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Preface

This thesis is devoted to the study of problems of automata theory from the point of
view of descriptive set theory. The analyzed structures are x-words and infinite trees.
Most of the results presented here have the form of an effective decision procedure that
operates on representations of regular languages.

Special effort is put into providing effective characterizations of regular languages of
infinite trees that are definable in weak monadic second-order logic (WMSO). Although
no such characterization is known for all regular languages of infinite trees, the thesis
provides characterizations in some special cases: for game automata, for languages of
thin trees (i.e., trees with countably many branches), and for Büchi automata. Addi-
tionally, certain relations between WMSO-definable languages and Borel sets are proved.

Another problem studied in the thesis is the alternating index problem (also called
the Rabin–Mostowski index problem). Again, the problem in its full generality seems
to be out of the reach of currently known methods. However, a decision procedure for
the class of game automata is proposed in the thesis. These automata form the widest
class of automata for which the problem is currently known to be decidable.

The thesis also addresses the problem of providing an algebraic framework for
regular languages of infinite trees. For this purpose, the notion of prophetic thin
algebras is introduced. It is proved that finite prophetic thin algebras recognize exactly
the bi-unambiguous languages — languages L such that both L and the complement Lc

can be recognized by unambiguous automata. Additionally, a new conjecture about the
definability of choice functions is stated. It is proved that this conjecture is strongly
related to the class of prophetic thin algebras. In particular, the conjecture implies an
effective characterization of the class of bi-unambiguous languages.

Finally, the thesis studies contemporary quantitative extensions of the class of
regular languages. First, lower bounds (that match upper bounds) on the topological
complexity of MSO+U-definable languages of x-words are given. These lower bounds
can be used to prove that MSO+U logic is undecidable on infinite trees in a specific
sense. It is also shown that languages of x-words recognizable by certain counter
automata have a separation property with respect to x-regular languages. The proof
relies on topological methods in the profinite monoid.

June 2016 Michał Skrzypczak
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Chapter 1
Basic Notions

In this chapter we introduce basic notions that are used across this thesis. Section1.1
introduces formally ω-words, infinite trees, and operations that transform them. In
Sect. 1.2 we introduce the syntax and the semantics of logics that will be used in
the rest of the thesis. Section1.3 contains a brief introduction of perfect information
two-player games. In Sect. 1.4 we define automata models that will be used later.
Section1.5 presents the framework of recognition from the algebraic point of view.
In Sect. 1.6 basic topological concepts are introduced. Finally, Sect. 1.7 lists known
properties of regular languages of ω-words and infinite trees.

Most of the material presented in this chapter is standard. Therefore, a reader
familiar with automata theory and topology may skip most of the formal definitions.
The following sections contain some less standard concepts: ranks of well-founded
ω-trees are introduced in Sect. 1.6.3, the boundedness theorem is stated in Sect. 1.6.4,
simple co-inductive definitions are defined in Sect. 1.6.5, various classes of regular
languages (e.g. unambiguous, Büchi,…) are defined in Sect. 1.7.1, and Sect. 1.7.4 in-
troduces the languagesWi, j that are complete for respective classes of the alternating
index hierarchy.

The following choices are taken in the thesis:

– min-parity condition is used (i.e. a sequence of priorities (pn)n∈N is accepting if
the least priority appearing infinitely often is even), see page 7,

– the classes of the Rabin-Mostowski alternating index hierarchy are denoted using
symbols �alt

j and �alt
j (indices (0, j) and (1, j + 1) respectively), see page 22,

– transitions of alternating automata are defined as positive Boolean combinations
of atomic transitions (e.g. (q1, L) ∨ ((q2, R) ∧ (q3, L))), see page 7,

– the players in the games are denoted ∃ and ∀, usually ∃ takes the role of the prover
and ∀ is the refuter.

1.1 Structures

In this section we introduce the objects that will be studied in the thesis — mainly
ω-words and infinite trees.
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2 1 Basic Notions

We use the axiom of choice whenever needed, without explicitly noting this fact.
Therefore, the proofs of the thesis are done in Zermelo–Fraenkel set theory with the
axiom of choice (shortly zfc).

A set is countable if its cardinality is at most ℵ0. ω is the first infinite ordinal. ∅

stands for the empty set. By N we denote the natural numbers, we use the symbols
N and ω interchangeably, depending on the context. |X | stands for the cardinality of
a set X , if X is finite then |X | ∈ N. By P(X) we denote the powerset of X — the
set of all subsets of X . If X and Y are two disjoint sets then we write X � Y for the
union of the two, emphasising the fact that the union is disjoint. We use the notation
∃!x ϕ to express that there exists a unique x satisfying ϕ.

Byω1 we denote the first uncountable ordinal.An ordinalη is countable if and only
if η < ω1. The addition of ordinals is defined in such a way that ω+1 > 1+ω = ω.
Themultiplication of ordinals is defined in such away thatω+ω = ω ·2 > 2·ω = ω.
An ordinal of the form η + 1 is called successor ordinal. Ordinals η > 0 that are not
successor ordinals are called limit ordinals. Sometimes we identify an ordinal with
the set of smaller ordinals, e.g.ω = {0, 1, . . .}, n = {0, 1, . . . , n−1}, and 2 = {0, 1}.

Letter A is used to denote an alphabet — a non-empty finite set of letters a ∈ A.

Let f : X → Y be a function. By dom( f )
def= X we denote the domain X of f and

by rg( f ) ⊆ Y we denote the set of values of f . If X ′ ⊆ dom( f ) then f �X ′ stands
for the restriction of f to the set X ′ (i.e. dom(t�X ′) = X ′). By f : X ⇀ Y we denote
a partial function from X to Y , i.e. a function f : dom( f ) → Y with dom( f ) ⊆ X .

If a space X is known from the context and L ⊆ X then Lc stands for the

complement of L , i.e. Lc def= X \ L .

1.1.1 Finite Words and ω-words

Let X be a non-empty countable set. The family of all finite words over X is denoted
by X∗. The empty word is denoted by ε. The length of a finite word u is denoted
as |u|. The set of all non-empty finite words over X is denoted X+. The successive
letters of a word u ∈ X∗ are u0, u1, . . . , u|u|−1. The n’th letter of a word u is u(n)

or un . By Xn we represent the set of words of length precisely n. Similarly, X�n

contains words of length at most n. For an element x ∈ X , �x (u) stands for the
number of occurrences of x in a finite word u ∈ X∗.

An ω-word over X is a mapping α : ω → X , the set of all such ω-words is Xω.
By X�ω we denote the set of all finite and ω-words over X .

The prefix order on X�ω is denoted 
. If X is linearly ordered then the lexico-
graphic order on X�ω is denoted �lex. We implicitly assume that every alphabet A
is linearly ordered.

Concatenations. If u is a finite word of length at least n or an ω-word, then u�n ∈ Xn

is the finite word obtained by taking the first n letters of u, i.e. u�n
def= u0u1 . . . un−1.

The concatenation of two words u, α (where u is finite and α may be infinite) is
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denoted by u · α or simply uα. Similarly, if L is a language of finite or ω-words then

u · L = {u · α : α ∈ L}.

For a non-empty finite word w by w∞ we denote the ω-word w · w · · · · An
ω-word of the from u · w∞ for non-empty finite words u, w is called regular.

Ifα ∈ Aω,β ∈ Bω are twoω-words thenα⊗β ∈ (A×B)ω is theω-word obtained
as the product of two: for n ∈ ω we define (α ⊗ β)(n) = (α(n), β(n)) ∈ A × B.

One of the crucial features of ω-sequences is expressed by Ramsey’s theorem—
it is possible to decompose such a sequence in amonochromaticway. This technique
was used by Büchi in his complementation lemma [Büc62]. In the following, by [N]2
we denote the set of all unordered pairs of natural numbers.

Theorem 1.1 (Ramsey). Let C be a finite set of colours and α : [N]2 → C be a
function assigning to every pair of numbers {n,m} ∈ [N]2 a colour α({n,m}) ∈ C.
Then there exists an infinite monochromatic set: a set S ⊆ N such that

α
({n,m}) = α

({n′,m ′}) for all {n,m, n′,m ′} ⊂ S.

1.1.2 Infinite Trees

In this thesis we are mainly interested in infinite trees: both binary and ω-branching,
partial and complete. Therefore, in this section we will introduce the following four
notions (the brackets denote optional parts of the name):

– complete ω-trees ωTrX ,
– (partial) ω-trees ωPTrX ,
– (complete binary) trees TrX ,
– partial (binary) trees PTrX .

ω-trees. A partial ω-tree (shortly ω-tree) τ ∈ ωPTrX is a partial function τ : dom
(τ ) → X with a prefix-closed domain dom(τ ) ⊆ ω∗. Elements of dom(τ ) are called
nodes of theω-tree. For a pair ofω-trees τ ∈ ωPTrX , τ ′ ∈ ωPTrX ′ of the same domain
dom(τ ) = dom(τ ′) let τ ⊗ τ ′ ∈ ωPTrX×X ′ be given by (τ ⊗ τ ′)(u) = (τ (u), τ ′(u));
in that case we call τ ′ a labelling of τ (by X ′). A set Y ⊆ dom(τ ) can treated as a
labelling of τ by {0, 1}, i.e. an element of ωPTr{0,1}. If the set X = {x} is singleton
then we can identify an ω-tree τ ∈ ωPTrX with its domain τ ⊆ ω∗; in such a case
we also skip the set X and write τ ∈ ωPTr.

A node of the form (u · i) ∈ dom(τ ) is called a child of u in τ . A node u ∈ dom(τ )

is a leaf of an ω-tree τ ∈ ωPTrX if it has no children in τ . A node u ∈ dom(τ ) is
branching if it has at least two distinct children in τ . If u, u′ are distinct children of
the same node then they are siblings. If τ ∈ ωPTrX is an ω-tree and u /∈ dom(τ ) but
all the prefixes of u are nodes of τ then we say that u is off τ . In particular, ε ∈ ω∗
is off ∅ ∈ ωPTr.
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If the domain of an ω-tree τ ∈ ωPTrX is ω∗ then t is called a complete ω-tree; the
set of all such ω-trees is denoted ωTrX .

For a pair of ω-trees τ, τ ′ ∈ ωPTrX we write τ ⊆ τ ′ if dom(τ ) ⊆ dom(τ ′) and
for every u ∈ dom(τ ) we have τ(u) = τ ′(u).

Binary Trees. A particular case of an ω-tree is a binary tree. We use special symbols
to denote the alphabet of the directions in the domain of a binary tree: we write L for
0 and R for 1. Hence, a direction is an element d ∈ {L, R}, the opposite direction is
denoted d̄ .

A labelled complete binary tree (shortly tree) over X is an ω-tree t ∈ ωPTrX with
dom(t) = {L, R}∗. The space of all such trees is denoted by TrX . If t ∈ ωPTrX and
dom(t) ⊆ {L, R}∗ then t is called a partial tree; the set of all partial trees over X is
denoted PTrX . Again, if X is a singleton then we skip it.

Decompositions. If τ ∈ ωPTrX is an ω-tree and u ∈ ω∗ then by τ�u ∈ ωPTrX we
denote the subtree of τ rooted in u, formally:

dom
(
τ�u

) def= {w : uw ∈ dom(τ )}, τ�u(w)
def= τ(uw).

By the definition, if u /∈ dom(τ ) then τ�u = ∅. An ω-tree is regular if it has only
finitely many different subtrees.

If u ∈ dom(τ ) or u is off τ then by τ [u ← τ ′] we denote the ω-tree obtained by
plugging an ω-tree τ ′ ∈ ωPTrA into τ with the root of τ ′ put in u:

dom
(
τ [u ← τ ′]) def= {w ∈ dom(τ ) : u � w} � {uw : w ∈ dom(τ ′)},

τ [u ← τ ′](w)
def= τ(w) for u � w,

τ [u ← τ ′](uw)
def= τ ′(w).

In particular, we have τ [u ← τ ′]�u = τ ′. Observe that if τ, τ ′ ∈ TrX are binary trees
and u ∈ {L, R}∗ then τ�u and τ [u ← τ ′] are binary trees (elements of TrX ).

For a ∈ A by a(tL, tR) ∈ TrA we denote the tree consisting of the root ε labelled
by the letter a and two subtrees tL, tR ∈ TrA respectively.

Branches. Let τ be an ω-tree. A finite sequence u ∈ dom(τ ) such that u is a leaf of τ

is called a finite branch of τ . An infinite sequence α such that for every i the prefix
α�i is a node of τ is called an (infinite) branch of τ . If τ is a tree in PTrX then the
branches of τ are over the alphabet {L, R}. Sometimes we identify a branch α with
the set of nodes {α�i }i∈N that form a path.

We now recall a simple yet powerful lemma about ω-trees.

Lemma 1.1 (König’s lemma). Let τ ⊆ ω∗ be an ω-tree. Assume that every node
u ∈ τ has only finitely many children in τ (i.e. τ is finitely-branching). Then τ

contains an infinite branch if and only if τ is infinite (as a set).
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1.2 Logic

In this section we introduce the logics studied in the thesis. The logics are introduced
in the usual way.

The thesis is devoted mostly toMonadic Second-Order (mso) logic. This logic is
an extension of First-Order (fo) logic with monadic quantifiers ranging over subsets
of the domain. Formally, assume a structure with a domain Θ over a signature Σ .
The syntax of mso allows:

– the equality x = y, the predicates from Σ , and the predicate x ∈ X ,
– Boolean operators ∨, ∧, ¬,
– first-order quantifiers ∃x , ∀x over elements of Θ ,
– monadic second-order quantifiers ∃X , ∀X over subsets X ⊆ Θ .

wmso logic has the same syntax as mso. The difference is the semantics: the
monadic second-order quantifiers of wmso range over finite subsets of the domain.
Since finiteness is definable in mso on ω-words and infinite trees, the expressive
power of wmso is contained in the expressive power of mso. First-Order logic (fo)
can be defined as a restriction of mso by disallowing the monadic second-order
quantifiers.

Relational Structures. Fix an alphabet A. An ω-word α ∈ Aω can be seen as a
relational structure with:

– the domain ω,
– the binary relation �,
– the successor function s(i) = i + 1, and
– predicates Pa(x) for a ∈ A — Pa(x) holds for x ∈ ω if α(x) = a.

A tree t ∈ TrA can be seen as a relational structure with:

– the domain {L, R}∗,
– the binary relations 
 and �lex,
– two successor functions sL(u) = uL, sR(u) = uR, and
– predicates Pa(x) for a ∈ A — Pa(x) holds for x ∈ {L, R}∗ if t (x) = a.

Since the successor functions can be defined using the orders, sometimes we
assume that the signature contains only the orders and the predicates Pa(x).

Languages. We write Θ |= ϕ if a sentence ϕ is satisfied by a structure Θ . For a
sentence ϕ on ω-words over an alphabet A we define

L(ϕ)
def= {

α ∈ A∗ : α |= ϕ
}
.

Similarly, if ϕ is a formula on infinite trees over an alphabet A then

L(ϕ)
def= {t ∈ TrA : t |= ϕ} .
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In both cases we say that L(ϕ) is the language of ϕ. A language L is mso-definable
(resp.wmso-definable, fo-definable) if there exists a sentence ofmso (resp. ofwmso,
of fo) ϕ such that L(ϕ) = L .

1.3 Games

Oneof themost important tools in studying regular languages are gamesof infinite du-
ration. A generic infinite duration game is defined by a tuple G = 〈V∃, V∀, vI, E,W 〉
where:

– V∃ and V∀ are disjoint sets.We put V
def= V∃�V∀. Elements of V are called positions

of G. Elements of VP are called positions belonging to P, for a player P ∈ {∃,∀}.
– vI ∈ V is an initial position.

– E ⊆ V × V is an edge relation. We assume that for every v ∈ V the set vE
def=

{v′ : (v, v′) ∈ E} is finite and non-empty.
– W ⊆ V ω is a winning condition.

Strategies. For simplicity, by V ∗ ·VP we denote the set of finite sequences of vertices
such that the last vertex belongs to VP for a player P ∈ {∃,∀}.

A strategy of a player P ∈ {∃,∀} is a function σ : V ∗ · VP → V such that for
every u ∈ V ∗ · VP we have (u, uσ(u)) ∈ E . An infinite sequence π ∈ V ω such that
for every i we have (π(i), π(i +1)) ∈ E is called a play. A play π is consistent with
a strategy σ if whenever π(i) ∈ VP then π(i + 1) = σ(π�i+1). A play π is winning
for ∃ if π ∈ W , otherwise π is winning for ∀. A strategy σ of a player P is winning
if every play π consistent with σ is winning for P .

A game is determined if one of the players has a winning strategy. In general
not every infinite duration game is determined. The following theorem shows that
all topologically simple games are determined (see Sect. 1.6.1 for an introduction to
Borel sets).

Theorem 1.2 (Martin [Mar75]). If W is a Borel subset of V ω then the game G is
determined.

1.3.1 Positional Strategies

A strategy σ of a player P is positional if the value σ(uv) for u ∈ V ∗ and v ∈ VP

depends only on v. A strategy σ of a player P is finite memory if there exist:

– a finite set M called the memory structure,
– an element mI ∈ M ,
– a function δ : M × V → M , such that
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σ(uv) for u ∈ V ∗ and v ∈ VP depends only on v and δ(mI, uv) defined inductively:

δ(m, ε)
def= m

δ(m, uv)
def= δ

(
δ(m, u), v

)
.

We will be particularly interested in games that are tree-shaped — for every
v ∈ V there is at most one path from vI to v in the graph (V, E). In such a game
every strategy is positional and such a strategy can be identified with its domain
dom(σ ) ⊆ V — the set of positions accessible via σ from vI.

Sometimes we will be interested in finite approximations of strategies. A finite
strategy σ for a player P in a tree-shaped game is a finite subset of the arena such
that for every v ∈ σ either no element of vE is in σ (v is a leaf of σ ) or:

– if v ∈ VP then exactly one of the elements of vE is in σ ,
– otherwise all the elements of vE are in σ .

1.3.2 Parity Games

Amin-parity game (shortly parity game) is an infinite duration gamewith thewinning
condition W of a special form. Assume that Ω : V → {i, i + 1, . . . , j} is a function
that assigns to every position of a game its priority. A play π satisfies the parity
condition if

lim inf
n→∞ Ω(π(n)) ≡ 0 (mod 2),

i.e. if the smallest priority that occurs infinitely often during π is even. We define
the winning condition WΩ of a parity game 〈V∃, V∀, vI, E,Ω〉 as the set of plays
satisfying the parity condition. We define the index of a game G as the pair (i, j) —
the range of priorities used in this game.

The crucial property of parity games is that they are positionally determined, as
expressed by the following theorem.

Theorem 1.3 ([EJ91, Mos91, JPZ08]). If G is a parity game (not necessarily finite)
then one of the players has a positional winning strategy in G.

If G is finite then a winning strategy can be effectively constructed.

1.4 Automata

The fundamental results of Büchi and Rabin say that both satisfiability problems of
mso formulae on ω-words and infinite trees1 are decidable. In both cases the proof

1A simple interpretation argument shows that mso is decidable also on ω-trees.
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goes through a construction of appropriate automata with expressive power equal to
mso logic. In this section we define various models of automata for infinite objects
that will be used in this thesis.

Alternating Automata. We start with a definition of the most general variant of au-
tomata, namely the alternating ones. For the sake of simplicity we focus on the min-
parity acceptance condition. We introduce the ω-word and infinite tree automata
uniformly. An alternating automaton is a tuple 〈AA, QA, qA

I , δA,ΩA〉 where:
– AA is an alphabet.
– QA is a finite set of states.
– qA

I ∈ QA is an initial state.
– δA is a transition function assigning to a pair (q, a) ∈ QA × AA the transition
b = δA(q, a) built using the following grammar

b :: = � ∣∣ ⊥ ∣∣ b ∨ b
∣∣ b ∧ b

∣∣ b0

where b0 is an atomic transition defined below.
– ΩA : QA → N is a priority function.

An atomic transition b0 of an ω-word automaton is a pair (q, 1) for q ∈ QA. An
atomic transition of a tree automaton is a pair (q, d) where q ∈ QA and d ∈ {L, R}.

If an automaton A is known from the context, we omit the superscript A.

AcceptanceGame.Fix an alternating automatonA, a state q0 ∈ Q, and a tree t ∈ TrA.
We define the game G(A, t, q0) as follows:

– V = {L, R}∗ × (Sδ ∪ Q), where Sδ is the set of all subformulae of formulae in rg(δ)
(all the formulae that appear in the transitions of A);

– all the positions of the form (u, b1 ∨ b2) belong to ∃ and the remaining ones to ∀;
– vI = (ε, q0);
– E contains the following pairs (for all u ∈ {L, R}∗):

• (
(u, b), (u, b)

)
for b ∈ {�,⊥},

• (
(u, b), (u, bi )

)
for b = b1 ∧ b2 or b = b1 ∨ b2 and i = 1, 2,

• (
(u, q), (u, δ(q, t (u)))

)
for q ∈ Q,

• (
(u, b0), (ud, q)

)
for an atomic transition b0 = (q, d);

– Ω(u,�) = 0, Ω(u,⊥) = 1, Ω(u, q) = ΩA(q) for q ∈ Q, u ∈ dom(t), and for
other positions Ω is max(rg(ΩA)).

In the case of anω-wordα the gameG(A, α, q0) is almost the same, the differences
are:

– V = ω × (Sδ ∪ Q),
– the initial position vI is (0, q0),
– for an atomic transition b0 = (q, 1) we put into E the edge

(
(i, b0), (i + 1, q)

)
.
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An automaton A accepts an ω-word α (resp. tree t) from q0 ∈ Q if ∃ has a
winning strategy in G(A, α, q0) (resp. G(A, t, q0)). By L(A, q0)we denote the set of
structures accepted by the automatonA from a state q0. We write L(A) for L(A, qA

I )

and G(A, t) (resp. G(A, α)) for G(A, t, qA
I ) (resp. G(A, α, qA

I )). An automaton A
recognises a language L if L(A) = L .

A state q ∈ QA is non-trivial if it recognises a non-trivial language i.e. if
L(A, q) �= ∅ and L(A, q)c �= ∅. Without loss of generality we implicitly as-
sume that all our alternating automata have only non-trivial states (possibly except
the initial state), as expressed by the following fact.

Fact 1.4. Every alternating automaton recognising a non-trivial language can be ef-
fectively transformed into an equivalent alternating automaton without trivial states.

Additionally, each transition of an alternating automaton can be simplified so that
it does contain neither � nor ⊥ under ∨ or ∧.
Proof. LetA be an alternating automaton. We just remove trivial states ofA. If q is
trivial then in each transition we replace each subterm of the form (q, d) by ⊥ or �
(depending on whether L(A, q) = ∅ or L(A, q)c = ∅).

Finally, we can simplify the transition expression using the standard laws: (� ∧
b) = b, (⊥ ∧ b) = ⊥, (� ∨ b) = �, (⊥ ∨ b) = b. After this step the automaton is
still an alternating automaton recognising the same language but it does not contain
any trivial states. �

Deterministic and Non-deterministic Automata. An ω-word automaton is determin-
istic if all its transitions are ω-word deterministic, i.e. of the form (q, 1). A tree-
automaton is deterministic if all its transitions are tree deterministic, i.e. of the form
(qL, L)∧ (qR, R). An automaton is non-deterministic if its transitions are disjunctions
of deterministic transitions.

Note that if A is a non-deterministic automaton then the transition function can
be written as a relation:

– δ ⊆ Q × A × Q in the case of ω-words — an element (q, a, q ′) of δ represents
that δ(q, a) = . . . ∨ (q ′, 1) ∨ . . .

– δ ⊆ Q× A×Q×Q in the case of trees— an element (q, a, qL, qR) of δ represents
that δ(q, a) = . . . ∨ (

(qL, L) ∧ (qR, R)
) ∨ . . .

For simplicity, we sometimes assume that a non-deterministic automaton A has
a set of initial states IA ⊆ QA. Clearly, such an automaton can be equipped with an
additional initial state qA

I and the transition relation can take care of guessing from
which state q ∈ IA to start.

A run of a non-deterministic ω-word automaton over an ω-word α ∈ (
AA)ω

is
an ω-word ρ ∈ (

QA)ω
such that for every i ∈ ω the triple (ρ(i), α(i), ρ(i + 1)) is

a transition of A.
A runof a non-deterministic tree automatonover a tree t ∈ TrAA is a treeρ ∈ TrQA

such that for every u ∈ {L, R}∗ the quadruple (ρ(u), t (u), ρ(uL), ρ(uR)) is a transition
of A.
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A non-deterministic automatonA accepts an ω-word α (resp. an infinite tree t) if
there exists a run ρ of A on α (resp. t) such that:

– ρ is parity-accepting: the sequenceΩ(ρ(0)),Ω(ρ(1)), . . . satisfies the min-parity
condition (resp. the min-parity condition is satisfied on all infinite branches of ρ).

– The value of ρ defined as ρ(0) (resp. ρ(ε) in the case of infinite trees) equals qA
I .

If there is a set of initial states IA then the value of ρ is required to belong to IA.

A run that satisfies both the above conditions is called accepting. Clearly the
above definition is equivalent to the one given for alternating automata — a run can
be seen as a strategy of ∃ in the respective game.

A non-deterministic automaton is unambiguous if it has at most one accepting run
on every input. In particular, every deterministic automaton is unambiguous. Formore
intermediate classes of automata in-between deterministic and non-deterministic
ones see e.g. [CPP07, HP06, BKKS13].

1.4.1 Parity Index of an Automaton

In this section we define the index of an automaton. These definitions are used in
Sect. 1.7.2 to introduce the Rabin-Mostowski index hierarchy.

Let A be an alternating tree automaton. Let Graph(A) be the directed edge-

labelled graph over the set of vertices QA such that there is an edge p
(a,d)−→ q

whenever (q, d) occurs in δA(p, a). Additionally, vertices of Graph(A) are labelled
by values ofΩA. We write p

u−→ q if there is a path in Graph(A)whose edge-labels
yield the word u.

The (Rabin-Mostowski) index of a parity automaton A is the pair (i, j) where i
is the minimal and j is the maximal priority of the states of A. In that case A is
called an (i, j)-automaton. Since shifting all priorities by an even number does not
influence the language recognised by an automaton, we can always assume that i is
either 0 or 1. An automaton is a Büchi automaton if (i, j) = (0, 1); it is a co-Büchi
automaton if (i, j) = (1, 2).

An alternating automaton A is a Comp(i, j)-automaton (see [AS05]) if each
strongly-connected component inGraph(A)has priorities between i and j or between
i + 1 and j + 1. It follows from the definition that each Comp(i, j)-automaton is an
(i, j+1) automaton, and can be transformed into an equivalent Comp(i+1, j+2)-
automaton by shifting the priorities. The Comp(0, 0)-automata are more widely
known as weak alternating automata.

1.5 Algebra

This thesis is basedmainly on automata. However, in some contexts it is convenient to
use the algebraic approach to recognition. Therefore,we introduce the basic concepts,



1.5 Algebra 11

namely semigroups, monoids, Wilke algebras, and ω-semigroups. We assume the
reader to be familiar with basic notions of universal algebra. Also, we use multi-
sorted algebras, a thorough introduction to these algebras with respect to recognition
is given in [Idz12].

This section is used only in certain chapters of the thesis (namely in Part II and
Chap.11) and may be skipped during the first reading.

Assume that M , N are two algebraic structures with the same operations. A
function f : M → N is a homomorphism if it preserves all the operations: for every
operation P of arity n and every choice of arguments (x1, . . . , xn) ∈ Mn we have

f
(
P(x1, . . . , xn)

) = P
(
f (x1), . . . , f (xn)

)
.

1.5.1 Semigroups and Monoids

A semigroup is an algebraic structure M equipped with an operation · : M2 → M
that is associative (a ·(b·c) = (a ·b)·c). Amonoid is a semigroupwith a distinguished
element 1 ∈ M that satisfies 1 · a = a · 1 = a. The operation · is called product and
1 is called the neutral element.

An element e ∈ M of a semigroup is called idempotent if e · e = e. If M is finite
then for every element s ∈ M there is a unique idempotent in the set {sn : n ∈ N},
this idempotent is called the idempotent power of s and denoted2 s�.

Observe that the set of all finitewords A∗ over an alphabet A has a natural structure
of an infinite monoid with the operation of concatenation and 1 defined as the empty
word. Similarly, A+ is a semigroup.

If a function f : M → N between twomonoids is a homomorphismof semigroups
then it is also a homomorphism between monoids (i.e. f must preserve 1).

Additional structural properties of monoids (namely Green’s relations) are intro-
duced in Sect. 8.4.1 on page 151. They are only used in one construction in Chap.8.

1.5.2 Wilke Algebras

Now we introduce Wilke algebras that form one of the equivalent formalisms for
recognition of ω-regular languages, see [Wil93] and [PP04].

A Wilke algebra is a pair (H, V ) with the following operations (for h ∈ H and
s, s ′ ∈ V ):

– s · s ′ ∈ V ,
– s · h ∈ H ,
– s∞ ∈ H .

2Often the notion sω is used, to avoid confusion with ω-words we use s�.

http://dx.doi.org/10.1007/978-3-662-52947-8_11
http://dx.doi.org/10.1007/978-3-662-52947-8_8
http://dx.doi.org/10.1007/978-3-662-52947-8_8
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such that (V, ·) is a semigroup and the following axioms are satisfied:

s · (s ′ · s ′′) = (s · s ′) · s ′′

s · (s ′ · h) = (s · s ′) · h
(s · s ′)∞ = s · (s ′ · s)∞

∀n�1
(
sn

)∞ = s∞

An ω-semigroup is a Wilke algebra with an additional operation
∏ : V ω → H

such that

∏
(s, s, . . .) = s∞

s ·
∏

(s0, s1, . . .) =
∏

(s, s0, s1, . . .)
∏

(s0 · . . . · sk1 , sk1+1 · . . . · sk2 , . . .) =
∏

(s0, s1, s2, . . .)

For every alphabet A the pair (Aω, A+) has a natural structure of anω-semigroup.
Additionally, (Aω, A+) is a free ω-semigroup on A, as expressed by the following
fact.

Fact 1.5 ([PP04, Proposition 4.5]). Let A be an alphabet and (H, V ) be an ω-
semigroup.Forevery function f : A → V there isauniqueextension f̄ : (Aω, A+) →
(H, V ) of f that is a homomorphism of ω-semigroups.

The following theorem shows that finite Wilke algebras can be seen as represen-
tations of arbitrary finite ω-semigroups.

Theorem 1.6 (Wilke [PP04, Theorem 5.1]). Every Wilke algebra has a unique
extension by an operation

∏
into an ω-semigroup.

However, the following example shows that there are functions f : (Aω, A+) →
(H, V ) that are homomorphisms of Wilke algebras but not homomorphisms of ω-
semigroups. Therefore, it is important in Fact 1.5 to require f̄ to be a homomorphism
of ω-semigroups.

Example 1.1. Let A = {a, b}, H = {ha, hb}, and V = {sa, sb}. Let f : (Aω, A+) →
(H, V ) be defined as follows:

– for u ∈ A+ let f (u) = sa if and only if u contains letter a,
– for a regular α ∈ Aω let f (α) = ha if and only if α contains infinitely many
letters a,

– for a non-regular α ∈ Aω let f (α) = hb.

The function f induces uniquely a structure of Wilke algebra on (H, V ) in such a
way that f becomes a homomorphism ofWilke algebras. By Theorem 1.6, theWilke
algebra (H, V ) can be uniquely extended by an operation

∏
into an ω-semigroup.

However, f is not a homomorphism of ω-semigroups, otherwise we would have
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hb = f (a ba bba bbba bbbba · · · ) =
∏

(sa, sa, . . .) = f (a a a · · · ) = ha .

1.5.3 Recognition

Let f : M → N be a homomorphism between two algebraic structures (M and N
may be multi-sorted here). Let F be a subset of one of the sorts of N and L be a
subset of the respective sort of M . We say that f recognises L using F if

f −1(F) = L .

Similarly, f recognises L if it recognises L using some F contained in the respective
sort of N .

1.5.4 Ramsey’s Theorem for Semigroups

In this section we present an application of Ramsey’s theorem (see Theorem 1.1) to
the ω-word case.

Theorem 1.7. Let M be a finite semigroup and f : A∗ → M be a homomorphism.
Then for every ω-word α ∈ Aω there exists a sequence of finite words u0, u1, u2, . . .
and two elements s, e of the semigroup M such that:

(i) α = u0u1u2 . . .,
(ii) f (u0) = s,
(iii) f (un) = e for every n > 0,
(iv) s · e = s and e · e = e.

A pair (s, e) satisfying Condition (iv) above is often called a linked pair,
see [PP04]. To simplify the properties in the above theorem we introduce the follow-
ing definition.

Definition 1.1. For a given homomorphism f : A∗ → M we say that the type (or
f -type) of a decomposition α = u0u1 . . . is t = (s, e) if (s, e) is a linked pair,
f (u0) = s, and f (un) = e for all n > 0.

Of course not every decomposition has some type. However, Theorem 1.7 implies
that for every ω-word α and homomorphism f there exists some decomposition of
α of some type t = (s, e). A priori there may be two decompositions of one ω-word
of two distinct types.
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1.6 Topology

In this section we introduce topological notions that will be used later. Most of the
presented definitions and facts are basic and standard. Some more involved concepts
are presented in Sects. 1.6.4 and 1.6.5.

A topological space (X,U) is called Polish if it is separable (i.e. it contains a
countable dense set) and the topology U ⊆ P(X) comes from a complete metric on
X . ElementsU ∈ U are called open sets, the complement of an open set is closed. If
a set is both closed and open then it is a clopen. A family B ⊆ U is called a basis of
the topology if for every x ∈ X and U ∈ U such that x ∈ U there exists B ∈ B such
that x ∈ B ⊆ U . In that case U coincides with the family of unions of elements of
B. A space is zero-dimensional if the family of clopen sets is a basis of the topology.

If D ⊆ X is a subset of a topological space X then by D we denote the closure
of D — the intersection of all closed subsets of X that contain D.

A subset K ⊆ X of a topological space is called compact if for every family F
of open sets such that K ⊆ ⋃F there exists a finite subfamily F ′ ⊆ F such that
K ⊆ ⋃F ′.

Product Spaces. Let Z be a non-empty countable set. Zω with the product topology
is a zero-dimensional Polish space. The family of sets of the form u · Zω for u ∈ Z∗
is a basis for the topology of Zω. If Z is a singleton then Zω is also a singleton; if Z
is finite then Zω is homeomorphic (i.e. topologically isomorphic) to the Cantor set
2ω; if Z is countably infinite then Zω is homeomorphic to the Baire space ωω.

The set (Z � {⊥})ω∗ = ∏
u∈ω∗

(
Z � {⊥}) equipped with the natural product

topology is a zero-dimensional Polish space. Observe that ωPTrZ is a subset of
(Z � {⊥})ω∗

. By a standard argument (see [Kec95, Theorem 3.8 in Chap. 3.B]) the
spaces of partialω-treesωPTrZ and partial binary trees PTrZ aswell as their complete
variants ωTrZ and TrZ are zero-dimensional Polish spaces. The families of clopen
sets of these spaces coincide with the finite Boolean combinations of sets of the form

{τ : u ∈ dom(τ ) ∧ τ(u) ∈ Z ′} for u ∈ ω∗ and Z ′ ⊆ Z .

1.6.1 Borel and Projective Hierarchy

Let us fix an uncountable Polish space X . The Borel hierarchy is defined inductively:

– �0
1(X) denotes the family of open subsets of X ,

– �0
1(X) denotes the family of closed subsets of X (the complements of open sets),

for a countable ordinal η:

– �0
η(X) is the family of countable unions of sets from

⋃
β<η �0

β(X),
– �0

η(X) is the family of countable intersections of sets from
⋃

β<η �0
β(X).



1.6 Topology 15

Fig. 1.1 The Borel hierarchy.

Note that for each η the family �0
η(X) consists exactly of the complements of the

sets from �0
η(X). �0

η(X) is defined as the intersection �0
η(X) ∩ �0

η(X). Similarly,
BC(�0

η)(X) is the family of finite Boolean combinations of sets from �0
η(X). The

families constitute a hierarchy — each family is included in all the families with
greater subindex (see Fig. 1.1). An important fact about the hierarchy is that all the
inclusions presented in Fig. 1.1 are strict.

The family of Borel sets, defined as

B(X) =
⋃

η<ω1

�0
η(X)

is the least family closed under countable Boolean operations that contains all open
sets. Proofs and details about the Borel hierarchy can be found e.g. in [Sri98,
Chap.3.6].

Projective Hierarchy. The class of Borel sets is not closed under projection. Each
set that is a projection of a Borel set is called analytic, the family of analytic sets is
denoted by �1

1(X). Formally:

�1
1(X)

def= {
P ⊆ X : ∃B∈B(X×ωω) P = π1(B)

}
,

where π1 is the projection on the first coordinate. The superscript 1 means that the
class is a part of the projective hierarchy. The rest of the projective hierarchy is
defined as follows (see Fig. 1.2):

�1
i (X) consists of the complements of the sets from �1

i (X),

�1
i+1(X) consists of the projections of the sets from �1

i (X),

i.e. �1
i+1(X)

def= {
π1(B) : B ∈ �1

i (X × ωω)
}
,

�1
i (X) is the intersection of �1

i and �1
i .

The sets from the family �1
1(X) are called co-analytic. An important result in the

theory, the theorem of Souslin (see e.g. [Kec95, Chap.14.C]), states that if a set is
analytic and co-analytic then it is in fact Borel. The Borel hierarchy together with
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Fig. 1.2 The projective hierarchy.

Fig. 1.3 The boldface hierarchy.

the projective hierarchy constitute the so-called boldface hierarchy, see the diagram
on Fig. 1.3.

If the space is clear from the context we will omit it and write B, �0
η, �

0
η �1

i , �
1
i ,

etc.

1.6.2 Topological Complexity

For the needs of this thesis, a topological complexity class C is any of the classes of
the boldface hierarchy, see Figs. 1.1 and 1.2.

Analogously to the complexity theory, we have the notions of reductions and
completeness. Let X , Y be two topological spaces and let K ⊆ X and L ⊆ Y . We
say that a continuous mapping f : X → Y is a reduction of K to L if K= f −1(L).
The fact that K can be continuously reduced to L is denoted by K �W L . On Borel
sets, the pre-order �W induces the so-called Wadge hierarchy (see [Wad83]) which
greatly refines the Borel hierarchy and has the familiar ladder shape with pairs of
mutually dual classes alternating with single self-dual classes.

It is a simple property of continuous mappings that if L belongs to a topological
complexity classC then so does K for every K �W L . A language L is calledC-hard
if every set K ∈ C can be reduced to L . We say that L is C-complete if additionally
L ∈ C (i.e. L is the �W-greatest element of C).

The following fact presents a standard way of using the above notions.

Fact 1.8. If C � D are two (non-equal) topological complexity classes and L is
D-hard then L /∈ C.
Proof. Assume to the contrary that L ∈ C. Take any language K ∈ D \C. Since L is
D-hard, we can write K = f −1(L) for some continuous mapping f . By the above
observation, it implies that K ∈ C, which gives a contradiction. �
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1.6.3 Ranks

Ranks form a powerful tool in analysis of descriptive properties of sets. In this section
we introduce the most classical of the ranks — the rank on well-founded ω-trees.
For an introduction to the theory of ranks see [Kec95, Chap.2.E].

Anω-tree τ ∈ ωPTr iswell-founded if it doesn’t have an infinite branch.Otherwise
τ is ill-founded. The set of all well-founded ω-trees is denoted WF ⊆ ωPTr. The
complement of WF is denoted IF.

It is possible to assign to each well-founded ω-tree τ ∈ WF its rank —ameasure
of complexity of τ . If τ = ∅ then rank(τ ) = 0. Assume otherwise and let (τi )i∈ω

be the sequence of subtrees of τ under the root: τi = τ�(i) (if i /∈ dom(τ ) then
τ�(i) = ∅). Put

rank(τ ) = sup
i∈ω

(
rank(τi ) + 1

)
.

Since the domain of τ is countable, rank(τ ) is an ordinal number smaller than ω1.
By the definition, the rank is monotone: for u �= ε we have rank(τ ) > rank(τ�u).
Sometimes we call rank(τ�u) the rank of u (in τ ).

Fact 1.9. If rank(τ ) is a limit ordinal then the root ε is infinitely branching in τ : for
infinitely many i ∈ ω we have i ∈ dom(τ ).

Fact 1.10. For every well-founded ω-tree τ and η � rank(τ ) there exists a node
u ∈ dom(τ ) such that rank(τ�u) = η.

Proof. For η = rank(τ ) we can take u = ε. For η < rank(τ ) we proceed by
induction on rank(τ ). �

1.6.4 The Boundedness Theorem

In this section we present the most fundamental result relating descriptive properties
of a set and ranks — the boundedness theorem. First we recall that the ill-founded
ω-trees is one of the crucial examples of a non-Borel set.

Theorem 1.11 ([Kec95, Theorem 27.1]). The set IF of ill-founded ω-trees is �1
1-

complete. Dually, the set WF of well-founded ω-trees is �1
1-complete.

The following theorem expresses the correspondence between the ranks of well-
founded ω-trees and the topological complexity of sets.

Theorem 1.12 (The boundedness theorem (see [Kec95, Theorem 35.23])).
If X ⊆ ωPTr is an analytic set and X ⊆ WF then there exists η < ω1 such that

∀τ∈X rank(τ ) � η.



18 1 Basic Notions

On the other hand, for every η < ω1 the set

{τ ∈ ωPTr : rank(τ ) � η} is Borel.

Sketch of the Proof. The second part of the statement can be proved by induction on
η (it also follows from more general considerations of ranked sets).

Let us sketch a proof of the first part. First assume the contrary. The heart of the
proof is to show that the following relation is analytic:

RE
def= {

(τ, τ ′) : τ ′ is ill-founded or both are well-founded and rank(τ ) � rank(τ ′)
}
.

Then WF has the following analytic definition

WF = {
τ : ∃τ ′∈X (τ, τ ′) ∈ RE

}
,

what contradicts the fact that WF is co-analytic complete. �
A technique motivated by this proof is used in Sect. 6.3 (see page 105) to prove

upper bounds on topological complexity of regular languages of thin trees.

1.6.5 Co-inductive Definitions

In some cases it is convenient to define a function using a co-inductive definition.
In this section we formalise this notion for functions of the type TrA → TrB . The
crucial property is that every function defined in such a way is continuous.Whenever
such a co-inductive definition is used, an explicit reference to this section is given.
Therefore, one can skip this section when reading the thesis for the first time.

We state the properties of a co-inductive definition for binary trees for the sake of
simplicity. The same construction works forω-trees as well as partial trees. Although
it is possible to formalize this notion in an abstract way using the language of category
theory, we focus only on these concrete applications of co-induction.

Proposition 1.1. Let A, B be two alphabets. Assume that for every a ∈ A we have
a triple (t (a), u(a), w(a)), where t (a) ∈ TrB is a tree and u(a), w(a) are two nodes of
t (a) that are incomparable with respect to the prefix order 
 (in particular none of
them is ε).

There exists a unique function f : TrA → TrB such that for every t ∈ TrA such
that t = a(tL, tR) we have:

f (t) = t (a)
[
u(a) ← f (tL), w

(a) ← f (tR)
]
. (1.1)

Moreover, the function f is continuous.

http://dx.doi.org/10.1007/978-3-662-52947-8_6
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Proof. We will show how to uniquely define f (t)(u) for a node u ∈ {L, R}∗ using
Condition 1.1. It will imply that the function f (t) is defined uniquely. Additionally,
since f (t)(u) will depend only on a finite part of t , it will imply that the function f
is continuous.

We proceed by induction on the length of u (for all trees t ∈ TrA at once). Assume
that for all u′ ≺ u and all t ∈ TrA the value f (t)(u′) is already uniquely defined (and
depends only on a finite part of t). Assume that t = a(tL, tR) for a letter a ∈ A and
two trees tL, tR ∈ TrA.

If u(a) 
 u (the case w(a) 
 u is entirely dual) then let u = u(a) · z for z ∈ {L, R}∗.
Therefore, Condition (1.1) implies that f (t)(u) = f (tL)(z). Since z is shorter than
u so this value is uniquely determined.

Now assume contrary, that u does not contain u(a) nor w(a) as a prefix. In that
case Condition (1.1) implies that f (t)(u) = t (a)(u) and again this value is uniquely
determined and depends only on the letter t (ε) = a. �

1.7 Regular Languages

In this section we collect standard properties of regular languages. Assuming some
basic knowledge in automata theory the section can be skipped during the first read-
ing. The presented facts are explicitly referenced whenever used. For a broad intro-
duction to regular languages see [Tho96].

The following results summarize equivalent ways of defining various classes of
regular languages.

Regular Languages.We start with a theorem about regular languages of finite words.

Theorem 1.13 (Trakhtenbrot [Tra62], Rabin Scott [RS59], cf. e.g. [PP04]). The
following conditions are effectively equivalent for a language L ⊆ A∗ of finite words:

– L is definable in mso,
– L is definable in wmso,
– L is recognised by a deterministic finite automaton3,
– L is recognised by an alternating finite automaton,
– L is recognised by a homomorphism f : A∗ → M into a finite monoid M.

A language satisfying the above conditions is called a regular language.

ω-regular Languages. Now we give a characterization of regular languages of ω-
words.

Theorem 1.14 (Büchi [Büc62], McNoughton [McN66], Mostowski [Mos84],
Emmerson Jutla [EJ91], Wilke [Wil93]). The following conditions are effectively
equivalent for a language L ⊆ Aω of ω-words:

3Automata for finite words are not used in this thesis, therefore we skip a formal definition of them.
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– L is definable in mso,
– L is definable in wmso,
– L is recognised by a deterministic parity ω-word automaton,
– L is recognised by an alternating parity ω-word automaton,
– L is recognised by a homomorphism f : (Aω, A+) → (H, V ) into a finite ω-
semigroup (H, V ).

A language satisfying the above conditions is called an ω-regular language.
As a consequence one obtains the decidability result of Büchi.

Theorem 1.15 (Büchi [Büc62]). Themso theory of theω-chain (ω,�) is decidable.
If an ω-regular language is non-empty then it contains a regular ω-word.

Regular Tree Languages. The following theorem characterizes regular languages of
infinite trees.

Theorem 1.16 (Rabin [Rab69], Muller Schupp [MS95]). The following condi-
tions are effectively equivalent for a language L ⊆ TrA of infinite trees:

– L is definable in mso,
– L is recognised by a non-deterministic parity tree automaton,
– L is recognised by an alternating parity tree automaton.

A language satisfying the above conditions is called a regular tree language (we
avoid ambiguity here because regular languages of finite trees do not appear in this
thesis).

As a consequence one obtains the celebrated result of Rabin.

Theorem 1.17 (Rabin [Rab69]). The mso theory of the complete binary tree is
decidable. If a regular tree language is non-empty then it contains a regular tree.

wmso-definable Languages. The following theorem is a characterization of the
wmso-definable languages of infinite trees. The characterization is not effective in
the sense that given any representation of a language L it is not known how to check
whether L is wmso-definable.

Theorem 1.18 (Rabin [Rab70], also Kupferman Vardi [KV99]). The following
conditions are effectively equivalent for a language L ⊆ TrA of infinite trees:

– L is definable in wmso,
– L is recognised by a Comp(0, 0)-alternating tree automaton,
– both L and the complement Lc are recognised by alternating Büchi tree automata.

Büchi Languages. The following theorem states the de-alternation result for Büchi
automata. It also proves that Büchi automata correspond to the existential fragment
of mso with respect to wmso.
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Theorem 1.19 (Muller Schupp [MS95]). The following conditions are effectively
equivalent for a language L ⊆ TrA of infinite trees:

– L is recognised by a non-deterministic Büchi tree automaton,
– L is recognised by an alternating Büchi tree automaton,
– L is definable by a sentence of the form

∃X1 . . . ∃Xn ϕ(X1, . . . , Xn)

where ϕ is a formula of wmso.

Deterministic Languages. An easy construction of an appropriate automaton proves
the following fact.

Fact 1.20. If A is a deterministic tree automaton then L(A) can be recognised by
an alternating (1, 2)-automaton.

Games with ω-regular Winning Conditions. The following theorem expresses an
important feature of games with ω-regular winning conditions.

Theorem 1.21 (Büchi Landweber [BL69], Gurevich Harrington [GH82],
Emmerson Jutla [EJ91], Mostowski [Mos91]). For a finite game G if the win-
ning condition W ⊆ V ω is ω-regular (over the alphabet V ) then one of the players
has a finite memory winning strategy in G. Such a winning strategy can be effectively
constructed.

1.7.1 Classes of Regular Tree Languages

Now we define classes of regular tree languages that correspond to certain classes
automata. A language L is:

– deterministic if L is recognised by a deterministic parity tree automaton,
– unambiguous if L is recognised by an unambiguous parity tree automaton,
– bi-unambiguous if both L and the complement Lc are unambiguous,
– Büchi if L is recognised by an alternating4 Büchi tree automaton,
– co-Büchi if L is recognised by an alternating co-Büchi tree automaton.

An easy pumping argument shows that non-deterministic co-Büchi tree automata
have very limited expressive power (e.g. they are weaker than alternating co-Büchi
automata).

4Theorem 1.19 implies that equivalently one can take non-deterministic automata here.
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1.7.2 Index Hierarchies

Now we introduce the classes of languages recognisable by automata of certain
indices. We start with the alternating index hierarchy. For i < j ∈ N, let5

– RMalt(i, j) be the class of regular tree languages recognised by alternating (i, j)-
automata,

– �alt
j

def= RMalt(0, j) (for j = 1 these are Büchi languages),

– �alt
j

def= RMalt(1, j + 1) (for j = 1 these are co-Büchi languages),

– �alt
j

def= �alt
j ∩ �alt

j ,
– Comp(�alt

j ) be the class of regular tree languages recognised by Comp(0, j)-
automata.

The above classes are naturally ordered by inclusion, as depicted on Fig. 1.4.
Similarly, one can consider non-deterministic automata instead of alternating

ones, i.e. define RMnon−det(i, j) as the class of languages recognised by non-
deterministic (i, j)-automata.The classesRMnon−det(i, j) form thenon-deterministic
index hierarchy. The shape of the hierarchy is the same as of the alternating one,
except the classes Comp(�alt

j ) that are not defined in the non-deterministic case.
The expressive power of alternating and non-deterministic tree automata is the

same (see Theorem 1.16), therefore both hierarchies contain the same languages.
However, particular levels of these hierarchies differ (see [NW05]). As shown
in [Niw86, Bra98, Arn99, AS05], both hierarchies are strict, in particular, in the
alternating case we have

Comp(�alt
j ) � �alt

j+1 for j > 0. (1.2)

A natural question is to compute exact position of a given language in these
hierarchies. It is formalised as the following computational problem.

Problem 1.1 (Alternating (resp. non-deterministic) index problem).

– Input An alternating tree automaton A.

Fig. 1.4 The alternating index hierarchy.

5The following assignment of symbolsΣ and� follows the definitions in [AS05,AMN12], however
the indices j are shifted by one (also, we use the min-parity condition here). The assignment of the
symbols is opposite to the one from [FMS13].
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– Output The minimal class of the alternating (non-deterministic) index hierarchy
that contains L(A).

Both problems were solved for deterministic automata [NW05, NW03], see
Sect. 1.7.6. They are both open for general automata. Colcombet and Löding [CL08]
have proposed a reduction of the non-deterministic index problem to a boundedness
problem for a specific class of tree automata with counters. However, the latter prob-
lem is not known to be decidable. The known decidability results regarding these
hierarchies are subsumed by the results of [FMS13, CKLV13].

1.7.3 Topological Complexity of Regular Languages

The following results summarize topological complexity of regular languages defin-
able in various ways. In each statement, the given upper bound is optimal from the
point of view of the boldface hierarchy. Since there are only countably many regular
languages, they cannot fulfil any class of the boldface hierarchy except �0

0.

Theorem 1.22 (See [TL93]).

– ω-regular languages are in BC(�0
2),

– wmso-definable languages of infinite trees lie on the finite levels of the Borel
hierarchy,

– Büchi-recognisable languages of infinite trees are in �1
1,

– languages of infinite trees recognisable by deterministic parity automata are in
�1

1,
– regular languages of infinite trees are in �1

2.

In this thesis the question of descriptive complexity of a language L is used in the
meaning “is there some simple description of L”, for instance:

– is L definable in some weak logic (mainly wmso logic),
– what is the minimal topological complexity class that contains L?

It should not be confused with the descriptive complexity in the meaning of [Imm99].

1.7.4 The languages Wi, j

The languages Wi, j (see [Arn99, AN07]) proved to be convenient tools for studying
topological complexity of regular tree languages. As expressed by Theorem 1.23,
the language Wi, j is complete for the class of languages recognisable by alternating
(i, j)-automata.

Definition 1.2. For i < j consider the following alphabet
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Ai, j = {∃,∀} × {i, i + 1, . . . , j}.

With each t ∈ TrAi, j we associate a parity game Gt where

– V = dom(t),
– E = {

(u, ud) : u ∈ dom(t), d ∈ {L, R}},
– vI = ε,
– if t (u) = (P, n) ∈ Ai, j then Ω(u) = n and u ∈ VP.

Let Wi, j be the set of all trees over Ai, j such that ∃ has a winning strategy in Gt .

Theorem 1.23 (Arnold [Arn99]). The language Wi, j can be recognised by a non-
deterministic (i, j)-automaton (in particularWi, j ∈ RMnon−det(i, j) ⊆ RMalt(i, j)).

For every alternating (i, j)-automatonA there is a canonical continuous function
reducing L(A) to Wi, j (i.e. L(A) �W Wi, j ).

The languages Wi, j and the dual Wi+1, j+1 are incomparable with respect to �W

(i.e. Wi, j ��W Wi+1, j+1).
Additionally, W0,1 is �1

1-complete and W1,2 is �1
1-complete.

The following corollary gives an easy way of proving that a particular language
does not belong to a given class of the alternating index hierarchy.

Corollary 1.1. If Wi, j �W L then L /∈ RMalt(i + 1, j + 1) i.e. L cannot be recog-
nised by an alternating (i + 1, j + 1)-automaton.

In some circumstances one needs to adjust the languages Wi, j to current needs.
In particular, it is sometimes convenient to add to the alphabet Ai, j two additional
letters �, ⊥ that correspond to an instant win in the game Gt . It is expressed by the
following remark.

Remark 1.1. All the conditions from Theorem 1.23 are valid for the modification of
the languages Wi, j by extending the alphabet Ai, j with two additional letters �, ⊥
of the following semantics: a play π that reaches � (resp. ⊥) for the first time in Gt

is winning for ∃ (resp. ∀) no matter what the priorities occur before and after that.

1.7.5 Separation Property

The notion of separation is an important concept in descriptive set theory and au-
tomata theory.

Definition 1.3. A class of languages C has the separation property with respect to a
class D, if the following condition holds:

For every pair of disjoint languages L1, L2 from C there exists a language Lsep ∈ D such
that6

L1 ⊆ Lsep and L2 ⊆ Lc
sep.

6Recall that X c denotes the complement of a set X .
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In that case we say that Lsep separates L1 and L2. If not stated otherwise, the class
D is taken as C∩Cc — the class of languages L such that both L and Lc belong to C.

Usually, one class from a pair of dual classes C, Cc has the separation property
and the other one does not. Below we recall some known separation-type theorems.

Separation in Topology. The first one is a simple observation about Borel sets.

Theorem 1.24 ([Kec95, Theorem 22.16]). Let η < ω1. Every two disjoint �0
η

languages can be separated by a language that belongs to �0
η ∩ �0

η. On the other
hand, there exists a pair of disjoint languages in �0

η that cannot be separated as
above.

The following theorem is an important extension to the projective hierarchy.

Theorem 1.25 (Lusin (cf. [Kec95, Theorem 14.7, Exercise 28.2])). If L1, L2 ∈
�1

1(X) are two disjoint analytic subsets of a Polish space X then there exists a Borel
set separating them. There exists a pair of disjoint co-analytic (i.e. �1

1) sets that
cannot be separated by any Borel set.

An important consequence of the above separation result is the following theorem.

Theorem 1.26 (Lusin Souslin [Kec95, Theorem 15.1]). Assume that f : X → Y
is a continuous function between two Polish spaces and A ⊆ X is Borel. If f �A is
injective then f (A) is Borel.

Separation in Automata Theory. The following results can be seen as an automata
theoretic counterpart of Theorem 1.25.

Theorem 1.27 (Rabin [Rab70]). If L1, L2 are two disjoint Büchi languages of
infinite trees then there exists a wmso-definable (i.e. Comp(�alt

0 )) language that
separates them.

This result was extended to higher levels of the non-deterministic index hierarchy,
as expressed by the following theorem.

Theorem 1.28 (Arnold Santocanale [AS05]). Every pair of disjoint languages
from RMnon−det(0, j) (i.e. languages recognised by non-deterministic min-parity
tree automata of index (0, j)) can be separated by a language from Comp(�alt

j−1).
Moreover, the construction of an automaton for the separating language is poly-

nomial in the sizes of the given automata from RMnon−det(0, j).

The following theorem gives negative answers about separability of regular tree
languages.

Theorem 1.29 (Hummel Michalewski Niwiński [HMN09], Michalewski
Niwiński [MN12], Arnold Michalewski Niwiński [AMN12]). There exists a pair
of disjoint regular tree languages recognised by (1, 2)-parity alternating tree au-
tomata (i.e. �alt

1 languages) that cannot be separated by any Borel set. In particular,
these languages cannot be separated by any wmso-definable language.

For every j � 1 there exists a pair of disjoint regular tree languages from �alt
j

that cannot be separated by any �alt
j language.
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1.7.6 Deterministic Languages

As mentioned earlier, many problems simplify when we restrict to languages recog-
nisable by deterministic automata. Here we collect the decidability results for these
languages.

Theorem 1.30 (Niwiński Walukiewicz [NW98]). The non-deterministic index
problem is decidable for deterministic languages.

The following theorem is often referred to as a gap property for deterministic
languages.

Theorem 1.31 (Niwiński Walukiewicz [NW03]). It is decidable if a given regular
tree language is deterministic. A deterministic tree language is either:

– wmso-definable and in �0
3,

– not wmso-definable and �1
1-complete.

Moreover, the dichotomy is effective. In particular, a deterministic tree language is
either in Comp(�alt

0 ) or in �alt
1 \ Comp(�alt

0 ) and it is decidable which of the cases
holds.

Finally, the following result of Murlak gives the ultimate solution to topological
questions about deterministic languages by providing an effective procedure that
computes the level inWadge hierarchy7 that a given deterministic language occupies.

Theorem 1.32 (Murlak [Mur08]). TheWadge hierarchy is decidable for determin-
istic tree languages.

7This hierarchy is not studied in this thesis, it can be seen as a refinement of the Borel hierarchy. In
the case of Theorem 1.32, Wadge hierarchy can be seen as the quotient of the class of deterministic
tree languages by the order �W from Sect. 1.6.2.



Part I

Subclasses of Regular Languages



Chapter 2
Introduction

The fundamental results of Büchi [Büc62] and Rabin [Rab69] state that the monadic
second-order (mso) theory of the ω-chain (ω,�) and of the complete binary tree({0, 1}∗,�,�lex

)
is decidable. In both cases the proof relies on a class of finite

automata with expressive power equivalent to mso. Because of effective closure
properties and decidability of the emptiness problem, the languages of ω-words and
infinite trees definable inmso are called regular. For a broad introduction to the field
of regular languages of infinite objects see [Tho96, PP04, TL93].

Since a single ω-word or infinite tree may not have any finite representation, one
has to deal with actual infinity when studying languages of such objects. In partic-
ular, even the set of ω-words over a two-letter alphabet has cardinality continuum.
This is the source of strong relationships between properties of regular languages of
infinite objects and descriptive set theory. These relationships have a form of syn-
ergy: descriptive set theory motivates new problems and methods in automata theory
but on the other hand, automata theory introduces natural examples for classical
topological concepts.

Recently there has been a number of papers studying these relationships. Prop-
erties of regular languages of infinite trees have been studied in [NW03, AN07,
ADMN08, Mur08], the Borel complexity of mso-definable sets of branches of one
infinite tree was estimated in [BNR+10], finally the Borel and Wadge complexity of
languages of ω-words recognised by various models of computation was estimated
in [DFR01, Fin06, CDFM09, DFR13, FS14]. It is worth mentioning that in most of
the above cases it turns out that there are languages definable in respective formalisms
that are complete for the studied topological classes. It shows that these languages are
in some sense representative. Also, there are some results studying more general set
theoretic properties of definable languages. For instance, expressibility of cardinality
of sets in mso was studied in [BKR11], and measurability of regular languages of
infinite trees was settled in [GMMS14].

The results of the thesis are based on [HS12, FMS13, BIS13, BS13, Skr14,
BGMS14] and the technical report [MS14].
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2.1 Motivations

The following list presents problems studied in the thesis. Most of them have the
form of a question about descriptive complexity — given a regular language L , is
there a description of L that is simple in a certain sense.

2.1.1 Definability in wmso

The first question asks how to effectively decide if a given regular language is defin-
able in some logic weaker thanmso. There are two natural candidates for such logics:
first-order logic (fo) and weak monadic second-order logic (wmso) where the set
quantification is restricted to finite sets.

In the case ofω-words, definability in fowas solved by Thomas [Tho79] using the
methods of Schutzenberger [Sch65] andMcNaughton Papert [MP71]. The definabil-
ity inwmso trivialises in this case, since everyω-regular language iswmso-definable.

The problem of definability in wmso for regular languages of infinite trees is
considered as one of the central problems in the area. Recently, there has been some
slight progress for various restricted classes of languages. However, the problem in
its full generality seems to be out of reach of the currently known methods.

The thesis presents solutions to the problem of wmso-definability for certain
restricted classes of regular languages of infinite trees: for unambiguous Büchi
automata in Chap.3, for general Büchi automata in Chap.4, for game automata
in Chap.5, and for languages of thin trees in Chap.6.

2.1.2 Index Problem

Another complexity question studied in the thesis asks about the index of a given
regular language of infinite trees L: for a given pair (i, j) is there an alternating
top-down parity tree automaton that recognises L and uses only priorities among
{i, i + 1, . . . , j}? It turns out that in the case of languages of infinite trees that
are bisimulation-invariant (i.e. definable in μ-calculus, see [JW96]), the index cor-
responds precisely to the alternation of fixpoints used in the definition of a lan-
guage [Niw97]. Therefore, the index problem can be seen as a variant of a quantifier
alternation question: how many alternations of quantifiers are needed to define a
given language.

The decidability of the index problem for general languages of infinite trees is
open. As shown in [Bra98, Arn99], the index hierarchy is strict — there are regular
languages of infinite trees that cannot be recognised by any automaton of small index.
As shown by Rabin [Rab70], the index problem and definability inwmso are closely
related: a regular language of infinite trees is definable in wmso if and only if both
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the language and the complement are recognisable by an alternating automaton with
Büchi acceptance condition (i.e. condition of the form “infinitely many accepting
states”).

The thesis provides a solution of the index problem for the class of regular lan-
guages of infinite trees recognisable by game automata (see Chap.5). This is the first
reasonable class of languages for which the index problem is known to be decidable,
that contains languages arbitrarily high in the alternating index hierarchy. Addi-
tionally, an effective collapse of index for languages recognisable by unambiguous
automata is provided in Chap.3: it is proved that if an automaton is unambiguous and
of certain index then the language recognised by the automaton is lower in the index
hierarchy. Although the presented collapse is small, to the author’s best knowledge
this is the first result that utilizes the fact that a given automaton is unambiguous to
give upper bounds on the index of the recognised language.

2.1.3 Bi-unambiguous Languages

Oneof the difficultieswhenworkingwithmsoon infinite trees arises from the fact that
deterministic automata are too weak to recognise all regular languages. The subclass
of regular languages of infinite trees recognisable by deterministic automata seems
to be much more tractable [KSV96, NW98, NW03, NW05, Mur08]. Unambiguous
automata can be seen as a natural class of automata in-between deterministic and non-
deterministic ones. A non-deterministic automaton is unambiguous if it has at most
one accepting run on every input. As shown by Niwiński and Walukiewicz [NW96],
there are regular languages of infinite trees that are inherently ambiguous — there is
no unambiguous automaton recognising them. Very little is known about unambigu-
ous languages, for instance it is not known how to decide if a given regular language
of infinite trees is recognisable by some unambiguous automaton.

The thesis characterizes the class of bi-unambiguous languages (i.e. languages
L such that both L and the complement Lc are unambiguous) as those that can be
recognised by finite prophetic thin algebras. This theorem constitutes a link between
the algebraic framework for thin trees from [Idz12] and languages of general infinite
trees. Also, it provides an algebraic way of recognition for a non-trivial class of
regular languages of infinite trees.

The following new conjecture has arisen when studying properties of prophetic
thin algebras.

Conjecture 2.1. The relation ϕ′(x, Z) expressing that x ∈ Z and Z is contained in a
thin tree does not admitmso-definable uniformization of the first variable x . In other
words, there is no mso-definable choice function in the class of thin trees.

This conjecture is a strengthening of the theorem of Gurevich and Shelah [GS83]
stating that there is no mso-definable choice function on the complete binary tree.
Unfortunately, the conjecture is left open, however some equivalent statements are
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provided. Also, it is shown that the conjecture implies that it is decidable if a given
regular language of infinite trees is bi-unambiguous. Additionally, the conjecture
implies that bi-unambiguous languages constitute a very reasonable class (a pseudo-
variety from the algebraic point of view).

2.1.4 Borel Languages

The index hierarchy for automata on infinite trees turns out to be closely related to
topological hierarchies from descriptive set theory (see for instance [Arn99]). These
relations motivate a number of interesting questions, one of them is the following
conjecture, stated over 20years ago.

Conjecture 2.2 (Skurczyński [Sku93]). If a regular language of infinite trees is Borel
then it is wmso-definable.

The converse implication is known to be true: every wmso-definable language is
Borel. Therefore, the conjecture says in fact that a regular language of infinite trees is
Borel if and only if it is wmso-definable. It would mean that if a language is regular
and topologically simple then it is also “descriptively” simple. It can also be seen as
an automata theoretic counterpart of the relation between the lightface and boldface
hierarchies, see [Mos80, Theorem 3E.4].

The conjecture has been proved only in the special case of deterministic lan-
guages [NW03]. The thesis provides proofs of the conjecture for wider classes of
languages: recognisable by game automata in Chap.5 and for languages of thin trees
in Chap.6. Additionally, a potential strategy of proving the conjecture for Büchi
automata is presented in Chap.4, unfortunately some additional pumping argument
is missing in that case.

2.1.5 Topological Complexity vs. Decidability

In general, there is no direct relationship between decidability of a logic and topolog-
ical complexity of languages it defines. For instance, the fo theory of the structure
of arithmetic (ω,�,+, ∗) is undecidable, while it defines only Borel languages
of ω-words. On the other hand one can construct a trivial logic that defines some
particular language of very high topological complexity. However, as observed by
Shelah [She75] (see also [GS82]) in the case ofmso, the topological complexity and
decidability are strongly related: the mso theory of (R,�) is undecidable, however,
by Rabin’s theorem [Rab69], the theory becomes decidable if we restrict the set
quantification to �0

2-sets.
These ideas are used inChaps. 9 and 10 to study decidability ofmso logic equipped

with an additional quantifier U (as introduced by Bojańczyk [Boj04] and denoted
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mso+u). Chapter 9 studies topological complexity of languages ofω-words definable
in mso+u. It is shown that the topological complexity of these languages is as high
as possible: examples of languages lying arbitrarily high in the projective hierarchy
are given. Already this fact implies that there is no simple automata model capturing
the expressive power of mso+u on ω-words.

This topological observation is further developed in Chap.10 to prove that a
certain variant of mso on the Cantor set {L, R}ω (called proj-mso) can be reduced to
themso+u theory of the complete binary tree. As shown in [BGMS14], the proj-mso
theory is not decidable in the standard sense (see Theorem 10.88). Therefore, the
presented reduction shows that mso+u is also not decidable in this sense.

The question of decidability of mso+u on the infinite trees was posed in [Boj04].
The above line of research proves that this question cannot be answered positively.
Somehow surprisingly, the technical hearth of the proof relies on purely topological
concepts.

2.1.6 Separation Property

The question of separation asks if it is possible to separate every pair of disjoint
languages fromsomeclass by a simple language.Aclassical example of suchproperty
is the following theorem of Lusin: every pair of disjoint analytic (i.e. �1

1) sets can be
separated by a Borel set.

The separation property has also been studied for certain classes of regular lan-
guages, an example is the following result of Rabin: every pair of disjoint regular
languages of infinite trees recognisable by Büchi automata can be separated by a
language that is wmso-definable. Recently, the separation turned out to be crucial
step in providing a significant result about the decidability of the dot-depth hierarchy,
see [PZ14].

In Chap.11 of the thesis the separation property is studied for certain quantitative
extensions of ω-regular languages, namely for ωB- and ωS-regular languages intro-
duced by Bojańczyk and Colcombet [BC06]. It is shown that theωB- andωS-regular
languages have the separation property with respect to ω-regular languages: every
pair of disjoint languages recognisable by ωB- (respectively ωS)-automata can be
separated by an ω-regular language. This result is somehow surprising as the models
of ωB- and ωS-automata are dual: a language is ωB-regular if and only if its com-
plement is ωS-regular. Usually, exactly one class from a pair of dual classes of sets
has the separation property.

2.2 Overview of the Parts

The preliminary Chap. 1 introduces basic notions and known results that will be used
later. The rest of the thesis is divided into three parts, each part has three chapters.
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All the presented results study related problems of descriptive complexity. The
respective parts group results of similar type.Most of the chapters present results that
are technically independent, in particular they can be read separately. The only tech-
nical dependencies are: Chaps. 7 and 8 depend on definitions from Chap.6; results
of Chap.10 depend on Theorem 2.7 from Chap.9.

A separate chapter (see page 205) presents conclusions of the whole thesis. In
particular, some relationships and similarities between the techniques used in the
chapters are discussed.

2.2.1 Part I: Subclasses of Regular Languages

The first part of the thesis studies descriptive complexity questions for restricted
classes of regular languages of infinite trees: unambiguous automata in Chap.3,
Büchi automata in Chap.4, and game automata in Chap.5. Three main theorems of
these chapters are the following.

The first theorem shows how to use the fact that a given automaton is unambiguous
to derive a collapse in parity index of the language recognised by it.

Theorem 2.1. If A is an unambiguous min-parity automaton of index (0, j) then
the language L(A) can be recognised by an alternating Comp(0, j−1)-automaton
of size polynomial in the size of A.

In particular, if A is Büchi and unambiguous then L(A) is wmso-definable.

The second theorem is based on a theory of certain ranks for Büchi automata.
Using these ranks, a characterisation of wmso-definable languages is given.

Theorem 2.2. It is decidable if the language of infinite trees recognised by a given
non-deterministic Büchi tree automaton is wmso-definable.

The above result was already proved by Kuperberg and Vanden Boom (see for
instance [CKLV13]) using the theory of cost functions. However, as discussed in
Chap.4, themethods developed in the presented proofmay be of independent interest
since they introduce conceptually new techniques based on ranks of well-founded
ω-trees.

Finally, the third theorem shows that both index problems are decidable for game
automata—a class of alternating automata that extends deterministic ones by allow-
ing certain restricted alternation between the players. Two effective procedures that
compute the index of the language recognised by a given game automaton are pro-
posed. Then it is shown that the procedures are correct. For this purpose, upper and
lower bounds are given. Interestingly, in the case of the alternating index problem,
the lower bounds are based on purely topological methods (namely the topological
hardness of languages Wi, j ).

Theorem 2.3. The non-deterministic index problem is decidable for game automata
(i.e. if a game automaton is given as the input). The same holds for the alternating
index problem.
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2.2.2 Part II: Thin Algebras

The second part is devoted to a study of thin algebras and thin trees, i.e. trees having
only countably many infinite branches. In Chap.6 a characterization of languages
of thin trees that are wmso-definable among all infinite trees is given. Chapter 7 is
devoted to the recognition of languages of infinite trees by prophetic thin algebras.
Finally, Chap. 8 studies Conjecture 2.1 and related uniformization problems on thin
trees. Three main theorems of these chapters are the following.

The first theorem gives an effective characterisation of regular languages of thin
trees that are definable inwmso among all infinite trees. Additionally, it expresses an
upper bound: even if a regular language of thin trees is not wmso-definable among
all infinite trees, it is still topologically simple (i.e. it belongs to �1

1).

Theorem 2.4. A regular language of thin trees (i.e. a regular language that contains
only thin trees) is either:

1. �1
1-complete among all infinite trees,

2. wmso-definable among all infinite trees (and thus Borel).

Moreover, it is decidable which of the cases holds.

The second theorem provides an algebraic framework for recognition of a
restricted class of regular languages of infinite trees. The idea is to use algebras
designed for thin trees to recognise languages of arbitrary infinite trees.

Theorem 2.5. A language of infinite trees L is recognised by a homomorphism into
a finite prophetic thin algebra if and only if L is bi-unambiguous, i.e. both L and the
complement Lc can be recognised by unambiguous automata.

The last theorem consists of three ingredients: an equivalent formulation of
Conjecture 2.1, an example of a non-uniformizable relation on thin trees, and an
essentially new example of an ambiguous regular language of infinite trees. The
non-uniformizable relation uses a concept of skeleton — a subset of a thin tree that
provides a decomposition of this tree into separate branches.

Theorem 2.6. Conjecture 2.1 is equivalent to the fact that every finite thin algebra
admits some consistent marking on every infinite tree.

The relation ϕ(σ, t) stating that t is a thin tree and σ is a skeleton of t does not
admit any mso-definable uniformization of σ .

The language of all thin trees is ambiguous (i.e. it is not recognised by any unam-
biguous automaton).

AlthoughConjecture 2.1 is not proved in this thesis, the abovenon-uniformizability
results are of their own interest. In particular, the example about skeletons provides
a standalone answer to Rabin’s uniformization problem (the problem was solved
originally by Gurevich and Shelah in [GS83]).
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2.2.3 Part III: Extensions of Regular Languages

The last part of the thesis studies some properties of contemporary quantitative devel-
opments in automata theory. Topological complexity of mso+u-definable languages
of ω-words is estimated in Chap.9. Chapter 10 studies consequences of the high
topological complexity of mso+u regarding decidability of this logic on the com-
plete binary tree. Finally, in Chap. 11 the separation property for ωB- and ωS-regular
languages is proved. Three main theorems of these chapters are the following.

The first expresses the topological complexity of mso+u on ω-words.

Theorem 2.7. There exist languages of ω-words that are definable in mso+u logic
and lie arbitrarily high in the projective hierarchy.

The second theorem uses studies a new variant of mso (called proj-mso). It is a
logic introduced in [BGMS14] where set quantifiers are restricted to projective sets
of certain level (fixed explicitly during quantification). For instance, a logic can say
“there exists a set X that belongs to �1

5 and …”.

Theorem 2.8. The proj-mso theory of {L, R}�ω with prefix � and lexicographic
�lex orders effectively reduces to the mso+u theory of the complete binary tree({L, R}∗,�,�lex

)
.

An algorithm deciding the proj-mso theory of {L, R}�ω (together with its proof of
correctness) would imply that analytic determinacy fails.

This resultwas further extended in [BGMS14] using an adaptation of the technique
of Shelah [She75]. It is shown there that under a certain set theoretic assumption
(namely that v=l, i.e. we work in the Gödel’s constructible universe) the proj-mso
theory of {L, R}�ω is undecidable. Therefore, together with the above theorem, v=l
implies that the mso+u theory of the complete binary tree is undecidable.

Finally, the ninth main theorem of the thesis studies separation property for lan-
guages ofω-words that are recognised by counter automata introduced by Bojańczyk
and Colcombet in [BC06].

Theorem 2.9. If L1, L2 are disjoint languages of ω-words both recognised by ωB-
(respectively ωS)-automata then there exists an ω-regular language Lsep such that

L1 ⊆ Lsep and L2 ⊆ Lc
sep.

Additionally, the construction of Lsep is effective.
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Chapter 3
Collapse for Unambiguous Automata

A natural class in-between deterministic and non-deterministic automata is the class
of unambiguous ones— an automaton is unambiguous if it has at most one accepting
run on every tree. It seems that an unambiguous automaton represents the structure of
the recognised language in amore rigidway than a general non-deterministic automa-
ton. However, as shown in [NW96], there are ambiguous regular tree languages —
languages that are not recognised by any unambiguous automaton.

In contrast to general regular tree languages, most of the problems are solved
in the case of deterministic automata: it is decidable whether a given language is
recognisable by a deterministic automaton [NW05], the non-deterministic index
problem is decidable [NW03, NW98], as well as the Wadge hierarchy [Mur08].

In comparison, the class of unambiguous tree languages (recognisable by unam-
biguous automata) is still a terra incognita. Not only it is unknown how to verify
whether a given regular tree language is unambiguous, but also there are no non-
trivial upper bounds on the descriptive complexity of unambiguous languages in
comparison to all regular tree languages. In particular, it is open whether all unam-
biguous languages can be recognised by alternating parity automata of a bounded
parity index.

There are only two estimations on descriptive complexity of unambiguous lan-
guages known. First, a recent result in [Hum12] shows that unambiguous languages
are topologically harder than deterministic ones. Second, in [FS09] the authors
observe, by a standard descriptive set theoretic argument, that the language recog-
nised by an unambiguous Büchi automaton must be Borel. In this chapter we extend
the latter result by showing the following theorem.

Theorem 3.1. If A is an unambiguous min-parity automaton of index (0, j) then
the language L(A) can be recognised by an alternating Comp(0, j−1)-automaton
of size polynomial in the size of A.

In particular, if A is Büchi and unambiguous then L(A) is wmso-definable.

This theorem extends the mentioned result from [FS09] in two directions. First,
it shows that every unambiguous Büchi automaton recognises a language that is
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38 3 Collapse for Unambiguous Automata

wmso-definable. It is known that every regular tree language definable in wmso is
Borel but the converse is open (see Conjecture 2.2 on page 32). Second, the theorem
presented here gives a collapse also for higher priorities.

To the author’s best knowledge this is the first result where it is shown how to
use the fact that a given automaton is unambiguous to derive upper bounds on the
parity index of the recognised language. Therefore, this result should be treated as
a first step towards descriptive complexity bounds for unambiguous languages, and
generally a better understanding of them.

One should note that in the above theorem the unambiguous-and-Büchi assump-
tions are put on one automaton. It is still possible for a regular tree language to be
both: recognised by an unambiguous automaton and by some (other) Büchi automa-
ton. An example of such a language is the H -language proposed in [Hum12]: “exists
a branch containing only a’s and turning infinitely many times right”. To the author’s
best knowledge, no non-trivial upper bound is known when the conditions of unam-
biguity and certain index are put on the language.

The construction presented here can be seen as an automata theoretic adapta-
tion of the proof of the theorem of Lusin and Souslin [Kec95, Theorem 15.1] (see
Theorem 1.26 on page 25) stating that if f : X → Y is injective and continuous
then the image f (X) is Borel in Y . The proof presented in [Kec95] is based on the
Lusin Separation Theorem [Kec95, Theorem 14.7]. Here one can use Rabin’s sepa-
ration result (Theorem 1.27 on page 25) for j = 1 and the separation of Arnold and
Santocanale (Theorem 1.28 on page 25) for j > 1. The idea to use the separation
result of Arnold and Santocanale for the case of j > 1 was suggested by Henryk
Michalewski.

The proof goes as follows. We first observe that if an automaton is unambigu-
ous then the transitions of the automaton have to correspond, is some sense, to
disjoint languages. By applying the separation result of Arnold and Santocanale
(see Theorem 1.28 on page 25), these disjoint languages can be separated by
Comp(�alt

j−1)-languages. This leads to a construction of a unique run ρt of a given
automaton on a given tree t (Lemma 3.3 in Sect. 3.1).

Then, in Sect. 3.2, we conclude the proof of Theorem 3.1 by providing an effec-
tive construction of a Comp(0, j−1)-automaton recognising L(A). This automaton
combines the Comp(0, j−1)-automata for transition languages with an additional
game played on the run ρt .

3.1 Unique Runs

In this sectionwe prove Lemma 3.3 showing how to define, for a given tree t , a unique
run ρt of a given unambiguous automaton A of index (0, j). The crucial property
of this construction is that the constrains on ρt are Comp(�alt

j ); additionally, ρt is
accepting if and only if t belongs to the language L(A).
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Let us fix an unambiguous automatonA of index (0, j). Let Q be the set of states
of A and A be its working alphabet. We will say that a transition δ = (q, a, qL, qR)

of A starts from (q, a).
A pair (q, a) ∈ Q × A is productive if it appears in some accepting run: there

exists a tree t ∈ TrA and an accepting run ρ ofA on t such that for some vertex u we
have ρ(u) = q and t (u) = a. This definition combines two requirements: that there
exists an accepting run that leads to the state q and that some tree can be accepted
starting from (q, a). Note that if (q, a) is productive then there exists at least one
transition starting from (q, a).

For every transition δ = (q, a, qL, qR) ofA we define Lδ as the language of trees
such that there exists a run ρ ofA on t that is parity-accepting and uses δ in the root
of t :

ρ(ε) = q, t (ε) = a, ρ(L) = qL, and ρ(R) = qR.

The following lemma is a simple consequence of unambiguity of the given
automaton.

Lemma 3.2. If (q, a) is productive and δ1 �= δ2 are two transitions starting from
(q, a) then the languages Lδ1 , Lδ2 are disjoint.

Proof. Assume contrary that there exists a tree r ∈ Lδ1 ∩ Lδ2 with two respective
parity-accepting runs ρ1, ρ2. Since (q, a) is productive so there exists a tree t and an
accepting run ρ on t such that ρ(u) = q and t (u) = a for some vertex u. Consider the
tree t ′ = t[u ← r ] — the tree obtained from t by substituting r as the subtree under
u. Since ρ(u) = q and both ρ1, ρ2 start from (q, a), we can construct two accepting
runs ρ[u ← ρ1] and ρ[u ← ρ2] on t ′. Since these runs differ on the transition used
in u, we obtain a contradiction to the fact that A is unambiguous. �

Let (q, a) be a productive pair and {δ1, δ2, . . . , δn} be the set of transitions of
A starting from (q, a). In that case the languages Lδk for k = 1, 2, . . . , n are
pairwise disjoint. Theorem 1.28 from page 25 implies that for every pair of tran-
sitions δi �= δ j there is an Comp(�alt

j−1)-language that separates Lδi from Lδ j .
Since Comp(�alt

j−1)-languages are closed under Boolean combinations, we can find
Comp(0, j−1)-automata Cδk for k = 1, 2, . . . , n such that:

– for k = 1, 2, . . . , n we have Lδk ⊆ L(Cδk ),
– for k �= k ′ the languages L(Cδk ), L(Cδk′ ) are disjoint,
– the union

⋃
k=1,2,...,n L(Cδk ) equals TrA.

These automata will be crucial ingredients of the construction.
The following lemma formalizes the notion of the unique runs.

Lemma 3.3. Let t ∈ TrA be a tree. There exists a unique maximal partial run ρt of
A on t, i.e. a partial function ρt : {L, R}∗ ⇀ QA such that:

– ρt (ε) = qA
I ,

http://dx.doi.org/10.1007/978-3-662-52947-8_1


40 3 Collapse for Unambiguous Automata

– if u ∈ dom(ρt ) and (ρt (u), t (u)) is productive then also uL, uR ∈ dom(ρt ) and

t�u ∈ L(Cδ) wi th δ = (
ρt (u), t (u), ρt (uL), ρt (uR)

)
. (3.1)

– t ∈ L(A) if and only if ρ is total and accepting.

Proof. The construction is inductive. We start by putting ρt (ε) = qA
I . Assume that

the value of ρt is defined in a vertex u ∈ {L, R}∗. Let a = t (u) and q = ρ(u). If (q, a)

is unproductive we leave the values of ρ on the subtree under u undefined. In that
case we call u a leaf of ρt . Otherwise, the space TrA is split into disjoint sets L(Cδ)

ranging over transitions δ starting from (q, a). Therefore, there exists exactly one
transition δ ∈ Δ starting from (q, a) such that t�u ∈ L(Cδ). Let δ = (q, a, qL, qR)

and ρ(ud) = qd for d = L, R.
Clearly, the above construction gives a uniquemaximal partial run ρ satisfying the

first two bullets of the statement. If ρt is accepting then it is a witness that t ∈ L(A).
Let ρ be an accepting run of A on t . We inductively prove that ρ = ρt . Take a node
u of t and define q = ρ(u), a = t (u), qL = ρt (uL), and qR = ρt (uR). Observe that
ρ is a witness that (q, a) is productive and for δ = (q, a, qL, qR) we have

t ∈ Lδ ⊆ L(Cδ).

Therefore, ρt (uL) = ρ(uL) and ρt (uR) = ρ(uR). �

3.2 Construction of the Automaton

Now we construct an alternating Comp(0, j−1)-automatonR recognising L(A). It
will consist of two sub-automata running in parallel:

1. In the first sub-automaton the role of ∃ will be to propose a run ρ on a given tree
t . She will be forced to propose precisely the run ρt from Lemma 3.3 — at any
moment∀ can challenge the currently proposed transition and checkwhether (3.1)
in Lemma3.3 is satisfied. Such a challengewill be realised bymoving to the initial
state of the appropriate automaton Cδ .

2. In the second sub-automaton the role of ∀ will be to prove that the run ρt is not
accepting. That is, he will find a leaf in ρt or an infinite branch of ρt that does
not satisfy the parity condition. Since he knows the run ρt in advance, we can
ask him to declare in advance what will be the odd priority n that is the lim inf
of priorities of ρt on the selected branch.

The automatonR consists of an initial component C described below and of the
disjoint union of the automata Cδk . States in the initial component C are of the form
(q, n) where q is a state of A and n is either ⊥ or an odd number between 0 and j .
The state q denotes the current state of the run that is being constructed by ∃ in the
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first sub-automaton. The value n (if �= ⊥) denotes the odd priority declared by ∀ in
the second sub-automaton.

The initial state of R is (qA
I ,⊥) ∈ C . The transitions of R inside C are built by

the following rules. Assume that the label of the current vertex is a and the current
state is (q, n):

Step I if the pair (q, a) is not productive, ∃ loses,
Step II if n �= ⊥ and ΩA(q) < n then ∀ loses,
Step III ∃ declares a transition δ = (q, a, qL, qR) of A that starts from (q, a),
Step IV ∀ decides to challenge this transition or to accept it,
Step V if ∀ challenges the transition, R makes an ε-transition to the initial state

of Cδ (n does not play any role in that case),
Step VI otherwise, if n = ⊥ then ∀ declares a new value n′: some odd number

between 0 and j , or still ⊥ (if n �= ⊥ then we put n′ = n),
Step VII finally, ∀ selects a direction d ∈ {L, R} and the automaton R makes a

d-transition to the state (qd , n′).

Note that for each tree t , each play in the game G(R, t) starts in C and either stays
in it forever or leaves to some Cδ and stays there forever. Note also that C consists
of two parts: CI with n = ⊥ and CF where n �= ⊥. Let the priorities of all the states
of the form (q,⊥) equal 2. Consider a state (q, n) with n �= ⊥. If ΩA(q) = n then
such a state has priority 1, otherwise (i.e. if ΩA(q) > n) the priority of (q, n) is 2.

We first argue that if j > 1 then the automatonR is a Comp(0, j−1)-automaton.
Note that the graph of R consists of the following strongly-connected components:
the components of CI , CF , and the components of Cδ for δ ∈ Δ. Recall that all the
automata Cδ are by the construction Comp(0, j−1). By the definition, CI and CF

are Comp(0, 1)-automata so the whole automaton R is also Comp(0, j − 1).
Consider j = 1 (the Büchi case). Observe that the only possible odd value n

between 0 and j is n = 1. It means that if ∀ declares a value n �= ⊥ then always
Ω(q) � n, therefore there are no states in CF of priority 2. It implies that both CI

and CF are Comp(0, 0)-automata and R is a Comp(0, 0)-automaton.
Observe that the size of the automaton R is polynomial in the size of A. The

results of the following two sections imply that L(R) = L(A), thus completing the
proof of Theorem 3.1.

3.2.1 Soundness

Lemma 3.4. If t ∈ L(A) then t ∈ L(R).

Proof. Fix the accepting runρt ofA on t given byLemma3.3. Consider the following
strategy σ∃ for ∃ in C : always declare δ consistent with ρt . Extend it to the winning
strategies in Cδ whenever they exist. That is, if the current vertex is u and the state of
R is of the form (q, n) ∈ C then declare δ = (ρ(u), t (u), ρ(uL), ρ(uR)). Whenever
the game moves from the component C into one of the automata Cδ in a vertex u, fix
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some winning strategy in G(Cδ, t�u) (if exists) and play according to this strategy; if
there is no such strategy, play using any strategy.

Take a play consistent with σ∃ in G(R, t). First note that ∃ does not lose in Step I
since all the pairs (q, a) appearing during the play are productive — the run ρt is a
witness. There are the following cases:

– ∀ loses in a finite time in Step II.
– ∀ stays forever inCI never changing the value of n and loses by the parity criterion.
– In some vertex u of the tree ∀ challenges the transition δ given by ∃ and the game
proceeds to Cδ . In that case t�u ∈ Lδ by the definition of Lδ (the run ρt�u is a
witness) and therefore t�u ∈ L(Cδ). So ∃ has a winning strategy in G(Cδ, t�u) and
she wins the rest of the game.

– ∀ declares a value n �= ⊥ at some point and then accepts all successive transitions
of ∃. In that case the game follows an infinite branch α of t . Since ρt is accepting

so we know that k
def= lim inf i→∞ ΩA(ρt (α�i )) is even. If k < n then ∀ loses at

some point in Step II. Otherwise k > n and from some point on all the states
of R visited during the game have priority 2, thus ∀ loses by the parity criterion
in CF . �

3.2.2 Completeness

Lemma 3.5. If t /∈ L(A) then t /∈ L(R).

Proof. We assume that t /∈ L(A) and give a winning strategy for ∀ in the game
G(R, t). Let us fix the run ρt given by Lemma 3.3.

Note that either ρt is a partial run: there is a vertex u such that ρt (u) = q and
(q, t (u)) is unproductive, or ρt is a total run. Since t /∈ L(A) so ρt cannot be a total
accepting run. Let α be a finite or infinite branch: either α ∈ {L, R}∗ and α is a leaf

of ρt or α is an infinite branch such that k
def= lim inf i→∞ ΩA(ρt (α�i )) is odd. If α is

finite let us put any odd value between 0 and j as k.
Consider the following strategy for ∀:

– ∀ keeps n = ⊥ until there are no more states of priority greater than k along α in
ρt . Then he declares n′ = k.

– ∀ accepts a transition δ given by ∃ in a vertex u if and only if it is consistent with
ρt in u (i.e. if δ = (ρt (u), t (u), ρt (uL), ρt (uR))).

– ∀ always follows α: in vertex u ∈ {L, R}∗ he chooses the direction d in such a way
that ud � α.

As before, we extend this strategy to strategies on Cδ whenever they exist: if the
game moves from the component C into one of the automata Cδ in a vertex u then
∀ uses some winning strategy in the game G(Cδ, t�u) (if it exists); if there is no such
strategy, ∀ plays using any strategy.



3.2 Construction of the Automaton 43

Consider any play π consistent with σ∀. Note that if α is a finite word and the
play π reaches the vertex α in a state (q, n) in C then q = ρt (α) and ∀ wins in Step I
as (ρt (α), t (α)) is not productive. Similarly, by the definition of the strategy σ∀, ∀
never loses in Step II — if he declared n �= ⊥ then the play will never reach a state
of priority smaller than n.

Let us consider the remaining cases. First assume that at some vertex u player
∀ challenged a transition δ declared by ∃. It means that there is another transition
δ′ �= δ consistent with ρt in u. By the definition of ρt we know that t�u ∈ Lδ′ in
particular t�u ∈ L(Cδ′). Since the languages Cδ′ , Cδ are disjoint, t�u /∈ Cδ and ∀ has a
winning strategy in G(Cδ, t�u) and wins in that case.

Consider the remaining case: ∀ accepted all the transitions declared by ∃ and the
play is infinite. Then, for every i ∈ N the game reached the vertex α�i in a state
(q, n) satisfying q = ρt (α�i ). In that case there is some vertex u along α where ∀
declared n = k. Therefore, infinitely many times ΩA(q) = n in π so ∀ wins that
play by the parity criterion. �

This concludes the proof of Theorem 3.1.

3.3 Conclusions

The results presented in this chapter provide a way of using the fact that a given
automaton A is unambiguous to prove some upper bounds on the index of the lan-
guage L(A). Therefore, they can be seen as an attempt to solve the following open
problem.

Question 3.1. Does there exist a number n such that every unambiguous tree lan-
guage belongs to �alt

n ?

As proved in [BIS13], every regular language of thin trees can be recognised
by a non-deterministic automaton of index (1, 3). The results of Chap.7 suggest
that there is a strong relationship between bi-unambiguous languages and languages
of thin trees (namely that every bi-unambiguous language can be recognised by a
homomorphism into a finite prophetic thin algebra). These observations suggest the
following conjecture that would give a partial solution to the above question in the
case of bi-unambiguous languages.

Conjecture 3.3. If both L and the complement Lc are recognisable by unambiguous
automata (i.e. L is bi-unambiguous) then L ∈ �alt

2 .

The best known lower bounds are given by Hummel in [Hum12] where examples
of bi-unambiguous languages in Comp(�alt

1 ) \ (
�alt

1 ∪ �alt
1

)
are provided.

This chapter is based on the technical report [MS14].

http://dx.doi.org/10.1007/978-3-662-52947-8_7


Chapter 4
When a Büchi Language Is Definable
in wmso

A natural subclass of regular tree languages are those that can be defined in weak
monadic second-order logic (wmso). As shown by Rabin (see Theorem 1.18 on
page 20), a language L iswmso-definable if and only if both L and the complement
can be recognised by non-deterministic (equivalently alternating, see Theorem 1.19
on page 21) Büchi automata. Therefore, the following decision problem can be seen
as a special case of the index problems from Sect. 1.7.2 (see Problem 1.1 on page 22).

Problem 4.2 (Definability in wmso)

– Input An alternating tree automaton A.
– Output Is L(A)A definable in wmso.

The decidability of this decision problem in full generality is open. Therefore, it
is natural to ask for solutions for restricted classes of input languages. In this chapter
we study the problem when the input automaton is a non-deterministic (equivalently
alternating) Büchi automaton.

The main theorem of this section states that this restricted problem is decidable.

Theorem 4.2. It is decidable if the language of infinite trees recognised by a given
non-deterministic Büchi tree automaton is wmso-definable.

This decidability result was already proved in [CKLV13]. It is shown there that the
reduction from [CL08] applied toBüchi automata produces instances of a domination
problem for which an effective procedure is known [Van11, KV11]. The whole
structure of the proof is rather involved and makes extensive use of the theory of
regular cost functions on ω-words [Col13].

The approach presented in this chapter is different. We start by introducing a rank
that measures complexity of trees with respect to a given Büchi automaton B. This
leads to the definition of an ordinal η(B) � ω1. It turns out that this ordinal is strongly
related to the descriptive complexity of the language L(B). In particular, we prove
the following two properties of η(B):

– η(B) < ω1 if and only if L(B) is Borel (see Proposition 4.2),
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– η(B) < ω2 if and only if L(B) is wmso-definable (see Proposition 4.3)

To prove the latter property, we introduce a finitary version of η(B) represented by
languages of K -reach and K -safe trees.

The obtained properties of the rank η(B) seem promising, in particular, Conjec-
ture 2.2 on page 32 (every Borel regular tree language is wmso-definable) would be
proved for Büchi automata if one managed to prove the following claim.

Conjecture 4.4. If B is a non-deterministic Büchi tree automaton then

η(B) � ω2 =⇒ η(B) = ω1.

Unfortunately, the author is unable to prove the above statement. It can be seen
as a distant analogue of the study of closure ordinals from [Cza10, AL13].

Theorem 2.2 is proved as a consequence of properties of η(B) — it is enough
to prove that the condition η(B) < ω2 is decidable. For this purpose, a variant
of domination games from [Col13] is introduced. Although the motivations come
from [Col13], the presented construction is standalone and does not refer to any
results about cost functions.

The organisation of the chapter reflects the two parts of the proof. The first part of
the proof, which studies properties of η(B), is spread across Sects. 4.1, 4.2 and 4.3.
In Sect. 4.1 the ordinal η(B) is defined and its basic properties are stated. Section4.2
introduces notions of K -reach and K -safe trees that are designed as finitary ap-
proximations of η(B). Section4.3 introduces Comp(0, 0)-automata that recognise
languages of K -reach and K -safe trees. These automata show that if η(B) < ω2

then L(B) is wmso-definable.
The second part of the proof, i.e. the effective procedure itself is presented in

Sects. 4.4 and 4.5. Section4.4 introduces a game G designed to verify if η(B) < ω2.
The game G has finite arena and the winning condition of G is ω-regular, therefore
it is decidable who wins G. Section4.5 shows that ∃ has a winning strategy in G if
and only if η(B) < ω2, what finishes the proof of Theorem 2.2.

Finally, Sect. 4.6 concludes the results of this chapter.

4.1 The Ordinal of a Büchi Automaton

Let L be a regular tree language recognised by a non-deterministic Büchi tree au-
tomaton B. Our aim is to define a particular continuous reduction T of Lc = TrA \ L
to the set of well-founded ω-trees WF. Intuitively, T(t) will reflect to what extent
it is possible to construct runs of B on t that contain many accepting states. For-
mally, T(t) will consist of truncated runs defined in the following subsection. The
reduction T will allow us to bind with a tree t ∈ Lc an ordinal rank

(
T(t)

)
measuring

the complexity of t. Then, we will define an ordinal η(B) (the ordinal of B) as the
supremum of rank

(
T(t)

)
over trees t ∈ Lc.

http://dx.doi.org/10.1007/978-3-662-52947-8_2
http://dx.doi.org/10.1007/978-3-662-52947-8_2
http://dx.doi.org/10.1007/978-3-662-52947-8_2
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For the rest of this chapter let us fix a non-deterministic Büchi tree automaton B
recognising L . Let us assume that Q is the set of states of B and A is its working

alphabet. Let F
def= {q ∈ Q : ΩB(q) = 0}. A sequence of states of Q is parity-

accepting if it contains infinitely many states in F . For the purpose of this chapter
we call the states in F accepting.

4.1.1 Truncated Runs

We start with technical definitions of approximations of accepting runs of a Büchi
automaton.

For d � 0 a truncated run (shortly a t-run) of depth d from q ∈ QB is a function
γ : {L, R}�d → Q that looks like a prefix of a run of B:
– γ (ε) = q,
– for every u ∈ {L, R}<d there exists a transition of B of the form

δ = (
γ (u), a, γ (uL), γ (uR)

)
, for some a ∈ A. (4.1)

If the state q is not mentioned explicitly, we assume that q = qA
I . For a tree t ∈ TrA

we say that a t-run γ fits to t if the letters in (4.1) agree with t (i.e. we can take a
transition δ in (4.1) such that t (u) = a).

Let γ be a t-run of depth d and d0 < d1 � d. We say that γ is accepting between
d0 and d1 if for every w ∈ {L, R}d1 there exists u � w such that

|u| > d0 and γ (u) ∈ F.

It means that every path visits an accepting state at a depth between d0 and d1, see
Fig. 4.1. The same definition applies when γ is a total run.

The following fact is a standard application of König’s lemma.

Fact 4.33. If ρ is an accepting run of a Büchi automaton then for every d0 � 0 there
exists d1 > d0 such that ρ is accepting between d0 and d1.

A pair N = (
d, γ

)
is a sliced truncated run (or shortly an st-run) from q ∈ QB

if:

– d = (d0, . . . , dk) with k � 0,
– 0 = d0 < d1 < . . . < dk ,
– γ is a truncated run of depth d from q with dk−1 � d � dk (if k = 0 then we use
d−1 = 0),

– for every i = 1, 2, . . . , k−1 the truncated run γ is accepting between di−1 and di .

As before, by default we take q = qB
I . An st-run N = (

d, γ
)
fits to t if γ fits to

t . The depth of an st-run
(
d, γ

)
is the depth of γ . An st-run N = (

(d0, . . . , dk), γ
)

is completed if the depth of γ is dk .
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Fig. 4.1 An illustration of a t-run that is accepting between d0 and d1: the boldfaced dots mark
accepting states that appear on every path between d0 and d1.

Let N = (
d, γ

)
, N ′ = (

d′, γ ′) be two st-runs. Assume that the depths of γ , γ ′
are d, d ′ respectively. We will define when N ′ extends N (denoted N → N ′), there
are two cases:

– If N is not completed then we must have γ ′ ⊃ γ , d′ = d, and d ′ = d + 1.
– If N is completed then wemust have γ ′ = γ and d′ = d ·dk+1 for some dk+1 > dk .

Informally, a non-completed st-run can be extended by adding one additional
layer to the t-run γ without exceeding the last depth dk . A completed st-run can be
extended by not modifying the t-run γ but declaring a new depth dk+1 (in that case
the new st-run is not completed).

Fact 4.34. Let N0 = (
(d0, d1, . . . , dk), γ

)
be an st-run. Let d be the depth of γ .

Then there is no sequence of non-completed st-runs N0 → N1 → . . . → Nn with
n > dk − d.

4.1.2 The Reduction

Now we proceed with a definition of a function, mapping trees t ∈ TrA to ω-trees
T(t) ∈ ωPTr. For the sake of inductive arguments we define one function Tq for each
state q ∈ QB.
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Observe that the set X of all st-runs is countable. Therefore, we can assume that
there is a bijection between ω and st-runs: ω 	 n ↔ N (n) ∈ X . Assume additionally
that N (0)

q = ((0), γ ) with γ being the unique t-run of depth 0 from q. Modulo the
above bijection, a sequence of st-runs (N1, N2, . . . , Nn) can be seen as an element
of ω∗. Therefore, we define Tq(t) ⊆ ω∗ as a set of sequences of st-runs. For a tree
t ∈ TrA let (N1, N2, . . . , Nn) ∈ Tq(t) if:

N (0)
q → N1 → N2 → . . . → Nn, (4.2)

for i = 1, . . . , n the st-run Ni fits to t. (4.3)

We define T as TqB
I
.

Remark 4.2. Assume that N is an st-run from q. Observe that by the definition of→,
there is a unique sequence of st-runs (N1, N2, . . . , Nn) satisfying (4.2) with Nn = N .

This sequence satisfies (4.3) if and only if N fits to t .

In particular, we can identify elements of Tq(t) with st-runs from q fitting to t .
The root of Tq(t) corresponds to the st-run N (0)

q .

Fact 4.35. The function Tq : TrA → ωPTr is continuous.

Proof. It is enough to observe that for each N = (N1, . . . , Nn) the set

{
t ∈ TrA : N ∈ Tq(t)

}

is clopen — it depends on the given tree up to the depth of the t-run of Nn . �
Fact 4.36. Assume that the vertex ofTq(t) corresponding to an st-run N (formally to
a sequence (N1, . . . , Nn = N )) is infinitely branching inTq(t). Then N is completed.

Proof. A non-completed st-run has only finitely many extensions. �
The following lemma shows that TqB

I
is a continuous reduction of Lc to WF.

Lemma 4.6. For a tree t ∈ TrA we have

t ∈ L(B) ⇐⇒ the ω-tree TqB
I
(t) is ill-founded (i.e. contains an infinite branch).

Proof. First assume that t ∈ L(B). Let ρ be an accepting run of B on t . Fact 4.33
shows that there is a sequence 0 = d0 < d1 < d2 < . . . such that for every i > 0 the
pair

Ni =
(
(d0, . . . , di ), ρ�{L,R}�di

)

is a completed st-run that fits to t . The st-runs Ni lay on an infinite branch of TqB
I
(t).

Now let N0 → N1 → . . . be an infinite branch ofTqB
I
(t). Let ρ be the run obtained

as the union of the t-runs of these st-runs. By Fact 4.34, this sequence must contain
infinitely many completed st-runs. Therefore, ρ is an accepting run of B on t . �
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4.1.3 Ranks

Nowwe can define η(B)—the ordinal number ofmain interest in this chapter. Recall
that T(t) stands for TqB

I
(t). By Lemma 4.6, for every tree t /∈ L(B) the ω-tree T(t)

is well-founded. Let
η(B)

def= sup
t /∈L(B)

rank
(
T(t)

)
. (4.4)

The relation between the complexity of L(B) and η(B) is expressed by Proposi-
tions 4.2 and 4.3.

Proposition 4.2. The language L(B) is Borel if and only if η(B) < ω1.

Proof. If L(B) is Borel then

{
T(t) : t /∈ L(B)

} ⊆ WF (4.5)

is a continuous imageof aBorel set, thus an analytic (�1
1) set. Therefore, by thebound-

edness theorem (see Sect. 1.6.4 and Theorem 1.12 on page 17) we have η(B) < ω1.
Now assume that η(B) < ω1. Theorem 1.12 implies that the set

TB
def= {τ ∈ ωTr : rank(τ ) � η(B)}

is Borel. But TrA \ L(B) is the preimage of TB under the continuous function T,
therefore also Borel. �

The following proposition constitutes the crucial idea behind the effective char-
acterisation from Theorem 2.2.

Proposition 4.3. The language L(B) is wmso-definable if and only if η(B) < ω2

(i.e. if there exists K ∈ ω such that η(B) < ω · K).

The proof of this proposition consists of two lemmas: Lemma 4.7 proved here
and Lemma 4.10 from Sect. 4.3.

Lemma 4.7. If L(B) is wmso-definable then η(B) < ω2.

The rest of this section is devoted to proving this lemma. Apart from some tech-
nicalities, the reasoning is based on Rabin’s pumping lemma from [Rab70].

Assume that L(B) is wmso-definable and let A be a non-deterministic Büchi
automaton recognising the complement of L(B). Let K = |QA| · |QB| · |A| + 2. To
arrive to a contradiction assume that η(B) � ω2 and let t /∈ L(B) be a tree such that

rank
(
T(t)

)
� ω · K .

Since t /∈ L(B) so there exists an accepting run ρA of A on t . Our aim is to
construct a t-run γ of B on t and a sequence of numbers 0 = d0 < d1 < . . . < dK−1

such that:

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_2
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For every i < K − 1 both γ and ρA are accepting between di and di+1. (4.6)

This will enable us to construct a regular tree t ′ with accepting runs of both automata
A and B (see [Rab70]) leading to a contradiction.

Recall that by Remark 4.2 we identify elements (nodes) of T(t) with st-runs from
qIB fitting to t . The construction is inductive for i = 1, . . . , K−1. The invariant is
that Ni is a completed st-run of depth di and

rank
(
T(t)�Ni

) = ω · (K − i).

Observe that Fact 1.9 from page 17 implies that if rank
(
T(t)�N

)
is a limit ordinal

then N is infinitely branching inT(t). Therefore byFact 4.36, N is a completed st-run.
We start by fixing N1 as any node of T(t) of rankω ·(K −1) (it exists by Fact 1.10

on page 17) and let d1 be the depth of N1.
Assume that a completed st-run Ni−1 = (

d, γ
)
of depth di−1 is defined. Let d ′ be

the depth given by Fact 4.33 such that ρA is accepting between di−1 and d ′.
Observe that all the st-runs N ′ in T(t) such that Ni−1 → N ′ are of the form(

d · d ′′, γ
)
for some d ′′. In particular, only finitely many of them satisfy d ′′ < d ′.

Since rank
(
T(t)�Ni−1

) = ω · (K − i + 1) is a limit ordinal, we can find an st-run N ′
in T(t) such that:

– Ni−1 → N ′,
– N ′ = (

d · di , γ ′) for di � d ′, and
– rank

(
T(t)�N ′

)
� ω · (K − i).

Now, we use again Fact 1.10 from page 17 to find Ni in T(t) below N ′ and
satisfying

rank
(
T(t)�Ni

) = ω · (K − i).

Now let γ be the t-run of NK−1. Condition 4.6 is clearly satisfied by the construc-
tion.

Now it remains to prove the following fact.

Fact 4.37. There exists a tree t ′ ∈ L(A) ∩ L(B).

Proof. We only sketch a proof of this fact, a complete construction is given
in [Rab70]. See also [KV99, Theorem 1] for a definition of a trap — the sequence
d0 < d1 < . . . < dK−1 constructed above is a trap for the runs γ and ρA.

The tree t ′ (together with the runs of A and B) is obtained as an unravelling of a
finite graph constructed using t . Consider i ∈ {1, . . . , K−1} and a nodew ∈ {L, R}di .
If there exists i ′ such that 0 < i ′ < i and for u

def= w�di ′ we have
(
t (u), γ (u), ρA(u)

) = (
t (w), γ (w), ρA(w)

)

then (for the minimal such i ′) we remove the edge from the parent of w to w and
instead we add an edge from the parent ofw to u (preserving the direction d ∈ {L, R}).
In that case we say that w has been rewired to u.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Since K is big enough, for every w ∈ {L, R}dK−1 at least one of the prefixes of w

has been rewired. Therefore, none of such vertices w is accessible from ε via the
edge relation. Let t ′ be the unravelling of the constructed graph. Clearly, γ and ρA

are runs of B and A on t ′. Since both runs are accepting between di and di+1 for
every i , the respective runs on t ′ are accepting. �

This concludes the proof of Lemma 4.7 finishing the “only if” implication in
Proposition 4.3. The “if” implication will be proved in Lemma 4.10 in Sect. 4.3.

4.2 Extending Runs

We now give a more explicit definition expressing the fact that η(B) � ω2. It will
serve as an intermediate object in a proof of Lemma 4.10. For K ∈ ω we will define
notions of K -safe and K -reach trees.

The definitions are designed in such a way to correspond precisely to languages
recognised by the alternating automata defined in Sect. 4.3. Because of that, we
cannot require here to have exact truncated runs as in Sect. 4.1.1. Therefore, we use
a notion of a partial run defined as a non-empty finite partial tree ρ̄ ∈ PTrQ such
that every node u ∈ dom(ρ̄) is either a leaf of ρ̄ or uL, uR ∈ dom(ρ̄) and for some
a ∈ A

(
ρ̄(u), a, ρ̄(uL), ρ̄(uR)

)
is a transition ofB.

We additionally require that ε is not a leaf of ρ̄.
A partial run ρ̄ is accepting if for every leaf u ∈ dom(ρ̄) of ρ̄ we have ρ̄(u) ∈ F

—all the states in the leaves of ρ̄ are accepting. A partial run ρ̄ isminimal accepting
if it is accepting and minimal (w.r.t. ⊆) partial tree satisfying the above conditions
— ρ̄ has a leaf in the first accepting state seen along every branch. This technical
assumption will allow us to easily prove Proposition 4.5.

As for t-runs, we say that a partial run ρ̄ is from the state ρ̄(ε) and it fits a tree t
if the transitions used in ρ̄ use letters of t .

Take a state q ∈ QB and a tree t ∈ TrA. We say that:

– q is always 0-reach and 0-safe in t .
– q is (K+1)-safe in t if there exists a total run ρ of B on t such that ρ(ε) = q and
for every u ∈ dom(t)

ρ(u) is (K+1)-reach in t�u .

– q is (K+1)-reach in t if there exists a partial run ρ̄ from q such that ρ̄ fits t , ρ̄ is
minimal accepting, and for every leaf u of ρ̄ we have

ρ̄(u) is K -safe in t�u .
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In particular, if q is 1-safe in t then there exists a total run ρ of B on t with
ρ(ε) = q. In general, the following fact holds.

Fact 4.38. Assume that q ∈ QB is (K+1)-reach in t ∈ TrA. Then, we can find a
total run ρ of B on t and a depth d such that:

– ρ(ε) = q,
– ρ is accepting between 0 and d,
– for every w ∈ {L, R}∗ of length at least d we have

ρ(w) is K -reach in t�w.

Directly from the definition, we obtain the following monotonicity property.

Fact 4.39. Let K ′ � K � 0. If q is K ′-safe in t then q is K -safe in t . If q is K ′-reach
in t then q is K -reach in t.

Also, if q is (K+1)-reach in t then q is K -safe in t and if q is (K+1)-safe in t
then q is (K+1)-reach in t.

Proposition 4.4. The following conditions are equivalent:

1. for every K there exists a tree t /∈ L(B) such that qB
I is K -reach in t,

2. η(B) � ω2.

The proof of this proposition is split across the following two subsections. The
following remark follows easily from the definition of K -safe, however we will
not prove it directly, instead we will use automata defined in Sect. 4.3. It implies,
together with the above proposition, that if η(B) < ω2 then the language L(B) is
wmso-definable.

Remark 4.3. For every K there exists a wmso formula ϕK such that

L(ϕK ) = {t : qB
I is K -reach in t}.

4.2.1 K-reach Implies Big Rank

In this subsection we prove one of the estimations needed for Proposition 4.4: if for
every K there is a tree t /∈ L(B) such that qIB is K -reach in t then η(B) � ω2. The
proof goes by induction, as expressed by the following lemma.

Lemma 4.8. Let N = (
d, γ

)
be a completed st-run of depth d from q. Assume that

N fits to a tree t ∈ TrA and for every u ∈ {L, R}d we know that γ (u) is K -reach in
t�u. Then

rank
(
Tq(t)�N

)
� ω · K .
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Observe that by putting N = N (0)
q (the unique st-run of depth 0) above, we obtain

that if q is K -reach in t then rank
(
Tq(t)

)
� ω · K .

Proof. The proof is inductive in K . For K = 0 the thesis holds. Assume that the
thesis holds for K � 0 and every q ∈ QB, t ∈ TrA. Take an st-run N as in the
statement and assume that for every u ∈ {L, R}d we know that γ (u) is (K+1)-reach
in t�u .

For every u ∈ {L, R}d we can apply Fact 4.38 to q = γ (u) and t = t�u obtaining
a total run ρu of B on t�u with ρu(ε) = γ (u) and a depth du . Let us put:

d ′ = max
u∈{L,R}d

du, ρ = γ
[
u ← ρu

]

u∈{L,R}d
.

By the construction in Fact 4.38 we know that:

– ρ is a total run of B on t and γ ⊆ ρ,
– ρ is accepting between d and d ′,
– for every u of length at least d ′ we know that ρ(u) is K -reach in t�u .

Now take any d1 > d ′ and consider the st-node

N ′ def= (
d · d1, ρ�{L,R}�d1

)
.

Clearly N ′ is a completed st-run of depth d1 from q that fits to t and

N →(d1−d) N ′ (i.e. N ′ can be obtained by extending N (d1−d)-times).

Observe that N ′ satisfies the inductive assumption for K , so

rank
(
Tq(t)�N ′

)
� ω · K .

By considering bigger and bigger values of d1, we can find arbitrarily long paths
in Tq(t)�N that lead to vertices of rank at least ω · K . Therefore

rank
(
Tq(t)�N

)
� ω · (K + 1).

�

4.2.2 Big Rank Implies K-reach

Now we prove the opposite estimation from Proposition 4.4: if η(B) � ω2 then for
every K there exists a tree t /∈ L(B) such that qIB is K -reach in t . This statement
follows from the following lemma.
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Lemma 4.9. Let N = (
d, γ

)
be a completed st-run of depth d from q. Assume

additionally that N fits to a tree t ∈ TrA.

1. If
rank

(
Tq(t)�N

)
� ω · (

1 + 2 · K )

then for every u ∈ {L, R}�d (i.e. u ∈ dom(γ )) the state γ (u) is K -safe in t�u.
2. If

rank
(
Tq(t)�N

)
� ω · (2 · K )

then for every u ∈ {L, R}�d (i.e. u ∈ dom(γ )) the state γ (u) is K -reach in t�u.

As before, by putting N = N (0)
q (the unique st-run of depth 0) above, we obtain

that if rank
(
Tq(t)

)
� ω · (2 · K )

then q is K -reach in t .
The rest of this subsection is devoted to proving this lemma. We start with the

following observation.

Fact 4.40. Assume that N ∈ Tq(t) is a completed st-run of depth d and rank
(
Tq(t)

�N
)

� ω·(K+1). Then for every d ′ � d there exists a completed st-run N ′ ∈ Tq(t)�N
of depth at least d ′ and such that rank

(
Tq(t)�N ′

)
� ω · K.

Proof. Let τ = Tq(t)�N . Since rank(τ ) � ω ·(K+1), there are arbitrarily long paths
in τ that lead to vertices of rank at least ω · K . By Fact 1.10 from page 17, under
every such vertex there is a vertex N ′ ∈ τ of rank exactly ω · K . Facts 1.9 and 4.36
imply that N ′ must be completed in that case. Since the path from N to N ′ is arbitrary
long, so is the depth of N ′. �

Now we can prove our lemma, the proof is inductive on K , for K = 0 both parts
of the thesis are trivial. Assume that both parts of the thesis hold for K and consider
a completed st-run N as in the statement.
Item (1) First assume that

rank
(
Tq(t)�N

)
� ω · (

1 + 2 · K )
.

Our aim is to prove that for every u ∈ {L, R}�d the state γ (u) is K -safe in t�u .
Let (N ′

i )i∈N be a sequence of completed st-runs of unbounded depths that are
given by Fact 4.40. Let γ ′

i be the t-run of N ′
i . By compactness, there exists a subse-

quence of (γ ′
i )i∈N that is point-wise convergent to a total run ρ. Let us restrict the

sequences (N ′
i )i∈N, (γ

′
i )i∈N to this convergent sub-sequence (we do not require N ′

i to
be convergent in any sense). Clearly, γ ⊆ ρ and for every u ∈ {L, R}∗ there is some
i such that ρ(u) = γ ′

i (u).
What remains to prove is that for every u ∈ {L, R}∗ the state ρ(u) is K -reach in

t�u . Take such u and consider i such that ρ(u) = γ ′
i (u). By the construction of N ′

i
we know that

rank
(
Tq(t)�N ′

i

)
� ω · (

2 · K )
.

Therefore, ρ(u) is K -reach in t�u because of Item (2) of our lemma.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Item (2) Now assume that

rank
(
Tq(t)�N

)
� ω · (

2 · (K+1)
)

and take u ∈ {L, R}�d . Our aim is to prove that the state γ (u) is (K+1)-reach in t�u .
By applying Fact 4.40 to N and any depth greater than d we obtain a completed

run N ′ such that N ′ ∈ Tq(t)�N and

rank
(
Tq(t)�N ′

)
� ω · (

1 + 2 · K )
. (4.7)

Let γ ′ be the t-run of N ′ and d ′ be the depth of γ ′. Since both N and N ′ are
completed, γ ′ is accepting between d and d ′

Let ρ̄ be the restriction of γ ′�u to its initial fragment before the first accepting
state:

dom(ρ̄)
def= {

w : uw ∈ dom(γ ′),
γ ′(uw) ∈ F , and

for every ε ≺ w′ ≺ w we have γ ′(uw′) /∈ F
}
.

By the definition ρ̄ is a partial run and ρ̄ is minimal accepting. Observe that
by (4.7) and the inductive assumption, for every w that is a leaf of ρ̄ we know that
the state ρ̄(w) is K -safe in t�uw. Therefore, ρ̄ is a witness that γ (u) is (K+1)-reach
in t�u .

This concludes the proof of Lemma 4.9 and therefore the proof of Proposition 4.4.

4.3 Automata for K -safe Trees

In this section we define a sequence of automata (defined in a uniform way) that
recognise languages of K -safe trees, as expressed in Proposition 4.5 below. The
primary goal of this construction will be a proof of Lemma 4.10 (i.e. that if η(B) <

ω2 then L(B) is wmso-definable) which completes the proof of Proposition 4.3.
Furthermore, in Sect. 4.4 we will define a game based on the automata constructed
here; the aim of this game will be verifying if η(B) < ω2.

The automata constructed here are very similar to the counter automatonB defined
in [CKLV13, Sect. 4.3], however both notions were developed independently basing
on the idea of traps in [KV99].

Lemma 4.10. If for some K ∈ ω and every t /∈ L(B) we have rank
(
T(t)

)
< ω · K

then L(B) is wmso-definable.

We take a number K � 0 and construct an automaton C[K ] over the alphabet
A. Let the states of C[K ] be QB × {safe, reach} × {0, 1, . . . , K }. The initial state
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is (qB
I , safe, K ). Let the states of the form (q, safe, i) have priority 0 and the other

states have priority 1.
Let us define the transitions of the automaton C[K ]. All the states of the form

(q, safe, 0) and (q, reach, 0) have only trivial transition�—they accept everything.
First we give a formal definition of the form of the transitions, then we explain it
informally. Assume that the current state is of the form (q, z, i)with z ∈ {safe, reach}
and i > 0; and a letter a is given. The transition of C[K ] consists of the following
choices of the players:

∀ chooses an element z′ ∈ {z, reach} (if z = reach then ∀ has no choice here)

∃ chooses a transition δ = (q, a, qL, qR) of B
∀ chooses a direction d ∈ {L, R}

When these choices are done, the automaton C[K ] moves in direction d to the suc-
cessive state defined according to the following cases:

– z′ = safe then the successive state is (qd , safe, i),
– z′ = reach and qd /∈ F then the successive state is (qd , reach, i),
– z′ = reach and qd ∈ F then the successive state is (qd , safe, i − 1).

Informally, from each state (q, safe, i) the player ∀ can request to jump to the state
(q, reach, i) without moving in the tree. Assume that he made his choice and the
state of C[K ] is (q, z′, i). Now ∃ declares a transition δ and ∀ picks a direction d. If
z′ = safe then they just continue in the state (qd , safe, i). If z′ = reach then C[K ]
waits for an accepting state. If qd is accepting then C[K ] moves to (qd , safe, i − 1),
otherwise C[K ] stays in (qd , safe, i).

By the definition of the transitions of C[K ] we obtain the following fact.

Fact 4.41. For every K � 0 the automaton C[K ] is Comp(0, 0).

The following proposition expresses a relation between the notions of K -safe
trees and acceptance by the automata C[K ].
Proposition 4.5. For K � 0 and a tree t ∈ TrA:

t ∈ L
(C[K ], (q, safe, i)

) ⇐⇒ q is i-safe in t,

t ∈ L
(C[K ], (q, reach, i)

) ⇐⇒ q is i-reach in t .

Proof. The proof is inductive in i . For the induction step it is enough to observe that
there is a 1−1 correspondence between winning strategies of ∃ in the component
QB × {safe} × {i} of C[K ] and runs ρ witnessing the i-safety (similarly for the
component QB × {reach} × {i} and partial runs ρ̄ witnessing i-reachability). �

Now, all the properties of the ordinal η(B) from Sect. 4.1 have been proved.
What remains in the following sections is to give an effective procedure deciding if
η(B) < ω2.
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4.4 Boundedness Game

In this section we construct a finite game G with an ω-regular winning condition that
satisfies the following proposition.

Proposition 4.6. The following conditions are equivalent:

1. ∃ has a winning strategy in G,
2. η(B) � ω2.

Since the winner ofG can be effectively computed (see Theorem 1.21 on page 21),
Theorem 2.2 will follow from Proposition 4.3. The game G is highly motivated by
domination games from [Col13], however the construction presented here does not
depend on any external results about cost functions.

In this section we construct the game G, a proof of Proposition 4.6 is given in
Sect. 4.5.

Let us fix a non-deterministic tree automaton A recognising the complement of
L(B) (A can have arbitrary index). We will construct G fromA and B. Intuitively, G
will require the following declarations from the players:

– ∃ will be constructing a tree t and a run ρA of A on t ,
– ∀ will be selecting successive directions constructing an infinite branch α of t ,
aiming to show that the run ρA proposed by ∃ is not accepting,

– at the same time both players will simulate (in the history-deterministic way in
the sense of [Col13]) the game G(C[K ], t) for an “unknown but big” K .

The set of positions of G is

V
def= P

(
QB × {safe, reach}) × QA × {0, 1, 2, 3}.

A position (S, p, r) ∈ V of G consists of a set S ⊆ QB × {safe, reach} of active
states, a state p ∈ QA, and a sub-round number r ∈ {0, . . . , 3}.

The initial position of G is ({(qB
I , safe)}, qA

I , 0).
The edges of G will have an additional structure (i.e. an edge will be more than

just a pair of positions (v, v′) ∈ V × V ). This richer structure will be used to define
the winning condition of G that will refer to a sequence of edges. From our definition
it will be easy to see how to transform such a game into a standard two player game in
the sense of Sect. 1.3 (see page 6). To underline that edges have additional structure
we refer to them as multi-transitions.

A multi-transition μ from (S, p, r) ∈ V to (S′, p′, r ′) ∈ V contains:

– the pre-state (S, p, r),
– the post-state (S′, p′, r ′) with r ′ = r + 1 (mod 4),
– a set e ⊆ S × S′ of edges between the active states S and S′,
– a set ē ⊆ e of boldfaced edges, satisfying

for every s ′ ∈ S′ exactly one edge to s ′ is boldfaced (i.e. |{s : (s, s ′) ∈ ē}| = 1).
(4.8)

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_2
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Fig. 4.2 An example of a multi-transition μ.

Observe that by the definition, there is only finitelymanymulti-transitions. The ex-
act rules how the multi-transitions are selected by the players are given in Sect. 4.4.1.

An active state (q, safe) is said to be in the safe zone and an active state (q, reach)
is said to be in the reach zone. We say that a pair (s, s ′) ∈ e with s = (q, z) and
s ′ = (q ′, z′) changes zone if z �= z′, it changes zone from safe to reach if z = safe
and z′ = reach, it changes zone from reach to safe if z = reach and z′ = safe.

An example multi-transition is depicted on Fig. 4.2. The convention is that all the
active states from the safe zone are drawn on the left, then all the active states from
the reach zone are drawn in the middle, and finally the state of A and the sub-round
number are drawn on the right. For the purpose of layout, we additionally draw an
edge between the states p and p′ of A (this edge does not belong to e). Boldfaced
edges are boldfaced.

4.4.1 Rules of the Game

In this section we describe the rules for choosing multi-transitions in G. A multi-
transition from a position (S, p, r) ∈ V will be constructed by first selecting a set of
edges e ⊆ S×(QB×{safe, reach}) and p′ ∈ QA according to the rules given below;
and then by allowing ∀ to choose any multi-transition μ that respects (S, p, r), e,
and p′ in the following sense:

– the pre-state of μ is (S, p, r),
– the post-state of μ is (S′, p′, r ′) with S′ = {s ′ : (s, s ′) ∈ e} and r ′ = r + 1

(mod 4),
– the edges of μ are e,
– the boldfaced edges ē of μ are chosen arbitrarily by ∀ according to Condition 4.8.

That is, the only freedom ∀ has when selecting a multi-transition that respects
(S, p, r), e, and p′ is when choosing the boldfaced edges ē.

Assume that the current position in G is (S, p, r) and consider the following cases
for the number of sub-round r . In all the cases players construct a multi-transition μ

that leads to a post-state (S′, p′, r ′):
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R0 r = 0: Deterministically, every active state (q, safe) from the safe zone is
duplicated to the reach zone: e contains all the pairs (s, s) for s ∈ S as well
as all the pairs ((q, safe), (q, reach)) for (q, safe) ∈ S. The state p′ = p ofA
is not changed. ∀ chooses μ that respects (S, p, r), e, and p′.

R1 r = 1: ∃ declares:

– a letter a ∈ A,
– a function assigning to every s = (q, z) ∈ S a transition δs = (q, a, qs

L, q
s
R)

of B,
– a transition δ = (p, a, p′

L, p
′
R) of A.

If ∃ is unable to do such a declaration, she loses.
∀ responds by selecting a direction d ∈ {L, R}. Then p′ = p′

d and e contains
all the pairs of the form ((q, z), (qs

d , z)) for s = (q, z) ∈ S. ∀ chooses μ that
respects (S, p, r), e, and p′.

R2 r = 2: Deterministically, every active state (q, reach) in the reach zone with
q ∈ F is moved to the safe zone. Formally, e contains:

– all the pairs ((q, safe), (q, safe)) for (q, safe) ∈ S,
– all the pairs ((q, reach), (q, reach)) for (q, reach) ∈ S and q /∈ F ,
– all the pairs ((q, reach), (q, safe)) for (q, reach) ∈ S and q ∈ F .

The state p′ = p of A is not changed. ∀ chooses μ that respects (S, p, r), e,
and p′.

R3 r = 3: ∀may remove some active states in S by selecting e ⊆ {(s, s) : s ∈ S}.
The state p′ = p of A is not changed. ∀ chooses μ that respects (S, p, r), e,
and p′.

Figure4.3 presents a round of G (i.e. four consecutive sub-rounds with r =
0, 1, 2, 3).

By the definition of the sub-rounds of the game, we obtain the following fact.

Fact 4.42. Letμ be a multi-transition constructed in the game G and s = (q, z) ∈ S
be an active state in the pre-state (S, p, r) ofμ. Then one of the following cases holds:

– z = safe and there is precisely one q ′ such that (s, (q ′, safe)) ∈ e,
– z = reach and q /∈ F and there is precisely one q ′ such that (s, (q ′, reach)) ∈ e,
– in R2 if z = reach and q ∈ F then there is no q ′ such that (s, (q ′, reach)) ∈ e,
– there is no s ′ such that (s, s ′) ∈ e (it may happen only in R3 if ∀ removes s).

The state q ′ in the first two cases above is called the μ-successor of (q, z).
Similarly, for a sequence of multi-transitions μ0, . . . , μk we have the notion of
(μ0, . . . , μk)-successor.Note that a priori theμ-successors of (q, safe) and (q, reach)
may be distinct. For an element s ′ ∈ S′, the unique s such that (s, s ′) ∈ ē is called
the μ-predecessor of s ′.
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Fig. 4.3 An example round of the game G consisting of the four sub-rounds. The nodes in circles
correspond to accepting states. At sub-round R3 ∀ decides to remove one active state from the safe
zone.

4.4.2 Winning Condition

Now we will define the winning condition for ∃ in G. Recall that it will refer to the
sequence of multi-transitions on the play.

Let π = μ0μ1 . . . be the infinite sequence of multi-transitions that were played
in G. We will refer to the pre-state of μn as (Sn, pn, rn). Analogously, we will use
(S′

n, p
′
n, rn) for the post-state, en for the edges, and ēn for the boldfaced edges of

μn , respectively. Since π is a play, (S′
n, p

′
n, r

′
n) = (Sn+1, pn+1, rn+1) and rn ≡ n

(mod 4).
Observe that every s ∈ S′

n has a unique boldfaced history in π : a unique sequence
s0, s1, . . . , sn = s such that (si , si+1) ∈ ēi for i < n. A path in π is a sequence
α = s0, s1, . . . such that (si , si+1) ∈ ei of all i . A path is boldfaced if (si , si+1) ∈ ēi
for all i . In particular, every finite prefix of a boldfaced path is a boldfaced history.

Intuitively, we would like to count how many times the boldfaced history of an
active state s ∈ S′

n has changed zone from reach to safe, this number will be denoted
val(s) and will be defined formally in Equation (4.10). The main purpose of G is to
avoid measuring this quantity and to use an ω-regular winning condition instead.

For a play π = μ0μ1 . . . define the following properties:
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W1 Some boldfaced path changes zone infinitely many times.
W2 The sequence of states p0, p1, . . . of the automaton A is parity-accepting.
W3 Some boldfaced path stays from some point on in the reach zone.

Now let a play π be winning for ∃ if π satisfies

W1 ∨ (W2 ∧ ¬W3). (4.9)

By the definition of the conditions W1, W2, andW3 we obtain the following fact.

Fact 4.43. The winning condition of G is an ω-regular property of sequences of
multi-transitions. By adding multi-transitions of G to the positions one can obtain an
equivalent game with the winning condition on sequences of positions, conforming
to the definition in Sect.1.3 (see page 6).

4.5 Equivalence

In this sectionweprove the followingproposition, expressing an equivalence between
the game G constructed in Sect. 4.4 and the ordinal η(B) from Sect. 4.1.

Proposition 4.6. The following conditions are equivalent:

1. ∃ has a winning strategy in G,
2. η(B) � ω2.

4.5.1 Implication (1) ⇒ (2)

In this subsection we assume that ∃ has a winning strategy σ∃ in the game G and
prove Item (2) in Proposition 4.6, i.e. that η(B) � ω2. For this purpose we take any
number K ∈ N and we will construct a tree t /∈ L(B) such that qB

I is K -safe in t .
Proposition 4.4 will imply that η(B) � ω2.

The main idea behind the game G is that although the winning condition of G
is ω-regular, the structure of G allows to keep track of real values of active states.
These values will correspond to the numbers stored in the states of C[K ]. We start
by formally defining these values for a play in G.

Consider a finite or infinite play π = μ0μ1 . . . and an active state s ∈ S′
n with the

boldfaced history s0, s1, . . . , sn = s. Let

val(s, n, π)
def= ∣

∣{i : si ∈ QB × {reach} and si+1 ∈ QB × {safe}}∣∣. (4.10)

We usually skip n and π above and write just val(s) if the current history of the play
is known from the context.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Now, given a value K we can consider genuine strategies of ∀ — strategies that
keep track of the values of active states. It will turn out that such strategies allow us
to simulate plays in C[K ]. We start by formally defining these strategies.
K -genuine strategies of ∀. A strategy σ∀ of ∀ is called K -genuine if it satisfies
the three conditions defined below: genuine-removal, val-monotonicity, and tie-
breaking.

A strategy σ∀ satisfies genuine-removal if in the sub-round R3 it removes an active
state s ∈ S if and only if val(s) � K .

A strategy σ∀ satisfies val-monotonicity if whenever ∀ defines boldfaced edges,
he does it in such a way to minimize val(s)—he puts (s, s ′) into ē if s has a minimal
value val(s) among all {s : (s, s ′) ∈ e}. In other words, every pair (s, s ′) ∈ ē has to
satisfy

∀(s0,s ′)∈e val(s) � val(s0). (4.11)

Already the two above conditions guarantee the following fact.

Fact 4.44. If π is an infinite play of G consistent with a K -genuine strategy of ∀
then π does not satisfy W1 (no boldfaced path changes side infinitely many times).

The last condition, namely the tie-breaking, says what to do when defining ē
if there are two possible active states s with the minimal value val(s), i.e. both
satisfying (4.11). The only purpose of this condition is to guarantee the following
fact.

Fact 4.45. Let π be an infinite play of G that is consistent with a K -genuine strategy
of ∀. If π contains an infinite path α that from some point on stays in the reach zone
then this path is eventually boldfaced (i.e. there exists an infinite boldfaced path α′
that differs from α on finitely many positions, so α′ satisfies W3).

To express the condition of tie-breaking let us assume that during a play the player
∀ keeps track of a linear order on the active states: along with the position (S, p, r)
he stores an order � on S. This order is a simplified variant of Latest Appearance
Record, see [GH82] and [Büc83b]. When he chooses a multi-transition μ, the new
order �′ on S′ is defined according to the following rules:

– for an active state s ′ ∈ S′ that is in the reach zone let us define pre(s ′) = {s ∈
QB × {reach} : (s, s ′) ∈ e} — the set of e-predecessors of s ′ that are in the reach
zone,

– for s ′
0, s

′
1 in the reach zone such that both sets pre(s ′

0), pre(s
′
1) are non-empty we

put
s ′
0 �′ s ′

1 if sup� pre(s ′
0) � sup� pre(s ′

1),

– all the active states s ′ in the reach zone such that pre(s ′) = ∅ are added to �′
below all the existing elements (i.e. s ′ <′ s ′

0 when pre(s
′) = ∅ and pre(s ′

0) �= ∅),
– all the active states in the safe zone are added below all the active states in the
reach zone (i.e. (q, safe) <′ (q ′, reach)).
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– when the above rules do not determine the order, some fixed order on QB is used.

Intuitively, the order � measures, for a given active state s, how long history
(possibly not boldfaced) this active state has in the reach zone — the longer history,
the �-bigger is s.

Now, a strategy σ∀ satisfies the condition of tie-breaking if among all active states
s satisfying (4.11) it selects the �-maximal one: if (s, s ′) ∈ ē then

∀(s0,s ′)∈e val(s0) = val(s) ⇒ s0 � s.

Proof of Fact 4.45. Let π = μ0μ1 . . . and consider a path α in π as in the statement
(α stays from some point on in the reach zone). Observe that from some point on
the value val(s) for the active states on the path α must stabilize — the values of
active states along a path not changing zone can only decrease. Therefore, from some
point on, the boldfaced edges to active states on α were chosen using the condition
of tie-breaking.

For the purpose of this proof, let the grade of an active state s in an order � be
the number of elements greater than s in � — the smaller the grade is the �-bigger
the element is. By Fact 4.42 an active state s in the reach zone has at most one
e-successor. Therefore, the grades of the active states on the path α are from some
point on decreasing. Let n be the moment when both the values and the grades of
the active states on α stabilize.

Consider a multi-transition μn′ in π that is later than n (i.e. n′ � n). Let s, s ′ be
the active states on α just before and just after μn′ . The values are already stabilized
so val(s) = val(s ′). Since the grades of s and s ′ are the same, s is �-maximal in
pre(s ′). Therefore, the edge (s, s ′) has to be boldfaced in μn′ . �

The following remark shows how to define a K -genuine strategy.

Remark 4.4. Observe that all the choices of ∀ except the directions d are uniquely
determined in a K -genuine strategy. Therefore, to define a K -genuine strategy it is
enough to say what will be the directions proposed by ∀ in the sub-rounds R1.

From a strategy in G to a K -safe tree. Assume that ∃ has a winning strategy σ∃ in G
and K ∈ N. Our aim is to construct a tree t /∈ L(B) such that QB

I is K -safe in t . The
requirement that t /∈ L(B) will be ensured by constructing an accepting run ρ of A
on t . It will finish the proof of Item 2 in Proposition 4.6 (i.e. that η(B) � ω2).

We define a tree t and a run ρ of A on t inductively. Let us take u ∈ {L, R}∗.
Consider the play π of G resulting from ∃ playing σ∃ and ∀ playing a K -genuine
strategy such that the first |u| directions proposed by ∀ are u(0), . . . , u(|u| − 1). Let
a, p be the letter and the state of A from the sub-round R1 of the |u|’th round of π .
Let us put t (u) = a and ρ(u) = p.

Let α be any infinite branch of t . By π(K , α) we denote the play resulting
from ∃ playing σ∃ and ∀ playing the K -genuine strategy with consecutive direc-
tions α(0), α(1), . . . By Fact 4.44, the play π(K , α) does not satisfy W1. Since σ∃
is winning, π(K , α) satisfies W2 and ¬ W3. In particular, W2 implies that the run
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ρ determined by σ∃ is parity-accepting on α. Since the choice of α is arbitrary, ρ is
accepting so t /∈ L(B).

It remains to prove that qB
I is K -safe in t . It is expressed in an inductive fashion

by the following lemma. We assume that the sequence of multi-transitions during
π(K , α) is μ0μ1 . . .. Note that the four multi-transitions played in the sub-rounds of
an n’th round of the play π(K , α) are μ4n , μ4n+1, μ4n+2, and μ4n+3.

Lemma 4.11. Consider the play π(K , α) for an infinite branch α. Assume that an
n’th round of this play started in the vertex u = α�n of the tree t . Take any active state
s = (q, z) ∈ S4n or S′

4n (we allow active states before and after the sub-round R0).
For every i � K−val(s):

if z = reach then q is i-reach in t�u,
if z = safe then q is i-safe in t�u.

Note that the above lemma for n = 0, s = (qB
I , safe), and i = K gives us that qB

I
is K -safe in t .

Proof. The proof goes by induction on i . The thesis is trivial for i = 0. Assume that
we have proved the thesis for i−1 (for all n and s). Consider a vertex u = α�n and
an active state s as in the statement.
The z = reach case. First consider the case of z = reach. We need to show that q is
i-reach in t�u .

Wewill construct a partial tree ρ̄ ∈ PTrQB that will be a partial run witnessing that
q is i-reach in t�u . The construction of ρ̄(w) is inductive on the length ofw ∈ {L, R}∗.
With everyw during the construction we bind a prefix of a play in G that is consistent
with the strategy σ∃. The invariant is that s ′ = (ρ̄(w), reach) is an active state and
val(s ′) � K − i . We start with w = ε, the prefix μ0 . . . μ4n , and s ′ = s.

Assume we reached a vertex w during the construction with the prefix of the
play being μ0 . . . μ4n−1μ

′
4nμ

′
4n+1 . . . μ′

4n′ (here n′ − n = |w|). Assume that s0 =
(ρ̄(w), reach) is an active state and val(s0) � K − i . We need to show how to extend
the construction to wd for d = L, R. Consider such d and let us play the remaining
three sub-rounds of the (n′)’th round. Let ∃ play using σ∃ and let ∀ play in this round
using a K -genuine strategy with the proposed direction d, the three multi-transitions
constructed are μ′

4n′+1, . . . , μ
′
4n′+3. Now let us play the first sub-round R0 of the

successive round, what gives us μ′
4n′+4 — it does not influence the reach zone.

Let q ′ = qs0
d — the state from the transition proposed by ∃ for s0. First assume

that q ′ /∈ F . In that case, by Fact 4.42, the active state (q ′, reach) is the unique
(μ′

4n′+1, . . . , μ
′
4n′+4)-successor of (q, reach) — since i > 0 and val(s0) � K − i so

∀ does not remove the active state (q ′, reach) inμ′
4n′+3. In particular, val(q

′, reach) �
val(q, reach) � K − i . We define ρ̄(wd) = q ′, and proceed with w = wd, s0 =
(q ′, reach), and the prefix of a play μ0 . . . μ4n−1μ

′
4nμ

′
4n+1 . . . μ′

4n′+4.
Now consider the case that q ′ ∈ F . In that case we finish the inductive constriction

by letting w be a leaf of ρ̄. Note that in that case in the multi-transition μ′
4n′+2 there

is an edge ((q ′, reach), (q ′, safe)). Therefore, we obtain
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val(q ′, safe) � 1 + val(q ′, reach) � 1 + K − i = K − (i − 1).

As before, ∀ does not remove (q ′, safe) in μ′
4n′+3. By the inductive assumption for

i − 1 � K − val(q ′, safe) we know that q ′ is (i−1)-safe in t�uw. It means that ρ̄ is
a partial run witnessing that the original state q was i-reach in t�u if and only if ρ̄ is
a finite tree (does not have any infinite branch).

It remains to prove that ρ̄ is finite. Assume contrary that there exists an infinite
branch β such that for every w ≺ β the above construction gave a state q ′ /∈ F . It
means that there exists a path in the play π(K , uβ) that is from some moment on
in the reach zone. By Fact 4.45 it means that W3 is satisfied what contradicts the
assumption that σ∃ is winning.
The z = safe case. Assume that z = safe. We need to show that q is i-safe in t�u .
Similarly as above, we construct a total run ρ of B on t�u with ρ(ε) = q. We will
argue that for every w we know that ρ(w) is i-reach in t�uw.

The construction of ρ(w) is inductive on the length of w ∈ {L, R}∗. With every
w during the construction we bind a prefix of a play in G that is consistent with the
strategy σ∃. The invariant is that s ′ = (ρ(w), safe) is an active state and val(s ′) �
K − i . During the step in which we define ρ(wd) we additionally argue that ρ(w)

is i-reach in t�uw. We start with w = ε, the prefix μ0 . . . μ4n−1 and s ′ = s.
Assume that we reached a vertex w during the construction with the prefix of

the play being μ0 . . . μ4n−1μ
′
4nμ

′
4n+1 . . . μ′

4n′−1 (here n′ − n = |w|). Assume that
s0 = (ρ̄(w), safe) is an active state and val(s0) � K − i . We need to show how
to extend the construction to wd for d = L, R. Consider such d and let us play the
four sub-rounds of the (n′)’th round. Let ∃ play using σ∃ and let ∀ play in this round
using a K -genuine strategy with the proposed direction d, the four multi-transitions
constructed are μ′

4n′ , . . . , μ′
4n′+3.

Let q ′ = qs0
d — the state from the transition proposed by ∃ for s0. By Fact 4.42,

the active state (q ′, safe) is the unique (μ′
4n′ , . . . , μ′

4n′+3)-successor of (q, safe)
— since i > 0 and val(s0) � K − i , ∀ does not remove the active state
(q ′, safe) in μ′

4n′+3. In particular, val(q ′, safe) � val(q, safe) � K − i . We de-
fine ρ(wd) = q ′, and proceed with w = wd, s0 = (q ′, safe), and the prefix of a play
μ0 . . . μ4n−1μ

′
4nμ

′
4n+1 . . . μ′

4n′+3.
Additionally observe that there is an edge ((q, safe), (q, reach)) in the multi-

transition μ4n′ . Therefore, by the inductive invariant we know that ρ(w) is i-reach
in t�uw. �

This concludes the proof of the implication (1) ⇒ (2).

4.5.2 Implication (2) ⇒ (1)

Now assume that ∀ has a winning strategy in G. Since the winning condition of G is
ω-regular so we can take as σ∀ a finite memory winning strategy of ∀ (see Sect. 1.3.1
and Theorem 1.21 on page 21). Assume that the memory structure of σ∀ is M . We

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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will prove that there exists a number K such that no tree t /∈ L(B) is K -reach, thus
showing the negation of Item 2 in Proposition 4.6 (i.e. that η(B) < ω2).

We start with the following fact exploiting the assumption that the strategy σ∀ has
finite memory. Recall that in (4.10) we defined the value of an active state s in a play
(denoted val(s)).

Fact 4.46. There exists a global bound K such that for every play consistent with
σ∀ and every active state s during the play, we have val(s) < K. The bound K can
be computed effectively basing on B.
Proof. Assume contrary and let us take a play π = μ0μ1 . . . μ4n such that for some
active state s we have val(s) � |G| · |M | · |QB| · 2. A standard pumping technique
(see e.g. [AS05]) shows that in that case there exists a loop μ4iμ4i+1 . . . μ4i ′ in the
graph G × M and an active state s ∈ QB × {safe, reach} such that:

– s ∈ S4i ,
– s ∈ S′

4i ′+3,
– the boldfaced history of s in μ4iμ4i+1 . . . μ4i ′ reaches s in S4i ,
– the above boldfaced history changes zone from reach to safe.

Consider the play

π ′ = μ0μ1 . . . μ4i−1

(
μ4i . . . μ4i ′+3

)∞
.

This play is consistent with the strategy σ∀ and satisfiesW1. Therefore, π ′ is winning
for ∃ what contradicts the fact that σ∀ is a winning strategy of ∀. �

Let us fix the bound K from Fact 4.46. Assume for the contradiction that η(B) �
ω2. Proposition 4.4 implies that there exists a tree t /∈ L(B) such that qB

I is K -safe
in t . Let σ be a winning strategy of ∃ in G(C[K ], t).

We will construct a strategy σ∃ of ∃ in G that will simulate the strategy σ . Then we
will show that the play of G resulting from ∃ playing σ∃ and ∀ playing σ∀ is winning
for ∃ what contradicts the assumption that σ∀ is winning.

Let ρA be an accepting run ofA on t . The strategy σ∃ will simulate during a play
of G a set of plays of G(C[K ], t) (by following the boldfaced edges) and play ρA as
the transitions of A. That is, for every active state s the player ∃ will keep track of
an s-play in G(C[K ], t) defined below. The invariant will be:

If s = (q, z) ∈ S at the beginning of a round in G then

the s-play in G(C[K ], t) reached the state
(
q, z, K − val(s)

)
. (4.12)

Let us define the s-play in G(C[K ], t) more formally. At the beginning of the
game G the only active state is (qB

I , safe) and (qB
I , safe, K ) is the initial state of

C[K ]. We will consider the four sub-rounds of a round in G. Whenever a new multi-
transition μ is played in G, the s ′ ∈ S′-play in G(C[K ], t) is the continuation of the
s-play in G(C[K ], t) for s being theμ-predecessor of s ′. Now consider the successive
sub-rounds:
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– In the sub-round R0 it is possible that the edge (s, s ′) changes zone from safe to
reach. In that case ∃ simulates ∀ playing z′ = reach in G(C[K ], t), otherwise she
simulates z′ = safe.

– The transition δs played by ∃ in G in the sub-round R1 is the transition δ from
G(C[K ], t) played in the s-play in G(C[K ], t). The transition δ ofA played by ∃ is
the transition from ρA. The direction d played by ∀ in G(C[K ], t) is the direction
from the sub-round R1.

– In the sub-round R2 it is possible that the edge (s, s ′) changes zone from reach to
safe. In that case s = (q, reach) with q ∈ F and the s ′-play in G(C[K ], t) moves
to the state (q ′, safe, i − 1).

– If ∀ decides to remove some active states s in the sub-round R3 of G then they are
not longer active after this sub-round. For active states s that are not removed, the
s-play is not changed.

Observe that after such a round the invariant (4.12) is satisfied.
Let π be the play resulting from ∃ playing σ∃ and ∀ playing σ∀ in G. Fact 4.46

implies thatπ does not satisfyW1. Since the strategy σ of ∃ inG(C[K ], t) is winning,
W3 is not satisfied by π . The run ρA is accepting so π satisfies W2. Therefore, π is
winning for ∃ what contradicts the assumption that σ∀ is winning.

This concludes the proof of Implication (2)⇒ (1) and the proof of Proposition 4.6.

4.6 Conclusions

The results presented in this chapter relate descriptive complexity of the language
recognised by a Büchi automaton B with the rank η(B). In particular, Conjecture 4.4
stated in this chapter would imply that if a Büchi language is Borel then it is wmso-
definable (i.e. a special case of Conjecture 2.2 for Büchi languages). Unfortunately,
Conjecture 4.4 remains open as an appropriate pumping argument is missing.

The study of the ordinal η(B) is motivated by the boundedness theorem (see
Theorem 1.12 on page 17), saying that if an analytic (i.e. �1

1) set X is contained in a
ranked set (e.g. well-founded ω-trees) then there is a bound on ranks that are realised
in X . This theorem is the crucial tool for proving Proposition 4.2 that relates Borel
languages and the rank η(B).

Since every Büchi language is analytic, this may suggest to use the boundedness
theorem for deciding if a given language is Büchi. However, one should bear in mind
the following example. It implies that among�1

1-sets there are someBüchi languages
and some regular languages that are not Büchi. Therefore, topological methods are
not enough to distinguish between the two cases.

Example 4.2. The regular tree language L �=1 containing these trees t ∈ Tr{a,b} that
have 0 or at least 2 infinite branches labelled by infinitely many letters a is an analytic
language (i.e. �1

1) but it cannot be recognised by a Büchi automaton.

http://dx.doi.org/10.1007/978-3-662-52947-8_2
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Sketch of the proof. The fact that L �=1 is analytic follows from[Kec95,Exercise 33.1].
The fact that L �=1 is not a Büchi language follows from the standard pumping argu-
ment showing that the set of trees where every branch contains only finitely many a
is not Büchi. �

However, there is a hope that some more involved ranks may still be useful for
deciding higher levels of the index hierarchy.



Chapter 5
Index Problems for Game Automata

One of the main difficulties when working with regular languages of infinite trees
is the lack of a convenient notion of recognition. In particular, since deterministic
automata are too weak, one has to deal with an inherent non-determinism. On the
other hand, many problems simplify when we restrict to languages recognisable by
deterministic automata (called deterministic languages), see Sect. 1.7.6 on page 26.
The crucial technique standing behind these results is the so-called patternmethod—
the properties of a deterministic language are reflected by certain patterns in the graph
of a deterministic automaton recognising it.

The pattern method cannot be applied to non-deterministic nor alternating auto-
mata; the reason is that both these classes are closed under union and union is not an
operation that preserves the index of languages. However, it turns out that if we avoid
closure under union, we can extend the pattern method well-beyond deterministic
automata, to so-called game automata.

In this chapter we study game automata that can be seen as a combination of
deterministic and co-deterministic ones. They were introduced in [DFM11] as the
largest subclass of alternating tree automata extending the deterministic ones, closed
under complementation and composition, and for which the latter operation pre-
serves natural equivalence relations on recognised languages, like the topological
equivalence, or having the same index. As game automata recognise the languages
Wi, j from [Arn99] (see Sect. 1.7.4, page 23) the alternating index problem does not
trivialise, unlike for deterministic automata.

Recall that an alternating tree automatonA is deterministic if its transitions are of
the form (qL, L) ∧ (qR, R). For such automata, all the positions in the induced game
G(A, t) on a tree t belong to the universal player ∀— his aim is to indicate a branch
on which the run is rejecting. In the case of game automata we allow dual transitions
where ∃ is in charge of selecting the direction. More formally, an alternating tree
automatonA is a game automaton if every transition ofA is of one of the following
forms:

� , ⊥ , (qd , d) , (qL, L) ∨ (qR, R) , (qL, L) ∧ (qR, R)
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for d ∈ {L, R} and qL, qR ∈ QA. If A is a game automaton and t is a tree then
both players are allowed to make decisions in the game G(A, t). However, for every
direction d in the tree, there is at most one successive state that can be reached by
moving in this direction.

The following theorem summarizes the results of this chapter.

Theorem 5.3. The non-deterministic index problem is decidable for game automata
(i.e. if a game automaton is given as the input). The same holds for the alternating
index problem.

Let L be a language recognised by a game automaton. If L ∈ �alt
j then L ∈

Comp(�alt
j−1). If L is Borel then L is wmso-definable.

Additionally, it is shown in [FMS13] that it is decidable if a given regular tree
language is recognisable by a game automaton. This characterisation is not presented
in this thesis, it follows similar lines as in the deterministic case [NW98]. It implies
that the decidability results from Theorem 2.3 hold for the class of languages recog-
nisable by game automata: there exists an algorithm that inputs a representation
(possibly a non-game automaton) of a regular tree language, verifies if the language
can be recognised by a game automaton and if it can then computes the index of the
language.

At this point game automata form the widest class of automata for which both
index problems are known to be decidable. It seems that game automata is the frontier
of the pattern method — to move further one needs a new insight into the structure
of regular tree languages.

The symbols �alt
j and �alt

j are used in this thesis in the opposite meaning when
compared to [FMS13]. This is to keep consistency with the notions from [AS05,
AMN12].

The chapter is organised as follows. In Sect. 5.1 we introduce and study a notion
of the run of a game automaton on a tree. In Sect. 5.2 we give an easy argument for
decidability of the non-deterministic index problem for game automata. Section5.3
builds some technical tools that will allow to give a solution for the alternating index
problem for game automata in Sect. 5.4. In Sect. 5.5 we conclude.

5.1 Runs of Game Automata

The main similarity between game automata and deterministic automata is that their
acceptance can be expressed in terms of runs, which are unique labellings of input
trees. The notion of a run of a game automaton will be used in subsequent sections
of this chapter.

For a game automaton A and a state q0 ∈ QA, with each tree t ∈ TrAA one can
associate the run

ρ = ρ(A, t, q0) : dom(t) → QA 
 {�,⊥, �}

http://dx.doi.org/10.1007/978-3-662-52947-8_2


5.1 Runs of Game Automata 73

such that ρ(ε) = q0 and for all u ∈ dom(t), if ρ(u) = q, δ(q, t (u)) = bu then

– if bu is (qL, L) ∨ (qR, R) or (qL, L) ∧ (qR, R) then ρ(ud) = qd for d = L, R;
– if bu = (qd , d) for some d ∈ {L, R} then ρ(ud) = qd and ρ(ud̄) = �;
– if bu = ⊥ then ρ(uL) = ρ(uR) = ⊥, and dually for �;

and if ρ(u) ∈ {�,⊥, �} then ρ(uL) = ρ(uR) = �.
The run ρ = ρ(A, t, q0) for a tree t is naturally interpreted as a gameGρ(A, t, q0)

with:

– positions dom(t) \ ρ−1(�),
– where edges follow the child relation and loop on those positions u where ρ(u) ∈

{�,⊥},
– the priority of u is ΩA(ρ(u)) with Ω(⊥) = 1, Ω(�) = 0,
– the owner of u being ∃ if and only if δ(ρ(u), t (u)) = (qL, L) ∨ (qR, R) for some
qL, qR ∈ QA.

Note that the symbol � in ρ denotes the vertices that cannot be visited during the
game Gρ(A, t, q0).

Recall that the game G(A, t, q0) (see Sect. 1.4, page 7) is defined similarly to
Gρ(A, t, q0) but is more complicated: a play in G(A, t, q0) explicitly operates on
transitions ofA. For instance, one edge in the gameGρ(A, t, q0) may correspond to
three edges in G(A, t, q0):

– from (u, bu) to (u, bd)where bd is an atomic transition that is a sub-formula of bu ,
– from (u, bd) to (ud, qd) for an atomic transition bd = (qd , d),
– from (ud, qd) to

(
ud, δ(qd , t (ud))

)
where δ(qd , t (ud)) = bud .

Therefore,Gρ(A, t, q0) can be seen as a projection ofG(A, t, q0)), the advantage of
Gρ(A, t, q0) is that this game explicitly reflects the input tree — the set of positions
of Gρ(A, t, q0) is contained in dom(t). By the definition, t ∈ L(A, q0) if and only
if ∃ has a winning strategy in Gρ(A, t, q0).

For simplicity we write ρ(A, t) for ρ(A, t, qA
I ) and Gρ(A, t) for Gρ(A, t, qA

I ).
It will be important in this chapter that we assume that every state q of a game

automaton A recognises a non-trivial language, i.e. L(A, q) is neither ∅ nor TrAA .
This can be achieved for every game automaton recognising a non-trivial language
by removing trivial states and simplifying transitions, see Fact 1.4 on page 9 (it is
easy to observe that the proposed method produces a game automaton).

The following remark subsumes the crucial property of runs of game automata.

Remark 5.5. Let A be a game automaton and t ∈ TrAA be a tree. Assume that
u ∈ dom(t) is a vertex such that ρ(A, t)(u) = q ∈ QA (i.e. ρ(A, t)(u) is not in
{�,⊥, �}). Let

L ′ = {t ′ ∈ TrAA : t[u ← t ′] ∈ L(A)}.
Then either:

– L ′ = ∅,
– L ′ = TrAA ,
– L ′ = L(A, q).

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Additionally, since all the states of A recognise non-trivial languages, the above
disjunction is exclusive.

Proof. Consider the following cases:

– One of the players P ∈ {∃,∀} has a winning strategy σ in Gρ(A, t) (we treat σ

as a set of nodes of t) such that u /∈ σ . In that case the same strategy is a winning
strategy inGρ(A, t[u ← t ′]), so L ′ = ∅ or L ′ = TrAA depending whether P = ∀
or ∃.

– Whenever σ is a winning strategy of a player P in t then u ∈ σ . We want to show
that L ′ = L(A, q). Consider any tree t ′ and assume that a player P has a winning
strategy σ in Gρ(A, t[u ← t ′]). By our assumption u ∈ σ — otherwise σ would
be a winning strategy of P in Gρ(A, t) that does not contain u. Note that since
u ∈ σ , σ induces a winning strategy of P in Gρ(A, t ′, q). Therefore, t ′ ∈ L ′ if
and only if P = ∃ if and only if t ′ ∈ L(A, q). �

5.2 Non-deterministic Index Problem

In this section we prove the first part of Theorem 2.3: the non-deterministic index
problem is decidable for languages recognisable by game automata. It follows
directly from the decidability of the non-deterministic index problem for determin-
istic tree languages [NW05] and the following proposition.

Proposition 5.7. For each game automatonA one can effectively construct a deter-
ministic automatonD, such that L(A) is recognised by a non-deterministic automa-
ton of index (i, j) if and only if so is L(D).

Proof. Essentially, D recognises the set of winning strategies for ∃ in the games
induced by the runs of A. Let W ∃

A be the set of all trees t ⊗ s over the alphabet
AA × {L, R, LR} such that s encodes a winning strategy for ∃ in the gameGρ(A, t) in
the following sense: if s(u) ∈ {L, R}, ∃ should move from u to u · s(u), and s(u) = LR

means that ∃ has no choice in u. It is easy to see that W ∃
A can be recognised by a

deterministic automatonD: it inherits the state-space, the initial state, and the priority
function fromA. The transitions ofD are defined as follows: for all q ∈ Q, a ∈ AA,
d ∈ {L, R}, if δA(q, a) = (qL, L) ∨ (qR, R) for some qL, qR, then

δD(q, (a, d)) = (qd , d) δD(q, (a, LR)) = ⊥

otherwise,
δD(q, (a, d)) = ⊥ δD(q, (a, LR)) = δA(q, a).

It is easy to check that L(D) = W ∃
A.

Note that
L(A) = {

t ∈ TrAA : ∃s ∈ Tr{L,R,LR}. t ⊗ s ∈ W ∃
A

}
.

http://dx.doi.org/10.1007/978-3-662-52947-8_2
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Hence, if W ∃
A = L(B) for some non-deterministic automaton B of index (i, j) then

L(A) = L(B′), where B′ is the standard projection of B on the alphabet AA: for all
q ∈ QA and a ∈ AA, δB

′
(q, a) = δB(q, (a, L))∨δB(q, (a, R))∨δB(q, (a, LR)). The

projection does not influence the index.
For the other direction, the proof is based on the following observation. For t ∈

TrAA and s ∈ Tr{L,R,LR} let force(t, s) ∈ TrAA be the tree obtained from t by the
following operation: for each u, if ρ(A, t)(u) = q, δ(q, t (u)) = (qL, L) ∨ (qR, R),
and s(u) = L then replace the subtree of t rooted in uR by some fixed regular tree in
the complement of L(A, qR); dually for s(u) = R. (Recall thatA has only non-trivial
states, so L(A, qR) � TrAA .) If s encodes a strategy σs for ∃ in Gρ(A, t) then σs is
winning if and only if force(t, s) ∈ L(A). Hence

t ⊗ s ∈ W ∃
A ⇐⇒ sencodes a strategy for ∃ in Gρ(A, t) and force(t, s) ∈ L(A).

(5.1)
What remains is to show that if L(A) = L(B) for some non-deterministic automa-

ton B of index (i, j) then we can construct a non-deterministic automaton C of index
at most (i, j) recognising W ∃

A. The automaton C simply checks for the input tree
t ⊗ s if the right-hand side of (5.1) holds: whether s encodes a strategy for ∃ in the
parity game associated with ρ(A, t) and if force(t, s) ∈ L(B).

Now we provide a more formal description of the automaton C.
By Rabin’s theorem (see Theorem 1.17 on page 20), for each q ∈ QA there exists

a regular tree tq /∈ L(A, q). We define a sequence of regular languages and then we
argue that they can be recognised by non-deterministic automata of indices at most
(i, j):

St =
{
t ⊗ s : s encodes a strategy for ∃ in Gρ(A, t)

}
,

StE =
{
t ⊗ s ⊗ t ′ :t ⊗ s ∈ St ∧ force(t, s) = t ′

}
,

StEW =
{
t ⊗ s ⊗ t ′ :t ⊗ s ⊗ t ′ ∈ StE ∧ t ′ ∈ L(B) = L(A)

}
,

StW =
{
t ⊗ s : t ⊗ s ∈ St ∧ force(t, s) ∈ L(A)

}
.

where:

– The language St corresponds to a safety condition of the form “in every vertex
…”. This condition can be verified by a Comp(0, 0)-deterministic automaton,

– The language StE additionally enforces that the respective subtrees are equal tq
where tq are regular. It can be verified by a Comp(0, 0)-deterministic automaton,

– The language StEW can be recognised by a product of the automata recognising
StE andB—the resulting non-deterministic automaton can be constructed in such
a way that its index equals (i, j),

– StW is obtained as the projection of StEW onto the first two coordinates, as such
can also be recognised by a non-deterministic (i, j)-automaton.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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What remains to show is the following equation

W ∃
A = StW (5.2)

First assume that t ⊗ s ∈ W ∃
A. In that case s encodes a winning strategy σ for ∃ in

Gρ(A, t). We treat σ as a subset of dom(t). Note that if u ∈ σ then t (u) = t ′(u), so
alsoρ(A, t)(u) = ρ(A, t ′)(u). Therefore, the strategyσ is alsowinning inGρ(A, t ′).
So t ′ ∈ L(A) what implies that t ⊗ s ⊗ t ′ ∈ StEW and t ⊗ s ∈ StW.

Now assume that t ⊗ s ∈ StW. Let t ′ = force(t, s) and σ be the strategy for ∃ in
Gρ(A, t) encoded by s. By the definition of StEW we obtain that t ′ ∈ L(A) so there
exists a winning strategy σ ′ for ∃ in Gρ(A, t ′).

If σ ′
� σ then there exists a minimal (w.r.t. the prefix order) vertex u ∈ σ ′ \σ . By

the definition of force(t, s) we obtain that t ′�u is tq for q = ρ(A, t)(u). Therefore,
since tq /∈ L(A, q), there is no winning strategy for ∃ in Gρ(A, tq , q) and we obtain
a contradiction. Therefore σ ′ ⊆ σ and for every u ∈ σ ′ we have ρ(A, t)(u) =
ρ(A, t ′)(u), so σ ′ is also a strategy inGρ(A, t ′). Since strategies form an anti-chain
with respect to inclusion, we know that σ = σ ′, t ′ ∈ L(A), and t ⊗ s ∈ W ∃

A. �

5.3 Partial Objects

In this sectionwebuild some technical tools thatwill be used in solving the alternating
index problem for game automata.

The proofs in the alternating case will be inductive over the structure of a given
game automaton. Therefore, we introduce here definitions that allow partial objects:
partial trees have holes, partial automata have exits (where computation stops), and
partial games have final positions (where the play stops and no player wins). The
definitions become standard when restricted to total objects.

5.3.1 Trees

It will be convenient in this chapter to work with partial trees PTrA, as defined in
Sect. 1.1.2 (see page 3). A partial tree that is not complete contains holes. A hole
of a partial tree t is a minimal sequence u ∈ {L, R}∗ that does not belong to dom(t)
(a hole is off t in the sense of Sect. 1.1). By holes(t) ⊆ {L, R}∗ we denote the set of
holes of a tree t . If u is a hole of a tree t ∈ PTrA and t ′ ∈ PTrA we define the partial
tree t[u ← t ′] obtained by putting the root of t ′ into the hole u of t .

Let A be a game automaton and q0 ∈ QA. Recall the inductive definition of a
run ρ of A on a tree t (see Sect. 5.1). Note that the value ρ(u) is uniquely deter-
mined by the labels of t on the path leading from the root to u (except u). There-
fore, the value ρ(A, t, q0)(u) is well-defined even for a partial tree t ∈ PTrAA and

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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u ∈ dom(t) 
 holes(t). In other words, if t ∈ PTrAA then ρ(A, t, q0) is a function
of the type

dom(t) 
 holes(t) −→ QA.

5.3.2 Games

A partial parity game is a tuple 〈V = V∃ 
 V∀, vI , F, E,Ω〉 as in Sect. 1.3 (see
page 6) with an additional set F of final positions, F ∩ V = ∅. We assume that
E ⊆ V× (V 
 F) is the transition relation — there are transitions from positions in
V to positions in V and from positions in V to final positions in F .

A play in a partial parity game G may be a finite sequence π = vIv1 . . . vn of
positions with vn being a final position (i.e. vn ∈ F). In that case vn is called the final
position of π . A finite play is not winning for any of the players.

Strategies are defined in the standard way, see Sect. 1.3: a strategy σ is winning if
all the infinite plays consistent with σ are winning — the finite plays are irrelevant.
Theoretically, both players may have a winning strategy in a partial parity game. For
a winning strategy σ we define the guarantee of σ as the set of all final positions
that can be reached in finite plays consistent with σ .

To operate with partial trees, we extend the definition of the parity game Gt from
Sect. 1.7.4 (see page 23) to the case when t ∈ PTrAi, j . Whole Definition 1.2 from
page 23 is unchanged, the only difference is that we additionally put F = holes(t)—
each hole of t is treated as a final position of the game Gt . As defined in Sect. 1.7.4,
the language Wi, j is the set of complete trees over Ai, j such that ∃ has a winning
strategy in Gt .

5.3.3 Automata

A partial alternating automatonA is defined as a tuple 〈A, Q, F, δ,Ω〉 as in Sect. 1.4
(see page 7) with an additional finite set F of exits. We assume that F is disjoint from
Q and we allow atomic transitions of the form ( f, d) for f ∈ F and d ∈ {L, R} — a
transition can lead to an exit but there are no transitions from exits, i.e. the domain
of δ is Q × A. Note that a partial automaton does not have an initial state.

An automaton A is total if F = ∅. In that case the presented definitions take the
form from Sect. 1.4.

For a partial alternating automaton A, a state q0 ∈ Q, and a partial tree t ∈ PTrA
we define the partial parity game G(A, t, q0) similarly as in Sect. 1.4:

V = dom(t) × (Sδ 
 Q),

F = (
holes(t) × (Q 
 F)

) 
 dom(t) × F,

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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where Sδ is the set of all sub-formulae of formulae in rg(δ); all positions of the form
(u, b1∨b2) belong to ∃ and the remaining ones to ∀. The edges E follow the transition
relation.

Note that the set of final positions of G(A, t, q0) can be split into two disjoint
parts: positions in the holes of t , visited in a state or an exit ofA, and positions inside
t visited in an exit f ∈ F of A.

5.3.4 Composing Automata

Let A = 〈AA, QA, FA, δA,ΩA〉 be a partial alternating automaton and Q′ ⊆ QA

be a set of states. ByA�Q′ we denote the restriction of A to Q′ obtained by replacing
the set of states by Q′, the set of exits by FA 
 (

QA \ Q′), the priority function by
ΩA�Q′ , and the transition function by δA�Q′×AA . We say that B is a sub-automaton
of A (denoted B ⊆ A) if QB ⊆ QA and B = A�QB .

For two partial alternating automataA,B over an alphabet Awith QA∩QB = ∅,
we define the compositionA ·B as the automaton over A, with states Q = QA
QB,
exits

(
FA ∪ FB) \ Q, transitions δA ∪ δB, and priorities ΩA ∪ ΩB. What is very

important is that some exits of A may be states of B and vice versa.

Fact 5.47. IfA is a partial alternating automaton and QA = Q1
Q2 is a partition
of the states of A then A�Q1

· A�Q2
= A.

5.3.5 Resolving

Let t ∈ PTrA be apartial tree andρ = ρ(A, t, q0)be the runof a total gameautomaton
A on t from a state q0. We say that t resolves A from q0 ∈ Q if ρ(w) �= � for each
hole w of t and for every u ∈ dom(t) if t�ud is the only total tree in {t�uL, t�uR},
either ρ(ud) = � or ud is losing for the owner of u in Gρ(A, t, q0).

The following fact shows the crucial property of trees that resolve game automata.
It can be seen as an extension of Remark 5.5.

Fact 5.48. Assume that t resolves A from q0 and ρ = ρ(A, t, q0) assigns states to
all the holes of t . If t has a single hole u then for every s ∈ TrA we have

t[u ← s] ∈ L(A, q0) ⇐⇒ s ∈ L(A, ρ(u)).

If t has two holes u, u′, whose closest common ancestor w satisfies δA(ρ(w),

t (w)) = (qL, L) ∧ (qR, R) for some qL, qR then for all s, s ′

t[u ← s, u′ ← s ′] ∈ L(A, q0) ⇐⇒ (
s ∈ L(A, ρ(u)) and s ′ ∈ L(A, ρ(u′))

);

dually for (qL, L) ∨ (qR, R) with or on the right-hand side.
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Proof. The proof of the first claim is exactly the same as in Remark 5.5.
For the second claim, it follows easily that in this case the trees t�uL, t�uR and

the tree obtained by putting a hole in t instead of u, resolve A from qL, qR, and q0,
respectively. We obtain the second claim by applying the first claim three times. �

5.4 Alternating Index Problem

In this sectionwe prove the second part of Theorem2.3: the alternating index problem
is decidable for game automata. As a consequence of our characterisation, in the case
of languages recognisable by game automata the respective classesComp(�alt

i ) and
�alt

i+1 coincide for all levels. All these properties are summarized by the following
proposition.

Proposition 5.8. For eachgameautomatonA, the languageL(A)belongs to exactly
one of the classes:

Comp(�alt
0 ), �alt

i \ �alt
i , �alt

i \ �alt
i , or Comp(�alt

i ) \ (
�alt

i ∪ �alt
i

)
,

for i > 0.
Moreover, it can be effectively decided which class it is and an automaton from

this class can be constructed.
If a game language L is Borel then it belongs to Comp(�alt

0 ) (i.e. L is wmso-
definable).

The rest of this section is devoted to showing this result. Section5.4.1 describes a
recursive procedure to compute the class of the given automatonA, i.e. �alt

i , �alt
i , or

Comp(�alt
i ), depending on which of the possibilities holds. Sections5.4.2 and 5.4.3

show that the procedure is correct. The estimation of Sect. 5.4.2 is in fact an effective
construction of an automaton from the respective class. The continuous reductions
from Sect. 5.4.3 imply that if class(A) �= Comp(�alt

0 ) then L(A) is non-Borel.

5.4.1 The Algorithm

Let A be an alternating automaton of index (i, j). For n ∈ N we denote by A�n the
partial sub-automaton obtained from A by restricting to states of priority at least n:

A�n def= A�Q′ for Q′ = (
ΩA)−1({n, n + 1, . . . , j}).

Observe that the index ofA�n is at most (n, j). A partial sub-automatonB ⊆ A is
ann-component of A ifGraph(B) is a strongly-connected component ofGraph(A�n)

(in particular B ⊆ A�n). We say that B is non-trivial if Graph(B) contains at least

http://dx.doi.org/10.1007/978-3-662-52947-8_2
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one edge. Our algorithm computes the class of each n-component B of A, based on
the classes of (n+1)-components of B and transitions between them. (We shall see
that for n-components the class does not depend on the initial state.)

We begin with a simple preprocessing. An automatonA of index (i, j) is priority-
reduced if for all n > i , each n-component of A is non-trivial and contains a state
of priority n.

Lemma 5.12. Each gameautomatonA can be effectively transformed into an equiv-
alent priority-reduced game automaton.

Proof. We iteratively decrease priorities in n-components of A, for n > i . As long
as there is an n-component that is not priority-reduced, pick any such n-component,
if it is trivial, set all its priorities to n−1, if it is non-trivial but does not contain a state
of priority n, decrease all its priorities by 2 (this does not influence the recognised
language). After finitely many steps the automaton is priority-reduced. Note that no
trivial states are introduced and the language of the automaton is preserved. �

Therefore, we can assume that A is a priority-reduced automaton of index (i, j).
The algorithm starts from n = j and proceeds downward. Let B be an n-component.
We define class(B) by considering the following cases.

If B has only states of priority n then it is an (n, n)-automaton and we can put
class(B) = Comp(�alt

0 ).
If B has no states of priority n then, since A is priority-reduced, it follows that

n = i and B coincides with a single (n+1)-component B1. In that case we put
class(B) = class(B1).

Otherwise, letB1,B2, . . . ,Bk , k � 1, be the (n+1)-components ofB. Assume that
n is even (for oddn, the procedure is entirely dual:∃ is replacedwith∀, (qL, L)∨(qR, R)
with (qL, L) ∧ (qR, R), and �alt

m with �alt
m ).

For a class K let us define the operation K ∃ by the following equation

(
�alt

m

)∃ = (
�alt

m−1

)∃ = (
Comp(�alt

m−1)
)∃ = �alt

m .

A component B	 is ∃ -branching if B contains a transition

δ(p, a) = (qL, L) ∨ (qR, R)

with
(
p, qL ∈ QB	 , qR ∈ QB)

or
(
p, qR ∈ QB	 , qL ∈ QB)

. Now, for 	 = 1, 2, . . . , k
let us compute a class K	 by considering the following cases:

– if B	 is ∃-branching then K	 = class(B	)
∃,

– otherwise K	 = class(B	).

We set

class(B) =
k∨

	=1

K	 ,
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i.e. the largest class among K1, K2, . . . , Kk if it exists, or Comp(�alt
m ) if among

these classes there are two maximal ones, �alt
m and �alt

m .
Let class(A) = ∨k

	=1 A	 whereA1,A2, . . . ,Ak are the i-components ofA reach-
able from qA

I in Graph(A).
The following fact follows directly from the definition. It shows that to reach

class(B	) higher than �alt
1 an ∃-branching transition has to occur.

Fact 5.49. Using the above notions, if K	 � �alt
1 then B	 is ∃-branching.

5.4.2 Upper Bounds

In this subsectionwe show that L(A) canbe recognisedby a class(A)-automaton.The
argument will closely follow the recursive algorithm, pushing through an invariant
guaranteeing that each n-component B of A can be replaced with an “equivalent”
class(B)-automaton. The notion of equivalence for non-total automata is formalised
by simulations, see Definition 5.4.

Recall from Sect. 5.3.3 that if t is a total tree andA is a partial alternating automa-
ton then the final positions of G(A, t) are of the form (u, f ) where u ∈ {L, R}∗ and
f is an exit of A. Similarly, for every u ∈ {L, R}∗ and q ∈ QA there is a position of
the form (u, q) in G(A, t) (in may not be reachable from the initial position).

Definition 5.4. Assume that S is a partial alternating automaton andA is a partial
game automaton, both over the same alphabet A. We say that S simulates A if
FS ⊆ FA and there exists an embedding ι : QA → QS (usually QA ⊆ QS ) such
that for all t ∈ TrA, q0 ∈ QA, and for eachwinning strategyσ for a player P ∈ {∃,∀}
in G(A, t, q0) there is a winning strategy σ S for P in G(S, t, ι(q0)) such that the
guarantee of σ S is contained in the guarantee of σ .

Note that if A and S are total and S simulates A then L(A) = L(S, ι(qA
I )).

The following lemma formalises the inductive invariant that we will prove.

Lemma 5.13. For every n-componentB of a game automatonA,B can be simulated
by a class(B)-automaton.

From this lemma it follows easily that L(A) can be recognised by a class(A)-
automaton: the automaton can be obtained as a loop-less composition of the
class(A	)-automata simulating the i-components A	 of A reachable from qA

I . In
other words, the upper bounds computed by the algorithm in Sect. 5.4.1 are correct.

The rest of this section is devoted to a proof of this lemma. Assume that the index
of A is (i, j). We proceed by induction on n = j, j − 1, . . . , i . Assume that B is an
n-component of A. If all the states of B have priority n or all have priority strictly
greater than n, the claim is immediate.

Let us assume that neither is the case and let B1,B2, . . . ,Bk be the (n+1)-
components of B. By the inductive hypothesis we get a class(B	)-automaton BS

	 ,



82 5 Index Problems for Game Automata

simulating B	. We shall construct a class(B)-automaton BS that simulates B by com-
bining the automataBS

	 . By symmetry it is enough to give the construction for even n.
Examining the algorithm we see that for each 	, either K	 = class(B	)

∃ = �alt
m	

for
some m	, or K	 = class(B	) � �alt

1 and B	 is not ∃-branching.
First assume that class(B) > Comp(�alt

1 ). In that case class(B) = ∨
	 K	 = �alt

m
for somem � 2, and each BS

	 can be assumed to be an (n, n+m)-automaton. Hence,
we can put

BS = B�Ω−1(n) · BS
1 · BS

2 · . . . · BS
k (5.3)

to get an (n, n+m)-automaton.We need to show thatBS simulatesB. Let ι be defined
by inductive assumption on automata B	 and as the identity on B�Ω−1(n). Clearly the
exits of BS are contained in the exits of B. Assume that t ∈ TrA, q0 ∈ QB, and σ

is a winning strategy of a player P ∈ {∃,∀} in G(B, t, q0). Consider a strategy σ S

in G(BS, t, ι(q0)) that repeats the decisions of σ in B�Ω−1(n) and uses the inductive
assumption to play on the components BS

	 .
Consider any finite or infinite play π S consistent with σ S in G(BS, t, ι(q0)).

Observe that this play can be split into a sequence (finite or infinite) of plays π S
0 ·

π S
1 · . . . corresponding to the elements of the product (5.3) — after every prefix

π S
0 . . . π S

k an exit of the current sub-automaton is visited and the play moves to
another sub-automaton in (5.3). By the inductive assumption about the containment
of the guarantees we know that the same sequence of sub-automata (using the same
exits) can be visited by a play π inG(B, t, q0). If π S is finite then π is also finite and
ends in the same final position (u, f ). Therefore, the guarantee of σ S is contained in
the guarantee ofσ . Nowassume thatπ S is infinite. By the definition of n-components,
we know that either π S visits infinitely many times a state in B�Ω−1(n) (in that case
both π S and π are winning for ∃), or π S stays from some point on in one of the sub-
automata BS

	 . In that case, by the inductive assumption we know that π S is winning
for P . Therefore, σ S is winning for P .

Now assume that class(B) � Comp(�alt
1 ). We will repeat the above construction

by taking special care to obtain a class(B)-automaton. We call a component B	

problematic if B	 is not ∃-branching. For such components we replace BS
	 in (5.3)

by BR
	 · BT

	 , where

– BT
	 is BS

	 with each transition leading to an exit of B	 that is not an exit of B
replaced with a transition to � (losing for ∀);

– BR
	 is B	 with all priorities set to n and additional ε-transitions (which can be

eliminated in the usual way): for each state q of BR
	 allow ∀ to decide to stay

in q or to move to the respective state ι(q) in BT
	 (such a move is treated as an

exit of BR
	 ).

As in (5.3), BS is the composition of B�Ω−1(n) and the appropriate automata BS
	 , BR

	 ,
BT

	 . This composition gives a class(B)-automaton: each problematicB	 was replaced
with an (n, n)-automaton BR

	 that is further composed with class(B	)-automata BT
	

in a loop-less way.
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What remains is to show that BS simulates B. Let ι be defined as before for
non-problematic components and on a problematic component B	 as the identity
QB	 → QBR

	 . Consider a tree t ∈ TrA, a state q0 of B, and games G(B, t, q0) and
G(BS, t, ι(q0)).

Firstly assume that σ is a winning strategy of ∃ in G(B, t, q0). Since ∃ has no
additional choices inBS comparing to the above case and all the changes of priorities
in BR

	 , BT
	 are favourable to her, the previous construction gives a strategy σ S that

simulates σ .
Now assume that σ is a winning strategy for ∀ in G(B, t, q0). Let us define a

strategy σ S for ∀ in G(BS, t, ι(q0)) as follows:

– in positions corresponding to states of priority n in B as well as in the components
BR

	 the strategy σ S follows the decisions of σ ;
– ∀ immediately moves from BR

	 to BT
	 whenever each extension of the current play,

conforming to σ , stays forever in B	 or reaches an exit that is also an exit of B;
– in components BS

	 and BT
	 the strategy σ S simulates σ using the inductive

assumption.

As before the guarantee of σ S is contained in the guarantee of σ . It remains to
prove that σ S is winning for ∀. Let π S be a play consistent with σ S . It is enough to
exclude the following cases (in other cases we know that π S is winning because σ

was a winning strategy):

1. π S stays from some point on in BR
	 (and therefore is losing for ∀ by the parity

criterion),
2. π S reaches the transition � in an automaton BT

	 (such transition corresponds to
a transition to an exit of B	 that is not an exit of B).
Let B	 be a problematic component (i.e. B	 is not ∃-branching in B).
Consider the first case above. By the definition of σ S it means that there is a playπ

that is consistent with σ and that from some point on in B	. We can assume that π

starts in B	 and never leaves it. By the assumption that B	 is not ∃-branching in B we
know that whenever ∃ has a choice during π exactly one of the successive states is
an exit of B. Therefore, the strategy σ S moves from BR

	 to BT
	 what contradicts the

assumption that π S stays forever in BR
	 .

Now consider the second case above: the transition � is reached in BT
	 . Again

we can assume that the moment when ∀ decided to move from BR
	 to BT

	 was at the
initial position of the game. By the inductive assumption about BS

	 it means that it is
possible to visit an exit of B	 that is not an exit of B by a play consistent with σ . But
this contradicts the definition of σ S — the only case when ∀ moves to BT

	 is when
he knows that the strategy σ will never reach any exit of B	 that is not an exit of B.

This concludes the proof of Lemma 5.13.
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5.4.3 Lower Bounds

It remains to see that L(A) cannot be recognised by an alternating automaton of index
lower than class(A). For this purpose we will use the pre-order �W from Sect. 1.6.2
and the Wi, j languages from Sect. 1.7.4, page 23.

By Corollary 1.1 from page 24, in order to show that the index bound computed
by the algorithm from Sect. 5.4.1 is tight, it suffices to show that if RMalt(i, j) �
class(A) then Wi, j �W L(A). Therefore, our aim will be to construct a continuous
reduction from Wi, j to L(A).

We construct the reduction in three steps:

1. we show that if the class computed by the algorithm is at least RMalt(i, j) then
this is witnessed with a certain hard subgraph in the graph of the automaton,
called (i, j)-edelweiss;

2. we introduce intermediate languages Ŵi, j , whose internal structure corresponds
precisely to (i, j)-edelweisses, and show that Ŵi, j �W L(A) if only A contains
an (i, j)-edelweiss reachable from qA

I ;
3. we prove that Wi, j �W Ŵi, j .

The combinatorial core of the argument is the last step.

Definition 5.5. We say that in a game automaton B there is an i-loop rooted in p
if there exists a word u such that on the path p

u−→ p in Graph(B) the minimal
priority is i .

An automaton B contains an (i, j)-loop for ∃ rooted in p if there exist states q,
qL, qR of B, a letter a, and words u, uL, uR such that:

– δ(q, a) = (qL, L) ∨ (qR, R);

– p
u−→ q; qL

uL−→ p; qR
uR−→ p;

– on one of the paths p
u(a,L)uL−→ p, p

u(a,R)uR−→ p the minimal priority is i and on the
other it is j .

For ∀ dually, with ∨ replaced with ∧.
For an even j > i , B contains an (i, j)-edelweiss rooted in p (see Fig.5.1) if for

some even n it contains:

– (n+k)-loops for k = i, i + 1, . . . , j − 3,
– (n+ j−2, n+ j−1)-loop for ∃, if i � j − 2,
– (n+ j−1, n+ j)-loop for ∀
all rooted in p. For an odd j swap ∀ and ∃ but keep n even.

Lemma 5.14. Let A be a game automaton. If class(A) � RMalt(i, j) then A con-
tains an (i, j)-edelweiss rooted in a state reachable from qA

I .

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Fig. 5.1 (0, 4)-edelweiss and (1, 5)-edelweiss.

Proof. Let us first assume that (i, j) = (0, 1). Analysing the algorithm we see that
the only case when class(A) jumps to RMalt(0, 1) is when for some even n there is
an n-component B inA, reachable from qA

I , and containing states of priority n, such
that some (n+1)-component B	 of B is ∃-branching in B, i.e. B contains a transition
of the form

δ(p, a) = (qL, L) ∨ (qR, R)

with p, qL ∈ QB	 , qR ∈ QB (or symmetrically, p, qR ∈ QB	 , qL ∈ QB). Since A
is priority-reduced, p is reachable from qL within B	 via a state of priority n + 1,
and from qR within B via a state of priority n. This gives an (n, n+1)-loop for ∃
(a (0, 1)-edelweiss) rooted in a state reachable from qA

I . The argument for (1, 2) is
entirely dual.

Next, assume that (i, j) = (0, 2). It follows immediately from the algorithm that
A contains an n-component B (reachable from qA

I , containing states of priority n)
such that n is even and there exists an (n+1)-component B	 such that

1. class(B	) = �alt
1 and B	 is ∃-branching in B; or

2. class(B	) = Comp(�alt
1 ).

In the first case, by the claim for (1, 2), B	 contains an (n′, n′+1)-loop for ∀, for
some odd n′ � n. Since A is priority-reduced, for each state q in B	 and each r
between n and Ω(q), there is a loop from q to q with the lowest priority r . Hence,
the (n′, n′+1)-loop can be turned into an (n+1, n+2)-loop. Thus, B	 contains an
(n+1, n+2)-loop for ∀, rooted in a state p. We claim that B contains an (n, n+1)-
loop for ∃, also rooted in p (giving a (0, 2)-edelweiss rooted in p).

Indeed, since B	 is ∃-branching, arguing like for (0, 1), we obtain an (n, n+1)-
loop for ∃ rooted in a state p′ in B	. Since B	 is an (n+1)-component, there are
paths in B	 from p to p′ and back; the lowest priority on these paths is at least
n + 1. Using these paths one easily transforms the (n, n+1)-loop rooted in p′ into
an (n, n+1)-loop rooted in p.

In the second case, we also get an (n+1, n+2)-loop for ∀, rooted in a state p of
B	. Moreover, the first claim implies as well that B	 contains an (n′′, n′′+1)-loop for
∃, for some even n′′ � n. Arguing like in the second case we turn the latter loop into
an (n, n+1)-loop for ∃ rooted in p.



86 5 Index Problems for Game Automata

The inductive step is easy. Suppose that j − i > 2. Then, for some even n there
is an (n+i)-component B (reachable from qA

I , containing states of priority n + i)
in A, which has an (n+i+1)-component B	 such that class(B	) = RMalt(i + 1, j)
or class(B	) = Comp

(
RMalt(i + 1, j)

)
. Since for each state p in B	, B contains an

n-loop rooted in p, we can conclude by the inductive hypothesis. �

Definition 5.6. For i � 2k − 2 consider the alphabet

Âi,2k = {i, i + 1, . . . , 2k − 3, e, a}.

With each t ∈ PTr Âi,2k
we associate a partial parity game Ĝt with positions dom(t)

and final positions holes(t) such that

– if ε ∈ dom(t) then Ω(ε) = i ,
– if t (u) = a then in u the player ∀ can choose to go to uL or to uR, and Ω(uL) =
2k − 1, Ω(uR) = 2k,

– if t (u) = e then in u the player ∃ can choose to go to uL or to uR, and Ω(uL) =
2k − 2, Ω(uR) = 2k − 1,

– if t (u) ∈ {i, i + 1, . . . , 2k − 3}, the only move from u is to uL and Ω(uL) = t (u).

For i = 2k − 1, let Âi,2k = {a,�}, and let Ĝt be defined like above, except that if
t (u) = � then Ω(u) = 2k and the only move from u is back to u.

Let Ŵi,2k ⊆ Tr Âi,2k
be the set of all total trees over Âi,2k such that ∃ has a winning

strategy in Ĝt .
The languages Ŵi,2k+1 are defined dually, with e, a and ∃,∀ swapped, and �

replaced with ⊥.

Observe that the index of the game Ĝt is (i, j) for t ∈ PTr Âi, j
.

Lemma 5.15. If a total game automatonA contains an (i, j)-edelweiss rooted in a
state reachable from the initial state qA

I then Ŵi, j �W L(A).

Proof. Weonly give a proof for (i, j) = (1, 2); for other values of (i, j) the argument
is entirely analogous. By the definition, A contains an (1, 2)-loop for ∀, rooted in a
state p reachable from qA

I . Since A is a game automaton and has no trivial states, it
follows that there exist

– a partial tree tI resolving A from qA
I , with a single hole h, labelled with p in

ρ(A, tI );
– a partial tree ta resolvingA from p with two holes h1, h2, such that in ρ(A, ta, p)
both holes are labelled p, the lowest priority on the path from the root to hi is i ,
and the closest common ancestor u′ of h1 and h2 is labelled with a state q such
that δA(q, t (u′)) = (qL, L) ∧ (qR, R) for some qL, qR; and

– a total tree t� ∈ L(A, p).

Let us see how to build ta . The paths p
u(a,L)uL−→ p, p

u(a,R)uR−→ p guaranteed by
Definition 5.5 give as a partial tree s with a single branching in some node u and two
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leaves h1, h2, which we replace with holes. For ρ = ρ(A, s, p), ρ(h1) = ρ(h2) = p
and δA(ρ(u), t (u)) = (qL, L) ∧ (qR, R). At each hole of s, except h1 and h2, we
substitute a total tree such that the run on the resulting tree with two holes resolves
A from p, e.g. if wL is a hole and δ(s(w), ρ(w)) = (q ′, L) ∨ (q ′′, R), we substitute
at wL any tree that is not in L(A, q ′), relying on the assumption thatA has no trivial
states.

Observe that for (i, j) = (1, 2) the alphabet Âi, j equals {a,�}. Let us define
the reduction g : Tr{a,�} → TrAA . Let t ∈ Tr{a,�}. For u ∈ dom(t), define tu co-
inductively (see Sect. 1.6.5, page 18) as follows: if t (u) = �, set tu = t�; if t (u) = a
then tu is obtained by plugging in the holes h1, h2 of ta the trees tuL and tuR. Let g(t)
be obtained by plugging tε in the hole of tI . It is easy to check that g continuously
reduces Ŵ1,2 to L(A). �

It remains to see thatWi, j �W Ŵi, j . For the lowest level we give a separate proof.

Lemma 5.16. W0,1 �W Ŵ0,1 and W1,2 �W Ŵ1,2.

Proof. By the symmetry it is enough to prove the first claim. Let us take a tree
t ∈ TrA0,1 . By König’s lemma, the player ∃ has a winning strategy in Gt if and only
if she can produce a sequence of finite strategies σ0, σ1, σ2, . . . (viewed as subtrees
of t , see Sect. 1.3.1 on page 6) such that

1. σ0 consists of the root only;
2. for each n the strategy σn+1 extends σn in such a way that below each leaf of σn

a non-empty subtree is added, and all the leaves of σn+1 have priority 0.

Using this observation we can define the reduction. Let (τi )i∈N be the list of all
finite subsets of {L, R}∗. Some of these trees naturally induce a strategy for ∃ in Gt .
For those we define tτi ∈ Tr{e,⊥} co-inductively, as follows:

– tτi (R
j ) = e for all j ;

– if τ j induces in Gt a strategy that is a legal extension of the strategy induced by τi
in the sense of Item 2 above then the subtree of tτi rooted at R jL is tτ j ;

– otherwise, all nodes in this subtree are labelled with ⊥.

Let f (t) = tσ0 . By the initial observation, tσ0 ∈ Ŵ0,1 if and only if ∃ has a win-
ning strategy in Gt . The function f is continuous: to determine the labels in nodes
Rn1LRn2L . . . Rnk and Rn1LRn2L . . . Rnk L we only need to know the restriction of t to
the union of the domains of τn1 , τn2 , . . . , τnk . Hence, f continuously reduces W0,1

to Ŵ0,1. �

Lemma 5.17. For all i and j � i + 2, Wi, j �W Ŵi, j .

Proof. By duality we can assume that j = 2k. For t ∈ TrAi,2k , let us consider a game
G̃t defined as follows. The positions are pairs (u, σ ), where u is a node of t , and σ

is finite strategy from u for ∀ (viewed as a subtree of t�u). Initially u = ε is the root
of t and σ = {ε}. In each round, in a position (u, σ ), the players make the following
moves:

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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– ∀ extends σ under the leaves of priority 2k − 1 to σ ′ in such a way that on every
path leading from a leaf of σ to a leaf of σ ′ all the nodes have priority 2k, except
the leaf of σ ′, which has priority at most 2k − 1;

– ∃ has the following possibilities:

• select a leaf u′ of σ ′ with priority at most 2k−2, and let the next round start with
(u′, {u′}), or

• if σ ′ has leaves of priority 2k − 1, continue with (u, σ ′).

A play is won by ∃ if she selects a leaf infinitely many times and the least priority of
these leaves seen infinitely often is even, or ∀ is unable to extend σ in some round.
Otherwise, the play is won by ∀.

We claim that a player P has a winning strategy in Gt if and only if P has a
winning strategy in G̃t .

For a winning strategy σ∃ for ∃ in Gt , let σ̃∃ be the strategy in G̃t in which ∃ selects
a leaf u′ in σ ′ if and only if u′ ∈ σ∃. Consider an infinite play conforming to σ̃∃. If
in the play ∃ selects a leaf infinitely many times, she implicitly defines a path in t
conforming to σ∃, and so the play must be winning for ∃. Assume that ∃ selects a leaf
only finitely many times. Then, ∀ produces an infinite sequence of finite strategies
{u} = σ0 ⊂ σ1 ⊂ . . . in Gt . Let σ∞ be the union of these strategies. Consider the
play π in Gt passing through u and conforming to σ∞ and σ∃. Observe that for each
σi , the strategy σ∃ must choose some path; hence, either ∃ selects a leaf of σi , or
this path goes via a leaf of priority 2k − 1. Thus, π is infinite and by the rules of
G̃t priorities at most 2k − 1 are visited infinitely often. Since ∃ selects a leaf only
finitely many times, priorities strictly smaller than 2k − 1 are visited finitely many
times in π . Hence, π is won by ∀, what contradicts the assumption that σ∃ is winning
for ∃.

Now, let σ∀ be a winning strategy for ∀ in Gt . Then, for each u ∈ σ∀ there exists
a finite sub-strategy σ ′ of σ∀ from u such that all internal nodes of σ ′ have priority
2k and leaves have priority at most 2k − 1. This shows that for each current strategy
σ ⊂ σ∀, ∀ is able to produce a legal extension σ ′ such that σ ⊂ σ ′ ⊂ σ∀. Let σ̃∀ be
a strategy of ∀ in G̃t that extends every given σ by σ ′ as above. Consider any play
conforming to σ̃∀. By the initial observation, the play is infinite, so priorities strictly
smaller than 2k are visited infinitely often. If ∃ selects a leaf only finitely many times,
priorities strictly smaller then 2k − 1 occur only finitely many times and ∀ wins. If
∃ selects a leaf infinitely many times, then the lowest priority seen infinitely often
must be odd, as otherwise ∃ would show a losing path in σ∀. Hence, ∀ wins in this
case as well.

It remains to encode G̃t as a tree f (t) ∈ Tr Âu,2k
in a continuous manner. The

argument is similar to the one in Lemma 5.16. Let (τn)n∈N be the list of all finite
subsets of {L, R}∗. For some pairs (u, τn), τn induces a finite strategy in Gt from
the node u. For such (u, τn) we define t∀u,τn

and t∃u,τn
co-inductively (see Sect. 1.6.5,

page 18), as follows:

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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– t∀u,τn
(Rm) = a for all m;

– the subtree of t∀u,τn
rooted at RmL is t∃u,τm

if τm induces a strategy from u that is a

legal extension of τm according to the rules of G̃t , and otherwise the whole subtree
is labelled with e’s (losing choice for ∀);

– t∃u,τn
(Rm) = e for m = 0, 1, . . . , 	, where u0, u1, . . . , u	 are the leaves in the

strategy induced by τn from u;
– the subtree of t∃u,τn

rooted at R	+1 is t∀u,τm
if the strategy induced by τm from u has

leaves of priority 2k − 1, otherwise the whole subtree is labelled with a’s (losing
choice for ∃);

– for m � 	, consider the following cases to define the subtree sm of t∃u,τn
rooted at

RmL:

• if Ω(um) ∈ {2k − 1, 2k} then sm is labelled everywhere with a’s (losing choice
for ∃),

• if Ω(um) = 2k − 2 then sm = t∀um ,{um },
• if Ω(um) = r < 2k − 2 then sm(ε) = r , the left subtree of sm is t∀um ,{um }, and the
right subtree of sm is labelled with a’s (irrelevant for Gt ).

Let f (t) be t∀ε,{ε}. Checking that f continuously reduces Wi, j to Ŵi, j does not pose
any difficulties. �

5.5 Conclusions

The results of this chapter should be treated as an intermediate step to proving
decidability of index problems for general regular tree languages. Additionally,
edelweisses studied in Sect. 5.4 are new hard patterns for alternating automata. The
lower bounds proved in Lemma 5.16 seem to be of independent interest — in some
cases it is easier to construct a reduction from the language Ŵi, j instead of Wi, j .

Interestingly, the matching upper and lower bounds in the alternating case are
of very different nature. The upper bounds are proved by providing an effective
construction of an alternating automaton of certain index, where the lower bounds
are obtained using continuous reductions. The structure of this reductions do not seem
to be implementable in any regular way (e.g. by some kind of mso interpretation).

The rigid structure of game automata should allow to givemore decidability results
in future. An instance of such a result is expressed by the following conjecture.

Conjecture 5.5. It is decidable, given n ∈ N and a game automaton B, whether1
L(B) ∈ �0

n (i.e. the level of the Borel hierarchy occupied by a game language can
be decided).

This chapter is based on [FMS13].

1If L(B) /∈ Comp(�alt
0 ) then for all n the answer is no.
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Chapter 6
When a Thin Language Is Definable in wmso

In this chapter, we study thin trees, which generalize both finite trees and ω-words,
but which are still simpler than arbitrary infinite trees. A tree is thin if it contains
only countably many infinite branches. It turns out [BIS13] that some problems are
more tractable on thin trees than in full generality. Therefore, thin trees can be seen
as an intermediate step in understanding regular languages of general infinite trees.

The term thin trees comes from [BIS13], in [RR12] they are called scattered trees.
Also, a tree is thin if it is a tame tree in the meaning of [LS98] (the converse is not
true as [LS98] deals with trees treated as ordered structures, i.e. a tame tree may have
a branch of length ω2). A language of trees L is called regular language of thin trees
if L is regular and contains only thin trees.

The notions induced in this chapter (mainly trees over ranked alphabets and thin
algebras) are used in the following three chapters.

This chapter contains two main results, summarized by Theorem 2.4: the first
result gives an upper bound on the topological complexity of regular languages
of thin trees stating that they are all �1

1 among all trees; the second result can be
seen as a dichotomy: a regular language of thin trees is either topologically hard
(i.e. �1

1-hard) or iswmso-definable among all trees. Additionally, we prove that it is
decidable which of the cases holds. The following definition formalizes the notion
of definability we use.

Definition 6.7. Let L be a regular language of thin trees over a ranked alphabet
AR and ϕ be a formula of wmso. We say that ϕ defines L among all trees if L ={
t ∈ TrAR : t |= ϕ

}
.

This definition can be seen as a non-standard approach to restricting the class
of all trees to thin ones — a standard one would say that L is wmso-definable if
L = {t ∈ ThAR : t |= ϕ} for a wmso formula ϕ. The requirement in Definition 6.7
for a formula to be satisfied only by thin trees is quite strong, in particular the class of
languages definable in wmso among all trees is not closed under complement with
respect to thin trees: the relative complement of the empty language ∅ ⊆ ThAR is
ThAR which is �1

1-complete and thus not wmso-definable among all trees.
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The problem of deciding wmso-definability among thin trees (i.e. using the stan-
dard approach) is open: it is not known how to decide if for a given regular language
of thin trees L there exists a wmso formula ϕ such that L = {t ∈ ThAR : t |= ϕ}.
Here, contrary to Definition 6.7, we explicitly restrict to trees t that are thin. In par-
ticular, there are more languages of thin trees that are wmso-definable among thin
trees (i.e. in the above standard sense) than in the sense of Definition 6.7.

In Proposition 6.10 we show that even in the sense of Definition 6.7 we can define
languages as complicated as in the general case. The proof is based on examples
from [Sku93]— the proof there is given for general trees but the proposed languages
can be seen as regular languages of thin trees.

Nowwe can state themain result of this chapter as the following dichotomy similar
in the spirit to the gap property proved by Niwiński and Walukiewicz [NW03] (see
Theorem 1.31 on page 26).

Theorem 6.4. A regular language of thin trees (i.e. a regular language that contains
only thin trees) is either:

1. �1
1-complete among all infinite trees,

2. wmso-definable among all infinite trees (and thus Borel).

Moreover, it is decidable which of the cases holds.

One of the applications of our characterisation is the following proposition.

Proposition 6.9. Assume that L is a regular language of trees that is recognized
by a non-deterministic (or equivalently alternating) Büchi automaton. Assume addi-
tionally that L contains only thin trees. Then L can be defined in wmso among all
trees.

Proof. Since L is recognizable by a Büchi automaton, Theorem 1.22 on page 23
implies that L is an analytic subset of TrAR . Therefore, L cannot be �1

1-hard, thus L
is wmso-definable by Theorem 2.4. �

The proof of Theorem 2.4 consists of two parts: first we prove in Sect. 6.3 that
every regular language of thin trees is in �1

1 among all trees (i.e. an upper bound).
The best upper bound for general regular tree languages in terms of the projective
hierarchy is �1

2. Therefore, the presented result shows that regular languages of
thin trees are descriptively simpler than general regular languages of infinite trees.
The proof of Theorem 2.4 is concluded in Sect. 6.4 by proving the dichotomy: a
regular language of thin trees is either wmso-definable among all trees or �1

1-hard
(as expressed by Proposition 6.16).

The chapter is organized as follows. In Sect. 6.1 we introduce basic notions, in
particular thin trees and tools allowing to inductively decompose them. In Sect. 6.2
we introduce thin algebras that will be used in the successive chapters of this part.
Also, these algebras turns out to be convenient in Sect. 6.4. Section6.3 we prove the
upper bounds and in Sect. 6.4 we prove Proposition 6.16. Finally, in Sect. 6.5 we
conclude.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_2
http://dx.doi.org/10.1007/978-3-662-52947-8_2
http://dx.doi.org/10.1007/978-3-662-52947-8_2


6.1 Basic Notions 95

6.1 Basic Notions

In the following three chapters we operate on binary trees over ranked alphabets.
A ranked alphabet is a pair AR = (AR2, AR0) where AR2 contains binary symbols
and AR0 contains nullary symbols (labelling leafs of a tree). We assume that both
sets AR2 and AR0 are finite and that AR2 is non-empty.

6.1.1 Thin Trees

We say that t is a ranked tree over a ranked alphabet (AR2, AR0) if t is a function
from its non-empty prefix-closed domain dom(t) ⊆ {L, R}∗ into AR2 ∪ AR0 (i.e. an
element of PTrAR2∪AR0 in the meaning of Sect. 1.1, page 1) such that for every node
u ∈ dom(t) either:

– u is an internal node of t (i.e. uL, uR ∈ dom(t)) and t (u) ∈ AR2, or
– u is a leaf of t (i.e. uL, uR /∈ dom(t)) and t (u) ∈ AR0.

A ranked tree containing no leaf is complete. The set of all ranked trees over a
ranked alphabet AR is denoted as TrAR ; in particular if AR0 = ∅ then Tr(AR2,AR0)

contains only complete trees and coincides with TrAR2 as defined in Sect. 1.1.

Definition 6.8. A ranked tree t ∈ TrAR is thin if there are only countably many
infinite branches of t . The set of all thin trees over a ranked alphabet AR is denoted
by ThAR . A ranked tree that is not thin is thick.

A context over a ranked alphabet AR = (AR2, AR0) is a ranked tree p ∈
Tr(AR2,AR0�{�}) such that exactly one leaf u �= ε of p is labelled by �. The leaf
u is called the hole of p. The set of all contexts over a ranked alphabet AR is denoted
as ConAR . The set of all contexts over AR that are thin as trees is denoted by ThConAR .

Given a ranked tree t ∈ TrAR and u ∈ dom(t) (u �= ε) we can construct a context
t[u ← �] by replacing the subtree of t under u by �: u becomes the hole of the
context t[u ← �].

Assume that p is a context over a ranked alphabet AR with the hole u. For every
ranked tree t ∈ TrAR the composition of p and t , denoted p(t) ∈ TrAR , is defined as
p[u ← t] — we put t in the place of the hole u of p. In particular, if r is a context
then p(r) is a new context. If p, r , and t are thin then also p(t) and p(r) are thin.

Let w1 ≺ w2 be two nodes of a given ranked tree t . By t�[w1,w2)
we denote the

ranked context rooted in w1 with the hole in w2:

t�[w1,w2)

def= t�w1
[w2 ← �].

Recall that a ranked tree t ′ ∈ TrAR
′ is a labelling of a ranked tree t ∈ TrAR if

dom(t ′) = dom(t). In such a case t ⊗ t ′ stands for the ranked tree over the product of

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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ranked alphabets, i.e. an element of TrAR×AR
′ with AR × AR

′ = (
AR2 × AR2

′, AR0 ×
AR0

′).
For a pair of ranked contexts p ∈ ConAR , p

′ ∈ ConAR
′ with the same domain

dom(p) = dom(r) and the same hole u, by p ⊗ p′ we denote the ranked context
over the product alphabet AR × AR

′ = (AR2 × AR2
′, AR0 × AR0

′) with the hole u:

for w ∈ dom(p), w �= u we have (p ⊗ p′)(w) = (
p(w), p′(w)

)
.

6.1.2 Automata

For the purpose of the following three chapters we introduce a notion of non-
deterministic tree automata working over a ranked alphabet. Again, these notions
become standard when we restrict to purely-binary alphabets, i.e. when AR0 = ∅.

A non-deterministic parity tree automaton over a ranked alphabet is a tuple A =
〈AR

A, QA, IA, δA,ΩA〉 where
– AR

A = (AR2
A, AR0

A) is a ranked alphabet,
– QA is a finite set of states,
– IA ⊆ QA is a set of initial states,
– δA = δA2 � δA0 is a transition relation: δA2 ⊆ QA × AR2

A × QA × QA contains
transitions over internal nodes (q, a, qL, qR) and δA0 ⊆ QA × AR0

A contains
transitions over leafs (q, b),

– ΩA : QA → N is a priority function.

A run of an automaton A on a ranked tree t ∈ TrAR
A is a labelling ρ of t over

the ranked alphabet (QA, QA) such that for every u ∈ dom(t):

– if u is an internal node of t then
(
ρ(u), t (u), ρ(uL), ρ(uR)

) ∈ δA2 ,
– if u is a leaf of t then

(
ρ(u), t (u)

) ∈ δA0 .

A run ρ on a ranked context p is a labelling of p (treated as a tree) by states of
A that obeys the transition relation in all the nodes except the hole u of p. The value
of ρ in the hole of p is ρ(u).

Now we repeat the definitions from Sect. 1.4 (see page 7) in the context of ranked
trees:

– A run ρ is accepting if it is parity-accepting and ρ(ε) ∈ IA (see Sect. 1.4). By the
definition we verify the parity condition only on infinite branches of ρ, the finite
ones do not influence acceptance.

– A ranked tree t ∈ TrAR
A is accepted by A if there exists an accepting run ρ of A

on t .
– The set of ranked trees accepted byA is called the language recognised by A and
is denoted by L(A).

– A language L ⊆ TrAR
A is regular if there exists an automaton recognising L .

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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By repeating the standard automata constructions over the ranked alphabet, we
obtain the following fact.

Fact 6.50. A language L ⊆ TrAR is regular if and only if it is mso-definable.

Definition 6.9. A regular language of thin trees is a regular language of ranked trees
L ⊆ TrAR such that L contains only thin trees (i.e. L ⊆ ThAR ).

As we will see later (see Remark 6.6), equivalently one can say that a regular
language of thin trees is a language that is the intersection of a regular tree language
with ThAR .

6.1.3 Examples of Skurczyński

In this section we adjust the examples of wmso-definable languages proposed by
Skurczyński [Sku93] to the case of thin trees, as expressed by the following propo-
sition. This can be seen as an argument that there are languages of thin trees that are
definable in wmso among all trees and topologically as complex as general wmso-
definable languages.

Proposition 6.10 (Skurczyński [Sku93]). For every n there exists a regular lan-
guage of thin trees L ⊆ ThAR that iswmso-definable among all trees and�0

n(TrAR)-
complete.

Proof. Take n ∈ N. We will base our construction on languages of trees Wi, j (see
Sect. 1.7.4, page 23) — we consider trees over a ranked alphabet that encodes parity
games of index (i, j) and Wi, j contains those trees where ∃ has a winning strategy.
As observed in Remark 1.1 on page 24, one can extend the alphabet with additional
symbols � and ⊥ that finish the game indicating that one of the players (∃ or ∀
respectively) wins instantly.

Our language L will be obtained as a restriction of a variant ofW0,1 to thin trees of
a particular shape. Consider a ranked alphabet AR = (AR2, AR0)with AR2 = A0,1 =
{∃,∀} × {0, 1} (see Sect. 1.7.4, page 23) and AR0 = {�,⊥} and let W0,1 be the set
of all trees t over AR such that ∃ has a winning strategy in Gt (see Definition 1.2 on
page 23 and Remark 1.1 on page 24).

Recall that by �a(u) we denote the number of occurrences of a latter a in a finite
word u. Take any n > 0 and let Xn

[Sku93] contain all trees t ∈ TrAR such that (see
Fig. 6.1):

t (u) =

⎧
⎪⎨

⎪⎩

(∃, 1) if �R(u) < n and �R(u) ≡ 0 (mod 2),

(∀, 0) if �R(u) < n and �R(u) ≡ 1 (mod 2),

� or ⊥ if �R(u) = n.

Clearly, for a tree t ∈ Xn
[Sku93] we have dom(t) = {u ∈ {L, R}∗ : �R(u) � n} so

Xn
[Sku93] ⊆ ThAR . Also, the set X

n
[Sku93] itself is wmso-definable among all trees.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Fig. 6.1 An example of a
tree t ∈ Xn

[Sku93].

By the same argument as in [Sku93], the language L
def= W0,1 ∩ Xn

[Sku93] iswmso-
definable among all trees and �0

n(TrAR)-complete. �

6.1.4 Ranks

The crucial tool in our analysis of thin trees is structural induction—we inductively
decompose a given thin tree into simpler ones. A measure of complexity of thin
trees is called a rank — a function that assigns to each thin tree a countable ordinal
number. The rank of a thin tree t depends only on the domain of t . During the
inductive computation of ranks, we work with partial binary trees (i.e. elements of
PTr, see Sect. 1.1, page 1) that may not be ranked trees (e.g. a node may have exactly
one child). For the sake of this chapter, we call elements of PTr tree-shapes. The set
of all tree-shapes that have countably many branches is denoted PTh ⊆ PTr.

The rank we use is based on the Cantor-Bendixson derivative [Kec95, Chap.6.C]:
we inductively remove simple parts of a given tree. Let us fix the set BCB ⊆ PTr (the
basis of the rank) containing all tree-shapes τ ∈ PTr that have only finitely many
finite and infinite branches. Equivalently, BCB contains all tree-shapes that contain
only finitely many branching nodes.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Fact 6.51. For every tree-shape τ ∈ PTr we have:

1. if no subtree of τ belongs to BCB then τ contains a branching node,
2. if τ belongs to BCB then all the subtrees of τ also belong to BCB.

Consider the following operation on tree-shapes called derivative: for a tree-
shape τ ∈ PTr we define the tree-shape Dv(τ ) ⊆ τ that contains only these nodes
u ∈ dom(τ ) such that τ�u /∈ BCB — we remove from τ those nodes u such that the
subtree of τ under u belongs to BCB.

Now we inductively define transfinite compositions of Dv: let Dv0(τ ) = τ ,
Dvη+1(τ ) = Dv(Dvη(τ )), and if η is a limit ordinal let

Dvη(τ ) =
⋂

η′<η

Dvη′
(τ ).

Fact 6.52. Let τ ∈ PTr be a tree-shape. The sequence Dvη(t) for η < ω1 is a
decreasing sequence of tree-shapes. There exists η0 < ω1 such that

Dvη0(τ ) = Dvη0+1(τ ).

The following proposition shows a connection of this iterated derivative and thin
trees.

Proposition 6.11. Let τ be a tree-shape and η be an ordinal such that Dvη(τ ) =
Dvη+1(τ ). The tree-shape Dvη(τ ) is empty if and only if τ has only countably many
branches. Otherwise τ contains the complete binary tree as a minor1.

Proof. Assume that Dvη(τ ) is empty. Observe that every application of the derivative
decreases the number of branches of τ by countably many: there are countably many
nodes u ∈ dom(τ ) and the subtree under a removed node u belongs to the family
BCB. Since there are countably many applications of the derivative, the total number
of removed branches is also countable.

Assume that τ ′ = Dvη(τ ) is non-empty. We show that in that case τ ′ ⊆ τ

has uncountably many branches. We construct a Cantor scheme that maps finite
sequences w ∈ {L, R}∗ into nodes uw ∈ τ ′ in a way monotone with respect to the
prefix order� and lexicographic order�lex.We startwith any uε ∈ τ ′. Letw ∈ {L, R}∗
be a sequence such that the node uw ∈ τ ′ is defined. Observe that there must be a
branching node u′ under uw in τ ′ (since all the subtrees of τ ′�uw

do not belong to BCB,
see Fact 6.51). Put uwL, uwR as the two children of u′ (i.e. uwd = u′d for d ∈ {L, R}).

The above definition gives us the unique, infinite branch of τ ′ for everyβ ∈ {L, R}ω.
Therefore, τ ′ has uncountably many infinite branches and so does τ . �

Definition 6.10. For a thin tree t ∈ ThAR we define the rank of t (denoted rank(t))
as the smallest ordinal η such that Dvη(dom(t)) = ∅.

1Formally, it means that there exists an injective function ι : {L, R}∗ → τ that preserves the prefix
and lexicographic orders.
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We extend this definition to rank(u, t) (the rank of u in t) for a node u ∈ dom(t)
in such a way that rank(u, t) is the least η < ω1 such that u /∈ Dvη(dom(t)).

For an ordinal η < ω1 by Th
�η

AR
we denote the set of thin trees of rank at most η.

Fact 6.53. For every thin tree t ∈ ThAR and node u ∈ dom(t) we have rank(u, t) =
rank(t�u).

If t is a thin tree then rank(t) is not a limit ordinal. In particular the ordinal
rank(t)−1 is defined.

If u � w are two nodes of a thin tree t then rank(u, t) � rank(w, t).

The crucial way of using ranks is induction: we can decompose a given tree as its
spine and a number of trees connected to it: the spine of a thin tree t is

τ = Dvrank(t)−1(dom(t)) ∈ PTr.

Since Dv(τ ) = ∅ so τ ∈ BCB — the spine has only finitely many branches. Also,
if rank(t) > 1 then the spine of t is infinite, otherwise already Dvrank(t)−1(dom(t))
would be empty, contradicting minimality of rank(t).

Intuitively, a thin tree t has rank equal m if t contains m nested levels of infinite
branches. In comparison, the rank of well-founded ω-trees from Sect. 1.6.3 (see
page 17) counts each node of an ω-tree separately. In particular, a finite ω-tree may
have arbitrarily big finite rank in the meaning of Sect. 1.6.3 while a finite thin tree
always belongs to BCB and therefore has rank 1.

Figure6.2 presents a sequence of thin trees of increasing rank. The leftmost branch
of each thin tree is its spine.

Fig. 6.2 A sequence of thin trees and their spines.

6.1.5 Skeletons

The second tool used to analyse structural properties of thin trees are skeletons.
A skeleton can be seen as a witness that a given ranked tree is thin. Moreover, a
skeleton of a thin tree t represents a structural decomposition of t .

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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A subset of nodes σ ⊆ dom(t) of a given ranked tree t ∈ TrAR is a skeleton of t if:

– ε /∈ σ ,
– for every internal node u of t the set σ contains exactly one of the nodes uL, uR,
– on every infinite branch α of the tree t almost all nodes u ≺ α belong to σ .

Observe that we can identify σ with its characteristic function — a labelling of
nodes of t by the ranked alphabet AR

′ = (AR2
′, AR0

′) with AR2
′ = AR0

′ = {0, 1} so
that σ ∈ TrAR

′ .
Assume that σ is a skeleton of a tree t . Take any node u ∈ dom(t). The branch

α passing through u that follows at every point the skeleton σ is called the main
branch of σ from u. It can be defined as the unique maximal finite or infinite branch
α ∈ {L, R}�ω such that:

u � α ∧ ∀w�α (w � u ∨ w ∈ σ) .

Note that the main branch may be finite if it reaches a leaf of the tree. Otherwise
it is infinite. By the assumption that a skeleton contains almost all nodes on every
branch, we obtain the following fact.

Fact 6.54. Take a ranked tree t ∈ TrAR with a skeleton σ and an infinite branch α

of t . There exists a node u ∈ dom(t) such that α is the main branch of σ from u.

Proposition 6.12. A given ranked tree t ∈ TrAR has a skeleton if and only if t is
thin.

Proof. If a ranked tree has a skeleton then by the above fact every infinite branch of
t is from some point on its main branch (from some node of t). So there are at most
countably many branches of t .

Now assume that t is a thin tree. We inductively on the rank η of t construct a
skeleton of t . The thesis holds for η = 0 because there is no thin tree of rank 0.
Assume the thesis for all thin trees of rank strictly smaller than η. Let t be a thin tree,
rank(t) = η, and τ be the spine of t . For every u ∈ dom(t) that is off τ (i.e. u /∈ τ but
the parent of u is a node of τ ) we know that rank(u, t) < η. Therefore, there exists a
skeleton σu of the subtree of t under u; we assume that σu is a subset of dom(t), i.e.

σu ⊆ dom(t) ∩ u{L, R}∗.

Let σε contain all those elements u �= ε of τ such that u does not have a sibling
in τ . Also, if both uL and uR belong to τ let σε contain uL. Finally, let σ be the union
of σε and σu for u ∈ dom(t) that are off τ . By the construction σ does not contain ε

and contains exactly one sibling from every pair of siblings in t .
What remains to show is that σ contains almost all nodes on every infinite branch

of t . Let α be an infinite branch of t . If α is not an infinite branch of τ then there
exists u ≺ α that is off τ . Since σu is a skeleton so it contains almost all nodes on
α. Now assume that α is an infinite branch of τ . Since τ ∈ BCB so it contains only
finitely many finite and infinite branches, in particular, almost all nodes u ≺ α are
not branching in τ . Therefore, σε contains almost all nodes on α. �
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The skeleton σ constructed in the above construction is called the canonical
skeleton for t and is denoted by σ(t).

Remark 6.6. Since the conditions on a skeleton are mso-definable so the family of
all thin trees ThAR ⊆ TrAR is a regular tree language.

6.2 Thin Algebra

In the following three chapterswe use a variant of the thin forest algebra as introduced
by Bojańczyk and Idziaszek in [BIS13, Idz12] adapted to the case of ranked trees.
It can be seen as a natural extension of ω-semigroups and Wilke algebras [Wil93,
Wil98] (see Sect. 1.5.2, page 11). The use of thin algebra is this chapter could be
avoided, however it seems to be more convenient to use it (thin algebras are used in
the proof of Proposition 6.16). Additionally, thin algebras are crucial concepts in the
following two chapters.

Let us fix a ranked alphabet AR = (AR2, AR0). A thin algebra over AR is a
two-sorted algebra (H, V ) where H corresponds to types of trees and V to types of
contexts. A thin algebra is equipped with the following operations:

– s · s ′ ∈ V for s, s ′ ∈ V ,
– s · h ∈ H for s ∈ V, h ∈ H ,
– s∞ ∈ H for s ∈ V ,
–

∏ : V ω → H ,
– Node(a, d, h) ∈ V for a ∈ AR2, d ∈ {L, R}, and h ∈ H ,
– Leaf(b) ∈ H for b ∈ AR0.

Note that the first four operations are the same as in the case ofWilke algebras and
ω-semigroups. The last two operations allow to operate on trees. For simplicity, we
write a(�, h) instead of Node(a, L, h) and a(h,�) instead of Node(a, R, h). Simi-
larly, b() stands for Leaf(b) and a(hL, hR) ∈ H denotes the result of a(hL,�) · hR.

The axioms of thin algebra are:
the axioms of Wilke algebra:

s · (s ′ · s ′′) =(s · s ′) · s ′′ (6.1)

s · (s ′ · h) =(s · s ′) · h (6.2)

(s · s ′)∞ =s · (s ′ · s)∞ (6.3)

∀n�1
(
sn

)∞ =s∞ (6.4)

the axioms of ω-semigroups:

∏
(s, s, . . .) =s∞ (6.5)

s ·
∏

(s0, s1, . . .) =
∏

(s, s0, s1, . . .) (6.6)

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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∏
(s0 · . . . · sk1 , sk1+1 · . . . · sk2 , . . .) =

∏
(s0, s1, s2, . . .) (6.7)

and one additional axiom:

a(�, hR) · hL =a(hL,�) · hR. (6.8)

Fact 6.55. If a finite structure (H, V ) satisfies all the axioms of thin algebra except
the ones about infinite product: (6.5), (6.6) and (6.7) then (H, V ) can be equipped,
in a unique way, with infinite product

∏
satisfying axioms (6.5), (6.6) and (6.7).

Proof. The same as in the case of Wilke algebra, see Theorem 1.6 on page 12. �

However, as shown inExample 1.1 on page 12,we cannot erase the infinite product∏
from the definition of thin algebra; this operation is important when we consider

homomorphisms between thin algebras.
It is easy to verify that the pair (TrAR ,ConAR) has a natural structure of a thin

algebra. In particular, the operation p �→ p∞ constructs the ranked tree p∞ from a
ranked context p by looping the hole of p to the root of p, that is p∞ is the unique
ranked tree satisfying

p
(
p∞) = p∞.

The subalgebra (ThAR ,ThConAR) ⊂ (TrAR ,ConAR) consisting of thin trees and
thin contexts is free in the class of thin algebras over the ranked alphabet AR,
see [Idz12, Theorem 30] (for more details see Sect. 7.4.1, page 132). The algebra
(TrAR ,ConAR) is not free. In Sect. 7.4.1 we will see how thin algebras can be used to
recognise languages of general ranked trees (not necessarily thin).

A homomorphism f : (H, V ) → (H ′, V ′) between two thin algebras over the
same alphabet AR is defined in the usual way: f should be a function mapping
elements of H into H ′ and elements of V into V ′ that preserves all the operations of
thin algebra. Such a homomorphism is surjective if f (H) = H ′ and f (V ) = V ′.

Fact 6.56. Since every context p ∈ ThConAR can be obtained as a finite combination
of trees t ∈ TrAR using the operation Node, if f1, f2 : (TrAR ,ConAR) → (H, V ) are
two homomorphisms that agree on TrAR then f1 = f2.

The operations of thin algebra (namely the infinite product
∏
) imply that homo-

morphisms have to be path-wise consistent, as expressed by the following fact.

Fact 6.57. Let t ∈ ThAR be a thin tree, α = d0d1 . . . an infinite branch of t , and
f : (TrAR ,ConAR) → S be a homomorphism into a finite thin algebra S. Let ui =
d0d1 . . . di−1d̄i be the sequence of vertices of t that are off α and ai = t (α�i ) be the
i’th letter of t along α. Then

f (t) =
∏

i∈N
Node

(
ai , di , f (t�ui )

)
.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_7
http://dx.doi.org/10.1007/978-3-662-52947-8_7
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The following fact follows from induction over the rank of a thin tree, see [Idz12,
Lemma 34] or the proof of Lemma 8.36 on page 145 in Chap.8.

Fact 6.58. Let (H, V ) be a thin algebra over a ranked alphabet AR. Then there
exists a unique homomorphism f : (ThAR ,ThConAR) → (H, V ).

Let L ⊆ ThAR be a language of thin trees. We say that a homomorphism
f : (ThAR ,ThConAR) → (H, V ) recognises L if there is a set F ⊆ H such that
L = f −1(F), see Sect. 1.5.3, page 13.We say that (H, V ) recognises L if there exists
a set F as above (Fact 6.58 implies that there exists a unique homomorphism f ).

Similarly, f : (TrAR ,ConAR) → (H, V ) recognises L ⊆ TrAR if L = f −1(F) for
some F ⊆ H .

6.2.1 The Automaton Algebra

Every non-deterministic tree automatonA induces a finite thin algebra SA (called the
automaton algebra) and a homomorphism fA from all ranked trees to SA (called the
automaton morphism). The automaton algebra is an example of a finite thin algebra
recognising L(A) ⊆ TrAR

A .
Let A be a non-deterministic automaton over a ranked alphabet AR such that A

recognises L ⊆ TrAR . Assume thatA has states Q and uses priorities from {0, . . . , k}
for some k. Let us define fA(t) for a tree t ∈ TrAR and fA(p) for a context p ∈ ConAR :

fA(t) =
{
q : ∃ρ ρ is a run of A on t such that: (6.9)

ρ is parity-accepting,

ρ(ε) = q.
}

⊆ Q

fA(p) =
{
(q, i, q ′) : ∃ρ ρ is a run of A on p such that: (6.10)

ρ is parity-accepting,

ρ(ε) = q,

ρ(u) = q ′(where u is the hole of p),

the minimal priority on the path from ε to u in ρ is i.
}

⊆ Q × {0, . . . , k} × Q

Fact 6.59. The function fA induces uniquely the structure of thin algebra on its

image SA
def= (HA, VA) ⊆ (

P(Q),P(Q × {0, . . . , k} × Q)
)
in such a way that fA

becomes a homomorphism of thin algebras.

http://dx.doi.org/10.1007/978-3-662-52947-8_8
http://dx.doi.org/10.1007/978-3-662-52947-8_8
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Moreover, fA recognises L(A), since

L(A) = f −1
A

({h ∈ HA : h ∩ IA �= ∅}) .

For every h ∈ HA the language Lh
def= f −1

A ({h}) ⊆ TrAR is regular.

For the sake of completeness, let us write down the operations of the automaton
algebra SA. The formulae are similar to the case of thin forest algebra, see [Idz12,
Sect. 4.4.1].We do not define the infinite product

∏
, it can be uniquely introduced by

Fact 6.55. We implicitly assume that h ∈ HA, s, s ′ ∈ VA, e ∈ VA is an idempotent,
a ∈ AR2, b ∈ AR0, and d ∈ {L, R}.

s · s ′ = {(q,min( j, j ′), q ′′) : (q, j, q ′) ∈ s, (q ′, j ′, q ′′) ∈ s ′}, (6.11a)

s · h = {q : (q, j, q ′) ∈ s, q ′ ∈ h}, (6.11b)

s∞ = (
s�

)∞
for s� being the idempotent power of s, (6.11c)

e∞ = {q : (q, j, q) ∈ e, j ≡ 0 (mod 2)} for e being an idempotent,
(6.11d)

Node(a, d, h) = {(q,min(q, qd), qd) : (q, a, qL, qR) ∈ δA2 , qd̄ ∈ h}, (6.11e)

Leaf(b) = {q : (q, b) ∈ δA0 }. (6.11f)

Observe that if L(A) ⊆ ThAR is a language of thin trees then we can restrict the
automaton morphism to ThAR . After this restriction it recognises L(A) as a language
of thin trees.

The following fact is a direct consequence of the existence of an automaton
algebra. It is not used in this thesis, we use only the “only if” part: if a language
is regular then it is recognised by a homomorphism into a finite thin algebra.

Fact 6.60. A language of thin trees L ⊆ ThAR is a regular language of thin trees if
and only if it is recognised by a homomorphism into a finite thin algebra.

Sketch of a Proof. If a language is regular then we can take the automaton algebra.
The opposite direction follows from the definition of consistent markings in Sect. 7.1
and Fact 8.36 — we can define in mso a consistent marking τ of a given thin tree
and check that τ(ε) ∈ F . �

6.3 Upper Bounds

In this section we prove an upper bound on descriptive complexity of regular lan-
guages of thin trees from Theorem 2.4, as expressed by the following proposition.

Proposition 6.13. Every regular language of thin trees L is co-analytic as a set of
ranked trees.

http://dx.doi.org/10.1007/978-3-662-52947-8_7
http://dx.doi.org/10.1007/978-3-662-52947-8_8
http://dx.doi.org/10.1007/978-3-662-52947-8_2
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Note that despite the fact that the space of thin trees ThAR is co-analytic among
all trees, it is an uncountable set and contains arbitrarily complicated subsets.

6.3.1 Embeddings and Quasi-skeletons

The definition of a skeleton σ of a tree t is a co-analytic definition— σ has to contain
almost all nodes on every branch of t . Our aim in this section is to define objects less
rigid than skeletons but definable in an analytic way. For this purpose, we introduce
two relations REmbed and RQSkel. Let us fix a ranked alphabet AR.

Proposition 6.14. There exists an analytic (�1
1) relation REmbed ⊆ TrAR × TrAR

such that for every tree t1 and every thin tree t2:

(
t1 is thin and rank(t1) � rank(t2)

)
i f and only i f (t1, t2) ∈ REmbed.

Intuitively, the relation REmbed is defined by the expression of the form: (t1, t2) ∈
REmbed if there exists an embedding of dom(t1) to dom(t2). However, to avoid tech-
nical difficulties, we do not introduce exact definition of an embedding. Instead, we
recall some standard methods from descriptive set theory, see [Kec95, Sect. 34.D],
namely the Borel derivatives. It will be shown that the derivative Dv from Sect. 6.1.4
is (modulo some technical extension) a Borel derivative. We follow here the notions
used in [Kec95].

Definition 6.11. Let X be a countable set and D = P(X). A derivative on D is a
map D : D → D such that D(A) ⊆ A and D(A) ⊆ D(B) for A ⊆ B, A, B ∈ D.
For A ∈ D we define D0(A) = A, Dη+1(A) = D

(
Dη(A)

)
and for a limit ordinal η

Dη(A)
def=

⋂

η′<η

Dη′
(A).

Now, let |A|D for A ∈ D be the least ordinal η such that Dη(A) = Dη+1(A).
Such an ordinal exists by monotonicity of D and since X is countable, η < ω1. We
additionally put

D∞(A)
def= D|A|D (A).

Now let us state [Kec95, Theorem 34.10] in the case of countable X .

Theorem 6.61 (Theorem 34.10 from [Kec95, Sect. 34.E]). Let X be a countable
set and D = P(X). Let D : D → D be a derivative that is Borel. Put

ΩD = {F ∈ D : D∞(F) = ∅}.

Then ΩD is �1
1 and the map F �→ |F |D is a �1

1-rank on ΩD.
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Our aim is to present Dv as a Borel derivative in such a way that ΩD = PTh
and the map F �→ |F |D is the rank of thin trees in the sense of Sect. 6.1.4. The
above theorem will then imply that the rank of thin trees is a �1

1-rank. Then, by the
definition of �∗

rank (see [Kec95, Sect. 34.B]) we obtain that

REmbed(t, t
′) def⇔ dom(t) �∗

rank dom(t ′)
⇔ dom(t ′) /∈ PTh ∨ (

dom(t), dom(t ′) ∈ PTh∧
∧ rank(dom(t)) ≤ rank(dom(t ′))

)

⇔ t ′ /∈ ThAR ∨ (t, t ′ ∈ ThAR ∧ rank(t) ≤ rank(t ′))

is a �1
1-relation.

Fact 6.62. The rank of thin tree-shapes comes from a Borel derivative, as in the
assumptions of Theorem 6.61.

Proof. Let X = {L, R}∗ and D = P(X). Note that in this case PTr ⊆ D. We will
extend the derivative Dv to a function D : D → D by defining it also on sets F ⊆ X
such that F /∈ PTr. Let F ⊆ X and let F̄ be the prefix-closure of F :

F̄
def= {u : ∃w∈F u � w}.

Now let D(F)
def= Dv(F̄).

The function D defined this way is monotone and Borel: the operationD � F �→
F̄ ∈ PTr is Borel and the property that u ∈ Dv(τ ) is a Borel property of a tree-shape
τ : u ∈ τ and τ�u does not have a finite number of branches (this property is Borel
because our trees are finitely branching). Also, D∞(τ ) = ∅ if and only if τ ∈ PTh.
By applying Theorem 34.10 we obtain that the rank induced by D (that is the rank
of thin trees) is a �1

1-rank. �

Our second relation RQSkel is intended to witness the existence of a particular
skeleton σ̃ of a given thin tree t . The trick is that σ̃ witnesses a skeleton of t given
that t is thin. Otherwise, σ̃ does not witness anything interesting. Such a (conditional)
skeleton is denoted as a quasi-skeleton.

We will encode a subset σ̃ ⊆ dom(t) of nodes of a tree t as its characteristic
function— a tree (denoted also σ̃ ) over the ranked alphabet ({0, 1}, {0, 1}) such that
dom(t) = dom(σ̃ ). To simplify the notions we will say that u ∈ dom(t) belongs to
σ̃ if u belongs to the set encoded by it (i.e. if σ̃ (u) = 1).

Proposition 6.15. There exists a �1
1 relation RQSkel on TrAR × Tr{0,1}2 such that:

1. for every pair (t, σ̃ ) ∈ RQSkel we have dom(t) = dom(σ̃ ), σ̃ (ε) = 0, and σ̃

contains (treated as a set of nodes of t) exactly one node from each pair of
siblings in t ,

2. for every thin tree t there exists a tree σ̃ such that (t, σ̃ ) ∈ RQSkel,
3. if t is a thin tree and (t, σ̃ ) ∈ RQSkel then σ̃ encodes a skeleton of t .
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A tree σ̃ such that (t, σ̃ ) ∈ RQSkel is called a quasi-skeleton of t .

Note that RQSkel may contain some pairs (t, σ̃ ) with a thick tree t . In that case σ̃

encodes some set of nodes of t but not a skeleton.
We define RQSkel ⊆ TrAR × Tr{0,1}2 as the set of pairs (t, σ̃ ) such that:

– dom(σ̃ ) = dom(t),
– ε /∈ σ̃ ,
– for every pair of siblings in t exactly one of them is in σ̃ ,
– for every internal node u of t such that ud ∈ σ̃ we have

(t�ud̄ , t�ud) ∈ REmbed, (6.12)

i.e. the subtree under the sibling of ud embeds into the subtree under ud.

Fact 6.63. Since REmbed is analytic and analytic sets are closed under countable
intersections, the relation RQSkel is also analytic.

The following two lemmas prove Items 2 and 3 of Proposition 6.15.

Lemma 6.18. Let t be a thin tree. There exists a quasi-skeleton σ̃ for t .

Proof. Let t be a thin tree.We show that the canonical skeleton σ(t) of t defined in the
proof of Proposition 6.12 is a quasi-skeleton of t . Let τ be the spine of t and let uL and
uR be two siblings in t . By the inductive construction of σ(t) we can assume that at
least one of these siblings ud belongs to τ . If ud̄ /∈ τ then rank(ud, t) > rank(ud̄, t)
so (6.12) is satisfied. Now assume that both ud, ud̄ belong to τ . In that case we have

rank(ud, t) = rank(ud̄, t),

so (6.12) is also satisfied, no matter which of the siblings belongs to σ(t). �

Lemma 6.19. If t is a thin tree and σ̃ is a quasi-skeleton of t then σ̃ (treated as a
set of nodes of t) is a skeleton of t .

Proof. Take any infinite branch α of t . We need to show that almost all nodes on α

belong to σ̃ . Assume contrary. Let u0 ≺ u1 ≺ . . . ≺ α be the sequence of nodes on
α that do not belong to σ̃ . By the definition of σ̃ for every node ui the sibling u′

i of
ui satisfies (t�ui , t�u′

i
) ∈ REmbed. Since t is thin this property implies that

rank(ui , t) � rank(u′
i , t).

Since ordinal numbers arewell-founded, we can assumewithout loss of generality
that all the ranks rank(ui , t) are equal some ordinal η < ω1. Since ui ≺ u′

i+1 so we
can also assume that for every i we have rank(u′

i ) = η. Let t ′ = t�u0 and let τ be
the spine of t ′. Note that rank(t ′) = η so by the definition τ contains all the nodes of
rank η in t . In particular τ contains all nodes ui and u′

i . But this is a contradiction,
since u ∈ BCB so it cannot contain infinitely many branching nodes. �
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Remark 6.7. Assume that t is a thin tree, σ̃ is a quasi-skeleton of t , and u ∈ dom(t)
is a node of t . The main branch of σ̃ from u can be defined in the same way as in
the case of skeletons. The only difference is that if σ̃ is not a skeleton then not every
infinite branch of t is main.

6.3.2 Proof of Proposition 6.13

Assume that L ⊆ ThAR is a regular language of thin trees, we want to show that
L ∈ �1

1(TrAR). Let L
′ = TrAR \ L be the complement of L among all ranked trees.

L ′ is a regular language of ranked trees. LetA be a non-deterministic tree automaton
recognizing L ′. We will write L ′ as a sum

L ′ = (
TrAR \ ThAR

) ∪ K , (6.13)

for some language K that will be defined this way to be analytic and to satisfy the
following condition:

K ∩ ThAR = L ′ ∩ ThAR .

Therefore, Eq. (6.13) will hold and will be an analytic definition of L ′.
Let K contain those trees t such that there exists a quasi-skeleton σ̃ of t and a run

ρ of the automatonA on t such that for every node u ∈ dom(t) the limes inferior of
priorities of ρ is even along the main branch of σ̃ from u. More formally:

K =
{
t ∈ TrAR : ∃σ̃ ,ρ (t, σ̃ ) ∈ RQSkel and

ρ is a run of A on t and

∀u∈dom(t). the lim inf of priorities of ρ

on the main branch of σ̃ from u is even
}
.

Observe that K is defined by existential quantification over trees σ̃ and runs ρ.
The inner properties are analytic (the later two are in fact Borel). Therefore, K is
analytic. Note that we do not express explicitly that ρ is an accepting run.

Observe that if t ∈ L ′ ∩ ThAR then t ∈ K : there is some quasi-skeleton σ̃ for t
and there is an accepting run ρ of A. Since ρ is accepting so it is accepting on all
main branches of σ̃ .

What remains is to show that if t ∈ K ∩ThAR then t ∈ L ′. Take a thin tree t ∈ K .
Assume that σ̃ , ρ are a quasi-skeleton and a run given by the definition of K . Since t
is a thin tree, σ̃ is actually a skeleton of t . We take any infinite branch α of t and show
that ρ is accepting along α. By Lemma 6.54 we know that there is a node u ∈ dom(t)
such that α is the main branch of σ̃ from u. Therefore, by the definition of K , the
run ρ is accepting on α.

This concludes the proof of Proposition 6.13.
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6.4 Characterisation of wmso-definable Languages

In this section we prove a decidable characterisation of languages of thin trees that
arewmso-definable among all trees. It will be achieved by proving that the following
conditions are equivalent.

Proposition 6.16. Let L ⊆ ThAR be a regular language of thin trees over a ranked
alphabet AR = (AR0, AR2) and let B be a non-deterministic automaton recognising
L among all trees. The following conditions are equivalent:

1. for M = |QB| · |AR2| + 1 and every t ∈ L we have rank(t) � M,
2. there exists M ∈ N such that every tree t ∈ L satisfies rank(t) � M,
3. L is wmso-definable among all trees,
4. there exists N ∈ N such that L ∈ �0

N (TrAR),
5. L is not �1

1(TrAR)-hard.

Moreover, it is decidable if these conditions hold.

The implications (1) ⇒ (2), (3) ⇒ (4), and (4) ⇒ (5) are trivial — any language
definable in wmso is on a finite level of the Borel hierarchy, thus not �1

1-hard. The
remaining two implications are proved in the following subsections. The decidability
follows from Remark 6.8.

A relation between definability inwmso and boundedness of a certain rank is also
exploited in Chap.4.

6.4.1 Implication (2) ⇒ (3)

We need to prove that if for some M every tree t ∈ L satisfies rank(t) � M then L
iswmso-definable among all trees. This will be achieved by an explicit construction
(via induction on M) of a wmso formula defining L among all trees.

In our constructions we use the following additional notion. Assume that t ∈ TrAR

is a tree and u � w are two nodes of t . We say that a node z is off the path from u to
w if z is not an ancestor of w (z � w) but there exists u′ such that u � u′ ≺ w and
z is a child of u′.

The proofs of this section go by induction on M (the bound on the ranks of thin
trees). In all of the cases the base step is trivial as there is no thin tree of rank 0.

We start with the following lemma. The constructed formula ϕm will serve as a
basis in the following constructions.

Lemma 6.20. For every m ∈ N there exists a wmso formula ϕm defining among
all ranked trees the language of thin trees of rank at most m (denoted Th�m

AR
, see

Sect.6.1.4).

Proof. The proof goes by induction on m. The base step is trivial.

http://dx.doi.org/10.1007/978-3-662-52947-8_4
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Assume that the thesis holds for m —we have defined a formula ϕm . Consider a
wmso formula ϕm+1 that for a given ranked tree t ∈ TrAR says that:

there exists a finite tree s with dom(s) ⊆ dom(t) such that

for every internal node w of t such that w /∈ dom(s)

there exists a child wd of w such that

the subtree t�wd has rank at most m (i.e. the formula ϕm holds on t�wd ).

First assume that ϕm+1 holds on a given tree t and take s as in the statement. Let
τ ⊆ dom(t) be the set of nodes u ∈ dom(t) such that rank(u, t) > m. Observe
that by ϕm if u is a branching node of τ then u ∈ dom(s). Therefore τ ∈ BCB and
rank(t) � m + 1.

Now assume that rank(t) � m + 1. If rank(t) < m then ϕm is trivially satisfied
by any finite tree s. Assume that rank(t) = m + 1 and let τ = Dvm(dom(t)) be the
spine of t . Since τ ∈ BCB so τ has finitely many branching nodes. Let us take as s a
finite tree with dom(s) ⊆ dom(t) and such that s contains all the branching nodes
of τ . By the definition of τ , for every internal node w of t that is outside s, at least
one of the children of w has rank at most m. �

The above lemma implies that the set of thin trees of rank at most m ∈ N is
mso-definable. Therefore, given a regular language of thin trees it is decidable if it
contains a tree of rank greater than a given number m. This gives us the following
remark.

Remark 6.8. Condition (1) from Proposition 6.17 is decidable.

The crucial inductive part of the proof of the implication (2) ⇒ (3) is expressed
by the following proposition. The rest of this section is devoted to its proof. The
implication (2) ⇒ (3) follows when we take as f the automaton homomorphism for
an automaton A recognising L and as m the bound M from Condition (2).

Proposition 6.17. Let (H, V ) be a finite thin algebra over a ranked alphabet AR.
Let f : ThAR → (H, V ) be the unique homomorphism assigning to thin trees their
types. For every type h ∈ H and number m ∈ N there exists a wmso formula ϕh

m
that defines those ranked trees t ∈ TrAR such that t ∈ ThAR , rank(t) = m, and the
type of t is h with respect to f (i.e. f (t) = h).

The base step for m = 0 is trivial. Assume that the thesis of the proposition holds
for all types h and all numbers less or equal than m. We show it for m + 1.

First we write a formula ψm(u, w) expressing that for a given pair of nodes u, w
of a given tree t :

u � w,

the subtrees t�u and t�w have ranks exactly m (we check it using ϕm and ¬ϕm−1),

and for every z that is off the path from u to w

the rank of t�z is at most m − 1 (i.e. ϕm−1 holds on t�z).
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The following lemma expresses the crucial properties of formulae ψm(u, w).

Lemma 6.21. Assume that for a given ranked tree t ∈ TrAR and a node u of t there
are infinitely many nodes w such that ψm(u, w). Then rank(t�u) = m and the set of
nodes of rank equal m below u in t forms a single infinite branch α of t .

Moreover, ψm(u, w) holds for some w ∈ dom(t) if and only if u � w ≺ α.

Proof. Take a ranked tree t and a node u ∈ dom(t) as in the statement. Without
loss of generality we can assume that u = ε, because ϕm talks only about the
subtree t�u . Observe that rank(t�ε) = rank(t) = m. Let τ ⊆ dom(t) be the set of
nodesw ∈ dom(t) such thatψm(ε, w) holds. Observe that if u � w1 � w2 ∈ dom(t)
andw2 ∈ τ thenw1 ∈ τ . Since there are infinitelymany nodesw satisfyingψm(ε, w)

so τ is infinite. Observe also that τ does not contain any branching node. Therefore τ

is a single infinite branchα. Clearly, ifw is not a prefix ofα then rank(w, t) < m. �

The above lemma states that the formula ψm(u, w) enables us to fix in a wmso-
definable way a particular branch α in our tree such that almost all nodes that are off
this branch have ranks smaller than m. What remains is to compute the type of the
subtree rooted in the node u from the types of the subtrees that are off α and from α

itself. The following formula is an intermediate step in this construction.

Fact 6.64. For nodes u, w1, w2 and a type s ∈ V there exists a wmso formula
γ s
m(u, w1, w2) expressing the following facts:

– u � w1 � w2,
– ψm(u, w2) holds (it implies ψm(u, w1)),
– f (t�[w1,w2)

) = s — the type of the the context rooted in w1 with the hole in w2 is s.

To achieve the last item of the list, the formula computes the types of the subtrees
rooted in the nodes off the path from w1 to w2 using the inductive formulae ϕh

m ′ for
m ′ < m and h ∈ H . Then the formula executes the multiplication in V on the finite
path from w1 to w2.

Now we show how to compute a type of a tree with a spine consisting of one
infinite branch. The formula is based on a construction from [Tho80] that enables to
verify the type of a given ω-word in fo logic using predicates of the form “the type
of the infix between the positions w1 and w2 is e”.

Definition 6.12. Let u be a node of a tree t and h ∈ H be a type. Let the formula
δhm(u) express the following facts:

there are infinitely many nodes w such that ψm(u, w) holds,

there exists a pair of context types s, e ∈ V such that se∞ = h,

there exists a node z0 such that γ s
m(u, u, z0) holds (i.e. f

(
t�[u,z0)

) = s), and

for every node w1 such that ψm(u, w1)

there exists a pair of nodes w2, w3 such that
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Fig. 6.3 An illustration of properties expressed by the formulae δhm(u).

w1 ≺ w2 ≺ w3,

ψm(u, w3) holds (it implies ψm(u, w2)), and

the formulae γ e
m(u, z0, w2), γ

e
m(u, z0, w3), and γ e

m(u, w2, w3) hold

(i.e. the types of the three contexts equal e, see Fig. 6.1).

Lemma 6.22. Let t be a tree and u be a node of t such that there are infinitely many
nodes w satisfying ψm(u, w). Then f (t�u) = h if and only if δhm(u) holds on t.

Proof. Again, without loss of generality u = ε. First assume that t |= δhm(ε) for
some h ∈ H . Letα be the branchdefinedby the predicateψm(ε, w) as inLemma6.21.

We show that the formula γ h
m(ε) gives rise to a sequence of nodes z0 ≺ z1 ≺ z2 . . .

on α such that for some types s, e satisfying se∞ = h we have:

f
(
t�[ε,z0)

) = s, f
(
t�[zi ,zi+1)

) = e. (6.14)

Having done so, we conclude that the type of t = t�ε is h.
Let us fix z0 as in the definition of δhm(ε). By the definition we know that

f (t�[ε,z0)) = s. We will set w1 to various nodes along α obtaining nodes w2, w3

such that w1 ≺ w2 ≺ w3 ≺ α.
Let us start with w1 equal z0 and consider w2, w3 given by δhm(ε). Let z1 = w2

and z′
1 = w3. Our inductive invariant is that the types of all three contexts t�[z0,zi ),

t�[z0,z′
i )
, and t�[zi ,z′

i )
equal e. For i = 1 we get it by the definition of δhm(ε). Assume

that zi ≺ z′
i are defined for some i > 0. Let us take w1 = z′

i and consider w2, w3 as
in the definition of δhm(ε). Let us put zi+1 = w2 and z′

i+1 = w3. By the definition, the
types of t�[z0,zi+1)

and t�[z0,z′
i+1)

are e. Consider the type of the context t�[zi ,zi+1)
(see

Fig. 6.4):

f
(
t�[zi ,zi+1)

) = f
(
t�[zi ,z′

i )

)
· f

(
t�[z′

i ,zi+1)

)

= e · f
(
t�[z′

i ,zi+1)

)

= f
(
t�[z0,z′

i )

)
· f

(
t�[z′

i ,zi+1)

)

= f
(
t�[z0,zi+1)

)

= e.

Therefore, the constructed sequence z0 ≺ z1 ≺ z2 ≺ . . . satisfies (6.14).
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Fig. 6.4 The reasoning used in the proof of Lemma 6.22.

For the other direction take a thin tree t and a branch α of t as in Lemma 6.21.
Using Ramsey’s theorem (see Theorem 1.1 on page 3) along α, with respect to the
function assigning to a pair u ≺ w ≺ α the type f (t�[u,w)) ∈ V , we find a pair of
types s, e and an infinite sequence of nodes (zi )i∈N along α satisfying (6.14) and
such that e = e2. Since f (t) = h, se∞ = h. Therefore, we can satisfy the formula
δhm(ε) using s, e and the successive nodes (zi )i∈N. �

We are now ready to construct the formula ϕh
m from Proposition 6.17. It will

be obtained by rewriting the formula ϕm from Lemma 6.20 so that it additionally
verifies the type of the given ranked tree. In ϕh

m will fix a finite tree s with some leafs
u1, . . . , un of s and a sequence of types h1, . . . , hn ∈ H .We thenwrite s(h1, . . . , hn)
for the type obtained by the evaluation of the term represented by s on the given types
in the algebra (H, V ). Take m > 0, h ∈ H and define ϕh

m that says:

there exists a finite tree s with dom(s) ⊆ dom(t),

a number of leafs u1, . . . , un of s, and

a sequence of types h1, . . . , hn such that

the type of s(h1, h2, . . . , hn) is h and

for every leaf ui (i = 1, . . . , n)

δhim (ui ) holds and

there are infinitely many nodes w such that ψm(ui , w) holds.

Lemma 6.23. A tree t ∈ TrAR satisfies ϕh
m if and only if rank(t) = m and f (t) = h.

Proof. First assume that rank(t) = m and f (t) = h. Let τ be the spine of t and take s
as a finite tree containing all the branching nodes of τ . A leaf u of s is included in the
list u1, . . . , un if rank(u, t) = m. We take as hi the type f (t�ui ). Clearly the type of
s(h1, . . . , hn) is the type of t that is h. Also, since rank(ui , t) = m for i = 1, . . . , n
so ψm(ui , w) holds for infinitely many w. Lemma 6.22 says that δhim (ui ) is satisfied.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Now assume that ϕh
m is satisfied. Again, by Lemma 6.22 we know that for i =

1, . . . , n.
f (t�ui ) = hi .

Therefore, f (t) = s(h1, . . . , hn) = h. �

This concludes the proof of Proposition 6.17 and of the implication (2) ⇒ (3).

6.4.2 Implication (5) ⇒ (1)

Now we want to prove that if L is not �1
1(TrAR)-hard then every tree t ∈ L has rank

at most M = |QB| · |AR2| + 1.
We assume contrary that there exists a thin tree t ∈ L such that rank(t) > M . Our

aim is to show that L is �1
1(TrAR)-hard. The proof consists of two parts: first we find

a pumping scheme within the tree t and then we construct a continuous reduction
f from the set of well-founded ω-trees WF ⊆ ωPTr (see Sect. 1.6.3, page 17) into
L ⊆ TrAR . The idea is that for τ ∈ WF the reduction f gives a thin tree in L and
if τ /∈ WF then f (τ ) /∈ ThAR , so in particular f (τ ) /∈ L . Since the set of well-
founded ω-trees is �1

1-complete (see Theorem 1.11 on page 17), it will prove that L
is �1

1-hard.
Let us take m > 0 and a ranked tree t ∈ TrAR . A pumping scheme of depth m in t

(see Fig. 6.5) is a function P : ω�m → dom(t) such that:

– for every u ∈ ω�m the node P(u) is an internal node of t ,
– for every u ≺ w ∈ ω�m we have P(u) ≺ P(w),
– for every k � m and u �= w ∈ ωk we have P(u) � P(w) and P(w) � P(u),
– for every k � m and u, w ∈ ωk we have t (P(u)) = t (P(w)).

Note that the last condition implies that there exists a function PS : {0, 1, . . . ,m} →
AR2 assigning to a number k � m the unique letter PS(k) ∈ AR2 such that if u ∈ ωk

then t (P(u)) = PS(k). This function is called the signature of P .

Lemma 6.24. If t is a thin tree and rank(t) > m + 1 then there exists a pumping
scheme of depth m in t.

Before proving the lemmawe extract an observation crucial for the inductive step.

Fact 6.65. Let t be a thin tree and (ui )i∈N be a sequence of nodes of t . Assume that
the nodes ui are pairwise incomparable with respect to the prefix order �. If each
subtree t�ui has a pumping scheme of depth m and of a fixed signature PS (one for
all i ) then t has a pumping scheme of depth m + 1.

Proof. We just combine the schemes for all the nodes (ui )i∈N and put P(ε) = ε. �

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Fig. 6.5 An example of a pumping scheme PS of depth m = 3 in a tree t . The highest dot is the
node PS(ε). Under it we have an anti-chain of nodes PS(i) for i ∈ N. Under each node PS(i) we
again have an anti-chain of nodes PS(i j) for j ∈ N. The lowest line consists of nodes of the form
PS(i jk) for k ∈ N.

Proof of Lemma 6.24. The proof is inductive in m. For m = 0 we can take as P the
function ε �→ ε — ε is not a leaf of t because t has rank at least 2. Assume that the
thesis holds for m. Let rank(t) > m + 1 and let τ be the spine of t . Let (ui )i∈N be a
sequence of nodes of t that are off τ and have rank at least m + 1 in t . This sequence
is infinite, otherwise rank(t) � m + 1. Note that since the nodes (ui )i∈N are off τ so
they are pairwise incomparable with respect to the prefix order �.

By the inductive assumption, for every i there is a pumping scheme Pi of depth
m in t�ui . Since there are only finitely many distinct signatures of pumping schemes
of depth m so for some infinite subsequence of (Pi )i∈N all the signatures are equal.
By Fact 6.65 we obtain that there exists a pumping scheme of depth m + 1 in t . �

Nowwe canmove to the construction of a continuous reduction f ofWF ⊆ ωPTr
to L ⊆ TrAR . Recall that we have fixed a thin tree t ∈ L such that rank(t) >

|QB| · |AR2|+ 1 for a non-deterministic automaton B recognising L among all trees.
Let ρ ∈ Tr(QB,QB) be an accepting run of B on t . Let t ′ = t ⊗ ρ be the tree over the
product alphabet.
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Let m = |QB| · |AR2|. Because rank(t ′) = rank(t) > m + 1 so there exists a
pumping scheme P of depthm in t ′. Let PS be the signature of P . By the pigeonhole
principle there are two numbers 0 � k < k ′ � m such that PS(k) = PS(k ′). Let
u = P(0k)— the image by P of the vector of k zeros and letwi = P

(
0k · i ·0k ′−k−1

)
.

Fact 6.66. By the definition we obtain that:

– the nodes wi are pairwise incomparable w.r.t. the prefix order �,
– u ≺ wi and t ′(u) = t ′(wi ) for every i ∈ N.

Let w′
i be the word such that uw′

i = wi . This sequence of nodes enables us to cut
t ′ into the following pieces:

– pI is the thin context obtained from t ′ by putting the hole in u (i.e. pI
def= t ′[u ←

�]),
– rM is the thin tree over the ranked alphabet (AR2 × Q, AR0 × Q � {�}) obtained
from t ′�u by putting a leaf labelled by � in all the nodes w′

i for i ∈ N,
– tF is the subtree t ′�w0

.

Observe that the nodes of rM labelled by � are naturally numbered by natural
numbers.Assume that (ti )i∈N is a sequence of trees over the alphabet (AR2×Q, AR0×
Q). Then, rM(t0, t1, . . .) is the tree obtained by putting, for every i , the root of ti into
the i’th hole of rM (i.e. into the node w′

i of rM ). Using these notions we can write

t ′ = pI
(
rM(tF , t ′�w1

, t ′�w2
, t ′�w3

, . . .)
)
.

We define a function f0 : ωPTr → TrAR×(Q,Q) by co-induction (see Sect. 1.6.5,
page 18). Then f (τ ) is defined as pI ( f0(τ )). If τ is empty then let f0(τ ) = tF .
Otherwise, assume that (τi )i∈N is the list of subtrees τ�(i). Let

f0(τ ) = rM
(
f0(τ0), f0(τ0), f0(τ1), f0(τ1), . . .

)
.

Note that each subtree f0(τi ) is inserted twice into rM .
Since the root of rM is its internal node, the function f0 is continuous— the more

is known about τ the bigger fragment of f0(τ ) can be produced. Therefore, f is also
continuous. Observe also that for every τ the result f (τ ) is a product of two trees
f 1(τ ) ⊗ f 2(τ ) with f 1(τ ) over the ranked alphabet AR and f 2(τ ) over (Q, Q).
Because of Fact 6.66 the tree f 2(τ ) is a run of B on f 1(τ ). The value of the run
f 2(τ ) (i.e. f 2(τ )(ε)) is the same as the value of ρ.
What remains is to prove the following lemma.

Lemma 6.25. An ω-tree τ ∈ ωPTr is well-founded (belongs to W F) if and only if
f 1(τ ) ∈ L.

Proof. First assume that τ ∈ WF . In that case, every branch of f (τ ) from some
point on reaches a copy of tF or stays forever in some copy of pI or rM . Thus, the
run f 2(τ ) is parity-accepting on every branch of f 1(τ ). So f 1(τ ) ∈ L .

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Now take τ /∈ WF . Assume that α ∈ ωω is an infinite branch of τ . We show how
to embed the complete binary tree {0, 1}∗ into dom( f (τ )) thus showing that it is not
thin. Since L ⊆ ThAR , f (τ ) /∈ L .

We take a branch β ∈ {0, 1}ω and construct a sequence of vertices z0 ≺ z1 ≺
z2 ≺, . . . in f (τ ). First we put z0 = u (the hole of the ranked context pI ). From that
moment on we will traverse infinitely many copies of rM . The invariant is that for
every i

f (τ )�zi = f0(τ�α�i ).

For i = 0 the invariant is satisfied. In a step i we define as zn the vertex (hole)
w′

2·α(i)+β(i) in the current copy of r , i.e.

zi+1 = zi · w′
2·α(i)+β(i).

Since τ�α�i is non-empty for every i , the invariant is satisfied. Let πβ ∈ {L, R}ω be
the branch of f (τ ) defined by the sequence of vertices z0 ≺ z1 ≺ . . .. Observe that
for any β ′ �= β we have πβ ′ �= πβ . So indeed the tree t (τ ) is not thin — it contains
the complete binary tree as a minor. �

This concludes the proof of the implication (5) ⇒ (1) and Proposition 6.16.

6.5 Conclusions

This chapter studies descriptive complexity of regular tree languages that contain
only thin trees. First of all it is shown that each such language is �1

1 among all trees.
It is a noticeable collapse comparing to general regular tree languages that belong
to �1

2.
The second part of the chapter is devoted to studying when a regular language

containing only thin trees can be defined in wmso. It turns out that this problem
relates the following three notions:

– definability in wmso,
– topological complexity (i.e. �1

1-complete sets),
– certain ranks of thin trees.

These links show that Conjecture 2.2 from page 32 is true in the case of regu-
lar languages containing only thin trees. Additionally, a pumping argument (see
Lemma 6.24) is presented that shows that one of the conditions equivalent towmso-
definability is decidable.

The results of this chapter do not solve the problem of definability inwmso among
thin trees. This is stated as the following conjecture.

http://dx.doi.org/10.1007/978-3-662-52947-8_2
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Conjecture 6.6. It is decidable if a given regular language L of thin trees is wmso-
definable among thin trees, i.e. if there exists a wmso formula ϕ such that

L = {t ∈ ThAR : t |= ϕ} = L(ϕ) ∩ ThAR .

Since the language of all thin trees is wmso-definable among thin trees (by the
formula �) so the method of ranks does not seem to be useful in this case.

This chapter is based on [BIS13].



Chapter 7
Recognition by Thin Algebras

In both cases of finite words and ω-words the class of regular languages can be
equivalently defined as the class of languages recognisable by homomorphisms to
appropriate finite algebras (monoids and ω-semigroups respectively, see Sect. 1.5,
page 10). This algebraic approach to recognition turned out to be fruitful by entail-
ing many effective characterizations [Sch65, Sim75, BW08]. However, there is no
satisfactory algebraic approach to infinite trees, nor even a canonical way to represent
a given regular tree language. Proposed algebras (see [BI09, Blu11]) either have no
finite representation or yield no new effective characterisations.

This chapter can be seen as an attempt to use thin algebra defined in Chap.6 to
recognise languages of general ranked infinite trees (i.e. not necessarily thin). As
observed in Sect. 6.2 (see page 102), the pair (TrAR ,ConAR) of all ranked trees and
all ranked contexts over a ranked alphabet AR has a natural structure of a thin algebra
with a subalgebra (ThAR ,ThConAR) consisting of all thin trees and all thin contexts.
It can be shown [Idz12] that (ThAR ,ThConAR) is free (formally initial) in the class of
thin algebras over AR. The problem is that the thin algebra (TrAR ,ConAR) is richer
than (ThAR ,ThConAR); in particular, for some finite thin algebras S over the ranked
alphabet AR there may be many homomorphisms

f : (TrAR ,ConAR) → S.

The notion of prophetic thin algebras, introduced in this chapter, can be seen
as a natural constraint guaranteeing that there is at most one homomorphism f as
above. A natural problem arises what is the class of languages that can be recognised
by homomorphisms to finite prophetic thin algebras. Example 7.3 presented in this
chapter shows that not every regular tree language is recognised in this way. The
following theorem constitutes a characterisation of the languages recognisable by
finite prophetic thin algebras.

Theorem 7.5. A language of infinite trees L is recognised by a homomorphism into
a finite prophetic thin algebra if and only if L is bi-unambiguous, i.e. both L and the
complement Lc can be recognised by unambiguous automata.
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Blumensath in [Blu11, Blu13] undertook the task of designing an algebraic
framework for infinite trees that would allow to recognise precisely the regular
tree languages. The relations between prophetic thin algebras and the concept of
path-continuity of Blumensath are discussed in Sect. 7.1.

It turns out that bi-unambiguous languages and prophetic thin algebras are closely
related to Conjecture 2.1 from page 31 saying that there is no mso-definable choice
function in the class of thin trees. These relations are studied in Chap. 8, see Theo-
rem 8.74 on page 143). In Sect. 7.4 we prove that if Conjecture 2.1 holds then the
class of bi-unambiguous languages is decidable among all regular tree languages
(see Theorem 7.70). The consequences of Conjecture 2.1 regarding prophetic thin
algebras are studied in Sect. 7.3. For instance, Conjecture 2.1 implies that the class
of finite prophetic thin algebras is a pseudo-variety.

The chapter is organized as follows. In Sect. 7.1 we introduce prophetic thin
algebras. Section7.2 is devoted to a proof of Theorem 7.5. In Sects. 7.3 and 7.4 we
study consequences of Conjecture 2.1. Finally, in Sect. 7.5 we conclude.

7.1 Prophetic Thin Algebras

In this section we introduce the notion of prophetic thin algebras. The aim of this
definition is to guarantee that if S is a prophetic thin algebra over a ranked alphabet
AR then there is at most one homomorphism

f : (TrAR ,ConAR) → S,

similarly as in Fact 1.5 on page 12 in the case of ω-semigroups. Example 7.3 below
shows that for general (non-prophetic) thin algebras there may be more than one
such homomorphism.

Let S = (H, V ) be a thin algebra over a ranked alphabet AR = (AR2, AR0) and let
t ∈ TrAR be a ranked tree. Observe that every homomorphism f : (TrAR ,ConAR) →
S induces a natural labelling τ f of t by elements in H :

τ f (u)
def= f

(
t�u

)
for u ∈ dom(t).

The labelling τ f is called the marking induced by f on t . Intuitively, it declares in
advance the f -type of all the subtrees of t .

The axioms of thin algebra and the fact that f is a homomorphism imply that
τ f satisfies many consistency constraints. The following two definitions formalise
these consistency constraints by introducing a notion of a consistent marking. The
definition reflects the axioms of thin algebra in such a way to guarantee Lemma 7.26.

The first definition says that a labelling τ is supposed to be consistent with respect
to the local operations of thin algebra: Node(a, d, h) and Leaf(b).

http://dx.doi.org/10.1007/978-3-662-52947-8_2
http://dx.doi.org/10.1007/978-3-662-52947-8_8
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Definition 7.13. Let (H, V ) be a thin algebra over a ranked alphabet AR and let
t ∈ TrAR . A labelling τ ∈ Tr(H,H) of t is a marking of t by types in H if:

– for every internal node u of t we have

τ(u) = t (u)
(
τ(uL), τ (uR)

)
(i.e. τ(u) = Node(t (u), R, τ (uL)) · τ(uR)),

– for every leaf u of t we have

τ(u) = t (u)
()

(i.e. τ(u) = Leaf(t (u))).

The second definition reflects the infinite product operation
∏
, it can be seen as

a counterpart of Fact 6.57 from page 103.

Definition 7.14. Fix a thin algebra (H, V ) over a ranked alphabet AR. Let t ∈ TrAR

be a ranked tree, τ be a marking of t by types in H, and α be an infinite branch of t .
Assume that α = d0d1 . . . and let u0 ≺ u1 ≺ . . . be the sequence of vertices of t
along α. Let us put ai = t (ui ) (the i’th letter of t along α), and hi = τ(ui d̄i ) (the
value of τ in the i’th node that is off α).

The sequence of types of contexts Node(ai , di , hi ) ∈ V for i = 0, 1, . . . is called
the decomposition of τ along α. We say that τ is consistent on α if for every i ∈ N

we have
τ(ui ) =

∏

j=i,i+1,...

Node(a j , d j , h j ). (7.1)

A marking τ is consistent if it is consistent on α for every infinite branch α of t .

Remark 7.9. By the definition of a marking and axiom (6.6) of thin algebra, it is
enough to require (7.1) for infinitely many i ∈ N.

Lemma 7.26. The marking τ f induced by a homomorphism f on a tree t is a
consistent marking.

Proof. It follows directly from the axioms of thin algebra, see also Fact 6.57 on
page 103. �

Intuitively, a marking is consistent if the operations of thin algebra are not enough
to prove its inconsistency.

The following example shows that some thin algebras S admit more than one
homomorphism from (TrAR ,ConAR) into S. In particular, the analogue of Fact 1.5
from page 12 does not hold here.

Example 7.3. Fix the ranked alphabet Ab = ({n}, {b}). Let Lb ⊆ TrAb contain
exactly these trees which have at least one leaf. The following homomorphism recog-
nises Lb: HLb = {ha, hb}, VLb = {sa, sb}, and fLb(t) = hb (resp. fLb(p) = sb) if and
only if the tree t (resp. the context p) contains any leaf (not counting the hole of p).

Let tn be the complete binary tree equal everywhere n. Observe that tn does not
belong to Lb and the marking τ fLb

(tn) induced by fLb on tn equals ha in every vertex.

http://dx.doi.org/10.1007/978-3-662-52947-8_6
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Consider anothermarking τ ′ of tn that equals hb everywhere.Note that τ ′ is consistent
—along every infinite branchof t it looks like amarking inducedby fLb (on adifferent
tree). Therefore, t has two consistent markings.

Going further, one can construct a homomorphism f ′ : (TrAb ,ConAb) →
(HLb , VLb) that assigns hb to the tree tn . Therefore, there are two distinct homo-
morphisms from (TrAb ,ConAb) to (HLb , VLb).

Recall that the language Lb used above is known to be ambiguous, see [NW96].
Using the notions of Sect. 7.4.1, one can check that (HLb , VLb) is a pseudo-syntactic
thin algebra of Lb.

Now we can define prophetic thin algebras as those that admit at most one con-
sistent marking.

Definition 7.15. We say that a thin algebra (H, V ) over a ranked alphabet AR is
prophetic if for every ranked tree t ∈ TrAR there exists at most one consistent marking
of t by types in H.

Blumensath [Blu11, Blu13] has proposed recently an algebraic framework for
infinite trees. His path-continuous ω-hyperclones recognise precisely the class of
regular languages of infinite trees. The construction has some disadvantages though.
One of the disadvantages of the construction is that the use of an ideal (see [Blu13,
Definition 2.7]) together with existential quantification over its elements (the supre-
mum taken in the definition of π(a�)) is an algebraic translation of runs of the
automata. A more precise formulation of this objection is that path-continuous
ω-hyperclones are not closed under homomorphic images.

There is some inherent difficulty when designing a way to recognise regular
languages of infinite trees. The source of the problem seems to be that there is no
reasonable way of decomposing an infinite tree in such a way that the types of the
parts can be computed separately. Both known solutions: non-deterministic automata
of Rabin and path-continuous ω-hyperclones of Blumensath involve an essential
existential quantification that corresponds to guessing some kind of a witness. The
case of prophetic thin algebras is different: it is enough to verify the types path-wise
(using the standardRamsey’s theorem) and already path-wise consistency guarantees
global consistency (there is noway to cheat). The cost one has to pay is that prophetic
thin algebras do not recognise all regular tree languages. Therefore, the results of
this chapter can be seen as an indication where the difficulty lays.

The concepts of prophetic thin algebras and path-continuous ω-hyperclones were
defined independently.

Note that if f : (TrAR ,ConAR) → S is a homomorphism and S is prophetic then,
for every ranked tree t ∈ TrAR , the only consistent marking of t is the marking τ f

induced by f . In particular, we obtain the following remark.

Remark 7.10. If S is prophetic then there is at most one homomorphism of the form

f : (TrAR ,ConAR) → S.
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Since the property that a given finite thin algebra is prophetic can be expressed in
mso on the complete binary tree, we obtain the following fact.

Fact 7.67. It is decidable whether a given finite thin algebra (H, V ) is prophetic.

7.2 Bi-unambiguous Languages

In this sectionwe show that the languages recognised by finite prophetic thin algebras
are precisely the bi-unambiguous languages.

Theorem 7.5. A language of infinite trees L is recognised by a homomorphism into
a finite prophetic thin algebra if and only if L is bi-unambiguous, i.e. both L and the
complement Lc can be recognised by unambiguous automata.

In this section we implicitly assume that the automata are pruned: every state
q of an automaton is productive and reachable: there exists an accepting run ρ

of A on some tree t and a node u ∈ dom(ρ) such that ρ(u) = q. Every non-
deterministic automaton recognising non-empty language canbe prunedby removing
some states. The result recognises the same language and this removal does not
influence unambiguity.

The proof of Theorem 7.5 is split into the following three subsections.

7.2.1 Prophetic Thin Algebras Recognise
only Bi-unambiguous Languages

The “only if” part of Theorem 7.5 (i.e. that every language recognised by a finite
prophetic thin algebra is bi-unambiguous) is expressed by the following lemma.

Lemma 7.27. Let f : (TrAR ,ConAR) → (H, V ) be a homomorphism into a finite
prophetic thin algebra (H, V ) and h0 ∈ H. The language Lh0 = f −1(h0) is unam-
biguous.

The construction used in the following proof is motivated by algebraic automata
proposed by Bilkowski in [Bil11].

Proof. The desired automaton C is built as a product of two automata A and D.
The automaton D is deterministic and computes the priorities of states of C. First
we describe the automaton A. Let AR = (AR2, AR0), Q0 = H × AR0, Q2 =
H × AR2 × H , and QA = Q0 � Q2. Let us define J : Q → H as J (h, b) = h and
J (hL, a, hR) = a(hL, hR). J (q) is called the value of a state q ∈ Q. Let IA = {q ∈
QA : J (q) = h0}. Now δA0 consists of all pairs ((h, b), b) such that b() = h and δA2
consists of all pairs ((hL, a, hR), a, qL, qR) such that J (qL) = hL and J (qR) = hR.
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Let t ∈ TrAR be any ranked tree. It is easy to verify that there is a 1-1 correspon-
dence between runs ρ of A on t and markings τρ by types in H . A state (hL, a, hR)
in a node u ∈ dom(t) denotes that t (u) = a and the marking τρ equals hL and hR
in uL, uR respectively. What remains is to verify that the marking τρ is consistent.
Let α = d0d1 . . . be an infinite branch of t and let q0, q1, . . . be the sequence of
states of ρ on α. Since every state qi contains types of both subtrees under α�i ,
basing on q0, q1, . . . we can define the decomposition s0, s1, . . . of τρ along α (see
Definition 7.14). Now, the condition expressed by (7.1) is ω-regular (see Fact 6.55
on page 103). Therefore, there exists a deterministic parity automatonD on ω-words
that reads a sequence of directions α = (di )i∈N and states (qi )i∈N and verifies that
the marking encoded by (qi )i∈N is consistent on the branch α.

Let C guess a run of A on a given tree and then run D independently on all the
branches of t . Let the priorities of C equal the priorities of D. By the construction,
every parity-accepting run ρ of C encodes a consistent marking τρ of t . And vice
versa: every consistent marking can be encoded into a parity-accepting run.

Since the algebra (H, V ) is prophetic, there is at most one accepting run of C
on every tree. Therefore, C is unambiguous. t ∈ Lh0 if and only if there exists a
consistent marking of t with the value h0, what is equivalent to the existence of an
accepting run of C on t . So L(C) = Lh0 . �

7.2.2 Markings by the Automaton Algebra
for an Unambiguous Automaton

Before proving the “if” part of Theorem 7.5 we first study some properties of con-
sistent markings by the automaton algebra SA (see Sect. 6.2.1, page 104) for an
unambiguous automaton A.

Just to recall results of Sect. 6.2.1: for every non-deterministic tree automaton A
one can effectively construct a finite thin algebra SA = (HA, VA) that recognises
L(A) (by the homomorphism fA); additionally, the elements of HA are sets of states
of A, see (6.9), page 104.

The aim of this section is the following proposition. Intuitively it says that a
consistent marking may cheat but only in one direction — it may underestimate the
real fA-type of a given subtree.

Proposition 7.18. Let t ∈ TrAR be a ranked tree and (HA, VA) be the automaton
algebra for an unambiguous automatonA. Assume that τ is a consistent marking of
t by elements of HA. Then, for every node u of the tree t we have τ(u) ⊆ fA(t�u).

We begin with an analysis of the operations of the automaton algebras, see (6.11a)
on page 105 for an explicit definition of these operations.

Lemma 7.28. LetA be a non-deterministic tree automaton over a ranked alphabet
AR and t ∈ TrAR be a ranked tree. Let SA = (HA, VA) be the automaton algebra for
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A and assume that τ is a consistent marking of t by types in HA. Let α = d0d1 . . .

be an infinite branch of t .
A state q ∈ QA belongs to τ(ε) if and only if there exists a sequence (δi )i∈N of

transitions ofAwith δi = (qi , ai , qi
L, q

i
R) and q

0 = q that encodes a parity-accepting
run of A on α:

– the sequence of states (qi )i∈N satisfies the parity condition,
– for every i , the state qi

di
equals qi+1 — the transitions agree with each other,

– for every i and d ∈ {L, R} the state qi
d belongs to τ(d0 · · · di−1 · d) — the states

used in the transitions belong to the respective sets τ(u) for u ≺ α as well as for
u that is off α.

Proof. First take a state q ∈ τ(ε). Let (si )i∈N be the decomposition of τ along α as
in Definition 7.14. Since (VA, ·) is a semigroup, we can apply Ramsey’s Theorem
(Theorem 1.7 on page 13) to obtain a linked pair (s, e) ∈ V 2

A and a sequence of
numbers 0 < n0 < n1 < . . . such that

s0 · . . . · sn0 = s and for every i � 0 we have sni+1 · . . . · sni+1 = e. (7.2)

Since q ∈ τ(ε) = s · e∞ so by (6.11a) and (6.11d) (see page 105) it is witnessed
by:

– an element (q, j, q ′) ∈ s,
– an element (q ′, j ′, q ′) ∈ e with j ′ even (we use the fact that e is an idempotent).

Using (6.11a), (6.11e), and (7.2) we find a sequence of transitions as in the statement.
Now assume that there exists a sequence (δi )i∈N of transitions as in the statement,

we want to show that q ∈ τ(ε). As before, let (si )i∈N be the decomposition of τ along
α. We will construct a Ramsey decomposition of α with respect to both sequences
(si )i∈N and (δi )i∈N at the same time. For i < j let

α(i, j) = (
si · . . . · s j−1, (qi , min

i�k< j
ΩA(qk))

)
.

Since the set of values of α is finite1, we can find a Ramsey decomposition with
respect to α (see Theorem 1.1 on page 3): a sequence of numbers 0 < n0 < n1 < . . .

such that (7.2) is satisfied and for some fixed j ′ and every i � 0 we have:

qni = qni+1 , min
ni�k<ni+1

ΩA(qk) = j ′. (7.3)

Since the run encoded by (δi )i∈N is parity-accepting so j ′ is even. Therefore,
by (6.11a) and (7.2) we know that:

1It is possible to define a structure of semigroup on rg(α) but Theorem 1.1 works for any function α.
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– (q, j, qn0) ∈ s for some j ,
– (qn0 , j ′, qn0) ∈ e.

It implies that q ∈ s · e∞ = τ(ε) by (6.11d). �

Now, we will be interested in finding runs of an automaton A on a ranked tree
t that are contained in a marking τ of t by types in HA: for every u ∈ dom(t) we
require that ρ(u) ∈ τ(u).

Lemma 7.29. LetA be a non-deterministic tree automaton over a ranked alphabet
AR, t ∈ TrAR be a ranked tree, and τ be a consistent marking of t by types in HA.
Let q ∈ QA be a state of A. The following conditions are equivalent:

– q ∈ τ(ε)

– There exists a run (possibly not parity-accepting) ρ of A on t with the value q,
that is contained in τ . Additionally, for every infinite branch α of t there exists a
run ρα ofA on t with the value q, that is contained in τ , such that ρα satisfies the
parity condition on α.

Proof. First assume that q ∈ τ(ε). We inductively show that there exists a run of
A on t satisfying ρ(u) ∈ τ(u). Assume that t = a(tL, tR) for a pair of ranked trees
tL, tR. Let h = τ(u), hL = τ(uL), and hR = τ(uR). By (6.11e) and (6.11b) there
exists a transition (q, a, qL, qR) ∈ δA2 such that qL ∈ hL and qR ∈ hR. Therefore, we
can proceed inductively in uL and uR in states qL and qR respectively. Note that by
(6.11f) if u is a leaf of t and q ∈ τ(u) then (q, t (u)) ∈ δA0 , so the constructed run
agrees with the transitions over leafs.

Now take an infinite branch α of t . Using the above observation, it is enough to
construct a run ρ along α that satisfies ρ(u) ∈ τ(u) for every u that is off α — it will
extend to a run on the subtree t�u . The existence of a parity-accepting run along α

follows from Lemma 7.28.
Now assume that the second bullet of the statement is satisfied. We want to show

that q ∈ τ(ε). If the tree t is finite then q ∈ τ(ε) by induction on the height of t .
Otherwise, there exists an infinite branch α of t and similarly as above, any run ρα

that is parity-accepting on α is a witness that q ∈ h. �

Before we prove Proposition 7.18 let us observe the following local property of
unambiguous automata (it is slightly related to Lemma 3.2 on page 39).

Lemma 7.30. LetA be an unambiguous automaton and let fA : (TrAR ,ConAR) →
SA be the automaton morphism for A. Let h = a(hL, hR) for a triple of types
h, hL, hR ∈ HA and a letter a ∈ AR2. Then for every q ∈ h there exists exactly one
transition of the form (q, a, qL, qR) ∈ δA2 such that qL ∈ hL and qR ∈ hR.

Proof. At least one such a transition exists by (6.11e) and (6.11b). Assume that there
are two transitions as in the statement.

Let p be a context that has an accepting run ρ with the value q in the hole—we use
the fact that the automaton A is pruned (every state appears in some accepting run).
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Let tL, tR be trees of fA-types respectively hL, hR. In that case the tree p · a(tL, tR)
has two different accepting runs: both these runs equal ρ on p, then use two distinct
transitions in the hole of p, and extend to parity-accepting runs on tL, tR by the fact
that hL, hR are fA-types of tL, tR respectively (see (6.9) on page 104). �

Finally we can conclude with the proof of Proposition 7.18, saying that for an
unambiguous automaton and a consistent marking τ of t by types in HA we have
τ(u) ⊆ fA(t�u), for every u ∈ dom(t).

Proof of Proposition 7.18 Without loss of generality we can assume that u = ε. Let
us take any state q ∈ τ(ε), we want to show that q ∈ fA(t). Let us take the run ρ

constructed inductively in Lemma 7.30 for the state q (i.e. ρ is contained in τ and
ρ(ε) = q). What remains is to show that ρ is parity-accepting.

Take any infinite branch α of t . By Lemma 7.29 there exists a run ρα on t that
is contained in τ and satisfies the parity condition on α. But Lemma 7.30 shows
inductively that for every u ≺ α we have ρ(u) = ρα(u). So, since ρα satisfies the
parity condition on α, ρ also satisfies it on α. Therefore, q ∈ fA(t). �

7.2.3 Every Bi-unambiguous Language is Recognised
by a Prophetic Thin Algebra

Now we prove the “if” part of Theorem 7.5: if a language L ⊆ TrAR is bi-
unambiguous then there exists a finite prophetic thin algebra S and a homomorphism
f : (TrAR ,ConAR) → S such that f recognises L .
The algebra S is the product of the automaton algebras (see Sect. 6.2.1, page 104)

for the two unambiguous automata recognising L and the complement Lc. Proposi-
tion 7.18 together with a combinatorial observation in Lemma 7.31 will imply that
S is prophetic.

LetA,B be twounambiguous automata such thatL(A) = L andL(B) = TrAR \ L .
Let fA, SA and fB, SB be the respective automaton morphisms. Consider the sur-
jective homomorphism fU : (TrAR ,ConAR) → (HU , VU ) obtained as the product of
the above algebras:

– fU (t) = ( fA(t), fB(t)),
– fU (p) = ( fA(p), fB(p)),
– HU = fU (TrAR) ⊆ HA × HB, and
– VU = fU (ConAR) ⊆ VA × VB.

The following lemma states that there is a trade-off between types in HA and HB.

Lemma 7.31. The set HU is an anti-chain with respect to the coordinate-wise inclu-
sion order.
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Proof. Assume contrary, by the symmetry between h and h′, that:

– there are h = (hA, hB), h′ = (h′
A, h′

B) ∈ HU ,
– hA ⊆ h′

A and hB ⊆ h′
B,

– there exists a state q ′ ∈ h′
A but q ′ /∈ hA (the symmetry is used here).

Let t , t ′ be ranked trees such that fU (t) = h and fU (t ′) = h′ and let p be a ranked
context with an accepting run ρ ′ ofA that has the value q ′ in the hole of p. Note that
by the definition p · t ′ ∈ L(A) — the run ρ ′ can be extended to t ′.

Consider two cases:

1. p · t ∈ L(A). Let ρ be the accepting run of A that witnesses that. Let q be the
value of ρ in the hole of p. Then q ∈ hA ⊆ h′

A. It means that we have two distinct
accepting runs ofA on p · t ′: the first one equals ρ on p and then extends to t ′ by
the assumption that q ∈ h′

A and the second one equals ρ ′ on p and then extends
to t ′ by the assumption that q ′ ∈ h′

A. A contradiction.
2. p · t ∈ L(B). Let ρ be the accepting run of B that witnesses that. Let q be the

value of ρ in the hole of p. Then q ∈ hB ⊆ h′
B. So we can construct an accepting

run of B on p · t ′ by using ρ on p and extending it to t ′. So p · t ′ ∈ L(B) — a
contradiction, since we assumed that the languages L(A) and L(B) are disjoint.

�

Lemma 7.32. Let fU : (TrAR ,ConAR) → (HU , VU ) be the homomorphism con-
structed above for a pair of unambiguous automataA,B. If τ is a consistent marking
of a given ranked tree t by types in HU then it is equal to the marking τ fU induced
by fU on t.

Proof. Take any vertex u ∈ dom(t). By the definition τ(u) ∈ HU . By Proposi-
tion 7.18 we have τ(u) ⊆ fU (t�u) = τ fU (u) coordinate-wise. Using Lemma 7.31
we obtain that τ(u) = τ fU (u). �

The following fact concludes the proof of Theorem 7.5.

Fact 7.68. The homomorphism fU defined above is surjective and recognises L(A),
the algebra (HU , VU ) is prophetic.

Proof. fU is surjective by the definition; it recognises L because fA recognises L;
Lemma 7.32 implies that (HU , VU ) is prophetic. �

7.3 Consequences of Conjecture 2.1

In this section we study properties of the class of prophetic thin algebras under the
assumption of Conjecture 2.1 from page 31 (stating that there is no mso-definable
choice function on thin trees). It turns out that this conjecture implies that finite
prophetic thin algebras form a pseudo-variety (see [BS81] for an introduction to
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universal algebra and [Ban83] for pseudo-varieties of finite algebras) and have unique
homomorphisms from (TrAR ,ConAR). Roughly speaking it means that prophetic thin
algebras and bi-unambiguous languages are as well-behaved as ω-semigroups and
ω-regular languages.

To emphasise that the presented results use Conjecture 2.1, we explicitly put it as
an assumption in brackets. The results of this section depend highly on consequences
of Conjecture 2.1 proved in Chap.8.

Proposition 7.19 (Conjecture 2.1). Let (H, V ) be a finite prophetic thin
algebra over a ranked alphabet AR. There exists a unique homomorphism f : (TrAR ,

ConAR) → (H, V ).

Proof. The existence of at most one such homomorphism was observed in Sect. 7.1.
By Theorem 8.74 proved in Chap.8 (see page 143) and the fact that (H, V ) is
prophetic, every tree t ∈ TrAR has exactly one consistent marking τt by types in H .
Let us define f (t) = τt (ε). The condition of consistency of a marking implies that
f is a homomorphism. �

Proposition 7.20 (Conjecture 2.1). Let g : S → S′ be a surjective homomorphism
between two finite thin algebras. If S is prophetic then S′ is also prophetic.

Proof. First fix the homomorphism f : (TrAR ,ConAR) → S = (H, V ) given by
Proposition 7.19. Note that g ◦ f : (TrAR ,ConAR) → (H, V ) is a homomorphism.
Assume that S′ is not prophetic, so there exists a ranked tree t with two consistent
markings σ , σ ′ by types of S′. Without loss of generality we can assume that σ is
the marking induced by g ◦ f and σ ′(ε) 
= σ(ε). Let τ be the marking by types in S
induced by f on t . Observe that pointwise g(τ ) = σ . By Proposition 8.22 proved in
Chap.8 (see page 145) there exists a consistent marking τ ′ of t such that pointwise
g(τ ′) = σ ′. Therefore, τ and τ ′ are two distinct consistent markings of t by types in
H — a contradiction. �

Theorem 7.69 (Conjecture 2.1). The class of finite prophetic thin algebras over
a fixed ranked alphabet AR is a pseudo-variety: it is closed under homomorphic
images, subalgebras, and finite direct products.

Proof. The closure under subalgebras and finite direct products follows directly from
the definition. Proposition 7.20 implies that (under the assumption ofConjecture 2.1),
a homomorphic image of a finite prophetic thin algebra is also prophetic. �

7.4 Decidable Characterisation of the Bi-unambiguous
Languages

In this section we prove that, assuming Conjecture 2.1, the class of bi-unambiguous
languages of complete binary trees is decidable among all regular tree languages, as
expressed by the following decision problem.
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Problem 7.3 (Characterisation of bi-unambiguous languages).

– Input A non-deterministic parity tree automaton A.
– Output “yes” if the language L(A) is bi-unambiguous.

The proposed effective procedure P deciding this problem always terminates
and is sound, only the completeness of the procedure depends on Conjecture 2.1.
Additionally, Bilkowski proved (see [BS13, Item 3 of Theorem 5] that the procedure
P is complete if the given language is deterministic.

Theorem 7.70. Assuming Conjecture 2.1, the decision problem if a given regular
tree language is bi-unambiguous (i.e. Problem 7.3) is decidable.

The proof of this theorem relies on a construction of a pseudo-syntactic thin alge-
bra of a given regular language of complete trees L . The construction of this algebra is
effective and Conjecture 2.1 implies that if there is any prophetic thin algebra recog-
nising L then the pseudo-syntactic one is also prophetic. Since (TrAR ,ThConAR) is
not free in the class of thin algebras over the ranked alphabet AR, some special care
has to be taken when defining the pseudo-syntactic thin algebra.

7.4.1 Pseudo-syntactic Morphisms

Intuitively, the pseudo-syntactic algebra can be seen as aminimal algebra recognising
a given language. Chapter 3 of [Idz12] presents a generic way of constructing syntac-
tic algebras for languages. However, the constructions presented there work if a given
language is a subset of the free algebra. Example 7.3 implies that (TrAR ,ConAR) is
not free in the class of thin algebras. Therefore, the notion of syntactic morphism for
a given language has to be adopted to the case of non-thin trees.

We start by recalling the classical notions of free algebras and syntacticmorphisms
in the setting of thin algebras. Since thin algebras already contain alphabets, we use
the term free algebra having in mind the empty set of generators (i.e. a thin algebra
over a ranked alphabet AR is free if it is initial in the category of thin algebras over
AR, see the following definition).

In this section we work with ranked alphabets, a language of complete trees
L ⊆ TrA can be seen as a language over the ranked alphabet AR = (A, ∅).

Definition 7.16. A thin algebra S over a ranked alphabet AR is free if for every thin
algebra S′ over AR there exists a unique homomorphism f : S → S′.

Let F = (HF , VF ) be a free thin algebra over a ranked alphabet AR and L ⊆ HF.
A homomorphism fL : F → SL = (HL , VL) is the syntactic morphism of L if:

1. fL is surjective,
2. fL recognises L (i.e. L = f −1

L (X) for some X ⊆ HL),
3. for every surjective homomorphism f : F → S′ that recognises L there exists a

unique homomorphism g : S′ → SL such that

g ◦ f = fL .
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Observe that up to an isomorphism the free thin algebra over a given ranked
alphabet is unique. The following fact summarizes the relations between thin trees
and thin algebras, see [Idz12, Lemma 22, Lemma 23, Theorem 54].

Fact 7.71. The thin algebra (ThAR ,ThConAR) is a free thin algebra over AR. For
every language L ⊆ ThAR there exists a syntactic morphism of L. If L is regular
then the syntactic algebra of L (denoted SL) is finite and can be effectively computed
basing on any representation of L.

Sketch of a proof. Let F = (ThAR ,ThConAR). The uniqueness of a homomorphism
f : F → S′ can be proved by induction on the rank of a thin tree. Therefore, F is a
free thin algebra over AR.

To construct a syntactic morphism it is enough to divide the free thin algebra
(ThAR ,ThConAR) by the syntactic congruence ∼L (see [Idz12, Lemma 19]). Since
there exists a finite thin algebra recognising a given regular tree language L (namely
the automaton algebra from Sect. 6.2.1, page 104), SL is finite.

To effectively compute SL one can use the Moore’s algorithm, see [Idz12,
Lemma 23] �

The following definition formalizes the notion of a pseudo-syntactic thin algebra.
The conditions are much weaker than in the case of syntactic algebras, however they
are strong enough to serve for the purpose of our effective characterisation.

Definition 7.17. Let L ⊆ TrAR be a regular tree language. We say that a finite thin
algebra SL is a pseudo-syntactic algebra of L if SL recognises L and for every finite
thin algebra S′ recognising L there exists a subalgebra S′′ ⊆ S′ and a surjective
homomorphism f : S′′ → SL .

If we required the homomorphisms under consideration to satisfy additional con-
straints of compositionality, we could obtain a more rigid notion of syntactic algebra
for a language L ⊆ TrAR . However, it is not needed in this chapter, so we use the
weaker (and much simpler) notion of pseudo-syntactic algebra.

The aim of this section is to prove the following proposition. By taking AR0 = ∅

we reduce the statement to the case of languages of complete binary trees L ⊆ TrA
for A = AR2.

Proposition 7.21. For every regular tree language L ⊆ TrAR one can effectively
construct a pseudo-syntactic thin algebra of L.

Let A be a non-deterministic tree automaton recognising a regular tree language
L . Let SA = (HA, VA) be the automaton algebra and fA be the automatonmorphism
ofA, see Sect. 6.2.1, page 104. By the definition fA is surjective. Consider the ranked

alphabet AR � HA
def= (AR2, AR0 � HA). As we have already seen, SA can be seen

as a thin algebra over AR � HA.
Let F = (

ThAR�HA ,ThConAR�HA
)
be the free thin algebra over AR � HA. Our

aim is to define a homomorphism
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ι : F → (TrAR ,ConAR). (7.4)

For every type h ∈ HA let us fix a tree th ∈ TrAR such that fA(th) = h. Now let ι(t)
be the tree obtained by putting th in every leaf u ∈ dom(t) such that t (u) = h ∈ HA.
ι(p) is defined in the same way for thin contexts p. Since the substitution is done
only in the leafs, the function ι defined this way is a homomorphism2.

Now let f = fA ◦ ι and L ′ = ι−1(L) ⊆ ThAR�HA . Observe that f : F → SA is a
surjective homomorphism that recognises L ′.

Since F is free, we can apply Fact 7.71 to the homomorphism f to effectively
compute the syntactic thin algebra SL of L ′.

Wewill show that SL is a pseudo-syntactic algebra of L . Consider any thin algebra
S′ that recognises L using a homomorphism f2. Let f ′ = f2 ◦ ι. Let S′′ ⊆ S′ be the
image of F under f ′ — S′′ is a subalgebra of S′. Clearly, f ′ : F → S′′ is a surjective
homomorphism recognising L ′. By the universal property of SL we know that there
exists a unique surjective homomorphism g : S′′ → SL .

This concludes the proof of Proposition 7.21.

7.4.2 Decidable Characterisation

Nowwe can prove Theorem 7.70 stating that assuming Conjecture 2.1 it is decidable
if a given regular tree language is bi-unambiguous. The crucial technical part of the
proof is based on Theorem 8.74 from Chap.8 on page 143.

Consider the following decision procedure P:

1. Input a non-deterministic automaton A recognising a regular tree language L .
2. Compute a pseudo-syntactic thin algebra SL of L .
3. Answer “yes” if SL is prophetic, otherwise answer “no”.

Observe that by Proposition 7.21 and Fact 7.67 all the operations performed by P
are effective. Observe also that by Proposition 7.21 and Theorem 7.5, if the answer
of P is “yes” then L is bi-unambiguous (the algebra SL is a witness). What remains
is to prove the following lemma.

Lemma 7.33. Assuming Conjecture 2.1, if L is bi-unambiguous then every pseudo-
syntactic thin algebra of L is prophetic.

Proof. Since L is bi-unambiguous, by Theorem 7.5 there exists a surjective homo-
morphism f : (TrAR ,ConAR) → (H, V ) that recognises L and such that (H, V )

is a finite prophetic thin algebra. Since SL is a pseudo-syntactic thin algebra of
L so there exists a subalgebra (H ′, V ′) of (H, V ) and a surjective homomorphism
g : (H ′, V ′) → SL . By the definition of prophetic thin algebrasweknow that (H ′, V ′)
is prophetic. By Proposition 7.20 we obtain that SL is also prophetic. �

This concludes the proof of Proposition 7.70.

2We treat F as a thin algebra over AR when we say that ι is a homomorphism.
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7.5 Conclusions

In this chapter we study which regular tree languages can be recognised by thin
algebras. It turns out that bi-unambiguous languages of complete binary trees and
regular languages of thin trees are strongly related. The main result of this chapter
provides an algebraic framework for the class of bi-unambiguous languages using
thin algebras. As a side effect of these considerations a new conjecture about mso-
definability of choice functions was posed (Conjecture 2.1).

If Conjecture 2.1 holds then the bi-unambiguous languages form a well-behaved
class of regular tree languages: not only it would be decidable if a given language
is bi-unambiguous but also prophetic thin algebras would provide a good algebraic
framework for studying these languages. Therefore, proving Conjecture 2.1 would
open the following line of research:

– prove Conjecture 2.2 for bi-unambiguous languages: if L is bi-unambiguous and
Borel then L is wmso-definable,

– provide an effective (or even equational) characterisation of bi-unambiguous lan-
guages that are wmso-definable,

– provide equational characterisations of bi-unambiguous languages in certain
classes of the Borel hierarchy (similarly to the characterisation from [BP12] of
regular tree languages that belong to BC(�0

1)),
– study the Wadge hierarchy of bi-unambiguous languages,
– and more…

The idea to study relations between bi-unambiguous languages and thin trees was
given by Bilkowski [Bil11]. In particular, he posed the following conjecture. Recall
that for a pair of partial trees t , t ′ by t ⊆ t ′ we mean that dom(t) ⊆ dom(t ′) and for
every vertex u ∈ dom(t) we have t (u) = t ′(u).

Conjecture 7.7 (Bilkowski [Bil11]). A regular tree language L ⊆ TrA is
bi-unambiguous if and only if every tree t ∈ TrA has a “thin core”: there exists
a partial tree t̄ ∈ PTrA such that t̄ has countably many branches, t̄ ⊆ t and for every
complete tree t ′ ∈ TrA such that t̄ ⊆ t ′ we have

t ∈ L ⇐⇒ t ′ ∈ L .

In other words, every tree has a “thin core” that guarantees whether t belongs to L
or not.

This conjecture remains open, even its relations with Conjecture 2.1 are still
unclear.

This chapter is based on [BS13].
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Chapter 8
Uniformization on Thin Trees

As the axiom of choice implies, for every relation R ⊆ X × Y there exists a graph
of a total function f : πX (R) → Y that is contained in R (such a graph is called a
uniformization of R). A natural question asks in which cases such a function f is
definable. A particular instance of this problem is, when R is anmso-definable set of
pairs of trees and we ask about mso-definable f . This question is known as Rabin’s
uniformization question. The negative answer to this question was given by Gurevich
and Shelah [GS83] (see [CL07] for a simplified proof). They proved that there is no
mso formula ψ(x, X) that chooses from every non-empty subset X of the complete
binary tree a unique element x of X . This result is known as undefinability of a
choice function on the complete binary tree. On the other hand, the formula saying
that x is the ≤-minimal element of X is a choice formula on ω-words. In [Sie75,
LS98, Rab07] it is proved that any mso-definable relation on ω-words admits an
mso-definable uniformization.

In this chapter we study the following conjecture about a uniformizability on thin
trees, the statement here is a bit more formal than the one in Introduction.

Conjecture 8.1. There is no mso-definable choice function on thin trees — there is
no formulaψ(x, X) such that for every thin tree t and every non-empty X ⊆ dom(t),
the formula ψ(x, X) is satisfied for a unique x ∈ X.

This conjecture is a strengthening of the result by Gurevich and Shelah [GS83]
as the class of admissible sets X is smaller (they have to be contained in thin trees).
Unfortunately, the author was unable to prove that Conjecture 8.1 holds. This chapter
presents a study of Conjecture 8.1 and some related uniformization problems.

As observed by Niwiński and Walukiewicz [NW96] (cf. [CLNW10]), the non-
existence of an mso-definable choice function implies that the language Lb = {t ∈
Tr{a,b} : ∃u∈dom(t) t (u) = b} is ambiguous (there is no unambiguous automaton
recognising Lb). To the author’s best knowledge, all the known examples of ambigu-
ous tree languages are derived from the language Lb. Also, the choice formula and
its variants remain the only known mso-definable relations on trees that do not have
any mso-definable uniformization. In this chapter a new technique of proving non-
uniformizability is introduced that allows to prove that:
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138 8 Uniformization on Thin Trees

– there is nomso-definable uniformization of the relation saying that σ is a skeleton
of a tree t : there is no mso formula that defines, for every thin tree t , a unique
skeleton σ of t (we treat σ as a set of vertices of t),

– the language of all thin trees is ambiguous among all trees.

Liefsches and Shelah studied uniformization problems on trees in [LS98]. In
particular, it is proved there that on thin trees every mso-definable relation has an
mso-definable uniformization if we allow additional monadic parameters (that are
adjusted appropriately to a given tree). The crucial difference here is that we do not
allow any additional parameters.

The following theorem summarizes results of this chapter.

Theorem 8.6. Conjecture 8.1 is equivalent to the fact that every finite thin algebra
admits some consistent marking on every infinite tree.

The relation ϕ(σ, t) stating that t is a thin tree and σ is a skeleton of t does not
admit any mso-definable uniformization of σ .

The language of all thin trees is ambiguous (i.e. it is not recognised by any unam-
biguous automaton).

The chapter is organised as follows. Section8.2 presents a technical construction
of a transducer that is useful in the remaining sections. In Sect. 8.3 we prove some
statements that are equivalent to Conjecture 8.1, in particular we show that Conjec-
ture 8.1 is strongly related to prophetic thin algebras studied in Chap.7. Then, in
Sect. 8.4 we prove the above non-uniformizability results. In Sect. 8.5 we conclude.

8.1 Basic Notions

We will work with trees over ranked alphabets, as introduced in Sect. 6.1, page 95.
The main interest of this chapter will be on uniformizations, as expressed by the
following definition.

Definition 8.18. Let ϕ(X,P) be a formula of mso on trees over a ranked alphabet
with monadic variables X andP = P1, . . . , Pn.We say thatψ(X,P) is a uniformiza-
tion of ϕ(X,P) if the following conditions are satisfied for every ranked tree t , values
of P, and sets X1, X2 ⊆ dom(t):

(∃X ψ(X,P)) ⇐⇒ (∃X ϕ(X,P))

ψ(X1,P) =⇒ ϕ(X1,P)

(ψ(X1,P) ∧ ψ(X2,P)) =⇒ X1 = X2

That is, whenever it is possible to pick some X satisfying ϕ(X,P) then ψ(X,P)

chooses exactly one such X . To simplify the notation, we always assume that the
first variable of a formula is the one that should be uniformized, we also allow P to
be empty and some of the variables X,P to be first-order variables.

http://dx.doi.org/10.1007/978-3-662-52947-8_7
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The following two formulae will be of our main interest (both conditions are
mso-definable by Remark 6.6 from page 102):

CHOICE(x, X)
def= “the given tree t is thin and x ∈ X”,

LEAF − CHOICE(x)
def= “the given tree t is thin and x is a leaf of t”. (8.1)

By the definition, Conjecture 8.1 is equivalent to the fact that the formula CHOICE
(x, X) does not have mso-definable uniformization. We will see in Theorem 8.74
that it is also equivalent to LEAF − CHOICE(x) not having such uniformization.

Recall that for two ranked alphabets AR and M , we define the product AR × M
as (AR2 × M2, AR0 × M0). Through this chapter we will sometimes treat a language
L ⊆ TrAR×M as a relation L ⊆ TrAR ×TrM . We say that L is uniformized if for every
tA ∈ TrAR there is at most one tM ∈ TrM with dom(tA) = dom(tM) such that (tA, tM)

(formally tA ⊗ tM ) belongs to L .

Example 8.4. IfA is an unambiguous tree automaton over a ranked alphabet AR then
the following set of trees over the ranked alphabet AR × (QA, QA) is a uniformized
relation: {

t ⊗ ρ : ρ is an accepting run of A on t
}
.

8.2 Transducer for a Uniformized Relation

In this sectionwe introduce a technical construction thatwill be used in the subsequent
sections of this chapter.

Assume that we are given a regular tree language of ranked trees LM ⊆ TrAR×M

that is uniformized as a relation in TrAR × TrM . It turns out that it is possible to
construct a deterministic transducer that maps a given tree tA ∈ TrAR into the unique
tree tA ⊗ tM ∈ LM . The idea is to equip the transducer with an additional knowledge
about the types of the subtrees of tA. It will be achieved by presenting a marking of
t induced by a homomorphism into a fixed thin algebra (see Section 6.2, page 102).
The way this additional information for the transducer is presented is rather arbitrary,
we use here thin algebras because of the applications to thin trees.

The crucial property is that the constructed transducer will be deterministic so it
will allow us to modify a given input tree tA into t ′A and reason about the resulting
tree t ′M (see Fact 8.72).

Let AR = (AR2, AR0) and M = (M2, M0) be a pair of ranked alphabets. A trans-
ducer from AR to M is a deterministic device T = 〈QT , qT

I , δT 〉 such that:

1. QT is a finite set of states,
2. qT

I ∈ QT is an initial state,
3. δT is a pair of functions δT2 , δT0 ,
4. the function δT2 of the type

http://dx.doi.org/10.1007/978-3-662-52947-8_6
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δT2 : QT × (AR2 ∪ AR0) × AR2 × (AR2 ∪ AR0) → QT × M2 × QT

determines transitions in internal nodes,
5. δT0 : QT × AR0 → M0 determines transitions in leafs.

Note that a transition in an internal node w takes three letters as the input, it will
be the letters in: wL, w, and wR. Note also that the transducer does not have any
acceptance condition, its run on a tree is always successful.

For every tree t ∈ TrAR a transducer T defines inductively a labelling T (t) of t
by letters in M defined inductively as follows. We start in w = ε in the state qT

I .
Assume that the transducer reached a vertex w ∈ dom(t) in a state q. If w is a leaf
then we put T (t)(w) = δT0 (q, t (w)). Otherwise, let aL, a, aR be the letters of t in
wL, w, wR respectively. Then let δT2 (q, aL, a, aR) = (qL,m, qR), put T (t)(w) = m,
and continue in wL, wR in the states qL, qR respectively.

Fact 8.72. The value T (t)(w) in a vertex w ∈ dom(t) depends on the letters of t in
vertices of the form u, uL, uR for u ≺ w. That is, if t , t ′ agree on all the vertices u,
uL, uR for u ≺ w then T (t)(w) = T (t ′)(w).

Theorem 8.73. Let AR and M be two ranked alphabets. Assume that LM ⊆ TrAR×M

is a regular tree language, L A ⊆ TrAR is the projection of LM onto the ranked
alphabet AR, and

∀tA∈L A ∃!tM∈TrM tA ⊗ tM ∈ LM (i.e. the relation LM is uniformized).

Then, there exist:

– a homomorphism f : (TrAR ,ConAR) → S into a finite thin algebra S (see Sect.6.2),
– a deterministic finite state transducer T that reads the marking τ f (tA) induced
by f on a given tree tA and outputs the labelling tM such that tA ⊗ tM ∈ LM,
whenever such tM exists:

∀tA∈L A

[
tA ⊗ T (

tA ⊗ τ f (tA)
)] ∈ LM .

Before proving the theorem, consider the following continuation of Example 8.4.

Example 8.5. LetA be an unambiguous tree automaton over a ranked alphabet AR.
Let L A = L(A) and LM contain trees t ⊗ ρ where ρ is an accepting run of A on
t ∈ TrAR . Then, the above theorem states that there exists a transducer that reads the
marking induced by some homomorphism f on a given tree t ∈ L(A) and produces
the unique accepting run of A on t (whenever exists).

A simple proof of Theorem 8.73 can be given using the composition method
(see [She75]). This proof was suggested by Bojańczyk as a simplification of an
earlier proof given by the author.

Since we are focused on automata, we only sketch the proof based on the compo-
sition method here and give a longer self-contained proof below. Assume that there

http://dx.doi.org/10.1007/978-3-662-52947-8_6
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is an mso formula defining a language LM that has quantifier depth n. Let |M | = k
and let f : (TrAR ,ConAR) → (H, V ) be a homomorphism that recognises all the
(n+k+1)-types of mso over AR. In a vertex w of a given ranked tree t the trans-
ducer T can store in its memory the (n+m+1)-type of the currently read context
t[w ← �]. Then, given the (n+k+1)-types of both subtrees under w, it can com-
pute the (n+k)-type of the tree t[w ← x] with the current vertex w denoted by an
additional variable x . The (n+k)-type of t[w ← x] is enough to ask about the truth
value of the following formulae (for every a ∈ M2):

there exists a labelling tM ∈ LM of t[w ← x] such that tM(x) = a.

If there is any such labelling tM then the above formula is true for exactly one letter
a ∈ M2. The transducer T outputs this letter in w and proceeds in wL, wR updating
the type of the context respectively.

The rest of this section is devoted to an automata-based proof of Theorem 8.73.
Let A be some non-deterministic tree automaton recognising the language LM .

Note that A itself may not be unambiguous. Consider an automaton denoted Â that
is a projection of the automaton A from the ranked alphabet AR × M to AR: the
working alphabet of Â is AR, transitions are transitions ofA with the component M
of each letter removed, the rest is unchanged. Note that L(Â) = L A.

We will use the notion of ranked contexts from Sect. 6.1.1 (see page 95) with one
extension: we allow a context to have the hole� in the root. The notion of a run of an
automaton on a context is unchanged (e.g. if ρ is a run on t[ε ← �] then ρ consists
of one state).

By the definition, every transition of Â comes from a transition ofA. In particular,
every run ρ of Â on a tree tA corresponds to (at least one) labelling of dom(tA) by
letters in M . Similarly, a run of Â on a context pA induces an M-labelled context
pM with the same domain and the same hole as pA. We call these labellings the
M-labellings consistent with ρ. A letter of such a labelling is called the M-letter
of ρ.

For technical reasons we assume that there is some fixed linear order on the sets
M2, M0 that enables to pick minimal elements from non-empty sets of letters.

Let fÂ be the automaton morphism into the automaton algebra (HÂ, VÂ) for Â
(see Sect. 6.2.1, page 104). Let tA ∈ TrAR be a tree and let τ(tA) be the marking
induced by the automaton morphism fÂ on tA. We will encode τ(tA) as a tree over
the ranked alphabet G = (HA, HA).

The construction goes as follows. The input ranked alphabet is AR × G. The set
of states QT of T is P(QA). The initial state qT

I is the singleton {qA
I }.

We start by stating an invariant that will be satisfied by the constructed transducer
T : if T is in a vertex w of a tree tA and it have assigned letters mu ∈ M2 to all the
vertices u ≺ w then the state Sw of T in w satisfies:

Sw = {
q ∈ QA : ∃ρ ρ is an accepting run of Â on tA[w ← �] (8.2)

and the M-letters of ρ in the vertices u ≺ w are mu
}
.

http://dx.doi.org/10.1007/978-3-662-52947-8_6
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We will show that the invariant can be preserved. Let us fix a moment during the
computation of T : we are in a vertex w ∈ dom(tA).

If w is a leaf of tA then we use the following transition over leafs: given a state
Sw and a letter b ∈ AR0 output a minimal element m0 of the set

Pw
def= {m0 : ∃(q,(b,m0))∈δA0 } ⊆ M0,

or some fixed m0 if the set is empty.
Now assume that w is an internal node of tA. Assume that we have already

assigned letters mu ∈ M2 to all the nodes u ≺ w. The marking τ(tA) gives us
sets QwL, QwR ⊆ QA in nodes wL, wR respectively (i.e. Qwd = fÂ(t�wd)). The
current state of T is a set of states Sw ⊆ Q.

Consider the following set of letters:

Pw =
{
m2 ∈ M2 : ∃(q,(tA(w),m2),qL,qR)∈δA2 q ∈ Sw ∧ qL ∈ QwL ∧ qR ∈ QwR

}
⊆ M2.

If Pw = ∅ then we output some fixed letter m2 ∈ M2. In that case, the state of T
will always stay ∅ and the invariant will be satisfied — there will be no accepting
run ofA on the currently read context. We will show that during the run of T on any
tree tA ∈ L A the sets Pw are non-empty and have at most one element each.

If Pw �= ∅ let T output the minimal elementmw ∈ Pw and proceed in the vertices
wd for d = L, R in the state

Swd
def= {

qd : ∃(q,(tA(w),mw),qL,qR)∈δA2 q ∈ Sw ∧ qd̄ ∈ Qwd̄

}
.

Clearly the invariant (8.2) is satisfied. This finishes the definition of T —the tran-
sitions described above can be easily encoded in the functions δT2 , δT0 of appropriate
types.

Lemma 8.34. During the run of T on any tree tA ∈ TrAR in every vertexw ∈ dom(t)
the set Pw contains at most one letter.

Proof. First assume that w is a leaf of tA. For a contradiction assume that there
are two distinct letters m0,m ′

0 ∈ Pw and let (q,m0), (q ′,m ′
0) be the respective

transitions. Using the invariant (8.2) we can find two accepting runs ρ, ρ ′ of A on
tA[w ← �] with values q and q ′ in the hole w respectively. Let pM , p′

M be some
M-labellings consistent with ρ and ρ ′. Let tM = pM(m0()) be the tree obtained by
putting the single-node tree m0() into the hole of pM (similarly t ′M = p′

M(m ′
0())).

Clearly tM �= t ′M and the runs ρ, ρ ′ can be extended to accepting runs on tA ⊗ tM and
tA ⊗ t ′M using the above transitions. This gives us two distinct labellings of the tree
tA, both in the language LM .

Now assume that w is an internal node of tA, this case is similar to the above one
but more technical. Let tA(w) = a and assume contrary that there are two distinct
letters m2,m ′

2 ∈ Pw. Consider the respective transitions (q, (a,m2), qL, qR) and
(q, (a,m ′

2), q
′
L, q

′
R).
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Since q, q ′ ∈ Sw so by (8.2) there are two accepting runs ρ, ρ ′ of Â on tA[w ← �]
that assign letters mu to u ≺ w and have values q, q ′ respectively in the hole w. Let
pM , p′

M be some M-labellings of consistent with the runs ρ, ρ ′ respectively.
For d ∈ {L, R} let td , t ′d ∈ TrM be trees and ρd , ρ

′
d be parity-accepting runs of A

that witness that qd , q ′
d ∈ Qwd , i.e. ρd is a parity-accepting run of A on tA�wd ⊗ td

with value qd , similarly for t ′d , ρ
′
d , and q

′
d .

Consider now two trees over the ranked alphabet AR × M × QA:

t = (
tA[w ← �] ⊗ pM ⊗ ρ

) · (a,m2, q)
(
tA�wL ⊗ tL ⊗ ρL, tA�wR ⊗ tR ⊗ ρR

)
,

t ′ = (
tA[w ← �] ⊗ p′

M ⊗ ρ ′) · (a,m ′
2, q

′)
(
tA�wL ⊗ t ′L ⊗ ρ ′

L, tA�wR ⊗ t ′R ⊗ ρ ′
R

)
.

Note that:

– both t , t ′ equal tA on the AR’th coordinate,
– they differ in the vertex w on the M’th coordinate,
– the Q’th coordinate of t , t ′ denotes an accepting run of A on the AR × M
coordinates.

Therefore, we have a contradiction: tA has two different labellings tM , t ′M such that
(tA, tM) ∈ LM and (tA, t ′M) ∈ LM . �

Now take any tree tA ∈ L A and consider the result tR = T (tA ⊗ τ(tA)). Let tM be
the unique labelling of tA such that (tA, tM) ∈ LM . Let ρ be an accepting run ofA on
tA⊗ tM . We show inductively that tR = tM what finishes the proof. Letw be a node of
tA and assume that for all u ≺ w we have tR(u) = tM(u). Let (q, (a,m2), qL, qR) be
the transition used by ρ in w. By the definition of Pw this transition is a witness that
m2 ∈ Pw. Therefore, Pw is non-empty and tR(w) = m2 = tM(w) by Lemma 8.34.

This concludes the construction of the transducer and the proof of Theorem 8.73.

8.3 Choice Hypothesis

In this section we study equivalent formulations of Conjecture 8.1, as expressed
by the following theorem. The formulations bind Conjecture 8.1 with consistent
markings as defined in Definition 7.14 on page 123 in Sect. 7.1. The implications
of this theorem regarding prophetic thin algebras are discussed in Sect. 7.3. (see
page 130).

Theorem 8.74. The following conditions are equivalent:

1. There is no uniformization of CHOICE(x, X) (i.e. Conjecture 8.1 holds).
2. There is no uniformization of LEAF − CHOICE(x) (see (8.1)).
3. For every finite thin algebra (H, V ) over a ranked alphabet AR = (AR2, AR0)

and every ranked tree t ∈ TrAR there exists a consistent marking of t by types
in H.

http://dx.doi.org/10.1007/978-3-662-52947-8_7
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4. For every finite thin algebra (H, V ) over the ranked alphabet Ab = ({n}, {b})
there exists a consistent marking of the unique complete binary tree tn ∈ TrAb by
types in H.

The proof of the above theorem is split over the following sections. Clearly (3)
implies (4).

8.3.1 Equivalence (1) ⇔ (2)

We start by observing that LEAF − CHOICE(x) and CHOICE(x, X) is essentially
the same uniformization problem. However, LEAF − CHOICE(x) turns out to be
much easier to work with. First observe that if ψ(x, X) is a uniformization of
CHOICE(x, X) then

ψ̂(x)
def= ψ

(
x, {y : y is a leaf })

uniformizes LEAF − CHOICE(x). What remains is to show the following lemma.

Lemma 8.35. If LEAF − CHOICE(x) has a uniformization then CHOICE(x, X)

also has one.

Proof. We show how to mso-interpret any set X contained in a thin tree as a set of
leafs of another thin tree.

Take non-empty a set X ⊆ dom(t) for a thin tree t . Without loss of generality we
can assume that X is prefix-free (i.e. there are no u, w ∈ X with u ≺ w), otherwise
we can start by restricting to ≺-minimal elements of X . Now consider the upward
closure X̄ of X defined as

X̄ = {u ∈ dom(t) : ∃w∈X u � w}.

We say that a vertex u ∈ X̄ is X-branching if uL, uR ∈ X̄ . Similarly, a vertex u ∈ X̄
is a X-leaf if uL, uR /∈ X̄ (equivalently if u ∈ X ). Let us consider the set Y ⊆ X̄
that contains all the X -branching vertices of X̄ and all the X -leaf vertices of X̄ . Note
that Y is mso-definable from X . Additionally, Y with the prefix and lexicographic
orders (treated as a relational structure) is isomorphic to the set of vertices of some
thin tree t ′. The leafs of t ′ correspond to the elements of X . Therefore, we can use an
uniformization of LEAF − CHOICE(x) to choose a unique leaf of t ′ by interpreting
this formula on (Y,�,≤lex). Therefore, a uniformization of LEAF − CHOICE(x)
gives a uniformization of CHOICE(x, X). �



8.3 Choice Hypothesis 145

8.3.2 Implication (2) ⇒ (3)

Now we prove that non-existence of a uniformization of LEAF − CHOICE(x)
implies that every finite thin algebra labels every ranked tree. It is achieved by prov-
ing a stronger statement, namely Proposition 8.22. It is designed in such a way to
imply other consequences of Conjecture 8.1 from Sect. 7.1, page 122.

Proposition 8.22. Assume that Conjecture 8.1 holds and that f : (H, V ) →
(H ′, V ′) is a surjective homomorphismbetween twofinite thin algebras over a ranked
alphabet AR. Let t ∈ TrAR be a ranked tree and τ ′ be a consistent marking of t by
H ′. Then there exists a consistent marking τ of t by H such that

∀u∈dom(t) f (τ (u)) = τ ′(u). (8.3)

The rest of this section is devoted to a proof of this proposition. The implication
(2)⇒ (3) follows from it by taking as (H ′, V ′) the singleton thin algebra ({h0}, {v0})
and the unique homomorphism f : (H, V ) → (H ′, V ′)—then the constant marking
by h0 is always a consistent marking and its preimage given by Proposition 8.22 is
a consistent marking of a given tree, therefore (3) of Theorem 8.74 is satisfied.

We start the proof with the following lemma that can be seen as a reformulation
of Fact 6.58 from page 104 in the language of consistent markings.

Lemma 8.36. If t ∈ TrAR is a thin tree and (H, V ) is a thin algebra over a ranked
alphabet AR then there exists exactly one consistent marking of t . In particular, all
the homomorphisms f : (TrAR ,ConAR) → (H, V ) must agree on thin trees.

Proof. Theproof is inductive on the rankof a given thin tree t , see Sect. 6.1.4, page 98.
Assume that for all thin trees of rank smaller than η the thesis holds. Assume that
rank(t) = η and let τS be the spine of t (i.e. τS is the set of nodes in t of rank
precisely η). For every node u that is off τS there is a unique consistent marking of
t�u by induction hypothesis. Since τS is a thin tree of rank 1, it consists of finitely
many infinite branches. The values of the marking on these branches are uniquely
determined by (7.1) from page 123. Finally, the conditions of the marking determine
the values of the marking in the finitely many branching nodes of τS . �

Now we move to the proof of Proposition 8.22. Assume the contrary. Since all
the properties aremso-definable, by Rabin’s theorem (Theorem 1.17 on page 20) we
can find a regular ranked tree with a marking t0 ⊗ τ ′ ∈ TrAR×(H ′,H ′) such that there is
no consistent marking τ of t0 by H that satisfies (8.3). Let G be a finite graph such
that:

– the edges of G are labelled by {L, R},
– there are functions t̂0 : G → AR2 ∪ AR0 and τ̂ ′ : G → H ′ labelling nodes of G by

AR and H ′,
– the unfolding of G from a vertex g0 ∈ G gives (via t̂0, τ̂ ′) t0 ⊗ τ ′.

http://dx.doi.org/10.1007/978-3-662-52947-8_7
http://dx.doi.org/10.1007/978-3-662-52947-8_6
http://dx.doi.org/10.1007/978-3-662-52947-8_6
http://dx.doi.org/10.1007/978-3-662-52947-8_7
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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We denote by û ∈ G the vertex of G that corresponds to a vertex u ∈ dom(t0). If g is
a non-leaf vertex of G and d ∈ {L, R} then by g · d we denote the unique d-successor
of g.

Consider the following perfect information finite arena game G with players ∃
and ∀. The arena of G is

{
(h, g) ∈ H × G : f (h) = τ̂ ′(g)

} ∪ {ε}.

The initial position is ε. ∃ can move from ε to one of the positions (h0, g0) ∈ G for
h0 ∈ H . After such a move, a sequence of rounds is played. Assume that an j’th
round starts in a position (h j , g j ). If g j is a leaf of t0 then the game ends. Otherwise
let a = t̂0(g j ) and:

– first ∃ gives a pair of types h j,L, h j,R ∈ H such that

a(h j,L, h j,R) = h j ∧ f (h j,L) = τ̂ ′(g j · L) ∧ f (h j,R) = τ̂ ′(g j · R),

– then ∀ picks a direction d j ∈ {L, R} and the game proceeds in the position

(h j+1, g j+1)
def= (h j,d , g j · d).

If a play reaches a position (h j , g j ) such that g j is a leaf of G then ∃ wins if and
only if Leaf(t̂0(g j )) = h j (i.e. h j is the type of the root-only tree labelled by t̂0(g j )).
Assume that a play π is infinite and let α be the sequence of directions d0, d1, . . .
played by ∀. π is winning for ∃ if the marking defined by the played types h j,L,h j,R

along the path α they followed in t0 is consistent (see (7.1), page 123); formally if
for every i ∈ N we have

hi =
∏

j=i,i+1,...

Node
(
t̂0(g j ), d j , h j,d̄ j

)
. (8.4)

Fact 8.75. Winning strategies for ∃ in G are in 1−1 correspondence with consistent
markings τ of t0 that satisfy (8.3).

Proof. Every strategy induces a function τ : dom(t0) → H and if it is winning then τ

is a consistent marking. By the definition of the arena, such a marking satisfies (8.3).
Similarly, every consistent marking τ as in the statement induces a strategy: first

play τ(ε), then inductively ensure that after obtaining directions u = d0, d1, . . . , d j−1

from ∀ the reached position (h j , g j ) satisfies h j = τ(u). When asked for a pair of
types play (τ (uL), τ (uR)). If a leaf is reached then we know that ∃ wins because τ is
a marking. Otherwise, an infinite path is followed and since τ is consistent so (8.4)
is satisfied. �

Note that thewinning condition ofG isω-regular, so the game is determined. Since
we assumed that there is no appropriate consistent marking, ∀ has a finite-memory
strategy in G. Let us fix such a strategy σ∀ with a memory structure M .

http://dx.doi.org/10.1007/978-3-662-52947-8_7


8.3 Choice Hypothesis 147

Plan for the rest of the proof.Now, our plan is to take a thin tree t ∈ Th and interpret it
as a subset t̄ of dom(t0). Then, using Fact 8.36, we can compute the unique marking
τ̄ of t̄ by types in H in such a way that the image of τ̄ by f equals τ ′ pointwise.
Finally, we run the strategy σ∀ against τ̄ what results in a path α in t̄ . By the definition
of the game G the path α has to reach a vertex corresponding to a leaf of t , otherwise
the play would be winning for ∃ what contradicts the assumption that σ∀ is winning.

Let T ⊆ dom(t0) be the set of vertices u ∈ dom(t0) such that the tree t0�u is
not thin. Clearly T is prefix-closed. By Fact 8.36 we know that T is non-empty —
otherwise t0 would be thin and both H , H ′ would have exactly one consistentmarking
of t0 and (8.3) would be satisfied by these markings.

LetW ⊆ T be the set of branching vertices in T . By the definition of T , for every
vertex u ∈ T there exists u′ ∈ W such that u � u′ — otherwise T �u is a single
infinite branch and therefore t0�u is thin.

Since both sets T andW are defined basing only on the subtree of t under a given
node, in fact T and W correspond to unfoldings of subsets T̂ and Ŵ of G.

Let ι : {L, R}∗ → W be the unique bijection that preserves the prefix and the
lexicographical order.

Let us fix some type P(h′) ∈ H for every h′ ∈ H ′ in such a way that f (P(h′)) =
h′ — it is possible by the fact that f is surjective. We can assume that the types P(h′)
are fixed in our construction since there are only finitely many h′ ∈ H ′.

Let AR �H = (AR2, AR0�H) be the extension of the ranked alphabet by types in
H . Note that we can treat the algebra (H, V ) as an algebra over the ranked alphabet
AR � H by putting Leaf(h) = h.

Now we take a thin tree t ∈ Th. We will try to choose a leaf of t in a way
mso-definable on t . The following fact expresses an important consequence of the
definition of ι and the fact that G is a finite graph.

Fact 8.76. The labelling tG of the given thin tree t by vertices of G such that u ∈
dom(t) is labelled by ι̂(u) ∈ Ŵ ⊆ G is mso-definable on t.

Additionally, for every ud ∈ dom(t) the path between ι(u) and ι(ud) in t0 is
of length at most |G|. We can define in mso on t for a given node ud what is the
sequence of vertices of G on the corresponding path from ι̂(u) to ι̂(ud).

Proof. By the definition of T and W we know that for every vertex g ∈ G such that
g ∈ T̂ \ Ŵ there exists a unique finite path πg that starts in g and contains only
vertices in T̂ \ Ŵ until it reaches a vertex next(g) ∈ Ŵ . It implies that for every node
z ∈ T \W there is a unique �-minimal node next(z) such that z � next(z) ∈ W and

n̂ext(z) = next(̂z).

In particular, by the definition of ι, for every u ∈ {L, R}∗ and d ∈ {L, R} we have

ι(ud) = next(ι(u) · d). (8.5)
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Therefore, we can construct the desired labelling of t by vertices g and paths πg

by inductively following the function g �→ next(g · d) in G. �

Let us construct a thin tree t̄ over the ranked alphabet AR � H such that dom(t̄) ⊆
dom(t0). First let

I
def= {w ∈ dom(t0) : ∃u∈dom(t) w � ι(u)}. (8.6)

Now, for u ∈ dom(t):

– if u � ι(u′) for some internal node u′ ∈ dom(t) then u ∈ dom(t̄) and t̄(u) = t0(u),
– if u = ι(u′) for some leaf u′ of t then u ∈ dom(t̄) and t̄(u) = P(τ ′(u)),
– if u /∈ T but the maximal prefix u′ of u that belongs to T satisfies u′ ∈ I then
u ∈ dom(t̄) and t̄(u) = t0(u),

– otherwise u /∈ dom(t̄).

Note that t̄ is thin because t is thin and all the subtrees t0�u for u /∈ T are thin.
Intuitively, dom(t̄) consists of the set I and all the thin subtrees of t0 of the form t0�u
such that the sibling of u is in I .

By Fact 8.36 there is a unique consistent marking τ̄ of t̄ by types in H .

Fact 8.77. For every u ∈ dom(t̄) we have f (τ̄ (u)) = τ ′(u).

Proof. If u is a leaf of t̄ and t̄(u) ∈ H then by the definition t̄(u) = P(τ ′(u)) so

f (τ̄ (u)) = f (t̄(u)) = τ ′(u).

Therefore, since t̄ is thin and f is a homomorphism, we obtain that for every
u ∈ dom(t̄) we have f (τ̄ (u)) = τ ′(u). �

The following lemma shows that τ̄ can be encoded on the thin tree t .

Lemma 8.37. The labelling (denoted τ�W ) of the nodes u of t by the types τ̄ (ι(u)) ∈
H is mso-definable on t.

Proof. Take any pair of nodes u, u′ in t such that u′ is a child of u. By Fact 8.76 we
can assume that we have an access to the vertices of G ι̂(u) and ι̂(u′) as well as to
paths π between them in G. We will define an element su,u′ ∈ V � {1} called context
type between u and u′ representing what happens in t0 on the path from w = ι(u) to
w′ = ι(u′).

Assume that w′ = wd0d1 . . . dn . Take any i ∈ {1, . . . , n} and consider the node
z = wd0 · · · di−1d̄i (i.e. a node that is off the path from wd0 to w′ in t0). Since there
are no elements of W on the path from w to w′ (except the end-points), we know
that wd0 · · · di−1 /∈ W so z /∈ T (i.e. the subtree of t0 under z is thin).

Lemma 8.36 implies that there is a unique consistent marking of the subtree t0�z
by types in H . As observed before, this marking must satisfy (8.3). The value hi of
this marking in z depends only on the subtree, so we can assume that this value is
fixed together with the finite graph G.
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Now, the context type su,u′ between u and u′ is the multiplication of the types of
contexts along the path wd0, . . . , w′:

su,u′
def=

∏

i=1,...,n

Node
(
t0(wd0 · · · di−1), di , hi

)
.

Therefore, we have shown an extension of Fact 8.76 stating that we have an access
in mso on t to the types of the contexts between every pair u, u′ with u′ a child of u
in t .

Now we can guess a labelling of t by types in H and verify that it encodes a
consistent marking on t0 (via ι, as in the statement) by additionally multiplying all
the contexts by the context types between each parent and child (we assume that
s · 1 = 1 · s = s). Since τ̄ is unique, the guessed labelling must equal τ�W as in the
statement. �

Now we consider the sequence of directions π ∈ {L, R}�ω played by ∀ according
to σ∀ when ∃ is playing τ̄ (see Fact 8.75). If the play reaches a vertex u ∈ dom(t̄)
such that u = ι(u′) for a leaf u′ of t then the play stops and the sequence π is finite
— ∃ is unable to produce successive types.

Consider the following cases:

– π reached a leaf u of t0. In this case ∃ wins π since the marking τ̄ is consistent.
Contradiction to the fact that σ∀ is a winning strategy of ∀.

– π is an infinite play. In this case the marking given by ∃ is consistent along π since
it comes from a consistent marking τ̄ . So again ∃ wins the play and we have a
contradiction.

– π reached a vertex w ∈ dom(t0) such that w = ι(u) for a leaf u of t . In this case
we call u the selected leaf of t .

Therefore, the only possible case is that a leaf u of t was selected. What remains
is to observe the following fact.

Fact 8.78. The play π can be simulated in mso on t. In particular we can define in
mso on t the unique selected leaf u.

Proof. Since the strategy σ∀ as well as the arena of the game G are finite, it is enough
to show how to simulate the strategy of ∃ that corresponds to τ̄ . Therefore, ∃ should
be aware what is the currently played sequence of directions u ∈ {L, R}∗ to be able
to play the types ρ̄(uL) and ρ̄(uR) (see Fact 8.75). By the above case study, we know
that the play has to reach a node w ∈ dom(t0) such that w = ι(u) for a leaf u of t .
In particular, the play will always stay in the set I as defined in (8.6).

Observe that every element w ∈ I either belongs to W (and can be represented
by ι−1(w)) or has a unique decomposition w = udz with maximal u ∈ W . In the
latter case w ≺ next(ud) and in particular |z| < |G| (z must correspond to a prefix
of the path from w to next(w), see Fact 8.76). Therefore, for a given u ∈ dom(t)
there is finitely many possiblew ∈ I with the decomposition as above. Additionally,
Lemma 8.37 implies that knowing the decomposition w = udz we can compute
what are the values of τ̄ in wL and wR. �
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Using this fact we can write a formula ψ(x) that inputs a thin tree t , performs
all the above constructions on t , and checks whether x is the selected leaf of t . This
formula is a uniformization of LEAF − CHOICE(x); therefore, by Lemma 8.35 it
contradicts Conjecture 8.1 and finishes the proof of Proposition 8.22.

8.3.3 Implication (4) ⇒ (2)

We need to prove that if every thin algebra over the ranked alphabet Ab = ({n}, {b})
has a consistent marking of the complete binary tree tn ∈ TrAb then there is no
uniformization of LEAF − CHOICE(x).

Assume for the contradiction that ψ(x) is a formula uniformizing LE AF −
CHOICE(x): for every thin tree t ∈ TrAb there exists exactly one vertex u ∈ dom(t)
such that t |= ψ(u) and this vertex is a leaf of t . We want to show that there exists a
thin algebra (H, V ) such that there is no consistent marking of the complete binary
tree tn by types in H .

Let M = ({L, R, �}, {b}) and let LM be the language of trees over the ranked
alphabet Ab × M that contains a pair tA ⊗ tM if the following are satisfied:

1. tA is a thin tree,
2. all leafs of tM are labelled by b,
3. let w be the leaf of tA selected by ψ (i.e. tA |= ψ(w)),
4. tM(u) = � for all internal nodes u ∈ dom(t) except those that u ≺ w,
5. for u ≺ w we have tM(u) = d where d ∈ {L, R} is the direction such that ud � w.

Note that LM is a regular tree language and the relation LM is uniformized:

∀tA∈ThAb
∃!tM∈TrM tA ⊗ tM ∈ LM .

Using Theorem 8.73 there exists a transducer T that reads tA and τ f (tA) for a
homomorphism f : (TrA,ConA) → (H, V ) into a finite thin algebra (H, V ) and
outputs the only labelling tM of tA such that tA ⊗ tM ∈ LM (if such a labelling exists).
By the definition of LM we have the following fact.

Fact 8.79. For every thin tree tA the path indicated by letters {L, R} in T (tA⊗τ f (tA))
leads to a leaf u of tA. Moreover, tA |= ψ(u).

Let (H ′, V ′) be the subalgebra of (H, V ) that is the image of (ThAb ,ThConAb)

under f .
For the purpose of contradiction assume that τ is a consistent marking of the

complete binary tree tn by the types of H ′ — it may not be the marking of tn induced
by f since possibly H ′

� H . Let α ∈ {L, R}≤ω be the sequence of directions output
by T when run on tn ⊗ τ .

First assume that α is an infinite branch of tn . Consider a tree t ′ that results in
plugging a thin tree of type τ(u) under u for every vertex u that is off α. Note that t ′
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is thin and τ f (t ′) equals τ for every u ≺ α and for every u that is off α. Therefore,
the run of T on t ′ ⊗ τ f (t ′) is the same as on t ⊗ τ for every u ≺ α (see Fact 8.72).
So T labels an infinite branch of t ′ by letters {L, R}, a contradiction with Fact 8.79.

If α is finite then the same argument holds (since tn is complete, α cannot reach a
leaf of tn) — we can change the subtrees along α and the two subtrees under αL, αR

obtaining a thin tree on which the sequence of letters {L, R} does not reach any leaf.
This concludes the proof of the last implication of Theorem 8.74.

8.4 Negative Results

In this sectionwe show two non-uniformizability results. Both rely on the transducers
described in Sect. 8.2 and a construction of a consistent marking of a thick tree
presented in Sect. 8.4.2. The construction is based on Green’s relations (see [Gre51])
that provide an insight into the structure of finite semigroups.

8.4.1 Green’s Relations

We start by recalling definitions and standard facts about these relations. The defin-
itions follow [PP04, Annex A]. Let M be a finite semigroup. Let M1 be defined as
M if M is a monoid and as M � {1} with 1 · m = m for m ∈ M1 in the other case.
Clearly M1 is a monoid and M is a sub-semigroup of M1.

If s ∈ M then by s · M1 we denote the set {s · m : m ∈ M1} or equivalently
{s} ∪ {s · m : m ∈ M}. M1 · s is defined symmetrically and M1sM1 is obtained by
taking {m · s · m ′ : m,m ′ ∈ M1}.

Let s, s ′ be two elements of M . We say that

s ≤R s ′ if s · M1 ⊆ s ′ · M1,

s ≤L s ′ if M1 · s ⊆ M1 · s ′,

s ≤J s ′ if M1 · s · M1 ⊆ M1 · s ′ · M1.

Let T ∈ {R,L,J }. We say that s and s ′ are T -comparable if s ≤T s ′ or s ′ ≤T s.
We say that s and s ′ are T -equivalent (denoted s ∼T s ′) if s ≤T s ′ and s ′ ≤T s. We
additionally say that s and s ′ are H-equivalent if they are R- and L-equivalent. For
T ∈ {R,L,J ,H} the equivalence classes of the T -equivalence are called T -classes
of M .

The following results summarize properties of these relations that will be used
here.

Theorem 8.80. Let M be a finite semigroup.

1. If s ∼H s ′ then s ∼J s ′.
2. For T ∈ {R,L} if s ∼J s ′ and s ≤T s ′ then s ∼T s ′.
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3. There exists a ≤J -minimal J -class of M.
4. The minimal J -class of M contains an idempotent.

Proposition 8.23 (Proposition 2.4 in Annex A of [PP04]). If anH-class G ⊆ M
of a semigroup M contains an idempotent then the product · of any two elements of
G belongs to G and (G, ·) is a group1.
Remark 8.11. If G is an H-class of a semigroup M that contains an idempotent e
and e′ is an idempotent in G then e = e′.

Proof. Assume that m1 is the unit of the group G and let e be an idempotent in G.
Let e−1 be the inverse of e in the group G (i.e. e · e−1 = m1). Then

m1 = e · e−1 = e · e · e−1 = e · m1 = e. �

8.4.2 A Marking of a Thick Tree

As proved in Theorem 8.74, Conjecture 8.1 is equivalent to the fact that every
finite thin algebra has a consistent marking on every tree (see Item (3) of the theo-
rem). Unfortunately, the author was unable to prove this fact. On the other hand, by
Lemma 8.36, every finite thin algebra has a consistent marking on every thin tree.
The following proposition can be seen as an intermediate result: every finite thin
algebra has a consistent marking on some non-thin (i.e. thick) tree. The construction
of this thick tree is motivated by a result of Bojańczyk [Boj10a, Theorem 4.1] stat-
ing that, in the context of finite trees, every preclone contains a certain “idempotent
sub-preclone”.

Proposition 8.24. For every finite thin algebra (H, V ) over a ranked alphabet AR =
(AR2, AR0) with AR0 �= ∅ there exists a thick tree t ∈ TrAR and a consistent marking
τ of t by types in H.

We assume that AR0 �= ∅ because otherwise all ranked trees over AR0 have {L, R}∗
as the domain so TrAR contains only complete trees.

During the proof we extensively use facts about Green’s relations (see Sect. 8.4.1).
Note that by Axiom 6.1 of thin algebra (see Sect. 6.2, page 102), the set V with the
operation · is a semigroup.

By Fact 6.58 from page 104 we know that there is a unique homomorphism f
from (ThAR ,ThConAR) into (H, V ). First we can assume that (H, V ) contains only
types that are represented as f -types of thin trees and thin contexts (we use the
fact that AR0 is non-empty and we restrict ourselves to the subalgebra generated by
{b() : b ∈ AR0}). Let e be an idempotent in the lowest J -class of V . Let G be the

1More formally, one can pick an element m1 of G and define an operation m �→ m−1 on G such
that (G,m1, ·, .−1) is a group.

http://dx.doi.org/10.1007/978-3-662-52947-8_6
http://dx.doi.org/10.1007/978-3-662-52947-8_6
http://dx.doi.org/10.1007/978-3-662-52947-8_6
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H-class of e (i.e. the intersection of the L- and R-class of e). By Proposition 8.23
we know that G is a group because it contains an idempotent.

It turns out that e acts as a certain attractor, as expressed by the following lemma.

Lemma 8.38. For every s ∈ V we have (ese)∞ = e∞.

Proof. Note that ese is R- and L-comparable with e. Since e is in the lowest J -
class of V so ese ∼J e and therefore ese is H-equivalent with e, hence ese ∈ G.
Therefore, since e is the only idempotent of G (see Remark 8.11) so the idempotent
power of ese is e (i.e. (ese)� = e) and we have (ese)∞ = (

(ese)�
)∞ = e∞. �

Now we move to the construction of a thick tree t . Let p1 be a thin context of
f -type e. Let a ∈ AR2 be any letter. We define the following tree p2 over the ranked
alphabet AR � {�} (it can be seen as a context with two holes):

p2
def= p1 · a (p1 · �, p1 · �) .

Let uL, uR be the positions of the two holes put explicitly in the above definition.
Let us consider the tree t̄ that is obtained from p2 by putting trees p∞

1 instead of
uL, uR. This tree is thin, let τ be the unique consistent marking of t̄ . Note that
τ(uL) = τ(uR) = e∞.

Let sL = a(�, e∞) and sR = a(e∞,�). Note that

τ(ε) = e · sL · e · e∞ = (esLe) · (esLe)
∞ = (esLe)

∞ = e∞.

Let tT ⊗ τT be the tree obtained from p2 ⊗ (
τ [uL ← �, uR ← �]) by looping

vertices uL, uR back to the root of p2 (see Fig. 8.1). Since τT (uL) = τT (uR) =
τT (ε) = e∞, τT is a marking of tT . The constructed tree tT is thick but it is not
complete — many subtrees of tT are thin and contain leafs.

Consider any infinite branch α of tT . If α does not pass through infinitely many
copies of the root of p2 then α is from some point on contained in one copy of p2.
In that case α is from some point on consistent (by the consistency of τ ). Consider
the opposite case and observe that

α = ud0 · ud1 · . . . ,

for a sequence of directions d0, d1, . . . It is enough to show that the value τT (ε) = e∞
is consistent with the product

∏
of contexts along α (see Remark 7.9 on page 123).

We can group the decomposition of α in tT in the following way:

(esd0e) · (esd1e) · (esd2e) · . . .

Let s̄ · ē∞ be a Ramsey decomposition of the above infinite product. In that case
s̄ = exe and ē = eye for some x, y ∈ V . Therefore,

s̄ · ē∞ = (exe) · (eye)∞ = (exe) · (exe)∞ = (exe)∞ = e∞.

http://dx.doi.org/10.1007/978-3-662-52947-8_7
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Fig. 8.1 The looping of the two holes of p2 to obtain a thick tree. The gray subtrees are thin. The
second coordinate (i.e. τ [uL ← �, uR ← �]) is skipped for the sake of simplicity.

This proves that τ is consistent and therefore the proof of Proposition 8.24 is
finished.

8.4.3 Non-uniformizability of Skeletons

We identify here a set σ ⊆ dom(t) with its characteristic function σ ∈ Tr({0,1},{0,1}).
By SKEL(σ ) we denote the mso formula expressing that σ is a skeleton of a given
tree t .
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Theorem 8.81. There is no mso formula uniformizing SKEL(σ ).

Proof. Assume contrary that ψ(σ) uniformizes SKEL(σ ). Consider a transducer T
that, given a thin tree tA and the marking τ f (tA) constructs the labelling tS ∈ Tr{0,1}2
that encodes a skeleton of tA satisfying ψ(tS).

Assume that T uses a homomorphism f into a finite thin algebra (H, V ) and let
(H ′, V ′) be the subalgebra that is the image of (ThAR ,ThConAR). Let t⊗τ be a thick
tree with a consistent marking by types in H ′ given by Proposition 8.24. Consider
the result tS = T (t ⊗ τ). By Proposition 6.12 from page 101 tS does not encode a
skeleton of t .

First assume that there exists an infinite branch α of t such that infinitely many
vertices u ≺ α does not belong to tS . Let t ′ be the tree obtained by putting a thin tree
of type τ(w) under vertex w for every w that is off α. Note that t ′ is thin. Let τ ′ be
the only consistent marking of t ′. Let t ′S = T (t ′ ⊗ τ ′). By the definition, if u ≺ α or
u is off α then τ ′(u) = τ(u). By Fact 8.72 for every u ≺ α we have t ′S(u) = tS(u),
so t ′S also does not encode a skeleton of t ′. A contradiction.

Now assume that tS does not satisfy the local constraint of skeletons in some
vertices u, u′ (i.e. u = u′ = ε ∈ tS or u, u′ are siblings and it is not true that exactly
one of them belongs to tS). The proof of this case is essentially the same — it is
enough to substitute finitely many subtrees along the paths leading to u, u′ and the
subtrees under u, u′. �

8.4.4 Ambiguity of Thin Trees

Theorem 8.82. The language ThAb ⊂ TrAb of thin trees over the ranked alpha-
bet Ab = ({n}, {b}) is ambiguous (i.e. it is not recognised by any unambiguous
automaton).

We use the ranked alphabet Ab for simplicity, the same construction works for
any ranked alphabet AR with AR0 �= ∅.

Proof. The proof follows the same lines as the proof of Theorem 8.81. We assume
thatA is an unambiguous automaton recognisingThAb .We define LM as the language
of trees t ⊗ ρ where t is a ranked tree and ρ is an accepting run of A on t (as in
Example 8.4). The relation defined by LM is uniformized so there exists a transducer
T and a homomorphism f such that given a thin tree tA and the marking τ f (tA) it
constructs the unique accepting run ρ = T (t ⊗ τ) of A on tA.

We consider a thick tree with a respective marking t⊗τ given by Proposition 8.24
and construct the labelling ρ = T (t ⊗ τ) of t by states QA. Since t /∈ ThAb so ρ is
not an accepting run. The rest of the proof is the same as in Theorem 8.81: either ρ

violates local constraints or is not parity-accepting along some infinite branch of t .
In both cases we can define a thin tree t ′ such that the run constructed by T on
t ′ ⊗ τ f (t ′) is also not accepting. �

http://dx.doi.org/10.1007/978-3-662-52947-8_6
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8.5 Conclusions

This chapter is devotedmainly toConjecture 8.1 stating that there is nomso-definable
choice function on thin trees. These statement is somehow non-constructive: there
is no mso-formula that defines a choice function. The results of this chapter provide
an equivalent statement that has a more constructive form: in order to prove Con-
jecture 8.1 it is enough to find, for every thin algebra S, a consistent marking of the
complete binary tree by elements of S.

Although the author was unable to find a construction of such amarking, a weaker
construction of a consistent marking of a thick tree is provided. Already this weaker
construction turns out to be enough to obtain twonewnon-uniformizability examples:

– an essentially new mso-definable relation that does not admit any mso-definable
uniformization,

– an essentially new example of an ambiguous language.

To the author’s best knowledge, all the examples existing before were based
on [GS83]:

– it was proved by Gurevich and Shelah [GS83] (see also [CL07]) that the relation
x ∈ X does not admit any mso-definable uniformization,

– basing on this observation, Niwiński and Walukiewicz [NW96] (cf. [CLNW10])
proved that the language “exists a node labelled by a” is ambiguous.

It seems that proving Conjecture 8.1 is a hard task that requires a better under-
standing of the relations between regular tree languages and conditions that can be
verified pathwise.

This chapter is based on [BS13].
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Chapter 9
Descriptive Complexity of mso+u

mso logic is quite expressive, in particular it covers most of other logics used for
specifying properties of computer systems. However, mso is not able to express
quantitative properties of structures.Anatural example of such a quantitative property
is “the delays between a request and the successive answer are uniformly bounded”.
Bojańczyk in [Boj04] introduced an additional quantifier U, called the unbounding
quantifier, that allows to express such properties. A formulaUX.ϕ(X) holds if ϕ(X)

is satisfied for arbitrarily large finite sets X . Formally, UX.ϕ(X) is equivalent to:

∧

n∈N
∃X. (ϕ(X) ∧ n < |X | < ∞) .

The following language is an example of a language of ω-words that is definable in
the extended logic mso+u but is not ω-regular

UX. (∀x∈X. Pa(x) ∧ ∀x<y<z. (x∈X ∧ z∈X) ⇔ y∈X) ,

i.e. the language of those ω-words that contain arbitrarily long blocks of consecutive
letters a.

One of the crucial open problems about the U quantifier is decidability: is the
mso+u theory of theω-chain or the complete binary tree decidable? The decidability
was proved for various fragments of the mso+u logic [BC06, Boj11, Boj10b, BT12]
but the problem for mso+u remained open for over 10years.

In the following two chapters we approach the problem of decidability of mso+u
via descriptive set-theoretical methods. First, in this chapter we prove the following
theorem.

Theorem 9.7. There exists an alphabet A such that for every i > 0 there exists an
mso+u formula ϕi such that the language L(ϕi ) ⊆ Aω of ω-words satisfying ϕi is
�1

i -complete.

The following theorem exploits the above result to show that there is no simple
automata model for mso+u on ω-words.
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M. Skrzypczak, Set Theoretic Methods in Automata Theory, LNCS 9802
DOI: 10.1007/978-3-662-52947-8_9

159
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Theorem 9.83 (Hummel S. [HS12]). There is no model of alternating nor non-
deterministic automata onω-words with countablymany states and projective accep-
tance condition that captures mso+u.

Sketch of a proof. IfA is an alternating automaton with countably many states Q and
acceptance condition W ⊆ Qω then the language of A can be written as

L(A) =
{
α ∈ Aω : ∃σ∃ — a strategy of ∃ in G(A, α)

∀π — play consistent with σ∃ in G(A, α)

π satisfies the winning condition W
}
.

Therefore, if W ∈ �1
n for some n then the above formula implies that L(A) ∈

�1
n+2. But Theorem 9.7 shows that for every n there are mso+u-definable languages

of ω-words that do not belong to �1
n+2. �

This result shows that standard technique of proving decidability of variants of
mso by translating into appropriate automata (see e.g. [BT09, Boj11]) is not enough
in the case of mso+u. Chapter 10 further builds on the topological complexity of
mso+u to prove that in a certain sense the mso+u theory of the complete binary tree
is undecidable. The decidability of mso+u on ω-words is still open.

To prove Theorem 9.7 we first construct an appropriate sequence of languages IFi

of multi-branching trees such that the language IFi is �1
i -hard. Then we show how

to inductively encode such multi-branching trees into ω-words. These encodings are
the technical heart of the proof— their aim is to present a given multi-branching tree
in a way understandable for an mso+u formula. Finally, we construct a sequence of
mso+u formulae ϕi that, given an encoding of a multi-branching tree t , can verify if
t ∈ IFi . The formula cannot check if a given ω-word encodes any multi-branching
tree at all but this is not needed for our needs.

The chapter is organised as follows. In Sect. 9.1 we introduce the concept of
multi-branching trees and languages IFi . Then, in Sect. 9.2 we define the alphabets
of ω-words we use and the formulae ϕi . Section9.3 introduces inductively reduc-
tions ri that encode multi-branching trees into ω-words. It is shown there that ri is
continuous and satisfies an additional technical property of sequentiality. In Sect. 9.4
we prove that the functions ri reduce IFi to L(ϕi ). Finally, in Sect. 9.5 we show upper
bounds on topological complexity of the languages L(ϕi ) what concludes the proof
of Theorem 9.7. In Sect. 9.6 we conclude.

9.1 Basic Notions

Let us recall from Sect. 1.1 (see page 1) that:

– ωTrX is the family of total functions τ : ω∗ → X ,
– ωPTr is the family of prefix-closed subsets of ω∗.

http://dx.doi.org/10.1007/978-3-662-52947-8_10
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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In this chapter we use the so-called multi-branching trees. Let i > 0. An
(i-dimensional) multi-branching tree is a prefix-closed subset of

(
ωi

)∗
. The set of all

such trees is denoted ωPTri . Clearly ωPTri is a Polish space and ωPTr1 = ωPTr.
Let us fix an order � of type ω on ω∗, such that ω∗ = {v0, v1, . . .}. Additionally

assume that for all n ∈ N we have |vn| � n. There are infinitely many vertices of
length 1 so it is possible.

Definition 9.19. Consider i > 0, a multi-branching tree τ ∈ ωPTri+1, and a finite
word or ω-word α ∈ ω�ω. We define the section τ�α ∈ ωPTri of the multi-branching
tree τ as follows

t�α = {
u ∈ (ωi )∗ : |u| � |α| ∧ (α�|u| ⊗ u) ∈ t

}
,

where

(α0, α1, α2, . . .) ⊗ (u0, u1, u2, . . .) = (α0 · u0, α1 · u1, α2 · u2, . . .).

The dots in the above definition can stand for a finite or an infinite sequence.

Figure 9.1 presents the first two levels of a multi-branching tree t on ω2 i.e. t ∈
ωPTr2. The children of the root are arranged into a two-dimensional grid. Given a
sequence α ∈ ω�ω the section t�α ∈ ωPTr1 is defined as the one-dimensional multi-
branching tree obtained by selecting particular rows from the grids of children on
every level. The position of the selected row is defined by the successive values of α.
For example the children of the root in t�α come from the α0’th row of the presented
grid.

Observe that if u is a finite word, t�u is a finite-depth tree — its depth is bounded
by |u|.

For an ω-tree t ∈ ωTrX and an ω-word α ∈ ωω, let

t (α) = (
t (α�0), t (α�1), . . .

) ∈ Xω.

Fig. 9.1 A 2-dimensional
multi-branching tree.
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9.1.1 Languages IFi

To prove that the languages defined in this chapter are �1
i -hard we will construct

continuous reductions from languages IFi ⊆ ωPTri defined below.
Let IF1 be the set of all trees t ∈ ωPTr1 that contain an infinite branch (i.e. IF1 =

IF, see Sect. 1.6.3, page 17).
Take i > 0. Let IFi+1 be the set of all multi-branching trees t ∈ ωPTri+1 such

that there exists an ω-word α ∈ ωω such that

t�α /∈ IFi .

Fact 9.84. For each i � 1 the set IFi is a �1
i -complete subset of ωPTr

i .

This fact follows easily from unravelling the definition of an �1
i set. For the sake

of completeness we give here a formal proof of this fact.

Proof. First we prove the upper-bound. By the definition, IF1 is the set of ill-founded
trees IF that is known to be �1

1-complete (see Sect. 1.6.4, page 17).
We proceed by induction. Assume that IFi ∈ �1

i . Let

Pi = {
(α, t) ∈ ωω × ωPTri+1 : t�α /∈ IFi

} ∈ �1
i .

Note that IFi+1 is the projection of Pi , so it is in �1
i+1.

Let us prove that each �1
i set in ωω continuously reduces to IFi .

As we know (see e.g. [Kec95, Exercise 14.3]), each analytic (�1
1) set in a space

X is a projection of a closed set in ωω × X . Recall that, by the definition, each �1
i+1

set is a projection of some �1
i set. Therefore, each �1

i set in ωω is of the form1:

S = {
x : ∃x1∈ωω ¬∃x2∈ωω ¬∃x3∈ωω . . . ¬∃xi∈ωω (x1, x2, . . . , xi , x) ∈ FS

}
,

for some closed set FS ∈ (ωω)i+1. The formula unravels to:

∃x1 ∀x2 ∃x3 . . . ∃xi (x1, x2, . . . , xi , x) ∈ FS if i is odd, and to:

∃x1 ∀x2 ∃x3 . . . ∀xi (x1, x2, . . . , xi , x) /∈ FS if i is even.

The set FS can be seen as a set in the space
(
ωi+1

)ω
, by simple transposition.

This space is obviously homeomorphic to the Baire space ωω. Each closed set in the
Baire space can be expressed as the set of branches of some ω-tree (see e.g. [Kec95,
Proposition 2.4]). So there is tS ∈ ωPTri+1 such that:

FS =
{
(x1⊗x2⊗· · ·⊗xi+1) ∈ (

ωi+1)ω : ∀n∈N
(
x1�n ⊗ x2�n ⊗ · · · ⊗ xi+1�n

) ∈ tS
}

(9.1)

1Formally, for i = 1 the formula takes the form S = {x : ∃x1 ∈ ωω. (x1, x) ∈ FS}.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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To simplify the notation, for a prefix-closed set t ⊆ X∗, by [t] ⊆ Xω we denote
the set of infinite branches of t . Using this notation, the above equation can be
formulated as

FS = [tS].

We will use the multi-branching tree tS to define the needed reduction. Let
f : ωω → ωPTri be defined as follows:

f (x) =
{
(v1 ⊗ v2 ⊗ · · · ⊗ vi ) ∈ (

ωi
)k : (

v1 ⊗ v2 ⊗ · · · ⊗ vi ⊗ x�k
) ∈ tS, k ∈ N

}
.

To determine whether a vertex at some level k belongs to f (x)we only need to know
the first k numbers in the sequence x , so the function is continuous. To prove that
this is a reduction of S to IFi we need:

f (x) ∈ IFi ⇐⇒ x ∈ S (9.2)

Now we will take a closer look at the sets IFi . Observe that:

IFi = {
t : ∃x1 ∀x2 ∃x3 . . . ∃xi (x1 ⊗ x2 ⊗ · · · ⊗ xi ) ∈ [t]} if i is odd, and:

IFi = {
t : ∃x1 ∀x2 ∃x3 . . . ∀xi (x1 ⊗ x2 ⊗ · · · ⊗ xi ) /∈ [t]} if i is even.

So the quantifier structure is the same as in case of the above representation of S.
Therefore, to obtain (9.2), it suffices to show that for any fixed x1, x2, …, xi :

(x1 ⊗ x2 ⊗ · · · ⊗ xi ) ∈ [ f (x)] ⇐⇒ (x1, x2, . . . , xi , x) ∈ FS.

By (9.1) it is equivalent to:

(x1 ⊗ x2 ⊗ · · · ⊗ xi ) ∈ [ f (x)] ⇐⇒ (x1 ⊗ x2 ⊗ · · · ⊗ xi × x) ∈ [tS].

But the latter follows immediately from the definition of f . �

9.2 Languages Hi

In this section we inductively construct a sequence of languages (Hi )i∈N. We will
later show that for each i ∈ N the language Hi is mso+u-definable and �1

i -hard.
Additionally, in Sect. 9.5 we observe that Hi ∈ �1

i .
Let us fix a finite alphabet B0 = {

a, |0, b
}
and define inductively Bi = Bi−1 �{[i−1, |i , ]i−1

}
(i.e. B0 contains 3 letters and Bi contains 3(i+1) letters).

The reductions used in the rest of the proof work on the space (B+
i )ω. Since we

want to build mso+u formulae over finite alphabets, we need use one additional
encoding which is simply a kind of concatenation. For i � 0 consider ji : (B+

i )ω →
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Fig. 9.2 An illustration of
the narrow property — any
section of finite depth
contains only finitely many
prefixes of branches in A.

Bω
i+1 defined as follows

ji (w0, w1, . . .) = [iw0]i · [iw1]i · . . .

Clearly functions ji defined above are continuous and 1 − 1.
For a node u = (u1, u2, . . . , um) ∈ ω∗ of an ω-tree, we will call the word

au1bau2b . . . baumb the address of u in the ω-tree.
Let an i-block be a word of the form [iw|iw′]i where w ∈ (a∗b)∗ and w′ ∈

(Bi \{|i })+. We will call the word w the address of this i-block (since it will be
interpreted as an address of a node in an ω-tree) and the word w′ the body of this
i-block.

We will call a set A of addresses of nodes:

deep if the number of letters b in elements of A is unbounded,
narrow if for any set P of some prefixes of elements of A such that the number of

letters b in elements of P is bounded, the lengths of sequences a∗ in elements of
P are bounded.

The following fact provides a way of using the above properties.

Fact 9.85. An ω-tree t ⊆ ω∗ has an infinite branch if and only if there is a narrow
and deep set A of addresses of some nodes in t .

Proof. First assume that t has an infinite branch α ∈ ωω. Take as A the set of
addresses of vertices in

{
α�n : n ∈ ω

}
. Of course such A is deep. We show that A is

narrow. Consider any set P of prefixes of addresses in A, such that the number of
letters b in elements of P is bounded by some number k ∈ ω. In that case, lengths of
sequences a∗ in P are bounded by maxn�k αn: in each element of A the sequence
a∗ before the n’th letter b has length αn−1.

Now take a narrow and deep set A of addresses of some nodes of t . We identify
elements of A with those nodes, i.e. A ⊆ t . Consider as T the closure of A under
prefixes, i.e.:

T = {
u ∈ ω∗ : ∃u′∈A u � u′} .
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Then T is an infinite tree, because A is deep. Additionally, at each level k ∈ ω,
there are only finitely many vertices in T ∩ωk , by narrowness of A. So T is a finitely
branchingω-tree. Therefore, by König’s lemma (see Lemma 1.1, page 4), T contains
an infinite branch α. But T ⊆ t , so α is also an infinite branch of t . �

Now we can define the mso+u formulae defining our languages. Observe that
both properties of deepness and narrowness of a set of addresses can be expressed in
mso+u. It is because in those definitionswe only use regular properties and properties
like the number of letters b is unbounded or the lengths of sequences a∗ are bounded.

It is easy to see that we can express in mso that a given ω-word α ∈ (Bi+1)
ω is

of the form b0 · b1 · . . . such that each bn is an i-block. We implicitly assume that all
formulae ϕi express it.

Let ϕ0 additionally express that a given ω-word is not of the form

(
[0 (a∗b)∗ |0 a ]0

)ω

,

i.e. there is at least one 0-block with body different than a.
For i > 0, let ϕi express the following property:

There exists a set G containing only whole i-blocks such that:

1. the set of addresses of the i-blocks of G is deep,
2. the set of addresses of the i-blocks of G is narrow,
3. the bodies of the i-blocks of G, when concatenated, form an ω-word that satisfies

¬ϕi−1.

Take i � 0. Since L(ϕi ) ⊆ Bω
i+1, we can define

Hi = j−1
i (L(ϕi )) ⊆ (B+

i )ω.

Languages Hi defined above are (up to the ji operator) mso+u definable.
We will use the following important property of the languages Hi .

Definition 9.20. A language L ⊆ Xω is monotone if for any α, β ∈ Xω

{αn : n ∈ N} ⊆ {βn : n ∈ N} =⇒ (α ∈ L ⇒ β ∈ L) .

Note, that belonging to a monotone language depends only on the set of letters
occurring in an ω-word, namely we have the following fact.

Fact 9.86. If L ⊆ Xω is a monotone language then for any α, β ∈ Xω the following
holds

{αn : n ∈ N} = {βn : n ∈ N} =⇒ (α ∈ L ⇔ β ∈ L) .

The following lemma says that, if we restrict to well-formatted words, the lan-
guages Hi are monotone. Since all our formulae implicitly assume that the ω-words
are sequences of i-blocks, we can restrict ourselves to the well-formatted pre-images
of such ω-words under ji .

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Lemma 9.39. Let i � 0 and X be the set of words u ∈ B+
i such that [i u]i is an

i-block. Then the languages Hi ∩ Xω ⊆ Xω are monotone.

Proof. For i = 0 it is obvious. For i > 0 the formula ϕi expresses that there exists a
set of i-blocks such that this set satisfies some additional property. Moreover, it does
not matter in what order the i-blocks appear. �

9.3 Functions ci , di , and ri

Nowwewill showhow to continuously reduce the languages ofmulti-branching trees
IFi to Hi . For technical reasons we will use the following intermediate languages.

Definition 9.21. For L ⊆ Xω letEPath (L) ⊆ ωTrX be a set of such labelledω-trees
t that there exists an ω-word α ∈ ωω such that

t (α) ∈ L .

In other words EPath (L) is the set of ω-trees that contain an infinite branch such
that labels on this branch form an ω-word in L.

The languages EPath (L) were used originally by Szczepan Hummel to prove
certain lower bounds on the topological complexity of mso+u-definable languages
of ω-trees.

The construction will be inductive, it will start with i = 1 and in each step the
picture looks as follows:

ωPTri
ci−→ ωTrB+

i−1

di−→ (B+
i )ω

⊆ ⊆ ⊆

IFi EPath
(
H c
i−1

)
Hi

The construction will ensure (see Sect. 9.4) that d−1
i (Hi ) = EPath

(
H c
i−1

)
and

c−1
i

(
EPath

(
H c
i−1

)) = IFi . Therefore, ri defined as di ◦ ci will reduce IFi to Hi .
We will use the function ri−1 to construct a reduction ci of IFi to the language
EPath

(
H c
i−1

)
of ω-trees that have a branch labelled with an ω-word α /∈ Hi−1. Then

we again encode such labelled ω-trees in ω-words.
Recall our inductively defined alphabets B0 = {

a, |0, b
}
, Bi = Bi−1 � {[i−1,

|i , ]i−1
}
.

First we define c1 : ωPTr1 → ωTrB+
0
. Take a multi-branching tree t ∈ ωPTr1 and

a vertex v = (u1, u2, . . . , um) ∈ ω∗. Put

c1(t)(v)
def=

{
au1bau2b . . . baumb |0 a if v ∈ t ,

au1bau2b . . . baumb |0 b if v /∈ t .
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That is, c1(t)(v) consists of the address of v and an additional bit indicating whether
v ∈ t .

For i > 1 take a multi-branching tree t ∈ ωPTri and a vertex v ∈ ω∗. Let

ci (t)(v) = (
ri−1(t�v)

)
|v| ∈ B+

i−1,

that is, we apply the reduction ri−1 to the section of t along v (such a section is an
(i−1)-dimensional multi-branching tree) and then we take the first |v| words from
the result.

Now we define the function di . We encode a tree t ∈ ωTrB+
i−1

into a word di (t) ∈
(B+

i )ω in the following way: let vn be the n’th vertex with respect to the order �.
Let vn = (u1, u2, . . . , um) and let w0, w1, . . . , wm ∈ B+

i−1 be the list of labels of t
on the path from the root to vn . Then

di (t)n
def= au1bau2b . . . baumb |i [i−1w0]i−1 · [i−1w1]i−1 · . . . · [i−1wm]i−1 ∈ B+

i .

Intuitively di (t)n encodes the vertex vn in t . Such an encoding consists of two
parts: the part before |i is the address of vn in the multi-branching tree, while the part
after |i is intended to store labels of t on the path from the root to vn as (i−1)-blocks.
The fact that we store not only the label but also the address of the given vertex in
this coding will be crucial for the following parts of the construction.

Lemma 9.40. Functions ci , di defined above are continuous.

Proof. For di it holds by the definition. The continuity of ci can be proved by induc-
tion together with the continuity of ri , since they cyclically depend on each other.
The function ri+1 is continuous as a composition of continuous functions, likewise
ci at each coordinate v is a composition of continuous operations: −�v , ri−1, −|v|. �

The following lemma states that the functions ri are in some sense sequential.

Lemma 9.41. For any i > 0 and any m ∈ N if t1, t2 ∈ ωPTri agree on all v ∈ (ωi )∗
such that |v| � m then

ri (t1)m = ri (t2)m .

Proof. Recall that ri (t) = di (ci (t)). First observe that for a given ω-tree t ′ ∈ ωTrX ,
by the definition of di , the value di (t ′)m depends only on vm and the labels of t ′ on
the path from the root to vm .

Now use an induction on i and consider the labels of ci (t1) and ci (t2) on the path
from the root to vm . For i = 1 they depend only on t1, t2 up to the depth of |vm |, and
|vm | � m, thanks to our assumption about the order �.

Take i > 1 and a vertex v � vm (where � denotes the prefix order). By the
definition ci (t)(v) = ri−1(t�v)|v|. So, by the inductive assumption, this value also
depends only on t at the depth of at most |v| � |vm | � m. �

From the above lemma we conclude that the labels on each branch α ∈ ωω in
ci (t) code the multi-branching tree t�α . Formally:
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Lemma 9.42. For i > 1, a given multi-branching tree t ∈ ωPTri and an infinite
branch α ∈ ωω we have:

ci (t)(α) = ri−1(t�α) ∈ (
B+
i−1

)ω
.

Proof. Take any m ∈ N and consider v = α�m ∈ ωm . By the definition

(ci (t)(α))m = ci (t)(α�m) = (
ri−1(t�v)

)
m .

Since t�v and t�α agree on all vertices up to the depth m, by Lemma 9.41, we have

(
ri−1(t�v)

)
m = (

ri−1(t�α)
)
m . �

9.4 Reductions

In this section we show that ri is a reduction of IFi to Hi . We do it in two steps.

Lemma 9.43. For i > 0 the function di : ωTrB+
i−1

→ (B+
i )ω is a reduction of

EPath
(
H c
i−1

)
to Hi .

Proof. We have to prove that for any t ∈ ωTrB+
i

t ∈ EPath
(
H c
i−1

) ⇐⇒ di (t) ∈ Hi .

First assume that t ∈ EPath
(
H c
i−1

)
. Letα ∈ ωω be a branch such that t (α) /∈ Hi−1.

Let β = ji (di (t)) ∈ (Bi+1)
ω. We show that β |= ϕi . Take as G the set containing

i-blocks corresponding to the vertices of α. Then the set of addresses of i-blocks of
G is obviously narrow and deep (one vertex at each level of theω-tree). Additionally,
the set of (i−1)-blocks occurring in bodies of i-blocks in G is exactly the set

{[i−1 · (t (α))n · ]i−1 : n ∈ N} .

Language Hi−1 is monotone, so, by Fact 9.86, since t (α) /∈ Hi−1, the set G satisfies
Item 3 in the definition of ϕi .

The other direction is a little more tricky. Assume that ji (di (t)) |= ϕi . Let G be
as in the definition of ϕi . Then the set of addresses of i-blocks of G is narrow and
deep. Let B ⊆ ω∗ be the set of nodes corresponding to these addresses and let T be
the closure of B under prefixes, i.e.:

T = {
v ∈ ω∗ : ∃v′∈B v � v′} .
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As in Fact 9.85, there exists an infinite branch α ∈ ωω of T . Observe that the set

{[i−1 · (t (α))n · ]i−1 : n ∈ N}

is contained in the set of (i−1)-blocks in bodies of i-blocks in G. Because of the
monotonicity of Hi−1 and Item 3 in the definition of ϕi , t (α) /∈ Hi−1. �

Lemma 9.44. For i > 0 the function ci is a reduction of IFi to EPath
(
H c
i−1

)
.

Proof. Take i = 1. An ω-tree t ∈ ωPTr1 contains an infinite branch if and only
if c1(t) contains a branch labelled by words of the form (a∗b)∗|0a if and only if
c1(t) ∈ EPath

(
H c

0

)
.

Induction step: i > 1. Take a multi-branching tree t ∈ ωPTri . The following
conditions are equivalent:

t ∈ IFi

∃α∈ωω t�α /∈ IFi−1 by the definition of IFi

∃α∈ωω ci−1(t�α) /∈ EPath
(
H c
i−2

)
by the inductive assumption

∃α∈ωω ri−1(t�α) /∈ Hi−1 by Lemma 43
∃α∈ωω ci (t)(α) /∈ Hi−1 by Lemma 42

ci (t) ∈ EPath
(
H c
i−1

)
by the definition of EPath (L). �

It concludes the proof of the fact that ri reduces IFi to Hi .

9.5 Upper Bounds

To complete the proof of Theorem 9.7 we need to show the following lemma.

Lemma 9.45. The languages L(ϕi ) belong to �1
i .

The rest of this section is devoted to proving this lemma. The proof is inductive:
we assume inductively that L(ϕi−1) ∈ �1

i and show that L(ϕi ) ∈ �1
i , so in particular

L(ϕi ) ∈ �1
i+1.

Clearly L(ϕ0) is a Borel language, so L(ϕ0) ∈ �1
1.

The following fact expresses that the conditions of deepness and narrowness are
in fact Borel (see [HST10, Proposition 2]).

Fact 9.87. The set of pairs (β,G) such that:

– β ∈ Bω
i+1 is an infinite sequence of i-blocks,

– G ⊆ ω be a set containing only whole i-blocks in β,
– the set of addresses of i-blocks in G is deep,
– the set of addresses of i-blocks in G is narrow.

is Borel.
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Proof. All the conditions except the last one are explicitly Borel.
We say that a set P ⊆ ω is well-formed if P ⊆ G and P contains prefixes of

some i-blocks inG. If P is well-formed then bymax 	b(P) let us denote themaximal
number of letters b in P among all the i-blocks. By the definition, G is narrow if and
only if for every r and well-formed set P such that max 	b(P) � r , the lengths of
sequences a∗ in P are bounded.

Note that for each r ∈ N there is a maximal well-formed set Pr ⊆ G such
that max 	b(Pr ) � r — we take maximal prefixes of all the i-blocks in G until
the (r+1)’th letter b in each i-block. Observe that for a given r ∈ N the set Pr
depends continuously on (β,G). Also if P ⊆ P ′ are well-formed then the lengths
of sequences a∗ are bounded in P only if they are bounded in P ′. Therefore, G is
narrow if and only if

∀r∈N ∃n∈N for every sequence a∗ in Pr the length of a∗ is at most n.

This definition is clearly Borel. �

Therefore, an ω-word satisfies ϕi if there exists a set G satisfying Conditions 1
and 2 in the definition of ϕi and such that the bodies of the i-blocks of G form an
ω-word satisfying¬ϕi−1. By the inductive assumption, all these three conditions are
�1

i conditions, so L(ϕi ) is a projection of a �1
i language and it is itself �1

i .

9.5.1 Proof of Theorem 9.7

Now we can combine the previous results to prove Theorem 9.7.

Theorem 9.7. There exists an alphabet A such that for every i > 0 there exists an
mso+u formula ϕi such that the language L(ϕi ) ⊆ Aω of ω-words satisfying ϕi is
�1

i -complete.

Proof. Let A = {0, 1}. Take i ∈ N and ϕi . Functions ci , di , ji are continuous by
Lemma 9.40 and the definition of ji . Moreover, using the definition of Hi and Lem-
mas 9.43 and 9.44 their composition reduces IFi to L(ϕi ). Thanks to Fact 9.84, the
set IFi is �1

i -hard.
Lemma 9.45 shows that L(ϕi ) belongs to �1

i .
By standard methods we can encode all the alphabets Bi into A using binary

coding. This additional coding does not influence the topological complexity of the
languages. �
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9.6 Conclusions

This chapter is devoted to a construction of examples ofmso+u-definable languages
of ω-words that lie arbitrarily high in the projective hierarchy. Since every mso+u-
definable language of ω-words or infinite trees is somewhere in the projective hier-
archy, it closes the question about bounds on topological complexity of mso+u.

Already these examples show that there is no simple model of automata with
countably many states that would capturemso+u on ω-words. Since the argument is
topological, it covers wide range of complicatedmodels, e.g. automatawith counters,
stacks, tapes, etc. Most of the known decidability results for variants of mso involve
some automata equivalent in expressive power. This result can be seen as a witness
that decidability ofmso+u on ω-words (if holds at all) requires some essentially new
techniques.

As discussed in Chap. 10, the examples constructed in this chapter can be used to
prove that in some sense mso+u logic is undecidable on infinite trees.

This chapter is based on [HS12].

http://dx.doi.org/10.1007/978-3-662-52947-8_10


Chapter 10
Undecidability of mso+u

As explained in Chap.9, mso+u logic is an extension of mso that allows to ex-
press quantitative properties of structures. One of the consequences of the big ex-
pressive power of mso+u is that many decision problems about other quantitative
formalisms can be reduced to mso+u. An example is the reduction [CL08] of the
non-deterministic index problem to a certain boundedness problem that can be fur-
ther reduced to mso+u on infinite trees. Therefore, decidability of mso+u would be
a very desirable result.

In this chapter we show how topological hardness of mso+u on ω-words from
Chap.9 can be used to study decidability of mso+u on infinite trees. This meth-
ods lead to the following theorem from [BGMS14] stating that under a certain set-
theoretic assumption the mso+u theory of the complete binary tree is undecidable.
Intuitively, the assumption that v=l states that all sets in the universe of set theory
are constructible.

Theorem 10.88 (BojańczykGogaczMichalewski S. [BGMS14]). Assuming v=l,
it is undecidable if a given sentence of mso+u is true in the complete binary tree({L, R}∗,�,�lex

)
.

The proof of this theorem is divided into two parts by introducing an intermediate
object called proj-mso — a logic evaluated on Polish spaces where every monadic
quantifier ranges over sets froman explicitly declared level of the projective hierarchy
(i.e. for each n there is a quantifier ∃X∈�1

n
).

The first part of the proof of Theorem 10.88 is expressed by the following theorem
(it does not rely on the v=l assumption).

Theorem 10.8. The proj-mso theory of {L, R}≤ω with prefix � and lexicographic
�lex orders effectively reduces to the mso+u theory of the complete binary tree({L, R}∗,�,�lex

)
.

Already this reduction is a strong indication that mso+u should not be decidable.
This indication is discussed in Sect. 10.3 of this chapter where we give an easy
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argument showing that if mso+u on the complete binary tree would be decidable in
the standard sense then it would have unexpectedly strong consequences regarding
set theory (namely, it would imply that analytic determinacy does not hold).

This chapter is focused on the first part of the proof of Theorem 10.88, that is on
Theorem 10.8.

The second part of the proof of Theorem 10.88 in [BGMS14] is an adaptation of
the techniques of Shelah [She75] (see also [GS82]) who proves that themso theory of
the real line (R,�) is undecidable. On page 410 of the cited paper Shelah observes:

Aside from countable sets, we can use only a set constructible from any
well − ordering of the reals.

(10.1)

The assumption v=l used in Theorem 10.88 exploits this observation by guar-
anteeing that there exists such a well-ordering that is projective. By adjusting the
reasoning of Shelah, one gets the following proposition.

Proposition 10.25. (Bojańczyk Gogacz Michalewski S. [BGMS14]). Assuming
that v=l, the proj-mso theory of the Cantor set ({L, R}ω,�lex) is undecidable.

This result together with the reduction from Theorem 10.8 concludes the proof of
Theorem 10.88, see Sect. 10.4.1. A standalone proof of Proposition 10.25 is given
in [BGMS14]. Since this proposition is not in the scope of this thesis, we only sketch
a proof of it in Sect. 10.4.

The following corollary expresses in what sense Theorem 10.88 implies unde-
cidability of mso+u. It uses another important feature of the v=l assumption: if
zfc is consistent (i.e. there exists a model of set theory) then there exists a model
satisfying v=l.

Corollary 10.2. If zfc is consistent then there is no algorithm which decides the
mso+u theory of the complete binary tree

({L, R}∗,�,�lex
)
and has a proof of cor-

rectness in zfc.

Proof. (The following proof is in zfc) Assume that zfc is consistent and let M be a
model of zfc. Then Gödel’s constructible universe L of M is also a model of zfc.
In Gödel’s constructible universe L , the assumption v=l holds. Therefore, if zfc is
consistent then by Theorem 10.88 it has a model where the mso+u theory of {L, R}∗
is undecidable. �

The chapter is organised as follows. In Sect. 10.1 we introduce basic notions, in
particular proj-mso. Section10.2 is devoted to a proof of Theorem 10.8. In Sect. 10.3
we show that already this theorem implies that it is unlikely to prove decidability of
mso+u in zfc. In Sect. 10.4 we sketch a proof of Proposition 10.25 and show how
to entail Theorem 10.88. Finally, in Sect. 10.5 we conclude.



10.1 Basic Notions 175

10.1 Basic Notions

We consider the following logical structures: the complete binary tree {L, R}∗, the
Cantor set {L, R}ω, and the union of the two {L, R}≤ω. In the complete binary tree {L, R}∗,
the universe consists of finite words over {L, R}, called nodes, and there are predicates
for the prefix � and lexicographic �lex orders. The prefix order corresponds to
the ancestor relation. In the Cantor set {L, R}ω, the universe consists of ω-words
over {L, R}, called branches, and there is a predicate for the lexicographic order.
Finally, in {L, R}�ω, the universe consists of both nodes and branches, and there are
predicates for the prefix and lexicographic order. In {L, R}�ω, the prefix relation can
hold between two nodes, or between a node and a branch. The lexicographic order
is a total order on both nodes and branches, e.g. L < Lω < LR.

10.1.1 Gödel’s Constructible Universe

Let us give a short overview of the construction of Gödel’s constructible uni-
verse [Göd39], following [Jec02, Chap.13].

Assume that M is a set and ∈ is a relation on M . We say that a set X ⊆ M is
definable over M if there exists a formula ϕ(x, a) of first-order logic in the language
{∈} and a tuple of elements a ∈ M such that

X = {
x ∈ M : (M,∈) |= ϕ(x, a)

}
.

Now let

L0 = ∅,

Lη+1 = {
X ⊆ Lη : X is definable over (Lη,∈)

}
,

Lη =
⋃

η′<η

Lη′ (if η is a limit ordinal),

L =
⋃

η

Lη (where the sum ranges over all ordinals).

Now, let v=l be the axiom stating that: for every set X there exists an ordinal η

such that X ∈ Lη. Since the above inductive construction can be formalized in zfc,
this axiom can be formalized as a first-order sentence of set theory.

Now, Theorems 13.3, 13.16, and 13.18 in [Jec02] state that:

– L is a model of zfc,
– L satisfies the axiom v=l (it is not obvious, since the notion of definability in L
may a priori be different than in the original model).
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Therefore, if zfc has any model it has a model satisfying v=l. As observed
in [Jec02, Theorem 25.26] (see also [Mos80, Sect. 5A]), the following implication
holds.

Proposition 10.26. v=l implies that there exists a well-order � on {L, R}ω of length
ω1 such that � is a �1

2 relation, i.e. � ∈ �1
2

({L, R}ω × {L, R}ω)
.

This concludes the properties of the assumption v=l that are used in
Theorem 10.88.

10.1.2 Projective mso

For n ≤ ω define the syntax ofmson to be the same as the syntax ofmso, except that
instead of one pair of set quantifiers ∃X and ∀X , there is a pair of quantifiers ∃i X
and ∀i X for every i ≤ n. To evaluate a sentence of mson on a structure, we need a
sequence {X j } j≤i of families of sets, called themonadic domains. The semantics are
then the same as formso, except that the quantifiers ∃ j and ∀ j are interpreted to range
over subsets of the universe that belong to X j . First-order quantification is as usual,
it can quantify over arbitrary elements of the universe. We write mso

[X1,X2, . . .
]

for the above logic with the monadic domains being fixed to X1,X2, . . .. Standard
mso for structures with a universe Ω is the same as mso

[
P(Ω)

]
, i.e. there is one

monadic domain for the powerset of the universe. If Ω is equipped with a topology,
we define proj-mso on Ω to be

mso
[
�1

1(Ω), �1
2(Ω), . . .

]

The expressive power of proj-mso is incomparablewith the expressive power ofmso:
although proj-mso cannot quantify over arbitrary subsets, it can express that a set is
in, say, �1

1.

Example 10.6. In the structure {L, R}�ω, being a node is first-order definable: a node
is an element of the universe that is a proper prefix of some other element. Since there
are countably many nodes, every set of nodes is Borel, and therefore in�1

1({L, R}�ω).
Therefore, in proj-mso on {L, R}�ω one can quantify over arbitrary sets of nodes. It
is easy to see that a subset of {L, R}�ω is in �1

n({L, R}�ω) if and only if it is a union
of a set of nodes and a set from �1

n({L, R}ω).

Therefore, we obtain the following remark.

Remark 10.12. proj-mso on {L, R}�ω effectively has the same expressive power as
the logic

mso
[
P

({L, R}∗), �1
1

({L, R}ω)
, �1

2

({L, R}ω)
, . . .

]
.

The following example presents certain properties of sets that can easily be ex-
pressed in proj-mso.
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Example 10.7. In proj-mso on {L, R}�ω, one can say that a set of branches is count-
able. This is by using notions of interval, closed set, and perfect. A set of branches
is open if and only if for every element, it contains some open interval around that
element. A perfect is a set of branches which is closed (i.e. its complement is open)
and contains no isolated points. The notions of open interval, closed set, and perfect
are first-order definable. By [Kec95, Theorem 29.1], a set of branches is countable
if and only if it is in �1

1({L, R}ω) and does not contain any perfect subset, which is a
property definable in proj-mso.

10.2 Reduction

In this section we prove the following theorem.

Theorem 10.8. The proj-mso theory of {L, R}≤ω with prefix � and lexicographic
�lex orders effectively reduces to the mso+u theory of the complete binary tree({L, R}∗,�,�lex

)
.

In Sect. 10.3 we observe that this reduction itself gives an evidence that mso+u
should not be decidable. The crucial ingredient of the proof of Theorem 10.8 is
Theorem 9.7 (see Chap.9, page 159) stating that it is possible to define in mso+u
languages of ω-words that are arbitrarily high in the projective hierarchy. The fol-
lowing lemma shows how these languages can be used in the reduction.

Lemma 10.46. Suppose that L1, L2, . . . ⊆ Aω are definable in mso+u, and let

Xi
def= {

f −1(Li ) : f : {L, R}ω → Aω is a continuous function
}
. (10.2)

Then for every sentence of mso
[
P

({L, R}∗), X1, X2, . . .
]
on {L, R}�ω, one can

compute an equivalently satisfiable sentence of mso+u on {L, R}∗.
The proof of this lemma is based on the observation that, using quantification

over sets of nodes, one can quantify over continuous functions {L, R}ω → Aω. The
construction is similar in the spirit to the one from [Skr13] (such encodings in the
case of �0

2- and �0
3-sets date back probably to Büchi [Büc83a]).

Proof. Call amapping f : {L, R}∗ → A�{ε} proper if on every infinite path in {L, R}∗,
the labelling f contains infinitely many letters different than ε. If f is proper then
define f̂ : {L, R}ω → Aω to be the function that maps a branch to the concatenation of
the values under f of the nodes on the branch (such concatenation erases symbols ε).

Assume that L1, L2, . . . ⊆ Aω is a sequence of mso+u-definable sets. For i > 0
and a proper mapping f : {L, R}∗ → A � {ε} define

[ f ]i def= {
α ∈ {L, R}ω : f̂ (α) ∈ Li

}
,

reduces(Li )
def= {

L ⊆ {L, R}ω : L reduces continously to Li
}

(see (10.2)).

http://dx.doi.org/10.1007/978-3-662-52947-8_9
http://dx.doi.org/10.1007/978-3-662-52947-8_9
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Proposition 2.6 in [Kec95] implies that

{[ f ]i : f is proper
} = reduces(Li ). (10.3)

Since a mapping f : {L, R}∗ → A � {ε} can be encoded as a family of disjoint
sets {Xa ⊆ {L, R}∗}a∈A, we will use quantification over sets of nodes to simulate
quantification over continuous functions g : {L, R}ω → Aω.

The reduction in the statement of the lemma works as follows. First-order quan-
tification over branches is replaced by (monadic second-order) quantification over
paths, i.e. subsets of {L, R}∗ that are totally ordered andmaximal for that property. For
a formula ∃i X. ϕ, we replace the quantifier by existential quantification over a family
of disjoint subsets {Xa}a∈A which encode a continuous function. In the formula ϕ,
we replace a subformula x ∈ X , where x is now encoded as a path, by a formula
which says that the image of x , under the function encoded by {Xa}a∈A, belongs to
the language Li . In order to verify if a given element belongs to the language Li

definable in mso+u on ω-words, we can use a formula of mso+u on infinite trees.
More formally, our translation inputs a formula of mso

[
reduces(L1),

reduces(L2), . . .
]
and outputs a formula of mso+u on {L, R}∗. It interprets:

– a branch x ∈ {L, R}ω by the path Bx = {v ≺ x} ⊆ {L, R}∗,
– a set Xi ∈ reduces(Li ) by a labelling f iX : {L, R}∗ → A�{ε} such that [ f iX ]i = Xi ,
– a condition v ≺ x by v ∈ Bx ,
– a condition x ∈ Xi by checking that the formula defining Li is true on the la-
belling f iX on the nodes in Bx .

Equation (10.3) says that the quantifications over Xi ∈ reduces(Li ) and over
proper labellings f iX are equivalent. �

Proof of Theorem 10.8. Theorem 2.7 from Chap.9 shows that there is an alpha-
bet A such that for every i ≥ 1, there is a language Li ⊆ Aω which is definable
in mso+u on ω-words and complete for �1

i ({L, R}ω). Apply Lemma 10.46 to these
languages. By their completeness, the classes X1,X2, . . . in Lemma 10.46 are ex-
actly the projective hierarchy on {L, R}ω, and therefore Theorem 10.8 follows thanks
to Remark 10.12. �

10.3 Projective Determinacy

In this sectionwe present an example of a non-trivial property that can be expressed in
proj-mso on {L, R}�ω. It implies that any algorithm deciding mso+u on the complete
binary tree would have strong set theoretic consequences.

A Gale-Stewart game with winning condition W ⊆ {L, R}ω is the following two-
player game. Forω rounds, the players propose directions d ∈ {L, R} in an alternating
fashion, with the first player proposing a direction in even-numbered rounds, and the
second player proposing a directions in odd-numbered rounds. At the end of such a

http://dx.doi.org/10.1007/978-3-662-52947-8_2
http://dx.doi.org/10.1007/978-3-662-52947-8_9
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play, an infinite sequence α = d0d1 . . . is produced, and the first player wins if this
sequence belongs to W , otherwise the second player wins. Such a game is called
determined if either the first or the second player has a winning strategy, see [Kec95,
Chap.20] or [Jec02, Chap.33] for a broader reference. Martin [Mar75] proved that
the games are determined if W is a Borel set (see Theorem 1.2 on page 6).

We show that for every i > 0, the statement

“every Gale-Stewart game with a winning condition in �1
i is determined” (10.4)

can be formalised as a sentence ϕi
det of proj-mso on {L, R}�ω.

Assume that a formula even(u) (resp. odd(u)) expresses that a given node is at
the even (resp. odd) depth in the complete binary tree {L, R}∗. By sL(u) and sR(u) we
denote the respective successors of u in the tree, i.e. Sd(u) = ud.

First, we define that a set of nodes encodes a strategy for the first player in the
Gale-Stewart game:

SI(σ ) = ε ∈ σ ∧
∀u∈σ even(u) =⇒ (sL(u) ∈ σ ⇔ sR(u) /∈ σ) ∧
∀u∈σ odd(u) =⇒ (sL(u) ∈ σ ∧ sR(u) ∈ σ).

The formula SII(σ ) defining a strategy for the second player is analogous except that
the predicates even and odd are interchanged.

The following formula says that σ is a winning strategy for the first player for a
winning condition W ⊆ {L, R}ω:

winI(σ,W ) = SI(σ ) ∧ ∀α∈{L,R}ω (∀u≺α u ∈ σ) ⇒ α ∈ W.

Similarly we define

winII(σ,W ) = SII(σ ) ∧ ∀α∈{L,R}ω (∀u≺α u ∈ σ) ⇒ α /∈ W.

Finally, Statement (10.4), namely the determinacy of all the Gale-Stewart games
with winning conditions in �1

i is expressed by

ϕ1
det

def= ∀W∈�1
i
∃σ∈P({L,R}∗) winI(σ,W ) ∨ winII(σ,W ).

As we show below, the ability to formalise determinacy of Gale-Stewart games
with winning conditions in �1

1 already indicates that it is unlikely that proj-mso
on {L, R}�ω is decidable.

Indeed, suppose that there is an algorithm P deciding the proj-mso theory
of {L, R}�ω with a correctness proof in zfc. Note that by Theorem 10.8, this would
be the case if there was an algorithm deciding the mso+u theory of {L, R}∗ with a
correctness proof in zfc. Run the algorithm on ϕ1

det obtaining an answer, either “yes”
or “no”. The algorithm together with its proof of correctness and the run on ϕ1

det form

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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a proof in zfc resolving Statement (10.4) for i = 1. The determinacy of all�1
1 games

cannot1 be proved in zfc, because it does not hold if v=l, see [Jec02, Corollary 25.37
and Sect. 33.9], and therefore P must answer “no” given input ϕ1

det.
This means that a proof of correctness for P would imply a zfc proof that State-

ment (10.4) is false for i = 1. Such a possibility is considered very unlikely by set
theorists, see [FFMS00] for a discussion of plausible axioms extending the standard
set of zfc axioms.

A similar example regarding the mso theory of (R,�) and the Continuum
Hypothesis was provided in [She75].

10.4 Undecidability of proj-mso on {L, R}ω

The undecidability of mso+u (see Theorem 10.88) follows from the reduction in
Theorem 10.8 and Proposition 10.25 below.

Proposition 10.25 (Bojańczyk GogaczMichalewski S. [BGMS14]). Assuming that
v=l, the proj-mso theory of the Cantor set ({L, R}ω,�lex) is undecidable.

This proposition is not in the scope of the thesis and we do not prove it here in
detail. Instead, in this section we show how this result can be obtained by adjusting
the reasoning in [She75, Theorem 7.1] by following the suggestion of Shelah, see
Quotation (10.1) on page 170 of the thesis.

There are three adjustments needed:

1. Instead of working on the real line R we use here the Cantor set {L, R}ω.
2. We have to repeat the inductive construction of a set Q from [She75 Lemma 7.4]

in such a way to guarantee that Q is �1
n for some n ∈ N.

3. We have to argue that the resulting formula G(θ) is a proj-mso formula.

The second adjustment above uses the assumption that v=l to construct a pro-
jective set Q. Having done this, it is enough to carefully read the formula G(θ) of
Shelah: it quantifies existentially over sets Q, countable sets D, arbitrary subsets of
D, perfects, and intervals. All these quantifiers are projective, see Example 10.7.

10.4.1 Proof of Theorem 10.88

Now we can combine the above results to prove the undecidability result.

Theorem 10.88. Assuming v=l, it is undecidable if a given sentence of mso+u is
true in the complete binary tree

({L, R}∗,�,�lex
)
.

1Except for the case if zfc is not consistent and it is possible to prove everything in zfc.
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Proof. Assume v=l. In that case the proj-mso theory of the Cantor set ({L, R}∗,�lex)

is undecidable by Proposition 10.25. By Remark 10.12 it can be reduced to the
proj-mso theory of

({L, R}�ω,�,�lex
)
. Theorem 10.8 implies that the latter can be

reduced to the mso+u theory of the complete binary tree. Therefore, this theory is
undecidable. �

10.5 Conclusions

This chapter presents a reduction from a logic called proj-mso to mso+u on infinite
trees. The reduction involves the topologically hard languages constructed inChap.9.
As shown in [BGMS14], assuming that v=l, the proj-mso theory of the Cantor set is
undecidable. Therefore, the two results together imply that (assuming v=l) mso+u
logic is undecidable on infinite trees.

As shown in the above chapter, it is possible to express in proj-mso some deep
properties of the universe of set theory. Therefore, any algorithm solving mso+u
on infinite trees would have some remarkable knowledge about this universe. As an
example, it is shown that any such algorithm (with its proof of correctness) implies
that analytic determinacy is provably false (in zfc). The latter possibility is consid-
ered very unlikely by set theorists. These intuitions are expressed by the following
conjecture.

Conjecture 10.8. It is possible to prove in zfc that themso+u theory of the complete
binary tree is undecidable.

The undecidability result about proj-msomakes a strong link between topological
complexity and decidability. What is in fact proved in [BGMS14] is that under the
assumption that v=l, even a weaker variant of proj-mso where set quantifiers range
over sets up to the sixth level of the projective hierarchy (i.e.�1

6-sets) is undecidable.
On the other hand, if we restrict set quantifiers to �0

2 then the theory becomes
decidable. It somehow justifies the impression that the more complicated sets are
allowed, the more undecidable the theory is. It should be related to the following
conjecture of Shelah.

Conjecture 10.9 ([She75, Conjecture 7B]). The monadic theory of (R,�) where
the set quantifiers range over Borel sets is decidable.

As Shelah comments, the above conjecture is motivated by Borel determinacy
(that was proved byMartin [Mar75], see Theorem 1.2 on page 6). On the other hand,
the assumption that v=l implies that projective determinacy fails. Therefore, one can
state the following question.

Question 10.2. Assume that all analytic (�1
1) games are determined. Does it imply

that the monadic second-order theory of (R,�) where the set quantifiers range over
�1

1-sets is decidable?

This chapter is based on [BGMS14].

http://dx.doi.org/10.1007/978-3-662-52947-8_9
http://dx.doi.org/10.1007/978-3-662-52947-8_1


Chapter 11
Separation for ωB- and ωS-regular
Languages

In this chapter we study the classes of ωB- and ωS-regular languages, introduced by
Bojańczyk and Colcombet in [BC06]. These languages of ω-words are defined as
those that can be recognised by a certain model of counter automata with asymp-
totic acceptance condition. Both these classes are strictly contained in the class of
mso+u-definable languages, the advantage of these classes is that they admit effective
constructions. A standard example of an ωB-regular language is the following

{
an0ban1ban2b . . . : the sequence ni is bounded

} ⊆ {a, b}ω.

The main technical contribution of [BC06] states that the complement of an ωB-
regular language is effectivelyωS-regular and vice versa; and the emptiness problem
is decidable for both these classes. Although these languages do not form a Boolean
algebra, these properties guarantee some kind of robustness of these two classes.

In this chapter we show that both classes of ωB- and ωS-regular languages admit
the separation property with respect to ω-regular languages (see Definition 1.3 on
page 24 in Sect. 1.7.5), as expressed by the following theorem.

Theorem 11.9. If L1, L2 are disjoint languages of ω-words both recognised by ωB-
(respectively ωS)-automata then there exists an ω-regular language Lsep such that

L1 ⊆ Lsep and L2 ⊆ Lc
sep.

Additionally, the construction of Lsep is effective.

The result is especially interesting since these are two mutually dual classes (see
Theorem 11.96) — usually exactly one class from a pair of dual classes has the
separation property, see Sect. 1.7.5, page 24.

As a consequence of the separation property we obtain the following corollary.

Corollary 11.3. If a given language of ω-words L and its complement Lc are both
ωB-regular (resp. ωS-regular) then L is ω-regular.
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Proof. Let L be a language of ω-words such that L and Lc are both ωT-regular (for
T ∈ {B,S}). By Theorem2.9 there exists an ω-regular language Lsep that separates
L and Lc. But in that case Lsep = L so L is ω-regular. �

The above corollary was independently known by some researchers in the area
(with a proof not involving separation). Nevertheless, to the best of the author’s
knowledge, it has never been published before [Skr14].

To prove Theorem2.9 we reduce the separation property of ω-word languages to
the case of profinite words. For this purpose we use B- and S-automata introduced
in [Col09]. As shown in [Tor12] it is possible to define a language recognised by a
B- or S-automaton as a subset of the profinite monoid Â∗. An intermediate step in
our reasoning is proving the separation property for B- and S-regular languages of
profinite words.

The chapter is organised as follows. In Sect. 11.1 we introduce basic notions
including the profinite monoid Â∗. Section11.2 defines the automata models we use.
In Sect. 11.3 we prove separation results for languages of profinite words recog-
nised by B- and S-automata. Section11.4 contains the crucial technical tool, Theo-
rem 11.98, that enables to transfer separation results for languages of profinite words
to the case of ω-words. In Sect. 11.5 we use this theorem to show that ωB- and
ωS-regular languages have the separation property. Finally, Sect. 11.6 is devoted to
conclusions.

11.1 Basic Notions

We work with two models of automata (ωB and ωS) at the same time. Therefore, we
introduce a notion ωT to denote one of the models: ωB or ωS. By T we denote the
corresponding model of automata on finite words (B or S).

11.1.1 Monoid of Runs

We define here a monoid representing possible runs of a non-deterministic automa-
ton. It can be seen as an algebraic formalisation of the structure used byBüchi [Büc62]
in his famous complementation lemma. A general introduction to monoids is given
in Sect. 1.5.1 (see page 11).

Let A be a non-deterministic automaton. Define Mtrans(A) as P(QA × QA). Let
the neutral element be {(q, q) : q ∈ QA} and product:

s · s ′ = {
(p, r) : ∃q∈QA (p, q) ∈ s ∧ (q, r) ∈ s ′} .

Let fA : A∗ → Mtrans(A) map a given finite word u to the set of pairs (p, q) such
that the automaton A has a run over u starting in p and ending in q.

It is easy to check that Mtrans(A) is a finite monoid and fA is a homomorphism.

http://dx.doi.org/10.1007/978-3-662-52947-8_2
http://dx.doi.org/10.1007/978-3-662-52947-8_2
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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11.1.2 Profinite Monoid

In this subsection we introduce the profinite monoid Â∗. A formal introduction
to profinite structures can be found in [Alm03] or [Pin09]. We refer to [Pin09].
A construction of the profinite monoid using purely topological methods is given
in [Skr11].

First we provide a construction of the profinite monoid Â∗. The idea is to enhance
the set of all finite words by some virtual elements representing sequences of finite
words that are more and more similar.

Let K0, K1, . . . be a list of all regular languages of finite words. Let X = 2ω. Each
element x ∈ X can be seen as a sequence of bits, the bit x(n) indicates whether our
virtual word belongs to the language Kn .

Define μ : A∗ → X by the following equation:

μ(u)n =
{
1 if u ∈ Kn,

0 if u /∈ Kn.

The function μ defined above is injective. Let Â∗ ⊆ X be the closure of μ(A∗)
in X with respect to the product topology of X . Therefore, Â∗ contains μ(A∗) and
the limits of its elements. To simplify the notion we identify u ∈ A∗ with its image
μ(u) ∈ Â∗.

Example 11.8 (Proposition 2.5 in [Pin09]). Let un = an! for n ∈ N. A simple
automata-theoretic argument shows that for every regular language K , either almost
all words (un)n∈N belong to K or almost all do not belong to K . Therefore, the
sequence (μ(un))n∈N is convergent coordinate-wise in X . The limit of this sequence
is an element of Â∗ \ μ (A∗).

The following fact summarises basic properties of Â∗.

Fact 11.89 (Proposition 2.1, Proposition 2.4, and Theorem 2.7 in [Pin09]). Â∗ is
a compact metric space. A∗ (formally μ (A∗)) is a countable dense subset of Â∗.
Â∗ has a structure of a monoid that extends the structure of A∗ and the product is
continuous.

It turns out that the operation assigning to every regular language of finite words
K ⊆ A∗ its topological closure K ⊆ Â∗ has good properties (see Theorem 11.91).
Therefore, we introduce the following definition.

Definition 11.22. A profinite-regular language is a subset of Â∗ of the form K for
some regular language K ⊆ A∗.

Using this definition, we can denote a generic profinite-regular language as K
for K ranging over regular languages. Using the definition of μ one can show the
following easy fact.
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Fact 11.90. A language of profinite words M ⊆ Â∗ is profinite-regular if and only
if it is of the form

M = {
x ∈ 2ω : x ∈ Â∗ ∧ xn = 1

}
, (11.1)

for some n ∈ N. In that case M = Kn.

The structures of profinite-regular and regular languages are in some sense iden-
tical. This is expressed by the following theorem.

Theorem 11.91 (Theorem 2.4 in [Pin09]). The function K 	→ K ⊆ Â∗ is an
isomorphism of the Boolean algebra of regular languages and the Boolean algebra
of profinite-regular languages. Its inverse is M 	→ μ−1(M) ⊆ A∗ (when identifying
A∗ with μ(A∗) we can write M 	→ M ∩ A∗ ⊆ A∗).

By the definition of Â∗ and the fact that regular languages are closed under finite
intersection, we obtain the following important fact.

Fact 11.92. The family of profinite-regular languages is a basis of the topology
of Â∗.

The topology of Â∗ is the product topology. Therefore, a sequence of finite words
U = u0, u1, . . . is convergent to u ∈ Â∗ if and only if (μ(un))n∈N ⊆ X is convergent
coordinate-wise to u. The following fact formulates this condition in a more intuitive
way.

Fact 11.93. A sequence of finite words U = u0, u1, . . . is convergent to u ∈ Â∗ if
and only if for every profinite-regular language K either:

– u ∈ K and almost all words un belong to K ,
– u /∈ K and almost all words un do not belong to K .

The topology of Â∗ is defined in such a way that it corresponds precisely to
profinite-regular languages. The following fact summarises this correspondence.

Fact 11.94 (Proposition 4.2 in [Pin09]). A language M ⊆ Â∗ is profinite-regular if
and only if it is a closed and open (clopen) subset of Â∗.

Proof. First assume that M = K is a regular language of profinite words.
Equation (11.1) in Fact 11.90 defines a closed and open set.

Now assume thatM is a closed and open subset of Â∗. Recall that profinite-regular
languages form a basis for the topology of Â∗ (Fact 11.92). Since M is open so it
is a union of base sets

⋃
j∈J K j . Since M is a closed subset of a compact space

Â∗, M is compact. Therefore, only finitely many languages among
{
K j

}
j∈J form

a cover of M . But a finite union of profinite-regular languages is a profinite-regular
language. Therefore, M is profinite-regular. �
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11.1.3 Ramsey-Type Arguments

In this section we introduce an extension of Ramsey’s theorem (see Sect. 1.5.4,
page 13) to the case where colours come from the profinite monoid. To state it
formally we use the following definitions.

Definition 11.23. Assume that U = u0, u1, . . . is a sequence of finite words. We say
that W = w0, w1, . . . is a grouping of U if there exists an increasing sequence of
numbers 0 = i0 < i1 < . . . such that for every n ∈ N we have

wn = uin uin+1 . . . uin+1−1.

Observe that ifW = w0, w1, . . . is a grouping ofU = u0, u1, . . . then u0u1 · · · =
w0w1 · · · .

We will use the notion of the f -type of a decomposition α = u0u1 . . . from
Definition 1.1 on page 13. Recall also that t = (s, e) is called a linked pair if
s ·e = s and e ·e = e. By the definition, if t = (s, e) is an f -type of a decomposition
of some ω-word then t is a linked pair.

Note that if U is a decomposition of an ω-word α and U is of f -type t = (s, e)
then every grouping of U is also a decomposition of α of f -type t . The notion of
grouping introduces a stronger version of convergence.

Definition 11.24. We say that a sequence of finite words U = u0, u1, . . . is strongly
convergent to a profinite word u if every grouping of U is convergent to u.

The following result is an extension of Ramsey’s theorem to the case of the
profinite monoid.

Theorem 11.95 (Bojańczyk Kopczyński Toruńczyk [BKT12]). Let U = u0,
u1, . . . be an infinite sequence of finite words. There exists a grouping Z of U such
that Z strongly converges in Â∗.

For the sake of completeness we give a proof of this fact below. The theorem holds
in general, where instead of Â∗ is any compact metric monoid. Also, the notion of
convergence can be strengthened in the thesis of the theorem: all the groupings ofU
converge in a uniform way. In this chapter we use only the above, simplified form.

Proof. Let K be a regular language and W = w0, w1, . . . be a sequence of finite
words. Define a function αK ,W : [N]2 → {0, 1} that takes a pair of numbers i < j
and returns 1 if and only if wiwi+1 . . . w j−1 belongs to K . By Theorem 1.1 from
page 3, there exists a monochromatic set S ⊆ N with colour c ∈ {0, 1} such that for
every pair i < j ∈ S we have αK ,W ({i, j}) = c.

Now, take a sequence of finite words U . We will construct a sequence of words
zi using a diagonal construction. Let K0, K1, . . . be an enumeration of all regular
languages and let U 0 = U . We proceed by induction for i = 0, 1, . . .. Assume that
after i’th step a sequence Ui = ui0, u

i
1, . . . is defined. First define zi as u

i
0. Now, let

S = {n0, n1, . . .} be an infinite monochromatic set with respect to αKi ,Ui . Define

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Ui+1 = (
uin0u

i
n0+1 . . . uin1−1

)
,
(
uin1u

i
n1+1 . . . uin2−1

)
,
(
uin2u

i
n2+1 . . . uin3−1

)
, . . .

Note that Ui+1 is a suffix of a grouping of Ui . Since S is monochromatic and by
the definition of αK ,W , we know that:
(∗) For every grouping of Ui+1 either all words in the grouping belong to Ki or all
of them do not belong.

We claim that our sequence Z = z0, z1, . . . is strongly convergent. Let W be a
grouping of Z and let K = Ki be a regular language. Observe that almost all words
in W (all except first at most i words) are obtained by grouping words in Ui+1.
Therefore, by (∗), either almost all words of W belong to K or almost all of them
do not belong to K . Fact 11.93 implies that W is convergent in Â∗.

Now observe that almost all words inW belong to Ki if and only if almost all the
words in Z belong to Ki . Therefore, the limit of W does not depend on the choice
of W . It means that Z is strongly convergent in Â∗. �

11.1.4 Notation

In this chapter we deal with three types of languages: of finite words, of profinite
words, and of ω-words. To simplify reading of the chapter, we use the following
conventions:

– finite and profinite words are denoted by u, w,
– sequences of finite words are denoted by U,W, Z ,
– ω-words are denoted by α, β,
– regular languages of finite words are denoted by K ,
– profinite-regular languages are, using Theorem 11.91, denoted by K ,
– general languages of profinite words are denoted by M ,
– languages of ω-words (both ω-regular and not) are denoted by L .

11.2 Automata

In this section we provide definitions of four kinds of automata: B-, S-, ωB- and
ωS-automata. B- and S-automata read finite words while ωB- and ωS-automata read
ω-words.

The ωB- and ωS-automata models were introduced in [BC06], we follow the
definitions from this work. The B- and S-automata models were defined in [Col09].
For the sake of simplicity, we use only the operations {nil, inc, reset} (without the
check operation). As noted in Remark 1 in [Col09] (see also [BC06]), this restriction
does not influence the expressive power.
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The four automata models we study here are part of a more general theory of
regular cost functions that is developed mainly by Colcombet [Col09, Col13]. In
particular, the theory ofB- andS-automata has been extended to finite trees in [CL10].

All four automata models we deal with are built on the basis of a counter automa-
ton. The difference is the acceptance condition that we introduce later.

Definition 11.25. A counter automaton is a tuple A = 〈
AA, QA, IA, Γ A, δA

〉
,

where:

– AA is an input alphabet,
– QA is a finite set of states,
– IA ⊆ QA is a set of initial states,
– Γ A is a finite set of counters,
– δA ⊆ QA × AA × {nil, inc, reset}Γ A × QA is a transition relation.

All counters store natural numbers and cannot be read during a run. The values
of the counters are only used in an acceptance condition.

In the initial configuration all counters equal 0. A transition (p, a, o, q) ∈ δA

(sometimes denoted p
a,o−→ q) means that if the automaton is in a state p and reads a

letter a then it can perform counter operations o and go to the state q. For a counter
c ∈ Γ A a counter operation o(c) can:

o(c) = nil leave the counter value unchanged,
o(c) = inc increment the counter value by one,
o(c) = reset reset the counter value to 0.

A run ρ of the automaton A over a word (finite or infinite) is a sequence of
transitions as for standard non-deterministic automata. Given a run ρ, a counter
c ∈ Γ A, and a position rc of awordwhere the counter c is reset,wedefineval(c, ρ, rc)
as the value stored in the counter c at the moment before the reset rc in ρ.

To simplify the constructions we allow ε-transitions in our automata. The only
requirement is that there is no cycle consisting of ε-transitions only. ε-transitions can
be removed using non-determinism of an automaton and by combining a sequence
of counter operations into one operation. Such a modification may change the exact
values of counters, for instance when we replace inc, reset by reset. However, the
limitary properties of the counters are preserved (the values may be disturbed only
by a linear factor).

11.2.1 ωB- and ωS-automata

First we deal with automata for ω-words, following the definitions in [BC06]. An
ωT-automaton (for ωT ∈ {ωB, ωS}) is just a counter automaton. A run ρ of an
ωT-automaton over an ω-word α is accepting if it starts in an initial state in IA,
every counter is reset infinitely many times, and the following condition is satisfied:
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Fig. 11.1 An example of an
ωB-automaton AωB.

ωB-automaton the values of all counters are bounded during the run,
ωS-automaton for every counter c the values of c during resets in ρ tend to infinity

(i.e. the limit of the values of c is ∞).

An ωT-automaton A accepts an ω-word if it has an accepting run on it. The set
of all ω-words accepted by A is denoted L(A).

Example 11.9. Consider theωB-automatonAωB depicted on Fig. 11.1.AωB guesses
(bymoving to the stateqM ) tomeasure the length of someblocks of lettersa. It accepts
an ω-word α if and only if it is of the form

α = an0ban1b . . . with lim inf
i→∞ ni < ∞.

We can also treatAωB as an ωS-automaton. In that case it accepts an ω-word α if
and only if it is of the form

α = an0ban1b . . . with lim sup
i→∞

ni = ∞.

It is easy to check that a non-deterministic Büchi automaton can be transformed
into an equivalent ωB- (resp. ωS)-automaton. Therefore, all ω-regular languages are
both ωB- and ωS-regular.

The following theorem summarizes properties of ωB- and ωS-regular languages.

Theorem 11.96 ([BC06, Theorem 4.1]). The complement of an ωB-regular lan-
guage is effectively ωS-regular and vice versa.

The emptiness problem is decidable for ωB- and ωS-regular languages.

11.2.2 B- and S-automata

In the finite word models the situation is a little more complicated than in the ωB-
and ωS-automata models. The automaton not only accepts or rejects a given word
but also it assigns a value to a word.

Formally, a T-automaton (for T ∈ {B,S}) is a counter automaton that is addi-
tionally equipped with a set of final states FA ⊆ QA. An accepting run ρ of an
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automaton over a finite word u is a sequence of transitions starting in some initial
state in IA and ending in some final state in FA.

The following equations define val(A, u) — the value assigned to a given finite
word by a given automaton. We use the convention that if a set of values is empty
then the minimum of this set is ∞ and the maximum is 0. The variable ρ ranges
over all accepting runs, c ranges over counters in Γ A, while rc ranges over positions
where the counter c is reset in ρ. As noted at the beginning of this section, we do not
allow explicit check operation, we only care about the values of the counters before
resets.

B-automaton AB

val(AB, u) = min
ρ

val(ρ) and val(ρ) = max
c

max
rc

val(c, ρ, rc),

S-automaton AS

val(AS, u) = max
ρ

val(ρ) and val(ρ) = min
c

min
rc

val(c, ρ, rc).

The following simple observation is crucial in the subsequent definitions.

Lemma 11.47. For a given number n, a B-automatonAB, and an S-automatonAS

the following languages of finite words are regular:

L(AB � n)
def= {u : val(AB, u) � n} ,

L(AS > n)
def= {u : val(AS, u) > n} .

Proof. We can encode a bounded valuation of the counters into a state of a finite
automaton. �

11.2.3 Languages

The above definitions give semantics of a T-automaton in terms of a function

val(A, .) : (
AA)∗ → N � {∞}.

As noted in [Tor12], it is possible to define the language recognised by such an
automaton as a subset of the profinite monoid Â∗. We successively define it for
B-automata and S-automata. In both cases the construction is justified by
Lemma 11.47.

B case: Fix a B-automaton AB and define

L(AB)
def=

⋃

n∈N
L(AB � n) ⊆ Â∗. (11.2)
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S case: Fix an S-automaton AS and define

L(AS)
def=

⋂

n∈N
L(AS > n) ⊆ Â∗. (11.3)

Note that the sequences of languages in the above equations aremonotone: increas-
ing in (11.2) and decreasing in (11.3).

There exists another, equivalent way of defining languages recognised by these
automata [Tor12]. One can observe that the function val(A, .) assigning to every
finite word its value has a unique continuous extension on Â∗. The languages recog-
nised by B- and S-automata can be defined as val(A, .)−1(N) and val(A, .)−1({∞})
respectively. In this chapter we only refer to the definitions (11.2) and (11.3).

Example 11.10. Consider the S-automatonAS depicted in Fig. 11.2. The automaton
measures the number of letters a in a given word. Then it guesses that the word is
finished andmoves to the accepting state. For every finite word u the value val(AS, u)

equals the number of letters a in u.
The language L(AS) does not contain any finite word. It contains a profinite word

u if for every n the word u belongs to the profinite-regular language defined by the
formula “theword containsmore than n letters a” (i.e. u ∈ L(AS > n)). In particular,
the limit of the sequence (an!)n∈N from Example 11.8 belongs to L(AS).

Lemma 11.48. Every B-regular language is an open subset of Â∗ and dually every
S-regular language is closed.

Proof. By Eqs. (11.2) and (11.3), a B-regular language is a sum of profinite-regular
languages and an S-regular language is an intersection of profinite-regular languages.
By Fact 11.94, profinite-regular languages are closed and open, therefore their sum
is open and the intersection is closed. �

The converse of Lemma 11.48 is false as there are uncountablymany open subsets
of Â∗ — there are some open subsets of Â∗ that are not B-regular.

We finish the definitions of automata models by recalling the following theorem.

Theorem 11.97 (Fact 2.6 and Corollary 3.4 in [BC06], Theorem 8 and para-
graph Closure properties in [Tor12]). Let T ∈ {B,S, ωB, ωS}. The class of
T-regular languages is effectively closed under union and intersection. The emptiness
problem for T-regular languages is decidable.

Therefore, it is decidable whether given two T-regular languages are disjoint.

Fig. 11.2 An example of an
S-automaton AS.
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11.3 Separation for Profinite Languages

In this section we show the following proposition.

Proposition 11.27. Let T ∈ {B,S}. Assume that languages of profinite words
M1, M2 ⊆ Â∗ are recognised by T-automata and M1 ∩ M2 = ∅. Then there exists
a profinite-regular language Ksep ⊆ Â∗ such that

M1 ⊆ Ksep and M2 ⊆ Ksep
c
.

Additionally, the language Ksep can be computed effectively basing on M1 and M2.

The proof of the proposition consists of two parts, one for each of the two cases
of T ∈ {B,S}: Lemma 11.49 and Proposition 11.28.

First we prove the case when T = S. The presented proof uses a general topolog-
ical fact: the separation property of closed (i.e.�0

1) sets in a zero-dimensional Polish
space (see Sect. 1.6, page 14 for a definition of these spaces).

Lemma 11.49. A pair of disjoint S-regular languages of profinite words can be
separated by a profinite-regular language.

Proof. Take two S-regular languages M1, M2 ⊆ Â∗.
Observe that Â∗ is a closed subset of a zero-dimensional Polish space 2ω, there-

fore Â∗ is also zero-dimensional Polish space. Therefore, the�0
1-separation property

holds for Â∗ (see [Kec95 Theorem 22.16]). By Lemma 11.48 every S-regular lan-
guage is �0

1 in Â∗, therefore M1, M2 can be separated in Â∗ by a set Msep that is
closed and open in Â∗. By Fact 11.94, the language Msep is profinite-regular. �

Instead of using the �0
1-separation property, one can provide the following

straightforward argument that uses the compactness of Â∗. We know that M1 is
a closed subset of a compact space Â∗ so M1 is compact itself. Assume that M2 is
recognised by an S-automaton AS. By (11.3) we obtain

M2 =
⋂

n∈N
L(AS > n) ⊆ Â∗.

For n ∈ N define Nn
def= L(AS > n)

c
— the complement of the profinite-

regular language L(AS > n). Clearly M1 ⊆ ⋃
n Nn because M1 and M2 are dis-

joint. Fact 11.94 and Lemma 11.47 imply that the sets Nn are open subsets of Â∗.
Therefore, the family (Nn)n∈N is an open cover of M1. Since M1 is compact, there
is n0 ∈ N such that

M1 ⊆ N0 ∪ N1 ∪ . . . ∪ Nn0 = Nn0 .

Therefore, Nn0 is a profinite-regular language that separates M1 and M2.

Remark 11.13. The language Nn0 can be computed effectively.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
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Proof. It is enough to observe that n0 can be taken as the minimal n such that M1

does not intersect the profinite-regular language L(AS > n). Such n exists by the
above argument. �

Now we proceed with the separation property for B-regular languages. By
Lemma 11.48 we know that B-regular languages are open sets in Â∗. An easy exer-
cise shows that in general open sets do not have the separation property. Thus, to
show the following proposition we need an argument that is a bit more involved than
in the case of S-regular languages.

Proposition 11.28. A pair of disjoint B-regular languages of profinite words can be
separated by a profinite-regular language.

We obtain the above proposition by applying the following observation.

Lemma 11.50. For every B-regular language MB ⊆ Â∗ there exists a profinite-
regular language KR ⊆ Â∗ such that

MB ⊆ KR and MB ∩ A∗ = KR ∩ A∗.

Moreover, the language KR can be computed effectively.

Proof. Take a B-automaton AB recognising MB. Define a new automaton AR by
removing fromAB all the counters and all the counter operations. What remains are
transitions, initial states, and final states. Put KR = L(AR) ⊆ Â∗. Of course MB ⊆
L(AR) by the definition of MB. Clearly L(AR) ∩ A∗ = L(AR) by Theorem 11.91.
What remains to show is that L(AR) ⊆ MB.

Take a finite word u ∈ L(AR). Observe thatAB has an accepting run on u because
u ∈ L(AR). So val(AB, u) � |u| because AB cannot do more increments than the
number of positions of the word. Therefore u ∈ MB. �

Poof of Proposition 11.28. Take two disjoint B-regular languages M1, M2 ⊆ Â∗.
Define Ksep to be the language KR from Lemma 11.50 for M1. Thus we know that
M1 ⊆ KR . We only need to show that M2 ∩ KR = ∅. Assume the contrary, that

MI
def= M2 ∩ KR �= ∅. Since B-regular languages are open sets in Â∗, MI is an

open set. Since A∗ is dense in Â∗ so MI contains a finite word u ∈ A∗. But by the
definition of KR in that case u ∈ M1. So u ∈ M1 ∩ M2 — a contradiction to the
disjointness of M1, M2. �

Remark 11.14. Both separation results for B- and S-regular languages are effective:
there is an algorithm that inputs two counter automata, verifies that the intersection of
the languages is empty, and outputs an automaton recognising a separating language.

Proof. By Theorem 11.97 it is decidable if two B-(resp. S)-regular languages are
disjoint. As observed in Remark 11.13 and Lemma 11.50, both constructions can be
performed effectively. �

This concludes the proof of Proposition 11.27 in both cases T = B and T = S.
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11.4 Reduction

This section contains a proof of our crucial technical tool — Theorem 11.98. It is
inspired by the reduction theorem from [Tor12], however, the statements of these
theorems are incomparable.

Intuitively,ωB- and ωS-automata are composed of two independent parts, we can
call them the ω-regular part and the asymptotic part. The ω-regular part corresponds
to states and transitions of the automaton, while the asymptotic part represents quan-
titative conditions that can be measured by counters. In this section we show how to
formally state this division. It can be seen as an extension of the technique presented
in [BC06].

Recall from Sect. 11.1.1 (see page 178) that Mtrans(A) is the monoid of state
transformations of a non-deterministic automatonA. The canonical homomorphism
from finite words to Mtrans(A) is denoted fA.

Theorem 11.98. Let T ∈ {B,S}. Fix an ωT-automaton A and a linked pair t =
(s, e) in the trace monoid Mtrans(A). There exists a T-regular language of profinite
words Mt ⊆ Â∗ with the following property:

If α is an ω-word and U = u0, u1, . . . is a decomposition of α of type t then the
following conditions are equivalent:

1. α ∈ L(A),
2. there exists a groupingW ofU that strongly converges to a profinite wordw ∈ Mt,
3. there exists a grouping W of U that converges to a profinite word w ∈ Mt.

Additionally, one can ensure that Mt ⊆ f −1
A (e). The construction of a

T-automaton recognising Mt is effective given A and t.

The rest of this section is devoted to showing the above theorem. We fix for
the whole proof an ωT-automaton A = 〈A, Q, I, Γ, δ〉 and a type t = (s, e) in
Mtrans(A).

Intuitively, the requirement for a decompositionU to be of the type t corresponds
to the ω-regular part ofAwhile the convergence ofU to an element of Mt takes care
of the asymptotic part of A.

Let us put Ke = f −1
A (e) and assume that Be = 〈

A, Qe, {qI,e}, δe, Fe
〉
is a deter-

ministic finite automaton recognising the regular language Ke. We will ensure that
Mt ⊆ Ke.

First we show how to construct a language Mt , later we prove its properties. The
definition of Mt depends on whether T = B or T = S. The first case is a bit simpler.

Case T = B The language Mt is obtained as the union of finitely many B-regular
languages indexed by states q ∈ Q:

Mt =
⋃

q∈Q
L(Aq),

for B-automata Aq that we describe below. Intuitively, an automaton Aq measures
loops in A starting and ending in q.
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If for no q0 ∈ I we have (q0, q) ∈ s or if (q, q) /∈ e then L(Aq) = ∅. Assume
otherwise. First we give an informal definition of Aq :

– it is obtained from A by interpreting it as a finite word B-automaton,
– it has initial and final state set to q,
– it checks that all the counters are reset in a given word,
– it checks that a given word belongs to Ke,
– it resets all the counters at the end of the word.

Now we give a precise definition of Aq = 〈
A, Qq , Iq , Γq , δq , Fq

〉
. Let:

– Qq = {	} � Q × Qe × {⊥,�}Γ ,
– Iq = {(

q, qI,e, (⊥,⊥, . . . ,⊥)
)}
,

– Γq = Γ ,
– Fq = {	},
and let δq contain the following transitions:

– (p, r, b)
a,o−→ (p′, r ′, b′) if p a,o−→ p′ ∈ δ, r

a−→ r ′ ∈ δe and for every c ∈ Γ we
have b′(c) = b(c) ∨ (o(c) = reset),

– (q, r, (�,�, . . . ,�))
ε,o−→ 	 for o = (reset, reset, . . . , reset) if r ∈ Fe.

The state 	 is the only final state used to perform the reset at the end of a word.
During a run, the automaton Aq simulates A and Be in parallel, using Q and Qe.
Additionally, a vector in {⊥,�}Γ denotes for every counter whether it was already
reset in a word or not.

Case T = S In that case the language Mt is obtained as the union of finitely many
S-regular languages indexed by pairs (q, τ ) ∈ Q × {←,→}Γ :

Mt =
⋃

(q,τ )

L(Aq,τ ).

Intuitively, an automatonAq,τ recognises loops q →∗ q as before. Additionally, the
vector τ denotes whether a given counter c ∈ Γ obtains bigger values before the
first reset (τ(c) =→) or after the last reset (τ(c) =←) on a given finite word. The
following definition formalises this property. A similar technique of assigning a reset
type to a finite run can be found in [BC06].

Definition 11.26. Let ρ be a run of some counter automaton A over an ω-word α.
Let k ∈ N be a position in α and let c ∈ Γ be a counter of A. Let:

– VL be the number of increments of c between the last reset before k and k,
– VR be the number of increments of c between k and the first reset after k.

If there is no reset of c at some side of k then the respective value is 0. Define the
end-type of c on ρ in k (denoted as Etp(c, ρ, k)) by the following equation:

Etp(c, ρ, k) =
{

→ if VL < VR,

← if VL � VR.
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As before if for no q0 ∈ I , we have (q0, q) ∈ s or if (q, q) /∈ e then L(Aq,τ ) = ∅.
Assume otherwise. We start with an informal definition of Aq,τ :

– it is obtained from A by interpreting it as a finite word S-automaton,
– it has initial and final state set to q,
– it checks that all the counters are reset in a given word,
– it checks that a given word belongs to Ke,
– for every counter c ∈ Γ :

• if τ(c) =← then Aq,τ skips the first reset of c and all the previous increments
of c but resets c at the end of a given word,

• if τ(c) =→ then Aq,τ acts on c exactly asA (with no additional reset at the end
of the word).

Formally, let Aq,τ = 〈
A, Qq,τ , Iq,τ , Γq,τ , δq,τ , Fq,τ

〉
such that

– Qq,τ = {	} � Q × Qe × {⊥,�}Γ ,
– Iq,τ = {(

q, qI,e, (⊥,⊥, . . . ,⊥)
)}
,

– Γq,τ = Γ ,
– Fq,τ = {	},
and δq,τ contains the following transitions:

– (p, r, b)
a,o′−→ (p′, r ′, b′) if p a,o−→ p′ ∈ δ, r

a−→ r ′ ∈ δe, and for every c ∈ Γ we
have:

• b′(c) = b(c) ∨ (o(c) = reset),
• if b(c) = ⊥ and τ(c) =← then o′(c) = nil, otherwise o′(c) = o(c),

– (q, r, (�,�, . . . ,�))
ε,o−→ 	 if r ∈ Fe and for every c ∈ Γ we have o(c) = reset

if τ(c) =← and o(c) = nil otherwise.

Now we proceed with the proof that the above constructions give us the desired
language Mt . First note that in both cases the constructed automata explicitly verify
that a given word belongs to Ke. Therefore, Mt ⊆ Ke.

We start by taking an ω-word α and its decomposition U = u0, u1, . . . of the
type t .

11.4.1 Implication (1) ⇒ (2)

We need to prove that if α ∈ L(A) and u is a decomposition of α of type t then there
exists a grouping W of U that strongly converges to a profinite word w ∈ Mt .

Assume that there exists an accepting run ρ of A over α. We want to construct a
grouping W = w0, w1, . . . of U such that:

S.1 for n > 0 we have wn ∈ Ke,
S.2 all counters in Γ are reset by ρ in every word wn ,
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S.3 the state that occurs in the run ρ at the end-points of all the words wn is some
fixed state q ∈ Q,

S.4 there exists a vector τ ∈ {←,→}Γ such that for every counter c and every
position k between successivewordswn, wn+1 inαwehaveEtp(c, ρ, k) = τ(c),

S.5 the sequence of words W is strongly convergent to some profinite word w.

The grouping Z is obtained in steps. Observe that all the above properties are
preserved when taking a grouping of a sequence. ConditionS.1 is already satisfied
by the sequenceU . First, we group words ofU in such a way to satisfy Condition S.2
using the fact that the runρ is accepting. Thenwe further group the sequence to satisfy
Conditions S.3 and S.4— some state and value of Etp must appear in infinitely many
end-points. Finally, we apply Theorem 11.95 to group the sequence into a strongly
convergent one.

Now, it suffices to show that w ∈ Mt . First, observe that ρ is a witness that there
is a path from I to q and from q to q in A.

We consider two cases:

Case T = B Since ρ is accepting, there exists a constant l such that the values of all
counters during ρ are bounded by l. We show that for every n > 0 we have wn ∈
L(Aq � l). It implies that w ∈ L(Aq � l) and therefore w ∈ L(Aq) ⊆ Mt .
Observe that ρ induces a run ρn of Aq on wn . By Conditions S.1, S.2, and S.3
we know that ρn is an accepting run ofAq — it starts in the only initial state and
ends in 	. Since Aq simulates all the resets of A, we know that val(ρn) � l and
therefore val(Aq , wn) � l.

Case T = S We show that for every l ∈ N the sequence W from some point on
satisfies val(Aq,τ , wn) > l

2 . It implies that for every l we have w ∈ L(Aq,τ > l)
and therefore w ∈ L(Aq,τ ).
Since ρ is accepting, for every constant l, from some point on, all the counters are
reset with a value greater than l. Assume that the last reset with the value at most l
occurs before the wordwN . We show that for n � N we have val(Aq,τ , wn) > l

2 .
Let ρ ′

n be the sequence of transitions of ρ on wn . Observe that ρ ′
n induces a run

ρn of Aq,τ on wn . As before, ρn is accepting by Conditions S.1, S.3, and S.2.
Take a counter c ∈ Γ and a reset of this counter rc in ρn . Consider the following
cases, recalling Definition 11.26:

– rc corresponds to the first reset of c in the run ρ ′
n . Since Aq,τ did not skip rc,

τ(c) =→. Therefore, c has more increments after the beginning of wn than
before it in ρ. Therefore val(c, ρn, rc) > l

2 .
– rc corresponds to a reset of c in the run ρ ′

n but not the first one. In that case
val(c, ρn, rc) = val(c, ρ ′

n, rc) > l.
– rc is the additional reset performed by Aq,τ at the end of the word wn . In that
case τ(c) =← so c has greater or equal number of increments before the end
of the word wn than after it in ρ. Therefore val(c, ρn, rc) > l

2 .

In all three cases val(c, ρn, rc) > l
2 . So we have shown that
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val(Aq,τ ) � val(ρn) >
l

2
.

This concludes the proof of the implication (1) ⇒ (2).

11.4.2 Implication (2) ⇒ (3)

This implication is trivial since strong convergence entails convergence.

11.4.3 Implication (3) ⇒ (1)

Now we want to prove that if U is a decomposition of α of type t and there exists a
grouping W of U that converges to a profinite word w ∈ Mt then α ∈ L(A).

Let W be a grouping of U such that W converges to a limit w ∈ Mt .
We consider two cases:

Case T = B Since w ∈ Mt , there exists a state q ∈ Q such that w ∈ L(Aq).
Therefore, w ∈ L(Aq � l) for some l. Since L(Aq � l) is an open set and w is
a limit of W , almost all elements of W belong to L(Aq � l). Assume that for
n � N we have wn ∈ L(Aq � l). Let ρn be a run that witnesses this fact. By
the construction of Aq , the run ρn induces a run ρ ′

n of A on wn . Also, since ρn

is accepting, ρ ′
n resets all the counters at least once.

By the assumption about t , there exists a run ρ ′
0 of A on w0 that starts in some

state in I and ends in q, and a sequence of runs ρ ′
n onwn for 0 < n < N that lead

from q to q. Therefore, we can construct an infinite run ρ of A on α being the
concatenation of the runs ρ ′

n on the words wn for n ∈ N. We show that if rc is a
reset of a counter c in ρ that appears after the word wN then val(c, ρ, rc) � 2 · l.
Since there are only finitely many resets of counters before the word wN , this
bound suffices to show that the run ρ is accepting.
Observe that the increments in ρ correspond to the increments in the runs ρn .
Also, ρ performs all the resets that appear in runs ρn except the resets at the end
of the words. There can be at most one such skipped reset in a row because every
counter is reset in every run ρ ′

n . Therefore, val(c, ρ, rc) � 2 · l.
Case T = S Let q, τ be parameters such that w ∈ L(Aq,τ ). Therefore, for every

l ∈ N we have w ∈ L(Aq,τ > l). As W is convergent to w and languages
L(Aq,τ > l) are open, it means that

∀l ∃N ∀n�N val(Aq,τ , wn) > l. (11.4)

As above we construct a run ρ over α that first leads on w0 from some state of I
to q and later consists of a concatenation of runs over words wn . Let ρ ′

0 be any
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run ofA that leads from I to q on w0. For n > 0 we pick a run ρn in such a way
that it is accepting and1

val(ρn) = val(Aq,τ , wn).

Observe that by (11.4), we obtain

lim
n→∞ val(Aq,τ , wn) = lim

n→∞ val(ρn) = ∞. (11.5)

For n > 0 by ρ ′
n be denote the run ofA on wn induced by ρn . Similarly as in the

previous case, runs ρ ′
n for n ∈ N can be combined into a run ρ ofA on α. By the

construction of Aq,τ , ρ resets every counter infinitely often.
Let rc be a position in α where a counter c ∈ Γ is reset during ρ. Assume that
rc is contained in a word wn and n > 1 — we do not care about first two words.
Consider two cases:

(τ (c) =→) In that case ρ performs the same increments and resets of c as the
runs ρn . Therefore, val(c, ρ, rc) � val(ρn).

(τ (c) =←) If rc is not the first reset of c in ρ ′
n then the value of c before rc in

ρ is the same as in ρn . Assume that rc is the first reset of c in ρ ′
n . Note that

ρn−1 performs an additional reset of c at the end of wn−1. This reset does not
appear in ρ so val(c, ρ, rc) � val(ρn−1).

In all the cases

val(c, ρ, rc) � min (val(ρn−1), val(ρn)) ,

so the values of c before successive resets tend to infinity by (11.5). It means that
ρ is an accepting run and α ∈ L(A).

This concludes the proof of (3) ⇒ (1) and of Theorem 11.98.

11.5 Separation for ω-languages

In this section we show the main result of the chapter. The technique is to lift the
separation results for T-regular languages of profinite words into the ω-word case.

Theorem 11.9. If L1, L2 are disjoint languages of ω-words both recognised by
ωB-(respectively ωS)-automata then there exists an ω-regular language Lsep such
that

L1 ⊆ Lsep and L2 ⊆ Lc
sep.

1Since there are only finitely many runs of an automaton on a finite word, there always exists a run
realising the value val(Aq,τ , wn), no matter whether the value is finite or not.
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Additionally, the construction of Lsep is effective.

The rest of the section is devoted to showing this theorem.
Let i ∈ {1, 2} andMi

trans denote the monoid of transitions for anωT-automatonAi

recognising Li . Let fi = fAi be the canonical homomorphisms from A∗ to Mi
trans.

Define Tpi as the set of types ti = (si , ei ) in the monoid of transitions Mi
trans.

For every type ti = (si , ei ) ∈ Tpi define Mi
ti ⊆ Â∗ as the T-regular language of

profinite words given by Theorem 11.98 forA = Ai and t = ti . By the statement of

the theorem we know that Mi
ti ⊆ f −1

i (ei ).

Definition 11.27. For a pair of types t1 = (s1, e1) ∈ Tp1, t2 = (s2, e2) ∈ Tp2, we
say that t1, t2 are coherent if there exist finite words us, ue ∈ A∗ such that: fi (us) = si
and fi (ue) = ei for i = 1, 2.

An important application of Theorem 11.98 is the following lemma.

Lemma 11.51. If a pair of types t1 ∈ Tp1, t2 ∈ Tp2 is coherent then the languages
M1

t1 , M
2
t2 are disjoint.

Proof. Take coherent types t1 = (s1, e1) and t2 = (s2, e2).

Assume that there exists a profinite word u ∈ M1
t1 ∩ M2

t2 . Since u ∈ f −1
i (ei )

for i = 1, 2, there exists a sequence U = u1, u2, . . . of finite words converging to
u such that f1(un) = e1 and f2(un) = e2 for all n > 0. Moreover, by coherency
of t1, t2 there exists a finite word u0 such that f1(u0) = e1 and f2(u0) = e2. Let
α = u0u1u2 . . . We show that α ∈ L1 ∩ L2 — a contradiction.

Take i ∈ {1, 2}. Observe that α = u0u1 . . . is a decomposition of α of fi -type ti .
Additionally observe that the sequence U converges to u and u belongs to Mi

ti . So,
by Theorem 11.98 we have α ∈ Li . �

Take a pair of coherent types t1, t2. Since the languages M1
t1 , M

2
t2 are disjoint, we

can use Proposition 11.27 to find a separating profinite-regular language Rt1,t2 ⊆ Â∗
such that

M1
t1 ⊆ Rt1,t2 and M2

t2 ⊆ Rt1,t2
c
.

Now we can introduce the ω-regular language Lsep separating L1 and L2.

Definition 11.28. Consider a coherent pair of types (t1, t2). Let St1,t2 be defined as
follows: St1,t2 is the language of ω-words α such that there exists a decomposition
α = u0u1 . . . of types t1, t2 with respect to f1, f2, such that every grouping of (un)n∈N
from some point on belongs to the regular language Rt1,t2 .

Note that the above definition can be expressed in mso so St1,t2 is an ω-regular
language.

Let Lsep be the ω-regular language defined as

Lsep =
⋃

(t1,t2)

St1,t2 ,

where the sum ranges over pairs of coherent types.
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Clearly Lsep is an ω-regular language. What remains is to show the following
lemma.

Lemma 11.52. The language Lsep separates L1 and L2.

Proof. First observe that L1 ⊆ Lsep. Take α ∈ L1. We want to construct a decom-
position U = u0, u1, . . . of α such that:

– the f i -type of U is ti for i = 1, 2 and some pair of coherent types (t1, t2) in
Tp1 × Tp2,

– the sequence U is strongly convergent to some profinite word u ∈ Â∗.

The sequence U is obtained in steps. First we use Theorem 1.1 to find a decom-
position of α with respect to both monoids M1

trans, M
2
trans at the same time. Such

decomposition satisfies the first bullet above. Then, using Theorem 11.95, we can
group our sequence into U in such a way that U is strongly convergent.

By Theorem 11.98, there exists a grouping W of U that converges to a profinite
word w ∈ M1

t1 ⊆ Rt1,t2 . But since U is strongly convergent, w = u. Therefore,
by the strong convergence of U , every grouping of U converges to u ∈ Rt1,t2 . So
every grouping of α from some point on belongs to Rt1,t2 as in the definition of Lsep.
Therefore, α ∈ Lsep.

Now we show that L2 ∩ Lsep = ∅. Assume otherwise, that there exists an ω-
word α ∈ L2 ∩ Lsep. Since α ∈ Lsep, there exists a coherent pair of types (t1, t2)
such that α ∈ St1,t2 . Therefore, α can be decomposed as α = u0u1 . . . of types t1,
t2 respectively. Let U = u0, u1, . . . Because α ∈ L2 so by Theorem 11.98 there
exists a grouping W of U with a limit w ∈ M2

t2 . But by the definition of St1,t2 almost
all words in W belong to Rt1,t2 so w ∈ Rt1,t2 . Since Rt1,t2 ∩ M2

t2 = ∅, we have the
required contradiction. �

This concludes the proof of Theorem 2.9.

11.6 Conclusions

The main result of this chapter states that both ωB- and ωS-regular languages have
the separation property with respect to ω-regular languages. Therefore, it gives some
understanding how these quantitative models extend ω-regular languages. In partic-
ular, from the results of the chapter it follows that if a given language is both ωB-
and ωS-regular then it is ω-regular.

The crucial technical part of the proof is Sect. 11.4 (a variant of the reduction
theorem from [Tor12]) that enables to reduce separation of ωB- and ωS-regular lan-
guages ofω-words to the separation of B- and S-regular languages of profinite words.
The reduction depends highly on compactness arguments and an appropriate Ram-
sey’s theorem. The presented proof explicitly distinguishes between two orthogonal
parts of ωB- and ωS-regular languages: ω-regular part and asymptotic part.

http://dx.doi.org/10.1007/978-3-662-52947-8_1
http://dx.doi.org/10.1007/978-3-662-52947-8_2
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After the reduction, the study of the separation property in the profinite monoid
is relatively easy. In the case of S-languages of profinite words the separation result
follows directly from general topological argument (separation property of�0

1-sets).
In the case of B-languages a simple automata theoretic construction is given.

As proved by Bojańczyk and Colcombet [BC06], the classes of ωB- and ωS-
regular languages are dual: a language is ωB-regular if and only if its complement
is ωS-regular. A usual pattern in descriptive set theory is that from a pair of dual
classes, exactly one has the separation property and the other does not have. What
is somehow surprising in the case of ωB- and ωS-regular languages both classes
have the separation property. It may be a witness that these classes are in some sense
meager— they do not contain enough languages to reveal an inseparable pair of sets.

The area of quantitative extensions of regular languages is still developing (see
e.g. [BC06, Boj11, Col13, BT09, BT12]). A number of formalisms was proposed but
it is still not clear which of them is the most robust. The results of this chapter may
help to better understand how these formalisms are related and in what directions
they extend ω-regular languages.

This chapter is based on [Skr14].



Chapter 12
Conclusions

The results of the thesis involve a number of methods of descriptive set theory. One
of themost common examples is topological hardness: sometimes it is enough to find
topologically hard language to obtain some negative results of non-definability. An
instanceof this approach areChaps. 9 and10where negative results about decidability
of mso+u are given. First, in Chap.9 examples of mso+u-definable languages lying
arbitrarily high in the projective hierarchy are given. In consequence there can be
no simple automata model capturing mso+u on ω-words. The topological hardness
of mso+u is later used in Chap.10 to prove that the mso+u theory of the complete
binary tree cannot be decidable in the standard sense. Also, topological hardness is
used in Chap.5 to prove that index bounds computed by the proposed algorithm (see
Sect. 5.4.1, page 79) are tight. Additionally, the dichotomy proved in Chap.6 involves
topological hardness: a regular language of thin trees is either wmso-definable or
�1

1-hard.
Another important notion that is used in various contexts are ranks. Chapter 4

introduces a new rank based on a given Büchi automaton. It is shown that this rank
corresponds in a very precise sense to the descriptive complexity of the language.
The whole idea to study such a rank is based on one of the fundamental results
of descriptive set theory — the boundedness theorem. Ranks also appear in the
study of thin trees in Chap.6: they turn out to be the combinatorial core of the
characterisation of languages that are wmso-definable among all trees. Also in this
chapter, the related construction of derivatives is used to give tight upper bounds on
the topological complexity of regular languages of thin trees.

The study of the class of bi-unambiguous languages yielded a new conjecture of
non-uniformizability (Conjecture 2.1).While this notion seems to bewell understood
for sets studied in descriptive set theory, there is only few results about uniformiz-
ability in the class of mso-definable languages of infinite trees. Some new negative
results of this kind are given in Chap.8. Also, consequences of the newly proposed
conjecture regarding the class of bi-unambiguous languages are listed in Chap. 7.
Hopefully, Conjecture 2.1 will be proved at some point extending our understanding
of ability to uniformize certain relations in mso.

© Springer-Verlag Berlin Heidelberg 2016
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A distinct descriptive set theoretic notion that is used in the thesis is the separation
property. First, it is used in Chap. 3 to construct certain automata of small index.
A similar construction appears also in Chap.7. On the other hand, Chap. 11 provides
a new separation result about certain quantitative extensions of ω-regular languages.

One of themost fundamental notions in topology is compactness. A combinatorial
counterpart of it is König’s lemma. In various cases it is possible to use a compactness
argument instead of pumping. One of the examples is the reduction from languages of
ω-words to profinite words from Chap.11. Also, the main idea behind the languages
constructed in Chap.9 is based on an appropriate application of König’s lemma.
Convergence in a compact space turns out to be useful when proving equivalence
between various measures of complexity of trees in Chap.4.

Regardless of the fact that the involved topological methods are not effective, in
most of the cases the final statements of the presented results are very concrete:
they consist mainly of new decision procedures and computable constructions. Even
the negative results have consequences expressible in the language of theoretical
computer science, for instance Chap. 10 uses topological methods to prove non-
existence of a certain algorithm.

Hopefully, the interplay between topological and automata theoretic methods
presented in the thesis will motivate some further development of such techniques.
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[BP12] Bojańczyk, M., Place, T.: Regular languages of infinite trees that are boolean combi-

nations of open sets. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part II. LNCS, vol. 7392, pp. 104–115. Springer, Heidelberg (2012)

[Bra98] Bradfield, J.: Simplifying the modal mu-calculus alternation hierarchy. In: STACS,
pp. 39–49 (1998)

[BS81] Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in
Mathematics, vol. 78. Springer, New York (1981)

[BS13] Bilkowski,M., Skrzypczak,M.: Unambiguity and uniformization problems on infinite
trees. In: CSL. LIPIcs, vol. 23, pp. 81–100 (2013)
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[Niw86] Niwiński, D.: On fixed-point clones. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226,
pp. 464–473. Springer, Heidelberg (1986)
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[NW03] Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages. Theor.
Comput. Sci. 1(303), 215–231 (2003)
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