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Preface

This volume contains the papers presented at DCFS 2016, the 18th International
Conference on Descriptional Complexity of Formal Systems, held during July 6–8,
2016, in Bucharest, at the University of Bucharest. DCFS became a working confer-
ence in 2016, continuing the former Workshop on Descriptional Complexity of Formal
Systems, which was a merger in 2002 of two other workshops: FDSR (Formal
Descriptions and Software Reliability) and DCAGRS (Descriptional Complexity of
Automata, Grammars and Related Structures).

DCAGRS was previously held in Magdeburg (1999), London (2000), and Vienna
(2001). FDSR was previously held in Paderborn (1998), Boca Raton (1999), and San
Jose (2000).

Since 2002, DCFS has been successively held in London, Ontario, Canada (2002),
Budapest, Hungary (2003), London, Ontario, Canada (2004), Como, Italy (2005), Las
Cruces, USA (2006), Novy Smokovek (High Tatras), Slovakia (2007), Charlottetown,
Canada (2008), Magdeburg, Germany (2009), Saskatoon, Canada (2010), Giessen,
Germany (2011), Porto, Portugal (2012), London, Ontario, Canada (2013), Turku,
Finland (2014), and Waterloo, Ontario, Canada (2015).

This conference was an official event of the International Federation for Information
Processing and IFIP Working Group 1.2 (Descriptional Complexity) and was jointly
organized by the IFIP WG 1.2 and the Faculty of Mathematics and Computer Science
of the University of the Bucharest.

The working conference was sponsored by the Department of Computer Science of
the University of Bucharest and other sponsors.

Descriptional complexity is a field in computer science that deals with the size of all
kinds of objects that occur in computational models, such as Turing machines, finte
automata, grammars, splicing systems and others. The topics of this conference are
related to all aspects of descriptional complexity and include, but are not limited to:

– Various modes of operations and complexity measures for automata, grammars,
languages, and related systems

– Succinctness of description of objects, state-explosion-like phenomena
– Trade-offs between descriptional complexity and mode of operation
– Circuit complexity of Boolean functions and related measures
– Succinctness of description of (finite) objects
– Descriptional complexity in resource-bounded or structure-bounded environments
– Complexity aspects related to the combinatorics of words
– Structural complexity of formal systems as related to descriptional complexity
– Descriptional complexity of formal systems for applications (e.g., software relia-

bility, software and hardware testing, modelling of natural languages)
– Descriptional complexity aspects of nature-motivated (bio-inspired) architectures

and unconventional models of computing
– Frontiers between decidability and undecidability



– Universality and reversibility
– Blum static (a.k.a. Kolmogorov/Chaitin) complexity, algorithmic information

The working conference of DCFS 2016 included four invited lectures, 13 con-
tributed papers, discussion sessions, and a visit of the surroundings of Bucharest city,
concluded by the conference dinner.

The proceedings of DCFS 2016, published in this volume of the Lecture Notes in
Computer Science series, were available at the workshop and contain the invited lec-
tures and the contributed papers.

There were 21 submissions to DCFS 2016 by a total of 47 authors from 15 different
countries – Canada, Germany, India, Italy, Portugal, Slovakia, South Africa, Brazil,
Russia, Austria, Czech Republic, Romania, France, Poland, and the UK.

On the basis of at least three reviews for each contribution, an international committee
selected 13 papers – which accounts for an acceptance rate of approximately 60 % – for
inclusion in the workshop program and this proceedings volume. The submission and
refereeing process was supported by the EasyChair conference management system.

We warmly thank those who contributed to the success of DCFS 2016:

– The invited speakers James Currie (University of Winnipeg, Winnipeg/Manitoba,
Canada), Gabriel Istrate (Timioara, Romania), Galina Jirásková (Mathematical
Institute Slovak Academy of Sciences, Kosice, Slovak Republic), and Mikhail V.
Volkov (Ural Federal University, Ekaterinburg, Russia).

– The authors of contributed and discussion papers.
– The reviewers and the Program Committee for their excellent work in making this

selection.
– The members of the Organizing Committee for their commitment in the preparation

of the scientific sessions and social events
– The staff of Springer and, in particular, Computer Science Editorial, for the

extremely helpful and efficient collaboration in making this volume available before
the conference. As volume editors, we value their experience, advice, and
instructions, which were very helpful for the preparation of this volume.

– All the speakers and participants for attending the DCFS workshop.

Special thanks go to the “Asociaţia Alumni Universităţii din Bucureşti” for their
financial and logistic support. We gratefully acknowledge the generous direct financial
support of the Faculty of Mathematics and Computer Science of the University of
Bucharest and the valuable in-kind support from Springer. Without this support, for
which we are thankful, it would have been very difficult to conduct DCFS 2016.

We hope, as in the previous years, that DCFS 2016 has initiated new scientific
discussions and stimulated research and scientific cooperation in the area of descriptional
complexity, and trust that this volume will contribute to raising the interest in this field.

We look forward to seeing this year’s participants and many others at DCFS in
2017!

May 2016 Cezar Câmpeanu
Florin Manea
Jeffrey Shallit
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Completely Reachable Automata

Eugenija A. Bondar and Mikhail V. Volkov

Institute of Mathematics and Computer Science,
Ural Federal University, Lenina 51, 620000 Yekaterinburg, Russia

bondareug@gmail.com, mikhail.volkov@usu.ru

Abstract. We present a few results and several open problems concerning
complete deterministic finite automata in which every non-empty subset of the
state set occurs as the image of the whole state set under the action of a suitable
input word.

Supported by the Russian Foundation for Basic Research, grant no. 16-01-00795, the Ministry
of Education and Science of the Russian Federation, project no. 1.1999.2014/K, and the Competitive-
ness Program of Ural Federal University. The paper was written during the second author's stay
at Hunter College of the City University of New York as Ada Peluso Visiting Professor of Mathematics
and Statistics with a generous support from the Ada Peluso Endowment



Words Avoiding Patterns, Enumeration
Problems and the Chomsky Hierarchy

James D. Currie

Department of Mathematics and Statistics
University of Winnipeg
515 Portage Avenue

Winnipeg, Manitoba R3B 2E9, Canada
j.currie@uwinnipeg.ca

Abstract. The study of words avoiding patterns is a mature branch of combi-
natorics on words. Patterns are themselves words, but their alphabets may be
partitioned into variables, constants, function symbols such as reversal, or other
tokens. As in the classical case of overlap-free words, one typically begins with
the problem of whether pattern p is avoidable by an infinite string over alphabetP

, and then moves on to sharper questions, such as language-theoretic prop-
erties of the set L of finite words over

P
avoiding p, and the problem of

enumerating words of L of length n.
Strong techniques for the enumeration of regular or context-free languages

are well-known, following Schützenberger’s foundational work. However,
because of the pumping lemma, the language of binary overlap-free words is not
context-free; nevertheless, there is a sharp description of the language of binary
overlap-free words due to Cassaigne, via regular languages coding a sequence of
operator applications. This leads to sharp characterization of the growth of the
number of binary overlap-free words of length n, which turns out to be poly-
nomial. The growth of the language L of finite words over

P
avoiding p has

been studied in various cases, and has generally been exponential, but in a few
instances polynomial.

With this background, it was natural for Shallit et al. to ask whether the
language of binary words avoiding xxxR grows polynomially, or exponentially.
The surprising answer turns out to be ‘neither’. It follows that the language in
question is not context-free; interestingly, no more direct proof of this is known.
The language of binary words avoiding xxRx also turns out to have growth
intermediate between polynomial and exponential, but the analysis is simpler.
Given these surprising results involving patterns over {x, xR}, it is natural to
study binary avoidability of patterns over {x,xR,y, yR}, and the related growth
questions. Studying growth questions for 2-avoidable patterns over {x, xR,y, yR}
leads to consideration of an under-utilized tool originally due to Shelton, the
method of fixing block inequalities.

This talk will give an overview of the above matters, ending with recent
results and open problems.



Heapability, Interactive Particle Systems,
Partial Orders: Results and Open Problems

Gabriel Istrate1,2 and Cosmin Bonchiş1,2

1 Department of Computer Science, West University of Timişoara,
Timişoara, Romania

gabrielistrate@acm.org
2 e-Austria Research Institute, Bd. V. Pârvan 4, cam. 045 B,

300223 Timişoara, Romania

Abstract. We outline results and open problems concerning partitioning of
integer sequences and partial orders into heapable subsequences (previously
defined and established by Byers et al.).



Self-Verifying Finite Automata
and Descriptional Complexity

Galina Jirásková

Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

jiraskov@saske.sk

Abstract. We survey recent results on the descriptional complexity of
self-verifying finite automata. In particular, we discuss the cost of simulation of
self-verifying finite automata by deterministic finite automata, and the com-
plexity of basic regular operations on languages represented by self-verifying
finite automata.
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Completely Reachable Automata

Eugenija A. Bondar and Mikhail V. Volkov(B)

Institute of Mathematics and Computer Science,
Ural Federal University, Lenina 51, 620000 Yekaterinburg, Russia

bondareug@gmail.com, mikhail.volkov@usu.ru

Abstract. We present a few results and several open problems concern-
ing complete deterministic finite automata in which every non-empty
subset of the state set occurs as the image of the whole state set under
the action of a suitable input word.

Keywords: Deterministic finite automaton · Complete reachability ·
Transition monoid · Syntactic complexity · PSPACE-completeness

1 Background and Overview

We consider the most classical species of finite automata, namely, complete deter-
ministic automata. Recall that a complete deterministic finite automaton (DFA)
is a triple A = 〈Q,Σ, δ〉, where Q and Σ are finite sets called the state set and
the input alphabet respectively, and δ : Q×Σ → Q is a totally defined map called
the transition function. Let Σ∗ stand for the collection of all finite words over
the alphabet Σ, including the empty word. The function δ extends to a function
Q × Σ∗ → Q (still denoted by δ) in the following natural way: for every q ∈ Q
and w ∈ Σ∗, we set δ(q, w) := q if w is empty and δ(q, w) := δ(δ(q, v), a) if
w = va for some word v ∈ Σ∗ and some letter a ∈ Σ. Thus, via δ, every word
w ∈ Σ∗ induces a transformation of the set Q.

Let P(Q) stand for the set of all non-empty subsets of the set Q. The function
δ can be further extended to a function P(Q) × Σ∗ → P(Q) (again denoted by
δ) by letting δ(P,w) := {δ(q, w) | q ∈ P} for every non-empty subset P ⊆ Q.
Thus, the triple P(A ) := 〈P(Q), Σ, δ〉 is a DFA again; this DFA is referred to as
the powerset automaton of A .

Whenever we deal with a fixed DFA, we simplify our notation by suppressing
the sign of the transition function; this means that we may introduce the DFA

Supported by the Russian Foundation for Basic Research, grant no. 16-01-00795,
the Ministry of Education and Science of the Russian Federation, project no.
1.1999.2014/K, and the Competitiveness Program of Ural Federal University. The
paper was written during the second author’s stay at Hunter College of the City
University of New York as Ada Peluso Visiting Professor of Mathematics and Sta-
tistics with a generous support from the Ada Peluso Endowment.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Câmpeanu et al. (Eds.): DCFS 2016, LNCS 9777, pp. 1–17, 2016.
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2 E.A. Bondar and M.V. Volkov

as the pair 〈Q,Σ〉 rather than the triple 〈Q,Σ, δ〉 and may write q.w for δ(q, w)
and P.w for δ(P,w).

Given a DFA A = 〈Q,Σ〉, we say that a non-empty subset P ⊆ Q is reachable
in A if P = Q.w for some word w ∈ Σ∗. A DFA is called completely reachable
if every non-empty subset of its state set is reachable.

Let us start with an example that served as a first spark which ignited our
interest in completely reachable automata. A DFA A = 〈Q,Σ〉 is called synchro-
nizing if it has a reachable singleton, that is, Q.w is a singleton for some word
w ∈ Σ∗. Any such word w is said to be a reset word for the DFA. The minimum
length of reset words for A is called the reset threshold of A . In 1964 Černý [8]
constructed for each n > 1 a synchronizing automaton Cn with n states, 2 input
letters, and reset threshold (n−1)2. Recall the definition of Cn. If we denote the
states of Cn by 1, 2, . . . , n and the input letters by a and b, the actions of the
letters are as follows:

i.a :=

{
i if i < n,

1 if i = n;
i.b :=

{
i + 1 if i < n,

1 if i = n.

The automaton Cn is shown in Fig. 1.

1

n 2

n−1 3

a, b

b

b

b

a

a

a

a

. . .

Fig. 1. The automaton Cn

The automata in the Černý series are well-known in the connection with the
famous Černý conjecture about the maximum reset threshold for synchronizing
automata with n states, see [18]. The automata Cn provide the lower bound (n−
1)2 for this maximum, and the conjecture claims that these automata represent
the worst possible case since it has been conjectured that every synchronizing
automaton with n states can be reset by a word of length (n−1)2. The automata
Cn also have other interesting properties, including the one registered here:

Example 1. Each automaton Cn, n > 1, is completely reachable.
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The result of Example 1 was first observed by Maslennikova [15, Proposi-
tion 2], see also [16], in the course of her study of the so-called reset complexity
of regular ideal languages. Later, Don [9, Theorem 1] found a sufficient condition
for complete reachability that applies to the automata Cn. In Sect. 2 we present
another sufficient condition that both simplifies and generalizes Don’s one. We
provide an example showing that our condition is not necessary but we conjec-
ture that it may be necessary for a stronger version of complete reachability.

In Sect. 3 we discuss the problem of recognizing completely reachable
automata. We show PSPACE-completeness of the following decision problem:
given a DFA A = 〈Q,Σ〉 and a subset P ⊆ Q, decide whether or not P is reach-
able in A . We also outline a polynomial algorithm that recognizes completely
reachable automata with 2 input letters modulo the conjecture from Sect. 2.

Given a DFA A = 〈Q,Σ〉, its transition monoid M(A ) is the monoid of
all transformations of the set Q induced by the words in Σ∗. By the syntactic
complexity of A we mean the size of M(A ). Clearly, the syntactic complex-
ity of a completely reachable automaton A with n states cannot be less than
2n −1 since, for each non-empty subset P of the state set, the transition monoid
of A must contain a transformation whose image is P . In Sect. 4 we address
the question of the existence and classification of minimal completely reachable
automata, i.e., completely reachable automata with minimum possible syntactic
complexity. This question has been recently investigated in the realm of trans-
formation monoids by the first author [3,4]; here we translate her results into
the language of automata theory and augment them by determining the input
alphabet size of minimal completely reachable automata.

The present paper is in fact a work-in-progress report, and therefore, each of
Sects. 2, 3, and 4 includes some open questions. Several additional open questions
form Sect. 5; they mostly deal with synchronization properties of completely
reachable automata.

We assume the reader’s acquaintance with some basic concepts of graph
theory, monoid theory, and computational complexity.

2 A Sufficient Condition

If Q is a finite set, we denote by T (Q) the full transformation monoid on Q, i.e.,
the monoid consisting of all transformations ϕ : Q → Q. For ϕ ∈ T (Q), its defect
is defined as the size of the set Q \ Qϕ. Observe that the defect of a product of
transformations is greater than or equal to the defect of any of the factors and
is equal to the defect of a factor whenever the other factors are permutations of
Q. In particular, if a product of transformations has defect 1, then one of the
factors must have defect 1.

Let A = 〈Q,Σ〉 be a DFA. The defect of a word w ∈ Σ∗ with respect to
A is the defect of transformation induced by w. Consider a word w of defect 1.
For such a word, the set Q \ Q.w consists of a unique state, which is called the
excluded state for w and is denoted by excl(w). Further, the set Q.w contains a
unique state p such that p = q1.w = q2.w for some q1 �= q2; this state p is called
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the duplicate state for w and is denoted by dupl(w). Let D1(A ) stand for the
set of all words of defect 1 with respect to A , and let Γ1(A ) denote the directed
graph having Q as the vertex set and the set

E1 := {(excl(w),dupl(w)) | w ∈ D1(A )}

as the edge set. Since we consider only directed graphs in this paper, we call
them just graphs in the sequel. Recall that a graph is strongly connected if for
every pair of its vertices, there exists a directed path from the first vertex to the
second.

Theorem 1. If a DFA A = 〈Q,Σ〉 is such that the graph Γ1(A ) is strongly
connected, then A is completely reachable.

Proof. Take an arbitrary non-empty subset P ⊆ Q. We prove that P is reachable
in A by induction on k := |Q \P |. If k = 0, then P = Q and nothing is to prove
as Q is reachable via the empty word. Now let k > 0 so that P is a proper
subset of Q. Since the graph Γ1(A ) is strongly connected, there exists an edge
(q, p) ∈ E1 that connects Q \ P and P in the sense that q ∈ Q \ P while p ∈ P .
By the definition of E1, there exists a word w of defect 1 with respect to A for
which q is the excluded state and p is the duplicate state. By the definition of the
duplicate state, p = q1.w = q2.w for some q1 �= q2, and since the excluded state
q for w does not belong to P , for each state r ∈ P \ {p}, there exists a unique
state r′ ∈ Q such that r = r′.w. Now letting R := {q1, q2} ∪ {

r′ | r ∈ P \ {p}},
we conclude that P = R.w and |R| = |P | + 1. Then |Q \ R| = k − 1, and the
induction assumption applies to the subset R whence R = Q.v for some word
v ∈ Σ∗. Then P = Q.vw so that P is reachable as required.

Don [9] has formulated a sufficient condition for complete reachability in
the terms of what he called a state map. Consider a DFA A = 〈Q,Σ〉 with
n states in which every subset of size n − 1 is reachable. Let W be a set of n
words of defect 1 with respect to A such that for every subset P ⊂ Q with
|P | = n − 1 there is a unique word w ∈ W with P = Q.w. (Such a set is termed
a 1-contracting collection in [9]). The state map σW : Q → Q induced by W is
defined by

qσW := dupl(w) for w ∈ W such that q = excl(w).

The following is one of the main results in [9]:

Theorem 2. A DFA A is completely reachable if it admits a 1-contracting col-
lection such that the induced state map is a cyclic permutation of the state set
of A .

Even though Theorem 2 is stated in different terms, it is easily seen to con-
stitute a special case of Theorem 1. Indeed, if W is a 1-contracting collection
and σW is the corresponding state map, then each pair (q, qσW ) can be treated
as an edge in E1. Therefore, if σW is a cyclic permutation of Q, then the set of
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edges {(q, qσW ) | q ∈ Q} forms a directed Hamiltonian cycle in the graph Γ1(A )
whence the latter is strongly connected.

We believe that Theorem 1 may have strongly wider application range than
Theorem 2 even though at the moment we do not have any example con-
firming this conjecture. If the conditions of the two theorems were equivalent,
every strongly connected graph of the form Γ1(A ) would possess a directed
Hamiltonian cycle, and this does not seem to be likely.

Now we demonstrate that the condition of Theorem 1 is not necessary.

Example 2. Consider the DFA E3 with the state set {1, 2, 3} and the input letters
a[1], a[2], a[3], a[1,2] that act as follows:

i.a[1] :=

{
2 if i = 1, 2,

3 if i = 3;
i.a[2] :=

{
1 if i = 1, 2,

3 if i = 3;

i.a[3] :=

{
1 if i = 1, 2,

2 if i = 3;
i.a[1,2] := 3 for all i = 1, 2, 3.

The automaton E3 is shown in Fig. 2 on the left. The graph Γ1(E3) is shown in
Fig. 2 on the right; it is not strongly connected. However, it can be checked by
a straightforward computation that the automaton E3 is completely reachable.

1 2

3

a[1]

a[2], a[3]

a[3]

a[1,2]a[1,2]

a[1]a[2], a[3]

a[2], a[1], a[1,2]

1 2

3

Fig. 2. The automaton E3 and the graph Γ1(E3)

The reason of why the converse of Theorem 1 fails becomes obvious if one
analyzes the above proof. In fact, we have proved more than we have formulated,
namely, our proof shows that if a DFA A is such that the graph Γ1(A ) is strongly
connected, then every proper non-empty subset of the state set of A is reachable
via a product of words of defect 1. Of course, this stronger property has no reason
to hold in an arbitrary completely reachable automaton. For instance, in the
automaton E3 of Example 2 the singleton {3} is not an image of any product of
words of defect 1. On the other hand, for the stronger property italicized above,
the condition of Theorem 1 may be not only sufficient but also necessary. We
formulate this guess as a conjecture.
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Conjecture 1. If for every proper non-empty subset P of the state set of a DFA
A there is a product w of words of defect 1 with respect to A such that P = Q.w,
the graph Γ1(A ) is strongly connected.

One can formulate further sufficient conditions for complete reachability in
terms of strong connectivity of certain hypergraphs related to words of defect 2.

3 Complexity of Deciding Reachability

Given a DFA, one can easily decide whether or not it is completely reachable
considering its powerset automaton: a DFA A = 〈Q,Σ〉 is completely reach-
able if and only if Q is connected with every its non-empty subset by a directed
path in the powerset automaton P(A ), and the latter property can be recog-
nized by breadth-first search on P(A ) starting at Q. This algorithm is however
exponential with respect to the size of A , and it is natural to ask whether or
not complete reachability can be decided in polynomial time. First, consider the
following decision problem:

Reachable Subset: Given a DFA A = 〈Q,Σ, δ〉 and a non-empty subset
P ⊆ Q, is it true that P is reachable in A ?

Theorem 3. The problem Reachable Subset is PSPACE-complete.

Proof. The fact that Reachable Subset is in the class PSPACE is easy and
known, see, e.g., [5, Lemma 6,item 1].

To prove PSPACE-hardness of Reachable Subset, we reduce to it in
logarithmic space the well-known PSPACE-complete problem FAI (Finite
Automata Intersection, see [14]). Recall that an instance of FAI consists
of k DFAs Aj = 〈Qj , Σ, δj〉, j = 1, . . . , k, with disjoint state sets and a com-
mon input alphabet. In each DFA Aj an initial state sj ∈ Qj and a final state
tj ∈ Qj are specified; a word w ∈ Σ∗ is said to be accepted by Aj if δj(sj , w) = tj .
The question of FAI asks whether or not there exists a word w ∈ Σ∗ which is
simultaneously accepted by all automata A1, . . . ,Ak.

Now, given an instance of FAI as above, we construct the following instance
(A , P ) of Reachable Subset. The state set of the DFA A is Q :=

⋃k
j=1 Qj ;

the input alphabet of A is Σ with one extra letter ρ added. The transition
function δ : Q × (Σ ∪ {ρ}) → Q is defined by the rule

δ(q, a) :=

{
δj(q, a) if a ∈ Σ and q ∈ Qj ,

sj if a = ρ and q ∈ Qj .
(1)

Expressing this rule less formally, it says that, given a state q ∈ Q, one first should
find the index j ∈ {1, . . . , k} such that q belongs to Qj ; then every letter a ∈ Σ
acts on q in the same way as it does in the automaton Aj while the added letter ρ
sends q to the initial state sj of Aj (so ρ artificially ‘initializes’ each Aj). Observe
that each set Qj is closed under the action of each letter in Σ ∪ {ρ}. Finally, we
set P := {t1, . . . , tk}, that is, P consists of the final states of A1, . . . ,Ak.
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We claim that the subset P is reachable in A if and only if there exists a word
w ∈ Σ∗ which is simultaneously accepted by all automata A1, . . . ,Ak. Indeed,
if such a word w exists, then δ(Q, ρw) = P since we have δ(Q, ρ) = {s1, . . . , sk}
by (1) and δ(sj , w) = δj(sj , w) = tj for each j = 1, . . . , k by the choice of w.
Conversely, suppose that P is reachable in A , that is, δ(Q,u) = P for some
word u ∈ (Σ ∪ {ρ})∗. Then we must have δj(Qj , u) = {tj} for each j = 1, . . . , k.
If the word u has no occurrence of the letter ρ, then u ∈ Σ∗ and δj(sj , u) = {tj}
for each j = 1, . . . , k so that u is simultaneously accepted by all automata
A1, . . . ,Ak. Otherwise we fix the rightmost occurrence of ρ in u and denote by
w the suffix of u following this occurrence so that w ∈ Σ∗ and u = vρw for
some v ∈ (Σ ∪ {ρ})∗. Then δj(Qj , vρ) = {sj} and δj(s, w) = δ(Qj , vρw) = {tj}
for each j = 1, . . . , k. We conclude that w is simultaneously accepted by all
automata A1, . . . ,Ak. This completes the proof of our claim and establishes the
reduction which obviously can be implemented in logarithmic space.

The reduction used in the above proof is an adaptation of a slightly more
involved log-space reduction used by Brandl and Simon [5, Section 3] to show
PSPACE-hardness of a natural problem about transformation monoids presented
by a bunch of generating transformations.

In connection with Theorem 3, an interesting result by Goralč́ık and
Koubek [13, Theorem 1] is worth being mentioned. If stated in the language
adopted in the present paper, their result says that, given a DFA A = 〈Q,Σ〉
with |Q| = n, |Σ| = m and a subset P ⊆ Q with |P | = k, one can decide in
O

(
(k + 1)nk+1m

)
time whether or not there exists a word w ∈ Σ∗ such that

P = Q.w = P.w. (The difference from our definition of reachability is that here
one looks for a word not only having the subset P as its image but also act-
ing on P as a permutation.) Thus, if the size of the target set P is treated as a
parameter, the algorithm from [13] becomes polynomial. One can ask if a similar
result holds for the parameterized version of Reachable Subset formulated
as follows:

Reachable Subsetk: Given a DFA A = 〈Q,Σ, δ〉 and a non-empty subset
P ⊆ Q of size k, is it true that P is reachable in A ?

For k = 1, the cited result by Goralč́ık and Koubek applies since, for P being
a singleton, any word w ∈ Σ∗ such that P = Q.w automatically satisfies the
additional condition P.w = P . For k > 1, the question about the complexity
of Reachable Subsetk is open. The reduction from the proof of Theorem 3
cannot help here because the size k of the subset P in this reduction is equal to
the number of DFAs in the instance of FAI from which we depart, and for each
fixed k, there is a polynomial algorithm that decides on all instances of FAI
with k automata.

Now we return to the question of whether or not complete reachability can be
decided in polynomial time. It should be noted that Theorem 3 does not imply
any hardness conclusion here: while checking reachability of individual subsets
is PSPACE-complete, checking reachability of all non-empty subsets may still
be polynomial even though the latter problem consists of exponentially many
individual problems! One can illustrate this phenomenon of ‘simplification due
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to collectivization’ with the following example. If is known [14] that the follow-
ing membership problem for transition monoids of DFAs is PSPACE-complete:
given a DFA A = 〈Q,Σ〉 and a transformation ϕ : Q → Q, does ϕ belongs to
the transition monoid M(A ), i.e., is there a word w ∈ Σ∗ such that qϕ = q.w
for all q ∈ Q? On the other hand, one can decide in polynomial time whether
or not every transformation of the state set belongs to the transition monoid of
a given DFA. Indeed, given a DFA A = 〈Q,Σ〉, we partition the alphabet Σ
as Σ = Π ∪ Δ, where Π consists of all letters that act on Q as permutations
and Δ contains all letters with non-zero defect. First we inspect Δ: if no letter
in Δ has defect 1, then it is clear that the monoid M(A ) contains no transfor-
mation of defect 1 (see the observation registered at the beginning of Sect. 2).
Further, we invoke twice the polynomial algorithm by Furst et al. [11] for the
membership problem in permutation groups: we fix a cyclic permutation and
a transposition of Q and check if they belong to the permutation group on Q
generated by the permutations induced by the letters in Π. If the answers to
all these queries are affirmative, then M(A ) contains a cyclic permutation, a
transposition, and a transformation of defect 1, and it is well-known that any
such trio of transformations generates the full transformation monoid T (Q), see,
e.g., [12, Theorem 3.1.3].

Thus, the complexity of deciding complete reachability for a given DFA
remains unknown so far. We expect this problem to be computationally hard
for automata over unrestricted alphabets while for automata with a fixed num-
ber of letters a polynomial algorithm may exist. For instance, if Conjecture 1
holds true, there exists a polynomial algorithm that recognizes completely reach-
able automata among DFAs with 2 input letters. Indeed, let A = 〈Q, {a, b}〉 be
a DFA with n states, n > 1. Every subset of the form Q.w, where w is a non-
empty word over {a, b}, is contained in either Q.a or Q.b. At least one of the
letters must have defect 1 since no subset of size n − 1 is reachable otherwise,
and if the other letter has defect greater than 1, only one subset of size n − 1 is
reachable. Hence, if A is a completely reachable automaton, one of its letters has
defect 1 while the other has defect at most 1. Therefore for each proper reachable
subset P ⊂ Q, there is a product w of words of defect 1 with respect to A such
that P = Q.w. In view of Theorem 1, if Conjecture 1 holds true, then complete
reachability of A is equivalent to strong connectivity of the graph Γ1(A ). It
remains to show that for automata with 2 input letters, the latter condition can
be verified in polynomial time.

Once the graph Γ1(A ) is constructed, checking its strong connectivity in
polynomial time makes no difficulty. However, it is far from being obvious that
Γ1(A ), even though it definitely has polynomial size, can always be constructed
in polynomial time. Indeed, by the definition, the edges of Γ1(A ) arise from
transformations of defect 1 in the transition monoid of A , and for an automaton
with n states, the number of transformations of defect 1 in M(A ) may reach
n!

(
n
2

)
. Our algorithm depends on some peculiarities of automata with 2 input

letters. It incrementally appends edges to a spanning subgraph of Γ1(A ) in a
way such that one can reach a conclusion about strong connectivity of Γ1(A ) by
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examining only polynomially many transformations of defect 1. In the following
brief description of the algorithm, we use the notation introduced in Sect. 2 in
the course of defining the graph Γ1(A ).

Thus, again, let A = 〈Q, {a, b}〉 be a DFA with n states, n > 1. For certainty,
let a stand for the letter of defect 1. If b also has defect 1, then at most two
subsets of size n − 1 are reachable (namely, Q.a and Q.b), and A can only be
completely reachable provided that n = 2. The automaton A is then nothing
but the classical flip-flop, see Fig. 3. Beyond this trivial case, b must be a per-
mutation of Q whence bn acts on Q as the identity transformation. Then the
set {excl(w) | w ∈ D1(A )} of the states at which edges of Γ1(A ) may originate
is easily seen to coincide with the set {excl(a), excl(ab), . . . , excl(abn−1)}. For
Γ1(A ) to be strongly connected, it is necessary that every vertex is an origin
of an edge whence the latter set must be equal to Q. Taking into account that
excl(abk) = excl(a).bk for each k = 1, . . . , n − 1, we conclude that b must be
a cyclic permutation of Q. It is easy to show that excl(w).b = excl(wb) and
dupl(w).b = dupl(wb) for every word w of defect 1, and therefore, b acts as a
permutation on the edge set E1 of Γ1(A ).

1a 2 b

b

a

Fig. 3. Filp-flop

The set E1 contains the edges

(excl(a),dupl(a)), . . . , (excl(abn−1),dupl(abn−1)). (2)

Since dupl(abk) = dupl(a).bk for each k = 1, . . . , n − 1, the edges in (2) are the
‘translates’ of the edge (excl(a),dupl(a)). Any two edges in (2) start at different
vertices and end at different vertices, whence for some d such that d < n and d
divides n, the edges in (2) form d directed cycles, each of size n

d . If d = 1, we can
already conclude that the graph Γ1(A ) is strongly connected. If d > 1, denote
the cycles by C1, . . . , Cd and consider the words a2, aba, . . . , abn−1a. It can be
easily shown that exactly two of them have defect 1; let us denote these two
words by w1 and w2. Since w1 and w2 end with a, we have Q.w1 = Q.w2 = Q.a
whence excl(w1) = excl(w2) = excl(a). Thus, the edges (excl(w1),dupl(w1)) and
(excl(w2),dupl(w2)) start at the vertex excl(a) which can be assumed to belong
to the cycle C1. If also the ends of these edges lie in C1, one can show that
no further edge in E1 can connect C1 with another cycle whence C1 forms a
strongly connected component of Γ1(A ). We then conclude that Γ1(A ) is not
strongly connected.

Now suppose that the edge (excl(wi),dupl(wi)) where i = 1 or i = 2 connects
the vertex excl(a) with a vertex from the cycle Cj where j > 1. Then we append
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the edge and all its translates (excl(wib
k),dupl(wib

k)), k = 1, . . . , n − 1, to
C1, . . . , Cd; in the case where both (excl(w1),dupl(w1)) and (excl(w2),dupl(w2))
leave C1, we append both these edges and all their translates. After that, we get
larger strongly connected subgraphs D1, . . . , D� isomorphic to each other, where

 < d and 
 divides d. If 
 = 1, then the graph Γ1(A ) is strongly connected. If

 > 1, we iterate by considering the words wia,wiba, . . . , wib

n−1a. Eventually,
either we reach a strongly connected spanning subgraph of Γ1(A ), and then the
graph Γ1(A ) is strongly connected as well, or on some step the process gets
stacked, which means that Γ1(A ) has a proper strongly connected component,
and therefore, is not strongly connected.

The described process branches, and in the worst case the number of words
of defect 1 to be analyzed doubles at each step. On the other hand, since the
steps are indexed by a chain of divisors of n, the number of steps does not exceed
log2 n + 1. Thus, executing the algorithm, we have to analyze at most

1 + 2 + 4 + · · · + 2�log2 n�+1 = O(n)

words of maximum length O(n log2 n), and therefore, the algorithm can be imple-
mented in polynomial time.

4 Minimal Completely Reachable Automata

Syntactic complexity of a regular language is a well established concept that has
attracted much attention lately, see, e.g., [6,7]. It can be defined as the size of
the transition monoid of the minimal DFA recognizing the language. It appears
to be worthwhile to extend this concept to automata by defining the syntactic
complexity of an arbitrary DFA A as the size of its transition monoid M(A ).
In fact, if one thinks of a DFA as a computational device rather than acceptor,
its transition monoid can be thought of as the device’s ‘software library’ since
the monoid contains exactly all programs (transformations) that the automaton
can execute. From this viewpoint, measuring the complexity of an automaton
by the size of its ‘software library’ is fairly natural.

As already mentioned in Sect. 1, the syntactic complexity of a completely
reachable automaton with n states cannot be less than 2n − 1. It turns out that
this lower bound is tight if one considers automata over unrestricted alphabet.
We present now a construction for completely reachable automata with n states
and syntactic complexity 2n − 1; for short, we call them minimal completely
reachable automata.

Our construction produces minimal completely reachable automata from full
binary trees satisfying certain subordination conditions. Recall that a binary
tree is said to be full if each its vertex v either is a leaf or has exactly two
children that we refer to as the left child or the son of v and the right child
or the daughter of v. (Thus, all vertices except the root have a gender.) It is
well known (and easy to verify) that a full binary tree with n leaves has 2n − 1
vertices. As full binary trees are the only trees occurring in this paper, we call
them just trees in the sequel.
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If Γ is a tree and v is a vertex in Γ , we denote by Γv the subtree of Γ rooted
at v. The span of v, denoted span(v), is the number of leaves in the subtree Γv.
Figure 4 shows a tree with vertices labelled by their spans.

1

1 1

2

3

1 1

2

5 1

6

Fig. 4. An example of a tree with spans of its vertices shown

By a homomorphism between two trees Γ1 and Γ2 we mean a map from the
vertex set of Γ1 into the vertex set of Γ2 that sends the root of Γ1 to the root of
Γ2 and preserves the parent–child relation. Given two trees Γ1 and Γ2, we say
that Γ1 subordinates Γ2 if there exists a 1-1 homomorphism ξ : Γ1 → Γ2 such
that span(v) ≤ span(vξ) for every vertex v of Γ1. If u and v are two vertices of
the same tree Γ , we say that u subordinates v if the subtree Γu subordinates the
subtree Γv. A tree is said to be respectful if it satisfies two conditions:

(S1) if a male vertex has a nephew, the nephew subordinates his uncle;
(S2) if a female vertex has a niece, the niece subordinates her aunt.

For an illustration, the tree shown in Fig. 4 satisfies (S1) but fails to satisfy
(S2): the daughter of the root has a niece but this niece does not subordinates
her aunt. On the other hand, the tree shown in Fig. 5 is respectful. (In order
to ease the inspection of this claim, we have shown the uncle–nephew and the
aunt–niece relations in this tree with dotted and dashed arrows respectively.)

It is easy to show that there exist respectful trees with any number of leaves.
In the following table (borrowed from [4]) we present the numbers of respectful
trees with up to 10 leaves.

Number of leaves 1 2 3 4 5 6 7 8 9 10

Number of respectful trees 1 1 2 3 6 10 18 32 58 101

We are not aware of any closed formula for the number of respectful trees
with a given number of leaves.
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1

1 1

2

3

1 1

2

5 2

7

1 1

Fig. 5. An example of a respectful tree

In our construction, we use certain markings of trees by intervals of the set
N of positive integers considered as a chain under the usual order:

1 < 2 < · · · < n < . . . .

If i, j ∈ N and i ≤ j, the interval [i, j] is the set {k ∈ Xn | i ≤ k ≤ j}. We
write [i] instead of [i, i]. By the span of an interval we mean the number of its
elements. Now, a faithful interval marking of a tree Γ is a map μ from the vertex
set of Γ into the set of all intervals in N such that for each vertex v,

– the span of the interval vμ is equal to span(v);
– if vμ = [i, j] and s and d are respectively the son and the daughter of v, then

sμ = [i, k] and dμ = [k + 1, j] for some k such that i ≤ k < j.

It easy to see that every tree Γ admits a faithful interval marking which is
unique up to an additive translation: given any two markings μ, μ′ of Γ , there
is an integer m such that vμ = vμ′ + m for every vertex v. Observe that if
μ is a faithful interval marking of a tree Γ and v is a vertex of Γ , then the
restriction of μ to the subtree Γv is a faithful interval marking of the latter.
Figure 6 demonstrates a faithful interval marking of the tree from Fig. 5.

We have prepared everything and can now present our construction.

Construction T2A (trees to automata). For each respectful tree Γ with
n leaves and each its faithful interval marking μ, we construct an automaton
denoted by Aμ(Γ ). The states of Aμ(Γ ) are the elements of the interval rμ,
where r stands for the root of Γ , and the input alphabet of Aμ(Γ ) consists of
2n−2 letters av, one for each non-root vertex v of Γ . To define the action of the
letters, we proceed by induction on n. For n = 1, that is, for the trivial tree Γ
with one vertex r and no edges, Aμ(Γ ) is the trivial automaton with one state
and no transitions, so that nothing has to be defined.

Now suppose that n > 1. Take any non-root vertex v of Γ ; we have to define
the action of the letter av on the elements of the interval rμ. If s and d are
respectively the son and the daughter of r, the interval rμ is the disjoint union
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[1]

[2] [3]

[2, 3]

[1, 3]

[4] [5]

[4, 5]

[1, 5] [6, 7]

[1, 7]

[6] [7]

Fig. 6. A faithful interval marking of the tree from Fig. 5

of sμ and dμ. If v �= s and v �= d, then v is a non-root vertex in one of the
subtrees Γs or Γd. These two cases are symmetric, so that we may assume that
v belongs to Γs. By the induction assumption applied to Γs and its marking
induced by μ, the action of av is already defined on the states from the interval
sμ; we extend this action to the whole interval rμ by setting y.av := y for each
y ∈ dμ.

It remains to define the action of the letters as and ad. Again, by symmetry,
it suffices to handle one of these cases, so that we define that action of as. If s
has no nephew in Γ , then d is a leaf and dμ = [m] for some m ∈ N. Then we let
x.as := m for each x ∈ rμ. Otherwise let t be the nephew of s. The subordination
condition (S1) implies that there exists a 1-1 homomorphism ξ : Γt → Γs. It is
easy to see that the intervals (
ξ)μ, where 
 runs over the set of all leaves of the
tree Γt, form a partition of the interval sμ. Now we define the action of as on sμ
as follows: if a number x ∈ sμ belongs to (
ξ)μ for some leaf 
 of Γt and 
μ = [y]
for some y ∈ N, we let x.as := y.

By the induction assumption applied to the subtree Γd and its marking
induced by μ, the action of the letter at is already defined on the states from
the interval dμ; now we define the action of as on dμ by setting y.as := y.at for
all y ∈ dμ. This completes our construction.

The reader may find it instructive to work out Construction T2A on a con-
crete example. For the tree from Figs. 5 and 6 used for illustrations above, com-
puting all 12 input letters of the corresponding automaton would be rather
cumbersome but one can check, for instance, that the letters as and ad act on
the set [1, 7] as follows:

as =
(

1 2 3 4 5 6 7
6 6 6 6 6 6 7

)
ad =

(
1 2 3 4 5 6 7
1 1 1 2 3 4 5

)
.

Those who prefer a complete example can look at the DFA E3 from Example 2:
the automaton was in fact derived by Construction T2A from the respectful tree
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[1] [2]

[1, 2] [3]

[1, 3]

Fig. 7. The tree behind the automaton E3

with 3 leaves shown in Fig. 7. In particular, this explains our choice of notation
for the input letters of E3 that perhaps had slightly puzzled the reader when she
or he encountered this automaton in Sect. 2. By the way, the flip-flop in Fig. 3
also can be obtained by Construction T2A (from the unique tree with 2 leaves).

Observe that all automata constructed from different markings of the same
respectful tree are isomorphic since passing to another marking only results in a
change of the state names. Taking this into account, we omit the reference to μ
in the notation and denote the automaton derived from any marking of a given
respectful tree Γ simply by A (Γ ).

We say that two DFAs A = 〈Q,Σ, δ〉 and B = 〈Q,Δ, ζ〉 are syntactically
equivalent if their transition monoids coincide. Now we are ready for the main
result of this section.

Theorem 4. 1. For each respectful tree Γ , the automaton A (Γ ) is a minimal
completely reachable automaton.

2. Every minimal completely reachable automaton is syntactically equivalent to
an automaton of the form A (Γ ) for a suitable respectful tree Γ .

3. Every minimal completely reachable automaton with n states has at least 2n−2
input letters.

Claims 1 and 2 in Theorem 4 are essentially equivalent to the main results
of the papers [3,4] by the first author who has used a slightly different construc-
tion expressed in the language of transformation monoids: given a marking of a
respectful tree Γ she constructs the transition monoid of A (Γ ) rather than the
automaton itself. Claim 3 is new but we have not included its proof here due
to the space limitations because the only proof we have at the moment requires
reproducing several concepts and results from [3,4] and restating them in the
language adopted in the present paper. It is very tempting to invent a direct
proof of this claim that would bypass rather bulky considerations from [3,4].

Theorem 4 leaves widely open the question about lower bounds for syntactic
complexity of completely reachable automata with restricted alphabet. In par-
ticular, the case of completely reachable automata with 2 input letters both is of
interest and seems to be tractable. The latter conclusion follows from our analy-
sis of completely reachable automata with 2 input letters at the end of Sect. 3
which demonstrates that such DFAs have rather a specific structure.
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We say that a DFA A = 〈Q,Σ, δ〉 induces a DFA B = 〈Q,Δ, ζ〉 on the
same state set if the transition monoid of A contains that of B. Equivalently,
this means that for every letter b ∈ Δ, there exists a word w ∈ Σ∗ such that
ζ(q, b) = δ(q, w) for every q ∈ Q. This relation between automata plays an
essential role in the theory of synchronizing automata, see, e.g., [2]. With respect
to completely reachable automata, the following question is of interest: is it
true that every completely reachable automaton induces a minimal completely
reachable automaton? In other words, is it true that an automaton of the form
A (Γ ) ‘hides’ within every completely reachable automaton?

5 More Open Questions

Since completely reachable automata are synchronizing, it is natural to ask what
is the maximum reset threshold for completely reachable automata with n states.
In view of Example 1, the lower bound (n−1)2 for this maximum is provided by
the Černý automata Cn. For completely reachable automata with 2 input letters
this bound is tight because, except for the flip-flop, such automata have a letter
that acts as a cyclic permutation of the state set, and therefore, Dubuc’s result
[10] applies to them. Some partial results about synchronization of completely
reachable automata can be found in [9], but the general problem of finding the
maximum reset threshold for completely reachable automata with n states and
unrestricted alphabet remains open.

The problem discussed in the previous paragraph basically asks what is the
minimum length of a word that reaches a singleton. For completely reachable
automata, a similar question makes sense for an arbitrary non-empty subset.
Thus, we suggest to investigate the minimum length of a word that reaches
a subset with m element in a completely reachable automaton with n states
as a function of n and m. Don [9, Conjecture 2] has formulated a very strong
conjecture that implies the upper bound n(n − m) on this length. Observe that
if this upper bound indeed holds, then completely reachable automata satisfy
the Černý conjecture. To see this, take a completely reachable automaton A =
〈Q,Σ〉 with n states; it should possess a letter a ∈ Σ such that q.a = q′.a for
two different states q, q′ ∈ Q. If a word w ∈ Σ∗ of length at most n(n − 2) is
such that Q.w = {q, q′}, the word wa is a reset word for A and has length at
most n(n − 2) + 1 = (n − 1)2.

Another intriguing problem about completely reachable automata suggested
by the theory of synchronizing automata is a variant of the Road Coloring Prob-
lem. We recall notions involved there. A road coloring of a finite graph Γ consists
in assigning non-empty sets of labels (colors) from some alphabet Σ to edges of Γ
such that the label sets assigned to the outgoing edges of each vertex form a par-
tition of Σ. Colored this way, Γ becomes a DFA over Σ; every such DFA is called
a coloring of Γ . Figure 8 shows a graph and two of its colorings by Σ = {a, b},
one of which is the Černý automaton C4. The Road Coloring Problem, recently
solved by Trahtman [17], had asked which strongly connected graphs admit syn-
chronizing colorings, i.e., colorings that are synchronizing automata. It turns
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Fig. 8. A graph and two of its colorings

out that, as it was conjectured in [1], the necessary and sufficient condition for a
strongly connected graph to possess a synchronizing coloring is that the greatest
common divisor of lengths of all directed cycles in the graph should be equal
to 1. The latter property is called aperiodicity or primitivity.

An analogous question makes sense for completely reachable automata.
Namely, call a coloring of a graph completely reachable if it yields a completely
reachable automaton. Our problem then consists in characterising graphs that
admit completely reachable colorings. Such graphs must be strongly connected
and primitive since every completely reachable automaton is strongly connected
and synchronizing. However, it is easy to produce an example of a strongly con-
nected primitive graph that has no completely reachable coloring; such a graph
is shown in Fig. 9 on the left. Moreover, there are interesting phenomena that
have no parallel in the theory of synchronizing automata; for instance, there
exist graphs that have no completely reachable coloring with 2 letters but admit
such a coloring with 3 letters; an example of such a graph is presented in the
center of Fig. 9 while the corresponding coloring is shown on the right.

1 2

3

1 2

4 3

1 2

4 3

b, c

c

a, b, c a, b

a, b, c

a

Fig. 9. The left graph has no completely reachable coloring; the central graph has no
completely reachable coloring with 2 letters but has a completely reachable coloring
with 3 letters shown in the right
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Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27.
Springer, Heidelberg (2008)

http://arxiv.org/abs/1507.06070
http://arxiv.org/abs/1404.2816


Heapability, Interactive Particle Systems, Partial
Orders: Results and Open Problems

Gabriel Istrate1,2(B) and Cosmin Bonchiş1,2
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Abstract. We outline results and open problems concerning partition-
ing of integer sequences and partial orders into heapable subsequences
(previously defined and established by Byers et al.).
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1 Introduction

Suppose a1, a2, . . . , an is a sequence of integers. Can one insert the elements
of the sequence, successively, as the leaves of a binary tree that satisfies the
min heap property? This is possible, for instance, for sequence 1 3 2 7 6 5 4
but not for sequence 5 4 3 2 1. Byers et al. [1] (who introduced the notion),
called such a sequence heapable. They provided a polynomial time algorithm to
recognize heapability (though, interestingly, complete heapability, i.e. heapability
on a complete binary tree is NP-complete).

One can view the notion of heapability as a (parametric) relaxation of the
notion of monotonicity. Indeed, heapability of a sequence requires the fact that
the smallest element comes first. The next two elements may, however, arive in
any order and the constraints on element ordering become progressively looser.
The view of heapability as a generalization of monotonicity, connects the study of
heapable sequences to the rich theory built in connection with longest increasing
subsequence [2].

In [3] we studied the partition of random permutations into heapable
sequences. Similar results were obtained independently in [4]. Perhaps the most
exciting finding was the scaling of the number of classes in a partition of a ran-
dom permutation into heapable subsequences, conjectured to scale as φ · ln(n),
with φ the golden ratio: in Sect. 5 we explain and motivate this conjecture.

This extended abstract continues this line of inquiry. We present some results
and outline several open questions related to the problem of extending notions
related to heapability from numbers to partial orders. More topics will be men-
tioned in the conference presentation.
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2 Preliminaries

A (binary min-)heap is a binary tree, not necessarily complete for the purposes
of this paper, such that A[parent[x]] ≤ A[x] for every non-root node x. If instead
of binary we require the tree to be k-ary we get the concept of k-ary min-heap.

A partially ordered set P = (X,≺) is called k-heapable if there exists some
k-ary tree T whose nodes are in bijection with the elements of X, such that for
every non-root node Xi and parent Xj , Xj ≺ Xi and j < i. In particular a
2-heapable partial order will simply be called heapable.

We easily recover the case of permutations, dealt with in [3], as follows: given
permutation π ∈ Sn, we define partial order ≺ on {1, 2, . . . , n} by i ≺ j iff i < j
and π[i] < π[j].

The height of partial order P, denoted by h(P ), is the length of the longest
chain (totally ordered subset) of P . The width of P is defined as the size of the
largest antichain of P . By Dilworth’s Theorem [5], w(P ) is equal to the small-
est number of elemenst in a partition of P into chains. Finally, the dimension
of P is the smallest number r such that the partial order is the intersection of r
permutations.

Example 1. Let X = {I1, I2, . . . Ik} be a finite set of closed intervals on the real
line, with the partial order I � J given by end(I) ≤ start(J). By the Gallai
theorems for intervals [6], height(P ) is equal to the minimal number of points
that pierce (i.e. intesect) every interval in P . On the other hand width(P ) is
equal to the maximum cardinality of a set of intervals with nonempty joint
intersection.

We give a parametric generalization of height(P ) and width(P ) as follows:

Definition 1. Given an integer k ≥ 1, a subset Q ⊂ P is a k-chain if nodes
of Q are the vertices of a k-ary �-ordered subtree of P (not necessarily induced).

The k-height of P is defined to be the size of the largest k-ary chain of P .
The k-width of P is defined as the minimal number of classes in a partition
of P into k-chains.

We will employ random models of partial orders of fixed dimension. A com-
plete discussion is beyond the scope of the paper [7]. Instead, we recall the
following popular model Pd(n) [8]: given constant d ≥ 1 we choose random par-
tial order ≺ as the intersection of d permutations π1, π2, . . . , πd chosen uniformly
at random with repetitions from Sn. In other words, given i, j ∈ {1, 2, . . . , n}
define

i ≺ j ⇐⇒ π1(i) < π1(j), π2(i) < π2(j), . . . , πd(i) < πd(j).

An equivalent mode to generate a partial order P from Pd(n) is the following:
choose n points P1, P2, . . . Pn,, Pi = (xi

1, . . . , x
i
d), uniformly at random from the

hypercube [0, 1]d. Define

i ≺ j ⇐⇒ π1(i) < π1(j), π2(i) < π2(j), . . . , πd(i) < πd(j).

We will refer to this alternate description as model (II).
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3 The Computational Complexity of Generalized Height
and Width

Open Problem 1. What is the computational complexity of the following deci-
sion problem:

– [GIVEN:] Partial order P = (X,≺) and integer r ≥ 1.
– [TO DECIDE:] Can X be partioned into at most r k-chains? That is, is

inequality k-w(P ) ≤ r true?

Even the case k = 1 (a.k.a. the longest heapable subsequence of a random
permutation) is still open [1]. In contrast, the k-width of a finite partial order
can be computed in polynomial time:

Theorem 1. For every fixed k ≥ 1 there is a polynomial time algorithm that,
given finite partial order P = (X,�) as input, computes the value k-w(P).

Proof. Define the following boolean integer programming problem: define a vari-
able Xp,q for every pair p ≺ q ∈ P . Intuitively Xp,q = 1 if p is the parent of q in
the k-chain decomposition of P , 0 otherwise.

Every integral solution to this system correponds to a decomposition of P
into k-ary trees: indeed, every node has at most one parent in the decomposition
induced by variables Xp,q = 1, and at most k children.

Since in each tree the number of edges is one less than the number of vertices,
in any decomposition of P into k-chains, the number of such chains is n− ∑

p≺q
Xp,q.

So to compute the k-width of P we have to solve the following integer
program: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(
∑
p≺q

Xp,q)

∑
q:p≺q

Xp,q ≤ k,∀p ∈ X∑
p:p≺q

Xp,q ≤ 1,∀q ∈ X

Xp,q ∈ {0, 1}
Consider the linear programming relaxation of the system above, obtained

by replacing condition Xp,q ∈ {0, 1} by Xp,q ≥ 0. The matrix of the system is
totally unimodular, since it coincides with the vertex-edge incidence matrix of
the bipartite graph induced by partial order ≺. Such bipartite matrices are well-
known to be totally unimodular [9]. So linear programming will find an integral
solution to the system in polynomial time. ��
Remark 1. The argument above owes much to a discussion with János Balogh
from Szeged: we told him a restricted version of the problem, that of scheduling
intervals on binary trees. This amounts to the setting of Example 1. At the time
we had a direct (somewhat complicated) proof of this special case. He came up
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with a (different but related) argument, using network flows. Subsequently we
came with this third proof for the general setting, obviously related to his.

Both our original argument and his extend to the general case, and will be
jointly presented somewhere else. In retrospect, the fact that there are several
distinct proofs is not surprising: Theorem 1 is obviously related to Dilworth’s
Theorem, and the three existing proofs (direct, using network flows, using linear
programming) can be seen as extensions of the corresponding arguments for
proving this latter result.

4 The Asymptotic Behavior of the Average k-height
and k-width

The problem of computing the 1-width of a random partial order of dimension
2 is a variant of the classical problem of computing the longest increasing sub-
sequence of a random permutation. The correct asymptotic behavior is 2

√
n,

[10–13] and substantially more is known.
The (1-)width and (1-)height of a partial order have also been studied in other

dimensions: notable partial results are due to Winkler [8], who showed that the
correct order of magnitude for the height of a partial order of dimension k is
Θ(n1/k). Further results were obtained by Brightwell [14].

As for the height, the 1-height of a d-dimensional partial order was consid-
ered by Winkler [8], and then determined by Bollobás and Winkler [15] to be
approximately ck · n1/k for some constant ck > 0.

In [3] we gave a simple simple lower bound valid for all values of the
k-width(P), where P is a random permutation of width 2. We extend this argu-
ment to all dimensions as follows:

Theorem 2. For every fixed k, n, d ≥ 1

EP∈Pd(n)[k-w(P)] ≥ lnk−1(n)
(k − 1)!

· (1 + o(1)). (1)

Proof. For P ∈ Pd(n), generated according to model (II) as a sequence of random
points P = (P1, P2, . . . , Pn) ∈ [0, 1]d we define the set of its minima as

Min(P ) = {j ∈ [n] : Pi < Pj for no 1 ≤ i < j}.

Clearly k-width(P)≥ |Min(P )|. Indeed, every minimum of P must determine
the starting of a new heap, no matter what k is. Now we use an inequality proved
by Winkler [8]:

EP∈Pd(n)[|Min(P )|] ≥ lnk−1(n)
(k − 1)!

· (1 + o(1)).

��
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Open Problem 2. Is there a constant ck,d > 0 such that

lim
n→∞

EP∈Pd(n)[k-w(P)]
lnk−1(n)

= ck,d ? (2)

As for the k-height, a result from Byers et al. can be recast as h(P ) = n−o(n)
for almost all π ∈ Sn. We easily generalize this result to random d-dimensional
partial orders as follows:

Theorem 3. For all d ≥ 2, k ≥ 1 and almost all permutations P ∈ Pd(n) we
have k-h(P ) = n − o(n).

Proof. A straightforward adaptation of the argument of Byers et al. [1]. Rather
than with k-dimensional permutations, we will work with random points in [0, 1]d

(model II).
First one shows that w.h.p. k-h(P) = Ω(n), using a similar idea to the one

in [1]: we consider division of P into subcubes [0, 1/2]d and [1/2, 1]d, respectively.
Let A1 be the suborder of P determined by the restriction to the first n/2
elements and first subcube. W.h.p. LHS(A1) = Θ(n1/d). This follows from the
result of Bollobás and Winkler [15], together with the result of Bollobás and
Brightwell [16], that provides concentration of measure for LIS(A1).

Now we organize the subsequence A1 into a k-ary tree W with Ω(n1/d) leaves
and continue to add elements of subsequence A2, correponding to points in the
second half; we assume we add elements greedily, in the first possible subheap
rooted at a node of A1 on the frontier of W , stopping when we can no longer
place a node in the tree. With high probability this happens after adding Ω(n)
nodes from A2: to see this we employ the observation that the stopping of the
algorithm implies the existence of a decreasing sequence of A2 of size Ω(n1/d).
We then apply the concentration inequality [16] for LDS(A2).

For the second, rescaled part of the proof, we search for constants α, β > 0
such that w.h.p. the subsequence B1, consisting of points among the first nα ones
that belong to the rectangle [0, n−β ]d has w.h.p. k-width Ω(n1/d+ε). For this to
happen, we take α, β so that α − d · β > 1/d. It is always possible to find some
positive α, β with this property, e.g. α = 1 − 1

2d2 , β = 1
2d3 . Now subsequence B2

consisting of numbers in the rectangle [n−β , 1]d among the last n − nα ones has
w.h.p. its LDS of size Θ(n1/d). Thus sequence B2 can w.h.p. be placed in its
entirety on the tree W . Ther remaining parallelipipeds have o(1) volume, hence
a sublinear number of points. The rest of the details are as in [1]. ��

Let us note that a random d-dimensional partial order P can be regarded,
by definition, as a subset (thinning) of a (d − 1)-dimensional partial order Q:
if P1, P2, . . . , Pd are the permutations defining P , simply define Q to be the
intersection of P1, P2, . . . , Pd−1. So the previous result can be interpreted as the
statement that no constant amount of thinning is enough to reduce the width
of a random permutation to sublinear.
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5 The Special Case d = 2

In the special case of heapable sequences and random permutations (d = 2) we
have better insights on the constants ck,d from the above open problem:

Conjecture 1. We have c2,2 = φ, with φ = 1+
√
5

2 the golden ratio. More generally

ck,2 =
1
φk

, (3)

where φk is the unique root in (0, 1) of equation Xk + Xk−1 + . . . + X = 1.

Open Problem 3. Prove this conjecture.

In the next session we sketch some of the experimental and nonrigor-
ous theoretical evidence for this result. The calculations are nonrigorous,
“physics-like”, and have yet to be converted to a rigorous argument.

5.1 The Connection with the Multiset Hammersley Process

One of the most rewarding ways to analyze the asymptotic behavior of the LIS
of a random permutation is the connection with a model from Nonequilibrium
Statistical Physics called the Hammersley process.

The easiest way to describe the Hammersley process is via a sequence of ran-
dom numbers X1,X2, . . . , Xn . . . ∈ (0, 1) (note that this combinatorial descrip-
tion is good for our purposes; the general Hammersley process assumes a unit
intensity Poisson process on the real line).

We interpret Xi’s as particles. At each moment the insertion of a new particle
removes (kills) the smallest (if any) particle Xj , Xj > Xi. Intuitively, particles
correspond to pile heads in patience sorting, a well-known algorithm for comput-
ing LIS. The piles are nondecreasing, hence putting a new particle on a pile with
head Xj “kills” Xj . Particles that are the largest at the moment when inserted
do not kill any particle but simply start a new pile.

A sequence Y of n random particles corresponds naturally to a random n-
dimensional permutation. The live particles in the Hammersley process corre-
spond to piles in patience sorting. Therefore LIS(Y ) is equal to the number of
live particles.

The correspondance between live particles and trees in an optimal decom-
position of a random permutation carries on to the framework of heapability as
well, with a twist: the multiset generalization of the Hammersley process (defined
in [3] and denoted by HADk) sees every particle come with a fixed number of k
lives. A particle does Xi does not kill outright the smallest particle Xj > Xi: it
simply removes one of its lives.

The infinite-time limit of the multiset Hammersley process with two lives
(so-called hydrodynamic behavior [17]) seems experimentally to be the so-called
compound Poisson process. This can be understood combinatorially as follows:
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– At stage n the “typical” configuration of the HAM2 process is characterized
by n particles holding 0,1 or two lives.

– The number of particles holding λ lives, for λ ∈ {0, 1, 2} is approximately
equal to dλ · n, for some constants 0 < dλ < 1. That is, the global density of
particles with λ lives converges asymptotically to dλ.

– Moreover, particles with λ lives are distributed approximately uniformly at
random throughout interval (0, 1), so that the relative densities are valid not
only globally, but throughout each bin.

The heuristic explanation given above is confirmed experimentally by Fig. 1.
Here we have divided interval (0,1) into 200 bins, and we plot the relative densi-
ties (for each bin, represented on the x axis as the corresponding point in [0,1])
of average number of particles in that bin holding 0,1,2 lives, respectively. We
simulated each realization of the HAM2 process for 100.000 steps, and aver-
age each value over 100 realizations. The densities seem to be approximately
constant among bins. Moreover d0 = d2 ∼ 0.38..., whereas d1 ∼ 0.23.... End
bin differences appear to be simulation artifacts: larger simulations reduce this
difference.

Fig. 1. Relative densities of particles in the HAM2 process. (Color figure online)

But what are constants d0, d1, d2? Clearly d0 + d1 + d2 = 1. The number of
particles with two lives grows by one at each step. On the other hand, except in
the (probabilistically rare) cases the new particle is the largest live one, it takes
a life from a particle counted by d1 or d2. Assuming well-mixing the probability
that it takes a life of particle with two lives is d2

d1+d2
. We get, therefore, a “mean-

field” equation for d2:
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d2 = 1 − d2
d1 + d2

. (4)

As for d1, the flow into d1 has rate d2
d1+d2

. However, with probability d1
d1+d2

there
is a flow from d1 to d0, decreasing d1. The “mean-field” equation for d1 is:

d1 =
d2 − d1
d1 + d2

(5)

Solving the system of equations for d0, d1, d2 yields

d0 = d2 =
3 − √

5
2

∼ 0.381 . . . , d1 =
√

5 − 2 ∼ 0.236 . . . (6)

a prediction matching the experimental evidence in Fig. 1.
So how does this hydrodynamical limit predict the claimed scaling behavior,

E[2 − w(P )] ∼ 1+
√
5

2 ?
In the compound Poisson process the density of live particles is d1 + d2 =√

5−1
2 . If the first n particles were sampled exactly from this distribution, the

expected value of the largest live particle would be 1 −
√
5+1
2 · 1

n . A new particle
would start a new heap precisely when it is larger than all live particles (hence
it does not kill anyone). The probability of this happening is

√
5+1
2 · 1

n . Thus,
“on the average”, in the first n + 1 stages the number of created heaps is

1 +
√

5 + 1
2

· Hn = φ ln(n) + O(1),

with Hn the Harmonic number. Since process HAM2 is asymptotically a com-
pound Poisson process, we expect the high-order terms to be correct. Similar
but more complicated calculations can be performed in the case d = 2 with k
arbitrary.

6 High-Dimensional Permutations

Linial has initiated [18], under the slogan of “high dimensional combinatorics”, a
multidimensional analog of permutations. A p-dimensional permutation of order
n is a n × n × . . . × n = [n]p+1 array of 0/1 values in which each line (obtained
by setting p indices to values in [n] and leaving free the remaining coordinate)
contains exactly a one. Ordinary permutations correspond to the one-dimensional
case, whereas two-dimensional permutations are essentially latin squares.

Recently, Linal and Simkin [19] have considered notions of monotonicity in
high-dimensional permutations, proving a high-dimensonal analog of the Erdős-
Székeres theorem. They studied afterwards the scaling of LIS of a random mul-
tidimensional permutation, obtaining the scaling E[LIS(π)] = Θ(np/p+1) for a
random p-dimensional permutation.

Open Problem 4. Study the heapability (2-width and 2-height) of random
high-dimensional permutations.
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7 Partition into (un)equal Parts: Entropy
and Compression

So far we have been interested into the partition of a sequence of numbers into
a minimal number of k-chains.

One may want, instead, a partition that insists on parts as equal/unequal as
possible. Porfilio [4] showed that the problem of dividing a sequence of integers
into a number of equal parts is NP-complete.

One may look for the opposite kind of division, that into mostly unbalanced
parts. One way to measure the imbalance is via entropy of the distribution
induced on the poset by a partition into k-chains. Of course, of all distributions
with finite support the uniform distribution has the largest entropy. Minimizing
entropy is an objective of recent interest in combinatorial optimization [20–26].

Open Problem 5. Study the complexity of partitioning a poset P into k-chains
leading to a distribution of minimal entropy.

The open problem is easily seen to be related to the minimum entropy col-
oring problem for interval graphs. Chromatic entropy is a natural measure with
important applications to coding [20,27,28].

On the other hand we can state the following natural greedy algorithms:

– for k = 1, d = 2: compute a longest increasing subsequence L1 of P using
patience sorting (or dynamic programming).

– for other values of pair (k, d): use instead the Byers et al. algorithm for finding
a longest heapable subsequence with n − o(n) elements.

– remove L1 from P and proceed recursively.

Open Problem 6. Can one give guarantees on the approximation performance
of these algorithms?

Finally, the decomposition of permutations into components (e.g. runs) forms
the basis of the recent theory of data structures and methods for compressing
permutations [29,30] and partial orders. A question that arose during a conver-
sation with Travis Gagie at CPM’2015, and that we would like to state here as
an open question is

Open Problem 7. Is the decomposition of sequences into trees, of the sort
employed in computing the 2-width of a partial order, relevant to compression as
well?

Acknowledgments. This research has been supported by CNCS IDEI Grant PN-
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Grešákova 6, 040 01 Košice, Slovakia
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Abstract. We survey recent results on the descriptional complexity of
self-verifying finite automata. In particular, we discuss the cost of simu-
lation of self-verifying finite automata by deterministic finite automata,
and the complexity of basic regular operations on languages represented
by self-verifying finite automata.

1 Introduction

A self-verifying finite automaton is a nondeterministic automaton whose state
set consists of three disjoint groups of states: accepting states, rejecting states,
and neutral states. On every input string, at least one computation must end
in either an accepting or in a rejecting state. Moreover, there is no input string
with both accepting and rejecting computations.

The existence of an accepting computation on an input string proves the
membership of the string to the language. This is the same as in a nondeter-
ministic finite automaton (NFA). However, in a self-verifying finite automaton
(SVFA), the existence of a rejecting computation definitely proves that the input
is not in the language. This is in contrast with NFAs, where the existence of a
non-final computation leaves open the possibility that the input may be accepted
by a different computation. Thus, even if the transitions are nondeterministic,
when a computation of an SVFA ends in an accepting or in a rejecting state, the
automaton “can trust” the outcome of that computation, and accept or reject the
input. The name “self-verifying” comes from this property. SVFAs were intro-
duced in [4], and were considered mainly in connection with probabilistic Las
Vegas computations. However, as pointed in [8], they are also interesting per se.

Every SVFA can be converted to an equivalent deterministic finite automa-
ton (DFA) by the standard subset construction [19]. On the other hand, every
complete DFA may be viewed as a self-verifying finite automaton with all the
final states being accepting, and all the non-final states being rejecting. Hence
SVFAs recognize exactly the class of regular languages.

From the descriptional point of view, every n-state NFA can be simulated
by a DFA of at most 2n states [19]. This bound is known to be tight in the
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binary case [5,14,18]. However, Assent and Seibert [1] proved that in the DFA
obtained by applying the subset construction to an SVFA some states must be
equivalent. As a consequence, they obtained an upper bound for the conversion
of self-verifying automata to deterministic automata in O(2n/

√
n). Later this

result was strengthened in [11], where the tight bound for such a conversion was
given by a function g(n) which grows like 3n/3. The witness languages meeting
the bound g(n) were defined over a binary alphabet.

The investigation of self-verifying automata was further deepened by Jirásek
et al. [9]. Using the tight bound g(n) from [11], it was shown that a minimal
SVFA for a regular language may not be unique. Then the authors introduced an
sv-fooling set lower bound technique for the number of states in SVFAs. Using
this technique, they obtained tight upper bounds on the complexity of reversal,
boolean operations, star, left and right quotients, and asymptotically tight upper
bound for concatenation of languages represented by SVFAs.

Here we survey these results. We deal with SVFA-to-DFA conversion in
Sect. 2, and discuss the complexity of basic regular operations on SVFAs in
Sect. 3. To conclude this introduction, let us recall some basic notions and pre-
liminary results. For further details, the reader may refer to [21].

All DFAs in this paper are assumed to be complete, and NFAs have a
unique initial state. Sometimes we also consider NNFAs — nondeterministic
finite automata with a nondeterministic choice of the initial state [22] — where
we admit multiple initial states.

A self-verifying finite automaton (SVFA) is a tuple A = (Q,Σ, δ, s, F a, F r),
where Q,Σ, δ, and s are the same as in an NFA, F a is the set of accepting states,
F r is the set of rejecting states, and F a ∩ F r = ∅; the remaining states in Q are
called neutral. It is required that for each input string w in Σ∗, there exists at
least one computation ending in an accepting or in a rejecting state, and there
are no strings w such that both δ(s, w) ∩ F a and δ(s, w) ∩ F r are nonempty.

The language accepted by the SVFA A, denoted as La(A), is the set of
all input strings having a computation ending in an accepting state, while the
language rejected by A, denoted as Lr(A), is the set of all input strings having
a computation ending in a rejecting state. It follows directly from the definition
that La(A) = (Lr(A))c for each SVFA A. Hence, when we say that an SVFA A
accepts a language L, we mean that L = La(A) and Lc = Lr(A).

The state complexity of a regular language L, sc(L), is defined as the smallest
number of states in any DFA for L. The state complexity of a regular operation
is the maximal state complexity of languages resulting from the operation, con-
sidered as a function of the state complexities of the operands. Similarly, the
nondeterministic state complexity and self-verifying state complexity of a regu-
lar language L, denoted by nsc(L) and svsc(L), is defined as the smallest number
of states in any NFA (with a unique initial state) and SVFA, respectively, for L.

Every NNFA A = (Q,Σ, δ, I, F ) can be converted to an equivalent DFA
A′ = (2Q, Σ, ·, I, F ′), where R · a = δ(R, a) for each R in 2Q and each a in Σ,
and F ′ = {R ∈ 2Q | R∩F �= ∅} [19]. The DFA A′ is called the subset automaton
of the NFA A. Let us recall two observations from [8,11].
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Proposition 1 ([8,11]). Let a language L be accepted by an n-state SVFA. Then
the languages L and Lc are accepted by n-state NFAs. ��
Proof. Let L be accepted by an SVFA A = (Q,Σ, δ, s, F a, F r). Then L is
accepted by NFA (Q,Σ, δ, s, F a), while Lc is accepted by NFA (Q,Σ, δ, s, F r). ��
Proposition 2 ([8,11]). Let languages L and Lc be accepted by an m-state and
n-state NNFAs, respectively. Then svsc(L) ≤ m + n + 1. ��
Proof. Let L be accepted by an m-state NNFA N = (Q,Σ, δ, I, F ) and Lc

be accepted by an n-state NNFA N ′ = (Q′, Σ, δ′, I ′, F ′). Then we can get
an SVFA A for L with m + n + 1 states from NFAs N and N ′ as follows.
We add a new initial state s going to δ(I, a)∪ δ′(I ′, a) on each a in Σ. The state
s is accepting if ε ∈ L, and it is rejecting otherwise. All the states in F are
accepting in SVFA A, and all the states in F ′ are rejecting in A. ��

2 SVFA-to-DFA Conversion and Minimal SVFAs

The SVFA-to-DFA conversion was first studied by Assent and Seibert [1]. Then
Jirásková and Pighizzini [11] obtained a tight upper bound for such a conversion.

Proposition 3 ([1, Theorem 2.1]). Every n-state SVFA can be converted to
an equivalent DFA of at most O(2n/

√
n) states.

Proof (Proof Idea). If S and T are two reachable subset of the subset automaton
of an SVFA A such that S ⊆ T , then S and T are equivalent. This gives an upper
bound

(
n

�n/2�
) ∈ O(2n/

√
n). ��

Theorem 4 ([11, Theorem 9]). Every n-state SVFA can be converted to an
equivalent DFA of at most g(n) states, where

g(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + 3(n−1)/3, if n mod 3 = 1 and n � 4,

1 + 4 · 3(n−5)/3, if n mod 3 = 2 and n � 5,

1 + 2 · 3(n−3)/3, if n mod 3 = 0 and n � 3,

n, if n � 2.

(1)

Moreover, the bound g(n) is tight, and can be met by a binary n-state SVFA.

Proof (Proof Idea). To an n-state SVFA A, we assign an undirected graph G(A)
whose vertex set is Q, and which contains an edge {p, q} if and only if two com-
putations starting from p and q cannot give contradictory answers on the same
string. Then each reachable subset in the subset automaton of A is represented
by a clique in G(A). Moreover, if S and T are two subsets such that S ∪ T is a
clique in G(A), then S and T are equivalent [11, Lemma 4]. Hence the number of
states in the minimal DFA for L(A) is given by the number of maximal cliques
in G(A). Next, in G(A) there is exactly one maximal clique containing the initial
state of A. This results in at most 1 + f(n − 1) states, where f(n) denotes the



32 G. Jirásková
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Fig. 1. The witnesses for SVFA-to-DFA conversion; n = 13, 12, and 14.

maximum number of possible maximal cliques in a graph with n nodes and, as
shown by Moon and Moser [17, Theorem 1], we have f(n) = 3n/3 if n mod 3 = 0,
f(n) = 4 · 3�n/3�−1 if n mod 3 = 1, and f(n) = 2 · 3�n/3� if n mod 3 = 2. This
gives the upper bound. For tightness, let A = (Q, {a, b}, δ, q0, F

a, F r), where
n = 1 + 3m and m � 2, see Fig. 1 (left) for m = 13, be an automaton defined by

Q = {q0} ∪ {(i, j) | 0 � i � 2, 1 � j � m},
δ(q0, a) = δ(q0, b) = {(0, 1), (0, 2), . . . , (0,m)},
and for all i, j with 0 � i � 2 and 1 � j � m,

δ((i, j), a) =
{{(i, j + 1)}, if j < m,

{(0, 1)}, otherwise,
δ((i, j), b) = {((i + 1) mod 3, j)},
F a = {q0, (0,m)}, and F r = {(1,m), (2,m)}.

It is shown in [11, Lemma 8] that A is an SVFA whose minimal DFAs requires
g(n) states. To get witnesses for n = 3k or n = 3k + 2, we modify the SVFA A
as shown in Fig. 1 (middle and right). ��

Thus if we know that the minimal DFA for a language L has more then g(n)
states, then by Theorem 4, every SVFA for L must have at least n + 1 states.
We use this result to show that a minimal SVFA may not be unique.

Example 5. Consider the two 7-state non-isomorphic SVFAs shown in Fig. 2.
Apply the subset construction to both of them. In both cases, the subset
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Fig. 2. Two non-isomorphic minimal SVFAs for the language (a + b)∗a(a + b)2.
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automata restricted to the reachable states are the same. These subset automata,
and therefore also the two SVFAs, accept the language (a + b)∗a(a + b)2, the
minimal DFA for which has 8 states. Since we have g(6) = 7, every SVFA for
this language has at least 7 states. Hence both SVFAs in Fig. 2 are minimal. ��

3 Lower Bound Methods and Operations on SVFAs

To prove that a DFA is minimal, we only need to show that all its states are
reachable from the initial state, and that no two distinct states are equivalent. To
prove minimality of NFAs, a fooling set lower bound method may be used [2,6].
A fooling set for a language L is a set of pairs of strings {(u1, v1), . . . , (un, vn)}
satisfying two conditions:

(i) for each i, uivi ∈ L, and
(ii) if i �= j, then uivj /∈ L or ujvi /∈ L.
In the case of SVFAs, we change the two conditions. The first condition can

be removed since we have either an accepting or rejecting computation on every
string. Before modifying the second condition, consider the following example.

1 2 3
a, b

b

a, b

a

Fig. 3. An NFA for the language L in Example 6.

Example 6. Let L be accepted by the 3-state NFA shown in Fig. 3. Let A be an
SVFA for L. Let us show that A has at least 6 states. Consider the following
pairs of strings:

(u1, v1) = (a2, a2) Acc (u4, v4) = (a2ba, a2) Rej
(u2, v2) = (a2b, a) Acc (u5, v5) = (a, a) Rej
(u3, v3) = (a2b2, ε) Acc (u6, v6) = (ab, ε) Rej
The strings u1v1, u2v2, and u3v3 are in L, while u4v4, u5v5, and u6v6 are not

in L, so we must have accepting and rejecting computations in A on these strings:
s

u1−→ p1
v1−→ f1 ∈ F a, s

u4−→ p4
v4−→ f4 ∈ F r,

s
u2−→ p2

v2−→ f2 ∈ F a, s
u5−→ p5

v5−→ f5 ∈ F r,
s

u3−→ p3
v3−→ f3 ∈ F a, s

u6−→ p6
v6−→ f6 ∈ F r.

Since u1v2 = a3, and a3 is not in L, we must have p1 �= p2 because otherwise
s

u1−→ p1 = p2
v2−→ f2 would be an accepting computation on u1u2. Similarly, u1v3

and u2v3 are not in L, so p1, p2, and p3 must be pairwise distinct. On the other
hand, the strings u4v5, u4v6, and u5v6 are in L, and therefore the states p4, p5, p6
must be pairwise distinct. Next, let 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3. If i ≤ j, then ujvi

is not in L, and therefore pi �= pj because otherwise s
uj−→ pj = pi

vi−→ fi would
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be an accepting computation on ujvi. Finally, if i > j, then uivj is in L, and
therefore pi �= pj . Thus all the state pi are pairwise distinct, so the SVFA A has
at least 6 states. ��

Notice that in the previous example, we were able to interchange the right
sides of two pairs (ui, vi) and (uj , vj) so that at least one of the resulting strings
uivj and ujvi had a “different finality” than the concatenations ujvj and uivi,
respectively. We formalize this in the following definition.

Definition 7. A set of pairs of strings F = {(u1, v1), (u2, v2), . . . , (un, vn)}
is called an sv-fooling set for a language L if for all i, j with i �= j at least
one of the following two conditions holds:

(i) exactly one of the strings uivj and ujvj is in L, or
(ii) exactly one of the strings ujvi and uivi is in L.

Lemma 8 (Lower Bound Method for SVFAs). Let F be an sv-fooling set
for a language L. Then every SVFA for the language L has at least |F| states.
Proof. Let A be an SVFA for the language L with the initial state s. Then for
each uivi, there is an accepting or a rejecting computation of SVFA A on uivi.
Fix such a computation for each uivi. Let pi be the state in this computation that
is reached after reading ui, and let fi be the final state reached after reading vi.
Let us show that the states p1, p2, . . . , pn must be pairwise distinct.

Assume for contradiction that there are i and j with i �= j such that pi = pj .
Then we have

s
ui−→ pi = pj

vj−→ fj and s
uj−→ pj

vj−→ fj ; and
s

uj−→ pj = pi
vi−→ fi and s

ui−→ pi
vi−→ fi.

It follows that there are computations on uivj and on ujvj that end in
state fj . Thus either both this strings are in L, or both of them are in Lc.
Moreover, there are computations on ujvi and uivi that end in state fi, so
either both these strings are in L, or both of them are in Lc. Hence neither (i)
nor (ii) in the definition of an sv-fooling set holds, which is a contradiction. ��

Notice that the lemma above may also be applied to a model of SVFAs with
multiple initial states [11, Sect. 5]. Hence if a language L is accepted by an n-
state SVFA with multiple initial states, we cannot have an sv-fooling set of size
more than n. In such a case, we can use the following observation to prove that
an SVFA with a unique initial state needs one more state.

Lemma 9. Let F = {(u1, v1), (u2, v2), . . . , (un, vn)} be an sv-fooling set for L.
For each i, let there exist a string wi such that {(ui, vi)} ∪ {(ε, wi)} is an sv-
fooling set for L. Then every SVFA for L has at least |F| + 1 states.

Proof. For each pair in F , fix an accepting or a rejecting computation as in
Lemma 8. Then the unique initial state, reached after reading ε, must be different
from all the states reached after reading the left part of any pair in F . It follows
that the SVFA has at least |F| + 1 pairwise distinct states. ��
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Example 10. Let us continue our previous example. Define w1 = w2 = w3 = a2,
w4 = w5 = ε, and w6 = a. Notice that we have

ui · a2 ∈ L and ε · a2 /∈ L for i = 1, 2, 3,
ui · ε ∈ L and ε · ε /∈ L for i = 4, 5,
u6 · a /∈ L and ε · a ∈ L.

By Lemma 9, every SVFA for L has at least 7 states. ��
In what follows we use this simple methods to get tight upper bounds on the

self-verifying complexity of reversal, boolean operations, star, and left and right
quotients. In the case of concatenation, we get an asymptotically tight upper
bound.

3.1 Reversal

If a language L is accepted by an n-state DFA A, then the language LR is
accepted by an n-state NNFA AR obtained from A by swapping the role of the
initial and final states of A, and by reversing all the transitions. By applying the
subset construction to NNFA AR, we get a DFA for LR of at most 2n states.
The bound 2n is known to be tight [14,16], and the witness languages can be
defined over a binary alphabet [12,13].

If a language L is represented by an n-state NFA A, then we can construct an
NNFA AR for LR in the same way as for DFAs. An equivalent NFA may require
one more state. The upper bound n + 1 is known to be tight, with worst-case
examples defined over a binary alphabet [7,10]. Our next result shows that the
self-verifying state complexity of the reversal operation is given by the function
2n + 1. Notice that the reverse of our worst-case example is a generalization of
our NFA language in Example 6.

Theorem 11 ([9]). Let n ≥ 3. Let L be a regular language over an alphabet Σ
with svsc(L) = n. Then svsc(LR) ≤ 2n + 1, and the bound is tight if |Σ| ≥ 2.

Proof. Let A = (Q,Σ, δ, s, F a, F r) be an SVFA for L. Then L is accepted by the
n-state NFA N = (Q,Σ, δ, s, F a), and Lc is accepted by the n-state NFA N ′ =
(Q,Σ, δ, s, F r) by Proposition 1. By swapping the role of initial and final states
in NFAs N and N ′, and by reversing all the transitions, we get n-state NNFAs for
languages LR and (Lc)R = (LR)c. By Proposition 2, we have svsc(LR) ≤ 2n+1.
This proves the upper bound.

For tightness, let L be the language accepted by the DFA A shown in Fig. 4.
Construct an NFA AR for the language LR as described above. Denote by [i, j]
the set of integers {k | i ≤ k ≤ j}; notice that [i, j] = ∅ if i > j. Consider the
following family of 2n subsets

R =
{
[1, i] | 1 ≤ i ≤ n

} ∪ {
[i + 1, n] | 1 ≤ i ≤ n

}
.

Notice that each set in R is reachable in the subset automaton of the NFA AR

from the initial subset {n − 1}. Thus for each subset S in R, there is a string
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n n−1 n−2 . . . 2 1
a, b a, b a, b a, b a, b

a

b

Fig. 4. The binary witness for reversal meeting the bound 2n + 1.

uS by which the initial state {n − 1} of the subset automaton of AR goes to S.
Consider the following set of 2n pairs of strings:

F = {(u[1,i], a
n−i) | 1 ≤ i ≤ n} ∪ {(u[j+1,n], a

n−j) | 1 ≤ j ≤ n}.

Let us show that the set F is an sv-fooling set for the language LR.
First, notice that the string an−i is accepted by the NFA AR from a subset

S of [1, n] if and only if the state i is in the subset S. To show that F is an
sv-fooling set for L, we have three cases to consider:

(1) Let 1 ≤ i < k ≤ n. Then u[1,i] · an−k /∈ LR and u[1,k] · an−k ∈ LR.

(2) Let 1 ≤ j < � ≤ n. Then u[j+1,n] · an−� ∈ LR and u[�+1,n] · an−� /∈ LR.

(3) Let 1 ≤ i ≤ n and 1 ≤ j ≤ n. Here we have two subcases:
(3a) If i ≤ j, then u[j+1,n] · an−i /∈ LR and u[1,i] · an−i ∈ LR.
(3b) If i > j, then u[1,i] · an−j ∈ LR and u[j+1,n] · an−j /∈ LR.

Hence we have shown that F is an sv-fooling set for the language LR. Now, we
use Lemma 9 to show that one more state is necessary for an SVFA to accept LR.
To this aim, let wi = an−1 for i = 1, 2, . . . , n, wn+j = ε for j = 1, 2 . . . , n − 1,
and w2n = a. Then we have

ε · an−1 /∈ LR while u[1,i] · an−1 ∈ LR if 1 ≤ i ≤ n and n ≥ 3,
ε · ε /∈ LR while u[j+1,n] · ε ∈ LR if 1 ≤ j ≤ n − 1.
ε · a ∈ LR while u∅ · a /∈ LR since n ≥ 3.

By Lemma 9, every SVFA for LR has at least 2n + 1 states. ��

3.2 Boolean Operations

To get a DFA for the complement of a given regular language, we only need
to interchange the final and non-final states in a DFA for the given language.
Formally, if a regular language L is accepted by a DFA A = (Q,Σ, δ, s, F ), then
the language Lc is accepted by the DFA A′ = (Q,Σ, δ, s,Q \ F ). Moreover, if A
is minimal, then A′ is minimal as well. It follows that the state complexities of
a regular language and its complement are the same.

On the other hand, if a language is represented by an NFA, we first apply
the subset construction to this NFA, and only after that we can interchange the
final and non-final states. This gives an upper bound 2n. This upper bound is
known to be tight [2,20], and witness languages can be defined over a binary
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alphabet [10]. Our first observation shows that the self-verifying complexity of
a language and its complement are the same.

Then we consider the following four Boolean operations: intersection, union,
difference, and symmetric difference. In the general case of all regular languages,
the state complexity of all four operations is given by the function mn, and
the worst-case examples are defined over a binary alphabet [3,15,19,23]. The
nondeterministic state complexity of intersection and union is mn and m+n+1,
respectively, with witness languages defined over a binary alphabet [7].

The difference and symmetric difference on languages represented by NFAs
have not been studied yet. Since both these operations require complementation,
the nondeterministic state complexities m ·2n and m ·2n+n ·2m of difference and
symmetric difference, respectively, could be expected. In the case of self-verifying
state complexity, we obtain a tight upper bound mn for all four operations, with
worst-case examples defined over a binary alphabet.

Theorem 12. ([9]). Let K and L be languages over an alphabet Σ with
svsc(K) = m and svsc(L) = n. Then

(i) svsc(Lc) = n,
(ii) svsc(K ∩ L), svsc(K ∪ L), svsc(K \ L), svsc(K ⊕ L) ≤ mn,

and all the bounds are tight if |Σ| ≥ 2. ��
Proof. (i) Let L be accepted by an SVFA A. To get an SVFA A′ for the language
Lc, we only need to interchange the accepting and rejecting states in the SVFA A.
Moreover, if A is minimal, then A′ is minimal as well.

(ii) Now we consider intersection. Let K and L be accepted by SVFAs A =
(QA, Σ, δA, sA, F a

A, F r
A) and B = (QB , Σ, δB , sB , F a

B , F r
B) of m and n states.

Construct the product automaton A × B = (Q,Σ, δ, s, F a, F r), where
Q = QA × QB ; s = (sA, sB);
F a = {(p, q) | p ∈ F a

A and q ∈ F a
B} and F r = {(p, q) | p ∈ F r

A or q ∈ F r
B};

δ((p, q), a) = δA(p, a) × δB(q, a) for each (p, q) in Q and each a in Σ.
The product automaton A × B accepts K ∩ L, and it is self-verifying.

For tightness, consider languages K = {w ∈ {a, b}∗ | #a(w) ≡ 0 mod m}
and L = {w ∈ {a, b}∗ | #b(w) ≡ 0 mod n} accepted by an m-state and n-state
DFAs, so also SVFAs, respectively. Then the set of pairs F = {(aibj , am−ibn−j) |
0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1} is an sv-fooling set of size mn for K ∩ L.

Let us continue with union and difference. Since K∪L = (Kc∩Lc)c, and self-
verifying state complexity of a language and its complement are the same, we can
get an SVFA for the union of K and L as follows. We first construct SVFAs for
Kc and Lc. Then we construct an SVFA for Kc ∩ Lc. Finally, we take an SVFA
for the complement of the resulting language. As witness languages, we can take
the complements of the witnesses for intersection. Similar considerations can be
done also for difference since K \ L = K ∩ Lc.

Finally, we consider symmetric difference. To get the upper bound, we con-
struct a product automaton for symmetric difference in a similar way as for
intersection. However, now the sets of accepting and rejecting states are
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F a = {(p, q) | p ∈ F a
A and q ∈ F r

B} ∪ {(p, q) | p ∈ F r
A and q ∈ F a

B};
F r = {(p, q) | p ∈ F a

A and q ∈ F a
B} ∪ {(p, q) | p ∈ F r

A and q ∈ F r
B}.

This is an mn-state SVFA for the symmetric difference of given languages.
For tightness, let K and L be languages accepted by DFAs A and B shown in

Fig. 5. Construct a product automaton for K ⊕L as described above, and notice
that the set F = {(aibj , am−1−ibn−1−j) | 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n − 1}
is an sv-fooling set for the language K ⊕ L. ��

0 1 . . . m−2 m−1
a

b

a

b

a a

b

a

b

0 1 . . . n−2 n−1
b

a

b

a

b b

a a, b

Fig. 5. The binary witnesses for symmetric difference meeting the bound mn.

3.3 Star

The state complexity of the star operation is 3/4 · 2n with binary witness lan-
guages [10,15,23]. In the unary case, the tight bound on the state complexity of
star is (n−1)2+1 [23,24]. The nondeterministic state complexity of star is n+1,
with witnesses defined over a unary alphabet [7]. In this section we show that
the self-verifying state complexity of star is 3/4 · 2n. Our worst-case examples
are defined over an alphabet which grows exponentially with n. However, for a
four-letter alphabet, we still get an exponential lower bound 2n−1 − 1.

Theorem 13 ([9]). Let L be a language over Σ with svsc(L) = n. Then
(i) svsc(L∗) ≤ 3/4 · 2n, and the bound is tight if |Σ| ≥ 3/4 · 2n + 1;
(ii) the bound 2n−1 − 1 can be met by a quaternary language.

Proof. (i) Let A = (Q,Σ, δ, s, F a, F r) be an SVFA for L. If only the initial
state s is accepting, then L∗ = L. Assume that A has k accepting states that are
different from s. Construct an NFA A∗ for L∗ from A as follows. First, add a new
initial and final state q0 and for each symbol a in Σ, add a transition from q0 to
δ(s, a) if δ(s, a)∩F a = ∅, and to {s}∪ δ(s, a) otherwise. Next, for each state q in
Q and each symbol a, add a transition from q to s on a whenever δ(q, a)∩F a �= ∅.
The initial state of A∗ is q0, and the set of final states is {q0}∪F a. Now consider
the subset automaton of A∗. Notice that no set containing a state in F a and not
containing s is reachable in the subset automaton. Next, we can show that the
empty set is unreachable. Hence the subset automaton has at most 2n−1+2n−1−k

reachable subsets. The maximum is attained if k = 1, and it is equal to 3/4 · 2n.
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To prove tightness, consider the following family of 3/4 · 2n − 1 subsets:
R =

{
S | S ⊆ {0, 1, . . . , n − 1} and 0 ∈ S

} ∪ {
S | ∅ �= S ⊆ {1, 2, . . . , n − 2}}

.
Let Σ = {a, b} ∪ {cS | S ∈ R} be an alphabet consisting of 3/4 · 2n + 1 symbols.
Let L be accepted by an n-state DFA A = ({0, 1, . . . , n − 1}, Σ, δ, 0, {n − 1}),
where the transitions are defined as follows: δ(i, a) = (i + 1) mod n; δ(0, b) = 0,
δ(i, b) = i + 1 if 1 ≤ i ≤ n − 2, and δ(n − 1, b) = n − 1; and for each set S in R,

δ(i, cS) =

{
0, if i ∈ S,

n − 1, if i /∈ S.

The transitions on a and b in A are shown in Fig. 6 (top-left), and the transitions
on the symbol c{1,3} in the case of n = 5 are shown in Fig. 6 (bottom-right).

0 1 . . . m−2 m−1
a

b

a, b a, b a, b

a

b

0 1 2 3 4

c{1,3}

c{1,3}
c{1,3}

c{1,3}
c{1,3}

Fig. 6. The witness for star; symbols a a b (top-left) and symbol c{1,3} for n = 5.

Construct an NFA A∗ for the language L∗ as described above. Notice that
each subset in R is reachable in the subset automaton of A∗, that is, for each
subset S in R, there is a string uS , by which {q0} goes to the subset S. Then
the set F = {(uS , cS) | S ∈ R} is an sv-fooling set of size 3/4 · 2n − 1 for L∗.
Finally, by setting wS = ε if n − 1 /∈ S and wS = b otherwise, we use Lemma 9
to show that one more state is necessary in every SVFA for the language L∗.

(ii) Consider the language L accepted by the quaternary DFA B shown in
Fig. 7. Notice that the transitions on symbols a and b are the same as in the
DFA A above. It follows that all the subsets of {0, 1, . . . , n − 1}, that have
been shown to be reachable in the subset automaton of A∗, are reachable in
the subset automaton of B∗ as well. In particular, all the non-empty subsets of
{0, 1, . . . , n−2} are reachable. Similarly as in the proof above, let uS be a string
over {a, b} by which the initial subset {q0} goes to S in the subset automaton.
Our aim is to describe an sv-fooling set for L∗ of size 2n−1 − 1. To this aim, for
every non-empty subset S of {0, 1, . . . , n−2}, define the string vS = v0v1 · · · vn−2

of length n − 1 over {c, d} as follows:

vn−2−i =

{
c, if i ∈ S,

d, if i /∈ S,

that is, the string vS somehow describes the set S, however, in a reversed order:
we can assign the symbol σ(i) = c to each state i in S and the symbol σ(i) = d to
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0 1 . . . m−3 m−2 m−1
a, c, d

b

a, b, c, d a, b, c, d a, b, c, d a, b, d

b, c, d

ac

Fig. 7. The quaternary DFA of a language L with svsc(L∗) ≥ 2n−1 − 1.

each state i outside the set S, and then we have vS = σ(n−2)σ(n−3) · · · σ(1)σ(0).
Then, for every set S, the string vS is accepted by B∗ from every state outside
the set S, while vS is rejected by B∗ from every state in S. It follows that
{(uS , vS) | ∅ �= S ⊆ {0, 1, . . . , n − 2}} is an sv-fooling set for L∗. ��

3.4 Left and Right Quotients

The left quotient of a language L by a string w is w\L = {x | w x ∈ L},
and the left quotient of a language L by a language K is the language K\L =⋃

w∈K w\L. The state complexity of the left quotient operation is 2n−1 [23], and
its nondeterministic state complexity is n + 1 [10]. In both cases, the worst-case
examples are defined over a binary alphabet.

The right quotient of a language L by a string w is L/w = {x | xw ∈ L}, and
the right quotient of a language L by a language K is L/K =

⋃
w∈K L/w. If a

language L is accepted by an n-state DFA A = (Q,Σ, ·, s, F ), then the language
L/K is accepted by a DFA that is exactly the same as the DFA A, except for
the set of final states that consists of all the states q of A, such that there exists
a string w in K with q · w ∈ F [23]. Thus sc(L/K) ≤ n. The tightness of this
upper bound has been shown using binary languages in [23].

Here we show that the self-verifying complexity of the left quotient operation
is 2n −1. To prove tightness, we use an exponential alphabet. Then, using a four
letter alphabet, we get a lower bound 2n−1 − 1. Finally, we show that the self-
verifying state complexity of right quotient is given by the function g(n), where
g(n) is the tight upper bound for SVFA-to-DFA conversion given in (1) on page 3.

Theorem 14 ([9]). Let K,L ⊆ Σ, svsc(K) = m, and svsc(L) = n. Then
(i) svsc(K\L) ≤ 2n − 1, and the bound is tight if |Σ| ≥ 2n + 1;

(ii) the bound 2n−1 − 1 can be met by quaternary languages.

Proof. (i) Let L be accepted by an SVFA A = (Q,Σ, δ, s, F a, F b). Then the
language K\L is accepted by an NNFA N = (Q,Σ, δ, I, F a), where a state q
is in I if it can be reached from the initial state of A by a string in K. After
applying the subset construction to the NNFA N , we get a DFA for K\L, in
which the empty set is unreachable. This gives the upper bound.

To prove tightness, consider the family R of all non-empty subsets of
{0, 1, . . . , n − 1}. Let Σ = {a, b} ∪ {cS | S ∈ R} be an alphabet consisting of
2n +1 symbols. Let K = a∗ ∪a∗bm−2 be a language over Σ. Then K is accepted
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by an m-state DFA, and the set {(bi, bm−2−i) | 0 ≤ i ≤ m − 2} ∪ {(bm−1a, ε)} is
an sv-fooling set of size m for the language K. Hence svsc(K) = m.

Let L be accepted by an n-state DFA B = ({0, 1, . . . , n−1}, Σ, δ, 0, {n−1}),
where the transitions are defined as follows: δ(i, a) = (i + 1) mod n; δ(0, b) =
δ(1, b) = 0, and δ(i, b) = i if 2 ≤ i ≤ n−1; and for each subset S of {0, . . . , n−1},
we have δ(i, cS) = 0 if i ∈ S, and δ(i, cS) = n − 1 otherwise.

Construct an NNFA N for the language K\L from the DFA B by making all
the states of B initial. Each subset S in R is reachable in the subset automaton of
the NNFA N by a string uS . Now, in the same way as in the proof of Theorem13,
we can prove that the set of pairs {(uS , cS) | S ∈ R} is an sv-fooling set of size
2n − 1 for the language K\L.

(ii) The language K over {a, b, c, d} is the same as in (i). The language L is
accepted by the DFA B′, in which the transitions on a and b are the same as in
the DFA B above, and the transitions on c and d are the same as in Fig. 7. In a
similar way as in the proof of Theorem13 (ii), we can describe an sv-fooling set{
(uS , vS) | ∅ �= S ⊆ {0, 1, . . . , n − 2}}

of size 2n−1 − 1 for K\L. ��
Theorem 15 ([9]). Let K,L ⊆ Σ, svsc(K) = m, and svsc(L) = n. Then

(i) svsc(L/K) ≤ g(n), and the bound is tight if |Σ| ≥ g(n) + 2;
(ii) the bound Ω(2n/3) can be met by quaternary languages. ��

Proof. (i) Let a language L be accepted by an n-state SVFA. First, convert this
SVFA to an equivalent minimal DFA. By Theorem4, this DFA has at most g(n)
states. By making certain states final based on the language K, we get a DFA
for L/K of at most g(n) states.

For tightness, let n = 1 + 3k and k � 2; the arguments can be extended to
the other values of n in a straightforward way. Consider the grid Q = {(i, j) |
0 ≤ i ≤ 2 and 1 ≤ j ≤ k} of 3k nodes. Let R be the following family of 3k

subsets R =
{{(i1, 1), (i2, 2), . . . , (ik, k)} | i1, i2, . . . , ik ∈ {0, 1, 2}}

, that is, each
subset in R corresponds to a choice of one element in each column of the grid Q.
Let Σ = {a, b, c} ∪ {dS | S ∈ R} be an alphabet consisting of 3 + 3k symbols.

Let K = {c� | � ≥ m − 2} be the language over Σ that contains all the
strings in c∗ of length at least m − 2. We have svsc(K) = m. Let L be accepted
by a (3k + 1)-state SVFA B, in which the transitions on a, b are the same as in
the binary witness for SVFA-to-DFA conversion in Theorem4. Next, symbol c
performs the cyclic permutation on each row of the grid Q, and maps the initial
state to each state in the first row. Finally, for each set S in R, symbol dS maps
every state (i, j) of S to the state (1, j), and it maps every state (i, j) outside S
to (0, j). Then we can show that svsc(L/K) = g(n).

(ii) Let Σ = {a, b, c, d}. Let K = {c� | � ≥ m − 2} be a language over Σ with
svsc(K) = m. Let L be accepted by an n-state SVFA B′ in which the transitions
on a, b are the same as in the SVFA B in case (i). By c and d, the state q0 goes
to {(0, 1), . . . , (0, k)}, and each state (i, j) with j ≤ k − 1 goes to {(i, j + 1)}.
The state (0, k) goes to {(1, 1)} on both c, d. The state (1, k) goes to {(0, 1)}
on c, and it goes to {(2, 1)} on d. The state (2, k) goes to {(2, 1)} on both c, d.
Then we get svsc(L/K) ∈ Ω(2n/3). ��
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3.5 Concatenation

The state complexity of concatenation is m2n − 2n−1, and its nondeterminis-
tic state complexity is m + n. In both cases, the worst-case examples can be
defined over a binary alphabet [7,10,15,23]. The aim of this subsection is to get
asymptotically tight bound Θ(3m/3 · 2n) on the self-verifying state complexity
of the concatenation operation. Recall that g(n) is the tight upper bound for
SVFA-to-DFA conversion given in (1) on page 3.

Theorem 16 ([9]). Let K,L ⊆ Σ, svsc(K) = m, and svsc(L) = n. Then
(i) svsc(KL) ≤ g(m) · 2n;
(ii) the bound 1/2 · g(m) · 2n can be met if |Σ| ≥ g(m) + 2n + 4;
(iii) the bound Ω(2m/3 · 2n) can be met if |Σ| ≥ 8.

Proof. (i) Let K and L be accepted by SVFAs A and B, respectively. First,
convert the SVFA A to a minimal DFA A′. Then, construct an NNFA N for the
language KL from automata A′ and B in a usual way. Next, apply the subset
construction to N . In the subset automaton of N , every reachable subset can be
expressed as {q} ∪ T , where q is a state of A′ and T is a subset of the state set
of B. Since A is an SVFA, the DFA A′ has at most g(m) states by Theorem 4.
Thus the subset automaton of N has at most g(m) · 2n reachable states.

(ii) For the sake of simplicity, we consider the case of m = 1 + 3k a k ≥ 2.
Consider the grid Q = {(i, j) | 0 ≤ i ≤ 2 and 1 ≤ j ≤ k} of 3k nodes. Let R ={{(i1, 1), (i2, 2), . . . , (ik, k)} | i1, i2, . . . , ik ∈ {0, 1, 2}}

. Let Σ = {a, b, c, d, e} ∪
{fS | S ∈ R} ∪ {gT | T ⊆ {0, 1, . . . , n − 1}} be an alphabet consisting of
5+3

m−1
3 +2n symbols. Let K be the language over Σ accepted by m-state SVFA

A = (Q ∪ {q0}, Σ, δ, q0, F
a, F r), where the transitions on a, b, c are the same as

in the case of right quotient, the symbols d, e, gT are ignored, and transitions
on fS are defined by

δ((i, j), fS) =

{
{(1, j)}, if (i, j) ∈ S,

{(0, j)}, if (i, j) /∈ S;
Let L be the language accepted by DFA B = ({0, 1, . . . , n − 1}, Σ, ·, 0, {0}),

where i · a = i · b = i · c = i · fS = i; i · d = (i + 1) mod n; 0 · e = 0, i · b = i + 1 if
1 ≤ i ≤ n − 2, and (n − 1) · b = 1;

i · gT =

{
n − 1, if i ∈ T,

0, if i /∈ T.

Construct an NFA N for KL and show that each set in the family RN ={
S ∪ T | S ∈ R with (0, k) /∈ S, and T ⊆ {0, 1, . . . , n − 1}}

is reachable in the
corresponding subset automaton. Then prove that F = {(uS∪T , gT · fS · ck) |
S ∪ T ∈ RN} is an sv-fooling set for the language KL.

(iii) The idea of the proof is to define strings vS and vT over an eight-letter
alphabet for some sets S in R, namely, for those that consist only of the states in
the first and second row of the grid Q, and for each subset T of {1, . . . , n−2}. As a
result, we get an sv-fooling set {(uS∪T , vT ·vS ·c2k) | S ∈ R′, T ⊆ {1, . . . , n−2}},
where R′ contains all the sets in R which only have states in the the first or
second row of the grid Q. This gives a lower bound in Ω(2m/3 · 2n). ��
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Table 1. The state complexity, nondeterministic, and self-verifying state complexity
of basic regular operations.

DFAs NFAs SVFAs |Σ|
complement n 2n n 1

intersection mn mn mn 2

union mn m + n + 1 mn 2

difference mn ? mn 2

symmetric difference mn ? mn 2

reversal 2n n + 1 2n + 1 2

star 3/4 · 2n n + 1 3/4 · 2n 3/4 · 2n + 1

left quotient 2n − 1 n + 1 2n − 1 2n + 1

right quotient n n g(n) g(n) + 2

concatenation (m − 1
2
) · 2n m + n Θ(3m/3 · 2n) g(m) + 2n + 4

4 Conclusions

Table 1 summarizes the results on the self-verifying state complexity of consid-
ered operations, and compares them to the known results on their state complex-
ity and nondeterministic state complexity. The last column of the table displays
the size of an alphabet which was used to define witness languages. For star and
quotients, an exponential lower bound can be obtained by using a four-letter
alphabet. In the case of concatenation, a lower bound in Ω(2m/32n) is met by
languages defined over an eight-letter alphabet. The tight upper bound for the
concatenation operation remains open even in the case of a growing alphabet.
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9. Jirásek, J.Š., Jirásková, G., Szabari, A.: Operations on self-verifying finite
automata. In: Beklemishev, L.D. (ed.) CSR 2015. LNCS, vol. 9139, pp. 231–261.
Springer, Heidelberg (2015)
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Abstract. Extended regular expressions (with complement and inter-
section) are used in many applications due to their succinctness. In par-
ticular, regular expressions extended with intersection only (also called
semi-extended) can already be exponentially smaller than standard reg-
ular expressions or equivalent nondeterministic finite automata (NFA).
For practical purposes it is important to study the average behaviour
of conversions between these models. In this paper, we focus on the
conversion of regular expressions with intersection to nondeterministic
finite automata, using partial derivatives and the notion of support.
First, we give a tight upper bound of 2O(n) for the worst-case number
of states of the resulting partial derivative automaton, where n is the
size of the expression. Using the framework of analytic combinatorics,
we then establish an upper bound of (1.056 + o(1))n for its asymptotic
average-state complexity, which is significantly smaller than the one for
the worst case.

1 Introduction

Regular expressions with additional operators are used in applications such as pro-
gramming languages [12], XML processing [23], or runtime verification [22]. Most
of these operators do not increase their language expressive power but lead to gains
in the succinctness of the representation. This is the case for intersection. For regu-
lar expressions with intersection (RE∩) (or semi-extended), several computational
complexity decision problems, such as membership, equivalence and emptiness,
were studied by various authors. Petersen [21] has shown that the membership
problem is LOGCFL-complete, while for standard regular expressions (RE) it is
NL-complete [19]. Fürer [14] has proved that inequivalence and non-empty comple-
ment are EXPSPACE-complete, which contrasts with the PSPACE-completeness
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of these problems for RE. The complexity of the conversions from regular expres-
sions with intersection to standard regular expressions, and to finite automata,
were recently studied by Gelade and Neven [16], Gruber and Holzer [18], and
Gelade [15]. The conversion fromRE∩ toRE or to nondeterministic finite automata
(NFA) is exponential and it is double exponential to deterministic finite automata
(DFA). The conversion from α ∈ RE∩ to a DFA can be accomplished using Brzo-
zowski’s derivatives [8]. From RE to NFA a standard algorithm is the partial deriv-
ative automaton construction (Apd) introduced by Antimirov [1], which coincides
with the resolution of systems of equations by Mirkin [20]. The average complexity
of these conversions was recently studied using the framework of analytic combi-
natorics [4,5], and also their extension to regular expressions with shuffle [7]. For
these studies, Mirkin’s construction is essential as it provides inductive definitions
that can be used to obtain generating functions.

Caron et al. [9] extended the Apd to regular expressions with both inter-
section and complement (extended regular expressions)1. In their approach a
partial derivative is a set of sets of expressions (akin a disjunctive normal form),
whereas here it is simply a set of expressions. In the worst-case, their approach
also leads to NFAs that can be exponentially larger than the original expres-
sions. Moreover, considering sets of sets of expressions would turn the analytic
combinatoric analysis much harder.

In this paper we show that for RE∩, Mirkin’s construction can lead to
automata not initially connected and thus larger than the ones built by
Antimirov’s construction. However, the two constructions can produce identi-
cal NFAs. We present an exponential worst-case upper bound which is tight for
both. Using the framework of analytic combinatorics, we give an upper bound
for the asymptotic average-state complexity for the Mirkin’s construction, which
turns out to be much smaller than the worst-case bound. This also means that
Antimirov’s construction is asymptotically and on average much smaller than
the worst-case upper bound.

2 Regular Expressions with Intersection

Let Σ = {a1, . . . , ak} be an alphabet of size k. A word over Σ is a finite sequence
of symbols of Σ. The empty word is denoted by ε. The set Σ� is the set of all
words over Σ. A language over Σ is a subset of Σ�. The set RE∩ of regular
expressions with intersection over Σ contains the expression ∅ and all terms
generated by the following grammar:

α → ε | a | (α + α) | (α · α) | (α ∩ α) | (α�) (a ∈ Σ), (1)

where the operator · (concatenation) is often omitted. Parenthesis can also be
omitted considering the following precedences for the operators: � > · > ∩ > +.
The size of a regular expression α ∈ RE∩ is denoted by ||α|| and defined
as the number of occurrences of symbols (parenthesis not counted) in α.

1 And a more general framework is also reported in [10].



Part. Deriv. For Reg. Express. Intersection 47

Similarly, |α|Σ denotes the number of occurrences of alphabet symbols in α,
and |α|∩ the number of occurrences of the binary operator ∩. The language
L(α) for α ∈ RE∩ is defined as usual, with L(α ∩ β) = L(α) ∩ L(β). We say
that two regular expressions α, β ∈ RE∩ are equivalent, if L(α) = L(β), and
write α

.= β in this case. For a set S ⊆ RE∩, the language of S is defined as
L(S) =

⋃
α∈S L(α). The notion of equivalence extends naturally to sets of regu-

lar expressions. The left-quotient of a language L w.r.t. a word w ∈ Σ� is defined
as w−1L = { x | wx ∈ L }. The algebraic structure (RE∩,+, ·, ∅, ε) constitutes
an idempotent semiring, that with the unary operator � is a Kleene algebra.
Antimirov and Mosses [2] presented a complete and sound axiomatization for
RE∩, where the binary operator ∩ is idempotent, commutative, associative, dis-
tributes over +, and also satisfies the following axioms, where ai, aj ∈ Σ:

(ε ∩ β) .= ∅ ∧ (α .= βα + γ) ⇒ α
.= β�γ, ε ∩ α� .= ε,

ε ∩ (αβ) .= (ε ∩ α) ∩ β, ε ∩ ai
.= ∅ ∩ α

.= ∅,
(aiα) ∩ (ajβ) .= (ai ∩ aj)(α ∩ β), ai ∩ aj

.= ∅ (ai 	= aj),
(αai) ∩ (βaj)

.= (α ∩ β)(ai ∩ aj), α + (α ∩ β) .= α.

With the usual abuse of notation, define the function ε : RE∩ → {∅, ε} by
ε(α) = ε if ε ∈ L(α), and ε(α) = ∅ otherwise. The methods developed in Sects. 3
and 4 are syntactical and aim at building automata equivalent to a given regular
expression. To ensure the finiteness of the constructions it is not necessary to
consider regular expressions modulo any of the above properties2. However, in
some examples, for the sake of succinctness, we also consider regular expressions
modulo the identities of · and +. Note that this does not affect the upper bounds
of the number of states, both in the worst and in the average case.

3 Automata and Systems of Equations

We first recall the definition of a nondeterministic finite automaton (NFA) as a
tuple A = 〈S,Σ, S0, δ, F 〉, where S is a finite set of states, Σ is a finite alphabet,
S0 ⊆ S a set of initial states, δ : S ×Σ → 2S the transition function, and F ⊆ S
a set of final states. The language of A is L(A) = {w ∈ Σ� | δ(S0, w) ∩ F 	= ∅}.
The right language of a state s, denoted by Ls, is the language accepted by
A if we take S0 = {s}. It is well known that, for each n-state NFA A, over
Σ = {a1, . . . , ak}, having right languages L1, . . . ,Ln, it is possible to associate
a system of linear language equations

Li = a1L1i ∪ · · · ∪ akLki ∪ ε(Li), for i ∈ [1, n],

where Lji =
⋃

l∈δ(i,aj)
Ll and L(A) =

⋃
i∈S0

Li. In the same way, it is possible
to associate to each regular expression a system of equations. We here extend
Mirkin’s contruction to regular expressions with intersection.

Definition 1. Consider α0 ∈ RE∩ over Σ = {a1, . . . , ak}. A support of α0 is a
set {α1, . . . , αn} of regular expressions with intersection that satisfies a system
of equations
2 As is the case, for instance, for Brzozowski DFA or Caron et al. approach.
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αi
.= a1α1i + · · · + akαki + ε(αi) i ∈ [0, n], (2)

for some α1i, . . . , αki, where each αj,i is a (possibly empty) sum of elements in
{α1, . . . , αn}.

It is clear that the existence of a support of α implies the existence of an
NFA that accepts the language of α.

A support for a regular expression α ∈ RE∩ can be computed using the
function π : RE∩ → 2RE∩ defined below. First, we define some operations on sets
of regular expressions. Given S, T ⊆ RE∩ and β ∈ RE∩, Sβ = { αβ | α ∈ S } and
S∩· T = { α∩β | α ∈ S, β ∈ T }. Note, in particular, that L(S∩· T ) = L(S)∩L(T ).

Definition 2. Given α ∈ RE∩, the set π(α) is inductively defined by:

π(∅) = π(ε) = ∅,
π(a) = {ε} (a ∈ Σ),

π(α�) = π(α)α�,

π(α + β) = π(α) ∪ π(β),
π(αβ) = π(α)β ∪ π(β),

π(α ∩ β) = π(α) ∩· π(β).

Proposition 3. If α ∈ RE∩, then π(α) is a support of α.

Proof. We will proceed by induction on the structure of α. The proof for all
cases, excluding α ∩ β, can be found in [4,11,20]. Let π(α0) = {α1, . . . , αn} and
π(β0) = {β1, . . . , βm} be a support of α0 and β0, respectively. Thus,

αi
.= a1α1i + · · · + akαki + ε(αi), for i = 0, . . . , n

and
βj

.= a1β1j + · · · + akβkj + ε(βj), for j = 1, . . . , m,

where, for all l = 1, . . . , k, αli and βlj are linear combinations of elements of
π(α0) and π(β0), respectively. We want to prove that π(α0 ∩β0) is a support for
α0 ∩ β0. For i = 0, . . . , n and j = 0, . . . ,m, and using the axioms for ∩, we have

αi ∩ βj
.=(a1α1i + · · · + akαki + ε(αi)) ∩ (a1β1j + · · · + akβkj + ε(βj))
.=(a1α1i ∩ a1β1j) + · · · + (a1α1i ∩ akβkj) + (a1α1i ∩ ε(βj))+

. . . + (akαki ∩ a1β1j) + · · · + (akαki ∩ akβkj) + (akαki ∩ ε(βj))+

. . . + (ε(αi) ∩ a1β1j) + · · · + (ε(αi) ∩ akβkj) + (ε(αi) ∩ ε(βj))
.=(a1 ∩ a1)(α1i ∩ β1j) + · · · + (ak ∩ ak)(αki ∩ βkj) + (ε(αi) ∩ ε(βj))
.=a1(α1i ∩ β1j) + · · · + ak(αki ∩ βkj) + ε(αi ∩ βj).

For each l = 1, . . . , k, we know that αli =
∑

i′∈Ili

αi′ and βlj =
∑

j′∈Jlj

βj′ , for

Ili ⊆ {1, . . . , n} and Jlj ⊆ {1, . . . , m}. And, since

αli ∩ βlj
.=

∑
i′∈Ili

αi′ ∩
∑

j′∈Jlj

βj′
.=

∑
i′∈Ili,j′∈Jlj

(αi′ ∩ βj′),

we conclude that π(α0)∩· π(β0) = {α1∩β1, . . . , α1∩βm, . . . , αn∩βm} is a support
for α0 ∩ β0. 
�
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Example 4. Given the regular expression α1 = (b + ab + aab + abab) ∩ (ab)�,
π(α1) = {bab ∩ b(ab)�, ab ∩ b(ab)�, b ∩ b(ab)�, ε ∩ b(ab)�, bab ∩ (ab)�, ab ∩
(ab)�, b ∩ (ab)�, ε ∩ (ab)�}.

The next proposition provides an upper bound on the cardinality of the
support of a regular expression.

Proposition 5. For all α ∈ RE∩, the inequality |π(α)| ≤ 2|α|Σ−|α|∩−1 holds.

Proof. We proceed by induction on the structure of the regular expression α.
It is easily proved that the statement holds for the base cases ε, ∅ and a ∈ Σ.
Assume that the result holds for some α, β ∈ RE∩. We will make use of the fact
that 2m + 2n ≤ 2m+n+1, for any m,n ≥ 0. For α + β, one has

|π(α + β)| = |π(α) ∪ π(β)| ≤ |π(α)| + |π(β)| ≤
≤ 2|α|Σ−|α|∩−1 + 2|β|Σ−|β|∩−1 ≤
≤ 2|α|Σ−|α|∩−1+|β|Σ−|β|∩−1+1 = 2|α+β|Σ−|α+β|∩−1.

The case for αβ is analogous. For α�, one has

|π(α�)| = |π(α)α�| = |π(α)| ≤ 2|α|Σ−|α|∩−1 = 2|α�|Σ−|α�|∩−1.

Finally, for α ∩ β, one has

|π(α ∩ β)| = |π(α) ∩· π(β)| ≤
≤ |π(α)| · |π(β)| ≤ 2|α|Σ−|α|∩−1 · 2|β|Σ−|β|∩−1 =

= 2|α|Σ−|α|∩−1+|β|Σ−|β|∩−1 = 2|α∩β|Σ−(|α∩β|∩−1)−2 =

= 2|α∩β|Σ−|α∩β|∩−1.


�
The next examples present families of regular expressions that witnesses the
tightness of the upper bound established in Proposition 5.

Example 6. Let the regular expression rn ∈ RE∩ over Σ = {a, b} be induc-
tively defined by r0 = a�b�, r1 = b�a and rn = rn−2 ∩ r�

n−1, for n ≥ 2. Using
the definition of support it is straightforward that |π(r0)| = |{a�b�, b�}| = 21,
|π(r1)| = |{b�a, ε}| = 21, and |π(rn)| = |π(rn−2)| · |π(rn−1)|, for n ≥ 2. Thus, we
obtain |π(rn)| = 2fib(n), for n ≥ 0, and where fib(n) is the Fibonacci sequence.
Also, |r0|Σ − |r0|∩ − 1 = 2 − 0 − 1 = 1, |r1|Σ − |r1|∩ − 1 = 2 − 0 − 1 = 1,
and |rn|Σ − |rn|∩ − 1 = |rn−2|Σ + |rn−1|Σ − |rn−2|∩ − |rn−1|Σ − 1 − 1 =
(|rn−2|Σ − |rn−2|∩ − 1) + (|rn−1|Σ − |rn−1|∩ − 1), for n ≥ 2. Consequently,
|rn|Σ − |rn|∩ − 1 = fib(n), for n ≥ 0. We conclude that |π(rn)| = 2|rn|Σ−|rn|∩−1,
for n ≥ 0.
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Example 7. Let the regular expression rn ∈ RE∩ over {a}, be defined inductively
by r0 = a�a and rn = rn−1 ∩a�a, for n ≥ 1. We have π(r0) = π(a�a) = {a�a, ε},
and for n ≥ 1,

π(rn) = {a∗a, ε} ∩· · · · ∩· {a∗a, ε}︸ ︷︷ ︸
n+1

.

Thus |π(r0)| = 2 and |π(rn)| = |π(r0)|n+1 = 2n+1. Note that |rn|Σ = 2n+2 and
|rn|∩ = n. Therefore |π(rn)| = 2n+1 = 22n+2−n−1 = 2|rn|Σ−|rn|∩−1.

4 Partial Derivatives

The notions of partial derivatives and partial derivative automata were intro-
duced by Antimirov [1] for standard regular expressions. We now consider the
Antimirov construction from RE∩ expressions to NFAs.

Definition 8. For a regular expression α ∈ RE∩ and a symbol a ∈ Σ, the set
∂a(α) of partial derivatives of α w.r.t. a is defined by:

∂a(∅) = ∅,
∂a(ε) = ∅,

∂a(b) =

{
{ε}, if a = b

∅ otherwise,

∂a(αβ) =

{
∂a(α)β ∪ ∂a(β), if ε(α) = ε

∂a(α)β otherwise,
∂a(α + β) = ∂a(α) ∪ ∂a(β),
∂a(α ∩ β) = ∂a(α) ∩· ∂a(β),

∂a(α�) = ∂a(α)α�.

This definition is extended to words w ∈ Σ� by ∂ε(α) = {α}, ∂wa(α) =⋃
αi∈∂w(α) ∂a(αi), and ∂w(R) =

⋃
αi∈R ∂w(αi), where R ⊆ RE∩. It follows easily

that L(∂w(α)) = w−1L(α). The set of partial derivatives of an expression α is
∂(α) =

⋃
w∈Σ� ∂w(α). We also define ∂+(α) =

⋃
w∈Σ+ ∂w(α).

As for standard regular expressions, the partial derivative automaton of
an expression α ∈ RE∩ is defined by Apd(α) = 〈∂(α), Σ, {α}, δα, Fα〉, where
Fα = { γ ∈ ∂(α) | ε(γ) = ε } and δα(γ, a) = ∂a(γ). It follows that L(Apd(α))
is exactly L(α). Mirkin’s and Antimirov’s constructions coincide for standard
regular expressions. We will see that this is not true for regular expressions with
intersection.

The following lemmas present some properties of the function ∂w, used to
prove Proposition 11 and are easy to prove.

Lemma 9. For all S, S′ ⊆ RE∩ and a ∈ Σ, the following property holds

∂a(S ∩· S′) = ∂a(S) ∩· ∂a(S′).

Let suff(w) be the set of all non-empty suffixes of w, being defined as suff(w) =
{ v ∈ Σ+ | ∃u ∈ Σ� : uv = w }. Except for the second case, the following lemma
was shown by Antimirov.
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Lemma 10. For every regular expressions α, β ∈ RE∩ and word w ∈ Σ+, ∂w

satisfies the following:

∂w(α + β) = ∂w(α) ∪ ∂w(β), (3)
∂w(α ∩ β) = ∂w(α) ∩· ∂w(β), (4)

∂w(αβ) ⊆ ∂w(α)β ∪
⋃

v∈suff(w)

∂v(β), (5)

∂w(α�) ⊆
⋃

v∈suff(w)

∂v(α)α�. (6)

Proposition 11. For every regular expressions α, β ∈ RE∩, the following holds.

∂+(α + β) ⊆ ∂+(α) ∪ ∂+(β), ∂+(α ∩ β) ⊆ ∂+(α) ∩· ∂+(β),
∂+(αβ) ⊆ ∂+(α)β ∪ ∂+(β), ∂+(α�) ⊆ ∂+(α)α�.

Proof. First note that, given a set E ⊆ RE∩ and a regular expression α ∈ RE∩,
if, for all w ∈ Σ+, we have that ∂w(α) ⊆ E, then we have

⋃
w∈Σ+ ∂w(α) ⊆ E and

thus ∂+(α) ⊆ E. Moreover, we know that for every w ∈ Σ+, ∂w(α) ⊆ ∂+(α),
since ∂+(α) =

⋃
w∈Σ+ ∂w(α). Let α, β ∈ RE∩ be regular expressions over Σ. In

order to prove the inclusions above, the facts mentioned above are used. The
proof of each inclusion is given, respectively, by the following four proofs:

1. From Eq. (3), for all w ∈ Σ+, the following holds:

∂w(α + β) = ∂w(α) ∪ ∂w(β) ⊆ ∂+(α) ∪ ∂+(β).

And thus, we can conclude that ∂+(α + β) ⊆ ∂+(α) ∪ ∂+(β).
2. In the same way, from Eq. (4), for all w ∈ Σ+, the following holds:

∂w(α ∩ β) ⊆ ∂w(α) ∩· ∂w(β) ⊆ ∂+(α) ∩· ∂+(β).

And then, ∂+(α ∩ β) ⊆ ∂+(α) ∩· ∂+(β).
3. From Eq. (5), for all w ∈ Σ+, the following holds:

∂w(αβ) ⊆ ∂w(α)β ∪
⋃

v∈suff(w)

∂v(β) ⊆ ∂+(α)β ∪ ∂+(β).

Thus, ∂+(αβ) ⊆ ∂+(α)β ∪ ∂+(β).
4. Finally, from Eq. (6), for all w ∈ Σ+, the following holds:

∂w(α�) ⊆
⋃

v∈suff(w)

∂v(α)α� ⊆ ∂+(α)α�.

Therefore, we have that ∂+(α) ⊆ ∂+(α)α�. 
�
Example 12. Consider again α1 = (b+ab+aab+abab)∩(ab)�. We have ∂+(α1) =
{bab ∩ b(ab)�, ab ∩ b(ab)�, b ∩ b(ab)�, ab ∩ (ab)�, ε ∩ (ab)�}. Now, with β =
(b + ab + aab + abab), one has

∂+(β) ∩· ∂+((ab)�) ={bab ∩ b(ab)�, ab ∩ b(ab)�, b ∩ b(ab)�,

ε ∩ b(ab)�, bab ∩ (ab)�, ab ∩ (ab)�, b ∩ (ab)�, ε ∩ (ab)�}.

Thus, we conclude that ∂+(α1) ⊂ ∂+(b + ab + aab + abab) ∩· ∂+((ab)�).



52 R. Bastos et al.

The following proposition relates the function ∂+ and the support π.

Proposition 13. Given α ∈ RE∩, ∂+(α) ⊆ π(α).

Proof. The proof proceeds by induction on the structure of α. It is trivial that
∂+(∅) = π(∅), ∂+(ε) = π(ε) and ∂+(a) = π(a), for a symbol a ∈ Σ. Assume
that ∂+(α) ⊆ π(α) and ∂+(β) ⊆ π(β) holds, for α, β ∈ RE∩. For α + β, we have
∂+(α+β) ⊆ ∂+(α)∪∂+(β) ⊆ π(α)∪π(β). For α∩β, there is ∂+(α∩β) ⊆ ∂+(α)∩·
∂+(β) ⊆ π(α)∩· π(β). For αβ, we have ∂+(αβ) ⊆ ∂+(α)β∪∂+(β) ⊆ π(α)β∪π(β).
Finally, for α�, ∂+(α�) ⊆ ∂+(α)α� ⊆ π(α)α�. 
�
Since, for every regular expression α ∈ RE∩, the set π(α) is finite, Proposition 13
also proves that the set ∂+(α) is finite. For regular expressions without intersec-
tion it is known that π and ∂+ coincide [11]. Examples 4 and 12 show that there
exists α ∈ RE∩ such that π(α) 	= ∂+(α). The following lemmas establish some
conditions for the equality of π(α ∩ β) and ∂+(α ∩ β) to hold for α, β ∈ RE∩,
and will be used in Proposition 16.

Lemma 14. Given α, β ∈ RE∩, one has π(α ∩ β) = ∂+(α ∩ β) if and only if
π(α) = ∂+(α), π(β) = ∂+(β) and ∂+(α ∩ β) = ∂+(α) ∩· ∂+(β).

Proof. (⇒) We have that π(α∩β) = ∂+(α∩β) ⊆ ∂+(α)∩· ∂+(β). From Proposi-
tion 13 follows that ∂+(α) ⊆ π(α) and ∂+(β) ⊆ π(β). Suppose by contradiction
that ∂+(α) ⊂ π(α) or ∂+(β) ⊂ π(β). Then ∂+(α ∩ β) ⊆ ∂+(α) ∩· ∂+(β) ⊂
π(α) ∩· π(β) = π(α ∩ β), a contradiction since π(α ∩ β) = ∂+(α ∩ β). Thus,
we conclude that π(α) = ∂+(α) and π(β) = ∂+(β). Consequently, π(α ∩ β) =
π(α) ∩· π(β) = ∂+(α ∩ β).

(⇐) This follows trivially from the definition of support, i.e., π(α ∩ β) =
π(α) ∩· π(β), since π(α) = ∂+(α) and π(β) = ∂+(β). 
�
Lemma 15. Given α, β ∈ RE∩, such that ∂w(α) = π(α) or ∂w(β) = π(β) holds
for all w ∈ Σ+, then ∂+(α ∩ β) = ∂+(α) ∩· ∂+(β).

Proof. First, note that if γ ∈ RE∩ and ∂w(γ) = π(γ) for every w ∈ Σ+, then
∂+(γ) =

⋃
w∈Σ+ ∂w(γ) = π(γ). Given α, β ∈ RE∩, there are three possible

cases to prove. First, suppose that, for all w ∈ Σ+, we have ∂w(α) = π(α) and
∂w(β) = π(β). Then

∂+(α ∩ β) =
⋃

w∈Σ+

(∂w(α) ∩· ∂w(β)) = π(α) ∩· π(β) = ∂+(α) ∩· ∂+(β).

It remains to prove the cases that either ∂w(α) = π(α) or ∂w(β) = π(β), for all
w ∈ Σ+. The proof is the same for both cases. So, we will only present the proof



Part. Deriv. For Reg. Express. Intersection 53

for the first case. Suppose that, for all w ∈ Σ+, ∂w(α) = π(α), it holds that

∂+(α ∩ β) =
⋃

w∈Σ+

(∂w(α) ∩· ∂w(β) =
⋃

w∈Σ+

(π(α) ∩· ∂w(β))

=
⋃

w∈Σ+

{αi ∩ βj | αi ∈ π(α), βj ∈ ∂w(β)}

=
{

αi ∩ βj

∣∣∣ αi ∈ π(α), βj ∈
⋃

w∈Σ+

∂w(β)
}

= {αi ∩ βj | αi ∈ π(α), βj ∈ ∂+(β)}
= π(α) ∩· ∂+(β) = ∂+(α) ∩· ∂+(β).


�
By Proposition 13, |π(α)| is an upper bound for the cardinality of ∂+(α).

This upper bound can be achieved, as shown by the following proposition.

Proposition 16. For any n ∈ N there exists a regular expression rn ∈ RE∩ of
size O(n) such that |∂+(rn)| = 2|rn|Σ−|rn|∩−1.

Proof. Consider the regular expressions rn ∈ RE∩ from Example 7. We prove
that π(rn) = ∂+(rn). The proof proceeds by induction on n. For n = 0 and for
all w ∈ Σ+, we have ∂w(a�a) = {a�a, ε} = ∂+(a�a) = π(a�a). Let us assume,
by induction, that π(rn) = ∂+(rn), for n ≥ 1. It follows from Lemma 15 that
∂+(rn+1) = ∂+(rn ∩a�a) = ∂+(rn)∩· ∂+(a�a). Since π(a�a) = ∂+(a�a), π(rn) =
∂+(rn), and ∂+(rn ∩a�a) = ∂+(rn)∩· ∂+(rn), we conclude, from Lemma 14, that
π(rn+1) = π(rn ∩ a�a) = ∂+(rn ∩ a�a) = ∂+(rn+1). 
�

The next example provides another non-trivial family of regular expressions
for which the set of partial derivatives and the support coincide.

Example 17. For n ≥ 0 let the regular expression sn ∈ RE∩ be inductively
defined by s0 = (a+b)�b(a+b)� and sn = ((a+b)sn−1(a+b))∩ ((a+b)�(a+b)),
for n ≥ 1. The alphabetic length of sn is |sn|Σ = 5 + 8n and |sn|∩ = n. The
cardinality of the support of sn is given by: |π(s0)| = 2, |π(s1)| = 6 and |π(sn)| =∑n

i=2 2i + 3 · 2n, for n ≥ 2 Thus, for n ≥ 2 we have |π(sn)| = O(2n). Let
m = |sn|Σ − |sn|∩ − 1 = 5 + 7n − 1, i.e. n = (m − 4)/7. Then, |π(sn)| =
O(2

1
7m) = O(1.105m), which is much smaller than the upper bound 2m. For all

n ≥ 0, π(sn) = ∂+(sn).

5 Average Complexity Results

We know that the number of states in the partial derivative automaton of an
expression α has |π(α)| as its tight upper bound. In this section we estimate an
upper bound for the asymptotic average size of π(α). This is done using standard
methods of analytic combinatorics as expounded by Flajolet and Sedgewick [13],
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which apply to generating functions f(z) =
∑

n anzn associated with combina-
torial classes. Given some measure of the objects of a combinatorial class A, the
coefficient an represents the sum of the values of this measure for all objects
of size n. We will use the notation [zn]f(z) for an. For an introduction to this
approach applied to formal languages, we refer to Broda et al. [6].

Although the methods here used are the standard ones from the Analytic
Combinatorics (and Complex Analysis), each application of these techniques is
always a challenge, as one cannot foresee the analytic difficulties that one can
incur into when conducting the study of the generation function. The generating
function f can be seen as a complex analytic function, and the study of its
behaviour near its dominant singularity η (in case there is only one, as it happens
with the functions here considered) gives us access to the asymptotic form of its
coefficients. In particular, if f(z) is analytic in some appropriate neighbourhood
of 0 containing η, then one has the following [6,13]:

Proposition 18. If f(z) = a−b
√

1 − z/ρ+o
(√

1 − z/ρ
)
, with a, b ∈ R, b 	= 0,

then
[zn]f(z) ∼ b

2
√

π
ρ−nn−3/2.

If f(z) = a√
1−z/ρ

+ o

(
1√

1−z/ρ

)
, with a ∈ R, and a 	= 0, then

[zn]f(z) ∼ a√
π

ρ−nn−1/2.

5.1 Number of Expressions and Letters and ∩ Symbols

The study of the combinatorial behaviour of the RE∩-expressions, both in terms
of the number of expressions and the number of letters in them, is identical to
the study of any other regular expressions with 3 binary operators and a single
unary operator. Thus the results presented in Broda et al. [7] are valid for the
case here studied. Denoting by Rk(z) the generating function for the number of
RE∩-expressions without ∅ over a k letters alphabet, and by Lk(z) the generating
function for the number of letters in the expressions, one has:

[zn]Rk(z) ∼ ckρ
−n− 1

2
k n− 3

2 , (7)

[zn]Lk(z) ∼ k

12πck
ρ

−n+ 1
2

k n− 1
2 , (8)

where ck =
4√3+3k
6
√

π
and ρk = −1+2

√
3+3k

11+12k .
The average number of letters in an expression of size n is given by

[zn]Lk(z)
[zn]Rk(z)

.
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Using Eqs. (7) and (8), one obtains, asymptotically,

|α|Σ ∼ 3kρk√
3 + 3k

||α|| −−−−→
k→∞

1
2
||α||. (9)

The number of intersections in the RE∩-expressions under consideration can
be computed as follows. Consider the bivariate generating function

Ik(u, z) =
∑
m,n

ιmnumzn,

where ιmn is the number of RE∩-expressions with m intersection symbols and
size n. From (1), and using the symbolic method, we can write

Ik(u, z) = (k + 1)z + 2zIk(u, z)2 + uzIk(u, z)2 + zIk(u, z).

Solving this for Ik(u, z), differentiating the result w.r.t. u, and making u = 1,
we obtain an expression for the generating function for the cumulative number
of intersection symbols in all RE∩-expressions of size n:

Ik(z) =
1

18z

√
qk(z) +

(k + 1)z
3
√

qk(z)
+

z − 1
18z

, (10)

where qk(z) = 1 − 2z − (11 + 12k)z2, from which one obtains, using the same
methods,

[zn]Ik(z) ∼ 1
6
√

π

(
(k + 1)

√
ρk

4
√

3 + 3k
√

n
−

4
√

3 + 3k
3
√

ρk n3/2

)
ρ−n

k . (11)

The average number of symbols ∩ in an expression of size n is given by

[zn]Ik(z)
[zn]Rk(z)

.

Using Eqs. (7) and (11), one obtains, asymptotically,

|α|∩ ∼ (k + 1)ρk√
3 + 3k

||α|| −−−−→
k→∞

1
6
||α||. (12)

5.2 Average Size of π

Let Pk(z) denote the generating function for the size of π(α) for expressions
without ∅. From Definition 2 it follows that, given an expression α, an upper
bound, p(α), for the number of elements3 in the set π(α) satisfies:

p(ε) = 0,
p(a) = 1, for a ∈ Σ,

p(α�) = p(α),

p(α + β) = p(α) + p(β),
p(αβ) = p(α) + p(β),

p(α ∩ β) = p(α)p(β).

3 This upper bound corresponds to the case where all unions in π(α) are disjoint.
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From this, we directly get

Pk(z) = kz + 4zPk(z)Rk(z) + zPk(z) + zPk(z)2,

from which we obtain the following closed expression

Pk(z) =
1 − z + 2

√
qk(z) −

√
pk(z) + 4(1 − z)

√
qk(z)

6z
, (13)

where
pk(z) = 5 − 10z − (43 + 84k)z2. (14)

One now needs to determine the dominant singularity of Pk(z) which can
either be a root of qk(z) or a root of rk(z) = pk(z)+4(1− z)

√
qk(z). We need to

know which of the two expressions rk(z) or qk(z) has the smallest positive zero.
Because this is not trivial (note that one needs to decide this for all k), one will
do it indirectly using the method expounded in the following paragraphs.

Observing that rk(0) = 9 is positive and

rk(ρk) =
12

(
13 − 14k − 24k2 + (8k − 4)

√
3 + 3k

)
(11 + 12k)2

< 0,

by Bolzano theorem, rk(z) must have a positive zero smaller than ρk. This
conclusion could be achieved, directly, from the fact that the absolute value of the
negative zero of qk(z) is smaller than its positive zero, and thus, by Pringsheim
theorem [13], another smaller positive singularity of Pk(z) necessarily exists that
can only be due to rk(z). Letting

ρ̄k =
−1 − 2

√
3 + 3k

11 + 12k
,

and observing that

rk(ρ̄k) = −12
(−13 + 14k + 24k2 + (8k − 4)

√
3 + 3k

)
(11 + 12k)2

< 0,

one concludes that rk(z) has necessarily two real zeros in its domain, [ρ̄k, ρk].
Analogously, sk(z) = pk(z)− 4(1− z)

√
qk(z) has also two real zeros in the same

interval, and since rk(z)sk(z) is a fourth degree polynomial, it follows that rk(z)
has exactly two zeros, ηk and η′

k, which are real. Since sk(0) = 1 < rk(0) = 9,
and rk(x) = sk(x) only at the end points of [ρ̄k, ρk] it follows that sk(x) < rk(x)
in ]ρ̄k, ρk[. Considering the four real zeros of the polynomial rk(z)sk(z), given
what we just said, we conclude that the two more distant zeros from the origin
are the roots of rk(z). In fact, we can obtain an explicit expression for the zeros
of rk(z)sk(z) by noticing that

pk(z) ± 4(1 − z)
√

qk(z) =
(
1 − z ± 2

√
qk(z)

)2

− 36kz2

=
(
1 − z ± 2

√
qk(z) − 6

√
kz

)(
1 − z ± 2

√
qk(z) + 6

√
kz

)
,
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and thus, solving the equations resulting of nulling those factors, we obtain the
four zeros of rk(z)sk(z):

ηk =
4
√

2k + 1 + 2
√

k − 1
28k + 4

√
k + 15

, η′
k = −4

√
2k + 1 + 2

√
k + 1

28k − 4
√

k + 15
,

η′′
k =

4
√

2k + 1 − 2
√

k − 1
28k − 4

√
k + 15

, η′′′
k = −4

√
2k + 1 − 2

√
k + 1

28k + 4
√

k + 15
. (15)

It is possible to verify that ηk and η′
k are the roots of rk(z) and the other two

the roots from sk(z). Therefore, one has

rk(z)sk(z) = (7056k2 + 7416k + 2025)(z − ηk)(z − η′
k)(z − η′′

k )(z − η′′′
k ). (16)

From (13) one has

6zPk(z) = 1 − z −
√

rk(z) + 2
√

qk(z), (17)

and we split the study of the coefficients of the series of Pk(z) into the study of
the coefficients of 1 − z − √

rk(z) and of 2
√

qk(z). For the first one, we use that

rk(z) =
7056k2 + 7416k + 2025

sk(z)
ηk(η′

k − z)(η′′
k − z)(η′′′

k − z)
(

1 − z

ηk

)
,

and the fact that given a complex function f , defined in a neighbourhood of η
such that limz→η f(z) = a, one has, for all r ∈ R, f(z)(1−z/η)r = a(1−z/η)r +
o((1 − z/η)r), together with Proposition 18, to obtain

[zn]
(
1 − z −

√
rk(z)

)
∼ λkη−n

k n− 3
2 ,

where

λk =
(

(7056k2 + 7416k + 2025)(η′
k − ηk)(η′′

k − ηk)(η′′′
k − ηk)ηk

2πsk(ηk)

) 1
2

. (18)

For the last summand one has, similarly,

2
√

qk(z) = 4 4
√

3 + 3k ρ
1
2
k (ρk − ρ̄k)

1
2 (1 − z/ρk)

1
2 + o

(
(1 − z/ρk)

1
2

)
,

from which it follows, [zn]2
√

qk(z) ∼ −μkρ−n
k n− 3

2 , where

μk = 2π− 1
2 ρ

1
2
k

4
√

3 + 3k. (19)

Summing up, we get that

[zn]Pk(z) ∼ 1
6

(
λkη

−(n+1)
k − μkρ

−(n+1)
k

)
n− 3

2 . (20)
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In order to see what this result entails for the average case when compared
with the worst case result, expressed in Proposition 5, attend to the following.

(
[zn]Pk(z)
[zn]Rk(z)

) 1
n

∼
(

1
6λkη

−(n+1)
k n− 3

2

ckρ
−n− 1

2
k (n + 1)− 3

2

) 1
n

−−−−→
n→∞

ρk

ηk
.

Setting γk = ρk

ηk
, this means that, on average,

|π(α)| ∼ γ
||α||
k .

One has γ2 ∼ 1.01655, γ10 ∼ 1.04137, γ100 ∼ 1.05294, and

lim
k→∞

γk =
7
√

3
6
√

2 + 3
∼ 1.05564.

Proposition 19. For large values of k and n an upper bound for the average
number of states of Apd is (1.056 + o(1))n.

Considering the estimates given in (9) and (12), the worst-case upper bound
2|α|Σ−|α|∩−1 from Proposition 5 leads to an upper bound for the average case
roughly of 3

√
2

||α||
, for α large enough. As 3

√
2 ∼ 1.25992, the result just obtained

shows that the upper bound for the average complexity is significantly smaller
than the one for the worst case.

6 Conclusions

The conversion of a regular expression with intersection α to NFA is in the worst-
case 2Ω(||α||) [15,17,18]. This fact leads to the assumption that, although succinct,
these expressions are not useful in practical applications. Here we show that,
asymptotically, an upper bound for the average-state complexity of Apd(α) is
exponential but with a base only slightly above 1. Actually, experimental results
using a uniform distribution suggest that the average-state complexity of Apd(α)
may even be polynomial [3].
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Abstract. I study the state complexity of binary operations on regular
languages over different alphabets. It is well known that if L′

m and Ln

are languages restricted to be over the same alphabet, with m and n
quotients, respectively, the state complexity of any binary boolean oper-
ation on L′

m and Ln is mn, and that of the product (concatenation) is
(m − 1)2n + 2n−1. In contrast to this, I show that if L′

m and Ln are over
their own different alphabets, the state complexity of union and sym-
metric difference is mn + m + n + 1, that of intersection is mn + 1, that
of difference is mn + m + 1, and that of the product is m2n + 2n−1.

Keywords: Boolean operation · Concatenation · Different alphabets ·
Most complex languages · Product · Quotient complexity · Regular lan-
guage · State complexity · Stream · Unrestricted complexity

1 Motivation

Formal definitions are postponed until Sect. 2.
The first paper on state complexity was published by A. N. Maslov [9] in

1970, but this work was unknown in the West for many years. Maslov wrote:

An important measure of the complexity of [sets of words representable
in finite automata] is the number of states in the minimal representing
automaton. ... if T (A)∪T (B) are representable in automata A and B with
m and n states respectively ..., then:
1. T (A) ∪ T (B) is representable in an automaton with m · n states;
2. T (A).T (B) is representable in an automaton with (m − 1)2n + 2n−1

states.

The second paper on state complexity was published by S. Yu, Q. Zhuang
and K. Salomaa [11] in 1994. Here the authors wrote:
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1. ... for any pair of complete m-state DFA A and n-state DFA B defined
on the same alphabet Σ, there exists a DFA with at most m2n − 2n−1

states which accepts L(A)L(B).
2. ... m · n states are ... sufficient for a DFA to accept the intersection

(union) of an m-state DFA language and an n-state DFA language.

Here DFA stands for deterministic finite automaton, and complete means
that there is a transition from every state under every input letter.

I will show that statements 1 and 2 of Maslov are incorrect without the
restriction that the languages are over the same alphabet. In [11] the first state-
ment includes that restriction, but the second omits it (presumably it’s implied).

The same-alphabet restriction is unnecessary: There is no reason why we
should not be able to find, for example, the union of languages L′ = {a, b}∗b and
L = {a, c}∗c accepted by the minimal complete two-state automata D′

2 and D2

of Fig. 1, where an incoming arrow denotes the initial state and a double circle
represents a final state.

0 1 0 1

a b

b

a

a c

c

a

Fig. 1. Two minimal complete DFAs D′
2 and D2.

The union of L′ and L is a language over three letters. To find the DFA for
L′ ∪L, we view D′

2 and D2 as incomplete DFA’s, the first missing all transitions
under c, and the second under b. After adding the missing transitions we obtain
DFAs D′

3 and D3 of Fig. 2. Now we can proceed as is usually done in the same-
alphabet approach, and take the direct product of D′

3 and D3 to find L′ ∪ L.
Here it turns out that six states are necessary to represent L′ ∪ L, but the state
complexity of union is actually (m + 1)(n + 1).

0 1

2

0 1

2

a b

b

a

a, b, c

a c

c c

c

a
b b

a, b, c

Fig. 2. DFAs D′
3 and D3 over three letters.

In general, when calculating the result of a binary operation on regular lan-
guages with different alphabets, we deal with special incomplete DFAs that are
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only missing some letters and all the transitions caused by these letters. The
complexity of incomplete DFAs has been studied previously by Gao, K. Salo-
maa, and Yu [6] and by Maia, Moreira and Reis [8]. However, the objects studied
there are arbitrary incomplete DFAs, whereas we are interested only in complete
DFAs with some missing letters. Secondly, we study state complexity, whereas
the above-mentioned papers deal mainly with transition complexity. Neverthe-
less, there is some overlap. It was shown in [6, Corollary 3.2] that the incomplete
state complexity of union is less than or equal to mn + m + n, and that this
bound is tight in some special cases. In [8, Theorem 2], witnesses that work in
all cases were found. These complexities correspond to my result for union in
Theorem 1. Also in [8, Theorem 5], the incomplete state complexity of product
is shown to be m2n + 2n−1 − 1, and this corresponds to my result for product
in Theorem 2.

In this paper I remove the restriction of equal alphabets of the two operands.
I prove that the complexity of union and symmetric difference is mn+m+n+1,
that of intersection is mn + 1, that of difference is mn + m − 1, and that of the
product is m2n + 2n−1, if each language’s own alphabet is used. I exhibit a new
most complex regular language that meets the complexity bounds for boolean
operations, product, star, and reversal, has a maximal syntactic semigroup and
most complex atoms. All the witnesses used here are derived from that one most
complex language.

2 Terminology and Notation

A basic complexity measure of a regular language L over an alphabet Σ is the
number n of distinct (left) quotients of L, where a (left) quotient of L by a
word w ∈ Σ∗ is w−1L = {x | wx ∈ L}. The number of quotients of L is its
quotient complexity [2], κ(L). A concept equivalent to quotient complexity is the
state complexity [11] of L, which is the number of states in a complete minimal
deterministic finite automaton (DFA) recognizing L. Since we do not use any
other measures of complexity in this paper (with the exception of one mention
of time and space complexity in the next paragraph), we refer to quotient/state
complexity simply as complexity.

Let L′
m ⊆ Σ′∗ and Ln ⊆ Σ∗ be regular languages of complexities m and

n, respectively. The complexity of a binary operation ◦ on L′
m and Ln is the

maximal value of κ(L′
m ◦ Ln) as a function f(m,n), as L′

m and Ln range over
all regular languages of complexity m and n, respectively. The complexity of an
operation gives a worst-case lower bound on the time and space complexity of
the operation. For this reason it has been studied extensively; see [2,3,10,11] for
additional references.

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F ),
where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q
is the set of final states. We extend δ to a function δ : Q × Σ∗ → Q as usual.
A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The language accepted by D is
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denoted by L(D). If q is a state of D, then the language Lq of q is the language
accepted by the DFA (Q,Σ, δ, q, F ). A state is empty (or dead or a sink state) if
its language is empty. Two states p and q of D are equivalent if Lp = Lq. A state
q is reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA is minimal
if all of its states are reachable and no two states are equivalent. Usually DFAs
are used to establish upper bounds on the complexity of operations, and also as
witnesses that meet these bounds.

If δ(q, a) = p for a state q ∈ Q and a letter a ∈ Σ, we say there is a transition
under a from q to p in D. The DFAs defined above are complete in the sense
that there is exactly one transition for each state q ∈ Q and each letter a ∈ Σ. If
there is at most one transition for each state of Q and letter of Σ, the automaton
is an incomplete DFA.

A nondeterministic finite automaton (NFA) is a 5-tuple D = (Q,Σ, δ, I, F ),
where Q, Σ and F are defined as in a DFA, δ : Q × Σ → 2Q is the transition
function, and I ⊆ Q is the set of initial states. An ε-NFA is an NFA in which
transitions under the empty word ε are also permitted.

To simplify the notation, without loss of generality we use Qn = {0, . . . , n−1}
as the set of states of every DFA with n states. A transformation of Qn is a
mapping t : Qn → Qn. The image of q ∈ Qn under t is denoted by qt. For k � 2,
a transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆ Q is a k-cycle
if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. This k-cycle is denoted by
(q0, q1, . . . , qk−1), and acts as the identity on the states in Qn \ P . A 2-cycle
(q0, q1) is called a transposition. A transformation that changes only one state
p to a state q �= p and acts as the identity for the other states is denoted by
(p → q). The identity transformation is denoted by 1.

In any DFA, each a ∈ Σ induces a transformation δa of the set Qn defined by
qδa = δ(q, a); we denote this by a : δa. For example, when defining the transition
function of a DFA, we write a : (0, 1) to mean that δ(q, a) = q(0, 1), where the
transformation (0, 1) acts on state q as follows: if q is 0 it maps it to 1, if q is 1
it maps it to 0, and it acts as the identity on the remaining states.

By a slight abuse of notation we use the letter a to denote the transformation
it induces; thus we write qa instead of qδa. We extend the notation to sets of
states: if P ⊆ Qn, then Pa = {pa | p ∈ P}. We also find it convenient to
write P

a−→ Pa to indicate that the image of P under a is Pa. If s, t are
transformations of Q, their composition is denoted by s∗t and defined by q(s∗t) =
(qs)t; the ∗ is usually omitted. Let TQn

be the set of all nn transformations of
Qn; then TQn

is a monoid under composition.
A sequence (Ln, n � k) = (Lk, Lk+1, . . . ), of regular languages is called a

stream; here k is usually some small integer, and the languages in the stream
usually have the same form and differ only in the parameter n. For example,
({a, b}∗an{a, b}∗ | n � 2) is a stream. To find the complexity of a binary oper-
ation ◦ we need to find an upper bound on this complexity and two streams
(L′

m,m � h) and (Ln, n � k) of languages meeting this bound. In general, the
two streams are different, but there are many examples where L′

n “differs only
slightly” from Ln; such a language L′

n is called a dialect [3] of Ln.
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Let Σ = {a1, . . . , ak} be an alphabet; we assume that its elements are ordered
as shown. Let π be a partial permutation of Σ, that is, a partial function π : Σ →
Γ where Γ ⊆ Σ, for which there exists Δ ⊆ Σ such that π is bijective when
restricted to Δ and undefined on Σ \ Δ. We denote undefined values of π by
“−”, that is, we write π(a) = −, if π is undefined at a.

If L ⊆ Σ∗, we denote it by L(a1, . . . , ak) to stress its dependence on Σ. If
π is a partial permutation, let sπ(L(a1, . . . , ak)) be the language obtained from
L(a1, . . . , ak) by the substitution sπ defined as follows: for a ∈ Σ, a 	→ {π(a)}
if π(a) is defined, and a 	→ ∅ otherwise. The permutational dialect, or sim-
ply dialect, of L(a1, . . . , ak) defined by π is the language L(π(a1), . . . , π(ak)) =
sπ(L(a1, . . . , ak)).

Similarly, let D = (Q,Σ, δ, q0, F ) be a DFA; we denote it by D(a1, . . . , ak)
to stress its dependence on Σ. If π is a partial permutation, then the permuta-
tional dialect, or simply dialect, D(π(a1), . . . , π(ak)) of D(a1, . . . , ak) is obtained
by changing the alphabet of D from Σ to π(Σ), and modifying δ so that in
the modified DFA π(ai) induces the transformation induced by ai in the orig-
inal DFA. One verifies that if the language L(a1, . . . , ak) is accepted by DFA
D(a1, . . . , ak), then L(π(a1), . . . , π(ak)) is accepted by D(π(a1), . . . , π(ak)).

If the letters for which π is undefined are at the end of the alphabet Σ, then
they are omitted. For example, if Σ = {a, b, c, d} and π(a) = b, π(b) = a, and
π(c) = π(d) = −, then we write Ln(b, a) for Ln(b, a,−,−), etc.

3 Boolean Operations

A binary boolean operation is proper if it is not a constant and does not depend
on only one variable. We study the complexities of four proper boolean operations
only: union (∪), symmetric difference (⊕), difference (\), and intersection (∩);
the complexity of any other proper operation can be deduced from these four.
For example, κ(L′ ∪ L) = κ

(
L′ ∪ L

)
= κ(L′ ∩ L) = κ(L′ \ L), where we have

used the well-known fact that κ(L) = κ(L), for any L.
The DFA of Definition 1 is required for the next theorem; this DFA is the

4-input “universal witness” called Un(a, b, c, d) in [3].

Definition 1. For n � 3, let Dn = Dn(a, b, c, d) = (Qn, Σ, δn, 0, {n − 1}),
where Σ = {a, b, c, d}, and δn is defined by the transformations a : (0, . . . , n−1),
b : (0, 1), c : (n−1 → 0), and d : 1. Let Ln = Ln(a, b, c, d) be the language accepted
by Dn. The structure of Dn(a, b, c, d) is shown in Fig. 3.

Theorem 1. For m,n � 3, let L′
m (respectively, Ln) be a regular language

with m (respectively, n) quotients over an alphabet Σ′, (respectively, Σ). Then
κ(L′

m ∪ Ln) = κ(L′
m ⊕ Ln) = mn + m + n + 1, κ(L′

m \ Ln) = mn + m + 1,
κ(L′

m ∩ Ln) = mn + 1.
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0 1 2 . . . n − 2 n − 1

c, d

a, b

b
a

b, c, d

a a

b, c, d

a

a, c

b, dc, d

Fig. 3. DFA of Definition 1.

Proof. Let D′
m = (Q′

m, Σ′, δ′, 0′, F ′) and Dn = (Qn, Σ, δ, 0, F ) be minimal DFAs
for L′

m and Ln, respectively. To calculate an upper bound for the boolean oper-
ations assume that Σ′ \Σ and Σ \Σ′ are non-empty. We add an empty state to
D′

m to send all transitions under the letters from Σ \ Σ′ to that state; thus we
get an (m + 1)-state DFA D′

m,∅. Similarly, we add an empty state to Dn to get
Dn,∅. Now we have two DFAs over the same alphabet, and an ordinary problem
of finding an upper bound for the boolean operations on two languages over the
same alphabet, except that these languages both contain empty quotients. It is
clear that (m + 1)(n + 1) is an upper bound for all four operations; however,
this bound can be improved for difference and intersection. Consider the direct
product Pm,n of D′

m,∅ and Dn,∅. For difference, all n+1 states of Pm,n that have
the form (∅, q), where q ∈ Qn are empty. Hence the bound can be reduced by
n states to mn + m + 1. For intersection, all n states (∅, q), q ∈ Qn, and all m
states (p′, ∅), p′ ∈ Q′

m, are equivalent to the empty state (∅, ∅), thus reducing
the upper bound to mn + 1.

To prove that the bounds are tight, we start with Dn(a, b, c, d) of Definition 1.
For m,n � 3, let D′

m(a, b,−, c) be the dialect of D′
m(a, b, c, d) where c plays the

role of d and the alphabet is restricted to {a, b, c}, and let Dn(b, a,−, d) be
the dialect of Dn(a, b, c, d) in which a and b are permuted, and the alphabet is
restricted to {a, b, d}; see Fig. 4.

0 1 2 . . . (m − 1)
a, b

b

a a a

a

c c b, c b, c

0 1 2 . . . n − 1

d d a, d a, d

a, b

a

b b b

b

Fig. 4. Witnesses D′
m(a, b, −, c) and Dn(b, a, −, d) for boolean operations.
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To finish the proof, we complete the two DFAs by adding empty states, and
construct their direct product as illustrated in Fig. 5. If we restrict both DFAs to
the alphabet {a, b}, we have the usual problem of determining the complexity of
two DFAs over the same alphabet. By [1, Theorem 1], all mn states of the form
{p′, q}, p′ ∈ Q′

m, q ∈ Qn, are reachable and pairwise distinguishable by words
in {a, b}∗ for all proper boolean operations if (m,n) /∈ {(3, 4), (4, 3), (4, 4)}. For
our application, the three exceptional cases were verified by computation.

To prove that the remaining states are reachable, observe that (0′, 0) d−→
(∅′, 0) and (∅′, 0) bq−→ (∅′, q), for q ∈ Qn. Symmetrically, (0′, 0) c−→ (0′, ∅) and

(0′, ∅) ap

−→ (p′, ∅), for p′ ∈ Q′
m. Finally, (∅′, n−1) c−→ (∅′, ∅), and all (m+1)(n+1)

states of the direct product are reachable.

0 , 0

1 , 0

2 , 0

∅ , 0

0 , 1

1 , 1

2 , 1

∅ , 1

0 , 2

1 , 2

2 , 2

∅ , 2

0 , 3

1 , 3

2 , 3

∅ , 3

0 , ∅

1 , ∅

2 , ∅

∅ , ∅b b b

b

a

a

a

c

d

d

c

Fig. 5. Direct product for union shown partially.

It remains to verify that the appropriate states are pairwise distinguishable.
From [1, Theorem 1], we know that all states in Q′

m × Qn are distinguishable.
Let H = {(∅′, q) | q ∈ Qn}, and V = {(p′, ∅) | p′ ∈ Q′

m}. For the operations
consider four cases:

Union: The final states of Pm,n are {((m−1)′, q) | q ∈ Qn∪{∅}}, and {(p′, n−1) |
p′ ∈ Q′

m ∪ {∅′}}. Every state in V accepts a word with a c, whereas no state
in H accepts such words. Similarly, every state in H accepts a word with a d,
whereas no state in V accepts such words. Every state in Q′

m × Qn accepts
a word with a c and a word with a d. State (∅′, ∅) accepts no words at all.
Hence any two states chosen from different sets (the sets being Q′

m × Qn,
H, V , and {(∅′, ∅)}) are distinguishable. States in H are distinguishable by
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words in b∗ and those in V , by words in a∗. Therefore all mn + m + n + 1
states are pairwise distinguishable.

Symmetric Difference: The final states here are all the final states for union
except ((m − 1)′, n − 1). The rest of the argument is the same as for union.

Difference: The final states now are {((m − 1)′, q) | q �= n − 1}. The n states
of the form (∅′, q), q ∈ Qn, are now equivalent to the empty state {(∅′, ∅)}.
The remaining states are pairwise distinguishable by the arguments used for
union. Hence we have mn + m + 1 distinguishable states.

Intersection: Here only ((m − 1)′, n − 1) is final and all states (p′, ∅), p′ ∈ Q′
m,

and (∅′, q), q ∈ Qn are equivalent to {(∅′, ∅)}, leaving mn+1 distinguishable
states. 
�

Remark 1 (Marek Szyku�la, personal communication). In the case of intersection
the alphabet of one of the witnesses can be binary: L′

m(a, b,−, c) and Ln(b, a)
meet the bound mn + 1. Reachability and distinguishability of all mn states of
the form {p′, q}, p′ ∈ Q′

m, q ∈ Qn, is the same as above. State (p′, ∅) can be
reached from (p′, 0) by c, and is equivalent to the empty state, thus giving mn+1
states in the intersection.

4 Product

Theorem 2. For m,n � 3, let L′
m (respectively, Ln) be a regular language

with m (respectively, n) quotients over an alphabet Σ′, (respectively, Σ). Then
κ(L′

mLn) = m2n + 2n−1.

Proof. First we derive the upper bound. Let D′
m = (Q′

m, Σ′, δ′, 0′, F ′) and Dn =
(Qn, Σ, δ, 0, F ) be minimal DFAs of L′

m and Ln, respectively. We use the normal
construction of an ε-NFA N to recognize L′

mLn, by introducing an ε-transition
from each final state of D′

m to the initial state of Dn, and changing all final
states of D′

m to non-final. This is illustrated in Fig. 6, where (m− 1)′ is the only
final state of D′

m. We then determinize N using the subset construction to get
the DFA D for L′

mLn.
Suppose D′

m has k final states, where 1 � k � m − 1. I will show that D can
have only the following types of states: (a) at most (m − k)2n states {p′} ∪ S,
where p′ ∈ Q′

m \ F ′, and S ⊆ Qn, (b) at most k2n−1 states {p′, 0} ∪ S, where
p′ ∈ F ′ and S ⊆ Qn \ {0}, and (c) at most 2n states S ⊆ Qn. Because D′

m is
deterministic, there can be at most one state p′ of Q′

m in any reachable subset. If
p′ /∈ F ′, it may be possible to reach any subset of states of Qn along with p′, and
this accounts for (a). If p′ ∈ F ′, then the set must contain 0 and possibly any
subset of Qn \{0}, giving (b). It may also be possible to have any subset S of Qn

by applying an input that is not in Σ′ to {0′} ∪ S to get S, and so we have (c).
Altogether, there are at most (m − k)2n + k2n−1 + 2n = (2m − k)2n−1 + 2n

reachable subsets. This expression reaches its maximum when k = 1, and hence
we have at most m2n + 2n−1 states in D.

To prove that the bound is tight, we use the same witnesses as for boolean
operations; see Fig. 6. If S = {q1, . . . , qk} ⊆ Qn then S + i = {q1 + i, . . . , qk + i}
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Fig. 6. An NFA for the product of L′
m(a, b, −, c) and Ln(b, a, −, d).

and S − i = {q1 − i, . . . , qk − i}, where addition and subtraction are modulo n.
Note that b2 and am (a2 and bn) act as the identity on Q′

m (Qn). If p < m − 1,

then {p′}∪S
b2−→ {p′}∪(S+2), for all S ⊆ Qn. If n is odd, then (b2)(n−1)/2 = bn−1

and {p′} ∪ S
bn−1

−→ {p′} ∪ (S − 1), for all q ∈ Qn. If 0, 1 /∈ S or {0, 1} ⊆ S, then a
acts as the identity on S.

Remark 2. If 1 /∈ S and {(m− 2)′}∪S is reachable, then {0′, 1}∪S is reachable
for all S ⊆ Qn \ {1}.

Proof. If 0 ∈ S, then {(m − 2)′, 0} ∪ S \ {0} a−→ {(m − 1)′, 0, 1} ∪ S \ {0} a−→
{0′, 0, 1}∪S \ {0} = {0′, 1}∪S. If 0 /∈ S, then {(m− 2)′}∪S

a−→ {(m− 1)′, 0}∪
S

a−→ {0′, 1} ∪ S. 
�
We now prove that the languages of Fig. 6 meet the upper bound.

Claim 1: All sets of the form {p′} ∪ S, where p′ ∈ Q′
m−1 and S ⊆ Qn, are

reachable. We show this by induction on the size of S.

Basis: |S| = 0. The initial set is {0′}, and from {0′} we reach {p′}, p′ ∈ Q′
m−1,

by ap, without reaching any states of Qn. Thus the claim holds if |S| = 0.
Induction Assumption: {p′} ∪ S, where p′ ∈ Q′

m−1 and S ⊆ Qn, is reachable
if |S| � k.
Induction Step: We prove that if |S| = k + 1, then {p′} ∪ S is reachable. Let
S = {q0, q1, . . . , qk}, where 0 � q0 < q1 < · · · < qk � n − 1. Suppose q ∈ S. By
assumption, sets {p′} ∪ (S \ {q} − (q − 1)) are reachable for all p′ ∈ Q′

m−1.
• All sets of the form {0′} ∪ S are reachable.
Note that 1 /∈ (S \ {q}− (q − 1)). By assumption, {(m− 2)′}∪ (S \ {q}− (q − 1))
is reachable. By Remark 2, {0′, 1} ∪ (S \ {q} − (q − 1)) is reachable.
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1. If there is an odd state q in S, then {0′, 1} ∪ (S \ {q} − (q − 1)) bq−1

−→ {0′, q} ∪
(S \ {q}) = {0′} ∪ S.

2. If there is no odd state in S and n is odd, then S ⊆ {0, 2, . . . , n − 1}. Pick

q ∈ S. Then {0′, 1} ∪ (S \ {q} − (q − 1)) bq−→ {0′, q + 1} ∪ (S \ {q} + 1) bn−1

−−−→
{0′, q} ∪ S \ {q} = {0′} ∪ S.

3. If there is no odd state and n is even, then S ⊆ {0, 2, . . . , n−2} (so n−1 /∈ S).

(a) If 0 /∈ S, then 0, 1 /∈ S + 1. By 1, {0′} ∪ (S + 1) is reachable, since S + 1

contains an odd state. Then {0′}∪(S +1) a−→ {1′}∪(S +1) bn−1

−→ {0′}∪S.
(b) If 2 /∈ S, then 0, 1 /∈ S − 1. By 1, {0′} ∪ (S − 1) is reachable, since S − 1

contains an odd state. Then {0′}∪ (S −1) a−→ {1′}∪ (S −1) bn+1

−→ {0′}∪S.
(c) If {0, 2} ⊆ S, then 0 /∈ S − 1, and 1, n − 1 ∈ S − 1. By 1, {0′} ∪ (S − 1)

is reachable, since 1 ∈ S − 1. Note that aba sends 1 to 0, n − 1 to 1, and
adds 1 to each state q � 3 of S − 1; thus 2 /∈ (S − 1)aba, and {0′} ∪ (S −
1) aba−→ {1′, 0, 1} ∪ S \ {0, 2}. Next, bn−1 sends 0 to n − 1 and subtracts

1 from every other element of S \ {0, 2}. Hence {1′, 0, 1} ∪ S \ {0, 2} bn−1

−→
{0′, n − 1, 0} ∪ (S \ {0, 2} − 1) ab−→ {0′, 0, 2} ∪ (S \ {0, 2}) = {0′} ∪ S.

• All sets of the form {1′} ∪ S are reachable.
If 0 and 1 are not in S or are both in S, then {0′} ∪ S

a−→ {1′} ∪ S. If 0 ∈ S but
1 /∈ S, then {0′, 1} ∪ S \ {0} a−→ {1′, 0} ∪ S \ {0} = {1′} ∪ S. If 1 ∈ S but 0 /∈ S,
then {0′, 0} ∪ S \ {1} a−→ {1′, 1} ∪ S \ {1} = {1′} ∪ S.

• All sets of the form {p′} ∪ S, where 2 � p � m − 2, are reachable.

If p is even, then {0′} ∪ S
ap

−→ {p′} ∪ S.

If p is odd, then {1′} ∪ S
ap−1

−→ {p′} ∪ S.

Claim 2: All sets of the form {(m − 1)′, 0} ∪ S are reachable.

1. By Claim 1, {(m − 3)′} ∪ S is reachable. If q0 = 1, then

{(m − 3)′, 1} ∪ S \ {1} a2

−→ {(m − 1)′, 0, 1} ∪ S \ {1} = {(m − 1)′, 0} ∪ S.
2. By Claim 1, {(m − 2)′} ∪ S is reachable. If q0 � 2, then

{(m − 2)′} ∪ S
a−→ {(m − 1)′, 0} ∪ S.

Claim 3: All sets of the form S are reachable.

By Claim 1, {0′} ∪ S is reachable for every S, and {0′} ∪ S
d−→ S.

For distinguishability, note that only state q accepts wq = bn−1−q in Dn.
Hence, if two states of the product have different sets S and S′ and q ∈ S ⊕ S′,
then they can be distinguished by wq. State {p′} ∪ S is distinguished from S by
cam−1−pbn−1. If p < q, states {p′} ∪ S and {q′} ∪ S are distinguished as follows.
Use cam−1−q to reach {(p + m − 1 − q)′} from p′ and {(m − 1)′} ∪ {0} from q′.
The reached states are distinguishable since they differ in their subsets of Qn. 
�
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5 Most Complex Regular Languages

A most complex regular language stream is one that, together with some dialects,
meets the complexity bounds for all boolean operations, product, star, and rever-
sal, and has the largest syntactic semigroup and most complex atoms [3]. A most
complex stream should have the smallest possible alphabet sufficient to meet all
the bounds. Most complex streams are useful in systems dealing with regular
languages and finite automata. One would like to know the maximal sizes of
automata that can be handled by the system. In view of the existence of most
complex streams, one stream can be used to test all the operations. Here we
present a stream similar to that of [3] but with one added input letter that
induces the identity transformation, as shown in Fig. 3.

Theorem 3 (Most Complex Regular Languages). For each n � 3, the
DFA of Definition 1 is minimal and its language Ln(a, b, c, d) has complexity n.
The stream (Lm(a, b, c, d) | m � 3) with dialect streams (Ln(a, b,−, c) | n � 3)
and (Ln(b, a,−, d) | n � 3) is most complex in the class of regular languages. In
particular, it meets all the complexity bounds below, which are maximal for regu-
lar languages. In several cases the bounds can be met with a restricted alphabet.

1. The syntactic semigroup of Ln(a, b, c) has cardinality nn.
2. Each quotient of Ln(a) has complexity n.
3. The reverse of Ln(a, b, c) has complexity 2n, and Ln(a, b, c) has 2n atoms1.
4. For each atom AS of Ln(a, b, c), the complexity κ(AS) satisfies:

κ(AS) =

{
2n − 1, if S ∈ {∅, Qn};
1 +

∑|S|
x=1

∑n−|S|
y=1

(
n
x

)(
n−x

y

)
, if ∅ � S � Qn.

5. The star of Ln(a, b) has complexity 2n−1 + 2n−2.
6. The product L′

m(a, b,−, c)Ln(b, a,−, d) has complexity m2n + 2n−1.
7. The complexity of L′

m(a, b,−, c)◦Ln(b, a,−, d) is mn+m+n+1 if ◦ ∈ {∪,⊕},
mn + m + 1 if ◦ = \, and mn + 1 if ◦ = ∩.

Proof. The proofs of 1–5 can be found in [3], and Claims 6 and 7 are proved in
the present paper, Theorems 1 and 2. 
�
Proposition 1 (Marek Szyku�la, personal communication). At least four
inputs are required for a most complex regular language. In particular, four inputs
are needed for union: two inputs are needed to reach all pairs of states in Q′

m ×
Qn, one input in Σ′ \ Σ for pairs (p′, ∅) with p′ ∈ Q′

m, and one in Σ \ Σ′ for
pairs (∅′, q) with q ∈ Qn.
1 The atom congruence is a left congruence defined as follows: two words x and y

are equivalent if ux ∈ L if and only if uy ∈ L for all u ∈ Σ∗. Thus x and y are
equivalent if x ∈ u−1L if and only if y ∈ u−1L. An equivalence class of this relation
is called an atom of L [5,7]. It follows that an atom is a non-empty intersection of
complemented and uncomplemented quotients of L. The number of atoms and their
quotient complexities are possible measures of complexity of regular languages [3].
For more information about atoms and their complexity, see [4,5,7].
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6 Conclusions

Two complete DFAs over different alphabets Σ′ and Σ are incomplete DFAs
over Σ′ ∪Σ. Each DFA can be completed by adding an empty state and sending
all transitions induced by letters not in the DFA’s alphabet to that state. This
results in an (m + 1)-state DFA and an (n + 1)-state DFA. From the theory
about DFAs over the same alphabet we know that (m + 1)(n + 1) is an upper
bound for all boolean operations on the original DFAs, and that m2n+1 + 2n is
an upper bound for product. We have shown that the tight bounds for boolean
operations are (m + 1)(n + 1) for union and symmetric difference, mn + m + 1
for difference, and mn + 1 for intersection, while the tight bound for product is
m2n + 2n−1. In the same-alphabet case the tight bound is mn for all boolean
operations and it is (m − 1)2n + 2n−1 for product. In summary, the restriction
of identical alphabets is unnecessary and leads to incorrect results.

It should be noted that if the two languages in question already have empty
quotients, then making the alphabets the same does not require the addition of
any states, and the traditional same-alphabet methods are correct. This is the
case, for example, for prefix-free, suffix-free and finite languages.
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it will be denoted by κ(L). The state complexity of an operation on regular lan-
guages is the maximal state complexity of the result of the operation expressed
as a function of the state complexities of the operands.

Let Σ be a finite non-empty alphabet. The shuffle u v of words u, v ∈ Σ∗

is defined as follows:

u v = {u1v1 · · · ukvk | u = u1 · · · uk, v = v1 · · · vk, u1, . . . , uk, v1, . . . , vk ∈ Σ∗}.

The shuffle of two languages K and L over Σ is defined by

K L =
⋃

u∈K,v∈L

u v.

Note that the shuffle operation is commutative on both words and languages.
The state complexity of the shuffle operation was first studied by Câmpeanu

et al. [2], but they considered only bounds for incomplete deterministic automata.
In particular, they proved that 2mn − 1 is a tight upper bound for that case.
Since we can convert an incomplete deterministic automaton into complete one
by adding the empty state, it follows that 2(m−1)(n−1) − 1 is a lower bound
for the case of complete deterministic automata. Here we show that this lower
bound can be improved, and we derive an upper bound for two regular languages
represented by complete deterministic automata, but the question whether this
bound is tight remains open.

A nondeterministic finite automaton (NFA) is a quintuple A =
(Q,Σ, δ, s, F ), where Q is a finite non-empty set of states, Σ is a finite alphabet
of input symbols, δ : Q × Σ → 2Q is the transition function which is extended
to the domain 2Q × Σ∗ in the natural way, s ∈ Q is the initial state, and F ⊆ Q
is the set of final states. The language accepted by NFA A is the set of words
L(A) = {w ∈ Σ∗ | δ(s, w) ∩ F �= ∅}.

An NFA A is deterministic and complete (DFA) if |δ(q, a)| = 1 for each q in
Q and each a in Σ. In such a case, we write δ(q, a) = q′ instead of δ(q, a) = {q′}.
A DFA is minimal (with respect to the number of states) if all its states are
reachable, and no two distinct states are equivalent.

Every NFA A = (Q,Σ, δ, s, F ) can be converted to an equivalent DFA A′ =
(2Q, Σ, δ, {s}, F ′), where F ′ = {R ∈ 2Q | R ∩ F �= ∅}. The DFA A′ is called the
subset automaton of NFA A. The subset automaton may not be minimal since
some of its states may be unreachable or equivalent to other states.

Let K and L be regular languages over an alphabet Σ recognized by deter-
ministic finite automata K = (QK , Σ, δK , qK , FK) and L = (QL, Σ, δL, qL, FL),
respectively. Then K L is accepted by the nondeterministic finite automaton

N = (QK × QL, Σ, δ, (qK , qL), FK × FL),

where
δ((p, q), a) = {(δK(p, a), q), (p, δL(q, a))}.

Let D = (2QK×QL , Σ, δ′, {(qK , qL)}, F ′) be the subset automaton of N . If
|QK | = m and |QL| = n, then NFA N has mn states. It follows that DFA D has
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at most 2mn reachable and pairwise distinguishable states. However, this upper
bound cannot be met, as we will show.

In the sequel, we assume that QK = {1, 2, . . . ,m}, qK = 1, QL =
{1, 2, . . . , n}, and qL = 1. We say that a state (p, q) of NFA N is in row i if
p = i, and it is in column j if q = j.

Proposition 1. Let a ∈ Σ. Let S be a state of D. Let πcol(S) = {p | (p, q) ∈
S for some q}, and πrow(S) = {p | (p, q) ∈ S for some p}. Then πx(S) ⊆ πx(S ·
a) for x ∈ {col, row}.
Proof. Let p ∈ πcol(S); then we have (p, q) ∈ S for some q. Since δ((p, q), a) =
{(δK(p, a), q), (p, δL(q, a)}, we have (p, δL(q, a)) ∈ δ(S, a), so p ∈ πcol(δ(S, a)).
By symmetry, the same claim holds for πrow. �	

We claim that in the subset automaton D, every reachable subset S of QK ×
QL must contain a state in column 1 and a state in row 1, that is, it must satisfy
the following condition.

Condition (C): There exist states (s, 1) and (1, t) in S for some s ∈ QK and
t ∈ QL.

Lemma 2. Every reachable subset S of subset automaton D satisfies Condi-
tion (C).

Proof. The initial subset of D is {(1, 1)}, and it satisfies Condition (C). By
Proposition 1, for every a ∈ Σ we get that 1 ∈ πcol(δ(S, a)) and 1 ∈ πrow(δ(S, a)),
so δ(S, a) satisfies Condition (C). By induction, all reachable subsets satisfy
Condition (C). �	
Theorem 3 (Shuffle: Upper Bound). Let κ(K) = m and κ(L) = n. Then
the state complexity of the shuffle of K and L is at most

f(m,n) = 2mn−1 + 2(m−1)(n−1)(2m−1 − 1)(2n−1 − 1). (1)

Proof. By Lemma 2, every reachable subset of D must contain a state in row 1
and a state in column 1. There are 2mn−1 subsets containing state (1, 1), and
2(m−1)(n−1)(2m−1 − 1)(2n−1 − 1) subsets not containing (1, 1) but containing
(s, 1) for some s ∈ {2, 3, . . . ,m} and (1, t) for some t ∈ {2, 3, . . . , n}. This gives
f(m,n). �	

Let K and L be two regular languages over Σ. If κ(K) = κ(L) = 1, then
each of K, L, and K L is either ∅ or Σ∗, and κ(K L) = 1; hence the bound
f(1, 1) = 1 is tight.

Now suppose that κ(K) = 1; here we have two possible choices for K, the
empty language or Σ∗. The first choice leads to κ(K L) = 1. Hence only the
second choice is of interest, where the language K L = Σ∗ L is the all-
sided ideal [1] generated by L. If κ(L) = 2, the upper bound f(1, 2) = 2 is met
by the unary language L = aa∗. Hence assume that κ(K) = 1 and κ(L) � 3.
The next observation shows that in such a case, the tight bound is less than
f(1, n) = 2n−1.
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Proposition 4 (Okhotin [4]). If κ(L) � 3, then the state complexity of Σ∗ L
is at most 2n−2 + 1, and this bound can be reached only if |Σ| � n − 2.

Okhotin showed that the language L = (a1Σ
∗a1 ∪ · · · ∪ an−2Σ

∗an−2)Σ∗,
where Σ = {a1, . . . , an−2}, meets this bound [4]. This takes care of the case
κ(K) = 1 and, by symmetry, of the case κ(L) = 1.

In what follows we assume that m � 2 and n � 2. First, let us show that the
upper bound f(m,n) cannot be met by regular languages defined over a fixed
alphabet.

Proposition 5. Let K and L be regular languages over Σ with κ(K) = m and
κ(L) = n, where m,n � 2. If κ(K L) = f(m,n), then |Σ| � mn − 1.

Proof. For s = 2, 3, . . . , m and t = 2, 3, . . . , n denote

As = {(1, 1), (s, 1)},

Bt = {(1, 1), (1, t)},

Cst = {(s, 1), (1, t)}.

If all the subsets satisfying Condition (C) are reachable, then, in particular, all
the subsets As, Bt, and Cst must be reachable. Let us show that all these subsets
must be reached from some subsets containing state (1, 1) by distinct symbols.

Suppose that a set As is reached from a reachable set S with S �= As by a
symbol a, that is, we have As = δ(S, a) and S �= As. The set As contains only
states in column 1 and rows 1 or s. By Proposition 1, the set S may only contain
states in column 1 and in rows 1 or s, that is, we have S ⊆ {(1, 1), (s, 1)}. Since
S �= As, we must have S = {(1, 1)}.

By symmetry, each Bt can only be reached from {(1, 1)}.
Suppose that a set Cst is reached from a reachable set S with S �= Cst by a

symbol a. By Proposition 1, we must have S ⊆ {(1, 1), (s, 1), (1, t), (s, t)}. Let us
show that (1, 1) ∈ S. Suppose for a contradiction that (1, 1) /∈ S. Then, since S
is reachable, it must contain a state in column 1 and a state in row 1, that is,
we must have {(s, 1), (1, t)} ⊆ S. But then (s, t) ∈ S since S �= Cst. However,
then δK(s, a) = 1 and δL(t, a) = 1 which implies that (1, 1) ∈ δ((s, 1), a), and
so (1, 1) ∈ Cst. This is a contradiction. Therefore Cst is reached from a set
containing (1, 1).

Thus each As is reached from {(1, 1)} by a symbol as, each Bt is reached
from {(1, 1)} by a symbol bt, each Cst is reached from a set containing (1, 1) by
a symbol cst, and we must have

δK(1, as) = s and δL(1, as) = 1,
δK(1, bt) = 1 and δL(1, bt) = t,

δK(1, cst) = s and δL(1, cst) = t.

It follows that all the symbols as, bt, and cst must be pairwise distinct. Therefore
we have |Σ| � m − 1 + n − 1 + (m − 1)(n − 1) = mn − 1. �	
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1 2

a, b, c

b, c, d

d a

1 2

a, c, d

a, b, c, d

b

Fig. 1. Witness DFAs K and L for shuffle with |QK | = 2, |QL| = 2.

Unfortunately, this lower bound on the size of the alphabet is not tight, as
is demonstrated by the following example:

Example 6. If t is a transformation of the set {1, 2, . . . , n} and q ∈ {1, 2, . . . , n},
let qt be the image of q under t. Transformation t can now be denoted by
[1t, 2t, . . . , nt].

(1) If m = n = 2, we have f(2, 2) = 10. Let Σ = {a, b, c, d}, and let the
DFAs K and L be as shown in Fig. 1, and let K and L be their languages.
Then κ(K L) = 10. We have used GAP [3] to show that the bound cannot be
reached with a smaller alphabet, and that the DFAs of Fig. 1 are unique up to
isomorphism.

(2) For m = 2 and n = 3, the minimal size of the alphabet of a witness pair
is 6. We have verified this by a dedicated algorithm enumerating all pairs of
non-isomorphic DFAs with 2 and 3 states. In contrast to the previous case, over
a minimal alphabet there are more than 60 non-isomorphic DFAs of L – even if
we do not distinguish them by sets of final states – that meet the bound with
some K. One of the witness pairs is described below.

Let Σ = {a, b, c, d, e, f}. Let K = ({1, 2}, Σ, δK , 1, {2}), and let a = [1, 2], b =
c = [2, 1], d = [1, 1], e = [2, 2], and f = [2, 1]. Let L = ({1, 2, 3}, Σ, δL, 1, {1}),
and let a = [2, 2, 3], b = [2, 1, 3], c = [1, 1, 1], d = e = [3, 1, 2], f = [3, 1, 1]. Then
κ(K L) = 44 = f(2, 3).

The bound mn − 1 on the size of the alphabet is not tight for m = n = 2,
where an alphabet of size four is required. For any m,n � 2 the subsets of
{1, 2} × {1, 2} satisfying (C) must be also reachable, and to reach them we can
use only transformations mapping 1 to either 1 or 2. There are only three such
transformations counted in Proposition 5; thus we need one more letter.

2 Partial Results About Tightness

To prove that the upper bound f(m,n) of Eq. (1) is tight, we must exhibit two
languages K and L with state complexities m and n, respectively, such that
κ(K L) = f(m,n). As usual, we use DFAs to represent the languages: Let
K and L be minimal complete DFAs for K and L. We first construct the NFA
N as defined in Sect. 1, and we consider the subset automaton D of NFA N .
We must then show that D has f(m,n) states reachable from the initial state
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{(1, 1)}, and that these states are pairwise distinguishable. We were unable to
prove this for all m and n, but we have some partial results about reachability
in Subsect. 2.1, and we deal with distinguishability in Subsect. 2.2.

2.1 Reachability

We performed computations verifying reachability of the upper bound for small
values of m and n. These results are summarized in Table 1.

The computation in the hardest case with m = n = 6 took about 48 days
on a computer with AMD Opteron(tm) Processor 6380 (2500 MHz) and 64 GB
of RAM. Moreover, we verified that in all these cases, every subset of size at
least 3 is directly reachable from some smaller subset. We also verified that for
reachability in case of m = n = 3 an alphabet of size 12 is sufficient, and in case
of m = n = 4 an alphabet of size 50 is sufficient. Using these results, we are
going to prove reachability for all m,n with 2 � m � 5 and n � 2.

Table 1. Computational verification of reachability of the bound. The fields with �∗

follow from the proofs of Subsect. 2.1.

m\n 2 3 4 5 6 7 � 8

2 � � � � � � �∗

3 � � � � � �∗

4 � � � � �∗

5 � � � �∗

6 � ? ?

7 ? ?

� 8 ?

Without loss of generality, the set of states of any n-state DFA is denoted
by Qn = {1, 2, . . . , n}. Let Tn be the monoid of all transformations of the set
Qn. Let p, q ∈ Qn and P ⊆ Qn. Let 1 denote the identity transformation. Let
(p → q) denote the transformation that maps state p to state q and acts as
the identity on all the other states. Let (p, q) denote the transformation that
transposes p and q.

Here we deal only with reachability, so final states do not matter. We assume
that the sets of final states are empty in this subsection.

Let Σm,n = {as,t | s ∈ Tm and t ∈ Tn} be an alphabet consisting of mmnn

symbols. If an input a induces transformations s in Tm and t in Tn, this will be
indicated by a : s; t.

Define DFAs Km,n = (Qm, Σm,n, δm, 1, ∅) and Lm,n = (Qn, Σm,n, δn, 1, ∅),
where δm(p, as,t) = ps if p ∈ Qm and δn(q, as,t) = qt if q ∈ Qn. Let Nm,n be the
NFA for the shuffle of languages recognized by DFAs Km,n and Lm,n as described
in Sect. 1, and let Dm,n be the subset automaton of Nm,n. The NFA Nm,n has
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alphabet Σm,n, and so has an input letter for every pair of transformations in
Tm × Tn. Therefore the addition of another input letter to the DFAs Km,n and
Lm,n cannot add any new set of states of Nm,n that would be reachable from
{(1, 1)} in Dm,n.

Let m′ � m and n′ � n. Then DFA Km′,n′ = (Qm′ , Σm′,n′ , δm′ , 1, ∅) (respec-
tively, the DFA Lm′,n′ = (Qn′ , Σm′,n′ , δn′ , 1, ∅)) is a sub-DFA of Km,n (respec-
tively, of Lm,n), in the sense that Qm′ ⊆ Qm, Σm′,n′ ⊆ Σm,n, and δm′ ⊆ δm.
As well, NFA Nm′,n′ is a sub-NFA of Nm,n. Note that Dm,n is extremal for the
shuffle: every language K L, where K and L are languages with state com-
plexities m and n respectively, is recognized by some sub-DFA of D(m,n) after
possibly renaming some letters.

For the next lemma it is convenient to consider a subset S of states (p, q)
of Nm,n as an m × n matrix, where the entry in row p and column q is (p, q) if
(p, q) ∈ S, and it is empty otherwise. We first introduce the following notions.

Definition 7. Let i, i′ ∈ Qm, i �= i′, and j, j′ ∈ Qn, j �= j′.
(a) A row i′ contains row i, if (i, j) ∈ S implies (i′, j) ∈ S for all j ∈ Qn.
(b) A column j′ contains column j if (i, j) ∈ S implies (i, j′) ∈ S for all i ∈ Qm.
(c) A subset of Qm × Qn is valid if it satisfies Condition (C) from Lemma2,
that is, if it contains a state in row 1 and a state in column 1.

Lemma 8. Let S be a valid subset of Qm × Qn with the property that there are
distinct i, i′ or j, j′ such that either row i′ contains row i or column j′ contains
column j. Assume that every valid subset S′ of Qm′ × Qn′ , where m′ < m, or
n′ < n, or |S′| < |S|, is reachable in DFA Dm′,n′ . Then S is reachable in Dm,n.

Proof. If S contains an empty row or column, then without loss of generality we
can renumber the n states of Lm,n in such a way that column n is the empty
column in S. By the inductive assumption we know that S is reachable in Dm,n−1

by some word w. Since Nm,n−1 is a sub-NFA of Nm,n, S is reachable in Dm,n as
well by the same word. Suppose that S has neither an empty row nor an empty
column. By symmetry, it is sufficient to consider the case with distinct i and i′

such that row i′ contains row i. Let S′ = S\{(i′, j) | (i, j) ∈ S for j ∈ {1, . . . , n}}.
Since |S′| < |S|, the set S′ is reachable by assumption. To obtain S, we apply
the letter that induces the transformation i → i′;1. �	
Lemma 9. Let S be a valid subset of Qm × Qn such that there is a column or
a row with exactly one element. Assume that every valid subset S′ of Qm′ ×Qn′ ,
where m′ < m, or n′ < n, or |S′| < |S|, is reachable in Dm′,n′ . Then S is
reachable in Dm,n.

Proof. Recall that we can assume m � 2 and n � 2. We may assume that there
is neither an empty row nor an empty column in S; otherwise S is reachable by
Lemma 8. It is sufficient to consider the case involving a column, since the case
involving a row follows by symmetric arguments. Let (p, q) be the only element
in column q. If there are more elements in row p, then column q is contained in
another column and by Lemma8, the set S is reachable.
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Let S′ be the subset of Qm−1 × Qn−1 obtained by removing row p and
column q, and renumbering the states to Qm−1 × Qn−1 in the way such that
i ∈ Qm becomes i − 1 if i > p and otherwise remains the same, and j ∈ Qn

becomes j − 1 if j > q and otherwise remains the same. We have that S′ is a
valid subset, and by the inductive assumption it is reachable in Dm−1,n−1 by
some word u′; let u be the word corresponding to u′ in the original numbering
of the states. We consider four cases.

Case p �= 1 and q �= 1: State {(1, 1), (p, q)} is reachable in Dm,n by word a2,
where a : (1, p); (1, q). Then S is reachable by a2u.

Case p = 1 and q �= 1: State {(2, 1), (1, q)} is reachable in Dm,n by word a2,
where a : (1, 2); (1, q). Then state (2, 1) corresponds to state (1, 1) after the
renumbering, and S is reachable by a2u.

Case p �= 1 and q = 1: This is symmetrical to the previous case.
Case p = 1 and q = 1: State {(1, 1), (2, 2)} is reachable in Dm,n by word a2,

where a : (1, 2); (1, 2). Then state (2, 2) corresponds to state (1, 1) after the
renumbering, and S is reachable by a2u. �	
Theorem 10. If for some h every valid subset can be reached in Dh,( h

�h/2�) then
for every m � h and every n, every valid subset can be reached in Dm,n.

Proof. This follows by induction on m, n, and |S|.
For m = 1 this follows by induction on n: if n = 1 then D1,1 consists of a

single valid subset {(1, 1)}, and if n > 1, then we apply Lemma 8. For m � h
and n �

(
h

�h/2�
)

this holds by assumption, since Nm,n is a sub-NFA of Nh,( h
�h/2�).

If |S| = 1, then {(1, 1)} is the only valid subset, and it is reachable since it is
the initial subset of Dm,n.

Let S be a valid subset of Qm × Qn, where m � h and n >
(

h
�h/2�

)
, and

assume that every valid subset S′ of Qm′ × Qn′ is reachable if m′ < m, or
n′ < n, or |S′| < |S|. By Sperner’s theorem [5], the maximal number of subsets
of an m-element set such that none of them contains any other subset is

(
m

�m/2�
)
.

This is not larger than
(

h
�h/2�

)
; hence, there exist some columns j, j′ with j �= j′

such that the j-th column is contained in j′-th column. By Lemma 8, the subset
S is reachable. �	
Corollary 11. Let 1 � m � 4 and n � 1. Then every valid subset can be
reached in Dm,n.

Proof. Since we have verified the reachability of all valid subsets for m = 4 and
n = 6 =

(
4
2

)
, Theorem 10 applies with h = 4. �	

To strengthen this result and show reachability for m � 5, we need to intro-
duce another concept with permutations. Let ϕ be any permutation of m rows.
We split subsets of Qm (subsets of rows) into equivalence classes under ϕ. For
U ⊆ Qm, [U ]ϕ = {V ⊆ Qm | V = ϕi(U) for some i � 0} denotes the equiva-
lence class of U . See Tables 2, 3, 4 for examples of subsets whose columns U are
partitioned into equivalence classes under some ϕ.
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For a subset S of Qm ×Qn, by col(S, i) we denote the subset of Qm contained
in the i-th column. Then cols(S) =

⋃
1�i�n col(S, i) is the set of the subsets in

the columns of S.
The following lemma assures reachability (under an inductive assumption)

of a special kind of subsets whose columns form only full and empty equivalence
classes under some permutation ϕ.

Lemma 12. Let ϕ be a permutation of m rows. Let S be a valid subset of
Qm × Qn such that [U ]ϕ ⊆ cols(S) for every U ∈ cols(S), and there is a
column V ∈ cols(S) such that |[V ]ϕ| � 2. Assume that every valid subset S′ of
Qm′ ×Qn′ , where m′ < m, or n′ < n, or |S′| < |S|, is reachable in Dm′,n′ . Then
S is reachable in Dm,n.

Proof. We can assume that no two columns contain the same subset of rows, no
column is empty, and the first row contains at least two elements; otherwise S
is reachable by Lemma 8 or by Lemma 9.

Let Sj = col(S, j) be the j-th column of a valid subset S. Thus we have
S = {(i, j) | 1 � j � n and i ∈ Sj}. Since |[V ]ϕ| � 2, we can always choose V so
that ϕ−1(V ) is in a k-th column Sk with k �= 1. Let S′ be the set obtained from
S by omitting the states in the k-th column and by taking the pre-image of Sj

under ϕ in any other column, that is,

S′ = {(i, j) | 1 � j � n, j �= k, and i ∈ ϕ−1(Sj)}.

Since k �= 1 and the first row of S contains at least two elements, the set S′ is
valid. Since V is non-empty, we have |S′| < |S|. Let ψ be a permutation that
maps a column j to the column containing ϕ−1(Sj), that is, we have Sψ(j) =
ϕ−1(Sj). Let t be the transformation given by aϕ,ψ. Let us show that S′t = S.

Let (i, j) ∈ S′. Then i ∈ ϕ−1(Sj), so ϕ(i) ∈ Sj , and we have (i, j)t =
{(ϕ(i), j), (i, ψ(j))} ⊆ S. Hence S′t ⊆ S.

Now let (i, j) ∈ S. First let j �= k. Then i ∈ Sj , so ϕ−1(i) ∈ ϕ−1(Sj).
Therefore (ϕ−1(i), j) ∈ S′. Since (i, j) ∈ (ϕ−1(i), j)t, we have (i, j) ∈ S′t. Now
let j = k. Then i ∈ ϕ−1(V ) and Sψ−1(k) = V . Thus (i, ψ−1(k)) ∈ S′, and we
have (i, k) ∈ (i, ψ−1(k))t. Hence S ⊆ S′t. Our proof is complete. �	

Corollary 13. Let 1 � m � 5 and n � 1. Then every valid subset can be
reached in Dm,n.

Proof. The proof follows by analysis of valid subsets S ⊆ Q5 × Qn, with the aid
of Corollary 11, Lemmas 8 and 12, and the results from Table 1.

Suppose that there is a valid subset S ⊆ Q5 × Qn that is not reachable; let
S be chosen so that n is the smallest number and S is a smallest non-reachable
subset of Q5 × Qn.

By Corollary 11 and the choice of n, every valid subset S′ ⊂ Qm′ ×Qn′ , where
m′ < 5, or n′ < n, or |S′| < |S|, is reachable. Hence, S has no column containing
another column; otherwise, we can apply Lemma 8. Since we have verified the
reachability of all valid subsets for m = 5 and n � 7 (Table 1), we must have
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Table 2. A subset and the equivalence classes of columns under ϕ = [2, 3, 1, 4, 5].

1 2 3 4 5 6 7 8 9

1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦
5 ◦ ◦ ◦
eq A A A B B B C C C

Table 3. A subset and the equivalence classes of columns under ϕ = [1, 2, 3, 5, 4].

1 2 3 4 5 6 7 8

1 ◦ ◦ ◦
2 ◦ ◦ ◦
3 ◦ ◦ ◦
4 ◦ ◦ ◦ ◦
5 ◦ ◦ ◦ ◦
eq A B C D B C D E

Table 4. A subset and the equivalence classes of columns under ϕ = [2, 3, 4, 1, 5].

1 2 3 4 5 6 7 8

1 ◦ ◦ ◦ ◦
2 ◦ ◦ ◦ ◦
3 ◦ ◦ ◦ ◦
4 ◦ ◦ ◦ ◦
5 ◦ ◦ ◦ ◦
eq A A A A B B B B

n � 8 and so S has at least 8 distinct columns. Obviously there is neither an
empty nor a full column. If there is a column U with |U | = 1 or |U | = 4, then
by Sperner’s theorem if n >

(
4
2

)
= 6, then S has a column containing another

column; hence S can have only columns U with |U | = 3 or |U | = 2.
Let C3 be the number of 3-element columns (|U | = 3), and C2 be the number

of 2-element columns (|U | = 2). We are searching for possible subsets S that do
not have a column containing another column, and with C3+C2 � 8. We consider
the following six cases.

(1) Let C3 = 0. If C2 = 10, which implies that S contains all possible 2-
element subsets, then under ϕ = [2, 3, 4, 5, 1] we have two full and non-trivial
equivalence classes. Hence S is reachable from a smaller subset by Lemma 12.
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If C2 = 9, then without loss of generality let the missing 2-element subset be
{4, 5}; see Table 2. Under ϕ = [2, 3, 1, 4, 5] we have three full and non-trivial
equivalence classes, and S is reachable by Lemma 12. Finally, if C2 = 8, then
we have two subcases. If the two missing 2-element subsets have a common
element, then without loss of generality let them be {2, 3} and {4, 5}. Under
ϕ = [1, 4, 5, 2, 3] we have four full and non-trivial equivalence classes, and S is
reachable by Lemma 12. If they have a common element, then without loss of
generality let them be {3, 4} and {4, 5}. Under ϕ = [1, 2, 5, 4, 3] we have six
full equivalence classes and two of them are non-trivial. Thus S is reachable by
Lemma 12.

(2) Let C3 = 1. The only possible subset, up to permutation of columns and
rows, is shown in Table 3. It has all columns with two elements that are not
contained in the 3-element column. By Lemma 12 with ϕ = [1, 2, 3, 5, 4], it is
reachable.

(3) Let C3 = 2. A simple analysis reveals that if the 3-element columns
have only one common element, then C2 is at most 4. If they have two common
elements, then C2 is at most 5. Thus in this case, we have C2 + C3 � 7.

(4) Let C3 = 3. Here C2 is at most 4.
(5) Let C3 = 4. The only possible subset, up to permutation of columns and

rows, is shown in Table 4. By Lemma 12 with ϕ = [2, 3, 4, 1, 5], it is reachable.
(6) Let C3 � 5. These cases are symmetrical to those with C3 � 3; it is

sufficient to consider the complement of S.
Since these cover all the possibilities for set S, this set is reachable. �	

2.2 Proof of Distinguishability

The aim of this section is to show that there are regular languages defined over a
three-letter alphabet such that the subset automaton of the NFA for their shuffle
does not have equivalent states.

To this aim let A = (Q,Σ, δ, s, F ) be an NFA. We say that a state q in Q is
uniquely distinguishable if there is a word w in Σ∗ which is accepted by A from
and only from the state q, that is, if there is a word w such that δ(p,w) ∈ F
if and only if p = q. First, let us prove the following two observations.

Proposition 14. If each state of an NFA A is uniquely distinguishable, then
the subset automaton of A does not have equivalent states.

Proof. Let S and T be two distinct subsets in 2Q. Then, without loss of gener-
ality, there is a state q in Q with q ∈ S \ T . Since q is uniquely distinguishable,
there is a word w which is accepted by A from and only from q. Therefore, the
subset automaton of A accepts w from S and it rejects w from T . Hence w
distinguishes S and T . �	
Proposition 15. Let a state q of an NFA A = (Q,Σ, δ, s, F ) be uniquely dis-
tinguishable. Assume that there is a symbol a in Σ and exactly one state p in Q
that goes to q on a, that is, (p, a, q) is a unique in-transition on a going to q.
Then the state p is uniquely distinguishable as well.
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Proof. Let w be a word which is accepted by A from and only from q. The word
aw is accepted from p since q ∈ δ(p, a) and w is accepted from q. Let r �= p.
Then q /∈ δ(r, a) since (p, a, q) is a unique in-transition on a going to q. It follows
that the word w is not accepted from any state in δ(r, a). Thus A rejects aw
from r, so p is uniquely distinguishable. �	

Now we can prove the following result.

Theorem 16. Let m,n � 2. There exist ternary languages K and L with
κ(K) = m and κ(L) = n such that the subset automaton of the NFA accept-
ing K L does not have equivalent states.

Proof. Let m and n be arbitrary but fixed integers with m,n � 2. Let K be
accepted by the DFA K = ({1, 2, . . . ,m}, {a, b, c}, δK , 1, {m}), where for each i
in {1, 2, . . . ,m},

δK(i, a) = i + 1 if i � m − 1 and δK(m,a) = 1;
δK(i, b) = 1;
δK(1, c) = 2 and δK(i, c) = 1 if i � 2.

Let L be accepted by the DFA L = ({1, 2, . . . , n}, {a, b, c}, δL, 1, {n}), where for
each j in {1, 2, . . . , n},

δL(j, a) = 1;
δL(j, b) = j + 1 if j � n − 1 and δL(n, b) = 1;
δL(j, c) = n.

The DFAs K and L are shown in Fig. 2.
Construct the NFA N for K L as described in Sect. 1 on page 2. The

transitions on a, b, c in N for m = 4 and n = 5 are shown in Fig. 3. Notice that
each state (i, j) with 2 � i � m and 2 � j � n has a unique in-transition on
symbol a and this transition goes from state (i−1, j); see the dashed transitions
in Fig. 3 (top-left). Next, each state (m, j) with 2 � j � n has a unique in-
transition on b which goes from (m, j − 1), and each state (i, 2) with 2 � i � m

1 2 3 ... m − 1 m
a, c a a a a

b, c
b, c

b, c a, b, c

b

1 2 3 ... n − 1 n
b b b b b, c

a
a

a a, b

ccc

b c

Fig. 2. The DFAs K and L.
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11 12 13 14 15 11 12 13 14 15

21 22 23 24 25 21 22 23 24 25

31 32 33 34 35 31 32 33 34 35

41 42 43 44 45 41 42 43 44 45

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

Fig. 3. NFA N for m = 4 and n = 5; the transitions on a (top-left), b (top-right), and
c (bottom).

c

b

b

b b b b

a a a a

a a a a

a a a a

Fig. 4. The subgraph of unique in-transitions in NFA N ; m = 4 and n = 5.

has a unique in-transition on b going from (i, 1); see the dashed transitions in
Fig. 3 (top-right). Finally, the state (2, 1) has a unique in-transition on c going
from (1, 1); see the dashed transition in Fig. 3 (bottom).
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The empty word is accepted by N from and only from the state (m,n) since
this is a unique accepting state of N . Thus (m,n) is uniquely distinguishable.
Next, consider the subgraph of unique in-transitions in N . Figure 4 shows this
subgraph in the case of m = 4 and n = 5. Notice that from each state of N , the
state (m,n) is reachable in this subgraph. By Proposition 15, used repeatedly,
we get that each state of N is uniquely distinguishable. Hence by Proposition 14,
the subset automaton of N does not have equivalent states. �	

3 Conclusions

We have examined the state complexity of the shuffle operation on two regular
languages of state complexities m and n, respectively, and found an upper bound
for it. We know that this bound can be reached for any m with 1 � m � 5 and
any n � 1, and also for m = n = 6. For the remaining values of m and n,
however, the problem remains open. Since there exist two languages K and L
for which all pairs of states in the subset automaton of the NFA accepting the
shuffle K L are distinguishable, the main difficulty consists of proving that all
valid states in the subset automaton can be reached for the witness languages.

Acknowledgments. We would like to thank an anonymous referee for proposing the
notions of a uniquely distinguishable state and of a subgraph of unique in-transitions
which allow us to simplify the proof of distinguishability. We are also grateful for his
comments and suggestions that helped us improve the presentation of the paper.
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2. Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of
shuffle of regular languages. J. Autom. Lang. Comb. 7(3), 303–310 (2002)

3. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.8.3
(2016). http://www.gap-system.org

4. Okhotin, A.: On the state complexity of scattered substrings and superstrings. Fund.
Inform. 99(3), 325–338 (2010)

5. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27,
544–548 (1928)

6. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

http://www.gap-system.org


MSO-definable Properties of Muller
Context-Free Languages Are Decidable
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Abstract. We show that it is decidable given an MSO-definable prop-
erty P of countable words and a Muller context-free grammar G, whether
every word in the language generated by G satisfies P .

1 Introduction

A word, called ‘arrangement’ in [9], is an isomorphism type of a countable labeled
linear order. Such words form a generalization of the classic notions of finite and
ω-words.

Finite automata on ω-words have by now a vast literature, see [13] for a
comprehensive treatment. Finite automata acting on well-ordered words longer
than ω have been investigated in [1,6,7,16,17], to mention a few references. In the
last decade, the theory of automata on well-ordered words has been extended
to automata on all countable words, including scattered and dense words. In
[2,3,5], both operational and logical characterizations of the class of languages
of countable words recognized by finite automata were obtained.

Context-free grammars generating ω-words were introduced in [8] and sub-
sequently studied in [4,12]. Context-free grammars generating arbitrary count-
able words were defined in [10,11]. Actually, two types of grammars were defined,
context-free grammars with Büchi acceptance condition (BCFG), and context-free
grammars with Muller acceptance condition (MCFG). These grammars generate
the Büchi and the Muller context-free languages of countable words, abbreviated
as BCFLs and MCFLs. Every BCFL is clearly an MCFL, but there exists an MCFL
of well-ordered words that is not a BCFL, for example the set of all countable well-
ordered words over some alphabet. In contrast, the set of all countable words over
an alphabet is a BCFL.

In [11], it was shown that it is decidable (in polynomial time) whether a given
MCFG generates well-ordered (or scattered) words only. This result was obtained
by analysing the structure of a finite graph canonically associated with the gram-
mar. In this note we establish a generic decidability result to the effect that
whenever P is some property of countable words definable in monadic second-
order logic (MSO), e.g., being well-ordered or scattered, then it is decidable
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whether an MCFG generates only words satisfying P . Of course for such a gen-
eral setting one cannot hope for efficient algorithms since model checking MSO
is nonelementary.

The main idea of the proof is that one can associate with each MCFG a
regular tree in which every derivation tree of the grammar can be represented
and moreover, the set of all derivation trees is MSO-definable.

2 Notation

Countable Words and Muller Context-Free Grammars. An alphabet is a
finite nonempty set Σ of symbols, usually called letters. A word over Σ is a strict
linear ordering (I,<) equipped with a labeling function λ : I → Σ. The empty
word, denoted ε, is the unique word over the empty ordering. It is assumed
that no alphabet contains ε. When Σ is an alphabet, Σε stands for Σ ∪ {ε}.
An embedding of words is a mapping between the respective underlying linear
orderings that preserves the order and the labeling; a surjective embedding is an
isomorphism. We usually identify isomorphic words and denote by Σ� the set of
all countable words over the alphabet Σ. As usual, we denote the collections of
finite and ω-words over Σ by Σ∗ and Σω, respectively. Sometimes we will also
use the same notation for infinite sets.

Let N denote the set of positive integers. When u ∈ N
∗ and i ∈ N, we usually

write ui as u · i. A tree domain D is a prefix- and left-sibling closed nonempty
(but possibly infinite) subset of N∗. Thus, whenever u · (i + 1) is in D, where
i ∈ N, then u · i is also in D, and u · i ∈ D implies u ∈ D as well. Elements of
a tree domain D are also called the nodes of D. When u and u · i are nodes of
D, where u ∈ N

∗ and i ∈ N, then u · i is called a child of u. A descendant of
a node u is a node of the form uv, or u · v, where v ∈ N

∗. Nodes of D having
no child are the leaves of D. The leaves, equipped with the order inherited from
the lexicographic ordering ≺� of N∗ (that is, u ≺� v iff u = wiw′ and v = wjw′′

for some i < j ∈ N, w,w′, w′′ ∈ N
∗) form the frontier of D, denoted fr(D). An

inner node of D is a non-leaf node. A path of a tree domain D is a (finite or
infinite) prefix-closed subset π of D such that each node of π has at most one
child in π. Given a tree domain D and some node u ∈ D, the sub-tree domain
of D rooted at u is the tree domain D|u = {v : uv ∈ D}.

A tree over some alphabet Δ, or a Δ-tree for short, is a mapping t : dom(t) →
Δε, where dom(t) is a tree domain, such that inner vertices are mapped to letters
in Δ. Notions such as nodes, paths etc. of tree domains are lifted to trees. When
π is a path of the tree t, then labels(π) = {t(u) : u ∈ π} is the set of labels
occurring on π and infLabels(π) =

⋂
u∈π

{t(v) : uv ∈ π} ⊆ labels(π) is the set of

labels occurring infinitely often. Given a tree t and some node u ∈ dom(t), the
subtree of t rooted at u is the tree t|u with domain dom(t|u) = dom(t)|u and
labeling t|u(v) = t(uv). A tree is regular if it has finitely many subtrees.

The frontier word lfr(t) of a tree t is determined by the leaves not labeled
by ε, which is equipped with the lexicographic ordering of N∗ and the labeling
function inherited from t. The root symbol of t is t(ε).
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A Muller context-free grammar [11], or MCFG for short, is a system G =
(V,Σ,R, S,F), where V and Σ are the pairwise disjoint alphabets of nontermi-
nals and terminals respectively, R is the finite set of productions of the form
A → α with A ∈ V and α ∈ (Σ ∪ V )∗, S ∈ V is the start symbol and F ⊆ P (V )
is the set of accepting sets.

A (V ∪Σ)-tree t is locally consistent with the above grammar G if it satisfies
the following conditions:

1. The root symbol of t is S.
2. For each inner node u of t there exists a production A → X1 . . . Xn in R with

t(u) = A, Xi ∈ V ∪ Σ such that:
(a) either n > 0, the children of u are exactly u · 1, . . . , u · n and for each

1 ≤ i ≤ n, t(u · i) = Xi;
(b) or n = 0 and u has a single child u · 1 labeled ε.

3. The leaves of t are labeled in Σε.

A derivation tree of the above grammar G is a locally consistent tree t satis-
fying the additional condition that for each infinite path π of t, infLabels(π) is
an accepting set of G.

The language L(G) ⊆ Σ� generated by G is the set of frontier words of
derivation trees. A Muller context-free language, or MCFL for short, is a language
generated by some MCFG.

Example 1. If G = ({S, I}, {a, b}, R, S, {{I}}), with

R = {S → a, S → b, S → ε, S → I, I → SI},

then L(G) consists of all the well-ordered words over {a, b}.

Indeed, assume t1, t2, . . . are derivation trees. Then so is the tree t depicted
in Fig. 1 with frontier word lfr(t1)lfr(t2) . . .. Thus, L(G) contains the empty word
(by S → ε), the words of length 1 (by S → a and S → b), and is closed under
taking “ω-products”. Since the least class of order types which contains 0, 1 and
which is closed under ω-sums is the class of all countable ordinals (see e.g. [15]),
L(G) contains all the well-ordered words over {a, b}.

S

I

I

I

. . .t3

t2

t1

Fig. 1. Derivation tree corresponding to Example 1

For the other direction, assume t is a derivation tree having a frontier word
containing an infinite descending chain u1 �� u2 �� . . .. Then let us define the
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path v0, v1, . . . in t: v0 = ε and vi+1 is vi ·1 if this node is an ancestor of infinitely
many uj and vi · 2 otherwise (which happens if vi corresponds to the production
I → SI and the node vi ·1 (which is labeled S) has no descendant of the form uj

at all). Note that for each uj there exists a unique vij such that vij is an ancestor
of uj and vij+1 is not, since the length of the words vi grows without a bound.
Now these nodes vij correspond to the production I → SI and vij+1 = vij · 1,
so that the successor of vij along the path is labeled by S. Hence v0, v1, . . . , is a
path π in t such that infLabels(π) contains S, which is a contradiction since the
only accepting set is {I}.

MSO on Trees and Words. Let X1 and X2 be fixed, countably infinite,
disjoint sets of first-order and second-order variables, respectively. It is assumed
that X1 and X2 are disjoint from alphabets, they do not contain ε, etc.

Given an alphabet Δ, the set of monadic second-order, or MSO-formulas (for
trees over Δ) is the least set satisfying the following conditions:

1. When x is a first-order variable and δ ∈ Δε is a symbol, then δ(x) is an
MSO-formula.

2. When x and y are first-order variables, then y = x · 1 and sibling(x,y) are
MSO-formulas.

3. When x is a first-order and X is a second-order variable, then X(x), also
written x ∈ X is an MSO-formula.

4. When ϕ and ψ are MSO-formulas, then so are (ϕ ∨ ψ) and (¬ϕ).
5. When x (X, resp.) is a first-order (second-order, resp.) variable and ϕ is an

MSO-formula, then so is (∃xϕ) ((∃Xϕ), resp).

We also use the standard abbreviations of ϕ∧ψ = ¬(¬ϕ∨¬ψ), ϕ → ψ = (¬ϕ)∨ψ,
∀xϕ = ¬∃x¬ϕ etc., and omit some parentheses for the sake of readability.
Formulas over Δ are interpreted on Δ-trees in the expected way. A structure is
a triple (t,Π1,Π2) where t is a Δ-tree, Π1 : X1 → dom(t) assigns a node of t
to each first-order variable, and Π2 : X2 → P (dom(t)) assigns a set of nodes of
t to each second-order variable. Then, the above structure satisfies the formula
ϕ, denoted (t,Π1,Π2) |= ϕ, if and only if one of the following conditions holds:

1. ϕ = δ(x) for δ ∈ Δε and x ∈ X1, and t(Π1(x)) = δ.
2. ϕ = (y = x · 1) for x,y ∈ X1 and Π1(y) = Π1(x) · 1.
3. ϕ = sibling(x,y) for x,y ∈ X1 and there exist u ∈ N

∗, i ∈ N with Π1(x) = u·i,
Π1(y) = u · (i + 1).

4. ϕ = X(x) for x ∈ X1, X ∈ X2 and Π1(x) ∈ Π2(X).
5. ϕ = (ϕ1 ∨ ϕ2) and (t,Π1,Π2) satisfies ϕ1 or ϕ2 (or both).
6. ϕ = (¬ϕ1) and it is not the case that the structure satisfies ϕ1.
7. ϕ = (∃xϕ1) and there is a structure (t,Π ′

1,Π2) satisfying ϕ1 such that
Π1(y) = Π ′

1(y) for each first-order variable y 
= x.
8. ϕ = (∃Xϕ1) and there is a structure (t,Π1,Π

′
2) satisfying ϕ1 such that

Π2(Y ) = Π ′
2(Y ) for each second-order variable Y 
= X.
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It is clear that satisfaction depends on Π1(x) or Π2(X) only if the appropriate
variable occurs freely in the formula (i.e. not within the scope of some ∃ quan-
tifier). Hence when ϕ is a sentence, a formula without free variable occurrences,
it makes sense to write t |= ϕ instead of (t,Π1,Π2) |= ϕ.

In order to ease notation, when Π1 and Π2 are clear from the context, we
write x and X for Π1(x) and Π2(X).

Example 2. One can define the i-th child relation y = x · i for i ∈ N inductively
as ∃z(z = x · (i − 1) ∧ sibling(z,y)) (which is satisfied by a structure if and
only if y = x · i).

Consider the formula

child(x,y) = ∃z(z = x · 1) ∧
∀X

((∀z(
(z = x · 1) → z ∈ X

)) ∧

∀z∀w(z ∈ X ∧ sibling(z,w) → w ∈ X) → y ∈ X
)
.

Then, child(x,y) holds in the structure iff x has a first child and if whenever a
set X contains the first child of x and is closed under taking right siblings, then
X contains y as well, that is, if and only if y = x · i for some i.

As another example, the formula

∃x(x ∈ X) ∧ ∀x∀y(x ∈ X ∧ child(y,x) → y ∈ X)

holds in a structure if X is a nonempty, prefix-closed subset of the nodes.

It is well-known [14] that given any regular tree t and MSO sentence ϕ, it is
decidable whether t |= ϕ holds.

For countable Σ-words, the syntax and semantics of MSO are slightly
changed due to the differing relational structure: the atomic formulas are of
the form a(x) for a ∈ Σ and x ∈ X1 and x < y for x,y ∈ X1, interpreted in
the expected way. A property P of countable Σ-words is called MSO-definable
if there exists an MSO sentence ϕP which is satisfied exactly by those Σ-words
having property P .

3 Result

Let us fix a Muller context-free grammar G = (V,Σ,R, S,F) for this section,
with R being disjoint from V ∪ Σ. Without loss of generality we assume that
each A ∈ V is the left-hand side of at least one production. We define the
grammar tree associated with G as the unique derivation tree T of the following
grammar G′ = (V ∪ R,Σ,R′, S, P (V ∪ R)) with R′ consisting of productions of
the following form:

1. When A → α1,. . . ,A → αk are all the productions of G having A on their
left side in some fixed ordering of the productions, then A → (A → α1)(A →
α2) . . . (A → αk) is a production of G′ (the right-hand side of this single
production is in R∗ while the left-hand side is in V ).
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2. For each production A → X1 . . . Xk, the production (A → X1 . . . Xk) →
X1 . . . Xk. (which is a production of the form r → α for some r ∈ R and
α ∈ (V ∪ Σ)∗) is a production of G′.

Note that each element of V ∪R is the left-hand side of exactly one production
in R′, hence there exists exactly one locally consistent tree of G′. Also, since the
acceptance condition is P (V ∪ R), this tree is a valid derivation tree of the
grammar, thus T is well-defined and has at most |V | + |R| + |Σε| subtrees up to
isomorphism. Hence it is a regular tree.

Example 3. For the MCFG of Example 1, this tree T is depicted in Fig. 2.

S

S → I

I

I → SI

I

I → SI

. . .

S

S → I

I

. . .

S → ε

ε

S → b

b

S → a

a

S → ε

ε

S → b

b

S → a

a

Fig. 2. Grammar tree of the MCFG of Example 1

Moreover, each locally consistent tree t of G can be embedded into T in the
following sense: there exists a mapping ht : dom(t) → dom(T ) with ht(ε) = ε
and t(u) = T (ht(u)) for each u ∈ dom(t), moreover ht(u · i) is a descendant
(in particular, a grandchild) of ht(u) in T for each u · i ∈ dom(t), moreover,
when u and v are siblings in t, then so are ht(u) and ht(v) in T . Indeed, assume
u·i ∈ dom(t) and that u′ = ht(u) is already defined. Then since u is an inner node
of t, we have t(u) = A ∈ V . By T (u′) = t(u) = A, each production r = A → α
occurs as T (u′ · kr) for some kr ∈ N. In particular, let r = A → X1 . . . Xn be
the production corresponding to u, so that u has n children and t(u · j) = Xj

for each j = 1, . . . , n (subsuming the case when n = 0 as t(u · 1) = ε). Then, we
define ht(u · j) as u′ · kr · j.

We call a prefix-closed nonempty set T ⊆ dom(T ) derivation-like iff it satis-
fies the following conditions:

1. For each u ∈ T with T (u) ∈ R, each child of u is in T .
2. For each u ∈ T with T (u) ∈ V , exactly one child of u is in T .
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It is clear that derivation-like subsets of dom(T ) are in one-to-one correspon-
dence with the locally consistent trees of G: with any locally consistent tree t
of G we associate the derivation-like set T ⊆ dom(T ) which is the closure of
im(ht) with respect to the prefix relation. Given a derivation-like set T , the
corresponding locally consistent tree is denoted t.

Example 4. Figure 3 shows a (part of a) derivation tree t of the grammar of
Example 1 and the corresponding derivation-like subset T of dom(T ) (as nodes
in boldface).

Fig. 3. A part of a derivation tree t of Example 1 and the corresponding derivation-like
subset T of T

Proposition 1. There is an MSO formula d(X) with the free variable X ∈ X2

such that (T ,Π1,Π2) |= d(X) if and only if X is a derivation-like set.
(In short, it is MSO-definable whether some set X is derivation-like.)

Proof. We can define d(X) as the conjunction of the formulas stating that X is
nonempty and prefix-closed (see Example 2), the formula

∀x
(
(x ∈ X ∧

∨
r∈R

r(x)) → ∀y(child(x,y) → y ∈ X)
)

stating that all the children of the nodes labeled by productions are members of
X, and the formula

∀x
(
(x ∈ X ∧

∨
A∈V

A(x)) → ∃y(
child(x,y) ∧ ∀z(child(x,z) ∧ z ∈ X ↔ z = y)

))

stating that exactly one child of the nodes labeled by nonterminals is in X. ��
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Also, from a derivation-like set T determining a locally consistent tree t of G,
one can select a subset of nodes corresponding to a path of t:

Proposition 2. There exists an MSO-formula p(X,Y ) with the free second-
order variables X,Y such that (T ,Π1,Π2) |= p(X,Y ) if and only if X = T
is a derivation-like subset of T with corresponding locally consistent tree t and
Y = ht(π)1 for some infinite path π of t.

Proof. p(X,Y ) expresses the following:

(i) X is a derivation-like subset of T , i.e. d(X) holds,
(ii) Y ⊆ X,
(iii) each of the nodes of Y is labeled by some member of V ,
(iv) whenever v is a grandparent of some node u ∈ Y , then v ∈ Y as well, and
(v) each u ∈ Y has exactly one grandchild in Y .

These properties can clearly be defined in MSO. ��
Proposition 3. There is an MSO formula d′(X) expressing that X is a deri-
vation-like set corresponding to an actual derivation tree of G.

Proof. The descendant relation x � y can be defined in MSO by a formula
expressing that whenever Y is a prefix-closed set containing y, then Y contains
x as well.

Then, for each F ∈ F we can construct a formula mF (Y ) stating that if Y =
ht(π) for some path π of some locally consistent tree t of G, then infLabels(π) = F :

mF (Y ) =
∧

A∈F

iA(Y ) ∧
∧

A/∈F

¬iA(Y )

where iA(Y ) is the formula

∀x(x ∈ Y → ∃y(x � y ∧ y ∈ Y ∧ A(y)))

stating that A occurs infinitely many times on the path given by Y .
Now, we can define d′(X) as

d(X) ∧ ∀Y (p(X,Y ) →
∨

F∈F
mF (Y ))

expressing that X is a derivation-like set corresponding to some locally consistent
tree t of G such that any infinite path π of t satisfies the Muller acceptance
condition. ��
Now a set Y ⊆ dom(T ) corresponds to a frontier word of some derivation tree of
G (i.e. belongs to L(G)) if and only if there exists some X ⊆ dom(T ) satisfying

1 Here, ht(π) denotes the set of images of the nodes of π with respect to the embedding
ht.
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d′(X) such that a node v ∈ dom(T ) is in Y if and only if v ∈ X and is a
Σ-labeled node of T , which is an MSO-definable property:

∃X(
d′(X) ∧ ∀y(y ∈ Y ↔ (y ∈ X ∧

∨
a∈Σ

a(y)))
)
.

Moreover, the lexicographic ordering on these leaves can also be defined in
MSO as u ≺� v iff there exists some common ancestor w of u and v such that
w · i and w · j are respectively ancestors of u and v for some i < j:

x ≺� y = ∃z1∃z2

(
z1 � x ∧ z2 � y ∧ sibling+(z1,z2)

)
where sibling+(x,y) is the transitive closure of sibling:

x 
= y ∧ ∀X(
x ∈ X ∧ ∀z1∀z2(z1 ∈ X ∧ sibling(z1,z2) → z2 ∈ X)

) → y ∈ X

Hence we have shown:

Proposition 4. For any MCFG G, there exists an effectively constructible MSO
formula w(Y ) such that (T ,Π1,Π2) |= w(Y ) if and only Y is the set of Σ-labeled
leaves of some derivation-like subset of T corresponding to a derivation tree of G.

As a corollary, we obtain the main result of this note.

Theorem 1. It is decidable for a given MCFL L and an MSO-definable property
ϕ of words whether every member of L satisfies ϕ.

Proof. The question can be reduced to checking whether T satisfies the for-
mula ∀Y (w(Y ) → ϕ(Y )) where ϕ(Y ) is obtained from ϕ by replacing all the
subformulas of the form ∃xϕ′ and ∃Xϕ′ respectively to ∃x(x ∈ Y ∧ ϕ′) and
∃X(∀x(x ∈ X → x ∈ Y )) ∧ ϕ′) and substituting the formula defining the lex-
icographic ordering x ≺� y in place of the atomic formulas x < y. Since T is
regular, model checking the resulting formula on T is decidable. ��
(We remark that thus it is also decidable whether there exists a word in L
satisfying an MSO formula ϕ since such a word exists if and only if not all
members of L satisfy ¬ϕ.)

In particular, our former decidability results (without complexity bounds)
regarding whether an MCFG generates scattered (or well-ordered) words are
corollaries of this general theorem. However, since model-checking MSO formu-
las on regular trees has a high complexity in general (tower(n) when n is the
alternation depth of the second-order quantifiers), no polytime decision proce-
dures follow from the present theorem. Nevertheless several interesting properties
are decidable in polynomial time, including whether every word generated by an
MFCG is scattered or well-ordered, cf. [11].

As another example, let Σ = {a, b} be an alphabet. The following formula
segment(X) expresses that X is a nonempty interval, or segment of a given
word:

(∃x x ∈ X) ∧ (∀x∀y∀z(x < y ∧ y < z ∧ x ∈ X ∧ z ∈ X) → y ∈ X
)
.
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The following formula dense(X) expresses that X is a dense subset (containing
at least two elements) of the word:

∃x∃y(x < y ∧ x ∈ X ∧ y ∈ X) ∧
∀x∀y

(
x < y ∧ x ∈ X ∧ y ∈ X → ∃z(x < z ∧ z < y ∧ z ∈ X)

)
.

Thus, the property “there exists a dense segment X of the word such that for
all x < y in X there exists z, z′ with x < z, z′ < y and z is labeled by a, z′ is
labeled by b” is also expressible in MSO as

∃X
(

dense(X) ∧ segment(X) ∧
∀x∀y(

x < y ∧ x ∈ X ∧ y ∈ X

→ ∃z∃z′(x < z ∧ z < y ∧ x < z′ ∧ z′ < y ∧ a(z) ∧ b(z′))
))

In other words, w ∈ {a, b}� satisfies the above formula iff w = u{a, b}ηv for some
words u, v ∈ {a, b}� where {a, b}η is the so-called shuffle of a and b. Thus, it is
also decidable for a MCFL L whether every word in L is of the form u{a, b}ηv.

Another expressible property is that whether a word is the shuffle product of,
say, a dense word and a scattered word consisting only of a’s, that is, whether
the underlying linear order can be partitioned into two subsets such that the
two subwords determined by the partitions satisfy the appropriate property:

∃X
(
dense(X)∧∀x(x /∈ X → a(x))∧¬∃Y (∀x(x ∈ Y → x /∈ X) ∧ dense(Y )

))
.

Thus, it is also decidable for a given MCFL L whether every member of L is a
shuffle product of a dense word and a scattered one consisting only of a’s.

4 Conclusion

We have proved that there is an algorithm to decide for a Muller context-free
language L generated by an MCFG and an MSO-definable property P of words
whether every word in L has property P . We obtained this result by assigning a
regular tree t to an MCFG such that the derivation trees of the grammar have
an MSO-interpretation in t. We then used the fact that the MSO-theory of a
regular tree is decidable.

There is an alternative method. First, we can prove that the MCFLs are
exactly the frontier languages of the tree languages recognizable by Muller tree
automata. This is similar to the well-known fact that ordinary context-free lan-
guages are the frontier languages of the languages of finite trees recognizable
by finite tree automata. Also, there is an algorithm to decide, for a Muller tree
automaton and an MSO-definable property of trees whether every tree in the
language L recognized by the automaton has property P . This follows using the
fact that every Muller tree automaton can be converted to an MSO-formula ϕ,
and if P is definable by the formula ψ, then it holds that every tree in L satisfies
P iff there is no tree satisfying ϕ ∧ ¬ψ, which is decidable.
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algébrique. RAIRO - Theor. Inf. Appl. - Informatique Théorique et Applications
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Abstract. We investigate the computational power of d-dimensional
contextual array grammars with matrix control and regular control lan-
guages. For d ≥ 2, d-dimensional contextual array grammars are less
powerful than matrix contextual array grammars, which themselves are
less powerful than contextual array grammars with regular control lan-
guages. Yet in the 1-dimensional case, for a one-letter alphabet, the
family of 1-dimensional array languages generated by contextual array
grammars with regular control languages coincides with the family of
regular 1-dimensional array languages, whereas for alphabets with more
than one letter, we obtain the array images of the linear languages.

1 Introduction

Contextual string grammars were introduced by Solomon Marcus [14] with moti-
vations arising from descriptive linguistics. A contextual string grammar consists
of a finite set of strings (axioms) and a finite set of productions, which are
pairs (s, c) where s is a string, the selector, and c is the context, i. e., a pair
of strings, c = (u, v), over the alphabet under consideration. Starting from an
axiom, contexts iteratively are added as is indicated by the productions, which
yields new strings. In contrast to usual sequential string grammars in the Chom-
sky hierarchy (e.g., see [20]), these contextual string grammars are pure gram-
mars where new strings are not obtained by rewriting, but by adjoining strings.
Several classes of contextual grammars have been introduced and investigated,
e.g., see [3,17] for surveys on the area.

The idea of contextual productions then was also introduced for multi-
dimensional array grammars, for instance, to carry over ideas from formal
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languages to the processing of digital images. In the area of two-dimensional pic-
ture languages, e.g., see [12,16,18,19], different kinds of array grammars, both
isometric and non-isometric ones, have been proposed, motivated by many appli-
cations such as character recognition (also confer [4]), cluster analysis of patterns,
and so on. Isometric contextual array grammars were introduced in [11].

Regulated rewriting with different control mechanisms has been studied
extensively especially for string grammars (e.g., see [2]), for example, grammars
with control languages and matrix grammars, but then also for array grammars,
e.g., see [9]. Non-isometric contextual array grammars (with regulation) were
considered in [7,8,13].

In this paper we consider matrix contextual array grammars and contextual
array grammars with regular control and examine their generative power. In
the 1-dimensional case, we obtain special results: the family of 1-dimensional
array languages generated by contextual array grammars with regular control
languages coincides with the family of regular 1-dimensional array languages over
unary alphabets and with array images of the linear languages over alphabets
with more than one letter; already for binary alphabets, regular control is strictly
more powerful than matrix control, a phenomenon rarely observed in regulated
rewriting (confer [10]).

2 Definitions

For notions and notations as well as results related to formal language theory we
refer to books like [2]. The families of λ-free (λ denotes the empty string) regular
string languages (over a k-letter alphabet) is denoted by L (REG) (L (

REGk
)
).

For the definitions and notations for arrays and sequential array grammars we
refer to [9,18,22].

Let Z be the set of integers and N be the set of positive integers. Let d ∈ N.
A d-dimensional array A over the alphabet V is a mapping A : Zd → V ∪ {#}
where shape (A) =

{
v ∈ Zd | A (v) �= #

}
is finite and # /∈ V is called the blank

symbol. We usually write A = {(v,A (v)) | v ∈ shape (A)}. The set of all d-di-
mensional arrays over V is denoted by V ∗d. The empty array Λd in V ∗d satisfies
shape(Λd) = ∅. Moreover, we define V +d = V ∗d \ {Λd} .

Let v ∈ Zd. Then the (linear) translation τv : Zd → Zd is defined by
τv (w) = w + v for all w ∈ Zd, and for any array A ∈ V ∗d we define τv (A), the
corresponding d-dimensional array translated by v, by (τv(A)) (w) = A (w − v)
for all w ∈ Zd. The vector (0, ..., 0) ∈ Zd is denoted by Ωd.

Usually (see [18]) arrays are regarded as equivalence classes of arrays with
respect to linear translations. The equivalence class [A] of an array A ∈ V ∗d

satisfies [A] =
{B ∈ V ∗d | B = τv (A) for some v ∈ Zd

}
. The set of all equiva-

lence classes of d -dimensional arrays over V with respect to linear translations
is denoted by

[
V ∗d

]
, and this bracket notation carries over to classes of array

languages, as well.
As many results for d-dimensional arrays for a specific d can be taken over

immediately for higher dimensions, we introduce special notions:
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Let n,m ∈ N with n ≤ m. For n < m, the natural embedding in,m : Zn →
Zm is defined by in,m (v) = (v,Ωm−n) for all v ∈ Zn; for n = m we define
in,n : Zn → Zn by in,n (v) = v for all v ∈ Zn. To an n-dimensional array
A ∈ V +n with A = {(v,A (v)) | v ∈ shape (A)} we assign the m-dimensional
array in,m (A) = {(in,m (v) ,A (v)) | v ∈ shape (A)} .

We can use the well-known graph-theoretic notion of a connected graph to
define connected arrays. Let W be a non-empty finite subset of Zd. We associate
a graph g(W ) to W with vertex set W and an edge between v, w ∈ W if and only
if ‖v − w‖ = 1, where the norm ‖u‖ of a vector u ∈ Zd, u = (u (1) , ..., u (d)),
is defined by ‖u‖ = max {|u (i)| | 1 ≤ i ≤ d} . Then W is said to be connected if
g(W ) is connected. There is a natural bijection between the (equivalence classes
of) 1-dimensional connected arrays and strings: for any equivalence class of 1-
dimensional arrays A = [{((i − 1), ai) | 1 ≤ i ≤ n}] we define its string image
as str(A) = a1 . . . an; the string w = a1 . . . an can be interpreted as the array
arr (w) = {{((i − 1), ai)} | 1 ≤ i ≤ n}. In the standard way, these notions are
extended from strings and arrays to sets of strings and arrays.

Example 1. Consider the language L1 of connected 2-dimensional arrays

L1 =
{{

((0, i) , a) | 0 ≤ i ≤ n
} ∪ {

((j, 0) , a) | 1 ≤ j ≤ m
} ∣∣∣∣ n,m ∈ N

}
.

a
a
a
a a a a a

An example of these L-shaped arrays (for n = 3 and m = 4)
from [L1] can be depicted as shown on the left. Observe that
both arms of these arrays can have arbitrary lengths. 	


Definition 1. A regular d-dimensional array grammar is specified as G =
(d,N, T, #, P, {(vS , S})) where N is the alphabet of non-terminal symbols, T
is the alphabet of terminal symbols, N ∩ T = ∅, # /∈ N ∪ T ; P is a finite
non-empty set of regular d-dimensional array productions over N ∪T, as well as
vS ∈ Zd and S ∈ N is the start symbol. A regular d -dimensional array produc-
tion either is of the form A → b, A ∈ N , b ∈ T , or Av# → bC, A,C ∈ N , b ∈ T ,
v ∈ Zd with ‖v‖ = 1. The application of A → b means replacing A by b in a given
array. Av# → bC can be applied if in the underlying array we find a position
u occupied by A and a blank symbol at position u + v; A then is replaced by b,
and # by C. The array language generated by G is the set of all d-dimensional
arrays derivable from the initial array {(vS , S)}. The family of Λ-free d-dimen-
sional array languages (of equivalence classes) of arrays over a k-letter alphabet
generated by regular d-dimensional array grammars is denoted by L (

d-REGAk
)

(
[L (

d-REGAk
)]
). For arbitrary alphabets, we omit the superscript k.

The following results for 1-dimensional array languages are folklore:

Theorem 1. For all k ≥ 1,
[L (

1-REGAk
)]

=
[
arr

(L (
REGk

))]
and

str
([L (

1-REGAk
)])

= L (
REGk

)
.

Let us mention the close similarities of the work of 1-dimensional regular
array grammars and Lindenmayer systems with apical growth [21]. Another
similar development can be found within Watson-Crick systems [15].
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3 Contextual Array Grammars

We now turn our attention to the main variants of contextual array grammars
considered in this paper.

Definition 2. A d-dimensional contextual array grammar (d ∈ N) is a con-
struct G = (d, V,#, P,A) where V is an alphabet not containing the blank symbol
#, A is a finite set of axioms, i. e., of d-dimensional arrays in V +d, and P is a
finite set of rules of the form (Uα, α, Uβ , β) where

(i) Uα, Uβ ⊆ Zd, Uα ∩ Uβ = ∅, and Uα, Uβ are finite and non-empty;
(ii) α : Uα → V and β : Uβ → V.

(Uα, α) corresponds with the selector and (Uβ , β) with the context of the produc-
tion (Uα, α, Uβ , β) ; Uα is called the selector area, and Uβ is the context area. As
the sets Uα and Uβ are uniquely determined by α and β, we will also represent
(Uα, α, Uβ , β) by (α, β) only.

For C1, C2 ∈ V +d we say that C2 is directly derivable from C1 by the contextual
array production p ∈ P , p = (Uα, α, Uβ , β) (we write C1 =⇒p C2), if there exists
a vector v ∈ Zd such that

– C1 (w) = C2 (w) = α (τ−v (w)) for all w ∈ τv (Uα) ,
– C1 (w) = # for all w ∈ τv (Uβ) ,
– C2 (w) = β (τ−v (w)) for all w ∈ τv (Uβ) ,
– C1 (w) = C2 (w) for all w ∈ Zd \ τv (Uα ∪ Uβ) .

Hence, if in C1 we find a subpattern that corresponds with the selector α and
only blank symbols at the places corresponding with β, we can add the context β
thus obtaining C2. For every B1,B2 ∈ [

V +d
]
we say that B2 is directly derivable

from B1 by the contextual array production p ∈ P , p = (Uα, α, Uβ , β), denoted
B1 =⇒p B2, if and only if C1 =⇒p C2 for some C1 ∈ B1 and C2 ∈ B2. C1 =⇒G C2

(B1 =⇒G B2) means that C1 =⇒p C2 (B1 =⇒p B2) for some p ∈ P .
The array language generated by G is defined as

L (G) =
{C ∈ V +d | A =⇒∗

G C for some A ∈ A
}

.

The special type of d-dimensional contextual array grammars where axioms are
connected and rule applications preserve connectedness is denoted by d-ContA,
the corresponding family of d-dimensional array languages by L (d-ContA); by
L (

d-ContAk
)
we denote the corresponding family of d -dimensional array lan-

guages over a k-letter alphabet.

Remark 1. As we mostly are interested in (families of) equivalence classes of
arrays, a d-dimensional contextual array grammar [G] for generating [L] for
L ∈ L (d-ContA) being generated by a d -dimensional contextual array grammar
G = (d, V,#, P,A) with A = {Ai | 1 ≤ i ≤ n} will be specified by writing [G] =
(d, V,#, P,A′) where A′ = {A′

i | 1 ≤ i ≤ n} such that A′
i ∈ [Ai] , 1 ≤ i ≤ n,

which means specifying an axiom Ai by one array from [Ai].
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Example 2. Any finite d-dimensional array language of connected arrays L ⊂
T+d is in L (d-ContA) as L = L (GL) where GL = (d, T,#, ∅, L). 	

Example 3. We now show how the language L1 from Example 1 can be gen-
erated by the contextual array grammar G1, i.e., L1 ∈ L (

2-ContA1
)
: G1 =

(2, {a} ,#, P1, {A1}) where A1 = {((0, 0) , a) , ((0, 1) , a) , ((1, 0) , a)} is the only
axiom and P1 consists of the two productions pu and pr:

pu = ({(0, 0) , (0, 1)} , {((0, 0) , a) , ((0, 1) , a)} , {(0, 2)} , {((0, 2) , a)}) ,
pr = ({(0, 0) , (1, 0)} , {((0, 0) , a) , ((1, 0) , a)} , {(2, 0)} , {((2, 0) , a)}) .

As the selector area Uα and the context area Uβ in a contextual array pro-
duction of the form (Uα, α, Uβ , β) are disjoint, both α and β can be
represented within only one pattern,
i. e., pu and pr can be represented in
a more depictive way by the patterns
shown on the right (the symbols of the
selector are enclosed in boxes).

pu =
a
a
a

, pr = a a a.

The example of the L-shaped array for n = 3 and m = 4 then is generated
by twice applying rule pu and three times applying rule pr, in any order. We
also observe that every intermediate array obtained by applying these rules is
in L1, too. Obviously, by the definition of equivalence classes of arrays, we also
have [L (G1)] = [L1] ∈ [L (

2-ContA1
)]

.

[A1] can be described in a more depictive way by
a
a a

, i.e., the contextual array

grammar [G1] for [L (G1)] can also be written as [G1] =
(

2, {a} ,#, P1,

{
a
a a

})
(see Remark 1). In the following, the axiom(s) often will just be given in such a
pictorial variant. 	


Example 4. For the singleton language L⊥ =

⎧⎨
⎩

a
a

a a a a a

⎫⎬
⎭ ⊂

[
{a}+2

]
, we have

L⊥ ∈ [L (2-ContA)]\ [L (2-REGA)]. As we can take L⊥ (as any finite language)
as a set of axioms, containment in [L (2-ContA)] is clear. Conversely, any regular
array grammar has to scan the non-blank symbols of the array A, which is
impossible, as the underlying graph g(shape(A)) is not Hamiltonian. 	

Theorem 2.

[L (
1-REGA1

)] ⊆ [L (
1-ContA1

)]
.

Proof. Due to the results from Theorem 1, it only remains to show that[
arr

(L (
REG1

))] ⊆ [L (
1-ContA1

)]
.

From [1, Theorem 4.4], we deduce that any infinite language L ⊆ {a}+ in
L (

REG1
)

can be written in the form L = {as1 , as2 , . . . , ast}∪⋃m
i=1{ak·n+di | n ≥

0} for some numbers k, k ≤ d1 < d2 < ... < dm < 2k, 0 ≤ s1 < s2 < ... < st < k.
The 1-dimensional contextual array grammar now is constructed using a context
of length k and putting the words asj , 1 ≤ j ≤ t, and adi , 1 ≤ i ≤ m, into the set
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of axioms, i.e., we define the 1-dimensional contextual array grammar G (L) =
(1, {a} ,#, P,A) with A = {arr (asj ) | 1 ≤ j ≤ t} ∪ {

arr
(
adi

) | 1 ≤ i ≤ m
}

and

P =
{

a
k
ak

}
. Obviously, [L (G (L))] = [arr (L)]. The 1-dimensional contex-

tual array grammar [G (L)] for [L (G (L))] can also be written as [G (L)] =
(1, {a} ,#, P,A′) with A′ = {asj | 1 ≤ j ≤ t} ∪ {

adi | 1 ≤ i ≤ m
}

(compare with
Remark 1).

For the sake of completeness we mention that every finite array language
A = {arr (asj ) | 1 ≤ j ≤ t} is generated by the 1-dimensional contextual array
grammar G (L) = (1, {a} ,#, P,A) with P = ∅. 	

Remark 2. Following the definition already given in [11], our d-dimensional
extension of (external) contextual grammars only appends at one location, while
external contextual string grammars as originally defined by Solomon Marcus,
see [14], append to both ends of a string at the same time. This design deci-
sion has two main reasons. First, it is not quite clear what the d-dimensional
counterpart of external contextual grammars would really mean: for instance,
for d = 2, should we allow appending on both ends of a row or column at
the same time, as we did in [8] for the case of non-isometric contextual array
grammars? Or, should we rather append on ‘all ends’? Obviously, this situation
becomes even more intricate for higher dimensions. Yet second and even more
important, appending at both sides of a string, i.e., a 1-dimensional array, in
parallel can easily be simulated sequentially by a matrix with two components.
It is therefore easy to see that in the 1-dimensional case, the string images of
the arrays generated by contextual array grammars with matrix control exactly
correspond with the string languages generated by external contextual string
grammars. This means that for the regulated variants discussed in the following,
any variant that can be conceivably defined for the d-dimensional analogue of
external contextual grammars, in the 1-dimensional case should lead to the same
results as the original variant of contextual array grammars defined in [11] and
taken as the basis in this paper, too.

3.1 Matrix Contextual Array Grammars

Definition 3. A d-dimensional matrix contextual array grammar is a pair
GM = (G,M) where G = (d, V,#, P,A) is a d-dimensional contextual array
grammar and M is a finite set of sequences, called matrices, of rules from P ,
i.e., each element of M is of the form 〈p1, · · · , pn〉 , n ≥ 1, where pi ∈ P for
1 ≤ i ≤ n. Derivations in a matrix contextual array grammar are defined as
in a contextual array grammar except that a single derivation step now consists
of the sequential application of the rules of one of the matrices in M , in the
order in which the rules are given in the matrix. The array language generated
by GM is the set of all d-dimensional arrays which can be derived from any of the
axioms in A. The family of d-dimensional array languages of arrays generated
by d-dimensional matrix contextual array grammars (over a k-letter alphabet) is
denoted by L (d-MContA) (L (

d-MContAk
)
).
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Example 5. Consider the language L2 of connected arrays given by

L2 =
{{

((0, 0) , a)
} ∪ {

((0, i) , a) , ((i, 0) , a) | 1 ≤ i ≤ n
} ∣∣∣∣ n ∈ N

}
,

which contains L-shaped arrays as L1 from Example 1, but now with both arms
having the same length. L2 ∈ L (

2-MContA1
)
, as it can be generated by the

2-dimensional matrix contextual array grammar GM = (G1,M) where G1

is the 2-dimensional contextual array grammar from Example 3 and M =
{〈pu, pr〉}. The only derivations possible in G′

M for [L2] ∈ [L (
2-MContA1

)]
(see Remark 1) are:

a
a a

=⇒G′
M

a
a
a a a

=⇒G′
M

a
a
a
a a a a

=⇒G′
M

· · ·

The single matrix 〈pu, pr〉, pu =
a
a
a

, pr = a a a , guarantees that both

arms of the array grow in a synchronized way. 	

Theorem 3. For any d ≥ 2 and any k ≥ 1, we have L (

d-ContAk
)

�

L (
d-MContAk

)
and

[L (
d-ContAk

)]
�

[L (
d-MContAk

)]
.

Proof. The inclusion L (
d-ContAk

) ⊆ L (
d-MContAk

)
and therefore also[L (

d-ContAk
)] ⊆ [L (

d-MContAk
)]

is obvious from general results for gram-
mars working on various kinds of objects and with specific regulating mecha-
nisms, see [10].

For showing the strictness of the inclusion, we prove that the array language
L2 from Example 5 cannot be generated by a 2-dimensional contextual array
grammar; for dimensions d > 2, we just take [i2,d (L2)] .

Now assume we could find a 2-dimensional contextual array grammar
[G = (2, {a} ,#, P,A)] that generates [L2]. As contextual grammars are pure
grammars, [A] is a finite subset of [L (G)]. As [L (G)] is infinite, we would need
an infinite number of rules to get [L2] which resembles the case of external con-
textual string grammars; in fact, as soon as the arms get long enough, we have
to apply a rule which only grows the arm going up or only grows the arm going
to the right, resulting in an array which contradicts the definition of [L2]. It is
obvious that we also have [i2,d (L2)] ∈ [L (

d-MContAk
)] \ [L (

d-ContAk
)]

; this
observation completes the proof. 	


In the 1-dimensional case, the situation is different: as we shall prove later,
see Theorem 6,

[L (
1-ContA1

)]
=

[L (
1-MContA1

)]
, but for k ≥ 2, we still have[L (

1-ContAk
)]

�
[L (

1-MContAk
)]

, as the following example shows.

Example 6. Consider the non-regular language Ln = {anban | n ≥ 1}. By The-
orem 1, there cannot exist an array grammar G of type 1-REGA2 such that
[L (G)] = [arr (Ln)]. Even more, there is no 1-dimensional contextual array
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grammar for Ln. Namely, if this would be the case, then first observe that there
must be rules that append something to the right, as well as to the left of the
array, and this should be possible infinitely often. Otherwise, the sequence of con-
text additions would happen (finally) only on one side, which means that this
behavior can again be simulated by some regular array grammar, contradicting
our previous reasoning. Hence, there must be a rule that contains a sequence of
a’s as its selector, say, arr(ars), and also a sequence of a’s, say, arr(arc) as its
context in order to append arc to the right of the current array, and likewise,
there must be a rule that contains a sequence of a’s as its selector, say, arr(a�s),
and also a sequence of a’s, say, arr(a�c) as its context in order to append alc to
the left of the current array. For sufficiently long arrays arr(anban), both rules
can be applied, and arrays like arr(anban+rc) can generated that do not belong
to Ln. Hence, Ln /∈ L(1-ContA).

Yet for the 1-dimensional matrix contextual array grammar [GM ] = (Gn,Mn)
with [Gn] = (1, {a, b} ,#, P, {aba}) where pl = a a , pr = a a , and Mn =
{〈pl, pr〉}, we have [L (Gn)] = [arr (Ln)]. The single matrix 〈pl, pr〉 guarantees
that the number of symbols a grows to the left and to the right in a synchro-
nized way. 	


In addition, the following example even yields that for any k ≥ 2,[L (
1-MContAk

)]
is incomparable with

[L (
1-REGAk

)]
.

Example 7. Consider the regular string language Lr = {banb | n ≥ 1}. Due to
Theorem 1, there exists an array grammar of type 1-REGA2 Gr such that
[L (Gr)] = [arr (Lr)]. Yet on the other hand, there cannot exist an array gram-
mar of type 1-MContA2 [G] such that L ([G]) = [arr (Lr)], which can be proved
by a simple pumping argument: The number of symbols a between the two sym-
bols b can become arbitrarily large, but we only have a finite set of axioms A;
as [G] is a pure grammar, [A] ⊂ [L]; yet [G] can only grow these arrays in an
external way, i.e., by adding symbols on the left or on the right, but in this way
we are not able to grow the number of symbols a in the middle. 	


3.2 Contextual Array Grammars with Regular Control

Definition 4. A d-dimensional contextual array grammar with regular control
is a pair GC = (G,L) where G = (d, V,#, P,A) is a d-dimensional contex-
tual array grammar and L is a regular string language over P . Derivations in
a d-dimensional contextual array grammar with regular control are defined as
in the contextual array grammar G except that in a successful derivation the
sequence of applied rules has to be a word from L. The array language generated
by GC is the set of all d-dimensio nal arrays which can be derived from any of
the axioms in A following a control word from L. The family of d-dimensional
array languages of arrays generated by d-dimensional contextual array grammars
over a k-letter alphabet with regular control is denoted by L ((d-ContA,REG)).
The corresponding family of array languages of equivalence classes of arrays is
denoted by using brackets in the notations.
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As a general result (following [10]) we can state:

Theorem 4. For any d ≥ 1 and any k ≥ 1,[L (
d-ContAk

)] ⊆ [L (
d-MContAk

)] ⊆ [L ((
d-ContAk, REG

))]
.

Example 8. Consider the regular string language Lr = {banb | n ≥ 1} from
Example 7. We have shown that [arr (Lr)] ∈ [L (

1-REGA2
)]\[L (

1-MContA2
)]

.
Moreover, [arr (Lr)] ∈ [L ((

1-ContA1, REG
))] \ [L (

1-MContA2
)]

: Consider
G′

r = (Gr, Cr) with Gr = (1, {a, b} ,#, P, {arr (ba)}) and P = {paa, pab} with
paa = a a , and pab = a b , as well as Cr = {paa}∗ {pab}. It is easy to see that
[L (G′

r)] = [arr (Lr)]. 	

Theorem 5. For any d ≥ 1 and any k ≥ 2, we have:[L (

d-ContAk
)]

�
[L (

d-MContAk
)]

�
[L ((

d-ContAk, REG
))]

.

Proof. The inclusions directly follow from Theorem4. The strictness of the
first inclusion follows from Example 6 by taking the non-regular string lan-
guage Ln = {anban | n ≥ 1}. Then [i1,d (arr (Ln))] ∈ [L (

d-MContA2
)] \[L (

d-ContAk
)]

. The strictness of the second inclusion follows from Example 8
by taking [i1,d (arr (Lr))]. 	


On the other hand, in the 1-dimensional case, the following theorem says that
even with the regulating mechanisms of matrix control or regular control lan-
guages, with 1-dimensional contextual array grammars over a one-letter alphabet
we cannot go beyond regularity, i.e., beyond

[L (
1-REGA1

)]
.

Theorem 6.
[L (

1-REGA1
)]

=[L (
1-ContA1, REG

)]
=

[L (
1-MContA1

)]
=

[L (
1-ContA1

)]
.

Proof. (Sketch) According to Theorems 4 and 2, we only have to show that[L (
1-REGA1

)] ⊇ [L ((
1-ContA1, REG

))]
. The main ideas of the correspond-

ing technically non-trivial proof can be described as follows:

– Without loss of generality, right-hand sides of rules have the form a
m

an.
– Context information is irrelevant for the unary 1-dimensional case, assuming

that the set of axioms collects all arrays of sufficient size.
– The state information of the regular control is then encoded in the nontermi-

nals of the regular array grammar. 	

Allowing for more than one symbol, 1-dimensional contextual array gram-

mars can generate exactly the array images of linear languages. The proof is
based on the following normal form:

Lemma 1. For any 1-dimensional contextual array grammar with regular con-
trol GC = (G,L), where G = (1, V,#, P,A), L ⊆ P ∗, we can construct an equiv-
alent 1-dimensional contextual array grammar with regular control G′

C = (G′, L′)
with G′ = (1, V,#, P ′, A′), L′ ⊆ P ′∗, such that for P ′ we have:
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– All rules in P ′ are of the form a b or b a for some a, b ∈ V , i.e., we only
have the minimal non-empty size of selectors and minimal contexts of size 1.

– If there is a rule of the form a b / b a in P ′, then also all rules of the form
c b or b c are in P ′, for any c ∈ V , i.e., the selector contents is irrelevant,
only direction of growth of the array is important.

The rules in this normal form nicely correspond with the operations of left and
right insertions for strings, which operations together with regular control lan-
guages also characterize the family of linear languages.

Theorem 7. [L (1-ContA,REG)] = arr (L (LIN)).

Proof. (Sketch) The main ideas of the proof can be described as follows:

– Adding strings in a controlled way “on both ends” corresponds to applying
linear rules, but in reverse order.

– The information about the finitely many selectors possible can be stored in
the nonterminal; on the other hand, the nonterminal can be stored in the state
of the finite automaton of the control language. 	

For d ≥ 2, i.e., in the case of at least two symbols, we can prove the incompa-

rability of the families of array languages generated by contextual array gram-
mars and those equipped with control mechanisms:

Theorem 8. For any d ≥ 2 and any k ≥ 1, all the three families[L (
d-ContAk

)]
,

[L (
d-MContAk

)]
, and

[L ((
d-ContAk, REG

))]
are incomparable with

[L (
d-REGAk

)]
.

Proof. For the singleton language L⊥ from Example 4, we have i2,d (L⊥) ∈([L (d-ContA1
)] ∩ [L (d-MContA1

)]∩ [L ((d-ContA1, REG
))]) \ [L (d-REGA1

)]
.

On the other hand, for Lr from Example 7 we have i2,d ([arr (Lr)]) ∈[L (1-REGA2
)] \ ([L (d-ContA1

)]∪ [L (d-MContA1
)] ∪ [L ((d-ContA1, REG

))])
.

Yet even for the case of one-letter alphabets we can find an array language of
2-dimensional arrays in

[L (
2-REGA1

)] \ [L ((
2-ContA1, REG

))]
: we consider⊔

-shaped arrays with the left vertical line having a length being a multiple of 3
and the right vertical line having a length being a multiple of 5. These arrays can
easily be generated by a regular array grammar by first generating the left ver-
tical line from up to down, followed by the horizontal line, finally generating the
right vertical line upwards. On the other hand, this set of 2-dimensional arrays
cannot be generated by a contextual array grammar even when using regular
control: as soon as the vertical lines have become long enough, we cannot dis-
tinguish any more between the left and the right one, so either the lengths will
not necessarily fulfill the constraints of being a multiple of 3 and 5, respectively,
any more, or even worse, the lines might even be prolonged below the horizontal
line yielding arrays of the shape of an H. 	
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4 Decidability Questions

As the size of the arrays generated by contextual array grammars (even with any
control mechanism) increases with every derivation step, the generated array
languages are computable (i.e., recursive).

As an immediate consequence of Theorem 7, we obtain:

Corollary 1. Emptiness is decidable for L (1-ContA,REG).

Yet for higher dimensions, we obtain a completely different situation:

Theorem 9. Emptiness is not decidable for L (
d-ContAk, REG

)
for d ≥ 2,

even for k = 1.

Proof. (Sketch) As, for example, described in [5], the derivation carpet of a Tur-
ing machine can be described using 2-dimensional contextual array productions
in the t-mode of derivation, i.e., a derivation only stops if no rule can be applied
any more. The goal of only halting with specific conditions being fulfilled can
also be obtained using suitable regular control languages, as we can require spe-
cific final rules to be applied. Hence, we will obtain a non-empty array language
if and only if there is a derivation simulating the acceptance of a string by the
given Turing machine. The proof given in [5] does not bound the number of
symbols used. Yet m symbols can be encoded by 2 × m rectangles with the k-th
of these m symbols being encoded by leaving the k-th position in the second
vertical line free, which then can be checked by the selector in the contextual
array productions. Hence, simulating successful computations of the given Tur-
ing machine will result in the generation of 2k × mn rectangles for accepting
computations. 	


5 Picture Generation

Another interesting topic is to consider the generation of geometric objects such
as solid rectangles and squares, which has been used to exhibit the generative
power of various array grammar variants. Both of them, i.e., the 2-dimensio-
nal array language Lrect of all solid rectangles of size m × n, m, n ≥ 2, made
of a single symbol a and the 2-dimensional array language Lsquare of all solid
squares of side length n, n ≥ 2, made of a single symbol a are well-known
to be in

[L (
2-REGA1

)]
, see [23], but as we are able to show they can also be

generated by 2-dimensional contextual array grammars with regular control, i.e.,
{Lrect, Lsquare} ⊂ [L ((

2-ContA1, REG
))]

. We now only exhibit the contextual
array grammar with regular control for the squares.

Example 9. Lsquare is generated by the 2-dimensional contextual array gram-
mar with regular control GsquareRC = (Gsquare, Csquare) with Gsquare =
({a}, Psquare, Asquare), where Asquare collects the 2 × 2 and 3 × 3 squares,

Psquare = {sul, sdr, sur, sdl, rul, ruu, rdr, rdd} , and
Csquare = ({sulsdr} {rulrdr}∗ {ruurdd}∗ {sursdl})+.
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The rules are listed in the following:

sul =

a a
a a a

a , sdr =

a
a a a

a a , sur =

a a a
a a a

a a , sdl =

a a
a a a
a a a ,

rul =
a a
a a a , ruu =

a a
a a

a , rdr =
a a a

a a , rdd =

a
a a
a a .

How to derive a 4 × 4 square is shown below:

a a
a a

⇒sul

a a
a a a
a a

⇒sdr

a a
a a a
a a a
a a

⇒sur

a a a a
a a a a
a a a
a a

⇒sdl

a a a a
a a a a
a a a a
a a a a

Notice that the rules sur and sdl check if a complete new border layer was
actually generated, so they provide “keystones” as used in architecture, and it
somehow replaces the t-mode of derivation, e.g., see [6]. 	


As already with the t-mode of derivation, e.g., see [6], only eight contextual
array rules were needed in Example 9 to generate the squares. This shows that the
ability of contextual array grammars to insert new parts on different positions
in the current array allows for a significantly smaller number of rules when
using specific control mechanisms as the t-mode of derivation or regular control
languages, in comparison with the construction of an extended regular array
grammar as described in [23], where the construction has to be carried out along
a Hamiltonian path. The inserted pieces used in [23] in fact could also be used as
arrays inserted by a contextual array grammar with regular control, yet even for
the subset of squares of side lengths 5k +16, k ≥ 0, as exhibited in [23], 27 rules
(arrays) were used. As these are in fact a kind of macro-rules, a complete list of
regular array rules based on [23] would correspond to about one thousand rules.
This is an example showing that contextual array grammars may allow for a
succinct description of specific picture languages with rather small descriptional
complexity.
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Abstract. We consider graph-controlled insertion-deletion systems and
prove that the systems with sizes (i) (3; 1, 1, 1; 1, 0, 1), (ii) (3; 1, 1, 1;
1, 1, 0) and (iii) (2; 2, 0, 0; 1, 1, 1) are computationally complete. More-
over, graph-controlled insertion-deletion systems simulate linear lan-
guages with sizes (2; 2, 0, 1, 1, 0, 0), (2; 2, 1, 0; 1, 0, 0), (3; 1, 0, 1; 1, 0, 0), or
(3; 1, 1, 0; 1, 0, 0). Simulations of metalinear languages are also studied.
The parameters in the size (k;n, i′, i′′;m, j′, j′′) of a graph-controlled
insertion-deletion system denote (from left to right) the maximum num-
ber of components, the maximal length of the insertion string, the max-
imal length of the left context for insertion, the maximal length of the
right context for insertion; a similar list of three parameters concerning
deletion follows.

Keywords: Insertion-deletion systems · Graph-controlled systems ·
Descriptional complexity measures · Computational completeness

1 Introduction

Insertion and deletion operations frequently occur in DNA processing and RNA
editing. In the theoretical process of mismatched annealing of DNA sequences,
certain segments of the strands are either inserted or deleted [18]. During RNA
editing, some fragments of messenger RNA are inserted or deleted [2,3]. The
motivation for insertion operations can be found in [7], where this operation and
its iterated variant were introduced as a generalization of concatenation and
Kleene’s closure. The deletion operation was introduced in [10]. Insertion and
deletion operations together were introduced into formal language theory in [11].
The corresponding grammatical mechanism is called insertion-deletion system
(abbreviated as ins-del system). Informally, if a string η is inserted between two

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
C. Câmpeanu et al. (Eds.): DCFS 2016, LNCS 9777, pp. 111–125, 2016.
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parts w1 and w2 of a string w1w2 to get w1ηw2, we call the operation insertion,
whereas if a substring δ is deleted from a string w1δw2 to get w1w2, we call the
operation deletion. Suffixes of w1 and prefixes of w2 are called contexts.

Several variants of ins-del systems have been considered in literature, like
ins-del P systems [1], tissue P systems with ins-del rules [14], context-free ins-
del systems [16], matrix ins-del systems [13,17], etc. All the mentioned papers
(as well as [19]) attempted to characterize the recursively enumerable languages
(i.e., they show computational completeness) using ins-del systems. We refer to
the survey article [20] for details of variants thereof.

One of the important variants of ins-del systems is graph-controlled ins-del
systems introduced in [5] and further studied in [9]. In such a system, the concept
of a component is introduced and is associated with every insertion or deletion
rule. The transition is performed by choosing any applicable rule from the set of
rules of the current component and by moving the resultant string to the target
component specified in the rule. If the transition of strings from component to
component establishes a tree structure for a given system, then this system can
also be seen as an ins-del P system. The objective is to obtain computationally
completeness results with few components and small descriptional complexity
measures of the ins-del rules.

For an ins-del system, the descriptional complexity measures are based on
the size comprising of (i) the maximal length of the insertion string, denoted by
n, (ii) the maximal length of the left context and right context used in insertion
rules, denoted by i′ and i′′, respectively, (iii) the maximal length of the deletion
string, denoted by m, (iv) the maximal length of the left context and right
context used in deletion rules denoted by j′ and j′′, respectively. The size of an
ins-del system is denoted by (n, i′, i′′;m, j′, j′′).

Initially, computationally completeness results for graph-controlled ins-del
systems were obtained with 5 components [12], then reduced to 4 components
with sizes (1, 1, 0; 2, 0, 0), (2, 0, 0; 1, 1, 0), (1, 1, 0; 1, 1, 0), (1, 1, 0; 1, 0, 1) [5] and
then later reduced to 3 components with sizes (1, 2, 0; 1, 1, 0), (1, 1, 0; 1, 2, 0) [8].
In [9], even graph-controlled ins-del systems with only 2 components and sizes
(1, 1, 0; 1, 2, 0), (1, 2, 0; 1, 1, 0) were shown to be computationally complete. As an
ins-del system without graph-control can be seen as a graph-controlled ins-del
system with just one component, it is remarkable in this context to note that
such system with size (1, 1, 1; 1, 1, 1) are computationally complete; see [19].

In this paper, we prove the computational completeness of the following
graph-controlled ins-del systems: (i) 3 components with size (1, 1, 1; 1, 1, 0) or
(1, 1, 1; 1, 0, 1); (ii) 2 components with size (2, 0, 0; 1, 1, 1). We also simulate linear
grammars by graph-controlled ins-del systems having (i) 3 components with size
(1, 0, 1; 1, 0, 0) or (1, 1, 0; 1, 0, 0); (ii) 2 components with size (2, 0, 1; 1, 0, 0) or
(2, 1, 0; 1, 0, 0). We also extend the simulation technique to metalinear languages.

2 Preliminaries

We assume that the readers are familiar with the standard notations used in
formal language theory. However, we now recall a few notations here.
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Let N denote the set of positive integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}.
Given an alphabet (finite set) Σ, Σ∗ denotes the free monoid generated by Σ.
The elements of Σ∗ are called strings or words; λ denotes the empty string.
For a string w ∈ Σ∗, |w| denotes the length of a string w and wR denotes the
reversal (mirror image) of w. Likewise, LR and LR are understood for languages
L and language families L. RE denotes the family of the recursively enumer-
able languages, The family of linear and metalinear languages is denoted by
LIN , MLIN , respectively, where MLIN is the smallest language class contain-
ing LIN and is closed under concatenation. It is known from [15] that LIN is
neither closed under concatenation nor under Kleene closure whereas MLIN is
not closed under Kleene closure but closed under concatenation. Also, both LIN
and MLIN are closed under reversal.

For the computational completeness results, we are using the fact that
type-0 grammars in the special Geffert normal form are known to character-
ize the recursively enumerable languages. According to [5], a type-0 grammar
G = (N,T, P, S) is said to be in special Geffert normal form, SGNF for short, if

– N decomposes as N = N ′ ∪ N ′′, where N ′′ = {A,B,C,D} and N ′ contains
at least the two nonterminals S and S′,

– the only non-context-free rules in P are the two erasing rules AB → λ and
CD → λ,

– the context-free rules are of the following forms:
X → Y b or X → bY where X,Y ∈ N ′, X �= Y , b ∈ T ∪ N ′′, or S′ → λ.

How to construct this normal form is described in [5] and is based on [6]. Also,
the derivation of a string is done in two phases. First, the context-free rules are
applied repeatedly and the phase I is completed by applying the rule S′ → λ in
the derivation. In phase II, only the non-context-free erasing rules are applied
repeatedly and the derivation ends. It is to be noted that as these context-free
rules are more of a linear type, it is easy to see that there can be at most only one
nonterminal from N ′ present in the derivation of G. We exploit this observation
in the proofs of Theorems 2 and 4. Also, note that X �= Y,X, Y ∈ N ′ in the
context-free rules.

2.1 Insertion-Deletion Systems

We now give the basic definition of insertion-deletion systems, following [11,18].

Definition 1. An insertion-deletion system is a construct γ = (V, T,A,R),
where V is an alphabet, T ⊆ V is the terminal alphabet, A is a finite language
over V , R is a finite set of triplets of the form (u, η, v)ins or (u, δ, v)del, where
(u, v) ∈ V ∗ × V ∗, η, δ ∈ V +.

The pair (u, v) is called the context, η is called the insertion string, δ is called
the deletion string and x ∈ A is called an axiom. For all contexts of t where
t ∈ {ins, del}, if u = λ (v = λ), then we call the operation t to be right context
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(left context). If both u, v = λ for a rule, then it means, the corresponding
insertion/deletion can be done freely anywhere in the string and is called context-
free insertion/deletion. An insertion rule will be of the form (u, η, v)ins, which
means that the string η is inserted between u and v. A deletion rule will be
of the form (u, δ, v)del, which means that the string δ is deleted between u and
v. In other words, (u, η, v)ins corresponds to the rewriting rule uv → uηv, and
(u, δ, v)del corresponds to the rewriting rule uδv → uv.

Consequently, for x, y ∈ V ∗ we can write x ⇒ y if y can be obtained from x
by using either an insertion rule or a deletion rule which is given as follows:

1. x = x1uvx2, y = x1uηvx2, for some x1, x2 ∈ V ∗ and (u, η, v)ins ∈ R.
2. x = x1uδvx2, y = x1uvx2, for some x1, x2 ∈ V ∗ and (u, δ, v)del ∈ R.

The language generated by γ is defined by

L(γ) = {w ∈ T ∗ | x ⇒∗ w, for some x ∈ A} ,

where ⇒∗ is the reflexive and transitive closure of the relation ⇒.

2.2 Graph-Controlled Insertion-Deletion Systems

A graph-controlled insertion-deletion system with k components, or (k-)GCID
for short, is a construct Π = (k, V, T,A,H, i0, if , R) where

– k is the number of components,
– V is an alphabet,
– T ⊆ V is the terminal alphabet,
– A ⊆ V is a finite set of axioms,
– H is a set of labels associated (in a one-to-one manner) to the rules in R,
– i0 ∈ [1 . . . k] is the initial component,
– if ∈ [1 . . . k] is the final or target component, and
– R is a finite set of rules of the form (i, r, j) where r is an insertion rule of the

form (u, η, v)ins or deletion rule of the form (u, δ, v)del and i, j ∈ [1 . . . k].

A rule of the form l : (i, r, j), where l ∈ H is the label associated to the rule,
denotes that the string is sent from component i (for short denoted as Ci) to
Cj after the application of the insertion or deletion rule r on the string.

A configuration of Π is represented by (w)i where i is the number of the
current component (initially i0) and w is the current string. A transition (w)i ⇒
(w′)j is performed if there exists a rule l : (i, r, j) in R such that w ⇒ w′ on
applying the insertion or deletion rule r; in this case, we also write (w)i ⇒l (w′)j
or (w′)j ⇐l (w)i. By (w)i

⇒l

⇐l′
(w′)j , we mean that (w′)j is derivable from (w)i

using rule l and (w)i is derivable from (w′)j using rule l′. The language of a
graph-controlled insertion-deletion system is the set of all terminal strings in
the target component if reachable from an axiom and the initial component i0.
Formally,

L(Π) = {w ∈ T ∗ | (x)i0 ⇒∗ (w)if for some x ∈ A}.
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Next, we discuss about the size of a graph-controlled ins-del system. A graph-
controlled ins-del system Π is of size (k;n, i′, i′′;m, j′, j′′) (with the correspond-
ing language classes denoted by GCID(k;n, i′, i′′;m, j′, j′′)) if

k = the number of components
n = max{|η| : (i, (u, η, v)ins, j) ∈ R} (max. length of the inserted string)
i′ = max{|u| : (i, (u, η, v)ins, j) ∈ R} (max. length of the left context)
i′′ = max{|v| : (i, (u, η, v)ins, j) ∈ R} (max. length of the right context)
m = max{|δ| : (i, (u, δ, v)del, j) ∈ R} (max. length of the deleted string)
j′ = max{|u| : (i, (u, δ, v)del, j) ∈ R} (max. length of the left context)
j′′ = max{|v| : (i, (u, δ, v)del, j) ∈ R} (max. length of the right context)

Let us give some examples for GCID systems.

Example 1. The following GCID system Π1 of size (2; 1, 0, 0; 0, 0, 0) generates
the language L1 = {w ∈ {a, b}∗ : |w|a = |w|b}.

Π1 = (2, {a, b}, {a, b}, {λ}, {r1, r2}, 1, 1, R) ,

where the rules of R are: r1 : (1, (λ, a, λ)ins , 2), r2 : (2, (λ, b, λ)ins , 1). 
�
Example 2. With axiom A = {ab, λ}, two rules grouped in singleton compo-
nents C1 = {(1, (a, a, b)ins, 2)}, C2 = {(2, (a, b, b)ins, 1)}, initial and target
component C1, the GCID system Π2 can describe L2 = {anbn : n ≥ 0}, i.e.,
L2 ∈ GCID(2; 1, 1, 1; 0, 0, 0). 
�
Example 3. Consider the GCID system Π3 of size (3; 1, 0, 1; 1, 0, 0) as follows:

Π3 = (3, {S, S′, a, b}, {a, b}, {SS′},H, 1, 1, R) ,

where the rules of R are the following ones:

r1.1 : (1, (λ, a, S)ins , 2) r1.2 : (1, (λ, S, λ)del , 3)
r2.1 : (2, (λ, b, S′)ins , 1)
r3.1 : (3, (λ, S, S′)ins , 1) r3.2 : (3, (λ, S′, λ)del , 1)

We claim that Π3 generates L3 = {anbn : n ≥ 1}∗. We prove our claim by
discussing the working of the rules of Π3 here. Starting with the axiom SS′ in
C1, a is inserted before S and then b is inserted before S′ in order, repeatedly,
and this leads to (anSbnS′) in C1. After n(≥ 0) cycles of repetitions, rule r1.2
is applied and this deletes S and we move to C3 with the string anbnS′. We now
have a choice of applying rule r3.1 or r3.2. In the latter case, S′ is deleted and
the process terminates at the target component C1. In the former case, we are
back to the starting point in order to generate anbnambmSS′. On repeating this
process several times as desired, the process can be terminated by applying the
rule r3.2. With these arguments, one can see that this system generates L3. 
�

Observe the similarities between the examples: L1 is the iterated shuffle clo-
sure of (L2 ∪ LR

2 ), while L3 is the Kleene closure of L2. Notice that L1 /∈ LIN
and L3 /∈ MLIN , and the latter can be proved in the same way as argued in [4,
p. 137] for the �Lukasiewicz language.
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3 Auxiliary Results

In order to simplify the proofs of some of our main results, the following obser-
vations are helpful.

Theorem 1. For all non-negative integers k, n, i′, i′′,m, j, j′′, we have that

GCID(k;n, i′, i′′;m, j′, j′′) = [GCID(k;n, i′′, i′;m, j′′, j′)]R .

Proof. To an ins-del rule (x, y, z)µ with μ ∈ {ins, del}, we associate the reversed
rule ρ(r) = (zR, yR, xR)µ. Let Π = (k, V, T,A,H, i0, if , R) be a graph-controlled
insertion-deletion system with k components. Map a rule l : (i, r, j) ∈ Π to
l : (i, ρ(r), j) in ρ(R). Define ΠR = (k, V, T,AR,H, i0, if , ρ(R)). Then, an easy
inductive argument shows that L(ΠR) = (L(Π))R. Observing the sizes of the
system now shows the claim. 
�
Corollary 1. Let L be a language class that is closed under reversal. Then, for
all non-negative integers k, n, i′, i′′,m, j′, j′′, we conclude that

1. L = GCID(k;n, i′, i′′;m, j′, j′′) if and only if
L = GCID(k;n, i′′, i′;m, j′′, j′);

2. L ⊆ GCID(k;n, i′, i′′;m, j′, j′′) if and only if
L ⊆ GCID(k;n, i′′, i′;m, j′′, j′).

4 Computational Completeness Results

In this section, we prove the computational completeness results for GCID sys-
tems of sizes (i) (3; 1, 1, 1; 1, 1, 0) (ii) (3; 1, 1, 1; 1, 0, 1) and (iii) (2; 2, 0, 0; 1, 1, 1).
One may note that, in the first (second) system, the deletion is left context (right
context) and in the third system, the insertions are performed in a context-free
manner.

Theorem 2. GCID(3; 1, 1, 1; 1, 1, 0) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. We build a GCID
system Π such that L(Π) = L(G). Let Π = (3, V, T, {S},H, 1, 1, R). The rules
in P are labelled injectively with labels from [1 . . . |P |]. Let V = N ∪T ∪{p : p ∈
[1 . . . |P |]}. R is defined as follows. The rules are classified into components C1,
C2 and C3 as indicated by the first character following the rule label.
We simulate the rule p: X → bY by the following ins-del rules:

p1.1 : (1, (λ, p,X)ins , 2)
p2.1 : (2, (λ, b, p)ins , 3), p2.2 : (2, (Y,X, λ)del , 1)
p3.1 : (3, (b, Y, p)ins , 3), p3.2 : (3, (Y, p, λ)del , 2)

We simulate the rule q: X → Y b by the following ins-del rules:

q1.1 : (1, (λ, q,X)ins , 2)
q2.1 : (2, (λ, Y, q)ins , 3), q2.2 : (2, (λ, q, λ)del , 1)
q3.1 : (3, (q, b,X)ins , 3), q3.2 : (3, (b,X, λ)del , 2)
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We simulate the rule f : AB → λ by the following ins-del rules:

f1.1 : (1, (λ, f,A)ins , 2)
f2.1 : (2, (λ, f, λ)del , 1), f2.2 : (2, (f,A, λ)del , 3)
f3.1 : (3, (f,B, λ)del , 2)

We simulate the rule g: CD → λ by the following ins-del rules:

g1.1 : (1, (λ, g, C)ins , 2)
g2.1 : (2, (λ, g, λ)del , 1), g2.2 : (2, (g, C, λ)del , 3)
g3.1 : (3, (g,D, λ)del , 2)

We simulate the rule h : S′ → λ by the ins-del rule h1.1 : (1, (λ, S′, λ)del, 1).
We now proceed to prove that L(Π) = L(G). We do this by explaining

how the simulation of the rules of G should work and why no other malicious
derivations are possible in Π.

Working of p : X → bY : Consider the string αXβ in C1. Then there is a unique
sequence of rule applications in Π as follows.

(αXβ)1 ⇒p1.1 (αpXβ)2 ⇒p2.1 (αbpXβ)3 ⇒p3.1 (αbY pXβ)3
⇒p3.2 (αbY Xβ)2 ⇒p2.2 (αbY β)1.

Note that though applying the rule p3.1 leaves the string in C3 itself, rule
p3.1 cannot be applied again (the benefit of using double-sided context). Also,
only one X of N ′ is present in the derivation until a Y ∈ N ′ is introduced, thus,
p2.2 cannot be used before the rule p2.1 is applied.

Working of q : X → Y b: Consider the string αXβ in C1. On applying rule q1.1,
we insert q before X and we get αqXβ in C2. Now, we can apply either q2.1 or
q2.2. In the latter case, we delete the just inserted marker q and end up with
αXβ in C1 (back to the starting point). Hence, we choose rule q2.1 eventually to
move on. In this case, consider the following sequence of rule applications in Π.

(αXβ)1
⇒q1.1
⇐q2.2

(αqXβ)2 ⇒q2.1 (αY qXβ)3 ⇒q3.1 (αY qbXβ)3 ⇒q3.2 (αY qbβ)2

At this point, we again have a choice of applying rule q2.1 or q2.2. In the
former case, we will again insert a Y before q yielding αY Y qbβ in C3. As Y ∈ N ′

is the only nonterminal in the string, the first symbol of β cannot be X. Thus,
we cannot apply any rule in C3 and the derivation stops with nonterminals in a
non-target component. In the latter case, by applying q2.2 we delete q and get
αY bβ in C1, which is the target component.

We next proceed to discuss the simulation of the non context-free erasing
rules AB → λ and CD → λ.

Working of f : AB → λ: The working of the rule is shown by the following
sequence of rule applications.

(αABβ)1
⇒f1.1
⇐f2.1

(αfABβ)2 ⇒f2.2 (αfBβ)3 ⇒f3.1 (αfβ)2 ⇒f2.1 (αλβ)1
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Working of g : CD → λ: Similar to the working of the rule f : AB → λ.
The rule (1, (λ, S′, λ)del , 1) directly erases S′. We start at S in C1 and by

repeatedly applying the rules p, q, f, g, h, we eventually get (S)1 ⇒∗ (w)1. This
proves that L(G) ⊆ L(Π).

To prove the reverse relation (L(Π) ⊆ L(G)), we observe that the rules of Π
are applied in groups and each group of rules corresponds to one of p, q, f, g, h.
Also, it is not possible to switch between the simulation of some p, say, to that
of f , as we always use unique marker symbols to prevent this from happening.
This observation completes the proof. 
�
As RE is known to be closed under reversal, we conclude with Corollary 1:

Theorem 3. GCID(3; 1, 1, 1; 1, 0, 1) = RE.

Theorem 4. GCID(2; 2, 0, 0; 1, 1, 1) = RE.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. We construct
a GCID system Π such that L(Π) = L(G). Let Π = (2, V, T, {S},H, 1, 1, R).
The rules from P in G are labelled injectively with labels from [1 . . . |P |]. The
alphabet of Π is V = N ∪ T ∪ {p, p′ : p ∈ [1 . . . |P |]}. R is defined as follows.
We simulate the rule p: X → bY , with X,Y ∈ N ′, by the following ins-del rules:

p1.1 : (1, (λ, bY, λ)ins , 2)
p2.1 : (2, (Y,X, λ)del , 1)

We simulate the rule q: X → Y b, with X,Y ∈ N ′, by the following ins-del rules:

q1.1 : (1, (λ, Y b, λ)ins , 2)
q2.1 : (2, (λ,X, Y )del , 1)

We simulate the rule f : AB → λ, with A,B ∈ N ′′, by the following ins-del rules:

f1.1 : (1, (λ, ff ′, λ)ins , 2), f1.2 : (1, (A, f, f ′)del , 1), f1.3 : (1, (λ,A, f ′)del , 2)
f2.1 : (2, (f ′, B, λ)del , 1), f2.2 : (2, (λ, f ′, λ)del , 1)

We simulate the rule g: CD → λ by the following ins-del rules:

g1.1 : (1, (λ, gg′, λ)ins , 2), g1.2 : (1, (C, g, g′)del , 1), g1.3 : (1, (λ,C, g′)del , 2)
g2.1 : (2, (g′,D, λ)del , 1), g2.2 : (2, (λ, g′, λ)del , 1)

We simulate the rule h : S′ → λ by the ins-del rule h1.1 : (1, (λ, S′, λ)del, 1).
We now proceed to reason why L(Π) = L(G).

Working of p : X → bY : Consider a string αXβ in C1. The string bY is free to be
inserted anywhere in the string using rule p1.1 and the derivation moves to C2.
Rule p2.1 can be applied only if bY is inserted before X. Recall that X,Y ∈ N ′

and these types of nonterminals only occur once in valid sentential forms of G
(SGNF property). In this case, the X is deleted yielding bY and the derivation
ends at the target component C1. If bY has been inserted elsewhere, then no
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rule of C2 can be applied and we are trapped in a non-target component with
nonterminals in the string.

Working of q : X → Y b: Similar to the working of the rule p as explained above.

Working of f : AB → λ: Consider the string αABβ in C1. We introduce two
markers f, f ′ together anywhere in the string using the rule f1.1 and move to
C2. Suppose that ff ′ has been inserted between A and B. Now, there is a choice
of applying rule f2.1 or f2.2. In the latter case, we will delete the marker f ′

and come to the target component C1 with αAfBβ. If we introduce ff ′ again,
this will eventually lead to a string having the nonterminals f and A in it, thus
not deriving any terminal string. This observation forces one to choose rule f2.1
before applying f2.2. In this case, there is a unique sequence of rule applications:

(αAff ′Bβ)2 ⇒f2.1 (αAff ′β)1 ⇒f1.2 (αAf ′β)1 ⇒f1.3 (αf ′β)2 ⇒f2.2 (αλβ)1

Suppose that ff ′ has not been inserted between A and B, then it is not difficult
to see that the derived string will always contain some nonterminals.

Working of g : CD → λ: Similar to the working of the rule f : AB → λ.
The rule (1, (λ, S′, λ)del , 1) directly erases S′. We start at S in C1 and by

repeatedly applying the rules p, q, f, g, h, we eventually get (S)1 ⇒∗ (w)1. As
argued above, no malicious derivations can lead to terminal strings in C1. 
�

5 (Meta)linear Languages

We next prove that GCID systems of sizes (2; 2, 1, 0; 1, 0, 0), (2; 2, 0, 1; 1, 0, 0),
(3; 1, 1, 0; 1, 0, 0), or (3; 1, 0, 1; 1, 0, 0) can simulate all linear languages. In these
systems, deletions are performed in a context-free manner. While comparing the
last two sizes with the first two sizes, one may note that the length of the inserted
string is reduced at the cost of increasing the number of components. We also
show how to extend the simulations beyond linear languages.

Theorem 5. LIN � GCID(2; 2, 1, 0; 1, 0, 0).

Proof. Consider a linear grammar G = (N,T, P, S), where every rule of P is of
the form X → Y a or X → aY or X → a or X → λ. We construct a GCID system
Π = (2, V, T, {S},H, 1, 1, R) for G. The rules from P in G are labelled injectively
with labels from [1 . . . |P |]. The alphabet of Π is V = N ∪T ∪{p : p ∈ [1 . . . |P |]}.
The set of rules R of Π is defined as follows.
We simulate the rule p : X → Y a by the following ins-del rules:

p1.1 : (1, (X, p, λ)ins , 2), p1.2 : (1, (p, Y a, λ)ins , 2)
p2.1 : (2, (λ,X, λ)del , 1), p2.2 : (2, (λ, p, λ)del , 1)

We simulate the rule q : X → aY by the following ins-del rules:

q1.1 : (1, (X, q, λ)ins , 2), q1.2 : (1, (q, aY, λ)ins , 2)
q2.1 : (2, (λ,X, λ)del , 1), q2.2 : (2, (λ, q, λ)del , 1)
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We next simulate the rule f : X → a by the following ins-del rules:

f1.1 : (1, (X, a, λ)ins , 2)
f2.1 : (2, (λ,X, λ)del , 1)

We now prove the theorem by discussing the working of the above rules.

Working of p : X → Y a: Consider the string αXβ in C1. On applying rule p1.1,
we insert p after X and get αXpβ in C2. At this point, we have a choice of
applying rule p2.1 or p2.2. In the latter case, the marker p is deleted and we
move to C1 with αXβ in the string and this is our starting point. Hence we
have to use rule p2.1 eventually to proceed. In this case, X is deleted and move
to C1 with αpβ. At this point, we note that the rule p1.1 cannot be applied
since in linear grammar there is at most one nonterminal (in this case, X) in the
string; this was already deleted in the previous step. With these arguments, we
simulate the rule X → Y a as follows:

(αXβ)1
⇒p1.1
⇐p2.2

(αXpβ)2 ⇒p2.1 (αpβ)1 ⇒p1.2 (αpY aβ)2 ⇒p2.2 (αY aβ)1.

In the above sequence, we note that before the derivation (αpβ)1 ⇒p1.2

(αpY aβ)2, the rule p1.1 cannot be applied since in a linear grammar there is at
most one nonterminal (in this case, X) in the string and it is already deleted in
the previous step.

Working of q : X → aY : Similar to the working of the above rule p : X → Y a.
The sequence of rule applications in Π is given below for a better understanding.

(αXβ)1
⇒q1.1
⇐q2.2

(αXqβ)2 ⇒q2.1 (αqβ)1 ⇒q1.2 (αpaY β)2 ⇒q2.2 (αaY β)1.

The working of rule f : X → a is simple and straightforward. Since we
start at S in C1 and if we repeatedly apply the rules p, q, f , we eventually get
(S)1 ⇒∗ (w)1. This proves that L(G) ⊆ L(Π).

For the converse direction L(G) ⊇ L(Π), observe the remarks that we gave
above when explaining the working of the simulations; apart from unnecessary
additional loops in the simulation, no successful derivations are possible in Π
other than those intended for the simulation of G.

The strictness of the inclusion follows from Examples 1 and 3. 
�
Remark 1. By allowing for a few more components, we can extend the previous
simulation result to cover Kleene closures of linear languages or also MLIN .
For instance, starting with axiom S′S and a third component containing rules
r3.1 : (3, (S′, S, λ)ins, 1) and r3.2 : (3, (λ, S′, λ)del, 1) and changing f2.1 to
transit to C3, the modified system Π ′ would describe (L(G))+, or, by having S′

as the axiom and starting in C3, we can get (L(G))∗. 
�
Likewise, we can describe metalinear languages with three or four components.

Theorem 6. MLIN � GCID(4; 2, 1, 0; 1, 0, 0) ∩ GCID(3; 2, 1, 0; 1, 0, 1).
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Proof. If L ∈ MLIN happens to be a linear language, we can proceed as in
Theorem 5. So, we assume that L ∈ MLIN − LIN is given. We can think of the
work of a metalinear grammar G with L(G) = L ⊆ T ∗ (generating the concate-
nation of k linear languages L(G1), . . . , L(Gk) with start symbols S1, . . . , Sk,
respectively, and k pairwise disjoint nonterminal alphabets N1, . . . , Nk) as fol-
lows: starting with S1S

′
2 as the axiom, first, G1 generates a terminal word. Then,

S′
2 → S2S

′
3 is executed, and G2 generates a terminal word, starting from S2. This

strategy continues, until S′
k−1 → Sk−1S

′
k is executed, followed by the generation

of a terminal word by Gk−1 and finally S′
k → Sk initiates the last grammar Gk

to append a terminal word.
Let us first focus on GCID(4; 2, 1, 0; 1, 0, 0). More formally, we construct

a GCID system Π = (4, V, T, {S1S
′
2},H, 1, 1, R) for G. Let V1, . . . , Vk be the

alphabets resulting from the construction of GCID systems Πi for G1, . . . , Gk

according to Theorem 5. Let Ni = Vi − T and assume (w.l.o.g.) that N1, . . . , Nk

are pairwise disjoint. Let V =
⋃k

i=1 Vi ∪{S′
i : i ∈ [1 . . . k]}. Let Ri be the rule set

of Πi. R′
i coincides with Ri except for (possibly) terminating rules of the type

f2.1 that target at C3 for i ∈ [1 . . . (k − 1)]. Let R =
⋃k

i=1 R′
i ∪ RT , where RT

collects transition rules that are described in details in the following.
The work of grammar Gi, say, of G1, is simulated (as described in the proof of

Theorem 5). Then, (in general) we transit to the third component. We perform
the following transition rules:

r1→22.1 : (2, (λ, r1→2, λ)del , 1)
r1→23.1 : (3, (S′

2, r1→2, λ)ins, 4), r1→23.2 : (3, (r1→2, S2S
′
3, λ)ins , 2)

r1→24.1 : (4, (λ, S′
2, λ)del , 3)

Similar transition rules are added to start simulations of G3, . . . , Gk−1.
Finally, we have the rules:

rk−1→k2.1 : (2, (λ, rk−1→k, λ)del , 1)
rk−1→k3.1 : (3, (S′

k, rk−1→k, λ)ins, 4), rk−1→k3.2 : (3, (rk−1→k, Sk, λ)ins , 2)
rk−1→k4.1 : (4, (λ, S′

k, λ)del , 3)

Observe that the applications of the new rules (in comparison to what is
inherited from Theorem 5) is deterministic, and due to the new components,
no interference with previously introduced rules is possible. Furthermore, the
context-free deletion rules in C2 of Theorem 5 will delete only nonterminals of
Ni, i ∈ [1 . . . k], in the present simulation; hence, they do not interfere with the
new nonterminals like S′

i.
We now turn to GCID(3; 2, 1, 0; 1, 0, 1). The only real problem merging C2

and C4 was that during the simulation of Gi, possibly the symbol S′
i+1 gets

deleted. This can be prevented by requiring the right context of ri→i+1 in
the rule that deletes S′

i+1. More precisely, the modified rules for Pi will be
ri→i+13.1 : (3, (S′

i+1, ri→i+1, λ)ins, 2) and ri→i+12.2 : (2, (λ, S′
i+1, ri→i+1)del , 3).

The remaining technical details are left to the reader.
Remark 1 and more concretely Example 3 shows the claimed strictness of

the inclusion. 
�
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Since LIN and MLIN are known to be closed under reversal [15], by using
Corollary 1, we can immediately conclude the next two Theorems (7 and 8):

Theorem 7. LIN � GCID(2; 2, 0, 1; 1, 0, 0).

Theorem 8. MLIN � GCID(4; 2, 0, 1; 1, 0, 0) ∩ GCID(3; 2, 0, 1; 1, 1, 0).

Theorem 9. LIN � GCID(3; 1, 1, 0; 1, 0, 0).

Proof. Consider a linear grammar G = (N,T, P, S). We construct a GCID sys-
tem Π = (3, V, T, {S},H, 1, 1, R). The rules from P in G are assumed to be
labelled injectively with labels from the set [1 . . . |P |]. The alphabet of Π is
V = N ∪ T ∪ {p, p′ : p ∈ [1 . . . |P |]}. The set of rules R of Π is defined as follows.

We simulate the rule p : X → Y a by the following ins-del rules:

p1.1 : (1, (X, p, λ)ins , 3), p1.2 : (1, (p, a, λ)ins , 2), p1.3 : (1, (p′, Y, λ)ins , 2)
p2.1 : (2, (p, p′, λ)ins , 3), p2.2 : (2, (λ, p′, λ)del , 1)
p3.1 : (3, (λ,X, λ)del , 1), p3.2 : (3, (λ, p, λ)del , 1)

We simulate the rule q : X → aY by the following ins-del rules:

q1.1 : (1, (X, q, λ)ins , 3), q1.2 : (1, (q, q′, λ)ins , 2), q1.3 : (1, (q′, Y, λ)ins , 2)
q2.1 : (2, (q, a, λ)ins , 3), q2.2 : (2, (λ, q′, λ)del , 1)
q3.1 : (3, (λ,X, λ)del , 1), q3.2 : (3, (λ, q, λ)del , 1)

We simulate the rule f : X → a by the following ins-del rules:

f1.1 : (1, (X, a, λ)ins , 3)
f3.1 : (3, (λ,X, λ)del , 1)

Working of p : X → Y a: Consider the string αXβ in C1. On applying rule p1.1,
we insert p after X and get αXpβ in C3. At this point, we have a choice of
applying rule p3.1 or p3.2. In the latter case, the marker p is deleted and we
move to C1 with αXβ as the string and this is our starting point. Hence, we
use rule p3.1 eventually to proceed. Then, X is deleted and we move to C1 with
αpβ. Now, the rule p1.1 cannot be applied since in linear grammars there is at
most one nonterminal (in this case, X) in the string that was already deleted in
the previous step. Hence, we simulate the rule X → Y a as follows:

(αXβ)1
⇒p1.1
⇐p3.2

(αXpβ)3 ⇒p3.1 (αpβ)1 ⇒p1.2 (αpaβ)2 ⇒p2.1 (αpp′aβ)3

⇒p3.2 (αp′aβ)1 ⇒p1.3 (αp′Y aβ)2 ⇒p2.2 (αY aβ)1.

Working of q : X → aY : Consider the string αXβ in C1. On applying rule q1.1,
we insert q after X and get αXqβ in C3. At this point, we have a choice of
applying rule q3.1 or q3.2. In the latter case, the marker q will be deleted and
we move back to the starting point. Hence we have to use rule q3.1 eventually
to proceed. In this case, X is deleted and we move to C1 with αqβ where q′ is
inserted after q and the string moves to C2 with αqq′β. In C2, we can apply
the rule q2.1 or q2.2. On applying q2.2, q′ is deleted and the string αqβ will
be in C1 and we are back to the previous step. This is also depicted in the
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following derivation. This forces us to apply the rule q2.1 and the sequence of
rule applications is shown in the derivation. With these arguments, we simulate
the rule X → aY as follows:

(αXβ)1
⇒q1.1
⇐q3.2

(αXqβ)3 ⇒q3.1 (αqβ)1
⇒q1.2
⇐q2.2

(αqq′β)2 ⇒q2.1 (αqaq′β)3

⇒q3.1 (αaq′β)1 ⇒q1.3 (αaq′Y β)2 ⇒q2.2 (αaY β)1.

The working of rule f : X → a is simple and straightforward. By repeatedly
applying p, q, f , we eventually get (S)1 ⇒∗ (w)1. Thus L(G) ⊆ L(Π). Moreover,
as argued above, no other derivations are possible for Π, entering C1 with a
string αXβ. So, by induction, L(G) ⊇ L(Π) also follows. 
�
As LIN is known to be closed under reversal, by using Corollary 1, we have:

Theorem 10. LIN � GCID(3; 1, 0, 1; 1, 0, 0).

In the literature, GCID(4; 1, 1, 0; 1, 0, 1), GCID(4; 1, 0, 1; 1, 1, 0) (see [5]) and
i) GCID(5; 1, 1, 0; 1, 1, 0), ii) GCID(5; 1, 1, 0; 1, 0, 1), iii) GCID(5; 1, 1, 0; 2, 0, 0),
iv) GCID(5; 1, 0, 1; 2, 0, 0), v) GCID(5; 2, 0, 0; 1, 1, 0), vi) GCID(5; 2, 0, 0; 1, 0, 1)
(see [12]) describe RE . Thus, the generative power of GCID(4; 1, 1, 0; 1, 0, 0),
GCID(4; 1, 0, 1; 1, 0, 0), GCID(5; 1, 1, 0; 1, 0, 0), GCID(5; 1, 0, 1; 1, 0, 0) is open.
In the following, we discuss the power of these systems.

Remark 2. As in Remark 1, one can see that the Kleene star of each of the linear
languages lies in GCID(4; 1, 1, 0; 1, 0, 0)∩GCID(4; 1, 0, 1; 1, 0, 0). Inheriting the
proof idea of Theorem 6, we deduce the following from Theorems 9 and 10:

Theorem 11. MLIN ∈ GCID(5; 1, 1, 0; 1, 0, 0) ∩ GCID(5; 1, 0, 1; 1, 0, 0).

C2C1 C3
p, q, f, g p, q, f, g

p, q, f, gp, q, f, g

h p, q

Fig. 1. Control graph structure of Theorem 2; the corresponding simple undirected
graph is a path on three vertices, which corresponds to three nested membranes.

C2C1 C3

p, q

p, q

p, q

p, q, f

p, q, f

Fig. 2. Control graph structure of Theorem 9; the corresponding simple undirected
graph is a cycle on three vertices, which cannot correspond to any nested membrane
structure.
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6 Conclusions

We have studied GCID systems of various small sizes, proving them to be either
computationally complete or able to simulate at least all (meta-)linear languages.
Example 2 shows (together with [20]) that two components are more powerful
than one for systems of size (1, 1, 1;x, y, z) with y + z ≤ 1, x ∈ {0, 1}. Proving
a non-trivial simulation result for the family of context-free languages (say, by
GCID systems with size (3; 1, 1, 0; 1, 1, 0)) is left open. Also, we have indicated
how to simulate Kleene closures of meta-linear languages; it would be there-
fore interesting to see if the regular closure of the linear languages can be also
simulated; refer to [15] for details of this language class.

The underlying control graph of a k-GCID system Π is defined to be a graph
with k nodes labelled C1 through Ck. There exists a directed edge from Ci to Cj
if and only if there exists a rule of the form (i, r, j) in R of Π. If the undirected
simple graph corresponding to this underlying directed graph is a tree, then Π
can be viewed as an insertion-deletion P system (see [5]). In this paper, the
underlying graphs of the GCID systems that simulate the families RE and LIN
(in Theorems 2, 4 and 5) are trees. Hence, the corresponding results can be
immediately also read as results on insertion-deletion P systems. However, one
may note that the control graph of the construction of Theorem 9 contains a
triangle (q1.3 leads from C1 to C2, q2.1 from C2 to C3 and q3.1 from C3 to
C1 in the proof of Theorem 9) and is hence not a tree. Whether or not similar
results hold for insertion-deletion P systems remains open. The control graphs
of the graph-controlled ins-del systems discussed in this paper are visualized in
Figs. 1 and 2 for the case of Theorems 2 and 9, respectively. The annotations
given on the edges tells what part of the simulation is responsible for this edge.
The according pictures of the simulations in the metalinear cases are even a
bit more involved (as we have four components in the first part of Theorem 6)
and is hence omitted. However, as there are only connections between C1 and
C2, between C2 and C3, and between C3 and C4, this corresponds again to an
insertion-deletion P system.
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Abstract. Weakly recognizing morphisms from free semigroups onto
finite semigroups are a classical way for defining the class of ω-regular
languages, i.e., a set of infinite words is weakly recognizable by such
a morphism if and only if it is accepted by some Büchi automaton.
We consider the descriptional complexity of various constructions for
weakly recognizing morphisms. This includes the conversion from and
to Büchi automata, the conversion into strongly recognizing morphisms,
and complementation. For some problems, we are able to give more pre-
cise bounds in the case of binary alphabets or simple semigroups.

1 Introduction

Büchi automata define the class of ω-regular languages. They were introduced
by Büchi for deciding the monadic second-order theory of (N, <) [2]. Since
then, ω-regular languages have become an important tool in formal verification,
and many other automata models for this language class have been consid-
ered; see e.g. [10,13]. Each automaton model has its merits and its disadvan-
tages. Recently, the authors have shown that recognizing morphisms have many
nice algorithmic properties [5]. Such morphisms come in two different flavors.
Strongly recognizing morphisms admit efficient minimization and complementa-
tion, whereas weakly recognizing morphisms can be exponentially more succinct
(but there is no minimal weak recognizer and there is no efficient complemen-
tation). The situation is similar to the behavior of deterministic and nondeter-
ministic finite automata. The major difference to both nondeterministic finite
automata and Büchi automata is that there is an efficient inclusion test for
weakly recognizing morphisms [5]. Every strongly recognizing morphism is also
weakly recognizing, but the converse is false.

In this paper, we consider the descriptional complexity of various operations
on weakly recognizing morphisms and conversions involving nondeterministic
Büchi automata (BA) and strongly recognizing morphisms. In each case, we
give asymptotically tight bounds. For the conversion of a BA into a weakly
recognizing morphism, we give a lower bound which matches the naive upper
bound. Our results are summarized in Table 1.

There are some similarities between recognizing morphisms over finite and
over infinite words. Strong recognition is the natural counterpart to recognition
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Table 1. Bounds for the descriptional complexity of various operations.

Operation Lower bound Upper bound

BA to weak recognition 2n2
[new] 2n2

[9]

BA to weak recognition, binary alphabet 2(n−1)2/4 [new] 2n2
[9]

Weak recognition to BA (n − 3)(n + 1)/32 [new] n(n + 1) [9]

Weak recognition to strong recognition n2n−1 [new] 2n2
[10]

Complementation of weak recognition n2n−1 [new] 2n2
[10]

Complementation for simple semigroups n2n−1 [new] n2n [new]

for finite words. Nevertheless, in order to prove lower bounds for the conversion of
Büchi automata to weakly recognizing morphisms, we first show that bounds for
converting nondeterministic finite automata to recognizing morphisms over finite
words (with some limitations) also hold for the conversion of Büchi automata to
weakly recognizing morphisms. We then use techniques of Sakoda and Sipser [12]
and of Yan [14] to obtain tight bounds for the conversion of nondeterministic
finite automata to recognizing morphisms. This step is similar to the work of
Holzer and König [6]. To the best of our knowledge, our lower bound over finite
words for the conversion of an NFA into a recognizing morphism is also a new
result.

2 Preliminaries

This section gives a brief overview of some basic definitions from the fields of
formal languages, finite automata and semigroup theory. We refer to [10,11] for
more detailed introductions.

Words. Let A be a finite alphabet. The elements of A are called letters. A
finite word is a sequence a1a2 · · · an of letters of A and an infinite word is an
infinite sequence a1a2 · · · . The empty word is denoted by ε. Given an infinite
word α = a1a2 · · · , we let inf(α) ⊆ A denote the set of letters in α which occur
infinitely often.

Let K be a set of finite words and let L be a set of infinite words. We set
KL = {uα | u ∈ K,α ∈ L}, Kn = {u1u2 · · · un | ui ∈ K}, K+ =

⋃
n�1 Kn and

K∗ = K+ ∪ {ε}. Moreover, if ε �∈ K we define the infinite iteration Kω =
{u1u2 · · · | ui ∈ K}. A natural extension to K ⊆ A∗ is Kω = (K \ {ε})ω ∪ {ε}.

Automata. A finite automaton is a 5-tuple A = (Q,A, δ, I, F ) where Q is a
finite set of states and A is a finite alphabet. The transition relation δ is a
subset of Q × A × Q and its elements are called transitions. The sets I and F
are subsets of Q and are called initial states and final states, respectively.

A finite run of a word a1a2 · · · an on A is a sequence q0a1q1a1 · · · qn−1anqn

such that q0 ∈ I and (qi, ai+1, qi+1) ∈ δ for all i ∈ {0, . . . , n − 1}. The run is said
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to start in q0 and end in qn. The word a1a2 · · · an is the label of the run. A finite
run is called accepting if it ends in a final state. A finite word u is said to be
accepted by A if there exists an accepting finite run of u on A and the language
accepted by A is the set of all finite words over A∗ accepted by A. It is denoted
by LNFA(A).

Analogously, an infinite run of a word a1a2 · · · on A is an infinite sequence
q0a1q1a1 · · · such that q0 ∈ I and (qi, ai+1, qi+1) ∈ δ for all i � 0. It is called
accepting if inf(q0q1q2 · · · ) ∩ F �= ∅. An infinite word α is said to be Büchi-
accepted by A if there exists an accepting infinite run of α on A. The language
Büchi-accepted by A is the set of all infinite words Büchi-accepted by A and it
is denoted by LBA(A).

We use the term run for both finite and infinite runs if the reference is clear
from the context. A language L ⊆ A∗ (resp. L ⊆ Aω) is regular (resp. ω-regular)
if it is accepted (resp. Büchi-accepted) by some finite automaton.

Finite semigroups. A semigroup morphism is a mapping h : S → T between
two (not necessarily finite) semigroups S and T such that h(s)h(t) = h(st) for all
s, t ∈ S. Since we do not consider morphisms of other objects, we use the term
morphism synonymously. A subsemigroup of a semigroup S is a subset that is
closed under multiplication. We say that a semigroup T divides a semigroup S
if there exists a surjective morphism from a subsemigroup of S onto T .

Green’s relations are an important tool in the study of semigroups. For the
remainder of this subsection, let S be a finite semigroup. We let S1 denote the
monoid that is obtained by adding a new neutral element 1 to S. For s, t ∈ S let

s R t if there exist q, q′ ∈ S1 such that sq = t and tq′ = s,

s L t if there exist p, p′ ∈ S1 such that ps = t and p′t = s,

s J t if there exist p, q, p′, q′ ∈ S1 such that psq = t and p′tq′ = s,

s H t if s R t and s L t.

These relations are equivalence relations. The equivalence classes of R (resp. L,
J , H) are called R-classes (resp. L-classes, J -classes, H-classes). For s ∈ S,
we denote the R-class (resp. L-class) of s by Rs (resp. Ls) and we let S/R =
{Rs | s ∈ S} as well as S/L = {Ls | s ∈ S}.

A semigroup is called J -trivial if each of its J -classes contains exactly one
element. A semigroup is called simple if it consists of a single J -class. In a finite
simple semigroup, the relations s R st L t hold for all s, t ∈ S. Moreover, each
H-class forms a group and all such groups are isomorphic [11]. We will also utilize
the following lemma:

Lemma 1. Let S be a finite simple semigroup and let x, y, z ∈ S such that
y R z. Then xy = xz implies y = z.

Proof. Suppose that xy = xz. Since S is simple, we have y L xy and thus, there
exists an element p ∈ S1 such that pxy = y. Since y R z, there exists an element
q ∈ S1 with yq = z. It follows that y = pxy = pxz = pxyq = yq = z. 	
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Recognition by morphisms. Let h : A+ → S be a morphism to a finite semi-
group S. A pair (s, e) of elements of S is a linked pair if se = s and e2 = e.
For s ∈ S, we set [s]h = h−1(s) and if h is understood from the context, we
may skip the reference to the morphism in the subscript. A language L ⊆ A+ is
recognized by a morphism h : A+ → S if L is a union of sets [si] with si ∈ S. A
language L ⊆ Aω is weakly recognized by a morphism h : A+ → S if it is a union
of sets [si][ei]

ω where (si, ei) are linked pairs of S. A language L ⊆ Aω is strongly
recognized by a morphism h : A+ → S if [s][t]ω ∩ L �= ∅ implies [s][t]ω ⊆ L for
all s, t ∈ S. It is easy to see that strong recognition implies weak recognition,
see e.g. [10, Theorem 2.2]. Moreover, if a morphism strongly recognizes L, it also
strongly recognizes its complement Aω \L. By extension, we also say that a semi-
group S recognizes (resp. weakly recognizes, strongly recognizes) a language L
if there exists a morphism h : A+ → L that recognizes (resp. weakly recognizes,
strongly recognizes) L.

For a language L ⊆ A+ ∪ Aω, we have u ≡L v if and only if

(xuy)zω ∈ L ⇔ (xvy)zω ∈ L and
z(xuy)ω ∈ L ⇔ z(xvy)ω ∈ L

for all finite words x, y, z ∈ A∗. Keep in mind that εω = ε. The relation ≡L

was introduced by Arnold [1]; it is called the syntactic congruence of L. The
congruence classes of ≡L form the so-called syntactic semigroup A+/≡L and the
syntactic morphism hL : A+ → A+/≡L is the natural quotient map. If L ⊆ A∗

(resp. L ⊆ Aω) is regular (resp. ω-regular), the syntactic semigroup of L is finite
and hL recognizes (resp. strongly recognizes) the language L; see [1,10].

3 Lower Bound Techniques

3.1 Proving Lower Bounds for Weakly Recognizing Morphisms

We first consider the general problem of proving lower bounds for the size of
weakly recognizing semigroups for a given language L. In the case of recognizing
morphisms over finite words and in the case of strongly recognizing morphisms,
this is easy since one only needs to compute the syntactic semigroup, which
immediately yields a tight lower bound. On the contrary, weakly recognizing
morphisms do not admit minimal objects. However, it turns out that one can
still use a relaxed version of Arnold’s syntactic congruence.

We first prove a combinatorial lemma and then give the main result of this
section.

Lemma 2. Let u, v ∈ A+ and let (s, e) be a linked pair. Then uvω is contained
in [s][e]ω if and only if there exists a factorization v = v1v2 and powers k, � � 0
such that � is odd, h(uvkv1) = s and h(v2v�v1) = e.

Proof. Let v = a1a2 · · · an with n � 1 and ai ∈ A. If uvω is contained in [s][e]ω,
there exists a factorization uvω = u′v′

1v
′
2 · · · such that h(u′) = s and h(v′

i) = e
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for all i � 1. Since u and v are finite words, there exist indices j > i � 1, powers
k, � � 1 and a position m ∈ {1, . . . , n} such that u′v′

1v
′
2 · · · v′

i−1 = uvka1a2 · · · am

and v′
iv

′
i+1 · · · v′

j = am+1am+2 · · · anv�a1a2 · · · am. We set v1 = a1a2 · · · am and
v2 = am+1am+2 · · · an. Then v1v2 = v,

h(uvkv1) = h(uvka1a2 · · · am) = h(u′v′
1v

′
2 · · · v′

i−1) = sei−1 = s,

h(v2v�v1) = h(am+1am+2 · · · anv�a1a2 · · · am) = h(v′
iv

′
i+1 · · · v′

j) = ej−i+1 = e.

If � is even, we can replace � by 2� + 1 since h(v2v2�+1v1) = h(v2v�v1v2v
�v1) =

e2 = e. The converse implication is trivial. 	

Theorem 3. Let L ⊆ Aω be a language weakly recognized by some morphism
h : A+ → S and let u, v, z ∈ A+ and x, y ∈ A∗ be words such that one of the
following two properties holds:

1. xuyzω ∈ L and xvyzω �∈ L
2. x(uy)ω ∈ L and x(uyvy)ω �∈ L and x(vyuy)ω �∈ L.

Then h(u) �= h(v).

Proof. We consider finite words u, v ∈ A+ such that h(u) = h(v) and show that
in this case, neither of the properties can hold.

If the first property holds, there exists a linked pair (s, e) such that xuyzω ∈
[s][e]ω ⊆ L. Thus, by Lemma 2, we have h(xuyzkz1) = s and h(z2z�z1) = e
for some factorization z = z1z2 and powers k, � � 0. Now, since h(xvyzkz1) =
h(xuyzkz1) = s, we obtain xvyzω ∈ [s][e]ω ⊆ L, a contradiction.

If the second property holds, there exists a linked pair (s, e) of S such that
xwω ∈ [s][e]ω ⊆ L where w = uy. Thus, by Lemma 2, we have h(xwkw1) = s
and h(w2w

�w1) = e for some factorization w = w1w2, some power k � 0 and
some odd power � � 0. Since � is odd (� − 1)/2 is an integer and we have
h(w2(vyuy)(�−1)/2

vyw1) = h(w2(uy)�
w1) = e. Now, if k is odd as well, we obtain

h(x(vyuy)(k−1)/2
vyw1) = h(x(uy)k

w1) = s and therefore, x(vyuy)ω ∈ L. Equiv-
alently, if k is even, we have h(x(uyvy)k/2

w1) = h(x(uy)k
w1) = s and hence,

x(uyvy)ω ∈ L. Both cases contradict Property 2 above. 	

The next proposition is another simple, yet useful, tool for proving lower

bounds. It allows to transfer bounds from the setting of finite words to infinite
words.

Proposition 4. Let A = (Q,A, δ, I, F ) and let a ∈ A be a letter such that for all
q ∈ Q and qf ∈ F , we have (q, a, qf ) ∈ δ if and only if q = qf . Let K = LBA(A)
and let L = LNFA(A). Then each semigroup weakly recognizing K has at least
|A+/≡L| elements.

Proof. Let h : A+ → S be a morphism weakly recognizing K and consider two
words u, v ∈ A+ such that u �≡L v. Then, without loss of generality, there
exist x, y ∈ A∗ such that xuy ∈ L and xvy �∈ L. This implies xuyaω ∈ K
since (qf , a, qf ) ∈ δ for all qf ∈ F . Equivalently, because of (q, a, qf ) �∈ δ for
all q ∈ Q \ F and qf ∈ F , we have xvyaω �∈ K. By Theorem 3, this yields
h(u) �= h(v). 	




Operations on Weakly Recognizing Morphisms 131

3.2 The Full Automata Technique

The full automata technique is a useful tool for proving lower bounds for the
conversion of automata to other objects. It was introduced by Yan [14] who
attributes it to Sakoda and Sipser [12]. The technique works for both accepted
and Büchi-accepted languages. However, we will prove the main result of this
section only for the setting of finite words and use Proposition 4 to obtain anal-
ogous results for infinite words.

Let Q be a finite set and let I, F be subsets of Q. The full automaton
F(Q, I, F ) is the finite automaton (Q,B,Δ, I, F ) defined by B = 2Q2

and by
the transition relation Δ = {(p, T, q) ∈ Q × B × Q | (p, q) ∈ T}.

Theorem 5. Let A = (Q,A, δ, I, F ) be a finite automaton and let F(Q, I, F ) =
(Q,B,Δ, I, F ) be the corresponding full automaton. Then the syntactic semi-
group of LNFA(A) divides the syntactic semigroup of LNFA(F(Q, I, F )).

Proof. We first define a morphism π : A+ → B+ by π(a) = {(p, q) | (p, a, q) ∈ δ}.
Let K = LNFA(F(Q, I, F )) and let L = LNFA(A). It suffices to show that
π(u) ≡K π(v) implies u ≡L v. Thus, consider u, v ∈ A+ such that π(u) ≡K π(v).
In particular, for all x, y ∈ A∗, we have π(xuy) ∈ K if and only if π(xvy) ∈ K.
By the definition of π, we have π(w) ∈ K if and only if w ∈ L for all w ∈ A+.
Using the equivalence from above, this yields xuy ∈ L if and only if xvy ∈ L for
all x, y ∈ A∗, thereby proving that u ≡L v. 	


4 From Automata to Weakly Recognizing Morphisms

The standard construction for converting a finite automaton A to a recognizing
morphism is the so-called transition semigroup of A. For a given word u ∈ A+,
it encodes for each pair (p, q) of states whether there is a run of u on A starting
in p and ending in q. Thus, for a finite automaton with n states the transition
semigroup has 2n2

elements. For details on the construction, we refer to [10,11].
We show that this construction is optimal.

Theorem 6. Let A be a finite automaton with n states. Then there exists a
semigroup recognizing LNFA(A) (resp. weakly recognizing LBA(A)) which has at
most 2n2

elements and this bound is tight.

Proof. Each language that is accepted (resp. Büchi-accepted) by A is recognized
(resp. weakly recognized) by the transition semigroup of A which has size 2n2

.
To show that this is optimal, we consider the full automaton F(N,N,N) =

(N,B,Δ,N,N) where N = {1, . . . , n} and let L = LNFA(F(N,N,N)). For two
different letters X,Y ∈ B we may assume, without loss of generality, that there
exist p, q ∈ N such that (p, q) ∈ X \ Y . With P = {(p, p)} and Q = {(q, q)}, we
then have PXQ ∈ L and PY Q �∈ L. Thus, X �≡L Y . This shows that B+/≡L

has at least |B| = 2n2
elements.

Noting that the transitions labeled by the letter {(q, q) | q ∈ N} form self-
loops at each state, the Büchi case immediately follows by Proposition 4. 	
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The proof of the optimality result requires a large alphabet that grows super-
exponentially in the number of states of the automaton. A natural restriction is
considering automata over fixed-size alphabets.

By a result of Chrobak [3], the size of the syntactic semigroup of an unary
language accepted by a finite automaton of size n is in 2O(

√
n log n) (note that

since unary languages are commutative, the syntactic monoid is isomorphic to
the minimal deterministic automaton). Over infinite words, the unary case is
uninteresting since the only language over the alphabet A = {a} is {aω}.

For binary alphabets, a lower bound can be obtained by combining the full
automata technique with a result from the study of semigroups of binary rela-
tions [7, Proposition 6]. In order to keep the paper self-contained, we present a
proof that is adapted to finite automata and does not require any knowledge of
binary relations.

Theorem 7. Let A = {a, b} and let n be an odd natural number. There exists a
language L ⊆ A+ (resp. L ⊆ Aω) and a finite automaton with n states accepting
(resp. Büchi-accepting) L, such that each semigroup recognizing (resp. weakly
recognizing) L has at least 2(n−1)2/4 elements.

Proof. We first analyze the case of finite words. Let m = (n − 1)/2 and
let M = {1, . . . ,m}. We consider the automaton A depicted below and let
L = LNFA(A).

For 1 � i, j � m we first define pi,j = (m+j−i)m−i and qi,j = (m+i−j+2)m+i.
Furthermore, we set ui,j = api,j baqi,j . We claim that for each i, j there exists a
path from state k to � labeled by ui,j if and only if (k, �) = (i, j + m) or k = �.

The two a-cycles have length m and m + 1, respectively. Since for each pair
(i, j) we have pi,j + qi,j = 2m(m + 1) and since one can always stay in the same
state when reading the letter b, there clearly exists a path from each state to itself
labeled by ui,j . Now, fix some (i, j) and let (k, �) = (i, j +m). We have i+pi,j =
(m+j−i)m which means that, when starting in state i, one can reach state m by
reading api,j . Being in state m, one of the b-transitions leads to state m+1. From
there on, we make a single step backwards whenever reading the factor am. Thus,
by reading the word aqi,j , we perform (m+i−j+2)−i = m−j+2 backward steps
in total, finally reaching state n+1−(m−j+2) = 2m+2−(m−j+2) = m+j = �.
The converse direction of our claim follows immediately since the automaton is
deterministic when restricted to a-transitions and since one can only reach states
� > m by using the transition (m, b,m + 1).

For X ⊆ M × M , we now define uX as the concatenation of all ui,j with
(i, j) ∈ X, where the factors are ordered according to their indices (i, j).
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By the above argument, it is easy to see that there is a path from state i to
j + m labeled by uX if and only if (i, j) ∈ X. Since there are 2m2

= 2(n−1)2/4

subsets of the Cartesian product M × M , it remains to show that for different
subsets X,Y ⊆ M × M , we have uX �≡L vY . To this end, assume without loss
of generality that (i, j) ∈ X \ Y . Then ai−1uXan−j ∈ L but ai−1uY an−j �∈ L, as
desired.

For the Büchi case note that for all i ∈ Q, we have (i, b, n) ∈ δ if and only
if i = n. Therefore, by Proposition 4 and the arguments above, the smallest
semigroup weakly recognizing LBA(A) has at least 2(n−1)2/4 elements. 	


The construction above does not reach the 2n2
bound obtained when using

a larger alphabet. However, this is not surprising, given the following result.

Proposition 8. Let m ∈ N be a fixed integer and let A be an alphabet of size
m. Then there exists an integer nm � 1 such that for each finite automaton A
over A with n � nm states, the language LNFA(A) ⊆ A∗ (resp. LBA(A) ⊆ Aω)
is recognized (resp. weakly recognized) by a morphism onto a semigroup with less
than 2n2

elements.

We do not give a full proof of the proposition here, but the claim essentially fol-
lows from a careful analysis of the subsemigroup of the transition semigroup gen-
erated by the transitions corresponding to the letters in A. Applying Devadze’s
Theorem [4,8] to the matrix representation of this subsemigroup shows that it
is proper, i.e., smaller than the full transition semigroup itself.

5 From Weakly Recognizing Morphisms to Automata

The well-known construction to convert weakly recognizing morphisms to finite
automata with a Büchi-acceptance condition has quadratic blow-up [10]. We
show that this is optimal up to a constant factor.

Theorem 9. Let A = {a, b}, let n � 3, and let L =
⋃n

i=1 (baibA∗)ω. Then there
exists a semigroup with 4n+3 elements that weakly recognizes L and every finite
automaton Büchi-accepting L has at least n(n + 1)/2 states.

Proof. We first define a semigroup S =
{
ai, aib, bai, baib | 1 � i � n

} ∪ {b, bb, 0}
by the multiplication 0 · s = s · 0 = 0 for all s ∈ S and

b�aibr · bmajbs =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bb if i = j = 0
b�ai+jbs if r = m = 0 and 1 � i + j � n

0 if r = m = 0 and i + j > n

b�aib otherwise

where �,m, r, s ∈ {0, 1} and i, j ∈ {0, . . . , n}. The morphism h : A+ → S defined
by h(a) = a and h(b) = b now weakly recognizes L since L is the union of all
sets [baib][baib]ω with 1 � i � n.
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Now assume that we are given a finite automaton A = (Q,A, δ, I, F ) such
that LBA(A) = L. For each i ∈ {1, . . . , n}, we consider the word αi = (baib)ω

and let ri be an accepting run of αi. We first show that for i �= j, we have
inf(ri) ∩ Q ∩ inf(rj) = ∅, and then prove that |inf(ri) ∩ Q| � i for 1 � i � n.
Together, this yields

|Q| �
n∑

i=1

|inf(ri) ∩ Q| �
n∑

i=1

i = n(n + 1)/2.

Let i, j ∈ {1, . . . , n} such that i �= j. We assume for the sake of contradiction
that there exists a state q ∈ Q with q ∈ inf(ri) and q ∈ inf(rj). Let u ∈ baibA∗

be a prefix of αi such that ri visits q after reading u. Let v ∈ A∗ be a factor
of αj such that there exists a finite run labeled by v, which starts and ends in
q, visits at least one final state and such that vω = (bajb)ω or vω = akb(bajb)ω

for some k ∈ {0, . . . , j}. Obviously, we then have uvω ∈ LBA(A) but uvω �∈ L, a
contradiction.

For the second part of the proof, assume again for the sake of contradiction
that |inf(ri) ∩ Q| < i for some accepting run ri of αi. Then inside each baib-
factor, a state is visited twice and we can apply the standard pumping argument
to show that a word in Aω \ LBA(A) has an accepting run as well. 	


6 Complementation

To date, the best construction for complementing weakly recognizing morphisms
is the so-called strong expansion [10]. Given a morphism h : A+ → S, the strong
expansion of h is a morphism g : A+ → T which strongly recognizes all languages
weakly recognized by h. If S has n elements, the size of T is 2n2

. The purpose
of this section is to give a lower bound for complementation. At the same time,
the established bound also serves as a lower bound for the conversion of weak
recognition to strong recognition since each morphism strongly recognizing a
language also strongly recognizes its complement.

Complementing weakly recognizing morphisms is easy in the case of J -trivial
semigroups since each language weakly recognized by a J -trivial semigroup S is
already strongly recognized by S, i.e., there is no need the compute the strong
expansion if the J -classes of the input are trivial already. In order to establish
a lower bound, we thus consider the class of simple semigroups, which is dual
to J -trivial semigroups in the sense that simple semigroups consist of a single
J -class only.

Proposition 10. Let n � 1 be an arbitrary integer and let A = {a1, a2, . . . , an}.
The language L =

⋃n
i=1 (aiA

∗)ω is weakly recognized by a simple semigroup with
n elements and every semigroup weakly recognizing Aω \ L has at least n2n−1

elements.

Proof. The alphabet A can be extended to a semigroup by defining an associative
operation a ◦ b = a for all a, b ∈ A. Now, the morphism h : A+ → (A, ◦) given
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by h(a) = a for all a ∈ A weakly recognizes L. The semigroup (A, ◦) contains
|A| = n elements and it is simple because we have a L b for all a, b ∈ A.

Now, let h : A+ → S be a morphism weakly recognizing Aω\L. For a letter b ∈
A and a subset B ⊆ A \ {b}, let ub,B be the uniquely defined word bai1ai2 · · · ai�

such that i1 < i2 < · · · < i� and {ai1 , ai2 , . . . , ai�
} = B. Consider two letters

b, c ∈ A and subsets B ⊆ A \ {b}, C ⊆ A \ {c}. If b �= c, we have ub,Bcω �∈ L and
uc,Ccω ∈ L. If B �= C we may assume, without loss of generality, that there exists
a letter a ∈ B \ C. In this case, we have auc,C

ω �∈ L but a(ub,Buc,C)ω ∈ L and
a(uc,Cub,B)ω ∈ L. By Theorem 3, this suffices to conclude that h(ub,B) �= h(uc,C)
whenever b �= c or B �= C and therefore, S contains at least |A| 2|A|−1 = n2n−1

elements. 	

Rather surprisingly, the established lower bound turns out to be asymptot-

ically tight in the case of simple semigroups. More generally, for simple semi-
groups, the construction of the strong expansion can be improved such that only
n2n elements are needed. This will be proved in the remainder of this section.

We start with a morphism h : A+ → S onto a simple semigroup with n = |S|
elements. Since S is simple, there exists a surjective mapping γ : S → G onto
a finite group G that becomes a bijection when restricted to a single H-class.
Therefore, the mapping π : (S/R)×G×(S/L) → S with π−1(s) = (Rs, γ(s), Ls)
for all s ∈ S is well-defined and bijective. Moreover, for s, t ∈ S, we write Rt · s
to denote the element π(Rt, γ(s), Ls).

Let T = {(s,X) | s ∈ S,X ⊆ S} and let g : A+ → T be defined by

g(u) = (h(u),
{
Rh(q) · h(p) | p, q ∈ A+, pq = u

}
)

for all u ∈ A+. The set T can be extended to a semigroup by defining an
associative multiplication

(s,X) · (t, Y ) = (st,X ∪ {Rt · s} ∪ Ŷ )

where Ŷ denotes the set {π(Ry, γ(s(Rt · y)), Ly) | y ∈ Y }. Under this extension,
the mapping g becomes a morphism.

The following three technical lemmas capture important properties of the
construction and are needed for the main proof.

Lemma 11. Let s, t ∈ S. Then Rt · s is the unique element x such that x R t,
x L s and γ(x) = γ(s) or, equivalently, the unique element x such that x H ts
and γ(x) = γ(s).

Proof. Let x = Rt · s. We have (Rx, γ(x), Lx) = π−1(x) = π−1(Rt · s) =
(Rt, γ(s), Ls). Together with the fact that π is bijective, this establishes the
first claim. For the second claim, note that since S is simple, x R t is equivalent
to x R ts and x L s is equivalent to x L ts. 	

Lemma 12. Let u ∈ A+ with g(u) = (s,X) and let x ∈ S. Then x ∈ X ∪ {s}
if and only if there exists a factorization u = pq with p ∈ A+ and q ∈ A∗ such
that x H h(qp) and γ(x) = γ(h(p)).
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Proof. Obviously, we have x = s if and only if there exists a factorization u = pq
with p = u and q = ε satisfying the properties described above. Thus, it suffices
to consider factorizations where p, q ∈ A+. By Lemma 11, such a factorization
exists if and only if x = Rh(q) · h(p) which is, in turn, equivalent to x ∈ X by
the definition of g. 	

Lemma 13. Let (t, f) be a linked pair of S, let

(
(s,X), (e, Y )

)
be a linked pair

of T and let α ∈ [(s,X)]g[(e, Y )]ωg . Then α ∈ [t]h[f ]ωh if and only if tq = s,
pq = e, qp = f , Rq · t ∈ X and Rq · p ∈ Y for some p, q ∈ S.

Proof. For the direction from left to right, let α = uv1v
′
1v2v

′
2 · · · such that

g(u) = (s,X), g(viv
′
i) = (e, Y ), h(uv1) = t and h(v′

ivi+1) = f for all i � 1.
Furthermore, we assume without loss of generality that vi, v

′
i �= ε for all i � 1

and that h(v1) = h(v2). We set p = h(v1) = h(v2) and q = h(v′
1). Now, tq =

h(uv1v
′
1) = se = s, pq = h(v1v′

1) = e and qp = h(v′
1v2) = f . Moreover, by the

definition of g, we have Rq ·t = Rh(v′
1)

·h(uv1) ∈ X and Rq ·p = Rh(v′
1)

·h(v1) ∈ Y .
For the converse implication, note that by Lemma 12, there exists a factor-

ization α = uv1v
′
1v2v

′
2 · · · such that h(u) = s, h(viv

′
i) = e, Rh(v′

1)
·h(uv1) = Rq · t

and Rh(v′
i)

·h(vi) = Rq ·p for all i � 1. Since S is simple, h(vi) R h(viv
′
i) = e R p

and h(vi) L (Rh(v′
i)

· h(vi)) = (Rq · p) L p for all i � 1. Furthermore,
γ(h(vi)) = γ(Rh(v′

i)
·h(vi)) = γ(Rq ·p) = γ(p). Together, this yields h(vi) = p by

Lemma 11. Similarly, we have h(v′
i) R (Rh(v′

i)
· h(vi)) = (Rq · p) R q and thus,

ph(v′
i) = h(viv

′
i) = pq implies h(v′

i) = q for all i � 1 by Lemma 1. This shows
that h(uv1) = sp = tqp = tf = t and h(v′

ivi+1) = qp = f . We conclude that
α ∈ [t][f ]ω. 	

Theorem 14. Let h : A+ → S be a morphism onto a simple semigroup of size
n = |S| that weakly recognizes a language L ⊆ Aω. Then there exists a morphism
g : A+ → T to a semigroup of size |T | = n2n that strongly recognizes L.

Proof. The construction we use is the one described in the introduction of this
section. Consider a linked pair ((s,X), (e, Y )) of T as well as two infinite words
α, β ∈ [(s,X)][(e, Y )]ω. If α ∈ L, there exists a linked pair (t, f) of S such that
α ∈ [t][f ]ω ⊆ L. Lemma 13 immediately yields β ∈ [t][f ]ω ⊆ L, thereby showing
that g strongly recognizes L. 	


7 Discussion and Open Problems

We presented lower bound techniques and gave tight bounds for the conver-
sion between finite automata and weakly recognizing morphisms. One can use
techniques similar to those described in Sect. 4 to obtain a 3n2

lower bound
for the conversion of finite automata with transition-based Büchi acceptance
to strongly recognizing morphisms. However, with the usual state-based Büchi
acceptance criterion, the analysis becomes much more involved and it is not
clear whether the 3n2

upper bound can be reached. Analogously, there is no
straightforward adaptation of the conversion of weakly recognizing morphisms
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into Büchi automata in Sect. 5 to strongly recognizing morphisms. It would be
interesting to see whether the quadratic lower bound also holds in this setting.

Another open problem is to close the remaining gaps between the upper and
the lower bounds. This is particularly true for the complexity of complementa-
tion and the conversion of weakly recognizing morphisms to strong recognition.
We showed that there is an exponential lower bound and gave an asymptoti-
cally optimal construction for simple semigroups which was a first candidate for
semigroups that are hard to complement. It is easy to adapt this construction to
families of semigroups where the size of each J -class is bounded by a constant.
However, for the general case, the gap between n2n−1 and 2n2

remains.
Beyond that, another direction for future research is to investigate whether

any of the bounds can be improved by considering the size of the accepting set,
i.e., the number of linked pairs used to describe a language.

Acknowledgments. We thank the anonymous referees for several useful suggestions
which helped to improve the presentation of this paper.
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Abstract. We investigate the descriptional complexity of the subreg-
ular language classes of (strongly) bounded regular languages. In the
first part, we study the costs for the determinization of nondeterminis-
tic finite automata accepting strongly bounded regular languages. The
upper bound for the costs is larger than the costs for determinizing unary
regular languages, but lower than the costs for determinizing arbitrary
regular languages. In the second part, we study for (strongly) bounded
languages the deterministic operational state complexity of the Boolean
operations as well as the operations reversal, concatenation, and itera-
tion. In detail, we present upper and lower bounds and we develop for
the proof of the lower bounds a tool that exploits the number of different
colorings of cycles occurring in deterministic finite automata accepting
bounded languages.

1 Introduction

Descriptional complexity is an area of theoretical computer science in which one
of the main questions is how succinctly a formal language can be described by
a formalism in comparison with other formalisms. A fundamental result is the
exponential trade-off between nondeterministic (NFA) and deterministic finite
automata (DFA) [16]. A further exponential trade-off is known to exist between
unambiguous and deterministic finite automata, whereas the trade-offs between
alternating and deterministic finite automata [14] as well as between determin-
istic pushdown automata and deterministic finite automata [19] are bounded by
doubly-exponential functions.

The question of whether the costs for determinization remain exponential
even for subclasses of the regular languages, called subregular language classes,
has been studied in [3,4] for unary languages and in [18] for finite languages.
A systematic study of the problem for subregular language classes is provided
in [2]. In this paper, we study with bounded regular languages another subreg-
ular language class which has not gained much attention yet apart from the
fundamental paper [7] in which bounded regular languages are introduced and,
for example, characterization theorems are established. In general, a language is
called (strongly) bounded if it is a subset of a∗

1a
∗
2 · · · a∗

k, where a1, a2, . . . , ak are
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(pairwise distinct) symbols. Bounded languages have been investigated to a large
extent in the literature. We would like to mention that basic results are summa-
rized in [8] and that there exist strong connections to counter machines which
are shown, for example, in [11,13]. The descriptional complexity of bounded
context-free languages has first been studied in [15] and recently in [12].

In this paper, we start to investigate the descriptional complexity of bounded
regular languages. We provide the necessary definitions and notions in Sect. 2.
Additionally, we summarize the closure properties for (strongly) bounded regu-
lar languages. In Sect. 3 we compute the costs for determinizing NFAs accepting
strongly bounded regular languages. As bounded languages are both an exten-
sion of unary languages and a restriction of arbitrary languages, we obtain a
‘similar’ result for the upper bound of the determinization costs that turns out
to be larger than the costs for determinizing unary NFAs, but lower than the
costs for determinizing arbitrary NFAs. Finally, we study in Sect. 4 the deter-
ministic operation problem for bounded regular languages which quantifies the
costs (in terms of states of a DFA) of operations on (strongly) bounded regular
languages such as union, intersection, concatenation, iteration, and reversal. The
deterministic operation problem for regular languages has initially been studied
in [20,21]. Nowadays, there exists a vast literature on the deterministic and non-
deterministic operational state complexity of subregular languages, and we refer
to the recent survey [6]. Here, we complement these findings with the results
for (strongly) bounded regular languages. It should be noted that we devise a
new tool to obtain lower bounds for bounded regular languages which may be
of interest on its own.

2 Preliminaries and Closure Properties

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR. For the length of w we write |w|. For the number of occurrences of a
symbol a in w we use the notation |w|a. We denote the powerset of a set S
by 2S . By gcd(x1, x2, . . . , xk) we denote the greatest common divisor of the
integers x1, x2, . . . , xk, and by lcm(x1, x2, . . . , xn) their least common multiple.
If two numbers x and y are relatively prime, that is gcd(x, y) = 1, we write x⊥ y.

A nondeterministic finite automaton (NFA) is a system M = 〈S,Σ, δ, s0, F 〉,
where S is the finite set of internal states, Σ is the finite set of input symbols,
s0 ∈ S is the initial state, F ⊆ S is the set of accepting states, and δ : S×Σ → 2S

is the partial transition function. The language accepted by M is L(M) = {w ∈
Σ∗ | δ(s0, w) ∩ F 	= ∅ }, where the transition function is recursively extended to
δ : S × Σ∗ → 2S .

A finite automaton is deterministic (DFA) if and only if |δ(s, a)| = 1, for all
s ∈ S and a ∈ Σ. In this case we simply write δ(s, a) = p for δ(s, a) = {p}
assuming that the transition function is a mapping δ : S × Σ → S. So, any
DFA is complete, that is, the transition function is total, whereas for NFAs it is
possible that δ maps to the empty set.
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A language L ⊆ Σ∗ is said to be bounded if and only if L ⊆ a∗
1a

∗
2 · · · a∗

k, for
k ≥ 1 and ai ∈ Σ, 1 ≤ i ≤ k. It is strongly bounded if all letters a1, a2, . . . , ak are
pairwise different. It should be noted that in the literature bounded languages
which are defined as above are often called letter-bounded languages. Moreover,
if symbols a1, a2, . . . , ak are replaced by fixed words w1, w2, . . . , wk, a language
L ⊆ w∗

1w
∗
2 · · · w∗

k is called word-bounded. However, in this paper we confine
ourselves to investigating only bounded and strongly bounded languages over
symbols.

The closure properties of bounded and strongly bounded languages are sum-
marized in Table 1. Although both language classes are not closed under all
operations, it is well known that the regular languages are closed under all oper-
ations. This allows to study the deterministic state complexity of all operations
for (strongly) bounded regular languages.

Table 1. Summary of closure properties of the language families discussed.

∪ ∩ R · ∗
Bounded regular no yes yes yes yes no

Strongly bounded regular no no yes yes no no

3 Determinization

It is well known that the costs for the simulation of a nondeterministic finite
automaton with n states by a deterministic finite automaton can be limited
by 2n many states using the power set construction. On the other hand, several
different NFAs are known that reach this bound exactly. In the unary case the
upper bound as well as the lower bound collapses to eΘ(

√
n·log n). Considering the

costs for determinization in the strongly bounded regular case, one may expect
that the bounds for the conversion might be strictly in between the bounds for
the general and the unary case. In the following, we present an upper bound
which is slightly more costly than in the unary case.

Theorem 1. Let A be an NFA with n states accepting a strongly bounded regular
language L(A) over the alphabet Σ and m = n · |Σ|2 + |Σ|. Then an equivalent

DFA A′ with at most |Σ|2 · e
|Σ|·Θ

(√
m·log(m)

)
many states can be constructed.

Proof. Given an NFA A = 〈S,Σ, s0, δ, F 〉 with n states accepting a strongly
bounded regular language L(A) over the alphabet Σ, we will construct an equiv-
alent DFA. We may assume that Σ = {a1, a2, . . . , ak} and L(A) ⊆ a∗

1a
∗
2 · · · a∗

k

with k ≥ 2 and pairwise distinct ai ∈ Σ with 1 ≤ i ≤ k.
The principal idea of the construction is to divide automaton A into ‘unary’

sections Sa1 , Sa2 , . . . , Sak
according to the read input symbols, to determinize

these unary subautomata, and finally to reassemble the different deterministic
subautomata to an equivalent DFA. In the first step, we construct an equivalent
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Fig. 1. An NFA A accepting a strongly bounded regular language.

NFA A′ with the property that each state of A′ has incoming edges with at most
one type of symbol. We define A′ = 〈S′, Σ, s′

0, δ
′, F ′〉, where s′

0 is a new state,
S′ = { sx | s ∈ S, x ∈ Σ }∪{s′

0} and F ′ = { sx | s ∈ F, x ∈ Σ }∪{ s′
0 | s0 ∈ F }. If

s′ ∈ δ(s, a) for some s, s′ ∈ S and a ∈ Σ, then define s′
a ∈ δ′(sx, a) for all x ∈ Σ.

If s ∈ δ(s0, a) for some s ∈ S and a ∈ Σ, then define sa ∈ δ′(s′
0, a). The number

of states of A′ is at most n · |Σ| + 1. Now, each state of A′ has incoming edges
with at most one type of symbol and a state sa is defined to be in section Sa

of A′, for a ∈ Σ. Furthermore, the initial state s′
0 of A′ is only visited in the

first computation step and then never again. It is the single state in the special
section Sinit.

The next step is to modify A′ in such a way that it has no states having
more than one edge to another section labeled with the same symbol. Assume
that there is some state s ∈ S′ having � ≥ 2 edges labeled with a leading to
section Sa. Then we add a new state s′ to section Sa, add for every edge from s
labeled with an a to some state s′′ in Sa an edge from s′ labeled with λ to the
state s′′, and replace the � old edges by one edge from s to s′ labeled with a.
These modifications introduce at most |Σ| new states for every state as well as
λ-moves to the NFA, but preserve the given language. Moreover, for every input
symbol a ∈ Σ, all nondeterministic moves on a take place inside section Sa. The
number of states of A′ is now at most n · |Σ|2 + |Σ|.

The first two steps of the construction based on the example NFA shown in
Fig. 1 are depicted in Fig. 2.

In the following, the sections are successively determinized. We start with
the determinization of the first section Sa1 having n1 many states and define the
set Ia1 of incoming states as the set of all states with incoming edges from other
sections. Here, Ia1 = δ′(s′

0, a1) consists of one state only, since there are no states
having more than one edge to another section labeled with the same symbol.
Additionally, we define the set Oa1 of states with outgoing edges to other sections
as Oa1 = { s ∈ Sa1 | r ∈ δ′(s, aj) for some r ∈ S′ and k ≥ j > 1 }. For the state
s ∈ Ia1 we construct an NFA As as subautomaton of A′ with state set Sa1 and
s as initial state. Furthermore, all edges labeled with ai such that i 	= 1 are
removed. Finally, we eliminate λ-moves applying the construction given in [10]
which does not increase the number of states. Additionally, we set all outgoing
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Fig. 2. The first two steps of the construction of A′. States 00 and 07 are added so
that the initial state has no incoming edges and every state has only incoming edges
with the same label. State i is added to ensure that there are no states having more
than one edge to another section labeled with the same symbol.

states from Oa1 as accepting. This is done to avoid that states with outgoing
edges possibly disappear in the determinization process. Such states will later
be rechanged to non-accepting states and completed with the outgoing edges to
other sections. Thus, the NFA As accepts the unary language {w ∈ a∗

1 | δ′(s, w)∩
(F ′ ∪ Oa1) 	= ∅ } and has at most n1 states. Next, we apply the construction
given in [3] to obtain a DFA A′

s such that L(A′
s) = L(As). According to [3] the

costs for determinizing As are bounded by e
Θ
(√

n1·log(n1)
)
. Since n1 is bounded

by m = n · |Σ|2 + |Σ|, we get an upper bound of �1 = e
Θ
(√

m·log(m)
)

many
states. Next, we construct an NFA A′′ based on A′ by replacing automaton As

in section Sa1 of A′ by its deterministic version. Additionally, let s′ be the
initial state of the DFA A′

s, then all transitions in A′′ that link to state s are
redirected to the initial state s′ of A′

s. As a result of the construction, the DFA A′
s

implemented in A′′ has two different types of accepting states. The first type are
the original accepting states where some input is accepted in A′. The second
type are the states where the outgoing edges have to be placed. These have to
be changed into non-accepting states and the outgoing edges have to be added
to A′′.

To find out which states in section Sa1 have to be accepting and which states
have to be connected with other sections, we do the following considerations.
Let B be an NFA accepting a unary language having a single accepting state.
Then the lengths of the words of the accepted language L(B) can be described
by a finite set E of equations of the form g(x) = zg ·x+yg, where x, yg, zg ≥ 0 are
integers (see, for example, [3]). Looking at the equivalent DFA B′, we obtain that
for each equation g ∈ E there are one or more accepting states in B′ indicating
the divisibility of the input words according to g.

Now, we consider again for state s ∈ Ia1 the NFA As and its equivalent
DFA A′

s. First, we set all states in A′
s non-accepting. Second, for every accepting

state f in As such that f ∈ F ′ (thus, being an original accepting state in A′), we
consider an NFA As,f based on As where f is the only accepting state and we
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determine the set of equations E for As,f . Based on the obtained divisibilities we
set the corresponding states in A′

s as accepting. Third, for every outgoing state
o ∈ Oa1 linking with input symbol aj to some state sj ∈ Sj for some k ≥ j > 1,
we consider an NFA As,o based on As where o is the only accepting state and we
determine the set of equations E for As,o. Based on the obtained divisibilities we
add to the corresponding states in A′

s outgoing edges labeled with aj to state sj .
We notice that this adding of edges may introduce nondeterminism in A′

s. To
remove such possible nondeterministic moves, we do the following: for every state
q ∈ A′

s having more than one outgoing edges labeled by some aj with k ≥ j > 1,
we introduce a new state p to section Saj

, replace all outgoing aj-edges from q
by outgoing λ-edges from p, and add one aj-edge from q to p. Note that the
removing of nondeterministic moves adds at most �1 states to each section Saj

.
Finally, we rename the NFA A′′ with a determinized section Sa1 to A′ and start
the determinization of the next section Sa2 .

Again, we define the set Ia2 of states with incoming edges from other sections
and the set Oa2 of states with outgoing edges to other sections. Formally,

Ia2 = { s ∈ Sa2 | s ∈ δ′(r, a2) for some r ∈ S′ and r 	∈ δ′(q, a2) for all q ∈ S′ },

Oa2 = { s ∈ Sa2 | r ∈ δ′(s, aj) for some r ∈ S′ and k ≥ j > 2 }.

For each state s in Ia2 we construct an automaton As in a similar way as above.
Thus, As accepts the unary language {w ∈ a∗

2 | δ′(s, w)∩(F ′∪Oa2) 	= ∅ } and has
at most n2 + 1 states, if s has been added by removing nondeterministic moves
in the previous step, and at most n2 states otherwise. Next, we determinize As

and obtain an equivalent DFA A′
s with at most

e
Θ
(√

(m+1)·log(m+1)
)

= e
Θ
(√

m·log(m)
)

= �1

many states. Then we construct an NFA A′′ based on A′ by replacing automa-
ton As in section Sa2 of A′ by its deterministic version and all transitions in A′

that link to state s are redirected in A′′ to the initial state of A′
s. Finally, we

determine the accepting states of A′
s as well as the connections from outgoing

states to other sections, and we remove possibly introduced nondeterminism.
Having done this for all s ∈ Ia2 we rename the NFA A′′ with determinized
sections Sa1 and Sa2 again to A′. The size of the determinized section Sa2 can

be calculated as follows: we have at most m + �1 = e
Θ
(√

m·log(m)
)

= �1 states
in Ia2 . Each determinization costs at most �1 states. Thus, we obtain �2 = �21 as
an upper bound for the determinization costs of section Sa2 . Again, note that the
removing of nondeterministic moves adds at most �2 states to each section Saj

with k ≥ j > 2.
We continue the construction by determinizing successively the following

sections in a similar way as described above. The costs for determinizing
section Sai

with 3 ≤ i ≤ k can be calculated as follows. There are at most
m + �1 + �2 + · · · + �i−1 states in Iai

and each determinization costs at most �1
states. By setting �i = �i

1, we obtain i · �i as total upper bound.
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After determinizing all sections Sa1 , Sa2 , . . . , Sak
we obtain a DFA A′ being

equivalent to A and the number of states of A′ is bounded by the function

1 + �1 + 2�2 + · · · + k · �k ≤ k2�k
1 = |Σ|2 · e

|Σ|·Θ
(√

m·log(m)
)
. ��

4 Deterministic Operational State Complexity

This section is devoted to studying the deterministic operational state complex-
ity of the family of strongly bounded regular languages, that is, the languages are
given by DFAs. Clearly, the known upper bounds for general regular languages
apply also here. Moreover, every unary language is also (strongly) bounded. So,
the known lower bounds for unary languages apply here as well. In [21] it has
been shown that the tight bounds for Boolean operations coincide for general
regular and unary regular languages. In the unary case the lower bound requires
the numbers of states to be relatively prime. In [17] unary regular languages are
studied whose deterministic state complexities are not relatively prime. Here we
can derive the following corollary for strongly bounded regular languages.

Corollary 2. For any integers m,n ≥ 1 let A be an m-state and B be an n-state
DFA that accept strongly bounded languages.

1. Then m states are sufficient and necessary in the worst case for a DFA to
accept the language L(A).

2. Then m ·n states are sufficient for a DFA to accept the language L(A)∩L(B)
(respectively L(A) ∪ L(B)).

3. If m⊥ n, then there exist a unary m-state DFA A and a unary n-state DFA
B (with the same input symbol) such that any DFA accepting L(A) ∩ L(B)
(respectively L(A) ∪ L(B)) needs at least m · n states.

Notice that the languages L(A)∪L(B) and L(A) are not necessarily strongly
bounded. However, since they are regular they are accepted by DFAs in any
case.

In the following, we turn to the operations reversal, iteration, and concate-
nation for which the deterministic state complexities of general and unary lan-
guages are different (see, for example, the summary in Table 2). So, an immediate
question is to what extent the state complexity of strongly bounded languages
is strictly in between both cases. Since the deterministic state complexities for
unary languages are well known, we suppose that the strongly bounded lan-
guages that are investigated in the remainder of this section are defined over
an alphabet of size at least two. In other words, we consider strongly bounded
languages L ⊆ a∗

1a
∗
2 · · · a∗

k such that k ≥ 2.

4.1 A Tool for Constructing Lower Bound Witnesses

A widely used method to show lower bounds is to define an infinite family of
witness languages so that the sizes of the minimal automata accepting them
establish the bound. In order to allow the construction of witnesses as well as
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to determine the necessary sizes of the automata, lower bound techniques are
very helpful. For example, in proofs dealing with the nondeterministic state
complexity on regular languages specified by NFAs, the so-called fooling set
technique can be used [1,9].

Here we first present a tool for the definition of lower bound witnesses, that is,
for the construction of DFAs accepting (strongly) bounded languages. The idea
is based on the number of possibilities to color a cycle of a DFA whose edges are
labeled with the same input letter. All cycles in a DFA accepting a (strongly)
bounded language have this unary form. We use the two colors gray (g) and
white (w).

Let Sc be a (sub)set of states of a given DFA that build a cycle on some fixed
input letter. The set of all colorings of Sc with colors from {g, w} is X = { f |
f : Sc → {g, w} }. So, there are |X| = 2|Sc| different such colorings.

Example 3. The DFA A depicted in Fig. 3 has a cycle on input letter b, where
the states of the cycle are Sc = {1, 2, 3, 4}. The coloring shown at the top of the
figure is f1 ∈ X with f1(1) = g, f1(2) = g, f1(3) = w, and f1(4) = w. �

0 1 2 3 4
a b b b

b

start

0 1 2 3 4
a b b b

b

start

Fig. 3. Coloring of the cycle of DFA A from Example 3. Edges to the rejecting sink
state are omitted.

For the clarity of presentation, colorings are written as words. For exam-
ple, coloring f1 can be written as ggww, and the set of all such colorings is
X = {wwww, gwww,wgww, . . . , gggg}. Moreover, a coloring can be uniquely
identified by the set of states that are colored by w. For example, f1 is given
by {3, 4}.

Two colorings f1 and f2 are said to be equivalent if f1 can be obtained from f2
by applying the transition function. More precisely, two colorings f1 and f2 are
equivalent if and only if there is some � ≥ 0 so that f1(i) = f2(δ(i, x�)), for all
i ∈ Sc. Here, Sc is the set of cycle states and the cycle is on input symbol x.

Example 4. Let f2 ∈ X with f2(1) = w, f2(2) = g, f2(3) = g, and f2(4) = w be
the coloring shown at the bottom of Fig. 3. Then f1 and f2 are equivalent, since
f1(i) = f2(δ(i, b)), for all i ∈ {1, 2, 3, 4}. �
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Now, we turn to determine the number of possibilities to color a cycle with
inequivalent colorings. The number depends only on the number of states in the
cycle. For example, for four states we obtain the following equivalence classes
{wwww}, {gwww,wgww,wwgw,wwwg}, {ggww,wggw,wwgg, gwwg}, {gggg},
{gggw,wggg, gwgg, ggwg}, and {gwgw,wgwg}, and thus six possibilities.

Now we consider the cyclic group G generated by the cyclic permutation
〈(12 · · · |Sc|)〉. The group naturally operates on Sc. Moreover, for σ ∈ G and
f ∈ X, let σf ∈ X be defined as σf(s) = f(σ−1(s)), for all s ∈ Sc. With
this operation, G acts on the set X of colorings as well. So, two colorings are
equivalent if and only if they are in the same orbit of G. Therefore, the num-
ber of possibilities to color a cycle with inequivalent colorings coincides with
the number of orbits of G acting on X. This number can be determined by
Polya’s enumeration lemma that is a generalization of the well-known Burnside
lemma on the number of orbits of a group action on a set (see, for example, [5,
Chap. 8]). In the particular case of a cyclic group generated by a cyclic permuta-
tion 〈(12 · · · n)〉 and two colors, the number or orbits is 1

n

∑
d|n ϕ(d) · 2n

d , where
d|n denotes the positive divisors of n and ϕ(d) = |{ 1 ≤ k ≤ d | gcd(k, d) = 1 }| is
Euler’s function. For example, for n = 4 we have d|n = {1, 2, 4}. Since ϕ(1) = 1,
ϕ(2) = 1, and ϕ(4) = 2, the number of orbits and, identically, the number of
inequivalent colorings is 1

4 (1 · 24 + 1 · 2
4
2 + 2 · 2

4
4 ) = 6.

4.2 Reversal, Concatenation, and Iteration

The first operation we consider in detail is the reversal. It turns out that the
upper bound and lower bound can be described by an exponential function which
is slightly smaller than in the case of arbitrary regular languages. On the other
hand, in comparison with unary regular languages we obtain an exponential
increase. The upper bound in the bounded case is derived from the observation
that any DFA accepting some bounded language over an alphabet with at least
two elements must have a rejecting sink state.

Theorem 5. Let k, n ≥ 2 be two integers and A be an n-state DFA that accepts
a (strongly) bounded language L(A) ⊆ a∗

1a
∗
2 · · · a∗

k. Then 2n−1 states are sufficient
for a DFA to accept the language L(A)R.

Proof. Every non-unary DFA A = 〈S,Σ, δ, s0, F 〉 accepting a (strongly) bounded
language necessarily has a rejecting sink state, say e ∈ S. Now an NFA for the
reversal of L(A) is constructed by interchanging the initial state with the accept-
ing states and reversing the direction of the transitions. The NFA is determinized
which yields a DFA A′ = 〈2S , Σ, δ′, s′

0, F
′〉 accepting L(A)R. Since for all states

p, q ∈ 2S so that p = q∪{e} we have δ′(p, v) ∈ F ′ if and only if δ′(q∪{e}, v) ∈ F ′

if and only if δ′(q, v) ∈ F ′, for all v ∈ Σ∗, the states p and q are equivalent. We
conclude that A′ has at most 2n−1 states. ��

In order to show the lower bound 2n−2 +1 the coloring of cycles is exploited.
Next, the construction of the witness DFAs is given, then we analyze a witness
for six states. Finally, the general case is proven.
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Let n > 3 be an integer. The DFA An = 〈Sn, Σ, δn, 0, {n−2}〉 is constructed
as follows (see Fig. 4): Sn = {0, 1, . . . , n−2, e} where e denotes the rejecting sink
state, Σ = {a, a1, a2, . . . , ak} with k = 1

n−2

(∑
d|n−2 ϕ(d) · 2

n−2
d

)
− 1, and

δn(i, a) =

{
(i + 1) mod n − 2 for 0 ≤ i ≤ n − 3
e otherwise

.

The transition function is still incomplete. Now we consider the colorings of
the cycle, that is, of the states {0, 1, . . . , n − 3}, whereby we disregard gg · · · g.
From above it is known that there remain k = 1

n−2

(∑
d|n−2 ϕ(d) · 2

n−2
d

)
− 1

inequivalent colorings. From each equivalence class Mj one element mj , 1 ≤ j ≤
k, is chosen and identified by the states that are colored white. For example,
wwgw is identified by {0, 1, 3}. Now, the definition of the transition function is
completed by setting

δn(i, aj) =

{
n − 2 if i ∈ mj

e otherwise

for 1 ≤ j ≤ k. The DFA An accepts the language

L(An) =
k⋃

j=1

⋃
i∈mj

(an−2)∗aiaj ⊆ a∗a∗
1a

∗
2 · · · a∗

k.

0 1 2 · · · n − 4 n − 3

n − 2

a a a a a

a

X0 X1 X2 Xn−4 Xn−3

start

Fig. 4. The witness DFA An for reversal. The set of all aj with i ∈ mj are denoted
by Xi. Edges to the rejecting sink state are omitted.

Example 6. There are six inequivalent possibilities to color the 4-state cycle
of A6. Disregarding the coloring where all states are gray, the five equivalence
classes in question are

M1 = {{0}, {1}, {2}, {3}}, M2 = {{0, 1}, {1, 2}, {2, 3}, {3, 0}},
M3 = {{0, 2}, {1, 3}}, M4 = {{0, 1, 2}, {1, 2, 3}, {2, 3, 0}, {3, 0, 1}},
M5 = {{0, 1, 2, 3}}.
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Choosing m1 = {3}, m2 = {2, 3}, m3 = {1, 3}, m4 = {1, 2, 3}, m5 = {0, 1, 2, 3}
yields X0 = {a5}, X1 = {a3, a4, a5}, X2 = {a2, a4, a5}, X3 = {a1, a2, a3, a4, a5}
in Fig. 4. �

Theorem 7. For any integer n > 3, there exists an n-state DFA A that accepts
a (strongly) bounded language such that any DFA accepting L(A)R needs at least
2n−2 + 1 states.

Proof. We use the DFA An = 〈Sn, Σ, δn, 0, {n − 2}〉 from above as witness. To
show that An is minimal, consider two states p, q ∈ {0, 1, . . . , n − 3}. Let Mr

denote the equivalence class with the colorings that color only one state white,
and let mr = {s}. Then δn(p, axar) = n − 2 and δn(q, axar) 	= n − 2, for
x = n − 2 − |p − s|, since ar sends only state s to the sole accepting state n − 2.
Clearly, the states n − 2 and p ∈ {0, 1, . . . , n − 3} are inequivalent.

The NFA Bn = 〈Pn, Σ, νn, pn−2, {p0}〉 with Pn = {p0, p1, . . . , pn−2} and

νn(pn−2, ai) =
⋃

j∈mi
pj , for 1 ≤ i ≤ k, and

νn(pi, a) = pj with i = (j + 1) mod (n − 2), for 0 ≤ i ≤ n − 3,

accepts the language L(An)R. Notice that n − 2 /∈ mj for all 1 ≤ j ≤ k.
By applying the powerset construction, the NFA Bn is determinized which

yields the DFA A′
n = 〈S′

n, Σ, δ′
n, pn−2, F

′
n}〉, where S′

n = 2Pn\{pn−2} ∪ {pn−2},
F ′

n = {T ∈ 2Pn\{pn−2} | T ∩{p0} 	= ∅ }, δ′
n({pn−2}, ai) =

⋃
j∈mi

pj , for 1 ≤ i ≤ k,
δ′
n({pn−2}, a) = ∅, and δ′

n(T, a) =
⋃

t∈T ν(t, a), for T ∈ 2Pn\{pn−2}.
The DFA A′

n accepts L(A)R and has 2n−2 + 1 states. By the construction
of An and since the equivalence classes of colorings partition the set 2Pn\{pn−2},
all states of A′

n are reachable.
In order to show that A′

n is minimal, first consider the states {pn−2} and
Ri ∈ S′

n, for 0 ≤ i ≤ n − 3. For pl ∈ Ri we have δ′
n(Ri, a

l) ∈ F ′
n while

δ′
n({pn−2}, al) /∈ F ′

n.
Now let Ri and Rj be two different states from S′

n \ {pn−2} and let pl be
in their symmetric difference, say, pl ∈ Ri \ Rj . Then δ′

n(Ri, a
l) ∈ F ′

n while
δ′
n(Rj , a

l) /∈ F ′
n. Therefore, A′

n is minimal. ��
Next, we turn to the operation iteration. Here, we will obtain tight upper

and lower bounds that lie strictly in between the bounds for unary regular and
arbitrary regular languages. Roughly speaking, the bounds for unary regular
languages are quadratic and for arbitrary regular languages exponential. The
bound for strongly bounded regular languages turns out to be the sum of a
quadratic and an exponential function, where the quadratic function depends
on the number of states of the first part of the given DFA and the exponential
function depends on the number of remaining states. The partitioning of the
state set of a DFA accepting a strongly bounded language L ⊆ a∗

1a
∗
2 · · · a∗

k into
two sets is done, roughly speaking, as follows: the first set is given by all states
that are reachable with words from a∗

1. Since the DFA is deterministic, these
states form a line or a line followed by a cycle in the state graph.
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More precisely, let A = 〈S,Σ, δ, s0, F 〉 be a minimal DFA accepting a strongly
bounded language L ⊆ a∗

1a
∗
2 · · · a∗

k and let e denote the rejecting sink state of A
if it exists. In the sequel, the set of states q ∈ S with q 	= e such that there
exists a word v from a∗

1a
∗
2 · · · a∗

k \ a∗
1 with δ(s0, v) = q is denoted by S2. The set

S \ (S2 ∪ {e}) is denoted by S1.
So, all states from S1 are reachable only by words of the form a∗

1. For k ≥ 2,
we have S = S1 ∪ S2 ∪ {e}. The next theorem shows the upper bound for the
iteration.

Theorem 8. Let n1 ≥ 2 and n2 ≥ 1 be two integers and A be an (n1 + n2 + 1)-
state DFA with state set S that accepts a strongly bounded language, so that
S = S1 ∪ S2 ∪ {e} with |S1| = n1 and |S2| = n2. Then (n1 − 1)2 + 2n2 + 2 states
are sufficient for a DFA to accept the language L(A)∗.

In order to show a matching lower bound the coloring of cycles is exploited.
Next, the construction of a (2n + 1)-state witness DFA is given. Let n ≥ 1 be
an integer. The DFA Bn = 〈S,Σ, δn, 0, {n − 1, 2n − 1}〉 is constructed as follows
(see Fig. 5): S = {0, 1, . . . , 2n − 1, e} where e denotes the rejecting sink state,
Σ = {a, b, a1, a2, . . . , ak} with k = 1

n

(∑
d|n ϕ(d) · 2

n
d

)
− n − 1, and

δn(i, a) =

{
(i + 1) mod n for 0 ≤ i ≤ n − 1
e otherwise

,

δn(i, b) =

⎧⎪⎨
⎪⎩

i + n for 0 ≤ i ≤ n − 1
(i + 1) mod n for n ≤ i ≤ 2n − 1
e otherwise

.

In order to complete the definition of the transition function we consider col-
orings of the cycle on input letter b, that is, of the states {n, n + 1, . . . , 2n − 1},
whereby we disregard gg · · · g, wgg · · · g, wwgg · · · g, · · · , ww · · · wg, and ww · · · w.
There remain k = 1

n

(∑
d|n ϕ(d) · 2

n
d

)
− n − 1 inequivalent colorings. From

each equivalence class Mj one element mj , 1 ≤ j ≤ k, is chosen and iden-
tified by the states that are colored white. The states in mj are denoted by
r0,j , r1,j , . . . , r|mj |−1,j . The definition of the transition function is completed by
setting

δn(i, aj) =

{
ri,j if 0 ≤ i ≤ n − 1 and ri,j is defined
e otherwise

for 1 ≤ j ≤ k. The DFA Bn accepts the language

L(Bn) = (an)∗an−1 ∪
n−1⋃
j=0

(an)∗ajbn−j(bn)∗ ∪
k⋃

j=1

|mj |−1⋃
i=0

(an)∗aiajb
2n−1−ri,j (bn)∗,

that is, L(Bn) ⊆ a∗a∗
1a

∗
2 · · · a∗

kb∗.
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0 1 2 3

4 5 6 7

start a a a

a

b b b

b

b, a1 b a1 b b

Fig. 5. The witness DFA B4 for iteration. Edges to the rejecting sink state are omitted.

Example 9. From the six inequivalent possibilities to color the four-state cycle
(see Example 6) of B4 on input letter b only the sole equivalence class M1 =
{{4, 6}, {5, 7}} remains. Choosing m1 = {4, 6} yields r0,1 = 4 and r1,1 = 6. So,
δn(0, a1) = 4 and δ(1, a1) = 6 are defined (see Fig. 5). �

Theorem 10. For any integers n1 = n2 ≥ 1, there exists an (n1 + n2 + 1)-
state DFA A that accepts a (strongly) bounded language such that any DFA
accepting L(A)∗ needs at least (n1 − 1)2 + 2n2 + 2 states.

The final operation we consider is the concatenation. Again, the structure
of (strongly) boundedness allows to reduce the descriptional complexity com-
pared with the general case. As for iteration we obtain that the upper bound
is described by the sum of a quadratic and an exponential function, where the
number of states of the first DFA appear as quadratic resp. linear factor in both
addends. As is done for iteration, the states of the second DFA are partitioned
into two parts and the number of states of the first part appear as linear factor in
the quadratic addend and as exponential factor in the other addend. The proof
of the next theorem gives a detailed construction of the upper bound for the
concatenation of two strongly bounded regular languages.

Theorem 11. Let m,n1, n2 ≥ 1 be integers, A be an m-state DFA, and A′

be an (n1 + n2 + 1)-state DFA with state set S′ that accept strongly bounded
languages, so that S′ = S′

1 ∪ S′
2 ∪ {e′} with |S′

1| = n1 and |S′
2| = n2. Then

in total m2n1+(2m−1)2n2 states are sufficient for a DFA to accept the language
L(A)L(A′).

The currently best known lower bound for the concatenation of strongly
bounded languages is derived from the concatenation of unary languages. In [21]
it is shown that for any m,n ≥ 1 with gcd(m,n) = 1 there exist an m-state
DFA A and an n-state DFA A′ accepting unary (and thus strongly bounded)
languages so that any DFA that accepts the concatenation L(A)L(A′) has at
least mn states. The results on the deterministic state complexity obtained in
this section are summarized in Table 2.
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Table 2. Summary of the deterministic state complexity of the operations studied in
this section. The upper and lower bounds for bounded regular languages are obtained
in this section. The results for unary regular and arbitrary regular languages may be
found, for example, in [6,21].

Unary regular Bounded regular Regular

L1 ∪ L2 ≤ mn ≤ mn mn

L1 ∩ L2 ≥ mn, if gcd(m,n) = 1 ≥ mn, if gcd(m,n) = 1

L m m m

L1L2 ≤ mn ≤ m2n1 + (2m − 1)2n2 (2m − 1)2n−1

≥ mn, if gcd(m,n) = 1 ≥ mn, if gcd(m,n) = 1

L∗ (m − 1)2 + 1 (m1 − 1)2 + 2m2 + 2 2m−1 + 2m−2

LR m ≤ 2m−1 2m

≥ 2m−2 + 1

5 Conclusions

In this paper, we have studied the descriptional complexity of (strongly) bounded
regular languages. We have described a procedure for determinizing nondeter-
ministic finite automata accepting strongly bounded regular languages. The
obtained upper bound on the number of states is close to the known upper
bound for the determinization of unary nondeterministic finite automata. More-
over, we have determined the deterministic state complexity of several operations
on strongly bounded regular languages, in particular, of the operations reversal,
iteration, and concatenation. The resulting upper and lower bounds are basically
strictly in between the known bounds for unary and arbitrary regular languages.
As interesting points for further research on the topic we would like to mention
the improvement of the lower bound on concatenation, the study of additional
operations, and the investigation of the nondeterministic state complexity of
operations. Another interesting question is to look more closely at the size of the
alphabets of the witness languages for the lower bounds. In the proofs given in
this paper, the size is depending on the given number of states. It would clearly
be of interest to study fixed alphabets or to consider the size of the alphabet as
an additional parameter for upper and lower bounds.
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Abstract. We prove that for all m, n, and α with 1 ≤ α ≤ f(m, n),
where f(m, n) is the state complexity of the concatenation operation,
there exist a minimal m-state DFA A and a minimal n-state DFA B,
both defined over an alphabet Σ with |Σ| ≤ 2n+4, such that the minimal
DFA for the language L(A)L(B) has exactly α states. This improves
a similar result in the literature that uses an exponential alphabet.

1 Introduction

Iwama et al. [4] stated the question of whether there always exists a minimal
nondeterministic finite automaton (NFA) of n states whose equivalent minimal
deterministic finite automaton (DFA) has α states for all integers n and α sat-
isfying n � α � 2n. The question was also considered by Iwama et al. [5], and
answered positively in [9] for a ternary alphabet. However, in the unary case,
the existence of holes, so called “magic numbers”, was proved by Geffert [1].
The binary case is still open.

The same problem on sub-regular language families was studied by Holzer
et al. [2]. It turned out that the existence of non-trivial magic numbers is rare,
and that the ranges of possible complexities are usually contiguous. One interest-
ing exception was obtained by Čevorová [18]. She studied the star operation on
unary regular languages, and proved that there are two linear segments of magic
numbers in the range from 1 to (n−1)2+1, that is, of values that cannot be met
by the state complexity of the star of a unary language accepted by a minimal
n-state DFA. On the other hand, she proved that for the square operation in
the unary case no magic numbers exist [19]. Another example of the existence
of magic numbers for symmetric difference NFAs was presented by Zijl [17], but
they could possibly be trivial.

A similar problem for the reversal, star, and concatenation operation was
studied in [7,8], where it was shown that for all the three operations the whole
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A. Szabari and J. Šebej— Research supported by grant VEGA 1/0142/15.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
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range of possible complexities up to known upper bounds can be produced using
an exponential alphabet.

The result for reversal and star was improved in [10,14] by showing that a
linear alphabet is enough to produce the whole range of complexities.

In this paper we complement these results, and show that a linear alphabet
can also be used for the concatenation operation. We prove that for all m,n,
and α with 1 ≤ α ≤ f(m,n), where f(m,n) is the state complexity of the
concatenation operation, there exist a minimal m-state DFA A and a minimal
n-state DFA B, both defined over an alphabet Σ with |Σ| ≤ 2n + 4, such that
the minimal DFA for the language L(A)L(B) has exactly α states.

To get this result, we describe three constructions, in which we are able to
get m-state and (n + 1)-state DFAs Ai, Bi for i = 1, 2, 3 from m-state and n-
state DFAs A and B, by adding a new state to B, and by adding the transitions
on two new symbols. Moreover, if the state complexity of the concatenation of
L(A) and L(B) is α, then the state complexity of the concatenation of L(Ai)
and L(Bi), i = 1, 2, 3, is 2α, 2α−1, and α+1, respectively. As a results, we get a
contiguous range of complexities from m+n+1 up to known upper bound for a
linear alphabet. To get complexities from 1 to m + n − 1, we use a known result
from [8]. We deal with the value m + n separately, and use a binary alphabet
here.

The paper is organized as follows. The next section contains some definitions
and preliminary results. In Sect. 3, we recall known results concerning the state
complexity of concatenation. In Sect. 4, we prove that the range of possible
complexities for the languages resulting from the concatenation operation is
contiguous from 1 up to known upper bound, and we show that a linear alphabet
is enough for this. Section 5 contains some concluding remarks.

2 Preliminaries

In this section we give some basic definitions and preliminary results. For details,
the reader may refer to [3,13,15].

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of strings
over Σ including the empty string ε. The length of a string w is denoted by |w|,
and the number of occurrences of a symbol a in a string w is denoted by #a(w).
A language is any subset of Σ∗. The concatenation of languages K and L is the
language KL = {uv | u ∈ K and v ∈ L}. The cardinality of a finite set A is
denoted by |A|, and its power-set by 2A.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, · , I, F ),
where Q is a finite set of states, Σ is a finite alphabet, · : Q × Σ → 2Q is the
transition function which is extended to the domain 2Q × Σ∗ in the natural way,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. The language
accepted by A is the set L(A) = {w ∈ Σ∗ | I · w ∩ F �= ∅}. For a symbol a, we
say that (p, a, q) is a transition in NFA A if q ∈ p · a, and for a string w, we write
p

w−→ q if q ∈ p · w. We say that (p, a, q) is an in-transition going to state q.
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An NFA A is deterministic (DFA) (and complete) if |I| = 1 and |q · a| = 1
for each q in Q and each a in Σ. In such a case, we write q · a = q′ instead of
q · a = {q′}.

The state complexity of a regular language L, sc(L), is the smallest number
of states in any DFA for L. The state complexity of a binary regular operation ◦
is defined as a function f(m,n) given by

f(m,n) = max{sc(K ◦ L) | K,L ⊆ Σ∗, sc(K) = m, sc(L) = n}.

Every NFA A = (Q,Σ, ·, I, F ) can be converted to an equivalent DFA A′ =
(2Q, Σ, ·′ , I, F ′), where R ·′ a = R · a and F ′ = {R ∈ 2Q | R ∩ F �= ∅} [12]. The
DFA A′ is called the subset automaton of the NFA A. The subset automaton
may not be minimal since some of its states may be unreachable or equivalent
to other states.

In the following proposition, we provide a sufficient condition for an NFA,
which guarantees that the corresponding subset automaton does not have equiv-
alent states.

Proposition 1. Let N = (Q,Σ, · , I, F ) be an NFA. Assume that for each state
q in Q, there is a string wq in Σ∗ which is accepted by N only from the state q,
that is, we have q · wq ∩ F �= ∅, and p · wq ∩ F = ∅ if p �= q. Then the subset
automaton of N does not have equivalent states.

Proof. Let S and T be two distinct subsets of the subset automaton. Then,
without loss of generality, there is a state q with q ∈ S \ T . Then the string
wq is accepted by the subset automaton from the subset S, but it is rejected
from T . 
�

To describe string wq accepted by an NFA only from state q, we usually use
the next observation.

Proposition 2. Let a string wq be accepted by an NFA N only from state q.
If (p, a, q) is the unique in-transition going to state q by symbol a, then the string
awq is accepted by N only from state p.

In what follows, we often need to show how the set of all the reachable subsets
in a subset automaton looks like. To do this, the following observation is useful.

Proposition 3. Let D be a subset automaton of an NFA N = (Q,Σ, ·, I, F ).
Let R be a family of subsets of Q such that

(1) each subset in R is reachable in D,
(2) I ∈ R, and
(3) for each S in R and each symbol a in Σ, the set S · a is in R.

Then R is the family of all reachable subsets of DFA D.

Proof. Each set in R is reachable in D by (1). Let S be a reachable subset of D.
Then there is a string w in Σ∗ such that S = I · w. We prove the proposition by
induction on |w|. If |w| = 0, then w = ε and S = I · ε = I, which is in R by (2).
Now let w = va for a string v and a symbol a. By the induction hypothesis, the
set S′ = I · v is in R. Then S = S′ · a, so S is in R by (3). 
�
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3 State Complexity of Concatenation

Consider minimal DFAs A and B. Without loss of generality, we assume that
the state set of A is {q0, q1, . . . , qm−1} with the initial state q0, and the state set
of B is {0, 1, . . . , n − 1} with the initial states 0. Moreover, in both A and B, let
us denote the transition function by ·. This is not confusing since the state sets
of A and B are disjoint. First, let us recall the construction of an NFA for the
language L(A)L(B).

Construction of NFA for concatenation:
(DFA A and DFA B → NFA N for L(A)L(B))
Let A = ({q0, q1, . . . , qm−1}, Σ, ·, q0, FA) and B = ({0, 1, . . . , n − 1}, Σ, ·, 0, FB)
be DFAs. Construct NFA N from DFAs A and B as follows:

(a) for each symbol a and each state qi with qi ·a ∈ FA, add transition (qi, a, 0);
(b) the set of initial states of N is {q0} if q0 /∈ FA, and it is {q0, 0} otherwise;
(c) the set of final state of N is FB .

In the subset automaton of NFA N constructed as above, each reachable
subset is of the form {qi}∪S, where S ⊆ {0, 1, . . . , n−1} since A is deterministic
and complete. Moreover, if qi is a final state of A, then 0 ∈ S since N has the
transition (q, a, 0) whenever a state q of A goes to a final state qi on a symbol a.
It follows that the subset automaton of N has at most (m − k)2n + k2n−1

reachable states. Next we have (m − k)2n + k2n−1 = m2n − k2n−1, which is
maximal if k = 1 [11,16]. We write this upper bound as (m − 1)2n + 2n−1. The
bound is known to be tight if m ≥ 1 and n ≥ 2 [6,11,16]. If m ≥ 1 and n = 1,
then L = ∅ or L = Σ∗, so the tight upper bound in this case is m. Hence we get
the following result.

Proposition 4 [6,11,16]. Let m,n ≥ 1 and f(m,n) be the state complexity of
the concatenation operation on languages over an alphabet of size at least two
defined as f(m,n) = max{sc(KL) | K,L ⊆ Σ∗, |Σ| ≥ 2, sc(K) = m, sc(L) = n}.
Then we have

f(m,n) =

{
m, if n = 1;
(m − 1)2n + 2n−1, if n ≥ 2.

4 The Range of Possible Complexities

The aim of this section is to show that the whole range of complexities from 1
to f(m,n) for the concatenation operation can be produced using an alphabet
that grows linearly with n.

To this aim consider minimal DFAs A = ({q0, q1, . . . , qm−1}, Σ, ·, q0, {qm−1}),
and B = ({0, 1, . . . , n − 1}, Σ, ·, 0, {1}). Construct an NFA N for L(A)L(B) as
described in Sect. 3. Let D be the subset automaton of N , and R the family of
all the reachable subsets in DFA D. We assume that A,B,N,D, and R satisfy
the following conditions.
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q0 q1 . . . qm−3 qm−2 qm−1

0 1

a

b, c

a

b, c

a a, b, c

b

a, c

a, b

c

a

b, c

a, b

c

Fig. 1. Transitions on a, b, c in states in {q0, q1, . . . , qm−1} ∪ {0, 1}.

(1) The transitions on symbols a, b, c in states in {q0, q1, . . . , qm−1} ∪ {0, 1} are
defined as in Fig. 1.

(2) If (qi, σ, q0) is a transition in A for some σ in Σ, then i = m − 1.
(3) Each set in R \ {{q0}

}
is reachable from {q1} in the subset automaton D.

(4) For each state q of NFA N , there exists a string wq in Σ∗ accepted by N
only from state q. Moreover, we have

w1 = ε,

w0 = c,

wqm−1 = bc,

wqm−2 = cbc,

wqm−2−i
= aicbc for i = 1, 2, . . . , m − 2, and

wj = aj for j = 2, 3, . . . , n − 1.

Proposition 5. Let A, B, N , D, and R satisfy conditions (1)–(4). Then

(a) The sets {q1}, {qm−1, 0}, {qm−1, 0, 1}, {qm−2, 0, 1} are in R.
(b) The initial subset {q0} of the subset automaton D cannot be reached from

any other reachable subset of D.
(c) The subset automaton D of NFA N does not have equivalent states, so

sc(L(A)L(B)) = |R|.
Proof. (a) By (1), the transitions on a, b, c are as in Fig. 1. It follows that in the
subset automaton D, we have

{q0} a−→ {q1} am−2

−−−→ {qm−1, 0} b−→ {qm−1, 0, 1} c−→ {qm−2, 0, 1}.

(b) Assume for a contradiction that there is a set S in R and a symbol σ
such that S · σ = {q0}. Then we must have qm−1 ∈ S by (2). It follows that
the initial state 0 of B must be in S since qm−1 is final in A. However then
S · σ ⊇ {q0, 0 · σ}, a contradiction.

(c) By (4), the NFA N satisfies the condition in Proposition 1. Therefore
the subset automaton D of N does not have equivalent states, and we have
sc(L(A)L(B)) = |R|. 
�
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Now our goal is to construct a minimal m-state DFA Ai and a minimal (n+1)-
state DFA Bi for i = 1, 2, 3 over the alphabet Σ ∪{an, bn} from automata A and
B, such that A,B,N,D,R satisfy conditions (1)–(4), in such a way that Ai and
Bi, the NFA Ni for L(Ai)L(Bi), the subset automaton Di of Ni and the family
Ri of reachable states of Di satisfy conditions (1)–(4). Moreover, if R = α, then
|R1| = 2α, |R2| = 2α − 1, and |R3| = α + 1.

We construct automata Ai and Bi from automata A and B by adding a new
state n to DFA B, and by adding the transitions on two new symbols an and
bn. The transitions on an are the same in all the three constructions, and they
guarantee that the string an is accepted by Ni only from state n. The transitions
on bn are used to reach the set {q0, n} in D1, the set {q1, n} in D2 and the set
{qm−1, 0, n} in D3. We have to be careful with condition (4), especially in the
third construction.

Table 1. New transitions; i ∈ {0, 1, . . . , m − 1}, j ∈ {0, 1, . . . , n − 1}.

C1 C2 C3

σ ∈ Σ n → n n → n n
c−→ 0

n
σ−→ 0 · σ if σ �= c

an qi → qm−1 qi → qm−1 qi → qm−1

n → 1 n → 1 n → 1

j → 0 j → 0 j → 0

bn qm−1 → q0 qm−1 → q1

qi → qm−1 if i �= m − 1 qi → qm−1 if i �= m − 1 qi → qm−1

n → n n → n n → n

j → n j → n j → n

Construction 1. (α → 2α)
Construct DFAs A1 and B1 from DFAs A and B as follows:
(1) add a new state n to DFA B going to itself on each old symbol σ in Σ;
(2) add the transitions on two new symbols an and bn as shown in Table 1

in column C1.

Construction 2. (α → 2α − 1)
Construct DFAs A2 and B2 from DFAs A and B as follows:
(1) add a new state n to DFA B going to itself on each old symbol σ in Σ;
(2) add the transitions on two new symbols an and bn as shown in Table 1

in column C2.

Construction 3. (α → α + 1)
Construct DFAs A3 and B3 from DFAs A and B as follows:
(1) add a new state n to DFA B with n · c = 1 and n ·σ = 0 ·σ if σ ∈ Σ \{c};
(2) add the transitions on two new symbols an and bn as shown in Table 1

in column C3.
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Lemma 6. Let A,B,N,D,R satisfy conditions (1)–(4). Let Ai, Bi for i =
1, 2, 3 be the DFAs resulting from Constructions 1, 2, 3, respectively. Let Ni

be an NFA for L(Ai)L(Bi) constructed as described in Sect. 3, Di be the cor-
responding subset automaton, and Ri be the family of all the reachable subsets
in DFA Di. Then all these automata satisfy conditions (1)–(4). Moreover, if
|R| = α, then |R1| = 2α, |R2| = 2α − 1, and |R3| = α + 1.

Proof. Since we do not change transitions on symbols in Σ on states of A and B,
condition (1) is satisfied. Since the only new transition to q0 is (qm−1, bn, q0) in
Construction 1, condition (2) is satisfied in each Ai.

In each Ni, the string an is accepted only from state n. Moreover, in B1 and
B2, state n goes to itself on each symbol in Σ. It follows that condition (4) is
satisfied for N1 and N2. In B3, we have n · c = 0 and n · b = 0 · b = b. It follows
that (0, c, 1) is the only transition on c going to state 1, and (qm−1, b, 0) is the
only transition on b going to state 0. It follows that (4) is satisfied for N3 as well.

Now consider the subset automata D1,D2,D3. Since we did not change tran-
sitions on symbols in Σ on states in A and B, we have R ⊆ Ri for i = 1, 2, 3.
Let us show that

R1 = R ∪ {
S ∪ {n} | S ∈ R}

,
R2 = R ∪ {

S ∪ {n} | S ∈ R and S �= {q0}
}
,

R3 = R ∪ {{qm−1, 0, n}}.
If S is in R then S is reachable in D, so S can be reached from the initial

state {q0} by a string uS over Σ. If moreover, S �= {q0}, then, by (3), S is
reached from {q1} by a string vS .

In D1 we have {q0} a−→ {q1} am−2

−−−→ {qm−1, 0} bn−→ {q0, n} uS−−→ S ∪ {n}. Thus
R ∪ {

S ∪ {n} | S ∈ R} ⊆ R1, and every new set S ∪ {n} can be reached from
{q1}. Let us show that no other set is reachable in D1. For each set S in R and
each σ in Σ, we have

S · σ ∈ R,
S · an ∈ {{qm−1, 0}, {qm−1, 0, 1}},
S · bn ∈ {{q0, n}, {qm−1, 0}, {qm−1, 0, n}},
(S ∪ {n}) · σ = S · σ ∪ {n},
(S ∪ {n}) · an = {qm−1, 0, 1}, and
(S ∪ {n}) · bn ∈ {{q0, n}, {qm−1, 0, n}}.
Using Proposition 5(a), we get that all the resulting sets are in R∪{

S∪{n} |
S ∈ R}

. By Proposition 3, we have R1 = R∪{
S ∪{n} | S ∈ R}

, and, moreover,
R1 satisfies condition (3).

Next, in D2 we have {q0} a−→ {q1} am−2

−−−→ {qm−1, 0} bn−→ {q1, n} vS−→ S ∪ {n}
if S �= {q0}. So every new set S ∪ {n} is reached from {q1}. The transitions on
each σ in Σ and on an are the same as in Construction 1, and for each S in R,

S · bn ∈ {{q1, n}, {qm−1, 0}, {qm−1, 0, n}}, and
(S ∪ {n}) · bn ∈ {{q1, n}, {qm−1, 0, n}}.

All the resulting sets are in R ∪ {
S ∪ {n} | S ∈ R and S �= {q0}

}
. Moreover,

{q0} cannot be reached from any other subset in R. By Proposition 3, we have
R2 = R∪{

S ∪{n} | S ∈ R and S �= {q0}
}
. Moreover, R2 satisfies condition (3).
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Finally, in D3 we have {q0} a−→ {q1} am−2

−−−→ {qm−1, 0} bn−→ {qm−1, 0, n},
so the new set {qm−1, 0, n} is reached from {q1}. The transitions on an are
the same as above, and for each S in R and each σ in Σ, we have S · bn ∈
{{qm−1, 0}, {qm−1, 0, n}}. Next, for the new set {qm−1, 0, n}, we have

{qm−1, 0, n} · c = {qm−2, 0, 1},
{qm−1, 0, n} · σ = {qm−1, 0} · σ if σ ∈ Σ and σ �= c;
{qm−1, 0, n} · bn = {qm−1, 0, n}.

All the resulting subsets are in R ∪ {{qm−1, 0, n}}. By Proposition 3, we have
R3 =

{R ∪ {qm−1, 0, n}}, and again, R3 satisfies condition (3). 
�
Recall that f(m,n) = (m−1)2n +2n−1 is the state complexity of concatena-

tion if n ≥ 2. Our first aim is to show that each value in the range from m+n+1
to f(m,n) may be attained by the state complexity of concatenation of m-state
and n-state DFA languages provided that m ≥ 3. We show this by induction,
with the basis proved in the next lemma.

Lemma 7. Let m ≥ 3 and n = 2. For each α with m + 3 ≤ α ≤ f(m, 2) =
4m − 2, there exist a minimal m-state DFA A and a minimal 2-state DFA B,
both defined over an alphabet Σ with |Σ| ≤ 7, such that sc(L(A)L(B)) = α.
Moreover, the corresponding NFA N for L(A)L(B), the subset automaton D of
N , and the set R of reachable states of D satisfy conditions (1)–(4) on page 5.

Proof. We first consider the values α = i(m − 2) + 6 for i = 1, 2, 3, 4. Then we
consider all the intermediate values of α. Finally we deal with the case α = m+3.

First let i = 1, so α = (m − 2) + 6 = m + 4. Define a minimal m-state
DFA A1,0 = ({q0, q1, . . . , qm−1}, {a, b, c, d}, ·, q0, {qm−1}) where for each i in
{0, 1, . . . ,m − 1},

qi · a = qi+1 if i �= m − 1 and qm−1 · a = qm−1,
qi · b = qm−2 if i �= m − 1 and qm−1 · b = qm−1,
qi · c = qm−2 if i �= m − 2 and qm−2 · c = qm−1, and
qi · d = qm−2.
Define a minimal two-state DFA B1,0 = ({0, 1}, {a, b, c, d}, ·, 0, {1}) where
0 · a = 0, and 1 · a = 1,
0 · b = 1, and 1 · b = 1,
0 · c = 1, and 1 · c = 0,
0 · d = 0, and 1 · d = 1.
Construct NFA N1,0 for L(A1,0)L(B1,0), and let D1,0 be the corresponding

subset automaton. Notice that (1), (2), and (4) are satisfied. Next, in D1,0 we have

{q0} a−→ {q1} ai−1

−−−→ {qi} for i = 0, 1, . . . ,m − 2,
{qm−2} a−→ {qm−1, 0} b−→ {qm−1, 0, 1} c−→ {qm−2, 0, 1},

{qm−1, 0} d−→ {qm−2, 0} c−→ {qm−2, 1}.
Thus the subset automaton has m + 4 reachable subsets. Next, notice that

each of these m + 4 subsets goes to some of them by each symbol in {a, b, c, d}.
By Proposition 3, no other set is reachable, so the complexity of L(A1,0)L(B1,0)
is m + 4. Notice that all the possible subsets containing states qm−1 and qm−2

are reachable in D1,0.



The Complexity of Languages Resulting from the Concatenation Operation 161

Now we construct appropriate DFAs from automata A1,0 and B1,0 by adding
transitions on new symbols. Thus we do not change the transitions on symbols
a, b, c, d, and therefore the conditions (1) and (4) are always satisfied. Moreover,
for each new symbol, the new transition is defined in such a way that condition
(2) is satisfied as well. Finally, notice that {qm−1, 0} is reachable from {q1}
by am−2 in the subset automaton D1,0. In what follows, we always reach new
subsets in the corresponding subset automata for concatenation from the subset
{qm−1, 0}. Hence condition (3) is always satisfied.

Next, let α = 2(m − 2) + 6. Construct DFAs A2,0, B2,0 from DFAs A1,0, B1,0

by adding the transitions on a new symbol e0 as follows:
qm−1 · e0 = q0 and qi · e0 = qm−1 for i = 0, 1, . . . ,m − 2;
0 · e0 = 0 and 1 · e0 = 0.
Construct the NFA N2,0 for L(A2,0)L(B2,0). In the subset automaton D2,0,

all the sets that were reachable in the subset automaton D1,0 are reachable as
well, since the transitions on the old symbols a, b, c, d are the same. For the same
reason, the NFA N2,0 satisfies (4), and therefore the subset automaton D2,0 does
not have equivalent states. Next, in D2,0, we have

{qm−1, 0} e0−→ {q0, 0} ai

−→ {qi, 0} for i = 1, 2, . . . , m − 3.

No other new set is reachable since each set {qi, 0} goes either to a set
{qj , 0} or to a set containing qm−2 or qm−1 by each symbol in {a, b, c, d, e0},
and moreover, by e0, each set goes either to {q0, 0} or to a set containing qm−1.
Therefore the resulting complexity of the concatenation L(A2,0)L(B2,0) is 2(m−
2) + 6.

In a similar way, we construct DFAs A3,0, B3,0 from A2,0, B2,0 by adding
transitions on a new symbol e01 defined as follows:

qm−1 · e01 = q0 and qi · e01 = qm−1 for i = 0, 1, . . . ,m − 2;
0 · e01 = 0 and 1 · e01 = 1.

This results in the reachability of m − 2 new subsets {qi, 0, 1} in the subset
automaton of N3,0. Since no other new set is reachable, the complexity of
L(A3,0)L(B3,0) is 3(m − 2) + 6.

Finally, construct DFAs A4,0, B4,0 from A3,0, B3,0 by adding the transitions
on a new symbol e1 defined as

qm−1 · e1 = q0 and qi · e1 = qm−1 for i = 0, 1, . . . ,m − 2;
0 · e1 = 1 and 1 · e1 = 1.

This results in the reachability of subsets {qi, 1} in the subset automaton of N4,0,
and the complexity of L(A4,0)L(B4,0) is 4(m − 2) + 6.

Up to now we have defined appropriate automata Ai,0 and Bi,0 for the values
α = i(m − 2) + 6 for i = 1, 2, 3, 4. Now let us consider an intermediate value
α = i(m − 2) + 6 + j where 1 ≤ i ≤ 3 and 1 ≤ j ≤ m − 3. Construct DFAs
Ai,j and Bi,j from automata Ai,0 and Bi,0 by adding the transitions on a new
symbol f1 as follows:

qm−1 · f1 = qm−2−j and qi · f1 = qm−1 for i = 0, 1, . . . ,m − 2;
0 · f1 = 1 and 1 · f1 = 1.
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This results in the reachability of the following j new subsets in the subset
automaton of Ni,j :

{qm−1, 0} f1−→ {qm−2−j , 1} a−→ {qm−2−j+1, 1} a−→ · · · a−→ {qm−3, 1}.

Recall that the subset automaton of Ni,0 has i(m − 2) + 6 reachable states,
and since i ≤ 3, the subsets {qi, 1} are unreachable in the subset automaton of
Ni,0. Hence the resulting complexity of of L(Ai,j)L(Bi,j) is i(m − 2) + 6 + j as
desired. Moreover, all the automata satisfy conditions (1)–(4).

Finally notice that if A and B are DFAs over a, b, c shown in Fig. 1 then
sc(L(A)L(B)) = m + 3. This concludes our proof. 
�

Now we are ready to prove the main lemma. Recall that the state complexity
of concatenation is f(m,n) = (m − 1)2n + 2n−1 if n ≥ 2. Moreover, notice that
we have f(m,n + 1) = (m − 1)2n+1 + 2n = 2((m − 1)2n + 2n−1) = 2f(m,n).

Lemma 8. Let m ≥ 3 and n ≥ 2. For each α with m + n + 1 ≤ α ≤ f(m,n),
there exist a minimal m-state DFA A, and a minimal n-state DFA B, both
defined over an alphabet Σ with |Σ| ≤ 2n + 4, such that sc(L(A)L(B)) = α.

Proof. We prove the claim by induction on n. Moreover, in the induction hypoth-
esis, we assume that DFAs A and B, the corresponding NFA N for L(A)L(B)
constructed as in Sect. 3, the subset automaton D of N , and the set R of reach-
able states of D satisfy conditions (1)–(4) on page 5.

The basis, in which we have m ≥ 3, n = 2, and m+3 ≤ α ≤ f(m, 2) = 4m−2,
is proved in Lemma 7. Let m ≥ 3, n ≥ 2, and assume that for each β with
m + n + 1 ≤ β ≤ f(m,n), there exist a minimal m-state DFA A and a minimal
n-state DFA B, both defined over an alphabet Σ with |Σ| ≤ 2n + 4, such that
sc(L(A)L(B)) = β. Moreover, assume that DFAs A and B, the NFA N for
L(A)L(B), the subset automaton D of N , and the set of reachable states R of
D satisfy conditions (1)–(4) on page 5. Let us show that the claim holds for
n + 1. To this aim let α be an integer with m + (n + 1) + 1 ≤ α ≤ f(m,n + 1).

First, let 2m + 2n + 2 ≤ α ≤ f(m,n + 1) and α be even. Let β = α/2. Then
m+n+1 ≤ β ≤ f(m,n), and by the induction hypothesis, there exists a minimal
m-state DFA A and a minimal n-state DFA B, both defined over an alphabet
Σ with |Σ| ≤ 2n+4, such that sc(L(A)L(B)) = β. Moreover, conditions (1)–(4)
are satisfied for A,B,N,D,R. We use Construction 1, in which we add a new
state to DFA B and the transitions on two new symbols to get a minimal m-state
A1 and a minimal (n+1)-state DFA B1. By Lemma 6, all conditions (1)–(4) are
satisfied for A1, B1, N1,D1, and R1. It follows that sc(L(A1)L(B1)) = 2β = α.

Now, let 2m+2n+1 ≤ α ≤ f(m,n+1)−1 and α be odd. Let β = (α+1)/2.
Then m + n + 1 ≤ β ≤ f(m,n), and we use the induction hypothesis and our
Construction 2, to get automata A2 and B2 over Σ ∪ {an, bn} satisfying (1)–(4)
such that sc(L(A2)L(B2)) = 2β − 1 = α.

Finally, if m+(n+1)+1 ≤ α ≤ 2m+2n, we set β = α−1. Then m+n+1 ≤
β ≤ f(m,n) since we have 2m + 2n − 1 ≤ m2n − 2n−1 if m ≥ 3 and n ≥ 2. We
use the induction hypothesis and Construction 3, get appropriate automata A3
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and B3, satisfying (1)–(4) such that sc(L(A3)L(B3)) = β + 1 = α. Our proof is
complete. 
�

Now we consider the case of m = 2 and n ≥ 2. In such a case, we only need
to modify conditions (1)–(4). All the proofs are the same as above, except for
the base case, which is a bit more complicated in this case.

Lemma 9. Let m = 2, n ≥ 2. For each α with n+3 ≤ α ≤ f(2, n) = 2n +2n−1,
there exist a minimal 2-state DFA A, and a minimal n-state DFA B, both defined
over an alphabet Σ with |Σ| ≤ 2n + 4, and such that sc(L(A)L(B)) = α.

Proof. We modify conditions (1)–(4) as follows.

(1’) The transitions on symbols a, b, c in states in {q0, q1} ∪ {0, 1} are defined
as in Fig. 1 for m = 2. This means that the subsets {q1, 0}, {q1, 0, 1}, and
{q0, 0, 1} are reachable in D, that is, they are in R.

(2’) If (qi, a, q0) is a transition in A, then i = 1
(3’) Each set in R \ {{q0}

}
is reachable from {q1, 0} in the subset automaton

D.
(4’) For each state q of NFA N , there exists a string wq in Σ∗ which is accepted

by N only from state q. Moreover, we have

w1 = ε,

w0 = c,

wq1 = bc,

wq0 = cbc,

wj = aj for j = 2, 3, . . . , n − 1.

Now we continue with exactly the same constructions as in the case of m ≥ 3,
and, using induction on n, we get the lemma. 
�

The case of m = 1 and n ≥ 3 is slightly different, although, the main idea is
the same.

Lemma 10. Let m = 1 and n ≥ 3. For each α with n+1 ≤ α ≤ f(1, n) = 2n−1,
there exist a minimal 1-state DFA A, and a minimal n-state DFA B, both defined
over an alphabet Σ with |Σ| = n − 1, and such that sc(L(A)L(B)) = α.

Proof (Proof Idea). Let A be a 1-state DFA accepting Σ∗. We prove the lemma
again by induction on n, where we assume that the following conditions hold for
DFA B, the NFA N for Σ∗B, constructed from B by adding a loop in the initial
state 0 on each input symbol in Σ, for the subset automaton D of N , and the
set R of reachable subsets in D:

(1”) In DFA B, the transitions on a, b, c in states 0, 1, 2 are as in Fig. 2.
(2”) In DFA B, we have 0 · σ �= 0 for each σ ∈ Σ.
(3”) Each subset in R, except for the initial subset {0}, can be reached from

the subset {0, 1}.
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0 1 2

a, b

c

a

b, c

a, b

c

Fig. 2. Base case if m = 1.

(4”) NFA N satisfies the condition in Proposition 1, that is, for each state j
of N , there exists a string wj in Σ∗ which is accepted by N only from
state j. Moreover, we have w0 = c and w1 = ε.

The basis, in which we have n = 3 and n + 1 = f(1, 3) = 4, holds true since
the 3-state DFA B shown in Fig. 2 satisfies (1”)–(4”).

For the induction step, we again describe three constructions: We construct
(n + 1)-state DFAs B1, B2, B3 from DFA B by adding a new state n, and by
adding transitions on new symbol an, bn, as shown in Table 2 in columns C1, C2,
and C3, respectively.

We can show that all the resulting automata satisfy conditions (1”)–(4”),
and, moreover, if |R| = β, then |R1| = 2β, |R2| = 2β − 1, |R3| = β + 1. Since N
and Ni satisfy (4”), we have sc(L(A)L(B)) = |R| and sc(L(Ai)L(Bi)) = |Ri|.
This proves the lemma by induction. 
�

Table 2. The three constructions in the case of m = 1.

C1 C2 C3

σ ∈ Σ n → n n → n n → 0

an n → 1 n → 2 n → 1

j → n 0 → 1 j → 2

1 → n

j → 0 if j ≥ 2

bn − − n → n

j → n

wn an anc an

Up to now we have considered the complexities in the range from m + n + 1
to f(m,n). The complexities from 1 to m + n − 1 are covered by the following
result from [8]. Notice that this lemma also covers the case of m = 1 and n = 2,
since then f(1, 2) = 21 = 2 = m + n − 1.

Lemma 11 ([8, Lemma 5]). Let m,n ≥ 1. For each α with 1 ≤ α ≤ m+n−1,
there exist a minimal m-state DFA A and a minimal n-state DFA B, both defined
over an alphabet of at most two symbols, such that sc(L(A)L(B)) = α.

The next lemma shows that the complexity m + n can be produced. Then
we consider the case of n = 1.
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q0 q1 . . . qm−2 qm−1

0 1 . . . n − 2 n − 1

a

b

a

b

a a, b

a, b

a

b

a

b

a a, b

a

b

Fig. 3. The minimal DFAs A and B with sc(L(A)L(B)) = m + n.

Lemma 12. Let m ≥ 2, n ≥ 2. There exist binary regular languages K and L
with sc(K) = m and sc(L) = n such that sc(KL) = m + n.

Proof. Let K and L be the binary languages accepted by minimal DFAs A and B
shown in Fig. 3, where for each i in {0, 1, . . . ,m − 1} and j in {0, 1, . . . , n − 1},
we have

qi · a = qi+1 if i �= m − 1, qm−1 · a = qm−1 and qi · b = qm−1;
j · a = j + 1 if j �= n − 1, (n − 1) · a = 0, and j · b = n − 1.
Construct an NFA N from DFAs A and B by adding transitions (qm−2, a, 0),

(qm−1, a, 0), and (qi, b, 0) for each i; the initial state of N is q0, and the set of
final states is {n− 1}. In the corresponding subset automaton, the initial subset
is {q0}, and we have

{q0} ai

−→ {qi} for i = 1, 2, . . . ,m − 2,

{qm−2} a−→ {qm−1, 0} aj

−→ {qm−1, 0, 1, . . . , j} for j = 1, 2, . . . , n − 1, and

{qm−1, 0} b−→ {qm−1, 0, n − 1}.

It follows that the subset automaton has m+n reachable subsets. Notice that
each of these m + n subsets goes to some of them by a, and each of them goes to
{qm−1, 0} or to {qm−1, 0, n − 1} by b. By Proposition 3, no other set is reachable.

To prove distinguishability, let {qi}∪S and {qj}∪T be two distinct reachable
subsets. Since NFA N accepts the string an−1−t only from state t (0 ≤ t ≤ n−1),
the two subsets are distinguishable if S �= T . Next, if i < j, then we have

{qj} am−1−j

−−−−−→ {qm−1, 0} and {qi} am−1−j

−−−−−→ {qm−1−(j−i)},

where the resulting subsets are distinguishable since they differ in a state of B.
This proves distinguishability and concludes the proof. 
�
Lemma 13. Let m ≥ 1 and n = 1. For each integer α with 1 ≤ α ≤
f(m, 1) = m, there exist a minimal m-state DFA A and a minimal 1-state
DFA B, both defined over a unary alphabet, such that sc(L(A)L(B)) = α.
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0 1 . . . α − 2 α − 1 α . . . n − 2 n − 1
a a a a a a a a

a

Fig. 4. The minimal DFA A with sc(L(A) Σ∗) = α.

Proof. Let A be a minimal m-state DFA shown in Fig. 4 accepting the language
aα−1(am)∗. Let B be the minimal 1-state DFA accepting the unary language a∗.
Then L(A)L(B) = aα−1(am)∗a∗ = {ak | k ≤ α − 1}, so sc(L(A)L(B)) = α. 
�

The next theorem summarizes our results, and shows that the whole range of
complexities for the concatenation operation can be produced using an alphabet
which grows linearly with n. Recall that f(m,n) is the state complexity of the
concatenation operation on languages over an alphabet of size at least two and
we have f(m, 1) = m and f(m,n) = (m − 1)2n + 2n−1 if n ≥ 2.

Theorem 14. Let m,n ≥ 1. For each α with 1 ≤ α ≤ f(m,n), there exist
regular languages K and L defined over an alphabet Σ with |Σ| ≤ 2n + 4 such
that sc(K) = m, sc(L) = n, and sc(KL) = α.

Proof. In each of the following six cases, we refer to the corresponding lemma
dealing with this case:

(1) If n = 1, then f(m,n) = m, and the theorem follows by Lemma 13.
(2) If n ≥ 2 and 1 ≤ α ≤ m + n − 1, then the theorem follows by Lemma 11.
(3) If m = 1 and n = 2, then f(1, 2) = 2 = m + n − 1, so this case is covered by

Lemma 11 as well.
(4) If m = 1, n ≥ 3, and m+n = n+1 ≤ α ≤ f(1, n) = 2n−1, then the theorem

follows by Lemma 10.
(5) The case of m ≥ 2, n ≥ 2, and α = m + n follows by Lemma 12.
(6) Finally, if m ≥ 2, n ≥ 2, and m + n + 1 ≤ α ≤ f(m,n), then the theorem

follows by Lemma 9 if m = 2, and by Lemma 8 if m ≥ 3.

This covers all the possible cases, and proves the theorem. 
�

5 Conclusions

We investigated the state complexity of languages resulting from the concatena-
tion operation. We proved that for all m,n, α with m,n ≥ 1 and 1 ≤ α ≤ f(m,n),
where f(m,n) is the state complexity of the concatenation operation, there exist
regular languages K and L defined over an alphabet of size at most 2n + 4 such
that sc(K) = m, sc(L) = n, and sc(KL) = α. This improves the result from [8],
where an alphabet of size growing exponentially with n is used to produce the
whole range of complexities for the concatenation operation. Our result comple-
ments similar results from [10,14], where a linear alphabet is used to get the
whole range of complexities for the reversal and Kleene closure operations.

A similar problem for the square operation, defined as L2 = LL, remains
open even for an exponential alphabet.
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Abstract. A condition characterizing the class of regular languages
which have several nonisomorphic minimal reversible automata is pre-
sented. The condition concerns the structure of the minimum automa-
ton accepting the language under consideration. It is also observed that
there exist reduced reversible automata which are not minimal, in the
sense that all the automata obtained by merging some of their equiva-
lent states are irreversible. Furthermore, it is proved that if the minimum
deterministic automaton accepting a reversible language contains a loop
in the “irreversible part” then it is always possible to construct infinitely
many reduced reversible automata accepting such a language.

1 Introduction

A device is said to be reversible when each configuration has exactly one pre-
decessor, thus implying that there is no loss of information during the com-
putation. On the other hand, as observed by Landauer, logical irreversibility is
associated with physical irreversibility and implies a certain amount of heat gen-
eration [8]. In order to avoid such a power dissipation and, hence, to reduce the
overall power consumption of computational devices, the possibility of realizing
reversible machines looks appealing.

A lot of work has been done to study reversibility in different computa-
tional devices. Just to give a few examples in the case of general devices as
Turing machines, Bennet proved that each machine can be simulated by a
reversible one [2], while Lange, McKenzie, and Tapp proved that each deter-
ministic machine can be simulated by a reversible machine which uses the same
amount of space [9]. As a corollary, in the case of a constant amount of space,
this implies that each regular language is accepted by a reversible two-way deter-
ministic finite automaton. Actually, this result was already proved by Kondacs
and Watrous [5].

However, in the case of one-way automata, the situation is different. In fact,
as shown by Pin, the regular language a∗b∗ cannot be accepted by any reversible
automaton [11].1 So the class of languages accepted by reversible automata is a
proper subclass of the class of regular languages. Actually, there are some dif-
ferent notions of reversible automata in literature. In 1982, Angluin introduced
1 From now on, we will consider only one-way automata. Hence we will omit to specify
“one-way” all the times.
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reversible automata in algorithmic learning theory, considering devices having
only one initial and only one final state [1]. On the other hand, the devices
considered in [11], besides a set of final states, can have multiple initial states,
hence they can take a nondeterministic decision at the beginning of the com-
putation. An extension which allows to consider nondeterministic transitions,
without changing the class of accepted languages, has been considered by Lom-
bardy [10], introducing and investigating quasi reversible automata. Classical
automata, namely automata with a single initial state and a set of final states,
have been considered in the works by Holzer, Jakobi, and Kutrib [3,6,7]. In par-
ticular, in [3] the authors gave a characterization of regular languages which are
accepted by reversible automata. This characterization is given in terms of the
structure of the minimum deterministic automaton. Furthermore, they provide
an algorithm that, in the case the language is acceptable by a reversible automa-
ton, allows to transform the minimum automaton into an equivalent reversible
automaton, which in the worst case is exponentially larger than the given min-
imum automaton. In spite of that, the resulting automaton is minimal, namely
there are no reversible automata accepting the same language with a smaller
number of states. However, it is not necessarily unique, in fact there could exist
different reversible automata with the same number of states accepting the same
language.

In this paper we continue the investigation of minimality in reversible
automata. Our first result is a condition that characterizes languages having
several different minimal reversible automata. Even this condition is on the struc-
ture of the transition graph of the minimum automaton accepting the language
under consideration. As a special case, we show that each time the “irreversible
part” of the minimum automaton contains a loop, it is possible to construct at
least two different minimal reversible automata.

We also observe that there exist reversible automata which are not minimal
but they are reduced, in the sense that when we try to merge some of their
equivalent states we always obtain an irreversible automaton. Investigating this
phenomenon more into details, we were able to find a language for which there
exist arbitrarily large, and hence infinitely many, reduced reversible automata.
In the paper, we present a general construction that allows to obtain arbitrarily
large reversible automata for each language accepted by a minimum determinis-
tic automaton satisfying the structural condition given in [3] and such that the
“irreversible part” contains a loop. We know that this is also possible in other
situations, namely that our condition is not necessary. We leave as an open
problem, to find a characterization of the class of the languages having infinitely
many reduced reversible automata.

2 Preliminaries

In this section we recall some basic definitions and results useful in the paper. We
assume the reader is familiar with standard notions from automata and formal
language theory (see, e.g., [4]). Given a set S, let us denote by #S its cardinality
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and by 2S the family of all its subsets. Given an alphabet Σ, |w| denotes the
length of a string w ∈ Σ∗ and ε the empty string.

A deterministic finite automaton (dfa for short) is a tuple A=(Q,Σ, δ, qI , F ),
where Q is the finite set of states, Σ is the input alphabet, qI ∈ Q is the initial
state, F ⊆ Q is the set of accepting states, and δ : Q×Σ → Q is the partial tran-
sition function. The language accepted by A is L(A) = {w ∈ Σ∗ | δ(qI , w) ∈ F}.
The reverse transition function of A is a function δR : Q × Σ → 2Q, with
δR(p, a) = {q ∈ Q | δ(q, a) = p}. A state p ∈ Q is useful if p is reachable, i.e.,
there is w ∈ Σ∗ such that δ(qI , w) = p, and productive, i.e., if there is w ∈ Σ∗

such that δ(p,w) ∈ F . In this paper we only consider automata with all useful
states.

We say that two states p, q ∈ Q are equivalent if and only if for all w ∈ Σ∗,
δ(p,w) ∈ F exactly when δ(q, w) ∈ F . When p �= q are equivalent states, we can
reduce the size of the automaton by “merging” p and q. This would imply to
merge all the states reachable from p and q by reading a same string, namely
the states δ(p,w) and δ(q, w), for w ∈ Σ∗.

Let A′ = (Q′, Σ, δ′, q′
I , F

′) be another dfa. A morphism ϕ from A to A′,
in symbols ϕ : A → A′, is a function ϕ : Q → Q′ such that ϕ(qI) = q′

I , for
each q ∈ Q, a ∈ Σ, ϕ(δ(q, a)) = δ′(ϕ(q), a), and q ∈ F if and only if ϕ(q) ∈ F ′.
Notice that if there exists a morphism ϕ : A → A′ then it is unique and,
for x, y ∈ Σ∗, δ(qI , x) = δ(qI , y) implies δ′(q′

I , x) = δ′(q′
I , y). We can observe

that since in all automata we are considering all the states are useful, there
exists the morphism ϕ : A → A′ if and only if the automaton A′ can be obtained
from A after merging all pairs of states p, q of A, with ϕ(p) = ϕ(q) (and possibly
renaming the states). Hence, the number of states of A′ cannot exceed that
of A. Hence ϕ−1(s) denotes the set of states of A which are merged in the
state s of A′. Two automata A and A′ are said to be equivalent if they accept
the same language, i.e., L(A) = L(A′).

Let C be a family of dfas and A ∈ C. We consider the following notions:

– The automaton A is reduced in C if for each morphism ϕ : A → A′, the
automaton A′ does not belong to C, i.e., every automaton obtained from A by
merging some equivalent states does not belong to C.

– The automaton A is minimal in C if and only if each automaton in C has at
least as many states as A.

– The automaton A is the minimum in C if and only if it is the unique (up to
an isomorphism, i.e., a renaming of the states) minimal automaton in C.

Notice that each minimal automaton in a family C is reduced. Furthermore, if C
contains a minimum automaton M , then M is also the only minimal and the
only reduced automaton in C. This happens, for instance, when C is the family
of all dfas accepting a given regular language L. However, a family C which does
not have a minimum automaton, could contain reduced automata which are not
minimal, as in the cases that will be presented in the paper.

A strongly connected component (scc) C of a dfa A = (Q,Σ, δ, qI , F ) is a
maximal subset of Q such that in the transition graph of A there exists a path
between every pair of states in C. A scc consisting of a single state q, without a
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looping transition, is said to be trivial. Otherwise C is nontrivial and, for each
state in q ∈ C, there is a string w ∈ Σ∗ \ {ε} such that δ(q, w) = q.

We introduce a partial order � on the set of sccs of M , such that, for two
such components C1 and C2, C1 � C2 when no state in C1 can be reached from
a state in C2, but a state in C2 is reachable from a state in C1. We write C1 �� C2

when C1 � C2 is false, namely, C1 �= C2 and either C2 � C1 or C1 and C2 are
incomparable.

Given a dfa A = (Q,Σ, δ, qI , F ), a state r ∈ Q is said to be irreversible
when #δR(r, a) ≥ 2 for some a ∈ Σ, i.e., there are at least two transitions on
the same letter entering r, otherwise r is said to be reversible. The dfa A is
said to be irreversible if it contains at least one irreversible state, otherwise A is
reversible (rev-dfa for short). As pointed out in [7], the notion of reversibility
for a language is related to the computational model under consideration. In this
paper we only consider dfas. Hence, by saying that a language L is reversible,
we refer to this model, namely we mean that there exists a rev-dfa accepting L.

The following result presents a characterization of reversible languages:

Theorem 1. [3] Let L be a regular language and M = (Q,Σ, δ, qI , F ) be the
minimum dfa accepting a language L. L is accepted by a rev-dfa if and only
if there do not exist useful states p, q ∈ Q, a letter a ∈ Σ, and a string w ∈ Σ∗

such that p �= q, δ(p, a) = δ(q, a), and δ(q, aw) = q.

According to Theorem 1, a language L is reversible exactly when the minimum
dfa accepting it does not contain the “forbidden pattern” consisting of two tran-
sitions on a same letter a entering in a same state r, with one of these transitions
arriving from a state in the same scc as r. Notice that, since transitions enter-
ing the initial state qI can only arrive from states in the same scc of qI , if the
language L is reversible, then the initial state qI of M should be reversible.

An algorithm to convert a minimum dfa M into an equivalent rev-dfa, if
any, was obtained in [3]. Furthermore, the resulting rev-dfa is minimal. We
present an outline of it. The algorithm builds a rev-dfa A in the following way.
At the beginning A is a copy of M . Then, the algorithm considers a minimal
(with respect to �) scc C that contains an irreversible state and replace it with
a number of copies which is equal to the maximum number of transitions on a
same letter incoming in a state of C. This process is iterated until all the states
in A are reversible.

3 Minimal Reversible Automata

In [3] it has been observed that there are reversible languages having several
nonisomorphic minimal rev-dfas. In this section we deepen that investigation
by presenting a characterization of the languages having a unique minimal rev-
dfa. (Notice that it could be different from the minimum dfa accepting the
language.) To prove it we make use of a series of preliminary results. Hence,
from now on, let us fix a reversible language L and the minimum dfa M =
(Q,Σ, δ, qI , F ) accepting it.
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Lemma 2. Let A′ =(Q′, Σ, δ′, q′
I , F

′) be a rev-dfa and A′′ =(Q′′, Σ, δ′′, q′′
I , F ′′)

be a minimal rev-dfa both accepting L. Given the morphisms ϕ′ : A′ → M
and ϕ′′ : A′′ → M , it holds that #ϕ′−1

(s) ≥ #ϕ′′−1
(s), for each s ∈ Q.

Proof. By contradiction, suppose #ϕ′−1
(q) < #ϕ′′−1

(q) for some state q.
Let us partition Q in the set QL = {p | ∃w ∈ Σ∗ δ(p,w) = q} of the states

from which q is reachable and the set QR of remaining states. The sets Q′ and Q′′

are partitioned in a similar way, by defining Q′
L = ϕ′−1

(QL), Q′
R = ϕ′−1

(QR),
Q′′

L = ϕ′′−1
(QL), Q′′

R = ϕ′′−1
(QR).

First, let us suppose #ϕ′−1
(p) ≤ #ϕ′′−1

(p) for each p ∈ QL. We build another
automaton A′′′ = (Q′′′, Σ, δ′′′, q′′′

I , F ′′′), which starts the computation by simu-
lating A′ using the states in Q′

L and, at some point, continues by simulating A′′

using the states in Q′′
R. In particular:

– Q′′′ = Q′
L ∪ Q′′

R

– The transitions are defined as follows:
• For s ∈ Q′′

R, a ∈ Σ: δ′′′(s, a) = δ′′(s, a);
• For s ∈ Q′

L, a ∈ Σ, such that δ′(s, a) ∈ Q′
L: δ′′′(s, a) = δ′(s, a);

• The remaining transitions, i.e., δ′′′(s, a), in the case s ∈ Q′
L, a ∈ Σ, and

δ′(s, a) ∈ Q′
R, are obtained in the following way:

Let us consider set of states {s1, s2, . . . , sk} which are equivalent to s
in A′, i.e., ϕ′(si) = ϕ′(s) for i = 1, . . . , k (notice that s = sh for some h ∈
{1, . . . , k}), and the set of states {r1, r2, . . . , rj} which are equivalent to s
in A′′, i.e., ϕ′′(ri) = ϕ′(s) for i = 1, . . . , j. Since j ≥ k we can safely
define δ′′′(si, a) = δ′′(ri, a), for i = 1, . . . , k.

The resulting automaton A′′′ still recognizes the language L, it is reversible
and it has #Q′

L + #Q′′
R states. From #ϕ′−1

(p) ≤ #ϕ′′−1
(p), for each p ∈ QL,

and #ϕ′−1
(q) < #ϕ′′−1

(q), it follows that #Q′
L < #Q′′

L, thus implying that the
number of states of A′′′ is smaller than the one of A′′, which is a contradiction.

In case #ϕ′−1
(p) > #ϕ′′−1

(p) for some p ∈ QL, we can apply the same con-
struction, after switching the role of A′ and A′′, so producing an equivalent rev-
dfa Â′ which is smaller than A′ and still verifies #ϕ̂′−1

(q) < #ϕ′′−1
(q), for the

morphism ϕ̂′ : Â′ → M . Then, we iterate the proof on the two rev-dfas Â′

and A′′.
Hence, we can conclude that #ϕ′−1

(s) ≥ #ϕ′′−1
(s), for each s ∈ Q. ��

Lemma 2 allows to associate with each reversible language L and the mini-
mum dfa M = (Q,Σ, δ, qI , F ) accepting it, the function c : Q → N such that,
for q ∈ Q, c(q) is the number of states equivalent to q in any minimal rev-
dfa A equivalent to M , i.e., c(q) = #ϕ−1(q) for the morphism ϕ : A → M .
Notice that c(qI) = 1. Furthermore, each rev-dfa accepting L should contain
at least c(q) states equivalent to q. These facts are summarized in the following
result, where we also show that c(q) has the same value for all states belonging
to the same scc of M .
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Fig. 1. A minimum dfa accepting the language L = (aa)∗ + a∗ba∗, with two minimal
nonisomorphic rev-dfas

Lemma 3. Let A be a rev-dfa accepting L, with the morphism ϕ : A → M . If
two states p, q of M belong to the same scc of M then #ϕ−1(p) = #ϕ−1(q) ≥
c(p). Furthermore, if A is minimal then c(p) = c(q) = #ϕ−1(p).

Proof. Observe that since p, q belong to the same scc there exists x ∈ Σ∗ such
that δ(q, x) = p. Let {q1, q2, . . . , qk} = ϕ−1(q) and {p1, p2, . . . , pj} = ϕ−1(p) be
the sets of states in A which are equivalent to q and p, respectively. We are going
to prove that k = j.

For each qi, there exists phi
such that δ(qi, x) = phi

. Suppose j < k. In
this case there are two indices i′, i′′ such that phi′ = phi′′ and then δ(qi′ , x) =
δ(qi′′ , x) = phi′ , implying that the state phi′ is irreversible, which is a contradic-
tion. This means that j ≥ k. In the same way, by interchanging the roles of p
and q, we can prove that k ≥ j, which leads to the conclusion j = k.

The facts that #ϕ−1(p) ≥ c(p) and, for A minimal, #ϕ−1(p) = c(p), follow
from Lemma 2. ��
In the following, for each scc C of the transition graph of M , we use c(C) to
denote the value c(q), for q ∈ C. Considering the algorithm outlined at the
end of Sect. 2, we can observe that if C ′ is another scc, then C � C ′ implies
c(C) ≤ c(C ′).

As a consequence of Lemma 3, all the minimal rev-dfas accepting L have
the same “state structure”, in the sense that they should contain exactly c(q)
states equivalent to the state q of M . However, they could differ in the transitions
(see Fig. 1 for an example).

Lemma 4. Let A′ = (Q′, Σ, δ′, q′
I , F

′) and A′′ = (Q′′, Σ, δ′′, q′′
I , F ′′) be two rev-

dfas accepting L. If there are no morphisms ϕ : A′ → A′′ then there exists a
state p ∈ Q with #ϕ′′−1

(p) ≥ 2 such that either p = qI , or

δR(p, a) �= ∅ and δR(p, b) �= ∅

for two symbols a, b ∈ Σ, with a �= b, and the morphism ϕ′′ : A′′ → M .
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Proof. Since there are no morphisms ϕ : A′ → A′′, there exist x, y ∈ Σ∗ such
that δ′(q′

I , x) = δ′(q′
I , y) and δ′′(q′′

I , x) �= δ′′(q′′
I , y). Among all couples of strings

with this property we choose one with |xy| minimal. Furthermore, we observe
that it cannot be possible that x = y = ε.

When x = ε, we have δ′(q′
I , ε) = δ′(q′

I , y) = q′
I and, since M is minimum,

δ(qI , y) = qI . Hence, ϕ′′(δ′′(q′′
I , y)) = ϕ′′(q′′

I ) = qI . From δ′′(q′′
I , y) �= q′′

I =
δ′′(q′′

I , ε), we conclude that #ϕ′′−1
(qI) ≥ 2. The case y = ε is similar.

We now consider x �= ε and y �= ε, i.e., x = ua, y = vb for some u, v ∈ Σ∗ and
a, b ∈ Σ. Let δ′(q′

I , u) = q′, δ′(q′
I , v) = r′, δ′(q′, a) = δ′(r′, b) = p̄, δ′′(q′′

I , u) =
q′′, δ′′(q′′

I , v) = r′′, δ′′(q′′, a) = s, and δ′′(r′′, b) = t, for states q′, r′, p̄ ∈ Q′,
q′′, r′′, s, t ∈ Q′′, with s �= t.

Suppose a = b. Since A′ is reversible from δ′(q′, a) = δ′(r′, a) = p̄ we get
q′ = r′. Furthermore q′′ �= r′′, otherwise A′′ would be nondeterministic. Hence,
on the strings u, v the automaton A′ reaches the same state, while A′′ reaches
two different states, against the minimality of |xy|. Thus a �= b.

Given the morphism ϕ′ : A′ → M , let p = ϕ′(p̄). Since M is minimum,
it turns out that ϕ′′(s) = ϕ′′(t) = ϕ′(p̄) = p. From s �= t, we conclude
that #ϕ′′−1

(p) ≥ 2. Furthermore, from the previous discussion, the reader can
observe that there are transitions on symbols a and b entering in p. ��

We are now able to prove the following:

Theorem 5. Let M = (Q,Σ, δ, qI , F ) be the minimum dfa accepting a
reversible language L. The following statements are equivalent:

1. There exists a state p ∈ Q such that c(p) ≥ 2, δR(p, a) �= ∅, δR(p, b) �= ∅, for
two symbols a, b ∈ Σ, with a �= b.

2. There exist at least two minimal nonisomorphic rev-dfas accepting L.

Proof. (2) implies (1): By Lemma 4, given two minimal nonisomorphic rev-

dfas A′ and A′′ accepting L, there is a state p such that c(p) = #ϕ′′−1
(p) ≥ 2.

Furthermore, since c(qI) = 1, p �= qI . Hence, δR(p, a) �= ∅, δR(p, b) �= ∅, for two
symbols a, b ∈ Σ, with a �= b.

(1) implies (2): Let w ∈ Σ∗ be a string of minimal length such that δ(qI , w) =
p, a ∈ Σ be its last symbol, i.e., w = xa, with x ∈ Σ∗. Let b ∈ Σ be a symbol
with b �= a and δR(p, b) �= ∅. Given a minimal rev-dfa A′ = (Q′, Σ, δ′, q′

I , F
′)

accepting L and the morphism ϕ : A′ → M , we consider the state p̂ = δ′(q′
I , w).

Then ϕ′(p̂) = p.
We show how to build a minimal rev-dfa A′′ nonisomorphic to A′. The idea

is to use the set of states Q′ as in A′ and to modify only the transitions which
simulates the transitions that in M enter the state p with the letter b. There are
different cases.

When δ′R(p̂, b) = ∅, it should exist p̃ ∈ ϕ′−1
(p) such that p̃ �= p̂ and δ′(q̃, b) =

p̃, for some q̃ ∈ Q′. The automaton A′′ is defined as A′, with the only difference
that the transition δ′(q̃, b) = p̃ is replaced by δ′′(q̃, b) = p̂. To prove that it
is nonisomorphic to A′, we consider a string y ∈ Σ∗ of minimal length such
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that δ′(q′
I , y) = q̃. Then δ′(q′

I , yb) = p̃ �= δ′(q′
I , w) = p̂, while δ′′(q′

I , yb) = p̂ =
δ′′(q′

I , w).
When δ′R(p̂, b) �= ∅ we can use one of the following possibilities:

– If there exists p̃ �= p̂ such that δ′R(p̃, b) �= ∅, then it should also exist q̃, q̂ ∈ Q′

with q̃ �= q̂ such that δ′(q̃, b) = p̃ and δ′(q̂, b) = p̂. The automaton A′′ is defined
by switching the destinations of these two transitions, namely by replacing
them by δ′′(q̃, b) = p̂ and δ′′(q̂, b) = p̃. The proof that A′ and A′′ are non
isomorphic is exactly the same as in the previous case.

– If there exists p̃ �= p̂ such that δ′R(p̃, b) = ∅, then we can consider q̂ such that
δ′(q̂, b) = p̂, and define A′′ by replacing this transition by δ′′(q̂, b) = p̃. Let
y ∈ Σ∗ be a string of minimal length such that δ′(q′

I , y) = q̂. Then δ′(q′
I , yb) =

p̂ = δ′(q′
I , w). On the other hand δ′′(q′

I , yb) = p̃ �= p̂ = δ′′(q′
I , w). Hence, A′

and A′′ are nonisomorphic.

Finally, we observe that in all cases, the automaton A′′ has the same number of
states as A′. Furthermore, the construction preserves reversibility. ��

As a consequence of Theorem 5 we obtain the following characterization of
reversible languages having a unique minimal (hence a minimum) rev-dfa:

Corollary 6. Let L be a reversible language and M = (Q,Σ, δ, qI , F ) be the
minimum dfa accepting it. There exists a unique (up to isomorphism) minimal
rev-dfa accepting L if and only if for each state p ∈ Q with c(p) ≥ 2, all the
transitions entering in p are on the same symbol.

When the minimum dfa accepting a reversible language contains a loop in
the irreversible part, i.e., in the part “after” an irreversible state, the condition in
Corollary 6 is always false, hence there exist at least two minimal nonisomorphic
rev-dfas. This is proved in the following result:

Theorem 7. Let M = (Q,Σ, δ, qI , F ) be the minimum dfa accepting a
reversible language L. If there exists an irreversible state q ∈ Q such that the
language accepted by computations starting in q is infinite, then there exists a
state p ∈ Q such that c(p) ≥ 2, δR(p, a) �= ∅ and δR(p, b) �= ∅, for two symbols
a, b ∈ Σ, with a �= b.

Proof. Let p ∈ Q be a state reachable from q which belongs to a nontrivial
scc C. Hence c(p) ≥ 2. Among all possibilities, we choose p in such a way that
all the other states on a fixed path from q to p does not belong to C. Since C
is nontrivial, it should exist a transition from a state of C, which enters in p.
Let a ∈ Σ be the symbol of such transition. Furthermore, it should exist another
transition which enters in p from a state which does not belong to C. (If p �= q
then we can take the last transition on the fixed path. Otherwise, since the initial
state is always reversible, we have q �= qI , and so we can take the last transition
entering in q on a path from qI .) Let b the symbol of such transition. If a = b
the automaton M would contain the forbidden pattern (cfr. Theorem 1), thus
implying that L is not reversible. Hence, we conclude a �= b. ��
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As a consequence of Theorem 7, considering Corollary 6 we can observe that
when a reversible language has a unique minimal rev-dfa, all the loops in the
minimum dfa accepting it should be in the reversible part. However, the converse
does not hold, namely there are languages whose minimum dfa does not contain
any loop in the irreversible part, which does not have a unique minimal rev-dfa.
Indeed, in [3] an example with a finite language is presented.

4 Reduced Reversible Automata

In the section we show that there exist rev-dfas which are reduced but not
minimal, namely they have more states than equivalent minimal rev-dfas, but
merging some of their equivalent states would produce an irreversible automaton.
Furthermore, we will prove that there exist reversible languages having arbitrarily
large reduced rev-dfas and, hence, infinitely many reduced rev-dfas.

In Fig. 2 a reduced rev-dfa equivalent to the dfas in Fig. 1 is depicted. If
we try to merge two states in the loop, then the loop collapses to unique state,
so producing the minimum dfa, which is irreversible. Actually, this example can
be modified by using a loop of N states: if (and only if) N is prime, we get a
reduced automaton. This is a special case of the construction which we are now
going to present:

qI p

q0 q1

q2

q3

q4

a

a

b b

a

a

aa

a

Fig. 2. A reduced rev-dfa

Theorem 8. Let M = (Q,Σ, δ, qI , F ) be the minimum dfa accepting a
reversible language L. If M contains a state q such that c(q) ≥ 2 and the lan-
guage accepted by computations starting in q is infinite, then there exist infinitely
many nonisomorphic reduced rev-dfas accepting L.
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Proof. Without loss of generality, we assume that the scc Cq containing q is
nontrivial. In fact, if this is not the case, we can find a state q̄ which is reachable
from q, and so c(q̄) ≥ c(q) ≥ 2, and which belongs to a nontrivial scc. Then, we
can give the proof replacing q by q̄.

Let A be a minimal rev-dfa A accepting L, obtained applying the algorithm
outlined in Sect. 2, and N ≥ c(q) an integer. The idea is to modify A by replacing
the part corresponding to the scc Cq, with N copies of each state in Cq and
arranging the transitions in such a way that all the states in these N copies form
one scc, without changing the accepted language. Furthermore, all the scc that
follow Cq will be replicated a certain number of times. More precisely, we build
a dfa AN = (QN , Σ, δN , qIN , FN ) using the following steps:

(i) We put in AN all the states of A which correspond to sccs C of M with Cq ��
C and all the transitions between these states.

(ii) We add N copies of the states in Cq to the set of states of AN . Given a
state r ∈ Cq, let us denote its copies as r0, r1, . . . , rN−1.

(iii) We fix a transition δ(q, a) = q′ of M , with q, q′ ∈ Cq. For i = 0, . . . , N−1, we
define δN (qi, a) = q′

(i+1) mod N , and for the remaining transitions, namely
δ(r, b) = r′ with (r, b) �= (q, a), we define δN (ri, b) = r′

i. In this way in AN

we have N copies of the scc Cq, modified in such a way that the transition
from si on a in copy i leads to the state q′

(i+1) mod N in copy (i+1) mod N .
(iv) We add to AN each transition that in A leads from a state added in (i)

to one state in the first c(q) copies of Cq added in (iii). (We remind the
reader that A should contain c(q) copies of the scc Cq. Hence, in AN we
keep exactly the same connections as in A from the states at point (i) to
the states in these copies.)

(v) We complete the construction of AN by adding a suitable number of copies of
the remaining sccs of M and suitable transitions, in order to derive a rev-
dfa. This can be done just following the steps of the algorithm described
in Sect. 2.

By construction, the automaton AN so obtained is reversible and it accepts L.
We are going to show that when N is a prime number then AN is reduced. To
this aim we shall prove that if we try to merge two equivalent states p′, p′′ of AN

then we obtain an irreversible automaton. The proof is divided in three cases:

– p′, p′′ are equivalent to a state p of M with Cq �� Cp, where Cp denotes the
scc containing p.

These states have been added at step (i), copying them from the minimal
rev-dfa A. By Lemma 3, A contains exactly c(p) states equivalent to p. Hence,
merging p′ and p′′, the resulting automaton would contain less than c(p) states
equivalent to p and, hence, it cannot be reversible.

– p′, p′′ are equivalent to a state p of M belonging to Cq.
First, suppose p′ = q0 and p′′ = qj , 0 < j < n. Considering step (iii),

we observe that there is a string z such that δ(q′, z) = q, then δ(q, w) = q
and δN (qi, w) = q(i+1) mod N , where w = az. Thus, for each k ≥ 0,
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δ(q0, wk(N−j)) = qk(N−j) mod N and δ(qj , wk(N−j)) = qj+k(N−j) mod N =
q(k−1)(N−j) mod N . Hence, merging q0 and qj would imply merging all the
states whose indices are in the set {k(N − j) mod N | k ≥ 0}, which, being N
prime, coincides with {0, . . . , N−1}. As a consequence, all the states qi, should
collapse in a unique state. However, since c(q) ≥ 2, by Lemma 3 this implies
that the resulting automaton is not reversible.

If p′ �= q0, then we can always find a string y such that δN (p′, y) = q0.
Using the transitions introduced at step (iii), we get that δN (p′′, y) = qj , for
some 0 < j < N . Hence, merging p′ and p′′ would imply merging q0 and qj ,
so reducing to the previous case.

– p′, p′′ are equivalent to a state p of M , such that Cp �= Cq and Cq � Cp.
Let w ∈ Σ∗ be such that δ(q, w) = p and p′ = δN (q′, w), p′′ = δN (q′′, w).

From p′ �= p′′, using the fact that AN is reversible, we obtain q′ �= q′′. So, to
keep reversibility, merging p′ and p′′ would imply merging q′ and q′′, which
are equivalent to q, so reducing to the previous case.

In summary, for each prime number N ≥ c(q) we obtained a reduced rev-
dfa AN with more than N states accepting the language L. Hence, we can
conclude that there exist infinitely many nonisomorphic reduced rev-dfas
accepting L. ��

In Theorem 8 we gave a sufficient condition for the existence of infinitely
many reduced rev-dfas accepting a given language. This condition is not nec-
essary. In fact, even if the minimum dfa does not contain any loop in the irre-
versible part, it could be possible to construct infinitely many reduced rev-dfas.
For instance, by modifying the construction given to prove Theorem 8, we can
show that if the minimum dfa for a language L has a state p in the irreversible
part, which is entered by transitions on at least two different letters (cfr. Theo-
rem 7) and those transitions are used to recognize infinitely many strings, then
there are infinitely many reduced rev-dfas accepting L.

qI p

q

a

a

b
b

qI p

q′ q′′

a

a

b b

Fig. 3. The minimum dfa and the minimum rev-dfa accepting the language L =
(aa)∗ + a∗b
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5 Conclusion

In this paper we studied the existence of minimal and reduced rev-dfas. In some
cases the minimum dfa accepting a language is already reversible, so assuring
that the language is reversible. However, in general a minimum dfa does not
need to be reversible, although the accepted language could be reversible. Using
Theorem 1 and the construction from [3] outlined in Sect. 2, in the case the
language is reversible, from a given minimum dfa we can obtain a minimal rev-
dfa. Minimal rev-dfas are not necessarily unique (see Fig. 1 for an example,
while Fig. 3 shows a case with a unique minimal, and hence minimum, rev-dfa).
In Sect. 3 we gave a characterization of the languages having a unique minimum
rev-dfa, in terms of the structure of the minimum dfa.

Here we wanted to go beyond the investigation of minimal rev-dfas studying
reduced rev-dfas. We observed the existence of reduced rev-dfas which are
not minimal and we gave a sufficient condition for the existence of infinitely
many reduced rev-dfas accepting a same reversible language.
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Abstract. We investigate self-verifying nondeterministic finite auto-
mata, in the case of unary symmetric difference nondeterministic finite
automata (SV-XNFA). We show that there is a family of languages Ln≥2

which can always be represented non-trivially by unary SV-XNFA. We also
consider the descriptional complexity of unary SV-XNFA, giving an upper
and lower bound for state complexity.

1 Introduction

Any nondeterministic finite automaton (NFA) has an equivalent deterministic
finite automaton (DFA) which can by found by applying the subset construc-
tion [1]. This subset construction uses the union set operation. Symmetric differ-
ence NFA (XNFA), on the other hand, employ the symmetric difference set oper-
ation [2] during the determinisation process with the subset construction. XNFA
may also be considered as a special case of weighted automata over GF(2) [3].
XNFA, even in the unary case, are interesting because of the different descrip-
tional complexity when compared to traditional NFA. For example, an n-state
unary XNFA may have an equivalent minimal DFA with 2n − 1 states, whereas
the bound is eΘ

√
n lnn in the case of NFA [2]. In this work, we consider self-

verification for XNFA.
Self-verifying NFA (SV-NFA) [4–6] are automata with two kinds of final

states, namely, accept states and reject states. Each path in the automaton may
reach either an “Accept”, “Reject” or “I do not know” state. Once a path has
been found that either accepts or rejects, it is guaranteed that no other path
with the same label will reach the opposite answer. Furthermore, every word is
guaranteed one path that reaches either an accept or a reject state. Consequently,
unlike with NFA, rejection is the result of reaching a reject state, and not the
result of a failure to reach an accept state.

Assent and Seibert [4] showed that any n-state SV-NFA has an equivalent
DFA with O(2n/

√
n) states. Jirásková and Pighizzini [6] improved their result,

and showed a tight upper bound h(n), where h(n) grows like 3
n
3 , for an SV-NFA
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with a binary alphabet. In the unary case, it was shown that the upper bound
of eΘ

√
n lnn is not tight for unary SV-NFA.

In this article, we define self-verifying XNFA (SV-XNFA), and consider the
case of unary SV-XNFA. We show the existence of a family of languages accepted
by unary SV-XNFA, and point out some conditions for the existence of n-state
unary SV-XNFA. We also give an upper bound and lower bound for the state
complexity.

2 Preliminaries

An NFA N is a five-tuple N = (Q,Σ, δ,Q0, F ), where Q is a finite set of states,
Σ is a finite alphabet, δ : Q×Σ → 2Q is a transition function (here, 2Q indicates
the power set of Q), Q0 ⊆ Q is a set of initial states, and F ⊆ Q is the set of
final (acceptance) states. The transition function δ can be extended to strings
in the Kleene closure Σ∗ of the alphabet:

δ′(q, w0w1 . . . wk) = δ(δ(. . . δ(q, w0), w1), . . . , wk).

For convenience, we write δ(q, w) to mean δ′(q, w).
An NFA N is said to accept a string w ∈ Σ∗ if q0 ∈ Q0 and δ(q0, w) ∈ F ,

and the set of all strings (also called words) accepted by N is the language
L(N) accepted by N . Any NFA has an equivalent DFA which accepts the same
language. The DFA equivalent to a given NFA can be found by the subset con-
struction [1]. In essence, the subset construction keeps track of all the states that
the NFA may be in at the same time, and forms the states of the equivalent DFA
by grouping of the states of the DFA. In short,

δ(A, σ) =
⋃
q∈A

δ(q, σ)

for any A ⊆ Q and σ ∈ Σ.
An XNFA M = (Q,Σ, δ,Q0, F ) is defined similarly to an NFA, with the

difference that the XNFA accepts a string w ∈ Σ∗ if q0 ∈ Q0, and |δ(q0, w) ∩ F |
is odd. This acceptance condition reflects the parity nature of the XNFA, so
that a string is accepted when there is an odd number of paths which lead to
final states [7]. This definition of acceptance ensures that an XNFA can be seen
as a special case of a weighted automaton [3]. When the subset construction is
applied to find the DFA equivalent to the XNFA, the symmetric difference (in
the set theoretic sense) is used to reflect the parity of the paths. That is,

δ(A, σ) =
⊕
q∈A

δ(q, σ)

for any A ⊆ Q and σ ∈ Σ.
For clarity, the DFA equivalent to an XNFA N is termed an XDFA and

denoted with ND (with corresponding QD, δD etc.).
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It was shown (amongst others) in [2,7] that XNFA can be investigated by
considering them as linear machines over the Galois field GF(2). We also use
that approach in this work. Consider the transition table of a unary XNFA
N = (Q,Σ, δ,Q0, F ), where each row represents a mapping from a state q ∈ Q
to a set of states P ∈ 2Q. Then P can be written as a vector with a one in
position i if qi ∈ P , and a zero in position i if qi �∈ P . Hence, the transition
table can be represented as a matrix of zeroes and ones (see Example 1). This
is known as the characteristic or transition matrix of the XNFA.

Initial and final states can be represented by vectors, and appropriate vector
and matrix multiplications over GF(2) represent the behaviour of the XNFA1.
For more detail, see for example [3]. For the purposes of this work, we consider
only unary XNFA with one alphabet symbol. In general, for larger alphabets,
there is a matrix associated with each alphabet symbol.

Let M be the characteristic matrix of N . The characteristic polynomial c(X)
of M is given by det(M − IX), and c(X) is said to be the characteristic poly-
nomial of N .

Note that the characteristic matrix of an XNFA does not contain information
about the choice of initial and final states, so in fact any such matrix represents
a set of XNFA sharing a transition graph but differing in choice of initial and
final states. A characteristic polynomial is associated with the matrix, but many
matrices may share the same polynomial, so a polynomial over GF(2) represents
a set of characteristic matrices. A useful result from linear field theory [8] states
that any monic polynomial c(X) = Xn + cn−1Xn−1 + . . . c2X

2 + c1X + c0 over
GF(2) has a so-called companion matrix (also called a normal form matrix) M
of the form

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
...

...
0 0 . . . 1 cn−1

⎤
⎥⎥⎥⎥⎥⎦ .

Thus, given a polynomial over GF(2), it is possible to construct its companion
matrix directly, and then construct an XNFA from the companion matrix. Such
an XNFA will have the transition function δ(qi, a) = qi+1 for 0 ≤ i < n − 1, and
qj ∈ δ(qn−1, a) for all j such that cj �= 0.

Finally, each c(X) over GF(2) is associated with a certain cycle structure.
Specifically, given a unary XNFA N , the properties of its characteristic polyno-
mial c(X) allow conclusions about the possible length of the cycle of states of
the equivalent XDFA ND (see for example [2,8,9]).

Theorem 1. [8] Let c(X) be a polynomial of degree n over GF(2) that does
not have X as a factor.

– If c(X) is a primitive irreducible polynomial over GF(2), then c(X) has a
single cycle of length 2n − 1.

1 In GF(2), 1 + 1 = 0.
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– If c(X) is an irreducible but not primitive polynomial over GF(2), then c(X)
has (2n − 1)/b cycles of length b, where b is a factor of 2n − 1.

– If c(X) is a reducible polynomial over GF(2), consider its factors. For each
cycle of length ki induced by factor φi(X) and for each cycle of length kj

induced by factor φj(X), c(X) has gcd(ki, kj) cycles of length lcm(ki, kj).

The choice of initial states for N determines which cycle in the cycle structure
of c(X) represents the equivalent XDFA ND. We give an example of an XNFA
to illustrate the discussion above.

Example 1. Let N be an XNFA where Q = {q0, q1, q2, q3}, Σ = {a}, Q0 = {q0},
F = {q1, q3} and δ is defined in Table 1 (start states are indicated by →, and
final states by ←). This corresponds to the matrix M below and characteristic
polynomial c(X) = X4 + X3 + X + 1.

M =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 1

⎤
⎥⎥⎦

Table 1. Transition function
of N

δ a

→ q0 q1
← q1 q2

q2 q3
← q3 q0, q1, q3

Table 2. Transition function of ND

δD a

→ [q0] [q1]

← [q1] [q2]

[q2] [q3]

← [q3] [q0, q1, q3]

[q0, q1, q3] [q0, q2, q3]

← [q0, q2, q3] [q0]

The transition function δD of the equivalent XDFA ND is shown in Table 2
and ND is shown in Fig. 1. Note that [q0, q1, q3] /∈ FD, since it contains an even
number of states from F .

q0start

q1 q2 q3
q0, q1,
q3

q0, q2,
q3

Fig. 1. Example 1: ND


�
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We now recap the definition of SV-NFA:

Definition 1. [4,6] A self-verifying nondeterministic finite automaton (SV-
NFA) is a 6-tuple N = (Q,Σ, δ,Q0, F

a, F r), where Q,Σ, δ and Q0 are defined
as for standard NFA. Here, F a ⊆ Q and F r ⊆ Q are the sets of accept and
reject states, respectively. The remaining states, that is, the states belonging to
Q \ (F a ∪ F r), are called neutral states. For each input string w in Σ∗, it is
required that there exists at least one path ending in either an accept or a reject
state; that is, δ(q0, w)∩(F a∪F r) �= ∅ for any q0 ∈ Q0, and there are no strings w
such that both δ(q0, w)∩F a and δ(q1, w)∩F r for any q0, q1 ∈ Q0 are nonempty.

Unlike an NFA, an SV-NFA leads to an explicit answer state for any string
w ∈ Σ∗. Hence, its equivalent DFA must do so too. The path for each w in a
DFA is unique, so each state in the DFA is an accept or reject state. Hence, for
any DFA state d, there is some SV-NFA state qr ∈ d such that qr ∈ F a so that
d ∈ F a

D or qr ∈ F r so that d ∈ F r
D. Since each state in the DFA is a subset of

states of the SV-NFA, accept and reject states cannot occur together in a DFA
state. That is, if d is a DFA state, then for any p, q ∈ d, if p ∈ F a then q /∈ F r

and vice versa.
Combining the notions of SV-NFA and XNFA, we now define SV-XNFA.

Definition 2. A self-verifying symmetric difference finite automaton (SV-
XNFA) is a 6-tuple N = (Q,Σ, δ,Q0, F

a, F r), where Q,Σ, δ and Q0 are defined
as for XNFA, and F a and F r are defined as for SV-XNFA. That is, each state
in the SV-XDFA equivalent to N must contain an odd number of states from
either F a or F r, but not both.

Note that the acceptance condition for SV-XNFA (or the SV condition)
implies that if a state in the SV-XDFA of an SV-XNFA N contains an odd
number of states from F a, it may also contain an even number of states from
F r, and so belongs to F a

D, and vice versa. Parity is not applied to neutral states,
so that any state in the XDFA may contain any number of neutral states from N .

The choice of F a and F r for a given SV-XNFA N is called an SV-assignment
of N . An SV-assignment where either F a or F r is empty, is called a trivial SV-
assignment. Otherwise, if both F a and F r are nonempty, the SV-assignment is
non-trivial.

Definition 3. Let N be an XNFA. A non-trivial SV-assignment for N such
that L(N) �= ∅ and L(N) �= Σ∗, is called an interesting SV-assignment. An
SV-XNFA with an interesting SV-assignment is called an interesting SV-XNFA.

Example 2. Let N be an XNFA where Q = {q0, q1, q2, q3, q4}, Σ = {a}, Q0 =
{q0, q1} and δ is defined in Table 3.

The transition function δD of the equivalent XDFA is shown in Table 4. Then
F a = {q2, q4} and F r = {q0} is an interesting SV-assignment. The resulting SV-
XDFA ND is shown in Fig. 2. We see that F a

D = {[q1, q2], [q2, q3], [q3, q4], [q1, q4]},
since these states each contain one state from F a. Similarly, it holds that
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Table 3. Transition function
of N

δ a

r � q0 q1
→ q1 q2

a ← q2 q3
q3 q4

a ← q4 q0, q1, q2

Table 4. Transition function of ND

δD a

r � [q0, q1] [q1, q2]

a ← [q1, q2] [q2, q3]

a ← [q2, q3] [q3, q4]

a ← [q3, q4] [q0, q1, q2, q4]

r ← [q0, q1, q2, q4] [q0, q3]

r ← [q0, q3] [q1, q4]

a ← [q1, q4] [q0, q1]

q0, q1start

q1, q2 q2, q3 q3, q4

q1, q4 q0, q3
q0, q1,
q2, q4

Fig. 2. Example 2: ND

F r
D = {[q0, q1], [q0, q1, q2, q4], [q0, q3]}, since each state contains q0. Note that

[q0, q1, q2, q4] contains an even number of states from F a. 
�
We now investigate when interesting SV-assignments are possible for unary

XNFA.

3 Unary SV-XNFA

Consider any unary XNFA N and its corresponding transition matrix M over
GF(2). Then M can be either singular, or non-singular. If M is singular, it
is known [8] that the XDFA ND equivalent to N forms a state graph with a
transient head followed by a cycle. If M is non-singular, then ND forms a cycle.
In the rest of this article, we only consider unary XNFA whose transition matrices
are non-singular. By Lemma 1 below, this means we only consider polynomials
over GF(2) that do not have X as a factor.

Noting the correspondence between a given XNFA, its matrix representation
over GF(2) and the corresponding characteristic polynomial c(X), we investi-
gate whether there are properties of polynomials that guarantee the existence or
non-existence of SV-assignments for XNFA with certain characteristic polyno-
mials. We are specifically interested in finding properties that will guarantee the
existence of SV-XNFA with n states that accept languages that require nD > n
states in the equivalent SV-XDFA. This implies that we focus on interesting
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SV-assignments when determining the existence of SV-XNFA for certain poly-
nomials.

Lemma 1. The companion matrix of a polynomial over GF(2) is singular if
and only if X is a factor of the polynomial.

Proof. Let c(X) be some polynomial over GF(2) of degree n. If and only if X
is a factor of c(X), then the coefficient of X0 is zero, and so in the companion
matrix, M0,n−1 = 0. Then det(M) = 0, which implies that M is singular [9]. 
�
Theorem 2. There is no n-state SV-XNFA such that its characteristic polyno-
mial is primitive and irreducible.

Proof. Let N = (Q,Σ, δ,Q0, F ) be an n-state unary XNFA with characteristic
polynomial c(X). If c(X) is primitive and irreducible, then the XDFA ND forms
a cycle of length 2n − 1. Each state in the cycle is a non-empty subset of Q.
If there are 2n − 1 states, then every non-empty subset of Q is a state in the
XDFA, including the state consisting of all the states in Q.

Since each q ∈ Q appears as a state in the cycle, each q must either be an
accept or reject state. There are two cases to consider. If n is even, then the
state consisting of all the states in Q contains either an even number of accept
states and an even number of reject states, or an odd number of accept states
and an odd number of reject states. In either case the SV condition is violated,
since each SV-XDFA state must contain an odd number of either F a or F r, but
not both.

On the other hand, if n is odd, then – in order for the state consisting of all
the states in Q to be either accepting or rejecting – some A ⊂ Q where |A| is odd
must contain, say, the accepting states, while Q \A contains the rejecting states
and |Q \ A| is even. But the XDFA also contains a state consisting of Q \ A,
that is a state consisting entirely of an even number of reject states. Hence if
n is odd, this necessarily results in a neutral state in the XDFA, which again
violates the SV condition. Therefore, no SV-XNFA is possible. 
�

Note that Theorem 2 excludes all SV-assignments for primitive polynomials,
including trivial or uninteresting SV-assignments. On the other hand, we now
prove that for a certain family of polynomials, interesting SV-assignments are
always possible.

Theorem 3. Let c(X) = Xn + Xn−1 + X + 1, with companion matrix M , and
let N be an XNFA with transition matrix M and Q0 = {q0}. Then N has an
interesting SV-assignment, and the equivalent XDFA ND forms a cycle of length
2n − 2.

Proof. The transition function of N is given in Table 5. Since δ(qi, a) =
qi+1 for all i < n − 1, the XDFA ND contains the states [q0], [q1], ..., [qn−1]
in its cycle. Also, δ(qn−1, a) = {q0, q1, qn−1}. Now, δ({q0, qi, qn−1}, a) =
{q0, qi+1, qn−1} for 1 ≤ i ≤ n − 3, since δ({q0, qi, qn−1}, a) = {q1} ⊕ {qi+1} ⊕
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Table 5. Transition function of N with c(X) = Xn + Xn−1 + X + 1

δ a

q0 q1

q1 q2
...

...

qn−2 qn−1

qn−1 q0, q1, qn−1

{q0, q1, qn−1} = {q0, qi+1, qn−1}, as qi+1 �= qn−1 for 1 ≤ i ≤ n − 3. However,
δ({q0, qn−2, qn−1}, a) = {q1} ⊕ {qn−2+1} ⊕ {q0, q1, qn−1} = {q0}. Therefore, ND

contains [q0], [q1], ..., [qn−1] and [q0, qi, qn−1] for 1 ≤ i ≤ n − 2, and hence has
n + n − 2 = 2n − 2 states.

Now, since every state in ND has odd size, any choice of F a and F r so that
F a ∪ F r = Q and F a ∩ F r = ∅ with F a and F r non-empty will guarantee that
each state in the XDFA contains an odd number of states from either F a or
F r and zero or an even number of states from the other, and hence will be a
non-trivial SV-assignment. Since [q0], [q1], ..., [qn−1] ∈ QD, it will also necessarily
be an interesting SV-assignment. 
�

3.1 Languages for Unary SV-XNFA

Given the existence of SV-XNFA for certain c(X) as shown above, we may now
consider whether there is a family of languages Ln≥2 such that each Li may be
represented by an SV-XNFA in a non-trivial way. That is, we consider whether
there are languages that may be represented by SV-XNFA with n states that
require nD > n states in their equivalent SV-XDFA. The next theorem presents
such a language family.

Theorem 4. For any integer n ≥ 2, let Ln = a(2n−2)i+j, for i ≥ 0 and 0 ≤ j <
n − 1, and Lc

n = a(2n−2)i+j, for i > 0 and n − 1 ≤ j < 2n − 2. Then there exists
a pair of SV-XNFA with n states and the same transition graph that accept Ln

and Lc
n respectively. Moreover, these languages each require an SV-XDFA with

2n − 2 states.

Proof. Using the construction given in the proof of Theorem 3, we construct N
with n states so that ND has 2n−2 states. The states in the SV-XDFA are given
in Fig. 3.

Then F a = {qi|0 ≤ i ≤ n − 2} and F r = {qn−1} is an interesting SV-
assignment. Consequently, d0, d1, ..., dn−2 ∈ F a

D and dn−1, dn, ..., d2n−3 ∈ F r
D, so

the language accepted by N is Ln = a(2n−2)i+j , for i ≥ 0 and 0 ≤ j < n − 1.
Since this pattern of n − 1 accept states followed by n − 1 reject states requires
2n − 2 states, ND is the minimal SV-XDFA that accepts Ln.
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d0 = [q0]

d1 = [q1]

...

dn−2 = [qn−2]

dn−1 = [qn−1]

dn = [q0, q1, qn−1]

dn+1 = [q0, q2, qn−1]

...

d2n−3 = [q0, qn−2, qn−1]

Fig. 3. Theorem 4: states in the SV-XDFA

Also, F r = {qi|0 ≤ i ≤ n − 2} and F a = {qn−1} is an interesting SV-
assignment that would cause d0, d1, ..., dn−2 ∈ F r

D and dn−1, dn, ..., d2n−3 ∈ F a
D

so that N accepts Lc
n = a(2n−2)i+j , for i > 0 and n − 1 ≤ j < 2n − 2. Similarly

as for Ln, 2n − 2 states are required to accept Lc
n.

This leads to a pair of SV-XNFA with n states and the same transition
graphs that accept Ln and Lc

n respectively, while in the deterministic case, an
SV-XDFA with at least 2n − 2 states is required. 
�

The ability of self-verifying automata to represent complementary pairs of
languages using the same transition graph is discussed in [10].

3.2 Descriptional Complexity of Unary SV-XNFA

We now turn to the question of state complexity for SV-XNFA. By Theorem 1,
the maximum cycle length for any c(X) of degree n is 2n − 1, and therefore this
is an upper bound for the number of states in the equivalent XDFA of any XNFA
with n states. However, it is not a tight upper bound for SV-XNFA, because this
cycle length is only achieved if c(X) is primitive and from Theorem 2 it is clear
such XDFA cannot have SV-assignments. Instead, we show in this section that
for certain c(X) of degree n, there exist SV-XNFA with characteristic polynomial
c(X) for which the equivalent SV-XDFA have at least 2n−1 − 1 states, and that
for any n ≥ 2, there is a language Ln that can be represented by an n-state
SV-XNFA while requiring an (2n−1 − 1)-state SV-XDFA.

Lemma 2. Let c(X) = (X + 1)φ(X) be a polynomial of degree n with non-
singular companion matrix M , and let N be an XNFA with transition matrix M
and Q0 = {q0}. Then the equivalent XDFA ND has the following properties:

1. |QD| > n
2. |d| is odd for d ∈ QD
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3. [q0], [q1], ..., [qn−1] ∈ QD

Proof. Since X + 1 is a factor, 1 is a root of the polynomial, and so c(X) must
have an even number of terms, including X0. The companion matrix M of c(X)
is

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 c0
1 0 0 · · · 0 0 c1
0 1 0 · · · 0 0 c2
...

. . .
...

...
. . .

...
0 0 0 · · · 1 0 cn−2

0 0 0 · · · 0 1 cn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The last column contains an odd number of 1’s, representing an odd number
of transitions from state qn−1. That is, δ(qn−1, a) = {qc|c ∈ C} = Qc where |C|
is odd.

Since δ(qi, a) = qi+1 for all i < n − 1, ND contains the states
[q0], [q1], ..., [qn−1], as well as [Qc], and therefore forms a cycle with at least
n + 1 states. These states all have odd size, so it only remains to show that all
other states in the cycle must have odd size as well.

Let P = {qi0 , qi1 , ..., qik} ⊆ Q where k is even and so |P | is odd. Then if
ij < n − 1 for all 0 ≤ j ≤ k, then δ(P, a) = {qi0+1, qi1+1, ..., qik+1}, and so
|δ(P, a)| must be odd as well. However, suppose qn−1 ∈ P . We may assume that
qn−1 = qik . Let P ′ = {qi0+1, qi1+1, ..., qik}, so |P ′| = |P | − 1 and therefore even.
Then δ(P, a) = P ′ ⊕ Qc. Let m = |P ′ ∩ Qc|. Then |δ(P, a)| = |P ′| + |Qc| − 2m.
Since |P ′| is even, |Qc| is odd and 2m is even, it follows that |δ(P, a)| is odd.

Therefore, any state with odd size in ND transitions to a state with odd size,
and so all the states in the XDFA cycle have odd size. 
�
Theorem 5. Let c(X) = (X + 1)φ(X) be a polynomial of degree n with non-
singular companion matrix M . Then there is an XNFA N with transition matrix
M and Q = {q0} for which there is an interesting SV-assignment.

Proof. From Lemma 2 it follows that the XNFA N whose transition matrix is
the companion matrix of c(X) has a cycle with length greater than n in which
each state has odd size. Furthermore, [q0], [q1], ..., [qn−1] are all states in QD, so
q0, q1, ..., qn−1 must all be in either F a or F r.

Therefore, any choice of F a and F r so that F a ∪ F r = Q and F a ∩ F r = ∅
with F a and F r non-empty will guarantee that each state in the XDFA contains
an odd number of states from either F a or F r and zero or an even number of
states from the other, and hence will be an interesting SV-assignment. 
�
Lemma 3. Let c(X) = (X + 1)φ(X) be a polynomial of degree n with non-
singular companion matrix M and where φ(X) is a primitive polynomial. Let N
be an XNFA with transition matrix M and Q0 = {q0}, then ND forms a cycle
of length 2n−1 − 1.
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Proof. We calculate the number and lengths of all cycles for c(X). By Theorem 1,
factors X + 1 and φ(X) each induce a single cycle of length 2m − 1 with m = 1
and m = n − 1 respectively, as well as a single cycle each of length 1, which is
the so-called empty cycle ε. Therefore c(X) has the following cycles:

– εX+1 and X + 1: gcd(1, 1) cycle(s) of length lcm(1, 1)

– εφ(X) and X + 1: gcd(1, 1) cycle(s) of length lcm(1, 1)

– εX+1 and φ(X): gcd(1, 2n−1 − 1) cycle(s) of length lcm(1, 2n−1 − 1)

– εφ(X) and φ(X): gcd(1, 2n−1 − 1) cycle(s) of length lcm(1, 2n−1 − 1)

Therefore, c(X) has two cycles of length 1, one of which is εc(X), and two
cycles of length 2n−1 − 1. By Lemma 2, ND must be a cycle with length greater
than n, so it must have length 2n−1 − 1. 
�
Theorem 6. For any n ≥ 2, there is an interesting SV-XNFA N whose equiv-
alent ND has 2n−1 − 1 states.

Proof. Let c(X) = (X + 1)φ(X) be a polynomial of degree n, where φ(X) is a
primitive polynomial, and let M be its non-singular companion matrix. Let N
be an XNFA with transition matrix M and let Q0 = {q0}. By Theorem 5, N has
an interesting SV-assignment, and by Lemma 3, the equivalent ND has 2n−1 −1
states. 
�

The following theorem shows that, for any n ≥ 2, there exists an n-state SV-
XNFA that accepts a language requiring at least 2n−1−1 states in an equivalent
SV-XDFA.

Theorem 7. For any n ≥ 2, there is a language Ln so that some n-state SV-
XNFA accepts Ln and the minimal SV-XDFA that accepts Ln has 2n−1 − 1
states.

Proof. Let c(X) = (X + 1)φ(X) where φ(X) is a primitive polynomial and let
c(X) have degree n. We construct an SV-XNFA N with n states whose equivalent
ND has 2n−1 − 1 states as in Theorem 6, and let F a = {q0} and F r = Q \ F a.
Then L = a(2n−1−1)i+j for i ≥ 0 and j ∈ J , where J is some set of integers. Now,
from the transition matrix of N it follows that 0, n ∈ J , while 1, 2, ..., n − 1 /∈ J ,
since q0 ∈ δ(q0, an) and q0 /∈ δ(q0, am) for m < n.

If there is an N ′
D with fewer than 2n−1 − 1 states that accepts L, then there

must be some dj �= {q0} ∈ QD such that q0 ∈ dj , q0 ∈ δ(dj , a
n) and there is no

m < n so that q0 ∈ δ(dj , a
m).

Let dk be any state in ND such that dk �= {q0}. Let max(dk) be the largest
subscript of any SV-XNFA state in dk. Then max(dk) > 0. Let m = n−max(dk),
so m < n, then from the transition matrix of N it follows that q0 ∈ δ(dk, am).
That is, for any dk there is an m < n so that q0 ∈ δ(dk, am).

Therefore, there is no N ′
D with fewer than 2n−1 − 1 states that accepts L.
�

This gives a lower bound of 2n−1 − 1 for the state complexity of unary SV-
XNFA.
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4 Conclusion

We introduced the notion of unary self-verifying symmetric difference automata,
and showed that for certain polynomials, interesting SV-XNFA exist. We also
showed that for primitive polynomials, no SV-assignments for unary XNFA are
possible. This provides an upper bound of 2n − 1 on the state complexity of
unary SV-XNFA that is known not to be tight. Furthermore, we demonstrated
that 2n−1 − 1 is a lower bound for unary SV-XNFA.

Directions for future work include determining a tight bound, as well as
providing a more detailed exposition of the properties of polynomials over GF(2)
that lead to SV-assignments, and especially interesting SV-assignments. Also,
further consideration may be given to the question of which languages can be
represented succinctly by SV-XNFA.
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Abstract. The neighbourhood of a regular language of constant radius
with respect to the prefix distance is always regular. We give upper
bounds and matching lower bounds for the size of the minimal deter-
ministic finite automaton (DFA) needed for the radius k prefix distance
neighbourhood of an n state DFA that recognizes, respectively, a finite,
a prefix-closed and a prefix-free language. For prefix-closed languages
the lower bound automata are defined over a binary alphabet. For finite
and prefix-free regular languages the lower bound constructions use an
alphabet that depends on the size of the DFA and it is shown that the
size of the alphabet is optimal.

1 Introduction

The neighbourhood of radius r of a language L consists of all strings that are
within distance at most r from some string of L. A distance measure d is said
to be regularity preserving if the neighbourhood of any regular language with
respect to d is regular. Calude et al. [2] have shown that additive distances are
regularity preserving. Additivity requires, roughly speaking, that the distance
is compatible with concatenation of words in a certain sense and best known
examples of additive distances include the Levenshtein distance and the Ham-
ming distance [2,5].

The prefix distance of two words u and v is the sum of the lengths of the
suffixes of u and v that begin after the longest common prefix of u and v.
The suffix distance and the factor distance are defined analogously in terms
of the longest common suffix (respectively, factor) of two words. It is known
that the prefix, suffix and factor distance preserve regularity [4].

By the state complexity of a regularity preserving distance we mean the
worst-case size of the minimal deterministic finite automaton (DFA) needed to
recognize radius r neighbourhood of an n state DFA language (as a function of
n and r). Tight bounds for the state complexity of prefix distance were recently
obtained by the authors [14].

Worst-case state complexity bounds for general regular languages typically
cannot be matched by finite languages, as first observed by Câmpeanu et al. [3],
and the same holds for other proper sub-families of the regular languages.
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Relations between different sub-regular language families have been investigated
recently by Holzer and Truthe [11]. Bordihn et al. [1] have studied the state
complexity of determinization of automata for the different sub-regular language
families and further recent work on the state complexity of sub-regular language
families has been done by Holzer et al. [8,10].

Here we study the state complexity of prefix distance for finite languages.
Additionally, we concentrate on the classes of prefix-closed and prefix-free regular
languages because their corresponding restricting properties can be viewed to
be related to the definition of the prefix distance measure. We give tight state
complexity bounds for the prefix distance of finite, prefix-closed and prefix-free
regular languages. In the case of finite languages and prefix-free languages the
lower bound construction uses an alphabet that depends linearly on the size
of the DFA. We establish that the general upper bound cannot be matched by
languages defined over an alphabet of smaller size.

2 Preliminaries

We briefly recall some definitions and notation used in the paper. For all unex-
plained notions on finite automata and regular languages the reader may consult
the textbook by Shallit [15] or the survey by Yu [16]. A survey of distances is
given by Deza and Deza [5]. Recent surveys on descriptional complexity of reg-
ular languages include [6,9,13].

In the following Σ is always a finite alphabet, the set of strings over Σ is
Σ∗ and ε is the empty string. The reversal of a string x ∈ Σ∗ is xR. The set of
nonnegative integers is N0. The cardinality of a finite set S is denoted |S| and
the powerset of S is 2S . A string w ∈ Σ∗ is a substring or factor of x if there
exist strings u, v ∈ Σ∗ such that x = uwv. If u = ε, then w is a prefix of x. If
v = ε, then w is a suffix of x.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ,Q0, F )
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition
function δ : Q × Σ → 2Q, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of
final states. We extend the transition function δ to a function Q×Σ∗ → 2Q in the
usual way. A string w ∈ Σ∗ is accepted by A if, for some q0 ∈ Q0, δ(q0, w)∩F �= ∅
and the language recognized by A consists of all strings accepted by A. An ε-NFA
is an extension of an NFA where transitions can be labeled by the empty string
ε [15,16], i.e., δ is a function Q × (Σ ∪ {ε}) → 2Q. It is known that every ε-NFA
A has an equivalent NFA without ε-transitions and with the same number of
states as A. An NFA A = (Q,Σ, δ,Q0, F ) is a deterministic finite automaton
(DFA) if |Q0| = 1 and, for all q ∈ Q and a ∈ Σ, δ(q, a) either consists of one
state or is undefined. Two states p and q of a DFA A are equivalent if δ(p,w) ∈ F
if and only if δ(q, w) ∈ F for every string w ∈ Σ∗. A DFA A is minimal if each
state q ∈ Q is reachable from the initial state, a final state is reachable from
each state q, and no two states are equivalent.

Note that our definition of a DFA allows some transitions to be undefined,
that is, by a DFA we mean an incomplete DFA. It is well known that, for a regular
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language L, the sizes of the minimal incomplete and complete DFAs differ by at
most one. The constructions used in this paper are more convenient to formulate
using incomplete DFAs but our results would not change in any significant way
if we were to require that all DFAs are complete. The (incomplete deterministic)
state complexity of a regular language L, sc(L), is the size of the minimal DFA
recognizing L.

We define pref(L) to be the language of all prefixes of words belonging to L,

pref(L) = {u ∈ Σ∗ | (∃v ∈ Σ∗) uv ∈ L}.

A language L is prefix-closed if L = pref(L). A language L is prefix-free if no
word u ∈ L is a proper prefix of any other word in L. A DFA A is non-exiting if
a final state of A has no outgoing transitions. The minimal DFAs recognizing a
prefix-free language have always the following property.

Lemma 1 ([7]). If A is minimal and L(A) is prefix-free, then A is non-exiting.

To conclude this section, we recall definitions of the distance measures used
in the following. Generally, a function d : Σ∗ × Σ∗ → [0,∞) is a distance if
it satisfies for all x, y, z ∈ Σ∗, the conditions d(x, y) = 0 if and only if x = y,
d(x, y) = d(y, x), and d(x, z) ≤ d(x, y)+d(y, z). The neighbourhood of a language
L of radius k with respect to a distance d is the set

E(L, d, k) = {w ∈ Σ∗ | (∃x ∈ L) d(w, x) ≤ k}.

Let x, y ∈ Σ∗. The prefix distance of x and y counts the number of symbols
which do not belong to the longest common prefix of x and y [4]. Formally, it is
defined by

dp(x, y) = |x| + |y| − 2 · max
z∈Σ∗

{|z| | x, y ∈ zΣ∗}.

The state complexity of prefix distance was established in [14].

Theorem 1 ([14]). For n > k ≥ 0, if sc(L) = n then

sc(E(L, dp, k)) ≤ n · (k + 1) − k(k + 1)
2

and this bound can be reached in the worst case.

To conclude this section we recall from [14] the construction of a DFA that
recognizes the prefix-distance neighbourhood of a regular language.

Let A = (Q,Σ, δ, q0, F ) be a DFA and ϕA : Q → N0 be a function defined by

ϕA(q) = min
w∈Σ∗

{|w| | δ(q, w) ∈ F}

The function ϕA(q) gives the length of the shortest path from a state q to the
closest reachable final state. Note that if q ∈ F , then ϕA(q) = 0.

We construct a DFA A′ = (Q′, Σ, δ′, q′
0, F

′) for the neighbourhood
E(L(A), dp, k), k ∈ N, as follows. We define the state set

Q′ = ((Q − F ) × {1, . . . , k + 1}) ∪ F ∪ {p1, . . . , pk}. (1)
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The initial state q′
0 is defined by

q′
0 =

⎧⎪⎨
⎪⎩

q0, if q0 ∈ F ;
(q0, ϕA(q0)) if q0 �∈ F and ϕA(q0) ≤ k;
(q0, k + 1) if q0 �∈ F and ϕA(q0) > k.

The set of final states is given by

F ′ = ((Q − F ) × {1, . . . , k}) ∪ F ∪ {p1, . . . , pk}.

Let qi,a = δ(i, a) for i ∈ Q and a ∈ Σ, if δ(i, a) is defined. Then for all a ∈ Σ,
the transition function δ′ is defined for states i ∈ F by

δ′(i, a) =

⎧⎪⎨
⎪⎩

(qi,a, 1), if qi,a ∈ Q − F ;
qi,a, if qi,a ∈ F ;
p1, if δ(i, a) is undefined.

For states (i, j) ∈ Q − F × {1, . . . , k + 1}, δ′ is defined

δ′((i, j), a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qi,a, if qi,a ∈ F ;
(qi,a,min{j + 1, ϕA(qi,a)}), if ϕA(qi,a) or j + 1 ≤ k;
(qi,a, k + 1), if ϕA(qi,a) and j + 1 > k;
pj+1, if δ(i, a) is undefined.

Finally, we define δ′ for states p� for � = 1, . . . , k − 1 by δ′(p�, a) = p�+1.
The following Proposition 1 follows from the proof of Proposition 2 of [14].

Note that Proposition 2 of [14] establishes a stronger claim and the statement of
the below proposition includes only the parts that we need in the later sections.

Proposition 1 ([14]). (a) The DFA A′ recognizes the neighbourhood
E(L(A), dp, k).

(b) The elements of the set Sur = {(q, j) | q ∈ Q − F, 1 ≤ j ≤ k + 1, j > ϕA(q)}
are all unreachable as states of the DFA A′.

3 Neighbourhoods of Finite Languages

We first consider the state complexity of neighbourhoods of finite languages with
respect to the prefix distance.

Proposition 2. Let L be a finite language recognized by a minimal DFA A =
(Q,Σ, δ, q0, F ) with n states. Then

sc(E(L, dp, k)) ≤ (n − 2) · (k + 1) − k2 + 2.
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Proof. We know that the neighbourhood of L of radius k with respect to the
prefix distance is recognized by a DFA A′ = (Q′, Σ, δ′, q′

0.F
′) obtained from A as

in Proposition 1 where, furthermore, all elements of the set Sur are unreachable.
We show that there are more unreachable states in the case of finite languages.

Since A is acyclic, the number and length of words that reach each state
q ∈ Q is bounded. For q ∈ Q, let wq denote the longest word that reaches q from
the initial state q0 without passing through a final state. Then for all states q
with |wq| ≤ k, the states (q, j) ∈ Q′ with j > |wq| are unreachable as states of
A′ (where the set of states of A′ is as in (1). That is, all states in the set

Rur = {(q, j) | q ∈ Q − F, 1 ≤ j ≤ k + 1, j > |wq|}

are unreachable in A′. By Proposition 1 (b) all elements of the set Sur = {(q, j) |
q ∈ Q − F, 1 ≤ j ≤ k + 1, j > ϕA(q)} are also unreachable in A′. We note that
increasing the number of final states of A by one decreases the cardinality of Q′

by k and decreases the cardinality of Sur and Rur by at most k. However, we
observe that A must have at least two final states to reach the bound. The last
state of A, with no outgoing transitions, must be a final state since, otherwise,
there are useless states. But this cannot be the only final state, since otherwise,
for every state q ∈ Q with ϕA(q) > k, only (q, k + 1) is reachable. Thus, the
initial state q0 must also be a final state.

As in [14], we note that the cardinality of Sur is minimized when exactly
one non-final state has a shortest path of length i that reaches qf . From the
above it then follows that reaching the upper bound requires exactly two final
states, one of which must be the initial state and the other which must have
no outgoing transitions. Since A is acyclic, the initial state cannot have any
incoming transitions, so the states in Sur consist of those that can reach the non-
initial final state, giving k(k+1)

2 unreachable states. Similarly, the cardinality of
Rur is minimized when exactly one non-final state has a longest word of length
i which reaches it from q0, giving k(k+1)

2 unreachable states.
Thus, the number of states of the minimal DFA for E(L, dp, k) is upper

bounded by

(n − 2)(k + 1) + 2 + k − 2 · k(k + 1)
2

= (n − 2)(k + 1) − k2 + 2.


�
Next we give a lower bound construction that matches the upper bound of

Proposition 2.

Lemma 2. There exists a finite language recognized by a DFA with n states
such that E(L(A), dp, k) requires at least (n − 2)(k + 1) − k2 + 2 states.

Proof. Let An = (Qn, Σn, δn, q0, Fn) where Qn = {0, . . . , n − 1}, Σn =
{a1, . . . , an−3}, q0 = 0, Fn = {0, n−1}, and the transition function is defined by
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0start 1 2 · · · n − 3 n − 2 n − 1
a1

a2

an−3

a2 a3 an−3 a1 a1

Fig. 1. The DFA An.

– δn(0, ai) = i for 1 < j ≤ n − 3,
– δn(i, ai+1) = i + 1 for 0 ≤ i < n − 3,
– δn(i, a1) = i + 1 for i = n − 3, n − 2.

The DFA An is depicted in Fig. 1.
Let A′

n = (Q′
n, Σn, δ′

n, q′
0, F

′
n) be the DFA constructed from An as in Propo-

sition 1. First, we show that (n − 2)(k + 1) − k2 + 2 states are reachable. States
of the form pi with 1 ≤ i ≤ k are reachable from states 0 ≤ i ≤ k on symbols
aj with j �= i + 1. For states of the form (i, j) ∈ (Qn − Fn) × {1, . . . , k + 1},
with ϕAn

(i) > k and j ≤ i, each (i, j) is reachable on the word ai−jai−j+1 · · · ai.
However, states (i, j) with j > ϕAn

(i) are unreachable by definition of A′
n and

states (i, j) with i < j ≤ k are unreachable. Thus the number of unreachable
states in (Qn − Fn) × {1, . . . , k + 1} is

n−1∑
i=n−k

|{i} × {ϕAn
(i) + 1, . . . , k + 1}| +

k∑
i=1

|{i + 1, . . . , k + 1}|

= 2 ·
k∑

i=1

|{i = 1, . . . , k + 1}| = 2 ·
k∑

i=1

i = 2 · k(k + 1)
2

.

Thus the number of reachable states is

(n − 2)(k + 1) − 2 + k − 2 · k(k + 1)
2

= (n − 2)(k + 1) − k2 + 2.

Now, we show that all reachable states are pairwise inequivalent.

– For states of the form pi and pj , i < j, the word ak−i
1 takes the machine from

state pi to pk and is accepted. However, from state pj , the word ak−i
1 reaches

state pk on the prefix ak−j
1 with no further transitions to read aj−i

1 and thus,
the word is not accepted.

– For states of the form (i, j) and p� with � < k, we consider the word z = wia
k
2

with
wi = an−i+1an−i+2 · · · an−3a1a1.

The prefix wi takes the machine from state (i, j) to state n−1 and on the rest
of the word ak

2 , the machine moves from n−1 to pk and is accepted. However,
from state p�, the computation on z reaches pk before all of z is read, since
|z| = n − i + k > k − � and it is rejected.



198 T. Ng et al.

– For states of the form (i, j) and (i′, j′) with i < i′ the states can be distin-
guished by z = wia

k
2 as above. For i = i′ and j < j′, let z = aia

k−j
1 . From

(i, j), the machine reads ai and is taken to pj , while from (i, j′), the machine
is taken to pj′ . From above, pj and pj′ are distinguishable by ak−j

1 .

Thus, we have shown that there are (n − 2)(k + 1) − k2 + 2 reachable states and
that all reachable states are pairwise inequivalent.


�
Proposition 2 and Lemma 2 now yield a tight state complexity bound for the

prefix distance neighbourhoods of regular languages.

Theorem 2. Let L be a finite language. For n > 2k ≥ 0, if sc(L) = n, then

sc(E(L, dp, k)) ≤ (n − 2) · (k + 1) − k2 + 2,

and this bound can be reached in the worst case.

The lower bound construction of Lemma 2 uses, for a DFA with n states,
an alphabet of cardinality n − 3. To conclude this section we show that the
construction is optimal in the sense that the upper bound of Theorem 2 cannot
be reached with an alphabet of cardinality less than n − 3.

Proposition 3. Let A be a DFA recognizing a finite language with n states. If
the state complexity of E(L(A), dp, k) equals (n − 2)(k + 1) − k2 + 2, then the
alphabet of A needs at least n − 3 letters.

Proof. Let A = (Q,Σ, δ, q0, F ) with |Q| = n. Let A′ = (Q′, Σ, δ′, q′
0F

′) be the
DFA recognizing E(L(A), dp, k) constructed in Proposition 1. Recall from the
proof of Proposition 2 that in order for A′ to have the maximal number of states
(n−2)(k +1)−k2 +2, a necessary condition is that F = {q0, qf} and that there
can be only one state q1 with ϕA(q1) = 1.

Now for all q ∈ Q − {q0, qf , q1}, ϕA(q) ≥ 2. By definition of the transition
function δ′, if ϕA(q) ≥ 2, the state (q, 1) can only be reached by a direct transition
from a final state. Since qf does not have any outgoing transitions, q0 must have
n − 3 outgoing transitions—one for each state q.

Furthermore, since A contains a final state qf with no outgoing transitions,
no additional symbols are required to reach p1, as it can be reached from qf via
a direct transition on any symbol.

Since A is a DFA and q0 has at least n−3 outgoing transitions, the cardinality
of the alphabet must be at least n − 3. 
�

4 Neighbourhoods of Prefix-Closed and Prefix-Free
Languages

Next, we consider the state complexity of neighbourhoods of prefix-closed and
prefix-free regular languages with respect to the prefix distance.
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Theorem 3. Let L be a prefix-closed regular language recognized by an n-state
DFA A. Then there is a DFA A′ that recognizes the neighbourhood E(L, dp, k)
with at most n + k states and this bound is reachable.

Proof. Since L is prefix-closed, every state of A must be an accepting state [12].
If A has n states, this means that the DFA A′ constructed in Proposition 1 for
the radius k neighbourhood has n + k states.

We now define a prefix-closed regular language Ln such that a DFA recogniz-
ing E(Ln, dp, k) requires at least n + k states. Let Ln = {ai | 0 ≤ i ≤ n}. Then
we define An = (Qn, {a, b}, δn, q0, Fn) where Qn = Fn = {0, . . . , n − 1}, q0 = 0,
and the transition function δn is defined by δn(i, a) = i + 1 for 0 ≤ i ≤ n − 1.

Then we define the DFA recognizing E(Ln, dp, k) by A′ = (Q′
n, {a, b}, δ′

n,
q0, F

′
n) where Q′

n = F ′
n = Qn ∪{p1, . . . , pk} and the transition function defined by

– δ′
n(i, a) = i + 1 for 0 ≤ i < n − 1,

– δ′
n(n − 1, a) = p1,

– δ′
n(i, b) = p1 for 0 ≤ i < n − 1,

– δ′
n(pi, a) = δ′

n(pi, b) = pi+1 for 1 ≤ i < k.

Every state i, 0 ≤ i ≤ n − 1, is reachable on the word ai and every state pi,
1 ≤ i ≤ k is reachable on the word bi. The states 0 ≤ i, i′ ≤ n−1 are distinguished
by the word bk−i and the states pi, p

′
i, 1 ≤ i, i′ ≤ k are also distinguished by the

word bk−i. The states i, 0 ≤ i ≤ n−1 and pj , 1 ≤ j ≤ k are distinguished by the
word an−jbk. Thus, there are n + k reachable states and they are all pairwise
distinguishable. 
�
Proposition 4. Let L be a prefix-free regular language recognized by a minimal
n-state DFA A = (Q,Σ, δ, q0, F ). Then there is a DFA B with at most (n − 1)
k + 2 − k(k−1)

2 states that recognizes the neighbourhood E(L, dp, k).

Proof. Let A′ = (Q′, Σ, δ, q′
0, F

′) be the DFA constructed for the neighbourhood
E(L, dp, k) as in Proposition 1. Since L is prefix-free, A must be non-exiting.
That is, A has a single final state with no outgoing transitions. This property
creates additional unreachable states in the DFA A′ for E(L, dp, k).

For all non-final states q ∈ Q − F , the state (q, 1) is reachable only if either
ϕA(q) = 1 or there is a transition from a final state to q. However, since A
is non-exiting, no final states may have any outgoing transitions, so the only
states q where (q, 1) is reachable are those with ϕA(q) = 1. However, for all such
states q, the states (q, i) with 2 ≤ i ≤ k + 1 are unreachable. Thus, to reach the
upper bound on the number of states, the number of states q with ϕA(q) = 1
must be minimized if k ≥ 2. If k = 1, then for each state q ∈ Q−F , either (q, 1)
is reachable or (q, k + 1) is reachable, so the number of states with ϕA(q) = 1
need not be minimized.

By Proposition 1 (b) elements of the set Sur = {(q, j) | q ∈ Q − F, 2 ≤ j ≤
k + 1, j > ϕA(q)} are unreachable as states of A′ (even without assuming that
L(A) is prefix-free. Let qf be the sole final state of A. The set Sur is minimized
when exactly one non-final state qi in the DFA A for each 1 ≤ i ≤ k has a
shortest path of length i that reaches qf . In this case, we have |Sur| = k(k−1)

2 .
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Thus, in order to maximize the number of reachable states of A′, the DFA
A has a single final state and a single state q1 with ϕA(q1) = 1 if k ≥ 2, giving
us at most (n − 2)k + k + 2 − k(k−1)

2 = (n − 1)k + 2 − k(k−1)
2 states of A′ which

are reachable. 
�
Next we present a lower bound construction that matches the bound of

Proposition 4.

Lemma 3. There exists a DFA A with n states recognizing a prefix-free regular
language such that a DFA recognizing the neighbourhood E(L(A), dp, k) requires
at least (n − 1)k + 2 − k(k−1)

2 states.

Proof. We define a DFA An = (Qn, Σn, δn, q0, F ), shown in Fig. 2, by choosing

Qn = {0, . . . , n − 1}, Σn = {a1, . . . , an−3, b},

q0 = 0, F = {n − 1}, and the transition function δn is given by

– δn(0, ai) = i for i = 1, . . . , n − 3,
– δn(i, ai) = i for i = 1, . . . , n − 3,
– δn(i, ai+1) = i + 1 for i = 1, . . . , n − 4,
– δn(n − 3, b) = n − 2, δn(n − 2, b) = 0, δn(0, b) = n − 1.

We transform An into the DFA A′
n = (Q′

n, Σn, δ′
n, q′

0, F
′) via the construction

from Proposition 1. To determine the reachable states of Q′
n, we first note that

the state (0, 1) is reachable as it is the initial state. Note that the initial state

0start

1 2

· · ·

n− 3n− 2

n− 1

...

a1

a2

a3

an−2

b

a1 a2

an−3

a2

an−3b

b

Fig. 2. The DFA An.
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is (0, 1) since ϕAn
(0) = 1. The final state n − 1 is reachable on the word b. Now

consider states p1, . . . , pk. The state p� is reachable on the word b�+1 by first
reading b to reach the final state and b� to reach the state p�.

Now consider states of the form (i, j) ∈ (Qn − {0, n − 1}) × {2, . . . , k + 1}.
Recall that states (i, 1) are unreachable for any state i ∈ Qn with ϕAn

> 1.
Then for states i ∈ Qn with ϕAn

> k and each 2 ≤ j ≤ k +1, we can reach state
(i, j) from (0, 1) via the word aj−1

i . For states i ∈ Qn with ϕAn
≤ k, we can

reach state (i, j) via the word aj−1
i for j = 2, . . . , ϕAn

(i) and states (i, j) with
j > ϕAn

(i) are unreachable by definition of A′
n.

Finally, we can reach state (n− 2, 2) via the word an−3b and states (n− 2, j)
are unreachable for j > 2 since ϕAn

(n−2) = 2. Thus the number of unreachable
states in (Qn − {0, n − 1}) × {2, . . . , k + 1} is

n−2∑
i=n−k

|{i}×{ϕAn
(i)+1, . . . , k+1}| =

k∑
i=1

|{i+1, . . . , k+1}| =
k∑

i=1

i =
k(k − 1)

2
.

Thus, the number of reachable states is

(n − 2) · k + 2 − k(k − 1)
2

+ k = (n − 1) · k + 2 − k(k − 1)
2

.

Now, we show that all reachable states are pairwise inequivalent. First, note
that as a final state of A, n−1 is not equivalent to a state of the form (i, j) in A′.
Next, we distinguish states of the form (i, j) from states of the form p�. For each
1 ≤ i ≤ n − 3, reading the word ak

i from state (i, j) takes the machine to state
(i,min{ϕA(i), k +1}). Then subsequently reading ai+1ai+2 · · · an−3bbb takes the
machine to the final state n − 1. However, for every state p�, reading ak

i forces
the machine beyond state pk, after which there are no transitions defined. The
state (n − 2, 2) is distinguished from all p� by the word b2+k, (0, 1) by b1+k, and
n − 1 by bk.

Next, without loss of generality, let � < �′ and consider states p� and p�′ .
Choose z = bk−�. The string z takes state p� to the state pk, where it is
accepted. However, the computation on string z from state p�′ is undefined since
�′ + k − � > k.

Finally, we consider states of the form (i, j). Let i < i′ and consider states
(i, j) and (i′, j′). Let z = ai+1ai+2 · · · an−3bbbb

k. From state (i, j), the word z
goes to state n − 1 on ai+1 · · · an−3bbb. Then by reading bk from state n − 1, we
reach state pk, an accepting state. However, when reading z from state (i′, j′),
we immediately reach state pj′+1 on ai+1, since the transition on ai+1 is defined
only for states (0, 1) and (i, j). Since the rest of the word z is of length greater
than k, reading it takes us to state pk with no further defined transitions for the
rest of the word.

Next, consider the state (i, j) and (i, j′), where j < j′. First, consider the
case when ϕAn

(i) > k. Then let z = ak−j
i . Reading z from (i, j) takes us to state

(i, k), which is a final state. However, from (i, j′), reading z brings us to state
(i, k + 1) and so the computation is rejected.
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Now, consider the case when ϕAn
(i) ≤ k. Let z = bbk−j−1. From state (i, j),

reading b takes the machine to state pj+1 and reading bk−j−1 puts the machine
in the accepting state pk. However, reading z from (i, j′) takes us to state pk with
bj′−j still unread since j′ + k − j − 1 > k and thus, with no further transitions
available, the computation is rejected.

Thus, we have shown that there are (n − 1) · k + 2 − k(k−1)
2 reachable states

and that all reachable states are pairwise inequivalent. 
�
Combining Proposition 4 and Lemma 3 we have:

Theorem 4. Let L be a prefix-free regular language. For n > k ≥ 0, if
sc(L) = n, then

sc(E(L, dp, k)) ≤ (n − 1) · k + 2 − k(k − 1)
2

,

and this bound can be reached in the worst case.

The construction of Lemma 3 that establishes the lower bound for Theorem
4 uses an alphabet of size n − 2, where n is the number of states of the DFA.
The below result establishes that the size of the alphabet cannot be reduced.

Proposition 5. Let A be a DFA recognizing a prefix-free regular language with
n states. If the state complexity of E(L(A), dp, k) equals (n − 1)k + 2 − k(k−1)

2 ,
then the alphabet of A needs at least n − 2 letters.

Proof. Let A = (Q,Σ, δ, q0, F ) with |Q| = n. Let A′ = (Q′, Σ, δ′, q′
0F

′) be the
DFA recognizing E(L(A), dp, k) constructed in Proposition 1. Recall that as
an automaton recognizing a prefix-free regular language A must be non-exiting.
That is, A has a single final state qf and it cannot have any outgoing transitions.
Recall also from the proof of Proposition 4 that in order for A′ to have the
maximal number of states (n − 1)k + 2 − k(k−1)

2 , a necessary condition is that
there can be only one state q1 with ϕA(q1) = 1 and one state q2 with ϕA(q2) = 2.

Now for all q ∈ Q − {qf , q1, q2}, ϕA(q) ≥ 3. Recall that since the sole final
state qf has no outgoing transitions, states (q, 1) are reachable only if ϕA(q) = 1.
Then by definition of the transition function δ′, if ϕA(q) ≥ 3, the state (q, 2) can
only be reached by a direct transition from a state q with ϕA(q) = 1. Thus, q1
must have n − 2 outgoing transitions—one for each state q with ϕA(q) ≥ 3 and
one additional transition to the final state qf . Note that q2 requires no direct
transition from q1 since ϕA(q2) = 2 and thus (q2, 2) is the only reachable state
of the form (q2, j).

Furthermore, since A contains a final state qf with no outgoing transitions,
no additional symbols are required to reach p1, as it can be reached from qf via
a direct transition on any symbol.

Since A is a DFA and q1 has at least n−2 outgoing transitions, the cardinality
of the alphabet must be at least n − 2. 
�
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5 Conclusion

We have given tight state complexity bounds for the prefix-distance neighbour-
hood of, respectively, finite, prefix-closed, and prefix-free languages. As can, per-
haps, be expected the bound for prefix-closed languages is relatively easier to
obtain and the matching lower bound construction uses a binary alphabet. The
upper bound constructions for the finite and the prefix-free languages are more
involved and the lower bound constructions use a variable size alphabet. Fur-
thermore, we have shown that, in both cases, the alphabet size is optimal.

Since the reversal of a DFA is not, in general, deterministic, the state com-
plexity bounds for suffix-distance (or factor-distance) neighbourhoods differ sig-
nificantly from the corresponding bounds for prefix-distance neighbourhoods.
Tight lower bounds are not known for suffix-distance neighbourhoods of gen-
eral regular languages [14] or for various sub-regular language families. Such
questions can be a topic for further research.
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Abstract. First, we show that universality and other properties of gen-
eral jumping finite automata are undecidable, which answers questions
asked by Meduna and Zemek in 2012 [12]. Second, we close a study
started by Černo and Mráz in 2010 [3] by proving that a clearing restart-
ing automaton using contexts of length two can accept a binary non-
context-free language.

1 Introduction

In 2012, Meduna and Zemek [12,13] introduced general jumping finite automata
as a model of discontinuous information processing in modern software. A gen-
eral jumping finite automaton (GJFA) is described by a finite set Q of states, a
finite alphabet Σ, a finite set R of rules from Q×Σ∗ ×Q, an initial state q0 ∈ Q,
and a set F ⊆ Q of final states. In a step of computation, the automaton switches
from a state r to a state s using a rule (r, v, s) ∈ R and deletes a factor equal to v
from any part of the input word. A rule (r, v, s) and an occurrence of the factor v
are chosen nondeterministically (in other words, the read head can jump to any
position). A word w ∈ Σ∗ is accepted if the GJFA can reduce w to the empty
word while passing from the initial state to an accepting state. The boldface
term GJFA refers to the class of languages accepted by GJFA. The initial work
[12,13] deals mainly with closure properties of GJFA and its relations to clas-
sical language classes (the publications [12,13] contain flaws, see [17]). It turns
out that the class GJFA is not closed under operations related to continuous
processing (concatenation, Kleene star, homomorphism, inverse homomorphism,
shuffle) nor some Boolean closure operations (complementation, intersection).
The class is incomparable with both regular and context-free languages. It is a
proper subclass of both context-sensitive languages and of the class NP, while
there exist NP-complete GJFAlanguages (see [5], which is an extended version
of [6]).

On the other hand, the concept of restarting automata [10,14] is motivated by
reduction analysis and grammar checking of natural language sentences. In 2010,
Černo and Mráz [3] introduced a subclass named clearing restarting automata
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(cl-RA) in order to describe systems that use only very basic types of reduction
rules (see also [2]). Clearing restarting automata may delete factors according
to contexts and endmarks, but, unlike GJFA and classical restarting automata,
they are not controlled by states and rules. A key property of a cl-RA is the
maximum length k of context used. For k ≥ 0, a k-clearing restarting automaton
(k -cl-RA) is described by a finite alphabet Σ and a finite set I of instructions of
the form (uL, v, uR), where v ∈ Σ∗, uL ∈ Σk∪¢Σk−1, and uR ∈ Σk∪Σk−1$. The
words uL, uR specify the left and right context for consuming a factor v, while ¢
and $ stand for the left and right end of input, respectively. A word is accepted
by a cl-RA if it may be completely consumed using a series of instructions.
The class of languages accepted by cl-RA is not closed under complementation,
intersection, or union [3]. It forms a superset of regular languages, a subset of
context-sensitive languages, and is incomparable with context-free languages [3].

Tough both the formalisms are defined as acceptors, they may be equiva-
lently treated as generative systems. Moreover, they share important properties
with insertion systems [16] (possibly graph-controlled [1]) and semi-contextual
grammars [15] (possibly using regular control without appearance checking [11]),
as we briefly discuss in the conclusion. The present paper consists of two main
parts:

In Sect. 3 we show that, given a GJFA M with an alphabet Σ, it is undecid-
able whether M accepts the universal language Σ∗. In other words, universality
of GJFA is undecidable. As a direct consequence, the more general problems
of equivalence and inclusion are undecidable for GJFA as well. Decidability of
these tasks was listed as an open problem in [12,13].

In Sect. 4 we deal with expressive power of cl-RA with short contexts and
small alphabets, as it was addressed in [3]. The authors showed that a language
accepted by a 2 -cl-RA may not be context-free, but the example automata
required at least six-letter alphabets, so they asked what is the least sufficient
alphabet size. We provide a binary example, which forms a tight bound.

2 Preliminaries

We use the notion of insertion as it was defined, e.g., in [4,7,9]:

Definition 1. Let K,L ⊆ Σ∗ be languages. The insertion of K to L is

L ← K = {u1vu2 | u1u2 ∈ L, v ∈ K} .

More generally, for each k ≥ 1 we denote

L ←k K =
(
L ←k−1 K

) ← K,

L ←∗ K =
⋃
i≥0

L ←i K,

where L ←0 K stands for L. In expressions with ← and ←∗, a singleton set {w}
may be replaced by w.



Two Results on Discontinuous Input Processing 207

A chain L1 ← L2 ← · · · ← Ld of insertions is evaluated from the left, e.g.,
L1 ← L2 ← L3 means (L1 ← L2) ← L3. The empty word is denoted by ε.

As described above, a GJFA is a quintuple M = (Q,Σ,R, q0, F ). For a rule
(r, v, s) ∈ R with r, s ∈ Q, the word v ∈ Σ∗ is called the label of the rule.
A sequence

(r1, v1, s1) , (r2, v2, s2) , . . . , (rk, vk, sk)

of rules from R is a path if k ≥ 1 and si = ri+1 for 1 ≤ i ≤ k − 1. The
sequence v1, v2, . . . , vk is the labeling of the path. The path is accepting if r1 = q0
and sk ∈ F . The original definition [12,13] of the language L(M) accepted
by M is based on configurations that specify positions of the read head (i.e.,
starting positions of the factor to be erased in the next step). For our proofs, this
type of configurations is useless, whence we directly use the following generative
characterization [17, Corollary 1] of L(M) as a definition:

Definition 2. Let M = (Q,Σ,R, s, F ) be a GJFA and w ∈ Σ∗. Then w ∈ L(M)
if and only if w = ε and s ∈ F , or

w ∈ ε ← vd ← vd−1 ← · · · ← v2 ← v1, (1)

where d ≥ 1 and v1, v2, . . . , vd is a labeling of an accepting path in M .

If a GJFA M = (Q,Σ,R, s, F ) is clear, we write (r, w) � (s, u) for r, s ∈ Q and
u, v ∈ Σ∗ if w ∈ u ← v for some (r, v, s) ∈ R.

In the case of clearing restarting automata we include the original definition,
which builds on context rewriting systems [3]:

Definition 3. For k ≥ 0, a k-context rewriting system is a tuple M = (Σ,Γ, I),
where Σ is an input alphabet, Γ ⊇ Σ is a working alphabet not containing the
special symbols ¢ and $, called sentinels, and I is a finite set of instructions of
the form

(uL, v → t, uR) ,

where uL is a left context, uL ∈ Γ k ∪ ¢Γ k−1, uR is a right context, uR ∈
Γ k ∪ Γ k−1$, and v → t is a rule, v, t ∈ Γ ∗. A word w = u1vu2 can be rewritten
into u1tu2 (denoted by u1vu2 →M u1tu2) if and only if there exists an instruction
(uL, v → t, uR) ∈ I such that uL is a suffix of ¢u1 and uR is a prefix of u2$.

We use the star in �∗,→∗,
∗ and other symbols to denote reflexive-transitive
closures of binary relations.

Definition 4. For k ≥ 0, a k-clearing restarting automaton (k -cl-RA) is a
system M = (Σ, I), where M ′ = (Σ,Σ, I) is a k-context rewriting system such
that for each i = (uL, v → t, uR) ∈ I it holds that v ∈ Σ+ and t = ε. Since t
is always the empty word, the notation i = (uL, v, uR) is used. A k -cl-RA M
accepts the language

L(M) = {w ∈ Σ∗ | w �∗
M ε} ,

where �M denotes the rewriting relation →M ′ of M ′. The term L(k -cl-RA)
denotes the class of languages accepted by k -cl-RA.

The generative approach is formalized by writing w2 
 w1 instead of w1 � w2.
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3 Undecidability in General Jumping Finite Automata

Theorem 5. Given a GJFA M = (Q,Σ,R, s, F ), it is undecidable whether
L(M) = Σ∗.

Let us prove the theorem. Given a context-free grammar G with terminal alpha-
bet ΣT, it is undecidable whether L(G) = Σ∗

T [8]. We present a reduction from
this problem to the universality of GJFA. Assume that the given grammar G

– has non-terminal alphabet ΣN and a start symbol AS ∈ ΣN,
– accepts the empty word ε, and
– is given in Greibach normal form [8], i.e., the rules are AS → ε and Ai → ui,

where Ai ∈ ΣN and ui ∈ ΣTΣ∗
N for i ∈ {1, . . . ,m}, m ≥ 0.

Note that any context-free grammar that accepts ε can be algorithmically con-
verted to the form above. Next, we construct a GJFA MG = (Q,Γ,R, s, F ) as
follows, denoting ΣB = {b1, . . . , bm}:

Q = {q0, q1, q2, q3, q4} ,

Γ = ΣT ∪ ΣN ∪ ΣB,

s = q0, F = {q2, q4}. The set R of rules is defined in Fig. 1. In this figure, each
arrow labeled with a finite set S ⊆ Γ ∗ stands for |S| rules, each labeled with a
word v ∈ S. The following finite sets are used:

PBU = {biui | i = 1, . . . ,m} ,

PNB = {Aibi | i = 1, . . . , m} ,

PC = {xA1 | x ∈ ΣT}
∪ {Aibi | i = 1, . . . ,m}
∪ {biAi+1 | i = 1, . . . ,m − 1}
∪ {bmx | x ∈ ΣT} .

ε ΣN ∪ ΣB ∪ {ε}

q0 q4

q1

q3

ε AS

ΣBΣN ∪ ΣT

PBU ∪ PNB

q2
Γ2 \ PC

Γ

Fig. 1. The GJFA MG corresponding to a context-free grammar G
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For a word w ∈ Γ ∗ we denote with wT and wN,B the projections of w to
subalphabets ΣT and ΣN ∪ΣB respectively1 Let us show that L(G) = Σ∗

T if and
only if L(MG) = Γ ∗.
First, suppose that L(G) = Σ∗

T and take an arbitrary w ∈ Γ ∗. Describe a
derivation of wT by G using v0, v1, . . . , vd ∈ (ΣT ∪ ΣN)∗, d ≥ 1, where

v0 = AS,

vd = wT,

vk = vp,kAikvs,k,

vk+1 = vp,kuikvs,k

for each k ∈ {0, . . . , d − 1}. For k ∈ {0, . . . , d}, we define inductively a word wk ∈
Γ ∗ and a mapping σk from each occurrence of x ∈ ΣN in vk to an occurrence
of the same x in wk. First, w0 = AS and σ0 is trivial. Next, take 0 ≤ k ≤ d − 1
and write wk = wp,kAikws,k such that the Aik right after wp,k is the σk-image
of the Aik right after vp,k in vk. Then define

wk+1 = wp,kAikbikuikws,k

and let σk+1 extend σk with mapping the occurrences of x ∈ ΣN within the factor
uik in vk+1 to the corresponding occurrences within the same factor in wk+1.
Informally, the words w0, . . . , wd describe the derivation of wT with keeping
all the used nonterminals, i.e., Aik is rewritten with Aikbikuik instead of uik .
Observe that (q1, wd) �∗ (q1, AS) using the rules labeled with words from PBU.
Also observe that, due to Greibach normal form, wd ∈ (ΣT ∪ ΣTΣNΣB)∗, i.e.,
the factors from ΣNΣB are always separated with letters from ΣT.

Distinguish the following cases:

– If w does not have a factor from Γ 2\PC, all two-letter factors of w belong to
PC, which implies that w is a factor of a word from (ΣTt)∗, where

t = A1b1A2b2 · · · Ambm. (2)

• If w starts with a letter from ΣT∪ΣN and ends with a letter from ΣT∪ΣB,
then (q1, w) �∗ (q1, wd) using the rules labeled with words from PNB.
Because (q1, wd) �∗ (q1, AS), we conclude that w ∈ L(MG).

• Otherwise, w starts with a letter from ΣB or ends with a letter from ΣN.
Then

wN,B ∈ ΣB (ΣNΣB)∗ ∪ (ΣNΣB)∗
ΣN ∪ ΣB (ΣNΣB)∗

ΣN

and we observe that (q0, w) � (q3, w) �∗ (q3, wN,B) � (q3, u) for some
u ∈ ΣN ∪ ΣB ∪ {ε}. As (q3, u) � (q4, ε), we get w ∈ L(MG).

– If w has a factor u ∈ Γ 2\PC, write w = wpuws and observe

(q0, wpuws) � (q2, wpws) �∗ (q2, ε) ,

implying w ∈ L(MG).
1 A projection to Γ ′ ⊆ Γ is given by the homomorphism that maps x ∈ Γ to x if

x ∈ Γ ′ or to ε otherwise.
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Second, suppose that L(MG) = Γ ∗ and take an arbitrary v = x1x2 · · · xn ∈ Σ∗
T

with x1, . . . , xn ∈ ΣT. Let w = (x1t) (x2t) · · · (xn−1t) (xnt), with t defined in (2).
We have w ∈ L(MG). Observe that:

– The word w does not contain a factor from Γ 2\PC.
– By deleting factors from ΣBΣN ∪ΣT, the word w cannot become a word from

ΣN ∪ ΣB ∪ {ε}.

Thus, w is accepted by M using a path through the state q1 ending in the state
q4. In other words, w can be obtained by inserting words from PBU ∪ PNB to
AS. During that process, once an occurrence of bi fails to be preceded by Ai,
this situation lasts to the very end, which is a contradiction. It follows that
biui ∈ PBU can be inserted only to the right of an occurrence of Ai that is not
followed by bi. This corresponds to rewriting Ai with ui, so we can observe that
the whole looping on q1 (viewed backwards) corresponds to generating wT = v
from AS using the rules of G. �


Because it is easy to construct a GJFA accepting Σ∗, universality is a special
case of both equivalence and inclusion. Thus, the following claim is trivial:

Corollary 6. Given GJFA M1 and M2, it is undecidable both whether L(M1) =
L(M2) and whether L(M1) ⊆ L(M2).

4 Clearing Restarting Automata with Small Contexts

Recall that the following facts were formulated and proved in [3]:

1. For each k ≥ 3, the class L(k -cl-RA) contains a binary language that is not
context-free.

2. The class L(2 -cl-RA) contains a language L ⊆ Σ∗ with |Σ| = 6 that is not
context-free.

3. The class L(1 -cl-RA) contains only context-free languages.

Moreover, for each k ≥ 1, all the unary languages lying in L(k -cl-RA) are
regular [3]. The present section is devoted to proving the following theorem,
which completes the results listed above.

Theorem 7. The class L(2 -cl-RA) contains a binary language that is not
context-free.

In order to prove Theorem7, we define two particular rewriting systems:

1. A 1-context rewriting system RuV = ({u,V} , {u,V} , IuV). The set IuV is
listed in Table 1.

2. A 2-clearing restarting automaton R01 = ({0, 1} , I01). The set I01 is listed in
Table 2.

Note that headings of the tables provide identifiers of rules. We write →uV for
the rewriting relation of RuV and 
01 for the “generative” relation of R01.
The key feature of the system RuV is:
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Table 1. The rules IuV

0 (¢, ε → uu, $)

1 (¢, u → uuV, ε)

2 (ε, Vu → uuuV, ε)

3 (ε, Vu → uuuu, $)

Table 2. The rules I01

a b c d

0 (¢, 00, $) - - -

1 (¢, 10, 00) (¢, 00, 10) - -

2 (01, 10, 00) (00, 11, 01) (11, 00, 10) (10, 01, 11)

3 (01, 10, 0$) (00, 11, 0$) - -

Lemma 8. Let w ∈ L(RuV) ∩ {u}∗. Then |w| = 2 · 3n for some n ≥ 0.

The proof is postponed to Sect. 4.1. Next, we define:

1. A length-preserving mapping ϕ : {0, 1}∗ → {u,V}∗ as ϕ(x1 . . . xn) =
x1 . . . xn, where

xk =

{
V if 1 < k < n and xk−1 = xk+1

u otherwise

for each k ∈ {1, . . . , n}.
2. A regular language K ⊆ {0, 1}∗:

K =
{
w ∈ {0, 1}∗ | w has none of the factors 000, 010, 101, 111

}
.

The following is a trivial property of ϕ and K. Informally, ϕ(u) marks by V the
positions where a defect occurs in u ∈ {0, 1}∗. A defect is a position that violates
the form . . . 00110011 . . . , i.e., a position whose neighbours are equal:

Lemma 9. Let u ∈ {0, 1}∗. Then u ∈ K if and only if ϕ(u) ∈ {u}∗.

We index the rules from IuV and I01 by the rows of Tables 1 and 2, i.e., by types 0
to 3. For a string w = x1x2 . . . xd, where x1, x2, . . . , xd are letters, and for integers
i, j with 1 ≤ i ≤ j ≤ d, we denote w[i, j] = xixi+1 . . . xj and w[i, . . . ] = w[i, d].

The next lemma describes how the systems R01 and RuV are related. Infor-
mally, a rule of the type 2 from I01 can be applied only right after a defect in
u ∈ {0, 1}∗. This creates another defect on the right, i.e., a factor x1x2y1y2 of
u with defect on x2 is replaced with x1x2z1z2y1y2 with defect on y1. This cor-
responds to applying the rule Vu → uuuV to the defect markers. A rule of the
type 1 from I01 can introduce a new defect near the beginning of u ∈ {0, 1}∗,
while a rule of type 3 from I01 can remove a defect near to the end:

Lemma 10. Let u, v ∈ {0, 1}∗. If u 
01 v, then ϕ(u) →uV ϕ(v).

Proof. For u = v the claim is trivial, so we suppose u �= v. Denote m = |u|. As
u can be rewritten to v using a single rule of R01, we can distinguish which of
the rule types is used:
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(0) If the rule 0 is used, we have u = ε and v = 00. Thus ϕ(u) = ε and ϕ(v) = uu.
(1) If a rule (¢, z1z2, y1y2) of the type 1 is used, we see that v has some of the

prefixes 1000, 0010 and so ϕ(v) starts with uuV. Trivially, ϕ(u) starts with
u. Because u[1, . . . ] = v[3, . . . ], we have ϕ(u)[2, . . . ] = ϕ(v)[4, . . . ] and we
conclude that applying the rule (¢,u → uuV, ε) rewrites ϕ(u) to ϕ(v).

(2) If a rule (x1x2, z1z2, y1y2) of the type 2 is used, we have

u[k, k + 3] = x1x2y1y2,

v[k, k + 5] = x1x2z1z2y1y2

for some k ∈ {1, . . . ,m − 3}. As x1x2y1y2 equals some of the factors 0100,
0001, 1110, 1011, we have

ϕ(u)[k + 1, k + 2] = Vu.

As x1x2z1z2y1y2 equals some of the factors 011000, 001101, 110010, 100111,
we have

ϕ(v)[k + 1, k + 4] = uuuV.

Because u[1, k + 1] = v[1, k + 1] and u[k + 2, . . . ] = v[k + 4, . . . ], we have

ϕ(u)[1, k] = ϕ(v)[1, k] ,
ϕ(u)[k + 3, . . . ] = ϕ(v)[k + 5, . . . ] .

Now it is clear that the rule (ε,Vu → uuuV, ε) rewrites ϕ(u) to ϕ(v).
(3) If a rule (x1x2, z1z2, y$) of the type 3 is used, we have

u[m − 2,m] = x1x2y,

v[m − 2,m + 2] = x1x2z1z2y.

As x1x2y equals some of the factors 010, 000, we have

ϕ(u)[m − 1,m] = Vu.

As x1x2z1z2y equals some of the factors 01100, 00110, we have

ϕ(v)[m − 1,m + 2] = uuuu.

Because u[1,m − 1] = v[1,m − 1], we have

ϕ(u)[1,m − 2] = ϕ(v)[1,m − 2] ,

Now it is clear that the rule (ε,Vu → uuuu, $) rewrites ϕ(u) to ϕ(v). �

Corollary 11. If u ∈ L(R01), then ε →∗

uV ϕ(u).

Proof. Follows from the fact that ϕ(ε) = ε and a trivial inductive use of
Lemma 10. �
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Note that L(R01) contains, e.g., 00 and 100110. Informally, the claims above
imply that L(R01) contains only words without defects and that each word from
L(R01) is obtained from 00 by adding defects to the beginning and pushing them
to the end, while the length of the word is tripled for each processed defect. It
remains to show that a defect can be always avoided. It turns out to be convenient
to describe simultaneous processing of two defects that are close to each other.

The last part of the proof of Theorem7 relies on the following lemma, whose
proof is postponed to Sect. 4.2:

Lemma 12. For each α ≥ 0 and β ≥ 1 it holds that

00 (1100)α 10 (0011)β 00 
∗
01 00 (1100)α+9 10 (0011)β−1 00.

Corollary 13. For each γ ≥ 0 it holds that

0010 (0011)γ 00 
∗
01 00 (1100)9γ 1000.

Proof. As the left-hand side equals 00 (1100)0 10 (0011)γ 00 and the right-hand
side equals 00 (1100)9γ 10 (0011)0 00, the claim follows from Lemma 12 applied γ
times. �

Corollary 14. The language L(R01) ∩ K is infinite.

Proof. We show that for each k ≥ 0,

00 (1100)
2·9k−2

4 ∈ L(R01) .

In the case of k = 0 we just check that 00 ∈ L(R01). Next, we suppose that the
claim holds for a fixed k ≥ 0 and show that

00 (1100)
2·9k−2

4 
∗
01 00 (1100)

2·9k+1−2
4 .

Using the rules 1a and 1b we get

00 (1100)
2·9k−2

4 
01 1000 (1100)
2·9k−2

4 
01 001000 (1100)
2·9k−2

4 ,

while Corollary 13 continues with

0010 (0011)
2·9k−2

4 00 
∗
01 00 (1100)

2·9k+1−18
4 1000.

Finally, denoting p = 00 (1100)
2·9k+1−18

4 , using rules 3b, 2a, 2b, 2d, 2c, and 3a
respectively, we get

p1000 
01 p100110 
01 p11000110 
01 p (1100) 110110 
01 p (1100) 11001110 
01


01 p (1100) (1100) 110010 
01 p (1100) (1100) (1100) 1100 = 00 (1100)
2·9k+1−2

4 .

�
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We conclude the proof of Theorem7 by pointing out that Lemmas 8, 9, and 10
say that for each w ∈ {0, 1}∗ we have

w ∈ L(R01) ∩ K ⇒ ϕ(w) ∈ L(RuV) ∩ {u}∗ ⇒ (∃n ≥ 0) |w| = 2 · 3n.

This, together with the pumping lemma for context-free languages and the
infiniteness of L(R01)∩K, implies that L(R01)∩K is not a context-free language.
As the class of context-free languages is closed under intersections with regular
languages, L(R01) is not context-free either.

4.1 Proof of Lemma 8

We should show that w ∈ L(RuV) ∩ {u}∗ implies |w| = 2 · 3n for some n ≥ 0.
Let Φ : {u,V}∗ → N be defined inductively as follows:

Φ(ε) = 0,
Φ

(
ukw

)
= k + Φ(w) ,

Φ(Vw) = 1 + 3 · Φ(w)

for each k ≥ 1 and w ∈ {u,V}∗. Observe that we have assigned a unique value
of Φ to each word from {u,V}∗. Next, we describe effects of the rules of RuV to
the value of Φ.
(0) The rule 0 can only rewrite w1 = ε to w2 = uu. We have Φ(w1) = 0 and

Φ(w2) = 2.
(1) The rule 1 rewrites w1 = uw to w2 = uuVw for some w ∈ {u,V}∗. We have

Φ(w1) = 1 + Φ(w) and Φ(w2) = 3 + 3 · Φ(w). Thus, Φ(w2) = 3 · Φ(w1).
(2) The rule 2 rewrites w1 = wVuw to w2 = wuuuVw for some w,w ∈ {u,V}∗.

We have
Φ(Vuw) = Φ(uuuVw) = 4 + 3 · Φ(w) .

It follows that Φ(w1) = Φ(w2).
(3) The rule 3 rewrites w1 = wVu to w2 = wuuuu for some w ∈ {u,V}∗. We

have Φ(Vu) = Φ(uuuu) = 4 and thus Φ(w1) = Φ(w2).

Together, each w ∈ L(RuV) has Φ(w) = 2 · 3n for some n ≥ 0. As Φ(w) = |w| for
each w ∈ {u}∗, the proof is complete. �


4.2 Proof of Lemma 12

We should prove that

00 (1100)α 10 (0011)β 00 
∗
01 00 (1100)α+9 10 (0011)β−1 00

for α ≥ 0, β ≥ 1. Let p = 00 (1100)α, q = (0011)β−1 00, and derive the claim as
follows:

p10 (0011) q 
b p10011011q 
a

p1100011011q 
b p (1100) 11011011q 
d

p (1100) 1100111011q 
d p (1100)2 11100111q 
c

p (1100)2 1100100111q 
a p (1100)3 11000111q 
b

p (1100)4 110111q 
c p (1100)4 11011001q 
d
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p (1100)4 1100111001q 
c p (1100)5 11001001q 
a

p (1100)6 110001q 
a p (1100)7 0110q 
b

p (1100)7 110110q 
d p (1100)7 11001110q 
c

p (1100)8 110010q,

where uses of particular rules of the type 2 are indicated by typing 
a,
b,
c,
d

instead of 
01. �


5 Conclusions and Remarks

We made a progress in studying basic properties of two recently introduced
formalisms. Even if these particular models do not find application in practice,
our results may be of key importance for designing suitable modifications.

The maximum length of labels is a key property of a GJFA. It remains open
whether our undecidability results hold if restricted to GJFA with labels of a
fixed maximum length. In jumping finite automata, i.e., GJFA with labels of
length one, the problems become decidable (see [5] for a thorough survey).

Note that there is a group of older models that can be, in fact, put to a
common framework with GJFA and cl-RA, immediately sharing some properties
following from our new results:

– Insertion systems [16] were introduced in the scope of DNA computing. They
generate sequences by inserting factors according to contexts of restricted
lengths. Their generalization to graph-controlled [1] insertion systems together
with contexts of zero length corresponds to the expressive power of GJFA.
Using the notation of [1], we have LStP∗

(
ins0,0

∗
)

= GJFA. Another (historical)
work introduces regular control semi-contextual grammars without appearance
checking [11]. Again, the variant with forbidden contexts (with a language
class denoted by C0) is equivalent to GJFA. Our results imply that universality,
inclusion, and equivalence are undecidable for these models as well.

– Up to explicit endmarking, insertion systems and the basic variant of semi-
contextual grammars [15], both with contexts bounded by some k ≥ 1, are
equivalent to k -cl-RA. More precisely, each language from the class denoted by
INSk

∗ or Jk is accepted by a k -cl-RA, while for each k -cl-RA M , the language¢L(M) $ lies in INSk
∗ = Jk. Thus, we can conclude that the class INS2

∗ = J2

contains non-context-free binary languages.

The remarks above are hard to present in more depth because the original defi-
nitions of insertions systems and semi-contextual grammars use non-compatible
notational paradigms. Once these definitions are understood, the claims are very
easy to check (see [17]).
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16. Păun, G., Rozenberg, G., Salomaa, A.: Insertion-deletion systems. In: DNA Com-
puting: New Computing Paradigms. Texts in Theoretical Computer Science,
pp. 187–215. Springer, Heidelberg (1998)

17. Vorel, V.: On basic properties of jumping finite automata. Int. J. Found. Comput.
Sci., conditionally accepted in 2015. http://arxiv.org/abs/1511.08396

http://arxiv.org/abs/1512.00482
http://arxiv.org/abs/1511.08396


Author Index

Bastos, Rafaela 45
Bonchiş, Cosmin 18
Bondar, Eugenija A. 1
Broda, Sabine 45
Brzozowski, Janusz 60, 73

Ésik, Zoltán 87

Fernau, Henning 98, 111
Fleischer, Lukas 126
Freund, Rudolf 98

Herrmann, Andrea 138

Istrate, Gabriel 18
Iván, Szabolcs 87

Jirásková, Galina 29, 73, 153

Kufleitner, Manfred 126
Kuppusamy, Lakshmanan 111
Kutrib, Martin 138

Lavado, Giovanna J. 168
Liu, Bo 73

Machiavelo, António 45
Malcher, Andreas 138

Marais, Laurette 180
Moreira, Nelma 45

Ng, Timothy 192

Pighizzini, Giovanni 168
Prigioniero, Luca 168

Rajasekaran, Aayush 73
Raman, Indhumathi 111
Rappaport, David 192
Reis, Rogério 45

Salomaa, Kai 192
Šebej, Juraj 153
Siromoney, Rani 98
Subramanian, K.G. 98
Szabari, Alexander 153
Szykuła, Marek 73

van Zijl, Lynette 180
Volkov, Mikhail V. 1
Vorel, Vojtěch 205

Wendlandt, Matthias 138


	Preface
	Organization
	Abstracts of Invited Talks
	Completely Reachable Automata
	Words Avoiding Patterns, Enumeration Problems and the Chomsky Hierarchy
	Heapability, Interactive Particle Systems, Partial Orders: Results and Open Problems
	Self-Verifying Finite Automata and Descriptional Complexity 
	Contents
	Completely Reachable Automata
	1 Background and Overview
	2 A Sufficient Condition
	3 Complexity of Deciding Reachability
	4 Minimal Completely Reachable Automata
	5 More Open Questions
	References

	Heapability, Interactive Particle Systems, Partial Orders: Results and Open Problems
	1 Introduction
	2 Preliminaries
	3 The Computational Complexity of Generalized Height and Width
	4 The Asymptotic Behavior of the Average k-height and k-width
	5 The Special Case d=2
	5.1 The Connection with the Multiset Hammersley Process

	6 High-Dimensional Permutations
	7 Partition into (un)equal Parts: Entropy and Compression
	References

	Self-Verifying Finite Automata and Descriptional Complexity
	1 Introduction
	2 SVFA-to-DFA Conversion and Minimal SVFAs
	3 Lower Bound Methods and Operations on SVFAs
	3.1 Reversal
	3.2 Boolean Operations
	3.3 Star
	3.4 Left and Right Quotients
	3.5 Concatenation

	4 Conclusions
	References

	On the State Complexity of Partial Derivative Automata For Regular Expressions with Intersection
	1 Introduction
	2 Regular Expressions with Intersection
	3 Automata and Systems of Equations
	4 Partial Derivatives
	5 Average Complexity Results
	5.1 Number of Expressions and Letters and  Symbols
	5.2 Average Size of 

	6 Conclusions
	References

	Unrestricted State Complexity of Binary Operations on Regular Languages
	1 Motivation
	2 Terminology and Notation
	3 Boolean Operations
	4 Product
	5 Most Complex Regular Languages
	6 Conclusions
	References

	On the State Complexity of the Shuffle of Regular Languages
	1 An Upper Bound for the Shuffle Operation
	2 Partial Results About Tightness
	2.1 Reachability
	2.2 Proof of Distinguishability

	3 Conclusions
	References

	MSO-definable Properties of Muller Context-Free Languages Are Decidable
	1 Introduction
	2 Notation
	3 Result
	4 Conclusion
	References

	Contextual Array Grammars with Matrix and Regular Control
	1 Introduction
	2 Definitions
	3 Contextual Array Grammars
	3.1 Matrix Contextual Array Grammars
	3.2 Contextual Array Grammars with Regular Control

	4 Decidability Questions
	5 Picture Generation
	References

	Descriptional Complexity of Graph-Controlled Insertion-Deletion Systems
	1 Introduction
	2 Preliminaries
	2.1 Insertion-Deletion Systems
	2.2 Graph-Controlled Insertion-Deletion Systems

	3 Auxiliary Results
	4 Computational Completeness Results
	5 (Meta)linear Languages
	6 Conclusions
	References

	Operations on Weakly Recognizing Morphisms
	1 Introduction
	2 Preliminaries
	3 Lower Bound Techniques
	3.1 Proving Lower Bounds for Weakly Recognizing Morphisms
	3.2 The Full Automata Technique

	4 From Automata to Weakly Recognizing Morphisms
	5 From Weakly Recognizing Morphisms to Automata
	6 Complementation
	7 Discussion and Open Problems
	References

	Descriptional Complexity of Bounded Regular Languages
	1 Introduction
	2 Preliminaries and Closure Properties
	3 Determinization
	4 Deterministic Operational State Complexity
	4.1 A Tool for Constructing Lower Bound Witnesses
	4.2 Reversal, Concatenation, and Iteration

	5 Conclusions
	References

	The Complexity of Languages Resulting from the Concatenation Operation
	1 Introduction
	2 Preliminaries
	3 State Complexity of Concatenation
	4 The Range of Possible Complexities
	5 Conclusions
	References

	Minimal and Reduced Reversible Automata
	1 Introduction
	2 Preliminaries
	3 Minimal Reversible Automata
	4 Reduced Reversible Automata
	5 Conclusion
	References

	Unary Self-verifying Symmetric Difference Automata
	1 Introduction
	2 Preliminaries
	3 Unary SV-XNFA
	3.1 Languages for Unary SV-XNFA
	3.2 Descriptional Complexity of Unary SV-XNFA

	4 Conclusion
	References

	State Complexity of Prefix Distance of Subregular Languages
	1 Introduction
	2 Preliminaries
	3 Neighbourhoods of Finite Languages
	4 Neighbourhoods of Prefix-Closed and Prefix-Free Languages
	5 Conclusion
	References

	Two Results on Discontinuous Input Processing
	1 Introduction
	2 Preliminaries
	3 Undecidability in General Jumping Finite Automata
	4 Clearing Restarting Automata with Small Contexts
	4.1 Proof of Lemma8
	4.2 Proof of Lemma 12

	5 Conclusions and Remarks
	References

	Author Index



