes a program P into a new program P'

with diverse data in which all variables and constants are A:-multiples of the
original values when the program P' is executed. It consists of two
transformations:
1. expression transformation
2. branching condition transformation.

The expression transformation changes the expressions in P to new
expressions in P' so that the value of every variable or constant in the
expression of P' is always the k-multiple of the corresponding value in P.
Since the values in P' are different from the original values, when we
compare two values in a conditional statement, the inequality relationship
may need to be changed if the diversity factor is negative. For example, the
conditional statement i f {i<5) in P needs to be changed to i f (i > -
10) inP'when A: =-2.

The branching condition transformation adjusts the inequality
relationship in the conditional statement in P' so that the control flows in P
andP' are identical.

The sample program in Fig. 2-12 is transformed to a diverse program
shown in Fig. 2-13 where k = -2.

58 Chapter 2

K = 1 ;
Y = 5 ;
i = 0 ;
w h i l e (i <

Z = X

i = i

}
i = 2 * z ;

5) {
+ i * y ;
+ 1 ;

Figure 2-12. Sample program P.

X =

y =
|i =

- 2 /
- 1 0 ;
0/

w h i l e (i

}
i =

z =
i =

(- 4)

>
X

i

-k

- 1 0)
+ i

+ (-

z /

{
-k

2)

(-

y
r

2)

/ (•

r

- 2) ;

Figure 2-13. Transformed program P'.

The choice of the most suitable value for A: has to satisfy two goals:
1. to guarantee data integrity, that is, to avoid that two programs produce

identical erroneous outputs
2. to maximize the probability that two programs produce different outputs

for the same hardware fault in order to achieve error detection.
However, the factor k should not cause an overflow in the functional

units. The primary cause of the overflow problem in the transformed
program is the fact that, after multiplication by k, the size of the resulting
data may bee too large to fit into the data word size of the processor. For
example, consider an integer value of 2̂ ^ -1 in a program (with 32-bit 2's
complement integer representation). If the value of k is 2, then the resulting
integer (2^^ -1) cannot be represented using 32-bit 2's complement
representation. The overflow problem can be solved by scaling: scaling up to
higher precision or scaling down the original data. Scaling up the data to
higher precision requires a data type with a larger size. For example, data
type such as 16-bit single precision integers can be scaled up to 32-bit
double precision integer data type. Scaling up may cause performance
overhead because the size of the data is doubled. On the other hand, scaling

Hardening the data 59

down the original data (the same effect as dividing the original data by k
instead of multiplying by k) will not cause any performance overhead.
However, there is a possibility that scaling down data may cause
computation inaccuracy during the execution of the program. In this case,
when the scaled down values are compared with the original values, only the
higher order bits, that are not affected by scaling down, have to be
compared.

A first method [38] proposed to consider A: = -1 , i.e., data are
complemented.

The method proposed in [39], called ED̂ Î {Error Detection by Diverse
Data and Duplicated Instructions), demonstrated that, in different functional
units, different values of k maximize the fault detection probability and data
integrity (for example the bus has the highest fault detection probability
when A: = -1 , but the array multiplier has the highest fault detection
probability when k= A), Therefore, programs that use a particular functional
unit extensively need preferably a certain diversity factor k. Considering six
benchmark programs (Hanoi, Shuffle, Fibonacci, Lzw compression, Quick
sort. Insert sort), the most frequently used functional units are adders and k =
-2 is the optimum value. On the other hand, the matrix multiplication
program extensively uses the multiplier and the optimum value is A: = -4.

The hardening technique introduces an memory overhead higher than 2
times the memory required for the original program and the performance
overhead is higher than 2, too.

ED'̂ I is applicable only to programs containing assignments, arithmetic
operations, procedure calls and control flow structures, and cannot applied to
statements executing logic operations (e.g., Boolean functions, shift or rotate
operations) or exponential or logarithmic functions.

3. EXECUTABLE ASSERTIONS

The method is based on the execution of additional statements that check
the validity of the data correspondent to the program variables.

The effectiveness of executable assertions is highly application
dependent. In order to develop executable assertions, the developers require
extensive knowledge of the system.

Error detection in the form of executable assertions can potentially detect
any error in internal data caused by software faults or hardware faults. When
input data arrive at a functional block, they are subject to executable
assertions determining whether they are acceptable. Output data from
computations may also be tested to see if the results seem acceptable.

60 Chapter 2

The approach proposed in [40] describes a rigorous way of classifying
the data to be tested. The two main categories in the classification scheme
are continuous and discrete signals. These categories have subcategories that
further classify the signal (e.g., the continuous signals can be divided into
monotonic and random signals). For every signal class a specific set of
constraints is set up, such as boundary values (maximum and minimum
values) and rate limitations (minimum and maximum increase or decrease
rate), which are then used in the executable assertions. Error detection is
performed as a test of the constraints. A violation of a constraint is
interpreted as the detection of an error.

Executable Assertion and best effort recovery are proposed in [41],
considering a control application. The state variables and outputs are
protected by executable assertions to detect errors using the physical
constraints of the controlled object. The following erroneous cases can be
detected:
• if an incorrect state of the input variable is detected by an executable

assertion during one iteration of the control algorithm, a recovery is
made by using the state backed-up, during the previous iteration of the
computation. This is not a true recovery (as we will see in Chapter 4),
since the input variable may differ from the value used in the previous
iteration. This may result in the output being slightly different from the
fault-free output, thus creating a minor value failure {best effort
recovery).

• If an incorrect output is detected by an executable assertion, recovery is
made by delivering the output produced in the previous iteration. The
state variable is also set to the state of the previous iteration that
corresponds to the delivered output. This is a best effort recovery, too,
since the output could be slightly different from the fault-free value.

Executable assertions with best effort recovery has been experimentally
applied on a embedded engine controller [41]. Fault injection experiments
executed on the original program showed that 10.7% of the bit-flips injected
into data cache and internal register of a CPU caused a failure in the system.
Fault injection experiments run on the hardened program modified with the
executable assertions with best effort recovery showed that the percentage of
failures is decreased to 3.2%, demonstrating that software assertions with
best effort recovery can be effective in reducing the number of critical
failures for control algorithms.

Hardening the data 61

4. REFERENCES

23. M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M. Violante, "Soft-error
Detection through Software Fauh-Tolerance techniques", Proceedings of the IEEE
International Symposium on Defect and Fauh Tolerance in VLSI Systems, 1999,
pp. 210-218

24. M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M. Violante, "A source-to-
source compiler for generating dependable software", IEEE International Workshop
on Source Code Analysis and Manipulation, 2001, pp. 33-42.

25. P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza Reorda, M.
Violante, "Experimentally evaluating an automatic approach for generating safety-
critical software with respect to transient errors", IEEE Transactions on Nuclear
Science, Vol. 47, No. 6, December 2000, pp. 2231-2236

26. M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M. Violante, "An experimental
evaluation of the effectiveness of automatic rule-based transformations for safety-
critical applications", IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2000, pp. 257-265

27. A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri, "A C/C++ source-to-source
compiler for dependable applications", IEEE International Conference on
Dependable Systems and Networks (DSN), 2000, pp. 71-78.

28. N. Oh, P.P. Shirvani, E.J. McCluskey, "Error Detection by Duplicated Instructions
In Super-scalar Processors", IEEE Transactions on Reliability, Vol. 51, No. 1,
March 2002, pp. 63-75

29. G. Sohi, M. Franklin, K. Saluja, "A study of time-redundant fault tolerance
techniques for high-performance pipelined computers", 19-th International Fauh
Tolerant Computing Symposium, 1989, pp. 463-443

30. Bolchini, C , "A software methodology for detecting hardware faults in VLIW data
paths", IEEE Transactions on Reliability, Vol. 52, No. 4, Dec. 2003, pp. 458-468

31. J.-S. Lu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, M.J. Irwin,
"Compiler-directed instruction duplication for soft error detection". Proceedings of
Design, Automation and Test in Europe, 2005, pp. 1056-1057

32. N. Oh, E. J. McCluskey, "Error Detection by Selective Procedure Call Duplication
for Low Energy Consumption", IEEE Transactions on Reliability, Vol. 51, No. 4,
December 2002, pp. 392-402

33. K. Echtle, B. Hinz, T. Nikolov, "On Hardware Fault Detection by Diverse
Software, Proceedings of the 13-th International Conference on Fault-Tolerant
Systems and Diagnostics," 1990, pp. 362-367

34. H. Engel, "Data flow transformations to detect results which are corrupted by
hardware faults", Proceedings of IEEE High-Assurance Systems Engineering
Workshop, 1996, pp. 279-285

35. M. Jochim, "Detecting processor hardware faults by means of automatically
generated virtual duplex systems". Proceedings of the International Conference on
Dependable Systems and Networks, 2002, pp. 399 - 408

36. S. K. Reinhardt, S.S. Mukherjee, "Transient Fault Detection via Simultaneous
Multithreading," Proceedings of the 27th International Symposium on Computer
Architecture, 2000, pp. 25-36

37. E. Rotenberg, "AR-SMT: a microarchitectural approach to fault tolerance in
microprocessors", 29-th International Symposium on Fauh-Tolerant Computing,
1999, pp. 84-91

62 Chapter 2

38. H. Engel, "Data Flow Transformations to Detect Results which are corrupted by
hardware faults", Proceedings of the IEEE High-Assurance System Engineering
Workshop, 1997, pp. 279-285

39. N. Oh, S. Mitra, E. J. McCluskey, "ED4I: Error detection by diverse data and
duplicated instructions", IEEE Transactions on Computers, Vol. 51, No. 2,
February 2002, pp. 180-199

40. M. Hiller, "Executable assertions for detecting data errors in embedded control
systems", Proceedings International Conference on Dependable Systems and
Networks, 2000, pp. 24-33

41. J. Vinter, J. Aidemark, P. Folkesson, J. Karlsson, "Reducing Critical Failures for
Control Algorithms Using Executable Assertions and Best Effort Recovery",
Proceedings of the International Conference on Dependable Systems and Networks,
2001, pp. 347-356

Chapter 3

HARDENING THE CONTROL FLOW

1. INTRODUCTION

This chapter presents the main software-implemented techniques for
hardening a microprocessor-based system against control flow (CF) errors
(CFEs). A CFE is an error that causes a processor to fetch and execute an
instruction different than expected.

As experiments demonstrate, a significant percentage of transient faults
leads to CFEs: in the experiments performed in [42] in average around 78%
of faults affecting a system caused CFEs (of course, this figure depends a lot
on the processor architecture and on the applications on which experiments
are performed). Most of the CFEs cannot be identified by the mechanisms
developed for data errors identification presented in chapter 2. These reasons
stimulate the development of special mechanisms for CFEs identification,
which are presented in this chapter.

2. BACKGROUND

The program code can be partitioned into basic blocks (BBs). A BB
(sometimes also named branch free interval) of a program is a maximal
sequence of consecutive program instructions that, in absence of faults, are
always executed altogether from the first one to the last one.

From the definition of a BB it follows that a BB does not contain any
instruction that may change the sequential execution, such as jump or call
instructions, except for the last one, possibly. Furthermore, no instructions

64 Chapter 3

within the BB can be the destination of a branch, jump or call instruction,
except for the first one, possibly [42].

A BB body is the BB without the last jump instruction. If the last BB
instruction is not a jump instruction, then the BB body coincides with the
BB. It is possible that a BB body is empty if the BB consists of one jump
instruction, only.

0

1
2

3

4

5

i = 0 ;
w h i l e (i < n) {

i f (a i i i < b [i i)
x i i] = a [i i ;

e l s e 1
x [i] = b [i] ;

i + + ;
} ,

a)

b)

Figure 3-1. Example of program source code and its CFG

A program P can be represented with a CF Graph (CFG) composed of a
set of nodes Fand a set of edges B, P = {F, B}, where F = {vi, V2, ..., v„}
and B = {bnj\, biiji, ..., bimjm}- The CFG represents the CF of a program.
Each node V/GK represents a program section, which can be a single
instruction or a block of instructions, for example a BB. Each edge bijsB

Hardening the control flow 65

represents the branch from node v, to node v,- [43]. In the following we will
consider CFGs where nodes represent BBs, and use the terms node and BB
interchangeably, unless otherwise explicitly stated.

As an example, let us consider the sample program fragment shown in
Fig. 3-1 (where the BBs are numbered, and the corresponding program CFG
is shown).

Considering the program CFG P = {V,B}, for each node V/ it is possible
to define suc{y^ as the set of nodes successor of v/ and pred(Vi) as the set of
nodes predecessor of v/ [44]. A node Vj belongs to suc(vj) if and only if bij is
included in B, Similarly, Vy belongs to pred(v,) if and only if bjj is included
in B. For example, in the CFG in Fig. 3-1 b) suc(\) = {2,3} and pred(l) =
{0,4}.

Let a program be represented by its CFG P = {K, 5} . A branch bij is
illegal for P if bjj is not included in B [43]. If a program, due to a fault,
executes a branch bi^k^B instead of the correct branch bij, then the branch b^
is wrong.

Illegal and wrong branches represent CFEs.
In Fig. 3-2 a) and 3-2 b) two examples of CFEs are presented where the

error branches are represented with dotted lines. These CFEs can be caused
(for example) by faults in the offset operand of the instructions
corresponding to branches 7̂2,4 and Z?4,i, respectively, which transform them
to branches Z?2,5 and 7̂4,5, respectively. In Fig. 3-2 a) a branch introduced by a
fault is illegal as the set B of the CFG P = {V, B} does not contain branch
Z?2,5. In Fig. 3-2 b) a branch introduced by a fault is wrong as the set B of the
CFG P= {V,B} contains this branch.

a) b)

Figure 3-2. Examples of CFEs: a) illegal branch, b) wrong branch

66 Chapter 3

CF checking (CFC) approaches are approaches detecting CFEs.
According to the purpose of this book, in this chapter we will refer to purely
software CFC approaches, i.e., approaches that do not need any hardware
architecture modification for their implementation. Chapter 5 will introduce
some methods exploiting some hardware components to achieve the same
goal.

CFEs can be divided into intra-block errors, which cause erroneous
branches having as their source and destination different blocks, and inter
block errors, which cause erroneous branches not crossing the blocks
boundaries. Correspondingly, intra-block CFC techniques control that
instructions inside a block are executed in the correct order, and inter-block
CFC techniques detect inter-block CFEs.

Most of the purely software CFC approaches presented in literature are
oriented just to inter-block CFC and only a small part of these are oriented to
both inter-block and intra-block CFC.

A common approach for the software-implemented detection of CFEs,
causing erroneous branches inside program area, is the signature-monitoring
technique. In this approach monitoring is performed by regular processor
instructions (called monitoring or checking code) embedded into the
program under execution. A signature (or identifier) is associated to program
structure (it can be a singular instruction, a block of instructions, a path of
the program CFG, or other) during compile time or by special program prior
to program execution. During program execution a run-time signature is
computed. Periodically, checks for consistency between the reference
signature and the run-time signature are performed. The mismatch signals
the CFE. The run time signature computed during program execution is
usually stored in a special area, e.g., a processor register.

The difference among software-implemented CFC approaches mainly
consists in the way signatures are computed and checks are performed.

We evaluate CFC approaches presented in this chapter basing on the fault
model, which stems from the fault models proposed in literature {e.g., [44],
[45], [46]) and includes the following types of CFEs:

Type 1. A fault causing an illegal branch from the end of a BB to the
beginning of another BB.

Type 2. A fault causing a legal but wrong branch from the end of a BB to
the beginning of another BB.

Type 3. A fault causing a branch from the end of a BB to any point of
another BB body.

Type 4. A fault causing a branch from any point of a BB body to any
point of different BB body.

Type 5. A fault causing a branch from any point of a BB body to any
point in the same BB body.

Hardening the control flow 67

These types of CFEs are schematically presented in Fig. 3-3. In this
figure rectangles denote BB bodies and arrows denote erroneous branches
caused by CFEs.

The first 4 types represent inter-block CFEs, while type 5 represents
intra-block CFEs. The considered fault model includes only CFEs, which
lead to erroneous branches inside the program memory.

Type!
or
Type!

Type 3

Type 4

Type 5

BB Vi body

instruction /

instruction n
illegal (type 1) or
wrons: (type 2)

^
w

BB V/(body

instruction 7

instruction m

BB v/ body
instruction 1

instruction /

instruction n

BB V, body
instruction 1

instruction /
(l<i<n)

instruction y

instruction n

BB Vk body
instruction 1

instruction y
(l</'<m)

instruction m

BB Vi body
instruction 1

instruction /

instruction n

^
w

BB Vk body
instruction 1

instruction y
(l<J<m)

instruction m

Figure 3-3. Considered types of CFEs

Let now consider the types of CFEs included in the fault model with
respect to the system-level errors considered in chapter 1. The presented
types of CFEs correspond to single code or data system-level errors, such as:
• errors in the offset of a branch instruction (CFE types 1, 2 and 3),

68 Chapter 3

errors in a condition upon which a conditional branch is taken (CFE type
2),

errors changing a nonbranch instruction to a branch one (CFE types 4
and 5),

errors changing a branch instruction to a nonbranch one (CFE types 1
and 2).

lype 1
or
Type 2

Type 3

Type 4

Type 5

v/

i

'"/

1
^ • /

V/

- ^

V̂. t

n

hh.
pp.

'"A i

:t̂

i niodillcd
[BH body

J body

•~i checking
code

""1 checking
code

Figure 3-4. Considered types of CFEs for the hardened program

In this chapter we evaluate (not strictly) the capabilities of each CFC
method to cover the types of CFEs from introduced fault model; such
evaluation is performed in the subsection named ''Advantages and
limitations". In this evaluation we consider CFEs, which appear in the
original code. However, during the program execution the erroneous
branches can have as their source and/or destination instructions of the
additional checking code. For the purpose of simplicity we do not evaluate
the coverage of such CFEs; only for some methods we put remarks on them.
However, as these CFEs can lead to erroneous functionality of the program
it is important to take them in consideration when the CFC method is
developed. In Fig. 3-4 the CFEs types considered during evaluation are
graphically presented for modified BBs hardened with checking code. Here

Hardening the control flow 69

it is supposed that the checking code is added in the beginning and/or at the
end of each BB, which is the case in most CFC methods.

The probability of erroneous branches having as their source some
instructions of the additional checking code increases in case the checking
code itself introduces new branches, which can be as well sources of CFEs.
That is why it is desirable that the checking code is either branch free or the
method is developed taking in consideration these branches.

Among the purely software CFC approaches it is possible to distinguish
those which work on assembly-level program code and those which work on
high-level program code. The latter ones are more attractive due to their
higher portability, since the hardened version of the program is independent
from the platform it is intended to be run on. Nevertheless, the high-level
approaches have the drawback that the high-level CFG may not correspond
exactly to the assembly-level CFG, and this may lead to lower error
coverage. For example, in Fig. 3-5a) the high-level C instruction i++ (where
i is an integer variable) is presented. If the program containing this
instruction is compiled for a processor, which contains an 8-bit ALU, then
the increment operation can be performed in two steps (Fig. 3-5 b)): first the
lower byte is increased and only if its value becomes zero the higher byte is
increased too. So a new jump is introduced by the operation and
consequently the high-level program BB containing the instruction i++ is
split into several BBs in the assembly-level code, and new branches are
introduced in the assembly-level program CFG. Special techniques have
been proposed to tackle this problem [47].

INC
MOV
JNZ
INC

25h
A,25h
02h
24h

a) b)

Figure 3-5. A high-level instruction and its assembly-level representation

In the next sections of this chapter the CFC techniques proposed in
literature are presented. We put them in chronological order.

For each of the CFC techniques the subsection "The approach" briefly
describes the approach presented by its authors in the corresponding papers.
The subsection "Experimental results" reports experimental results reported
by the authors of the corresponding approach; these results are presented
briefly and figures are reported in average (most of the average figures are
rounded off); for details the reader should refer to the corresponding papers.

70 Chapter 3

The exception is the experiments performed by the authors of this book and
reported in section 13.2, which are presented in more details. The subsection
"Advantages and limitations" presents evaluation of the approach performed
by the authors of this book.

In sections 4, 5, 6, 7, 11 some assembly-level CFC techniques are
presented; sections 3, 8, 9, 10, 12, 13 and 14 describe some high-level CFC
techniques.

3. PATH IDENTIFICATION

3.1 The approach

In this section we summarize the approach presented in [43]. This
approach is oriented to the detection of CFEs resulting from both software
coding errors and hardware faults.

According to the approach, the program is partitioned into loop-free
intervals. A data-base, which contains the paths information for each of the
program loop-free intervals, is constructed and the code for the CFEs
detection is added to the program. During the program execution for each
traversed loop-free interval the traversed path information is recorded and on
the next loop-free interval entry it is verified for consistency with the
information in the data-base. In the case of discrepancy, a CFE is detected.

The data-base information may be obtained either from the program
design or extracted from the code. In the former case the method is also able
to detect possible software coding errors.

A loop-free interval is defined as a maximal subgraph of the program
CFG, which does not contain loops and has a single entry. The partition of
the CFG into loop-free intervals has the following properties:
• it is unique for CFG
• it is not complete, as not all branches of the CFG are included into some

loop-free interval.
In Fig. 3-6 a) the loop-free intervals of the CFG from Fig. 3-1 b) are

presented; here branches bo,\, fto,5, ̂ 4,1 and 4̂,5 are not included into any loop-
free interval.

A unique prime number called vertex identifier is associated to each BB
within each loop-free interval; each path in a loop-free interval is
represented by a path identifier, which is the product of the vertex identifiers
of the BBs included in the path. This representation is intended to satisfy the
following properties: compactness, uniqueness and unambiguousness. The
first two properties are satisfied by the proposed path representation, the
third property is satisfied in the case of single CFEs; multiple CFEs in some

Hardening the control flow 71

cases can cause the error compensation or aliasing. A unique identifier {ID)
number is associated to each loop-free interval of the program.

loop-freei
interval i

0 i

loop-freej^
intervaJr \

loop-free 1
interval j

2 =••

®

®
®

TO

®

loop-free
intciTal

0

a)
Figure 3-6. Loop-free intervals

b)

For each loop-free interval a path table is constructed, which contains for
each path of the loop-free interval a line, containing a current loop-free
interval ID (CIID), a path predicate, a path identifier and the next loop-free
interval/Z)(Ara)).

For the purpose of path table construction each loop-free interval
terminal BB with m outcoming branches (where m>l) m-\ dummy BBs are
introduced with one outcoming branch. In Fig. 3-6 b) the loop-free interval 1
is prepared to path table construction: a dummy BB 4.1 is introduced and
vertex identifiers are assigned to each BB belonging to the loop-free interval
1. The example of the path table corresponding to the loop-free interval 1 for
the program from Fig. 3-1 a) is presented in Table 3-1.

Table 3-1. Example of p
Current Loop-Free

Interval CIID
1
1
1
1

ath table
Path Predicate

a[i]<b[i]; i<n
a[i] >b[i]; i<n
a[i]<b[i]; i>n
a[i] >b[i]; i>n

Path Identifier

2145
3003
165
231

NIID

1
1
2
2

The program is supplied with the following variables:

72 Chapter 3

• A global variable NIID, which contains the ID of the next loop-free
interval to be traversed. At the program start the NIID variable is set to
the ID of first program loop-free interval.

• a CIID variable, which is introduced in each module (e.g., a procedure)
of the program and contains the ID of the currently traversed loop-free
interval.

• a RPI variable, which is introduced in each module of the program and
contains the identifier of the currently traversed path.

Some checking code is added to the program to perform run-time CFC.
At the beginning of each loop-free interval the code presented in Fig. 3-7

a) is added. Here, function TAB checks for the correctness of the path
traversed in the previous loop-free interval. For this purpose it searches the
path identifier saved in the RPI variable in the previous interval's path table;
if it is not found, an error is detected; otherwise, the path predicate is
checked using the stored input control variables^ of a loop-free interval; if it
does not correspond to the predicate recorded in the path table, then an error
is detected. If the path is correct, TAB function saves the new value for the
NIID variable taken from the last column of the path table. The TAB
function is not added to the first loop-free interval of the program or of some
module.

TAB(CIID,RPI
if (NIID!=IDi
STORE(NIID);
RPI = 1;
RPI = RPI *

,NIID);
error

VII;

0;

a)

b)

Figure 3-7. Checking code added in the program

^ A control variable of a program is a variable whose value can affect the CF of the program
[43]. An input control variable of a loop-free interval is a control variable of the loop-free
interval v^hich is either already defined before the loop-free interval is entered or read as an
input during the execution of the loop-free interval [43].

Hardening the control flow 73

The second line in the code presented in Fig. 3-7 a) performs the check,
which controls if the NIID corresponds to the currently traversed loop-free
interval ID IDf. if not, then an error is detected, otherwise, CUD variable is
set to NIID. Than the input control variables of the loop-free interval are
stored and the RPI is initialized to 1.

In each BB v, entry the value of RPI is multiplied by the corresponding
vertex identifier as it is presented in figure 3-7 b) (we will name vertex
identifier oiBB v, - VIj). In Fig. 3-7 /Z), and VIj are constant values.

If a module call instruction is present in a BB, the NIID variable is
updated to the first loop-free interval ID of the called module before the call
instruction. After the module call instruction the check is performed if the
NIID value corresponds to the last interval's ID of the called module. Before
the module exit or the program stop the TAB function is performed to check
the correctness of the last loop-free interval execution.

In order to reduce the memory and performance overhead of their
method, the authors suggest to introduce an independent processor called
supervisory processor for performing the CFC. The supervisory processor
allows to separate the execution of the most time consuming CFC operations
from the execution of the object program. It is recommended that the
supervisory processor have much higher reliability than the processor
executing the program, which allows avoiding the failure of the checking
process itself

In the presented CFC approach the introduction of the loop-free intervals
gives two advantages: first, infinite paths are excluded, and second, the total
number of paths is significantly reduced.

3.2 Experimental results

In order to evaluate the method memory and performance overhead some
experiments were performed [43]: five Fortran applications were hardened
according to the presented approach; the size of the applications varied from
23 to 103 source lines. The measured memory overhead varies from 90% to
175% for the considered applications and equals in average to 123.6%). For
evaluation of performance overhead 6-7 runs of each application were
performed; the performance overhead measured during these runs varied in
average from 69.6% to 87%.

3.3 Advantages and limitations

The method is capable to detect CFEs of types 1, 2 and 3 (according to
the fault model presented in section 1). It guarantees the detection of single
CFEs of these types for erroneous branches inside the loop-free interval.

74 Chapter 3

However, it seems that the method can miss erroneous inter loop-free
interval branches (even if the probability that this event happens is quite
low). It can happen if an erroneous jump leads from one loop-free interval
IDi to another loop-free interval IDj so that:

• on the loop-free interval IDj exit the RPI is equal to RPI expected on
the exit of the loop-free interval IDi in case of no error.

• the loop-free interval executed after the loop-free interval IDj is the
same as the loop-free interval which should be executed after loop-
free interval IDi in case of no error.

Assigning distinct vertex identifiers to all BBs in the program, not just in
loop-free interval, can easily eliminate this problem.

As no checking code is added in the BB exit, the CFEs of type 4, which
lead from some point of one BB to the beginning of a correct BB, are not
detectable by the method. As the method is oriented to the inter-block CFEs
detection it also does not detect errors of type 5.

The need to store the data-base leads to an additional memory overhead
for the method. On the other hand the supervisory processor and loop-free
intervals introduced in the method aim at memory and performance
overhead reduction.

Other drawbacks of the method are:
• it does not seem easy to automatically implement the method, since

besides CFG construction (needed by most of the CFC approaches) the
method needs to partition the program into loop-free intervals and to
build the data-base,

• the multiplication operation used to obtain RPI is rather time consuming,
• loop-free interval level detection introduces error detection latency.

4. CFE DETECTION IN SEQUENTIAL AND
PARALLEL PROGRAMS

4.1 The approach

In [48] a method is proposed, which aimed in particular at the detection
of CFEs leading to wrong program module selection in a uniprocessor case
or to an incorrect process to run selection in a multiprocessor case.

The method considered in [48] is particularly suited for structured
programs, containing a large number of procedures dedicated to solve parts
of the program task as well as for parallel programs. The method is intended
to be applied to assembly-level programs.

Hardening the control flow 75

A signature is associated to the main program as well as to each
procedure, which is the symbolic name of the program/procedure. The
program name is embedded into the program code and the procedure name
into procedure code during the compilation time. Each name is represented
in fixed length binary representation. A special register R is reserved to
contain the run-time signature, i.e., the name of the procedure under
execution.

Code is added in the program during the compilation, which on each
program/procedure entry and exit checks the run-time signature for
consistency with the program/procedure name embedded in the code. In case
of mismatch an error is signaled. In case of a long program/procedure it is
suggested to perform more than one consistency check in order to reduce the
error latency. How often the name is checked is thus a problem of trading-
off between error detection latency and memory and performance overhead.
Authors of the approach suggest that a check before each procedure call is a
good choice.

On the program start the name of the program is put in the especially
reserved register R. Before each procedure call some code is added, which
moves the content of register R {i.e., the currently executing procedure
name) in a reserved place {e.g., in a stack) and the name of the procedure to
be executed next in register R. After the procedure is executed the name of
the procedure is popped back to register R.

The proposed approach can be directly extended for identifying CFEs
which lead to jumps over synchronization points in parallel programs.

4.2 Experimental results

In order to estimate the proposed approach experiments were performed
in [48] on a 80386-based PC resorting to an in-house developed application
containing 5 simple routines, which may call each other.

Fault injection was performed by means of a TSR (Terminal-Stay-
Resident) program, which can be called by left-shift key during the program
execution and which causes the processor to jump to a random location in
the program memory space. During fault injection 300 faults were injected,
among which 57% were determined by means of some detection mechanism
embedded in the processor and 34% were detected by the proposed method.
The estimated memory overhead in the considered case was 34%.

4.3 Advantages and limitations

The method proposed in [48] is transparent to the user and easy to
implement, and it does not need a complete program CFG analysis. The user

76 Chapter 3

has the possibility to trade-off between redundancy, CFEs coverage and
detection latency by choosing the number of checks to be performed inside
the program/procedure. The main limitation of the method is its reduced
CFEs coverage: in the monoprocessor case it is able to check only the
correctness of the CF between program procedures.

5. BEECANDECI

5.1 The approach

In this section the CFC approach described in [42], [49] is presented.
This approach is composed of two independent CFC methods, which can be
applied together: they are Block Entry Exit Checking (BEEC) mechanism
[49] (this approach is based on the Block Signature Self Checking approach,
presented in [42]), which checks the CF between program BBs and Error
Capturing Instruction (ECI) mechanism, which inserts trap instructions in
the data area and in the unused area of memory. In this way, if the program
starts to fetch instructions from the unused or data memory areas, an error is
detected. The idea of the ECI technique is based on that proposed in
[50][51].

To increase the CFEs detection coverage it is suggested in [42], [49] to
combine software BEEC and ECI techniques with a watchdog timer (WDT),
as WDT is able to detect CFEs not detectable with software BEEC and ECI
mechanisms (for example errors, which affect the CPU's capability to
execute program code). In the following subsections 5.2 and 5.3 the BEEC
and ECI techniques are presented, respectively.

5.2 BEEC

In this approach the program is partitioned into BBs and each BB is
supplied with checking instructions as shown in Fig. 3-8.

At the beginning of each BB the call instruction to a routine (named
entry) is added. At the end of each BB the call instruction to another routine
(named exit) and embedded signature are added.

The entry routine checks if the execution of the previous BB was
successfully completed by comparing the value stored in a static buffer with
the unique KEY value. This KEY value is stored in a static buffer by the
previous BB exit routine. If the check is successful the address of the first
BB instruction (m+1) is stored in the static buffer; otherwise the CFE is
detected.

Hardening the control flow 11

A BB signature, which is equal to the sum of the size of the BB and the
size of a call instruction, is stored after the exit routine call in the bottom of
the BB. The exit routine sums the value (m+1) stored by the entry routine in
the static buffer with the embedded BB signature (n+k), where n is the
number of bytes in BB and k is the number of bytes of the exit routine call
instruction, and compares the obtained value with the address of the last BB
instruction (m+n+k+l). In the case of a successful comparison the exit
routine stores the unique KEY in the static buffer and modifies the return
address to the program in order to skip the embedded signature. In case of
mismatch a CFE is detected and an error handling routine can be called from
exit routine to initiate the recovery.

As it is possible to have different BBs with the same size, the BB
signature computed as the size of the BB plus the size of a call instruction is
not unique. However, the address of the BB's first instruction is unique for
the program and consequently the value (m+n-^k+1), which is compared with
the BB embedded signature address is unique for each BB.

n+k
<

bytes

m+1

m+n

m+n+k+l

BB V,., body

;
E n t r y c a l l i n s t r u c t i o n

Original BB v,. body

Exi t c a l l i n s t r u c t i o n

Embedded s i g n a t u r e

1
BB v,.+, body

J

modified

BB V. body

Figure 3-8, Checking instructions according to BEEC approach.

It is suggested to implement the technique by means of a postprocessor,
which inserts BEEC instructions into the code generated by compiler.

To reduce the overhead caused by BEEC approach the authors of the
method suggest to harden only the BBs with more than s instructions (in the
experiments described in [49] s is equal to 5).

78 Chapter 3

5.3 ECI

In this approach some special instructions (named ECIs) are stored in the
memory locations not used during normal program execution. The execution
of an ECI indicates a CFE. ECIs are inserted in the data area and unused area
of memory. The ECIs can also be inserted in the program code area; in this
case ECIs should be skipped over during the normal program execution.

Some instructions are proposed to implement ECIs:
• Software interrupt instructions.
• Unconditional branch instructions.
• Call instructions.
• Jump instructions.
• No-operation instruction (NOP).
These instructions can be used to initiate an error handling routing or to

initiate an infinite loop; in the latter case a watchdog timer may be used for
error detection. If the microprocessor has undefined operation-code
detection in its design, then undefined operation codes in the microprocessor
can also be used to implement ECIs.

5.4 Experimental results

In order to evaluate the proposed techniques some experiments were
performed in [49] on a Motorola MC6809E microprocessor running 3
application programs.

The combination of BEEC, ECI and WDT was evaluated during
experiments. In order to reduce the overhead only BBs, which contain more
than 5 instructions were hardened with the BEEC technique.

The following overheads were measured: in the average the overhead in
terms of program size was around 21.8% and the execution overhead around
99.6%. The ECI mechanism increased the data size by around 6.5%) in the
average.

Two fault injection methods were used for physical injection of transient
faults: Heavy-Ion Radiation (HIR) and Power-Supply Disturbance (PSD).

During fault injection 6,000 errors were injected (1,000 for each of the 3
appUcations and for each of two fault injection methods). Some results of the
performed fault injection campaigns are reported in Table 3-2. The table
reports the average percentage of detected errors: the contribution of each of
the techniques is indicated. The vector addresses of the interrupts unused
during the experiments were provided with the address to a detection
routine; this allowed to detect around 1.9% of errors. Besides this, the table
reports the percentage of injected errors, which leaded to CFEs and the
percentage of detected CFEs. Some undetected errors did not influence the

Hardening the control flow 79

result, so the correct outputs were produced; other undetected errors caused
illegal RESET; the percentage of undetected errors producing wrong result is
presented in the last column.

Table 3-2

HIR
PSD
Total

. Fault injection i

BEEC

42.7
43.2
42.9

ECI

11.5
8.8
10.2

results (figures are approximated)
Detected errors

WDT

23.7
41.0
32.4

(%)
HW/SW
Interrupts
3.4
0.4
1.9

Total

81.4
93.3
87.3

CFEs

(%)

88.8
96.9
92.8

Detected
CFEs

(%)
89.5
96.0
92.9

Wrong
result

(%)
9.3
3.3
6.2

5.5 Advantages and limitations

The method is able to cover CFEs belonging to types 1-4 from the fault
model presented in section 1 of this chapter; moreover, the ECI mechanism
allows to cover erroneous branches, which have as their destination an
unused area of memory. This method does not cover intra-block CFEs
(errors of type 5). Unfortunately, in the papers presenting the BEEC
mechanism it is not explicitly described how the exit routine assigns the KEY
value of the next BB in case the current BB has more than one successor.

EXPLOITING INSTRUCTION LEVEL
PARALLELISM: ARC TECHNIQUE

6.1 The approach

In this section the technique named Available Resource-driven Control
flow monitoring (ARC) [52] is described. ARC is a signature-monitoring
technique applicable to assembly-level programs.

The particular feature of this technique is that it is oriented to processor
architectures exploiting instruction level parallelism (ILP) in order to
achieve higher performance. Particular focus in the described method is put
on Very Large Instruction Word (VLIW) architectures; however, it can be
adopted to other architectures exploiting ILP.

Processors with VLIW architecture contain multiple Functional Units
(FUs), which allow performing more than one operation at a time. In the
VLIW architecture the operation parallelism is identified statically by the
compiler, which generates instructions composed of multiple operations that
can be performed simultaneously on different FUs. Usually, VLIW
processors have idle FUs during the program execution as either the program

80 Chapter 3

under execution does not possess the parallelism necessary to occupy all the
FUs, or the compiler is not able to identify a sufficient number of operations,
which can be executed in parallel, or for both reasons. In [52] the estimation
was performed for the processor with VLIW architecture Multiflow TRACE
14/300, which showed that in the average the utilization of all resources is
low (10-30% in the performed experiments). Even if this figure can be
higher in different VLIW architectures, it is still expected that the percentage
of idle resources during the program execution be rather high. The idea of
the ARC approach is to get use of these idle resources in order to perform
CFC with low performance overhead by scheduling checking code in idle
resources.

In the ARC method program instructions are grouped in blocks and a
block identifier id is assigned to each block. The ARC method operates with
blocks, which are constructed based on the available idle resources.

An additional code is integrated in the program, which monitors the
program CF. This code performs two tasks, which are
• tracking task, which updates the block signature during the program

execution.
• checking task, which checks the run-time signature during the program

execution.
A register named key is dedicated to contain the currently traversed

program block id. In all the program entry points the key value is initialized
with the 0 value; in the block boundary the key value is updated by tracking
task to the subsequent block id.

Operations performing tracking and checking tasks are allocated in ARC
in such a way that they use as much idle resources as possible.

The allocation of the operations required by the two tasks is performed as
follows:
• Checking task operations allocation: the allocation of the checking

operations is performed before the allocation of the operations
performing the tracking task because the constraints for placement of
checking operations are more restrictive. The checking operations are
located in such a way that the time to reach the checking operations from
any point of the program is bounded.

To reach this objective checking operations are allocated obeying the
following constrains:

• A checking operation is added to each loop (the place of the checking
task operations in the loop does not matter).

• A checking operation is added at each program exit point.
During the checking task operations allocation as much idle resources
are used as possible. In the case the idle resources are not enough new
instructions are added in the program.

Hardening the control flow 81

• Tracking task operations allocation. The tracking task pursues the
following objectives:
• The program is partitioned in the smallest possible blocks while

obeying the condition that idle resources are used, only. To reach this
objective a block boundary is added each time the idle resources are
available for allocating the tracking operations. In order to simplify the
tracking task the following condition is fulfilled during the program
partitioning to blocks: all successors of a program instruction belong to
the same block (this condition simplifies the tracking task as the id of
the current block should be always modified to the same id not
depending on program state).
Before the program partition to the blocks the key value is initialised to
the 0 value in the program entry point: if the idle resources are not
available the new instruction is added before the program entry point,
which becomes the new program entry point and where the key
initialisation is performed.

• The mapping function/ which transforms the key from the old value to
the new one, should be chosen in such a way that only the id of the
block where the modification is performed is mapped into the id of the
immediate successor block. To reach this objective the authors of the
method suggest to use as / an injective function {i.e., a one-to-one
function), such as, for example, an integer add or subtract.

6.2 Experimental results

Experiments were performed [52] on the processor with VLIW
architecture Multiflow TRACE 14/300 using 4 benchmark applications
written in C and FORTRAN programming languages in order to estimate the
method memory and performance overhead. Experiments show that for the
considered benchmark programs 100% of the monitoring operations were
scheduled in idle resources. The estimated performance overhead is thus
close to 0 for all benchmarks and the memory overhead varies from 1.1% to
23.2%.

6.3 Advantages and limitations

The ARC approach allows to utilize idle resources available during the
program execution on microprocessors with an architecture exploiting ILP
for performing CFEs monitoring; this allows to keep performance overhead
of the method quite low.

As the method does not operate with BBs but with blocks constructed
according to different rules we will evaluate the ARC method with respect to

82 Chapter 3

the fault model presented in section 1, where the BB is changed with the
block in the sense specified by the ARC method. With this assumption the
ARC method is able to detect CFEs of types 1, 2, 4 and most of CFEs of
type 3. It does not detect CFEs of type 3, which lead to erroneous branches
having as their destination some instruction of BB body correct according to
CFG. ARC method does not detect CFEs of type 5. As the ARC method
block can include branch instructions the probability of intra-block CFE in
blocks constructed according to the ARC method is higher with respect to
intra-block CFEs in the case of program partition into BBs. However, the
ARC method is able to detect some intra-BB CFEs if the source and
destination of the erroneous branch belongs to different ARC blocks.

The ARC method introduces a non negligible error detection latency, as
the key value checks are necessarily performed only at loops and at program
exit points.

7. VASC

7.1 The approach

In [53] a method of software signature-monitoring technique applicable
at the assembly-level and named Versatile Assigned Signature Checking
(VASC) is presented. The method has been proposed for both mono- and
multi-processor system, although the reported experimental results only
cover the latter case.

The main particularity of the VASC method consists in the definition of
the program logical blocks. The aim of this definition is to have blocks of
the desirable size; the method proposes to vary also the size of the checking
intervals.

In the VASC method each block may consist of an arbitrary number of
sequential (in dynamic sense) instructions. The block can include branch
instructions, program procedure call and return instructions, and so on. In
order to keep the tracking task simple all successors of each program
instruction are always included in the same block (like in the ARC method).

To each program block a signature blockID is assigned. In the block
boundaries instructions are added, which update the run-time signature from
the current blockID to the blockID of subsequent block according to the
program CF. The consistency of the run-time signature and the assigned
signature of the currently traversed block are periodically controlled. In the
case of discrepancy an error is detected.

Hardening the control flow 83

The number of instructions in the block is Hmited by the block size value
and number of instructions between two check operations is defined by the
check interval value. The block size as well as the check interval are defined
by the user. These two values are completely independent, which means that
the block size can be greater or equal to the check interval, and vice versa. In
order to obtain the flexibility for improving the placement of checking and
tracing operations, some tolerance can be specified by the user for the block
size as well as the check interval values. As an example, if the block size is
defined as 7 instructions with a tolerance of 2 instructions, then the block
size can vary from 5 to 9 instructions.

block 0

blouk 1 " W)

®

block 0

®

block 0 X-—X

block 1 / ! > p \

^m 1

\
\

3
/

block 1 /^>^^,_„-/

\

/
/

a) b) c)

Figure 3-9. Example of program partition to blocks according to the VASC method

In Fig. 3-9 an example of program partition to blocks according to the
VASC method is presented. In Fig. 3-9 a) the program graph is presented
(here nodes correspond to program instructions). In Fig. 3-9 b) the program
partition to blocks for block size equal to 3 is presented. In Fig. 3-9 c) the
program partitioning to blocks for block size equal to 2 is presented: in this
case blocks can not be further enlarged. For example, block 0 can not be
enlarged because its node 0 has two successors (nodes 1 and 5), which
should belong to the same block; subsequently they cannot be included in
the block 0 because otherwise its size would overcome the size 2.

7.2 Experimental results

In order to evaluate the proposed technique experiments were performed
on two systems based on a Transputer T805 processor and a PowerPC

84 Chapter 3

processor [53]. Both of them are distributed memory parallel systems with
four nodes.

The performance and memory overhead of the method were measured on
both processors resulting to three applications. Experiments consider
different combinations of block size and check interval. The authors of the
method considered block size smaller than the check interval as checking
operations involve a higher overhead with respect to the tracking operations
and, besides, usually CFEs are propagated by tracking operations and can be
detected in the following, when checking is performed.

In the experiments block size and check interval varied from block size
equal to 30 and check interval equal to 50 to block size equal to 100 and
check interval equal to 120; for the considered applications the code
overhead varied from 2% to 0.5% in the average, and the execution overhead
varied from 14% to 2.5%) in the average for the T805 processor; for the
PowerPC processor the code overhead varied from 6.5%) to 2.5%) in the
average, and the execution overhead varied from 11% to 3.5% in the
average. As expected, in general both the performance and the memory
overhead decrease when the block size and the check interval increase.

The code size overhead is smaller for the T805 processor than for the
PowerPC processor as the signature-monitoring instructions in the T805
processor are small, while in the RISC processor all instructions have fixed
size; however, the performance overhead for the T805 processor is higher
than for the PowerPC processor, as the monitoring operations operate with
registers in the PowerPC processor and with a slower cache in the T805
processor.

Fault coverage figures were measured only for the PowerPC processor on
three applications by using fault injection. Fault injection was performed
using the Xception fault injection tool [54], which is able to emulate
hardware transient faults in the processor FUs (Data Bus, Address Bus,
Floating Point Unit, Integer Unit, General Purpose Register, Branch
Processing Unit, Memory Management Unit) and in the memory.

Applications were hardened with the VASC technique with block size
equal to 10 and check interval equal to 18. Only the source code was
hardened, while the library code remained unhardened; hardening the library
code as well can thus further increase the FC figures (and the overhead).

During the experiments 10,000 transient faults have been injected; each
of the faults was injected in one randomly selected processor of the system
and caused one or two bit flips of a randomly chosen processor FU. Fault
injection experiments performed on 3 applications hardened with the VASC
mechanism showed that the built-in processor fault detection mechanism
was able to detect in the average 37.6%) of the injected faults and the VASC
mechanism was able to detect in the average 4.7% of injected faults; in the

Hardening the control flow 85

average 8.3% of the injected faults remained undetected. The overall
increase of fault detection achieved by hardening the applications with the
VASC technique was in the average equal to 3.2%. Study of undetected
faults showed that these faults are mainly pure data faults; to detect these
faults some data detection mechanism (a variety of them is presented in
chapter 2) should be combined with VASC. Authors of [53] note that the
percentage of undetected faults is high also because experiments were
performed on RISC processors, where faults cause more data errors and less
CFEs (while in CISC processor the situation is the opposite).

The VASC fault coverage for different block size and check interval was
also studied in [53]. The performed experiments showed that the fault
coverage is not strictly decreasing with the growing block size and check
interval. Authors of [53] give some responsibility for such behavior to
interaction of VASC with the built-in fault detection mechanism.

Study of the experimental results showed that for obtaining a good fault
coverage the check interval should be less than 50 instructions and the block
size should be kept small.

7.3 Advantages and limitations

The VASC method gives to a user the possibility to vary the block size
and the check interval and consequently to trade-off the method detection
capabilities and overhead.

When BBs are substituted with blocks in the sense of the VASC method,
the VASC method is able to detect CFEs of the same types as the ARC
method (see section 6.3).

The probability of intra-block CFE, in blocks constructed according to
VASC method is higher with respect to intra-block CFE, in case of program
division to BB. However, the VASC method is able to detect some intra-BB
CFEs if source and destination of an erroneous branch belong to different
blocks (the reasons are the same as for the ARC method). The VASC
method (as well as the ARC method) introduces some error detection
latency.

8. ECCA

8.1 The approach

The software-implemented CFC approach named Control flow Checking
using Assertions (CCA) and its enhanced version (ECCA) are presented in

86 Chapter 3

[45], [55], [56]. In this book we describe only the ECCA approach as it has
improved characteristics with respect to CCA. ECCA has two versions: one
version is oriented to programs coded in high-level language, and another
one is oriented to intermediate-level representations. We will denote the two
versions as ECCA-HL and ECCA-IL, respectively.

In order to reduce the overhead, ECCA divides the program into a set of
blocks, where the block is a collection of consecutive BBs (BBs are called
Branch Free Interval or BFI in [45], [55], [56], but we will hold on accepted
terminology) with single entry and single exit. The shorter the block is, the
higher the fault coverage is and the lower the error detection latency is,
whereas the memory and performance overhead is higher. By properly
choosing the block length it is possible to fmd the most suitable trade-off for
the user purposes.

8.2 ECCA-HL

Error detection in ECCA-HL is performed reasoning to the exception
handler.

ECCA-HL assigns a unique prime number identifier (called Block
Identifier or BID) greater than 2 to each block of a program. During program
execution the global integer variable id is updated to contain the currently
traversed block identifier.

Two assertions are added to each block:
• a SET assertion is added at the beginning of the block, which executes

two tasks: it assigns the BID of the current block to the id variable and it
checks if the block the execution came from is a predecessor block,
according to the CFG. A divide by zero error signals a CFE. The SET
assertion implements the following formula:

. , BID ,^^
id = •====== , (1)

(id mod BID) - {id mod 2)

1, if (id mod BID) = 0

0, if (id mod BID) ^0
where (id mod BID) =

A TEST assignment is executed at the end of the block and executes two
tasks: it updates the id variable taking into account the whole set of
successor according to CFG blocks and checks if the current value of the
id variable is equal to BID. The TEST assertion implements the
following formula:

Hardening the control flow 87

id = NEXT + {id-BID). (2)

The variable NEXT is equal to the product of BIDs of all successors
according to the CFG blocks of the current block, i.e.,

NEXT = Y[BID^^ (3)

{id-BID) =
\Jf{id-BID)^0

OJf(id-BID) = 0'

The NEXT and BID variables are generated once before the program
execution, whereas the zJ variable is updated during the program execution.

As an example, in Fig. 3-10 the program code from Fig. 3-1 a), hardened
according to ECCA-HL, is reported.

id = BIDO;
i = 0;
id = BID1*BID5 4- ! ! (id-BIDO) ;
while(i < n)
{

i d = B I D l / ((! (i d % B I D l)) * (i d % 2)) ;
i d = BID2*BID3 + ! ! (i d - B I D l) ;
i f (a [i] < b [i])
{
id = BID2/((!(id%BID2))^(id%2));
x[i] = a[i];
id - BID4+!!(id-BID2);

}
else
{
id = BID3/((!(id%BID3))^(id%2));
x[i] = b[i];
id = BID4+!!(id-BID3);

}
id = BID4/((!(id%BID4))^(id%2));
i++;
i d = B I D 1 * B I D 5 + ! ! (i d - B I D 4) ;

}
i d = B I D 5 / ((! (i d % B I D 5)) * (i d % 2)) ;

Figure 3-JO. Example of application of ECCA-HL

88

8.3

Chapter 3

ECCA-IL

In order to fulfill the language portability requirements the authors of
ECCA also proposed ECCA-IL. This technique works at the RTL stage used
by the GNU's compiler as intermediate-level representation. ECCA-IL takes
advantage of the property that a block in RTL can have two successors at
most. Therefore, the method rewrites the SET and TEST assertions using a
cheaper (in terms of CPU time) variant.

Each SET assertion in ECCA-IL implements the following formula:

r,=(r,-BID)^ir,-BID), (4)

\ / T 2 + 1 /

(5)

where r\ and r2 are global registers. Under correct program execution one of
the registers ri and r2 contains the BID value. After the first statement is
executed the r\ register takes the value 0 in the error free case and not null in
the case of error. After execution of the second statement the r\ register takes
the value BID +1 in the case of no error. In case of error, r\ is different than
0, and as a result the division (ri+l)/(ri-2+l) among integer values will
provide a result equal to 0. As a consequence, a divide-by-zero error will be
originated, signaling the presence of a CFE.

The version of the SET assertion to be used in the intermediate-level is
presented in Fig. 3-11.

tmpi
tmp2
tmp3

^2 =
tmp2
tmp3
tmp3

tmp2
ri =

_ _ _ _
= ri - BID

= r2 - BID

tmp2 X tmp3
= r2 + 1
= r2 « 1
= tmp3 + 1
= tmp2/tmp3

tmpi/tmp2

Figure 3-11. Intermediate-level version of the SET assertion

Hardening the control flow 89

If the program is fault-free, the execution time of the SET assertion is
relatively small due to the fact that multiplication is by zero and both
divisions are by 1.

The TEST assertion in the intermediate-level corresponds to the
following two assertions:

rx = {rx-BID)'NEXTx,
r2= (ri - BID)' NEXT2,

where NEXT\ and NEXT2 represent the BID^ of two successor blocks.
In the case of correct execution {r\ - BID) is equal to 1, and therefore

registers r\ and ri are set to NEXT\ and NEXT2, respectively; otherwise, r\
and r2 will be set to nonprime values different from the BID^ of the
successor blocks of the current block and the CFE will be detected by the
next executed block SET assertion.

Fig. 3-12 reports the intermediate representation of the TEST assertion.

tmpi

ri =

^2 =

= ri

tmpi

tmpi

-
X

X

BID

NEXTi

NEXT2

Figure 3-12. Intermediate-level version of the TEST assertion

If the CF is correct both multiplications of the TEST assertion are by 1.

8.4 Experimental results

In order to evaluate the proposed approach some experiments were
performed in [45] using the FERRARI software-based fault injection tool
[57] on a SUN SPARC workstation.

During the experiments single bit-flips were randomly injected in
registers and in code memory (including libraries). In all the experiments
over 400,000 errors were injected; 3 applications were considered. The first
two columns of Table 3-3 describe the transient error model considered in
the experiments. The last column presents the approximate average
percentage of undetected errors in the applications hardened with the
proposed technique. Several mechanisms, including System detection.
Timeout, User detection and the ECCA approach contributed to the
detection of the injected errors.

The authors do not report figures showing the global percentage of
undetected faults.

90 Chapter 3

Table 3-3. Transient error model
Model name Model description Average rate of

undetected errors (%,)
AddlF address line error resulting in executing a 2.9

different instruction
AddIF2 address line error resulting in executing two 1.6

instructions
AddOF address line error when a data operand is fetched 2.4
AddOS address line error when an operand is stored 4.1
DatalF data line error when an opcode is fetched 2.4
DataOF data line error when an operand is loaded 7.6
DataOS data line error when an operand is stored 4.4
CndCR errors in condition code flags 7_^

8.5 Advantages and limitations

The main merit of the approach is its high CF coverage. ECCA covers all
single CFEs of types 1, 3 and 4 from the fault model presented in section 1.
Legal but wrong branches (errors of type 2) as well as intra-block CFEs
(errors of type 5) are not considered by the method.

The drawback of the method is the quite high memory and performance
overhead: although only two instructions for block are added in ECCA-HL,
this instructions are rather complex and are translated in a high number of
instructions in the executable assembly code. Getting use of the special
properties of the intermediate-level representation for simplifying the SET
and TEST assertions in ECCA-IL help to overcome this problem.

9. PLAIN INTER-BLOCK ERRORS DETECTION

9.1 The approach

In [58], [59] a software-implemented method for inter-block CF
hardening is presented. This method is not aimed at complete CFEs
coverage; rather it proposes an economical and easy to automatically
implement approach for detecting a part of the CFEs. It is aimed to be
combined with the instruction duplication approach for data hardening
presented in chapter 2.

The method is based on the following rules applicable to programs coded
in high-level language:
• An integer signature kt is associated with every BB V/ in the program.
• A global execution check flag (gef) variable is introduced in the program

for storing a run-time signature; an instruction, which assigns to the

Hardening the control flow 91

variable gef the value kt, is added at the beginning of each BB V/; an
instruction, which performs a consistency check between the variable gef
value and the value ki is added at the end of the BB v/; in the case of
mismatch an error is signaled.

• For each program condition instruction the test is repeated at the
beginning of both BBs corresponding to the true and (possible) false
clause. If the newly introduced test does not provide a positive answer, an
error is signaled.

• An integer value kj is associated with any procedurey of the program.
• Immediately before each return instruction of the procedure, the value kj

is assigned to the variable gef a consistency check between the value of
the variable gef Sind the value kj is performed after any procedure call; a
mismatch signals a CFE.
Fig. 3-13 presents the program code from Fig. 3-1 a), hardened according

to the technique considered in this section.

gef = 0;
i = 0;
if (gef != 0) error();
while (i < n)
{

if (i >= n) error() ,
if (a[i] < b[i])

else
{

}

if (a[i] >= b[i]) error()
gef = 1;
x[i] = a[i];
if (gef != 1) error();

if (a[i] < b[i]) error();
gef = 2;
x[i] = b[i];
if (gef != 2) error();

gef = 3;
i++;
if (gef != 3) error();

}
if (i < n) error () ;

Figure 3-13. The technique application

92 Chapter 3

9.2 Experimental results

In order to evaluate the effectiveness of the proposed technique
experiments were performed and reported in [59].

Experiments were performed on a T225 transputer and on three C
programs. Applications were hardened with the technique described in this
section as well as with the instruction duplication technique described in
[58], [59] and presented in chapter 2. The measured code size overhead was
around 4 times the original code and the performance overhead was ranging
from 2.1 to 2.5 times.

Software fault injection campaigns were performed in order to evaluate
the robustness of the hardened programs. Bit-flips were separately injected
in the memory area containing the program code and in the memory area
containing the program data. In each experiment 1,000 faults were injected
in the original program; in the modified program 1,000 faults multiplied by
the memory size increase factor were injected. Experiments showed that
around 56.7% in the average of the injected faults were detected by the
proposed software approach in code memory and around 52.8% in average
in the data memory; in the code memory percentage of undetected faults
leading to wrong answer reduced from around 45.5%) in average in
unhardened programs to around 0.2%) in the average in the hardened
programs, and in the data memory from around 77.5%) in the average to 0%
in average; percentage of time-out reduced from around 10.5% in average to
around 1.1%) in average in the code memory.

To get more confidence radiation experiments were also performed.
During these experiments only the program memory was exposed to faults.
One application was considered. Experiments showed that for the hardened
program around 2.1% of wrong answers were produced and around 0.6% of
time-out.

9.3 Advantages and limitations

The main advantage of the proposed method of CFEs detection is its
simplicity. The main drawback is the incomplete CFEs coverage. The
method is not able to cover erroneous branches having as their destination
the first BBs' instructions.

The method is able to cover the CFEs of types 2, 3 and 4 from the fault
model presented in section 1. Only those CFEs of type 4 can be detected,
which cause branches skipping checking code in the top of the destination
BB. This method does not detect CFEs of type 1 and intra-block erroneous
branches (CFEs of type 5).

Hardening the control flow 93

10. CFC VIA REGULAR EXPRESSIONS
RESORTING TO IPC

10.1 The approach

In [61] a signature-monitoring approach is proposed, where CFC is
implemented by exploiting the characteristics of a multiprocess/multithred
operating system.

In this approach a unique block symbol is assigned to each BB. Then
each path of the CFG can be represented by a string of symbols, obtained as
concatenation of block symbols corresponding to BBs included in the path.
All block symbols form an alphabet ^4. All strings of symbols corresponding
to legal paths (according to the program CFG) form a language L = {A, R)\
where i? is a regular expression, able to generate these strings of symbols.

Legal paths of the CFG represent correct CF executions.

Figure 3-14. CFG with block symbols assigned to each BB

An example of a CFG with block symbols assigned to BBs is presented
in Fig. 3-14. For this example A = (a, b, c, d, e,f) and R = a{b{c\d)eYf.

In this example, if the program execution produces the string S =
''abdef\ then this execution belongs to language L = (A, R) and it is correct,
whereas the string S = ''abcdef does not belong to language L = {A, R), and
consequently the CF has an error.

' For more details on language L and regular expression R see [60].

94 Chapter 3

The checking process uses multiprocess/multithred programming
facilities provided by operating systems. The referenced program and the
checking program are defined as two different processes, which
communicate using Inter Process Communication (IPC) facihties. The check
program controls if the input string belongs to the language L. During
program execution a string composed of symbols of BBs being traversed is
generated by the referenced program and is transmitted to a check process
using the IPC. A check process controls if the string received from the main
program belongs to the language L and detects a CFE if it is not. For
generation of block symbols some suitable instructions are added in the end
of each BB in the referenced program.

The proposed method can be applied to programs described on high-level
language or assembly-level language.

The method permits to trade off between error detection latency and
performance and memory overhead: only one check (after the program
execution) could be performed, if the occurrence of an error during the
program execution is not critical. On the other hand, if early error detection
is wanted, each BB can be split to several sub-blocks.

10.2 Experimental results

In order to evaluate the proposed approach some experiments were
performed, where the Windows 2000 operating system and ad-hoc fault
injector were used. Experiments were performed on 5 applications. During
experiments transient errors were injected in the code segment of the
applications. In the experiments a check was performed at each BB.

The following figures were obtained (all figures correspond to the
average over 5 applications): memory overhead around 114.3%, time
overhead around 172.4%, around 3.2% of all injected errors were detected
by the proposed approach, while around 89.0% of injected errors resulted in
application crash.

Most of the other undetected errors leaded to a crash of the applications
(around 89.0%).

10.3 Advantages and limitations

The proposed approach is able to detect all CFEs of type 1 and some
CFEs of types 3 and 4. It does not detect those CFEs of type 3 which cause
erroneous branches leading from one BB to any point of one of its successor
BB body. It does not detect those CFEs of type 4 which cause erroneous
branches, which source and destination BBs are both successors of the BB
that is the predecessor of the erroneous branch source BB the execution

Hardening the control flow 95

came from. The example of such CFE is presented in Fig. 3-15. If the
execution came to the BB V3 from the BB Vi and the erroneous branch
outgoes from the BB V3 body, then such erroneous branch is undetectable by
the approach.

Figure 3-15. Example of CFE undetectable by the approach

This approach does not detect CFEs of types 2 and 5.
The main advantage of the approach is that it demands very low

performance and memory overhead exploiting the multiprocess capabilities
offered by the operating system; however, these capabilities are not always
available.

11. CFCSS

11.1 The approach

In [44] an assembly-level CFC approach named Control Flow Checking
by Software Signatures (CFCSS) is proposed.

CFCSS assigns a unique arbitrary number (signature) St to each BB.
During program execution a run-time signature G is computed in each BB
and compared with the assigned signature. In the case of discrepancy a CFE
is detected. A run-time signature G is stored in one of the general-purpose
registers (GSR).

At the beginning of the program, G is initialized with the signature of the
first block of the program. When a branch is taken the signature G is updated
in the destination BB v, using the signature function/ The signature function
/ i s computed resorting to the following formula:

/G,4) = G e 4 (6)

96 Chapter 3

where

di = Sj 0 Si, (7)

and Sj is the signature of the predecessor of the BB v/. di is calculated in
advance during the compilation and stored in the BB V/.

For example, if the currently traversed BB is Sj, then G = Sj\ when the
control is passed to the BB Si, G is updated as follows:

G = G® di,

substituting the values of G and di we have

G = Sj® Sj 0 Si = Si.

Therefore, in the absence of CFEs the variable G contains the signature of
the currently traversed BB.

If a CFE happened, leading to an illegal branch from BB Vk to V/, (whose
predecessor is the BB vj) then G= G® di =Sk® Sj® Si^Si.

At the top of each BB V/ (before the original instructions of the BB) some
new code is added, which updates the signature G using the signature
function/and compares the computed run-time signature with the assigned
one (Fig. 3-16). In the case of mismatch the error is detected and the control
is transferred to an error handling routing.

G = G ® d i ;
i f (G != Si) e r r o r 0 ;

Figure 3-16. Checking code

If the BB V/ has more than one predecessor {i.e., V/ is a branch-fan-in BB)
an adjusting signature D is defined in each predecessor BB of v, and used in
the BB V/ to compute the signature. The adjusting signature D is set to 0 for
one arbitrary chosen predecessor BB of v, (let it be Vy); for each BB Vk, k^j
the predecessor of v/, the adjusting signature D is defined as £) = Sj 0 Sk. For
the BB Vk (predecessor of the branch-fan-in BB) the checking code is
presented in Fig. 3-17. For the branch-fan-in BB v/ the checking code is
presented in Fig. 3-18.

Hardening the control flow 97

G = G e dk;
i f (G != Sk) e r r o r O
D = s . 0 Sk/

Figure 3-17. Checking code for predecessor BB of the branch-fan-in BB

G = G e d i ;
G = G © D;
i f (G != S i) e r r o r {) ;

Figure 3-18. Checking code for the branch-fan-in BB

As an example, in Fig. 3-19 the program code from Fig. 3-1 a) modified
according to CFCSS technique, is reported.

G = sO/
if (G != sO) error ();
D = 0;
i = 0;
while(i < n) {
G = G ^ dl; G = G ^ D;
if (G != si) error 0 ;
if (a[i] < b[i])
{ G = G '̂ d2;

if (G != s2) error 0 ;
D = 0;
x[i] = a[i];

}
else
{ G = G '̂ d3;

if (G != s3) error 0 ;
D = s2 ^ s3;
x[i] = b[i];

}
G = G ^ d4; G = G '" D;
if (G != s4) error 0/
D = sO ^ s4;
i + +;
}
G = G '̂ d5; G - G ^ D;
if (G != s5) error 0 ;

Figure 3-19. Program hardened with the CFCSS approach

98 Chapter 3

Signatures are embedded in the program during compilation or
preprocessing.

Once the CFE corrupted the CF causing the discrepancy between run
time signature and the expected one in some program BBs, the run-time
signature remains different than the expected signature also in subsequent
BBs. Basing on this property the authors of the CFCSS technique propose to
perform consistency checks only in some of the program BBs, which allows
to reduce the technique overhead. Postponing the check is possible only in
case the error detection latency is acceptable for the application.

11.2 Experimental results

In order to evaluate the CFCSS technique experiments were performed
and described in [44]. In the experiments 7 applications were considered and
faults of 3 types were injected:
• branch deletion: a branch instruction is replaced with NOP instruction,
• branch creation: an unconditional branch is randomly inserted into the

program,
• branch operand change: the immediate field of an instruction is

corrupted.
Experiments were performed on a R4400 MIPS processor; 500 faults

were injected. Experiments showed that the application of the CFCSS
technique allowed to decrease the rate of incorrect undetected outputs from
around 33.7% in average to around 3.1% in average. In the considered
experiments the CFCSS technique introduced in the average around 45.1%o
of memory overhead and in the average around 43.1% of performance
overhead.

11.3 Advantages and limitations

The proposed approach offers an economical way for CFEs coverage: an
XOR operation used for run-time signature computation is less time
consuming than multiplication or division.

The approach is capable to detect most CFEs of types 1, 3 and 4
according the fault model presented in section 1. It does not detect CFEs of
types 2 and 5 and those CFEs of type 4 which lead from inside some BB to
the beginning of some of its successor BB.

Hardening the control flow 99

Signature update
block

BBv.

Signature update
block

BBv,. 4'''

^ ̂ -~̂
Signature update

block

BBv,

Figure 3-20. Example of CFE undetectable by CFCSS approach

Some CFEs of types 3 and 4 escape error detection. For example, let us
consider the situation presented in Fig. 3-20. Here three BBs are presented
(v/, Vj and Vk). If a CFE of type 3 (or 4) happens, which introduces an
erroneous branch (presented with dotted line in figure) leading from the end
of the BB V/ (or from some instruction of the original BB v, body in case of
type 4 CFE) to some point in the BB vj after the initial signature update
block, then this CFE escapes detection by the CFCSS approach.

As it is shown in [44] aliasing errors is also possible for CFEs of type 1
in the case multiple BBs share multiple BBs as their destination nodes. For
example, given a program CFG with the set of edges B containing the subset
{̂ 1,4, ^I,5J 2̂,5, ̂ 2,6, 3̂,5, ̂ 3,6}, ^u crroncous illegal branch 6i,6 is not detectable
by the method.

12. ACFC

12.1 The approach

In the work [62] a software-based signature-monitoring technique named
Assertions for Control Flow Checking (ACFC) is presented.

In this method a bit of a special variable is associated with each program
BB. This variable is named execution status (ES). In case of a big program it
might be necessary to introduce more than one ES variables. Some

100 Chapters

additional code is added to the program, which sets the bit of the ES variable
to the value 1 when the corresponding BB is traversed. When the program
ends a check is performed, which controls the run-time CF correctness by
comparing the ES variable value with a constant, whose value is 1 in all bits
corresponding to the BBs, which should be traversed in the fault-free case.

In the beginning of the program the ES variable is set to 0. To set the bit
of the ES variable to value 1 the XOR operation is used. In this way if the
CFE causes the BB re-execution the corresponding bit is reset to the 0 value
and the error can be detected during the check operation.

Some language constructs on the example of the C language are
considered. In the case of if-then-else construct, where each branch contains
only one BB, the same bit is associated to the BBs of the two branches, as
only one of them should be executed in the fault-free case. In the case of the
nested if-then-else construct and switch construct with break statement and
default section (if default section is absent the dummy default section is
added) the following solution is proposed. A bit of the ES variable is
assigned to each entry BB and each exit BB of each construct branch. In the
entry BB of the branch the bit corresponding to this BB and the bits
corresponding to the exit BBs of the other branches are set to value 1.
Similarly, in the exit BB of the branch the bit corresponding to this BB and
the bits corresponding to the entry BBs of the other branches are set to value
1. In this way, if the CFE introduces a branch so that the entry BB V/ of one
branch and the exit BB Vy of another branch are executed, then the error is
detected, as the bits corresponding to the BBs v/ and v, are set to 0. In order
to detect CFEs inside the intermediate BBs of some branch, which are
situated between the entry and exit BBs of this branch, an ESk variable is
introduced, whose value is checked before the branch exit BB. This
technique is also extended to the switch construct, without break statement.

In case of the loop construct the check operation is performed in the last
BB of the loop construct, so that the re-execution of the BB does not cause
bits of the ES variable to be set to value 0. After the check operation the ES
variable is set to the value it had before entering the loop. If a break or
continue statements are used, then the check is performed before these
statements and the ES variable is set to the value the variable should have in
destination BB.

An example of application of the ACFC method to the program from Fig.
3-1 a) is presented in Fig. 3-21.

Hardening the control flow 101

ES_1 = 0;
ES_1 = ES_1'^01;
i = 0;
while(i < n)
{
ES_1 = ES_1^10;
if (a[i] < b[i])

else

ES_1 = ES_1^100;
x[i] = a[i];

ES_1 = ES_1'"100;
x[i] = b[i];

}
ES_1 = ES_1'^1000;
if(ES_1 != 01111) error 0,
ES_1 = 01;
i++;
}
if(ES 1 != 01) error 0;

Figure 3-21, ACFC technique application example

12.2 Experimental results

In order to evaluate the proposed technique some experiments were
performed by means of the in-house developed software-based fault
injection tool SFIG: the gathered results were reported and analyzed in [62].
The SFIG tool is able to inject transient faults of the types presented in
FERRARI [57] (see Table 3-3, columns 1 and 2). Experiments were
performed on 5 application programs. During the experiments the proposed
technique was compared with previously developed ones, namely, the
ECCA and CFCSS techniques. The hardened according to the considered
techniques versions of the programs were compiled with and without
compiler optimization.

Table 3-4 presents average and rounded off overheads measured during
the experiments for the considered techniques.

In all the experiments about 100,000 faults were injected. During the
experiments faults are detected by following four mechanisms: operating
system, time-out, user checks {i.e., programmer-inserted debugging checks)
and CFC technique. Experiments showed that the ACFC technique improved
faults coverage by around 6% compared with unhardened programs. Around
87% in average of the faults were detected by the ACFC technique, which is

102 Chapter 3

around 1.5% in average less than faults coverage of CFCSS technique and
around 4% in average less than faults coverage of ECCA technique (faults
coverage figures are approximate as they are taken from graphical
representation presented in [62]).

On the other side, experiments showed that the ACFC technique is less
time and memory consuming with respect to ECCA and CFCSS techniques.

Table 3-4. Average memory anc

With compiler
optimization
Without compiler
optimization

performance overheads comparison
Memory overhead (%)

ECCA
400.1

176.3

CFCSS ACFC
99.4 69.6

48.2 34.4

Performance overhead (%)
ECCA
469.1

154.2

CFCSS ACFC
134.8 87.6

43.7 30.5

12.3 Advantages and limitations

The ACFC method proposes an economical solution (in the sense of
memory and execution overhead) to the CFEs detection problem. However,
its CFEs coverage capabilities are limited. It only partially covers the CFEs
of types 1, 3 and 4 and it does not cover the CFEs of types 2 and 5.

Figure 3-22. Example of CFE not detectable by the ACFC technique

Let us consider some examples of CFEs of types 1, 3 and 4 which are not
covered by the ACFC technique. An example of CFE of type 1 which is not
detectable by the method can be as follows: an illegal branch in the nested if-
then-else construct, which leads from the end of the entry BB of some
branch directly to the exit BB of the same branch skipping intermediate BBs.

Hardening the control flow 103

An example of CFE of type 3 or 4 not detectable by the method is presented
with a dotted arrow in Fig. 3-22. In this example it is supposed that checking
code is executed in BB V2 but skipped in BB V3.

13, YACCA

13.1 The approach

In [46] and [47] a software-implemented inter-block CF monitoring
technique applicable to high-level program description and named Yet
Another Control flow Checking Approach (YACCA) is presented.

The YACCA approach assigns to each program BB v/ two unique
identifiers 71/ and 72/. The identifier 71, is associated to the BB v, entry and
the identifier 72/ is assigned to the BB V/ exit.

An integer variable code is introduced in the program, which stores a
run-time CF signature during program execution. The code variable is
updated by means of the set assertion to the value of the entry identifier 71/ at
the beginning of the BB V/, and to the value of the exit identifier 72/ at the
end of the BB V/.

Before each set assertion a test assertion is performed. At the beginning
of the BB v/ a test assertion verifies if the run-time value of the code variable
corresponds to the identifier 72; of some BB belonging to the pred{v^ set,
while at the end of the BB V/ a test assertion verifies if the run-time value of
the code variable corresponds to 71/.

The update of the variable code value is performed according to the
following formula:

code = {code 8LM\)®M1, (8)

where MX represents a constant mask whose value depends on the set of
possible predecessor values of the code variable, whereas Ml represents a
constant mask depending both on the identifier which should be assigned to
the code variable and on the possible predecessor values of the code
variable. For example, the values Ml and Ml can be defined as follows:
• for the set assertion at the beginning of the generic BB vf.

Ml- & ^2. e
\J-Vjepred(vi) J \^J:Vjepred(Vi) J

V ^2^ (9)

104 Chapters

M2 = (/2^. & M l) e / l , . . (10)

• for the set assertion at the end of the generic BB v,:

Ml = l ,

M2 = / l . © 12.. (11)

The binary representation of Ml obtained by Eq. (9) contains the value 1
in the bits having the same values in all identifiers /2y of BBs from prediyi),
and the value 0 in the bits having different values in these identifiers. The
operation (code 8c Ml) allows to set the code variable to the same value /
from any possible predecessor value of the code variable. Therefore,
performing the XOR operation of/ and M2 allows to obtain the value 71/.

To avoid the aliasing effect the identifiers of the BBs should be chosen in
such a way that the new value of the code variable is equal to the targeted
value if and only if the old value of the code variable is possible according to
the program CFG, i.e., the operation (Ilj & Ml) should not return the value I
if BB Vj does not belong to pred(v,).

The test assertion introduced at the beginning of the BB V/ with pred(vi) =
{V/i, Vj2, ..., Vjn} is implemented as follows:

ERR_CODE 1= ((c o d e ! - I2j i) &&

&& (code != I2j2) && (. . .) && (code != I 2 j n)) , (12)

where the ERRCODE variable is a special program variable containing the
value 1 if the CFE is detected and 0 otherwise. The ERRCODE variable is
initialized with the 0 value at the very beginning of the program execution.

The test assertion introduced at the end of the BB V/ is implemented as
follows:

ERR__CODE 1= (code != H i) . (13)

In order to identify the wrong branches the test is repeated for each
conditional branch at the beginning of both the true and false clause. In order
to identify all wrong branches each condition should contain the "else"
clause; if the "else" clause is absent it should be introduced and the
corresponding BB should contain test and set assertions.

Hardening the control flow 105

Fig. 3-23 presents the result of the appHcation of the YACCA technique
to the program from Fig. 3-1 a). In this figure, the names of the constants Ml
and Ml contain the numbers of the BBs these constants depend on.

code = BO;
ERR CODE = 0;
i = 0;
ERR_CODE 1= (code != BO) ;
code = code "^ (BO "^ Bl);
while(i < n) {
ERR_CODE 1= ((code !
code = (code & Ml 1
if (a[i] < b[i])
{ ERR_CODE 1= (code

code = code ^ (B2
x[i] = a[i];
ERR_CODE 1= (code
code = code ^ (B3

else
{ ERR_CODE 1= (code

code = code "̂ (B2
x[i] = b[i];
ERR_CODE 1= (code
code = code ^ (B5

ERR_CODE 1= (code !=
code = (code & Ml 4
i ++;
ERR_CODE 1= (code !=
code = code ^ (B7 ""

1

ERR_CODE 1= ((code !=
if(ERR_CODE) e r r o r () ;

- Bl) && (code
8) ^ M2_

!= B2)
^ B3) ;

!= B 3) ;
^ B4) ;

!= B2)
^ B5) ;

!= B5);
^ B6) ;

B4) &&
6) '̂ M2_

B7);
B8) ;

Bl) &&

_1_8_2;

II (a[i

II (a[i

(code !
_4_6_7;

(code !

!= B8)) II

>= b[i]);

< b[i]);

= B6) ;

= B8)) II

(i>=n);

(i<n)/

Figure 3-23. Program hardened according to the YACCA technique

13.2 Experimental results

In order to assess the effectiveness of the proposed approach, several
fault injection campaigns were performed and their results were reported in
[46]. Experiments were performed using an in-house developed emulation-
based fault injection environment [63] on a system composed of a Sparc V8
microprocessor running 4 benchmark programs implementing the following
tasks:

• a 5x5 matrix multiplication (M),

106 Chapter 3

• the Kalman Filter (K),
• the fifth order elliptical wave filter (E),
• the Lempel Ziv Welch (LZW) Data Compression algorithm (L).

4 versions for each benchmark were considered:
• an un-hardened version
• a hardened one, obtained applying the CFCSS [44] technique to the

original code
• a hardened one, obtained applying the ECCA [45] technique to the

original code
• a hardened one, obtained applying the YACCA technique to the original

code.
Table 3-5 reports overheads obtained by comparing the size and the

execution time of the hardened programs with the original ones. These
results demonstrate that the memory and performance overhead caused by
the application of the YACCA technique is comparable with the one of the
CFCSS technique, but it is always better than that of ECCA technique.

Moreover, the results reported in Table 3-5 show that a large difference
in terms of overheads can be obtained considering the different programs.
This is due to the different characteristics of the programs' BBs, namely:
• E includes several BBs with many mathematical instructions which are

CPU intensive, consequently the added instructions are less relevant in
terms of size and speed

• L, in contrary, includes many BBs with a limited number of instructions.
The results gathered during the fault injection experiments are reported in

Tables 3-6 and 3-7, where the transients faults injected in the un-hardened
programs are categorized according to their effects and then compared with
those injected in the 3 safe versions (CFCSS, ECCA and YACCA).

During experiments randomly selected bit-flips were injected in the
immediate operands of the branch instructions, i.e., CFEs of types 1-3 from
the fault model presented in section 1 were generated.

Considering the whole set of 16 case studies, the time needed to execute
the complete Fault Injection campaign has been about 20 hours.

Table 3-5. Memory and performance overhead numbers for the YACCA technique
Program

M
E
K
L

Memory overhead
CFCSS

261
124
164
338

ECCA
408
153
282
630

[%1
YACCA

191
129
217
496

Performance overheac
CFCSS

135
107
117
185

ECCA
199
120
168
426

[%]
YACCA

147
110
156
354

Fault effects are classified according to Chapter 1. The following
acronyms are used:

Hardening the control flow 107

• Effect-less: EL.
• Fault detected by means of software techniques: SD.
• Fault detected by means ofEDM: EDM.
• Failure: FA.
• Time-out: TO.

The results reported in Tables 3-6 and 3-7 demonstrate the effectiveness
of the YACCA method as far as the fault coverage is considered. A very
limited number of CFEs cause a failure, and the method shows itself to be
more powerful than the considered alternative approaches.

Note that the experimental results obtained considering the CFCSS
method present a higher percentage of wrong answers than the one published
in [44]. This is mainly due to the following motivations:
1. in experiments performed in [46] the CFCSS technique is applied on the

high-level source code, differently from the results published in [44],
which are obtained applying the rules on the assembly-level code.

2. Two different fault models are adopted: they present different
characteristics, motivating different figures.

Table 3-6. Fault injection experiments (figures are in percentage unless the number of
injected faults) for the original programs and programs hardened with YACCA
Prog

M
E
K
L

Faults

5,000
5,000
5,000
1,000

EL
5.5
7.8
12.3
22.3

Not hardened

EDM FA
49.9 20.6
56.3 10.8
55.9 11.5
51.8 25.9

TO
24.0
25.1
20.4
0.0

EL
4.1
1.8

32.6
42.0

SD
56.0
54.5
22.2
21.1

YACCA

EDM
14.2
7.6

31.5
32.1

FA
0.9
0.0
0.4
0.1

TO
24.5
35.9
13.2
4.7

Table 3-7. Fault injection experiments (figures are in percentage unless the number of
injected faults) for programs hardened with CFCSS and ECCA
Prog

M
E
K
L

Faults

5,000
5,000
5,000
1,000

EL
3.8
8.8
10.2
17.0

SD
53.5
22.0
42.4
44.5

CFCSS

EDM
12.8
33.4
35.2
28.5

FA
19.1
18.7
1.5
6.0

TO
10.5
16.9
10.6
4.0

EL
28.4
24.4
27.3
37.5

SD
49.9
39.8
42.8
42.6

ECCA

EDM
7.3
14.0
21.3
17.6

FA
3.7
4.1
2.2
0.6

TO
10.6
17.5
6.1
1.7

13.3 Advantages and limitations

The method covers all single errors of the types 1 -4 from the fault model
reported in the section 1. The set and test assertions do not involve divisions
or multiplications, so their execution is not time consuming.

108 Chapters

To avoid the addition of new branch instructions into the program, which
themselves can be the sources of CFEs, the ERRCODE variable may be
checked once in the program exit. However, this leads to the introduction of
an increased error detection latency. In order to avoid this drawback it is
possible to introduce a simple hardware dedicated to performing the test
assertions, as described in chapter 5.

14. SIED AND ITS ENHANCEMENTS

14.1 The approach

The software-based error detection technique proposed in [64][65] and
named Software Implemented Error Detection (SIED) combines data errors
and CFEs detection. Data error detection is based on the instruction
duplication, while CFEs are detected by signature-monitoring technique. In
[66] a detailed analysis was performed, which allowed identifying and
removing the reasons of faults escaping the detection in instruction
duplication technique. In [66] a CFC technique is also presented. In this
section we present the part of the techniques proposed in [64], [65], [66]
referring to CFEs detection; namely, we present the intra-block CFEs
detection mechanism proposed in the SIED technique, we discuss the intra-
block illegal jumps not detectable by instruction duplication identified in
[66], and the solutions proposed in the same work for their detection.
Finally, we present the signature-monitoring technique for inter-block CFEs
detection presented in [66]. Data errors detection performed through data
duplication is presented in details in chapter 2.

14,1.1 Intra-block detection

Intra-block CFE detection is intended to be combined with the instruction
duplication technique presented in section 2. For the purpose of intra-block
CFE detection a checkpass variable is introduced, which is initialized with
the value ni representing the number of BB's instructions. The checkpass
variable is decremented after the execution of each original instruction in the
program and before the execution of its replica. The variable value is
checked on the block's exit. If the checkpass variable is not equal to 0 in the
end of the program, an error is issued.

As the analysis presented in [66] showed, some intra-block illegal
branches still escape detection. The solutions for the detection of these
illegal branches suggested in [66] are presented in the following of this
subsection.

Hardening the control flow 109

A data computing block (DCB) is a set of sequential instructions that are
duplicated for error detection. Each DCB has its workspace, i.e., some
resources (registers or variables). Different DCBs may share some resources,
for example registers.

A general conclusion made by the authors was that the instruction
duplication technique is able to detect faults, which have a single
consequence on DCBs (for example, affect either shared or unshared
resources of one DCB); faults affecting both shared and unshared resources
may escape detection. The main idea of the solutions proposed in [66] for
the detection of such faults is to guarantee that at least one of DCB
workspaces (the original or its replica) remains undamaged.

Two categories of intra-block CFEs escaping detection were
distinguished in {66'\ basing on their effects:
1. No dependency with other DCBs: an intra-block CFE may affect a DCB'

(replica of the DCB), when the execution of the DCB is completed
corrupting simultaneously the results of the DCB and the DCB'; so that
they become incorrect but equal. This situation can happen when the
CFE does not permit to entirely complete the DCB' workspace load: as a
result, the DCB' workspace contains some values belonging to the DCB,
which permit to an error to corrupt both the DCB and DCB' result.

An example is reported in Fig. 3-24 a). Here a 1 is an original
variable and al is its replica. The DCB' workspace is not properly
loaded due to an illegal jump; consequently, the DCB' uses some content
belonging to the DCB. The registers Regl and Reg2 are not updated
with the correct values: Reg2 is assigned with the address of the a\
variable; Regl contains the old value of the al variable, as the new
value was not computed due to the error. The old value of al is
incorrectly copied into the a\ variable, so the two copies a\ and al
contain the same incorrect value, and the consistency check cannot
detect an error.

The solution to this problem proposed in [66] consists in inserting a
set of neutralization instructions between the DCB and the DCB'.
Neutralization instructions clear the content of all registers used by the
DCB before executing the DCB'. In the example from Fig. 3-24 a) two
instructions should be added, clearing the registers Regl and Reg2, as
shown in Fig. 3-24 b).

no Chapter 3

DCB-

DCB'̂

High-level

^al = a l - 3 ;

^a2 = a2 - 3 ;

erroneous^
brand

Assembly-level

Regl <= a l
Regl <= Regl - 3
Reg2 <= Addr (a l)
M(Reg2) <= Regl

Regl <= a2
Regl <= Regl - 3
Reg2 <= Addr(a2)
M(Reg2) <= Regl

Assembly-level

Regl <= al
Regl <= Regl - 3
Reg2 <= Addr(al)
M(Reg2) <= Regl

Clear(Regl)
Clear(Reg2)

Regl <= a2
Regl <= Regl - 3
Reg2 <= Addr(a2)
M(Reg2) <= Regl

a)
Figure 3-24. Example of undetected intra-DCB fault a),

and possible solution for its detection b)

b)

Dependency with other DCBs: when a DCBl is executing an illegal
branch, it may interrupt the workspace load and transfer the control to
another block DCB2, which may continue the execution using the
content of the shared workspace loaded in DCBl.

For the solution of this problem the authors propose to separate in
the address space the mutually sensitive DCBs to ensure that there is no
interaction between mutually sensitive DCBs and their workspaces. The
solution proposed for single bit-flips is to separate mutually sensitive
DCBs by a distance d so that no single bit-flip error can lead to a jump
from one to another. The condition on d is expressed as follows:

da,b == b - a^ 2\
where a and b are physical addresses belonging to blocks DCBl and
DCB2, respectively, and /' is any number from 0 to the program address
space width.

Hardening the control flow

14.1.2 Inter-block detection

111

In this section we present the signature-monitoring technique developed
for inter-block CFEs detection and presented in [66]. In this technique a
unique identification number (named IDB) is assigned to each program BB
and the checking code is added to the program.

In order to detect not only illegal branches but also wrong branches and
in order to avoid signature aliasing, in [66] it is suggested to associate
signatures not to BBs but to branches of the CFG. The signature brtj of the
branch btj is equal to the concatenation of the identification numbers of the
branch source BB V/ and the branch destination BB v, {brij = IDBi \ IDBp
where "I" denotes a concatenation operation). The run-time signature B is
computed in each BB during the program execution and compared with the
branch signature saved in a special variable R in the previously traversed
BB.

The checking code (shown in Fig. 3-25) is added at the end of each BB.
For simplicity we denoted the concatenation operation in the code with the
symbol "|". Firstly, the checking code concatenates the value of the B
variable with the IDB of the current BB and checks if the value of branch
signature B is equal to the signature of the branch saved in the variable R. In
case of mismatch an error is detected. Then, the value of R is set to the
signature of the next branch to be traversed, and finally the B variable is set
to the IDB of the current BB. The first two Hnes of the checking code control
that the run-time signature is correct, while the last two lines prepare the
transfer to the next BB.

Original BB v- body

B = B 1 IDBi,-

i f (B != R) e r r o r () ;

R = b r„g^ , ;

B = IDB^; J

^ modified

BBv-body

Figure 3-25. BB supplied by checking code

112 Chapter 3

In Fig. 3-25 the instruction shown in gray depends on the type of the
branch to be taken from the BB v,. The authors of the method classified the
branches into three types:
• Certain - the branch source BB always transfers the control to the same

destination BB, and this transition does not depend on any condition.
Let the branch bjj be of a certain type. In this case in the branch source
BB Vi the value brtj is assigned to the variable R: R = brij.

• Conditional - the branch source BB transfers the control to two
destination BBs: the choice depends on whether a condition is true or
false. In this case in order to assign to a variable R the signature of the
branch to be taken the additional control of the condition is performed.

Let BB V; have two outcoming branches, i.e., bfj in case the condition is
true, and bi^k in case the condition is false. Then, the value is assigned to
the variable R in the BB v, as shown in Fig. 3-26.

Figure 3-26. Variable R assignment in the case of conditional branch

Current state dependent - the branch source BB transfers the control
towards two or more BBs depending on the system state. An example of
this type of branch is a branch corresponding to the return from the
program function, which can be called from different program BBs. In
this case a special execution order variable {EO) is introduced in order to
predict the correct destination BB.

Let the predecessors of BB v/ be BBs Vn and v^; if the BB v/ is reached
from BB v„, then from the BB V/ the CF transfers to the BB Vk, while in
case it is reached from the BB v^ the CF transfers to the BB v/. Then, the
BBs Vn and v^ assign to variable EO the values 1 and 2, correspondingly,
and in the BB v/ the value is assigned to the variable R as it is presented
in Fig. 3-27.

if(EO
if(EO

__

^^

1)
2)

R
R

_

^

b r i
b r i

k'

1'

Figure 3-27. Variable R assignment in the case of current state dependant branch

Hardening the control flow 113

In order to detect illegal branches inside a BB or branches corrupting the
checking instructions a local cumulative signature N is introduced. For each
BB A/̂ = M + iV2 + Â 3 = 0, where M , N2 and Â 3 are unique for each BB.
The position of the components of A în the BB is shown in Fig. 3-28.

Finally, in order to avoid any erroneous program interruption or program
reset, which could lead to CFE escaping, the authors introduce the START
BB, which can be executed only once and the STOP BB with a special
signature, which is reproduced only if the program completed correctly.

N = N + N l ;

Original BB v^ body

B =

i f (B ! =

N =

R

B

N =

B

B 1 IDB^/

= R) e r r o r () ;

N + N2/

= br^g^t' '

= IDBi/

= N + N3 ;

= B + N;

A

y
modified

BB V. body

Figure 3-28. BB complemented by the checking code including the local cumulative
signature checking

14.2 Experimental results

In order to evaluate the method some experiments were performed, and
their results reported in [66], where 3 synthetic (i.e., specially developed)
programs and 3 real applications were hardened with the proposed
technique. Both data errors and CFEs detection techniques were
implemented. For the considered applications the observed execution time
increase was about three times, while the program size increase was about
four times.

Exhaustive fault injection campaigns were performed on two processors:
LEON and a digital signal processor. During the fault injection experiments
bit-flips were injected at all possible processor cycles in all bits of the
general-purpose registers, the program stack, the pointer register, and the
program counter register. For each application some hundred thousand bit-
flips were injected. All experiments showed zero undetected faults.

114 Chapters

14.3 Advantages and limitations

The method described in [66] is able to cover all single inter-block CFEs
of types 1-4 from the fault model reported in section 1. The method
considers intra-block CFEs detection. Moreover, in [66] border cases, which
are able to cause CFE escaping are analyzed and solutions are proposed to
overcome the CFE escaping. Experimental results performed by authors of
the method in [66] report a 100% detection of the injected bit-flip faults.

The main limitation of the method lies in the significant memory
overhead: although the checking operations introduced by the method do not
involve such time consuming operations as division or multiplication, their
number is significant (see Fig. 3-28). Besides, some parts of the approach
are suitable to be applied to high-level descriptions of the program, while
others to assembly-level, which complicates the approach implementation.
Some details of the method are not explicitly described, for example the
implementation of the START and STOP BBs.

15. REFERENCES

42. G. Miremadi, J. Karlsson, U. Gunneflo, J. Torin, "Two Software Techniques for On

line Error Detection", Digest of Papers of the Twenty-Second International

Symposium on Fault-Tolerant Computing, 8-10 July 1992, pp. 328 - 335.

43. S.S. Yau, F.-C. Chen, "An Approach to Concurrent Control Flow Checking", IEEE

Transactions on Software Engineering, Vol. 6, No. 2, March 1980, pp. 126-137.

44. N. Oh, P.P. Shirvani, E.J. McCluskey, "Control-Flow Checking by Software

Signatures", IEEE Transactions on ReHabiHty, Vol. 51, No. 2, March 2002, pp. 111-

122.

45. Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy, J.A. Abraham, "Design and Evaluation

of System-Level Checks for On-Line Control Flow Error Detection", IEEE

Transactions on Parallel and Distributed Systems, Vol. 10, No. 6, June 1999, pp. 627-

641.

46. O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante. "Soft-Error Detection

Using Control Flow Assertions", Proceedings of the 18th International Symposium on

Defect and Fauh Tolerance in VLSI Systems, 3-5 November 2003, pp. 581-588.

47. O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante. "Improved Software-

Based Processor Control-Flow Errors Detection Technique", Proceedings of the

Annual Reliability and Maintainability Symposium, 26-29 January 2005, pp. 583-589.

48. C.H. Tung, C.W. McCarron, "Concurrent Control Flow Checking in Sequential

and Parallel Programs", Conference Record of the Twenty-Fourth Asilomar

Conference on Signals, Systems and Computers, Vol. 2, 5-7 November 1990, pp. 851

- 8 5 5 .

Hardening the control flow 115

4 9 . G. Miremadi, J. Torin, "Evaluating Processor-Behavior and Three Error-Detection

Mechanisms Using Physical Fault-Injection", IEEE Transactions on Reliability, Vol.

44, No. 3, September 1995, pp. 441 - 454.

50. R.G. Halse, C. Preece, "Erroneous Execution and Recovery in Microprocessor

Systems", Software and Microsystems, Vol. 4, No. 3, June 1985, pp. 63-70.

51. G.A.S. Wingate, C. Preece, "Performance Evaluation of a new Design Tool for

Microprocessor Transient Fault Recovery", Microprocessing and Microprogramming,

Vol.27, 1989,pp. 801-808.

52. M.A. Schuette, J.P. Shen, "Exploiting instruction-level parallelism for integrated

control-flow monitoring", IEEE Transactions on Computers, Vol. 43, No.

2, February 1994, pp. 129 - 140.

53. P. Furtado, H. Madeira, "Fault Injection Evaluation of Assigned Signatures in RISC

Processors", Proceedings of the 2"̂ ^ European Dependable Computing Conference,

1996, pp. 55-72.

54. J. Carreira, H. Madeira, J.G. Silva, "Xception: Software Fault Injection and

Monitoring in Processor Functional Units", Proceedings of the 5̂*̂ Conference on

Dependable Computing for Critical Applications, 27-29 September 1995.

55. G.A. Kanawati, V.S.S. Nair, N. Krishnamurthy, J.A. Abraham, "Evaluation of

Integrated System-Level Checks for On-Line Error Detection", Proceedings of the

IEEE International Computer Performance and Dependability Symposium, 4-6

September 1996, pp. 292 - 301.

56. Z. Alkhalifa, V.S.S. Nair, "Design of a Portable Control-Flow Checking Technique",

Proceedings of the High-Assurance Systems Engineering Workshop, 11-12 August

1997, pp. 120-123.

57. G.A. Kanawati, N.A. Kanawati, J.A. Abraham, "FERRARI: a Flexible Software-Based

Fault and Error Injection System", IEEE Transactions on Computers, Vol. 44, No. 2,

February 1995, pp. 248-260.

58. M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M. Violante, "Soft-Error Detection

through Software Fault-Tolerance Techniques", Proceedings of the IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, 1-3 November 1999,

pp. 210-218.

59. P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza Reorda, M. Violante,

"Experimentally Evaluating an Automatic Approach for Generating Safety-Critical

Software with Respect to Transient Errors", IEEE Transactions on Nuclear Science,

Vol. 47, No. 6, December 2000, pp. 2231-2236.

60. A. Aho, R. Sethi, J. Ullman, "Compilers: Principles, Techniques and Tools", Addison-

Wesley, 1986.

61. A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri, "Control-Flow

Checking Via Regular Expressions", Proceedings of the IEEE Asian Test Symposium,

19-21 November 2001, pp. 299-303.

116 Chapter 3

62. R. Venkatasubramanian, J.P. Hayes, B.T. Murray, "Low-cost On-line Fault Detection
Using Control Flow Assertions", Proceedings of the International On-Line Testing
Symposium, 7-9 July 2003, pp.137 - 143.

63. P.L. Civera, L. Maechiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante,
"Exploiting Circuit Emulation for Fast Hardness Evaluation", IEEE Transactions on
Nuclear Science, Vol. 48, No. 6, December 2001, pp. 2210-2216.

64. B. Nicolescu, Y. Savaria, R. Velazco, "SIED: Software Implemented Error Detection",
Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, 3-5 November 2003, pp. 589 - 596.

65. B. Nicolescu, Y. Savaria, R. Velazco, "Performance Evaluation and Failure Rate
Prediction for the Soft Implemented Error Detection Technique", Proceedings of the
10th IEEE International On-Line Testing Symposium, 12-14 July 2004, pp. 233 - 238.

66. B. Nicolescu, Y. Savaria, R. Velazco, "Software Detection Mechanisms Providing Full
Coverage Against Single Bit-Flip Faults", IEEE Transactions on Nuclear Science, Vol.
1, No. 6, December 2004, pp. 3510-3518.

Chapter 4

ACHIEVING FAULT TOLERANCE

1. INTRODUCTION

In this chapter the main techniques to harden an unreHable system and
transform it into a fault-tolerant one are presented.

When fault tolerance (and not only fault detection) capabilities are the
target, the approaches presented so far are not enough: some of them can be
extended (at a higher cost in terms of memory, performance, and
development cost) to cope with the more stringent requirements. New
approaches can be devised, coping with these requirements. Obviously, the
same assumptions holding for the previous chapters are valid here: therefore,
we will mainly focus on techniques allowing to reach the target (i.e., fault
tolerance) resorting only to changes in the software (while the hardware is
not affected); moreover, we will focus mainly on techniques whose adoption
can be automated easily. The techniques that are covered in this chapter are
design diversity, checkpointing, algorithm-based fault tolerance, and
duplication.

2. DESIGN DIVERSITY

The concept of design diversity is very old. At the beginning of the XIX
century Charles Babbage, known as the "Father of Computing", has
suggested that "the most certain and effectual check upon errors which arise
in the process of computation is to cause the same computation to be made
by separate and independent computers; this check is rendered still more

118 Chapter 4

decisive if they make their computations by different methods" [67]. This
theory can be transferred and adapted easily to the modem computer science.

The use of redundant copies of hardware, data and programs' instruction
has proven to be quite effective in the detection of physical faults and in
subsequent system recovery. However, design faults - which are introduced
by human mistakes or defective design tools - are reproduced when
redundant copies are made. Design diversity is the approach in which the
hardware and software elements that are to be used for multiple
computations are not copied, but are independently designed to fulfill the
same function through implementations based on different technologies. A
definition of design diversity has been given in [68] as "production of two or
more systems aimed at delivering the same service through separate designs
and realizations".

Design diversity is the common technique adopted to achieve software
fault tolerance. Two or more versions of software are developed by
independent teams of programmers and software engineers, and by using
different techniques, methodologies, algorithms, programming languages
and programming compilers. However, all the different implementations of
the software meet the common requirements and specifications.

The versions of software produced through the design diversity approach
are called variants (or versions or alternates). Besides the existence of at
least two variants of a system, tolerance of faults needs a decider (or
acceptance test), aimed at providing an error-free result from the variants
execution; the variants execution have to be performed from consistent
initial conditions and inputs. The common specification has to address
explicitly the decision points defined as:
• the time when the decisions have to be performed
• the data processed by the decider.

The two most common techniques implementing design diversity are Â -
Version Programming (NVP) [69] and Recovery Blocks (RB) [70]. These
techniques have mainly been introduced to face the effects of software bugs.
However, they can also be adopted to address hardware faults; they do not
depend on any particular error model and are able to detect (and in some
cases correct) both transient and permanent errors. A deeper analysis will be
given in the following.

Design diversity intrinsically exploits code replication and introduces a
high overhead in terms of memory area and performance slow-down.
Hardened versions, based on design diversity, and focused on fault
detection, only, require doubling the memory area and the elapsed time. On
the other hand the fault-tolerant version requires more than 3 times than the
memory area occupied by the original version and lasts more than 3 times
than the time required by the un-hardened version.

Achieving fault tolerance 119

2.1 N-version programming

N-version programming requires the separate, independent preparation of
multiple (i.e., N) versions of a program for some application. These versions
are executed in parallel. At the system-level an application environment
controls their execution. Each receives identical inputs, and each produces
its version of the required outputs. A voter collects the outputs that should,
in principle, all be the same {consensus). If the outputs disagree, the system
detects the error and can tolerate it using the results of the majority, provided
there is one.

N-version programming is easily classified as a static redundant scheme
and presents many analogies with the triple modular redundancy (TMR) and
the N-modular redundancy (NMR) approach used for tolerating hardware
failures [71].

The decision mechanism is defined as follows:
• A set of program state variables are to be included in a comparison

vector (c-vector); each program stores its c-vector.
• The N programs possess all the necessary attributes for concurrent

execution.
• At a specified cross-check point each program generates its comparison

vector and a decider executes the decision algorithm comparing the c-
vectors and looks for the consensus of two or more c-vectors among the
N versions.

The N independent versions of the software can be run on a single
computer, one after another, or alternatively they could be run
simultaneously on independent computers.

Software diversity may be specified in the following elements of the
design process:
1. training, experience, and location of implementing personnel
2. application algorithms and data structures
3. programming languages
4. software development methods
5. programming tools and environments
6. testing methods and tools.

The purpose of such required diversity is to minimize the opportunities
for common causes of faults in two or more versions.

This method has been widely exploited to target possible software errors,
i.e., design faults or software bugs[72], but can be effectively adapted to
detect possible hardware errors. A transient error in a hardware component
has the same effect as a software one. If any of the hardware components
experiences an error, it causes the software version running on that hardware
to produce inaccurate results. If all of the other hardware and software

120 Chapter 4

modules are functioning properly, the system will still produce a correct
result, since the majority (e.g., 2 out 3 versions) is correct. If a hardware
component and the software component running on it both have errors, the
system can again continue to correctly function, if all the other hardware and
software components are functioning properly. If less than rN/2l software or
hardware components behave correctly, the system may fail, since the
majority does not produce the correct result. The Fault-Tolerant Processor-
Attached Processor (FTP-AP) architecture proposed in [73] may be seen as
an implementation of this hardware-software fault-tolerant architecture. A
quadruple configuration of a core architecture is used as a support for the
management of the execution of 4 diversified software modules running on 4
distinct processors.

Input

Version 1

Version 2

Version N

Consensus
generation Output

Figure 4-1. N-Version programming.

N-Version programming has been exploited in many industrial
apphcations: NASA Space Shuttle [74], Airbus A320/A330/A340 [75] and
Boeing 777 aircraft control [76] and various railway signaling and control
systems [77] [78] [79].

Achieving fault tolerance 121

2.1.1 Time redundancy

Virtual duplex systems (VDS) described in Section 2.3 can be extended
from only detecting faults to tolerating faults, also, using three versions of a
software with identical functionalities. Two versions are used to detect
transient faults, the third is needed for recovery.

A fault tolerant VDS system using a microprocessor that supports
multiple threads in hardware is presented in [37]. The system is composed of
3 versions of a software with identical functionalities. Two versions are used
to detect transient faults, the third will be needed for detection of permanent
faults and for recovery. The versions are built through design diversity to be
able to recover from transient as well as from many permanent hardware
faults.

A fault tolerant VDS exploits simultaneous multithreading in hardware: 2
threads execute in parallel a particular version. At regular times (called
rounds) the versions are compared and a state is saved in the form of a
checkpoint (see more details about checkpoint in the next Section 4.3). If the
states disagree a fault is detected. After the detection of a fault, while the
first thread executes version 3 for / rounds, the other thread is used to
proceed versions 1 and 2 beyond round / {roll-forward scheme). In
particular, in order to detect a fault, versions 1 and 2 started from a common
state. Here there is the possibility to choose from the states P or Q of both
versions at the end of round /, respectively. However, these states are
different, and it is unknown which of these states is affected by the fault just
detected.

In a probabilistic scheme, a state is chosen randomly, and both versions
are executed for i/2 rounds each, which needs the same time as executing /
rounds of version 3 in the first thread. A comparison is made through a
majority voting among 3 states (states of version 1, 2 and 3 at round i). If the
chosen initial state is the state of the fault-free version, the roll-forward is
successful, and, after the majority voting, the process re-starts from round
i+i/2\ otherwise the roll-forward does not give any gain, and the process re
starts again from round i. Since the choice is random, the probability to
choose correct version is 0.5. If a particular part of hardware is more likely
to be affected by faults, it is possible to use some prediction scheme, which
might increase this probability (exploiting techniques similar to branch
prediction and keeping a history of faults).

In a deterministic scheme, first i/4 rounds of version 2 are executed
starting from state P (the state of version 1 after round i), then i/4 rounds of
version 1 are executed starting from state P, then i/4 rounds of version 1 are
executed starting from state Q (the state of version 2 after round /), and
finally i/4 rounds of version 2 are executed starting from state Q. With this

122 Chapter 4

scheme the roll-forward is always successful, and after the majority voting,
the process re-starts always from round i+i/4.

To complete recovery in case of a successftil roll-forward, the state of the
fault-free version (version 1 or 2) is copied to version 3. So, version 3 is
rolled forward to the fault-free version and forms a new VDS with the
remaining fault-free version.

In order to maximize the efficiency of the roll-forward scheme in the
probabilistic scheme 3 multithreads are needed executing versions 1 and 2
for / rounds each in 2 separate threads and version 3 in another thread; in the
deterministic scheme 5 multithreads are needed executing versions 1 and 2
for / rounds starting from P and Q each in 4 separate threads and version 3 in
a another thread.

2.2 Recovery Block

Another major evolution of hardware and software fault-tolerance has
been the recovery block (RB) approach [70].

Recovery block exploits software redundancy. The recovery block
scheme consists of 3 software elements:
1. a primary module which normally executes the critical software function
2. an acceptance test which checks the outputs for correctness
3. an alternate^ module which performs the same function as the primary

module, and is invoked by the acceptance test upon detection of a failure
in the primary module.
In this approach these elements are organized in a manner similar to the

passive dynamic redundancy {standby sparing) technique adopted for the
hardware fault tolerance. The recovery block approach attempts to prevent
software faults from impacting on the system environment, and it is aimed at
providing fault-tolerant functional components which may be nested within
a sequential program. The usual syntax is shown in Fig. 2-6.

^ The term alternate reflects sequential execution, which is a feature specific to the recovery
block approach.

Achieving fault tolerance 123

ensure Acceptance Test
by primary alternate
else
else
else

else
else

by
by
by

by

alternate
alternate
alternate

alternate
error

2
3
4

N

Figure 4-2. The syntax of the Recovery Block scheme.

On entry to a recovery block the state of the system must be saved to
permit rollback error recovery. RB performs run-time software, as well as
hardware, error detection by applying the acceptance test to the outcome
delivered by the primary alternate. If the acceptance test is passed, the
outcome is regarded as successful and the recovery block can be exited,
discarding the information on the state of the system taken on entry.
However, if the acceptance test is not passed (or if any errors are detected by
other means during the execution of an alternate), recovery is implemented
by state restoration: the system rolls back and starts executing an alternate
module from the previously established correct intermediate point or system
state, known as recovery point. Recovery is considered complete when the
acceptance test is passed or all the modules are exhausted. If all the
alternates either fail the test or result in an exception (due to an internal error
being detected), a failure exception is signaled to the environment of the
recovery block. Since the recovery block can be nested, then the raising of
such an exception from an inner recovery block would invoke recovery in
the enclosing block.

Fig. 4-3 shows a scheme of the Recovery Block approach.

124 Chapter 4

Establish
Recovery Points

Roll Back.

Fail

Execute

Primaiy
Module

Alternate
xModulc 1

Pass

Alternate
Module N

Figure 4-3. Recovery Block approach.

In general, multiple alternate procedures can be used. Each procedure
must be deliberately designed to be as independent as possible, so as to
minimize the probability of having correlated errors in the primary and in the
alternate modules. This may be achieved by enforcing design diversity with
independently written program specifications, different program languages,
algorithms, etc, as described in Section 4.2.

The acceptance test must be simple, otherwise there will be a significant
chance that it itself contains a fault, and so fails to detect some errors, and/or
identifies falsely some conditions as being erroneous. Moreover, the test
introduces a run-time overhead which could be unacceptable. A number of
possible methods for designing acceptance test have been proposed (more
details can be found in [81]) but none has been defined as the golden
method. Generally speaking, the application test is dependent on the
application. As an example, in [83] Algorithm-Based Fault Tolerance
(ABFT) error detection techniques are exploited to provide cheap and
effective acceptance tests. ABFT (more details will be provided later in this
chapter) has been used in numerical processing for the detection of errors.
ABFT technique provides a transparent error checking method embedded
into the functional procedure that can be effectively applied in a recovery
block scheme. This method can be applied whenever ABFT is applicable.

Achieving fault tolerance 125

Indeed in many real-time applications, the majority of which involve control
systems, the numerical processing involved can be adapted to an ABFT
solution.

Although each of the alternates within a recovery block has to satisfy the
same acceptance test, there is no requirement that they all must produce the
same results. The only constraint is that the results must be acceptable as
determined by the test. Thus, while the primary alternate should attempt to
produce the desired outcome, the further alternate may only attempt to
provide a degraded service. This is particularly useful in real-time systems,
since there may be insufficient time available for complete functional
alternates to be executed when a fault is encountered. The extreme case
corresponds to a recovery block which contains a primary module and a null
alternate. Under these conditions, the role of the recovery block is simply to
detect and recover from errors.

In the normal, and most probable case, only the primary alternate of the
recovery block is executed as well as the acceptance test, and the run-time
overhead of the recovery block is kept to a minimum.

2.2.1 Distributed Recovery Block

The Distributed Recovery Block (DRB) scheme [84] is an approach for
achieving both hardware and software fault tolerance in real-time distributed
and/or parallel computer systems.

The underlying design philosophy behind the DRB scheme is that a real
time distributed [85] or parallel [86] computer system can take the desirable
modular form of an interconnection of computing stations, where a
computing station refers to a processing node dedicated to the execution of
one or a few application tasks.

In a basic configuration, a computing station consists of two self-
checking processing nodes (PSP) executing functionally equivalent tasks,
the first node being called the primary node and the second node being
called the shadow node. Each PSP possesses the capability of judging the
reasonableness of its task execution results through a software acceptation
test or a hardware self-checking circuit.

In the following description we will consider the general case that the
arrival rate of data is such that data may arrive when other data are still
being processing. In order to manage this general case it is thus necessary to
provide input data queues in each node within a PSP station. Each node may
contain multiple input data queues corresponding to multiple data sources.
Therefore, it is important for the partner nodes in a PSP station to ensure that
they process the same data item in each task execution cycle. This is
achieved by associating an identifier (ID) to each data.

126 Chapter 4

The schema is organized as follows:
• Both nodes (primary and shadow) obtain input data from a multicast

channel
• The primary node informs the shadow node of the ID of the data item

that the former received for processing in the current task cycle
• The primary and shadow nodes process the data item and perform their

self-checking concurrently by using the same acceptance test routine
• Since the primary node passes the test, it delivers the results to both the

successor computing station(s) and the shadow node, and then starts the
next task cycle

• By receiving the output from the primary node, the shadow node detects
the success of the primary node and, if the shadow node also succeeded
in its acceptance test, it too starts the next task cycle.

Fig. 4-4 shows a fault-free task execution cycle in a PSP station.

Multicast channel

Notify
Completion

Primary node Shadow node

Figure 4-4. A fault-free task execution cycle of a PSP station.

Let suppose the following faulty case:
• The primary node fails in passing the acceptance test or crashes during

the processing of the data item whereas the shadow node passes
• The shadow node then learns the failure of the primary node by noticing

the absence of output from the primary node

Achieving fault tolerance 127

The shadow node then becomes a new primary and delivers its task
execution results to both its successor computing station(s) and the
primary node

Meanwhile, the primary node, if alive, attempts to become a new useful
shadow node by making a retry of the processing of the saved data item.
If the primary node passes the acceptance test this time, it can then
continue as a useful shadow node and proceeds to the next task cycle.

Fig. 2-8 shows a task execution cycle of a PSP station involving a failure.

Multicast channel

Primary node

Notify
Completion

Shadow node

Figure 4-5. A task execution cycle of a PSP station involving a failure.

In order to support not only hardware faults, but also software faults, the
above primary-shadow PSP scheme can be extended by incorporating the

128 Chapter 4

approach of using multiple versions of the application task procedure. Such
versions are called try blocks. The extended scheme is the Distributed
Recovery Block (DRB) scheme and it uses the recovery block language
construct to support the incorporation of try blocks and the acceptance test.
Let consider the Recovery Block schema reported in Fig. 2-6, the syntax of
recovery block is shown in Fig. 4-6, where T denotes the acceptance test, Bi
the primary try block, and Bk (with 2<k<n), the alternate try blocks.
All the try blocks are designed the produce the same or similar
computational results. The acceptance test is a logical expression
representing the criterion for determining the acceptability of the execution
results of the try blocks. The execution of a try block is thus always followed
by an acceptance test. If an error is detected during the execution of a try
block or as a result of an acceptance test execution, then a rollback-and-retry
with another try block follows. A try not completed within the maximum
execution time allowed for each try block due to hardware faults or
excessive looping is treated as a failure.

In the DRB scheme, a recovery block is replicated into multiple nodes
forming a DRB computing station for parallel redundant processing.

In most cases a recovery block contains just 2 try blocks. With this
configuration, the roles of two try blocks are assigned differently in the two
nodes. The governing rule is that the primary node tries to execute the
primary try block whenever possible whereas the shadow node tries to
execute the alternate try block.

The fault-free execution observes the following steps:
• Both nodes receive the same input data,
• They process the data by use of two different try blocks
• They check the results by use of the acceptance test concurrently.
If the primary node fails and the shadow node passes its own acceptance test,
the shadow immediately delivers its processing results to the successor
computing stations. The two nodes then exchange their roles, i.e., the
shadow assumes the primary's role.
If the shadow node fails, the primary node is not disturbed. Whichever node
fails, the failed node attempts to become an operational shadow node
without disturbing the (new) primary node; it attempts to roll back and retry
with its second try block to bring its application computation state updated.

Achieving fault tolerance 129

l ensure T
p y Bi
e l s e by B2

e l s e
|e lse_

by BN

e r r o r

Figure 4-6. Distributed Recovery Block Scheme.

A distributed fault tolerant system for process control based on
Distributed Recovery Block has been implemented and integrated into a
chemical processing control system [87].

3. CHECKPOINTING

Checkpointing is a commonly used technique for reducing the execution
time for long-running programs in the presence of failures. With
checkpointing the status of the program under execution is saved
intermittently in a reliable storage. Upon the occurrence of a failure, the
program execution is restarted from the most recent checkpoint rather than
from the beginning.

In checkpointing schemes the task is divided into n intervals. At the end
of each interval a checkpoint is added, either by the programmer [88] or by
the compiler [89-90]. Fault detection is obtained exploiting hardware
redundancy by duplicating the task into two or more processors and
comparing the states of the processors at the checkpoints. The probability of
two faults resulting in identical states is negligible, so that two matching
states indicate a correct execution. By saving at each checkpoint the state of
the task in a reliable storage, the need to restart the task after each fault is
avoided\ Instead, the task can be rolled back to the last correct checkpoint,
and execution resumed from there, thereby shortening fault recovery.
Reducing the task execution time is very important in many applications like
real-time systems, with hard deadlines, and transactions systems, where high
availability is required.

Task duplication [91] was introduced to detect transient faults, based on duplicating the
computation of a task on two processors. If the results of the two executions do not match,
the task is executed again in another processor until a pair of processors produces identical
results. This scheme does not use checkpoints, and every time a fault is detected the task
has to be started from its beginning.

130 Chapter 4

Different recovery techniques are used to shorten the fault recovery time:
1. rollback recovery [88]: both processors are set back to the state of the last

checkpoint and the processing interval is retried. If two equal states are
reached afterwards, the processing is continued

2. stop and retry recovery [88]: if a state comparison mismatches, both
processors are stopped until a third processors computes a third status for
the mismatching round. Then a 2-out-of-3 decision is made to identify
the fault free version that is used to continue duplex processing

3. roll-forward checkpoint [91]: if a state comparison mismatches, the two
different states are both stored. The state at the preceding checkpoint,
where both processing modules had agreed, is loaded into a spare module
and the checkpoint interval is retried on the spare module. Concurrently,
the task continues forward on the two active modules, beyond the
checkpoint where the disagreement occurred. At the next checkpoint, the
state of the spare module is compared with the stored states of the two
active modules. The active module, which disagrees with the spare
module, is identified to be faulty and its state is restored to the correct
one by copying the state from the other active module, which is fault
free. The spare is released after recovery is completed. The spare can be
shared among many processor pairs and used temporarily when fault
occurs.
In checkpointing schemes a checkpointing overhead is introduced due to

the time to store the processors' states and the time to compare these states.
The time spent for compare and store operations may vary significantly,
depending on the system, and thus the checkpointing overhead is determined
mainly by the operation that takes a longer time. As an example, in a cluster
of workstations connected by a LAN, the bandwidth of the communications
subsystem is usually lower than the bandwidth of the local storage
subsystem. On the other hand, in multiprocessor supercomputers without
local disks at the computing nodes, the bandwidth of the communication
subsystem is usually higher than the bandwidth of the local storage
subsystem.

Different methods have been proposed to reduce checkpointing overhead.
The first method is to tune the scheme to the specific system that is
implemented on, and use both the compare and the state operations
efficiently [92]. Using two types of checkpoint (compare-checkpoints and
store-checkpoints) allows tuning the scheme to the system. The compare-
checkpoints are used to compare the states of the processors without storing
them, while in the store-checkpoints the processors store their states without
comparison. Using two types of checkpoints enables choosing different
frequencies for the two checkpoint operations, and utilizing both operations
in an efficient way. When the checkpoints that are associated with the

Achieving fault tolerance 131

operation that takes less time are used more frequently than the checkpoints
associated with the operation that takes more time, the recovery time after
fault can be reduced without increasing the checkpoint overhead. This leads
to a significant reduction in the average execution time of a task.

The second method is to reduce the comparison time by using signatures
[91], instead of comparing the whole states of the processors. In systems
with high comparison time, signatures can significantly reduce the
checkpoint overhead, and hence reduce the execution time of a task.

The tradeoffs involved in choosing an appropriate checkpoint frequency
are the following. Very frequent checkpoints cause high overhead due to
checkpointing durations, while too rare checkpoints cause longer fault
latency and may cause a more probable failure. The effects of varied check
intervals and checkpoint periods have been studied in [92]. A main result
from that study is that shortening test intervals improves dependability,
because the likeliness of two processes affected by a fault is decreased.
Thus, it is advised to test states more often than saving checkpoints.

4. ALGORITHM-BASED FAULT TOLERANCE
(ABFT)

This technique has been first proposed in [93], and then improved and
extended in several papers appeared in the following years.

4.1 Basic technique

In its basic version, the technique presented by Huang and Abraham [93]
in 1984 is aimed at hardening processors when executing matrix
applications, such as multiplication, inversion, LU decomposition.
Hardening is obtained by adding coding information to matrices: however,
while other approaches introduce coding information (to detect and possibly
correct errors) to each byte or word, these coding information are added to
whole data structures (in this case to each matrix) or, according to the
authors definition, at the algorithm level.

4.2 Matrix multiplication

4.2.1 Method description

The algorithm is based on modifying the matrices the application is
working on according to the definitions introduced in the following.

132 Chapter 4

Definition 1
Given a matrix A composed of n x m elements, the corresponding

column checksum matrix Ac is an (n+1) x m matrix, which consists of the
matrix A in the first n rows and a column summation vector in the (n+l)-th
row. Each element of the column summation vector corresponds to the sum
of the elements of the corresponding column (see Fig. 4-7.d). An example of
a 3 X 3 column checksum matrix is reported in Fig. 4-8.

Definition 2
Given a matrix A composed of n x m elements, the corresponding row

checksum matrix Ar is an n x (m+1) matrix, which consists of the matrix A
in the first m columns and a row summation vector in the (m+l)-th column.
Each element of the row summation vector corresponds to the sum of the
elements of the corresponding row (see Fig. 4-7.h). An example of a 3 x 3
row checksum matrix is reported in Fig. 4-9.

Definition 3
Given a matrix A composed of n x m elements, the corresponding full

checksum matrix A/ is an (n+1) x (m+1) matrix, which is the column
checksum matrix of the row checksum matrix Ar of A (see Fig. 4-7.c). An
example of a 3 x 3 full checksum matrix is reported in Fig. 4-10.

Achieving fault tolerance 133

A

CHECKSUM

A

^
P CO

Lli
I

[o

A

CHECKSUM 1

h^ 3
CO

LU
X

a) b) c)

Figure 4-7. A column (a), row (b) and full (c) checksum matrix.

Figure 4-8. A 3 x 3 integer matrix and the corresponding column checksum
matrix.

1 2 3
4 5 6
7 8 9

6
15
p4

Figure 4-9. A 3 x 3 integer matrix and the corresponding row checksum
matrix

134 Chapter 4

1 2
4 5
7 8

3
6
9

1 2 3
4 5 6
7 8 9 1

fl2 15 18

6
15
g4_

£5]

Figure 4-10. A3 x3 integer matrix and the corresponding full checksum
matrix

The technique proposed in [93] is based on the observation that some
matrix operations (matrix by matrix multiplication, LU decomposition,
addition, matrix by scalar multiplication, transposition) preserve the
checksum property, according to the following theorems (whose proof can
be found in [93]).

Theorem 1
When multiplying a column checksum matrix Ac by a row checksum

matrix Br, the result is a full checksum matrix Cf. Moreover, the following
relation holds among the corresponding information matrices:

A * B = C

Fig. 4-11 shows how the ABFT technique implements matrix
multiplication, while Fig. 4-12 gives an example.

Achieving fault tolerance 135

A

CHECKSUM

X B

^
=> C/)

LJJ C

CHECKSUM 1

ĥ
=) C/)

LU

Figure 4-11. Multiplication according to the ABFT technique

1 2 3
4 5 6
7 8 9

12 15 18

X
1 2 3
4 5 6
7 8 9

15
g4

=
30 36 421
66 81 96
102 126 150

198 243 288]

108
243
378

Figure 4-12. Example of matrix multiplication according to the ABFT
technique

Theorem 2
When a matrix C is LU decomposable, the corresponding full checksum

matrix Cf can be decomposed into a column checksum lower matrix and a
row checksum upper matrix.

Theorem 3
When adding two full checksum matrices Af and Bf, the result is a full

checksum matrix Cf. Moreover, the following relation holds among the
corresponding information matrices:

A + B = C

Theorem 4
The product of a full checksum matrix and a scalar value is a full

checksum matrix.

Theorem 5
The transpose of a full checksum matrix is a full checksum matrix.

136 Chapter 4

In order to harden an application performing a matrix operation, one can
therefore proceed as follows:
• The operand matrices are transformed into the corresponding row,

column, or full checksum matrices, depending on the operation
• The operation is performed on the checksum matrices
• A check is performed to detect possible errors, corresponding to the

following steps:
• The sum of all the elements on each row and column is computed
• The resulting value is compared with that stored in the row or column

summation vector; if a difference is observed, an error is detected
If we assume that the detected error affected a single element in the result

matrix, the identification of the affected element can be performed resorting
to the following sequence of operations:

• If a mismatch on both a row and a column summation vector element is
detected, the error affected the information element at the intersection
of the inconsistent row and column (Fig. 4-13)

• If a mismatch is detected on a row or column summation vector element,
only, the error affected the summation vector (Fig. 4-14),

Achieving fault tolerance 137

Figure 4-13. Faulty matrix element identification

Figure 4-14. Faulty column summation element identification

After the identification of the faulty element, its correction can be
performed resorting to the following sequence of operations:

• If the error affected an information element, the error can be corrected by
computing its fault-free value subtracting the sum of the values of the
other elements on the same row or column from the corresponding
element in the row or column summation vector

138 Chapter 4

• If the error affected an element of a row or column summation vector, the
fault free value of element can be computed by adding all the elements
of the row or column.

4.2.2 Comments

It is important to note that in the case of matrices composed of floating
point elements, roundoff errors could create problems to comparison
operations. In this case, some false alarms could be raised. A method to
compute the thresholds to be used for distinguishing between roundoff errors
and errors stemming from faults is outlined in [94] for a similar case.

The ABFT technique is particularly attracting because it introduces a
memory and performance overhead that, when compared with other
techniques (e.g., TMR), is relatively limited. Since the introduced memory
overhead meanly corresponds to an additional row and column and it grows
linearly with the matrix size as 0(N), but the percentage overhead decreases
when the matrix size increases, because the memory size grows as O(N^).

The error detection and correction capabilities of the method are very
high when faults affecting the matrices elements during the computation are
considered. The method is able to detect and correct any error affecting a
single element in the final matrix. On the other side, the correction
capabilities are limited if an error affects more than one element in the
resulting matrix.

On the other side, the method is rather weak in detecting and correcting
other kinds of faults, e.g., those affecting the memory elements in a
microprocessor control unit. If errors in the application code are considered,
the method shows some detection capabilities, corresponding to data
alterations, although it is definitely unable to detect all the errors of this
category.

4.3 FFT

The Algorithm-Based approach has been extended to other problems: one
of them is the Fast Fourier Transform.

The method has been introduced in [95], where an ad hoc hardware
architecture was supposed to be adopted: the original target was to modify
the algorithm to detect faults arising in this architecture. However, the
method is suitable to be adopted even if the FFT algorithm is implemented
in software on a conventional computer.

Achieving fault tolerance

4.3.1 Method description

139

The discrete Fast Fourier Transform of a sequence x(n) can be computed
as N-\

X{k) = Y,x{n)w';;, k = QX...,N-\
«=0

where
WN=e

-j(27x/N)

The computation can be performed either on a standard computer,
resorting to a matrix recording all the required products x(n)w^", or on a
special purpose architecture (named FFT network), whose architecture is
shown in Fig. 4-15.

X(0)

X(4)

X(2)

X(6)

X(4)

X(5)

X(3)

X(7)

Figure 4-15. FFT network architecture

Each rectangle corresponds to a two-point butterfly (Fig. 4-16), whose
two outputs implement the following functions:

c ^a + b'^w'^
d ^a-b'^w %

140 Chapter 4

a

b

<

c

d

Figure 4-16, Two-point butterfly

In order to harden this architecture against possible faults affecting the
composing modules, Jou and Abraham proposed to encode the inputs, so
that a checksum can be computed out of the outputs. The proposed technique
is based on substituting each input x with ax + bx\ where a and b are
properly chosen integer constants, and x̂ is the element of the input
sequence, rotated by one position. With this encoding, the k-th output yk
must be decoded by multiplying it by a factor equal to

1

a + bw
N

The correct outputs must fulfill the following relation

N
N x (0) - I

n = 0 a + bw - k
N

This approach leads to the modified FFT network shown in Fig. 4-17
(where a=2 and b=l).

Achieving fault tolerance 141

2x(0)4-x(l)

w"

w"

w"

w"

W"

ŵ

w"

ŵ

W"

w

ŵ

ŵ

= 9

I
lerror

Adder

m
m
m
m-
H2>

2^0)

X(4)

X(2)

X(6)

X(l)

X(5)

X(3)

X(7)

Figure 4-17. FFT network architecture

In their paper Jou and Abraham demonstrate that using this encoding, a
very high percentage (greater than 99%) of faults affecting both the data and
the computation elements can be detected. They also propose a method to
identify the faulty component, that can be used to reconfigure the network,
and hence lead to a fault tolerant system.

The same approach can be adopted if the discrete FFT is computed in
software on a conventional architecture.

4.4 Final comments

The algorithm-based approach attracted a lot of interest in the last two
decades, and has been widely adopted to several common problems with
good results in terms of detection capabilities, and relatively low
requirements in terms of memory and performance overhead.

An important limitation of the algorithm-based approach is that it can
only be applied to those algorithms for which an ABFT version has been
devised, mainly correspondent to regular data structures. Moreover, it
requires properly modifying the application algorithm in order to implement
the fault tolerant version, thus making impossible to reuse existing libraries.

142 Chapter 4

As discussed for the FFT algorithm, the approach can be extended to the
case of non-conventional architectures executing the application (this case is
not covered in this book) [95][96][97].

5. DUPLICATION

The technique is based on a set of transformation rules applied to a high-
level code in order to obtain a

5.1 Duplication and checksum

The method first proposed in [98] and then fully described in [99]
extends the one proposed by the same authors in [100], in such a way that
not only detection, but also fault tolerance is achieved.

The method focuses on computing-intensive applications, only.
Therefore, it is assumed that the program to be hardened begins with an
initialization phase, during which the data to be elaborated are acquired.
This phase is then followed by a data manipulation phase, where an
algorithm is executed over the acquired data. At the end of the computation,
the computed results are committed to the program user, through a result
presentation phase. The proposed code transformation rules are meant to be
applied on the algorithm executed during the data manipulation phase.

The approach exploits code transformation rules providing fault detection
and, for most cases, fault correction. The rules are intended for being
automatically applied to the program source high-level code and can be
classified in two broad categories: rules for detecting and correcting faults
affecting data and rules for detecting and (when possible) correcting faults
affecting code.

5.1.1 Detecting and correcting transient faults affecting data

Data hardening is performed according to the following rules:
• Every variable x must be duplicated: let xo and xj be the names of the two

copies. Every write operation performed on x must be performed on xo
and xi Two sets of variables are thus obtained, the former (set 0) holding
all the variables with footer 0 and the latter (set 1) holding all the
variables with footer 1.

• After each read operation on x, the two copies xo and xj must be checked,
and if an inconsistency is detected a recovery procedure is activated.

Achieving fault tolerance 143

• One checksum c associated to one set of variables is defined. The initial
value of the checksum is equal to the exor of all the already initialized
variables in the associated set.

• Before every write operation on x, the checksum is re-computed, thus
canceling the previous value of x (c = c^xo).

• After every write operation on x, the checksum is updated with the new
valueX {c = c^xo)'

The recovery procedure re-computes the exor on the set of variables
associated to the checksum (set 0, for example), and compares it with the
stored one. Then, if the re-computed checksum matches the stored one, the
associated set of variables is copied over the other one; otherwise the second
set is copied over the first one (e.g., set 0 is copied over set 1, otherwise set 1
is copied over set 0).

In order to provide a sample example of how the proposed method
works, let us consider the code fragment reported in Fig. 4-18. When all the
proposed rules are applied, the hardened code is the one reported in Fig. 4-
19. In Fig. 4-19, function c h k () computes the exclusive-or of all the
variables in the set 0.

i n t a, b ;

a = b ;
Figure 4-18. Original code fragment

144 Chapter 4

i n t aO^ a l , bO^ b l , c ;

c = c^aO;

aO = bO;
a l = b l ;
c = c'^aO; / ^ c i s u p d a t e d * /
if(bO!=bl) /^ error detection ^/
if(chk()==c) /* error correction /̂
{

}
{

bl =
al =
else
bO =
aO =

bO;
aO;

bl;
al;

f-"
/*

/*
/^

bl
al

bO
aO

is
is

is
is

wrong
wrong

wrong
wrong

V
V

V
V

chkO;

Figure 4-19. Hardened code fragment

5.1.2 Detecting and correcting transient faults affecting the code

To detect faults affecting the code the method exploits the techniques
introduced in [101]. The first technique consists in executing any operation
twice, and then verifying the coherency of the resulting execution flow.
Since most operations are already duplicated due to the application of the
rules described in the previous sub-section, this idea mainly requires the
duplication of the jump instructions. In the case of conditional statements,
this can be accomplished by repeating twice the evaluation of the condition.

The second technique aims at detecting those faults modifying the code
so that incorrect jumps are executed, resulting in a faulty execution flow.
This is obtained by associating an identifier to each basic block in the code.
An additional instruction is added at the beginning of each block of
instructions. The added instruction writes the identifier associated to the
block in an ad hoc variable, whose value is then checked for consistency at
the end of the block.

The recovery procedure consists in a rollback scheme: as soon as a fault
affecting the program execution flow is detected, the program is restarted
(i.e., the program execution is restarted from the data manipulation phase, or
from a safe point which has been previously recorded). Thanks to this
solution, we are able to:
• Detect and correct transient faults located in the processor internal

memory elements (e.g., program counter, stack pointer, stack memory
elements) that temporarily modify the program execution flow.

Achieving fault tolerance 145

• Detect transient faults originated in the processor code segment (where
the program binary code is stored) that permanently modify the program
execution flow. As soon as a SEU hits the program code memory, the
bit-flip it produces is indeed permanently stored in the memory, causing
permanent modification to the program binary code. Restarting the
program execution when such a kind of fault is detected is insufficient
for removing the fault from the system. As a result, the program enters
in an end-less loop, since it is restarted every time the fault is detected.
This situation can be easily identified by a watch-dog timer that
monitors the program operations.

5.1.3 Results

In [99] the authors report some experimental results allowing to evaluate
the advantages and disadvantages of their method.

Starting from a set of benchmark programs, they first obtained their fault
tolerant versions by applying the proposed source code transformation rules.
For this purpose they exploited an extended version of the tool presented in
[102]. Then they evaluated the area overhead introduced by the method by
measuring the size of the code and data segments of the fault tolerant
versions and by relating them with those of the unhardened ones. They also
measured the time overhead the method introduces, as the ratio between the
number of clock cycles needed for executing the fault tolerant programs and
the unhardened ones. Finally, they evaluated the error detection and
correction capabilities of the method by performing simulation-based fault
injection experiments on an Intel 8051-based system. During the
experiments, they injected randomly selected (both in time and space) bit-
flips in the program data segment, storing the data the program manipulates
and the stack, and in the code segment storing the binary code the processor
executes. For each benchmark, the authors executed a preliminary set of
fault injection experiments to measure the impact of faults in the unhardened
program; then they executed a new set of fault injection experiments on the
fault tolerant version of the same program: 10,000 random faults were
injected in each experiment. Fault injection experiments were performed
resorting to the emulation-based environment presented in [103].

Faults have been classified according to the categories described in
Section 1.2.3.

In the experiments three programs were considered: Sieve implements the
sieve of Eratosthenes over a set of No bytes; Bubble sort implements the
Bubble sort algorithm over a set of Ni integers; Matrix implements the
product of two N2XN2 matrices of integer numbers. The adopted processor
core implements the Intel 8051 instruction set and includes a 128-bytes

146 Chapter 4

internal memory. Moreover, it is able to run programs up to 1,024-bytes
long. Given these constraints the following set of parameters were adopted
for the considered benchmark programs: No=40, Ni=10, N2=2. While
evaluating the overhead introduced by the approach with respect to the
unhardened version, the authors recorded the figures reported in Table 4-1.

Table 4-1. Data, code and performance overheads.

Data segment size

increase

Sieve 2.2

Bubble sort 2.2

Matrix 2.2

Code segment size

increase

2.1

2.8

3.8

CPU time increase

2.7

1.8

2.4

To compare the figures of Table 4-1 with a reference approach, in [99]
the authors report a comparison with the figure obtained with a software
TMR version of the considered benchmarks. Data reported for this version
show an average data segment overhead of 3.5, an average code segment
increase of 3.0 and an average performance overhead of 3.1. As a result, the
authors of [99] state that the proposed approach is able to provide fault
tolerance while reducing the memory overhead with respect to the TMR
approach, while the performance penalties introduced by the two methods
are comparable.

The results gathered during fault injection experiments are reported in
Tables 4-2 and 4-3, where transients faults injected in the unhardened
programs are categorized according to their effects and then compared with
those injected in the fault tolerant versions. The figures show that the
proposed method is able to significantly improve the error detection and
correction capabilities of a given applications. As far as faults inside the data
segment are considered, the method provides complete fault coverage: the
number of failures is indeed always reduced to 0 for the hardened versions.
The same result was observed when faults affecting the code segment were
analyzed, where failures are reduced to 0 in all the considered programs.
From Tables 4-2 and 4-3, one can also observe that many faults exist that
can only be detected. Most of them are provoked by SEUs hitting the
memory area storing the result of the program at the very beginning of the
program execution. Furthermore, many faults hitting the code area are
classified as time-out. These are faults that let the program enter in an end
less loop and that trigger the watch-dog timer embedded in the fault injection
system.

Achieving fault tolerance 147

Table 4-2. Fault injection in data segment of the Intel 8051-based system
Sieve Bubble sort Matrix

Injected

Effect-less
Corrected

Failure

Software Detected

Time-out Detected

Original

10,000

8,294

0

1,701

0

5

Hardened

10,000

6,487

813

0

2,697

3

Original

10,000

9,227

0

773

0

0

Hardened

10,000

8,058

1,568

0

374

0

Original

10,000

9,398

0

580

0

22

Hardened

10,000

8,213

653

0

283

855

Table 4-3. Fault injection in code segment of the Intel 8051-based system
Sieve Bubble sort Matrix

Injected

Effect-less
Corrected

Failure

Software Detected

Time-out Detected

Original

10,000

9,041

0

416

0

543

Hardened

10,000

5,465

498

0

192

3,845

Original

10,000

9,136

0

637

0

227

Hardened

10,000

6,048

585

0

10

3,357

Original

10,000

8,944

0

579

0

487

Hardened

10,000

6,763

314

0

130

2,792

5.2 Duplication and Hamming code

The method exploit's the properties of the error correcting codes for
achieving fault-tolerance. Error correcting code introduces information
redundancy into the source code. These transformations, which were
automatically performed, introduce data and code devoted to detect, and
eventually correct, possible errors corrupting information stored in the
memory area.

The method has been proposed by Nicolescu et al. in [107]. The basic
idea is to associate an extra code information to every variable in the code.
This extra code (Hamming corrector) is computed according to Hamming
codes. This code is able to correct a single error and to detect a double error.
A detailed description of how this code is computed is out of the scope of
this book.

Every time a variable is modified, its correspondent Hamming corrector
has to be updated. On the other hand, in a read operation the Hamming
corrector is used for the decoding operation. Two parameters are needed for
this operation: the variable's value and the variable's hamming corrector
code. In the case of the corruption of one of these two values, the decoding
procedure will take one of the possible following decisions:
• If one bit is corrupted, the decision is a correction of the corrupted bit

148 Chapter 4

• It two bits are damaged, then the decision is the detection, without
correction possibiUty

• If more than two bits are affected, the decision is an erroneous
correction.

Original code

a = 5 ;

b = a + 2 ;

Modified Code

a = 5 ;
a c o d e = c o d e (a) ;

b = d e c o d e (a c o d e , a) + 2 ;
b c o d e = c o d e (b) ;

Figure 4-20. Hamming code-based redundancy.

Fig. 4-20 hows an example for simple piece of code of the resulting
program including Hamming codes.

Experimental results executed injecting faults into the memory and
internal registers of a RISC processor (transputer T225) demonstrate the
feasibility of the approach and its detection and correction capability. As far
as fault affecting data are considered 0,7% of faults produce a failure, but
36% of faults are detected and 32% of faults are detected and corrected. As
far as faults affecting code are considered, 3% of faults produce a failure, but
53%) of them are detected and 0,2% are detected and corrected.

The major drawback of error detection and correction methods based in
Hamming codes comes from the resulting memory area overhead (due to
hamming corrector codes and decoding operations) and the increase in
execution time due to hamming corrector code update and decoding
operation execution. The overhead factors obtained considering a benchmark
program corresponds to a execution time 12 times than the one required for
the unhardened program and a memory size 3 times than the one for the
original unhardened program. These overhead factors show that this method
can be applied where the fault tolerance requirements justify those high
overhead penalty.

REFERENCES

67. C. Babbage, "On the mathematical powers of the calculating engine," unpublished
manuscript, December 1837, Oxford, Buxton Ms7, Museum of History of Science.

Achieving fault tolerance 149

Printed in "The Origins of Digital Computers: Selected Papers", B. Randell (ed.),

Springer, 1974, pp. 17-52

68. A. Avizienis, J.C. Laprie, "Dependable Computing: from concepts to design

diversity," Proceedings of the IEEE, Vol. 74, No. 5, May 1986, pp. 629-638

69. A. Avizienis, "The N-Version approach to fault-tolerant software," IEEE Transactions

on Software Engineering, Vol. 11, No. 12, December 1985, pp. 1491-1501

70. B. Randell, "System Structure for Software Fault Tolerance," IEEE Trans, on Software

Engineering, Vol. 1, No. 2, June 1975, pp.220-232

71. D. Pradhan, "Fault-tolerant Computer System Design", Prentice Hall, 1996

72. J. P. Kelly, T. I. McVittie, W.I. Yamamoto, "Implementing design diversity to achieve

fauh tolerance", IEEE Software, Vol. 8, no. 4, July 1991, pp. 61-71

73. J. H. Lala, L.S. Alger, "Hardware and Software Fault Tolerance: a unified

Architectural Approach", Proceedings of the 18-̂ ^ International Symposium on Fault-

Tolerant Computing, FTCS-18, 1988, pp. 240-245

74. C. E. Price, "Fault tolerant avionics for the Space Shuttle" Proceedings of the 10-̂ ^

lEEE/AIAA Digital Avionics Systems Conference, 1991, pp. 203-206

75. D. Briere, P. Traverse, "AIRBUS A320/A330/A340 Electrical Flight Controls: A

Family of Fault-Tolerant Systems", Proceedings of the 23-'̂ '' International Symposium

on Fault-Tolerant Computing, FTCS-23, 1993, pp. 616-623

76. R. Riter, "Modeling and testing a critical fault-tolerant multi-process system".

Proceedings of the 25-^^ International Symposium on Fault-Tolerant Computing,

FTCS-25, 1995, pp. 516-521

77. G. Hagelin, "ERICSSON safety system for railway control", Proceedings of the

Workshop on Design Diversity in Action, Springer Verlag, 1988, pp 11-21

78. H. Kanzt, C. Koza, "The ELEKTRA railway signalling system: field experience with

an actively replicated system with diversity". Proceedings of the 25-th International

Symposium on Fault-Tolerant Computing, FTCS-25, 1995, pp. 453-458

79. A. Amendola, L. Impagliazzo, P. Marmo, G. Mongardi, G. Sartore, "Architecture and

safety requirements of the ACC railway interlocking system". Proceedings of IEEE

International Computer Performance and Dependability Symposium, 1996, pp. 21 - 29

80. B. Fechner, J. Keller, P. Sobe, "Performance estimation of virtual duplex systems on

simultaneous multithreaded processors", 18-th International Parallel and Distributed

Processing Symposium, 2004, pp. 214-217

81. K. Echtle, B. Hinz, T. Nikolov, "On Hardware Fault Detection by Diverse Software",

Proceedings of the 13-th International Conference on Fault-Tolerant Systems and

Diagnostics," 1990, pp. 362-367

82. T. Anderson, P.A. Lee, Fault Tolerance: Principles and Practice, Prentice Hall, 1981

83. A.M. Tyrrell, Recovery blocks and algorithm-based fault tolerance, EUROMICRO 96.

'Beyond 2000: Hardware and Software Design Strategies', Proceedings of the 22nd

EuroMicro Conference, 1996, pp. 292 - 299

150 Chapter 4

84. K.H. Kim, H.O. Welch, "Distributed Execution of Recovery Blocks: an approach to

uniform treatment of Hardware and Software Fauhs in Real-Time Applications", IEEE

Transactions on Computers, May 1989, pp. 626-636

85. K.H. Kim, L. Bacellar, C. Subbaraman, "Primary-shadow consistency issues in the

DRB scheme and the recovery time bound". Proceedings of the 7-th International

Symposium on Software ReHability Engineering, 1996, pp. 319-329

86. K.H. Kim, A. Kavianpour, "A distributed recovery block approach to fault-tolerant

execution of application tasks in hypercubes", IEEE Transactions on Parallel and

Distributed Systems, Vol. 4 , No. 1, Jan. 1993, pp. 104-111

87. M. Hecht, J. Agron, H. Hecht, K.H. Kim, "A distributed fault tolerant architecture for

nuclear reactor and other critical process control applications". Proceedings of the 21-

st International Symposium on Fault-Tolerant Computing, 1991, FTCS-21, pp. 462-

498

88. K.M. Chandy, C.V. Ramamoorthy, "Rollback and recovery strategies for computer

programs," IEEE Transactions on Computers, Vol. 21, No. 6, June 1972, pp. 546-556

89. W.K, Fuchs, C.-C. J. Li, "CATCH - compiler-assisted techniques for checkpointing,"

Proceedings of the 20-̂ ^ International Symposium on Fault-Tolerant Computing,

FTCS-20, 1990, pp. 74-81

90. J. Long, W.K, Fuchs, J.A. Abraham, "Compiler-Assisted Static Checkpoint insertion,"

22-"̂ * International Symposium on Fault-Tolerant Computing, (FTCS-22), 1992, pp.

58-65

91. D. K. Pradhan, N. H. Vaidya, "Roll-Forward Checkpointing Scheme: A Novel Fault-

Tolerant Architecture," IEEE Transactions on Computers, Vol. 43, No. 10, October

1994, pp.1163-1174

92. A. Ziv, J. Bruck, "Performance Optimization of Checkpointing Scheme with Task

Duplication," IEEE Transactions on Computers, Vol. 46, No. 12, December 1997, pp.

1381-1386

93. K. H. Huang, J. A. Abraham, "Algorithm-Based Fault Tolerance for Matrix

Operations", IEEE Transactions on Computers, vol. C-33, No. 6, June 1984, pp. 518-

528

94. A. Roy-Chowdhury, P. Banerjee, "Tolerance Determination for Algorithm Based

Checks using Simplified Error Analysis", Proc. IEEE International Fault Tolerant

Computing Symposium, 1993

95. J.-Y. Jou, J.A. Abraham, "Fault-Tolerant FFT Networks", IEEE Transactions on

Computers, Vol. 37, No. 5, May 1988, pp. 548-561

96. S.-J- Wang, N.K. Jha, "Algorithm-Based Fault Tolerance for FFT Networks", IEEE

Transactions on Computers, Vol. 43, No. 7, July 1994, pp. 849-854

97. A. Mishra, P. Banerjee, "An Algorithm-Based Error Detection Scheme for the

Multigrid Method", IEEE Transactions on Computers, Vol. 52, No. 9, September

2003,pp. 1089-1099

Achieving fault tolerance 151

98. M. Rebaudengo, M. Sonza Reorda, M. Violante, "A New Software-based technique

for low-cost Fault-Tolerant application", IEEE Annual Reliability and Maintainability

Symposium, 2003, pp. 25-28

99. M. Rebaudengo, M. Sonza Reorda, M. Violante, "A new approach to software-

implemented fault tolerance", JETTA: The Journal of Electronic Testing: Theory and

Applications, Kluwer Academic PubHshers, N. 20, August 2004, pp. 433-437.

100. P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza Reorda, M. Violante,

"Experimentally evaluating an automatic approach for generating safety-critical

software with respect to transient errors", IEEE Transactions on Nuclear Science, Vol.

47, No. 6, December 2000, pp. 2231-2236

101. O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante, "Soft-error Detection

Using Control Flow Assertions", DFT2003: IEEE International Symposium on Defect

and Fault Tolerance in VLSI Systems, 2003, pp. 581-588

102. M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M. Violante, "A source-to-source

compiler for generating dependable software". Proceedings of the IEEE International

Workshop on Source Code Analysis and Manipulation (SCAM), 2001, pp. 33-42

103. P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante, "An

FPGA-based approach for speeding-up Fault Injection campaigns on safety-critical

circuits". Journal of Electronic Testing: Theory and Applications (JETTA), Kluwer

Academic Publishers, Vol. 18, No. 3, June 2002, pp. 261-271

104. O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante, "Software Techniques

for Dependable Computer-based Systems", chapter in Space radiation environment

and its effects on spacecraft components and systems, Cepadues ed., Toulouse

(France), ISBN 2-85428-654-5, 2004

105. M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M. Violante, "An experimental

evaluation of the effectiveness of automatic rule-based transformations for safety-

critical applications", DFT'OO, IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, October 2000, pp. 257-265

106. M. Turmon, R. Granat, D.S. Katz, J.Z. Lou, "Tests and Tolerances for High-

Performance Software-Implemented Fault Detection", IEEE Transactions on

Computers, Vol. 52, No. 5, May 2003, pp. 579-591

107. B. Nicolescu, R. Velazco, M. Sonza Reorda, "Effectiveness and Limitations of

Various Software Techniques for "Soft Error" Detection: a comparative study",

Proceedings of the IEEE 7-th International On-Line Testing Workshop, 2001,

pp. 172-177

Chapter 5

HYBRID TECHNIQUES

1. INTRODUCTION

Although this book is devoted to methods aimed at reaching safety and
fault tolerance through software techniques, we decided to allocate at least
one chapter to hybrid methods, i.e., to those methods that combine changes
in the application code with some sort of external (with respect to the
processor executing the code) hardware support. The reason for this choice
is that for most of the methods presented in this chapter the changes required
in the hardware are limited to adding some special device (often named
watchdog), which interacts with the processor, and checks for possible
errors, possibly exploiting special instructions that have been added in the
code to support this interaction. In this way, a mix of hardware and software
techniques is exploited, resulting in systems having either a higher
reliability, or a lower overhead than for those exploiting purely software
hardening techniques.

The operation of a watchdog is a two phase process. In the first, the
initialization phase, the watchdog is provided with a reference information
about the fault-free operation of the checked processor. In the second one,
the checker phase, the reference information is compared to the run-time
information collected by the watchdog processor concurrently. In the case of
a discrepancy, an error is detected. The scheme is the one of general testing:
the watchdog compares the run-time information from the processor (device
under test) with the reference one; the result of the comparison is an error
signal. Watchdog devices are generally connected to the bus as shown in
Fig. 5-1. They either simply monitor the bus, or interact with the processor

154 Chapters

via special commands sent by the processor (which sometimes sees them as
I/O devices, i.e., as ports associated to some address). Sometimes, watchdog
devices are able to execute a program, which is related to that executed
concurrently by the main processor. In this case watchdog devices take the
name of watchdog processors (or coprocessor).

Historically, the watchdog processor is an extension of the idea of
watchdog timers ([147]), that are simple hardware or software modules used
to monitor concurrently timing (duration) of selected system activities. The
system is designed such that under normal operation it signals the watchdog
timer within a specified time interval. The signal presets the timer to the
initial value. The timer generates an error if no preset signal is received
during the specified time interval. Many malfunctions can occur while the
system still generates a correct timing signal, and so this approach is usually
combined with others to increase the percentage of detected errors.

Hardening performed by resorting to watchdog devices is often
categorized as system-level hardening, since it works at the application level,
thanks to the interaction with the application software run by the main
processor. This kind of hardening can obviously be combined with others
(e.g., possible hardening techniques applied within the processor).

Many of the current superscalar processors include features, called
Performance Monitoring features, to measure and monitor various
parameters related to the performance of the processors. The Performance
Monitoring features use special internal counters, which can be initialized to
count the occurrences of several events in the processor. Examples of such
events are cache hits, instructions executed, and branches taken. Some
processors have also special pins, called event-ticking pins, which can signal
out the occurrence of internal events of processors. Performance Monitoring
features are exploited in [159] for developing a watchdog system (more
details are given later).

Hybrid techniques 155

Main
processor

^
Data bus

f y

Address bus
^

Main memory

i

error

Watchdog

Figure 5-1. Typical architecture of a system including a watchdog

The classification adopted in this chapter is mainly that introduced by
[108], which has been further extended to cope with some recently
introduced approaches. The adopted classification relates to the kind of
checks performed by the watchdog, and thus on the kind of errors that can be
detected by it.

2. CONTROL FLOW CHECKING

The methods belonging to this category are strictly connected with those
described in Chapter 3, where a watchdog has been added with the purpose
of either increasing the number of detected faults, or (more often) to
decrease the overhead in terms of performance degradation.

All the methods belonging to this category adopt the concept of node,
i.e., a group of instructions (corresponding to a single statement, a basic
block, a loop-free interval, or others, depending on the method). At the
compile time, the source code is divided into nodes, and a signature
instruction is embedded into the block (at the beginning and/or at the end
according to the method). The signature instruction has a field that contains
an identifying opcode, and a field that contains the reference signature, as
shown in Fig. 5-2. The opcode could be a coprocessor opcode already
included in the processor's instruction set, or it could be a specific addition
to the instruction set. During the run-time execution, the watchdog observes
the executed instructions and generates each node's run-time signature using
dedicated hardware. When a signature instruction is detected, the processor

156 Chapter 5

may execute a No-operation (NOP) instruction, while the watchdog
compares the run-time and reference signature, signaling an error if they
differ.

Op I Signature

Op I Signature Op I Sij

Figure 5-2. Basic signature monitoring technique.

Methods differ in the definition of the node, in the mechanism adopted
for computing the associated signature, and in the way the watchdog
monitors the control flow.

Two different approaches can be distinguished:
• Assigned run-time signatures: the signatures labeling the nodes are

assigned arbitrarily (e.g., using prime numbers or successive integers).
These signatures are transferred to the watchdog explicitly by the
checked processor. Signature transfer statements are inserted at the
compile time into the source of the checked program.

• Derived run-time signatures: the signatures labeling the nodes are
derived from the binary code of the instructions by information
compaction through a signature function S (e.g., a checksum, a Linear
Feedback Shift Register (LFSR), etc.) as shown in Fig. 5-3. The run
time signatures are derived by the watchdog concurrently, by
compacting the instruction code captured on the bus.

Hybrid techniques 15 7

Figure 5-3. Derived signature basic technique.

2.1 Assigned run-time signature control-flow checking

Assigned run-time signature control-flow checking techniques label the
nodes with signatures and check whether the run-time sequence of signatures
is correct. Early methods checked the sequence by recording the execution
and comparing it with previously determined sequences. In [145], some
checkpoint in the sequence were assigned with distinct prime number
signatures and compressed into a check symbol variable (through a repetitive
multiplication). At the end of the run, the run-time labels are decomposed
and checked for correctness.

2.1.1 Structural Integrity Checking (SIC)

This method was first proposed in [137]. The basic idea was that it is
possible to parse the program to be executed by the main processor (which is
supposed to be coded in a high-level language) and identify some common
constructs (concatenation, selection, repetition and abstraction). In this way,
nodes are identified and signatures (called labels in this case) are assigned to
each of them. Once the code analysis and signature generation is concluded,
the method is able to automatically generate
• a modified program for the main processor (named Labeled Structured

Program) which differs from the original program only because it
additionally includes special instructions devoted to send signatures to
the watchdog

• a program for the watchdog, named Structural Reference Program. This
program mimics the structure of the original program: it does not contain
any computational part (as in the main processor program), but only the
instructions for receiving signatures and checking for their correctness.
The computational requirements for the watchdog are therefore much
lower than for the main processor, making it much simpler and cheaper.

Interestingly, the string of signatures produced by the Labeled Structured
Program can be described by a context-free grammar: the Structural
Reference Program can be seen as implementing an automaton able to

158 Chapters

accept exactly those strings described by the context-free grammar, and to
reject any other string.

Fig. 5-4 shows an example program (coded in Pascal): Fig. 5-5 reports
the Labeled Structured Program and the Structural Reference Program
produced by the application of the method.

read(input^ number);
repeat
if number < 0 then begin
negsum := negsum + numbers-
number := number ^ -1;

end;
sum := sum + number;
read(input, number);

until (number = 0) or (eoln (input));

Figure 5-4. Example program

The SIC method offers a good coverage of those faults causing a change
in the order of execution of the nodes. However, two types of errors escape
the detection capabilities of the method:
• faults causing the control flow to produce an order of execution of the

nodes which is different than the correct one, but still compliant with the
context-free grammar extracted from the original program

• faults modifying the instructions corresponding to a node.
The major advantages of this method are that it woks on the high-level

code, and that any simple processor can be used to implement the watchdog.
Other methods that further elaborated the idea presented in [137] were

proposed in [138] and [145].

Hybrid techniques 159

send(50);

read(input, number);

send(187);

Begin

repeat

send(-82);

if number < 0 then begin

send(-12);

negsum := negsum + number;

send(28);

number := number * -1;

End else send(-13);

send(155);

Sum := sum + number;

send(48);

read(input, number);

until (number = 0) or (eoln (input));

send(-83);

end;

if signature <> 50 then error;

if signature <> 187 then error;

Begin

if signature <> -82 then error;

repeat

(* loop terminated when signature

different than -82 *)

if signature === -12 then begin

(* -12 means H f executed *)

if signature <> 28 then error;

end;

if signature <> 155 then error;

if signature <> 48 then error;

until signature <> -82;

end;

Figure 5-5. Labeled Structured Program (left) and Structural Reference Program (right).

2.2 Derived run-time signature control-flow checking

A derived run-time signature is a value assigned to each node. The term
derived means that the signature is not an arbitrarily assigned value but
calculated from the block's instructions. Derived signatures are usually
obtained applying an exor function among the instruction opcodes or using
such opcodes to feed a Linear Feedback Shift Register (LFSR). These values
are computed at compile time and used as reference by the watchdog to
verify the correctness of the executed instructions.

2.2.1 Embedded Signature Monitoring

Signatures are pre-computed by the compiler and generally stored within
the application program. The watchdog processor compacts the instructions
executed by the checked processor, and periodically compares the

160 Chapter 5

intermediate results of the compaction, which are the signatures, to pre-
computed references. Many methods and approaches have been proposed in
the Uterature. They differ in the definition of the node and in the
representation of the reference information. Different processor architectures
(traditional CISC or pipelined RISC) and configurations (mono or
multiprocessors) are targeted, and trade-offs between the error coverage and
the overhead introduced by the checking are taken into consideration.

The first method that introduced the Embedded Signature Monitoring
technique was called BPSA {Basic Path Signature Analysis) [121], where a
node is defined as a branch-free sequence of assembly level instructions and
the reference signature is inserted at the beginning of each node. Two tag
bits are used to differentiate signatures from other instructions in the node.
The watchdog processor monitors the instruction bus of the processor and
captures the reference signatures, using tag bits to differentiate them from
the normal instructions. The checked processor executes a NOP instruction
whenever a signature is fetched; on the other hand when a normal instruction
is fetched, the watchdog processor computes the run-time signature,
concurrently. A second tag bit signals the end of the node; the run-time
signature is then compared to the reference one. A difference allows
signaling the occurrence of an error.

The insertion of the embedded reference signatures increases the memory
overhead of the checked program and reduces the performance. A proper
compromise can be found between the error detection latency (the number of
instructions involved in a node) and the overhead.

An improved method, called GPSA (Generalized Path Signature
Analysis) [121] reduces the total number of signatures by checking
sequences of nodes {cdiWQA paths) rather than single nodes. Path sets (i.e.,
sets of possible paths starting from the same node) are defined and one
signature is derived for each path set. The signature identifies the path set
and so the computation of the run-time signature of each possible path in a
set must be the same. This is obtained introducing some auxiliary signatures,
cdiWQdi justifying signatures in some paths. These signatures are involved in
the computation of the run-time signature, so that the same signature results
at the end of each path.

In order to explain the approach in deeper details, let consider the control
flow graph shown in Fig. 5-6. The path set consists of four different paths PI
= (Vi, V2, V4, Vs, V7), P2 = (Vi, V2, V4, Ve, V7), P3 = (Vi, V3, V4, V5, V7)
and P4 = (Vi, V3, V4, Ve, V7). To each node Vi a signature h(Vi) is assigned.
In order to have a single signature computed for all the possible paths,
justifying signatures are added at the nodes V3 and ¥5, according to the
following formula:

h ' (V3) = h(V3) e h(V2)

Hybrid techniques 161

h ' (Ve) = h(V6) e h(V5)
After this modification, the signatures of the paths are the following:

= h(Vi)eh(V2)©h(V4)©h(V5)©h(V7)
= h (V i) © h (V 3) e h ' (V3)©h(V4)©h(V5)©h(V7) =
= h (Vi)©h(V2)eh (V4)©h(V6)eh ' (V6)eh(V7) =

HI
HI

h(Vi)©h(V3)©h ' (V3)©h(V4)©h(V6)©h' (Vg)'

P I : HI
P2 : H2
P 3 : H3
P4: H4
h(V7) = HI

The common signature of the path set composed of these four paths is HI
and is stored at the node Vi.

The total number of stored signatures is three, which is less than the
seven signatures stored following the BPSA method [121].

Figure 5-6. An example of control flow graph.

Wilken proposed in [118][119] an optimized method with the goal to find
a set of justifying signature locations that causes minimum overhead. Wilken
demonstrated that justifying signatures placed on certain nodes or arcs of the
control flow graph cause less performance and/or memory overhead than at
other locations. Using representative inputs, a program's execution profile
can identify nodes and arcs that are visited infrequently, where justifying
signature placement causes lower performance overhead. Moving from this
analysis, each program graph node or arc / is labeled with cost C/, which is a
function of the performance overhead pi and memory overhead m, for
placing a justifying signature there:

162 Chapter 5

where kp and k„^ are non negative constants that are used to find the best
trade-off between/>/ and m,.

The algorithm defined by Wilken to find the best placement starts from
the transformation of the program control flow graph. A node X is added to
the program graph, and all program exit arcs are connected so they are
incoming to node X. This modified program is then transformed into a
weighted undirected graph. Nodes and arcs in the modified program graph
are modified according to the following rules:
• Node / is represented in the undirected graph by vertices V// and V/2,

joined by an undirected edge et
• Arcy is represented in the undirected graph by an undirected edge e/, an

arc j that is outgoing from node / and is incoming to node k, edge ej
connects vertices v/2 and vu.

For each node or arc / in the program graph the cost c/ is assigned to the
corresponding edge Ct. The edge corresponding to the node X is assigned
infinite cost in order to make impossible that a signature will be placed there.
Fig. 5-7(a) shows the modified program graph and Fig. 5-7(b) shows the
correspondent transformation into an undirected graph.

Figure 5-7. Program control flow graph transformation, a) Modified
program graph, b) Undirected graph.

The proposed algorithm finds the cycle-free spanning tree for which a
unique path exists between two nodes. The justifying signature with
minimum cost is obtained by finding a minimum cost deleted edge set, and
by placing justifying signatures on the corresponding nodes and arcs. The

Hybrid techniques 163

complement of a minimum cost deleted edge set is a non-deleted edge set
that forms a maximum spanning tree, for whose computation several
efficient algorithms exist. For the undirected graph shown in Fig. 5-7 the
edge set {A, C, D, E, X, a, b, c, e, f, g} forms a maximum spanning tree. The
complement set is {B, d}, and justifying signatures are placed on the
corresponding node and arc at the optimal cost of 2.

CSM {Continuous Signature Monitoring) [116-117] presents an
evolution of the GPSA approach. The control-flow error detection is
improved by inserting a random distribution of intermediate signatures. The
number of signatures is limited by a lower bound. The program is partitioned
into the minimum number of paths, and one justifying signature instruction
is added to each path. Using this method CSM is shown to reduce the
number of signatures by as much as 3 times. CSM presents some novelties to
reduce the latency. The previously proposed signature monitoring techniques
encode an instruction sequence by embedding signatures in the vertical
direction (as shown in Fig. 5-3). Error detection latency can be high using
this strategy because detection is delayed until the signature is checked at the
path's end: to reduce the latency a signature monitoring approach using a
horizontal strategy is proposed. Fig. 5-8 shows the h bits added horizontally
to each word for storing a horizontal reference signature. The function H
generates the horizontal signature for wordy by operating on the instruction
sequence from the path's beginning through word j . Horizontal signatures
reduce detection latency because the monitor checks a signature at each
program location; moreover, they cause no performance loss, because the
signatures are fetched in parallel with the program code. However, they
provide lower error detection coverage than vertical signatures for constant
memory overhead.

h

< - { j r > — -

T

i
Figure 5-8. Horizontal signatures.

CSM proposed to combine horizontal and vertical signatures so that a
short error-detection latency is ensured by the horizontal signatures, while
error detection coverage is provided by the vertical signature. Fig. 5-9 shows
a path encoded with signatures in two dimensions (horizontal and vertical).
The signature compiler first generates the vertical reference signature using
the function V, and then generates a horizontal reference signature for each

164 Chapter 5

location (including the vertical signature instruction) using the function H.
During execution, the watchdog regenerates both run-time signatures, and
compares them with their respective reference signatures. An experimental
evaluation of the CSM approach carried about by the authors shows an
estimated memory overhead ranging from 4 to 11%. In order to evaluate the
fault detection capability, errors affecting the control flow have been
considered. A control flow error modifies the flow from a correct location to
a different one. The authors analyzed the control-flow error detection, i.e.,
the capability of the method to detect an erroneous flow, which is estimated
to 99.9999% for a 32 bit processor.

~^h*-4ji>--i
}«-Ll£>—
WVWW—
h-ni>— Opi Signature

i
Figure 5-9. Combining vertical and horizontal signatures.

The approach proposed by Upadhyaya and Ramamurthy [130] considers
a different approach, based on the so-called tag instructions; the signature
for a sequential code is derived by applying a signature generation function
successively on the opcode until the signature forms an m-out-of-n code for a
specified m and n. Kn bit code is an m-out-of-n code if and only if it has m
1 's bits. The location in the memory that corresponds to an m-out-of-n code
is tagged as a checkpoint for comparison. If the last instruction in the block
does not form an m-out-of-n coded signature, a checkpoint must be force at
the end of the block. Moreover, when a branch instruction is reached at the
end of a block, the signature accumulation is continued along the branch,
including the branch instruction opcode. A signature checkpoint is forced to
check correct flow, this can be inserting an additional byte per branch and
adjusting the accumulated signature to form an m-out-of-n code.

Tagged instruction are inserted at the compile time. During the execution
phase, the generated signature at a tagged location is checked to determine
whether it forms an m-out-of-n code. If it fails to form an m-out-of-n code at
the tagged location, an error is signaled.

ISIS {Interleaved Signature Instruction Stream) has been first presented
in [110]. The main idea is to include the signature expected for each block at
the beginning of the block itself, in a code word which is not executed (nor
fetched by the main processor); this code word is obtained by reorganizing
the code and inserting these special words after branch instructions.

Hybrid techniques 165

In this way the execution overhead introduced by the method is rather
limited (it has been evaluated to be lower than 7% for a processor similar to
the MIPS R3000 RISC processor). The memory overhead induced by the
method for the same processor is in the range between 15% and 30%.
Clearly, the watchdog module must work in close connection with the main
processor and must be able to independently access the instruction cache
(that must be transformed into a dual-port one), resulting in a non trivial
implementation of the hardware part required by the method.

OSIRIS (Another Interleaved Signature Instruction Stream) is derived
from ISIS and has been first proposed in [109]. To reduce the memory
overhead resulting from signature embedding, bits in the instructions that are
left unused are exploited to store signatures.

A watchdog module is inserted into the processor and concurrently
performs the decoding of instructions, while the main processor performs the
same operation. The watchdog is able to identify the signatures embedded in
the instruction bits and to compare them with the signature of each block,
that are computed on-line.

Clearly, this approach requires that a sufficient number of bits in the
instruction coding are left unused (which can be the case in several RISC
architecture). If these bits are not sufficient, NOP instructions are inserted to
store the signatures.

As another limitation, this approach requires quite a deep intervention in
the processor architecture to implement the watchdog module.

2.2.2 Stored reference

When a control flow checking mechanism belonging to this family is
adopted, the reference information is stored in the local memory of the
watchdog processor in some form (e.g., hst, adjacency matrix). Each time a
run-time signature is received or computed by the watchdog processor then
the stored reference is searched to find out whether the signature is a valid
successor of the previous one. To handle the stored reference, the
implementation of the watchdog processor includes a general search and
compare engine.

The main advantages of this approach are the following:
1. there is no performance overhead
2. the watchdog processor is independent from the monitored

system
3. one watchdog can be shared among several processors under test.

A first method, called RMP (Roving Monitoring Processor) was
presented in [129]. The method is able to detect faults in a multiprocessor
system. It is based on a Hardware Signature Generation (HSG) for each

166 Chapter 5

Application Processor (AP). The task of the HSG module is to generate a
stream of signatures for its correspondent AP. The generated signatures are
stored in a Signature Queue (SQ). The RMP processor stores a signature
graph in its local memory. It samples the SQ memory, reading the signature
generated by the APs and checks whether it belongs to a node which can be
reached from the previous (checked) one. The system is able to check a
multiprocessor system. Each signature word contains a signature and the
processor ID. The whole architecture of the RMP method is shown in Fig. 5-
10.

AP

HSG

^ '

SO

^ '

AP

HSG

' '

SO

'

AP

HSG

' '

SO

'

' '

RMP

'

AP

HSG

' '

SO

' '
SIGNATURE BUS

Figure 5-10, RMP monitoring system.

In the Checker approach [132] the signatures are generated by hardware
generators attached to the application processors. The reference signatures
are downloaded into the watchdog processor before the program run.
Similarly to the RMP approach, the system is based on a Signature
Generator (SO) added to each AP. The SO generates the program signatures
at run-time and sends them to the watchdog.

The monitored program is divided in small sections, in such a way that
there is only a small number N of signatures for every program section. For
instance, for a 16 bit signature some possible values for N are 64, 128 or
256. Each program section includes as many sequences of contiguous
instructions as required to contain N signatures. For each program section
there is a correspondent segment in the watchdog processor memory where
all the signatures of that program section are stored. Every time the SO
module sends a signature to the watchdog, it also sends the address of the

Hybrid techniques 167

last instruction of the corresponding section: in this way the watchdog can
identify the segment the signature belongs to. A run-time signature is
considered correct if it is among the ones stored in this section. The
verification is done using fast associative search. Fig. 5-11 shows the
signature organization adopted by this approach.

The basic idea of the signature verification lies in the fact that the
probability of a wrong signature being equal to any other signatures in the
same section is very low, if a random distribution of the signatures is
assumed.

The main advantages of this method are that the overhead of the
reference memory is reduced, since the structural information is not stored
and the associative search is fast enough to serve several processors in
parallel.

Application Program Segments in the Watchdog Memory

Section 1

Section 2

Section 3

Unused
Program
Memory

128 signatures

128 signatures

128 signatures

The watchdog signals an error
y~ if it receives an address from

this area

Figure 5-11. An example of program organization for the Checker approach.

2.2.3 Reference program

When this family of methods is considered, the watchdog processor is a
specialized (seldom a general purpose) processor, which executes a
reference program with the same control flow graph as the program under
check. The architecture of the processor is simple, since most instructions
are checking and control transfer instructions, and no ALU is needed

168 Chapters

A first method proposing such a scheme was called Cerberus-J 6 [122].
The basic idea behind the method is that the program executed by the
checked processor has the same control flow graph of the program executed
by the watchdog processor, which has a restricted instruction set.

The program executed by the checked processor is mapped in
compilation time to a program of the watchdog processor which has the
same control flow graph. Any program graph can be represented by a set of
watchdog instructions. A suitable instruction is used to represent each node,
depending on it. When the checked processor executes a branch (at the end
of a node), this is signaled by a branch detecting unit, and the watchdog
executes the instruction correspondent to that node. Each node in the
program executed by the watchdog consists of a single instruction with the
following format:

OP Z, [L] , [D]
where Z, L, and D represent the node size, the next node address and the

node signature, respectively.
After Z instructions have been executed by the checked processor, the

watchdog waits a signal from the branch detecting unit to indicate whether a
branch was taken by the main processor or not. If it detects a branch, then
the watchdog executes a branch using the L field to compute the target
address of the next instruction, otherwise the watchdog executes the next
instruction in sequence. The reference signature of a path is computed by a
data compression unit (implemented for example by an exor function). At
the beginning of a checked path, the data compression unit is initialized, and
at the end of the path the reference signature, stored in the D field, is
compared to the run-time one. If the checked processor executes a branch (at
the end of a node) then it is signaled by the branch detecting circuit and the
watchdog takes the next instruction given in the code of the actual one
(otherwise the successive instruction is executed). This way, each instruction
of the watchdog checks a node of the main program.

A second approach, called Watchdog Direct Processing, has been
proposed in [131]. The watchdog processor directly monitors the addresses
of the main processor. The watchdog processor contains the information
necessary to detect the nodes of the control flow graph. The signature is
checked each time a destination node is reached, which leads to a reduced
detection latency. The propagation of the error in the system is therefore
reduced and furthermore, the path followed through the control flow graph is
completely identified, making easier the error recovery process. The
watchdog program contains one instruction for each node in the application
program. Each instruction includes three fields: the opcode (type of node),
the address of the associated instruction in the application program, and the
reference information.

Hybrid techniques 169

On each node the following information are necessary:
1. type of node (initialization node, destination node, unconditional or

conditional branch, unconditional or conditional branch to subroutine,
return from subroutine)

2. address of the instruction associated with the node
3. signature reference value on this node
4. address of the destination node (if any).

The watchdog processor has two main tasks: it computes the signature of
the executed instruction sequence and it detects the nodes reached by the
main processor. When a node address is reached, the watchdog processor
checks the current signature, it updates the next node address and verifies the
destination address using the information available on the destination node.
In case of mismatch it sets an error signal. The authors of the paper
demonstrate that the total memory overhead introduced by the application
watchdog program is lower than the overhead introduced by Cerberus-16
and the complexity of the implemented watchdog is acceptable, allowing to
integrate such a watchdog in a single chip.

3. MEMORY ACCESS CHECKING

Faults can affect the correctness of the memory references. Classical
methods adopted to detect illegal accesses to the memory system may
operate at the operating system level (protection violation) or at the circuit
level (functional testing). In any case, there are several categories of errors
that may not be detected by them. A watchdog can be inserted to verify the
correctness of the memory accesses.

The method proposed by Namjoo and McCluskey [123] defines an object
as the code and data address ranges in the memory. This method does not
present any alteration of the application source code, and is based just on the
capability of the watchdog processor to verify the validity of the memory
references.

Each object has a capability {access right) for accessing another object
(e.g., read, write, execute). The set of objects and the corresponding
capabilities are represented by a directed graph {object graph), where a
vertex represents an object and the edge shows the access right of an object
to another one. The object graph is stored in the watchdog processor in a
table called Segment Access Table {SAT). The SAT has one row for each
code object; the entries in each row are the access rights given to that object.
A second table, called Segment Map Table {SAfT), is stored into the
watchdog processor and is used for mapping the physical page frame
numbers (derived from the memory address bus) onto segment numbers

170 Chapter 5

representing objects. For each memory reference, the physical address is
translated to a segment identifier {segment ID) using the SMT. The segment
ID is used in turn as the address for accessing the SAT, Two segment IDs are
required to access the SAT. the first is the segment ID {Si) of the current code
object ((9/); the second is the segment ID {Sj) of the object (O,) referenced by
the current object. St and Sj are determined from the physical address in each
reference through the iSMTtable. An entry SAT{Si, Sj) in the iS!^7table shows
the access right of the object Sj to the object Sj.

The watchdog monitors the physical memory accesses of the processor
under test and derives the active object (from the address of the fetched
instruction through an access to the SMT table), the accessed object (from
the destination address of the instruction through an access to the SMT
table), and the actual operation (analyzing the instruction itself). The access
right required to perform the access is compared to the enabled access right
stored in the object table and read out by the SAT at the entry SAT(Si, Sj); if
there is no match a fault is detected and an access error is signaled. Fig. 5-12
shows a representation of the memory accessing checking executed by the
watchdog processor. In Fig. 5-12 register Rx holds the segment ID of the
current code segment {Sj) which is determined from the current memory
reference using the mapping data in the SMT. The segment ID for the next
reference to the memory {Sj) is also determined and loaded into register Ry
by the watchdog processor. The entry SAT(Si, Sj) is read out from the SAT
and is compared with the access requested by the CPU.

With this method the watchdog processor checks the validity of each
access in parallel with the CPU operation. This operation is repeated for
each memory reference.

This method guarantees no degradation in the system performance, since
the checking is done in parallel with the main processor and any
modification to the software is required. The limited complexity of the
watchdog processor allows guaranteeing a low-cost solution.

The main disadvantage of this technique is that it is not able to cover all
the possible faults. The main class of undetected faults are the ones that
cause an incorrect operation (i.e., an operation that is incorrect under certain
conditions, but may be correct in other ones). Incorrect operations cannot be
recognized properly since not all the necessary information are embedded
into the watchdog processor.

Hybrid techniques 171

SMT

SI
SI
S2
S2
S3
S4
S2
S4

1
Physical Address

- H

[I

]

Ry

Rx

1

Actual

C I

SI
S2

•SS
S4
S5

RD

Memory Access

SAT

S2 S3 S4 S5
RD

EX

RD
WR EX

T

nxpectea
Access

Access Check

i
Access Error

Figure 5-12. Memory Access Checking using a watchdog processor

4. REASONABLENESS CHECKING

A watchdog processor can be used to check the correctness of the
manipulated data. Data errors can be detected by having the watchdog
execute assertions concurrently. An assertion is an invariant relationship
between the variables of a program. The assertions are inserted by the
programmer at different points of the program, stating what he intends to be
true for the variables. Assertions can be written on the basis of the
specifications or of some property of the algorithm. They are usually based
on the inverse of the problem, on the range of values that variables can
assume, or the relationships between variables. The insertion of executable
assertions within a program is described in Section 2.4, whereas the
application of watchdog processors for the concurrent execution of
assertions is summarized here.

The main objectives when devising such a kind of watchdogs is to keep
their complexity as low as possible and to transfer the data from the main
processor to the watchdog without any significant overhead. There are two
alternatives to solve these problems: one for special purpose architectures
and the other for general purpose one. In both schemes, the code of the

172 Chapters

assertions is stored into the local memory of the watchdog as a library of
functions, and only the identifier of the assertion function and the data have
to be transferred to the watchdog.

4.1 Watchdog methods for Special Purpose applications

In special purpose architectures the flow of data (e.g., the sequences of
data values on the data bus) is often known and invariant. The watchdog can
be designed to suit a particular application.

The solution proposed by Mahmood et al. [124] is based on data bus
monitoring to recognize instructions that modify critical data. The code for
the assertions is stored in the local memory of the watchdog and the
instructions, which assign values to the variables, are tagged. The watchdog
is able to capture the data by monitoring the data bus of the checked
processor and capturing the tagged data. This approach has been adopted to
problems that solve systems of equations using Gaussian elimination,
discrete Fourier transform, eigenvalues, etc.

A different strategy can be used if the application is cyclic and uses a
large number of global variables. This is the case of many real-time
applications, i.e., telephone switching systems and digital flight control
systems. The executable assertions that check the correctness of the values
are stored in the local memory of the watchdog. Critical data, stored in
global variables, are transferred to the watchdog by simultaneously writing
to both the main memory and the local memory of the watchdog.

Cyclic applications are based on a repetitive data elaboration (e.g., data
stored in global variables are processed with a predefined frequency,
repeating a cycle of instructions).

Thanks to this property, the watchdog may exploit a dual buffer scheme
to execute assertions. The first buffer is used to store the data captured by
the watchdog and the second buffer is used to execute the assertions. At the
end of each cycle data are moved from the first to the second buffer.
Assertions are thus executed on the data captured during the previous cycle
with a limited and acceptable latency.

4.2 Watchdog methods for General Purpose applications

In a general purpose architecture the watchdog cannot be previously
designed and programmed according to a specific application. The main
difficulty is then the transfer of data from the processor under test to the
watchdog. The solution proposed in different papers ([125][126]) is based on
message passing: the main processor writes into a shared buffer and the

Hybrid techniques 173

watchdog reads from it. Besides the shared buffer both the processors also
have their local memories. The software structure is the following:
• Before execution, the program is modified by replacing the assertion

functions with a single statement which transfers the data values and the
identifier of the assertion function to the watchdog. The write statement
can be the following:
w r i t e _ b u f f e r (a s s e r t i o n _ c o d e , s p a c e _ n e e d e d , d a t a)
where a s s e r t i o n _ c o d e is the assertion function identifier,
s p a c e _ n e e d e d is the memory space needed by the data, and d a t a
are the values of all the variables which are used in executing the
assertion.

• Additionally, the code of the assertion functions is downloaded into the
local memory of the watchdog processor.

• At run-time, the main processor writes to the shared buffer and the
watchdog reads from it and executes the required function. If the logical
result computed by the assertion function is false, then an error is
signaled.
An example of the transformed programs for the main processor and the
watchdog are shown in Fig. 5-13.

write_buffer(1,

write_buffer(n,

space_needed,

space needed,

data);

data);

main (

{

Read next(assertion_number)/

Switch(assertion number) {

case 1: get(data);

assertion 1 ();

Break;

case 2: get(data);

Assertion_2();

Break;

Case n: get(data);

Assertion_N () ;

}

Figure 5-13. Main processor program (left) and Watchdog Program (right).

5. COMBINED TECHNIQUES

Techniques belonging to this category aim at covering both faults
causing changes in the control flow execution, and faults affecting the data.

174 Chapters

5.1 Duplication and watchdog

A basic approach adopted to design dependable systems is to use
redundancy: the simplest approach is based on duplication with comparison,
where two synchronized processors execute a single application concurrently
and an external comparator compares their outputs. When a mismatch
appears, the comparator signals the occurrence of an error. The growth in
computer microprocessor functionality increases the bus complexity, the
working frequency and the number of processor pins, which makes the
external comparison of the pins very difficult. This has encouraged designers
to move the comparison mechanism into the processor. This feature is called
Master/Checker (M/C) and is supported by many modem processors (e.g.,
those of the Pentium family, AMD K5 and MIPS R4000). The M/C
architecture [160] is based on the duplication of processors: one processor
operates in the Master Mode, and the other one in the Checker mode. Both
processors run the same program and process the same data stream, fully
clock synchronous. In the Intel Pentium family, such a duplication structure
can be set without external components, as the necessary logic, called
Functional Redundancy Checking (FRC), is integrated inside the chip. The
processor configured as Master operates according to the bus protocol. The
outputs of the Checker processor are tri-stated, so the outputs of the Master
processor can be sampled. If the sampled values differ from the values
computed internally by the Checker processor, the Checker signals this error.
The M/C architecture has been experimentally evaluated in [160] showing
that software faults are effectively detected, but CPU crashes occurred in the
Master processor are not detected by the Checker processor.

A novel fault tolerant embedded architecture has been proposed in [161],
based on two processors with Master/Checker (M/C) configuration and an
external watchdog processor. The watchdog processor is constituted by a
Triple Modular Redundancy of watchdog processors (TMR-WDPs) as
shown in Fig. 5-14. The TMR-WDPs contains three watchdog processors
(WDPs) working in parallel, and comparing their outputs with a majority
voting logic. The WDP must be able to recognize special I/O cycles and get
run-time information from the workload program. The fault tolerant system
exploits a Performance Monitoring feature available in modem superscalar
processors. The Performance Monitoring feature includes some special
intemal counters, which can be configured to count the occurrences of
processor events, such as cache hits, instmction committed and branches
taken. The fault tolerant system proposed in [161] exploits the Performance
Monitoring facilities available with the Intel Pentium family processors.
Several internal registers, called Model Specific Registers (MSRs), reflect
the intemal processor status. Two of these registers, CTRO and CTRl, are

Hybrid techniques 175

used as counters. These registers are programmed through another MSR
register, called CESR. To access to the MSRs register, the processor
provides two instructions WRMSR and RDMSR. An increment of the
counters can also be reported on two external pins of the processor, called
PMOandPMl.

The error detection mechanisms, called Committed Instructions Counting
(CIC) [159] are the following:
• The number of executed instructions in a basic block is internally

counted; at the beginning of the basic block, an internal counter is set to
zero and the pre-computed number of instructions of the basic block
embedded in the program is sent out to the watchdog processor. During
the execution of the basic block, the content of the internal counter is
decreased by one each time an instruction is executed. At the end of the
basic block, the content of the counter (computed at run-time) is also
sent to the watchdog processor. The watchdog checks the two values
(pre-computed and run-time) and signals the occurrence of an error if
any discrepancy exists.

• The number of executed instructions in a basic block is externally
counted by the watchdog through the PMO and PMl pins. At the entry
point of the basic block the pre-computed number of instructions
existing in the basic block is sent to the watchdog processor; the pins
PMO and PMl operate as clock signals to increment a counter internal to
the watchdog each time an instruction is executed; the watchdog signals
an error if the run-time number of executed instructions differs from the
pre-computed number.

• A unique signature is assigned to each basic block and it is sent to the
watchdog at the beginning and at the end of that basic block. The
watchdog signals an error if these two indices are different.

• A workload timer is located in the watchdog checking the upper limit on
the workload execution time.

Experimental results demonstrated that the system composed of a M/C
board and a TMR-WDP module is able to detect 100% of CPU crashes on
the Master and on the Checker processors, and a percentage ranging from
91% to 95% of faults on the main memory.

The method is relatively weak in detecting faults modifying the
transitions from one block to another.

176 Chapter 5

'

Master A M ^

r

Watchdog

Checker

M/C board

Watchdog

...̂̂ ^̂^

Watchdog error
signal ,

r ^ —

J Voter

r

' '

Watchdog

M/C
r error signal

Figure 5-14. M/C Architecture and Watchdog processors system.

5.2 Infrastructure-IP

The technique proposed in [158] mainly addresses the fault tolerance
properties of processor-based systems implemented on a single chip (also
called Systems on Chip, or SoCs). When hardening SoCs, it is common not
to be in the position of modifying the modules (also called Intellectual
Property cores, or IP cores) implementing the processors, while some
circuitry can be rather easily added outside the functional cores. The method
integrates the ideas originally introduced in [157] and [156], where the two
different issues of hardening the system with respect to control flow errors
and data errors were separately faced, respectively.

In order to overcome the limits of the purely software approach presented
in the previous chapters a hybrid solution tailored to be applied in SoC
devices was proposed. The main idea is to adopt the approach described in
[154] and [155], but to resort to a watchdog to reduce its cost and enhance its
performance in terms of fault detection capabilities. When dealing with
SoCs, the watchdog can be implemented as an additional module

Hybrid techniques 177

implemented on the same device, and corresponding to a so called
Infrastructure IP (or I-IP"̂).

The result is a hybrid approach where fault detection-oriented features
are still implemented in software, but most of the computational efforts are
demanded to external hardware. In practical terms, the executed program
allows the processor to communicate with an external circuitry through the
SoC bus: by computing the received information, this circuitry determines
incorrect executions.

The goal is to devise a method that can be easily adopted in the typical
SoC design flow; this means that the method requires minimal changes in
the hardware (apart from the insertion of the I-IP), while the software is
simplified with respect to the purely software fault detection approach
proposed in [154] and [155]. A further constraint is the flexibility of the
approach: any change in the application should result in software changes,
only, while the hardware (including the I-IP) should not be affected. This
means that the I-IP does not include any information about the application
code, but is general enough to be able to protect any code, provided that it
has been hardened according to the suggested approach.

System bus ,

MEMORY
IP

CUSTOM
IP

Figure 5-15. Architecture of the generic SoC system including the fault detection-oriented I-
IP.

The proposed I-IP is connected to the system bus as an I/O peripheral
interface. This means that the I-IP can observe all the operations performed
on the bus by the processor, and can be the target for some write operations
performed by the processor at specific addresses of the memory or I/O

An Infrastructure IP is defined as an IP core deprived of any purely functional role, but
introduced in the SoC to support ancillary features, such as debug, test, or reliability (as in
the case we are presenting).

178 Chapters

address space (depending on the adopted I/O scheme). When the I-IP detects
an error, it activates an ERROR signal, which can be sent either to the
processor, or to the outside, depending on the preferred recovery scheme.
The architecture of the system including the I-IP is reported in Figure 5-15.

The method can be introduced more easily by first considering in a
separate manner the techniques adopted for dealing with faults affecting the
code and those dealing with faults affecting the data. However, the two sets
of techniques are supported in an integrated manner by the I-IP, resulting in
even higher fault detection capabilities with respect to the purely software
approach.

5.2.1 Support for Control Flow Checking

The basic idea behind the proposed approach for checking the correct
control-flow execution (presented in [157]) is that we can simplify the
hardened code and improve its performance by moving in hardware the
control flow checks. According to the proposed solution, the code is in
charge of signaling the I-IP when a new basic block is entered. Since the I-IP
is not intended to record any information about the application code, the
hardened program must send to the I-IP all the information required to check
whether the new block can be legally entered given the list of previous
blocks. The I-IP records in an internal register the current signature. Once it
is informed that a new block is entered and it has received the list of blocks
that can reach legally the new block, it checks whether the stored signature is
included in this list. If not, the ERROR signal is raised. Otherwise, the
current signature is updated with the signature of the new block.

In order to support the communication between the processor and the I-
IP, two high-level functions are introduced, named i - iP t e s t () and i -
iPset 0 . Their role is the following:
• i - iPse t (Bi) informs the I-IP that the program has just entered into basic

block Bi.
• i - iPtest(Bj) informs the I-IP that block Bj belongs to the set of the

predecessors of the newly entered block.
The I-IP contains two registers A and B that can be accessed by the

processor by performing a write operation at a couple of given addresses XA
and XB. The two functions i - iP t e s t () and i - iPse t () are translated into
write operations at the addresses XA and XB, respectively, thus resulting in a
very limited cost in terms of execution time and code size. The parameter of
each function is written in the register, thus becoming available to the I-IP
for processing. A sequence of calls to the two functions should be inserted in
the code at the beginning and at the end of each block Bk. First, a call to i -
iPtest(Bi) is inserted for any block Bj G prev(Bk). Then, a call to i -

Hybrid techniques 179

iPset(Bk) is inserted. When noticing a write operation on register A, the I-
IP set or reset an internal flag depending on the result of the comparison
between the function parameter and the internally stored signature. When
noticing a write operation on the register B, the I-IP verifies the value of the
flag and possibly activates the ERROR signal. Otherwise, the signature of
the current block is updated using the value written in the register B.

) {

B l :

B2:
B3:

B4:

X = 1 ;
y = 5 ;
i = 0 ;
w h i l e (i < 5

z = x+i*y;
i = i + 1 ;

}
i = 2 * z ;

Figure 5-16. Example program fragment.

I - I P t e s t (S o , 2) ;
I - I P s e t (S i , i ') ;
X = 1;
y = 5;
i = 0;
I - I P t e s t (S i , i) ;
I - I P s e t (S i , 2) ;
w h i l e (i < 5) {

I - I P t e s t (S i , 2) ;
I - I P t e s t (S 3 ' , 2) ;
I - I P s e t (S 3 , i ') ;
z = x + i * y ;
i = i + 1 ;
I - I P t e s t (S 3 , i) ;
I - I P s e t (S 3 , 2) ;

}
I - I P t e s t (S i , 2) ;
I - I P t e s t (S 3 , 2) ;
I - I P s e t (S 4 , i) ;
i = 2*z ;
I - I P t e s t (S 4 , i) ;
I - I P s e t (S 4 , 2) ;

Figure 5-17. Control-flow check according to the hybrid approach.

180 Chapters

I-IPtest (So,2) ;
I-IPset (Si,i) ;
xO = 1; xl = 1;
yO = 5; yl = 5;
iO = 0; il = 0;
I-IPtest (Si,i) ;
I-IPset (Si,2) ;
while (iO '< 5) {

I-IPtest(Si,2) ;
I-IPtestlSs's) ;
I-IPset (83,1) ;
zO = xO+iO*yO; zl = xl4-il*yl;
iO = iO+1; il = il+1;
I-IPtest (Sâ i) ;
I-IPset (83,2) ;

}
I-IPtest (Si,2) ;
I-IPtest (S3'2) ;
I-IPset (84,1) ;
iO = 2*z0;' il = 2*zl;
I-IPtest (84,1) ;
I-IPset (84,2) ;

Figure 5-18. The full implementation of the hybrid approach.

A code portion for the example introduced in Fig. 5-16 that adopts the
proposed approach, i.e., sending information to the I-IP, is reported in Fig. J-
17.

Two functional parts can be distinguished in the I-IP to execute
concurrent control-flow checking: Bus I n t e r f a c e Log ic , and
C o n t r o l Flow C o n s i s t e n c y Check Log ic . Such schematic
circuitry subdivision is highlighted in Fig. 5-20.

The Bus I n t e r f a c e L o g i c implements the interface needed for
communicating with the processor bus.

The C o n t r o l Flow C o n s i s t e n c y Check L o g i c is in charge
of verifying whether any control flow error affects the application expected
behavior, and to inform the system through the e r r o r signal if error
detection happened. The I-IP is internally provided with both the circuitry to
store and update the current signature each time data are sent from the
processor: such circuitry calculates at run-time the value of the masks
according to the technique proposed in [155].

5.2.2 Support for Data Checking

When considering the faults affecting the data, the approach is based on
the idea of moving in hardware (i.e., charging the I-IP of) the task of
comparing the two replicas of a variable each time it is accessed for read

Hybrid techniques 181

purposes. In this way the hardened code is significantly simpUfied: not only
its size is reduced and the performance increased, but a number of
conditional jump instructions are removed, thus reducing the risk for
additional faults affecting the code.

To implement the above idea, the I-IP must monitor the bus, looking for
memory read cycles. In principle, the I-IP should simply identify the two
cycles accessing the two replicas of the same variable, checking whether
their value is identical. If not, an error is detected.

In practice, implementing this idea requires a mechanism allowing the I-
IP to know the addresses of the two replicas of the same original variable
and to understand whether a given address corresponds to the first or second
replica. A solution to this issue will be described further in this section.

Moreover, it is important to note that the two bus cycles accessing to the
two replicas of the same variable are not necessarily consecutive. In fact, the
compiler often reorganizes the assembly code so that instructions are re
ordered in such a way that the two instructions are interleaved with others.
However, in developing the I-IP the authors assumed that the compiler never
modifies the code in such a way that the second replica of a variable is
accessed before the first replica. To tackle this issue, the I-IP contains a
CAM memory, which is used to store the address-data couple corresponding
to each variable accessed in memory, whose repHca has not been accessed,
yet. The CAM is indexed with the address field. More in details, the I-IP
implements the following algorithm:
• If a memory read is detected on the bus, the address and data values are

captured.
• If the read operation relates to the first replica of a variable, a new entry

is inserted in the CAM, containing the just captured address and data
values.

• If the read operation relates to the second replica of a variable, an access
is made to the CAM:

• If an entry with the same address is not found, the ERROR signal is
raised.

• Otherwise, the data is compared with that stored in the CAM entry and
the ERROR signal is raised in the case of a mismatch.

• The entry is removed from the CAM.
This simple algorithm has several interesting properties. It detects all the

faults affecting the data that can be detected by the purely software
approach. It can be straightforwardly (and inexpensively) extended to deal
with write operations, too. A separate CAM is reserved for entries related to
write operations. Thanks to this extension, some faults that cannot be
detected by the corresponding purely software approach are detected by the
hybrid one. When the end of a basic block is reached, the CAM should be

182 Chapter 5

empty, since the two replicas of all the variables should have been accessed.
If this is not the case, an error (likely, a control flow error) has happened: the
ERROR signal is raised.

An example of how the hardened code of the example should be
modified according to the above approach is reported in Fig. 5-18.

As we mentioned before, an efficient mechanism is required to allow the
I-IP to understand whether a given address identifies the first or second
replica of a variable, and to compute the address of the first replica once that
of the second is available. The solution proposed in [156] assumes that the
data segment of the program is divided in two portions, as shown in Figure
5-19. The upper portion contains the first replica of each variable, while the
lower one stores the second replica. This solution can be easily implemented
acting on the options of C compilers.

Dotri ŝegment

Size

Base
Address

Figure 5-19. Data segment of the hardened program.

Hybrid techniques 183

. ctri bus

. adx bus

_ data bus

Bus Interface Logic

Control Flow
Consistency
Check Logic

flow_err

- e

Data
Consistency
Check Logic

data_err ^

CAM
Memory

Figure 5-20. Schematic architecture of the I-IP implementing Control Flow and Data
Checking.

The above assumption about variable location in memory easies the task
of dealing with the two replicas of the same variable. More in details, as
soon as a memory access cycle is detected on the bus, the two fields (adx,
data) are extracted, corresponding to the address and value of the accessed
variable, respectively. Being Base the beginning address of the data segment
and Size the size of each portion of the segment, if adx < Base + Size, then
the first replica of the variable is currently being accessed; otherwise, the
second replica is being accessed. To compute the address of the first replica
when the address adx2 of the second is available, the following expression is
used:

adxi = adx2 - Size

Three functional parts can be distinguished in the I-IP circuitry devoted
to execute concurrent data checking, as reported in Fig. 5-20: these parts are
named Bus I n t e r f a c e Log ic , Data C o n s i s t e n c y Check
L o g i c , and CAM Memory.

The Bus I n t e r f a c e L o g i c is shared with the circuitry devoted to
control flow checking and implements the interface for accessing to the
processor bus. It is able to decode the bus cycles being executed and in case
of read or write cycles to the memory, it samples the address (adx) and the
value (data) on the bus. Sampled addresses and values are then forwarded to
the Data C o n s i s t e n c y Check Log ic .

The Data C o n s i s t e n c y Check L o g i c implements the
consistency checks verifying whether any data stored in the memory or the

184 Chapters

processor has been modified. For this purpose, as soon as a new couple (adx,
data) is extracted from the bus, it computes the address of the corresponding
replica, accesses to the CAM memory, and verifies whether the searched
entry exists. In the positive case, it compares data with the data field of the
entry (possibly raising the error signal in case of mismatch) and then
removes the entry from the CAM. In the negative case, it inserts a new entry
in the CAM.

Moreover, considering the program structure presented at the beginning
of this paragraph, each instruction into a basic block has a replica within the
same block. Consequently, we can assume that the CAM memory is empty
when a new basic block is entered. To cope with this assumption, the Data
C o n s i s t e n c y Check L o g i c receives a b l o c k signal, generated by
the C o n t r o l Flow C o n s i s t e n c y Check Log ic . Such signal is
asserted when exiting a basic block: the content of the CAM Memory is then
checked and, if not empty, the e r r o r signal set on.

The proposed I-IP design, whose schematic is shown in Fig. 5-19, can be
easily adapted to different processors: both the CAM Memory and
C o n s i s t e n c y Check L o g i c modules are parametric and can thus be
reused for different address and data sizes. Only the Bus I n t e r f a c e
L o g i c needs to be reworked for adapting to the bus protocol implemented
by different processors. When the I-IP is introduced in a SoC, the only
customization required concerns the addresses XA and XB of the two
registers written by the I - I P t e s t () and I - I P s e t () procedures,
respectively, and the values of Base and Size.

5.2.3 Error detection capabilities

To experimentally assess the effectiveness of their hybrid approach, the
authors of [158] developed first a categorization of the possible faults
affecting the memory elements of a system, and then theoretically analyzed
the error detection capabilities of the proposed method. Faults can be divided
in the following types, according to the module affected by the considered
bit flip: memory code area, memory data area, and processor internal
memory elements.

When considering the first fault type, the processor instruction set can be
seen as divided into two instructions categories: functional instructions
(executing some sort of processing on data, such as transfer, arithmetic
operations, bit manipulation, etc.), and branch instructions. Consequently,
whereas the modified bit in the code area belongs to an opcode, the
following categories can be introduced:
• functional_to_branch: the modified bit in the opcode transforms a

functional instruction into a branch instruction.

Hybrid techniques 185

• branch_to_functional: the modified bit in the opcode transforms a branch
instruction into a functional instruction.

• functional_to_functional: the opcode of a functional instruction is
transformed into another functional instruction:

• With the same number of operands.
• With a different number of operands.

• branch__to_branch: the opcode of a branch instruction is transformed into
another branch instruction:

• With the same number of operands.
• With a different number of operands.
In the case of a functional_to_branch code modification, the program

flow is guaranteed to change; if the target of the branch introduced by the
fault is out of the basic block boundary, both software and hybrid detection
mechanisms detect the fault. On the contrary, when the branch target is
inside the currently executed basic block, software detection may fail, while
hybrid successfully copes with most of such faulty behaviors, thanks to the
additional check on the CAM memory emptiness performed at the end of
each block. These faults could also lead to a timeout, if the target of the
faulty jump is a previous instruction within the same basic block.

Faults belonging to the branch_to_functional category also cause a
change in the program control flow. If the new instruction has the same
number of operands than the original, the detection is guaranteed by both
approaches, thanks to the consistency check (for the software approach) and
to the data checking techniques (for the hybrid approach). On the other hand,
if the new instruction has a different number of operands, in the software
approach the fault may not be detected because the consistency checks can
only evaluate the equivalence between two variables and are not able to
evaluate possible misalignments into the code, while the hybrid approach is
able to detect such kind of faults thanks to its capability to store all the
memory accesses and verify possible unbalanced memory accesses.

For functional_to_functional code modifications, if the number of
required operands of the exchanged instruction is the same in the original
and faulty instructions, both approaches are able to detect the fault.
Unfortunately, if the number of operands is changed, neither the software
nor the hybrid approach can always guarantee the detection: in this case, it is
possible that the modified program execution continues until the end,
producing a wrong answer, even if the probability of this situation is really
low. In fact, the program usually backs to its normal flow, with unexpected
CAM memory content.

For branch_to_branch code modifications, in the case of unchanged
number of operands, it is possible that the modified program execution
continues until the end, producing a wrong answer due to incorrect condition

186 Chapters

evaluation, or more frequently, an endless loop finally resulting in the time
out condition is entered. If the number of required operands is modified, it
can happen that the end of the program is reached and a wrong answer
produced. As for the functional_to_functional code modification, the
probability of such event is low as the program usually backs to its normal
flow, with unexpected CAM memory content. In fact, the program usually
backs to its normal flow, with unexpected CAM memory content.

If the faulty bit corresponds to the operand of an instruction, the
following unexpected program behaviors have to be investigated:
• wrong_memory_access: the modified operand is the address of a

variable.
• wrongJmmediate_value: the modified operand is an immediate value.
• wrong_branch_offset: the modified operand is the target of a branch

instruction.
Considering the faults belonging to the wrong_memory_access category,

they are covered by all the approaches, as they modify only one of the two
replicas; therefore, the fault is detected by the data checking techniques.

The wrongJmmediate__value fault category is covered by both the
software and hybrid approaches. The following cases must be considered: if
the involved instruction is a comparison executed immediately before a
branch instruction, the fault is covered by the data checking techniques at the
beginning of the basic block, otherwise the fault effect modifies the value of
one replica of the variables and is detected by the data checking techniques.

Finally, when a branch is made to a wrong address, that is the
wrong_branch_offset code modification, a wrong answer is never produced
for both the techniques analyzed; however, it is possible that such
modification leads to the timeout condition.

Considering the faults affecting the data area, the effects of the faults can
be classified as follows:
• wrong_elaboration: the value read from the memory is wrong.
• wrong_branch__condition: a branch condition is executed on a modified

(and thus incorrect) value.
Both the software and the hybrid strategy guarantee the detection of a

wrong_elaboration fault affecting the system thanks the data checking
techniques, while, if a wrong_branch_condition fault occurs, we can
distinguish between two situations: the variable is nevermore accessed
during the program, so we have a wrong answer; the variable is accessed
again and a mismatch with its replica is observed. To avoid the former case,
a read operation of the second replica of the variable is inserted exactly at
the beginning of the basic block following the branch.

Concerning the effects of a single fault affecting the content of the
processor registers, the following cases should be considered:

Hybrid techniques 187

• wrong_general_purpose_value: a general purpose register stores a wrong
value.

• wrong_configuration_value: the processor is configured incorrectly.
Faults in the Wrong_general_purpose_value category are usually

detected by both the software and hybrid approaches thanks to the data
checking techniques; however, sometimes two transfer instructions can read
the value of the same register, then copying it into two replicas. Such
situation is usually generated when code optimization is used by the
compiler. Finally, the impact of wrong_configuration_value faults on the
program execution depends on the processor configuration and usually
results in a wrong answer or, more easily, in a timeout condition with both
the approaches.

5.2.4 Experimental Results

To assess the effectiveness of their approach, the authors of [158]
developed a prototypical implementation of the I-IP and exploited it for
hardening a SoC including an Intel 8051 controller. For this purpose, the
Infrastructure IP they proposed was described in VHDL and connected with
a soft-core implementing the Intel 8051. Some benchmark programs were
used to assess the properties of the hybrid approach in terms of detection
capabilities and cost (memory overhead, performance slow-down, silicon
area required by the I-IP).

To model the effects of SEUs, the authors of [158] adopted the transient
single bit flip fault model, which consists in the modification of the content
of a single storage cell during program execution.

The fault-detection ability of the approach were separately investigated,
considering:
• SEUs modifying the content of the code memory area
• SEUs affecting the data memory area
• SEUs affecting the microcontroller's internal memory elements.

The fault-injection tool adopted for the experiments allowed accessing all
the memory elements the processor embeds, with a suitable time resolution
[150].

In setting-up the fault injection experiments, a crucial factor is the
selection of the number of faults to inject. Since the total number of possible
faults is very high, fault sampling was adopted for selecting an acceptable
number of faults to be injected in the code and data segments and in the
processor registers. The number of bit flips injected in each version of the
four benchmarks for each fault injection campaign was 30,000. To verify the
meaningfulness of the chosen number of faults, several experiments were
performed selecting several sets of faults and then comparing the obtained

188 Chapters

results. Results of each fault injection campaign are shown in Tables 5-7, 5-2
and 5-3, which report the average of the results obtained in the different
experiments.

Based on the aforementioned procedure, experiments have been
performed considering four benchmark programs that are inspired to those in
the EEMBC Automotive/industrial suite [151]:

• 5x5 Matrix Multiplication (MTX): it computes the product of two
5x5 integer matrices.

• Fifth Order Elliptical Wave Filter (ELPF): it implements an
elliptic filter over a set of 6 samples.

• Lempel-Ziv-Welch Data Compression Algorithm (LZW): it
compresses data by replacing strings of characters with single
codes.

• Viterbi Algorithm (V): it implements the Viterbi Algorithm
encoding for a 4-byte message.

For each of such benchmarks, up to five different implementations were
compared:

• Plain: the plain version of the considered benchmark; no
hardware or software fault detection techniques are exploited.

• Software: the hardened version of the benchmark, obtained using
the purely software hardened version combining the approaches
described in [2] and [8].

• ED^^I: the hardened version of the benchmark, obtained using the
purely software hardening approach described in [152].

• ABFT: the hardened version of the MTX benchmark, obtained
using the purely software hardening approach described in [153].

• Hybrid: the hardened version of the benchmark, obtained using
the approach described in this section.

Faults have been classified according to the categories described in
Section 1.2.3.

5.2.4.1 Analysis of fault detection capabilities
The following sub-sections report the experimental results gathered with

several fault injection campaigns based on the environment described in
[150].

5.2.4.2 Faults affecting the code
Results gathered when injecting 30,000 randomly selected single bit flips

in the memory area storing the code of each benchmark program (in the 5
considered versions) are reported in Table 5-1.

When analyzing the reported results about injection into the code
segment, the following observations can be made, which relate to the fault

Hybrid techniques 189

classification introduced in Section 4.3. First of all, the reader can easily
observe that the software and ED̂ Î approaches are able to significantly
reduce the number of faults leading to a wrong answer with respect to the
unhardened version: the hybrid approach is always able to further (and
significantly) decrease this number. Bit flips affecting the instruction opcode
and provoking a wrong answer mainly belong to either the
functional_to_functional category (mostly those faults alter the number of
requested operands) or branch__to_functional modifications; the hybrid
approach shows a higher detection capability with respect to these fault
categories than the purely software one, mainly thanks to the check
performed at the end of each basic block on the emptiness of the CAM. Such
faults may also provoke endless program execution, falling into the timeout
case. A detailed analysis of the results summarized in Table I showed that bit
flips affecting the operands of an instruction rarely produce a wrong answer
effect: both the software and hybrid approaches are able to detect this kind
of faults. Additionally, purely software approaches may introduce additional
branches to the Program Graph to continuously check the value of the
ERROR flag. Moreover, the C compiler may translate some of the C
instructions implementing consistency checks as sequences of assembly-
level instructions containing new branches. The new branches are not
protected with the test and set functions, and thus some faults may escape
software detection techniques. Conversely, when exploiting the hybrid
approach, no additional branches are introduced resulting in a lower number
of faults leading to wrong answer and time out situations.

The comparison with the ED̂ Î version for Viterbi is not reported in
Tables 5-1, 5-2 and 5-3. The Viterbi program is mainly based on executing
logic operations, but the authors of [152] did not explain how to apply ED̂ Î
to such operations (the paper describes how to apply ED̂ Î to arithmetic
operations, only).

Regarding ABFT, the results included in Table 5-4 only refers to the
MTX program, as it is the only benchmark (among the considered ones) to
which this technique can be applied. The coverage obtained by this
technique to detect transient faults affecting the code segment is rather low.

5.2.4.3 Faults affecting the data
Table II reports the results gathered when injecting 30,000 randomly

selected single bit flips in the memory area storing the data of each
benchmark program. These faults are generally very likely not to produce
any wrong answer situation when the software approach is adopted; the
same happens with the hybrid one. The latter approach performs better than
the former when faults producing a time out are considered: this is mainly

190 Chapters

due to the different behavior with respect to faults belonging to the
wrong_branch_condition category.

The ABFT technique fails in detecting some faults affecting the data
segment; these escaping faults mainly belong to the wrong_branch_condition
category.

5.2.4.4 Faults affecting the processor memory elements
According to the effects they produce, faults in the memory elements

within the processor belong either to the wrong_general_purpose_value and
wrong_configuration_value categories. The resulting behavior is clearly very
different, although both the software and the hybrid approach show low
wrong answer figures, as reported in Table 5-3.

The complete coverage of transient faults affecting the processor memory
elements can be reached by using triplication techniques (such as TMR),
although this solution is generally undesirable because of the performance
reduction, and hardly applicable when the RT-level description of the
processor is not available.

5.2.4.5 Overhead analysis
The hybrid approach proposed encompasses three types of overheads

with respect to the unhardened version:
• Area overhead, related to the adoption of an I-IP.
• Memory overhead, due to the insertion in the code of the I -

I P t e s t O and I - I P s e t () functions and to the duplication
of variables.

• Performance overhead, as additional instructions are executed.
In order to quantify the area occupation of the proposed I-IP, the authors

of [158] designed it resorting to the VHDL language; the resulting code
amountsed to about 450 lines. The I-IP was then synthesized using a
commercial tool (Synopsys Design Analyzer) and a generic library. The I-IP
was configured to interact with the system bus of the Intel 8051 controller,
and it was configured with a CAM memory with 16 entries. The details of
the resulting gate-level implementation are shown in Table IV.

When considering the overall hardened system, whose size is the sum of
the contributions of the Intel 8051 microcontroller and the related memories,
the area overhead introduced by the I-IP is less than 5%. This percent area
overhead is expected to further decrease when increasing the complexity of
the processor, contrarily to the cost for the triplication of processor memory
elements that requires for the analyzed case of study something more than
6% of additional equivalent gates.

To quantify the memory and performance overheads the memory
occupation of the programs that were hardened according to the hybrid

Hybrid techniques 191

approach was measured, and then compared with that of the same programs
hardened according to the software-based techniques introduced in [154] and
[155]. As a reference, the area occupation and program execution time of the
original programs was also measured. In Table 5-5 the observed figures are
reported. Memory occupation was measured in terms of number of bytes in
the data and code segments, while duration was measured in terms of
number of clock cycles for program execution.

Results reported in Table 5-5 show that the performance overhead of the
hybrid version is about one half in the average than the one of the purely
software version.

When considering the memory overhead, we can observe that the
increase in the size of the memory required for data is similar in the software
and hybrid versions. Conversely, the memory required for the code in the
hybrid version is about one half in the average with respect to that required
by the software version.

The case of the ELPF program deserves a special attention: this program
includes several instructions writing a constant value into a variable. In the
software hardened version, this translates into two variables to be written
with the same value: the compiler implements this by first loading the value
in a register, and then copying the register content into the variables
corresponding to the two replicas of the variable. This results in less than
duplicating both the code size and the program execution time.

The average block size of the two programs LZW and V is smaller than in
the two other programs: this results in a proportionally higher number of I -
I P t e s t O and I - I P s e t () functions inserted in the code during the
hardening phase. For these reason, LZW and V show a higher code overhead
figure.

For the same reason, the ratio between branch and functional instructions
is higher in LZW and V: since the latter instructions, only, are duplicated in
the software and hybrid versions, this results in a relatively low performance
overhead for these two programs.

When these figures are coupled with those referring to the area overhead
and fault detection capabilities, we can conclude that the hybrid approach is
able to effectively improve the dependability of a SoC with limited area
overhead, memory increase and performance degradation.

192 Chapter 5

Table 5-1.
code.

Fault injection results concerning faults affecting the memory area storing the

Prog.

MIX

ELPF

LZW

V

Table 5-1
Frog.

MIX

ELPF

LZW

V

Ver.

Plain
SW

ABFT

ED"!
Hybrid
Plain
SW
E&I
Hybrid
Plain
SW
ED'^I

Hybrid
Plain
SW
EDU
Hybrid

\ Fault inj(
Ver.

Plain
SW
ABFT
EDU
Hybrid
Plain
SW
ED^I
Hybrid
Plain
SW
ED'I
Hybrid
Plain
SW
ED^I
Hybrid

Effect-Less
:#]

20,607
18,798

19,356
19,356
15,567
16,071
18,015
13,596
14,448
6,852

10,260

21,890
8,703
8,178

10,884

[%1
68.6
62.6

64.5
64.5
51.8
53.5
60.0
45.3
48.1
22.8
34.2

72.9
29.0

27.2
36.2

Time-out detected

m 3,864
2,121

3,232
3,232
3,225
3,339
5,583
3,283
2,751
5,469
9,405

2,922
7,836
6,093

10,302

[%1
12.8
7.0

10.7
10.7
10.7
11.1
18.6
10.9
9.1

18.2
31.3

9.7
26.1
20.3
34.3

Software Detected
[#]

0
8,208

6,262
6,262

11,202
0

5,115
13,069
12,750

0
9,420

4,991
13,377

0
7,518

[%1
0.0

27.3

20.8
20.8
37.3
0.0

17.0
43.5
42.5
0.0

31.4

16.6
44.5
0.0

25.0

Failure

m 5,529
873

1,150
1,150

3
10,590
1,287

52
51

17,679
915

197
84

15,729
1,296

\%]
18.4
2.9

3.8
3.8
0.0

35.3
4.2
0.1
0.1

58.9
3.0

0.6
0.2

52.4
4.3

N/A
10,743

action res
Effect
[#1

26,808
24,930
25,642
27,029
25,053
28,623
22,764
27,399
24,339
23,889
18,642

28,053
17,958
19,137
17,067

35.8

ults cone
-Less

[%]
89.3
83.1

85.4
90.1
83.5
95.4
75.8
91.3
81.1
79.6
62.1

93.5
59.8
63.7
56.8

5,136

:eming faul

17.1

ts affect
Time-out detected

m
63
57
32
48
0

33
30
31
0

450
273

183
0

810
450

[%]
0.2
0.1

0.1
0.1
0.0
0.1
0.1
0.1
0.0
1.5
0.9

0.6
0.0
2.7
1.5

13,734 45.7 387 1.2

ing the memory area storing the data.
Software Detected

m
0

5,013
3,818
2,814
4,947

0
7,206
2,503
5,661

0
11,85

1,482
12,042

0
12,483

[%]
0.0

16.7

12.7
9.3

16.4
0.0

24.0
8.3

18.8
0.0

36.9

4.9
40.1
0.0

41.9

Failure

m
3,129

0
508
109

0
1,344

0
67
0

5,661
0

282
0

10,053
0

[%]
10.4
0.0

1.6
0.3
0.0
4.4
0.0
0.2
0.0

18.8
0.0

0.9
0.0

33.5
0.0

Not Available
17,433 58.1 ' 0,0 12,567 41.9 0 0.0

Hybrid techniques 193

Table 5-3. Fault injection results concerning faults affecting the memory elements within the
procesor.

Prog.

MTX

ELPF

LZW

V

Ver.

Plain
SW
ABFT
EDU
Hybrid
Plain
SW
ED^I
Hybrid
Plain
SW
ED'I
Hybrid
Plain
SW
E&I
Hybrid

Effect-Less

m
21,111
27,987
13,968
13,903
27,039
27,789
28,035
13,618
26,817
26,763
26,871

14,041
27,300
27,396
27,618

[%]
92.5
93.2

93.1
92.6
90.1
92.6
93.4
90.7
89.3
89.2
89.5

93.6
91.1
91.3
92.0

Time-out detected
f#l
927
189
66
334
651
948
93
18

807
705
353

102
600

1,437
933

f%l
3.0
0.6

0.4
2.2
2.1
3.1
0.3
0.1
2.6
2.3
1.1

0.6
2.0

4.7
3.1

Software Detected
[#]
0

1,734
829
660

2,265
0

1,641
1,328
2,307

0
2,623

717
1,920

0
1,236

r%i
0.0
5.7

5.5
4.4
7.5
0.0
5.4
8.8
7.6
0.0
8.7

4.7
6.4

0.0
4.1

Failure
[#]

1,296
90
137
103
45

1,263
231
36
69

2,532
153

140
90

1,167
213

[%]
4.3
0.3

0.9
0.9
0.1
4.2
0.7
0.2
0.2
8.4
0.5

0.9
0.3

3.8
0.7

Not Available
26,907 1 89.6 | 939 | 3.1 | 2,067 | 5.8 | 87 | o.2

Table 5-4. I-IP synthesis results summary.
Logic component

Bus interface
Control Flow Consistency Check

Data Consistency Check
CAM Memory

TOTAL

Equivalent gates [#]
251
741

1,348
1,736
4,076

194 Chapter 5

Table 5-5.
Prog.

MTX

ELPF

LZW

V

Memory and performance overheads summary.
Version

Plain

Software
ABFT
ED^I

Hybrid
Plain

Software
EDU

Hybrid
Plain

Software
ED'^I

Hybrid
Plain

Software
ED'I

Execution time (CC)

[#] [%]
13,055
42,584 226.1
49,792 178.2
24,717 189.3
27,930 113.9
12,349
46,545 276.9
23,136 187.3

21,946 77.7
19,209
92,003 378.9
35,393 184.2
38,878 102.3

286,364

598,410 208.97

Code size (B)

[#]
329

1,315
768
524
683
384

1,527
663

645
232

1,898
878
859
436

[%]
-

299.7
233.4
59.2

107.6
-

297.6
72.6

67.9
-

718.1
378.4
270.2

-
Not Available

1,323 203.44

Data size

[#]
16
34
32
30
34
48

100
62

100
35
72
64
72
85

172

(D)
[%]

-
112.5
100.0
87.5

112.5
-

108.3
29.1

108.3
-

105.7
82.8

105.7
-

102.35

REFERENCES

108. A. Mahmood, E. J. McCluskey, "Concurrent error detection using watchdog

processors-a survey", IEEE Transaction on Computers, Vol. 37, No. 2, February 1988,

pp. 160-174.

109. F. Rodriguez, J.C. Campelo, J.J. Serrano, "Improving the interleaved signature

instruction stream technique", IEEE Canadian Conference on Electrical and Computer

Engineering, 2003, Vol. 1, pp. 93 - 96

110. F. Rodriguez, J.C. Campelo, J.J. Serrano, "A Watchdog Processor Architecture with

Minimal Performance Overhead", International Conference on Computer Safety,

Reliability and Security, 2002, pp. 261-272

111. J. Ohlsson, M. Rimen, "Implicit Signature Checking", Proc. 25th International

Symposium on Fault-Tolerant Computing, 1995, pp. 218-227.

112. J. Ohlsson, M. Rimen, U. Gunneflo, "A study of the effects of transient fault injection

into a 32-bit RISC with built-in watchdog", Twenty-Second International Symposium

on Fault-Tolerant Computing, 1992, FTCS-22, pp. 316 - 325.

113. N.R. Saxena, E.J. McCluskey, "Control Flow Checking Using Watchdog Assists and

Extended-Precision Checksums", IEEE Transactions on Computers, Vol. 39, No. 4,

Apr. 1990, pp. 554-559.

114. N.R. Saxena, E.J. McCluskey, "Control-flow checking using watchdog assists and

extended-precision checksums". Digest of Papers, of Nineteenth International

Symposium on Fault-Tolerant Computing, 21-23 June 1989, pp. 428 - 435.

Hybrid techniques 195

115. N.J. Waiter, W.-m.W. Hwu, "A software based approach to achieving optimal

performance for signature control flow checking", FTCS-20. Digest of Papers of 20th

International Symposium on Fault-Tolerant Computing, 26-28 June 1990 pp. 442 -

449.

116. K. Wilken, J.P. Shen, "Continuous signature monitoring: efficient concurrent-detection

of processor control errors", Proc. IEEE International Test Conference, 1988, pp. 914

- 9 2 5 .

117. K. Wilken, J.P. Shen, "Continuous Signature Monitoring: Low-Cost Concurrent

Detection of Processor Control Errors", IEEE Trans, on Computer-Aided Design, Vol.

9, No. 6, June 1990, pp. 629-641.

118. K.D. Wilken, "Optimal signature placement for processor-error detection using

signature monitoring". Digest of Papers of Twenty-First International Symposium on

Fault-Tolerant Computing, 1991, pp. 326 - 333.

119. K.D. Wilken, "An optimal graph-construction approach to placing program signatures

for signature monitoring", IEEE Transactions on Computers, Vol. 42, Issue: 11, Nov.

1993, pp.1372-1381.

120. J.P. Shen and M.A. Schuette, "On-line Self-Monitoring Using Signatured Instruction

Streams", Proc. IEEE International Test Conference, 1983, 1983, pp. 275-282.

121. M. Namjoo, "Techniques for concurrent testing of VLSI processor operation", in IEEE

International Test Conference, 1982, Nov. 15-18, 1982, pp. 461-468.

122. M. Namjoo, "CERBERUS-16: An architecture for a general purpose watchdog

processor". Digest of Papers of Thirteenth International Symposium on Fault-Tolerant

Computing, 1983, pp. 216-219.

123. M. Namjoo, E.J. McCluskey, "Watchdog processors and capability checking". Digest

of Papers of Twelfth International Symposium on Fault-Tolerant Computing, FTCS-

12, 1982, pp. 245-248

124. A. Mahmood, D.J. Lu, and E.J. McCluskey, "Concurrent fault detection using a

watchdog processor and assertions", Proc. IEEE International Test Conference, 1983,

pp. 622-628

125. S.H. Saib, "Distributed architectures for reliability", Proc. AIAA Computer in

Aerospace Conference, 1979, pp. 458-462

126. A. Mahmood, A. Ersoz, E.J. McCluskey, "Concurrent system level error detection

using a watchdog processor", Proc. IEEE International Test Conference, 1985, pp.

145-152

127. T. Sridhar and S.M. Thatte, "Concurrent checking of program flow in VLSI

processors", in IEEE International Test Conference, 1982, Nov. 15-18, 1982, pp. 191-

199.

128. A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, "A watchdog processor to detect data

and control flow errors", On-Line Testing Symposium, 2003. lOLTS 2003. 9th

IEEE, 7-9 July 2003, pp. 144-148

196 Chapters

129. J.B. Eifert, J.P. Shen, "Processor Monitoring Using Asynchronous Signatured

Instruction Streams", in Dig., 14th Int. Conf. Fault-Tolerant Comput., FTCS-14,

Kissimmee, PL, June 20-22, 1984, pp. 394-399

130. S.J. Upadhyaya, B. Ramamurthy, "Concurrent process monitoring with no reference

signatures", IEEE Transactions on Computers, Vol.: 43, Issue: 4, April 1994, pp. 475 -

480

131. T. Michel, R. Leveugle and G. Saucier, "A New Approach to Control Flow Checking

without Program Modification", Proc. FTCS-21, 1991, pp. 334 - 341.

132. H. Madeira, J. Camoes, J.G. Silva, "A watchdog processor for concurrent error

detection in multiple processor system", Microprocessors and Microsystems, Vol. 15,

No. 3, April 1991, pp. 123-131

133. X. Delord, G. Saucier, "Control flow checking in pipelined RISC microprocessors: the

Motorola MC88100 case study", Proceedings of Euromicro '90 Workshop on Real

Time, 6-8 June 1990, pp. 162 - 169.

134. M.Z. Khan, J.G. Tront, "Detection of transient faults in microprocessors by concurrent

monitoring". Test Conference, 1989. Proceedings. 'Meeting the Tests of Time'.,

International, 29-31 Aug. 1989, p. 948

135. S.P. Tomas and J.P. Shen, "A roving monitoring processor for detection of control

flow errors in multiple processor systems", in Proc. IEEE Int. Conf Comput. Design:

VLSI Comput., Port Chester, NY, Oct. 7-10, 1985, pp. 531-539.

136. M. Namjoo, "CERBERUS-16: An Architecture for a General Purpose Watchdog

Processor", Proc. Symposium on Fault-Tolerant Computing, 1983, pp. 216-219.

137. D.J. Lu, "Watchdog processor and structural integrity checking", IEEE Trans.

Computers, vol. C-31, 1982 Jul, pp. 681-685.

138. J. R. Kane and S.S. Yau, "Concurrent software fault detection", IEEE Trans. Software

Eng., vol. SE-1, pp. 87-99, Mar. 1975.

139. G. Miremadi, J. Ohlsson, M. Rimen, J. Karlsson, "Use of Time and Address

Signatures for Control Flow Checking", International Conference on Dependable

Computing for Critical Applications (DCCA-5), 1995, pp. 113-124.

140. H. Madeira and J.G. Silva, "On-line Signature Learning and Checking", Dependable

Comp. For Critical Applications, DCCA-2, Springer-Verlag, 1992.

141. B. Ramamurthy, S. Upadhyaya, "Watchdog processor-assisted fast recovery in

distributed systems". International Conference on Dependable Computing for Critical

Applications (DCCA-5), 1995, pp. 125-134

142. A. Mahmood and E.J. McCluskey, "Watchdog Processor: Error Coverage and

Overhead", 15th Ann. Int'l Symp. Fault-Tolerant Computing (FTCS-15), pp. 214-219,

June 1985.

143. V.S. Iyengar and L.L. Kinney, "Concurrent fault detection in microprogrammed

control units", IEEE Trans. Comput., vol. C-34, pp. 810-821, Sept. 1985.

144. D. J. Lu, "Watchdog processor and VLSI", in Proc. Nat. Electron. Conf, vol. 34,

Chicago, IL, Oct. 27-28, 1980, pp. 240-245.

Hybrid techniques 197

145. S.S. Yau, F.-C. Chen, "An Approach to Concurrent Control Flow Checking", IEEE

Transactions on Software Engineering, Vol. SE-6, No. 2, March 1980, pp. 126-137.

146. S.M. Omstein, W.R. Crowther, M.F. Kraley, R.D. Bressler, A. Michel, and F.E. Heart,

"Pluribus - A reliable multiprocessor", in Proc. AFIPS Conf., vol. 44, Anahein, CA,

May 19-22, 1975, pp. 551-559.

147. J. R. Connet, E. J. Pasternak, and B.D. Wagner, "Software defenses in real time

control systems", in Dig. Int. Symp. Fault Tolerant Comput., FTCS-2, Newton, MA,

June 19-21, 1972, pp. 94-99.

148. J. S. Novak and L.S. Tuomenoksa, "Memory mutilation in stored program controlled

telephone systems", in Conf. Rec. 1970 Int. Conf Commun., vol. 2, 1970, pp. 43-32 to

43-45.

149. S.F. Daniels, "A concurrent test technique for standard microprocessors", in Dig.

Papers Compcon Spring 83, San Francisco, CA, Feb. 28 - Mar. 3, 1983, pp. 389-394.

150. P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante, "An

FPGA-based approach for speeding-up Fault Injection campaigns on safety-critical

circuits". Journal of Electronic Testing: Theory and Applications, Vol. 18, No. 3, June

2002, pp. 261-271

151. http://www.eembc.org

152. N. Oh, S. Mitra, E.J. McCluskey, "ED4I: error detection by diverse data and

duplicated instructions", IEEE Transactions on Computers, Vol. 51, No. 2 , Feb. 2002,

pp. 180-199

153. K. H. Huang, J. A. Abraham, "Algorithm-Based Fault Tolerance for Matrix

Operations", IEEE Transaction on Computers, vol. 33, Dec 1984, pp. 518-528

154. P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza Reorda, M. Violante,

"Experimentally evaluating an automatic approach for generating safety-critical

software with respect to transient errors", IEEE Transaction on Nuclear Science, Vol.

47, No. 6, December 2000, pp. 2231-2236

155. O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, M. Violante, "Soft-error Detection

Using Control Flow Assertions", IEEE Int.l Symp. on Defect and Fault Tolerance in

VLSI Systems, 2003, pp. 581-588

156. L. Bolzani, M. Rebaudengo, M. Sonza Reorda, F. Vargas, M. Violante, "Hybrid Soft

Error Detection by means of Infrastructure IP cores", IEEE International On-Line

Testing Symposium, 2004, pp. 79-84

157. P. Bernardi, L. Bolzani, M. Rebaudengo, M. Sonza Reorda, F. Vargas, M. Violante,

"Hybrid Soft Error Detection by means of Infrastructure IP cores", IEEE International

Conference on Dependable Systems and Networks, 2005, pp. 50-58

158. P. Bernardi, L. Bolzani, M. Rebaudengo, M. Sonza Reorda, F. Vargas, M. Violante,

"A new Hybrid Fault Detection Technique for Systems-on-a-Chip", accepted for

publication on IEEE Transactions on Computer, 2006

159. A. Rajabzadeh, M. Mohandespour, G. Miremadi, "Error Detection Enhancement in

COTS Superscalar Processors with Event Monitoring Features", Proc. of the 10-th

198 Chapters

IEEE Pacific Rim International Symposium on Dependable Computing, 2004, pp. 49-
54

160. A. Rajabzadeh, "Experimental Evaluation of Master/Checker Architecture Using
Power Supply- and Software-Based Fault Injection", Proc. of the 10-th IEEE On-Line
Testing Symposium, 2004, pp. 239-244

161. A. Rajabzadeh, "A 32-bit COTS-based Fault-Tolerant Embedded System", Proc. Of
the 11-th IEEE On-Line Testing Symposium, 2005

Chapter 6

FAULT INJECTION TECHNIQUES

1. INTRODUCTION

Many approaches have been proposed to perform fault injection, which
can be defined as the deliberate insertion of faults into an operational system
to observe its response [162]. They can be grouped into simulation-based
techniques [163], software-implemented techniques [164][165][166][167],
and hybrid techniques, where hardware and software approaches are applied
together to optimize the performance [168][169].

Listing and describing all the available approaches is out of the scope of
this chapter, whose purpose is to give a synthetic overview of the possible
approaches to fault injection. For this reason we decided to present only one
approach for each of the aforementioned groups.

Before proceeding with the description of fault-injection techniques (in
section 4) we present some background concepts in section 2, and
assumptions in section 3.

2. THE FARM MODEL

In this book we refer to fault injection as a mean to validate dependability
measures of a target system constituted by a processor-based hardware
architecture and software application.

A good approach to characterize a fault injection environment is to
consider the FARM classification proposed in [167]. The FARM attributes
are the following:

200 Chapter 6

• F: the set of faults to be deliberately introduced into the system.
• ^ : the set of activation trajectories that specify the domain used to

functionally exercise the system.
• R: the set of readout that corresponds to the behavior of the system.
• M: the set of measures that corresponds to the dependability measures

obtained trough the fault injection.
The FARM model can be improved by also including the set of

workloads W.
The measures M can be obtained experimentally from a sequence of

fault-injection case studies. An injection campaign is composed of
elementary injections, called experiments. In a fault-injection campaign the
input domain corresponds to a set of faults F and a set of activations A,
while the output domain corresponds to a set of readouts R and a set of
measures M.

The single experiment is characterized by a fault/selected from F and an
activation trajectory a selected from A in a workload w from W. The
behavior of the system is observed and constitutes the readout r. The
experiment is thus characterized by the triple <f, a, r>. The set of measures
M is obtained in an injection campaign elaborating the set of readouts R for
the workloads in W.

2.1 Fault Injection requirements

The FARM model can be considered as an abstract model that describes
the attributes involved in a fault-injection campaign, but it does not consider
the fault-injection environment, (i.e., the technique adopted to perform the
experiments). The same FARM set can be applied to different fault-injection
techniques. Before presenting the techniques described in this chapter, we
focus on the parameters that should be considered when setting up a fault-
injection environment: intrusiveness, speed, and cost.

2.2 Intrusiveness

The intrusiveness is the difference between the behavior of the original
target system and that of the same system when it is the object of a fault-
injection campaign. Intrusiveness can be caused by:
• The introduction of instructions or modules for supporting fault injection:

as an effect, the sequence of executed modules and instructions is
different with respect to that of the target system when the same
activation trajectories are applied to its inputs.

• Changes in the electrical and logical setups of the target system, which
result in a slow-down of the execution speed of the system, or of some

Fault injection techniques 201

of its components; this means that during the fault-injection campaign
the system shows a different behavior from the temporal point of view;
we will call this phenomenon time intrusiveness.

• Differences in the memory image of the target system, which is often
modified by introducing new code and data for supporting the fault-
injection campaign.

It is obvious that a good fault-injection environment should minimize
intrusiveness, thus guaranteeing that the computed results can really be
extended to the original target system.

2.3 Speed

A fault-injection campaign normally corresponds to the iteration of a
high number of fault-injection experiments, each focusing on a single fault
and requiring the execution of the target application in the presence of the
injected fault. Therefore, the time required by the whole campaign depends
on the number of considered faults, and on the time required by every single
experiment. In turn, this depends on the time for setting up the experiment,
and on the one for executing the application in the presence of the fault.

The speed of the fault-injection campaign can thus be improved by
proceeding along one or both of the avenues of attack described in the
following sub-sections.

2.3.1 Speeding-up the Single fault-injection experiment

The speed of a fault-injection experiment is computed considering the
ratio between the time required by the normal execution (without fault
injection) and the average elapsed time required by a single fault-injection
experiment. The increase in the elapsed time is due to the operations
required to initialize the experiment, to observe the readouts, to inject the
fault, and to update the measures.

2.3.2 Reducing the Fault List Size

Since in a given time, the number of possible experiments is limited, a
crucial issue when devising a fault-injection environment is the computation
of the list of faults to be considered. One challenge is to reduce the large
fault space associated with highly integrated systems, improving sampling
techniques and models that equivalently represent the effects of low-level
faults at higher abstraction levels.

The fault list should be representative enough of the whole set of possible
faults that can affect the system, so that the validity of the obtained results is

202 Chapter 6

not limited to the faults in the list itself. Unfortunately, increasing the size of
the fault list is seldom a viable solution due to the time constraints limiting
the maximum duration of the fault-injection experiment. In general, the goal
of the fault list generation process is to select a representative sub-set of
faults, whose injection can provide a maximum amount of information about
the system behavior, while limiting the duration of the fault-injection
experiment to acceptable values.

2.4 Cost

A general requirement valid for all the possible target systems is that the
cost of the fault-injection environment must be as limited as possible, and
negligible with respect to the cost of the system to be validated.

We can consider as a cost the following issues:
• The hardware equipment and the software involved in the fault-injection

environment.
• The time required to set up the fault injection environment and to adapt it

to the target system.
The first issue is strictly related to the fault injection technique chosen,

whereas the second one implies to define a system as flexible as possible
that can be easily modified when the target system is changed, and can be
easily used by the engineers involved in the fault injection experiments.

3. ASSUMPTIONS

In this Section we report the assumptions in terms of the FARM model,
and choices underlying the organization of the fault-injection environment
we will present in the following of this chapter.

3.1 Set F

It is the set of faults to be injected in a fault-injection campaign. First of
all, the fault model has to be selected. This choice is traditionally made
taking into account from one side the need for a fault model that is as close
as possible to real faults, and from the other side the practical usability and
manageability of the selected fault model. Based on these constraints, the
fault model we selected is the SEU/SET (see Chapter 1 for further details).

Each fault is characterized by the following information:

Fault injection techniques 203

• Fault injection time: it is the time instant when the fault is first inoculated
in the system. Depending on the injection methodology, it may be
expressed using different unit of measure:

• Nanoseconds, in the case of simulation-based fault injection.
• Number of instructions, in case of software-implemented fault

injection.
• Number of clock cycles, in case of hybrid-based fault injection.

• Fault location: it is the system's component the fault affects. It may be
expressed as the address of the memory location or the register where
the SEU has to be injected, or the gate where the SET has to be injected.

• Fault mask: in case the faulty component is an n-bit-wide register, the
fault mask is the bit mask that selects the bit(s) that has (have) to be
affected by the SEU.

A golden-run experiment is performed in advance and is used as a
reference for fault-list generation and collapsing. The golden-run can be
obtained assuming a deterministic environment, whose behavior can be
deterministically determined when the input stimuli are given.

The size of the fault list is a crucial parameter for any kind of fault-
injection experiment, because it affects dramatically the feasibility and
meaningfulness of the whole fault-injection experiment. For this reason, the
presented techniques include a module for fault-list collapsing, which is
based on the techniques presented in [170][171]. The rules used to reduce
the size of the fault-list do not affect the accuracy of the results gathered
through the following fault-injection experiments, but simply aim at
avoiding the injection of those faults whose behavior can be foreseen a
priori. The validity of the collapsing rules is bounded to the specific fault-
injection environment that is going to be used, and to the set of input stimuli
the target system is going to receive.

As far as SEUs in processor-based systems are considered, a fault can be
removed from the fault list when it can be classified in one of the following
classes:
• It affects the operative code of an instruction and changes it into an

illegal operative code; therefore, the fault is guaranteed to trigger an
error detection mechanism when the instruction is executed (possibly
provided by the processor).

• It affects the code of an instruction after the very last time the instruction
is executed, and it is thus guaranteed not to generate any effect on the
program behavior.

• It affects a memory location containing the program data or a processor
register before a write access or after the very last read access; it is thus
guaranteed not to generate any effect on the program behavior.

204 Chapter 6

• It corresponds to flipping the same bit of the code of an instruction than
another fault, during the period between two executions of that
instruction; the two faults thus belong to the same equivalence class, and
can thus be collapsed to a single fault.

• It corresponds to flipping the same bit of a memory location containing
the program data, or a processor register during the same period between
two consecutive accesses of that location than another fault; the two
faults thus belong to the same equivalence class, and can thus be
collapsed to a single fault.

Experimental results gathered with some benchmark programs show that
the average reduction in the fault list size obtained applying the proposed
collapsing techniques is about 40% [170], considering an initial fault list
composed of a random distribution of faults in the data memory, code
memory, and processor registers.

As far as SETs affecting a combinational component, or the
combinational part of a sequential component, a fault can be removed from
the fault list if its fault-injection time and fault-location are such that its
effects cannot reach the circuit outputs in time for being sampled.

Let TH be the time when the SET is originated by a particle strike, 5 be
the worst-case SET duration for the considered type of particles, Ts the time
when the outputs of the circuit are sampled (determined by the system clock
cycle) and O is the set of the propagation delays associated to the sensitized
paths from the faulty gate to the circuit outputs, e.g., all those paths that, due
to the input configuration on the circuit inputs, let a change on the output of
the faulty gate to spread the circuit outputs. Any SET is effect-less, i.e., its
effects cannot reach the circuit outputs, if the following condition is met:

TH+5 + t<Ts V t e n (2)

If eq. 1 holds, it means that as soon as the SET expires and the expected
value is restored on the faulty gate, the correct value has enough time to
reach the circuit outputs, and thus the expected output values are sampled.
By exploiting this equation, we observed in [171] compaction ratio ranging
from 83% up to 95%.

3.2 Set A

Two important issues are related to this point. On the one side it is
important to understand how to determine an input trajectory to be applied to
the target system during each fault-injection experiment. Several proposals
have been made to solve this general problem. In this paper, we do not deal
with this problem, but we limit our interest to the techniques for performing

Fault injection techniques 205

the fault-injection campaign, once the trajectory is known. On the other
hand, there is the problem of how to practically apply the trajectory to the
system. This issue is particularly critical when considering embedded
system, since they often own a high number of input signals of different
types (digital and analog, high- and low-frequency, etc.).

3.3 Set R

This set of information is obtained by observing the system behavior
during each fault injection experiment, and by identifying the differences
with respect to the fault-free behavior. Note that all the operations involved
by the observation task should also be minimally intrusive.

3.4 Set M

At the end of the fault-injection campaign, a proper tool should build a
report concerning the dependability measures and fault coverage computed
on the whole fault list. Fault coverage is defined with respect to the possible
effects of faults, which were introduced in Chapter 1, and which are report
here for the sake of completeness. In this chapter we refer to the following
classification.

6. Effect-less fault. The fault does not propagate as an error neither as a
failure. In this case the fault appeared in the system and remained
passive for a certain amount of time, after which it was removed from
the system. As an example, let us consider a fault that affects a
variable x used by a program. If the first operation the program
performs on x after x was affected by the fault is a write operation,
then a correct value is overwritten over the faulty one, and thus the
system returns in a fault-less state.

7. Failure. The fault was able to propagate within the system until it
reached the system's output.

8. Detected fault. The fault produced an error that was identified and
signaled to the system's user. In this case the user is informed that the
task the system performs was corrupted by a fault, and the user can
thus take the needed countermeasure to restore the correct system
functionalities. In systems able to tolerate the presence of faults, the
needed countermeasures may be activated automatically. Error
detection is performed by means of mechanisms, error-detection
mechanisms, embedded in the system whose purpose is to monitor the
behavior of the system, and to report anomalous situations. When
considering a processor-based system, error-detection mechanisms can
be found in the processor, or more in general in the hardware

206 Chapter 6

components forming the system, as well as in the software it executes.
The former are usually known as hardware-detection mechanisms,
while the latter are known as software-detection mechanisms. As an
example of the hardware-detection mechanisms we can consider the
illegal instruction trap that is normally executed when a processor
tries to decode an unknown binary string coming from the code
memory. The unknown binary string may be the result of a fault that
modified a valid instruction into an invalid one. As an example of the
software-detection mechanisms we can consider a code fragment the
designers inserted in a program to perform a range check, which is
used to validate the data entered by the systems' user, and to report an
alert in case the entered data is out of the expected range. To further
refme our analysis, it is possible to identify three types of fault
detections:

• Software-detected fault. A software component identified the
presence of an error/failure and signaled it to the user. As an
example, we can consider a subprogram that verifies the validity of
a result produced by another subprogram stored in a variable x on
the basis of range checks. If the value of x is outside the expected
range, the controlling subprogram raises an exception.

• Hardware-detected fault. A hardware component identified the
presence of an error/failure and signaled it to the user. As an
example, we can consider a parity checker that equips the memory
elements of a processor. In case a fault changed the content of the
memory elements, the checker will identify a parity violation and it
will raise an exception.

• Time-out detectedfaul. The fault forced the processor-based system
to enter in an endless loop, during which the system does not
provide any output results. As an example, the occurrence of this
fault type may be detected thanks to a watchdog timer that is started
at the beginning of the operations of the processor-based system,
and that expires before the system could produce any result.

9. Latent fault. The fault either remains passive in the system, or it
becomes active as an error, but it is not able to reach the system's
outputs, and thus it is not able to provoke any failure. As an example,
we can consider a fault that modifies a variable x after the last usage of
the variable. In this case, x holds a faulty value, but since the program
no longer uses x, the fault is unable to become active and propagate
through the system.

10. Corrected fault. The fault produced an error that the system was able
to identify and to correct without the intervention of the user.

Fault injection techniques 207

4. THE FAULT INJECTION ENVIRONMENTS

This section described three fault-injection environments we developed
in the past years. In section 4.1 we describe a simulation-based environment,
in 4.2 a software-implemented fault-injection environment, while in section
4.3 a hybrid environment is summarized.

4.1 Simulation-based fault injection

This type of fault injection consists in evaluating the behavior of systems,
which are coded in a description language, by means of simulation tools.
Fault injection can be implemented in three different ways:
• The simulation tool is enriched with algorithms that allow not only the

evaluation of the faulty-free behavior of system, as normally happen in
VHDL or Verilog simulators, but also their faulty behaviors. This
solution is very popular as far as certain fault models are considered: for
example commercial tools exist that support the evaluation of permanent
faults like the stuck-at or the delay one [172]. Conversely, there is a
limited support of fault models like SEU, or SET, and therefore
designers have to rely on prototypical tools either built in-house or
provided by universities.

• The model of the analyzed system is enriched with special data types, or
with special components, which are in charge of supporting fault
injection. This approach is quite popular since it offers a simple solution
to implement fault injection that requires limited implementation efforts,
and several tools are available adopting it [173] [174] [175] [176]. This
solution is popular since it allows implementing fault injection without
the need for modifying the simulator used to evaluate the system
behavior. Conversely, the model of the system is modified to support
fault injection.

• Both the simulation tool and the system model are left unchanged, while
fault injection is performed by means of simulation commands.
Nowadays, it is quite common to find, within the instruction set of
simulators, commands for forcing desired values within the model [177].
By exploiting this feature it is possible to support SEUs and SETs, as
well as other fault models.

As an example of a simulation-based fault-injection system we describe
the approach presented in [177], whose architecture is depicted in Fig. 6-1.
The main components of this approach are:
• The model of the target system (coded in VHDL language) that describes

the functions the system under analysis implements. For the purpose of
the described fault-injection system any level of abstraction (system.

208 Chapter 6

register transfer, and gate) and any domain of representation (behavioral,
or structural) are acceptable. However, the model of the target system
should include enough details for allowing meaningful analysis. As an
example, in case the user is interested in understanding the effects of
SEUs (see Chapter 1), the model of the target system should describe the
memory elements of the system.

Model of the
target system

VHDL simulator

Commands,
queries

Responses

Fault Injection
Manager

Figure 6-1. An example of simulation-based fault injection

• The VHDL simulator, which is used to evaluate the behavior of the target
system. For this purpose any simulation tool supporting the VHDL
language, as well as a set of commands allowing monitoring/changing
the values of signals and variables during simulation execution is viable.

• The Fault Injection Manager that issues commands to the VHDL
simulator to run the analysis of the target system as well as the injection
of faults.

Depending of the complexity of the model of the target system, the
efficiency of the VHDL simulator adopted, of the workstation used for
running the experiments, as well as the number of faults that have to be
injected, simulation-based fault-injection experiments may require huge
amount of times (many hours if not days) for their execution. In order to
overcome this limitation, the approach presented in [177] adopts several
techniques aiming at minimizing the time spent for running fault injection.

The approach is composed of three steps:

Fault injection techniques 209

• Golden-run execution: the target system is simulated without injecting
any fault and a trace file is produced, gathering information on the
system's behavior and on the state of the simulator.

• Static fault analysis: given an initial list of faults (fault list) that must be
injected, by exploiting the information gathered during golden-run
execution we identify those faults whose effects on the system can be
determined a-priori, and we remove them from the fault list. Since the
injection of each fault encompasses the simulation of the system, by
reducing the number of faults that we need to inject we are able to
reduce the time needed by the whole experiment.

• Dynamic fault analysis: during the injection of each fault, the state of the
system under analysis is periodically compared with the golden run at
the correspondent time instant. The simulation is stopped as early as the
effect of the fault on the system becomes known, e.g., the fault triggered
some detection mechanisms, the fault disappeared from the system, or it
manifested itself as a failure (see Chapter 1 for a classification of the
possible effects of faults). Although the operations needed for
comparing the state of the target system with that of the golden run come
at a not-negligible cost, the benefits they produce on the time for running
the whole experiment are significant. In general, a fault is likely to
manifest itself (or to disappear) after few instants since its injection. As a
result by monitoring the evolution of the fault for few simulation cycles
after its injection, we may be able to stop the simulation execution in
advance with respect of the completion of the workload. We can thus
save a significant amount of time. Similarly, in case the fault is still
latent until few simulation cycles after its injection, it is likely to remain
latent, or manifest itself, until the completion of the workload. In this
case, the state of the target system and those of the gulden rule are no
longer compared, thus saving execution time, until the end of the
injection experiment.

In the following section we give more details about the approach
introduced in [177].

4.1.1 Golden run execution

The purpose of this step is to gather information on the behavior of the
fault-free target system. Given a set of input stimuli (the workload of the
system) that will remain constant in the following fault-injection
experiments, two sets of information are gathered, one for performing the
static fault analysis and one for performing the dynamic fault analysis.

Static fault analysis requires the complete trace of:

210 Chapter 6

• Data accesses', whenever a data is accessed, the time, the type of access
(read or write) and the address are recorded.

• Register accesses: whenever a register is accessed, the time, the register
name and the type of access are recorded.

• Code accesses', at each instruction fetch, the address of the fetched
instruction is stored in a trace file.

We collect the needed information resorting to ad-hoc modules written in
VHDL, called code/data watchers, inserted in the system model. This
approach is not intrusive, since code/data watchers work in parallel with the
system and do not affect its behavior.

Conversely, for performing dynamic fault analysis we periodically stop
the simulation and record a snapshot of the system. A snapshot is composed
of the content of the processor registers and the data memory at the current
simulation time (i.e., the time instant at which the sample is taken).

This approach is effective because allows gathering information on the
system with zero intrusiveness. On the other hand, when addressing very
large systems, it could require the availability of large amounts of both
memory and disk space. As a consequence, the number of snapshots should
be carefully selected.

4.1.2 Static fault analysis

Faults are removed from an initial fault list according to two sets of rules,
which are applied by analyzing the information gathered during golden run
execution.

We remove from the fault list a fault affecting data if it verifies at least
one of the following conditions:
• Given a fault/to be injected at time T at address A, we remove/from the

fault list if A is never read again after time T; this rule allows removing
the faults that do not affect the system behavior.

• Given a fault/to be injected at time T at address A, we remove/from the
fault list if the very first operation that involves A after time T is a write
operation.

Conversely, we remove a fault affecting the code if it verifies the
following condition: given a fault/to be injected at time T at address A, we
remove/from the fault list if the address A corresponds to an instruction that
is never fetched again after time T. This rule identifies faults that do not
produce any effect and whose injection is therefore useless.

Fault injection techniques 111

4.1.3 Dynamic fault analysis

Dynamic fault analysis is based on the idea of identifying as early as
possible the effect of the injected fault during its simulation. As soon as the
effect of a fault become evident, we stop the simulation, potentially saving a
significant amount of simulation time. The fault-injection procedure we
exploit to implement this idea is described in Fig. 6-2.

The fault-injection procedure starts by setting a set of breakpoints in the
VHDL code of the system to capture the following situations:
• Program completion: a breakpoint is set so that simulation is stopped

after the execution of the last instruction of the program running on the
system. This mechanism is useful to early stop the simulation of faults
which cause a premature end of the simulated application.

• Interrupt, in order to detect asynchronous events, a breakpoint is set to
the VHDL statements implementing the interrupt mechanism activation,
which is often used to implement hardware and software Error Detection
Mechanisms.

• Time-out: the simulation is started with a simulation time much higher
than the time required for the golden run program completion. A time
out condition is detected if simulation ends and any breakpoints are
reached.

After all the required breakpoints have been properly set, we simulate the
system up to the injection time, then injection takes place. Injection is done
by exploiting the VHDL simulator commands to modify signals/variables in
the VHDL source. After injection, the system is simulated up to the time
instant corresponding to the first snapshot after injection time. Finally, the
system is compared with the golden run, and the following situations are
considered:
• No failure: the sate of the target system is equal to the golden run; two

alternatives are possible:
1. When injecting in the data area this implies that the fault effects

disappeared from the system and that the fault has no effect on the
system behavior; the simulation can thus be stopped.

2. When injecting in the code area, if the faulty instruction is never
fetched again we have that the fault effects disappeared from the
system and the simulation can be stopped.

• The state of the target system does not match that observed during the
golden run; in this case two alternatives are possible:
1. Failure: the fault has affected system outputs (thus causing a failure)

and simulation can be stopped.
2. Latent fault: the fault is still present in the system but it did not affect

system outputs: further simulations are therefore required.

212 Chapter 6

result Inject (SAMPLE ^L, fault F)

{
set_breakpoints() ;

Simulate(F->time);

FlipBit (F->loc);

P = get_snapshot(L, F->time);

do {

Simulate(P->time);

res = Compare(P->regs, P->mem);

if(res == MATCH && F->area == DATA)

return(NO_FAILURE);

if(res == MATCH && F->area == CODE)

if(F->loc is never fetched again)

return(NO_FAILURE);

if(res == FAILURE) return(FAILURE)/

/* res is LATENT */

P = P->next;

} while(P != end) ;

return(LATENT);

}
Figure 6-2. The fault-injection procedure

4.1.4 Checkpoint-based optimizations

The rationale behind this approach is shown in Fig. 6-3, where the
simulated system time is reported above the horizontal axis, while below it
we report the CPU time spent to run VHDL simulation.

Given a fault/to be injected at time T^f, a not-optimized fault-injection
tool spends a time equal to Tsetup to reach injection time. To minimize
simulation time, we periodically save the content of simulator data structures
in a collection of checkpoint files. A checkpoint file taken at system time 7^
stores all the information required to resume the simulation of the system
model from time 7 .̂

Fault injection techniques 213

fault f

system time

T, setup

simulator CPU time

checkpoints fault f

setup

simulator CPU time

Figure 6-3. Simulator-dependant optimization

When fault/has to be injected, we resume the simulator from the first
checkpoint before T^f (checkpoint C2 in the example of Fig. 6-3); therefore,
the CPU time spent to reach injection time becomes T setup-

Let TR be the time for loading the content of a checkpoint file and
restoring the simulator data structures, then the following inequality must
hold for the approach to be effective:

^setup '^ ^R ^ ^Si etup (3)

The number of checkpoints should be selected in order to minimize Eq. 3
and to keep the size of checkpoint files below the available disk space.

4.2 Software-implemented fault injection

As an example of a software-implemented fault injection environment we
describe the FlexFI system, which was presented in [178], and whose
architecture is shown in Fig. 6-4.

214 Chapter 6

Target System Host Computer

Figure 6-4. The FlexFI fault-injection environment

The system is logically composed of the following main modules:
• The Fault List Manager generates the fault list to be injected into the

target system.
• The Fault Injection Manager injects the faults into the target system;
• The Result Analyzer analyzes the results and produces a report

concerning the whole Fault Injection campaign.
To minimize the intrusiveness into the target system, the FlexFI system

uses a host computer. All the fault-injection tasks which are not strictly
required to run on the target system are located on the host computer, which
also stores all the data structures (e.g., the Fault List and the output statistics)
required by the fault-injection campaign. The host computer communicates
with the target system by exploiting the features provided by most systems
for debugging purposes (e.g., the serial line handled by a ROM monitor
which allows the debugging of most microprocessors).

4.2.1 Fault Injection Manager

The Fault Injection Manager (FIM) is the most crucial part in the whole
fault-injection environment. In fact, it is up to the FIM to start the execution
of the target application once for each fault of the list generated by the Fault
List Manager, to inject the fault at the required time and location, and to
observe the system behavior, recovering from any possible failure (e.g., from
hardware generated exceptions). The pseudo-code of the FIM is reported in
Fig. 6-5,

Fault injection techniques 215

void fault_injection_manager()
{
campaign_initialization0;

for (every fault fi in the fault list)
{
experiment_initialization(fi) ;

spawn(target_application);
spawn(F_I_scheduler);

wait for experiment completion;

update_fault_record(fi) ;
}
return () ;

}
Figure 6-5. Fault Injection Manager pseudo-code

During the target application execution, a fault-injection scheduler
monitors the advancement of the target program, triggering other fault-
injection modules in charge of injecting the fault (Injector module),
observing variable values in order to classify the faulty behavior (Observer
module), or stop the target application when a time-out condition is reached
(Time-out module).

The pseudo-code of the fault-injection scheduler module is reported in
Fig. 6-6. Note that the Observer module refers to an ad hoc data structure,
which contains the list of observation points; for each point, this data
structure contains the name of the variable, the time when the variable
should be observed, as well as the value the variable should have at that
time. The list must be filled by the application programmer based on the
knowledge of the behavior of the appHcation itself

216 Chapter 6

void F_I_scheduler0
{

instr_counter++;

if (instr_counter==fault.time)
trigger (injector());

for (i=0; i<num_of_observation_points; i++)
if (instr_counter==observation_time[i])

trigger(observer(observed_variable[i], value[i]));

if (instr_counter>max_time)
trigger(time_out());

Figure 6-6. Pseudo-code of the Scheduler module
}

In order to allow the FIM to maintain the control over the fault-injection
campaign, a mechanism has to be devised and implemented to handle the
case, in which a hardware exception is activated, and the target application is
consequently interrupted. The target system Exception handling procedures
have to be suitably modified for this purpose, so that they first communicate
to the FIM the type of triggered exception, and then return the control to it
(instead of the interrupted instruction).

It is worth underlying the importance of the experiment initialization
phase: the effects of the fault injected during an experiment should never
affect the behavior of the target application when the following experiment
is performed; for this reason, the fault-injection system must restore the
environment for the target application execution as a preliminary phase of
each experiment. One safe (but slow) way to do so is to restore the full
memory image of the application (code and data) and the values of all the
relevant system variables. The main issue when implementing this restoring
task is to limit its time duration as much as possible, in order to reduce the
time requirement of the global fault-injection campaign.

In the following, we will present different techniques for implementing
these modules in an embedded system.

4.2.2 Implementation Issues

This solution exploits the trace mode facility existing in most
microprocessors for implementing the fault-injection scheduler: thanks to the
trace mechanism, a small procedure (corresponding to the fault-injection
scheduler) can be activated after the execution of any application assembly
instruction with minimum intrusiveness in the system behavior (apart from a
slow-down in the application performance). The proposed approach is
similar to the ProFI tool [166], with the main difference that the fault-

Fault injection techniques 217

injection experiment is completely executed by the microprocessor without
any simulation.

The fault-injection scheduler procedure is in charge of counting the
number of executed instructions and verifying whether any fault-injection
module reached its activation point. When proper, the procedure activates
one of the following modules, each corresponding to a software procedure
stored on the target system:
• The Injector module, which is activated when the fault injection time is

reached.
• The Time-out module, which is activated when a predefined threshold in

terms of number of executed instructions is reached, and stops the target
application, returning the control to the FIM located on the host.

• The Observer module, which is in charge of observing the value of target
application variables, thus checking whether the application is behaving
as in the fault-free fashion or not. When differences are observed, these
are communicated to the FIM through the serial interface. The observer
module is activated at proper times, depending on the target application
characteristics.

We implemented a software-based version of FlexFI for a commercial
M68KIDP Motorola board. This board hosts a M68040 microprocessor with
a 25Mhz frequency clock, 2 Mbytes of RAM memory, 2 RS-232 Serial I/O
Channels, a Parallel Printer Port, and a bus-compatible Ethernet card. To
guarantee a deterministic behavior the internal caches have been disabled
during the FI campaign.

The Fault Injection Manager is composed of the scheduler procedure,
which amounts to about 50 Assembly code lines, of the modified Exception
handling routine, which needs about 10 Assembly code lines more than the
original one, and of the Initialization procedure, which is written partly in
ISO-C and partly in Assembly language and globally amounts to about 200
source lines. Due to the high modularity of the FIM code, the task of
adapting it to a new application program can easily be accomplished.

When run on some sample benchmark applications, this version of
FlexFI showed a slow-down factor due to Fault Injection of about 25 times.

The software-based version of FlexFI is the most general one (the
approach can be implemented on virtually any system) and does not require
any special hardware, thus being very inexpensive.

On the other side, this approach has some drawbacks:
• There is some code intrusiveness, due to the need for storing the

scheduler procedure, as well as the Injector, Observer, and Time-out
procedures, in the target system memory.

218 Chapter 6

• There is also some data intrusiveness, since some small data structures,
such as the one for storing the information about the current fault and the
observation points must also be stored in the target system memory.

• Forcing the target system to work in Trace mode causes a very high
degradation in the execution speed of the application program; thus
preventing this approach from being used with real-time embedded
systems.

4.3 Hybrid fault injection

As an example of hybrid fault-injection environment we present the
FIFA system, which was introduced in [ATS'01], whose flow behind is
described in Fig. 6-7. FIFA is intended for supporting the injection of faults
in a processor-based system, which is completely modeled in a hardware-
description language (similarly to simulation-based environment). The main
novelty of FIFA is to adopt an FPGA-based board to emulate the system,
while a computer manages the board operations.

According to the FIFA flow, a software tool is sued to instrument the
model of the analyzed system according to the mechanisms described in the
following sections. The obtained model is then synthesized and mapped on
the FPGA board.

Two hardware platforms are used: a host computer and a FPGA board.
The former acts as a master and is in charge of managing Fault Injection
campaigns. The latter acts as a slave and is used to emulate the system under
analysis. In particular, FIFA exploits a FPGA board where two modules are
implemented: the emulated system and the Fault Injection Interface, which
allows a host computer to control the behavior of the emulated system.

Fault injection techniques 219

Instrumentation
architectures

Fault List
Manager

i
pault List

1

Fault Injection
Manager

Emulated
system

Fault Injection
Interface

FPGA board

Workload

Result
Analyzer

I
Fault

Classification

^T-level Modey

I
Instrumenter

Instrumented
RT-level Model

I
Synthesis Tool

I
Instrumented

Gate-level Model

Figure 6-7. The FIFA flow

Three software modules running on the host computer are in charge of
performing the typical operations of a Fault Injection environment:
• Fault List Manager, it generates the list of faults to be injected in the

system.
• Fault Injection Manager, it orchestrates the selection of a new fault, its

injection in the system, and the analysis of the faulty behavior.
• Result Analyzer it analyzes the behavior of the system during each Fault

Injection experiment, categorizes faults according to their effects, and
produces statistical information.

4.3.1 The Fault Injection Interface

The Fault Injection Interface executes commands issued by the Fault
Injection Manager, running on the host computer, in order to control the
behavior of the emulated system.

220 Chapter 6

For the purpose of this paper, the emulated system is a processor core
executing a software program. The Fault Injection Interface thus recognizes
the following commands:
• Step: forces the emulated processor to execute one instruction.
• Run: forces the emulated processor to execute a given number of

instructions.
• Evaluate: sends to the host computer the content of the selected

processor storage element.
• Inject: modifies the content of a selected processor storage element.
• Tick: lets the emulated processor evolve for one clock cycle.

The Step and Run commands implement an instruction-level
synchronization strategy, allowing taking control of the emulated processor
after the execution of an instruction. For example, upon receiving a Step
command, the Fault Injection Interface forces the emulated processor to
execute one instruction and then waits for further commands from the host
computer. Conversely, the Tick command implements a clock-level
synchronization strategy, allowing analyzing/modifying the processor
behavior during the execution of an instruction.

The Evaluate and Inject commands are used to analyze the system state
and to perform Fault Injection as described in the following Sub-section.

4.3.2 Injecting Faults

The architecture of a typical processor usually includes the following
modules: a processor core comprising the arithmetic/logic and control units
embedding both control and internal registers, a general purpose Register
File, Instruction and Data caches, and an External Bus used by the processor
core to communicate with its peripherals.

In order to perform fault-injection experiments we instrument the
processor core model, as shown in Fig. 6-8, by adding the following
modules:
• Memory Stub logic: when required, they may isolate the memory from

the rest of the system and control its behavior.
• Bus Stub logic: as in the previous case, this module is used to take

control of the processor External bus, in order to inject faults, apply
input stimuli and observe results. In particular, a register M, with the
same number of bits of the External Bus, is used to capture the content
of the External Bus and send it to the host computer through the Fault
Injection Bus. Moreover, it is used to store the masking value for the
instrumented bus. At injection time, every bits of M set to logic 1 force
the content of the bus to be complemented.

Fault injection techniques 221

Masking logic, each register in the processor module that is relevant to
dependability analysis is connected to an ad-hoc Masking logic. This is
in charge of injecting faults and performing fault analysis. Details on the
Masking logic can be found in [169].

Fault Injection Bus: it connects all the Masking logic modules inserted in
the processor. It includes control signals to access the Masking logic and
Stub modules as well as data signals to carry data to and from them.
Each Masking logic/Stub module is addressable through the Fault
Injection Bus and can be read and written through it.

External Bus 1
Bus Stub logic

Fault Injection Bus

Processor Core

Control Registers Internal Registers

Masking logic I Masking logic

T T

u
Ui
o

o
H F

o
S

< • • • >

Register
File

Memory Stub logic Memory Stub logic

X
-cache D~cache

Figure 6-8. A typical processor enriched with Fault Injection features

4.3.3 Memory blocks

Core developers usually adopt a hierarchical approach: a memory module
is first described as an isolated entity, resorting either to a behavioral or a
structural description, and then it is instantiated wherever needed. Examples
of this design style can be found in several cores, such as the PicoJava, and
the Intel 8051. A common feature of these memory modules is the presence
of address and data buses, as well as the presence of read and write control
signals. By driving these signals, we can easily access and possibly alter the
content of the memory.

222 Chapter 6

We use a module, called Memory Stub logic, to isolate/control embedded
memory modules, according to the architecture reported in Fig. 6-9. Through
the Fault Injection Bus, we are able to take the control of the memory
interface, thus we can easily read the memory array content or alter it.

Functiona signals

Fault Injection bus

u
X

Address

^Data

^
Read

Write

—w

" ^ Memory
Array

mode

Figure 6-9. Memory Stub logic

Fault injection in memory modules is performed according to the
following procedure:
• The Fault Injection Manager leads the emulated system to the injection

time by issuing to the Fault Injection Interface the required number of
synchronization (Run/Step/Tick) commands.

• The content of the memory location we intend to perturb is read through
the Evaluate command and sent to the Fault Injection Manager.

• The Fault Injection Manager computes the faulty value to be injected and
writes it back through the Inject command.

4.3.4 Applying stimuli and observing the system behavior

In order to effectively support dependability analysis of safety-critical
processor-based systems, the following two classes of applications should be
considered:
• Computing-intensive applications', they spend most of the execution time

for performing computing intensive task, and they commit the results at
the end of the computation. As a result, input data should be provided
before the activation of the computing algorithm and the amount of

Fault injection techniques 223

information that should be observed for fault effects classification is
mainly dominated by the content of the processor data segment, at the
end of the computation.

• Input/Output-intensive applications: they spend most of the execution
time exchanging data with the environment. Output data are produced
during application execution; therefore, they should be continuously
recorded in order to classify fault effects. Examples of this family of
system are data acquisition systems or communication protocols.

In order to efficiently perform fault-injection experiments, the FPGA
board should be equipped with dedicated, high-speed, connection to memory
module storing input/output data for each injection experiments. By
exploiting this solution, we will boost performances since communication
between the FPGA board and the host computer takes place only after a
whole Fault Injection campaign (i.e., after several faults have been injected)
instead of transmitting information after each fault.

4.3.5 The FI process

The Fault Injection process is composed of the following steps:
1. The circuit description is instrumented according to the previously

described transformations.
2. The FPGA board is loaded with the instrumented system description.
3. The Input RAM is programmed with the input data the analyzed system

requires.
4. The FPGA-based system is exploited to simulate the fault-free system

and the output values at each clock cycle are recorded in the Output
RAM: the obtained output trace is the reference trace we use to classify
fault effects.

5. For each fault in the fault list, the Fault Injection Manager initializes the
FPGA, and performs the injection experiment. The faulty system is lead
to injection time, and then a fault is injected by exploiting the procedures
described in the previous Sections. Following Fault Injection, the system
is emulated up to program completion.

6. At the end of the whole Fault Injection campaign (i.e., after several faults
have been injected), the content of Output RAM is sent to the Result
Analyzer for fault effects classification.

REFERENCES

162. J. Clark, D. Pradhan, Fault Injection: A method for Validating Computer-System
Dependability, IEEE Computer, June 1995, pp. 47-56

224 Chapter 6

163. T.A. Delong, B.W. Johnson, J.A. Profeta III, A Fault Injection Technique for VHDL

Behavioral-Level Models, IEEE Design & Test of Computers, Winter 1996, pp. 24-33

164. J. Carreira, H. Madeira, J. Silva, Xception: Software Fault Injection and Monitoring in

Processor Functional Units, DCCA-5, Conference on Dependable Computing for

Critical Applications, Urbana-Champaign, USA, September 1995, pp. 135-149

165. G.A. Kanawati, N.A. Kanawati, J.A. Abraham, FERRARI: A Flexible Software-Based

Fault and Error Injection System, IEEE Trans, on Computers, Vol 44, N. 2, February

1995,pp. 248-260

166. T. Lovric, Processor Fault Simulation with ProFI, European Simulation Symposium

ESS95, 1995, pp. 353-357

167. J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.-C. Laprie, E. Martins, D.

Powell, Fault Injection for Dependability Validation: A Methodology and some

Applications, IEEE Transactions on Software Engineering, Vol. 16, No. 2, February

1990, pp. 166-182

168. L. T. Young, R, Iyer, K. K. Goswami, A Hybrid Monitor Assisted Fault injection

Experiment, Proc. DCCA-3, 1993, pp. 163-174

169. P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante,

"Exploiting Circuit Emulation for Fast Hardness Evaluation", IEEE Transactions on

Nuclear Science, Vol. 48, No. 6, December 2001, pp. 2210-2216

170. A. Benso, M. Rebaudengo, L. Impagliazzo, P. Marmo, "Fault List Collapsing for Fault

Injection Experiments", Annual Reliability and Maintainability Symposium, January

1998, Anaheim, Cahfomia, USA, pp. 383-388

171. M. Sonza Reorda, M. Violante, "Efficient analysis of single event transients". Journal

of Systems Architecture, Elsevier Science, Amsterdam, Netherland, Vol. 50, No. 5,

2004, pp. 239-246

172. TetraMAX, www.synopsys.com

173. E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson, "Fault Injection into VHDL

Models: the MEFISTO Tool", Proc. FTCS-24, 1994, pp. 66-75

174. T.A. Delong, B.W. Johnson, J.A. Profeta III, "A Fault Injection Technique for VHDL

Behavioral-Level Models", IEEE Design & Test of Computers, Winter 1996, pp. 24-

33

175. D. Gil, R. Martinez, J. V. Busquets, J. C. Baraza, P. J. Gil, "Fault Injection into VHDL

Models: Experimental Validation of a Fault Tolerant Microcomputer System",

Dependable Computing EDCC-3, September 1999, pp. 191-208

176. J. Boue, P. Petillon, Y. Crouzet, "MEFISTO-L: A VHDL-Based Fault Injection Tool

for the Experimental Assessment of Fault Tolerance", Proc. FTCS'98, 1998

177. B. Parrotta, M. Rebaudengo, M. Sonza Reorda, M. Violante, "New Techniques for

Accelerating Fault Injection in VHDL descriptions", IEEE International On-Line Test

Workshop, 2000, pp. 61-66

178. A. Benso, M. Rebaudengo, M. Sonza Reorda, "Fault Injection for Embedded

Microprocessor-based Systems", Journal of Universal Computer Science (Special

Issue on Dependability Evaluation and Validation), Vol. 5, No. 5, pp. 693-711

Index

80386 75

ABFT See Algorithm-Based Fault
Tolerance

Acceptance test See decider
Active-Stream/Redundant-Stream

Simultaneous multithreading 56
Algorithm-Based Fault Tolerance 124,

132, 138, 141
Alpha particle 23, 25, 36
Alternate See Variant
ALU 69
Anti-latchup circuit 40
Assembly-Level Instruction Duplication

45
Assertions 59, 99
Assigned run-time signature 156, 157
Atomic displacement 24
Availability 9
Available Resource-driven Control flow

monitoring 79

Babbage, Charles 117
Basic block 63, 144
Best effort recovery 60
Block Entry Exit Checking 76
Block Signature Self Checking 76
Block symbol 93
Branch free interval 63, 86

Caches 49
CAM memory 181
Check interval 83
Checking task operations allocation 80
Checkpass variable 108
Checkpoint 56, 130
Checksum matrix 132
Clock circuitry 49

Code error 13, 16, 17
Code Re-ordering 43
Codeword 32, 33
Commercial-off-the-shelf components 2,

3
Committed Instructions Counting 175
Comparison vector 119
Computation duplication 37
Conditional instruction 21
Consensus 119
Context switch 56
Control flow checking 63, 85, 95, 155,

157, 159, 160, 161, 163, 164, 165,
168, 178

Coronal mass ejection 23
Correction 144

Data checking 180
Data computing block 109
Data Diversity 57
Data error 13, 16, 17
Data integrity 10
Deciderl l8, 122, 123, 124
Decision point 118
Decoding operation 32, 147, 148
Degradation mechanisms 5
Delay Buffer 56
Derived run-time signature 156, 159
Design diversity 47, 49, 52, 53, 58, 59,

60, 117,118
Distributed memory parallel systems 84
Distributed Recovery Block 125, 128
Diversity factor 57
Domains 43
DRB See Distributed Recovery Block
Duplication 48, 142, 147, 174
Dynamic error 11, 19

Elastic collision 25

Electron 22, 23
Embedded Signature Monitoring 159,

160, 161, 163, 164, 165
Encoding operation 32
49, 52, 53, 58, 59, 60

Error Capturing Instruction 76
Error detection mechanisms 7, 205
Error Detection by Diverse Data and

Duplicated Instructions 45, 59
Error propagation paths 5
Execution status 99

Ionization 24, 25

Kalman Filter 106

LET See Linear energy transfer
Linear energy transfer 24
Local cumulative signature 113
Logical error 10
Loop-free interval 70
LZW Data Compression algorithm 59,

106

Fault injection 146
117,119,121,122,125,130,132,142,

147, 174
Fault-Tolerant Processor-Attached

Processor architecture 120
FERRARI 89, 101
FFT46, 138, 139, 140, 141, 142, 150
Fibonacci 46, 59
Flare 23
FORTRAN 73, 81
Function call/return 21

Galactic cosmic ray 22, 23, 24
Gamma particle 25
Global execution check flag 90
GNU compiler 88

Hard error 11
Hardw^are-level single bit-flip 15, 16, 17,

18
Heavy ion 22, 23, 24, 78
High-level instruction duplication 38
153, 155, 157, 159, 165, 167, 169, 171,

172, 174, 176

Identifier 125
I-IP See Infrastructure IP
Information redundancy 37
Infrastructure IP 176
Insert sort 46, 59
Instruction level parallelism 45, 79
Instruction re-execution 47
Instruction-level computation duplication

37
Inter Process Communication 94
Inter-block errors 66
Intra-block errors 66

Maintainability 10, 114, 151, 224
Master instruction 45
Master/Checker 174
MC6809E 78
Memory access checking 169
Mission-critical 9 ,1 ,9
m-out-of-n code 164
Multiflow TRACE 14/300 80
Multiple error 11,20
Muon 23

Neutron 23, 25
N-modular redundancy 119
NMR See N-modular redundancy
Node 155
Noise margins 2
Non-logical error 10
N-Version Programming 118, 119
NVP See N-Version Programming

Operation redundancy 37
Overflow 58

Path Identification 70
Permanent error 19, 54
Pion 23
Pipelining 45
Power consumption 40
PowerPC 83
Power-Supply Disturbance 78
Performance monitoring 154
Primary node 125, 127
Procedure-level computation duplication

38
Procedure-level duplication 49
Program-level duplication 54

Proton 22, 23, 24, 25, 35, 36

Quick sort 46, 59

RIOOOO MIPS processor 46
R4400 MIPS processor 98
Radiation 24
Radiation environment 22
RB See Recovery Blocks
Read/write dependencies 43
RECCO 42
Recovery Blocks 118, 122
Recovery point 123
Reliability-weight 42
Reliable Code Compiler 42
RISC processor 84
Rollback recovery 130
Roll-forward 121
Roll-forward checkpoint 130
Roving Monitoring Processor 165

Safety 1,9, 35, 115, 194
Selective instruction duplication 42
Selective Procedure Call Duplication 49
Self-checking processing node 125
SET 28, 30
SEU 25, 27
SGI Octane 46
shadow instruction 45
shadow node 125, 127
signature instruction 155
silicon recoils 25
Simultaneous multithreading 56
Single bit-flip 13
Single error 11,20
Single Event Transient 28
Single Event Upset 25
Single stuck-at 13
Single-event effect 22, 25, 28
Soft error 11
Software bug 119
Solar event 23, 24
Spallation 25
Spatial redundancy 56
Software diversity 119
Standby sparing 32, 122
Static error 11, 19, 150,209,210

Stop and retry recovery 130
Stored reference 165
Storeless Basic Block 45
Structural Integrity Checking 157
Super-scalar execution 45
Superscalar processors 45, 56, 154
Supervisory processor 73
System integrity 10
Systems on Chip 176

T225 40, 92
T805 83
Tag instruction 164
Temporary error 19
Terminal-Stay-Resident program 75
Time redundancy 47, 54, 56, 121
TMR See triple modular redundancy
Tracking task operations allocation 81
Triple Modular Redundancy 31, 119, 146,

174
Try block 128

Variable Dependencies Graph 43
Variable descendent 42
Variable Duplication 43
Variable functional dependencies 42
Variable lifetime 42
Variant 54, 118
Versatile Assigned Signature Checking

82
Version See Variant
Vertex identifier 70
79

Very Long Instruction Word processors
47

Virtual Duplex System 54, 121

Watchdog 153, 155, 160, 165, 167, 171,
172, 174, 176

Windows 2000 94

Xception 84

Yet Another Control flow Checking
Approach 103

