
Marco Bernardo
Rocco De Nicola
Jane Hillston (Eds.)

Tu
to

ria
l

LN
CS

 9
70

0

16th International School on Formal Methods
for the Design of Computer, Communication,
and Software Systems, SFM 2016
Bertinoro, Italy, June 20–24, 2016, Advanced Lectures

Formal Methods
for the Quantitative Evaluation
of Collective Adaptive Systems

 123

Lecture Notes in Computer Science 9700

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Marco Bernardo • Rocco De Nicola
Jane Hillston (Eds.)

Formal Methods
for the Quantitative Evaluation
of Collective Adaptive Systems
16th International School on Formal Methods
for the Design of Computer, Communication,
and Software Systems, SFM 2016
Bertinoro, Italy, June 20–24, 2016
Advanced Lectures

123

Editors
Marco Bernardo
Dipartimento di Scienze Pure e Applicate
Università di Urbino “Carlo Bo”
Urbino
Italy

Rocco De Nicola
IMT - School for Advanced Studies Lucca
Lucca
Italy

Jane Hillston
School of Informatics
University of Edinburgh
Edinburgh
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-34095-1 ISBN 978-3-319-34096-8 (eBook)
DOI 10.1007/978-3-319-34096-8

Library of Congress Control Number: 2016937952

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

This volume collects a set of papers accompanying the lectures of the 16th International
School on Formal Methods for the Design of Computer, Communication and Software
Systems (SFM). This series of schools addresses the use of formal methods in computer
science as a prominent approach to the rigorous design of the above-mentioned
systems. The main aim of the SFM series is to offer a good spectrum of current research
in foundations as well as applications of formal methods, which can be of help to
graduate students and young researchers who intend to approach the field. SFM 2016
was devoted to the quantitative evaluation of collective adaptive systems and covered
topics such as self-organization in distributed systems, scalable quantitative analysis,
spatio-temporal models, and aggregate programming. The eight papers of this volume
represent the broad range of topics of the school.

The paper by Talcott, Nigam, Arbab, and Kappé proposes a framework called Soft
Agents, formalized in the Maude rewriting logic system, to describe systems of
cyber-physical agents that operate in unpredictable, possibly hostile, environments
using locally obtainable information. Ghezzi’s paper is a tutorial on how to design
adaptable and evolvable systems that support safe continuous software deployment to
guarantee correct operation in the presence of dynamic reconfigurations. Bortolussi and
Gast study the limiting behavior of stochastic models of populations of interacting
agents, as the number of agents goes to infinity, in the case that classical conditions
ensuring the validity of mean-field results based on ordinary differential equations do
not hold. The paper by Loreti and Hillston illustrates CARMA, a language recently
defined to support specification and analysis of collective adaptive systems, and its
tools developed for system design and analysis. Galpin’s paper provides an overview of
models of individuals and models of populations for collective adaptive systems, in
which discrete or continuous space is explicitly represented. Ciancia, Latella, Loreti,
and Massink also address spatial aspects of collective adaptive systems through a
topology-inspired approach to formal verification of spatial properties, which is based
on the logics SLCS and STLCS and their model-checking algorithms. The paper by
Vandin and Tribastone shows how to efficiently analyze quantitative properties of
large-scale collective adaptive systems by reviewing algorithms that reduce the
dimensionality of models in a way that preserves modeler-defined state variables.
Finally, Beal and Viroli present aggregate programming, a new paradigm for coping
with an ever-increasing density of computing devices that raises the level of abstraction
in order to allow programmers to reason in terms of collections of interacting devices.

We believe that this book offers a useful view of what has been done and what is
going on worldwide in the field of formal methods for the quantitative evaluation of
collective adaptive systems. This school was organized in collaboration with the EU
FP7 project QUANTICOL, whose support we gratefully acknowledge. We wish to
thank all the speakers and all the participants for a lively and fruitful school. We also

wish to thank the entire staff of the University Residential Center of Bertinoro for the
organizational and administrative support, as well as the Springer editorial office for the
assistance with the editing of this book and the kind sponsorship.

June 2016 Marco Bernardo
Rocco De Nicola

Jane Hillston

VI Preface

Contents

Formal Specification and Analysis of Robust Adaptive Distributed
Cyber-Physical Systems . 1

Carolyn Talcott, Vivek Nigam, Farhad Arbab, and Tobias Kappé

Dependability of Adaptable and Evolvable Distributed Systems 36
Carlo Ghezzi

Mean-Field Limits Beyond Ordinary Differential Equations 61
Luca Bortolussi and Nicolas Gast

Modelling and Analysis of Collective Adaptive Systems with CARMA
and its Tools . 83

Michele Loreti and Jane Hillston

Spatial Representations and Analysis Techniques . 120
Vashti Galpin

Spatial Logic and Spatial Model Checking for Closure Spaces 156
Vincenzo Ciancia, Diego Latella, Michele Loreti, and Mieke Massink

Quantitative Abstractions for Collective Adaptive Systems 202
Andrea Vandin and Mirco Tribastone

Aggregate Programming: From Foundations to Applications. 233
Jacob Beal and Mirko Viroli

Author Index . 261

http://dx.doi.org/10.1007/978-3-319-34096-8_1
http://dx.doi.org/10.1007/978-3-319-34096-8_1
http://dx.doi.org/10.1007/978-3-319-34096-8_2
http://dx.doi.org/10.1007/978-3-319-34096-8_3
http://dx.doi.org/10.1007/978-3-319-34096-8_4
http://dx.doi.org/10.1007/978-3-319-34096-8_4
http://dx.doi.org/10.1007/978-3-319-34096-8_5
http://dx.doi.org/10.1007/978-3-319-34096-8_6
http://dx.doi.org/10.1007/978-3-319-34096-8_7
http://dx.doi.org/10.1007/978-3-319-34096-8_8

Formal Specification and Analysis of Robust
Adaptive Distributed Cyber-Physical Systems

Carolyn Talcott1(B), Vivek Nigam2, Farhad Arbab3,4, and Tobias Kappé3,4

1 SRI International, Menlo Park, CA 94025, USA
carolyn.talcott@sri.com

2 Federal University of Paraiba, João Pessoa, Brazil
vivek.nigam@gmail.com

3 LIACS, Leiden University, Leiden, The Netherlands
tkappe@liacs.nl

4 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
farhad@cwi.nl

Abstract. We are interested in systems of cyber-physical agents that
operate in unpredictable, possibly hostile, environments using locally
obtainable information. How can we specify robust agents that are able
to operate alone and/or in cooperation with other agents? What prop-
erties are important? How can they be verified?

In this tutorial we describe a framework called Soft Agents, formal-
ized in the Maude rewriting logic system. Features of the framework
include: explicit representation of the physical state as well as the cyber
perception of this state; robust communication via sharing of partially
ordered knowledge, and robust behavior based on soft constraints. Using
Maude functionality, the soft agent framework supports experiment-
ing with, formally testing, and reasoning about specifications of agent
systems.

The tutorial begins with a discussion of desiderata for soft agent mod-
els. Use of the soft agent framework for specification and formal analysis
of agent systems illustrated in some detail by a case-study involving
simple patrolling bots. A more complex case study involving surveillance
drones is also discussed.

1 Introduction

Consider a future in which an explosion of small applications running on mobile
devices combine and collaborate to provide powerful new functionality, not only
in the realms such as smart vehicles, disaster response, home care, but also
harnessing diverse communication mechanisms and robust people power for new
kinds of cyber crowd sourcing tasks.

Complex cyber-physical agents are becoming increasingly ubiquitous, in part,
due to increased computational performance of commodity hardware and the
widespread adoption of standard mobile computing environments (e.g. Android).

The work was partially supported by ONR grant N00014–15–1–2202.

c© Springer International Publishing Switzerland 2016
M. Bernardo et al. (Eds.): SFM 2016, LNCS 9700, pp. 1–35, 2016.
DOI: 10.1007/978-3-319-34096-8 1

2 C. Talcott et al.

For example, one can purchase (for a few hundred US dollars in the retail mar-
ket) a four rotor “drone” capable of precise, controlled hovering that can be
equipped with a portable Android phone that provides integrated communica-
tion (e.g. wifi ad hoc) and sensing (e.g. high resolution camera) capability as
well as considerable processing power (e.g. multiple GPU cores) and memory.

Already there are impressive examples coming from both research and indus-
trial settings. Here are a few.

Researchers in the Vijay Kumar Lab at the University of Pennsylvania
[1–3] are experimenting with autonomous flying quadrotor robots that can be
equipped with a variety of sensors such as IMUs (inertial measurement units),
cameras, laser range scanners, altimeters and/or GPS sensors. Key capabilities
being developed include navigation in 3-dimensional space, sensing other entities,
and forming ad hoc teams. Potential applications include construction, search
and rescue, first response, and precision farming.

The recent EU ASCENS project [4,5] focused on theoretical foundations and
models for reliable and predictable system behavior while exploiting the possibil-
ities of highly dynamic, autonomic components. The project included pragmatic
case studies such as generation of a robot swarm with both autonomous and
collective behavior.

A case study of an adaptive network consisting of smart phones, robots,
and UAVs is reported in [6]. The temporal evolution of the macroscopic system
state is controlled using a distributed logic [7,8], while the microscopic state is
controlled by an algorithm based on ‘artificial physics’. Communication is based
on a partially-ordered knowledge sharing model for loosely coupled distributed
computing. The ideas were tested via both simulation and in a parking lot using
a cyber-physical testbed consisting of robots, quadcopters, and Android devices.
This work was part of the SRI Networked Cyber-Physical Systems project [9].

Startups are developing applications for shipping, security, search and rescue,
environmental monitoring, and agriculture to name a few. Of course, there are
Google’s driverless cars and Amazon’s drone delivery system.

In October 2015 Stanford hosted Drone swarms: the Buz of the future [10].
The event included demonstrations (live and video) of a number of advanced
autonomous robotic capabilities. The Knightscope [11] security robots roamed
the busy plaza without bumping into people or other objects. Their normal job is
surveillance of limited areas, looking for problems. Liquid Robotics [12] presented
their wave glider, a surfboard size robot that is powered by the ocean, capable of
multiple modes of communication and of carrying diverse sensors. Wave gliders
are able to autonomously and safely navigate from the US to Australia, and able
to call home when pirates try bot-napping gliders, in addition to collecting data.

According to a recent Fortune article [13] Burlington Northern Santa Fe
(BNSF) Railway has gained FAA approval for a pilot(less) program to use drones
to inspect its far-flung network of rails, over 32,500 miles. There are many tech-
nical obstacles to overcome, but use of drones has the potential for both greater
efficiency and improved safety. Each rail section is inspected at least twice a week,
and inspectors may have to deal with disagreeable insects, toxic vegetation, or
poisonous snakes.

Formal Specification and Analysis of Robust Adaptive Distributed 3

Formal executable models can provide valuable tools for exploring system
designs, testing ideas, and verifying aspects of a systems expected behavior.
Executable models are often cheaper and faster to build and experiment with
than physical models, especially in early stages as ideas are developing. The value
of using formal executable models in the process of designing and deploying a
network defense system is illustrated in [14,32].

In the following we describe a Soft Agent Framework that provides infrastruc-
ture and guidance for building formal executable models of cyber-physical agent
systems that we call soft agent systems. We present an executable specifica-
tion in the Maude rewriting logic system [15] and illustrate the ideas with case
studies.

Key features of soft agents include

– Simple goal specification (package A must get delivered from point X to
point Y).

– Efficient (not necessarily optimal) agent trajectory planning.
– Distributed and local, there is no central planner with perfect global knowl-

edge.
– Agents are resource constrained—limited communication range, energy

(actions consume energy), lift power, etc.
– Robustness to unexpected/unplanned situations

• agent actions (sensor readings, actuator actions, communication) can suf-
fer delays/failure,

• perturbations in environment. e.g., a gust of wind, a change of goal.

The soft agent framework combines ideas from several previous works: the
use of soft constraints [16–18] and soft constraint automata [19] for specifying
robust and adaptive behavior; partially ordered knowledge sharing for communi-
cation in disrupted environments [8,20–22], and the Real-time Maude approach
to modeling timed systems [23]. A novel feature is the explicit representation of
both cyber and physical aspects of a soft agent system. An environment com-
ponent maintains the physical state of the agents and their surroundings. Each
agent has a local knowledge base that stores the agents view of the world, which
may or may not be the actual state of the world. To specify an agent system
one must say what sensors an agent has and what actions it can perform. The
‘physics’ of these actions must also be specified: how an action affects the state
of the agent and its surroundings (in particular how the sensor readings change).
One must also specify how an agent decides what actions to carry out in differ-
ent situations. Although the framework allows complete freedom in how this is
done, we will focus on a soft constraint approach.

Soft constraints allow composition in multiple dimensions, including different
concerns for a given agent, and composition of constraints for multiple agents.
In [17] a new system for expressing soft constraints called Monoidal Soft Con-
straints is proposed. This generalizes the Semi-ring approach to support more
complex preference relations. In [18] partially ordered valuation structures are
explored to provide operators for combination of constraints for different features

4 C. Talcott et al.

that respects the relative importance of the features. Steps towards a theoret-
ical foundation for compositional specification of agent systems based on Soft
Constraint Automata is presented in [24]. Although soft constraints provide an
elegant and powerful foundation, as we will see there is much to do to develop
principled ways to decompose problems and compose concerns with predictable
results. Having compositional specification mechanisms is a step toward compo-
sitional reasoning which is import to manage the complexity of soft agent and
similar systems. Systems operating in unpredictable environments, beyond our
control are almost guaranteed to exhibit some kind of failure. Having a struc-
tured, compositional model will facilitate developing methods for determining
the cause of failures and enabling (partial) recovery in many cases.

Plan. Section 2 discusses desiderata for a framework for Soft Agents. Section 3
presents the proposed framework and its formalization in Maude. Section 4 illus-
trates the application of soft-agents to a system of simple patrolling bots. Appli-
cation to modeling more complex drone systems is also briefly summarized.
Section 5 summarizes and discusses future directions.

2 Desiderata for Soft Agents

Cyber-physical agents must maintain an overall situation, location, and time
awareness and make safe decisions that progress towards an objective in spite of
uncertainty, partial knowledge and intermittent connectivity. The big question
is: how do we design, build, and understand such systems? We want principles
and tools for system design that achieve adaptive, robust functionality.

The primary desiderata for our Soft Agents are localness, liveness and soft-
ness. We explicitly exclude considering insincere or malicious agents in our cur-
rent formulation.1

Localness. Cooperation and coordination should emerge from local behavior
based on local knowledge. This is traditionally done by consensus formation
algorithms. Consensus involves agreeing on what actions to take, which usually
requires a shared view of the system state. In a distributed system spread over
a large geographic area beyond the communication reach of individual agents,
consensus can take considerable time and resources, but our agents must keep
going. Thus consensus may emerge but can’t be relied on, nor can it be be forced.

In less than ideal conditions what is needed is a notion of sufficient consensus:
for any agent, consensus is sufficient when enough of a consensus is present so
that agents can begin executing actions that are likely to be a part of a successful
plan, given that there is some expectation for the environment to change.

Our partially ordered knowledge sharing (POKS) model for communication
takes care of agreeing on state to the degree possible. In a quiescent connected
1 This is a strong assumption, although not unusual. The soft agents framework sup-
ports modeling of an unpredictable or even “malicious” environment. We discuss the
issue of trust or confidence in knowledge received as part of future work.

Formal Specification and Analysis of Robust Adaptive Distributed 5

situation all agents will eventually have the same knowledge base. As communi-
cation improves, an soft agent system approaches a typical distributed system
without complicating factors. This should increase the likelihood of reaching
actual consensus, and achieving ideal behaviors.

A key question here is how a system determines the minimal required level of
consensus? In particular what quality of connection/communication is required
to support formation of this minimum level of consensus?

Safety and Liveness. Another formal property to consider concerns safety and
liveness: often explained as something bad does not happen and something good
will eventually happen. From a local perspective this could mean avoiding pre-
ventable disaster/failure as well as making progress and eventually sufficiently
satisfying a given goal.

– An agent will never wait for an unbounded time to act.
– An agent can always act if local environment/knowledge/situation demands.
– An agent will react in a timely manner based on local information.
– An agent should keep itself “safe”.

We note that the quality calculus [25,26] provides language primitives to
support programming to meet such liveness requirements and robustness analysis
methods for verification. One of the motivations of the Quality Calculus was to
deal with unreliable communication. It will be interesting to investigate how
soft constraints and the quality calculus approach might be combined to provide
higher level specification and programming paradigms.

Softness. We want to reason about systems at both the system and cyber-
physical entity/agent level and systematically connect the two levels. Agent
behavior must allow for uncertainty and partial information, as well as pref-
erences when multiple actions are possible to accomplish a task, as often is the
case.

Specification in terms of constraints is a natural way to allow for partiality.
Soft constraints provide a mechanism to rank different solutions and compose
constraints concerning different aspects. We refer to [17] for an excellent review
of different soft constraint systems. Given a problem there will be system wide
constraints characterizing acceptable solutions, and perhaps giving measures to
rank possible behaviors/solutions. Depending on the system wide constraints,
global satisfaction can be a safety requirement, a liveness/progress requirement,
a cooperation requirement, to name a few. Rather than looking for a distributed
solution of global constraints, each agent will be driven by a local constraint sys-
tem. Multiple soft constraint systems maybe be involved (multiple agent classes)
and multiple agents may be driven by the same soft constraint system. A key
challenge is developing reasoning and analysis methods to determine conditions
under which satisfaction of local constraints will lead to satisfaction of global
constraints, monotonically.

6 C. Talcott et al.

3 The Soft Agent Formal Framework

The soft-agent framework provides infrastructure and context for developing
executable specifications of cyber-physical agents that operate in unpredictable
environments, and for experimenting with and analyzing the resulting system
behaviors. The framework, specified in the rewriting logic language Maude [15],
provides generic data structures for representing system state (cyber and phys-
ical), interface sorts and functions to be used to specify the environment,
agent capabilities (physical) and behavior (cyber). The semantics, how a sys-
tem evolves, is given by a small number of rewrite rules defined in terms of these
sorts and functions. A soft agent model specializes the framework by refining the
sort hierarchy, adding model specific data structures, and providing definitions
of the interface functions.

What can we do with an executable specification? Once a model is defined,
we can define specific agent system configurations and explore their behavior by
rewriting and search. We can watch the system run by rewriting according to dif-
ferent builtin or user defined strategies to choose next steps. In this way, specific
executions and their event traces can be examined. Search allows exploration of
all possible executions of a given configuration (up to some depth), to look for
desired or undesirable conditions. Metadata can be added to a configuration to
collect quantitative information such as the lowest energy before charging, close
encounters, time elapsed between events, and so on.

As an example we introduce our main case study, Patrol bots, informally. A
patrol bot moves on a grid along a fixed track (fixed value of the y coordinate).
One or more squares of the grid are charging stations. We want to specify patrol
bot behavior such that in a system with one or more patrol bot agent: agents
do not run out of energy, and they keep patrolling.

In a little more detail, a soft agent system configuration consists of an envi-
ronment component and a collection of agents. Each agent has local knowledge
which can be shared, selectively and opportunistically with other agents when
they come within “hearing distance” (in contact). For example, patrol bots share
location. In a more complex scenario agents could learn terrain features and share
that information. Knowledge sharing replaces traditional message passing as a
communication mechanism. The framework caches shared knowledge to support
propagation through a network of agents as they move around and meet different
agents. Knowledge comes with a partial order that is used by the framework to
replace stale or superseded knowledge. Of course an agent can keep a history by
aggregating superseded information locally, for example as a list of values.

A specific model will specify for each agent some ability to observe its physical
state and local environment, and some ability to act locally to change its physical
state and local environment. A patrol bot can move one square at a time in any
direction (i.e., to an adjacent square), subject to staying on the grid, and not
moving to a blocked or occupied square. Moving uses energy. If the bot is at a
charging square it can charge for some time until its energy capacity is reached.
A patrol bot has sensors to read its location on the grid, and its energy level.

Formal Specification and Analysis of Robust Adaptive Distributed 7

An agent’s state consists of several attributes including its local knowledge
base, pending events (tasks for the agent, or actions to be carried out), and
cached knowledge to share with other agents.2 A patrol bot’s local knowledge
includes the grid dimensions and charging station locations. It may store its
location and energy, or simply read the sensors when it needs that information.
In a context with more than one patrolling bot, it may store information about
the location of other bots.

The environment is modeled as a knowledge base that contains information
about the physical state of each agent, along with non-agent specific information
such as features of the terrain, or current weather.

How do agents work? Agents carry out tasks (the cyber/reasoning part) and
schedule actions to be executed by the environment (the physical part). The
typical process for an agent carrying out a task is the following:

– read and process shared knowledge it has received;
– read and process sensor data (local information about the agents state and

local environment conditions);
– think and decide

• new knowledge to share
• actions to execute
• next tasks
• updates for the local knowledge base: sensor readings to remember, new

information learned or computed; new goals, things to check, . . .

In the Patrol Bot model there is just one task, tick. This triggers the
processing described above. In selecting actions, if not at a charging station,
a patrol bot must decide whether to continue on its track or to detour to the
nearest charging station.

How does the system run? Agents schedule tasks with a delay, often just one
time unit, Actions are scheduled with a delay (possibly zero) and a duration. If an
agent has a ready task (zero delay) then it can be carried out. Once there are no
more ready tasks, ready actions are executed concurrently, sharable knowledge
is exchanged, and time passes until there are one or more ready tasks.

In a scenario with two patrol bots, each with a ready task, then both will
execute their tasks (order doesn’t matter) scheduling the next tick with one
time unit delay. Suppose both also schedule moves to different locations with 0
delay. Then the moves will be executed concurrently, one unit of time will pass,
and now the two bot will again process their ticks.

Making explicit models of the physical state and agents knowledge allow
modeling a range of situations, including the case where an agent has an accurate
view of its situation and a variety of cases with discrepancies by independently
varying different parts of the model. For example as we will see, it is easy to add
wind effects to the model and see how well the agents adapt.

2 The shared cache is separated from the local knowledge base so an agent can choose
what to share and what to keep to itself.

8 C. Talcott et al.

The knowledge sharing communication model supports opportunistic com-
munication where a connected network is not possible. In an ideal situation,
knowledge propagates quickly and agents can have good situation awareness.
However, an agent should not wait to hear from others. If an agent senses that
action is needed, it should figure out the an action that is safe and makes progress
towards its goal if possible, based on local information.

3.1 Introduction to Rewriting Logic and Maude

Rewriting logic [27] is a logical formalism that is based on two simple ideas: states
of a system are represented as elements of an algebraic data type, specified in
an equational theory, and the behavior of a system is given by local transi-
tions between states described by rewrite rules. An equational theory specifies
data types by declaring constants and constructor operations that build com-
plex structured data from simpler parts. Functions on the specified data types
are defined by equations that allow one to compute the result of applying the
function. A term is a variable, a constant, or application of a constructor or
function symbol to a list of terms. A specific data element is represented by a
term containing no variables. Assuming the equations fully define the function
symbols, each data element has a canonical representation as a term containing
only constants and constructors.

A rewrite rule has the form t ⇒ t′ if c where t and t′ are terms possibly
containing variables and c is a condition (a boolean term). Such a rule applies to
a system in state s if t can be matched to a part of s by supplying the right values
for the variables, and if the condition c holds when supplied with those values.
In this case the rule can be applied by replacing the part of s matching t by t′

using the matching values for the place holders in t′. The process of application
of rewrite rules generates computations (also thought of as deductions).

We note that rewriting with rules is similar to rewriting with equations (tra-
ditional term rewriting), in that we match the lefthand side and replace the
matched subterm by the instantiated righthand side. The difference is in the
way the rewriting is used. Equations are used to define functions by providing a
means of computation the value of a function application. This means that the
equations of an equational theory should give the same result independent of
the order in which they are applied. Furthermore, equational rewriting should
terminate. In contrast, rules are used to describe change over time, rather than
computing the value of a function. They often describe non-deterministic possi-
bly infinite behavior.

Maude is a language and tool based on rewriting logic [15,28]. Maude provides
a high performance rewriting engine featuring matching modulo associativity,
commutativity, and identity axioms; and search and model-checking capabilities.
Thus, given a specification S of a concurrent system, one can execute S to find
one possible behavior; use search to see if a state meeting a given condition can
be reached; or model-check S to see if a temporal property is satisfied, and if
not to see a computation that is a counter example.

Formal Specification and Analysis of Robust Adaptive Distributed 9

To introduce Maude notation and give some intuition about how concurrent
systems are specified and analyzed in Maude we consider specification of a simple
Vending Machine. A Maude specification consists of a collection of modules. A
module has a name, a set of imports (possibly empty), declarations of sorts and
operations (constants, constructors, functions), equations defining functions, and
rewrite rules. The vending machine specification is given in a module named
VENDING-MACHINE.

mod VENDING-MACHINE is
sorts Coin Item Marking .
subsorts Coin Item < Marking .
op null : -> Marking [ctor] . *** empty marking
op _ _ : Marking Marking -> Marking

[ctor assoc comm id: null] .
ops $ q : -> Coin [ctor] . *** dollar, quarter
ops a c : -> Item [ctor] . *** apple, cake
rl[buy-c]: $ => c .
rl[buy-a]: $ => a q .
rl[change]: q q q q => $.

endm

First several sorts (think sets or data types) are declared (key word sort).
The basic sorts are Coin and Item. They represent what you put in and get
out of the machine. The sort Marking consists of multisets of items and coins.
This is specified by the subsort (subset) declarations saying that coins and items
are (singleton) markings; and the declaration of the union operator (_ _, key
word op). The blanks indicate operator argument positions, thus union of two
markings is represented by placing them side by side, just as one represents
a string of characters. The operator attributes assoc, comm, and id:null
declare union to be associative and commutative with identity null, the empty
marking. (Text following *** is a comment.) After defining the data types to
be used, some specific constants are declared: $ (dollar) and q (quarter) of sort
Coin; and a (apple) and c (cake) of sort Item (the keyword ops is used when
declaring multiple constants of the same sort). The key word ctor in the oper-
ator attributes indicates the a constructor. Constructors are used to construct
data elements, while non-constructor operators are used to name constants and
functions defined by equations. The idea is that, using the equations, each term
can be rewritten to an equivalent term in canonical form built from constructor
operations. Maude takes care of all this under the hood, allowing the user to
think abstractly in terms of equivalence classes.

Finally there are three rewrite rules specifying the vending machine behavior.
The rule labeled buy-c says that if you have a dollar you can buy a cake. More
formally, any marking containing an occurrence of $ can be rewritten to one
in which the $ is replaced by a c. Similarly the rule labeled buy-a says that
with a dollar you can also get an apple and a quarter change. The rule labeled
change says that when four quarters have accumulated they can be changed
into a dollar. Note that if a dollar is present in a marking, there are two ways that

10 C. Talcott et al.

the marking could be rewritten, each with a different outcome. If four quarters
are also present, the change rule could be applied before or after one of the buy
rules without affecting the eventual outcome.

To find one way to use three dollars, ask Maude to rewrite, and a quarter,
an apple, and two cakes are the result.

Maude> rew $ $ $.
result Marking: q a c c

Although there are several ways to rewrite three dollars, the Maude rewrite
command uses a specific strategy for choosing rules to apply, and in this case
chose to apply buy-c twice and buy-a once.

To discover more possibilities Maude can be asked to search for all ways
of rewriting three dollars, such that the final state matches some pattern. For
example, we can find all ways of getting at least two apples using the pattern

a a M:Marking

that is matched by any state that has at least two as.

Maude> search $ $ $ =>! a a M:Marking .
Solution 1 (state 8)
M:Marking --> q q c
Solution 2 (state 9)
M:Marking --> q q q a

There are two ways this can be done. In one solution the remainder of the state
consists of a cake and two quarters, (indicated by M:Marking -> q q c in
Solution 1). In the other solution, there is a third apple and three quarters.

We can ask Maude to show us a path (list of rules fired) corresponding to
one of these solutions using the command

Maude> show path labels 8 .
buy-c
buy-a
buy-a

to find the path to state 8. One can also ask for the full path to state 8. In this
case the sequence of states and rules applied will be printed.

3.2 Key Sorts and Functions for Agent State

Now we see how the key sorts and functions for soft agent state are specified in
Maude. Agent state is represented using knowledge and events.

Formal Specification and Analysis of Robust Adaptive Distributed 11

Knowledge. Identifiers are used to identify agents and to link knowledge and
events to agents. The module ID-SET declares the sort Id of identifiers and
defines IdSet to be multisets of identifiers, using the same mechanism that
we explained in the Vending machine definition of Marking. The attributes
assoc, comm, and id: none, say that the union operation (_ _) is associative
and commutative with identity none. The subsort declaration Id < IdSet
says that identifiers are also singleton identifier sets.

fmod ID-SET is
sort Id . sort IdSet . subsort Id < IdSet .
op none : -> IdSet [ctor] .
op _ _ : IdSet IdSet -> IdSet [ctor assoc comm id: none] .

var id : Id . var ids : IdSet .
op member : Id IdSet -> Bool .
eq member(id, id ids) = true .
eq member(id, ids) = false [owise] .

endfm

The boolean function, member, tests if an identifier is an element of a given
set. Variables are declared with the key word var and give the variable name
and its sort. The definition of member uses Maude’s builtin matching modulo
AC capability to check if the second argument can be written in the form id
ids. If so, we have found id in the given set. If the match fails, then id is not
a member of the given set. The equation with the owise attribute applies in
this case.

The structure of knowledge is specified in the KNOWLEDGE module.

fmod KNOWLEDGE is
inc ID-SET . inc NAT-TIME-INF .

sort KB . subsort KItem < KB .
op none : -> KB [ctor] .
op __ : KB KB -> KB [ctor assoc comm id: none] .

sorts PKItem TKItem . *** Persistent, Timed
subsort PKItem TKItem < KItem .

sort Info .
op _@_ : Info Time -> TKItem .

*** knowledge partial order
op _<<_ : KItem KItem -> Bool .
eq ki << ki’ = false [owise] .

op addK : KB KB -> KB .
...

endfm

12 C. Talcott et al.

The statements

inc ID-SET . inc NAT-TIME-INF .

are import statements. They effectively include the declarations and operations
of the modules ID-SET and NAT-TIME-INF into KNOWLEDGE. The module
NAT-TIME-INF models discrete time as natural numbers and adds a notion of
infinity which is a convenient for many purposes.

The main knowledge sorts are KItem (knowledge item) and KB (knowledge
base, a multiset of knowledge items). PKItem (persistent knowledge items)
and TKItem (time dependent knowledge items) are subsorts of KItem. The
sort Info represents the content of a TKItem, and becomes a TKItem when
timestamped (info @ t). Key to managing evolving knowledge is the par-
tial order, <<, on knowledge items. ki << ki’ is intended to mean that ki’
supersedes ki. Often this is because ki’ has a later timestamp, but this is not
necessarily so. The function addK(kb0,kb1) adds the knowledge base kb1 to
kb0 using the partial order to drop any superseded knowledge.

The following extract from modules LOCATION-KNOWLEDGE and
CLOCK-KNOWLEDGE specifies three forms of knowledge provided by the soft
agent framework for use in specific agent models.

*** knowledge elements available to all models
sort Class .
op class : Id Class -> PKItem .
op clock : Time -> KItem [ctor] .
sort Loc .
op noLoc : -> Loc [ctor] .
op atloc : Id Loc -> Info [ctor] .

vars t0 t1 : Time .
var id : Id . vars loc0 loc1 : Loc .
eq clock(t0) << clock(t1) = t0 < t1 .
ceq atloc(id,loc0) @ t0 << atloc(id,loc1) @ t1 = t0 < t1 .

Soft agents are organized in classes, similar to object oriented models. The oper-
ator class defines a (partial) mapping from identifiers to classes. Soft agent
classes are intended to capture fixed physical aspects that don’t change over
time. Thus the return sort for class is PKItem. For example, the intent is that
an agent of class Bot (such as our patrol bot), that rolls on wheels, should not
turn into an agent of class Drone, that flys. Information constructors could be
added to capture information about behavior class that might change over time,
for example to specify an agents role in a protocol or other coordinated activity.

The term atloc(id,loc0) @ t0 says that the agent with identifier id
was at location loc2 at time t0. The operator clock is an exception to the
convention that time sensitive items are obtained by time stamping information
terms. A term clock(t0) in a local knowledge base says that the agents local
time is t0.

Formal Specification and Analysis of Robust Adaptive Distributed 13

The equations defining << for clocks and location formalize the decision that
only the latest information should be kept. For example letting

lkb = clock(0) class(b(0),Bot) atloc(b(0),pt(0,0)) @ 0)

where b(0) is an identifier, pt(0,0) and pt(1,0) are grid locations, and Bot
is a class, we have the following

addK(lkb, atloc(b(0),pt(1,0)) @ 1) =
clock(0) class(b(0),Bot) (atloc(b(0),pt(1,0)) @ 1)

because 0 < 1.

Events. Agents behavior is organized using events, formalized in the mod-
ule EVENTS starting with the main sorts, Event and EventSet (multisets of
events).

fmod EVENTS is inc KNOWLEDGE .

sorts Event EventSet . subsort Event < EventSet .
op none : -> EventSet .
op __ : EventSet EventSet -> EventSet [ctor assoc comm id: none] .

*** Tasks
sort Task .
op tick : -> Task [ctor] . --- default tasks

*** Actions (must be annotated by ids)
sorts Action ActSet . subsort Action < ActSet .
op none : -> ActSet [ctor] .
op __ : ActSet ActSet -> ActSet [ctor assoc comm id: none] .

*** immediate events .
sort IEvent . subsort IEvent < Event .
op rcv : KB -> IEvent [ctor] .

*** delayed events
sort DEvent . subsort DEvent < Event .
op _@_ : Task Time -> DEvent .
op _@_;_ : Action Time Time -> DEvent .

endfm

There are two kinds of event, immediate events (sort IEvent) and delayed
events (sort DEvent). rcv(kb) is an immediate event, representing notification
of newly arrived shared knowledge. Delayed events are built from tasks (sort
Task) and actions (sort Action). Tasks are used to trigger agents to process
information and schedule actions to be carried out. task @ delay is a delayed
event specifying that task should be done after delay time units have passed.
The generic task tick is provided by the framework. A specific agent model can
introduce additional tasks as needed. act @ delay ; duration is a delayed
event specifying that the action act is to be enacted starting after delay time
units and lasting duration time units. For example in response to a tick, a

14 C. Talcott et al.

patrol bot with identifier b(0) might schedule mv(b(0),E) @ 0 ; 1— move
east, now, for one time unit. It might also schedule tick @ 2, to repeat the
processing again in 2 time units. If the patrol bot is one square north of a
charging station it could schedule

(mv(b(0),S) @ 0 ; 1) (charge(b(0)) @ 1 ; 2) tick @ 3

to move to the charging station, charge for two time units and then repeat
the task processing. We note that action terms must have an identifier, since
ready actions from all agents are collected and executed concurrently. Thus it is
necessary to know who is doing the action.

3.3 Agents and Configurations

Now we can formalize the structure of a soft agent (module AGENTS) and of
agent systems (module AGENT-CONF).

fmod AGENTS is
inc LOCATION-KNOWLEDGE . inc CLOCK-KNOWLEDGE .
inc EVENTS .

sorts Attribute AttributeSet .
subsort Attribute < AttributeSet .
op none : -> AttributeSet [ctor] .
op _,_ : AttributeSet AttributeSet -> AttributeSet

[ctor assoc comm id: none] .

sort Agent .
op [_:_|_] : Id Class AttributeSet -> Agent [ctor] .
op lkb‘:_ : KB -> Attribute [ctor] .
op ckb‘:_ : KB -> Attribute [ctor] .
op evs‘:_ : EventSet -> Attribute [ctor] .

endfm

In the spirit of object oriented specification, an agent has an identifier (recall the
module IDSET), a class, and a set of attributes. Three attributes are essential:
lkb (the local knowledge base); ckb (the knowledge cache for sharing); and
evs (pending events for this agent). A specific agent model might introduce
additional attributes if needed. The initial state of a patrol bot might look like
the following

[b(0) : Bot |
lkb: class(b(0),Bot) (myDir(b(0),E) @ 0) (myY(b(0),0) @ 0)

class(s(0),Station) (atloc(s(0),pt(2,1)) @ 0),
ckb: none, evs: tick @ 1]

where Station is the class of charging stations, myY(b(0),0) says this bot
should travel along y = 0 and myDir(b(0),E) says the bot is currently travel-
ing east. In this case the local knowledge base does not store location and energy
level since the corresponding sensors are read each time the bot processes a task.

Formal Specification and Analysis of Robust Adaptive Distributed 15

A soft agent system configuration (sort Conf) is a multiset of configuration
elements (sort ConfElt). The sort ASystem is used for top-level configurations.

fmod AGENT-CONF is
inc AGENTS .
sorts ConfElt Conf .
subsorts Agent < ConfElt < Conf .
op none : -> Conf .
op __ : Conf Conf -> Conf [ctor assoc comm id: none] .

sort Env . subsort Env < ConfElt .
op [_|_] : Id KB -> Env [ctor] .

op restrictKB : Id KB -> KB .
...

sort ASystem .
op ‘{_‘} : Conf -> ASystem .
op mte : Conf -> TimeInf .

endfm

An agent is a configuration element (subsort Agent < ConfElt .),
and environment objects (sort Env are also configuration elements
(subsort Env < ConfElt .). An environment object has an identifier and
a knowledge base. A top-level system should have a unique environment object.
The environment knowledge base includes the (physical) state of each agent as
well as environment knowledge such as terrain, obstacles, or weather conditions.
For example an environment knowledge base for a single patrol bot scenario
could be the following

clock(3)
class(b(0),Bot) (atloc(b(0),pt(2,0)) @ 3) (energy(b(0),10)) @ 3)
class(s(0),Station) (atloc(s(0),pt(2,1)) @ 0)
wind(N,pt(1,2)) @ 0)

where 3 time units have passed and the bot is now at grid location (2, 0) with
energy 10. There is northerly wind at grid location (1, 2).

The function restrictKB(id,kb) selects the knowledge items in kb with
identifier id. For example, restricting the above knowledge base to b(0) results
in the following.

class(b(0),Bot) (atloc(b(0),pt(2,0)) @ 3) (energy(b(0),10)) @ 3)

The operator {−} is used to collect configuration elements to define a top-
level system state of sort ASystem. The function mte computes how much time
can elapse before some task is ready (0 delay).

Specific agent models can introduce new configuration elements to facilitate
analysis. For example, simple flags can be defined that indicate a goal has been
reached or an invariant has failed. Metadata elements can be defined that mon-
itor execution state and collect information.

16 C. Talcott et al.

3.4 Rules

There are two rewrite rules: doTask that controls carrying out agent tasks,
and timeStep, that carries out actions concurrently, propagates any sharable
knowledge, and increments time.

The doTask rule uses the doTask function to determine how to update the
agents state.

crl[doTask]:
[id : cl | lkb : lkb, evs : ((task @ 0) evs), ckb : ckb, ats]
[eid | ekb]
=>
[id : cl | lkb : lkb’, evs : evs’, ckb : ckb’, ats] [eid | ekb]
if t := getTime(lkb)
/\ {ievs,devs} := splitEvents(evs,none)
/\ {lkb’,evs’,kb} kekset := doTask(cl,id,task,ievs,devs,ekb,lkb)
/\ ckb’ := addK(ckb,kb)
[print "doTask:" id "! time:" t "!!" evs’ "\n" kekset].

The function getTime(lkb) gets the local time from the clock knowl-
edge of a knowledge base, in this case the agents view of the current time.
splitEvents splits the input event set into a pair consisting of the imme-
diate events (ievs), and the delayed events (devs). Immediate events are to
be processed by the agent. The only immediate events provided by the frame-
work are rcv events, holding knowledge received from other agents by sharing.
Delayed events are actions to be executed by the environment. The agent is free
to add to or delete/cancel elements of its delayed events. The doTask function
is declared as part of the framework,

op doTask : Class Id Task EventSet EventSet KB KB
-> KBEventsKBSet.

but equations defining this function must be provided by each model. doTask
is given the agents class (cl), its identifier (id), and the task to be addressed
(task).3 In addition it is given unprocessed knowledge acquired by knowledge
sharing (ievs), the agents current scheduled tasks and actions (devs, delayed
events), the agents local knowledge base (lkb), and the environment knowledge
base from which it can extract the agents current sensor readings (ekb) and other
local information. doTask returns a triple: the updated local knowledge base
(lkb’), updated scheduled tasks and actions (evs’), and information items to
be shared with other agents (kb), which is added to the agents cache to produce
the updated cache knowledge base (ckb’).

The timeStep rule concurrently performs actions using the function
doEnvAct. It updates delays and durations in the event sets (counting down)
using the function timeEffect. It propagates sharable knowledge using the

3 In fact, we use a single task, tick, to schedule the next invocation of an agents
cyberactivity. Information about what to do is kept in the local knowledge base.

Formal Specification and Analysis of Robust Adaptive Distributed 17

function shareKnowledge. The function updateAConf is an auxiliary func-
tion used during model analysis to collect and update metadata (stored as con-
figuration elements that are ignored by other framework functions that operate
on configurations).

crl[timeStep]:
{ aconf }
=>
{ aconf2 }
if nzt := mte(aconf)
/\ t := getTime(envKB(aconf))
/\ ekb’ := doEnvAct(t, nzt, envKB(aconf), effActs(aconf))
/\ aconf0 := updateEnv(ekb’,timeEffect(aconf,nzt))
/\ aconf1 := shareKnowledge(aconf0)
/\ aconf2 := updateConf(aconf1)
[print "eAct:" ekb’ "\ntimeStep:" t "++" nzt] .

Note that both rules have a print attribute. The print attribute specifies a
string to be printed (if the print option is turned on) each time the rule is
applied. The keyword print is followed by one or more string literals and/or
variables bound by rule matching. This is a handy way to produce an execution
trace with just information you care about.

The function doEnvAct determines the effects of agents actions on the envi-
ronment, including the agents physical state and interactions with neighbors.
The function is given the current time (t), the maximum time that can elapse
(nzt), the current situation (represented by the environment knowledge base,
envKB(aconf)), the actions to be executed (effActs(aconf), actions, col-
lected from all agents, that are no longer delayed), and the amount of time
that has elapsed in the current execution round. doEnvAct returns the envi-
ronment knowledge base resulting from (concurrent) execution of these actions
along with the amount of time passed (t’) which is as most nzt. This is used
in case execution fails and less than the allotted time has passed.

doEnvAct proceeds by time increments (in the discrete case 1 time unit).
The ready actions are concurrently executed for 1 time increment, each in the
same initial environment using the function doUnitEnvAct. The combined
environment resulting from the concurrent effects is used for the next time incre-
ment.4

Specifically, doEnvAct is defined by the conditional equations

ceq doEnvAct(t, nzt, ekb, evs, t’)
= doEnvAct(s(t), nzt monus 1, ekb’, timeEffect(evs,1), s(t’))
if ekb’ := doUnitEnvAct(t, ekb, evs, none)
/\ isOk(ekb).

4 It is possible that the concurrent actions are in conflict. In the current framework,
we have two options. One is that time stops, and the user can investigate what went
wrong. Or some actions are arbitrarily chosen to succeed and others fail. This is not
unreasonable, since true simultaneity is rare.

18 C. Talcott et al.

eq doEnvAct(t, t’’, ekb, evs, t’) = {ekb,t’} [owise]
--- applies if t’’ is 0 or ekb’ is not Ok

eq doUnitEnvAct(t, ekb, (act @ 0 ; nzt) evs, ekb’)
= doUnitEnvAct(t, ekb, evs,

addK(ekb’,doUnitEnvOneAct(act,ekb,t))).

isOk recognizes impossible environments (like two agents in the same location).
The function doUnitEnvAct simply iterates over the events, accumulating envi-
ronment updates returned by doUnitEnvOneAct(act,ekb,t).

doUnitEnvOneAct is the heart of the matter. It models the physics of the
action, act. Recall that actions are required to have an identifier component
that determines the agent doing the action.

As an example, a move action mv(id,dir) will change the location of the
agent identified by id, according to environmental conditions such as bound-
aries, terrain slope, or wind. The default is to move one unit in the specified
direction dir.

4 Case Studies

In this section we present two soft agent case studies. The first is the simple
Patrol Bot mentioned in Sect. 3 that we now formalize in some detail. The sec-
ond is a more complex surveillance drone case study that we summarize briefly
focusing on a set of formal analysis results. We begin by defining an extension
of the soft agent framework to support use of soft constraints to specify agent
behavior that is robust to modest disruptions.

4.1 Soft Constraints

Although the framework does not enforce a particular mechanism for defining the
doTask function, we provide an example template for this function to facilitate
use of soft constraint problem solving to determine what actions an agent might
consider in a given situation.

The idea of soft constraints is to constrain possible values of a set of variables
by mapping such assignments to a partially ordered domain and then selecting
assignments with maximal value. Traditionally soft constraints use an algebraic
structure such as c-Semirings as the valuation domain. Such structures have
good properties with respect to different forms of composition [17,18,24]. In
our examples, we do not need all the machinery of c-Semirings, so to simplify
the formalization so we defined a theory VALUATION that captures what we do
require of a valuation domain for our SCPs.

fth VALUATION is
pr BOOL . inc SOFT-AGENTS .
sort Grade .
op equivZero : Grade -> Bool .

Formal Specification and Analysis of Robust Adaptive Distributed 19

op _<_ : Grade Grade -> Bool .
op val : Id KB Action -> Grade .

endfth

Specifically, there is a sort Grade (the values), a partial order < on Grade, a
predicate, equivZero, that recognizes the minimal element(s) of Grade, and
a valuation function val that evaluates an action from the point of view of the
identified agent in the context of a knowledge base. Typically a specific instance
of val will measure the effect of an action, carried out in a situation represented
by the knowledge base–is it safe?, is it progressing towards some goal?, and so
on. For example the evaluation of a patrol bots action with respect to energy (it
should not run out of energy), might return 0 if the action leads to a state in
which there is not sufficient energy to get to a charging station and 1 otherwise.
This could be refined to return 1/2 if the energy is sufficient to get to a charging
station, but with less than 1/4 the energy capacity to spare (formalizing a notion
of caution).

The module SOLVE-SCP provides a simple mechanism for solving a soft
constraint problem by finding the maximal solutions, i.e. the maximally graded
actions. It is parameterized by a module Z that satisfies the theory VALUATION.

fmod SOLVE-SCP{Z :: VALUATION} is
inc SOFT-AGENTS .

sorts RankEle{Z} RankSet{Z} .
op {_,_} : Z.Grade ActSet -> RankEle{Z} .

subsort RankEle{Z} < RankSet{Z} .

op updateRks : RankSet{Z} Action Z.Grade -> RankSet{Z} .
op solveSCP : Id KB ActSet -> ActSet .
eq solveSCP(id,kb,acts) = solveSCP!(id,kb,acts,none) .

op solveSCP! : Id KB ActSet RankSet{Z} -> ActSet .
eq solveSCP!(id,kb,none,rks) = getAct(rks) .
ceq solveSCP!(id,kb,act actset,rks) =

solveSCP!(id,kb,actset,rks1)
if v0 := val(id,kb,act)
/\ rks1 := updateRks(rks,act,v0) .

endfm

The function solveSCP (solve Soft Constraint Problem) takes an agent iden-
tifier, a knowledge base and an action set and returns the actions in the input
action set with maximal grade according to the parameter theory. This function
maintains a ranked action set where the ranks/grades are non zero and maximal
among the actions considered so far. It uses the auxiliary function updateRks
to update this set given the grade of an action. The function equivZero is
used to ensure that the returned actions have non-zero grade. This method of
solving soft constraint problems works well when there are only a few actions

20 C. Talcott et al.

to consider. More efficient methods will be needed when situations get more
complex.

To the degree possible we would like to derive valuation functions for agents
from valuations with respect to different concerns. The choice of combination
operation is not a simple task. Lexicographic combination of partial orders works
in some cases [18], however it is not always possible to use a lexicographic order-
ing to obtain the desired combination. Initial steps towards a theory of compo-
sition of soft constraint problems/automata is presented in [24]. For the present
the soft agent framework does not provide builtin compositions operations. Each
agent model will need to develop its own valuation functions and combination
methods. We will see examples in the case studies below.

4.2 doTask Template

We now introduce the specialization of the doTask function that uses
solveSCP to determine the actions for an agent to consider. Recall that doTask
returns a triple consisting of an update for the agents local knowledge base, an
update for the agents event set, and knowledge to share. Then doTask is spec-
ified by the following conditional equation, that formalized the task process
outlined in beginning of Sect. 3.

ceq doTask(cl,id,tick,ievs,devs,ekb,lkb) =
if acts == none then

{lkb2, devs (tick @ botDelay), none }
else

selector(doTask!(id,lkb2,devs (tick @ botDelay),acts))
fi

if lkb0 := handleS(cl,id,lkb,ievs)
/\ lkb1 := getSensors(id,ekb)
/\ lkb2 := proSensors(id,lkb0,lkb1)
/\ acts0 := myActs(cl,id,lkb2)
/\ acts := solveSCP(id,lkb2,acts0) .

The functions handleS, getSensors, proSensors, and myActs are declared
by the framework, but must be defined by each specific agent model. The function
handleS processes the new shared knowledge (in ievs) producing an updated
local knowledge base (lkb0). It could simply add the new knowledge, or could
be more selective, do simple reasoning, or aggregate incoming data. The function
getSensors reads relevant sensors (and local environment information) from
the environment knowledge base (ekb), and the function proSensors processes
the result, lkb1, updating lkb0 to produce the updated local knowledge lkb2.
The function myActs returns a list of actions that are possible given the current
situation, represented by lkb2. For example a charge action is only possible
if the agent is at a charging station, and move actions may be constrained by
boundaries or known obstacles.

The function doTask! constructs a result triple for each of the actions, act
in acts, returned by solveSCP.

Formal Specification and Analysis of Robust Adaptive Distributed 21

op doTask! : Id KB EventSet ActSet -> KBEventsKBSet .
ceq doTask!(id,lkb2,devs,act acts) =

{lkb3,devs (act @ 0 ; 1),kbp} doTask!(id,lkb2,devs,acts)
if kbp := tell(id,act,lkb2)
/\ lkb3 := remember(id,act,lkb2) .

eq doTask!(id,lkb2,devs,none) = none .

doTask! uses remember(id,act,lkb2) to compute the local knowledge
update, and tell(id,act,lkb2) to compute what new knowledge to share.
By default, the updated events consist of devs, (tick @ botDelay) (to
schedule the next execution of doTask), and act @ 0 ; 1 (scheduling the
action to happen immediately for one time unit). This can be overridden as
needed. The selector function, by default, returns all the result triples. Alter-
natively, one result could be picked arbitrarily (by Maude or by tossing a coin).

4.3 The Patrol Bot Case Study

The idea of patrol bots was introduced at the beginning of Sect. 3. Now we
address the problem of specifying a patrol bot system, including knowledge, the
possible actions of a patrol bot, the effects of these actions, and the soft constraint
problem to be solved for deciding actions. Once individual patrol bots have been
specified we define some scenarios to illustrate the use of the specifications to
study possible system behaviors.

Recall that a patrol bot is moving on a grid, along some track (fixed y)
continually going from one side to the other. Moving uses energy, so the patrol
bot must recharge to avoid dying (so there must be a charging station somewhere
on the grid). The patrol bot may drift off its path (faulty motor, or wind, . . .).
It prefers to move along the assigned track so it should correct when it discovers
it has drifted.

In addition to class, clock and location knowledge, patrol bot knowledge
includes energy (a sensor reading), caution (how much reserve energy to
keep), and its patrolling parameters myY,myDir.

**** Info constructors
op energy : Id FiniteFloat -> Info [ctor] .
op caution : Id FiniteFloat -> Info [ctor] .
op myY : Id Nat -> Info [ctor] . *** the bot’s track
op myDir : Id Dir -> Info [ctor] . *** current direction

**** partial order--new information superceeds old
eq energy(id,e0) @ t0 << energy(id,e1) @ t1 = t0 < t1 .
eq caution(id,e0) @ t0 << caution(id,e1) @ t1 = t0 < t1 .
eq myY(id,y0) @ t0 << myY(id,y1) @ t1 = t0 < t1 .
eq myDir(id,dir0) @ t0 << myDir(id,dir1) @ t1 = t0 < t1 .

A patrol bot has two kinds of action: charge, to restore energy; and mv, to
move one step in the given direction. The directions E,W,N,S stand for East,
West North, and South (or left, right, up, and down).

22 C. Talcott et al.

*** actions
sort Dir . ops E W N S : -> Dir [ctor] .
op mv : Id Dir -> Action [ctor] .
op charge : Id -> Action [ctor] .

The effects of patrol bot actions depend on several global parameters, listed
below.

*** global parameters
ops gridX gridY : -> Nat [ctor] . *** grid dimensions
op chargeUnit : -> FiniteFloat [ctor] . *** energy gained
op maxCharge : -> FiniteFloat [ctor] . *** energy capacity
op botDelay : -> Nat [ctor] . *** time between ticks
op costMv : -> FiniteFloat [ctor] . *** cost of moving

An agent’s model of the effects of actions is given by the functions doMv and
doAct.

op doMv : Loc Dir -> Loc .
op doAct : Id KB Action -> KB .

doMv simply returns the location after the move. In case the result would be
off the grid, the initial location is returned. doAct updates the given knowledge
base with the result of the action. Energy will be decreased in the case of a move
action and increased by chargeUnit in the case of a charge action. The model
assumes actions are carried out for one time unit, thus the new information is
time stamped with a time that is one time unit in the future, the time the action
completes.

The physical model of the effect of actions is given by doUnitEnvOneAct
which is used in the timeStep rule. For actions that operate as expected,
given the physical state (as reflected by the environment knowledge base), the
doUnitEnvOneAct result is the same as doAct. This is the ideal case. In
other cases doUnitEnvOneAct will differ. For example, charging stops when
the maxCharge is reached. If there is an obstacle in the target of a move, then
the agent doesn’t move, but it does use energy trying. If there is wind, the final
location may be different depending on the strength and direction of the wind.

doTask Auxiliary Functions. Recall that an agents behavior is specified by the
function doTask that is defined in terms of auxiliary functions for handling
shared knowledge and processing sensors to define the soft constraint problem
to be solved. The function handleS processes newly received shared knowledge
by simply adding it to the local knowledge base.

op handleS : Class Id KB EventSet -> KB .
eq handleS(cl,id,lkb,rcv(kb) ievs) = addK(lkb,kb) .

Sensors are read by restricting the environment knowledge base to the patrol
bots identity.

Formal Specification and Analysis of Robust Adaptive Distributed 23

op getSensors : Id KB -> KB .
eq getSensors(id,ekb) = restrictKB(id,ekb) .

Sensor processing adds sensed location and energy information to the local
knowledge base. It also reverses the direction (reverseDir(dir)) if the cur-
rent location is at one of the vertical edges (atVEdge(loc)).

op proSensors : Id KB KB -> KB .
ceq proSensors(id,lkb,ekb) = lkb1
if ((myDir(id,dir) @ t0) clock(t) lkb0) := lkb
/\ (atloc(id,loc) @ t1) (energy(id,e) @ t2) ekb0 := ekb
/\ dir1 := (if atVEdge(loc) then reverseDir(dir) else dir fi)
/\ lkb1 := addK(lkb0 (myDir(id,dir1) @ t) clock(t),

(atloc(id,loc) @ t1) (energy(id,e) @ t2)) .

By reversing the direction when the patrol bot reaches an edge it will always be
able to move in the ‘current’ direction.

The possible actions in a given situation (myMvs(Bot,id,lkb)) include
charging, if current location is that of a station and not fully charged, and moves
in any direction that do not lead to an occupied location or a location that is
off the grid (myMvs(Bot,id,lkb)).

op myActs : Class Id KB -> ActSet .
eq myActs(Bot, id,lkb) =
(myMvs(Bot,id,lkb)
(if canCharge(Bot,id,lkb) then charge(id) else none fi)) .

The functions remember and tell are used by the auxiliary doTask! to
assemble triples from the set of actions returned by solveSCP.

op remember : Id Action KB -> KB .
eq remember(id,act,lkb) = lkb .
op tell : Id Action KB -> KB .
eq tell(id,act,(atloc(id,loc) @ t) lkb) = (atloc(id,loc) @ t) .

A patrol bot remembers all the information gathered to define the soft constraint
problem. In fact, the location and energy could be forgotten as they are simply
overridden during the next task processing. Only the location is shared. This is
useful when there are several patrol bots, to avoid potential collisions or blocking.

Valuation Functions. What remains is to specify the valuation function used
by a patrol bot to choose among available actions. The valuation function should
ensure that the patrol bot does not run out of energy (assuming sufficient charge
capacity and accessible charging stations). It should also ensure that the patrol
bot continually patrols, i.e. it reaches one side, turns, reaches the other side,
turns Given the two different concerns we define two valuation functions:
val-energy for assuring the energy requirement and val-patrol for maxi-
mizing patrolling progress. val-energy is overloaded in that it can evaluate a

24 C. Talcott et al.

knowledge base (val-energy(id,kb)) or an action in the context of a knowledge
base (val-energy(id,kb,act)). In either case the valuation is relative to a spe-
cific patrol bot, identified by id. val-energy returns an element of TriVal
which has three elements ordered by bot < mid < top.

op val-energy : Id KB Action -> TriVal .
eq val-energy(id,

(energy(id,e) @ t0) (atloc(id,loc0) @ t)
(atloc(st,loc1) @ t1) (class(st,Station)) kb,
charge(id)) =

(if (loc0 == loc1)
then (if (e >= maxCharge) then bot else top fi)
else bot fi) .

For a charge action, the value is top if the patrol bot is at a charging station
and is not fully charged. Otherwise the value is bot. In the case of move actions,
the resulting knowledge base is evaluated for energy safety.

ceq val-energy(id,kb,mv(id,dir)) =
val-energy(id,doAct(id,kb,mv(id,dir)))

if not (val-energy(id,doAct(id,kb,mv(id,dir))) == mid) .

If the result of knowledge base valuation is not mid then that result is returned.

ceq val-energy(id,kb,mv(id,dir)) =
if towards(dir,loc,locb) then mid else bot fi

if val-energy(id,doAct(id,kb,mv(id,dir))) == mid
/\ (atloc(id,loc) @ t) (atloc(st,locb) @ t1)

(class(st,Station)) kb’ := kb .

If the result of knowledge base valuation is mid then energy valuation prefers a
move in the direction of a charging station.

op val-energy : Id KB -> TriVal .
eq val-energy(id,(energy(id,e) @ t0) (atloc(id,loc) @ t)

(atloc(st,locb) @ t1) (class(st,Station)) kb) =
if e > cost2loc(loc,locb) + caution then top else
(if e > cost2loc(loc,locb) then mid else bot fi) fi .

Energy valuation of a knowledge base uses the caution parameter that deter-
mines how much reserve energy it prefers. If the situation allows the agent to
reach a charging station with out running out of energy, but the reserve energy is
less than the caution parameter the value returned is mid. Otherwise the value
is top if it is energy safe and bot if unsafe.

The valuation from a patrolling perspective, computed by val-patrol, has
a range of 0.0 to 1.0. The value for charging is 1.0 assuming it will not be asked
if charging is not feasible.

Formal Specification and Analysis of Robust Adaptive Distributed 25

op val-patrol : Id KB Action -> Float .
eq val-patrol(id,

(atloc(id,pt(x,y)) @ t) class(id,Bot)
(myDir(id,dir) @ t0) (myY(id,y0) @ t1) kb,
mv(id,dir1)) =

(if (y0 < y)
then (if (dir1 == S) then 0.9 else 0.0 fi)
else (if (y < y0)

then (if (dir1 == N) then 0.9 else 0.0 fi)
else (if (dir == dir1) then 0.9 else 0.0 fi) fi) fi).

eq val-patrol(id, kb, charge(id)) = 1.0 .

A move is given value 0.9 if the agent is off track and the move corrects, or
if the move is in the current direction. From a patrolling perspective, charging
is preferred if it is possible, otherwise moves that correct or move towards the
current goal are preferred.

The combined valuation function val returns a pair: the first component is
the energy valuation and the second component is the patrol valuation.

sort BUVal .
op {_,_} : TriVal Float -> BUVal .
op val : Id KB Action -> BUVal .
eq val(id,kb,act) =

{val-energy(id,kb,act),val-patrol(id,kb,act)} .
op _<_ : BUVal BUVal -> Bool .
op equivZero : BUVal -> Bool .
eq {b1,u1} < {b2,u2} = (b1 < b2) or (b1 == b2 and u1 < u2) .
eq equivZero({b1,u1}) = (equivZero(b1)) .

The partial order on these pairs is the lexicographic order [18] with energy val-
uation (safety) given preference. A value pair is equivalent to zero just if the
energy component is equivalent to zero. Thus energy consideration alone can
veto an action. But an action with non-zero energy value is acceptable even if
the patrol value is equivalent to zero (i.e., is 0.0).

Here are a few examples. We assume a knowledge base with a patrol bot
moving east, along y = 0, in a 5 × 3 grid.

loc energy caution act val comment
(2,0) 5.0 1.0 mv(E) {top, 0.9} min caution move E

mv(N) {top, 0.0}
(2,0) 5.0 4.0 mv(E) {bot, 0.9} more caution, N wins

mv(N) {mid, 0.0}
(2,1) 10.0 1.0 charge {top,1.0}
(2,1) 25.0 1.0 charge {bot,1.0} fully charged

With caution 1.0 and energy 5.0 moving east is preferred, but then the
patrol bot will need to backtrack. With caution 4.0 and energy 5.0 moving
north to the charging station is preferred over moving east in the patrolling
direction since {bot, n} < {mid,n’} = true. Also, when at the charg-
ing station and fully charged, a charge action will not be considered since
not(equivZero({mid,0}) = true.

26 C. Talcott et al.

4.4 Patrol Bot Scenarios

In this section we show how rewriting and search can be used to gain under-
standing of agent system behavior, the reasons for failures, and the effects of
changing parameters. To illustrate how environment effects can be introduced
we add potential for wind to blow a patrol bot off course. It is not intended to be
particularly realistic as a model of wind, but it does allow us to see how robust
the patrol bots can be by just varying the frequency of disruption and the level
of caution.

op wind : Dir Nat -> Info .
op windEffect : Loc KB -> Loc .
ceq windEffect(l0, (clock(t)) (wind(dir,n) @ t0) ekb)

= doMv(l0,dir)
if t rem n == 0 .

eq windEffect(l0,ekb) = l0 [owise] .

wind(dir,n) @ t0 specifies wind effect in direction dir to be applied if
the current time is divisible by n. The point is that we don’t want continual
wind. Periodic wind for different periods can test robustness without needing to
introduce machinery for probability distributions. The function windEffect is
applied to the result of a move in the function doUnitEnvOneAct that is the
core of the doEnvAct function used in the timeStep rule.

A Patrol bot system consists of one or more patrol bots each with their own
track and current direction, together with an environment. A system can be
instrumented for analysis in various ways. For example, to bound an execution
we define a new configuration element.

op bound : Nat -> ConfElt .

The auxiliary function updateConf that is applied during the timeStep rule
is used to decrement the bound each time step. When the bound reaches 0 the
configuration is replaced by a constant goalConf for which there are no rewrite
rules, so execution/search must stop. To analyze a system we define a notion of
critical configuration and carry out bounded search for such configurations.

ops criticalConf goalConf : -> ConfElt .
op critical : Conf -> Bool .

ceq critical([eId | (energy(id,ff) @ t) kb] aconf) = true
if equivZero(val(id,(energy(id,ff) @ t) kb)) .

eq critical(aconf) = false [owise] .

eq updateConf(bound(n) aconf) =
if critical(aconf) then criticalConf aconf
else (if (n == 0) then goalConf

else bound(monus(n)) aconf fi) fi .

Formal Specification and Analysis of Robust Adaptive Distributed 27

When a critical configuration is reached the constant criticalConf is added
to the configuration by the function updateConf to simplify specifying the
search command. For our examples, we define a critical configuration to be one
in which the valuation for some agent is equivalent to zero using the boolean
function critical.

We begin with a one patrol bot configuration, watch it run and search for
critical configurations in a family of configurations parameterized by the level of
caution and the frequency of wind. Then we will look at what happens when a
second patrol bot is added. In all cases we will use the same global parameters:

eq gridZ = 5 .
eq gridY = 3 .
eq chargeUnit = 5.0 .
eq maxCharge = 20.0 .

To simplify notation we define an agent template

B(I,X,Y,Z,D,C) =
[b(i) : Bot |

lkb : (clock(0) class(b(i), Bot)
class(st(0), Station) (atloc(st(0), pt(2, 1)) @ 0)
(atloc(b(I), pt(X,Y)) @ 0) (energy(b(I), 1.5e+1) @ 0)
(myY(b(I),Z) @ 0) (myDir(b(I),D) @ 0)

caution(b(I),C) @ 0),
ckb : none,
evs : (tick @ 1)]

Thus B(I,X,Y,Z,D,C) is the state of a patrol bot at time 0 with identifier
I, location pt(X,Y), track Z, direction D, and caution C. The family of agent
systems with one patrol bot parameterized by level of caution, C, and Wind,
Asys1(C,Wind), is given by

Asys1(C,Wind) =
{bound(200)
[eI | clock(0) class(b(0), Bot)

(atloc(b(0), pt(0, 0)) @ 0) (energy(b(0), 15) @ 0)
class(st(0), Station) (atloc(st(0), pt(2, 1)) @ 0)
Wind]

B(0,0,0,0,W,C)
}

The system Asys1(C,Wind) has a single patrol bot, with identifier b(0), loca-
tion pt(0,0), moving west, with energy 15 and caution C. In the environment
there is wind specification Wind. Note that the patrol bot will immediately turn
and head east since it is at the western edge of the grid.

To watch the system run, we turn on printing of print attributes and rewrite
for 20 steps. The following is a simplified version of what is printed. Following
the eAct tag is the patrol bots location and energy at the end of the timeStep.
Following the doTask tag is the patrol bot identifier, task, current time, and
event set produced.

28 C. Talcott et al.

set print attribute on .
Maude> rew [20] updAkb(asys(200),b(0),caution(b(0),1.0) @ 0) .

eAct: clock(0) (atloc(b(0),pt(0,0)) @ 0) (energy(b(0),15) @ 0
timeStep: 0 ++ 1
doTask: b(0) ! tick time: 1 !! (tick @ 1) mv(b(0),E) @ 0 ; 1
eAct: clock(1) (atloc(b(0),pt(1,0)) @ 2) energy(b(0),14) @ 2
timeStep: 1 ++ 1
....
doTask: b(0) ! tick time: 4 !! (tick @ 1) mv(b(0),E) @ 0 ; 1
eAct: clock(4) (atloc(b(0),pt(4,0)) @ 5) (energy(b(0),11) @ 5)
timeStep: 4 ++ 1

**** the bot reversed direction
doTask: b(0) ! tick time: 5 !! (tick @ 1) mv(b(0),W) @ 0 ; 1
eAct: clock(5) (atloc(b(0),pt(3,0)) @ 6) (energy(b(0),10) @ 6)
timeStep: 5 ++ 1
.....

Initially there is nothing to do since the patrol bot has a task with delay 1.
Then doTask and timeStep alternate, with the patrol bot moving east until
it reaches the edge. At time 5 it reverses direction and starts moving west. By
adjusting what is printed one can observe just variables of interest and look for
unexpected behavior.

Now we look for critical configurations starting with instances of the one
patrol bot family using the search command

search [1] Asys1(C,Wind) =>+ {criticalConf aconf} .

for different values of Wind and C.
Table 1 summarizes the search results. We see that in ideal conditions, mini-

mal caution seems good enough to ensure no critical configurations are reached.
Minimal caution works for ‘modest’ wind conditions (N 17, S 13 or N 11, S 7).

Table 1. The columns Wind and C are values of the corresponding parameters. Found?
indicates whether a critical configuration was found (in less that 200 time units).
States is the number of states visited in the search, Rewrites is the number of
rewrites, and Duratin is the search time in milliseconds. N n, S m stands for the
wind items (wind(N,n) @ 0) (wind(S,m) @ 0).

Wind C Found? States Rewrites Duration (ms)

none 1.0 no 406 59948 184

none 4.0 no 406 59948 184

N 17, S 13 1.0 no 1049 460717 474

N 11, S 7 1.0 no 1195 524411 564

N 7, S 5 1.0 yes (1) 2216 926342 935

N 7, S 5 4.0 no 6605 3022120 3207

Formal Specification and Analysis of Robust Adaptive Distributed 29

A critical configuration is found at state 2215 with Wind N 7, S 5 and cau-
tion 1.0. The environment component of the found critical configuration is the
following:

[eI | clock(191) class(b(0), Bot) class(st(0), Station)
(atloc(b(0), pt(2,0)) @ 191) (energy(b(0), 1.0) @ 191)
(atloc(st(0), pt(2, 1)) @ 0)

(wind(N,7) @ 0) wind(S, 5) @ 0]

Thus more caution (4.0) is needed when wind effects are more frequent. Recall
that the effect specified by wind(dir,n) @ 0 is wind blowing in direction dir
every n time units. Smaller values of n mean wind blowing more often and thus
a greater chance to interfere with a patrol bots progress.
Caveat. The above searches were limited to time less than 200. This is already
useful to find problems. In practice we may only need a given patrol instance
to operate for a limited time, for example overnight or weekends. In this case
bounded search is sufficient. If not, there are several ways to consider to extend
the analysis. These will be discussed in Sect. 5.

The family of agent systems with two patrol bots parameterized by Wind
and level of caution is given by

Asys2(C,Wind) =
{bound(200)
[eI | clock(0) class(b(0), Bot) class(b(1), Bot)

(atloc(b(0), pt(0, 0)) @ 0) (energy(b(0), 15) @ 0)
(atloc(b(1), pt(4, 2)) @ 0) (energy(b(1), 15) @ 0)
class(st(0), Station) (atloc(st(0), pt(2, 1)) @ 0)
Wind]

B(0,0,0,0,W,C)
B(1,4,2,2,E,C)

}

The system Asys2(C,Wind) extends Asys1(C,Wind) with a second patrol
bot, with identifier b(1), location pt(4,2), moving east, with energy 15 and
caution C. The environment is also extended with class, location and energy
knowledge about the second patrol bot.

The Table 2 summarizes results of searching for critical configurations in
instances of the two patrol bot system using the search command

search [1] Asys2(C,Wind) =>+ {criticalConf aconf},

for different values of Wind and C.
The critical configuration (N 7, S 5, 4.0) is found at state 113. The envi-

ronment component of the found critical configuration is the following:

[eI | clock(15) class(b(0), Bot) class(b(1), Bot)
(atloc(b(0), pt(2, 0)) @ 15) (energy(b(0), 19) @ 15)
(atloc(b(1), pt(2, 2)) @ 15) (energy(b(1), 1.0) @ 15)
class(st(0), Station) (atloc(st(0), pt(2, 1)) @ 0)

30 C. Talcott et al.

We can get an idea of how the critical configuration arises in the two patrol bot
scenario by using the command

show path 113 .

which shows the sequence of states and rules applied leading to the critical
configuration (state 113). The following shows the clock and patrol bot location
and energy information in environment components of the last three states.

state 89, ASystem: {bound(187)
[eI
| clock(13)
(atloc(b(0), pt(2, 1)) @ 11) (energy(b(0), 15) @ 13)
(atloc(b(1), pt(3, 1)) @ 13) (energy(b(1), 3.0) @ 13)]

Patrol bot b(0) is at the station, charging, and b(1) is next to the station,
presumably intending to enter.

state 101, ASystem: {bound(186)
[eI
| clock(14)
(atloc(b(0), pt(2, 1)) @ 11) (energy(b(0), 20) @ 14)
(atloc(b(1), pt(3, 1)) @ 14) (energy(b(1), 2.0) @ 14)]

Now b(0) is fully charged, and b(1) is still waiting, but it has used one energy
unit trying to enter the station.

state 113, ASystem: {criticalConf
[eI
| clock(15)
(atloc(b(0), pt(2, 0)) @ 15) (energy(b(0), 19) @ 15)
(atloc(b(1), pt(2, 2)) @ 15) (energy(b(1), 1.0) @ 15)]

b(0) has left the station. b(1) could enter at the next time, but it has used
up its energy. It seems that the patrol bot is not paying attention to the fact
that the station is occupied. Perhaps it should just wait until the station is free
before trying to move there.

Table 2. The table columns are the same as Table 1 for one patrol bot.

Wind C Found? States Rewrites Duration (ms)

none 4.0 no 853 669244 684

N 11, S 7 4.0 no 64154 51976162 65039

N 7, S 5 4.0 yes (1) 114 101739 122

N 7, S 5 6.0 no 243096 209875128 504088

Formal Specification and Analysis of Robust Adaptive Distributed 31

4.5 Surveillance Drone Case Study

Now we look at a more complex case study involving a surveillance problem:
there are P points of interest and we need to continually have recent pictures of
the area around each point. This case study is inspired by a project to develop
drones with the ability to monitor health in agricultural fields. In this project
formal models are being used to explore different strategies for robustly meeting
the recency requirement we formalize an abstract version of the problem as
follows. The points are distributed on a grid with dimensions xmax × ymax.
N drones are deployed to take pictures. As for patrol bots, the drones use energy
to fly from one place to another, and to take pictures, and they have maximum
energy of emax. There is a charging station in the center of the grid. In addition to
its charging service, the station serves as a knowledge exchange cache, so drones
can share information with each other by sharing with the station. Drones use
soft-constraints, which take into account the drone’s position, energy, and picture
status of the points, to rank their actions. They may perform any one of the best
ranked actions. We use M to denote the maximal acceptable age of a picture.
Thus a critical configuration is one in which a drone runs out of energy, or the
latest picture at some point is older than M .

As for the patrol bot system, we searched for critical configurations. Here we
used a time bound of n = 4 × M . The search results are summarized in Table 3.
We varied M and the maximum energy capacity of drones emax (instead of
varying caution).

Note that even when considering a large grid (20 × 20) and three drone,
search finds critical configurations or covers the full bounded search space quite
quickly (less than a minute). As expected the number of states and time to

Table 3.N is the number of drones, P the number of points of interest, xmax×ymax the
size of the grid, M the time limit for photos, and emax the maximum energy capacity
of each drone. We measured st and t, which are, respectively, the number of states and
time in seconds until finding a critical configuration if F (for fail), or until searching all
traces with exactly 4 × M time steps if S (for success, no critical configuration before
the time bound is reached).

Exp 1: (N = 1, P = 4, xmax = ymax = 10)

M = 50, emax = 40 F, st = 139, t = 0.3
M = 70, emax = 40 F, st = 203, t = 0.4
M = 90, emax = 40 S, st = 955, t = 2.3

Exp 3: (N = 2, P = 9, xmax = ymax = 20)

M = 100, emax = 500 F, st = 501, t = 6.2
M = 150, emax = 500 F, st = 1785, t = 29.9
M = 180, emax = 500 S, st = 2901, t = 49.9
M = 180, emax = 150 F, st = 1633, t = 25.6

Exp 2: (N = 2, P = 4, xmax = ymax = 10)

M = 30, emax = 40 F, st = 757, t = 3.2
M = 40, emax = 40 F, st = 389, t = 1.4
M = 50, emax = 40 S, st = 821, t = 3.2

Exp 4: (N = 3, P = 9, xmax = ymax = 20)

M = 100, emax = 150 F, st = 3217, t = 71.3
M = 120, emax = 150 F, st = 2193, t = 52.9
M = 180, emax = 150 S, st = 2193, t = 53.0
M = 180, emax = 100 F, st = 2181, t = 50.4

32 C. Talcott et al.

search increases moderately with the increase of the number of drones and size
of grid.

Although abstract, the surveillance drone model can help specifiers to decide
how many drones to use and with which energy capacities. For example, in
Exp 3, drones required a great deal of energy, namely 500 energy units. Adding
an additional drone, Exp 4, reduced the energy needed to 150 energy units.

5 Conclusion and Future Perspectives

We have described a framework for modeling and reasoning about cyber-physical
agent systems using executable models specified in the Maude rewriting logic lan-
guage. Agents coordinate by sharing knowledge, and their behavior is specified
by soft constraint problems (SCPs). Physical state and an agents perception
of the state are modeled separately. These features are intended to help specify
agents with some robustness, and to allow reasoning about agents that have only
partial information about the system state, and about operation in an unpre-
dictable environment. The soft agent framework does not provide methods for
deciding what valuation domains and functions to use in defining SCPs. It does
provide tools for formal exploration of parameter settings, weighting of valuation
functions, degrees of caution, and so on.

The notion of soft-agent system is very similar to the notion of ensemble that
emerged from the Interlink project [29] and that has been a central theme of
the ASCENS (Autonomic Service-Component Ensembles) project [5]. In [30] a
mathematical system model for ensembles is presented. Similar to soft agents,
the mathematical model treats both cyber and physical aspects of a system. A
notion of fitness is defined that supports reasoning about level of satisfaction.
Adaptability is also treated. In contrast to the soft-agent framework which pro-
vides an executable model, the system model for ensembles is denotational. The
two approaches are both compatible and complementary and there is intriguing
potential for future extensions that could lead to a very expressive framework
supporting both high-level specification and concrete design methodologies.

Soft Constraint Automata (SCA) is another approach to specifying soft agent
systems [24]. It is an inherently compositional approach. Agents are composed
from SCA for different aspects of their behavior, systems are composed from
agent SCAs. The environment is treated as an agent, and it too is composed
from smaller parts. Future plans include defining maps between SCAs and agent
systems specified in the soft agent framework to be able take advantage of the
benefits of each approach.

The soft agent framework presented here is just the beginning. In the follow-
ing we discuss some of the remaining challenges and future directions.

We proposed agents that decide what to do by locally solving soft constraint
problems (SCPs) and showed that this works in some simple cases. But, how
much can be done usefully with local SCPs? When is higher level planning and
coordination needed? Some specific questions to study include:

Formal Specification and Analysis of Robust Adaptive Distributed 33

– Under what conditions are the local solutions good enough?
– Under what conditions would it not be possible?
– How much knowledge is needed for satisfactory solution/behavior? For exam-

ple, for sufficient consensus.
– What frequency of decision making is needed so that local solutions are safe

and effective?

Another challenge is compositional reasoning. Can we reason separately
about different concerns by abstracting the rest of the system? Methods are
needed to derive suitable decompositions and abstractions. We expect composi-
tional approach based on Soft Constraint Automata [24] to lead to methods for
compositional reasoning.

Since our objective is to reason about both cyber and physical aspects of a
system, it is important to be able to have models that involve dense time. One
of the reasons for the way time steps are formalized in the soft agent frame-
work is to be able to specify actions using continuous functions (applied for
some duration). We imagine that tasks will happen in discrete time, and that
agents only observe continuously changing situations at discrete times. There
are many details to worry about, including frequency of observation and fre-
quency of adjusting controls, not to mention more complex interactions between
elements of a model of the physical state. Importantly also, what are the right
abstractions that manage complexity while remaining sufficiently faithful.

We showed how execution and bounded search provide simple tools for ana-
lyzing a soft agent system. But the guarantees provided are quite limited. One
way to expand the analysis capability is to develop methods based on symbolic
execution. Here large parts of a system are represented by variables, possibly
subject to constraints. Search is carried out by unifying rules with symbolic
states rather than matching rules to concrete states (this is called narrowing).
If there are constraints, they accumulate and can be checked for satisfiability to
prune impossible branches while avoiding the need to enumerate solutions. In
this way whole families of systems can be analyzed at once. Backwards narrow-
ing is another approach. Here one starts with a pattern representing a critical
configuration and applies rules backwards to see if an initial state can be reached.
If not, no instance of the critical configuration pattern is reachable. This app-
roach has been used successfully in the MaudeNPA protocol analysis tool [31].
Another possibility is to identify systems where one can apply timeshift abstrac-
tion. Here one defines an equivalence relation on states at different times and
attempts to show that modulo equivalence there are a finite number of states
that repeat. This is a form of bounded induction. Another important direction
is to develop efficient algorithms for model checking of soft constraint automata,
taking advantage of compositionality.

Finally, an important issue that we have not mentioned is security. In the
context of soft agents security has many aspects and subtilties. There are issues
of trust or confidence of an agent in knowledge received, from another agent, or
by reading its sensors. Security protocols may have space or time aspects. Like
everything else, we probably want soft notions for security guarantees: trust for

34 C. Talcott et al.

some purpose, secret for some small amount of time, and so on. It is clear that the
soft agent framework needs to provide support for managing and reasoning about
security. What are the right mechanisms? How much security should be built
into knowledge sharing? How can we balance imposition of security precautions
and need for agility, and open systems.

References

1. Robots that fly and cooperate. TED talk (2015). Accessed 07 March 2016
2. Das, J., Cross, G., Qu, C., Makineni, A., Tokekar, P., Mulgaonkar, Y., Kumar,

V.: Devices, systems, and methods for automated monitoring enabling precision
agriculture. In: IEEE International Conference on Automation Science and Engi-
neering (2015)

3. Vijay Kumar lab. Accessed 11 March 2016
4. Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.): Software Engineering for Col-

lective Autonomic Systems. The ASCENS Approach. LNCS, vol. 8998. Springer,
Switzerland (2015)

5. Ascens: Autonomic service-component ensembles. Accessed 15 November 2014
6. Choi, J.-S., McCarthy, T., Kim, M., Stehr, M.-O.: Adaptive wireless networks as

an example of declarative fractionated systems. In: Stojmenovic, I., Cheng, Z.,
Guo, S. (eds.) MOBIQUITOUS 2013. LNICST, vol. 131, pp. 549–563. Springer,
Heidelberg (2014)

7. Kim, M., Stehr, M.O., Talcott, C.: A distributed logic for networked cyber-physical
systems. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 190–
205. Springer, Heidelberg (2012)

8. Stehr, M.-O., Talcott, C., Rushby, J., Lincoln, P., Kim, M., Cheung, S., Poggio,
A.: Fractionated software for networked cyber-physical systems: research directions
and long-term vision. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Mod-
eling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 110–143.
Springer, Heidelberg (2011)

9. Networked cyber physical systems. Accessed 11 March 2016
10. Drone swarms: The buzz of the future. Accessed 08 March 2016
11. Knightscope. Accessed 11 March 2016
12. Liquid robotics. Accessed 11 March 2016
13. Why BNSF railway is using drones to inspect thousands of miles of rail lines.

Accessed 11 March 2016
14. Dantas, Y.G., Nigam, V., Fonseca, I.E.: A selective defense for application layer

ddos attacks. In: SI-EISIC (2014)
15. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,

C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

16. Wirsing, M., Denker, G., Talcott, C., Poggio, A., Briesemeister, L.: A rewriting
logic framework for soft constraints. In: Sixth International Workshop on Rewrit-
ing Logic and Its Applications (WRLA 2006). Electronic Notes in Theoretical
Computer Science. Elsevier (2006)

17. Hölzl, M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? In: Seventh
International Workshop on Rewriting Logic and Its Applications (WRLA 2008).
Electronic Notes in Theoretical Computer Science. Elsevier (2008)

Formal Specification and Analysis of Robust Adaptive Distributed 35

18. Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M.: Soft constraints for lexico-
graphic orders. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part
I. LNCS, vol. 8265, pp. 68–79. Springer, Heidelberg (2013)

19. Arbab, F., Santini, F.: Preference and similarity-based behavioral discovery of
services. In: ter Beek, M.H., Lohmann, N. (eds.) WS-FM 2012. LNCS, vol. 7843,
pp. 118–133. Springer, Heidelberg (2013)

20. Kim, M., Stehr, M.-O., Talcott, C.L.: A distributed logic for networked cyber-
physical systems. Sci. Comput. Program. 78(12), 2453–2467 (2013)

21. Choi, J.S., McCarthy, T., Yadav, M., Kim, M., Talcott, C., Gressier-Soudan, E.:
Application patterns for cyber-physical systems. In: Cyber-Physical Systems Net-
works and Applications (2013)

22. Stehr, M.-O., Kim, M., Talcott, C.: Partially ordered knowledge sharing and frac-
tionated systems in the context of other models for distributed computing. In: Iida,
S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol.
8373, pp. 402–433. Springer, Heidelberg (2014)

23. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time maude. High.
Order Symbolic Comput. 20(1–2), 161–196 (2007)

24. Kappé, T., Arbab, F., Talcott, C.: A compositional framework for preference-aware
agents (March 2016, submitted)

25. Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S.,
Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg
(2013)

26. Nielson, H.R., Nielson, F.: Safety versus security in the quality calculus. In: Liu,
Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods.
LNCS, vol. 8051, pp. 285–303. Springer, Heidelberg (2013)

27. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96(1), 73–155 (1992)

28. The maude system. Accessed 15 November 2014
29. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive sys-

tems: state of the art and research challenges. In: Wirsing, M., Banâtre, J.-P.,
Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems. LNCS, vol. 5380,
pp. 1–44. Springer, Heidelberg (2008)

30. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G.,
Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological
Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)

31. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

32. Dantas, Y.G., Lemos, M.O.O., Fonseca, I.E., Nigam, V.: Formal specification and
verification of a selective defense for TDoS attacks. In: Lucanu, D. (ed.) Workshop
on Rewriting Logic and Applications (2016)

Dependability of Adaptable and Evolvable
Distributed Systems

Carlo Ghezzi(B)

DEIB, DeepSE Group, Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano, MI, Italy

carlo.ghezzi@polimi.it

Abstract. This article is a tutorial on how to achieve software evolution
and adaptation in a dependable manner, by systematically applying for-
mal modelling and verification. It shows how software can be designed
upfront to tolerate different sources of uncertainty that cause contin-
uous future changes. If possible changes can be predicted, and their
occurrence can be detected, it is possible to design the software to be
self-adaptable. Otherwise, continuous evolution has to be supported and
continuous flow into operation has to be ensured. In cases where sys-
tems are designed to be continuously running, it is necessary to support
safe continuous software deployment that guarantees correct operation
in the presence of dynamic reconfigurations. The approaches we survey
here have been mainly developed in the context of the SMScom project,
funded by the European Commission –Programme IDEAS-ERC (http://
erc-smscom.dei.polimi.it/.) – and lead by the author. It is argued that
these approaches fit well the current agile methods for development and
operations that are popularized as DevOps.

Keywords: Distributed, ubiquitous, pervasive systems · Cyber-physical
systems · Environment uncertainty · Requirements · Software evolution ·
Dynamic reconfiguration

1 Introduction and Motivations

Modern software systems increasingly live in a dynamic and open world [3]. The
goals to fulfil and the requirements to meet evolve over time. The environment in
which the software is embedded often behaves in ways that cannot be predicted
upfront during design. And if it can, it might later change after the software has
been developed and became operational. This situation is often encountered in
the design of cyber-physical systems, in which the physical and the cyber worlds
are intertwined, through many kinds of devices behaving as sensors and actua-
tors. Interaction with the physical world introduces a great variety of possible
contingencies, like noise, vibrations, humidity, or temperature, which may unex-
pectedly affect the system’s behavior. Sensors and actuators may also behave
in a hard-to-predict manner, and this may change over time, e.g. their behavior
may change because of the battery level. For these reasons, many different kinds
c© Springer International Publishing Switzerland 2016
M. Bernardo et al. (Eds.): SFM 2016, LNCS 9700, pp. 36–60, 2016.
DOI: 10.1007/978-3-319-34096-8 2

http://erc-smscom.dei.polimi.it/
http://erc-smscom.dei.polimi.it/

Dependability of Adaptable and Evolvable Distributed Systems 37

of uncertainty may be present when the system is being designed and uncertainty
may ultimately affect the system’s ability to satisfy the requirements.

Design uncertainty is increasingly becoming the norm also for many other
kinds of system. User-intensive, highly interactive systems depend on users’
behaviors, which also may change over time. The widespread availability of
virtual environments, providing infrastructure/software-as-a-service, which raise
the level of abstraction for system designers, add their own sources of uncertainty
that must be properly handled. Furthermore, modern systems are increasingly
multi-owner. They depend upon parts (components, services) that are not under
the developers’ full control, but rather they are owned, managed, and operated
by others. They may run on platforms that developers do not own and do not
run; for example, they may run on a cloud. Yet, software designers are respon-
sible for the service they provide to their clients, and the level of service they
must guarantee has to satisfy the contractual agreements they subscribed with
their customers.

Requirements volatility and environment uncertainty are two main causes
that drive software evolution. Software evolution is not a new problem. It has
been recognized as a key distinguishing factor of software with respect to other
technologies since the early work pioneered by Belady and Lehman since the
1970’s [4,17], although the phenomenon has reached today unprecedented levels
of intensity. In the past software evolution was often viewed as a nuisance. The
term maintenance was often used to capture the evolution of software needed to
remedy inadequate requirements and wrong design choices. Evolution is instead
intrinsic in software. Like evolution in nature, it has a positive connotation,
which refers to the ability to adapt and improve in quality.

Today software is developed through evolutionary processes. Traditional pre-
defined, monolithic, waterfall lifecycles are generally replaced by incremental,
iterative, evolutionary, agile processes. Agility indicates a fast and flexible way
to react to changes. At the same time, researchers developed approaches to
embed in software capabilities to drive its own evolution, in an autonomic or
self-managed manner [14].

Agile processes originated in the practitioners’ world and have only been
marginally investigated by researchers. As observed by [19], in their iconoclastic
reaction to other approaches, the proponents of agile methods tend to dismiss
some of the key principles of software engineering that lead to improved depend-
ability. They dismiss requirements analysis —replaced by user stories— (formal)
modelling —viewed as as a sterile exercise— and the value of formal verification
—fully replaced by continuous testing. The importance of formal methods in the
context of self-managed systems has also been largely underestimated by most
initial research efforts.

The body of work we survey in this paper is fully reliant on formal methods to
enable dependable software evolution. Within the vast area of software evolution,
this article focuses mostly on two aspects:

1. Non-functional requirements: The system’s evolution is dictated by the need
to satisfy certain non-functional requirements in the presence of changes that

38 C. Ghezzi

would otherwise lead to violations. Among non-functional requirements we
focus in particular on those that can be modelled in a mathematically precise,
quantitative way. This includes requirements on response time, reliability,
power consumption. Often these can be expressed in a probabilistic manner.

2. Self-adaptation: We analyze when and how the system can be made capable of
collecting and analyzing run-time data that hint at changes in the behavior of
the environment that may lead to requirements violations and are amenable
to reactions that may be decided autonomously.

3. Dynamic software updates: In the case of self-adaptation, the system must
reconfigure itself dynamically, while it is operational. This requirement also
holds for systems where updates are performed offline by software engineers
and installed online while the system is offering service. This situation is
becoming very common today because many systems are required to be con-
tinuously running and operation cannot be interrupted to accommodate new
updates. Dynamic updates must be performed both safely and efficiently, to
ensure timely reaction to changes.

The paper is structured as follows. Section 2 presents a general framework to
understand and reason about evolution and adaptation. In particular, it allows
us to articulate the complex interactions that may occur between the software
and the environment in which it is embedded, and how dependency on the envi-
ronment may affect dependability and drive adaptation. Section 3 introduces a
case study. Section 4 introduces background material on modeling and verifica-
tion. Section 5 discusses how models and verification may be brought to run time
to support self-adaptation. Section 6 addresses the problem of safe dynamic soft-
ware updates. Finally, Sect. 7 illustrates final considerations and points to future
research.

2 Reference Framework

In this section we describe a framework to understand and reason about software
and change, which was proposed by the foundational work on requirements engi-
neering developed by Jackson and Zave [13,21]. Jackson and Zave observe that
in requirements engineering one needs to carefully distinguish between two main
concerns: the world and the machine. The machine is the system of interest that
must be developed; the world (the environment) is the portion of the real-world
affected by the machine. The ultimate purpose of the machine is always to be
found in the world. The goals to be met and the requirements are ultimately
dictated by the world and must be expressed in terms of the phenomena that
occur in it. Some of these phenomena are shared with the machine: they are
either controlled by the world and observed by the machine –through sensors–
or controlled by the machine and observed by the world –through actuators.
The machine is built exactly for the purpose of achieving satisfaction of the
requirements in the real world. Its specification is a prescriptive statement of
the relation on shared phenomena that must be enforced by the system to be

Dependability of Adaptable and Evolvable Distributed Systems 39

developed. The machine that implements it must be correct with respect to the
specification.

The task of software engineers is to develop first a specification and then
an implementation for a machine that achieves requirements satisfaction. To
this end, domain or environment knowledge plays an essential role. That is, the
software engineer needs to understand the laws that govern the behavior of the
environment and formulate the set of relevant assumptions that have to be made
about the environment in which the machine is expected to work, which affect
the achievement of the desired results. Quoting from [21],

“The primary role of domain knowledge is to bridge the gap between
requirements and specifications.”

If R and S are the prescriptive statements that formalize the requirements
and the specification, respectively, and D are the descriptive statements that
formalize the domain knowledge, assuming that S and D are are both satisfied
and consistent with each other, the designer’s responsibility is ultimately to
ensure that

S,D |= R

i.e., the machine’s specification S we are going to devise must entail satisfaction
of the requirements R in the context of the domain properties D. We call this
the dependability argument.

Figure 1 provides a visual sketch of the Jackson/Zave approach. The domain
knowledge D plays a fundamental role in establishing the requirements. We
need to know upfront how the environment in which the software is embedded
works, since the software to develop (the machine) can achieve the expected
requirements only based on the assumptions on the behavior of the domain,
described by D. Should the environment behave in a way that contradicts the
statements in D, the current specification might lead to violation of R. The
statements expressed by D may fail to capture the environment’s behavior for
two reasons: either because the domain analysis was initially flawed (i.e., the
environment behaves according to different laws than the ones captured by D) or
because changes occurred, which cause the assumptions made earlier to become
invalid. An example of the latter case may be an exceptional and unexpected
traffic of submitted user requests that may generate a denial of service.

It is possible to further breakdown D into two components: domain laws –Dl–
and domain assumptions –Da. Laws indicate the physical or mathematical prop-
erties that have been proved for the domain, whose truth can only be invalidated
by falsifying the theory. An example is the law of motion that says that the appli-
cation of a force in a given direction to a body causes motion of the body in that
direction. A designer relying on this property may specify that a command to a
force actuator has to be issued by the software to satisfy the requirement that a
body should be moved. This property holds and cannot be refuted. Assumptions
instead are properties that are subject to some level of uncertainty and may be
disproved. In some cases, they denote currently valid properties that may later
change, as for example, traffic conditions changes. They represent the best of

40 C. Ghezzi

Fig. 1. The Jackson/Zave framework.

our knowledge at a given time. But because of design-time uncertainty and/or
because variability in time, assumptions may become invalid.

Software evolution refers to changes that affect the machine, to enable it to
respond to changes in the requirements and/or in the environment (we ignore in
this paper the fact that implementation may be be incorrect, i.e., the running
software violates its specification S). The term adaptation is used in this work
to indicate the specific case of evolution dictated by changes in the environment,
while self-adaptation indicates changes that can be handled autonomously by
the machine.

The management of evolution in traditional software is performed off-line,
during the maintenance phase. The traditional classification in perfective, adap-
tive, and corrective maintenance can also be explained by referring to the Jack-
son/Zave framework. Changes in the requirements, dictated by changes in the
business goals of organizations or new demands by users, cause perfective main-
tenance. Environmental changes affecting domain assumptions, which may rep-
resent organizational assumptions or conditions on the physical context in which
the software is embedded, cause adaptive maintenance. Corrective maintenance
is instead caused by failure of the dependability argument and forces the speci-
fication to change.

According to the traditional paradigm, in order to undergo a maintenance
intervention, software returns into its development stage, where changes are
analyzed, prioritized, and scheduled. Changes are then handled by modifying
the design and implementation of the application. The evolved system is then
verified, typically via some kind of regression testing.

This paradigm does not meet the requirements of current application sce-
narios, which are subject to continuos changes in the requirements and in the
environment, and which require rapid reaction to such changes. By following an
agile development style, software development became incremental and iterative.
By following the currently widely advocated DevOps culture, agility extends in
a seamless manner to delivery and deployment, viewing development and oper-
ation as an integrated perpetual process.

Dependability of Adaptable and Evolvable Distributed Systems 41

Figure 2 illustrates our envisioned process that supports continuous develop-
ment and operation, through two main, interacting loops: the development loop
and the self-adaptation loop. The process incorporates the run-time feedback
loop advocated by the autonomic computing proposal [14], which enables self-
adaptation. Designers are in the loop and drive evolution. They get informed
about the system’s dynamic behavior by leveraging monitored data. They are
required to initiate evolution whenever self-adaptation fails. Whenever they
decide that components should be transferred to the running system to replace
faulty functionalities, add functionalities, or enhance existing ones, they can
instruct the operational environment to reconfigure itself dynamically in a com-
pletely safe, non-disruptive, and efficient way.

In this paper we embrace this holistic view and discuss the role that formal
methods can play to support continuous evolution in a dependable manner, i.e.,
where the designer’s focus is constantly driven by the need to formally guarantee
satisfaction of the dependability argument.

The next section introduces a practical application domain and a case study
that provide concrete motivations for this work. We subsequently show how the
run-time adaptation loop can be structured and how safe dynamic reconfigu-
rations can be supported. Finally we will conclude by discussing how we might
progress to achieve the global picture of Fig. 2 and by outlining a research agenda.

Development cycle

Operation (with
self-adaptation)

Environment

Software
System

Fig. 2. The development and operation process.

42 C. Ghezzi

3 A Case Study

Hereafter we illustrate a concrete example in which the approach described ear-
lier is successfully applied. The example, which was originally introduced in [9],
refers to a typical e-commerce application that sells merchandise on-line to end
users by integrating several services offered by third-parties:

1. Authentication Service. This service manages the identity of users. It provides
a Login and a Logout operation through which the system authenticates users.

2. Payment Service. This service provides a safe transactional payment service
through which users can pay the selected merchandise via the CheckOut oper-
ation.

3. Shipping Service. This service is in charge of shipping goods to the customer’s
address. It provides two different operations: NrmShipping and ExpShipping.
The former is a standard shipping functionality while the latter represents
a faster and more expensive alternative. Finally, the system classifies the
logged users as NewCustomer (NC) or ReturningCustomer (RC), based on
their usage profile.

The case study illustrates a situation that has become quite common, which
is abstracted by Fig. 3. It is a user-intensive application, where end-users interact
with the application in a hard-to-predict and time variable manner. For example,
usage patterns may vary during the different periods of the year, and may have
seasonal peaks (for example, around Christmas holidays). Moreover, the behavior
of integrated services may be subject to variability, and even deviations from
the expected quality of service. Figure 4 provides a high-level view of the flow
of interaction between users and the e-commerce application, expressed as an
activity diagram.

User

Integrated Service

W ow
W

Service
S1

<uses>

Service
S2

<uses>

Service
Sn

<uses>

....

Fig. 3. A class of applications

This application has to guarantee a certain quality of service to customers.
In particular, here we focus on reliability. Services may in fact fail to provide
an answer by timing out incoming requests in situations where the load exceeds
their capacity.

Dependability of Adaptable and Evolvable Distributed Systems 43

Login

Search

Buy

[buy more]

NrmShipping

ExpShipping

[proceed]

[normal]

CheckOut

Logout

[express]

Fig. 4. Operational description of the specification via an activity diagram

Reliability requirements can be typically expressed in probabilistic terms: for
example, the probability that a user-triggered transaction completes successfully
must be higher than a given value. In the case of the e-commerce application,
fulfilment of a reliability requirement clearly depends on certain assumptions
about the environment, such as the reliability of the third-party services that are
integrated into the application and usage profiles (e.g., the ratio between new and
returning customers), which may affect the satisfaction of specific requirements
that may refer to the different categories.

As mentioned, environment phenomena of these kinds are quite hard to pre-
dict when the system is initially designed. Even in cases where the expected
failure rate of services may be stated in the contract with the service provider,
values are subject to uncertainty and may very likely change over time (for
example, due to a new release of the service). Likewise, usage profiles are hard
to predict upfront and are very unstable.

Let us assume that the e-commerce application must satisfy the following
reliability requirements:

– R1: “Probability of success is greater then 0.8”
– R2: “Probability of a ExpShipping failure for a user recognized as

ReturningCustomer is less then 0.035”
– R3: “Probability of an authentication failure is less then 0.06”

Let us further assume that development time domain analysis tells us that
expected usage profile can be reasonably described as in Table 1. The notation
P (x) denotes the probability of “x′′. Table 2 instead summarizes the results of
domain analysis concerning the external services integrated in the e-commerce
application. P (Op) here denotes the probability of failure of service operation Op.
The environment assumptions expressed in Tables 1 and 2 may derive from dif-
ferent sources. For example, reliability properties of third-party services may be
published as part of the service-level agreement with service providers. Usage
profiles may instead be derived from previous experience of the designers or
knowledge extracted from previous similar systems.

44 C. Ghezzi

Table 1. Domain assumptions on usage profiles

Description Value

P(User is a RC) 0.35

P(RC chooses express shipping) 0.5

P(NC chooses express shipping) 0.25

P(RC searches again after a buy operation) 0.2

P(NC searches again after a buy operation) 0.15

Table 2. Domain assumptions on external services

Description Value

P (Login) 0.03

P (Logout) 0.03

P (NrmShipping) 0.05

P (ExpShipping) 0.05

P (CheckOut) 0.1

4 Modeling and Verification Preliminaries

As we discussed earlier, the software engineer’s goal is to derive a specification
S which leads to satisfaction of requirements R, assuming that the environ-
ment behaves as described by D. From the activity diagram in Fig. 4 and the
information contained in the tables regarding environment assumptions, we can
derive an enriched state-machine model that summarizes a formal description
both of the application and of the environment. The state machine transitions
describe the possible sequences of interactive operations, according to the proto-
col specified by the activity diagram of Fig. 4. Domain assumptions are modeled
as probabilities that label the transitions. The model also represents failure and
success states for the external services.

Formally, the model in Fig. 5 is a Discrete Time Markov Chain (DTMC). It
contains one state for every operation performed by the system plus a set of aux-
iliary states representing potential failures associated with auxiliary operations
(e.g., state 5) or specific internal logical states (e.g., state 2).

Once a formal model is provided, like the DTMC in Fig. 5, it is possible to
formally verify whether requirements are satisfied, provided they are expressed
in suitable language for which a verification procedure exists. In the case of
DTMCs, requirements may be formalized using the probabilistic temporal logic
language PCTL, and then checked against the model using a probabilistic model
checker, like PRISM [12,16]. By doing so on our example, we obtain the following
results:

Dependability of Adaptable and Evolvable Distributed Systems 45

Fig. 5. DTMC model for the case study

– Probability of success = 0.804
– Probability of a ExpShipping failure for a user recognized as ReturningCus-

tomer =o 0.031
– Probability of an authentication failure (i.e., Login or Logout failures) = 0.056

which ensure satisfaction of the requirements.
Hereafter we explain how this can be done, by first briefly reviewing DTMCs

and then introducing PCTL.

4.1 Discrete Time Markov Chains

DTMCs are defined as state-transition systems augmented with probabilities.
States represent possible configurations of the system. Transitions among states
occur at discrete time and have an associated probability. DTMCs are discrete
stochastic processes with the Markov property, according to which the probabil-
ity distribution of future states depend only upon the current state.

Formally, a (labeled) DTMC is tuple (S, S0, P, L) where

– S is a finite set of states
– S0 ⊆ S is a set of initial states
– P : S×S → [0, 1] is a stochastic matrix, where

∑
s′∈S P (s, s′) = 1 ∀s ∈ S. An

element P (si, sj) represents the probability that the next state of the process
will be sj given that the current state is si.

– L : S → 2AP is a labeling function which assigns to each state the set of
Atomic Propositions which are true in that state.

For reasons that will become clear later, we implicitly extend this definition
by also allowing transitions to be labeled with variables (with values in the
range 0..1) instead of constants. A state s ∈ S is said to be an absorbing state if
P (s, s) = 1. If a DTMC contains at least one absorbing state, the DTMC itself
is said to be an absorbing DTMC.

46 C. Ghezzi

In an absorbing DTMC with r absorbing states and t transient states, rows
and columns of the transition matrix P can be reordered such that P is in the
following canonical form:

P =
(

Q R
0 I

)

where I is an r by r identity matrix, 0 is an r by t zero matrix, R is a nonzero
t by r matrix and Q is a t by t matrix.

Consider now two distinct transient states si and sj . The probability of mov-
ing from si to sj in exactly 2 steps is

∑
sx∈S P (si, sx) · P (sx, sj). Generalizing,

for a k-steps path and recalling the definition of matrix product, it follows that
the probability of moving from any transient state si to any other transient state
sj in exactly k steps corresponds to the entry (si, sj) of the matrix Qk. As a
natural generalization, we can define Q0 (representing the probability of moving
from each state si to sj in 0 steps) as the identity t by t matrix, whose elements
are 1 iff si = sj [10].

Due to the fact that R must be a nonzero matrix, and P is a stochastic
matrix, Q has uniform-norm strictly less than 1, thus Qn → 0 as n → ∞, which
implies that eventually the process will be absorbed with probability 1.

In the simplest model for reliability analysis, the DTMC will have two absorb-
ing states, representing the correct accomplishment of the task and the task’s
failure, respectively. The use of absorbing states is commonly extended to mod-
eling different failure conditions. For example, different failure states may be
associated with the invocation of different external services. Once the model
is in place, we may be interested in estimating the probability of reaching an
absorbing state or in stating the property that the probability of reaching an
absorbing failure state should be less than a certain threshold. In the next section
we discuss how these and other interesting properties of systems modeled by a
DTMC can be expresses and how they can be evaluated.

0 3

SuccessInit

1 2

Login

MsgFail

6

AuthenticationFail

1

0.15

Logout

7 1

y
1

x

0.85

z

SendMsg
1-z

5

End

14 1

1-(x+y)

Fig. 6. DTMC example.

Let us consider the simple example of DTMC in Fig. 6, which represents a
system sending authenticated messages over the network. States 5, 6, and 7 are
absorbing states; states 6 and 7 represent failures associated respectively to the
authentication and to message sending. We use variables as transition labels to

Dependability of Adaptable and Evolvable Distributed Systems 47

indicate that the value of the corresponding probability is unknown, and may
change over time.

In matrix form, the same DTMC would be characterized by the following
matrices Q and R:

Q =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 y 0 1 − x − y
0 0 0 1 − z 0
0 0 0.15 0 0.85
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

R =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0
0 x 0
0 0 z
0 0 0
1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

This is a toy example that we use hereafter instead of the more complex
original case study to exemplify the approach within a constrained space.

4.2 Formally Specifying Requirements

Formal languages to express properties of systems modeled through DTMCs
have been studied in the past and several model checkers have been designed
and implemented to support property analysis. Through model checking one
can verify that a given model (representing domain assumptions and the speci-
fication) satisfies the requirements, provided they are formalized in a language,
such as PCTL, for which a verification procedure exists. In particular, PCTL [2]
–which is briefly introduced hereafter– proved to be useful to express a number
of interesting reliability properties.

PCTL extends the branching-time temporal logic language CTL [2] to deal
with probabilities. Instead of the existential and universal quantification of CTL,
PCTL provides the probabilistic operator P��p(·), where p ∈ [0, 1] is a probability
bound and ��∈ {≤, <,≥, >}.

PCTL is defined by the following syntax:

Φ ::= true | a | Φ ∧ Φ | ¬ Φ | P��p (ϕ)

ϕ ::= X Φ | Φ U Φ | Φ U≤t Φ

Formulae Φ are named state formulae and can be evaluated over a boolean
domain (true, false) in each state. Formulae ψ are named path formulae and
describe a pattern over the set of all possible paths originating in the state
where they are evaluated.

48 C. Ghezzi

The satisfaction relation for PCTL is defined for a state s as:

s |= true
s |= a iff a ∈ L(s)
s |= ¬Φ iff s � Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= P��p(ψ) iff Pr(s |= ψ) �� p

A formal definition of how to compute Pr(s |= ψ) is presented in [2]. The
intuition is that its value corresponds to the fraction of paths originating in s
and satisfying ψ over the entire set of paths originating in s. The satisfaction
relation for a path formula with respect to a path π originating in s (π[0] = s)
is defined as:

π |= XΦ iff π[1] |= Φ
π |= ΦUΨ iff ∃j ≥ 0.(π[j] |= Ψ ∧ (∀0 ≤ k < j.π[k] |= Φ))
π |= ΦU≤tΨ iff ∃0 ≤ j ≤ t.(π[j] |= Ψ ∧ (∀0 ≤ k < j.π[k] |= Φ))

PCTL is an expressive language that allows reliability-related properties to
be specified. A taxonomy of all possible reliability properties is out of the scope
of this paper. The most important case is a reachability property. A reachabil-
ity property states that a state where a certain characteristic property holds
is eventually reached from a given initial state. In most cases, the state to be
reached is an absorbing state. Such state may represent a failure state, in which
a transaction executed by the system modeled by the DTMC eventually (regret-
tably) terminates, or a success state. Reachability properties are expressed as
P��p(true U Φ)1, which expresses the fact that the probability of reaching any
state satisfying Φ has to be in the interval defined by constraint �� p. Φ is
assumed to be a simple state formula that does not include any nested path
formula. In most cases, it just corresponds to the atomic proposition that is true
in an absorbing state of the DTMC. In the case of a failure state, the probability
bound is expressed as ≤ x, where x represents the upper bound for the failure
probability; for a success state it would be instead expressed as ≥ x, where x is
the lower bound for success.

PCTL allows more complex properties than plain reachability to be
expressed. Such properties would be typically domain-dependent, and their def-
inition is delegated to system designers. For example, referring to the example
in Fig. 6, we express the following reliability requirements:

– R1:“The probability that a MsgFail failure happens is lower than 0.001”
– R2:“The probability of successfully sending at least one message for a logged

in user before logging out is greater than 0.001”
– R3:“The probability of successfully logging in and immediately logging out is

greater than 0.001”
– R4:“The probability of sending at least 2 messages before logging out is greater

than or equal to 0.001”
1 Note that this is often expressed as P��pFΦ, using the finally operator.

Dependability of Adaptable and Evolvable Distributed Systems 49

Notice that R1 is an example of reachability property. Also notice that these
requirements have different sets of initial states: R1, R3, and R4 must be eval-
uated starting from state 0 (i.e., S0 = {0}) while R2 must be evaluated starting
from state 1. Formalization of requirements R1-R3 using PCTL is left as an
exercise.

5 Supporting Self-adaptation via Run-Time Verification

Let us refer to the process model represented in Fig. 2, which shows the interplay
between the run-time adaptation and the off-line evolution feedback loops. To
support dependable self-adaptation, we root the analysis phase taking place dur-
ing operation (see Fig. 2) into model checking. The model that represents both
the software system and the environment –such as the one shown in Fig. 6– is
kept alive at run time and is updated according to the data gathered by monitor-
ing, which can be used to infer possible environment changes through a machine
learning component. In our case study, new values for the probabilities of certain
transitions representing service failures may be inferred by monitoring the failure
rate of service invocations. Likewise, user profiles may be inferred by monitoring
log-in customers’ data. Inference can be based on standard statistical approaches,
like the Bayesian learning method we used in [6]. Once the model is updated, the
properties of interest can be checked. Violation of a given property is a trigger
for self-adaptation, which is successful if changes of the implementation can be
found that can eliminate the problem through a dynamic reconfiguration.

The key concepts upon which this approach is based are that (1) the mod-
els of interest are kept at run time and continuously updated, and (2) model
checking provides continuous verification support to detect the need for adap-
tive reactions. Reactions are often subject to hard real-time constraints: they
must lead to a valid software reconfiguration before the violation of requirements
leads to unacceptable mishaps. The conventional model checking techniques are
not really suitable for use at run time. They require the model checker to be
run from scratch after any model change. It is thus necessary to re-think model
checking algorithms to make them suitable for run-time use.

Our work has focused on making DTMC model checking for PCTL incre-
mental. An incremental approach avoids re-analysis of the entire model by pre-
computing the effects of changes. To achieve this goal, we make the assumption
that changes are local and not disruptive. This is a reasonable assumption in
most practical cases, assuming that the source model for the update is a rea-
sonable approximation of the target. For DTMC models this assumption boils
down to the hypothesis that the structure of the model does not change: only
transition parameters may change. Furthermore, although in principle all such
parameters may change, the solution we found works very efficiently if the num-
ber of transition parameters that may change is a small fraction of all transitions.

In the next section we present an incremental approach to probabilistic model
checking that is based on parameterization. Changeable transition probabilities
are treated as variables and a mathematical procedure computes a symbolic ana-
lytic expression for the properties we want to verify at run time. The underlying

50 C. Ghezzi

idea is that computation of the analytic expression, which takes place at design
time, can be computationally expensive, but then evaluation of the pre-computed
analytic expression, which occurs at run time, can be very efficient.

5.1 Run-Time Efficient Parametric Model Checking

The most commonly studied property for reliability analysis concerns the prob-
ability of reaching a certain state, which typically represents the success of the
system or some failure condition. Both success and failure are modeled by absorb-
ing states. The reachability formula in this case has the following form: P��pFl,
where l is the label of the target absorbing state. Hereafter we focus our dis-
cussion on how to pre-compute at design time a reachability formula for an
absorbing state of a DTMC. All the details and the extension of the approach
to cover all PCTL can be found in [7,8].

We assume that a DTMC can contain both numerically and symbolically
labeled transitions. Since the sum of probabilities of all transitions exiting any
given state must be 1, in the case where one transition is a variable, we require
that all transitions exiting the state be also variable. We refer to such state as
variable state.

For an absorbing DTMC, the matrix I − Q has an inverse N and N = I +
Q+Q2+ · · · =

∑∞
i=0 Qi [10]. The entry nij of N represents the expected number

of times the Markov chain reaches state sj , given that it started from state si,
before getting absorbed. Instead, qij represents the probability of moving from
the transient state si to the transient state sj in exactly one step.

Given that Qn → 0 when n → ∞ (as discussed in Sect. 4.1), the process will
always be absorbed with probability 1 after a large enough number of steps, no
matter from which state it started off. Hence, our interest is to compute the
probability distribution over the set of absorbing states. This distribution can
be computed in matrix form as:

B = N × R

where rik is the probability of being absorbed in state sk given that the process
started in state si.

B is a t × r matrix and it can be used to evaluate the probability of each
termination condition starting from any DTMC state as an initial state. In
particular the element bij of the matrix B represents the probability of being
absorbed into state sj given that the execution started in state si.

The design-time computation of an entry bij requires mixed symbolic and
numeric computation, since variable states may be traversed to reach state sj .
Let us evaluate the complexity of such computation. Inverting matrix I − Q
by means of the Gauss-Jordan elimination algorithm [1] requires t3 operations.
The computation of the entry bij once N has been computed requires t more
products, thus the total complexity is t3+t arithmetic operations on polynomials.
The computation could be further optimized by exploiting the sparsity of I −Q.
Notice that the symbolic nature of the computation makes the design-time phase
quite costly [11].

Dependability of Adaptable and Evolvable Distributed Systems 51

The complexity can be significantly reduced if the number of variable compo-
nents c is small and the matrix describing the DTMC is sparse, as very frequently
happens in practice. Let W = I − Q. The elements of its inverse N are defined
as follows:

nij =
1

det(W)
· αji(W)

where αji(W) is the cofactor of the element wji. Thus:

bik =
∑

x∈0..t−1

nix · rxj =
1

det(W)

∑

x∈0..t−1

αxi(W) · rxj

Computing bik requires the computation of t determinants of square matrices
with size t − 1. Let τ be the average number of outgoing transitions from each
state (τ << n by assumption). Each of the determinants can be computed by
means of Laplace expansion. Precisely, by expanding first the c rows representing
the variable states (each has τ symbolic terms), we need to compute at most τ c

determinants and then linearly combine them. Each submatrix of size t− c does
not contain any variable symbol, by construction, thus its determinant can be
computed with (t−c)3 operations among constant numbers (LU-decomposition),
thus much faster than the corresponding ones among polynomials. The final
complexity is thus:

τ c · (t − c)3 ∼ τ c · t3

which significantly reduces the original complexity and makes the design-time
pre-computation of reachability properties feasible in a reasonable time, even for
large values of t.

As a term of comparison, the computation of reachability properties per-
formed by probabilistic model-checkers is based on the solution of a system of n
equations in n variables [2], which has, in a sequential computational model, a
complexity equal to n3 [5].

Summing up, we discussed the computation of properties in the form
P��p(Fsk), where sk is an absorbing state, starting in any initial transient state
of the system2. With this procedure, it is possible to obtain closed formulae for
a number of interesting reliability properties.

For example, evaluating R1 on our toy system, that is the probability of
reaching the state MsgFail failure in any number of execution steps corresponds
to evaluating b07 as:

R1:
(yz)

(0.85 + 0.15z)
≤ 0.001

The approach can be extended to computing the probability of successfully
reaching a non-absorbing state. This extension supports verification of properties
like “the probability of reaching state sj without reaching any failure” or “the

2 Actually we discussed the computation of the probability associated with the prop-
erty, to which the constraint �� p has to be applied.

52 C. Ghezzi

probability of a successfully performing a certain operation or service”. In our
example, the probability of reaching the Logout state 7 after any number of
steps is expressed by the following formula: f04 = 0.85−0.85x+0.15z−0.15xz−yz

0.85+0.15z . This
extension, as well as the ones needed to cover the entire PCTL are presented
in [8].

6 Achieving Safe Dynamic Software Update

Once the need for a change in running software is identified, an alternative solu-
tion has to be found and then instantiated. A number of different approaches
have been proposed to address the problem, focusing on changes at different lev-
els of granularity. In this section we assume that the implementation has a dis-
tributed component-based architecture, where components interact via remote
invocations. We do not address here the issue of how the alternative solution
may be identified, but instead focus on how the architectural update may be
instantiated at run time in a safe way, while the system is running.

Traditional approaches to software update are static. They require (1) to
shut down the currently running version, (2) deploy the new version, and (3)
restart the system. This allows safe replacement if off-line verification has proved
that the new version satisfies the new requirements, but cannot be applied in
the increasingly common cases where the system cannot be shut down and the
update must be performed while the system is running.

Dynamic software update must satisfy two main requirements. It has to have
low disruption, i.e. it must have low overhead and minimize the the delay with
which the system is updated. It also has to be safe, i.e. it must not lead the
system into an unexpected erroneous state.

The rest of this section summarizes the work presented in [18], where different
criteria for dynamic update are assessed and a new criterion, called version
consistency is proposed. This criterion leads to a safe and efficient dynamic
update approach for distributed component-based architectures.

Fig. 7. Our example system.

Dependability of Adaptable and Evolvable Distributed Systems 53

Let us consider, as an example, the architecture shown in Fig. 7. A portal
component (Portal) interacts with an authentication component (Auth) and a
business processing component (Proc), while Proc interacts with both Auth and
a database component (DB). This means that Portal statically depends on (i.e.,
can invoke) Proc and Auth, and Proc depends on Auth and DB.

A component can host (execute) transactions. A transaction is a sequence
of actions that completes in bounded time. Actions include local computations
and message exchanges. A transaction T can be initiated by an outside client or
by another transaction T ′. T is called a root transaction in the former case and
a sub-transaction (of T ′) in the latter case. The term sub(T ′, T) denotes that T
is a direct sub-transaction of T ′. The set ext(T) = {x|x = T ∨ sub+(T, x)} is the
extended transaction set of T , which contains T and all its direct and indirect
sub-transactions. The extended transaction set of a root transaction models
the concept of distributed transaction that can span over multiple components.
The host component of transaction T is denoted as hT . Transactions are also
always notified of the completion of their sub-transactions. This implies that a
transaction T cannot end before its sub-transactions Ti. All other exchanged
messages between hT and hTi

—because of Ti— are temporally scoped between
the two corresponding messages that initiate the sub-transaction and notify its
completion.

Figure 8 shows a usage scenario for the example system. The Portal first
gets an authentication token from Auth and then uses it to require services

Portal ProcAuth DB

T4

T2

T3

return token

verify(token)

OK

dbOperation()

getToken(cred)

process(token, data)

T0

T1

A

B

C

D

Fig. 8. Detailed scenario.

54 C. Ghezzi

from Proc. Proc verifies the token through Auth and then starts computing,
and interacting with DB. If we consider the root transaction T0 at Portal, its
extended transaction set is ext(T0) = {T0, T1, T2, T3, T4}, where T1 at Auth is in
response to the getTocken request, T2 at Proc in response to process, T3 at Auth
in response to verify, and T4 at DB for T2’s request of database operations.

A dynamic update can be specified as an operation that substitutes one or
more components of the original configuration with new versions. We assume
components to be stateless; i.e., there is no need to transfer the state from one
component to its replacement during the update. We also assume the update
to be correct, i.e., the update satisfies the requirements in the current environ-
ment conditions. The update leads to a dynamic reconfiguration, where new
bindings are established between the existing components and a newly installed
component. We assume that re-binding is performed as an atomic operation.

Let S be the current specification of the requirements to be satisfied by the
system, and let S

′ be the updated specification that must be satisfied after the
update. The dynamic reconfiguration is defined to be correct if:

– The transactions that end before the update satisfy S;
– The transactions that begin after the update satisfy S

′;
– The transactions that begin before the update, and end after it, satisfy either

S or S
′.

In our example, suppose that Auth has to be updated to exploit a stronger
encryption algorithm and prevent weaknesses in system security. Although the
new algorithm is incompatible with the old one, the other components need
not to be updated because all encryption/decryption operations are done within
Auth. If the update is allowed to happen any time, however, it may be impossible
to ensure correctness. An obvious restriction on when the update can happen is
that components targeted for update must be idle, that is, they are not hosting
transactions. This constraint is a necessary but not sufficient condition for safe
dynamic update. In fact, if we consider the scenario of Fig. 8, and substitute
Auth when idle, but after serving getTocken, the resulting system would behave
incorrectly since the security token would be created with an algorithm and
validated by another.

It can be proved that correctness of arbitrary runtime updates is undecid-
able, even if the corresponding off-line update is correct and the on-line update
only happens when components are idle. However, it is possible to derive auto-
matically checkable sufficient correctness conditions.

In a seminal paper, Kramer and Magee [15] proposed a criterion called quies-
cence as a sufficient condition for a component to be safely replaced in dynamic
reconfigurations. Their approach models a distributed system as a directed
graph, whose nodes represent components and edges represent static dependen-
cies. A node can initiate transactions on itself, or initiate two-party transactions
on another node if there is an edge between the two nodes. A node’s state can
only be affected by transactions. Every two-party transaction is a sequence of
message exchanges between the two nodes. A (dependent) transaction T can

Dependability of Adaptable and Evolvable Distributed Systems 55

“contain” other (consequent) transactions Ti: the completion of T depends on
the completion of all the Ti. Transactions always complete in bounded time and
the initiator is always notified about their termination.

Definition 1 (Quiescence). A node is quiescent if:

1. It is not currently engaged in a transaction that it initiated;
2. It will not initiate new transactions;
3. It is not currently engaged in servicing a transaction;
4. No transactions have been or will be initiated by other nodes which require

service from this node.

A component node satisfying the first two conditions is said to be passive.
A node is required to respond to a passivate command from the configuration
manager by driving itself into a passive state in bounded time. The last two con-
ditions further make the node independent of all existing or future transactions,
and thus it can be manipulated safely. To drive a node into a quiescent status,
in addition to passivating it, all the nodes that statically depend on it must also
be passivated to ensure the last two conditions.

According to this approach, a node cannot be quiescent before completion
of all the transactions initiated by statically dependent nodes. This means that
the actual update could be deferred significantly. In our example, Auth cannot
be quiescent before the end of the transactions initiated by Portal and Proc.
Moreover, all the other nodes that could potentially initiate transactions, which
require service from Auth, directly or indirectly, are passivated, and their progress
blocked till the end of the update. Again, in our example Portal and Proc are
to be passivated. This means that the this approach can introduce significant
disruption in the service provided by the system.

To reduce disruption, Vandewoude et al. [20] proposed an alternative crite-
rion, called tranquillity. The idea is that there is no need for waiting a transaction
to complete if it will not further request the service provided by the node tar-
geted for update, even if the node has been involved in the transaction. Symmet-
rically, it is also permitted to update a node even if some on-going transactions
will require the service provided by the node in the future, but they have not
interacted with it yet.

Definition 2 (Tranquillity). A node is tranquil if:

1. It is not currently engaged in a transaction that it initiated;
2. It will not initiate new transactions;
3. It is not actively processing a request;
4. None of its adjacent nodes are engaged in a transaction in which it has both

already participated and might still participate in the future.

If applied to our example, however, tranquillity would lead to unsafe updates.
In fact, after Auth returns the token to Portal, it will not participate in the session
initiated by Portal anymore. Before the request for verification is sent, Auth has
not participated in the session initiated by Proc. So Auth is tranquil at time A©.

56 C. Ghezzi

However, if Auth is updated at this time a failure may occur since the token was
issued by the old version of Auth with an incompatible encryption algorithm.
This failure would not happen if the system was either entirely in the old or in
the new configuration.

To conclude, we can say that the quiescence is a general and safe criterion,
but it can be disruptive. Tranquillity is less disruptive, but it can be applied
safely in a restricted set of cases assumption, otherwise it can be unsafe.

Version consistency is a new criterion introduced in [18], which tries to get the
best of the previous two proposals and achieves safety while reducing disruption.
The criterion can be stated as follows:

Definition 3 (Version Consistency). Transaction T is version consistent iff
�T1, T2 ∈ ext(T) | hT1 ∈ ω ∧ hT2 ∈ ω′. A dynamic reconfiguration of a system is
version consistent if all its transactions are kept version consistent.

This means that a dynamic reconfiguration of a system is correct if it hap-
pens at a time instant where all its transactions, including those started before
and ended after the update, are kept version consistent. This is because of the
correctness of the old and new configurations and the fact that any version-
consistent transaction is served—along with all its sub-transactions—as if it
entirely completed within the old or the new configuration, no matter when the
update actually happens. Also note that a transaction that ends before (starts
after) the update cannot have a direct or indirect sub-transaction hosted by the
new (old) version of a component being updated.

For our example, if the update of Auth happens after transaction T0 begins
but before it sends a getToken request to Auth, all transactions in ext(T0)
(i.e., all transactions in Fig. 8) are served in the same way as if the update
happened before they all began. If it happens at any time after Auth replies
to the verify request issued by Proc (time B©), all transactions in ext(T0) are
served the same way as if the update happened after they all ended. However,
if it happens at time A©, then hT1 = Auth, but hT3 = Auth′. As both T1 and
T3 ∈ ext(T0), T0 would not be version-consistent.

Since version consistency is not directly checkable, we need to identify a
condition that is checkable on a component (or a set of components) and that
ensures that its (their) runtime update does not break version consistency.

Dynamic dependences are the means to define such a condition, and they
can easily be added to the diagram of Fig. 7 through properly-labelled edges
besides those that represent the static dependencies. A static-labelled edge rep-
resents both a static dependence and the communication channel between the
two components; future and past edges represent dynamic dependences. Future
and past edges are also labelled with the identifier of a root transaction. We

use C
future(past)−−−−−−−−→

T
C ′ to denote a future(past) edge labelled with the identifier

of root transaction T , from component C to component C ′. This means that
because of T , some transactions in ext(T) hosted by C will use (has used) the
service provided by C ′ by initiating sub-transactions on it.

Dependability of Adaptable and Evolvable Distributed Systems 57

Definition 4 (Valid Configuration). A valid configuration with dynamic
dependences, hereafter configuration, must satisfy the following constraints:

1. (locality) For each future or past edge C
future(past)−−−−−−−−→

T
C ′ there is a static

edge between C and C ′;
2. (future-validity) A future edge C

future−−−−→
T

C ′ must be in place before the

first sub-transaction T ′ ∈ ext(T), where T ′ �= T , is initiated, and continues
to exist at least until no transactions hosted by C will initiate further T ′′ ∈
ext(T) on C ′;

3. (past-validity) A past edge C
past−−−→

T
C ′ must be in place at the end of any

transaction T ′ ∈ ext(T) initiated by a transaction hosted by C on C ′ and
continues to exist at least until the end of T .

Figure 9 shows some configurations of the example system. Active compo-
nents that are executing a transaction are marked with a ∗, and numbers corre-
spond to the order with which edges are added.

The configuration of Fig. 9 (A) corresponds to time point A© in Fig. 8: trans-
action T0 is executing on Portal, which is ∗-annotated. The dynamic edges indi-
cate that to serve transactions in ext(T0), Portal might use Auth and Proc in
the future, and also Proc might use Auth and DB. Figure 9 (B) corresponds to
time B© and says that a transaction in ext(T0) (T1) is currently running on

Fig. 9. Some configurations of the example system with explicit dynamic dependencies.

58 C. Ghezzi

Auth, but no further transaction in ext(T0) hosted on Portal will initiate any
sub-transaction on Auth anymore because there is no T0-labelled future edge
between the two nodes. Figure 9 (C), which corresponds to time C© in Fig. 8,
indicates that Auth might have hosted transactions in ext(T0) initiated by Portal
in the past, and might host further transactions in ext(T0) initiated by Proc in
the future. Figure 9 (D) corresponds to time D© in Fig. 8 and shows that Auth,
although it might have hosted transactions in ext(T0), is not hosting and will
not host these transactions anymore.

Given a valid configuration, we can identify a locally checkable condition that
is sufficient for the version consistency of dynamic reconfigurations.

Definition 5 (Freeness). Given a configuration Σ, a component c is said to be
free of dependencies with respect to a root transaction T iff c is not hosting any
transaction in ext(T) and there does not exist a pair of T -labelled future/past
edges entering c. c is said to be free in Σ iff it is free with respect to all the root
transactions in the configuration.

In our example, Auth is free with respect to T0 in the configurations of
Fig. 9 (A) and (D), but not in the one of Fig. 9 (C) since there exist two f/T0

and p/T0 edges that enter Auth. Moreover, since Auth is active, it as also not
free in Fig. 9. Intuitively, for a valid configuration Σ, the freeness condition for
a component c —with respect to a root transaction T— means that the distrib-
uted transaction modeled by ext(T) either has not used c yet (otherwise there
should be a past edge), or it will not use c anymore (otherwise there should be a
future edge). This leads to the following proposition, which is not proved here3.

Proposition 1. Given a valid configuration Σ of a system, a dynamic update
of a component c is version consistent if it happens when c is free in Σ.

Without entering into details, for which we refer to [18], our solution proposes
a distributed algorithm for efficiently managing dynamic dependencies that: (1)
keeps the configuration valid and (2) ensures version consistency with limited
disruption. Dynamic dependencies are maintained in a distributed way. Each
component only has a local view of the configuration that includes itself and its
direct neighbors. A component is responsible for the creation and removal of the
outgoing dynamic edges, but it is also always notified of the creation and removal
of the incoming ones. This is achieved by exchanging management messages that
keep the consistency among the views of neighbor components.

The management of dynamic dependencies may slightly delay the execution
of the actual transactions, but it guarantees that no transaction will be blocked
forever. The underlying message delivery is assumed to be reliable, and the mes-
sages between two components are kept in order. Dynamic edges are labelled
with the identifiers of the corresponding root transactions to allow for the man-
agement of the dynamic edges of a root transaction independently of those of
other transactions.
3 A proof can be found in [18].

Dependability of Adaptable and Evolvable Distributed Systems 59

To assess version consistency we used simulation to evaluate its disruption
for a wide set of randomly generated component-based distributed systems that
varied in the number of components, service time, and network latency. The
results showed that dynamic updates based on version consistency are on average
more than 50 % less disruptive than those based on quiescence.

7 Conclusions

The objective of this paper was to give a high-level view of the problems involved
in supporting software evolution without compromising its correctess, i.e., con-
tinuous requirements satisfaction. After setting the problem of software evolu-
tion in the context of Jackson and Zave’s framework [13], we digged into the
problem of achieving self-adaptation via models and verification at run time.
Focusing on requirements that ask for probabilistic models and properties, we
have shown how probabilistic model checking can be brought to run time to
drive self-adaptation. We have then focused on another important problem that
must be solved to support both self-adaptation and also, more generally, any
kind of dynamic reconfiguration that is a consequence of evolution.

The approaches presented in this paper are a first step in the direction of
integrating development and operation (DevOps), conceived as two interacting
feedback loops that are funded on mathematically precise models and contin-
uous formal verification. Models and verification are necessary in both loops,
and they must be handled in an iterative and incremental manner. Agile devel-
opment is often hostile to modeling and verification, sometimes they are even
viewed as deprecated upfront activities [19]. Requirements are replaced by user
stories. Although they realize that continuous verification is necessary, verifica-
tion is simply equated to testing. Likewise, modeling and verification are often
conceived as heavy-weight monolithic processes. For example, verification of par-
tial and incomplete models is seldom supported, while incremental development
intrinsically goes through incomplete descriptions. Verification is seldom incre-
mental, support to understanding the effect of changes and reasoning on them is
rarely provided. The two worlds, however, should get together, and this urgently
calls for a sustained research agenda that goes widely beyond the initial steps
presented in the paper.

References

1. Althoen, S.C., McLaughlin, R.: Gauss-Jordan reduction: a brief history. Am. Math.
Monthly 94(2), 130–142 (1987)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

3. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: issue and chal-
lenges. Computer 39(10), 36–43 (2006)

4. Belady, L.A., Lehman, M.M.: A model of large program development. IBM Syst.
J. 15(3), 225–252 (1976)

60 C. Ghezzi

5. Bojanczyk, A.: Complexity of solving linear systems in different models of compu-
tation. SIAM J. Numer. Anal. 21(3), 591–603 (1984)

6. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time adaptation. In: Proceedings of the 31st International Conference on Software
Engineering, pp. 111–121. IEEE Computer Society (2009)

7. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: Proceedings of the 33rd International Conference on Software Engi-
neering (2011)

8. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Trans. Softw. Eng. 42(1),
75–99 (2016)

9. Ghezzi,C.,Tamburrelli,G.:Reasoning onnon-functional requirements for integrated
services. In: Proceedings of the 17th International Requirements Engineering
Conference, pp. 69–78. IEEE Computer Society (2009)

10. Grinstead, C., Snell, J.: Introduction to probability. Amer Mathematical Society,
Providence (1997)

11. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
markovmodels. In: Păsăreanu,C.S. (ed.)ModelChecking Software. LNCS, vol. 5578,
pp. 88–106. Springer, Heidelberg (2009)

12. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

13. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In:
ICSE1995:Proceedings of the 17th international conference onSoftware engineering,
pp. 15–24, New York, NY, USA. ACM (1995)

14. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput.
36(1), 41–50 (2003)

15. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. IEEE Trans. Softw. Eng. 16(11), 1293–1306 (1990)

16. Kwiatkowska, M., Norman, G., Parker, D.: Prism 2.0: a tool for probabilistic model
checking. In: Proceedings of First International Conference on the, Quantitative
Evaluation of Systems, QEST 2004, pp. 322–323 (2004)

17. Lehman, M.M., Belady, L.A. (eds.): Program Evolution: Processes of Software
Change. Academic Press Professional Inc., Cambridge (1985)

18. Ma, X., Baresi, L., Ghezzi, C., Manna, V.P.L., Lu, J.: Version-consistent dynamic
reconfiguration of component-based distributed systems. In: ESEC/FSE 2011: The
19th ACM SIGSOFT Symposium on the Foundations of Software Engineering and
the 13rd European Software Engineering Conference, pp. 245–255. ACM (2011)

19. Meyer, B.: Agile!: The Good, the Hype and the Ugly. Springer Science and Business
Media, Berlin (2014)

20. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: a low dis-
ruptive alternative to quiescence for ensuring safe dynamic updates. IEEE Trans.
Softw. Eng. 33(12), 856–868 (2007)

21. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), 1–30 (1997)

Mean-Field Limits Beyond Ordinary
Differential Equations

Luca Bortolussi1,2,3(B) and Nicolas Gast4

1 DMG, University of Trieste, Trieste, Italy
lbortolussi@units.it

2 MOSI, Saarland University, Saarbrücken, Germany
3 CNR-ISTI, Pisa, Italy

4 Inria, University of Grenoble Alpes, CNRS, LIG, 38000 Grenoble, France

Abstract. We study the limiting behaviour of stochastic models of pop-
ulations of interacting agents, as the number of agents goes to infinity.
Classical mean-field results have established that this limiting behaviour
is described by an ordinary differential equation (ODE) under two con-
ditions: (1) that the dynamics is smooth; and (2) that the population
is composed of a finite number of homogeneous sub-populations, each
containing a large number of agents. This paper reviews recent work
showing what happens if these conditions do not hold. In these cases, it
is still possible to exhibit a limiting regime at the price of replacing the
ODE by a more complex dynamical system. In the case of non-smooth or
uncertain dynamics, the limiting regime is given by a differential inclu-
sion. In the case of multiple population scales, the ODE is replaced by a
stochastic hybrid automaton.

Keywords: Population models · Markov chain · Mean-field limits ·
Differential inclusions · Hybrid systems

1 Introduction

Many systems can be effectively described by stochastic population models, for
instance biological systems [51], epidemic spreading [1], queuing networks [41].
These systems are composed of a set of objects, agents, or entities interacting
together. Each individual agent is typically described in a simple way, as finite
state machines with few states. An agent changes state spontaneously or by inter-
acting with other agents in the system. All transitions happen probabilistically
and take a random time to be completed. By choosing exponentially distributed
times, the resulting stochastic process is a continuous-time Markov chain with a
finite state space. Many numerical techniques exist to compute probabilities of
such chains [3], and they are part of state-of-the art stochastic model checking
tools like PRISM [38] or MRMC [36].

These techniques, however, are limited in their applicability, as they suffer
from the state-space explosion: the state-space grows exponentially with the

c© Springer International Publishing Switzerland 2016
M. Bernardo et al. (Eds.): SFM 2016, LNCS 9700, pp. 61–82, 2016.
DOI: 10.1007/978-3-319-34096-8 3

62 L. Bortolussi and N. Gast

number of agents and even simple agents, when present in large quantities, can
generate a huge state space which is far beyond the capabilities of current tools.

This results in the need for approximation techniques to estimate the proba-
bilities and the behaviours of the system. A classic way is to resort to stochastic
simulation, which scales better but is still a computationally intensive process
for large populations. Precisely in this regime of large populations, mean field
analysis offers a viable, often accurate, and much more efficient alternative. The
basic idea of mean field is that, when counting the number of agents that are in a
given state, the fluctuations due to stochasticity become negligible as the number
of agents N grows. For large N , the system becomes essentially deterministic.

A series of results, e.g., [4,7,37], have established that when the state space
of each agent is finite and the dynamics is sufficiently smooth, the system’s
behaviour converges as N goes to infinity to a limiting behaviour that is described
by system of ordinary differential equations (ODE). The dimension of this system
of ODE is equal to the number of states of the individual agents, but independent
of the population size N . The dimension of the differential equation is typically
small, hence the numerical integration of these equations is extremely fast. These
results show that the intensity of the fluctuations goes to zero as 1/

√
N . This

approach is used in many domains, including computer-based systems [29,31,
43,50], epidemic or rumour propagation [17,34] or bike-sharing systems [24]. Is
it also used to construct approximate solutions of stochastic model checking
problems [10–13].

However, these limiting results have two main shortcomings. First, these
models cannot deal with discontinuities on the rates of interaction between
agents, or uncertainty in model parameters in an obvious way. Second, being
able to approximate the number of agents by a continuous variable requires all
populations to be large. These limitations are essentially due to restricting the
attention to a limiting regime that can be expressed in terms of smooth ODEs.

In this document, we show that by enlarging the set of possible limiting
regimes, it is possible to extend the classical framework in multiple directions.
We first begin in Sect. 2 by a concise introduction to classical mean field mod-
els and their ODE limits. This section requires basic knowledge of CTMCs and
ODEs. We then show in Sect. 3 how discontinuities and uncertainties can be
treated uniformly and consistently considering mean field limits in terms of dif-
ferential inclusions. We then tackle the presence of multiple population scales
in Sect. 4. We show that when the number of agents in some populations go to
infinity while others remain finite, the mean field limit is naturally expressed
as a stochastic hybrid automaton, where continuous-deterministic and discrete-
stochastic dynamics coexist and modulate each other. Last, we mention other
related work and extensions of this framework, for instance to cooperative games,
in Sect. 5.

2 The Classical Mean Field Framework

In this section, we will introduce the fundamental mean field approxima-
tion. We assume the reader familiar with basic concepts of Markov Chains in

Mean-Field Limits Beyond Ordinary Differential Equations 63

Continuous Time, see e.g. [23,44] for an introduction, and with ordinary differ-
ential equations.

We start in Sect. 2.1 by introducing a framework to describe the class of
systems amenable of mean field analysis, namely Markov population processes
(see also the chapter on spatial representations [26]). We illustrate these concepts
in Sect. 2.2 by means of a classic epidemic spreading model. In Sect. 2.3, we
describe the basic mean-field theorems.

2.1 Population Continuous-Time Markov Chains

Population continuous-time Markov chains (PCTMCs) describe a set of interact-
ing agents, which can have different internal states. Interactions involve a small
number of agents, and can happen randomly in time, according to an exponential
distribution with system-dependent rate. We describe these systems in terms of
counting variables and transition classes, following the conventions of [7,33].

More specifically, a PCTMC M model is a tuple (X, T ,x0, N), where

– X = (Xs)s∈S ∈ R
|S| is the population vector. The state space of an agent is

S and Xs ∈ N counts the number of agents in state s ∈ S. The state space of
the model is a finite or countable subset of R|S|.

– T is the set of transition classes, each of the form η = (φη(X),vη, fη(X)),
where
• φη(X) ∈ {0, 1} is a guard predicate, representing a subset of S in which

the transition is active;
• v ∈ R

n is an update vector, encoding the relative change of X induced by
the firing of the transition η: the new state will be X + vη;

• fη(X) is the rate function, giving the rate at which an η transition is fired
as a function of the state space of the system. Typically, fη(X) is a (locally)
Lipschitz continuous function of the population variables.

– x0 ∈ R
|S| is the initial state of the system.

– N is the population size.

Each PCTMC model M defines a CTMC X(t) on the state space S. This
chain is characterised by the infinitesimal generator matrix Q [23], whose off-
diagonal entries are given by

Qx1,x2 =
∑

η∈T s.t. x2=x1+vη

φη(x1)fη(x1).

An important concept related to population models is the system size, N .
Typically, system size is the total (initial) population. In some domains, though,
like biochemical networks or ecological models, N may represent another measure
of size, like the volume or the area in which the dynamics described by a PCTMC
happens. We refer to [7] for a deeper discussion of this.

64 L. Bortolussi and N. Gast

2.2 Example: SIR Epidemic Spreading

As a simple and illustrative example, we consider the spreading of a disease in a
community of N agents (which can be humans, animals, computers). The state
space of an agent is S = {S, I,R}. This model is one of the classical examples
of a Markov population process and is referred to as the SIR model.

The contagion happens when a susceptible agent (XS) enters in contact with
another agent who turns out to be infected (at rate ksiXSXI/N) or enters in
contact with an external source of the disease (at rate kiS). Infected individuals
spontaneously recover at rate kr, and become Recovered (XR) and immune from
the disease. This immunity, however, can be lost with rate ks.

Formally, the model can be described as a PCTMC with three variables
(XS ,XI ,XR), each taking values in the integers {0, . . . , N}, as no birth or death
events are considered. The model has four transition classes, all having a guard
predicate evaluating to true (=1) in all states:

– Internal infection: (true, eI − eS , ksiXSXI/N);
– External infection: (true, eI − eS , kiXS);
– Recovery: (true, eR − eI , krXI);
– Immunity loss: (true, eS − eR, ksXR);

2.3 Classic Mean Field Equations

Mean field theory answers the following question about population models: what
happens when the population is very large? More specifically, it can be shown
that, for a large class of models, the dynamics of the system greatly simplifies as
the system size goes to infinity. The classic theorem, dating back to the 1970s [37],
shows that trajectories of suitably rescaled processes for large populations look
deterministic, and in fact converge to the solution of an ordinary differential
equation (ODE).

An important operation in the path to mean field is to normalise population
processes, dividing variables by the system size, and updating accordingly the
transitions. This allows one to compare different models, as they will now have
the same scale, intuitively these are population densities. Roughly, the determin-
istic behaviour appears because fluctuations around the mean of a population
process grow as

√
N , hence while normalising, i.e. dividing by N variables, fluc-

tuations will be of magnitude 1/
√

N , and will thus go to zero.
More formally, consider a population model MN , where we make explicit the

dependence on the system size, and define its normalised version M̂N as follows:

– Population variables (and initial conditions) are rescaled by N : X̂N = X/N ;
– Transition rates and guard predicates are expressed in the normalised vari-

ables, by substituting NX̂N for X in the functions: f̂N (X̂N) = f(NX̂) and
φ̂N (X̂N) = φ(NX̂);

– Update vectors are rescaled by N , too: v̂N = v/N ;

The CTMC associated with the normalised model will be denoted by X̂N (t).

Mean-Field Limits Beyond Ordinary Differential Equations 65

Example. Consider the SIR model of Sect. 2.2. Its normalised version, for a
population of N agents, has the following four transition classes:

– Internal infection: v̂si
N = (eI − eS)/N , f̂N

si (X̂) = NksiX̂SX̂I ;
– External infection: v̂i

N = (eI − eS)/N , f̂N
i (X̂) = NkiX̂S ;

– Recovery: v̂r
N = (eR − eI)/N , f̂N

r (X̂) = NkrX̂I ;
– Immunity loss: v̂s

N = (eS − eR)/N , f̂N
s (X̂) = NksX̂R.

As we can see, all transition rates depend linearly on system size. When this hap-
pens, rates are called density dependent [7], a condition that usually guarantees
the applicability of the mean field results.

Drift. The main quantity required to define mean field equations is the drift.
The drift is the average direction of change of the population model, conditional
on being in a certain state at some time t. The drift of the normalised model is

F (x) =
∑

η∈T
φ̂η(x)f̂η(x)v̂η, (1)

Usually, mean field is defined under some additional restrictions on the popula-
tion model:

(C1) Guards are true for any x ∈ S, hence the indicator function can be safely
removed from the drift: FN (x) =

∑
η∈T f̂N

η (x)v̂N
η .

(C2) F is a Lipschitz continuous function.

Note that by definition of the rescaled model, the drift F (x) does not depend
on N , because the update vectors are rescaled by 1/N while the transition rates
are rescaled by N . When the drift FN (x) does depend on N , condition (C2) can
be replaced in all theorems by a condition (C2’): FN (x) converges uniformly as
N → ∞ to a Lipschitz continuous function F (x).

Note that in the SIR model, Conditions (C1) and (C2) are satisfied. For the
second one, in particular, we can see that by multiplying a normalised update
vector, e.g. v̂i

N , by the corresponding rate, e.g. f̂N
i (X̂) = NkiX̂SX̂I , the depen-

dency on system size cancels out, so that the drift FN (x) is independent of N .
Lipschitz continuity1 is easily proved. See [7] for a deeper discussion of these
conditions. In the following, we will discuss how to weaken these assumptions.

The following theorem can then be proved (see [4,7,20]):

Theorem 1. Assume the above conditions C1 and C2 hold and that X̂0 con-
verges to x0 almost surely (resp. in probability) as N goes to infinity. Let x be
the solution of the ODE:

d

dt
x(t) = F (x(t)) x(0) = x0. (2)

1 In fact, Lipschitz continuity is satisfied only locally, but this enough for mean field
convergence to work.

66 L. Bortolussi and N. Gast

Then, for any T > 0,

lim
N→∞

sup
t≤T

‖X̂N (t) − x(t)‖ = 0 almost surely (resp. in probability).

The theorem essentially states that trajectories of the PCTMC, for large N ,
will be indistinguishable from the solution of the mean field ODE restricting to
any finite time horizon T > 0. This can be seen as a functional version of the
law of large numbers. An example of the theorem at work, for the SIR model,
can be seen in Fig. 1. For the SIR model, the mean field approximation is given
by the following system of ODEs:

ẋS = −kixS − ksixSxI + ksxR

ẋI = kixS + ksixSxI − krxI (3)
ẋR = krxI − ksxR

We simulate the model for population size of N = 10, N = 100 and N = 1000
agents and report the evolution of the numbers of susceptible or infected agents
as a function of time. The parameters are ki = ksi = ks = kr = 1 and the initial
conditions are XI(0) = XS(0) = 2XR(0) = 2N/5. Each plot contains three
curves: a sample path of one simulation, the mean field (ODE) approximation
and an average over 104 simulations.

This figure illustrates how large the population size N has to be for the
approximation to be accurate. We observe that the mean field approximation
describes correctly the overall dynamics of the PCTMC for N = 100 and N =
1000. In fact, it can be shown that the rate of convergence in Theorem 1 is of
the order of 1/

√
N [4,20] but with bounds that often an underestimation of

the real convergence speed. In practice, we often observe that the convergence is
quicker than this bound. This is particularly true when one considers the average
stochastic value: E [X(t)]. To illustrate this fact, we simulated the SIR model 104

times to compute the values E [X(t)]. We report the evolution of E [XS(t)] and
E [XI(t)] with time in Fig. 1. We observe than, already for N = 10, the ODE x(t)
is extremely close to the value of E [x(t)] computed by simulation. For N = 100
and N = 1000, the curves are indistinguishable.

Notice that in Theorem 1, the restriction to finite time horizons is funda-
mental, as convergence at steady state does not necessarily hold. An exam-
ple is given by the SIR model when ki = 0, ksi = 3, ks = kr = 1 and
xR(0) = xS(0) = xI(0) = 1/3. This initial condition is a fixed point of the mean
field ODE which therefore predicts an endemic equilibrium. In the PCTMC
model, however, for any N , the epidemic always extinguishes (i.e. eventually
XI(t) = 0) because there is no external infection in this situation. For a deeper
discussion of this issue, see the next section as well as [7].

Mean-Field Limits Beyond Ordinary Differential Equations 67

N
=

1
0

N
=

1
0
0

N
=

1
0
0
0

Fig. 1. Simulation of the SIR model: comparison between ODE and simulation for
various values of N . We observe that the simulation converges to the ODE as N goes
to infinity. Moreover, even for N = 10, the average simulation is very close to the ODE.

In fact, steady state results can be obtained at the price of adding two addi-
tional conditions:

(C3) For any N , the PCTMC has a steady-state distribution πN . The sequence
of distributions πN is tight.2

(C4) The ODE (2) has a unique fixed point x∗ to which all trajectories converge.

The condition C3 is a natural condition that is in general true for PCTMC
models. For example, if the population CTMC of size N has a finite number of
states, it has a steady-state distribution. Moreover, the tightness of the measure
is true if X is almost surely bounded.
2 A sequence of distributions is πN tight if their probability does not escape to infinity,

i.e. for each ε there is a compact set K such that πN (K) ≥ 1 − ε for each N .

68 L. Bortolussi and N. Gast

However, condition C4 is a condition that is often difficult to check for a given
set of ODEs. Proving it requires to exhibit a Lyapunov function witnessing global
attractiveness of the unique equilibrium point.

Theorem 2. Assume that the above conditions C1, C2, C3 and C4 hold. Then,
πN converges weakly to the Dirac measure x∗.

Similarly to Theorem1, it can be shown that under mild additional condi-
tions, the speed of convergence of the steady-state distribution πN to x∗ is also
1/

√
N . For example, it is shown in [53] that this holds when x∗ is exponentially

stable, in which case we have
√

E

[
‖XN (∞) − x∗‖2

]
= O(1/

√
N),

where XN (∞) denotes a random point distributed according to the stationary
measure πN .

3 Non-continuous Dynamics and Uncertainties

The classical mean field models make the assumption that the drift F , given
by (1), is Lipschitz-continuous. Yet, this is not the case in many practical prob-
lems. For example, this occurs when a transition η has a guard predicate φη

that is true only in a sub-part of the domain. This causes a discontinuity in the
drift between the two regions where the predicate is true or false. In this case,
the ODE ẋ = F (x) is often not well-defined. A classical way of overcoming this
difficulty is to replace the ODE by a differential inclusion ẋ ∈ F (x).

In this section, we give some general discussion of differential inclusions. We
then show how the classical mean field results can be generalised to differen-
tial inclusion dynamics in the case of discontinuous dynamics. Last, we show
in Sect. 3.3 how this framework can be used to deal with uncertainties in the
parameters. This section collects results from [6,28].

3.1 The Differential Inclusion Limit

Let M = (X, T ,x0, N) be a population model as defined in Sect. 2.1. Each
transition class has the form η = (φ(X),vη, fη(X)). Recall that the drift of the
stochastic system, defined in Eq. (1), is

F (x) =
∑

η∈T
φ̂η(x)f̂η(x)v̂η, (4)

The classical mean field results presented in the previous section (Theorems 1
and 2) apply when the guard predicates φη always evaluate to true. This condi-
tion guarantees that, if the functions fη are Lipschitz continuous, the function
F is also Lipschitz continuous. This ensures that the ODE ẋ = F (x) is well-
defined: from any initial condition, it has a unique solution. However, this no

Mean-Field Limits Beyond Ordinary Differential Equations 69

longer holds when guard predicates can take the two values true and false. In
this case, the drift F is not continuous and Theorems 1 and 2 no longer apply.

One of the reasons for the inapplicability of those theorems is that when F
is not a Lipschitz-continuous function, the ODE ẋ = F (x) does not necessarily
have a solution. For example, let F : R → R be defined by F (x) = −1 if x ≥ 0
and F (x) = 1 if x < 0. The ODE ẋ = F (x) starting in 0 has no solution.
A natural way to overcome this limitation is to use differential inclusions.

Let G be a multivalued map, that associates to each x ∈ R
S a set G(x) ⊂ R

S .
A trajectory x is said to be a solution of the differential inclusion ẋ ∈ G(x)
starting in x0 if:

x(t) = x0 +
∫ t

0

g(s)ds, where for all s : g(s) ∈ G(x (s)).

The sufficient condition for the existence of at least one solution x : [0,∞) →
R

d of a differential inclusion from any initial condition x0 is the following (see [2]):

(C5) For all x ∈ R
d, G(x) is closed, convex and non-empty; supx∈Rd |G(x)| < ∞

and G is upper-hemicontinuous.3

Theorem 3 [28]. Let M = (XN , T ,x0, N) be a population model with drift F
such that there exists a function G satisfying (C5) such that for all x ∈ R

d:
F (x) ∈ G(x). Let S be the set of solutions of the differential inclusion ẋ ∈ G(x)
starting in x0. Then, for all T , almost surely

lim
N→∞

inf
x∈Sx0

sup
t∈[0,T]

∥
∥XN (t) − x(t)

∥
∥ = 0.

In other words, as N grows, the distance between the stochastic process X and
the set of solutions of the differential inclusion goes to 0. If this set has a unique
solution, then XN converges to this solution.

Theorem 3 is a generalisation of Theorem 1 that relaxes the condition (C1)
by using a larger drift function G. We will see in the next section a natural way
to choose G when the drift is not continuous. The price to be paid by this gen-
eralisation is composed of two drawbacks. First, differential inclusions can have
multiple solutions. Theorem 3 implies that XN gets closer to the solutions of the
differential inclusion but does not indicate towards which solutions the process
will converge. Second, the speed of convergence of XN to S is unknown, apart
in the special case of one-sided Lipschitz drift, for which the distance between
XN and S decays in 1/

√
N (see [28]). In general, the convergence appears to be

slower in the case of non-continuous dynamics (see Fig. 2).
The steady-state of a non-continuous PCTMC can also be approximated

by using the same approximation. In fact, the results of Theorem2 can also
be directly generalised to the case of non-continuous dynamics: if the differ-
ential inclusion has a unique point x∗ to which all trajectories converge, then
the steady-state distribution of XN concentrates on x∗ as N goes to infinity
(see [6,28]).
3 G is upper-hemicontinuous if for all x, y ∈ R

d, xn ∈ R
d, yn ∈ F (xn), limn→∞ xn = x

and limn→∞ yn = y, then y ∈ F (x).

70 L. Bortolussi and N. Gast

3.2 Application to Discontinuous Dynamics

A natural way to define a multivalued map that satisfies (C5) is to consider the
multivalued map F̄ , defined by

F̄ (x) =
⋂

ε>0

convex hull

⎛

⎝
⋃

x′:‖x−x′‖≤ε

F (x′)

⎞

⎠ . (5)

It is shown in [28] that if F is bounded, then F̄ satisfies (C5). By Theorem 3, this
implies that, regardless of the properties of the original drift F , the trajectories
of the stochastic system XN converge to the solution of the differential inclusion
ẋ ∈ F̄ (x).

When F is continuous at a point x ∈ R
d, the F̄ (x) = F (x). When F is

not continuous in x ∈ R
d, F̄ (x) is multivalued. To give a concrete example, let

us consider the SIR model of Sect. 2.2 in which we add an additional transition
corresponding to the treatment of some infected people. This treatment is applied
when the proportion of infected people is greater than 0.3 and changes an infected
person into a susceptible individual at rate kt. This corresponds to a transition
class:

– Treatment: η = (1XI≥0.3, eS − eI , ktXI)

Adding this transition to the original ODE (3), the drift is given by

F (x) =

⎛

⎝
−kixS − ksixSxI + ksxR + kt1xI≥0.3xI

kixS + ksixSxI − krxI − kt1xI≥0.3xI

krxI − ksxR

⎞

⎠ , (6)

where the guard predicate leads to the term 1xI≥0.3.
This drift is not continuous in x. In fact, it can be shown that because of this

discontinuity, the corresponding ODE has no solution on [0,∞) starting from
x0 = (.4, .4, .2). The corresponding F̄ defined by Eq. (5) is then given by

F̄ (x) =

⎛

⎝
−kixS − ksixSxI + ksxR + kt1xI>0.3xI + kt[0, xI]1xI=0.3

kixS + ksixSxI − krxI − kt1xI>0.3xI − kt1xI=0.3[0, xI]
krxI − ksxR

⎞

⎠ ,

where the notation a + [b, c] denotes the set [a + b, a + c].
It can be shown that the differential inclusion ẋ ∈ F̄ (x) has a unique

solution, x. Hence, Theorem 3 applies to show that XN converges to x as N
goes to infinity. To illustrate this fact, we simulated the modified SIR model
with the treatment policy and report the results in Fig. 2. We observe that, as
stated by Theorem 3, XN converges to x as N goes to infinity. In this case, the
convergence appears to be slower than for the Lipschitz-continuous case. This is
especially visible when looking at the average values E [XS] and E [XI]: in Fig. 1,
we observe that for the Lipschitz-continuous case, E [XS] is almost equal to xs

already for N = 10. In the non-continuous case, Fig. 2 indicates that E [XI] does
converge to xI but at a much slower rate.

Mean-Field Limits Beyond Ordinary Differential Equations 71

N
=

1
0

N
=

1
0
0

N
=

1
0
0
0

Fig. 2. Simulation of the SIR model: comparison between differential inclusions and
simulation for various values of N . We observe that the simulation converges to the
solution of the differential inclusion as N goes to infinity. Moreover, even for N = 10,
the average simulation is very close to the solution of the differential inclusion.

3.3 Imprecise and Uncertain Models

Stochastic models are one way of representing uncertainties in a system but they
depend on parameters whose precise values are not always known. The differ-
ential inclusion framework is also well adapted to study models with imprecise
or unknown parameters. Following [6], we distinguish two ways to model uncer-
tainties in models of complex systems:

– Imprecise scenario: Some parameters ϑ can depend on features of the envi-
ronment external to the model. We fix a set Θ of possible values for ϑ and
assume that ϑ depends on time t and can take any value of Θ at any time
instant, i.e. that ϑt ∈ Θ.

– Uncertain scenario: In a simpler scenario, a parameter ϑ is assumed fixed,
but its precise value not known precisely. In this case, we just assume that
ϑ ∈ Θ, where Θ is the possible set of values of ϑ, as above.

72 L. Bortolussi and N. Gast

An imprecise or uncertain PCTMC model is a tuple (X, T , x0, Θ,N), where Θ
is a set of parameters. The difference with classical PCTMC is that the rate
function fη(X, θ) of each transition class η ∈ T depends on a parameter θ ∈ Θ.

The differential inclusion framework can be used to study the limits of impre-
cise and uncertain PCTMC. For the uncertain scenario, there is a differen-
tial inclusion ẋ ∈ F (x, ϑ) associated with each parameter ϑ. Denoting by Sϑ

the set of solutions of this differential inclusion, Theorem3 shows that, as N
goes to infinity, any sequence of uncertain trajectories XN converges to the set
Suncertain =

⋃
ϑ∈Θ Sϑ. The differential inclusion corresponding to the imprecise

scenario is ẋ ∈ ⋃
ϑ∈Θ F (x, ϑ). Denoting by Simprecise the set of solutions of this

differential inclusion, Theorem3 shows that, as N goes to infinity, any imprecise
trajectory XN converges to Simprecise.

Some numerical methods are developed in [6] to compute or approximate the
set of solutions of differential inclusions corresponding to the imprecise and the
uncertain model. In particular, we obtain the most precise results by describing
the set of reachable values of x at time t as a maximisation problem. Then
Pontryagin’s maximum principle [46] can be used to numerically compute the
solution.

4 Hybrid Mean Field Limits

In the previous sections, we considered scenarios where all populations of the
model are large and grow with the system size. This allows one to prove that their
density has vanishing fluctuations around the mean, given by the solution of the
mean field equation. However, in many practical cases, there may be multiple
population scales in a model, typically in the form of some entities being present
in small numbers, independent of the total population size. Examples can be
found in genetic regulatory networks, where genes are present in a fixed quantity,
typically one or few copies, or more generally in the presence of a centralised
form of control [8]. This suggest that in these scenarios we need to consider mean
field models in which the continuous and deterministic limit dynamics of parts
of the system coexists with the discrete and stochastic dynamics of other parts.
Mathematically, this behaviour is captured by stochastic hybrid systems (SHS)
[8,21], which will be introduced in the next subsection.

4.1 Stochastic Hybrid Systems

We introduce a model of SHS, essentially borrowing from the treatment of [8,
15] of a class of stochastic hybrid processes known as Piecewise-Deterministic
Markov Processes (PDMP) [21].

We consider two sets of variables, the discrete variables Z = Z1, . . . , Zk

and the continuous variables Y = Y1, . . . , Ym. The former describes populations
that remain discrete also in the mean-field limit, while the second describes
populations that will be approximated as continuous. We call E = Ed × Ec the
hybrid state space of the SHS, with Ed ⊂ N

k a countable set of possible values

Mean-Field Limits Beyond Ordinary Differential Equations 73

for Z, and with Ec ⊂ R
m the continuous state space in which variables Y can

take values. Each possible value that the vector Z can take is called a discrete
mode, and can be identified with a node in a graph describing the transitions of
the discrete states. This graph-based point of view is taken in the definition of
stochastic hybrid automata, see e.g. [15].

The evolution of the continuous state is governed by an m-dimensional vector
field F (Z,Y), depending on the continuous and the discrete variables. Hence, the
continuous variables will evolve following the solution of the differential equation
defined by F , which can be different in each discrete mode z. Such a mode-specific
continuous dynamics is one of the characteristic features of SHS.

The dynamics of the discrete state is governed by a stochastic Markovian
dynamics, specified by two quantities: a rate function λ(Z,Y), depending both
on discrete and continuous variables, and a jump or reset kernel R(Z,Y, ·),
specifying for each Z,Y a distribution on E, giving the state in which the system
will find itself after a jump of the discrete transition. For the purpose of this
chapter, we can restrict ourselves to finitely supported reset kernels, defined by
a finite set of pairs of update vectors {(vd

j ,vc
j) | j = 1, . . . , h} and associated

probability functions pj(Z,Y), giving the likelihood of jumping from state Z,Y
to state Z + vd

j ,Y + vc
j , if a stochastic event fires when the system is in state

Z,Y. This, in turn, happens after an exponentially distributed delay with rate
λ(Z,Y).

Discrete and continuous dynamics in a SHS are intertwined. The system
starts in a given state z0,y0, and its continuous state evolves following the solu-
tion of the initial value problem d

dtY(t) = F (z0,Y(t)), Y(0) = y0. This continu-
ous flow will go on until a discrete event will happen, at a random time governed
by an exponential distribution with rate λ(Z,Y(t)). Note that, as Y will change
value in time following the flow of the vector field, the rate of a discrete jump is
also time-dependent. When a discrete transition happens, say in state z,y, then
the system will jump to the state z+vd

j ,y +vc
j with probability pj(Z,Y). Note

that both the discrete mode and the value of continuous variables can change.
From this new state, the system continues to evolve following the dynamics given
by the vector field in the new discrete mode. The overall dynamics is given by
an alternation of periods of continuous evolution interleaved by discrete jumps.
For a proper mathematical formalisation of this process, we refer the interested
reader to [8,21].

4.2 From PCTMC to SHS

In this section we will show how to construct a SHS from a PCTMC (X, T ,x0, N),
and how to guarantee the asymptotic correctness of the method. The starting
point is a partition of the variables X of the PCTMC into two distinct classes:
discrete and continuous. We will denote discrete variables with Z and continuous
ones with Y, so that X = Z,Y. Transitions T also have to be separated in two
classes: discrete Td and continuous Tc. Intuitively, continuous transitions and vari-
ables will define the continuous dynamics, and discrete transitions and variables

74 L. Bortolussi and N. Gast

the discrete one. The only request is that continuous transitions do not affect dis-
crete variables, i.e. for each η ∈ Tc, vη[Z] = 0, where vη[Z] denotes the vector vη

restricted to the components of Z.

Remark 1. The choice of how to partition variables and transitions into discrete
and continuous is not obvious, and depends on the model under consideration.
Often, this is easily deduced from model structure, e.g. due to the presence of
conservation laws with a small number of conserved agents. A further help comes
from the request to make explicit in the rates and updates the dependency on
system size N . An alternative is to define rules to automatically switch between
a discrete or a continuous representation of variables and transitions, depending
on the current state of the model. We refer the interested reader to the discussion
in [8] for further details.

Normalisation of Continuous Variables. To properly formalise hybrid mean-
field limits, we need to perform a normalisation operation on the continuous
variables, taking system size into account (hence we will use the superscript N
from now on). This can be obtained as in Sect. 2.3, by introducing the normalised
variables ŶN = Y/N , and expressing rates, guards, and update vectors with
respect to these normalised variables. Note that normalised update vectors v̂N

η

are divided by N only in the continuous components, as the discrete variables
are not rescaled. Transitions, after normalisation, have to satisfy some scaling
conditions:
(Tc) Continuous transitions η ∈ Tc are such that f̂N

η (Z, Ŷ)/N → fη(Z, Ŷ),
as N → ∞, uniformly on Ŷ for each Z. The limit function is required
to be (locally) Lipschitz continuous. Furthermore, their non-normalised
update is independent of N . Guards can depend only on discrete variables:
φη = φη(Z).

(Td) Discrete transitions η ∈ Td are such that their rate function f̂N
η (Z, Ŷ)

converges (uniformly in Ŷ for each Z) to a continuous function fη(Z, Ŷ).
Their normalised jump vector v̂N

η has also to converge to a vector v̂η as
N diverges. Guards can depend only on discrete variables: φη = φη(Z).

Note that, for discrete transitions, we consider the change in the normalised
continuous variables, and we admit that the update vectors can depend on N . In
particular, the update for continuous variables can be linear in N , thus resulting
in a non-vanishing jump in the density, in the large N limit. This means that
limit discrete transitions may also induce jumps on continuous variables.

Construction of the Limit SHS. Given a family of PCTMC models (X, T ,x0, N),
indexed by N , with a partition of variables into Z,Y and transitions into Tc, Td

we can normalise continuous variables and formally define the SHS associated
with it:
– The vector field defining the continuous dynamics of the SHS is given by the

following drift:
F (Z, Ŷ) =

∑

η∈Tc

vηI{φη(Z)}fη(Z, Ŷ)

Mean-Field Limits Beyond Ordinary Differential Equations 75

– The jump rate of the SHS is given by

λ(Z, Ŷ) =
∑

η∈Td

I{φη(Z)}fη(Z, Ŷ)

– The reset kernel is specified by the pair of update vectors (v̂η[Z], v̂η[Ŷ]) and
by the probability

pη(Z, Ŷ) =
I{φη(Z)}fη(Z, Ŷ)

λ(Z, Ŷ)
,

for each transition η ∈ Td.
– The initial state is z0, ŷ0.

SIR Model with Vaccination. We consider now an extension of the SIR model of
Sect. 2.2, with the possibility of starting a vaccination campaign of susceptible
individuals. The model has an additional variable, XV ∈ {0, 1}, which is going
to be the only discrete variable of the system and encodes if the vaccination is
in force or not. We further have two additional transitions:

– Vaccination of susceptible: (true, eR − eS , kvXSXV);
– Activation of the vaccination policy: (XV = 0, eV , kaXI/N);

The first transition, which will be a continuous transition, models the effect of
vaccination, moving agents from susceptible to recovered state. Note that the
rate depends on XV , hence the transition is in force only if XV = 1. We could
alternatively specify the same behaviour by introducing a guard in the transition,
depending only on discrete variables, which would result in a rate active only
in a subset of discrete modes. The second transition will be kept discrete and
model the activation of the vaccination policy. Its rate depends on the density
of infected individuals (the higher the infected, the higher the activation rate).
The guard on XV allows the activation transition to be in force only when the
vaccination is inactive.

In Fig. 3 (left), we show a trajectory of the system for N = 100, and compare
it with a trajectory of the limit SHS. Parameters are ksi = 0, ki = 1, kr = 0.1,
ks = 0.01, kv = 2, ka = 2, XS(0) = 0.95N , XI(0) = 0.05N , XR(0) = 0. As we
can see, around time t = 2.5 there is a sudden drop on the number of susceptible
individuals, caused by the beginning of vaccination. The similarity between the
PCTMC and the SHS trajectories is a clear hint on the existence of an underlying
convergence result.

Mean-Field Convergence Results. Consider a family of PCTMC model (X, T ,

x0, N), and denote by (ZN (t), ŶN (t)) the normalised CTMC associated with it,
for size N , where we made explicit the partition of variables into discrete and con-
tinuous. Denote by (z(t),y(t)) the limit SHS, constructed according to the recipe
of this section. We can then prove [8] the following theorem:

76 L. Bortolussi and N. Gast

Theorem 4. Assume (zN
0 , ŷN

0) → (z0,y0) and that the transitions of the
PCTMC model satisfy conditions (Tc) and (Td). Then

(ZN (t), ŶN (t)) ⇒ (z(t),y(t)),

for all times t ≥ 0, where ⇒ denotes weak convergence.4

This theorem states that the distribution of the PCTMC will look like the dis-
tribution of the SHS for large N . In particular, if Ed is finite (i.e. there is a
finite number of discrete modes) and Ec is compact, then all conditional and
unconditional moments of the distribution converge.

In Fig. 3 (right), we see the theorem at work in the epidemic with vaccination
example. The figure compares the empirical cumulative distribution of the den-
sity of infected individuals at time t = 10. The curves look quite similar already
for N = 100, and are almost identical for N = 1000.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
S

 - SHS

X
I
 - SHS

X
R

 - SHS

X
S

 - N=100

X
I
 - N=100

X
R

 - N=100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Empirical CDF

hybrid
PCTMC N=1000
PCTMC N=100

Fig. 3. Left: comparison of a simulated trajectory of the PCTMC model, for N =
100, with a simulated trajectory of the limit SHS. Right: comparison of the empirical
cumulative distribution of X̂I at time t = 10 of the limit SHS and the PCTMC models
for N = 100 and N = 1000 (Color figure online).

4.3 Extensions of the Hybrid Limit Framework

The hybrid mean field limit presented in the previous section can be extended
in many ways, as discussed in [8]. Here we will sketch them briefly, referring the
interested reader to [8] for further details.

One possible direction to enrich the framework is to consider forced transi-
tions. In the context of SHS, these are discrete jumps happening as soon as a
condition on the system variables becomes true. Typically, they are introduced
by constraining the continuous state space Ec (in a mode dependent way), and
forcing a jump to happen as soon as the trajectory of the continuous variables
hits the boundary ∂Ec [21]. Then a jump is done according to the reset kernel R,

4 In fact, weak convergence holds for (z,y) as processes in the Skorokhod space of
cadlag functions, see [8]. For a definition of weak convergence, see [5].

Mean-Field Limits Beyond Ordinary Differential Equations 77

whose definition has to be extended on the boundary ∂Ec. Hence, discrete jumps
may happen at stochastic times, or when the condition for a forced jump is met.

In the PCTMC setting, introducing forced transitions requires us to allow
transitions with an infinite rate and with a non-trivial guard, firing as soon
as their guard becomes true. Their guards, then, can be used to constrain the
continuous state space. Hence, Ec will be defined in each mode as the interior
of the complement of the region obtained by taking the union of the satisfaction
sets of all the guards of forced transitions. The reset kernel in a point of the
boundary ∂Ec will then be defined by the active immediate transitions at that
point, choosing uniformly among the active transitions.5

As an example, consider again the SIR model with vaccination, but assume
its activation and deactivation is threshold-based: when the density of infected
becomes greater than a threshold Ihigh, the vaccination is started, while if it falls
below Ilow, the vaccination is stopped. In the PCTMC model, we would have
the following two transitions in place of the stochastic one discussed previously:

– Activation of the vaccination policy: (XI ≥ NIhigh, eV ,∞);
– Deactivation of the vaccination policy: (XI ≤ NIlow,−eV ,∞).

Theorem 4 is readily extended to the presence of instantaneous transitions, under
some additional technical conditions on the vector fields (called transversal cross-
ing), see [8] for details. The validity of the result for the SIR model with vac-
cination is illustrated in Fig. 4, where we compare simulations of the PCTMC
model and the limit SHS, for thresholds Ihigh = 0.3 and Ilow = 0.2.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
S

 - SHS

X
I
 - SHS

X
R

 - SHS

X
S

 - N=100

X
I
 - N=100

X
R

 - N=100

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X
S

 - SHS

X
I
 - SHS

X
R

 - SHS

X
S

 - N=1000

X
I
 - N=1000

X
R

 - N=1000

Fig. 4. Left: comparison of a simulated trajectory of the PCTMC model with instan-
taneous transitions (normalised variables), for N = 100 (left) and N = 1000 (right),
with a simulated trajectory of the limit SHS (Color figure online).

Other extensions of the hybrid mean field include dealing with guards in
deterministic and stochastic transitions. These introduce discontinuities in the
5 In [8], weights are introduced to solve non-determinism between instantaneous tran-

sitions. Furthermore, the possibility of seeing a chain of instantaneous events firing is
taken into account. Termination of this chain is discussed in [15] (where it is proved
undecidable for countable state spaces), and in [27], where sufficient and testable
conditions for termination are given.

78 L. Bortolussi and N. Gast

model, and require further technical conditions for the limit theorems to hold.
As for guards in the continuous transitions, this in fact requires one to introduce
in the hybrid context the mean field techniques based on differential inclusions
of Sect. 3.

5 Related Work and Examples

Load Balancing and Discontinuous Dynamics. The use of mean field approxi-
mation is popular for studying load-balancing policies in server farms. In such a
system, an object represents a server and its state is typically the number of jobs
that are waiting in its queue. A popular randomised load balancing policy is the
two-choice policy: for each incoming packet two servers are picked at random
and the job is allocated to the least-loaded of the two. This policy has been
successfully analysed by classical mean field techniques in [43] where it is shown
that it leads to an important gain of performance compared to a purely random
allocation. The classical approach then fails when one considers a centralised
load balancing policy such as join the shortest queue because these policies lead
to discontinuous dynamics. As demonstrated in [24,28,49], these problems can
be modelled and resolved by using differential inclusions.

Heterogeneous Systems and Uncertainties. Another problem where differential
inclusions can help is the case of heterogeneous systems. In such cases, there is
a large number of objects each having distinct parameters. One example is the
caching model of [31] in which an object i has a popularity pi. One possibility to
solve the problem is to consider a system of N ×S ODEs, where N is the number
of objects and S the dimension of the state space. This method scales linearly
in the number of objects but might still be problematic for large populations.
An alternative is to consider upper and lower bounds on the dynamics [48] or
to study a PDE approximation when the number of objects is large, see for
example [25].

Hybrid Mean Field Limits. The use of hybrid approximation of population mod-
els is quite common in the area of systems and synthetic biology, where genes
and often mRNA molecules are present in such low numbers (genes usually in
one copy) that classic mean field assumptions are not correct and can lead to
models failing to capture important features of the system like bursting pro-
tein expression [39]. In addition to the investigation of hybrid limits, carried out
independently for general population models [8,9] and more specifically for gene
networks [19], considerable work has been done in hybrid simulation [45] and in
developing moment closure techniques for hybrid limits [32].

Mean Field Games. Game theory studies the decisions taken by competing ratio-
nal agents. Recently, the notion of mean field games has been introduced in
[35,40] to model decisions in systems composed of a large number of agents. In a
mean field game, each agent tries to minimise an objective function that depends

Mean-Field Limits Beyond Ordinary Differential Equations 79

on the average behaviour of the population of agents but not on the action of
a precise agent. This simplifies the analysis of Nash equilibria that are replaced
by mean field equilibria. This theory is used for modelling purposes but also
to solve optimisation problems in a decentralised way [30,52]. It can be shown
that in certain cases, mean field equilibria are the limit of a sub-class of Nash
equilibria [22].

Modelling Languages Supporting a Mean Field Semantics. In the last ten years,
there has been a considerable interest in extending stochastic modelling lan-
guages, in particular stochastic process algebras, in order to derive automat-
ically mean field equations. Examples are e.g. [14,18,47]. This work has also
been extended to generate hybrid semantics in [8,15,16]. See also the chapter of
this book on CARMA [42].

6 Conclusion

In this document, we reviewed the notion of mean field limits of a stochastic
population process and presented two extensions. The classical mean field results
show that, under some conditions, a stochastic population process converges to a
deterministic system of ODEs as the number of objects of the population grows.
We have shown that, by replacing the system of ODEs by either a differential
inclusion or a hybrid system, it is possible to enlarge the set models for which
a mean field limit exists. We illustrated these notions by using a classical SIR
example. The last section gives a few pointers to papers in which these frame-
works can be applied or generalised.

Acknowledgements. L.B. and N.G. acknowledge partial support from the EU-FET
project QUANTICOL (nr. 600708).

References

1. Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical
Analysis. Springer, Heidelberg (2000)

2. Aubin, J., Cellina, A.: Differential Inclusions. Springer, Heidelberg (1984)
3. Baier, C., et al.: Model-checking algorithms for continuous-time

Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003).
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1205180

4. Benaim, M., Le Boudec, J.-Y.: A class of mean field interaction models for com-
puter and communication systems. Perform. Eval. 65(11), 823–838 (2008)

5. Billingsley, P.: Probability and Measure. English. Wiley, Hoboken (2012). ISBN:
9781118122372 1118122372

6. Bortolussi, L., Gast, N.: Mean field approximation of imprecise population
processes. QUANTICOL Technical report TR-QC-07-2015 (2015)

7. Bortolussi, L., et al.: Continuous approximation of collective systems behaviour:
a tutorial. Perform. Eval. 70(5), 317–349 (2013). ISSN: 0166-5316, doi:10.
1016/j.peva.2013.01.001, http://www.sciencedirect.com/science/article/pii/
S0166531613000023

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1205180
http://dx.doi.org/10.1016/j.peva.2013.01.001
http://dx.doi.org/10.1016/j.peva.2013.01.001
http://www.sciencedirect.com/science/article/pii/S0166531613000023
http://www.sciencedirect.com/science/article/pii/S0166531613000023

80 L. Bortolussi and N. Gast

8. Bortolussi, L.: Hybrid behaviour of Markov population models. In: Information
and Computation (2015)

9. Bortolussi, L.: Limit behavior of the hybrid approximation of stochas-
tic process algebras. In: Al-Begain, K., Fiems, D., Knottenbelt, W.J.
(eds.) ASMTA 2010. LNCS, vol. 6148, pp. 367–381. Springer, Heidelberg
(2010). http://link.springer.com/chapter/10.1007/978-3-642-13568-2 26. Accessed
11 June 2015

10. Bortolussi, L., Hillston, J.: Model checking single agent behaviours by uid approxi-
mation. Inf. Comput. 242, 183–226 (2015). ISSN: 0890-5401, doi:10.1016/j.ic.2015.
03.002

11. Bortolussi, L., Lanciani, R.: Fluid model checking of timed properties. In: Sankara-
narayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 172–188.
Springer, Heidelberg (2015)

12. Bortolussi, L., Lanciani, R.: Model checking Markov population models by central
limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., DArgenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)

13. Bortolussi, L., Lanciani, R.: Stochastic approximation of global reachability prob-
abilities of Markov population models. In: Horvath, A., Wolter, K. (eds.) EPEW
2014. LNCS, vol. 8721, pp. 224–239. Springer, Heidelberg (2014)

14. Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming: to
ordinary differential equations and back. In: Priami, C., Back, R.-J., Petre, I. (eds.)
Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp. 216–267.
Springer, Heidelberg (2009)

15. Bortolussi, L., Policriti, A.: (Hybrid) automata, (stochastic) programs: the hybrid
automata lattice of a stochastic program. J. Logic Comput. 23, 761–798 (2013).
http://dx.doi.org/10.1093/logcom/exr045

16. Bortolussi, L., Policriti, A.: Hybrid dynamics of stochastic programs. Theor. Com-
put. Sci. 411(20), 2052–2077 (2010). ISSN: 0304-3975

17. Chaintreau, A., Le Boudec, J.-Y., Ristanovic, N.: The age of gossip: spatial mean
field regime. In: Proceedings of the ACM SIGMETRICS, vol. 37, issue 1, pp. 109–
120. ACM (2009)

18. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analy-
sis of biological systems. Theor. Comput. Sci. 410(33), 00185, 3065–3084 (2009).
http://www.sciencedirect.com/science/article/pii/S0304397509001662. Accessed
25 Nov 2013

19. Crudu, A., et al.: Convergence of stochastic gene networks to hybrid piecewise
deterministic processes. Ann. Appl. Probab. 22(5), 00015, 1822–1859 (2012).
http://projecteuclid.org/euclid.aoap/1350067987. Accessed 05 Nov 2013

20. Darling, R., Norris, J.R., et al.: Differential equation approximations for Markov
chains. Probab. Surv. 5, 37–79 (2008)

21. Davis, M.H.A.: Markov Models and Optimization. Chapman & Hall, London (1993)
22. Doncel, J., Gast, N., Gaujal, B.: Mean-Field Games with Explicit Interactions.

Working paper or preprint, February 2016. https://hal.inria.fr/hal-01277098
23. Durrett, R.: Essentials of Stochastic Processes. Springer, Heidelberg (2012). ISBN:

9781461436157
24. Fricker, C., Gast, N.: Incentives and redistribution in homogeneous bike-sharing

systems with stations of finite capacity. EURO J. Trans. Logistics, 1–31 (2014)
25. Fricker, C., Gast, N., Mohamed, H.: Mean field analysis for inhomogeneous bike

sharing systems. DMTCS Proc. 01, 365–376 (2012)
26. Galpin, V.: Spatial representations, analysis techniques. In: SFM (2016)

http://link.springer.com/chapter/10.1007/978-3-642-13568-2_26
http://dx.doi.org/10.1016/j.ic.2015.03.002
http://dx.doi.org/10.1016/j.ic.2015.03.002
http://dx.doi.org/10.1093/logcom/exr045
http://www.sciencedirect.com/science/article/pii/S0304397509001662
http://projecteuclid.org/euclid.aoap/1350067987
https://hal.inria.fr/hal-01277098

Mean-Field Limits Beyond Ordinary Differential Equations 81

27. Galpin, V., Bortolussi, L., Hillston, J.: HYPE: hybrid modelling by composition of
flows. Formal Aspects Comput. 25(4), 503–541 (2013)

28. Gast, N., Gaujal, B.: Markov chains with discontinuous drifts have differential
inclusion limits. Perform. Eval. 69(12), 623–642 (2012)

29. Gast, N., Gaujal, B.: Mean field limit of non-smooth systems and differential inclu-
sions. ACM SIGMETRICS Perform. Eval. Rev. 38(2), 30–32 (2010)

30. Gast, N., Le Boudec, J.-Y., Tomozei, D.-C.: Impact of demand-response on the
efficiency, prices in real-time electricity markets. In: Proceedings of the 5th Inter-
national Conference on Future Energy Systems, pp. 171–182. ACM (2014)

31. Gast, N., Van Houdt, B.: Transient and steady-state regime of a family of list-based
cache replacement algorithms. In: ACM SIGMETRICS 2015 (2015)

32. Hasenauer, J., et al.: Method of conditional moments (MCM) for the chem-
ical master equation: a unified framework for the method of moments and
hybrid stochastic-deterministic models. J. Math. Biol. 69, 687–735 (2013). ISSN:
0303-6812, 1432–1416, doi:10.1007/s00285-013-0711-5, http://link.springer.com/
10.1007/s00285-013-0711-5. Accessed 31 July 2014

33. Henzinger, T., Jobstmann, B., Wolf, V.: Formalisms for specifying Markov-
ian population models. Int. J. Found. Comput. Sci. 22(04), 823–841 (2011).
http://www.worldscience.com/doi/abs/10.1142/S0129054111008441

34. Hu, L., Le Boudec, J.-Y., Vojnoviae, M.: Optimal channel choice for collaborative
ad-hoc dissemination. In: 2010 Proceedings of the IEEE INFOCOM, pp. 1–9. IEEE
(2010)

35. Huang, M., Malhame, R.P., Caines, P.E., et al.: Large population stochastic
dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equiv-
alence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

36. Katoen, J.-P., Khattri, M., Zapreevt, I.S.: A Markov reward model checker. In:
Second International Conference on the Quantitative Evaluation of Systems, pp.
243–244 (2005). Accessed 18 Jan 2014

37. Kurtz, T.: Solutions of ordinary differential equations as limits of pure jump
Markov processes. J. Appl. Probab. 7, 49–58 (1970)

38. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of
probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011).
http://link.springer.com/chapter/10.1007/978- 3-642-22110-1 47. Accessed 18 Jan
2014

39. Krn, M., et al.: Stochasticity in gene expression: from theories to phenotypes.
Nat. Rev. Genet. 6(6), 451–464 (2005). ISSN: 1471-0056, 1471–0064, doi:10.
1038/nrg1615, http://www.nature.com/doifinder/10.1038/nrg1615. Accessed 09
Feb 2016

40. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)
41. Le Boudec, J.-Y.: Performance Evaluation of Computer and Communication Sys-

tems. EPFL Press, Lausanne (2010)
42. Loreti, M.: Modeling and analysis of collective adaptive systems with CARMA and

its tools. In: SFM (2016)
43. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE

Trans. Parallel Distrib. Syst. 12(10), 1094–1104 (2001)
44. Norris, J.R.: Markov Chains. English. Cambridge University Press, Cambridge

(1998). ISBN: 978-0-511-81063-3 0-511-81063-6

http://dx.doi.org/10.1007/s00285-013-0711-5
http://link.springer.com/10.1007/s00285-013-0711-5
http://link.springer.com/10.1007/s00285-013-0711-5
http://www.worldscience.com/doi/abs/10.1142/S0129054111008441
http://link.springer.com/chapter/10.1007/978- 3-642-22110-1_47
http://dx.doi.org/10.1038/nrg1615
http://dx.doi.org/10.1038/nrg1615
http://www.nature.com/doifinder/10.1038/nrg1615

82 L. Bortolussi and N. Gast

45. Pahle, J.: Biochemical simulations: stochastic, approximate stochastic and
hybrid approaches. Briefings Bioinform. 10(1), 53–64 (2008). ISSN: 1467-
5463, 1477–4054, doi:10.1093/bib/bbn050, http://bib.oxfordjournals.org/cgi/doi/
10./bib/bbn050. Accessed 14 July 2014

46. Todorov, E.: Optimal control theory. In: Bayesian Brain: Probabilistic Approaches
to Neural Coding, pp. 269–298 (2006)

47. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of
process algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012).
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5567115. Accessed 24 Nov
2013

48. Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous nonlin-
ear models with differential hulls. IEEE Trans. Autom. Control 61(4), 1099–1104
(2016). doi:10.1109/TAC.2015.2457172

49. Tsitsiklis, J.N., Xu, K., et al.: On the power of (even a little) resource pooling.
Stochast. Syst. 2(1), 1–66 (2012)

50. Van Houdt, B.: A mean field model for a class of garbage collection algorithms
in flash-based solid state drives. In: Proceedings of the ACM SIGMETRICS, SIG-
METRICS 2013, Pittsburgh, PA, USA, pp. 191–202. ACM (2013). ISBN: 978-1-
4503-1900-3, doi:10.1145/2465529.2465543, http://doi.acm.org/10.1145/2465529.
2465543

51. Wilkinson, D.: Stochastic Modelling for Systems Biology. Chapman & Hall, Florida
(2006)

52. Yang, T., Mehta, P.G., Meyn, S.P.: A mean-field control-oriented approach to
particle filtering. In: American Control Conference (ACC), pp. 2037–2043. IEEE
(2011)

53. Ying, L.: On the rate of convergence of mean-field models: Stein’s method meets
the perturbation theory. arXiv preprint arXiv:1510.00761 (2015)

http://dx.doi.org/10.1093/bib/bbn050
http://bib.oxfordjournals.org/cgi/doi/10./bib/bbn050
http://bib.oxfordjournals.org/cgi/doi/10./bib/bbn050
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5567115
http://dx.doi.org/10.1109/TAC.2015.2457172
http://dx.doi.org/10.1145/2465529.2465543
http://doi.acm.org/10.1145/2465529.2465543
http://doi.acm.org/10.1145/2465529.2465543
http://arxiv.org/abs/1510.00761

Modelling and Analysis of Collective Adaptive
Systems with CARMA and its Tools

Michele Loreti1(B) and Jane Hillston2

1 Dipartimento di Statistica, Informatica,
Applicazioni “G. Parenti”, Università di Firenze, Florence, Italy

michele.loreti@unifi.it
2 Laboratory for Foundations of Computer Science,

University of Edinburgh, Edinburgh, UK

Abstract. Collective Adaptive Systems (CAS) are heterogeneous col-
lections of autonomous task-oriented systems that cooperate on common
goals forming a collective system. This class of systems is typically com-
posed of a huge number of interacting agents that dynamically adjust
and combine their behaviour to achieve specific goals.

This chapter presents Carma, a language recently defined to sup-
port specification and analysis of collective adaptive systems, and its
tools developed for supporting system design and analysis. Carma is
equipped with linguistic constructs specifically developed for modelling
and programming systems that can operate in open-ended and unpre-
dictable environments. The chapter also presents the Carma Eclipse
plug-in that allows Carma models to be specified by means of an appro-
priate high-level language. Finally, we show how Carma and its tools can
be used to support specification with a simple but illustrative example
of a socio-technical collective adaptive system.

1 Introduction

In the last forty years Process Algebras (see [3] and the references therein), or
Process Description Languages (PDL), have been successfully used to model and
analyse the behaviour of concurrent and distributed systems. A Process Algebra
is a formal language, equipped with a rigorous semantics, that provides models
in terms of processes. These are agents that perform actions and communicate
(interact) with similar agents and with their environment.

At the beginning, Process Algebras were only focussed on qualitative aspects
of computations. However, when complex and large-scale systems are considered,
it may not be sufficient to check if a property is satisfied or not. This is because
random phenomena are a crucial part of distributed systems and one is also
interested in verifying quantitative aspects of computations.

This motivated the definition of a new class of PDL where time and prob-
abilities are explicitly considered. This new family of formalisms have proven
to be particularly suitable for capturing important properties related to perfor-
mance and quality of service, and even for the modelling of biological systems.
c© Springer International Publishing Switzerland 2016
M. Bernardo et al. (Eds.): SFM 2016, LNCS 9700, pp. 83–119, 2016.
DOI: 10.1007/978-3-319-34096-8 4

84 M. Loreti and J. Hillston

Among others we can refer here to PEPA [19], MTIPP [18], EMPA [4], Stochastic
π-Calculus [23], Bio-PEPA [9], MODEST [5] and others [8,17].

The ever increasing complexity of systems has further changed the
perspective of the system designer that now has to consider a new class of sys-
tems, named Collective adaptive systems (CAS), that consist of massive num-
bers of components, featuring complex interactions among components and with
humans and other systems. Each component in the system may exhibit auto-
nomic behaviour depending on its properties, objectives and actions. Decision-
making in such systems is complicated and interaction between their components
may introduce new and sometimes unexpected behaviours.

CAS operate in open and non-deterministic environments. Components may
enter or leave the collective at any time. Components can be highly heteroge-
neous (machines, humans, networks, etc.) each operating at different temporal
and spatial scales, and having different (potentially conflicting) objectives.

CAS thus provide a significant research challenge in terms of both representa-
tion and reasoning about their behaviour. The pervasive yet transparent nature
of the applications developed in this paradigm makes it of paramount impor-
tance that their behaviour can be thoroughly assessed during their design, prior
to deployment, and throughout their lifetime. Indeed their adaptive nature makes
modelling essential and models play a central role in driving their adaptation.
Moreover, the analysis should encompass both functional and non-functional
aspects of behaviour. Thus it is vital that we have available robust modelling
techniques which are able to describe such systems and to reason about their
behaviour in both qualitative and quantitative terms. To move towards this
goal, it is important to develop a theoretical foundation for CAS that will help
in understanding their distinctive features. From the point of view of the lan-
guage designers, the challenge is to devise appropriate abstractions and linguistic
primitives to deal with the large dimension of systems, to guarantee adapta-
tion to (possibly unpredicted) changes of the working environment, to take into
account evolving requirements, and to control the emergent behaviours resulting
from complex interactions.

To design this new language for CAS we first have identified the design
principles together with the primitives and interaction patterns that are needed
in CAS design. Emphasis has been given placed on identifying the appropriate
abstractions and linguistic primitives for modelling and programming collective
adaptation, locality representation, knowledge handling, and system interaction
and aggregation.

To be effective, any language for CAS should provide:

– Separation of knowledge and behaviour;
– Control over abstraction levels;
– Bottom-up design;
– Mechanisms to take into account the environment;
– Support for both global and local views; and
– Automatic derivation of the underlying mathematical model.

Modelling and Analysis of Collective Adaptive Systems 85

These design principles have been the starting point for the design of a lan-
guage, developed specifically to support the specification and analysis of CAS,
with the particular objective of supporting quantitative evaluation and verifi-
cation. We named this language Carma, Collective Adaptive Resource-sharing
Markovian Agents [7,20].

Carma combines the lessons which have been learned from the long tradition
of stochastic process algebras, with those more recently acquired from developing
languages to model CAS, such as SCEL [12] and PALOMA [13], which feature
attribute-based communication and explicit representation of locations.

SCEL [12] (Software Component Ensemble Language), is a kernel language
that has been designed to support the programming of autonomic computing sys-
tems. This language relies on the notions of autonomic components representing
the collective members, and autonomic-component ensembles representing col-
lectives. Each component is equipped with an interface, consisting of a collection
of attributes, describing different features of components. Attributes are used by
components to dynamically organise themselves into ensembles and as a means
to select partners for interaction. The stochastic variant of SCEL, called StocS
[22], was a first step towards the investigation of the impact of different stochas-
tic semantics for autonomic processes, that relies on stochastic output semantics,
probabilistic input semantics and on a probabilistic notion of knowledge. More-
over, SCEL has inspired the development of the core calculus AbC [1,2] that
focuses on a minimal set of primitives that defines attribute-based communi-
cation, and investigates their impact. Communication among components takes
place in a broadcast fashion, with the characteristic that only components satis-
fying predicates over specific attributes receive the sent messages, provided that
they are willing to do so.

PALOMA [13] is a process algebra that takes as its starting point a model
based on located Markovian agents each of which is parameterised by a loca-
tion, which can be regarded as an attribute of the agent. The ability of agents to
communicate depends on their location, through a perception function. This can
be regarded as an example of a more general class of attribute-based communi-
cation mechanisms. The communication is based on a multicast, as only agents
who enable the appropriate reception action have the ability to receive the mes-
sage. The scope of communication is thus adjusted according to the perception
function.

A distinctive contribution of the language Carma is the rich set of communi-
cation primitives that are offered. This new language supports both unicast and
broadcast communication, and locally synchronous, but globally asynchronous
communication. This richness is important to enable the spatially distributed
nature of CAS, where agents may have only local awareness of the system, yet
the design objectives and adaptation goals are often expressed in terms of global
behaviour. Representing these rich patterns of communication in classical process
algebras or traditional stochastic process algebras would be difficult, and would
require the introduction of additional model components to represent buffers,
queues, and other communication structures. Another feature of Carma is the

86 M. Loreti and J. Hillston

explicit representation of the environment in which processes interact, allowing
rapid testing of a system under different open world scenarios. The environment
in Carma models can evolve at runtime, due to the feedback from the system,
and it further modulates the interaction between components, by shaping rates
and interaction probabilities.

The focus of this tutorial is the presentation of the language and its discrete
semantics, which are presented in the FuTS style [11]. The structure of the
chapter is as follows. Section 2 presents the syntax of the language and explains
the organisation of a model in terms of a collective of agents that are consid-
ered in the context of an environment. In Sect. 3 we give a detailed account of
the semantics, particularly explaining the role of the environment. The use of
Carma is illustrated in Sect. 4 where we describe a model of a simple bike shar-
ing system, and explain the support given to the Carma modeller in the current
implementation. Section 5 considers the bike sharing system in different scenar-
ios, demonstrating the analytic power of the Carma tools. Some conclusions are
drawn in Sect. 6.

2 CARMA: Collective Adaptive Resource-Sharing
Markovian Agents

Carma is a new stochastic process algebra for the representation of systems
developed according to the CAS paradigm [7,20]. The language offers a rich set
of communication primitives, and the exploitation of attributes, captured in a
store associated with each component, to enable attribute-based communication.
For most CAS systems we anticipate that one of the attributes could be the
location of the agent [15]. Thus it is straightforward to model those systems
in which, for example, there is limited scope of communication or, restriction
to only interact with components that are co-located, or where there is spatial
heterogeneity in the behaviour of agents.

The rich set of communication primitives is one of the distinctive features
of Carma. Specifically, Carma supports both unicast and broadcast commu-
nication, and permits locally synchronous, but globally asynchronous communi-
cation. This richness is important to take into account the spatially distributed
nature of CAS, where agents may have only local awareness of the system, yet
the design objectives and adaptation goals are often expressed in terms of global
behaviour. Representing these patterns of communication in classical process
algebras or traditional stochastic process algebras would be difficult, and would
require the introduction of additional model components to represent buffers,
queues and other communication structures.

Another key feature of Carma is its distinct treatment of the environment.
It should be stressed that although this is an entity explicitly introduced within
our models, it is intended to represent something more pervasive and diffusive of
the real system, which is abstracted within the modelling to be an entity which
exercises influence and imposes constraints on the different agents in the system.
For example, in a model of a smart transport system, the environment may have

Modelling and Analysis of Collective Adaptive Systems 87

responsibility for determining the rate at which entities (buses, bikes, taxis etc.)
move through the city. However this should be recognised as an abstraction of
the presence of other vehicles causing congestion which may impede the progress
of the focus entities to a greater or lesser extent at different times of the day.
The presence of an environment in the model does not imply the existence of
centralised control in the system. The role of the environment is also related to
the spatially distributed nature of CAS — we expect that the location where an
agent is will have an effect on what an agent can do.

This view of the environment coincides with the view taken by many
researchers within the situated multi-agent community e.g. [26]. Specifically, in
[27] Weyns et al. argue about the importance of having a distinct environment
within every multi-agent system. Whilst they are viewing such systems from the
perspective of software engineers, many of their arguments are as valid when it
comes to modelling a multi-agent or collective adaptive system. Thus our work
can be viewed as broadly fitting within the same framework, albeit with a higher
level of abstraction. Just as in the construction of a system, in the construction
development of a model distinguishing clearly between the responsibilities of the
agents and of the environment provides separation of concerns and assists in the
management of complex systems.

In [27] the authors provide the following definition: “The environment is a
first-class abstraction that proves the surrounding conditions for agents to exist
and that mediates both the interaction among agents and the access to resources.”
This is the role that the environment plays within Carma models through the
evolution rules. However, in contrast to the framework of Weyns et al., the
environment in a Carma model is not an active entity in the same sense as
the agents are active entities. In our case, the environment is constrained to
work through the agents, by influencing their dynamic behaviour or by inducing
changes in the number and types of agents making up the system.

In [24], Saunier et al. advocate the use of an active environment to mediate
the interactions between agents; such an active environment is aware of the
current context for each agent. The environment in Carma also supports this
view, as the evolution rules in the environment take into account the state of
all the potentially participating components to determine both the rate and
the probability of communications being successful, thus achieving a multicast
communication not based on the address of the receiving agents, as suggested by
Saunier et al. This is what we term “attribute-based communication” in Carma.
Moreover, when the application calls for a centralised information portal, the
global store in Carma can represent it. The higher level of abstraction offered
by Carma means that many implementation issues are ignored.

2.1 A Running Example

To describe basic features of Carma a running example will be used. This is
based on a bike sharing system (BSS) [10]. These systems are a recent, and
increasingly popular, form of public transport in urban areas. As a resource-
sharing system with large numbers of independent users altering their behaviour

88 M. Loreti and J. Hillston

due to pricing and other incentives [14], they are a simple instance of a collec-
tive adaptive system, and hence a suitable case study to exemplify the Carma
language.

The idea in a bike sharing system is that bikes are made available in a number
of stations that are placed in various areas of a city. Users that plan to use a
bike for a short trip can pick up a bike at a suitable origin station and return it
to any other station close to their planned destination. One of the major issues
in bike sharing systems is the availability and distribution of resources, both in
terms of available bikes at the stations and in terms of available empty parking
places in the stations.

In our scenario we assume that the city is partitioned in homogeneous zones
and that all the stations in the same zone can be equivalently used by any user
in that zone. Below, we let {z0, . . . , zn} be the n zones in the city, each of which
contains k parking stations.

2.2 A Gentle Introduction to CARMA

The bike sharing systems described in the previous section represent well typical
scenarios that can be modelled with Carma. Indeed, a Carma system consists
of a collective (N) operating in an environment (E). The collective is a multiset
of components that models the behavioural part of a system; it is used to describe
a group of interacting agents. The environment models all those aspects which
are intrinsic to the context where the agents under consideration are operating.
The environment also mediates agent interactions.

Example 1. Bike Sharing System (1/7). In our running example the collective
N will be used to model the behaviour of parking stations and users, while the
environment will be used to model the city context where these agents operate
like, for instance, the user arrival rate or the possible destinations of trips. ��
We let Sys be the set of Carma systems S defined by the following syntax:

S ::= N in E

where is a collective and is an environment.

Collectives and Components. We let Col be the set of collectives N which
are generated by the following grammar:

N ::= C
∣
∣ N ‖ N

A collective N is either a component C or the parallel composition of collec-
tives N1 ‖ N2. The former identifies a multiset containing the single component
C while the latter represents the union of the multisets denoted by N1 and N2,
respectively. In the rest of this chapter we will sometimes use standard opera-
tions on multisets over a collective. We use N(C) to indicate the multiplicity of

Modelling and Analysis of Collective Adaptive Systems 89

C in N , C ∈ N to indicate that N(C) > 0 and N −C to represent the collective
obtained from N by removing component C.

The precise syntax of components is:

C ::= 0
∣
∣ (P, γ)

where we let Comp be the set of components C generated by the previous
grammar.

A component C can be either the inactive component, which is denoted by 0,
or a term of the form (P, γ), where P is a process and γ is a store. A term (P, γ)
models an agent operating in the system under consideration: the process P
represents the agent’s behaviour whereas the store γ models its knowledge. A
store is a function which maps attribute names to basic values. We let:

– Attr be the set of attribute names a, a′, a1,. . . , b, b′, b1,. . . ;
– Val be the set of basic values v, v′, v1,. . . ;
– Γ be the set of stores γ, γ1, γ

′, . . ., i.e. functions from Attr to Val.

Example 2. Bike Sharing System (2/7). To model our Bike Sharing System in
Carma we need two kinds of components, one for each of the two groups of
agents involved in the system, i.e. parking stations and users. Both kinds of
component use the local store to publish the relevant data that will be used to
represent the state of the agent. We can notice that, following this approach,
bikes are not explicitly modelled in the system. This is because we are interested
in modelling only the behaviour of the active components in the system. Under
this perspective, bikes are just the resources exchanged by parking stations and
users.

The local store of components associated with parking stations contains the
following attributes:

– loc: identifying the zone where the parking station is located;
– capacity: describing the maximal number of parking slots available in the

station;
– available: indicating the current number of bikes currently available in the

parking station.

Similarly, the local store of components associated with users contains the
following attributes:

– loc: indicating current user location;
– dest: indicating user destination. ��

Processes. The behaviour of a component is specified via a process P . We let
Proc be the set of Carma processes P , Q,. . . defined by the following grammar:

90 M. Loreti and J. Hillston

P,Q ::= nil
| act.P

| P + Q

| P | Q

| [π]P
| kill

| A (A
�
= P)

act ::= α�[πs]〈−→e 〉σ
| α[πr]〈−→e 〉σ
| α�[πs](−→x)σ

| α[πr](−→x)σ

e ::= a | my.a | x | v | now | · · ·

πs, πr, π ::= 	 | ⊥ | e1 �� e2 | ¬π | π ∧ π | · · ·
Above, the following notation is used:

– α is an action type in the set ActType;
– π is a predicate;
– x is a variable in the set of variables Var;
– e is an expression in the set of expressions Exp1;
– −→· indicates a sequence of elements;
– σ is an update, i.e. a function from Γ to Dist(Γ) in the set of updates Σ;

where Dist(Γ) is the set of probability distributions over Γ .

Carma processes are built by using standard operators of process algebras.
Basic processes can be either nil or kill. The former represents the inactive
process while the latter is used, when activated, to destroy a component. We
assume that the term kill always occurs under the scope of an action prefix.

Choice (· + ·) and parallel composition (·|·) are the usual process algebra
operators: P1 + P2 indicates a process that can behave either like P1 or like P2;
while the behaviour of P1|P2 is the result of the interleaving between P1 and P2.
In the next section, when the stochastic operational semantics of Carma will
be presented, we will show how possible alternative computations of a process
P are probabilistically selected.

Process behaviour can be influenced by the store γ of the hosting component.
This is the case of the guard operator [π]P where the process P is activated
when the predicate π, i.e. a boolean expression over attribute names, is satisfied
(otherwise it is inactive). This operator can be used to enable a given behaviour
only when some conditions are satisfied. In the case of our Bike Sharing System,
if Pc is the behaviour modelling bike retrieval, a prediate of the form available > 0
can be used to enable Pc only when there are bikes available.

Carma processes located in different components interact while per-
forming four types of actions: broadcast output (α�[π]〈−→e 〉σ), broadcast input
(α�[π](−→x)σ), output (α[π]〈−→e 〉σ), and input (α[π](−→x)σ).

The admissible communication partners of each of these actions are identified
by the predicate π. Note that, in a component (P, γ) the store γ regulates the
behaviour of P . Primarily, γ is used to evaluate the predicate associated with
1 The precise syntax of expressions e has been deliberately omitted. We only assume

that expressions are built using the appropriate combinations of values, attributes
(sometime prefixed with my), variables and the special term now. The latter is used
to refer to current time unit.

Modelling and Analysis of Collective Adaptive Systems 91

an action in order to filter the possible synchronisations involving process P . In
addition, γ is also used as one of the parameters for computing the actual rate
of actions performed by P . The process P can change γ immediately after the
execution of an action. This change is brought about by the update σ. The update
is a function that when given a store γ returns a probability distribution over Γ
which expresses the possible evolutions of the store after the action execution.

The broadcast output α�[π]〈−→e 〉σ models the execution of an action α that
spreads the values resulting from the evaluation of expressions −→e in the local
store γ. This message can be potentially received by any process located at com-
ponents whose store satisfies predicate π. This predicate may contain references
to attribute names that have to be evaluated under the local store. For instance,
if loc is the attribute used to store the position of a component, action

α�[my.loc == loc]〈−→v 〉σ
potentially involves all the components located at the same location. The broad-
cast output is non-blocking. The action is executed even if no process is able to
receive the values which are sent. Immediately after the execution of an action,
the update σ is used to compute the (possible) effects of the performed action
on the store of the hosting component where the output is performed.

To receive a broadcast message, a process executes a broadcast input of the
form α�[π](−→x)σ. This action is used to receive a tuple of values −→v sent with
an action α from a component whose store satisfies the predicate π[−→v /−→x]. The
transmitted values can be part of the predicate π. For instance, α�[x > 5](x)σ
can be used to receive a value that is greater than 5.

The other two kinds of action, namely output and input, are similar. However,
differently from broadcasts described above, these actions realise a point-to-point
interaction. The output operation is blocking, in contrast with the non-blocking
broadcast output.

Example 3. Bike Sharing System (3/7). We are now ready to describe the behav-
iour of parking stations and users components.

Each parking station is modelled in Carma via a component of the form:

(G|R , {loc =
, capacity = i, available = j})

where loc is the attribute that identifies the zone where the parking station is
located; capacity indicates the number of parking slots available in the station;
available is the number of available bikes.

Processes G and R, which model the procedure to get and return a bike in
the parking station, respectively, are defined as follows:

G
�
= [available > 0] get[my.loc == loc]〈•〉{available ← available − 1}.G

R
�
= [available < capacity] ret[my.loc == loc]〈•〉{available ← available + 1}.R

When the value of attribute available is greater than 0, process G executes
the unicast output with action type get that potentially involves components

92 M. Loreti and J. Hillston

satisfying the predicate my.loc == loc, i.e. the ones that are located in the
same zone2. When the output is executed the value of the attribute available is
decreased by one to model the fact that one bike has been retrieved from the
parking station.

Process R is similar. It executes the unicast output with action type ret
that potentially involves components satisfying predicate my.loc == loc. This
action can be executed only when there is at least one parking slot available, i.e.
when the value of attribute available is less than the value of attribute capacity.
When the output considered above is executed, the value of attribute available
is increased by one to model the fact that one bike has been returned in the
parking station.

Users, who can be either bikers or pedestrians, are modelled via components
of the form:

(Q, {loc =
1, dest =
2})

where loc is the attribute indicating where the user is located, while dest indicates
the user destination. Process Q models the current state of the user and can be
one of the following processes:

P
�
= get[my.loc == loc](•).B

B
�
= move�[⊥]〈•〉{loc ← dest}.W

W
�
= ret[my.loc == loc](•).kill

Process P represents a pedestrian, i.e. a user that is waiting for a bike. To get a
bike a pedestrian executes a unicast input over activity get while selecting only
parking stations that are located in his/her current location (my.loc == loc).
When this action is executed, a pedestrian becomes a biker B.

A biker can move from the current zone to the destination. This activity is
modelled with the execution of a broadcast output via action type move. Note
that, the predicate used to identify the target of the actions is ⊥, denoting the
value false. This means that this action actually does not synchronise with any
component (since ⊥ is never satisfied). This kind of pattern is used in Carma to
model spontaneous actions, i.e. actions that render the execution of an activity
and that do not require synchronisation. After the broadcast move� the value of
attribute loc is updated to dest and process W is activated. We will see in the
next section that the actual rate of this action is determined by the environment
and may also depend on the current time.

Process W represents a user who is waiting for a parking slot. This process
executes an input over ret. This models the fact that the user has found a parking
station with an available parking slot in their zone. After the execution of this
input the user disappears from the system since the process kill is activated.

To model the arrival of new users, the following component is used:

(A, {loc =
})
2 Here we use • to denote the unit value.

Modelling and Analysis of Collective Adaptive Systems 93

where attribute loc indicates the location where users arrive, while process A is:

A
�
= arrival�[⊥]〈•〉{}.A

This process only performs the spontaneous action arrival. The precise role of
this process will be clear in a few paragraphs when the environment will be
described. ��

Environment. An environment consists of two elements: a global store γg, that
models the overall state of the system, and an evolution rule ρ.

Example 4. Bike Sharing System (4/7). The global store can be used to describe
global information that may affect the system behaviour. In our Bike Sharing
System we use the attribute user to record the number of active users.

The evolution rule ρ is a function which, depending on the current time,
on the global store and on the current state of the collective (i.e., on the
configurations of each component in the collective) returns a tuple of func-
tions ε = 〈μp, μw, μr, μu〉 known as the evaluation context where Act =
ActType ∪ {α�|α ∈ ActType} and:

– μp : Γ × Γ × Act → [0, 1], μp(γs, γr, α) expresses the probability that a
component with store γr can receive a broadcast message from a component
with store γs when α is executed;

– μw : Γ × Γ × Act → [0, 1], μw(γs, γr, α) yields the weight will be used to
compute the probability that a component with store γr can receive a unicast
message from a component with store γs when α is executed;

– μr : Γ × Act → R≥0, μr(γs, α) computes the execution rate of action α
executed at a component with store γs;

– μu : Γ × Act → Σ × Col, μu(γs, α) determines the updates on the environ-
ment (global store and collective) induced by the execution of action α at a
component with store γs.

For instance, the probability to receive a given message may depend on the
number or faction of components in a given state. Similarly, the actual rate of
an action may be a function of the number of components whose store satisfies
a given property.

Functions μp and μw play a similar role. However, while the former computes
the probability that a component receives a broadcast message, the latter asso-
ciates to each unicast interaction with a weight, i.e. a non negative real number.
This weight will be used to compute the probability that a given component
with store γr receives a unicast message over activity α from a component with
store γr. This probability is obtained by dividing the weight μw(γs, γr, α) by the
total weights of all possible receivers.

94 M. Loreti and J. Hillston

Example 5. Bike Sharing System (5/7). In our scenario, function μw can have
the following form:

μw(γs, γr, α) =

⎧
⎪⎨

⎪⎩

1 α = get ∧ γs(loc) = γr(loc)

1 α = ret ∧ γs(loc) = γr(loc)

0 otherwise

where γs is the store of the sender, γr is the store of the receiver. The above
function imposes that all the users in the same zone have the same weight, that is
1 when a user is located in the same zone of the parking station and 0 otherwise.
This means that each user in the same zone have the same probability to be
selected for getting a bike or for using a parking slot at a station. The weight
associated to all the other interactions is 0. ��

Function μr computes the rate of a unicast/broadcast output. This function
takes as parameter the local store of the component performing the action and
the action on which the interaction is based. Note that the environment can
disable the execution of a given action. This happens when the function μr

(resp. μp or μw) returns the value 0.

Example 6. Bike Sharing System (6/7). In our example μr can be defined as
follows:

μr(γs, α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λg α = get

λr α = ret

mtime(now, γs(loc), γs(dest)) α = move�

atime(now, γs(loc), γg(users)) α = arrival�

0 otherwise

We say that actions get and ret are executed at a constant rate; the rate of
movement is a function (mtime) of actual time (now) and of starting location and
final destination. Rate of user arrivals (computed by function atime) depends on
current time now on location loc and on the number of users that are currently
active in the system3. All the other interactions occurs with rate 0. ��

Finally, the function μu is used to update the global store and to activate a
new collective in the system. The function μu takes as parameters the store of
the component performing the action together with the action type and returns a
pair (σ,N). Within this pair, σ identifies the update on the global store whereas
N is a new collective installed in the system. This function is particularly useful
for modelling the arrival of new agents into a system.

3 Here we assume that functions mtime and atime are obtained after some observa-
tions on real systems.

Modelling and Analysis of Collective Adaptive Systems 95

Example 7. Bike Sharing System (7/7). In our scenario function update is used
to model the arrival of new users and it is defined as follows:

μu(γs, α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{users ← γg(users) + 1},

(W, {loc = γs(loc), dest = destLoc(now, γs(loc))}) α = arrival�

{users ← γg(users) − 1}, 0 α = ret

{}, 0 otherwise

When action arrival� is performed a component associated with a new user is
created in the same location as the sender (see Example 3). The destination of the
new user will be determined by function destLoc that takes the current system
time and starting location and returns a probability distribution over locations.
Moreover, the global store records that a new user entered in the system. The
number of active users is decremented by 1 each time action ret is performed.
All the other actions do not trigger any update on the environment. ��

3 CARMA Semantics

The operational semantics of Carma specifications is defined in terms of three
functions that compute the possible next states of a component, a collective and
a system:

1. the function C that describes the behaviour of a single component;
2. the function Nε builds on C to describe the behaviour of collectives;
3. the function St that shows how Carma systems evolve.

Note that, classically behaviour of (stochastic) process algebras is represented
via transition relations. These relations, defined following a Plotkin-style, are
used to infer possible computations of a process. Note that, due to nondeter-
minism, starting from the same process, different evolutions can be inferred.
However, in Carma, there is not any form of nonterminism while the selection
of possible next state is governed by a probability distribution.

In this chapter we use an approach based on FuTS style [11]. Using this app-
roach, the behaviour of a term is described using a function that, given a term
and a transition label, yields a function associating each component, collective,
or system with a non-negative number. The meaning of this value depends on
the context. It can be the rate of the exponential distribution characterising the
time needed for the execution of the action represented by
; the probability of
receiving a given broadcast message or the weight used to compute the proba-
bility that a given component is selected for the synchronisation. In all the cases
the zero value is associated with unreachable terms.

We use the FuTS style semantics because it makes explicit an underlying
(time-inhomogeneous) Action Labelled Markov Chain, which can be simulated
with standard algorithms [16] but is nevertheless more compact than Plotkin-
style semantics, as the functional form allows different possible outcomes to be
treated within a single rule. A complete description of FuTS and their use can
be found in [11].

96 M. Loreti and J. Hillston

Table 1. Operational semantics of components (Part 1)

3.1 Operational Semantics of Components

The behaviour of a single component is defined by a function

C : Comp × Lab → [Comp → R≥0]

Function C takes a component and a transition label, and yields a function
in [Comp → R≥0]. Lab is the set of transition labels
 which are generated by
the following grammar, where πs is defined in Sect. 2.2:

 ::= α�[πs]〈−→v 〉, γ Broadcast Output

| α�[πs](−→v), γ Broadcast Input

| α[πs]〈−→v 〉, γ Unicast Output

| α[πs](−→v), γ Unicast Input

These labels are associated with the four Carma input-output actions and con-
tain a reference to the action which is performed (α or α�), the predicate πs

used to identify the target of the actions, and the value which is transmitted or
received.

Function C is formally defined in Tables 1 and 2 and shows how a single
component evolves when a input/output action is executed. For any component
C and transition label
, C[C,
] indicates the possible next states of C after the
transition
. These states are weighted. If C[C,
] = C and C (C ′) = p then C
evolves to C ′ with a weight p when
 is executed.

Modelling and Analysis of Collective Adaptive Systems 97

The process nil denotes the process that cannot perform any action. The
behaviour associated to this process at the level of components can be derived
via the rule Nil. This rule states that the inactive process cannot perform any
action. This is derived from the fact that function C maps any label to function
∅ (rule Nil), where ∅ denotes the 0 constant function.

The behaviour of a broadcast output (α�[πs]〈−→e 〉σ.P, γ) is described by rules
B-Out and B-Out-F1. Rule B-Out states that a broadcast output α�[πs]〈−→e 〉σ
sends message �−→e �γ

4 to all components that satisfy �πs�γ = π′
s. The possible

next local stores after the execution of an action are determined by the update σ.
This takes the store γ and yields a probability distribution p = σ(γ) ∈ Dist(Γ).
In rule B-Out, and in the rest of the chapter, the following notations are used:

– let P ∈ Proc and p ∈ Dist(Γ), (P,p) is a probability distribution in
Dist(Comp) such that:

(P,p)(C) =

⎧
⎨

⎩

1 P ≡ Q|kill ∧ C ≡ 0
p(γ) C ≡ (P, γ) ∧ P �≡ Q|kill
0 otherwise

– let c ∈ Dist(Comp) and r ∈ R≥0, r ·c denotes the function C : Comp → R≥0

such that: C (C) = r · c(C)

Note that, after the execution of an action a component can be destroyed.
This happens when the continuation process after the action prefix contains the
term kill. For instance, by applying rule B-Out we have that:

C[(α�[πs]〈v〉σ.(kill|Q), γ), α�[πs]〈v〉, γ] = [0 �→ r]

Rule B-Out-F1 states that a broadcast output can be only involved in labels
of the form α�[πs]〈−→v 〉, γ.

Computations related to a broadcast input are labelled with α�[πs](−→v), γ1.
There, πs is the predicate used by the sender to identify the target components
while −→v is the sequence of transmitted values. Rule B-In states that a compo-
nent (α�[πr](−→x)σ.P, γr) can evolve with this label when its store γr (the store
of the receiver) satisfies the sender predicate, i.e. γr |= πs, while the store of the
sender, i.e. γs satisfies the predicate of the receiver πr[−→v /−→x].

Rule B-In-F1 models the fact that if a component is not in the set of possible
receivers (γr �|= πs) or the received values do not satisfy the expected requirements
then the component cannot receive a broadcast message. Finally, the rule B-In-
F2 models the fact that (α�[πr](−→x)σ.P, γr) can only perform a broadcast input
on action α and that it always refuses input on any other action type β �= α.

The behaviour of unicast output and unicast input is defined by the first
five rules of Table 2. These rules are similar to the ones already presented for
broadcast output and broadcast input.

4 We let �·�γ denote the evaluation function of an expression/predicate with respect
to the store γ.

98 M. Loreti and J. Hillston

Table 2. Operational semantics of components (Part 2)

The other rules of Table 2 describe the behaviour of other process operators,
namely choice P + Q, parallel composition P |Q, guard and recursion. The term
P + Q identifies a process that can behave either as P or as Q. The rule Plus
states that the components that are reachable by (P + Q, γ) are the ones that
can be reached either by (P, γ) or by (Q, γ). In this rule we use C1 ⊕ C2 to
denote the function that maps each term C to C1(C) + C2(C), for any C1,C2 ∈
[Comp → R≥0].

In P |Q the two composed processes interleave for all the transition labels. In
the rule the following notations are used:

– for each component C and process Q we let:

C|Q =
{
0 C ≡ 0
(P |Q, γ) C ≡ (P, γ)

Q|C is symmetrically defined.
– for each C : Comp → R≥0 and process Q, C |Q (resp. Q|C) denotes the

function that maps each term of the form C|Q (resp. Q|C) to C (C), while
the others are mapped to 0;

Rule Rec is standard. The behaviour of ([π]P, γ) is regulated by rules Guard
and Guard-F. The first rule states that ([π]P, γ) behaves exactly like (P, γ)

Modelling and Analysis of Collective Adaptive Systems 99

when γ satisfies predicate π. However, in the first case the guard is removed
when a transition is performed. In contrast, no component is reachable when
the guard is not satisfied (rule Guard-F).

The following lemma guarantees that for any C and for any
 C[C,
] is either
a probability distribution or the 0 constant function ∅.

3.2 Operational Semantics of Collectives

The operational semantics of a collective is defined via the function

Nε : Col × LabI → [Col → R≥0]

that is formally defined in Table 3, where we use a straightforward adaptation
of the notations introduced in the previous section. This function shows how
a collective reacts when a broadcast/unicast message is received. Indeed, LabI

denotes the subset of Lab with only input labels:

 ::= α�[πs](−→v), γ Broadcast Input

| α[πs](−→v), γ Unicast Input

Given a collective N and an input label
 ∈ LabI , function Nε[N,
] returns
a function N that associates each collective N ′ reachable from N via
 with a
value in R≥0. If
 is a broadcast input (α�[πs](−→v), γ) this value represents the
probability that the collective is reachable after
. When
 is a unicast input
α[πs](−→v), γ, N (N ′) is the weight that will be used, at the level of systems, to
compute the probability that N ′ is selected after
. Note that this difference is
due from the fact that while the probability to receive a broadcast input can be
computed locally (each component identifies its own probability), to compute the
probability to receive a unicast input the complete collective is needed. Function
Nε is also parametrised with respect to the evaluation function ε, obtained from
the environment where the collective operates, that is used to compute the above
mentioned weights.

The first four rules in Table 3 describe the behaviour of the single compo-
nent at the level of collective. Rule Zero is similar to rule Nil of Table 1 and
states that inactive component 0 cannot perform any action. Rule Comp-B-In
states that if (P, γ) can receive a message sent via a broadcast with activity
α (C[(P, γ), α�[πs](−→v), γ] = N �= ∅) then the component receives the message
with probability μp(γ, α�) while the message is not received with probability
1 − μp(γ, α�). In the first case, the resulting function is renormalised by ⊕N
to indicate that each element in P receives the message with the same prob-
ability. There we use ⊕N to denote

∑
N∈Col N (N). On the contrary, rule

Comp-B-In-F states that if (P, γ) is not able to receive a broadcast message,
(C[(P, γ), α�[πs](−→v), γ] = ∅), with probability 1 the message is received while
the component remains unchanged.

Rule Comp-In is similar to Comp-B-In. It simply lifts the transition at
the level of component to the level of collective while the resulting function is

100 M. Loreti and J. Hillston

Table 3. Operational semantics of collective

multiplied by the weight μp(γ1, γ2, α). The latter is the probability that this
component is selected for the synchronisation. As in Comp-B-In, function N
is divided by ⊕N to indicate that any possible receiver in P is selected with the
same probability. Rule Comp-In-F is applied when a component is not involved
in a synchronisation.

Rule B-In-Sync states that that two collectives N1 and N2 that operate in
parallel synchronise while performing a broadcast input. This models the fact
that the input can be potentially received by both of the collectives. In this rule
we let N1 ‖ N2 denote the function associating the value N1(N1) ·N2(N2) with
each term of the form N1 ‖ N2 and 0 with all the other terms. We can observe
that if

Nε[N,α�[πs](−→v), γ] = N

then, as we have already observed for rule Comp-B-In, ⊕N = 1 and N is in
fact a probability distribution over Col.

Rule In-Sync controls the behaviour associated with unicast input and it
states that a collective of the form N1 ‖ N2 performs a unicast input if this
is performed either in N1 or in N2. This is rendered in the semantics as an
interleaving rule, where for each N : Col → R≥0, N ‖ N2 denotes the function
associating N (N1) with each collective of the form N1 ‖ N2 and 0 with all other
collectives.

Modelling and Analysis of Collective Adaptive Systems 101

3.3 Operational Semantics of Systems

The operational semantics of systems is defined via the function

St : Sys × LabS → [Sys → R≥0]

that is formally defined in Table 4. This function only considers synchronisation
labels LabS :

 ::= α�[πs]〈−→v 〉, γ Broadcast Output

| τ [α[πs]〈−→v 〉, γ] Unicast Synchronization

The behaviour of a Carma system is defined in terms of a time-
inhomogeneous Action Labelled Markov Chain whose transition matrix is defined
by function St. For any system S and for any label
 ∈ LabS , if St[S,
] = S
then S (S′) is the rate of the transition from S to S′. When S (S′) = 0 then S′

is not reachable from S via
.
The first rule is Sys-B. This rule states that, when ε = 〈μp, μw, μr, μu〉 =

ρ(t, γg, N), a system of the form N in (γg, ρ) at time t can perform a broadcast
output when there is a component C ∈ N that performs the output while the
remaining part of the collective (N − C) performs the complementary input.
The outcome of this synchronisation is computed by the function bSyncε defined
below:

ε = 〈μp, μw, μr, μu〉 C[C,α�[πs]〈−→v 〉, γ] = C Nε[N,α�[πs](−→v), γ] = N

bSyncε(C,N, α�[πs]〈−→v 〉, γ) = μr(γ, α�[πs]〈−→v 〉, γ) · C ‖ N

This function combines the outcome of the broadcast output performed by C,
(C) with the complementary input performed by N (N), the result is then multi-
plied by the rate of the action induced by the environment μr(γC , α�[πs]〈−→v 〉, γ).
Note that, since both C and N are probability distributions, the same is true
for C ‖ N .

To compute the total rate of a synchronisation we have to sum the outcome
above for all the possible senders C ∈ N multiplied by the multiplicity of C
component in N (N(C)). After the synchronisation, the global store is updated
and a new collective can be created according to function μu. In rule Sys-B
the following notations are used. For each collective N2, N : Col → R≥0,
S : Sys → R≥0 and p ∈ Dist(Γ) we let N in (p, ρ) denote the function
mapping each system N in (γ, ρ) to N (N) · p(γ).

The second rule is Sys that regulates unicast synchronisations, which is sim-
ilar to Sys-B. However, there function uSyncε is used. This function is defined
below:

ε = 〈μp, μw, μr, μu〉 C[C,α�[πs]〈−→v 〉, γ] = C Nε[N,α�[πs](−→v), γ] = N �= ∅
uSyncε(C,N, α�[πs]〈−→v 〉, γ) = μr(γC , α�[πs]〈−→v 〉, γ) · C ‖ N

⊕N

Nε[N,α�[πs](−→v), γ] = ∅
uSyncε(C,N, α�[πs]〈−→v 〉, γ) = ∅

102 M. Loreti and J. Hillston

Similarly to bSyncε, this function combines the outcome of a unicast output
performed by C, (C) with the complementary input performed by N (N). The
result is then multiplied by the rate of the action induced by the environment
μr(γC , α�[πs]〈−→v 〉, γ). However, in uSyncε we have to renormalise N by the value
⊕N . This guarantees that the total synchronisation rate does not exceeds the
capacity of the sender. Note that,N is not a probability distribution while N

⊕N is.

4 CARMA Implementation

To support simulation of Carma models, a prototype simulator has been devel-
oped. This simulator, which has been implemented in Java, can be used to per-
form stochastic simulation and will be the basis for the implementation of other
analysis techniques. An Eclipse plug-in for supporting specification and analy-
sis of CAS in Carma has also been developed. In this plug-in, Carma sys-
tems are specified by using an appropriate high-level language for designers of
CAS, named the Carma Specification Language. This is mapped to the process
algebra, and hence will enable qualitative and quantitive analysis of CAS dur-
ing system development by enabling a design workflow and analysis pathway.
The intention of this high-level language is not to add to the expressiveness of
Carma, which we believe to be well-suited to capturing the behaviour of CAS,
but rather to ease the task of modelling for users who are unfamiliar with process
algebra and similar formal notations. Both the simulator and the Eclipse plug-in
are available at https://quanticol.sourceforge.net/.

In the rest of this section, we first describe the Carma Specification Lan-
guage then an overview of the Carma Eclipse Plug-in is provided. In Sect. 5 we
will show how the Bike Sharing System considered in Sect. 2 can be modelled,
simulated and analysed with the Carma tools.

4.1 CARMA Specification Language

In this section we present the language that supports the design of CAS in
Carma. To describe the main features of this language, following the same
approach used in Sect. 2, we will use the Bike Sharing System.

Each Carma specification, also called a Carma model, provides definitions
for:

– structured data types and the relative functions;
– prototypes of components;
– systems composed of collective and environment;
– measures, that identify the relevant data to measure during simulation runs.

Data Types. Three basic types are natively supported in our specification lan-
guage. These are: bool, for booleans, int, for integers, and real, for real values.
However, to model complex structures, it is often useful to introduce custom

https://quanticol.sourceforge.net/

Modelling and Analysis of Collective Adaptive Systems 103

Table 4. Operational Semantics of Systems.

types. In a Carma specification two kind of custom types can be declared: enu-
merations and records.

Like in many other programming languages, an enumeration is a data type
consisting of a set of named values. The enumerator names are identifiers that
behave as constants in the language. An attribute (or variable) that has been
declared as having an enumerated type can be assigned any of the enumerators
as its value. In other words, an enumerated type has values that are different
from each other, and that can be compared and assigned, but which are not
specified by the programmer as having any particular concrete representation.
The syntax to declare a new enumeration is:

enum name = elem1 , . . . ,elemn ;

where name is the name of the declared enumeration while elemi are its value
names. Enumeration names start with a capitalised letter while the enumeration
values are composed by only capitalised letters.

Example 8. Enumerations can be used to define predefined set of values that
can be used in the specification. For instance one can introduce an enumeration
to identify the possible four directions of movement:

enum Dir e c t i on = NORTH, SOUTH, EAST, WEST;

To declare aggregated data structures, a CAS designer can use records. A
record consists of a sequence of a set of typed fields:

record name = [type1 field1 , . . . , typen fieldn] ;

Each field has a type typei and a name fieldi: typei can be either a built-in type
or one of the new declared types in the specification; fieldi can be any valid
identifier.

Example 9. Record can be used to model structured elements. For instance, a
position over a grid can be rendered as follows:

record Pos i t i on = [int x , int y] ;

104 M. Loreti and J. Hillston

A record can be created by assigning a value to each field, within square brackets:

[field1 :=expression1 , . . . , fieldn :=expressionn]

Example 10. The instantiation of a location referring to the point located at
(0, 0) has the following form:

[x:=0 , y:=0]

Given a variable (or attribute) having a record type, each field can be accessed
using the dot notation:

variable . fieldi

Constants and Functions. A Carma specification can also contain constants
and functions declarations having the following syntax:

const name = expression ;

fun type name(type1 arg1 , . . . , typek argk) {
· · ·

}
where the body of an expression consists of standard statements in a high-
level programming language. The type of a constant is not declared but inferred
directly from the assigned expression.

Example 11. A constant can be used to represent the number of zones in the
Bike Sharing System:

const ZONES = 5 ;

Moreover, functions can be used to perform complex computations that can-
not be done in a single expression:

fun real ReceivingProb (int s i z e) {
i f (s i z e != 0) {

return 1 .0/ real (s i z e) ;
} else {

return 0 . 0 ;
}

}

Components Prototype. A component prototype provides the general structure
of a component that can be later instantiated in a Carma system. Each proto-
type is parameterised with a set of typed parameters and defines: the store; the
component’s behaviour and the initial configuration. The syntax of a component
prototype is:

Modelling and Analysis of Collective Adaptive Systems 105

component name(type1 arg1 , . . . , typen argn) {
store { · · ·

attr kind anamei := expressioni ; · · ·
}
behaviour { · · ·

proci = pdefi ; · · ·
}
in i t { P1 | · · · | Pw }

}
Each component prototype has a possibly empty list of arguments. Each

argument argi has a type typei that can be one of the built-in types (bool, int
and real), a custom type (an enumeration or record), or the type process that
indicates a component behaviour. These arguments can be used in the body of
the component. The latter consists of three (optional) blocks: store, behaviour
and init.

The block store defines the list of attributes (and their initial values) exposed
by a component. Each attribute definition consists of an attribute kind attr kind
(that can be either attrib or const), a name and an expression identifying the
initial attribute value. When an attribute is declared as const, it cannot be
changed. The actual type of an attribute is not declared but inferred from the
expression providing its initialisation value.

The block behaviour is used to define the processes that are specific to the
considered components and consists of a sequence of definitions of the form

proci = pdef i ;

where proci is the process name while pdefi is its definition having the following
syntax5:

Finally, block init is used to specify the initial behaviour of a component. It
consists of a sequence of terms Pi separated by the symbol |. Each Pi can be a
process defined in the block behaviour, kill or nil.

Example 12. The prototypes for Station, Users and Arrival components, already
described in Example 2, can be defined as follows:

5 All the operators are right associative and presented in the order of priority.

106 M. Loreti and J. Hillston

component Stat i on (int l o c , int capac i ty , int av a i l a b l e
)

{
store {

attrib l o c := l o c ;
attrib av a i l a b l e := ava i l a b l e ;
attrib capac i ty := capac i ty ;

}
behaviour {

G = [my. a va i l ab l e >0]
get<>{ my. a v a i l a b l e := my. a va i l ab l e −1 } .G;

R = [my. a va i l ab l e <my. capac i ty]
ret <>{ my. a v a i l a b l e := my. a v a i l a b l e+1 } .R;

}
in i t {

G|R
}

}

component User (int l o c , int dest) {
store {

attrib l o c := l o c ;
attrib dest := dest ;

}
behaviour {

P = get [my. l o c == lo c] () .B;
B = move ∗ [fa l se]<>{ my. l o c := my. des t } .W;
W = re t [my. l o c == lo c] () . k i l l ;

}
in i t {

P
}

}

component Arr iva l (int l o c) {
store {

attrib l o c := l o c ;
}
behaviour {

A = a r r i v a l ∗ [fa l se]<>.A;
}
in i t {

A
}

}

System Definitions. A system definition consists of two blocks, namely
collective and environment, that are used to declare the collective in the system
and its environment, respectively:

Modelling and Analysis of Collective Adaptive Systems 107

system name {
col lect ive {

inist stmt
}
environment { · · ·
}

}
Above, inist stmt indicates a sequence of commands that are used to instan-

tiate components. The basic command to create a new component is:

new name(expr1 , . . . ,exprn)

where name is the name of a component prototype. However, in a system a large
number of collectives can occur. For this reason, our specification language pro-
vides specific constructs for the instantiation of multiple copies of a component.
A first construct is the range operator. This operator is of the form:

[expr1 : expr2 : expr3]

and can be used as an argument of type integer. It is equivalent to a sequence
of integer values starting from expr1, ending at expr2. The element expr3 (that
is optional) indicates the step between two elements in the sequence. When
expr3 is omitted, value 1 is assumed. The range operator can be used where an
integer parameter is expected. This is equivalent to having multiple copies of the
same instantiation command where each element in the sequence replaces the
command.

For instance, assuming ZONES to be the constant identifying the number of
zones in the city, while CAPACITY and INITIAL_AVAILABILITY refer to the station
capacity and to the initial availability, respectively, the instantiation of the sta-
tions can be modelled as:

new Stat ion ([0 :ZONES−1] , CAPACITY, INITIAL AVAILABILITY
) ;

The command above is equivalent to:

new Stat ion (0 , CAPACITY, INITIAL AVAILABILITY) ;

...
new Stat ion (ZONES−1 , CAPACITY, INITIAL AVAILABILITY) ;

Two other commands are used to control instantiation of components. These
are:

for (var name = expr1 ; expr2 ; expr3) {
inist stmt

}

i f (expr) {
inist stmt

} else {

108 M. Loreti and J. Hillston

inist stmt
}

The former is used to iterate an instantiation block for a given number of times
while the latter can be used to differentiate the instantiation depending on a
given condition.

Example 13. The following block can be used to instantiate SITES copies of com-
ponent Station at each zone. The same block instantiates a component Arrival

at each zone:

col lect ive {
for (i ; i<ZONES ; 1) {

for (j ; j<SITES ; 1) {
new Stat ion (i , CAPACITY, INITIAL AVAILABILITY) ;

}
new Arr iva l (i) ;

}
}

The syntax of a block environment is the following:

environment {
store { · · · }
prob { · · · }
weight { · · · }
rate { · · · }
update { · · · }

}
The block store defines the global store and has the same syntax as the

similar block already considered in the component prototypes.

Example 14. In the Bike Sharing System we use a global attribute to count the
amount of active users in the system:

store {
attrib use r s := 0 ;

}

Blocks prob and weight are used to compute the probability to receive a
message. Syntax of prob is the following:

prob { · · ·
[guardi] acti : expri ; · · ·
default : expr ;

}

weight { · · ·
[guardi] acti : expri ; · · ·
default : expr ;

}

Modelling and Analysis of Collective Adaptive Systems 109

In the above, each guardi is a boolean expression over the global store and
the stores of the two interacting components, i.e. the sender and the receiver,
while acti denotes the action used to interact. In guardi attributes of sender
and receiver are referred to using sender.a and receiver.a, while the values
published in the global store are referenced by using global.a. This probability
value may depend on the number of components in a given state. To compute
this value, expressions of the following form can be used:

#{ Π | expr }
This expression denotes the number of components in the system satisfying
boolean expression expr where a process of the form Π is executed. In turn, Π
is a pattern of the following form:

Π ::= *
∣
∣ *[proc]

∣
∣ comp[*]

∣
∣ comp[proc]

Example 15. In our example the block weight can be instantiated as follows:

weight{
[receiver . l o c==sender . l o c] get : 1 ;
[receiver . l o c==sender . l o c] r e t : 1 ;
default : 0 ;

}
Above, we say that each user in a zone receives a bike/parking slot with the

same probability. All the other interactions are disabled having the associated
weight equal to 0.

Block rate is similar and it is used to compute the rate of an unicast/broad-
cast output. This represents a function taking as parameter the local store of
the component performing the action and the action type used. Note that the
environment can disable the execution of a given action. This happens when
evaluation of block rate (resp. prob) is 0. Syntax of rate is the following:

rate { · · ·
[guardi] acti : expri ; · · ·
default : expr ;

}
Differently from prob, in rate guards guardi are evaluated by considering

only the attributes defined in the store of the component performing the action,
referenced as sender.a, or in the global store, accessed via global.a.

Example 16. In our example rate can be defined as follow:

rate{
[true] get : g e t r a t e ;
[true] r e t : r e t r a t e ;
[true] move ∗ : move rate ;
[true] a r r i v a l ∗ :

(global . users<TOTAL USERS? a r r i v a l r a t e : 0 . 0) ;
[true] default : 1 ;

}

110 M. Loreti and J. Hillston

Above we say that actions move*, get and ret are executed at a constant rate.
Rate of user arrivals depends on the number of active users. Action arrival* is
executed with rate arrival_rate when the total number of users active in the
system is less than TOTAL_USERS. Otherwise, the same action is disabled (i.e.
executed with rate 0.0).

Finally, the block update is used to update the global store and to install a
new collective in the system. Syntax of update is:

update { · · ·
[guardi] acti : attr updti ; inst cmdi ; · · ·

}
As for rate, guards in the update block are evaluated on the store of the

component performing the action and on the global store. However, the result is a
sequence of attribute assignments followed by an instantiation command (above
considered in the collective instatiation). If none of the guards are satisfied, or
the performed action is not listed, the global store is not changed and no new
collective is instantiated. In both cases, the collective generating the transition
remains in operation. This function is particularly useful for modelling the arrival
of new agents into a system.

Example 17. In our scenario block update is used to model the arrival of new
users and the exit of existing ones. It is defined as follows:

update {
[true] a r r i v a l ∗ : u s e r s := global . u s e r s+1 , new User (

sender . l o c , U[0 :ZONES−1]) ;
[true] r e t : u s e r s := global . users −1;

}
When action arrival* is performed a component associated with a new user is
created in the same location as the sender (see Example 3). The destination of
the new user is probabilistically selected. Indeed, above we use U[0:ZONES-1] to
indicate the uniform probability over the integer values between 0 and ZONES-1

(included). When a bike is returned, the user exits from the system (process kill

is enabled) and the global attribute users is updated accordingly.

Measure Definitions. To extract observations from a model, a Carma specifica-
tion also contains a set of measures. Each measure is defined as:

measure m name [var1=range1 , . . . , varn=rangen] = expr ;

Expression expr can be used to count, by using expressions of the form
by using expressions of the form #{ Π | expr } already described above, or
to compute statistics about attribute values of components operating in the
system: min{ expr | guard }, max{ expr | guard } and avg{ expr | guard }.
These expressions are used to compute the minimum/maximum/average value
of expression expr evaluated in the store of all the components satisfying boolean
expression guard, respectively.

Modelling and Analysis of Collective Adaptive Systems 111

Example 18. In our scenario, we are interested in measuring the number of avail-
able bikes in a zone. For this reason, the following measures are used:

measure AverageBikes [l :=0 : 4] =
avg{ my. a v a i l a b l e | my. l o c == l } ;

measure MinBikes [l :=0 : 4] =
min{ my. a v a i l a b l e | my. l o c == l } ;

measure MaxBikes [l :=0 : 4] =
max{ my. a v a i l a b l e | my. l o c == l } ;

4.2 CARMA Eclipse Plug-In

The Carma specification language is implemented as an Eclipse plug-in
using the Xtext framework. It can be downloaded using the standard proce-
dure in Eclipse by pointing to the update site at http://quanticol.sourceforge.
net/updates/6. After the installation, the Carma editor will open any file in the
workspace with the carma extension.

Given a Carma specification, the Carma Eclipse Plug-in automatically gen-
erates the Java classes providing the machinery to simulate the model. This
generation procedure can be specialised to enable the use of different kind of
simulators. Currently, a simple ad-hoc simulator, is used. The simulator pro-
vides generic classes for representing simulated systems (named here models).
To perform the simulation each model provides a collection of activities each of
which has its own execution rate. The simulation environment applies a standard
kinetic Monte-Carlo algorithm to select the next activity to be executed and to
compute the execution time. The execution of an activity triggers an update in
the simulation model and the simulation process continues until a given simula-
tion time is reached. In the classes generated from a Carma specification, these
activities correspond to the actions that can be executed by processes located
in the system components. Each of these activities in fact mimics the execution
of a transition of the Carma operational semantics. Specific measure functions
can be passed to the simulation environment to collect simulation data at given
intervals. To perform statistical analysis of collected data the Statistics package
of Apache Commons Math Library is used7.

To access the simulation features, a user can select the menu
Carma→Simulation. When this menu is selected, a dialogue box pops up to
choose the simulation parameters (see Fig. 2). This dialogue box is automati-
cally populated with appropriate values from the model. When the selection of
the simulation parameters is completed, the simulation is started. The results are
reported within the Experiment Results View (see Fig. 3). Two possible represen-
tation are available. The former, on the left side of Fig. 3, provides a graphical
representation of collected data; the latter, on the right side of Fig. 3, shows
average and standard deviation of the collected values, which correspond to the
measures selected during the simulation set-up, are reported in a tabular form.
6 Detailed installation instructions can be found at http://quanticol.sourceforge.net.
7 http://commons.apache.org.

http://quanticol.sourceforge.net/updates/
http://quanticol.sourceforge.net/updates/
http://quanticol.sourceforge.net
http://commons.apache.org

112 M. Loreti and J. Hillston

Fig. 1. A screenshot of the Carma Eclipse plug-in.

Modelling and Analysis of Collective Adaptive Systems 113

Fig. 2. Carma Eclipse Plug-In: Simulation Wizard.

These values can then be exported in CSV format and used to build suitable
plots in the preferred application.

5 Carma Tools in Action

In this section we present the Bike Sharing System in its entirety and demon-
strate the quantitative analysis which can be undertaken on a Carma model.
One of the main advantages of the fact that we structure a Carma system spec-
ification in two parts – a collective and an environment – is that we can evaluate
the same collective in different enclosing environments.

We now consider a scenario with 5 zones and instantiate the environment
of the Bike Sharing Systems with respect to two different specifications for the
environment:

Scenario 1: Users always arrive in the system at the same rate;
Scenario 2: User arrival rate is higher at the beginning (modelling the fact that

bikes are mainly used in the morning) and then decreases.

The first scenario is the one presented in Sect. 4 and reported below for
completeness:

system Scenar io1 {

114 M. Loreti and J. Hillston

Fig. 3. Carma Eclipse Plug-In: Experiment Results View.

col lect ive {
for (i ; i<ZONES; 1) {

for (j ; j<SITES ; 1) {
new Stat ion (i ,CAPACITY, INITIAL AVAILABILITY) ;

}
new Arr iva l (i) ;

}
}
environment {

store {
attrib use r s := 0 ;

}
prob {

default : 1 ;
}
weight{

[receiver . l o c==sender . l o c] get : 1 ;
[receiver . l o c==sender . l o c] r e t : 1 ;
default : 0 ;

}
rate {

get : g e t r a t e ;

Modelling and Analysis of Collective Adaptive Systems 115

r e t : r e t r a t e ;
move ∗ : move rate ;
a r r i v a l ∗ : (global . users<TOTAL USERS? a r r i v a l r a t e

: 0 . 0) ;
default : 1 ;

}
update {

a r r i v a l ∗ :
u s e r s :=global . u s e r s +1,
new User (sender . loc ,U[0 :ZONES−1]) ;

r e t :
u s e r s :=global . users −1;

}
}

}
The second scenario can be simply obtained by changing the rate block as

follows:

rate {
get : g e t r a t e ;
r e t : r e t r a t e ;
move ∗ : move rate ;
a r r i v a l ∗ :

(global . users<TOTAL USERS?
(now<360?4∗ a r r i v a l r a t e : a r r i v a l r a t e /2) : 0 . 0) ;

default : 1 ;
}

The results of the simulation of the two Carma models are reported in Fig. 4
where we report max/average/min number of bikes available at zone 0. Due to
the symmetry of the considered model, any other location in the border presents
similar results.

We can notice that, in both the scenarios the use of stations is not well
balanced. Indeed, when the system is not overloaded, there are stations that are
almost empty while others are full. This is due to the fact that stations do not
collaborate and concur to attract users. To overcome this problem we change the
behaviour of stations to let them exchange information about their availability.
The new prototype is the following:

component Co l l abo ra t i v eS ta t i on (int l o c , int capac i ty ,
int av a i l a b l e) {

store {
attrib l o c := l o c ;
attrib av a i l a b l e := ava i l a b l e ;
attrib capac i ty := capac i ty ;
attrib ge t enab l ed := true ;
attrib r e t enab l ed := true ;

}

behaviour {

116 M. Loreti and J. Hillston

Scenario 1

Scenario 2

Fig. 4. Bike Sharing System: Simulation Results — 10 simulation runs

G = [my. a va i l ab l e >0 && my. g e t enab l ed]
get<>{ my. a v a i l a b l e := my. a va i l ab l e −1 } .G;

R = [my. a va i l ab l e <my. capac i ty && my. r e t enab l ed]
ret <>{ my. a v a i l a b l e := my. a v a i l a b l e+1 } .R;

C =
[my. g e t enab l ed | | my. r e t enab l ed] spread∗< my.

a v a i l a b l e >.C
+
spread ∗ [true] (x)

{ my. g e t enab l ed := my. a v a i l a b l e >= x , my.
r e t enab l ed := my. a v a i l a b l e <= x } .C;

}

in i t {
G|R |C

}

}
CollaborativeStations use action spread* to communicate to components in the
same zone the number of bikes locally available. Actions get and ret, used by
users to get and return a bike, are enabled only when no other components with
an higher number of bikes/parking slots is present in the zone. The simulation
of these collectives in the two scenarios is reported in Fig. 5. We can notice that
in both the scenarios the average number of available bikes is the same as in
Fig. 4. However, differently from in Fig. 4, the use of bikes in the stations is more
balanced.

Modelling and Analysis of Collective Adaptive Systems 117

Scenario 1

Scenario 2

Fig. 5. Bike Sharing System (Collaborative Stations): Simulation Results — 10 simu-
lation runs

6 Concluding Remarks

In this paper we have presented Carma, a novel modelling language which aims
to represent collectives of agents working in a specified environment and sup-
port the analysis of quantitative aspects of their behaviour such as performance,
availability and dependability. Carma is a stochastic process algebra-based lan-
guage combining several innovative features such as the separation of behaviour
and knowledge, locally synchronous and globally asynchronous communication,
attribute-defined interaction and a distinct environment which can be changed
independently of the agents. We have demonstrated the use of Carma on a
simple example, showing the ease with which the same system can be studied
under different contexts or environments.

Together with the modelling language presented as a stochastic process alge-
bra, we have also described a high level language (named the Carma Specifica-
tion Language) that can be used as a front-end to support the design of Carma
models and to support quantitative analyses that, currently, are performed via
simulation. To support simulation of Carma models a prototype simulator has
been also developed. This simulator, which has been implemented in Java, can
be used to perform stochastic simulation and can be used as the basis for imple-
menting other analysis techniques. These tools are available in an Eclipse plug-in
that has been used to specify and verify a simple scenario.

One of the main issues related with CAS is scalability. For this reason is
strongly desirable to develop alternative semantics that, abstract on the pre-
cise identities of components in a system and when appropriate offer mean-field
approximation [6]. We envisage providing Carma with a fluid semantics and
in general the exploitation of scalable specification and analysis techniques [25]
to provide a key focus for on-going work. In this direction we refer also here
to [21] where the process language OdeLinda has been proposed which pro-
vides an asynchronous, tuple-based, interaction paradigm for CAS. The language

118 M. Loreti and J. Hillston

is equipped both with an individual-based Markovian semantics and with a
population-based Markovian semantics. The latter forms the basis for a con-
tinuous, fluid-flow, semantics definition, in a way similar to [13].

Acknowledgements. This work is partially supported by the EU project QUANTI-
COL, 600708. The authors thank Stephen Gilmore for his helpful comments on the
chapter.

References

1. Alrahman, Y.A., De Nicola, R., Loreti, M.: On the power of attribute-based com-
munication. CoRR, abs/1602.05635 (2016)

2. Alrahman, Y.A., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of SAC, pp. 1840–1845. ACM
(2015)

3. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier,
Amsterdam (2001)

4. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoret. Comput. Sci.
202(1–2), 1–54 (1998)

5. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MODEST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Software Eng. 32(10), 812–830 (2006)

6. Bortolussi, L., Gast, N.: Mean-field limits beyond ordinary differential equations.
Springer. In: SFM (2016)

7. Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D.,
Loreti, M., Massink, M.: Collective adaptive resource-sharing Markovian agents. In:
Proceedings of the Workshop on Quantitative Analysis of Programming Languages,
vol. 194, EPTCS, pp. 16–31 (2015)

8. Bortolussi, L., Policriti, A.: Hybrid dynamics of stochastic programs. Theor. Com-
put. Sci. 411(20), 2052–2077 (2010)

9. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis
of biological systems. Theoret. Comput. Sci. 410(33), 3065–3084 (2009)

10. De Maio, P.: Bike-sharing: Its history, impacts, models of provision, and future. J.
Public Transp. 12(4), 41–56 (2009)

11. De Nicola, R., Latella, D., Loreti, M., Massink, M.: A uniform definition of sto-
chastic process calculi. ACM Comput. Surv. 46(1), 5 (2013)

12. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: The SCEL language. TAAS 9(2), 7 (2014)

13. Feng, C., Hillston, J.: PALOMA: a process algebra for located Markovian agents.
In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 265–280.
Springer, Heidelberg (2014)

14. Fricker, C., Gast, N.: Incentives and redistribution in bike-sharing systems (2013).
Accessed 17 Sept 2013

15. Galpin, V.: Spatial representations and analysis techniques. In: Bernardo, M., De
Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 120–155. Springer,
Switzerland (2016)

Modelling and Analysis of Collective Adaptive Systems 119

16. Daniel, T.: Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434
(1976)

17. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evalua-
tion. Theor. Comput. Sci. 274(1–2), 43–87 (2002)

18. Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences and axioms for
MTIPP. In: Herzog, U., Rettelbach, M., (eds.), Proceedings of 2nd Process Algebra
and Performance Modelling Workshop (1994)

19. Hillston, J.: A compositional approach to performance modelling. Cambridge Uni-
versity Press, New York (1996). ISBN:0-521-57189-8

20. Hillston, J., Loreti, M.: Specification and analysis of open-ended systems with
CARMA. In: Weyns, D., et al. (eds.) E4MAS 2014 - 10 years later. LNCS, vol.
9068, pp. 95–116. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23850-0 7

21. Latella, D., Loreti, M., Massink, M.: Investigating fluid-flow semantics of asynchro-
nous tuple-based process languages for collective adaptive systems. In: Holvoet, T.,
Viroli, M. (eds.) Coordination Models and Languages. LNCS, vol. 9037, pp. 19–34.
Springer, Heidelberg (2015)

22. Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-
based communication primitives for autonomic computing. In: Bertrand, N., Bor-
tolussi, L., (eds.) Proceedings Twelfth International Workshop on Quantitative
Aspects of Programming Languages and Systems, QApPL 2014, Grenoble, France,
12–13 , vol. 154, EPTCS, pp. 1–16, April 2014

23. Priami, C.: Stochastic π-calculus. Comput. J. 38(7), 578–589 (1995)
24. Saunier, J., Balbo, F., Pinson, S.: A formal model of communication and context

awareness in multiagent systems. J. Logic Lang. Inform. 23(2), 219–247 (2014)
25. Vandin, A., Tribastone, M.: Quantitative abstractions for collective adaptive sys-

tems. Springer. In: SFM (2016)
26. Weyns, D., Holvoet, T.: A formal model for situated multi-agent systems. Fundam.

Inform. 63(2–3), 125–158 (2004)
27. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-

tiagent systems. Auton. Agent. Multi-Agent Syst. 14(1), 5–30 (2007)

http://dx.doi.org/10.1007/978-3-319-23850-0_7

Spatial Representations and Analysis Techniques

Vashti Galpin(B)

Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, Edinburgh, UK

Vashti.Galpin@ed.ac.uk

Abstract. Space plays an important role in the dynamics of collective
adaptive systems (CAS). There are choices between representations to be
made when we model these systems with space included explicitly, rather
than being abstracted away. Since CAS often involve a large number
of agents or components, we focus on scalable modelling and analysis
of these models, which may involve approximation techniques. Discrete
and continuous space are considered, for both models of individuals and
models of populations. The aim of this tutorial is to provide an overview
that supports decisions in modelling systems that involve space.

1 Introduction

Collective adaptive systems (CAS) are systems which consist of a number of
components which interact (directly or indirectly) to achieve goals, by collabo-
ration, and in some instances, by competition. These components may be static
or mobile, as in the case of a robot swarm. Various smart transport systems
provide examples of CAS; for example, bike-sharing schemes and ride sharing.
Because movement is fundamental in these systems, space and spatial aspects
are important characteristics and influence the behaviour that these systems
demonstrate. Therefore, we wish to understand the dynamics of these systems
and how these may vary with changes in the implementation of the system,
and changes in use of the system. In the bike-sharing example, incentives can
be offered to users to influence their behaviour in terms of the station a bike
is returned to, or alternatively a system may suddenly show very poor perfor-
mance when the user base grows beyond a certain size. Alterations to timetables
of other public transport such as trains, could also impact the effectiveness of a
bike-sharing scheme. Furthermore, roadworks or new lane markings can modify
the space that the bike users travel through, affecting performance.

We model these systems to understand their behaviour because it is fre-
quently not possible to experiment with the actual systems, either because of
the disruption this will cause, or because the systems have not yet been con-
structed. In this chapter, we focus here on modelling dynamic systems (which we
also refer to as time-based) that involve some notion of space. These aresystems

c© Springer International Publishing Switzerland 2016
M. Bernardo et al. (Eds.): SFM 2016, LNCS 9700, pp. 120–155, 2016.
DOI: 10.1007/978-3-319-34096-8 5

Spatial Representations and Analysis Techniques 121

where the behaviour of the system is observed as time passes1. When trying to
understand the behaviour of a collective adaptive system by developing a model
of the system, it can be moderately straightforward to programmatically con-
struct an agent-based model where the agents move in a representation of real
space. But often, for a realistic number of agents, it is not computationally feasi-
ble to simulate this model a sufficient number of times to understand its overall
behaviour through the use of descriptive statistics. Additionally, an agent-based
model is likely to have a very large states space because it considers individuals
separately. The computational costs of many other analysis techniques are often
dependent on the number of distinct states that the system can take on, and
hence cannot be applied to these individual-based models.

Thus, detailed agent-based models may lead to more precision but at the cost
of choices for analysis. Typically in modelling, one wishes to retain the details
that the model is designed to answer, and to abstract from everything else.
Therefore, carefully chosen abstractions are crucial, and this tutorial provides
details about a particular type of abstraction and associated approximation of
results, that of population-based modelling, rather than solely modelling indi-
viduals. These abstractions contribute to scalable analysis. By this, we mean
that when modelling large systems with many components, our analysis can be
computed in a reasonable time (with reasonable memory requirements), and as
the system becomes larger, this analysis remains feasible. Concomitant with the
scalability is a requirement that any analysis technique that involves approxi-
mation remains within reasonable distance from the true value. Obviously, there
will be a system size at which the analysis becomes infeasible. In that case, pos-
sible solutions are then to consider whether size can be reduced by working with
a more abstract model, or to consider a different approximation technique which
is more scalable.

Furthermore, we focus on stochastic models. Stochasticity allows model
behaviour to vary, and hence captures the variation we observe in the systems
we wish to model. Specifically, we use random length durations drawn from
exponential distributions. The exponential distribution is suitable and conve-
nient for modelling because it has a single parameter (which is the inverse of
the average duration), it is memoryless (which means that what happens next
is only dependent on the current state, as opposed to any previous states, and
this negates the need when simulating to keep track of prior states or amount of
time elapsed), and other distributions can be approximated by combinations of
exponential distributions. In their most basic form, our models are continuous-
time Markov chains (CTMCs) and their discrete version, where probabilities are
used to determine the next state, discrete-time Markov chains (DTMCs). We
also consider extensions and variations of these models, but in general, any sto-
chasticity in our models occurs because of exponentially-distributed durations

1 Another approach to space is to consider it topologically, that is to consider the
relationships between points in space. This can be applied to both discrete and
continuous space. Details can be found elsewhere in this volume [19] in the context
of spatial and spatio-temporal logics.

122 V. Galpin

or probabilistic choices. One extension that we may use in some cases is allowing
the exponential rate (and probabilities) to be functional and depend on time or
other aspects of the model. This introduces time inhomogeneity into our models,
and this is often important to capture variations in behaviour at different times
of day, for example. The disadvantage of allowing time inhomogeneity is that it
can reduce the number of analysis techniques that are applicable.

This presentation does not consider any languages for specifying models but
instead focusses on mathematical representations of systems (which we will refer
to as models) to which analysis techniques can be applied. The choice of represen-
tation for a model is often influenced by the type of analysis and approximation
techniques that are available, and the aim of this tutorial to support such deci-
sions when modelling space. This chapter starts with a discussion of the type of
mathematical representations and analysis techniques that can be used if space
is not considered explicitly, and then moves onto consider these with the addi-
tion of space. Techniques for discrete space are considered in detail in Sect. 3,
followed by those for continuous space in Sect. 4. In these two sections, general
concepts are introduced for the type of space, followed by a high-level discussion
of the basic model and analysis techniques. Details are given of techniques that
have relevance to CAS, followed by a brief review of how they have been used
in different disciplines. Finally in Sect. 5, techniques that can be applied to both
types of space, or to models containing both types of space are considered.

2 Representations for Dynamic Modelling

Before considering the role of space, we introduce a number of dimensions that
we consider germane to our modelling, so that we can develop a classification
of dynamic modelling techniques relating to the modelling context described in
the introduction. Even without considering space, there are already a number of
choices that lead to different ways in which to model dynamic systems in a quan-
tified manner. We consider the dimensions and the choices on each dimension.
For example, the time dimension considers how time is treated in different types
of Markov chains. There are other aspects of time such as non-determinism and
causality, but these are not a strong focus of our general modelling approach,
and so are not included in the classification.

Time: Time is non-negative, strictly increasing and infinite, and can either be a
non-negative real or integer. In some models, a finite end-point may be used
to delimit the period of interest.

discrete: In the context of this tutorial, discrete time is used in those
modelling approaches where choices are probabilistic. At each clock tick
(which can be associated with an integer if useful for the specific model),
the next state is chosen probabilistically from all possible next states.
For example, discrete time Markov chains (DTMCs) use this approach
[53,70].

Spatial Representations and Analysis Techniques 123

continuous: In this case, time is represented by the non-negative real
numbers. Actions such as changing state have a duration associated with
them. In the case of continuous time Markov chains (CTMCs), stochas-
ticity is introduced by having random durations that are drawn from
exponential distributions [70].

State: States can be viewed as capturing a quality or attribute of an individual.
An individual is assumed to be in a single state at each point in time2.

discrete: Usually when the states associated with an individual are dis-
crete, there are a finite number of them. However, in the case of an
attribute like year-of-birth, there may be a countably infinite number
of values.
continuous: A continuous-valued state can be interpreted as measure-
ment of some quantity associated with the individual. An example of this
would be temperature or height.

Aggregation: Individuals can be considered separately, or the focus can be on
the number of individuals in each state. This is more relevant to discrete state
approaches than continuous state. In the continuous case, aggregation can be
described by a function, or discretisation can be applied to obtain frequency
data.

none : Behaviour of each individual is considered separately. This is often
referred to as agent-based or individual-based.
state-based : The behaviour of groups of individuals is considered by
counting the number of individuals in each state over time (giving a non-
negative integer value), or by having a non-negative real-valued approx-
imation to this number. This approach appears under a number of dif-
ferent names in the literature including population-based, state frequency
data, numerical vector form, and counting abstraction. The term occu-
pancy measure is used when counts are normalised by the population
size.

These dimensions can be expressed in a table, which can then be populated
with mathematical modelling techniques from the literature. Figure 1 illustrates
this and describes the modelling techniques that fit each possible combination
of elements for each dimension. There is the possibility of hybrid approaches for
the state and aggregation dimensions and we discuss these briefly in Sect. 5.2.

2.1 Scalable Modelling and Analysis Techniques

As mentioned in the introduction, we focus on Markov chain models. Basic def-
initions can be found in the appendix. An important aspect of our modelling
approach is the application of the mean-field technique where the analysis of a
population CTMC or DTMC can be approximated by an analysis using ordinary

2 An individual could have more than one attribute, and then the individual’s state is
multidimensional with a value for each attribute. In this case, the individual’s state
is a tuple of values.

124 V. Galpin

TIME discrete
AGGR none (individuals) state (populations)
STATE discrete continuous discrete continuous

DTMC [70] LMP [73] population difference equations,
DTMC [10] ODEs [10, 67]

TIME continuous
AGGR none (individuals) state (populations)
STATE discrete continuous discrete continuous

CTMC [70] CTMP [24] population population
CTMC [10, 58] ODEs [10, 58]

Fig. 1. Classification of mathematical models in terms of time, aggregation and state
(DTMC: discrete time Markov chain, LMP: labelled Markov process, ODE: ordinary
differential equation, CTMC: continuous time Markov chain, CTMP: continuous-time
Markov process

differential equations (ODEs) [10,58]. As the number of states of a Markov chain
increases (the “state-space explosion” problem), the analysis of the Markov chain
becomes intractable. Modelling a large number of individuals can lead to a very
large Markov chain. This can be mitigated by using a population Markov chain
where behaviour is considered at a population level rather than at an individual
level. The choice of a population Markov chain means we are interested in how
many individuals from a population PA are in each local state Ai, given by NAi

,
and the states in the Markov chain have the form (NA1 , . . . , NAn

). However, for
large systems this may still not be sufficient to obtain reasonable analysis times,
and an approximation using ODEs obtained from the population Markov chain
can be used. This gives a system of ODEs for the variables (XA1 , . . . , XAn

).
The population Markov chain considers non-negative integer-valued population
counts whereas the ODEs take a fluid approach and population quantities are
non-negative real values XAi

. Considering the modelling techniques in Fig. 1 for
both discrete time and continuous time, the Markov chain obtained by consid-
ering many individuals (in the first column) can be transformed into a smaller
Markov chain (in the third column) which can then be approximated by ODEs
(in the fourth column).

This transformation uses the mean-field approximation technique which
comes from physics, where it refers to the approach where movement of an
individual particle is considered in the field generated by other particles rather
than trying to solve the more complex problem of many particles interacting [68].
In modelling of systems, it has come to mean an approach where it is assumed
that when the number of individuals in a stochastic system becomes very large,
the population-level behaviour of the system can be expressed as ODEs which
provide an “average” behaviour. Results such as those proved by Kurtz [58]

Spatial Representations and Analysis Techniques 125

demonstrate that under certain conditions, convergence occurs, namely as the
number of individuals tends to infinity, the difference between the stochastic
trajectories of the subpopulation sizes and the deterministic trajectories of the
subpopulation sizes tends to zero. Practically, in many cases, good approxima-
tions using the ODE approach over the stochastic approach can be achieved
at relatively low numbers of individuals [85] and there are error bounds on the
approximations [21]. The mean-field approach is discussed in more detail else-
where in this volume [9].

Additionally, we will consider moment closure approaches to approximation.
For a PCTMC, it is possible to obtain ODEs that describe how the moments
(expected values) of variables and products of variables vary over time. Typically,
this results in an infinite system of ODEs, because the ODE for each moment is
dependent on higher moments. For example, the ODE for E[X] may involve not
only E[X] and E[Y] but also E[X2], E[Y 2] and E[XY]. Likewise, the ODE for
E[XY] may involve expectations of the product of three variables. Moment clo-
sure techniques provide approximations for these higher-order moments through
a number of techniques that will be described later in this tutorial, thus providing
ODEs that give an approximation for the moments. The mean-field approach
described above can be seen as a specific instance of moment closure where
second order moments are replaced by the products of expectations (E[XY] is
approximated by E[X]E[Y], for example) under certain conditions relating to
mass actions and pairwise interactions. This is equivalent to assuming that vari-
ances and covariances are zero, and is a reasonable assumption to make if they
are likely to be small enough to be safely abstracted from. Typically, in the spa-
tial case, we wish to consider covariances and other higher moments to ensure
that spatial variation is included and not abstracted from.

Returning to Fig. 1, Markov processes (in the second column of the figure)
do not fit into this work flow (of transforming an individual-based model to
a population-based model and then using an ODE approximation) and seem
different from the other modelling techniques, as they are characterised by a
continuous state space which can also be interpreted as any continuous aspect of
a model, including space. We do not consider labelled Markov processes (LMPs)
further in this chapter, but we will comment further on continuous-time Markov
processes (CTMPs) in Sect. 4.1.

The research surveyed in this chapter involves transformation and analysis
techniques. Transformations of models may be necessary for a different analysis
to be applied. The counting abstraction as described above is an aggregation
technique, and treating population sizes as being real-valued rather than inte-
gral, is fluidisation. Another form of aggregation is when multiple locations are
considered as a single location. Finally, discretisation happens when some contin-
uous value is transformed to a discrete value, such as transforming real space to
discrete space. Hybridisation which can involve fluidisation to make some parts
of a discrete model continuous, or discretisation to make parts of a continuous
model discrete, is discussed in Sect. 5.2.

126 V. Galpin

2.2 Introducing Space

In this tutorial, Space will be considered in two different ways.

continuous: Here, space is represented by real values in the case of one-
dimensional space, pairs of real values in the two-dimensional case and triples
of real values in the three-dimensional case. It is always (uncountably) infinite
but may be bounded in extent. Continuous space used in this way can be seen
as an exact representation of actual physical space.
discrete : Approaches that use discrete space assume a number (usually
finite) of distinct locations where connectivity between locations is described
by an adjacency relation3. At each location, there may be multiple individuals,
although in some cases, such as cellular automata [49], this may be restricted
to a single individual. A location may be an abstraction or aggregation of
actual space.

The table in Fig. 2 shows the mathematical models for the different combinations
of time, aggregation, state and space. Here, we have chosen to focus on continu-
ous time models; however there are discrete time models of various approaches,
for example, some variants of interacting particle systems (IPSs) use probabili-
ties [29]. We now consider each entry of the table in Fig. 2 briefly together with
illustrative diagrams.

TIME continuous
AGGR none (individuals) state (populations)
STATE discrete continuous discrete continuous

SPACE
discrete CTMC, TDSHA [12] patch population patch population

IPS [29] PDMP [22] CTMC ODEs
[17] [17]

continuous molecular CTMP spatio-temporal PDEs [46]
dynamics [20] [24] point processes

]87[stnega

Fig. 2. Classification of mathematical models in terms of time, aggregation, state
and space (CTMC: continuous time Markov chain, IPS: interacting particle systems,
TDSHA: transition-driven stochastic hybrid automata, PDMP: piecewise deterministic
Markov process, ODE: ordinary differential equation, CTMP: continuous-time Markov
process, PDE: partial differential equation)

3 For CAS, we are usually interested in the adjacency of different regions of space, and
as we will see later, we use graphs to describe this relationship. Another approach
is where space has a nested arrangement, as seen in biological modelling. This con-
tainment relationship can be represented graphically by trees, but we do not focus
on this arrangement of space further.

Spatial Representations and Analysis Techniques 127

(1)

A1
A1

B1
B3

A1

B2

B3B3
B3

A2

(2)

(3)

A1
A1

B1
B3

A1

B2

B3
B3
B3

A2

A1
B1

B3

A1

B2

B3

B3

A2

(4)

Fig. 3. Discrete space: (1) no aggregation, discrete state; (2) no aggregation, contin-
uous state; (3) aggregation of state, possible aggregation of space, discrete state (4)
aggregation of state, possible aggregation of space, continuous state

2.3 Discrete Space Illustrated

The approaches in the discrete-space category consider space to consist of a
(usually) finite number of locations that have connections between them. The
most straightforward way is to consider these models as graphs with the locations
as nodes and the links as edges. Discrete space is illustrated in Figs. 3 and 4,
showing the general case of an arbitrary graph, and the case of a more regular
graph structure, respectively. Regular space models are those that have a regular
pattern of locations [28,29]. For example, the locations could be laid out in the
rectangular grid, or a hexagonal tiling. The locations that represent space can
be situated at the nodes of the regular graphs or in the spaces (faces) created
by the regular graph as shown in Fig. 4. Regular space will be more formally
defined in Sect. 3.

In the diagrams, we assume individuals are from two populations. The first,
PA consists of red and white tokens, and has states A1 and A2. The second, PB

consists of blue and white tokens with states B1, B2 and B3. The current state
of an individual is indicated on the top of the token. The four diagrams in each
figure represent four single points in time and do not show change over time4.

Figures 3(1) and 4(1) show discrete-space models of individuals with discrete
states, hence there is no aggregation into populations. Some models only allow
one individual in each location, such as interacting particle systems (IPSs) [29]
and cellular automata (CA) [49], but others may allow multiple individuals.

4 For two-dimensional and three-dimensional space, the best visualisation method for
change over time is video. For one-dimensional space, a graph with two axes can be
used.

128 V. Galpin

(1)

A1 A1
A1 B1

A2
A2

B2

B2

B3
A2

(2)

(3)

A1
A1
A1

B1

A2
A2

B2

B2

B3
A2

A1

B1

A2

B2

B2
B3

A2

A1

(4)

Fig. 4. Regular discrete space: (1) no aggregation, discrete state; (2) no aggregation,
continuous state; (3) aggregation of state, possible aggregation of space, discrete state
(4) aggregation of state, possible aggregation of space, continuous state

In the case of single individuals at a node, this can be indicated by a flat token
as illustrated in Fig. 6.

Models of discrete space without aggregation and with continuous state are
shown in Figs. 3(2) and 4(2). The continuous state is indicated by a solid token
where the height indicates the value of a single continuous state. This is an
inherently continuous value rather than the notion of population size approx-
imation by continuous values described earlier in this section, and could be a
measurement such as strength of radio signal or length of battery life. Different
colours have been used in the diagram to make it clear that the values are con-
tinuous but not a population approximation. In Figs. 3(2) and 4(2), there is an
assumption of at most one individual per node and face, respectively, and two
values associated with that individual.

Next we consider discrete-state aggregation in the context of discrete space,
as illustrated in Figs. 3(3) and 4(3) by the fact that individual tokens are grouped
into stacks at nodes in the network, and it is the size of the stack that is rele-
vant rather than the location of each individual. Finally, in the case of continu-
ous state aggregation in discrete space, each region or point is associated with
approximations to the discrete population shown in Figs. 3(3) and 4(3). These
are illustrated in Figs. 3(4) and 4(4). At each node, for each state in each pop-
ulation, there is a real number that approximates the number of individuals in
that state. This is illustrated by a token with a real-valued height for each state
in each population. Note that in Fig. 3(4), the lowest node has a non-zero value
for blue tokens in state B3 although there were none in the CTMC model in
Fig. 3(3), illustrating that approximation can occur.

Spatial Representations and Analysis Techniques 129

2.4 Continuous Space Illustrated

We first consider continuous space with no aggregation and discrete state. This
covers approaches where each individual’s location and state are modelled sepa-
rately from those of other individuals. An example of this type of model is where
the movement and interaction of each molecule is modelled individually, as in
molecular dynamics [7]. Agent-based models take a similar approach. Figure 5(1)
illustrates this. The continuous space is indicated by a bounded area and each
individual is shown at its own location. These models are typically computation-
ally expensive to simulate.

(1)

A1

A2

A1

B2

B1

B3
B3

A1

(2)

(3)

A1

A2

A2
B1

B2

A1
B2

A2

B2 B3

A1

0

2

4

60
2

4
6

0

100

(4)

Fig. 5. Continuous space: (1) no aggregation, discrete state; (2) no aggregation,
continuous state; (3) aggregation, discrete state; (4) aggregation, continuous state.

Moving on to state that is continuous rather than discrete, leads to continuous-
time Markov processes (CTMPs) [24], if we assume some of the continuous dimen-
sions relate to space and the others to state. Since there is no state-based aggre-
gation, this approach models individuals rather than populations. The continuous
space is indicated by a bounded area and each individual is shown at its own loca-
tion. The continuous state is indicated by the varying heights of the tokens, and
in Fig. 5(2), it is assumed that there is only one (non-spatial) measurement per
individual, although multiple different measurements are possible.

For the case of aggregation with discrete state, each point in space can be
filled by zero, one or more individuals [78]. Hence for each point in space, it
is possible to aggregate the number of individuals in each state. Figure 5(3)

130 V. Galpin

shows a fairly sparse number of individuals but much denser arrangements are
also possible. Finally, when aggregation is continuous in nature, then at each
point in space, there is a real value describing an approximation to the number
of individuals at that point [20,71]. In the case of two-dimensional space, the
population of each state can be represented in three-dimensions by surfaces as
defined by partial differential equations (PDEs). Figure 5(4) illustrates a surface
describing the number of individuals at each point for state A1. In contrast to
Fig. 5(3), this figure illustrates a very dense situation.

2.5 Summary

As is the case with techniques that do not include space, presented in Fig. 1,
the techniques using continuous state without aggregation (the second column
of models in Fig. 2) seem distinctly different to the other approaches. The tech-
niques that can be applied to models without space described earlier in this
chapter (approximation by ODEs of a population DTMC or CTMC) can be
applied to discrete space since the Markov chain involved is a population Markov
chain that takes location into account. Furthermore, taking the hydrodynamic
limit of IPS (which are discrete space models without aggregation) models pro-
vides PDEs [23].

In all of the models described in the previous section, there may be interac-
tion between individuals (even if this interaction is expressed at the population
level). Opportunity for interaction is often related to colocation or proximity
(which requires some notion of neighbourhood or distance). Many models cap-
ture movement of individuals explicitly and then use colocation or proximity to
determine the possibility of interaction, although there are some models that only
use proximity without movement such as IPSs and CA. We discuss movement in
more detail when we consider the analysis techniques for the two different kinds
of space.

3 Discrete-Space Modelling Techniques

We now consider discrete space in more detail and formality, so we introduce
both notation and concepts relevant to discrete space. We will focus here on
the continuous-time models, with pointers to the discrete-time models where
appropriate.

In the most general case, we assume a finite (or at most countably infinite)
set of points or locations L with some naming convention [41]. Most generally,
the set of locations L can be taken as the vertices of an undirected graph, and
the connections between locations (the adjacency relation) can be defined as
edges in that graph. The edges of the graph EL are drawn from the subsets of
size two of the location set P2(L), so EL ⊆ P2(L). Each edge has the form
{l1, l2}, and edges of the form {l, l} are permitted. We have chosen to use an
undirected graph which is to be understood as allowing movement or interaction
in at least one direction between the two locations. The absence of an edge

Spatial Representations and Analysis Techniques 131

means that movement and interaction can never take place, in either direction.
Parameters associated with an edge express (possibly in a time-varying manner)
the propensity for movement or interaction in either direction. If a parameter
is zero at a particular time for a particular direction, it means that no active
interaction or movement can take place at that time point. Hence, the graph
of locations provides a skeleton for describing what movement or interaction is
possible.

Locations in discrete space models can have two main sources, either they
are essentially locations on a map, such as bike-stations or bus stops, or alter-
natively each location represents a region on a two-dimensional map, and space
is aggregated. These are called patch-based models. The edges of the graph can
be determined by various factors. Adjacency of regions is an obvious choice, but
there may be other context-specific elements, for example, presence of connec-
tions between regions such as railway lines or similar. A topic whose exploration
is beyond the scope of this chapter is that of how to divide a map in regions.
A simple approach is to base it on a tiling of the plane using triangles, quadri-
laterals or hexagons. More complex approaches involve taking local information
into account and creating irregular patches. Computer networks can be seen as
being located in discrete space, either physically or logically.

An issue for discrete space (and continuous space) is determining what hap-
pens at the boundaries of the space. One approach is to ensure there are none by
working with infinite structures such as infinite graphs, or alternatively bound-
aryless structures such as tori. A rectangular region can be transformed into a
torus by joining the top and bottom edges (to form a cylinder) and then join-
ing the left and right ends (by curving the tube). Other approaches work with
boundaries and either choose to keep individuals inside the region (by reflection
or other techniques) or to treat boundary locations as sources and/or sinks.

The discrete space approach as described above is very general as it allows
arbitrary graphs over locations, as well as heterogeneity for parameters. In the
literature there are modelling techniques that are defined for specific graph sub-
classes and we will discuss some of these below.

3.1 Spatial Parameters and Regularity

A modelling technique with discrete space will have parameters that depend on
locations, or links between locations. We can consider two groups of parameters;
those that are associated with locations, namely with vertices of the graph and
those that are associated with interaction or movement, namely the edges of the
graph, and we define two functions to describe these parameter sets as follows

– λ(l) for l ∈ L, and
– η(l1, l2) and η(l2, l1) for {l1, l2} ∈ EL.

The range of these functions will remain abstract for the purposes of this discus-
sion. Note that although the edges of the graph are not directed, the function η
is sensitive to direction. Movement is obviously directional but interaction can

132 V. Galpin

be undirected when considering an abstract view of effect or communication.
Alternatively, it can be directed if one party is the sender and the other the
recipient. Our choice of an undirected graph allows these details to be expressed
in parameters. In the rest of this chapter, the term transfer will be used to refer
to both movement and interaction.

We present the following definitions, leading to a definition of spatial homo-
geneity (a term which is used in the literature but not formally defined), by
considering the location-related parameters. A spatial model is

– location homogeneous if λ(li) = λ(lj) for all locations li, lj ∈ L.
– transfer homogeneous if η(li, lj) = η(lj , li) = η(li′ , lj′) = η(lj′ , li′) for all edges

{li, lj}, {li′ , lj′} ∈ EL.
– (spatially) parameter homogeneous if it is both location and transfer homo-

geneous.
– spatially homogeneous if it is parameter homogeneous, and its location graph

is complete5. Regular connections between locations which do not give total
connectivity are discussed below.

Models with spatial homogeneity have a symmetry that can allow for analyses
that are not possible for more complex models. Examples are the bike-sharing
system considered in [39] where the metrics of interest are the number of empty
and full bike stations.

Spatial inhomogeneity/heterogeneity can be introduced in two ways: the first
involves connectivity where equal accessibility is no longer assumed, and the
second where all locations are still accessible from all locations, but parameters
vary between locations. Note that if a parameter ρi,j ∈ η(li, lj) is constant for
all i and j but other parameters vary by locations, then the model is spatially
inhomogeneous.

Regular discrete space covers those discrete space models where the organ-
isation of space is regular (rather than an arbitrary graph where each vertex
may have an arbitrary number of edges). By contrast to spatial homogeneity,
regularity of space is more difficult to define formally when starting from a graph
(and we do not give details here), although it is very straightforward to identify
visually [72]. Terms such as lattice, grid or mesh are frequently used to describe a
graph based on a square or rectangular tiling of the plane. The other two regular
tiling possibilities are equilateral triangles and regular hexagons. Alternatively,
a graph with regular structure can be constructed by identifying points in Z×Z

or R × R, and adding links. We will not attempt that level of generality for
discrete space beyond saying that regular space should have the property that
at each location (except possibly at boundary locations) there is a uniform way
to determine the immediate neighbours6. One-dimensional regular space can be
represented simply as an undirected path. We do not tackle a formal definition
of three-dimensional regular space.

5 A complete undirected graph has an edge {l, l′} between each pair of vertices l and l′.
6 We exclude from this definition n-hop neighbours in an arbitrary graph (see definition

of n-hop in the next subsection).

Spatial Representations and Analysis Techniques 133

3.2 Neighbours and Neighbourhoods

In an undirected graph of locations representing discrete space, the links between
locations are used to define neighbours. Given a location l, its immediate neigh-
bours are those vertices l′ such that {l, l′} is an edge in the graph. Its n-hop
neighbours are those that can be reached through a path in the location graph
of at most n steps (but usually excluding the location l itself). In the case of
a regular grid graph, the immediate neighbours (west, north, east and south)
are referred to as the Von Neumann neighbourhood. The larger neighbourhood
that includes the northwest, northeast, southeast and southwest points as well
as the immediate neighbourhood is known as the Moore neighbourhood. Both
types of neighbourhoods can be extended to n-hop neighbours and also applied
to hexagonal and triangular regular location graphs, with obvious adaptations.

This is a purely spatial approach to defining neighbourhoods. However, in
some cases, it can be the entity or process itself that defines its neighbourhood
depending on its capabilities. Other approaches use a (perception) function that
determines the de facto neighbours of an individual by specifying the other
individuals with which it can interact.

3.3 Techniques for Individual Discrete-Space Models

We now consider the different modelling techniques that have been applied to
discrete space starting with those that do not involve aggregation of state. When
there is no aggregation and state is discrete, the focus is on individuals and an
example is an agent-based system over discrete space. Each individual has some
state and is located at exactly one location. There may be a restriction to one
individual per location. To describe these models in their most general form, we
assume that each individual I (where I is a unique name for the individual) has
associated time-based information:

– loc(I, t) ∈ L which is its location at time t
– state(I, t) ∈ {A1, . . . , An} which is its state7 at time t

Additionally there are rules that describe how an individual can change location
or change state. Since this is a continuous time model, these rules specify rates to
describe how long it takes on average for the changes to occur. Each rate defines
an exponential distribution, and may be constant or the rates may be functions
that depend on the presence of others at that location, the characteristics of
the location or the current time (thus introducing time-inhomogeneity). The
behaviour of the agents in this modelling technique is thus described as they
individually change state and/or location. Assuming a fixed population size, we
can model this system as a CTMC, where each state in the CTMC is a tuple
consisting of information about each individual in the system. If we assume N
individuals then a state has the following form

(
(loc(I1, t), state(I1, t)), . . . , (loc(IN , t), state(IN , t))

)

7 If the population PA has multiple attributes A[1], . . . , A[p], then state(I, t) =

(A
[1]
i1
, . . . , A

[p]
ip

) represents a tuple of attributes.

134 V. Galpin

There are (L×n)N states in this Markov chain if there are L locations, n states
and every combination of state and location is possible for all individuals.

Simulation suits this type of model, and techniques for simulating systems
where behaviour is based on functional exponential rates are well understood
[43]. They can also be analysed using standard numerical CTMC techniques for
steady state and transient behaviour. However, a large number of individuals
can make this computationally infeasible.

Next, we consider discrete space modelling techniques without aggregation
but where the state is continuous. Therefore, instead of having a rule describ-
ing how (discrete) state change can happen, there needs to be a rule describing
how the continuous state changes over time. A good candidate for this type of
rule is an ODE. These techniques are hybrid in that they exhibit both contin-
uous behaviour with respect to state and stochastic behaviour with respect to
space. Transition-driven stochastic hybrid automata (TDSHAs) [12] and piece-
wise deterministic Markov chains (PDMPs) [22] are suitable modelling tech-
niques. Both of these also introduce the possibility of instantaneous behaviour.

3.4 Pair Approximation: Spatial Moment Closure
Based on Structure

The technique called pair approximation, which we will refer to as structure-
based moment closure, provides ODEs which describe the changes over time in
the probabilities of certain pairs (adjacent locations) in the model [66,91]. From
these ODEs, the proportion of locations in a particular state can be determined.

It is applied to a specific class of discrete-space models of individuals with
discrete state, namely graph-transformation models. In these models, each node
either represents a single individual or a single position in space or location
which can take on exactly one of a small number of states. Whether the node
itself is modelled or an individual at the node is modelled, the node is the agent
in the model. Hence there is no distinction between location and agent, unlike
in population discrete-space models.

The dynamics of the model are defined in terms of graph transformation rules
with associated exponential rates (when using continuous time). A graph trans-
formation rule describes how a small subgraph or pattern can be transformed
in another pattern. There are two possible types of transformation: those that
change the state of the nodes in the graph and those that modify the graph

Fig. 6. A graph-transformation rule applied to an individual discrete-space model with
discrete state

Spatial Representations and Analysis Techniques 135

by removing or adding nodes or edges. Here, we investigate a static model of
space and so we only consider the first type of transformation in this chapter.
An example of such a rule is given in Fig. 6. The lack of distinction between
location and agent is indicated by the fact that the disks are flat rather than
raised tokens, as mentioned earlier.

As an example, consider a graph-based SIR model8 where each node is an
individual who can be in one of a number of states (susceptible, infected, recov-
ered, hence the abbreviation SIR) and the edges of the graph link individuals
that can affect each other. The graph-transformation rules include a linked pair
consisting of one susceptible and one infected being modified to a linked pair
consisting of two infected nodes (as illustrated in Fig. 6), and a infected node
being modified to a recovered node. In ecological modelling, nodes may represent
a patch of ground which can be in a number of states including filled by a plant
of a specific species, empty but suitable for growth or infertile. Often the nodes
are laid out in a grid pattern, and the transformation rules describe how plants
spread, and how nodes become fertile or infertile.

The stochastic graph transformation model is used to obtain ODEs which
describe the change in how often each pattern appears over time. By patterns,
we mean small graphs consisting of nodes with states of interest. The reason this
technique is called pair approximation is because one can consider the patterns
of interest to be a graph consisting of two linked vertices, with the two vertices
having specific states, and one wants to know how many times this pattern
appears in the graph of the model. Much of the existing research assumes a
finite grid/lattice [66,91], but one can also consider the more general case of
arbitrary graphs rather than regular ones.

Deriving the ODE for a particular pattern may involve understanding how
often a different pattern occurs (because the one pattern is transformed into
the other by the stochastic process). Typically, to understand the various pair
patterns that can occur, the number of certain triplet patterns must be known,
and at the next step of obtaining ODEs for triplet patterns, the number of specific
quadruplets must be known. This generation of ODEs is similar to that of the
moment ODEs described in Sect. 2.1 and leads to an infinite system of ODEs.
This system of ODEs can be closed using certain closure techniques (which will
be discussed in more detail in Sect. 3.6) and thereby give an approximation to
the true value. Structure-based moment closure has also been considered as a
multi-scale technique [31]. In this case, different sizes of neighbourhood are used
for different types of interaction.

3.5 Techniques for Population Discrete-Space Models

We now move on to consider discrete space when aggregation of state occurs
resulting in populations, whose sizes are either integral or real-valued. It is

8 This is different to the population SIR model that appears in another chapter in this
volume [9] because there is at most one individual at each node in the graph, and
that individual has an associated state, rather than subpopulations in each state.

136 V. Galpin

assumed that we have many individuals to whom the same set of rules apply
with the same parameters, and we choose to view them as a population and
to reason about them as a population. These models are population CTMCs
where subpopulations in different locations are viewed as separate subpopula-
tions. These are also called patch-based models and there are various examples
in the literature [17,93].

We consider a population PA. At each point in time, each individual in PA

is in exactly one of its local states A1, . . . , An. Let NAi
(t) refer to the number

of individuals in population PA that are in state Ai at time t. These are called
subpopulations. The total number of individuals in the population at time t
can be expressed as NA(t) =

∑n
i=1 NAi

(t). Furthermore, if no births or deaths
are assumed, and an individual must be in one of the available states9, then
NA(t1) = NA(t2) for all times t1 and t2 and the size of PA is a constant NA.
We use XAi

(t) ∈ R≥0 to represent a non-negative real-valued description of the
population PA which is an approximation to NAi

(t).
If we assume that we have a fixed number of locations, l1, . . . , lL, we can now

obtain the counts of subpopulations at each location. So for PA, we have a value
N

(k)
Ai

which is the number of individuals at location k in state i. Additionally

NAi =
L∑

k=1

N
(k)
Ai

and N
(k)
A =

n∑

i=1

N
(k)
Ai

and NA =
n∑

i=1

NAi =
L∑

k=1

N
(k)
A

We can create a continuous time Markov chain smaller than that of the previous
section consisting of at most (NA + 1)L×n states where each state has the form

(
N

(1)
A1

, . . . , N
(1)
An

, . . . , N
(k)
A1

, . . . , N
(k)
An

, . . . , N
(L)
A1

, . . . , N
(L)
An

)

This provides a discrete aggregated representation of individuals in space where
for each location, we know how many individuals are in each state without
knowing exactly which individual at that location is in which state. An example
of behaviour in such a model is illustrated in Fig. 7 where an individual in state
B3 moves from one location to another and the population sizes at those locations
change as a result of this movement.

In the case of continuous state aggregation, the notation X
(k)
Ai

is used for
the real value that describes the quantity of individuals in state i at location
k. Since this can be a non-integer value, it is an approximation to the actual
count N

(k)
Ai

. Since the subpopulation sizes are treated as continuous values, a
standard modelling technique is to express the change in this quantity in terms
of an ODE.

dX
(k)
Ai

dt
= Fi,k

((
X

(1)
A1

, . . . , X
(1)
An

, . . . , X
(k)
A1

, . . . , X
(k)
An

, . . . , X
(L)
A1

, . . . , X
(L)
An

)
, t

)

9 In some models, births and deaths can be included for a fixed size population by
introducing a “dead” state. However, this requires that there is a finite maximum
population size.

Spatial Representations and Analysis Techniques 137

A1
A1

B1
B3

A1

B2

B3
B3
B3

A2

A1
A1

B1
B3

A1

B2

B3
B3

B3

A2

Fig. 7. Behaviour in a population discrete-space model with discrete state

This is a population ODE because it tracks the changes in subpopulation sizes
over time. There are L × n variables in total; one for each combination of state
and location. The inclusion of t as an argument to Fi,j indicates that it can be
a time-inhomogeneous ODE. This ODE often has the following form

dX
(k)
Ai

dt
= fi,k

(
X

(k)
A1

, . . . , X
(k)
An

)
+

L∑

j=1,j �=k

(
gi,k,j

(
X

(k)
A1

, . . . , X
(k)
An

, X
(j)
A1

, . . . , X
(j)
An

)− hi,k,j

(
X

(k)
A1

, . . . , X
(k)
An

, X
(j)
A1

, . . . , X
(j)
An

))

where fi,k captures the local behaviour which only depends on the subpopu-
lation sizes locally, gi,k,j describes the inflow of population from location j to
location k, hi,k,j describes the outflow of population from location k to loca-
tion j, and these flows depend only on the subpopulation sizes in location k
and location j. This is a time-homogeneous ODE since change over time is only
dependent on subpopulation sizes (that are dependent on time) rather than on
time directly. For both the general and regular space cases and assuming only
movement/interaction between 1-hop neighbours, then a term X

(j)
Ai

should only
appear in the right hand side of the ODE if {lk, lj} is an edge in the location
graph.

In both models, discrete population and continuous population, rates are
functional and there is no specific requirement for them to be continuous,
although discontinuities in rate functions may affect the applicability of certain
analysis techniques.

Since PCTMCs with locations are PCTMCs then the usual linear algebra
numerical techniques that can be applied to PCTMCs to understand the prob-
ability of being in a specific state at steady state, or at a particular time during
transient behaviour, can be applied. The computational feasibility is limited by
the size of the state space.

Simulation is also applicable to simulate individual trajectories of behaviour
using an algorithm such as that proposed by Gillespie [44]. A basic assumption
is that the model has the property of being well-mixed, that is the entities in
the model are evenly distributed throughout space and hence there is no spatial
heterogeneity. If sufficient trajectories are simulated, statistical measures can be
calculated across all trajectories. In the case of PCTMCs with locations, the
assumption of well-mixedness must be made for each location.

138 V. Galpin

Finally, the techniques based on Kurtz’s result [58] that express the average
behaviour of a PCTMC as ODEs also apply to the fluidisation of a PCTMC
with locations. The assumption of well-mixedness also applies, as with Gillespie
simulation. Although the ODEs provide an approximation to the true values,
this is achieved much faster as it is easier to calculate the trajectory of a set
of coupled ODEs than it is to do multiple simulations for statistical analysis.
Techniques such as exact fluid lumpability and related approximation techniques
[87,88] identify when it is possible to apply an aggregation when dealing with
ODEs and these techniques are discussed further elsewhere in this volume [90].

We can also consider homogeneity of parameters. In the case of spatial homo-
geneity, the fact that parameters are identical may make the model amenable
to an analytic approach, rather than requiring simulation [39]. However, vari-
ations in parameters and rates do not affect the speed of analysis, although it
may make the description of the PCTMC more complex. This is because these
analyses consider each possible transition (or term in the ODEs) individually
and have no way to speed up analysis by considering transitions with the same
rate (or identical terms in the ODEs) together (either as a group or to reduce
calculation).

Another issue to consider that relates to spatial heterogeneity is that of
dynamic space where nodes can leave and join a network and links can be added
or removed. Although we do consider that time-homogeneity may be a feature of
our PCTMCs and associated ODEs because rates are dependent on time, we do
not consider dynamic location graphs here, because of the complexity introduced
by this additional change in behaviour over time.

3.6 Aggregate Moment Closure: Spatial Moment
Closure Based on Averages

We now consider existing techniques from the literature referred to as spatial
moment closure that can abstract from the details of space but still provide a
spatially based approach. We will use the term aggregate moment closure for the
techniques that are applicable to population discrete-space models because it is
more descriptive. Aggregate moment closure requires fluidisation of the popula-
tion model, derivation of moment ODEs, and application of an approximation
technique to close the moment ODEs.

In this approach, moment ODEs (see the appendix for a definition) are
obtained for averages over all locations (or values for a specific attribute) for
various subpopulations. When applied to spatial models, it is a spatial abstrac-
tion technique because information about what happens in individual locations
is lost. The basic approach is to obtain an ODE for each subpopulation for the
ensemble10 of the average over all locations for that subpopulation. This will
then (in most cases) be expressed in terms of the expectation of the product of
two variables (a higher order moment). The ODE for this can then be derived
and this again is likely to contain even higher order moments. In most cases, the

10 The mean (at time t) over all stochastic realisations (at time t).

Spatial Representations and Analysis Techniques 139

system of ODEs is not closed (or it is not reasonable to determine whether it
is closed), and it can be closed by approximating higher order moments after a
certain level. Earlier it was mentioned that the mean-field approximation (in the
sense of Kurtz) is given by the first moment ODEs with approximations for vari-
ances and covariances based on an assumption that these were zero or negligible
(see also [9] in this volume). Because the covariance captures spatial variation,
we must have ODEs for at least second moments but third and higher moments
can be approximated. There are four ways to approach this approximation.

– Assume that the higher order moments above this level provide negligible
contributions and ignore them by approximating them with zero. A related
approach is to assume that higher order cumulants are zero [65].

– Use the technique of stochastic linearisation which approximates the expecta-
tions of products with the product of expectations for higher order moments
above this level. It is not sufficient to express second order terms as the prod-
uct of first order terms as mentioned above, hence this technique can only
be applied to third and higher order moments [61]. The modified mean-field
approach from ecology takes a similar approach by approximating higher
moments with powers of first order moments [74].

– Assume that the data has a particular distribution and use that distribution
to determine the values of the higher order moments above this level. The log
normal distribution is frequently used because of its positive support which
makes it suitable for population modelling [61,62].

– Apply a Taylor expansion of moments, as used in scale transition theory [18]
which formalises how local dynamics relate to global dynamics, particularly
in the case of nonlinearity.

Most applications of this technique assume a complete graph, or alternatively
when neighbourhood is used in an incomplete graph, approximate the results
with those obtained from a complete graph [62].

Another approach to moment closure is language-based where information
from the model specification language is used to determine which moments
are likely to be negligible [36]. A neighbourhood relation is derived from the
(language-based) model to determine when it is appropriate to approximate the
expectation of a product with the product of expectations. This relation could
also use spatial information to determine approximation.

3.7 Multi-scale Techniques Based on Differences in Rates

As mentioned previously, rates can vary, and it may be possible to exploit this
variation in the analysis techniques. There are well-known techniques that use
differences in interaction rates between entities, such as the Quasi-Steady-State
Assumption (QSSA) which assumes an equilibrium for the parts of the system
that have fast interaction rates and then derives expressions for the slower parts
of the system [45,79]. This can be done both within a stochastic approach and
a deterministic approach using ODEs. Another technique is timescale decom-
position applied to CMTCs which have the characteristic that its states can be

140 V. Galpin

partitioned into groups such that transitions between group members are fast,
and transitions between groups are slow. This permits an approximation tech-
nique that allows for the CTMC represented by each group of states to be solved
separately and then combined into a solution for the whole CTMC [80].

In ecological modelling, spatial aggregation methods consider the combina-
tion of different time scales that are location-based [1]. Starting with an assump-
tion that interactions that occur at a location are slow and movement between
locations is fast, the usual ODEs for a population model can be derived, consist-
ing of terms for migration and terms for local interaction. It is assumed that the
terms for migration are multiplied by the inverse of the scale parameter, a value
much smaller than 1. This expresses the difference between the fast migration
and slow local interaction. Through a change of variables from subpopulation
size at a location to a pair consisting of density at a location and total subpopu-
lation over all locations, with a related change in the time variable that divides
time by the scale parameter, a slow-fast system can be obtained to which either
the quasi-steady-state assumption or Fenichel’s theorem [37,92] can be applied
to obtain a reduced system. This technique can perform much better than the
spatial moment technique when there is substantial demographic variation across
patches but it does require differences in rates.

In other models outside of ecology, particularly those involving computer
systems, it is likely to be the case that the pattern will be the opposite as
movement between locations is typically physical, whereas interaction within
locations may be computer-based and much faster than physical movement and
then techniques based on QSSA is more appropriate.

3.8 Applications of Discrete Space Models

In this section, some applications of the discrete space models that have been
presented are now discussed briefly. For a detailed survey of the applications of
discrete space models, the reader is referred to [41].

Ecology: Space plays a crucial role in many ecological models and ecologists are
interested in global qualities of the whole space such as whether species persist
or can co-exist, as well as dynamic patterns such as stationarity, oscillatory
behaviour, chaos or multistability [68]. Berec [5] provides a classification of
spatial models where he considers the time, space and population as different
dimensions. Reaction-dispersal networks (also called metapopulation mod-
els) are continuous-time, discrete-space, continuous-population models that
describe change over time by a system of ODEs over species in locations. They
are the same as ODE patch models in our terminology. Coupled-map lattices
are a discrete-time model defined systems of difference equations [51] and
regular discrete space, and allow continuous population sizes. Morozov and
Poggiale [68] highlight that the term “mean-field” can be used in the ecol-
ogy literature to both describe the non-spatial Kurtz-based approximation
technique as well spatial approaches.

Spatial Representations and Analysis Techniques 141

Biology: Bittig and Uhrmacher [7] identify five distinct methods for spatial
modelling in cell biology that offer different granularities in their approxima-
tion of physical reality. Two of these are continuous space approaches and are
discussed in Sect. 4.5. The discrete-space models are those that use compart-
ments as a nested arrangement of space, discrete-space lattice approaches
with a single molecule at each face of the lattice, and discrete-space lat-
tice approaches where multiple molecules are permitted at each face. For an
overview of techniques to model diffusion, both stochastically and continu-
ously, see [33]. Patch models are also used to model biochemical reaction sys-
tems [61]. Pattern formation is also important in biology and Turing’s paper
gave an initial insight into this process [89]. Pattern formation is considered
in [19] in this volume.

Epidemiology: Riley [75] identifies four distinct approaches to disease spread
modelling that considers different levels of interaction: patch-based, distance,
multigroup and individual. Patch-based or metapopulation models11 are used
extensively in modelling of epidemics [27]. These models often focus on the
calculation of the basic reproduction number, R0, which determines whether
a disease will die out or spread to the whole population. Individual discrete
space models have also been used for disease modelling [59], as illustrated in
Sect. 3.4.

Networking: Computer networks, in particular ad hoc networks and mobile
networks, often require spatial modelling for evaluation. For example, com-
puter and mobile phone virus spread modelling involves spatial aspects and
much of this research draws on epidemiological approaches [48,55]. Routing
protocols may have spatial aspects that can be discrete or continuous [95].
Patch models have been used to model information transmission between
mobile nodes [17,35,94].

Forest fires: Propagation of forest fires is investigated using Multi-class Multi-
type Markovian Agent Model (M2MAM) [16]. The approach models individ-
ual agents in discrete space and from this, a patch ODE model is derived.
Forest fires have also been modelled using stochastic cellular automata in a
climate model [60].

Robotics: A robotics case study consists of a swarm of robots that have to
collectively identify a shortest path [63]. The division of a path into separate
sections which are considered as discrete locations provides a way to approx-
imate the traversal time by real robots and the convergence on the shortest
path.

Emergency Egress: The modelling of evacuation from a multi-story build-
ing [64] involves a multi-story building with building elements such as rooms,
corridors and stairwells, doors and exits. To model the movement of people
and the time to evacuate the building, a discrete-space model using patches
was developed.

11 The basic epidemiological SIR model is called the compartment model [13] and this
consists of a single population with no spatial aspects. It should not be confused
with the compartment models in biology which are patch-based models.

142 V. Galpin

Crowd Behaviour: Spontaneous drinking parties are a common phenomenon
in cities in the south of Spain [76]. A model shows that the introduction
of small variations that break symmetry, both in space and in the degree
of connectivity between locations and in the behaviour of the individuals
can lead to new behaviour [11]. This example is considered elsewhere in this
volume [90].

Bike Sharing: Bike sharing systems have been modelled with homogeneous dis-
crete space using a population CTMC approach with an associated mean-field
model [39]. When space is not homogeneous, a clustering approach has been
used to group similar locations together [40]. This example is also considered
in this volume [90].

A number of the above examples are CAS. Other CAS examples where discrete-
space techniques are applicable include smart transport and smart grids. The
next section considers modelling with continuous space.

4 Continuous-Space Modelling Techniques

Continuous space is more straightforward to define than discrete space. In this
section, we will focus on two-dimensional space; however, both one- and three-
dimensional space may be useful in various contexts. Continuous space can either
be the Euclidean plane extending infinitely in all directions, R×R, or it can be
a bounded connected (contiguous) subset of this plane. Points in the plane can
be referred to by their coordinates (x, y) ∈ R×R. As with discrete space, we can
consider two cases, depending on whether we focus on individuals or populations.

This section starts with considering individual-based continuous-space mod-
els. Next, population continuous-space models are presented, followed by two
techniques that are relevant for population discrete-space modelling, but involve
continuous-space models or techniques as well. The section ends with examples
of the application of continuous-space techniques in various disciplines.

4.1 Techniques for Individual Continuous-Space Models

In these models, we consider identifiable individuals. There are many different
models of the movement of individuals through two-dimensional space, such as
models of animal movement and models for ad hoc and opportunistic networks
[14]. These are often stochastic and capture the probability of movement in a
particular direction at a certain speed. Additionally, it may be necessary to deter-
mine what happens at the boundary of the space. Often, it is assumed that the
space is the surface of a torus and hence has no boundaries – this is more com-
mon than assuming the surface of a sphere, as it is hard to map subsets of R×R

to the sphere. There are also models to describe the movement of a related group
of individuals through the space [14]. Connectivity models on the other hand,
describe interaction (for example, contact duration and time between contacts)
rather than location [52] so they are implicit movement models. Interaction can
be interpreted as dynamic graphs with the individuals as the nodes.

Spatial Representations and Analysis Techniques 143

Next, we consider the form that these models can take. If I is an individual,
then it has associated information, similar to the discrete state case.

– loc(I, t) ∈ R × R which is its location at time t, and
– state(I, t) ∈ {A1, . . . , An} which is its state12 at time t.

There are rules which describe how the individual changes state and these may
take into account the individual’s current location, and rules that describe an
individual’s movement through space which may take into account the individ-
ual’s state. As with discrete space, the rates for state change are exponential
and can be functional. Unlike with discrete space, it is not useful to construct
a Markov chain whose states are obtained from the locations and states of each
individual. Discrete event simulation can be used to explore the behaviour of
these systems [38].

In the case that the state is continuous, then

state(I, t) ∈ R
n for n ≥ 1, which is continuous and represents its state at

time t.

As with the discrete space case, some way is required that describes the change
of state over time, and an ODE can be used for this. Some models require
both discrete and continuous non-aggregated states and this requires a hybrid
solution. Agent-based models in continuous space are examples of an individual
continuous-space model where individuals can take on discrete states or contin-
uous values.

A different approach to modelling continuous state with continuous time is
that of continuous time Markov processes (CTMP) [24]. A CTMP is a tuple
(S,Σ,R,L) where (S,Σ) forms a specific type of topological manifold and R :
S × Σ → R≥0 is a rate function which is measurable in its first coordinate and
a measure on its second coordinate. L is a state labelling function. Applying
this in the context of space, the manifold is (R × R, Σ) where Σ consists of the
open sets of R × R, hence defining a σ-algebra. A notion of path through this
space can be defined describing the behaviour of an individual. Furthermore, if
there are additional continuous quantities associated with the individual then
additional dimensions of R can be used.

4.2 Techniques for Population Continuous-Space Models

When individuals are aggregated into populations, there is no need to keep track
of them individually and densities become more important. In spatio-temporal
point processes13, each point in space (x, y) has an associated integral count
for a state in a population at a specific point in time t. We can denote this as
12 As with discrete space, if the population PA has multiple attributes A[1], . . . , A[p],

then state(I, t) = (A
[1]
i1
, . . . , A

[p]
ip

) representing a tuple of attributes.
13 In contrast to spatio-temporal point processes, spatial point processes describe dis-

tributions in space, and do not include a notion of change over time [3] and hence
are not relevant in this context.

144 V. Galpin

NAi
((x, y), t) and its behaviour is described by a function λ((x, y), t). In general,

λ can depend on all preceding events, but in the case of a Poisson process, it
only depends on (x, y) and t [78]. If λ is a constant, then there is no spatial
heterogeneity. If the equation defining λ includes comparison with other points,
then either clustering or inhibitory behaviour can be defined. If time and space
are independent then λ can be defined by λ((x, y), t) = λ1(x, y)λ2(t). The form
of λ may also describe a reduction in the population at a specific point (x, y)
and dispersal of that population to other points, thus capturing movement.

For continuous aggregation of populations, we now consider the classical
model of movement in continuous space, that of partial differential equations.
For populations described by XAi

((x, y), t), the general form is

Fi

(
x, y, t,XA1 , . . . , XAn

,
∂XAi

∂x
,
∂XAi

∂y
,
∂XAi

∂t
,
∂2XAi

∂x2
,
∂2XAi

∂xy
,
∂2XAi

∂y2

)
= 0

if we assume that we are interested in second order partial derivatives over
space only for the population XAi

((x, y), t). Note that writing the PDE in this
form simply allows it to be described as a function over all the derivatives of
interest rather than as a single partial derivative being equal to a function of
other derivatives. When interactions between populations are to be modelled,
diffusion-reaction PDEs are used since they can express movement as diffusion
and interaction as reactions [20,89]. The diffusion terms can also capture drift
which accounts for obstacles or external stimuli such as wind, the likelihood of
continuing in the same direction, the effect of the density of other individuals,
and the impact of environmental characteristics. The reaction term describes
interactions between individuals. Examples are given in the following sections.
There are various techniques for solving PDEs which we will not consider here,
many of which involve discretising the plane into a mesh [81].

We now consider two approaches to modelling discrete space where contin-
uous space plays an important role, in the sense that transformation from one
type of space to another is involved.

4.3 PDE-Based Analysis of Discrete-Space Models

Tschaikowski and Tribastone [88] have considered an approach which involves
taking a discrete space model with random walks to continuous space through
spatial fluidisation and then using PDE analysis techniques to get good approx-
imation results.

They studied population-based CTMCs where agents are subject to a random
walk on the uniform lattice R := {(iΔs, jΔs) | 0 ≤ i, j ≤ K} in the unit square
[0; 1]2 with Δs := 1/K and K ≥ 1. Each agent may attain one of the local states
A1, . . . , AL while being at any point in R, meaning that the CTMC state

A := (A(x,y)
1 , . . . , A

(x,y)
L)(x,y)∈R

provides the agent populations in each local state at each region. Agents in the
same region may cooperate with each other by performing local interactions

Spatial Representations and Analysis Techniques 145

from a rich class of functions. The spatial domain is assumed to have absorbing
or reflective boundary conditions. The former can be used to model a hostile
environment, while the latter account for closed environments. It can be shown
that the CTMC of size O(NL·K2

) converges to the solution of an ODE system
of size O(L · K2) as N → ∞. While this is a major improvement because the
complexity drops from exponential to polynomial, the ODE system may be hard
to solve if K is large.

Fortunately, it is possible to identify a finite difference scheme [42] which
solves the ODE system of size O(L · K2) and that can be also interpreted as a
finite difference scheme [84] of a PDE system of size L. By combining this with
the former result, one then proves that the solutions of the ODE system of size
O(L · K2) converge, as K → ∞, to the solution of a PDE system of size L. This
is not a purely theoretical result because one solves PDE systems by discretising
them to large ODE systems and the discretization induced by a PDE solver
is purely dependent on the PDE system itself and thus may be substantially
coarser than the one induced by the spatial domain R which can be arbitrarily
fine. Indeed, substantial speed-ups have been reported in [86,88], thus showing
that a characterization of mobile systems in terms of PDEs gives rise to shorter
calculation times.

4.4 Fluid Approximation and Spatial Discretisation Applied to
Agent-Based Continuous Space Models

The use of fluid approximation of population and spatial discretisation has been
applied in an ad hoc manner to a 2-dimensional space model of delay-tolerant
networks [35]. A general approach based on Markovian agents has been proposed
for 1-dimensional space which aggregates and fluidises individuals and discretises
space.

Feng developed a continuous-space model with individual agents (using the
process algebra stochastic HYPE) for a delay-tolerant network which used wild
animals as nodes. Due to computational limitations, the analysis was restricted
in terms of how many nodes could be modelled. The model was then transformed
to a discrete-space model by dividing up space according to waterhole locations,
and using the continuous space model to derive parameters for movement [35].
This enabled the population-based modelling of systems with many more nodes
and still provided good approximations.

More recently, a proposal has been made to apply this process in a gen-
eral way to 1-dimensional space. Specifically, it considers models which consist
of Markovian agents (MAs) moving on a bounded one-dimensional continuous
space. Markovian agents are a formalism that involves message-passing between
agents, and whose overall behaviour can be expressed as a CTMC or a set of
ODEs [15]. A detailed definition of Markovian agents is beyond the scope of this
tutorial.

The analysis of interest is the transient evolution of the state density distri-
bution of agents of class c in state i at position l and at time t. The change in
this value over a small amount of time can be expressed in terms of those agents

146 V. Galpin

at location l who change state and those agents who move to l. The movement
speed of MAs solely depends on the current state of the agents. A new term to
describe the agents that move can be derived from the Taylor expansion of the
movement term. The change in value can be then be expressed as a PDE in terms
of both time and distance (in 1-dimension). Assuming upper and lower bounds,
the upwind semi-discretisation technique [47] can be applied to discretise the
distance aspect of the PDE leading to a set of ODEs expressing the change of
state density at each discretised location.

4.5 Applications of Continuous Space

As with the case for discrete space, the aim of this section is to briefly consider
various applications and a survey can be found in [41].

Ecology: Spatio-temporal point processes have been used to model plant growth
and dispersal [8] and other applications [25]. Markov random graphs on con-
tinuous space over continuous time can also be considered as spatio-temporal
point processes [50]. Holmes et al [46] review the use of PDEs in ecological
applications, and consider the different forms of PDEs that are used for dif-
ferent models including Brownian (random) motion, drift and the telegraph
equation.

Biology: Bittig and Uhrmacher [7] describe two continuous space approaches
for cellular modelling: particle space and PDEs. In the former, each molecule
is modelled separately and these models can be simulated more efficiently by
assuming that each particle is only affected by nearby events. When using
PDEs, often only simple diffusion based on Brownian motion is required.
Fange et al [34] describe three different techniques for spatially heteroge-
neous stochastic kinetics as microscopic when each individual particle is con-
sidered in terms of its position (continuous-space), as mesoscopic when the
Reaction Diffusion Master Equation (RDME) is used (discrete space) and
as macroscopic when PDEs are used. PDEs can also be obtained by taking
the hydrodynamic limit of IPSs, namely as the number of particles tends to
infinity [23,30]. Pattern formation is important in biology and an important
PDE in this context is the Swift-Hohenberg equation [82].

Epidemiology: Spatial point processes have been used to model the spread
of foot and mouth disease [26]. Kendall [54] proposed the first spatial epi-
demic PDE model based on the Kermack-McKendrick nonspatial compart-
ment model, and this has been extended to the Diekmann-Thieme model
where traits of individuals affect both their susceptibility to infection and
their infectiveness to other individuals [77].

Networking: There is a substantial amount of work on mobility models, both
at the analytical level and experimentally through traces in the domain of
networking [14,69]. Connectivity models provide an abstraction of mobility
models in that they provide information about intercontact time [52]. Sto-
chastic geometry has been applied to wireless networks [2] and epidemiological
approaches using PDEs have been used for routing in networks [57].

Spatial Representations and Analysis Techniques 147

Continuous-space techniques can be applied to CAS modelling when individ-
ual movement is to be tracked, or when it is possible to aggregate movement
using PDEs because of the large subpopulation sizes. However, any techniques
that tracks individuals is unlikely to be scalable. In the next section, hybrid
approaches are considered that can be used to mitigate this problem.

5 Other Approaches to Modelling Space

The techniques discussed in this section are not specific to whether a model is an
individual or a population model and may also apply to models that have char-
acteristics of both. Using logic-based approaches, spatial and spatio-temporal
model checking can be applied to either sort of model and are addressed in
another chapter in this volume [19].

5.1 Crowding

In biological modelling of cells, crowding (occupation of space) is an important
issue, because cells have limited volume and it can be important to consider how
much space various molecules take up, and how this may affect reactions, as well
as the health of the cell. Models range from those that model continuous space
in which each entity has a volume and collision between molecules are explicitly
modelled, to grid-based approaches where there is space for only one entity in
each location [56,83]. The lattice-based approaches can be similar to individual
discrete-space models but use regular graph rather than arbitrary graphs.

For population discrete-space models, crowding can be modelled by imposing
maximum quantities on locations. Functional rates for movement into a location
can be defined to be zero when the maximum population count for a location
has been reached This can lead to discontinuous rate functions. Crowding can
be important in CAS, as we may want to impose occupation limits, such as
the number of people in a shared taxi, or the capacity of a bike station in a
bike-sharing scheme.

5.2 Hybrid Approaches

Hybridness is a ubiquitous feature in many models of real systems. As far as
space is concerned, there are many ways in which one can construct hybrid
models. Here we list some possibilities for future research, with CAS examples
from smart transport.

– Space may be seen or modelled differently depending on which kind of agent
we are considering in the model. An example taken from biology is in the
description of large and small molecules. The former are often modelled as
individual objects having a precise position in continuous space. The latter
are described as populations, and hence represented by counting variables, in
subregions of space [6]. This produces a model combining individual objects

148 V. Galpin

moving in space with discretised stochastic diffusion process. If we consider
models of interaction of pedestrians with public transportation, we can inves-
tigate a scenario in which buses are modelled as individual entities moving in
continuous space, while pedestrians or bus users are modelled as populations
moving from one discrete location in the city to another, or on and off a
bus. Alternatively, buses outside the city centre could be modelled as moving
in continuous space, whereas those within the city centre are modelled as a
population with movement rates that are determined by the number of buses.

– Another source of hybridness in spatial modelling can be related to different
representations of space at different scales or in different locations. The sim-
plest scenario to consider is a high level representation of space in terms of
locations, and a low level description of space inside each location in terms of
a grid or continuous space. In this case, one has to define appropriate inter-
faces between the dynamics at the two scales, in terms of abstraction and
concretisation functions mapping the low level into the high level and vice
versa. By contrast to the previous example, one may wish to model details
of the bus movement within the city centre but represent the flow of buses in
and out of the centre to different suburbs in a discrete-space style.

– A similar situation to the previous one is a scenario in which one special
location of interest is treated in detail, while the rest of the system is approx-
imated in a coarser manner as a single component. The detailed model of a
region may be either continuous or grid-based, while the rest of the system
can be abstracted as a location-based model, possibly homogeneous, hence
resorting to some kind of aggregate moment closure technique. An example
of collective adaptive system of this kind may be a crowd movement scenario,
in which different squares of a city are described in detail, and the flow of
people in and out of each square is represented in a location-based style.

– Similarly, there may be situations in which different locations require a dif-
ferent level of detail in their treatment. For instance, in a crowd movement
scenario, we may be interested in tracking the density of people on bikes in
the streets or in a square, which calls for a continuous space representation
and a PDE dynamics, but coupling this model with a model describing the
number of people at bike stations, in order to keep track of the inflow and
outflow of people from the streets or the square.

– From a more classical perspective, we can imagine hybrid models in space
where small and large populations are both present [9]. This may be location
specific, and change as the system evolves. Then, we can construct hybrid
models in which some populations are kept discrete in some locations, but
are approximated continuously in other ones.

Analysing hybrid spatial models can be challenging, but also opens new ways
of using locally different forms of spatial abstraction techniques. As an exam-
ple, consider a multi-scale scenario where the local space is described as a fine
grid, while globally space is represented by a collection of locations. In such a
situation, we may use structure-based moment closure approximation locally (if
that is accurate enough), de facto reducing the model to a standard location

Spatial Representations and Analysis Techniques 149

population ODE. In the case of the hybrid treatment of populations, simula-
tion of TDSHA (transition-driven stochastic hybrid automata) [12] or PDMPs
(piecewise deterministic Markov processes) [22] can be used.

6 Conclusion

To conclude, this tutorial has provided information about the choices than can be
made when modelling space in a quantified manner, focussing on the modelling
of CAS. Scalability of techniques have been considered, with specific references
to moving away from individual-based modelling to population modelling, using
both exact and approximate techniques. There has been an exploration of tech-
niques for both discrete and continuous space, as well a review of how techniques
have been applied in the literature, and specific details of techniques that have
been considered for CAS.

Acknowledgements. This work is supported by the EU project QUANTICOL,
600708. The author thanks Jane Hillston and Mieke Massink for their useful com-
ments.

Appendix: Discrete and continuous time Markov Chains

This section briefly introduces these concepts, as they would be used in stochas-
tic modelling both without aggregation of state and with aggregation of state
(population-based Markov chains) [4,10].

Definition 1. A discrete time Markov chain (DTMC) is a tuple MD = (S ,P)
where

– S is a finite set of states, and
– P : S × S → [0, 1] is a probability matrix satisfying

∑
S′∈S P(S, S′) = 1

for all S ∈ S .

A DTMC is time-abstract [4] in the sense that time is viewed as a sequence of
discrete steps or clock ticks. It describes behaviour as follows: if an entity or
individual is currently in state S ∈ S then the probability of the entity being in
state S′ at the next time step is defined by P(S, S′). Under certain conditions,
the steady state of the DTMC can be determined and this describes when the
DTMC is at equilibrium and gives the (unchanging) probability of being in any
of the states of S . By contrast, transient state probabilities can be determined
at each point in time before steady state is achieved.

Definition 2. A continuous time Markov chain (CTMC) is a tuple MC =
(S ,R) where

– S is a finite set of states, and
– R : S × S → R≥0 is a rate matrix.

150 V. Galpin

CTMCs are time-aware [4] since they use continuous time. If an entity is cur-
rently in state S, then R(S, S′) is a non-negative number that defines an expo-
nential distribution from which the duration of the time taken to transition from
state S to state S′ can be drawn. As with DTMCs and under certain conditions,
transient and steady state probabilities can be calculated which describe the
probability of being in each state at a particular time t or in the long run,
respectively.

Let E(S) =
∑

S′∈S R(S, S′) be the exit rate of state S′. Then the embedded
DTMC of a CTMC has entries in its probability matrix of the form P(S, S′) =
R(S, S′)/E(S) if E(S) > 0 and P(S, S′) = 0 otherwise. DTMCs and CTMCs can
be state-labelled (usually with propositions) or transition-labelled (usually with
actions). The research in QUANTICOL focusses on transition-labelled Markov
chains. We next consider population Markov chains, both discrete time and
continuous time. Instead of considering an entity with states, we now consider
a vector of counts X that describes how many entities are in each state; thus
it is a population view rather than an individual view. Our definition in the
continuous-time case is slightly simpler than that appearing in another chapter
in this volume [9] since transitions do not have guards and we do not parameterise
the Markov chain with the population size.

Definition 3. A population discrete time Markov chain (PDTMC) is a tuple
XD = (X,D ,T) where

– X = (X1, . . . , Xn) is a vector of variables
– D is a countable set of states defined as D = D1 × . . . × Dn where each

Di ⊆ N represents the domain of Xi

– T = {τ1, . . . τm} is the set of transitions of the form τj = (v, p) where
• v = (v1, . . . , vn) ∈ N

n is the state change or update vector where vi

describes the change in number of units of Xi caused by transition τj

• p : D → R≥0 is the probability function of transition τj that defines a
sub-probability distribution, namely

∑
τ∈T pτ (d) ≤ 1 for all d ∈ D , such

that p(d) = 0 whenever d + v �∈ D

Definition 4. A population continuous time Markov chain (PCTMC) is a tuple
XC = (X,D ,T) where

– X and D are defined as in the previous definition,
– T = {τ1, . . . τm} is the set of transitions of the form τj = (v, r) where

• v is defined as in the previous definition,
• r : D → R≥0 is the rate function of transition τj with r(d) = 0 whenever

d + v �∈ D .

In both types of population Markov chain, the associated Markov chain can be
obtained. In both cases, D is the state space S . For the population DTMC, the
probability matrix of its associated DTMC is defined as

P(d,d′) =
∑

τ∈T ,vτ=d′−d

pτ (d) whenever d �= d′

Spatial Representations and Analysis Techniques 151

and since probability functions define sub-probabilities then the rest of the prob-
ability mass must be accounted for by defining

P(d,d) = 1 −
∑

τ∈T ,vτ �=0

pτ (d).

For the population CTMC, the rate matrix of its associated CTMC is

R(d,d′) =
∑

τ∈T ,vτ=d′−d

rτ (d) whenever d �= d′

and if the summation is empty, then R(d,d′) = 0.
As the size of the population increases, it has been shown [58] under specific

conditions that cover a large range of models that the behaviour of an (appro-
priately normalised) population CTMC at time t is very close to the solution
of a set of ODEs, expressed in the form X(t) = (X1(t), . . . , Xn(t)) defining a
trajectory over time. The ODEs can be expressed in terms of a single vector
ODE as

Ẋ =
dX
dt

= f(X)

where f(X) is a function derived from the specifics of the PCTMC (see [9] in this
volume for details). It is also possible to approximate the moments of a PCTMC
using the ODEs [32]

d
dt

E[M(X(t))] =
∑

τ∈T

E[(M(X(t) + vτ) − M(X(t)))rτ (X(t))]

where M(X) denotes the moment to be calculated, vτ and rτ (X(t)) represents
the update vector and the rate of a transition τ , respectively.

References

1. Auger, P., Poggiale, J., Sánchez, E.: A review on spatial aggregation methods
involving several time scales. Ecol. Complex. 10, 12–25 (2012)

2. Baccelli, F., B�laszczyszyn, B.: Stochastic Geometry and Wireless Networks: Vol-
ume I and II. NOW Publishers, Hanover (2009)

3. Baddeley, A., Bárány, I., Schneider, R.: Spatial point processes and their appli-
cations. Stochastic Geometry. Lecture Notes in Mathematics, vol. 1892, pp. 1–75.
Springer, Heidelberg (2007)

4. Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Inf. Comput. 200, 149–214 (2005)

5. Berec, L.: Techniques of spatially explicit individual-based models: construction,
simulation, and mean-field analysis. Ecol. Model. 150, 55–81 (2002)

6. Bittig, A., Haack, F., Maus, C., Uhrmacher, A.: Adapting rule-based model descrip-
tions for simulating in continuous and hybrid space. In: Proceedings of CMSB 2011,
pp. 161–170. ACM (2011)

7. Bittig, A., Uhrmacher, A.: Spatial modeling in cell biology at multiple levels. In:
Winter Simulation Conference (WSC 2010), pp. 608–619. IEEE (2010)

152 V. Galpin

8. Bolker, B., Pacala, S.: Using moment equations to understand stochastically driven
spatial pattern formation in ecological systems. Theor. Popul. Biol. 52, 179–197
(1997)

9. Bortolussi, L., Gast, N.: Mean-field limits beyond ordinary differential equations.
In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700,
pp. 61–82. Springer, Switzerland (2016)

10. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective systems behaviour: a tutorial. Perform. Eval. 70, 317–349 (2013)

11. Bortolussi, L., Latella, D., Massink, M.: Stochastic process algebra and stability
analysis of collective systems. In: De Nicola, R., Julien, C. (eds.) COORDINATION
2013. LNCS, vol. 7890, pp. 1–15. Springer, Heidelberg (2013)

12. Bortolussi, L., Policriti, A.: Hybrid dynamics of stochastic programs. Theor. Com-
put. Sci. 411, 2052–2077 (2010)

13. Brauer, F.: Compartmental models in epidemiology. In: Allen, L., Brauer, F., van
den Driessche, P., Wu, J. (eds.) Mathematical Epidemiology, pp. 19–80. Springer,
Heidelberg (2008)

14. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wirel. Commun. Mob. Comput. 2, 483–502 (2002)

15. Cerotti, D., Gribaudo, M., Bobbio, A.: Markovian agents models for wireless sensor
networks deployed in environmental protection. Reliab. Eng. Syst. Saf. 130, 149–
158 (2014)

16. Cerotti, D., Gribaudo, M., Bobbio, A., Calafate, C.T., Manzoni, P.: A markovian
agent model for fire propagation in outdoor environments. In: Aldini, A., Bernardo,
M., Bononi, L., Cortellessa, V. (eds.) EPEW 2010. LNCS, vol. 6342, pp. 131–146.
Springer, Heidelberg (2010)

17. Chaintreau, A., Le Boudec, J.Y., Ristanovic, N.: The age of gossip: spatial mean
field regime. In: Proceedings of SIGMETRICS/Performance 2009, pp. 109–120.
ACM (2009)

18. Chesson, P.: Scale transition theory: its aims, motivations and predictions. Ecol.
Complex. 10, 52–68 (2012)

19. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Spatial logic and spatial model
checking for closure spaces. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.)
SFM 2016. LNCS, vol. 9700, pp. 156–201. Springer, Switzerland (2016)

20. Codling, E., Plank, M., Benhamou, S.: Random walk models in biology. J. Roy.
Soc. Interface 5, 813–834 (2008)

21. Darling, R., Norris, J.: Differential equation approximations for Markov chains.
Probab. Surv. 5, 37–79 (2008)

22. Davis, M.: Markov Models and Optimization. Chapman & Hall, Boca Raton (1993)
23. De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Lec-

ture Notes in Mathematics. Springer, Berlin (1991)
24. Desharnais, J., Panangaden, P.: Continuous stochastic logic characterizes bisimula-

tion of continuous-time Markov processes. J. Logic Algebraic Program. 56, 99–115
(2003)

25. Diggle, P.: Spatio-temporal point processes: methods and applications. Working
paper, Department of Biostatistics, Johns Hopkins University (2005)

26. Diggle, P.: Spatio-temporal point processes, partial likelihood, foot and mouth
disease. Stat. Methods Med. Res. 15, 325–336 (2006)

27. van den Driessche, P.: Spatial structure: patch models. In: Allen, L., Brauer, F.,
van den Driessche, P., Wu, J. (eds.) Mathematical Epidemiology, pp. 179–190.
Springer, Heidelberg (2008)

Spatial Representations and Analysis Techniques 153

28. Durrett, R., Levin, S.: The importance of being discrete (and spatial). Theor.
Popul. Biol. 46, 363–394 (1994)

29. Durrett, R., Levin, S.: Stochastic spatial models: a user’s guide to ecological appli-
cations. Philos. Trans. Roy. Soc. B: Biol. Sci. 343, 329–350 (1994)

30. Durrett, R., Neuhauser, C.: Particle systems and reaction-diffusion equations. The
Ann. Probab. 22, 289–333 (1994)

31. Ellner, S.: Pair approximation for lattice models with multiple interaction scales.
J. Theor. Biol. 210, 435–447 (2001)

32. Engblom, S.: Computing the moments of high dimensional solutions of the master
equation. Appl. Math. Comput. 180, 498–515 (2006)

33. Erban, R., Chapman, J., Maini, P.: A practical guide to stochastic simulations of
reaction-diffusion processes (2007). arXiv preprint arXiv:0704.1908

34. Fange, D., Berg, O., Sjöberg, P., Elf, J.: Stochastic reaction-diffusion kinetics in
the microscopic limit. Proc. Nat. Acad. Sci. 107, 19820–19825 (2010)

35. Feng, C.: Patch-based hybrid modelling of spatially distributed systems by using
stochastic HYPE - ZebraNet as an example. In: Proceedings of QApPL 2014 (2014)

36. Feng, C., Hillston, J., Galpin, V.: Automatic moment-closure approximation of
spatially distributed collective adaptive systems. ACM TOMACS 26, 26:1–26:22
(2016)

37. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana
Univ. Math. J. 21, 1972 (1971)

38. Fishman, G.: Discrete-Event Simulation. Springer, New York (2001)
39. Fricker, C., Gast, N.: Incentives and regulations in bike-sharing systems with sta-

tions of finite capacity (2012). arXiv preprint arXiv:1201.1178
40. Fricker, C., Gast, N., Mohamed, H.: Mean field analysis for inhomogeneous bike

sharing systems. DMTCS Proc. 01, 365–376 (2012)
41. Galpin, V., Feng, C., Hillston, J., Massink, M., Tribastone, M., Tschaikowski, M.:

Review of time-based techniques for modelling space. Technical report TR-QC-05-
2014, QUANTICOL (2014)

42. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations.
Prentice Hall, Upper Saddle River (1971)

43. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81, 2340–2361 (1977)

44. Gillespie, D.: Stochastic simulation of chemical kinetics. Ann. Rev. Phys. Chem.
58, 35–55 (2007)

45. Gorban, A., Radulescu, O., Zinovyev, A.: Asymptotology of chemical reaction net-
works. Chem. Eng. Sci. 65, 2310–2324 (2010)

46. Holmes, E., Lewis, M., Banks, J., Veit, R.: Partial differential equations in ecology:
spatial interactions and population dynamics. Ecology 75, 17–29 (1994)

47. Horton, G., Kulkarni, V., Nicol, D., Trivedi, K.: Fluid stochastic Petri nets: Theory,
applications, and solution techniques. Eur. J. Oper. Res. 105, 184–201 (1998)

48. Hu, H., Myers, S., Colizza, V., Vespignani, A.: WiFi networks and malware epi-
demiology. Proc. Nat. Acad. Sci. 106, 1318–1323 (2009)

49. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific, Singapore
(2001)

50. Isham, V.: An introduction to spatial point processes and Markov random fields.
Int. Stat. Rev./Rev. Int. Stat. 41, 21–43 (1981)

51. Kaneko, K.: Diversity, stability, and metadynamics: remarks from coupled map
studies. In: Bascompte, J., Solé, R. (eds.) Modeling Spatiotemporal Dynamics in
Ecology, pp. 27–45. Springer, New York (1998)

http://arxiv.org/abs/0704.1908
http://arxiv.org/abs/1201.1178

154 V. Galpin

52. Kathiravelu, T., Pears, A.: Reproducing opportunistic connectivity traces using
connectivity models. In: 2007 ACM CoNEXT Conference, p. 34. ACM (2007)

53. Kemeny, J., Snell, J.: Finite Markov Chains. Springer, New York (1976)
54. Kendall, D.: Mathematical models of the spread of infection. In: Mathematics and

Computer Science in Biology and Medicine, pp. 213–225. Medical Research Council
London (1965)

55. Kephart, J., White, S.: Directed-graph epidemiological models of computer viruses.
In: Proceedings of the IEEE Computer Society Symposium on Research in Security
and Privacy, pp. 343–359. IEEE (1991)

56. Klann, M., Koeppl, H.: Spatial simulations in systems biology: from molecules to
cells. Int. J. Mol. Sci. 13, 7798–7827 (2012)

57. Klein, D., Hespanha, J., Madhow, U.: A reaction-diffusion model for epidemic
routing in sparsely connected MANETs. In: Proceedings of INFOCOM 2010, pp.
1–9. IEEE (2010)

58. Kurtz, T.: Approximation Popul. Process. SIAM, Philadelphia (1981)
59. Levin, S., Durrett, R.: From individuals to epidemics. Philos. Trans. Roy. Soc.

Lond. Ser. B: Biol. Sci. 351, 1615–1621 (1996)
60. Lichtenegger, K., Schappacher, W.: A carbon-cycle-based stochastic cellular

automata climate model. Int. J. Mod. Phys. C 22, 607–621 (2011)
61. Marion, G., Mao, X., Renshaw, E., Liu, J.: Spatial heterogeneity and the stability

of reaction states in autocatalysis. Phys. Rev. E 66, 051915 (2002)
62. Marion, G., Swain, D., Hutchings, M.: Understanding foraging behaviour in spa-

tially heterogeneous environments. J. Theor. Biol. 232, 127–142 (2005)
63. Massink, M., Brambilla, M., Latella, D., Dorigo, M., Birattari, M.: On the use of

Bio-PEPA for modelling and analysing collective behaviors in swarm intelligence.
Swarm Intell. 7, 201–228 (2013)

64. Massink, M., Latella, D., Bracciali, A., Harrison, M., Hillston, J.: Scalable context-
dependent analysis of emergency egress models. Formal Aspects Comput. 24, 267–
302 (2012)

65. Matis, J., Kiffe, T.: Effects of immigration on some stochastic logistic models: a
cumulant truncation analysis. Theor. Popul. Biol. 56, 139–161 (1999)

66. Matsuda, H., Ogita, N., Sasaki, A., Satō, K.: Statistical mechanics of population:
the lattice Lotka-Volterra model. Prog. Theor. Phys. 88, 1035–1049 (1992)

67. McCaig, C., Norman, R., Shankland, C.: From individuals to populations: a mean
field semantics for process algebra. Theor. Comput. Sci. 412, 1557–1580 (2011)

68. Morozov, A., Poggiale, J.C.: From spatially explicit ecological models to mean-field
dynamics: the state of the art and perspectives. Ecol. Complex. 10, 1–11 (2012)

69. Musolesi, M., Mascolo, C.: Mobility models for systems evaluation. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) Middleware Netw. Eccentric Mob. Appl., pp.
43–62. Springer, Heidelberg (2009)

70. Norris, J.: Markov Chains. Cambridge University Press, Cambridge (1998)
71. Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives.

Springer, New York (2001)
72. Othmer, H., Scriven, L.: Instability and dynamic pattern in cellular networks. J.

Theor. Biol. 32, 507–537 (1971)
73. Panangaden, P.: Labelled Markov Processes. Imperial College Press, London (2009)
74. Pascual, M., Roy, M., Laneri, K.: Simple models for complex systems: exploiting

the relationship between local and global densities. Theor. Ecol. 4, 211–222 (2011)
75. Riley, S.: Large-scale spatial-transmission models of infectious disease. Science 316,

1298–1301 (2007)

Spatial Representations and Analysis Techniques 155

76. Rowe, J.E., Gomez, R.: El Botellón: modeling the movement of crowds in a city.
Complex Syst. 14, 363–370 (2003)

77. Ruan, S.: Spatial-temporal dynamics in nonlocal epidemiological models. In:
Takeuchi, Y., Iwasa, Y., Sato, K. (eds.) Mathematics for Life Science and Medicine.
Biological and Medical Physics, Biomedical Engineering, pp. 97–122. Springer, Hei-
delberg (2007)

78. Schoenberg, F., Brillinger, D., Guttorp, P.: Point processes, spatial-temporal. In:
El-Shaarawi, A., Piegorsch, W. (eds.) Encyclopedia of Environmetrics, pp. 1573–
1577. Wiley Online Library, New York (2002)

79. Segel, L., Slemrod, M.: The quasi-steady-state assumption: a case study in pertur-
bation. SIAM Rev. 31, 446–477 (1989)

80. Simon, H.A., Ando, A.: Aggregation of variables in dynamic systems. Econometrica
29, 111–138 (1961)

81. Slepchenko, B., Schaff, J., Macara, I., Loew, L.: Quantitative cell biology with the
virtual cell. Trends Cell Biol. 13, 570–576 (2003)

82. Swift, J., Hohenberg, P.: Hydrodynamic fluctuations at the convective instability.
Phys. Rev. A 15, 319 (1977)

83. Takahashi, K., Arjunan, S., Tomita, M.: Space in systems biology of signaling
pathways-towards intracellular molecular crowding in silico. FEBS Lett. 579, 1783–
1788 (2005)

84. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Meth-
ods. Springer, New York (1995)

85. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process
algebra models. IEEE Trans. Softw. Eng. 38, 205–219 (2012)

86. Tschaikowski, M., Tribastone, M.: A Partial-differential Approximation for Spatial
Stochastic Process Algebra. In: Proceedings of VALUETOOLS 2014 (2014)

87. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability in Markovian process
algebra. Theor. Comput. Sci. 538, 140–166 (2014)

88. Tschaikowski, M., Tribastone, M.: Spatial fluid limits for stochastic mobile net-
works. Performance Evaluation (2015), under minor revision

89. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. (Part
B) 237, 37–72 (1953)

90. Vandin, A., Tribastone, M.: Quantitative abstractions for collective adaptive sys-
tems. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol.
9700, pp. 202–232. Springer, Switzerland (2016)

91. Webb, S., Keeling, M., Boots, M.: Host-parasite interactions between the local and
the mean-field: how and when does spatial population structure matter? J. Theor.
Biol. 249, 140–152 (2007)

92. Wiggins, S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems.
Springer Science & Business Media, New York (1994)

93. Wu, J., Loucks, O.: From balance of nature to hierarchical patch dynamics: a
paradigm shift in ecology. Q. Rev. Biol. 70, 439–466 (1995)

94. Zhou, X., Ioannidis, S., Massoulié, L.: On the stability and optimality of universal
swarms. ACM SIGMETRICS Perform. Eval. Rev. 39, 301–312 (2011)

95. Zungeru, A., Ang, L.M., Seng, K.P.: Classical and swarm intelligence based routing
protocols for wireless sensor networks: a survey and comparison. J. Netw. Comput.
Appl. 35, 1508–1536 (2012)

Spatial Logic and Spatial Model Checking
for Closure Spaces

Vincenzo Ciancia1, Diego Latella1, Michele Loreti2,3, and Mieke Massink1(B)

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Pisa, Italy
mieke.massink@isti.cnr.it

2 Università di Firenze, Florence, Italy
3 IMT Alti Studi, Lucca, Italy

Abstract. Spatial aspects of computation are increasingly relevant in
Computer Science, especially in the field of collective adaptive systems
and when dealing with systems distributed in physical space. Traditional
formal verification techniques are well suited to analyse the temporal evo-
lution of concurrent systems; however, properties of space are typically
not explicitly taken into account. This tutorial provides an introduc-
tion to recent work on a topology-inspired approach to formal verifica-
tion of spatial properties depending upon (physical) space. A logic is
presented, stemming from the tradition of topological interpretations of
modal logics, dating back to earlier logicians such as Tarski, where modal-
ities describe neighbourhood. These topological definitions are lifted to
the more general setting of closure spaces, also encompassing discrete,
graph-based structures. The present tutorial illustrates the extension of
the framework with a spatial surrounded operator, leading to the spatial
logic for closure spaces SLCS, and its combination with the temporal
logic CTL, leading to STLCS. The interplay of space and time permits
one to define complex spatio-temporal properties. Both for the spatial
and the spatio-temporal fragment efficient model-checking algorithms
have been developed and their use on a number of case studies and
examples is illustrated.

1 Introduction

Modal logics, model checking and static analysis enjoy an outstanding mathemat-
ical tradition, spanning over logics, abstract mathematics, artificial intelligence,
theory of computation, system modelling, and optimisation. However, the spa-
tial aspects of systems, that is, dealing with properties of entities that relate to
their position, distance, connectivity and reachability in space, have never been
truly emphasised in computer science. With the recent interest in the design of
fully decentralised systems that are composed of a large number of locally inter-
acting objects that are distributed in physical space, also called Collective Adap-
tive Systems (CAS) [2], spatial reasoning and formal spatial verification have
gained renewed interest. A starting point is provided by so-called spatial logics [1],

Research partially funded by EU project QUANTICOL (nr. 600708).

c© Springer International Publishing Switzerland 2016
M. Bernardo et al. (Eds.): SFM 2016, LNCS 9700, pp. 156–201, 2016.
DOI: 10.1007/978-3-319-34096-8 6

Spatial Logic and Spatial Model Checking for Closure Spaces 157

that have been studied from the point of view of (mostly modal) logics. The field of
spatial logics is well developed in terms of descriptive languages and aspects such
as computability and complexity. The development dates back to work by early
logicians such as Tarski, who studied possible semantics of classic modal logics,
using topological spaces in place of Kripke frames. However, the frontier of cur-
rent research does not yet address formal verification problems, and in particular,
discrete spatial models are still a relatively unexplored field.

In this tutorial, we review some relevant current literature dealing with mod-
els where space is continuous, and start an analysis of the situation in the case of
discrete structures. The interest in such an analysis comes from the conjecture
that properties may be described using the same languages in the continuous,
discrete, and relational (classical) case. The longer term aim is to provide a uni-
fying view of temporal and spatial properties which is independent of the kind
of models that are taken into account. The tutorial is intended to be a starting
point for understanding which descriptive languages are most suitable for such
an endeavour. As a next step we show how to cast the well known developments
in spatio-temporal reasoning in the realm of discrete and finite structures, and
develop efficient and effective verification algorithms. Their use will be illustrated
on small and larger examples in the field of CAS. This development constitutes a
novel, relatively unexplored research line. The lack of applications of spatial logic
in the field of verification is also witnessed in the introduction to the Handbook
of Spatial Logics [1], that we use as one of our main references. The tutorial is
furthermore partially based on some of our previous and forthcoming joint work
with various other authors (see [14,16,17,19,34,37]).

We can distinguish broadly three main aspects in this field. First of all, the
spatial structures with which relevant aspects of space can be modelled must be
identified. Second, suitable spatial and spatio-temporal logics must be developed.
Finally it is useful to enrich the setting to be able to take quantitative aspects
into account such as distance or probability. Let us briefly review these three
aspects:

Spatial Structures. Space can be modelled as a discrete or continuous entity. This
ought to be accommodated in a general setting by choosing appropriate abstract
mathematical structures. Topological spaces are typical examples. However, we
shall see that for dealing with discrete spatial structures closure spaces, a gen-
eralisation of topological spaces, are a better starting point.

Spatial Logics. Spatial logics predicate on properties of entities located in the
space; for example, one may be interested in entities that are inside, outside or
on the boundary of regions of space where certain properties hold. Depending
on the specific logical language, the entities described can be:

– Points in the space. In this case reasoning has a strongly local flavour. Global
properties (e.g., a region of a space not having “holes”) cannot be expressed.

158 V. Ciancia et al.

– Spaces as a whole. Global properties can easily be expressed if the point of
view is shifted from the behaviour of an individual in a specified setting, to
the analysis of several possible global scenarios consisting of all the entities in
a given space.

– Regions of space. This approach combines reasoning on multiple entities simul-
taneously with a focus on the interaction (e.g., overlapping or contact) between
areas having different properties.

Spatio-Temporal Logics. The combination of spatial logics with other modal log-
ics, such as temporal logics, provides an even richer language for the formulation
of properties that reflect both spatial and temporal aspects at the same time.
The combination of spatial and temporal logics introduces more design variables,
especially for what concerns the interplay between the spatial and the temporal
component. Computational properties, such as decidability and complexity, of
several possible combinations are examined in detail in [31].

Quantitative Aspects. Distance-based logics extend topological logics. Formulas
are indexed by intervals, which are used as constraints. Metric-topological prop-
erties are verified by a model if the topological part of the formula is verified, and
the constraints are satisfied. For example, one may require that points satisfying
a certain property are located at most at a specified distance from each other,
or from points characterised by some other property.

This tutorial does not cover several topics that are relevant for spatial
and spatio-temporal logics and model checking. A partial list of well-known
approaches that are not covered in this chapter includes: Metric Interval Tem-
poral Logics [33]; Spatial Signal Temporal Logic [36,37]; SpaTeL [29] a spatial
logic based on Quad Trees; logics of process calculi such as the Mobile Stochas-
tic Logic MoSL [22], Ambient Logic [12] and Separation Logic [38]. Finally, we
will only touch upon extensions with quantitative features in the final section.
Spatial representations and non-logic based spatial analysis techniques will be
addressed in an other chapter of this volume [25].

The outline of the tutorial is as follows. In Sect. 2 we present and relate several
classes of spatial structures that are directly relevant to the approach we follow
to develop spatial logics and model-checking techniques. Section 3 reviews modal
logics and their extension to space. In Sect. 4 a spatial logic for closure spaces is
introduced and its operators are illustrated in a number of examples. In Sect. 6
the spatial logic is extended with temporal operators and in Sect. 7 some aspects
of a spatio-temporal model-checking algorithm are presented. Section 8 presents
some larger case studies in which we illustrate some more complicated spatio-
temporal properties of a bike-sharing system and public bus transportation seen
as a CAS. To conclude, Sect. 9 provides a discussion of open issues. The detailed
proofs of theorems, lemmas and propositions stated in this tutorial can be found
in [16].

Spatial Logic and Spatial Model Checking for Closure Spaces 159

2 Closure Spaces, Topology and Graphs

In this section we introduce some relevant mathematical notions and facts that
are used throughout the tutorial and that form the basis for the particular spatial
logics and related model checking algorithms that are the main topic of this tuto-
rial. We briefly explain the various mathematical structures that are involved,
in particular topological structures, their generalisation, also known as Closure
Spaces, and two particular discrete subsets of the latter, namely quasi-discrete
closure spaces and finite graphs. This section is intended as a minimal reference
tailored to make the tutorial self-contained, rather than as an introduction to
topology or other mathematical subjects, for which the reader is invited to con-
sult more authoritative sources. The section on topology of [40] may be used as
a gentle introduction; a comprehensive reference is [30].

2.1 Topological Spaces

Topological spaces may be presented as generalisations of Euclidean spaces by
focussing on the notion of closeness without making reference to an explicit
metric. In topology this notion is expressed in terms of relationships between
sets of points instead of in terms of distance. Any topological space consists of
a set of points, a set of subsets of points called open sets and two operators on
sets, namely union and intersection. More formally, a topological space can be
defined as follows.

Definition 1. A topological space is a pair (X,O) of a set X and a collection
O ⊆ ℘(X) of subsets of X called open sets, such that ∅,X ∈ O, and subject to
closure under arbitrary unions and finite intersections.

The dual of an open set is a closed set, but open and close sets are not
mutually exclusive, as illustrated in Example 1 below following the definition of
closed set.

Definition 2. A subset S of X is called closed if X \ S ∈ O. A clopen is a set
that is both open and closed.

Example 1. Assume the topological space X is the two dimensional Euclidean
space and that it is equipped with the usual Euclidean (metric) topology. The
pink shapes in Fig. 1 are subsets of this space. The shape on the left is open, that
on the right is closed. An example of a set that is both open and closed is the
space X itself. This can be seen as follows. First note that X is open by definition,
but its complement, the empty set, is also open by definition. Therefore X is
also closed. The same holds for the empty set. Furthermore, switching to the one
dimensional case for simplicity, the set [1, 2) is neither open nor closed because
its complement is neither open nor closed. However, [1,∞) is a closed set because
its complement is open.

Also the notion of neighbourhood of a point in space plays an important role,
as well as those of interior and closure of a set of points.

160 V. Ciancia et al.

open set closed set

Fig. 1. Example of an open set (left) and a closed set (right). (Color figure online)

Definition 3. An open neighbourhood of x ∈ X is an open set o with x ∈ o.
The interior of S ⊆ X, denoted by I(S), is the largest open set contained in S
and the closure of S, denoted by C(S), is the smallest closed set containing S.

The interior and closure are dual. Let S denote X \ S (the complement of S

in X). Then we have I(S) = C(S) and C(S) = I(S). In Fig. 1 the open set can be
seen as the interior of the closed set and the closed set as the closure of the open
set. In fact, the closure operator adds all limit points of an open set to it. A point
p is called a limit point of a set S if every open set containing p also contains some
point of S. Limit points are a fundamental notion in topological spaces and could
be used to provide an alternative axiomatical definition of topological spaces
known as Kuratowsky spaces. They also reflect the inherent continuous aspect
of topological spaces. In topological spaces the closure operator is idempotent,
so C(C(S)) = C(S).

2.2 Closure Spaces

Discrete spatial structures could be treated as in the continuous case, by defin-
ing a topology on top of the points of the structure. However, by doing so, one
does not gain much, as the closure operator is idempotent in topological spaces.
This assumption becomes too stringent for discrete structures. For example, in
the case of regular grids, it is natural to interpret closure as the operation of
enlarging a set of points by one step (in all possible directions) on the grid. Such
interpretation is clearly not idempotent. By removing the idempotency assump-
tion, closure spaces are obtained that therefore are a generalisation of topological
spaces, as shown in the following definition and more explicitly in Definition 7.

Definition 4. A closure space is a pair (X, C) where X is a set, and C : 2X →
2X assigns to each subset of X its closure, such that, for all A,B ⊆ X:

1. C(∅) = ∅;
2. A ⊆ C(A);
3. C(A ∪ B) = C(A) ∪ C(B).

As in topological spaces, we can define the interior operator for closure spaces
as well as the notions of neighbourhood, open set and closed set.

Definition 5. In a closure space (X, C), given A ⊆ X and x ∈ X: (i) the
interior I(A) of A is the set C(A); (ii) A is a neighbourhood of x ∈ X if and
only if x ∈ I(A); and (iii) A is closed if A = C(A) and it is open if A = I(A).

Spatial Logic and Spatial Model Checking for Closure Spaces 161

The above defined operators enjoy the following useful properties.

Proposition 1. In a closure space (X, C), for all A,B ⊆ X, the following holds:
(i) I(A) ⊆ A; (ii) A is open if and only if A is closed; (iii) A ⊆ B =⇒
C(A) ⊆ C(B) and I(A) ⊆ I(B); and (iv) the open sets are closed under finite
intersections, and arbitrary unions.

Below, we provide a definition of the boundary of a set A which is entirely
given in terms of closure and interior, and coincides with the definition of bound-
ary in a topological space. Moreover, in discrete spaces (such as, grids) it some-
times makes sense to consider just the part of the boundary of a set A which
lies entirely within, or outside, A itself. We also define these notions.

Definition 6. In a closure space (X, C), the boundary of A ⊆ X is defined
as B(A) = C(A) \ I(A). The interior boundary is B−(A) = A \ I(A), and the
closure boundary is B+(A) = C(A) \ A.

Proposition 2. The following equations hold in a closure space:

B(A) = B+(A) ∪ B−(A) (1)

B+(A) ∩ B−(A) = ∅ (2)

B(A) = B(A) (3)

B+(A) = B−(A) (4)

B+(A) = B(A) ∩ A (5)

B−(A) = B(A) ∩ A (6)

B(A) = C(A) ∩ C(A) (7)

The axioms defining a closure space are also part of the definition of a Kura-
towski closure space, which is an alternative definition of a topological space.
More precisely, the only missing axiom that makes a closure space Kuratowski
is idempotence1, that is C(C(A) = C(A).

Definition 7. A topological space is a closure space where the closure operator
is idempotent, that is, for all A ⊆ X, C(C(A)) = C(A).

The correspondence between the Kuratowski definition (Definition 7) and
the open sets definition (Definition 1) can be sketched as follows. To view a
topological space defined in terms of open sets as a closure space, one defines
C(A) as the smallest closed set containing A. For the converse, one uses the
definition of an open set in a closure space, as given in Definition 5 (noting that
closure is already assumed to be idempotent, by the Kuratowski definition).

1 When recovering the definition of a topological space via open sets from the Kura-
towski definition, it is noteworthy that the preservation of binary unions is sufficient
to prove that arbitrary unions of open sets are open.

162 V. Ciancia et al.

2.3 Graphs as Closure Spaces

Discrete spatial structures typically come in the form of a graph. A graph is
described by its set of nodes X and its connectedness binary relation R ⊆ X × X.
A closure operator CR can be derived from R as follows.

Definition 8. Given a set X and a relation R ⊆ X × X, define the closure
operator CR(A) as follows: CR(A) = A ∪ {x ∈ X | ∃a ∈ A.(x, a) ∈ R}.
Proposition 3. The pair (X, CR) is a closure space.

Closure operators obtained by Definition 8 are not necessarily idempotent.
This is intimately related to reflexivity and transitivity of R, as shown by Lemma
11 in [26], that we rephrase below.

Lemma 1. The operator CR is idempotent if and only if the reflexive closure
R= of R is transitive.

Note that, when R is transitive, so is R=, thus CR is idempotent. The reverse
implication is not true, as one may have (x, y) ∈ R, (y, x) ∈ R, but (x, x) /∈ R.

Finally, we recall that in [27], a discrete variant of the topological definition
of the boundary of a set A is given, for the case where a closure operator is
derived by Definition 8 from a reflexive and symmetric relation. Therein, in
Lemma 5, it is proved that the definition coincides with the one we provided
(see Definition 6). The latter is entirely given in terms of closure and interior,
and coincides with the definition of boundary in a topological space. Therefore
we preferred to adopt it for the general case of a closure space in this tutorial.

2.4 Quasi-discrete Closure Spaces

We now discuss interesting structures that do not necessarily have idempotent
closure. See also Lemma 9 of [26] and the subsequent statements. We shall see
that there is a very strong relation between the definition of a quasi-discrete
space, given below, and graphs.

Definition 9. A closure space is quasi-discrete if and only if one of the follow-
ing equivalent conditions holds:

(i) each x ∈ X has a minimal neighbourhood2 Nx;
(ii) for each A ⊆ X, C(A) =

⋃
a∈A C({a}).

The following is proved as Theorem 1 in [26].

Theorem 1. A closure space (X, C) is quasi-discrete if and only if there is a
relation R ⊆ X × X such that C = CR.

2 A minimal neighbourhood of x is a set that is a neighbourhood of x and is included
in all other neighbourhoods of x.

Spatial Logic and Spatial Model Checking for Closure Spaces 163

Example 2. Existence of minimal neighbourhoods does not depend on finiteness
of the space, and they do not even depend on the existence of a “closest element”
for each point. To see this, consider the rational numbers Q, equipped with the
relation ≤. Such a relation is reflexive and transitive, thus the closure space
(Q, C≤) is topological and quasi-discrete. •
Example 3. An example of a topological closure space which is not quasi-discrete
is the set of real numbers equipped with the Euclidean topology (the topology
induced by arbitrary union and finite intersection of open intervals). To see
that the space is not quasi-discrete, one applies Definition 9. Consider an open
interval (x, y). We have C((x, y)) = [x, y], but for each point z, we also have
C(z) = [z, z] = {z}. Therefore

⋃
z∈(x,y) C(z) =

⋃
z∈(x,y){z} = (x, y) �= [x, y]. •

Example 4. The reader may think that quasi-discreteness is also related to the
space having a smaller cardinality than that of the real numbers. This is not
the case. To see this, just equip the real numbers with an arbitrary relation in a
similar way to Example 2. The obtained closure space is quasi-discrete. •

Summing up, whenever one starts from an arbitrary relation R ⊆ X × X, the
obtained closure space (X, CR) enjoys minimal neighbourhoods, and the closure
of a set A is the union of the closure of the singletons composing A. Furthermore,
such nice properties are only verified in a closure space when there is some R such
that the closure operator of the space is derived from R. In the next example,
we show some aspects of quasi-discreteness.

Fig. 2. A graph inducing a quasi-discrete closure space (Color figure online)

Example 5. Every graph induces a quasi-discrete closure space. For instance, we
can consider the (undirected) graph depicted in Fig. 2. Let R be the (symmetric)
binary relation induced by the graph edges, and let Y and G denote the set of
yellow and green nodes, respectively. The closure CR(Y) consists of all yellow
and red nodes, while the closure CR(G) contains all green and blue nodes. The
interior I(Y) of Y contains a single node, i.e. the one located at the bottom-left
in Fig. 2. On the contrary, the interior I(G) of G is empty. Finally, we have that
B(G) = CR(G), while B−(G) = G and B+(G) consists of the blue nodes. •

164 V. Ciancia et al.

2.5 Paths in Closure Spaces

A very useful notion to reason about spatial structures is that of paths. A uniform
definition of paths for all closure spaces is, however, non-trivial. It is possible, and
often done, to borrow the notion of path from topology. However, the extension
is not fully satisfactory. For example, the topological definition does not yield
graph-theoretical paths in the case of quasi-discrete closure spaces. As a prag-
matic solution, we provide a natural definition of paths for interesting classes
of closure spaces3. In particular, in this section we introduce the definition of
continuous function, which restricts to topological continuity in the setting of
idempotent closure spaces, and define paths in the case of quasi-discrete clo-
sure spaces. We postpone the discussion of paths for Euclidean topological space
to Sect. 9.

Definition 10. A continuous function f : (X1, C1) → (X2, C2) is a function
f : X1 → X2 such that, for all A ⊆ X1, we have f(C1(A)) ⊆ C2(f(A)).

Definition 11. A (quasi-discrete) path for quasi-discrete closure space (X, C)
is a continuous function p : (N, CSucc) → (X, C), where (N, CSucc) is the closure
space where (n,m) ∈ Succ ⇐⇒ m = n + 1.

As a matter of notation, we call p a path from x, and write p : x � ∞, when

p(0) = x. We write y ∈ p whenever there is i such that p(i) = y.
It is worth noting that graph-theoretical and quasi-discrete paths coincide.

Proposition 4. Given a (quasi-discrete) path p in a quasi-discrete space
(X, CR), for all i ∈ N with p(i) �= p(i + 1), we have (p(i), p(i + 1)) ∈ R, i.e.,
the image of p is a (graph theoretical, countably infinite) path in the graph of
R. Conversely, each countable path in the graph of R uniquely determines a
quasi-discrete path.

2.6 Distance Spaces and Metric Spaces

For the analysis of CAS often quantitative spatial information is required as well.
Closure spaces can be enriched with such information by introducing distance
spaces and metric spaces. We briefly mention some of them here. The interested
reader may refer to Sect. 3.1 of [31] to get further insight on distance spaces.
In particular, qualitative notions such as “being at a short distance” can be
modelled in distance spaces but not in metric spaces.

Definition 12. A distance space is a pair (X, d) of a set X and a function
d : X × X → R such that, for all x, y ∈ X, d(x, y) = 0 ⇐⇒ x = y, and
d(x, y) ≥ 0. If, in addition also d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z)
hold, then the space is called a metric space.
3 We leave open the possibility to change this notion, in chosen classes of closure

spaces, practically making our theory dependent on such choice. The theoretical
question of finding a uniform notion of path is left for future work.

Spatial Logic and Spatial Model Checking for Closure Spaces 165

Definition 13. A metric space can be equipped with the metric topology where
the open sets are induced by the basis of open balls, that is, B is the collection of
subsets o ⊆ X such that there are k ∈ R, y ∈ X with o = {x ∈ X | d(x, y) < k}.

The above definitions naturally extend to distance/metric closure spaces,
when X is equipped with a closure operator C.

2.7 Hierarchy of Closure Spaces

In Fig. 3, the hierarchy of closure spaces with respect to quasi-discreteness is
shown. All finite spaces are quasi-discrete, as closure of finite sets is determined
by that of the singletons, by inductive application of the axiom C(A ∪ B) =
C(A)∪C(B). Obviously, there are quasi-discrete infinite spaces (any infinite graph
interpreted as a closure space is an example). A quasi-discrete space which is
also topological is the space associated with any complete graph. In this case,
for any set, C(A) is the whole space, thus closure is idempotent. One may won-
der what kind of topology is associated with any complete graph, seen as a
quasi-discrete closure space. This is precisely the indiscrete topology, which is
also characterised, using the open sets definition, as the topology generated by a
basis in which the only open sets are the empty set and the whole space. Indeed,
there is another way to equip a set of points with a relation, in such a way
that the resulting graph is an idempotent closure space. Namely, one can just
consider the identity relation. Then, the closure operator of the obtained space
is the identity function (which is clearly idempotent). Using the open sets defin-
ition, the obtained topology is the discrete topology, where the open sets are all
the singletons. Finally there are closure spaces that are neither topological nor
quasi discrete. The most obvious example is the coproduct (disjoint union) of a
topological and a quasi-discrete, but not topological, closure space, which is a
closure space under Definition 14.

Definition 14. Given two closure spaces (X, CX) and (Y, CY), consider the dis-
joint union of X and Y , represented as X �Y = X ′ ∪Y ′ with X ′ = {(1, x) | x ∈
X} and Y ′ = {(2, y) | y ∈ Y }. In order to equip the set X�Y with a closure oper-
ator, for each A ⊆ X � Y , let AX = {x | (1, x) ∈ A} and AY = {y | (2, y) ∈ A}.
Define C(A) = {(1, x) | x ∈ CX(AX)} ∪ {(2, y) | y ∈ CY (AY)}.

3 Modal Logics

Now that we have seen the various mathematical structures to represent space,
we turn to reasoning about space and spatial properties. A successful way to
reason about properties of structures in general is by way of a logic with which
to express the properties of interest. Spatial logics have been mainly studied from
the point of view of modal logics and there is a historical reason for that. In a
seminal work of 1938, Tarski presented a spatial, and in particular topological,
interpretation of modal logic, which paved the way for a new line of research

166 V. Ciancia et al.

Fig. 3. The hierarchy of closure spaces.

on the relationship between topological spaces and modal logics, culminating in
the proof, by Tarsky and McKinsey in 1944, that the simple (and decidable)
modal logic S4 is complete when interpreting the possibility modality ♦ of S4
as closure on the reals or any similar metric space. The modal logics approach
to spatial logic contemplates purely spatial logics, meaning that they deal with
the spatial configuration of a system at a certain point in time, considering a
particular ‘snapshot’, with no subsequent temporal evolution.

In this section we briefly recall the notions of modal logics that are directly
relevant to the topic of this tutorial. For a more extended introduction to modal
logics the reader is invited to consult more authoritative sources. A recommended
reference for modal logics is [8], whereas for the study of their spatial interpre-
tation we refer to [40].

3.1 Modal Logics

We introduce the syntax of a basic modal logic, that we denote with L, which
forms the basis for most other logics presented in this tutorial.

Definition 15. Fix a set of proposition letters AP , also called Atomic Propo-
sitions. Let p denote an arbitrary letter. The syntax of L is described by the
grammar:

Φ :: = p | � | ⊥ | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | �Φ | ♦Φ

The relational semantics of L is given using frames and models.

Definition 16. Fixed a set AP of atomic propositions, a (Kripke) frame is a
pair (X,R) of a set X and an accessibility relation R ⊆ X × X. A model M =
((X,R),V) consists of a frame (X,R) and a valuation V : AP → ℘(X), assigning
to each atomic proposition the set of points (also called ‘possible worlds’) that
satisfy it.

Truth of a formula is defined at a specific point x ∈ X.

Spatial Logic and Spatial Model Checking for Closure Spaces 167

Definition 17. Truth |= of modal formulas in model M = ((X,R),V) at point
x ∈ X is defined by induction as follows:

M, x |= � ⇐⇒ true
M, x |= ⊥ ⇐⇒ false
M, x |= p ⇐⇒ x ∈ V(p)
M, x |= ¬ϕ ⇐⇒ notM, x |= ϕ
M, x |= ϕ ∧ ψ ⇐⇒ M, x |= ϕ and M, x |= ψ
M, x |= �ϕ ⇐⇒ ∀y ∈ X.(x, y) ∈ R =⇒ M, y |= ϕ
M, x |= ♦ϕ ⇐⇒ ∃y ∈ X.(x, y) ∈ R ∧ M, y |= ϕ

The operators ¬, ∧ and ∨ are the common Boolean operators negation, conjunc-
tion and disjunction, respectively. There are two modal operators. The operator
�ϕ denotes necessity and ♦ϕ possibility. A point x ∈ X satisfies necessarily ϕ,
denoted as �ϕ, if ϕ holds in all points (worlds) y that are accessible from x via
the accessibility relation R. A point x ∈ X satisfies possibly ϕ, denoted as ♦ϕ,
if there exists a point (world) y, accessible from x via the accessibility relation
R, such that ϕ holds in y.

3.2 Modal Logics of Space

The presentation in this section is dealing with modal logics of space and is
mostly based on the book chapter [40]. Many variants of spatial modal logics have
been proposed. For instance, in local topological logics modalities identify open
sets in which some or all points ought to satisfy a given property, while in global
topological logics it is possible, in addition, to predicate about the satisfaction
of a certain property by classes of points in the space (e.g., all points) and in
distance logics truth depends upon some notion of distance between entities, just
to mention a few. In the following we only address the local topological variant in
some more detail and illustrate the limitations of a purely topological approach
when we are interested in a spatial logic for the wider class of spatial structures
that are of interest for CAS, which includes discrete spatial structures.

Topo-Models and Topo-Logics. Following the approach of Tarski, a topo-
logical space (Definition 1) may be used in place of a frame (see Definition 16) in
order to interpret the modal logic L (Definition 15), obtaining topological modal
logics or simply topo-logics. We first need to define a topological model.

Definition 18. Fixed a set AP of Atomic Propositions, a topological model
or topo-model M = ((X,O),V) consists of a topological space (X,O) and a
valuation V : AP → ℘(X), assigning to each atomic proposition the set of points
that it satisfies.

Truth of a formula is defined at a specific point x in space X.

168 V. Ciancia et al.

Definition 19. Truth |= of modal formulas in model M = ((X,O),V) at point
x ∈ X is defined by induction as follows:

M, x |= � ⇐⇒ true
M, x |= ⊥ ⇐⇒ false
M, x |= p ⇐⇒ x ∈ V(p)
M, x |= ¬ϕ ⇐⇒ notM, x |= ϕ
M, x |= ϕ ∧ ψ ⇐⇒ M, x |= ϕ and M, x |= ψ
M, x |= �ϕ ⇐⇒ ∃o ∈ O.(x ∈ o and ∀y ∈ o.M, y |= ϕ)
M, x |= ♦ϕ ⇐⇒ ∀o ∈ O.(x ∈ o implies ∃y ∈ o.M, y |= ϕ)

The usual De Morgan-style dualities hold, including M, x |= �ϕ ⇐⇒
M, x |= ¬♦¬ϕ. The interpretation of formulas identifies regions of space that
depend on the valuation V. In particular, note that the operation �ϕ identifies
the topological interior of the region where ϕ holds. Dually, ♦ϕ denotes the topo-
logical closure of ϕ. An example formula which is widely used is the boundary
of a property, which can be introduced as a derived operator: Bϕ � ♦ϕ ∧ ¬�ϕ.

Example 6. We report in Fig. 4 the first example from [40]. The topological
space here is the two-dimensional Euclidean plane R

2 equipped with the metric
topology. The only proposition letter is p and the valuation of p assigns to this
property the shape of a “spoon” composed of a line segment and a filled ellipse.
Various formulas can denote regions such as the boundary of the spoon, including
or excluding the handle, the inner part of the spoon, the whole figure without
the handle, etc. The boundary and the handle are drawn much thicker than they
really are only to show them more clearly.

Axiomatic Aspects and Relational Semantics. From the point of view
of logics, it is important to understand the axioms and the deductive power
of a logic, and in particular its completeness with respect to classes of models.
A logic is complete with respect to a class of models C, if all formulas that

p �p ♦p ¬�p ∧ ♦p ♦�p p ∧ ¬♦�p

Fig. 4. Topological interpretation of formulas over a topo-model. From left to right:
all points satisfying atomic proposition p; the interior of the region where p holds; the
closure of the region where p holds; the closure without the interior points satisfying
p; the closure of the interior of the points satisfying p; those points satisfying p that
are not in the closure of the interior.

Spatial Logic and Spatial Model Checking for Closure Spaces 169

are true in every model in C, i.e. they are valid in C, are also provable using
the axioms and rules of the logic. For such a statement to make sense in the
setting of topo-logics, one needs to specify that a formula ϕ is true in a model
M = ((X,O),V) if M, x |= ϕ for all x ∈ X. Once this is established, various
axioms are considered. As an example, we show those of the logic S4, together
with the relevant theorem. The logic S4 is the modal logic L obtained when the
accessibility relation of the frame is transitive and reflexive. We refer the reader
to [40] for further details.

Definition 20. The logic S4 is L under the axioms K, T , 4.

�(p → q) → (�p → �q) (K) distributivity
�p → ��p (4) transitivity
�p → p (T) reflexivity

These axioms further clarify the properties of topo-logics, as follows.

Theorem 2. Assume the rules for modus ponens and necessitation:

ϕ ϕ → ψ

ψ

ϕ

�ϕ

The logic S4 is complete with respect to topological models, that is, whenever
ϕ is valid, it can be proved using the axioms K, 4, T , using modus ponens and
necessitation.

Having seen this, and knowing that there are relational models of S4, that
is, the reflexive and transitive Kripke frames, one may wonder whether the con-
nection is deeper. This is analysed in Sect. 2.4.1 of [40]. It is possible to derive
a topological space from a frame, and the other way around, in a sound and
complete way. The topological spaces that are used are the so-called Alexandroff
spaces. These are spaces in which each point has a least open neighbourhood.

The correspondence between topological spaces and reflexive and transitive
Kripke frames is not easily extended to arbitrary frames, as transitivity and
reflexivity always hold in topo-logics where the basic modality is the closure.

On the other hand, requiring transitivity in all models may be a too limiting
constraint, e.g., when “one-way” links are to be taken into account. This is the
main reason to further investigate non-transitive concepts of spatial models in
the context of closure spaces, and in particular quasi-discrete ones.

4 Spatial Logic for Quasi-discrete Closure Spaces

Whereas the local variant of modal logics of space follows a purely topological
approach, in this section we lift the topological definitions to the more general
setting of closure spaces and extend this framework with further spatial opera-
tors, in particular a spatial surrounded operator. The resulting logic is SLCS: a
Spatial Logic for Closure Spaces, that we first proposed in [17]. In this section we

170 V. Ciancia et al.

focus our attention to quasi-discrete closure spaces; some ideas on how to gen-
eralize definitions and results to a broader class of spaces, including for instance
the Euclidean topological space, will be discussed in Sect. 9.

SLCS is meant to assign to formulas a local meaning; for each point, formulas
may predicate both on the possibility of reaching other points satisfying specific
properties, or of being reached from them, along paths of the space. In [17], SLCS
is equipped with two spatial operators: a “one step” modality, called “near” and
denoted by N , turning the closure operator C into a logical operator, and a
binary spatial until operator U , which is a spatial counterpart of the temporal
until operator that is part of many well-known temporal logics such as CTL
(for a description see e.g. [4]). In this tutorial we denote this last operator by
S in order to avoid confusion in later sections where SLCS is further combined
with temporal operators such as the temporal until operator U leading to a
spatio-temporal logic.

Φ ::= p [Atomic proposition]
| � [True]
| ¬Φ [Not]
| Φ ∧ Φ [And]
| NΦ [Near]
| Φ S Φ [Surrounded]

Fig. 5. SLCS syntax

Assume a finite or countable set AP of atomic propositions. The syntax of
SLCS is defined by the grammar in Fig. 5, where p ranges over AP . In Fig. 5,
� denotes the truth value true, ¬ is negation, ∧ is conjunction, N is the closure
operator, S is the surrounded operator. From now on, with a small overload of
notation, we let Φ denote the set of SLCS formulas. Next we define the interpre-
tation of formulas.

Definition 21. A closure model is a pair M = ((X, C),V) consisting of a clo-
sure space (X, C) and a valuation V : AP → 2X , assigning to each atomic
proposition the set of points where it holds. Whenever (X, C) is quasi-discrete,
M is called a quasi-discrete closure model.

Definition 22. Satisfaction M, x |= ϕ of formula ϕ at point x in quasi-discrete
closure model M = ((X, C),V) is defined, by induction on terms, as follows:

M, x |= p ⇐⇒ x ∈ V(p)
M, x |= � ⇐⇒ true
M, x |= ¬ϕ ⇐⇒ notM, x |= ϕ
M, x |= ϕ ∧ ψ ⇐⇒ M, x |= ϕ and M, x |= ψ
M, x |= Nϕ ⇐⇒ x ∈ C({y ∈ X|M, y |= ϕ})
M, x |= ϕ Sψ ⇐⇒ ∃A ⊆ X.x ∈ A ∧ ∀y ∈ A.M, y |= ϕ∧

∀z ∈ B+(A).M, z |= ψ

Spatial Logic and Spatial Model Checking for Closure Spaces 171

Atomic propositions and boolean connectives have the expected meaning.
For formulas of the form ϕ1Sϕ2, the basic idea is that point x satisfies ϕ1Sϕ2

whenever there is “no way out” from a set of points, including x, and that each
satisfy ϕ1 unless passing by a point that satisfies ϕ2. For instance, if we consider
the model of Fig. 2, yellow nodes should satisfy yellow S red while green nodes
should satisfy green S blue.

In Fig. 6, we present some derived operators. Besides standard logical con-
nectives, the logic can express the interior (Iϕ), the boundary (δϕ), the inte-
rior boundary (δ−ϕ) and the closure boundary (δ+ϕ) of the set of points sat-
isfying formula ϕ. Moreover, by appropriately using the surrounded operator,
operators concerning reachability (ϕ1Rϕ2), from-to (ϕ1 T ϕ2), global satisfaction
(Eϕ, everywhere ϕ) and possible satisfaction (Fϕ, somewhere ϕ) can be derived.

A point x satisfies ϕ1Rϕ2 if and only if either ϕ2 is satisfied by x or there
exists a sequence of points after x, all satisfying ϕ1, leading to a point satisfying
both ϕ2 and ϕ1. In the second case, it is not required that x itself satisfies ϕ1. For
instance, both red and green nodes in Fig. 2 satisfy (white ∨blue) R blue, as well
as the white and blue nodes. The formula is not satisfied by the yellow nodes.
This is so because the first node of a path leading to a blue node is not required
to satisfy white or blue. It is easy to strengthen the notion of reachability when
we want to identify all white nodes from which a blue node can be reached by
requiring in addition that the first node of the path has to be white. This is the
reason for the introduction of derived operator T . The operator T is a slightly
stronger version of the reachability operator R requiring that there is a path
from a point satisfying ϕ1, reaching a point satisfying ϕ2 while passing only by
points satisfying ϕ1. Note that ϕ2 is occurring also in the first argument of R in
the definition of T . This is because satisfaction of ϕ1Rϕ2 requires that the final
node on the path satisfies both ϕ1 and ϕ2. We show further examples of the use
of T shortly.

An interesting observation is that the modal spatial operators can also be
characterised by definitions based on quasi-discrete paths.

Proposition 5. We have that:

1. M, x |= Nϕ if and only if there is y and p : y � ∞ such that p(0) = y and

M, y |= ϕ and p(1) = x;
2. M, x |= ϕ1Sϕ2 if and only if M, x |= ϕ1 and for all p : x � ∞.∀l.M, p(l) |=

¬ϕ1 implies ∃k.0 < k ≤ l.M, p(k) |= ϕ2;
3. M, x |= ϕ1Rϕ2 if and only if there is p : x � ∞ and k such that M, p(k) |=

ϕ2 and for each j with 0 < j ≤ k, we have M, p(j) |= ϕ1;
4. M, x |= Eϕ1 if and only if for each p : x � ∞ and i ∈ N, M, p(i) |= ϕ1;

5. M, x |= Fϕ1 if and only if there is p : x � ∞ and i ∈ N such that M, p(i) |=
ϕ1.

We conclude this section by pointing out that digital images are a noteworthy
example of quasi-discrete closure models.

172 V. Ciancia et al.

⊥ � ¬� ϕ1 ∨ ϕ2 � ¬(¬ϕ1 ∧ ¬ϕ2)

Iϕ � ¬(N¬ϕ) δϕ � (Nϕ) ∧ (¬Iϕ)

δ−ϕ � ϕ ∧ (¬Iϕ) δ+ϕ � (Nϕ) ∧ (¬ϕ)

ϕ1 R ϕ2 � ¬((¬ϕ2) S(¬ϕ1)) E ϕ � ϕ S ⊥
ϕ1 T ϕ2 � ϕ1 ∧ ((ϕ1 ∨ ϕ2) R ϕ2) Fϕ � ¬(E ¬ϕ)

Fig. 6. Some SLCS derived operators

Example 7. Any digital image can be treated as a finite, thus quasi-discrete
model. Consider the closure space consisting of the plane X = N × N, equipped
with the closure operator C4adj defined by the 4-adjacency relation of digital
topology, namely:

((x1, y1), (x2, y2)) ∈ 4adj ⇐⇒ ((x1 − x2) + (y1 − y2))2 = 1

In words, such closure space is a regular grid where each pixel, except those
on the borders, has four neighbours, corresponding to the directions right, left,
up and down4. On top of this space, atomic propositions can be interpreted as
specifications of colours (such as, RGB coordinates, ranges, etc.), so that each
point (x, y) satisfies precisely those specifications that include the colour of the
pixel at coordinates (x, y). •

5 Spatial Model Checking

In [17] algorithms for spatial model checking of SLCS are presented. They are
available as a proof-of-concept tool5 called topochecker. The tool is imple-
mented in OCaml6, and can be invoked as a global model checker for SLCS. The
time complexity of the spatial model checking algorithm is linear in the number
of points and arcs in the space and in the size of the formula. The more interesting
part of the algorithm is that for the surrounded operator, shown in Fig. 7. Func-
tion Sat, computed by Algorithm 1, implements the model checker for SLCS.
The function takes as input a finite, quasi-discrete model M = ((X, CR),V)
and a SLCS formula ϕ, and returns the set of all points in X satisfying ϕ. The
function is inductively defined on the structure of ϕ and, following a bottom-
up approach, computes the resulting set via an appropriate combination of the
recursive invocations of Saton the subformulas of ϕ. When ϕ is of the form �,
p, ¬ϕ1 or ϕ1 ∧ ϕ2, the definition of Sat(M, ϕ) is straightforward. To compute
the set of points satisfying Nϕ1, the closure operator C of the space is applied to
the set of points satisfying ϕ1. When ϕ is of the form ϕ1Sϕ2, function Sat relies
on the function CheckSurr defined in Algorithm 2.

4 This notion of neighbourhood is also known as the von Neumann neighbourhood of
radius 1.

5 Web site: http://www.github.com/vincenzoml/topochecker.
6 See http://ocaml.org.

http://www.github.com/vincenzoml/topochecker
http://ocaml.org

Spatial Logic and Spatial Model Checking for Closure Spaces 173

This global flooding algorithm and its operation is illustrated in an informal
way in Fig. 8 for the formula yellow S red. First all points that certainly do not
satisfy the formula (i.e. those that are neither yellow nor red) are marked black,
then yellow points that are neighbours of black ones are removed from the set of
points that potentially satisfy the formula by turning them black in successive
steps until a fixed point is reached. The remaining yellow points satisfy the
formula. The actual algorithm incorporates several optimisations.

Function Sat(M, ϕ)
Input: Finite, quasi-discrete

closure model
M = ((X, C), V), formula ϕ

Output: Set of points
{x ∈ X | M, x |= ϕ}

Match ϕ
case � : return X
case p : return V(p)
case ¬ϕ1 :

let P = Sat(M, ϕ1)
return X \ P

case ϕ1 ∧ ϕ2 :
let P = Sat(M, ϕ1)
let Q = Sat(M, ϕ2)
return P ∩ Q

case Nϕ1 :
let P = Sat(M, ϕ1)
return C(P)

case ϕ1 S ϕ2 :
return CheckSurr

(M,ϕ1,ϕ2)

Function CheckSurr (M,ϕ1,ϕ2)
Input: Finite, quasi-discrete

closure model
M = ((X, C), V),
formulas ϕ1, ϕ2

Output: Set of points {x ∈ X |
M, x |= ϕ1 S ϕ2}

var V := Sat(M, ϕ1)
let Q = Sat(M, ϕ2)
var T := B+(V ∪ Q)
while T �= ∅ do

var T ′ := ∅
for x ∈ T do

let N = pre(x) ∩ V
V := V \ N
T ′ := T ′ ∪ (N \ Q)

T := T ′;
return V

Algorithm 1: Decision procedure for
the model checking problem of SLCS.

Algorithm 2: Checking surrounded
formulas in a quasi-discrete closure
space.

Fig. 7. Spatial model checking algorithm: surrounded operator.

As an illustration, we show the application of the spatial model checker on
an image (see Fig. 9) representing a maze, in which the pixels form the points of
a finite quasi-discrete closure space and in which the relation between points is
given as a regular graph, much like in Fig. 2, but not shown in the image. The
green area is the exit. The blue areas (rectangular and round spots) are starting
points.

All model checking examples in this tutorial use topochecker as supporting
tool. Consequently, we use the tool’s frontend syntax for the SLCS formulas in
such examples. The correspondence is straightforward.

174 V. Ciancia et al.

a) Given space b) Identify all states
not red or yellow

c) Select yellow
states neighbours of
black ones

d) Turn black the yel-
low states next to
black ones

e) select yellow states
neighbours of black
ones

f) At fixed point: yel-
low states satisfy the
formula

Fig. 8. Flooding algorithm evaluating Yellow S Red (Color figure online)

The spatial model checker can be used to identify (sets of) points, by marking
them with a specific colour of choice, that satisfy particular spatial properties.
In this case three formulas are used to identify interesting areas. The formulas
make indirect use of the S operator, by means of the derived operators R and
T , discussed earlier. In the following we are interested in three sets of points,
each characterised by an SLCS formula.

(1) White points from which an exit can be reached.

toExit = [white] T [green]

The model checking result is shown in Fig. 10. Points that satisfy this formula
are the yellow and orange ones7.

(2) Regions containing a starting point (blue area) from which an exit can
be reached. These are white points from which it is both possible to reach an
exit and to reach a blue point (starting point).

fromStartToExit = toExit& ([white] T [blue])

Points that satisfy this formula are the orange ones in Fig. 10.

(3) Points that are starting points and from which the exit can be reached.
These are the blue points depicted as a rectangular shape for easy recognition
in the image.

startCanExit = [blue] T fromStartToExit
7 Actually one colour (yellow) could have been used, but in order to show multiple

verification results combined in one picture, the orange points show the points that
are yellow but that also satisfy the second property.

Spatial Logic and Spatial Model Checking for Closure Spaces 175

Fig. 9. A maze. (Color figure online) Fig. 10. Model checker output. (Color
figure online)

Points that satisfy this formula are shown in red in Fig. 10. These are indeed
only the two small rectangular shapes (coloured red as result) and not the two
round shapes (that remained blue), since from the latter it is not possible to
reach an exit.

A further example is the use of spatial model checking to study the formation
of patterns in bio-chemical systems. Alan Turing conjectured in [39] that pattern
formation is a consequence of the coupling of reaction and diffusion phenomena
involving different chemical substances distributed in the same physical space.
Such behaviour can be described by a set of reaction-diffusion equations. We
show here a variant in which wave-like patterns emerge. This is a variant of the
models used in [3,29,37].

We use a reaction-diffusion system that is discretised, according to a Finite
Difference scheme, as a system of ordinary differential equations whose variables
are organised in a K × K rectangular grid. As before, such a grid is considered
as a bi-directional graph, where each node (i, j) ∈ L = {1, . . . , K} × {1, . . . , K}
represents a discrete location, edges connect pairs of neighbouring nodes along
four directions as in the 4-adjacency relation in digital topology of Example 7.

We consider two chemical substances A and B in the K × K grid, obtaining
the system:

⎧
⎨

⎩

dxA
i,j

dt = R1x
A
i,jx

B
i,j − xA

i,j + R2 + D1(μA
i,j − xA

i,j) i = 1..,K, j = 1, ..,K,
dxB

i,j

dt = R3x
A
i,jx

B
i,j + R4 + D2(μB

i,j − xB
i,j) i = 1..,K, j = 1, ..,K,

(8)

where: xA
i,j and xB

i,j are the concentrations of the two chemical substances in
the location (i, j); Ri, i = 1, ..., 4 are the parameters that define the reaction
between the two species; D1 and D2 are the diffusion constants, i.e. constants

176 V. Ciancia et al.

that define the movement of the molecules between locations; μA
i,j and μB

i,j are
the average concentrations of the locations adjacent to location (i, j), that is

μn
i,j =

1
|νi,j |

∑

ν∈νi,j

xn
ν n ∈ {A,B}, (9)

where νi,j is the set of indices of locations adjacent to (i, j). Note that if the
average concentration of a substance in the adjacent nodes of (i, j) is higher
than in the node (i, j) itself, then there is a flow of the substance entering (i, j)
(assuming that the diffusion parameter has a positive value). If the average
concentration is lower, there is a flow going out of (i, j) to its neighbours.

The flow towards a location could happen in two ways. In the first case, all
neighbours are equally “attractive”, and so the location (i, j) could receive an
equal proportion from each of the adjacent locations. This leads to the formation
of patterns with more or less round “spots” as shown also in [3,29,37]. However,
we can also study cases in which there is a preferred direction of such flow,
for example the location receives relatively more substance from the neighbours
located north-west of it than from those located south-east of it. This is just
one of the possibilities and it leads to the formation of rather different patterns.
We can introduce such a bias by multiplying the concentrations of the four
neighbours by different weights, ki with i ∈ {north, south,west, east} in such a
way that their sum is equal to 4 (as would have been the case when they would
all have the same weight).

μn
i,j =

1
|νi,j | (knorthxn

νi,j+1
+ ksouthxn

νi,j−1
+ kwestx

n
νi−1,j

+ keastx
n
νi+1,j

) (10)

An example of the evolution of the concentration of substance A is shown
in Fig. 11 for snapshots of the space at various points in time. These snapshots
are obtained from a numerical solution of Eq. (8) by standard tools such as
Octave8. The following values were used for the parameters: K = 32, R1 = 1,
R2 = −12, R3 = −1, R4 = 16, D1 = 5.6 and D2 = 25.5. Whereas knorth = 1.5,
ksouth = 0.5, kwest = 1.5 and keast = 0.5. The initial condition is set randomly.

Using spatial model checking we can easily identify the points in which the
concentration a of A is smaller than 2 and that are surrounded by points in
which the concentration is higher than 2.

pattern = [a < 2]S [a > 2]

The points that satisfy property pattern in the snapshot at t = 10 are shown
in Fig. 12 (left). In this figure neither the edges of the graph nor the nodes where
the formula is not satisfied are shown to avoid cluttering the image.

The following formula provides an indication of the regularity of the pattern.
It is satisfied by points that are at least 4 steps away from the areas with low
concentration. These are shown in pink in Fig. 12 (centre and right) for t = 10,

8 See http://octave.sourceforge.net/.

http://octave.sourceforge.net/

Spatial Logic and Spatial Model Checking for Closure Spaces 177

Fig. 11. Evolution of a wave-like pattern at different points in time. The colours indi-
cate the concentration of substance A.

Fig. 12. Points that satisfy pattern in the snapshot at t = 10 (left); points that satisfy
property far from pattern are shown in pink in the other three snapshots at t = 10,
t = 30 and t = 100, respectively; blue points satisfy property pattern. (Color figure
online)

t = 30 and t = 100. The points in blue are the ones satisfying property pattern.
For more regular patterns fewer points are satisfying the property. If we would
have verified the property for a ‘distance’ of 5 instead of 4 then in the snapshot
of t = 100 none of the points would satisfy the property. This can been checked
using the somewhere operator F by verifying ¬Ffar from pattern (not shown
in the figure).

far from pattern =!(N (N (N (N (pattern)))))

178 V. Ciancia et al.

6 Spatio-Temporal Logic of Closure Spaces

Starting from a spatial formalism and a temporal formalism, spatio-temporal
logics may be defined, by introducing some mutually recursive nesting of spatial
and temporal operators. Several combinations can be obtained, depending on the
chosen spatial and temporal fragments, and the permitted forms of nesting of the
two. For spatial logics based on topological spaces a large number of possibilities
are explored in [31]. We investigated one such structure, in the setting of closure
spaces, namely the combination of the temporal logic Computation Tree Logic
(CTL) (see e.g. [4]) and of SLCS, resulting in the Spatio-Temporal Logic of
Closure Spaces (STLCS). In STLCS spatial and temporal fragments may be
arbitrarily and mutually nested.

First, we show the formal syntax of formulas, described by the grammar in
Fig. 13, where p ranges over a finite or countable set of atomic propositions AP .

Φ ::= � [True]
| p [Atomic predicate]
| ¬ Φ [Not]
| Φ ∧ Φ [And]
| N Φ [Near]
| Φ S Φ [Surrounded]
| Aϕ [All Futures]
| Eϕ [Some Future]

ϕ ::= X Φ [Next]
| FΦ [Eventually]
| GΦ [Globally]
| Φ U Φ [Until]

Fig. 13. STLCS syntax

Besides classical Boolean connectives, and the operators of SLCS we have
introduced in Sect. 4, STLCS features the CTL path quantifiers A (“for all
paths”), and E (“there exists a path”). As in CTL, such quantifiers must necessar-
ily be followed by a path-specific operator, namely X (“next”), F (“eventually”),
G (“globally”), U (“until”).

The definition of a model M of STLCS is based on the notion of Kripke
frame (see Definition 16) and is given below.

Definition 23. A model is a structure M = ((X, C), (S,R),Vs∈S) where (X, C)
is a quasi-discrete closure space, (S,R) is a Kripke frame, and V is a family of
valuations, indexed by S; for each s ∈ S, we have Vs : AP → ℘(X).

The truth value of a formula is defined at a point in space x at state s. Val-
uations of atomic propositions depend both on states and points of the space.
Intuitively, there is a set of possible worlds, i.e. the states in S, and a spa-
tial structure represented by a closure space. In each possible world there is a

Spatial Logic and Spatial Model Checking for Closure Spaces 179

different valuation of atomic propositions, inducing a different “snapshot” of the
spatial situation which “evolves” over time (non-deterministically); see Fig. 14
(left) where space is a two-dimensional structure, and valuations at each state
are depicted by different colours. In this tutorial we assume that the spatial
structure (X, C) does not change over time. However, other options are possible.
For instance, when space depends on S, one may consider an S-indexed family
(Xs, Cs)s∈S of closure spaces.

A path in the model is a sequence of spatial models indexed by instants of
time; see Fig. 14 (right). Given that we assume that the closure space (X, C) does
not depend on S, in the sequel we will use a simplified notion of path, defined
on Kripke frames, instead of on full models. In other words, we consider paths
of indexes (cf. Definition 23).

Fig. 14. In spatio-temporal logics, a temporal structure represents a computation tree
of snapshots induced by the time-dependent valuations of the atomic propositions (left).
A path in the model (right).

Definition 24. Given Kripke frame K = (S,R), a path σ is a function from
N to S such that for all n ∈ N we have (σ(i), σ(i + 1)) ∈ R. Call Ps the set of
infinite paths in K rooted at s, that is, the set of paths σ with σ(0) = s, where,
whenever for some i there is no s′ ∈ S s.t. (σ(i), s′) ∈ R, we let σ(j) = σ(i) for
all j > i (self-loop completion).

The evaluation contexts are of the form M, x, s |= Φ, where Φ is a STLCS
formula, s is a state of a Kripke frame, and x is a point in space X. The formal
semantics of the logic is given in Definition 25 and can also be found in [15].

180 V. Ciancia et al.

Definition 25. Satisfaction is defined in a model M = ((X, C), (S,R),Vs∈S) at
point x ∈ X and state s ∈ S as follows:

M, x, s |= �
M, x, s |= p ⇐⇒ x ∈ Vs(p)
M, x, s |= ¬Φ ⇐⇒ notM, x, s |= Φ
M, x, s |= Φ ∧ Ψ ⇐⇒ M, x, s |= Φ and M, x, s |= Ψ
M, x, s |= NΦ ⇐⇒ x ∈ C({y ∈ X|M, y, s |= Φ})
M, x, s |= ΦS Ψ ⇐⇒ ∃A ⊆ X.x ∈ A and ∀y ∈ A.M, y, s |= Φ∧

and ∀z ∈ B+(A).M, z, s |= Ψ
M, x, s |= Aϕ ⇐⇒ ∀σ ∈ Ps.M, x, σ |= ϕ
M, x, s |= Eϕ ⇐⇒ ∃σ ∈ Ps.M, x, σ |= ϕ

M, x, σ |= XΦ ⇐⇒ M, x, σ(1) |= Φ
M, x, σ |= ΦUΨ ⇐⇒ ∃n.M, x, σ(n) |= Ψ and ∀n′ ∈ [0, n).M, x, σ(n′) |= Φ

where [n, n) = ∅ for all n ∈ N.

Let us proceed with a few examples. Consider the STLCS formula

E G (green S blue)

Point x satisfies such formula in state s if there exists (E) a temporal path
rooted at s, such that in all states (G), i.e. at any point in time, x satisfies
atomic property green, and it is not possible to start from x, following edges of
the spatial graph, and leave the region of points satisfying green in which x is
located, unless passing by a point satisfying blue.

The mutual nesting of spatial and temporal operators permits one to express
rather complex spatio-temporal properties. An example exhibiting nesting of
spatio-temporal operators is the STLCS formula

E F (green S (AX blue))

This formula is satisfied by a point x in state s if point x possibly (E) satisfies
green in some future (F) state s′, and in that state, it is not possible to leave
the area of points satisfying green unless passing by a point that will necessarily
(A) satisfy blue in the next (X) time step.

7 Spatio-Temporal Model Checking

Based on the formal semantics of the spatio-temporal logic STLCS, presented
in the previous section, topochecker has been extended to deal with spatio-
temporal properties. In the spatio-temporal setting, models are composed of a
temporal part, which is a Kripke frame, and a spatial part, which is a finite,
quasi-discrete closure space.

The model checker enriches basic STLCS by allowing users to use floating-
point variables and define some atomic propositions as simple assertions on the

Spatial Logic and Spatial Model Checking for Closure Spaces 181

value of such variables, e.g. comparison of such values with (floating-point) con-
stants. It finally permits parametric macro abbreviations, that we use in the
examples in the next section.

The temporal part of the model checking algorithm is a variant of the well-
known Computation Tree Logic (CTL) labelling algorithm, whereas the spatial
part is based on the algorithms described in Sect. 5. For more information on
CTL and its model checking techniques, see e.g., [4] or [20]. Given a formula
Φ and a model M, the algorithm proceeds by induction on the structure of Φ;
the output of the algorithm is the set of pairs (x, s) such that M, x, s |= Φ. For
further details of the algorithm we refer to [15].

The complexity of the algorithm is linear in the product of three quantities:
(1) the sum of the number of states and the number of transitions of the temporal
model; (2) the size of the formula; (3) the sum of the number of points and the
number of arcs of the space. Such efficiency is sufficient for experimenting with
the logic, and it is comparable to the efficiency of classical in-memory model
checking algorithms when the spatial part of the model is relatively small, as
shown in the examples in the next section. Further improvements of the efficiency
is part of future work.

To illustrate spatio-temporal model checking, let us continue the example of
the wave pattern formation introduced in Sect. 4. We can use spatio-temporal
formulas to study the evolution of the wave pattern over time. As a model we use
a sequence of snapshots of the first 100 time steps of the solution of the Eq. (8) of
Sect. 4. Such a sequence is a simple Kripke frame without any non-determinism.
The last snapshot is repeated in an artificial way to obtain an infinite path.
We can use this structure, for example, to identify which points are part of a
pattern for a number of consecutive steps in the evolution. We start from the
spatial property ‘pattern’ as in Sect. 4:

pattern = [a<0]S[a>=0]

Then we define the various periods, ranging from 3 to 10 time steps, during
which a point remains part of the pattern as follows (using the frontend notation
of topochecker also for STLCS formulas):

pattern2steps = pattern& A X (A X pattern)
pattern3steps = pattern2steps& A X (A X (A X pattern))
· · ·
pattern10steps = pattern9steps& A X (A X (A X (· · · (A X pattern)) · · ·)
The spatio-temporal model checker can verify multiple properties simultane-

ously and show their results in different selected colours9. Note that the proper-
ties require a point to satisfy a particular spatial property to hold in the current
snapshot and in several subsequent snapshots. Moreover, we can verify such

9 Note that the results may involve the same points, in which case the later result
overwrites the previous result.

182 V. Ciancia et al.

properties starting from the initial snapshot, but also starting from any other
chosen snapshot.

Figure 15 shows the evolution when the formulas are evaluated taking as
initial snapshot the one at time 10, 20, 30 and 40, respectively. The results
show that the pattern seems to stabilise starting from the north-western corner
of the figure after which the points towards the south-eastern corner become
increasingly stable, at least for 10 subsequent steps in time.

Fig. 15. Formation of a wave-like pattern; evolution in steps of 10; pink points are part
of a wave for 2 subsequent steps; cyan points for 10 subsequent steps. Other colours
represent the intermediate number of steps. (Color figure online)

We can also check the emergence of truly stable points, i.e. points that,
once they satisfy property pattern, they continue to do so until the end of the
simulation trace. This property can be formalised as:

pattern permanent = pattern& A G pattern

The model checking results for this formula are shown in Fig. 16. Points that
satisfy property pattern permanent are orange.

Fig. 16. Formation of a wave-like pattern; formula pattern permanent evaluated start-
ing from snapshots at times 7, 20, 30 and 40 of the simulation trace, respectively. (Color
figure online)

Spatial Logic and Spatial Model Checking for Closure Spaces 183

8 Case Studies on Collective Adaptive Systems

We present several case studies to illustrate the use of spatio-temporal model
checking based on closure spaces for Collective Adaptive Systems. The first case
study concerns emergent behaviour in bike sharing systems. The case study
builds on earlier joint work [19,34] involving some of the co-authors. The system
model, based on Markov Renewal Processes, explicitly takes a part of user behav-
iour into account that is usually not visible in the data collected by operators of
bike sharing systems, such as failure to obtain a bike when needed or difficulties
to park a bike close to the desired destination. We illustrate how spatio-temporal
model checking can be used to obtain a deeper insight into these problems, using
a model-based approach, that complements other analysis methods.

In this first example the structures used for model checking are linear in
nature. This is due to the fact that they are produced as single simulation traces
of a complex behavioural model. In the second case study a richer structure is
addressed in which branching time behaviour is combined with spatial aspects.
Such more complex structures reflect non-deterministic choice between possi-
ble ways the behaviour may evolve in time and space and in this case this is
exploited to analyse the effect of adaptation strategies in the context of public
bus transportation systems. The example extends the work on spatial model
checking applied to public bus transportation systems presented in [14].

Both examples use topochecker as supporting tool. Consequently, also in
this section we use the tool’s frontend syntax for the logic formulas. The corre-
spondence to the languages defined in Sects. 4 and 6 is straightforward.

8.1 Bike Sharing

Smart bike sharing systems (BSS) have recently become a popular public transport
mode in hundreds of modern cities [21,35] operating from a few (e.g. Pisa) up to
hundreds or thousands of docking stations (e.g. Hangzhou, Paris, or London10).
The principle of bike sharing is quite simple. A number of stations with docks par-
tially filled with bicycles are placed throughout a city. Users of the service may
hire any bicycle at any station at any time for private use, and must return it at
some station of their choice. The initial period of, typically, thirty minutes is free
of charge, after which an hourly fee is charged. The operator assumes the respon-
sibility to maintain a high level of usage of the system.

Operating a BSS raises multiple issues such as efficiency of fuel-consuming
repositioning services [23], or integration with other public transport modes. Not
the least, it is important to make the service attractive to its users. An indication
that user satisfaction should be addressed seriously can be found in a survey of
user experience with the Bicing BSS in Barcelona, conducted by Froelich et al. [24].
It reports that 75 % of the users who used it for commuting between their home and
study or work, stated that ‘finding an available bike and parking slot’ were the two

10 Pisa: http://www.pisamo.it, Hangzhou: http://www.publicbike.net; Paris: http://
www.velib.paris.fr, London: https://tfl.gov.uk/modes/cycling/santander-cycles.

http://www.pisamo.it
http://www.publicbike.net
http://www.velib.paris.fr
http://www.velib.paris.fr
https://tfl.gov.uk/modes/cycling/santander-cycles

184 V. Ciancia et al.

most important problems, encountered in 76 % and 66 % cases of 212 respondents,
respectively. Since a bicycle must be returned to one of the designated stations,
otherwise a high fine needs to be paid, users must find a drop off station that is
not full. The additional searching time, and the associated risk of undesired and
unpredictable delays, and fees, are likely to affect the user’s satisfaction with the
system. However, user satisfaction due to such temporarily full stations is diffi-
cult to evaluate quantitatively when only data obtained from real systems is avail-
able. This is so because the cycling data alone is not sufficient to understand the
intentions of its users, nor the predictability of the service. To investigate this issue
from a different angle, a model-based approach was presented in [34], in which the
point of view of ‘rational agents’ who participate in bike-sharing, is assumed. The
results of the study reveals that cycling times in different cities, and among pairs
of stations within cities, are similarly distributed11, suggesting a possibility of a
generic interpretation. The rational agent model, based on minimal assumptions
about travelling and decision making, reproduces rather well the cycling time dis-
tributions in London and Pisa [34]. The analysis suggests that some features of
the cycling time distribution may be related to the (un)predictability of a travel
process which, as just discussed, may influence the users’ satisfaction with a sys-
tem. In particular, the results suggest a further analysis extending the notion of a
problematic full station to the notion of a problematic area in which all stations are
full: a full-station cluster. Formation of clusters and their evolution is also evident
from the existing bike-sharing visualisations12.

The main advantage of a modelling approach over data analysis is a pos-
sibility to study hypothetical cases where station configurations, traffic flows,
or incentives are altered to explore the efficiency of proposed solutions to the
aforementioned issues. In this example we will analyse some traces generated by
a simulation model developed in [34] using topochecker.

The examples presented here and some further examples can be found in [19].
We are concerned with the full-station clusters as more salient to the discussion,
although the extension of the same kind of formulas to clusters of empty stations
is straightforward.

The bike-sharing model presented in [34] describes the dynamics of a popu-
lation of rational agents, coupled to the dynamics of bicycle stations in a two-
dimensional rectangle representing a city. The rational agent model is based on a
Markov Renewal Process (MRP [34]). The model parameters, such as the num-
ber of stations, cycling pace and request rate, are calibrated so as to reproduce
cycling times of a particular real BSS, in this particular case that of London.
The result is a 7 × 13 km2 area with a 19× 38 array of stations with randomly
perturbed locations, random capacities between 15 and 40 docks, and 500 agents
that make, on average, 900 trips per hour. The agent behaviour is sampled ran-
domly. However, to introduce flows, a superposition of Gaussian distributions
for the origin and destination locations is used and some counter-current flows
are added to improve the balance of the flow. Numerical simulation of this model

11 See also [9].
12 See, e.g. http://bikes.oobrien.com/london.

http://bikes.oobrien.com/london

Spatial Logic and Spatial Model Checking for Closure Spaces 185

generates traces, each trace consisting of snapshots, each snapshot representing
a system’s state at a particular instance of time.

Agents risk, of course, that a suitable station within the area is not found.
These ‘bad’ events affect only a small fraction of all trips if the distribution
of agents’ origins and destinations is spatially homogeneous, but become more
relevant if some destinations are more popular than others. Presence of areas
that attract more users than other areas is a reasonable assumption about real
cities. An obvious consequence is that also the areas of full stations will be,
as a rule, larger. However, identification and analysis of problematic areas with
traditional means is not so straightforward as they dynamically evolve over time.

Spatial structure is added to the simulation model in the form of an undi-
rected graph, whose vertices represent stations, and edges represent the nearest
station connections. The graph represents 722 stations, arranged in a grid lay-
out of 19 × 38 nodes as explained above. A single trace of the simulation model
is used as input to the spatio-temporal model-checker. It represents the evo-
lution of the model at specific time intervals, for a given number of steps. It
provides for each station, at each step, the number of bikes parked in it, the
number of free parking places and its capacity (among other information). For
all the experiments described below, except the last one (related to user satisfac-
tion), the duration of an interval is 10 min, and the number of time steps is 101.
In the last experiment, we considered a time interval of 1 min and 301 time
steps13. Starting with simple expressions of a system’s state, we proceed to
develop more complex formulas that nest spatial and temporal operators.

Full Stations and Clusters. First, we characterise stations that are full, that is,
with no vacant places, and clusters of full stations, that is, stations that are full,
and are connected only to other stations that are full in turn. These two (purely
spatial) properties are formalised below.

full = [vacant==0]
cluster = I (full)

The macro abbreviation full uses a boolean predicate (equality), applied to
the quantitative value of the atomic property [vacant]. Connectivity is expressed
by the derived interior operator IΦ = ! (N (! Φ)). Informally speaking, in an
undirected graph, points satisfying IΦ are only connected to points satisfying
Φ. The smallest possible cluster is therefore composed of a full station such that
its direct neighbours in the north, south, east and west directions are also full.
Note that the definition of cluster only identifies (on purpose) these “inner”full
stations and not their direct full neighbours.

Formation of Clusters. A point evolves into a cluster when it becomes full, and
stays full until it becomes part of a cluster. This may be detected by the following
formulas:

13 The results can be reproduced using the data and scripts, provided with the source
code of the tool.

186 V. Ciancia et al.

implies(f, g) = (! f) | g;
nextCluster = (E F full)&

(A G implies(full,
A full U cluster))

Here, implies is standard logical implication. The definition of nextCluster
characterises points that will eventually become full and, for every future state,
whenever full, they will remain full until becoming part of a cluster. This is a
very strong property, that few points possess. Such points are central in clus-
ter formation, as they represent stations that always form a cluster when they
become full. In Fig. 17, these points are shown in red, in a state14 of the simula-
tion where there are many of them. For comparison, the boundary of the points
that will become a cluster are shown in green, that is, those points satisfying
(N E F cluster) & (! E F cluster).

Fig. 17. Stations of time step 80 of the simulation that are on the boundary of the
region of points that will eventually become a cluster (green), and stations that, when-
ever they are full, stay full and become part of a cluster (red). (Color figure online)

Persistence of Clusters. We can identify stations belonging to clusters that per-
sist for some amount of time, that is, they last for a specific number of time
steps. This situation is described for two and three time steps by the formulas:

cluster2steps = cluster& (A X cluster)
cluster3steps = cluster& (A X cluster2steps)

By combining the formulas described above with the eventually operator,
the tool is able to detect the stations that, in any state, will eventually be
part of a cluster, with specified persistence. Let us look at Fig. 18, where we
show the output of a model checking session. The tool colours in red nodes that
satisfy the formula E F cluster3steps (and thus also formulas describing shorter

14 The tool is a global model checker, therefore it is able to produce a graph for each
state of the model, related to the truth value of formulas in that particular state,
even if we only show results related to one specific state.

Spatial Logic and Spatial Model Checking for Closure Spaces 187

persistence times), in blue those that satisfy E F cluster2steps, and in green
those where formula E F cluster is true.

Propagation of Clusters. Another phenomenon that can be investigated using
topochecker is the spatial propagation of clusters. Among many possible related
STLCS formulas, we show how to detect points that satisfy at least one of the
following: (1) they are not full, but are close to a cluster, and will necessarily
become part of a cluster in the near future (growingCluster); or (2) they are
part of a cluster, but will necessarily become not full in a short amount of
time, even if still being physically close to a cluster (shrinkingCluster). This
is achieved by the following definitions, where the macro bdry implements the
derived ‘boundary’ operator δ (see Fig. 6).

bdry(f) = (N f) & (! f)
growingCluster = (! cluster)&

(N (bdry(cluster))& (A X full)
shrinkingCluster = cluster& (A X (! full))

For instance, in time step 77 of our simulation, there are both stations that
will join a cluster and stations that will leave a cluster in the next time step.
We show the result in Fig. 19 using different colours for facilitating comparison
of results. The stations that satisfy cluster are green, the stations satisfying
growingCluster are red and stations satisfying shrinkingCluster are blue.
The results of these formulas provide insight in the dynamics of the clusters at
particular time steps, in particular the directions in which the clusters are evolv-
ing. This may be important information for the development of repositioning
strategies in particular when such dynamics are repeated over time in the same
areas.

User Experience. STLCS can also be used to identify specific problems related
to user experience in BSSs. For example, when a user wants to leave a bike at a
specific station, and that station is full, she may try to find a nearby station with

Fig. 18. Points of the initial state of the simulation that will eventually become part of
a cluster (green), or of a cluster that persists for two (resp. three) time steps, coloured
in blue (resp. red) (Color figure online).

188 V. Ciancia et al.

Fig. 19. Points of time step 77 of the simulation that are part of a cluster (in green),
or are not full, but will become part of a cluster in one step (in red), or that are part
of a cluster but will become not full in one step (in blue). (Color figure online)

available parking slots, or she may wait for some time in the same station. This
behaviour may be typically sufficient to solve the problem, at the expense of a
longer trip duration. One may want to check whether this procedure is effective
in a few time steps. In the following formula, we check whether it is possible
that, in three time steps, the user still was unable to leave the bike in the same
or a nearby station, when the preferred station is full in the current state.

tripEnd = full& (N (A X (full&
(N (A X (full& N (A X full)))))))

Figure 20 shows the output from the model checker, where the red points
indicate the stations where the formula is true at time step 0. The formula can
be checked for various numbers of consecutive time steps, which provides an
indication of how severe the problem is at a particular time of interest and a
particular area. Ideally, the formula should not hold anywhere, or at most be
true only in a few points and for a small number of steps.

8.2 Bus Clumping in Frequent Bus Services

The next example concerns the analysis of some specific problems in modern
public transport systems such as the so-called “frequent” bus services operating
in many densely populated cities. Frequent bus services are public bus services
without a published timetable but with regular and frequent buses operating
along pre-established routes. In such services a particular phenomenon may occur
that is commonly known as bus bunching or bus clumping. Bus clumping occurs
where one bus catches up with – or at least comes too close to – the bus which
is in front of it. In the absence of a published timetable for frequent services
the important performance metric to consider is not timetable adherence but
headway, a measure of the separation between subsequent buses. This separation
can be defined both in terms of distance between buses on the same route or
in terms of the time between two buses on the same route passing by the same
bus stop. It is possible to identify these two notions of clumping using STLCS

Spatial Logic and Spatial Model Checking for Closure Spaces 189

Fig. 20. Stations that are full in time step 0, where it is possible that an user applying
the obvious strategy of waiting for some time, and then moving nearby, might still not
find a free parking slot. (Color figure online)

on a time series of street map images on which the bus positions are projected.
The problem is illustrated in Fig. 21 showing three successive “satellite view”
images of the position of three different buses on the same route projected on a
portion of a map of a city. The buses are shown as three small red dots on the
main road. The distance between the buses is getting smaller in each successive
image, resulting in the three buses being lined up in the final image as indicated
by the red arrows (Fig. 21 left-bottom).

In modern public transport systems the operation depends on accurate fleet
management which is supported by an automatic vehicle location (AVL) sys-
tem. Since these data are used in real-time in other systems such as bus arrival
prediction systems, it is very important that these data are checked for cor-
rectness. In [14] it was shown how spatial model checking can be used to check
for a number of typical error conditions occurring occasionally in the data. In
this approach, the data is mapped onto a digital map of a city, much like the
one shown in Fig. 21, after which spatial model checking is applied on the aug-
mented map to identify the error conditions in an automatic way. Among the
typical error conditions are bus positions that are off the road, for example in
a field or in water, that indicate possible errors in the transmission of the GPS
data, or bus positions that are away from the planned route, which may indicate
problems with the road network.

In joint follow-up work with other authors [13] we focussed on the analysis
of adaptive correction strategies to mitigate the occurrence of clumping and
providing better service to the public. One such strategy is based on sending a
bus the instruction to wait for a short time when getting too close to the bus
ahead. Such wait-requests should be only suggested by the service operators and
not imposed, since there may be several circumstances in which a bus is not in
the position to be able to wait, for example due to specific traffic circumstances.
Also the number of wait-requests should be carefully considered. For example, if
all buses on a route were sent a wait-request, and all accepted this request, then
this would not solve the problem. Similarly, sending multiple wait-requests to the
same bus may create unacceptable delays. Apart from these general heuristics,

190 V. Ciancia et al.

Fig. 21. Because of delays caused by boarding passengers the headway between buses is
successively eroded over time until the buses are essentially ‘clumped’ together. (Color
figure online)

there are still many options for possible strategies. In the following we illustrate
how spatio-temporal model checking, based on a branching time temporal logic,
can be of use to analyse the effect of such correction strategies.

First we show how spatio-temporal logic can be used to detect clumping of
buses in a system trace. Such a trace consists of GPS data of a number of buses
operating on the same route projected onto a digital city map. After that we
show how this characterisation of clumping can be used in combination with
a constructed branching model that captures the various ways in which wait-
requests can be issued and their effect on bus positions.

Spatio-Temporal Characterisation of Clumping. Consider a single bus
route, served by k buses. At each instant of time, the state of the system is
completely described by a tuple of k GPS positions; therefore, a system trace
is a finite sequence of such tuples. We can distinguish two different variants of
clumping that differ in a subtle way. One in which two consecutive buses serving
the same route are spatially close to each other, and one in which they pass
by the same bus stop within a too short amount of time. Here we formalise
the latter variant considering three buses on the same route. The input code
of the model checking session is shown in Fig. 22. Formulas bus1, bus2, bus3,
and busStop, are defined as colour ranges, that serve the purpose of identifying

Spatial Logic and Spatial Model Checking for Closure Spaces 191

bus positions on a digital map of the city. In this example, colours are used to
distinguish the different buses serving the same route, so that each bus has a
specific colour. Similarly, formula busStop identifies the position of a bus stop.
The formula timeConglomerate, that we explain below, is true at points of a
bus stop whenever clumping is happening (formation of a conglomerate of buses)
at that particular stop.

bus1 = <RED [155,155]> & <GREEN [0,0]> & <BLUE [0,0]>;

bus2 = <RED [188,188]> & <GREEN [0,0]> & <BLUE [0,0]>;

bus3 = <RED [221,221]> & <GREEN [0,0]> & <BLUE [0,0]>;

bus = bus1 | bus2 | bus3;

busStop = <RED [55,55]> & <GREEN [55,55]> & <BLUE [255,255]>;

close(x) = N^7 x;

busAtStop(x) = busStop & close(x);

busAfterBus1 = busAtStop(bus1) &

EX busAtStop(bus2 | bus3);

busAfterBus2 = busAtStop(bus2) &

EX busAtStop(bus1 | bus3);

busAfterBus3 = busAtStop(bus3) &

EX busAtStop(bus1 | bus2);

timeConglomerate = (busAfterBus1 | busAfterBus2 | busAfterBus3);

Fig. 22. Spatio-temporal formulas for time conglomerates

A spatio-temporal conglomerate happens when two buses serving the same
route pass by the same stop within a short amount of time. This case is sub-
tler than the spatial one, as it does not necessary imply that the headway
between two buses becomes too small. This event is described by the for-
mula timeConglomerate, which features a combination of spatial operators
(used to detect that a bus is close to a stop) and temporal operators (used to
identify the spatio-temporal conglomerate). For instance, consider the formula
busAfterBus1. This formula is true on points that are: (i) part of a bus stop,
and close to bus1, because busAtStop must be true for bus1; (ii) such that, in
the next snapshot15, these will be part of a bus stop, and close to either bus2 or
bus3. Note that the use of spatial and temporal connectives in the same formula
permits one to refer to the colour of points at a specific time, and at subsequent
time instants.

Figure 23 is obtained from the spatio-temporal model checker, starting from
the positions of three buses serving the same route. Figure 23a–e are obtained

15 More than one time step can be required. This can be achieved by repeated nesting
of the EX operator. We did not do so for the sake of clarity in Fig. 23.

192 V. Ciancia et al.

by mapping bus coordinates over a base map. Buses are represented by small
squares of different shades of red on the roads. To make them more visible they
are also highlighted by the red circles in Fig. 23b. The small dark blue square
is a bus stop (see Fig. 23c). Figure 23f shows the output of the model checker
when checking the formula EF timeConglomerate in the initial state shown in
Fig. 23a. Indeed, Fig. 23f is the same as Fig. 23a, except for the colour of the bus
stop, whose points are now turned green by the model checker, indicating that
clumping happens at that stop, at some point in the future.

The Effect of Correction Strategies. Let us now address the effect of
correction strategies to mitigate clumping. In particular, we use existing data
(e.g. system logs) in estimating the impact of introducing new policies in a sys-
tem. The spatio-temporal model checker for STLCS can be used both to detect
clumping in a single system trace, as we have seen, and to analyse a branching
model, that is, a system where at each state, non-deterministically, there may
be several possible steps to different future states. Such non-deterministic mod-
els represent in a concise way a great number of possible system behaviours,
depending on the choices that may be made at each execution step. We use this
fact in conjunction with the idea to send buses wait-requests in order to reduce
clumping. The possibility of issuing wait-requests to specific buses, or not doing
so, introduces non-deterministic choice points, where some buses go ahead and
others are kept on hold for a short period of time.

In more detail, consider a system trace of AVL data (e.g., provided by the
bus company16). Let us assume that this trace reflects a typical period of the day
in which clumping of buses often occurs and that the trace contains the position
of the relevant buses at fixed small intervals of time of say 30 s. The trace is a
sequence of tuples of k elements, where k is the number of buses serving the
same route. The length of the sequence is the number of samples. Element at
position i in each tuple is the position of bus i. At each step, besides the already
existing transition to the next step, more transitions are added, to new states,
where one or more buses wait, (therefore, their position does not change), and
the other ones move as they actually did in the original system trace that was
taken as starting point.

In order to illustrate the approach, a transformation algorithm was imple-
mented. The implementation is parametric with respect to the maximum number
of buses that are allowed to wait simultaneously, and the maximum number of
wait instructions issued to the same bus. The input of the algorithm consists
of the system trace as described above, and of a map. The state space of the
branching model generated from the system presented in Fig. 23 is shown in
Fig. 24; as typical in CTL model-checking, self-loops have been added to ter-
minal states, since CTL-path formulas express properties of infinite paths, i.e.
infinite sequences of states. To verify that there exist traces in which no conglom-
erate occurs, topochecker is applied on the formula AF timeConglomerate and
16 We use artificial data for the sake of simplicity, but usage of the approach does not

differ on real data.

Spatial Logic and Spatial Model Checking for Closure Spaces 193

(a) Initial state (b) Second state

(c) Bus 1 passes by the stop (d) Bus 2 passes by the stop

(e) Final state (f) Result from the model-checker.
Points of the initial state that will
be involved in a future conglomer-
ate are coloured in green and indi-
cated by the red circle

Fig. 23. Spatio-temporal conglomerate. (Color figure online)

the branching model. The formula is true only if a conglomerate is present on
all (infinite) system paths. In this case no point is coloured, meaning that there
exist “good” paths for each point in the model, and thus waiting-strategies that
could avoid clumping in the situation represented by this trace. If the trace is
indeed representative of a daily recurring situation, the conjecture is that the
waiting strategies have a good chance to mitigate the clumping problem also on
other days during similar periods of time.

194 V. Ciancia et al.

Fig. 24. Branching model obtained by augmenting a linear trace.

It is not difficult to add a facility to the model checker to generate counter
examples. This can be used to obtain in an automatic way the traces that repre-
sent a waiting-strategy that avoids the emergence of clumping for the considered
situation. In a second phase one could compare the quality of the different strate-
gies and, for example, select those with the minimal number of waiting-requests.

The simple construction to consider all possible waiting strategies could be
made more sophisticated by not considering a choice in every state of the trace,
but considering choices only when a situation is detected that is known to lead
to clumping in the near future with a high probability. This could be obtained,
for example, using machine learning techniques. This would reduce considerably
the number of states to be considered.

9 Outlook and Future Work

In this tutorial we have provided an introduction to spatial and spatio-temporal
logics and model checking for closure spaces. Formal verification for continuous
and discrete spatial models is still a relatively unexplored area of research. Let
us conclude by briefly reviewing recent and ongoing work and open issues for
the particular approach that we have addressed in this tutorial.

Further Logical Operators. Besides the basic operators and the many useful
derived operators that have been presented in this tutorial, the list of opera-
tors could be further extended. Of course, this should be done in a careful way
keeping in mind that the basic operators are really independent, i.e. they cannot
be derived from existing operators, but also such that the properties involving
these operators can be efficiently verified. Ideally, the operators have a similar
semantics when interpreted on both continuous and discrete spatial models.

Along these lines, in forthcoming work [18] we investigate several new opera-
tors. The first operator P is capturing the notion of propagation and is inspired
by the duality in the direction in which spatial operators can be applied. Infor-
mally, a point x satisfies ϕ1Pϕ2 if it satisfies ϕ2 and it is reachable from a point

Spatial Logic and Spatial Model Checking for Closure Spaces 195

satisfying ϕ1 via a path such that all of its points, except possibly the starting
point, satisfy ϕ2. For instance, if we consider again the model of Fig. 2, blue, green
and white nodes satisfy green P ¬red while the same formula is not satisfied by
yellow nodes.

Furthermore, it is useful to introduce spatial operators that predicate on one
or more sets of points rather than individual points. For example, we might want
to know whether points with a particular property are actually part of a larger
set of points satisfying another property, but being all connected to one another.
Thus, for instance, this way one could verify whether three buses are actually
on the same street segment, or whether some agents are in the same region of a
maze from which they can reach the same exit.

Further extensions, involving (maybe) two sets of points, could lead to an
alternative formulation of the region calculus in the setting of closure spaces.

Extensions of Spatio-Temporal Model Checking. There are various ways
in which spatio-temporal model checking can be extended. First of all, further
optimisations of the model checking algorithms should be investigated. In par-
ticular, in many models the spatial evolution over time could be gradual and
not involve all points of the space, or the spatial evolution could be ‘predictable’
to some extent in specific classes of behaviours, which may allow for further
optimisations.

In recent work the spatial surround operator has also been added to a differ-
ent temporal logic, namely the signal temporal logic [36,37], which in turn is an
extension of the Metric Interval Temporal Logic [33]. The Signal Temporal Logic
is used to reason about continuous signals. Its extension with spatial modalities
provides a linear time spatio-temporal logic. The two modalities are the bounded
somewhere ♦· [w1,w2] and the bounded surround operator S[w1,w2], an extended
adaptation of the spatial until operator of [17] to the signal models framework.
The spatial somewhere operator ♦· [w1,w2]ϕ requires ϕ to hold in a location reach-
able from the current one with a total cost (or distance) greater than or equal
to w1 and less than or equal to w2. The surround formula ϕ1 S[w1,w2]ϕ2 is true
in a location
, for the trace x, when
 belongs to a set of locations A satisfy-
ing ϕ1, such that its external boundary B+(A) (i.e., all the nearest neighbours
external to A of locations in A) contain only locations satisfying ϕ2. Further-
more, locations in B+(A) must be reached from
 by a shortest path of cost
between w1 and w2. Hence, the surround operator expresses the topological
notion of being surrounded by a ϕ2-region, with additional metric constraints.
The everywhere operator can be derived as the dual of the somewhere operator
�[w1,w2]ϕ := ¬♦· [w1,w2]¬ϕ requiring ϕ to hold in all the locations reachable from
the current one with a total cost (or distance) between w1 and w2.

The logic has both a boolean semantics and a quantitative semantics. The
former defines when a formula is satisfied, the latter provides an indication
of the robustness with which a formula is satisfied [5–7], i.e. how suscepti-
ble it is to changing its truth value, for example, as a result of a perturba-
tion in the signals. SSTL is interpreted on spatio-temporal, real-valued signals.

196 V. Ciancia et al.

Such spatio-temporal traces can be obtained by simulating a stochastic model or
a deterministic model, i.e. specified by a set of differential equations. In [36] the
framework of patch-based population models is discussed, which generalise popu-
lation models and are a natural setting from which both stochastic and determin-
istic spatio-temporal traces of the considered type emerge. An alternative source
of traces are measurements of real systems. Efficient monitoring algorithms have
been developed for SSTL and implemented in a prototype spatio-temporal model
checker.

Spatio-temporal model checking can also be conceived for models with sto-
chastic time. For example, in the case study of the London bike sharing system
we could be interested to know how likely it is that a station becomes part of a
cluster of full stations. We are currently developing a statistical model checking
approach for such probabilistic spatio-temporal properties. Another approach
could be to extend the spatio-temporal logic itself with forms of stochasticity.
There are different options. One is to add stochasticity to time, another to add
it to space, a third option would be to add stochasticity to both. Furthermore,
as we have seen in the Turing pattern examples, partial differential equations
can be used to define large spatial collective systems featuring interaction and
mobility. In some CAS it may be of interest to study the behaviour of a single
individual in the context of a large spatial collective system. This can be done
using for example fluid and mean field model checking [10,11,32]. Combining
spatial model checking with such mean field model checking approaches would
be very interesting but represents also a great challenge because of issues of
scalability of the approach, in particular for what concerns the spatial aspects.

Path-Based Definition of SLCS Logics. As we have seen in Sect. 4,
Proposition 5 allows us to reformulate the definition of the S using the notion
of path. In other words, one could take the characterization of S as in Proposi-
tion 5 and use it as a definition; in the context of quasi-discrete closure spaces,
the latter would be equivalent to Definition 22.

Interestingly, the very same, path-based, definition provides more intuitive
results when interpreted on topological spaces, which instead is not the case
when using Definition 22 for S. We show this by means of an example. With
this in mind, we define an Euclidean path in Euclidean topological space (X, CX)
as any continuous function p : (R≥0, CR≥0) → (X, CX), where R≥0 is the half-line
{x ∈ R | 0 ≤ x} and CR≥0 is the Euclidean closure operator.

Example 8. We define two models based on the Euclidean topology over R
2,

seen as a closure space (R2, C), where C is the standard closure operator in R
2.

We use propositions b, w, g, depicted in Fig. 25 as black, white and grey areas,
respectively. Consider the sets H = {(x, y)|x2 +y2 < 1}, H< = {(x, y)|x2 +y2 =
1 ∧ x < 0}, H≥ = {(x, y)|x2 + y2 = 1 ∧ x ≥ 0}. Let Mi = ((R2, C),Vi), for i ∈
{1, 2}. Fix valuations as follows: V1(b) = H ∪H<,V1(w) = R

2 \V1(b), V1(g) = ∅,
V2(b) = V1(b), V2(w) = H≥ \H, V2(g) = R2 \ (H ∪H< ∪H≥). Let x ∈ H. Using
the path-based definition of S in Proposition 5, we have M1, x |= b S w, and
M2, x � b S w, as there are paths starting at a black point in M2 and reaching

Spatial Logic and Spatial Model Checking for Closure Spaces 197

a grey point, which does not satisfy b, without passing by white points. If we
consider the closure space based semantics in Definition 22, the expectation is
that b S w holds at x in M1, which is true by the choice A = H ∪ H<, but note
that B+(A) = H≥. For this reason, we also have M2, x |= b S w by the choice
A = H ∪ H<, which is not what one would expect when thinking of the area H
being “surrounded” by white points.

1

Fig. 25. Two continuous closure models (boundaries are deliberately represented as
very tick, but the reader should think of them as infinitely thin).

The study of appropriate compatibility conditions, determining a universal
notion of path for certain classes of closure spaces is an open issue. One of the
major difficulties in finding a unifying notion is that Euclidean paths are not
directed, whereas quasi-discrete paths are directed. Directed paths in topology
are a highly non-trivial topic by themselves, and give rise to the subject of
directed algebraic topology [28]. Generalising directed algebraic topology to work
in the setting of closure spaces could be a relevant strategy to face these issues.
We refer the interested reader to [18] for a more detailed discussion on these
issues.

Topo-Bisimilarity and Completeness. A natural question is what struc-
tures are logically equivalent, that is, how fine-grained is the logic. It turns
out that in topological spaces logical equivalence for L (see Definition 15) coin-
cides with the notion of topological bisimilarity. More precisely, fix two models
M1 = ((X1, O1),V1) and M2 = ((X2, O2),V2).

Definition 26. A topological bisimulation, or simply topo-bisimulation, is a
relation R ⊆ X1 × X2 such that, for all (x1, x2) ∈ R,

– For all p ∈ AP , x1 ∈ V1(p) if and only if x2 ∈ V2(p), and
– for all o1 ∈ O1, whenever x1 ∈ o1, there is o2 ∈ O2 such that x2 ∈ o2 and for

all y2 ∈ o2 there is y1 ∈ o1 with (y1, y2) ∈ R, and

198 V. Ciancia et al.

– for all o2 ∈ O2, whenever x2 ∈ o2, there is o1 ∈ O1 such that x1 ∈ o1 and for
all y1 ∈ o1 there is y2 ∈ o2 with (y1, y2) ∈ R.

Two points x1, x2 are topo-bisimilar if there is a topo-bisimulation relating them.

Bisimilarity equates points based on their local properties. Two points are
bisimilar when, first of all, they satisfy the same properties in their respective
models. Then, it is required that, for every open set o1 on one side, there is a
choice of an open set o2 on the other side, all points of which have a corresponding
bisimilar point in o1. This distinguishes points that are on the boundary of some
property from points that are in its interior. Furthermore, the precise shape and
size of properties in a model does not affect bisimilarity, which is only driven by
the existence of open sets covering each property.

Topo-bisimilarity establishes the same relation between points in a topolog-
ical space as topo-logical equivalence, i.e. L is fully abstract with respect to
topo-bisimilarity. This is proved in [40], Theorems 5.4 and 5.5. We summarise
the result as follows.

Theorem 3. Two points x1 ∈ X1 and x2 ∈ X2 are topo-bisimilar if and only if
they are logically equivalent, that is, for all formulas ϕ, it holds M1, x1 |= ϕ if
and only if M2, x2 |= ϕ.

A situation where Theorem 3 is useful is when one wants to prove that two
models are logically equivalent or to minimise the model to check. Then instead
of verifying equivalence over all formulas (e.g., by induction), one can exhibit a
topo-bisimulation. The development of a suitable notion of bisimilarity for SLCS
is part of future research. The same holds for the understanding of the axiomatic
aspects of SLCS and the development of a relational semantics.

Acknowledgments. The authors like to thank Luca Bortolussi, Stephen Gilmore,
Gianluca Grilletti, Laura Nenzi and Rytis Paškauskas who are involved in the Quanticol
project and who are co-authors of the various articles on which this tutorial has been
based. We like to thank Ezio Bartocci for sharing with us an earlier Matlab version of
the Turing model.

References

1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics.
Springer, Heidelberg (2007)

2. Anderson, S., Bredche, N., Eiben, A.E., Kampis, G., van Steen, M.: Adaptive
Collective Systems: Herding Black Sheep. BookSprints (2013)

3. Aydin Gol, E., Bartocci, E., Belta, C.: A formal methods approach to pattern
synthesis in reaction diffusion systems. In: Proceedings of the CDC (2014)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Bartocci, E., Bortolussi, L., Milios, D., Nenzi, L., Sanguinetti, G.: studying emer-
gent behaviours in morphogenesis using signal spatio-temporal logic. In: Abate,
A., Safranek, D., et al. (eds.) HSB 2015. LNCS, vol. 9271, pp. 156–172. Springer,
Switzerland (2015). doi:10.1007/978-3-319-26916-0 9

http://dx.doi.org/10.1007/978-3-319-26916-0_9

Spatial Logic and Spatial Model Checking for Closure Spaces 199

6. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of tem-
poral properties for stochastic models. In: HSB. EPTCS, vol. 125, pp. 3–19 (2013)

7. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic
models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25
(2015)

8. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
New York (2001)

9. Borgnat, P., Abry, P., Flandrin, P., Robardet, C., Rouquier, J.B., Fleury, E.: Shared
bicycles in a city: a signal processing and data analysis perspective. Adv. Complex
Syst. 14(3), 415–438 (2011)

10. Bortolussi, L., Hillston, J.: Model checking single agent behaviours by fluid approx-
imation. Inf. Comput. 242, 183–226 (2015)

11. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation
of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013).
http://www.sciencedirect.com/science/article/pii/S0166531613000023

12. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients.
In: Proceedings of the 30th SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 2000), pp. 365–377 (2000)

13. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: On
spatio-temporal model-checking of vehicular movement in transport systems - pre-
liminary version. Technical report TR-QC-02-2016, QUANTICOL (2016)

14. Ciancia, V., Gilmore, S., Latella, D., Loreti, M., Massink, M.: Data verification
for collective adaptive systems: spatial model-checking of vehicle location data. In:
Eighth IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems Workshops, SASOW 2014, London, United Kingdom, 8–12 September, 2014,
pp. 32–37. IEEE Computer Society (2014). http://dx.doi.org/10.1109/SASOW.
2014.16

15. Ciancia, V., Grilletti, G., Latella, D., Loreti, M., Massink, M.: An experimental
spatio-temporal model checker. In: Bianculli, D., et al. (eds.) SEFM 2015 Work-
shops. LNCS, vol. 9509, pp. 297–311. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-49224-6 24. Extended version of QC-TR- 10-2014, http://milner.inf.ed.
ac.uk/wiki/pages/J8N4c8/QUANTICOLTechnicalReports.html

16. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying proper-
ties of space. Technical report TR-QC-06-2014, QUANTICOL (2014). http://blog.
inf.ed.ac.uk/quanticol/technical-reports/

17. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying proper-
ties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol.
8705, pp. 222–235. Springer, Heidelberg (2014)

18. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for
closure spaces. (submitted, 2016)

19. Ciancia, V., Latella, D., Massink, M., Paškauskas, R.: Exploring spatio-temporal
properties of bike-sharing systems. In: Beal, J., Hillston, J., Viroli, M. (eds.) Spatial
and COllective PErvasive Computing Systems. Workshop at IEEE SASO 2015,
MIT, Cambridge, MA, USA, 21 September, 2015, pp. 74–79. IEEE Computer
Society Press, Cambridge (2015). doi:10.1109/SASOW.2015.17

20. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge
(2001). http://books.google.de/books?id=Nmc4wEaLXFEC

21. De Maio, P.: Bike-sharing: its history, impacts, models of provision, and future. J.
Public Transp. 12(4), 41–56 (2009)

http://www.sciencedirect.com/science/article/pii/S0166531613000023
http://dx.doi.org/10.1109/SASOW.2014.16
http://dx.doi.org/10.1109/SASOW.2014.16
http://dx.doi.org/10.1007/978-3-662-49224-6_24
http://dx.doi.org/10.1007/978-3-662-49224-6_24
http://milner.inf.ed.ac.uk/wiki/pages/J8N4c8/QUANTICOLTechnical Reports.html
http://milner.inf.ed.ac.uk/wiki/pages/J8N4c8/QUANTICOLTechnical Reports.html
http://blog.inf.ed.ac.uk/quanticol/technical-reports/
http://blog.inf.ed.ac.uk/quanticol/technical-reports/
http://dx.doi.org/10.1109/SASOW.2015.17
http://books.google.de/books?id=Nmc4wEaLXFEC

200 V. Ciancia et al.

22. De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Model checking
mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)

23. Fishman, E., Washington, S., Haworth, N.L.: Bike share’s impact on car use: evi-
dence from the United States, Great Britain, and Australia. In: Proceedings of the
93rd Annual Meeting of the Transportation Research Board (2014)

24. Froehlich, J., Neumann, J., Oliver, N.: Sensing and predicting the pulse of the city
through shared bicycling. In: IJCAI, pp. 1420–1426 (2009)

25. Galpin, V.: Spatial representations and analysis techniques. In: Bernardo, M., De
Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 120–155. Springer,
Switzerland (2016)

26. Galton, A.: A generalized topological view of motion in discrete space. Theor.
Comput. Sci. 305(1–3), 111–134 (2003). http://www.sciencedirect.com/science/
article/pii/S0304397502007016

27. Galton, A.: The mereotopology of discrete space. In: Freksa, C., Mark, D.M.
(eds.) COSIT 1999. LNCS, vol. 1661, pp. 251–266. Springer, Heidelberg (1999).
http://dx.doi.org/10.1007/3-540-48384-5 17

28. Grandis, M.: Directed Algebraic Topology: Models of Non-Reversible Worlds. Cam-
bridge University Press, Cambridge (2009)

29. Haghighi, I., Jones, A., Kong, J.Z., Bartocci, E., Gros, R., Belta, C.: SpaTeL: a
novel spatial-temporal logic and its applications to networked systems. In: Pro-
ceedings of the HSCC (2015)

30. Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium. Oxford
Logic Guides, vol. 1. Clarendon Press, Oxford (2002). http://opac.inria.fr/
record=b1107183. autre tirage: 2008

31. Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + tem-
poral logic = ? In: Aiello et al. [1], pp. 497–564

32. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approx-
imated model-checking for self-organising coordination. Sci. Comput. Program.
110, 23–50 (2015)

33. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004)

34. Massink, M., Paškauskas, R.: Model-based assessment of aspects of user-
satisfaction in bicycle sharing systems. In: Sotelo Vazquez, M., Olaverri Monreal,
C., Miller, J., Broggi, A. (eds.) 18th IEEE International Conference on Intelligent
Transportation Systems, pp. 1363–1370. IEEE Computer Society Press (2015).
doi:10.1109/ITSC.2015.224

35. Midgley, P.: Bicycle-sharing schemes: enhancing sustainable mobility in urban
areas. In: 19th Session of the Commission on Sustainable Development.
CSD19/2011/BP8, United Nations (2011)

36. Nenzi, L., Bortolussi, L.: Specifying and monitoring properties of stochastic spatio-
temporal systems in signal temporal logic. In: Haviv, M., Knottenbelt, W.J., Maggi,
L., Miorandi, D. (eds.) 8th International Conference on Performance Evaluation
Methodologies and Tools, VALUETOOLS 2014, ICST, Bratislava, Slovakia, 9–11
December, 2014. http://dx.doi.org/10.4108/icst.valuetools.2014.258183

37. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majum-
dar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Switzerland (2015).
http://dx.doi.org/10.1007/978-3-319-23820-3 2

http://www.sciencedirect.com/science/article/pii/S0304397502007016
http://www.sciencedirect.com/science/article/pii/S0304397502007016
http://dx.doi.org/10.1007/3-540-48384-5_17
http://opac.inria.fr/record=b1107183
http://opac.inria.fr/record=b1107183
http://dx.doi.org/10.1109/ITSC.2015.224
http://dx.doi.org/10.4108/icst.valuetools.2014.258183
http://dx.doi.org/10.1007/978-3-319-23820-3_2

Spatial Logic and Spatial Model Checking for Closure Spaces 201

38. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS
2002), Copenhagen, Denmark, 22–25 July 2002, pp. 55–74. IEEE Computer Society
(2002). http://dx.doi.org/10.1109/LICS.2002.1029817

39. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 237(641), 37–72 (1952). doi:10.1098/rstb.1952.0012

40. van Benthem, J., Bezhanishvili, G.: Modal Logics of Space. In: Aiello, M., Pratt-
Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 217–298.
Springer, Heidelberg (2007)

http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1098/rstb.1952.0012

Quantitative Abstractions for Collective
Adaptive Systems

Andrea Vandin and Mirco Tribastone(B)

IMT School for Advanced Studies Lucca, Lucca, Italy
{andrea.vandin,mirco.tribastone}@imtlucca.it

Abstract. Collective adaptive systems (CAS) consist of a large number
of possibly heterogeneous entities evolving according to local interac-
tions that may operate across multiple scales in time and space. The
adaptation to changes in the environment, as well as the highly dis-
persed decision-making process, often leads to emergent behaviour that
cannot be understood by simply analysing the objectives, properties, and
dynamics of the individual entities in isolation.

As with most complex systems, modelling is a phase of crucial impor-
tance for the design of new CAS or the understanding of existing ones.
Elsewhere in this volume the typical workflow of formal modelling, analy-
sis, and evaluation of a CAS has been illustrated in detail. In this chapter
we treat the problem of efficiently analysing large-scale CAS for quan-
titative properties. We review algorithms to automatically reduce the
dimensionality of a CAS model preserving modeller-defined state vari-
ables, with focus on descriptions based on systems of ordinary differential
equations. We illustrate the theory in a tutorial fashion, with running
examples and a number of more substantial case studies ranging from
crowd dynamics, epidemiology and biological systems.

1 Introduction

Distinctive features of collective adaptive systems (CAS) are the presence of a
large number of entities with their own properties, objectives, and behaviour,
that interact with each other and with the environment in such a way that
the resulting global dynamics arises as an emergent property that cannot be
directly inferred from the study of individuals in isolation. To ensure that a CAS
design meets the desired properties, or to accurately understand the behaviour
of existing CAS, it is of crucial importance to be able to reason about a (possibly
huge) system as a whole. In this context, the modelling phase clearly plays an
important role, as it does with any system characterised by high complexity.

Quantitative Abstractions. The focus of this chapter is on quantitative modelling
of CAS. Due to their heterogeneity and scale, CAS introduce a number of diffi-
cult challenges, the most notable of which is the problem of state space explosion
that is typically incurred when analysing large collectives of entities. Elsewhere
in this volume are contributions to a prototypical design and modelling work-
flow for CAS which take scalability and accuracy of the analysis into account.
c© Springer International Publishing Switzerland 2016
M. Bernardo et al. (Eds.): SFM 2016, LNCS 9700, pp. 202–232, 2016.
DOI: 10.1007/978-3-319-34096-8 7

Quantitative Abstractions for Collective Adaptive Systems 203

The process algebra CARMA (cf. [9]) is explicitly designed to study collectives
of agents evolving stochastically according to a continuous-time Markov chain
(CTMC) model [57]; approximate analysis techniques based on hybrid or dif-
ferential equation approximations are presented in [10]; effective approaches for
dealing with the spatial dimension of CAS are reviewed in [38]; finally, model
checking for spatial and temporal properties are discussed in [40]. Here, instead,
we focus on techniques that crosscut the above phases of the modelling workflow.
Namely, we consider the problem of obtaining suitable abstractions of dynamical
models for CAS. We are motivated by the fact that, in real-world scenarios, the
inherent system’s complexity is so high that it may even defeat typically com-
pact and effective model descriptions, such as those based on ordinary differential
equations (ODEs).

Let us consider, for instance, the case of a bike-sharing system (BSS). This
is a prototypical CAS [30], an instance of which has been also used as running
example of [57]. Its quantitative analysis may be based on a CTMC model, which
will however grow unfeasibly large in realistic settings since the state space has
to cover (at least) all of the possible combinations of bike availabilities at each
station. Deterministic approximations based on ODEs may come to the rescue,
by more compactly associating one equation for each station and each possible
link between two stations. In this case they would capture an estimate of the
average number of bikes available at each station as well as of those in transit [37].
Clearly, if instantiated to a real-world large BSS such as London’s, with over
700 stations, it would yield an ODE system of many thousands of equations,
which is likely to drastically impact on the practical feasibility of the analysis.
Furthermore, the analysis would become prohibitive if the modeller wished to
track higher order moments than the averages, since the ODE system size grows
polynomially with the number of variables of the original system (e.g., [32]).

Abstraction techniques may help tackle the dimensionality problem further.
The basic idea is to obtain a representation of the original model projected onto
a lower dimensional state space so as to allow a more efficient analysis. Due to
the large scale involved in CAS models, there are four main desirable properties
for an effective method:

P1. The abstraction should come with formal guarantees on the relationship
between the abstract dynamics and the original one. This enables the mod-
eller to use the abstract model with full confidence in the results of the
analysis.

P2. The construction of the abstract model should be fully automatic, since the
original model is likely to be unintelligible due to size.

P3. The method should be generic in order to be applicable to as a wide range
of CAS models as possible.

P4. The abstract model should preserve user-defined observables of the original
system. For instance, it should be possible to fully recover the dynamics of
selected variables of the original model.

In this chapter we consider abstraction techniques that satisfy the above require-
ments for quantitative CAS models based on ODEs. However they can be

204 A. Vandin and M. Tribastone

applicable also to CTMC models by studying the CTMC’s equations of motion,
which is a linear ODE system (e.g., [61]). In fact, we will discuss that these tech-
niques can be somewhat seen as a generalisation of aggregation algorithms spe-
cific to CTMCs, based on the well-known notion of lumpability [14]. Languages
and equivalences have been extensively studied for models based on CTMC
semantics (e.g., [27]).

Since ODEs are a universal dynamical model, featuring in many diverse sci-
entific branches including organic and inorganic chemistry, ecology, economics,
epidemiology, systems biology, and control theory, reducing large scale ODEs has
also a long-standing tradition (e.g., [2,48,62]). Here we offer a specific computer-
science viewpoint on this subject, looking at ODE reduction as the problem of
finding an appropriate equivalence relation over the ODE’s state variables, bor-
rowing ideas from the programming languages community and concurrency the-
ory. Most of the results discussed here, summarised from [19–21], concern exact
notions of aggregation. These may be lossy in that the dynamics of some origi-
nal variables cannot be recovered in the abstract model, yet all the information
in the abstract model is exactly related to the original variables; approximate
notions of aggregation are an exciting future research direction.

Differential Equivalences. The problem of minimising ODEs is interpreted as a
quotienting up to some equivalence, akin to more classical models of computation
based on labelled transition systems (LTS). We put forward the analogy between
states of an LTS and ODE variables. The starting point is that of differential
equivalences, relations between ODE variables that preserve their corresponding
solutions in some appropriate sense. Here we consider two variants of differential
equivalence, as first presented in [21].

In forward differential equivalence (FDE), an ODE system can be written
for the variables that represent the equivalence classes, giving the sum of the
solutions of its members at all time points t. Let us consider the example:

ẋ1 = −x1, ẋ2 = k1 · x1 − x2, ẋ3 = k2 · x1 − x3, (1)

where k1 and k2 are constants and the ‘dot’ operator denotes the derivative.1

It can be shown that {{x1}, {x2, x3}} is an FDE quotienting. Indeed, exploiting
basic properties one gets

ẋ1 = −x1, ˙(x2 + x3) = ẋ2 + ẋ3 = (k1 + k2) · x1 − (x2 + x3). (2)

By the change of variable y = x2 + x3, this is equivalent to writing

ẋ1 = −x1 ẏ = (k1 + k2) · x1 − y.

This quotient ODE model recovers the sum of the solutions of the variables in
each equivalence class. Thus, setting the initial condition y(0) = x2(0) + x3(0)
yields that the solution satisfies y(t) = x2(t) + x3(t) at all time points t.

1 Throughout the paper we will work with autonomous ODE systems, which are not
explicitly dependent on time.

Quantitative Abstractions for Collective Adaptive Systems 205

Backward differential equivalence (BDE) equates variables that have the
same solutions at all time points. In (1), {{x1}, {x2, x3}} is also a BDE pro-
vided that k1 = k2. In this case, we obtain a quotient ODE by removing either
equation between x2 and x3, say x3, and rewriting every occurrence of x3 as x2:

ẋ1 = −x1 ẋ2 = k1x1 − x2.

Both FDE and BDE satisfy P1, since a differential equivalence will yield
an abstract model that can be exactly related to the original one. However, we
observe that BDE is lossless, because every variable in the same equivalence
class has the same solution. Therefore, the original model solution can be fully
recovered at the expense of the side condition that equivalent variables have to be
initialised equally. Instead, with FDE one cannot recover the original solutions
in general; on the other hand FDE has no restrictions on the initial conditions.

When the ODE comes from a CTMC model, in [21] it is shown that FDE
and BDE correspond to ordinary and exact lumpability of CTMCs [14], respec-
tively. Incidentally, this also implies that FDE and BDE are not comparable in
general. The terms “forward” and “backward” are motivated by a rather estab-
lished tradition in the literature to call these two notions of CTMC lumpabil-
ity (e.g., [19,36,70]), due to the fact that they involve conditions on the outgoing
and incoming arcs of the CTMC state transition diagram, respectively.

Differential equivalence can be in principle defined for any ODE system.
However, in order to satisfy P2 and obtain a minimisation algorithm, it is neces-
sary to impose some restrictions on the kind of admissible ODE systems. In this
chapter we review two alternatives that trade off expressiveness for scalability.

Symbolic Minimisation Algorithms. The first approach, presented in [21], inter-
prets each ODE variable directly as a real function. Establishing an equivalence
between two variables thus amounts to relating two functions for all their possible
assignments, which involves reasoning over uncountable state spaces. The first
step in [21] is to encode the equivalence conditions into logical formulae contain-
ing ODE variables, and check them symbolically through a satisfiability modulo
theories (SMT) solver [4]. Actually, it turns out that differential equivalences can
be encoded into the quantifier-free fragment of first-order logic. By appropriately
restricting the admissible ODE systems to those for which an SMT solver — in
our implementation, the well-known Z3 [26] — is a decision procedure for such
formulae, we obtain a rigorous way of checking the existence of a differential
equivalence. The language IDOL (Intermediate Drift-oriented Language) of [21]
does so by essentially excluding trigonometric functions. On the other hand, it
can encode polynomials of any degree, rational expressions, minima and max-
ima, enough to cover affine systems, chemical reaction networks with frequently
used kinetics such as the law of mass action and Hill’s, and the deterministic
semantics of process algebra. Thus, it can satisfy P3 to some extent.

The SMT checks can be embedded into an algorithm that finds the coarsest
refinement of a given input partition up to a differential equivalence. This exploits
the ability of the SMT solver to produce a witness, i.e., a variable assignment that

206 A. Vandin and M. Tribastone

falsifies the hypothesis that the current partition is a differential equivalence. The
partition is then refined iteratively until a fixed point is found.

We note that the algorithm meets the requirement of property P4. Indeed,
suppose that the modeller wishes to keep track of an ODE variable x in the
abstract model. Then, starting the FDE algorithm with the trivial partition
where all variables are in the same block might clearly lead to an equivalence
where x is related to other variables. As a result, x’s individual solution cannot
be recovered. However, since the input partition may be chosen arbitrarily, it is
possible to isolate the desired observable variables into singleton initial blocks.
Similarly, to be able to fully reconstruct the original model from the abstract
one when using BDE, it is necessary to construct an initial partition consistent
with the initial conditions of the original model (that is, two variables are in the
same initial block if their initial conditions are the same).

Syntax-Driven Minimisation. The second approach takes a different perspective
that offers a trade off between expressiveness of the language and efficiency of the
minimisation algorithm. It is based on a finitary representation of an ODE sys-
tem by means of a so-called reaction network (RN) [20]. This is a slight extension
of a formal chemical reaction network (CRN) which allows rate parameters to be
also negative. Assuming elementary reactions only, i.e., reactions with at most
two reagents, a reaction network gives rise to an ODE system with derivatives
that are multivariate polynomials of degree at most two. The advantage in using
this construction is that it is possible to use bisimulation-style equivalences for
model reduction, originally developed in [19] for CRNs, over a state space that
is discrete because it only concerns finitely many “species” (corresponding to
the ODE variables) and reactions (each representing a monomial in the ODE’s
right-hand side, as discussed in Sect. 2.3).

The notions of bisimulation for RNs are closely related to the differential
equivalences in [21]. In particular, forward bisimulation (FB) is a partition of
an RN’s set of species which represents a sufficient condition for an FDE of
the corresponding ODE variables. Instead, backward bisimulation (BB) fully
characterises BDE (for multivariate polynomials of degree at most two). The
main contribution of [20] is to exploit the fact that FB and BB can be written in
the Larsen-Skou style of probabilistic bisimulation [55]. This enables us to cast
the computation of the largest FB/BB into Paige and Tarjan’s famous coarsest
refinement problem [63]. In particular, in [20] a partition refinement algorithm
is developed along the lines of efficient analogues for Markov chain lumping such
as [31,77], and for probabilistic transition systems [3].

Tool Support. Both families of symbolic and syntactic minimisation techniques
are tool supported. The former has been implemented in ERODE, a tool offering
SMT-based automatic Exact Reduction of Ordinary Differential Equations. The
tool is available at http://sysma.imtlucca.it/tools/erode/, together with instal-
lation and usage instructions. ERODE is a Java tool which interacts with Z3
to perform automatic minimisation of IDOL programs up to FDE and BDE.
More details on the implemented procedures are provided in Sects. 2.1 and 2.2.
ERODE currently supports the continuous-state semantics based on the law of

http://sysma.imtlucca.it/tools/erode/

Quantitative Abstractions for Collective Adaptive Systems 207

mass action of CRNs given in the .net format generated with the well-established
tool BioNetGen [8], version 2.2.5-stable. This allowed us to validate our differen-
tial equivalences against a wide set of existing models in the literature. Support
for the entire IDOL language in under development.

The syntactic minimisation techniques have been implemented in CRNRe-
ducer, a Java tool offering automatic exact reduction of (chemical) reaction
networks. It is available at http://sysma.imtlucca.it/tools/crnreducer/. CRNRe-
ducer performs the syntactic checks necessary to minimize an input RN up to
forward and backward bisimulations. More details on the implemented algo-
rithms are given in Sects. 2.3 and 2.4. CRNReducer currently supports CRNs
given in the BioNetGen’s .net format, and CTMCs in the .tra/.lab format of
the state-of-the-art model checker MRMC [50]. In addition, it accepts a com-
pact CSV-like representation of linear systems of equations in the form A ·x = b,
where x is the vector of unknowns. Stationary iterative methods such as Jacobi’s
can be seen as discrete-time dynamical system that converges to the solution. To
such a system, CRNReducer can apply FB/BB (see [20] for details and bench-
marks). Support for other languages which can be encoded as reaction networks
is currently under development.

As part of a larger effort, a new tool collecting both symbolic and syntactic
minimization techniques is currently under development. The tool will be pro-
vided with a modern integrated development environment, will offer full support
for the IDOL language, and will be equipped with importing capabilities from a
number formats.

Paper Structure. The paper is organized as follows. Section 2 presents our sym-
bolic (Sects. 2.1 and 2.2) and syntactic (Sects. 2.3 and 2.4) reduction techniques.
Then, Sect. 3 shows how they can be applied to crowd dynamics models (Sect. 3.1),
to multi-community epidemiology models (Sect. 3.2), as well as to models from
the realm of evolutionary biology (Sect. 3.3) and biochemistry (Sect. 3.4). Finally,
Sect. 4 discusses related works, while Sect. 5 concludes the paper.

2 Background

2.1 Differential Equivalences

Although differential equivalences can be in principle defined for a larger class of
ODE models, here we consider a fragment, identified by a formal kernel language
called Intermediate Drift-oriented Language (IDOL), which guarantees decidabil-
ity for the problem of computing a differential equivalence.

Definition 1 (IDOL Syntax). The syntax of programs of the intermediate drift
oriented language (IDOL) is given by

p :: = ε | ẋi = f, p

f :: = n | xi | f + f | f · f | f
1
m

where xi ∈ V and n,m ∈ Z and m �= 0.

http://sysma.imtlucca.it/tools/crnreducer/

208 A. Vandin and M. Tribastone

The set V represents ODE variables. A program is a list of elements ẋi = f
where each element gives the drift f for ODE of the variable xi. The “dot”
operator indicates the derivative with respect to time. Given an IDOL program
p, we define Vp = {x1, . . . , xn} as the set of variables in p. We say that p is well-
formed if for every xi ∈ Vp there exists a unique term ẋi = f in p. We denote its
drift by fi. Throughout this paper we will consider well-formed programs only.

We remark that IDOL can cover frequently used dynamics such as:

– the law of mass action for CRNs, using drifts such as x1 · x2;
– the Hill kinetics for CRNs, with drifts such as x2

1/(1 + x2
1);

– and the minimum function for threshold based drifts, where

min(x1, x2) :=
1
2
(x1 + x2 − |x1 − x2|), with |x| := (x · x)

1
2 .

The semantics of IDOL is given denotationally through the ODE solution
of an initial value problem, starting from an initial condition σ̂. For an IDOL
program p, we denote by Θ(p) the logical formula that encodes the appropri-
ate domain where the solution lives (which must be regular enough, cf. [21] for
details). Furthermore, we slightly ease notation with respect to [21] by repre-
senting the solution for variable xi simply by xi(t).

FDE is a partition over IDOL variables satisfying the property that sums of
variables can be factored out from the cumulative derivatives that sum across
the drifts of all variables belonging to each block, e.g. (2). This property can
be captured by replacing each variable as a scaled sum of the corresponding
variables of its block, such that all scaling factors are non-negative and sum to
one; in the example (1), we would keep x1 as is (it is a singleton block), and
replace x2 with s1 · (x2 + x3) and x3 with s2 · (x2 + x3), where s1 and s2 are
the scaling factors. Then, FDE amounts to proving that the aggregated drifts
do not depend on the assignments of the scaling factors. For instance, in (1) we
would rewrite the aggregated drift f2 + f3 as follows

f2 + f3 = k1 · x1 − x2 + k2 · x1 − x3

= k1 · x1 − s1 · (x2 + x3) + k2 · x1 − s2 · (x2 + x3)
= (k1 + k2) · x1 − (s1 + s2) · (x2 + x3)
= (k1 + k2) · x1 − (x2 + x3)

Indeed it does not depend on the choice of s1 and s2, since s1 + s2 = 1.
We now appeal to a fundamental result from [72], which shows that it is

enough to check this for a particular choice. For technical reasons discussed
in [21], FDE checks this through a uniform scaling (for instance s1 = s2 = 1/2
in the example).

Definition 2 (FDE). Let p be an IDOL program and Z a partition of Vp. Then,
Z is a forward differential equivalence if the following formula is valid:

Θ(p) →
∧

H∈Z

(∑

xi∈H

fi =
∑

xi∈H

fi

[
xj

/∑
xk∈H′ xk

|H ′| : H ′ ∈ Z, xj ∈ H ′
])

(ΦZ)

Quantitative Abstractions for Collective Adaptive Systems 209

As usual, we have denoted by ψ[t/s] the term where each occurrence of t in ψ is
replaced by s.

Definition 3 (FDE Quotient). Let p be an IDOL program and Z an FDE
partition. Then, the forward quotient of p with respect to Z, denoted by −→pZ , is:

ẏH =
∑

xi∈H

fi

[
xj

/ yH′

|H ′| : H ′ ∈ Z, xj ∈ H ′
]
, for all H ∈ Z.

We now state a crucial dynamical characterization theorem: A partition of
IDOL variables is FDE if and only if the ODEs of the quotient program preserve
the sums of the original trajectories in each equivalence class. Hence the largest
FDE represents the best possible aggregation that can be obtained in this sense.

Theorem 1. Let p be an IDOL program with initial condition σ̂, Z a partition
of Vp. Then, Z is an FDE partition with forward quotient −→pZ if and only if

yH(t) =
∑

xi∈H

xi(t)

for all t for which the solutions exist and for an initial condition of the quotient
program σ̂Z that satisfies σ̂Z(yH) =

∑
xi∈H σ̂(xi) for all H ∈ Z.

One extra step is needed to make FDE usable in a minimisation algorithm.
We need to be able to refer FDE to properties enjoyed by the single variables, as
opposed to blocks of variables in the original definition. If a candidate partition
is not FDE, the algorithm needs to “split” the partition blocks in such a way
that it isolates such variables that prevent the partition from being an FDE.
For this we consider an alternative characterisation of FDE in terms of binary
conditions.

Theorem 2 (Binary FDE Characterization). Let p be an IDOL program,
R be an equivalence relation on Vp, and Z = Vp/R. Then Z is an FDE if and
only if for all distinct xi, xj ∈ Vp we have that (xi, xj) ∈ R implies that the
following formula is valid:

Θ(p) →
∧

H∈Z

(∑

xk∈H

fk =
∑

xk∈H

fk

[
xi/s·(xi + xj), xj/(1 − s)·(xi + xj)

])
(ΦZ

xi,xj
)

We now turn to BDE. The fact that IDOL variables have the same solutions
at all time points is characterized by the property that variables with the same
assignment are mapped to equal drifts.

Definition 4 (BDE). Let p be an IDOL program and Z a partition of Vp. Then
Z is a backward differential equivalence if the following formula is valid:

Θ(p) →
(∧

H∈Z
(xH,1 = . . . = xH,|H|) →

∧

H∈Z
(fH,1 = . . . = fH,|H|)

)
(ΨZ)

210 A. Vandin and M. Tribastone

Now, similarly to FDE it is possible to define a notion of quotient IDOL
program, and state the dynamical characterization theorem.

Definition 5 (BDE Quotient). Let p be an IDOL program and Z a BDE
partition of Vp. The backward quotient of p with respect to Z, denoted by ←−pZ ,
is given by

ẏH = fH,1

[
xH′,1

/
yH′ , . . . , xH′,|H′|

/
yH′ :H ′ ∈Z]

, for H ∈ Z.

Theorem 3 (Dynamical BDE Characterization). Let p be an IDOL pro-
gram and Z a partition of Vp. Then, Z is a BDE partition with backward quotient←−pZ if and only if σ̂Z(yH) = σ̂(xH,1) = . . . = σ̂(xH,|H|) for all H ∈ Z implies

yH(t) = xH,1(t) = . . . = xH,|H|(t)

for all H ∈ Z and all t for which the solutions exist.

2.2 Symbolic Minimisation

The first step toward a symbolic minimisation algorithm is to be able to check
whether a candidate partition is a differential equivalence. The problem amounts
to establishing the validity of the (quantifier-free) formulae ΦZ , ΦZ

xi,xj
and ΨZ ,

which are decidable by Tarski’s famous result. To check them, we encode the
problem into the unsatisfiability of their negations, i.e., by computing sat(¬ΦZ),
sat(¬ΦZ

xi,xj
), and sat(¬ΨZ). These can be decided using the decision procedure

nlsat [49], which is implemented in Z3 v4.0 [26]. Thus, a partition Z is FDE
(resp., BDE) if and only if sat(¬ΦZ) (resp., sat(¬ΨZ)) returns “unsatisfiable”.

Example 1. Consider the ODE system given in Eq. (1), the partition of its species
Z1 = {{x1}, {x2, x3}}, and ¬ΨZ1 , i.e., the formula to check if Z1 is a BDE.
Listing 1 provides the encoding of ¬ΨZ1 in the standard SMT-LIB v2.0 [5]. Given
that Eq. (1) is parametric with respect to two real variables k1 and k2, we declare
them in Lines 2–3. We consider two cases: either k1 = k2 = 1 (Lines 6), or k1 = 1
and k2 = 2 (commented out in Lines 7). We have three ODE variables: x1, x2 and
x3, declared as real variables in Lines 10–12, paired with the three corresponding
drifts f1, f2 and f3, defined as functions in Lines 20–28. The three functions
implicitly take k1, k2 and the three ODE variables as arguments, and evaluate
in a real number. In this example we assume that the domain Θ of interest
is R

3
≥0, as encoded in Lines 15–17. After having specified the ODE system of

interest, in Lines 31–32 we can provide the actual encoding of ¬ΨZ1 . By applying
simple transformations we can rewrite ¬ΨZ1 ≡ ¬((x2 = x3) =⇒ (f2 = f3))
as (x2 = x3) ∧ (f2 �= f3). The first conjunct (x2 = x3) imposes that the ODE
variables are constant on Z1 (i.e., the ODE variables in the same block have
same value). Instead, the second conjunct (f2 �= f3) imposes that the drifts are
not constant on Z1. Note that the given SMT-encoding has 3 free variables: x1,
x2 and x3. If there exists an assignment for them that satisfies Listing 1, then
Z1 is not a BDE. The command to check the satisfiability is given in Line 35,
while Line 36 asks the solver to return one of the satisfying assignments (if any).

Quantitative Abstractions for Collective Adaptive Systems 211

1 ;Declare a real constant per parameter k1 and k2
2 (declare-const k1 Real)
3 (declare-const k2 Real)
4
5 ;We consider k1 = 1, and either k2 = 1 or k2 = 2
6 (assert (= k1 1)) (assert (= k2 1))
7 ;(assert (= k1 1)) (assert (= k2 2))
8
9 ;Declare a real constant per ODE variable

10 (declare-const x1 Real)
11 (declare-const x2 Real)
12 (declare-const x3 Real)
13
14 ;We assume to have R

3
≥0 as domain Θ.

15 (assert (>= x1 0))
16 (assert (>= x2 0))
17 (assert (>= x3 0))
18
19 ;Define the drift fi of each ODE variable xi.
20 (define -const f1 Real
21 (* -1 x1)
22)
23 (define -const f2 Real
24 (+ (* k1 x1) (* -1 x2))
25)
26 (define -const f3 Real
27 (+ (* k2 x1) (* -1 x3))
28)
29

30 ;We encode ¬ΨZ1 in the equivalent form (x2 = x3) ∧ (f2 �= f3)
31 (assert (= x2 x3))
32 (assert (not (= f2 f3)))
33
34 ;Check if the formula is satisfiable , and return a witness if so
35 (check-sat)
36 (get-model)

Listing 1. SMT-LIB v2.0 encoding of ¬ΨZ1 to check that Z1 is a BDE for (1)

Listing 1 can be solved using any of the SMT solvers supporting the SMT-
LIB v2.0 standard. The executable Z3 encoding of Listing 1 for both the cases
k1 = k2 and k1 �= k2 is available via the rise4fun web interface at http://rise4fun.
com/Z3/lW7d1. For the case k1 = k2 we obtain “unsatisfiable”, because Z1 is a
BDE partition if k1 = k2, as discussed. Instead, for the case k1 �= k2 we obtain
“satisfiable”, and the assignment σw = {x1 = 1, x2 = 0, x3 = 0}. In fact, we
have �f2�(σw) = 1 and �f3�(σw) = 2, where by �f�(σ) we have denoted the
interpretation of f as a real function, evaluated with the assignment σ.

The steps sat(ΦZ
xi,xj

) and sat(ΨZ) can be embedded into an algorithm that
computes the coarsest FDE/BDE refinement of a given input partition, shown
in Algorithm 1, and parametrised by the differential equivalence of interest (by
setting χ = F and χ = B for FDE and BDE, respectively).

The refinement step for FDE (Algorithm 2) exploits its binary characteriza-
tion, relating two variables whenever they do not prevent the current partition
from being an FDE.

http://rise4fun.com/Z3/lW7d1
http://rise4fun.com/Z3/lW7d1

212 A. Vandin and M. Tribastone

Algorithm 1. Construction of the largest FDE and BDE.
Require: Program p, partition G of Vp and χ∈{F, B}.

Z ← G
while true do

Z ′ ← refineχ(Z)
if Z ′ = Z then

return Z
else

Z ← Z ′

end if
end while

Algorithm 2. Routine refineF

Require: Program p and a partition Z of Vp.
Z ′ ← ∅
for all H ∈ Z do

R ←{(xi, xj) :xi, xj ∈H and (xi =xj or ΦZ
xi,xj

is valid)}
Z ′ ← Z ′ ∪ (H/R)

end for
return Z ′

Algorithm 3. Routine refineB

Require: Program p and a partition Z of Vp.
if ΨZ is valid then

Z ′ ← Z
else

σw ← getWitness(sat(¬ΨZ))
Z ′ ← ∅
for all H ∈ Z do

R ← {(xi, xj) :xi, xj ∈H and �fi�(σw) = �fj�(σw)}
Z ′ ← Z ′ ∪ (H/R)

end for
end if
return Z ′

The refinement step for BDE (Algorithm 3) exploits the fact that, when the
current partition is not a BDE, i.e., ¬ΨZ is satisfiable, then the SMT solver
can produce a witness assignment, σw, as shown in Example 1. This can be
interpreted as a counterexample with respect to BDE, since it provides evidence
that an equal assignment of variables within the same block of the candidate
partition gives different values of the corresponding drifts, denoted by �fi�(σw)
and �fj�(σw) in the algorithm. The idea of the refinement is to preserve variables
in the same block whenever the corresponding drifts are not distinguished by the
witness assignment.

Quantitative Abstractions for Collective Adaptive Systems 213

Example 2. Let us consider the following IDOL program:

ẋ1 = −min(x1, x3) + x2

ẋ2 = −min(x2, x3) + x1

ẋ3 = −min(x1, x3) − min(x2, x3)

We show that {{x1, x2}, {x3}} is the coarsest BDE that refines the initial parti-
tion Z = {{x1, x2, x3}}. Indeed, by applying the partition refinement algorithm,
at the first iteration the formula ΨZ reads

x1 =x2 = x3 →
− min(x1, x3) + x2 = −min(x2, x3) + x1 = −min(x1, x3) − min(x2, x3)

where we have omitted the encoding of the domain Θ(p) since we assume the
whole of R3. Its negation ¬ΨZ is satisfiable. Indeed, a witness assignment is σw =
{x1 = 1, x2 = 1, x3 = 1}, which yields a drift evaluation �f1�(σw) = �f2�(σw) =
0, and �f3�(σw) = −2. This triggers a new iteration with a refined partition that
preserves variables whenever their corresponding drifts evaluated for the witness
are equal. In this case, we obtain the partition Z ′ = {{x1, x2}, {x3}}. Then, at
the next iteration ΨZ′

reads

x1 = x2 → − min(x1, x3) + x2 = −min(x2, x3) + x1

Now, its negation is unsatisfiable, thus terminating the algorithm.

2.3 Reaction Networks

An RN (S,R) is a pair of a finite set of species S and a finite set of reactions R.
A reaction is a triple written in the form ρ

k−→ π, where ρ and π are multisets
of species, called reactants and products, respectively, and k �= 0 is the reaction
rate. We restrict to elementary reactions where |ρ| ≤ 2 (while no restriction is
posed on the products). We denote by ρ(X) the multiplicity of species X in
the multiset ρ, and by MS(S) the set of finite multisets of species in S. The
operator + denotes multiset union, e.g., X+Y +Y (or just X+2Y) is the multiset
{|X,Y, Y |}. We also use X to denote either the species X or the singleton {|X|}.

The semantics of an RN (S,R) is given by the ODE system V̇ = f(V), with
f : RS → R

S , where each component fX , with X ∈ S is defined as:

fX(V) :=
∑

ρ
α−→π∈R

(π(X) − ρ(X)) · α ·
∏

Y ∈S

V
ρ(Y)
Y .

This ODE satisfies a unique solution V (t) = (VX(t))X∈S for any initial condition
V (0). The restriction to elementary reactions ensures that the monomials are of
degree at most 2. A standard CRN with mass-action semantics (where reaction
speeds are proportional to the product of the concentrations of the reactants)
is recovered by restricting to positive reaction rates and non-negative initial
conditions. Instead, an arbitrary ODE system with multivariate polynomials
can be encoded according to the following.

214 A. Vandin and M. Tribastone

Lemma 1. Consider the ODE system ẏ = G(y) with components

ẏk = Gk(y) :=
∑

1≤i,j≤n

α
(k)
i,j · yi · yj +

∑

1≤i≤n

α
(k)
i · yi + β(k), 1 ≤ k ≤ n, (3)

and with α
(k)
i,j , α

(k)
i , β(k) ∈ R. Then, then RN (SG, RG), with SG := {1, . . . , n}

and

RG :=
{

i + j
α

(k)
i,j−−−→ i+j + k | α

(k)
i,j �= 0

}

∪
{

i
α

(k)
i−−−→ i + k | α

(k)
i �= 0

}
∪

{
∅ β(k)

−−→ k | β(k) �= 0
}

,

has ODEs V̇k = Gk(V), for 1 ≤ k ≤ n.

This encoding gives one reaction for each monomial in the ODE.
FB and BB are relations over the species of an RN defined only through

properties that concern the reactions in which they are involved. Thus we say
that they are syntax-based in that the ODE system is never analysed directly, in
contrast to the symbolic checks performed with IDOL. FB is a sufficient condition
for FDE, defined in terms of reaction and production rates.

Definition 6 (Reaction and Production Rates). Let (S,R) be an RN,
X,Y ∈ S, and ρ ∈ S ∪ {∅}. The ρ-reaction rate of X, and the ρ-production
rate of Y-elements by X are defined respectively as

crr[X, ρ] := (ρ(X) + 1)
∑

X+ρ
k−→π∈R

k, pr(X,Y, ρ) := (ρ(X) + 1)
∑

X+ρ
k−→π∈R

k · π(Y)

Finally, for H ⊆ S we define pr[X,H, ρ] :=
∑

Y ∈H pr(X,Y, ρ).

Definition 7. Let (S,R) be an RN, R an equivalence relation over S and Z =
S/R. Then, R is a forward RN bisimulation (FB) if for all (X,Y) ∈ R, all
ρ ∈ S ∪ {∅}, and all H ∈ Z it holds that

crr[X, ρ] = crr[Y, ρ] and pr[X,H, ρ] = pr[Y,H, ρ] (4)

This definition, originally proposed in [19] for chemical reaction networks, carries
over to RNs. An important observation that is instrumental for the development
of an efficient partition refinement algorithm is that, as discussed, FB is in the
Larsen-Skou style of probabilistic bisimulation, whereby species are related with
respect to their aggregate behaviour toward the equivalence classes, parametrised
by a further object ρ which plays a role akin to “action labels” in probabilistic
transition systems.

Quantitative Abstractions for Collective Adaptive Systems 215

Example 3. Consider the RN with species {X1,X2,X3,X4,X5} and reactions

X1
1−→ X2 X1 + X3

3−→ X4

X2
1−→ X1 X2 + X3

3−→ X5

X4
1−→ X1 + X3 X5

1−→ X2 + X3

X4 + X3
3−→ X5 X5 + X3

3−→ X4

Then, it holds that {{X1,X2}, {X3}, {X4,X5}} is an FB. For instance, we have

crr[X1, ∅] = crr[X2, ∅] = 1
crr[X4,X3] = crr[X2,X3] = 3

As regards pr, we have

pr[X1, ∅, {X1,X2}] = pr[X1, ∅, {X1,X2}] = 1
pr[X4, ∅, {X3}] = pr[X5, ∅, {X3}] = 1

We now provide a version of BB developed in [20] in the same style.

Definition 8 (Cumulative Splitter Flux Rate). Let (S,R) be an RN,
X,Y ∈ S, Z a partition of S, H ∈ Z and H ′ ∈ Z ∪ {{∅}}. We define

sr(X, Y, H ′) :=
∑

ρ′∈H′

∑

ρ
α−→π∈R

ρ=Y+ρ′

(π(X) − ρ(X)) · α′, sr[X, H, H ′] :=
∑

Y ∈H

sr(X, Y, H ′).

with α′ = α
2 if Y �= ρ′ and Y ∈ H ′, or α′ = α otherwise. We call the quantity

sr[X,H,H ′] the cumulative (H,H ′)-splitter flux rate of X.

Note that we account for summands that are counted twice due to the two
summations over H ′ in sr[X,H ′,H ′] by choosing α′ ∈ {α, α

2 } in the above
definition.

Theorem 4. Let (S,R) be an RN, R an equivalence relation over S and Z =
S/R. Then R is a BB if and only if for all (X,Y) ∈ R, all H ∈ Z and all
H ′ ∈ Z ∪ {{∅}} it holds that sr[X,H,H ′] = sr[Y,H,H ′].

Example 4. The partition {{X1,X2}, {X3}, {X4,X5}} of Example 3 is also a
BB. For instance, due to the reactions X1

1−→ X2 and X2
1−→ X1 we have

sr[X1, {X1,X2}, ∅] = sr(X1,X1, ∅) + sr(X1,X2, ∅) = −1 + 1 = 0

Similarly, we have

sr[X2, {X1,X2}, ∅] = sr(X2,X1, ∅) + sr(X2,X2, ∅) = 1 − 1 = 0

216 A. Vandin and M. Tribastone

2.4 Partition-Refinement Algorithms for RNs

The minimisation algorithms for FB and BB are partition-refinement algorithms
based on Paige and Tarjan’s approach, iteratively refining an input partition
based on a splitter block that tells apart the behaviour of two species toward
that block. We omit the technical details of the minimisation algorithm, which
can be found in [20]. Here we remark that the coarsest FB and BB partitions
of an arbitrary polynomial ODE system can be computed in O(r · s · log s) time
and O(r · s) space, where r is the number of monomials and s is the number of
species. Instead, here we provide a step-by-step illustration of the algorithms on
a simple example.

For FB, we first observe that the crr-condition of FB can be implemented as
an initialization step that pre-partitions the species according to the values of
crr. This is because crr is a “global”property of the RN, i.e., it does not depend
on the current partition. Then, as discussed, the conditions on pr require the
iterative partition-refinement treatment, where ρ plays the role of the label as
discussed. An important property is that, at each iteration, the blocks of the
current partition are used as potential splitters. This ensures that the list of
splitters can be updated at no additional cost while splitting the blocks.

Example 5. Let us consider again the RN in Example 3 and compute the coarsest
FB refinement of the trivial partition {{X1,X2,X3,X4,X5}}. The initialization
step that computes the pre-partitioning with respect to the values of crr leads
to the refinement {{X1,X2,X4,X5}, {X3}}. Now, both blocks {X1,X2,X4,X5}
and {X3} will be considered as potential splitters. The former does not cause any
splitting because, for any species Xi and any label ρ, the values of pr[Xi, {X1,X2,
X4,X5}, ρ] are the same. Instead, {X3} will split the block {X1,X2,X4,X5} into
two blocks {X1,X2} and {X4,X5}, because, e.g., it holds

pr[X4, {X3}, ∅] = pr[X5, {X3}, ∅] = 1
pr[X1, {X3}, ∅] = pr[X2, {X3}, ∅] = 0

Since {X1,X2, X4,X5} has already been used as a splitter, following the
principle of ignoring the largest part [63], the sub-block with maximal size is
not added to the list of potential splitters. In this case, the algorithm will add
{X4,X5}, which remains the only splitter to be considered. Since it does not
refine any of the existing blocks, the algorithm terminates with the partition
{{X1,X2}, {X3}, {X4,X5}} being the coarsest FB refinement.

For BB, instead, the third argument of sr can be seen as a label. However,
while in FB this ranges over the set of species (together with the distinguished
species ∅ to indicate unary reactions), in BB it ranges over blocks of the candidate
BB partition to be checked (again, together with the distinguished set {∅} for
unary reactions). When used within the partition refinement algorithm, splitting
a partition block leads to a refinement of the BB labels. In other words, unlike
for FB the set of labels must be updated at every iteration. However, it can be
shown that this incurs no additional computational cost [20].

Quantitative Abstractions for Collective Adaptive Systems 217

Example 6. Let us consider once more the RN in Example 3 and compute the
coarsest BB refinement of the trivial partition {{X1,X2,X3,X4,X5}}. In the
first iteration the block H = {X1,X2,X3,X4,X5} is used to split itself, com-
puting sr[Xi,H, ∅] and sr[Xi,H,H] for all i ∈ {1, 2, 3, 4, 5}. This leads to the
partition {{X1,X2}, {X3}, {X4,X5}}. Similarly to the FB case, since H has
already been used as a splitter, only {X4,X5} and {X3} are added as potential
splitters, while {X1,X2} is ignored. The two candidate splitters do not lead to
any refinement, and thus the previously computed partition is returned.

3 Case Studies

This section presents four case studies of CAS models. We begin in Sect. 3.1 with
a crowd dynamics scenario, where the emergent behaviour of a population arises
from decisions made locally by individuals. Then, in Sect. 3.2 we consider an
epidemiological model, where the emergent phenomenon of an infection spread-
ing is the result of individual opportunistic contacts between agents. Inciden-
tally, these two case studies feature space and locality as first-class citizen, with
increasing complexity. In the crowd dynamics model, individuals do not have
an internal status, and dynamics are restricted only to movements among loca-
tions. The epidemiological model, instead, does account for individuals’ internal
states, affected by local interactions with other individuals in the same location.
In both cases, we start from specifications given by co-authors of this volume
in two formal languages, namely BioPEPA [22] and PALOMA [33], from which
(together with PEPA [44] and SCEL [28]), originates the CARMA language
described elsewhere in this volume.

Sections 3.3 and 3.4 present case studies of biological relevance. Specifically,
Sect. 3.3 deals with adaptation in biological systems through evolution of simple
structures into more complex ones that retain some of the original behaviour.
This is formally captured by means of suitable differential equivalences between
CRNs. Section 3.4 presents reductions of a number of CRN models of protein
interaction networks presented in the literature, which are well known to the
problem of ODEs with combinatorial complexity (e.g., [23]; see also Sect. 4 for
further related work).

3.1 Crowd Dynamics

Our first case study regards a crowd scenario in which individuals move
among the squares of a city according to certain policies. Our starting point
is the famous “El Botellón” model [66], used to describe the spontaneous self-
organization of drinking parties in the squares of Spanish cities. The model
considers four squares connected in a ring by streets. The movements of a sin-
gle individual are dictated by a simple rule: if no friend (or partner to talk to)
can be found in its current square, the individual randomly moves to one of
the two connected squares. The model assumes that an individual in square i
moves with probability (1−c)si−1, where si is the number of people currently in

218 A. Vandin and M. Tribastone

square i, and c is the chat probability, i.e. the probability that an individual finds
a friend. The model has been also studied in [58] by co-authors of this volume
using related analysis techniques.

More recently, a variant of El Botellón has been proposed in [12] and further
analysed in [11], where the chat probability is not a constant, but it depends
on two parameters: (i) The socialisation factor of the population (soc), i.e. the
average number of friends of each individual; (ii) The total number of considered
individuals (N). The socialisation-driven chat probability is then given by c =
soc/N . The intuition is that people tend to have a limited number of friends,
soc, hence the larger is the considered population, the lower is the probability
of meeting a friend.

Inspired by the El Botellón model and its socialisation-based variant, we
hereby propose a sort of dual scenario where individuals do not move across
the squares on their own, e.g. because streets are not safe, but move only if
they are able to meet a friend to share the path with. Also, we assume that
movements follow a biologically-inspired dynamics: movements from a square i
to a square j happen with a rate proportional to the power of the number of
people in square i (s2i), modelling the probability of two individuals to meet,
multiplied by the socialisation-driven chat probability. This is reminiscent of
the already discussed law of mass action, which states that the firing rate of
a chemical reaction Xi + Xj

k−→ Yr + Yl is proportional to the concentration
of the reacting species of the reaction (Xi,Xj), times the kinetic constant k.
Considering n squares, we assume to have an n × n routing matrix Q, where
each Qi,j entry stores the probability that an individual moves from square i to
square j. The evolution of the population of each square is governed by an ODE
system defined as, for all i ∈ {1 . . . n}:

ṡi = −
∑

1≤j≤n

2 · c · Qi,j · s2i +
∑

1<j≤n

2 · c · Qj,i · s2j (5)

For example, the ODE system for the case of four cities (n = 4) is

ṡ1 = 2 · c · (−
∑

1≤j≤4

Q1,j · s21 +
∑

1<j≤4

Qj,1 · s2j
)

ṡ2 = 2 · c · (−
∑

1≤j≤4

Q2,j · s22 +
∑

1<j≤4

Qj,2 · s2j
)

ṡ3 = 2 · c · (−
∑

1≤j≤4

Q3,j · s23 +
∑

1<j≤4

Qj,3 · s2j
)

ṡ4 = 2 · c · (−
∑

1<j≤4

Q4,j · s24 +
∑

1<j≤4

Qj,4 · s2j
)

The same dynamics can be expressed also in terms of a reaction network
defined as, for all i, j ∈ {1 . . . n} such that i �= j:

si + si
Qi,j ·c−−−−→ sj + sj (6)

Quantitative Abstractions for Collective Adaptive Systems 219

s1 s2

s4 s3

1
4

3
4

1
4

3
4

Fig. 1. Probabilities of movements among squares in the crowd dynamics model.

This reaction models the fact that two individuals in square i meet and move
together to a target square j. The deterministic firing rate of the reaction is
[si] · [si] · Qi,j · c, where [si] is the number of individuals in square i. The term
[si] · [si] accounts for the number of meetings2, while c restricts to the successful
ones (i.e. those among friends), and Qi,j for those leading to movements towards
square j. For example, the reaction network for the case of four cities (n = 4) is

s1 + s1
Q1,2·c−−−−→ s2 + s2 s3 + s3

Q3,4·c−−−−→ s4 + s4

s1 + s1
Q1,4·c−−−−→ s4 + s4 s3 + s3

Q3,2·c−−−−→ s2 + s2

s2 + s2
Q2,3·c−−−−→ s3 + s3 s4 + s4

Q4,1·c−−−−→ s1 + s1

s2 + s2
Q2,1·c−−−−→ s1 + s1 s4 + s4

Q4,3·c−−−−→ s3 + s3

This model shows an interesting property in case Q is symmetric, i.e. Qi,j =
Qj,i: independently from how the individuals are initially distributed among the
squares, on the long run they will be evenly distributed. The same property is
found also in the models of [12,66]. To show this, Fig. 2 depicts the evolution of
200000 individuals among the squares (s1, s2, s3, and s4) with symmetric routing
matrix Q defined such that Q1,2 = Q2,1 = 1

4 , Q1,4 = Q4,1 = 3
4 , Q2,3 = Q3,2 = 3

4
and Q3,4 = Q4,3 = 1

4 , as depicted in Fig. 1. The socialisation factor soc is set to
2. In the left plot all individuals are initially located in square s1, while in the
right plot they are evenly divided among s1 and s2. After some time, in both
plots individuals equi-distribute in the four squares, as expected. We notice that
more time is required in the case in which all individuals are initially located in
the first square.

Figure 2 shows a further interesting property of the crowd scenario. From
Fig. 2 (right) we note that the populations in squares s1 and s2, as well as those
in s3 and s4, evolve in the same way if individuals are initially evenly distributed
in s1 and s2. Instead, such symmetries do not appear in Fig. 2 (left). This can be
proven using our backward reductions. The model has the following property:

2 Note that [si] · [si] should actually be [si] · ([si]− 1), since an individual cannot meet
itself. However, this is irrelevant for large populations, and hence, as for existing
ODE-based semantics in the biological context [78], we approximate it to [si] · [si].

220 A. Vandin and M. Tribastone

Time
0 2 4 6

P
op

ul
at

io
ns

× 105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

s
1

s
2

s
3

s
4

Time
0 2 4 6

P
op

ul
at

io
ns

× 105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

s
1

s
2

s
3

s
4

Fig. 2. Crowd scenario with 4 squares and 200000 individuals. All individuals initially
in square 1 (left) or evenly divided among squares 1 and 2 (right) (Color figure online).

Whenever the initial number of individuals in s1 and s3 is equal that of
s2 and s4, respectively, then the number of individuals in s1 and s3 will
be equal to that of s2 and s4, respectively, at any point in time.

This property can be verified by reducing the model up to BDE (or equivalently
up to BB) using a pre-partition coherent with the required initial conditions,
i.e., ZBDE = {{s1, s2}, {s3, s4}}. The algorithm returns ZBDE itself, confirming
that it is a BDE. Instead, by using an initial partition coherent with Fig. 2 (left),
i.e. {{s1}, {s2, s3, s4}} we obtain no reduction, as expected.

The model also allows for forward reductions, even though they are less
interesting. It can be shown that the only forward differential equivalence of the
model is ZFDE = {{s1, s2, s3, s4}}. This one-block partition is typical of mass-
preserving systems, i.e. where the total number of entities does not change. In
fact, the corresponding FDE-reduced model is ṡFDE = 0, meaning that the
cumulative population s = s1 + s2 + s3 + s4 is an invariant of the system.
No reduction can be instead computed using FB. This is because, as discussed
in [19], FB distinguishes among incoming and outgoing flow.

3.2 Multi-community Epidemiology

Our second case study is inspired from the well-known epidemiology model
SIR [51], describing the spreading of an infection in a population from infected
individuals (I), to susceptible individuals (S), considering the possibility of recov-
ering (R) from infection after some time. We hereby consider a multi-community
SIR model extended with spatial features as considered in [33]. Intuitively, indi-
viduals move among a number of communities, similarly to our crowd model. In
addition, individuals in the same location might interact spreading the infection.

More in particular, the authors of [33] use PALOMA (the Process Algebra of
Located Markovian Agents), a predecessor of the CARMA language described

Quantitative Abstractions for Collective Adaptive Systems 221

c1 c2

c4 c3

0.01

0.03

0.01

0.03

Fig. 3. Rates of movements between communities in the multi-community SIR model.

in this volume, to formalize a simplified model of the 1918–1919 flu epidemic in
central Canada originally described in [68]. The model consists of m communi-
ties, with a routing matrix Q used to store the rates (rather than probabilities
as in the previous crowd model) at which individuals travel between communi-
ties. While moving between communities, individuals might interact with locals,
spreading the flu. Interactions might happen at different rates in each commu-
nity (e.g., to distinguish among residential and business areas). Each community
c is thus associated with three populations of susceptible (Sc), infected (Ic) and
recovered (Rc) individuals. Upon a contact between an Sc and Ic individual, the
former gets infected with a given probability p. In 1/γ days on average, an Ic

will recover, becoming immune from the flu. The two parameters p and γ are
system-dependent, while the rate of contact might change in each community.

In the rest of this section we will consider two variants of the model. In the
first one we assume that contacts happen with rate 0.03 in all communities, while
in the second variant we have contact rate equal to 0.03 in communities c1 and
c2, and to 0.04 in the others. In both models we have p = 0.5, γ = 0.2, and, as
for the crowd protocol we consider four locations (i.e., communities) connected
in a ring by streets according to the symmetric routing matrix Q defined as in
Fig. 3. Also, we assume that each community initially has 150000 susceptible
individuals, 11000 infected ones and 12000 recovered ones.

The actual PALOMA specification (up to slight changes in the parameters)
can be found at http://groups.inf.ed.ac.uk/paloma/SIR.paloma. We refer the
interested reader to [33] for more details about the considered PALOMA spec-
ification, as well as PALOMA’s syntax and tool support. Thanks to the tool
support of PALOMA, it is possible to generate an ODE system whose solution
gives an approximation of the expected values and the variances of the three
populations (S, I and R) in each of the four locations, for a total of 24 measures
of interest [32]. In total, 90 ODEs are generated.

The obtained ODE system belongs to the IDOL language, allowing us to
apply our symbolic reduction techniques. The coarsest BDE of the model variant
with homogeneous contact rates consists of 27 blocks, 6 of which contain all and
only the 24 measures of interest, while the other 21 blocks contain the additional
variables. In particular, we have three blocks containing the expected values
of the three populations in each community: {yE[Sc1]

, yE[Sc2]
, yE[Sc3]

, yE[Sc4]
},

{yE[Ic1]
, yE[Ic2]

, yE[Ic3]
, yE[Ic4]

}, {yE[Rc1]
, yE[Rc2]

, yE[Rc3]
, yE[Rc4]

}. This tells us
that (the approximation of) each population evolves in the same way in all
communities if initialized equally. This might be expected in a sense, due to

http://groups.inf.ed.ac.uk/paloma/SIR.paloma

222 A. Vandin and M. Tribastone

the fact that interaction rates do not depend on the community of residence.
However, it is interesting to note that populations remain evenly distributed
among communities despite having different inter-community transition rates.
This can be explained using similar arguments to those of the crowd scenario.
The other three blocks are similar, but refer to the second-order moments. Hence,
not just the expected values, but also the variances of the populations evolve
equally. The obtained BDE partition does not change even if starting with an
initial partition coherent with the discussed initial populations. Hence, when the
populations of each of S, I and R are initially evenly divided among the four
communities, we have that the same information contained in the original ODE
system can be recovered from one with 30% of its original size. Similarly to the
crowd scenario, FDE does not produce notable reductions.

We now focus on the model variant having 0.03 as contact rate in communi-
ties c1 and c2, and 0.04 in c3 and c4. By applying BDE starting from the trivial
partition with one block only, or from the one coherent with the initial popu-
lations, we obtain a partition of 48 blocks. This is actually a refinement of the
BDE partition obtained from the homogeneous model variant. In particular, the
6 blocks of interest are split to separate the populations of the communities c1
and c2 from those of c3 and c4; e.g., the 3 blocks about the average populations
are split in {yE[Sc1]

, yE[Sc2]
},{yE[Sc3]

, yE[Sc4]
}, {yE[Ic1]

, yE[Ic2]
}, {yE[Ic3]

, yE[Ic4]
},

{yE[Rc1]
, yE[Rc2]

}, {yE[Rc3]
, yE[Rc4]

}. As a result, an ODE system of size of about
50% the original one can be used to study the measures of interest of the model.

3.3 Evolutionary Biology

A major subject of investigation in evolutionary biology is to understand how
simple structures may evolve into more complex ones as a result of their adap-
tation to the environment. It has been argued, for instance, that basic cellular
switches have evolved in order to increase robustness in their capacity to perform
certain functionality by reducing sensitivity to noise [18].

Recently, Cardelli has proposed the notion of emulation as a formal way
of comparing two CRN models of biological systems in order to postulate an
evolutionary path between them [17]. A simpler CRN, i.e. a CRN with fewer
species, is said to emulate a larger CRN if in the latter it is possible to find
appropriate initial conditions such that the trajectories exactly correspond to
those of the simpler CRN. Since the CRN semantics associates an ODE variable
with each species, the presence of an emulation will imply that in the larger
CRN two or more species’ ODE trajectories will overlap, and match one of the
simpler CRN as well whenever the initial conditions are equal. The intuitive
interpretation given to this dynamical property is that the more complex CRN
might possess richer behaviour than the simpler CRN from which it descends,
but that the evolution is conservative in the sense that under special initial
conditions it may collapse onto the original one.

Quantitative Abstractions for Collective Adaptive Systems 223

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

x
0

x
1

x
2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

y
0

y
1

y
2

z
0

z
1

z
2

Fig. 4. ODE solutions of AM (left) and MI (right), showing equivalent trajectories
with equal initial conditions (Color figure online).

Example 7. The following two mass-action CRNs describe the behaviour of
AM, a basic biological switch (left) and MI, a mutual inhibition mechanism
(right) [17]:

X0 + X2
α1−→ X2 + X1

X1 + X2
α2−→ X2 + X2

X2 + X0
α3−→ X0 + X1

X1 + X0
α4−→ X0 + X0

Y0 + Z0
α1−→ Z0 + Y1

Y1 + Z0
α2−→ Z0 + Y2

Y2 + Y0
α3−→ Y0 + Y1

Y1 + Y0
α4−→ Y0 + Y0

Z2 + Z0
α1−→ Z0 + Z1

Z1 + Z0
α2−→ Z0 + Z0

Z0 + Y0
α3−→ Y0 + Z1

Z1 + Y0
α4−→ Y0 + Z2

Consider the following mappings:

– Trajectories of Y0 and Z2 correspond to that of X0;
– Trajectories of Y1 and Z1 correspond to that of X1;
– Trajectories of Y2 and Z0 correspond to that of X2.

Indeed, it can be shown that if one sets equal initial conditions for related
species (e.g., by setting equal initial conditions for Y0, Z2, and X0) then the
trajectories will coincide at all time points (see Fig. 4). It is clear that emula-
tion is closely related to BDE — and to BB since it has been considered for
mass-action CRNs. In fact, it can be shown that an emulation is an appro-
priate BDE on the “union CRN” [21]. For instance, in the example above the
BDE is given by ZEMU = {{X0, Y0, Z2}, {X1, Y1, Z1}, {X2, Y2, Z0}}. This can
be checked using the executable Z3 encoding available at http://rise4fun.com/
Z3/bgVv, which is similar to Listing 1, but regards the nine ODEs of (the union
CRN of) AM and MI. Note that {{X0}, {X1}, {X2}} is a BDE form AM, while
{{Y0, Z2}, {Y1, Z1}, {Y2, Z0}} is a BDE for MI.

http://rise4fun.com/Z3/bgVv
http://rise4fun.com/Z3/bgVv

224 A. Vandin and M. Tribastone

Here we show how to exploit the expressiveness of IDOL to strengthen the
idea of an evolutionary relationship between networks, by studying whether it
carries over to non-mass-action kinetics as well. The possibility of reasoning using
different hypotheses for the reaction kinetics is of biological relevance because in
different situations one may find mass-action mechanisms (e.g., phosphotrans-
fers) or Hill-type mechanisms (e.g., enzymes) [78]. For instance, much of the util-
ity of Hill kinetics is owed to supporting non-integer exponents. Famously, this
ranges in 2.3–3.0 for haemoglobin. Furthermore, biologists often consider expo-
nents less than 1 in order to describe “anticooperative” behaviour [60]. Since any
rational exponent can be expressed in IDOL we consider the question whether
the mappings are preserved by a BDE for CRNs with Hill semantics.

We discuss an IDOL encoding of CRNs according to the Hill kinetics
(e.g., [78]) in the case of catalytic reactions, i.e., reactions which are in the form
B +C

l−→ D+C with B �= D. We remark that both AM and MI are in this form.
Here, C plays the role of a catalyst, a species promoting the reaction but which is
not affected by it. Species B is the substrate that is modified, becoming D, when
the reaction occurs. Each reaction is labelled with a triple (β1, β2, ν) ∈ Q

3
>0.

Definition 9 (see [21]). A Hill CRN is a pair (S,RS) where RS is a finite set
of catalytic reactions with RS ⊆ N

S
0 × N

S
0 × Q

3
>0.

Definition 10. The IDOL program pS of a Hill CRN is

ẋA = hA :=
∑

ρ
(β1,β2,ν)−−−−−−→π∈RS

ρ=B+C,π=D+C

(πA − ρA)
β1x

ν
B

β2 + xν
B

, for allA ∈ S.

By replacing equal mass-action rates with equivalent Hill triplets, it can be
shown that the BDE carries over. The following are the Hill CRNs obtained
from AM and MI by replacing each original mass action reaction ρ

α−→ π with
the corresponding Hill reaction ρ

α,α,ν−−−→ π:

X0 + X2
α1,α1,ν−−−−−→ X2 + X1

X1 + X2
α2,α2,ν−−−−−→ X2 + X2

X2 + X0
α3,α3,ν−−−−−→ X0 + X1

X1 + X0
α4,α4,ν−−−−−→ X0 + X0

Y0 + Z0
α1,α1,ν−−−−−→ Z0 + Y1

Y1 + Z0
α2,α2,ν−−−−−→ Z0 + Y2

Y2 + Y0
α3,α3,ν−−−−−→ Y0 + Y1

Y1 + Y0
α4,α4,ν−−−−−→ Y0 + Y0

Z2 + Z0
α1,α1,ν−−−−−→ Z0 + Z1

Z1 + Z0
α2,α2,ν−−−−−→ Z0 + Z0

Z0 + Y0
α3,α3,ν−−−−−→ Y0 + Z1

Z1 + Y0
α4,α4,ν−−−−−→ Y0 + Z2

For example, the first reaction of the Hill variant of MI introduces the terms
α1·Y0
α1+Y0

and − α1·Y0
α1+Y0

in the drifts of Y1 and Y0, respectively. It can be shown that

Quantitative Abstractions for Collective Adaptive Systems 225

the coarsest BDE partition of the above Hill variant of MI remains {{Y0, Z2}, {Y1,
Z1}, {Y2, Z0}}. Also, ψEMU = {{X0, Y0, Z2}, {X1, Y1, Z1}, {X2, Y2, Z0}} is an
emulation among the two Hill CRNs. Similarly to the mass action case, we
provide an executable Z3 encoding available at http://rise4fun.com/Z3/f90U to
confirm this.

3.4 Protein Interaction Networks

We hereby consider three of the biochemical networks considered in our previ-
ous work [19] (and also in [20]): a model of pheromone signalling (M1, [71]); a
model of a tumour suppressor protein (M2, [6]); and a MAPK model (M3, [52]).
These are three biologically meaningful chemical reaction networks taken from
the literature given in .net format of the widely used BioNetGen tool [8], ver-
sion 2.2.5-stable. In [19,20] we have proved that FB and BB can be successfully
applied to these and other BioNetGen models, providing the reduction times,
the size of the obtained reduced models, and the speed-up obtained by analysing
them. For each RN (S,R), in the case of FB reductions we considered the trivial
partition {S} (thus yielding the largest bisimulation). Instead, for BB an initial
partition coherent with the initial conditions was chosen, due to the side condi-
tion of BB: two species were put in the same initial block in case of equal initial
conditions, read from the original model specification.

The BioNetGen tool allows the modeller to specify observables of interest,
given in the form of sums of species. When solving the ODEs underlying the
considered model, a plot containing a line per observable is generated, showing
the evolution of the specified cumulative concentrations. Differently from [19,20],
we now study the FB partitions obtained when using initial partitions coherent
with the user-specified observables. These are partitions which guarantee that
the information of interest to the modeller is preserved, hence de facto obtaining
“lossless” FB reductions. We remark that BioNetGen observables might not
specify a partition of the species because: (i) Some species might not appear in
the observables; (ii) Others might appear in more than one observable. However,
it is easy to obtain an observables-preserving initial partition as follows:

1. All species not appearing in any observable are put in a single (sink) partition
block;

2. For each observable, its subset of species not appearing in any other observable
is turned into a partition block;

3. The set of species appearing in more than one observable is partitioned in
blocks of species appearing in (all and only) the same blocks.

As shown in column |Prep.| of Table 1, the 14531 species of M1 are pre-
partitioned in 1345 blocks, the 796 species of M2 are pre-partitioned in 18 blocks,
while the 85 species of M3 are pre-partitioned in 4 blocks. From the table we
also note that, both in terms of reduction time and size of the reduced model,
the pre-partitioning does not affect the FB reduction of M2, while it affects that
of the other two models only slightly.

http://rise4fun.com/Z3/f90U

226 A. Vandin and M. Tribastone

Table 1. FB reductions with and without observations-coherent pre-partitioning.

Original model FB reduction FB reduction with prep.

Id Ref. |R| |S| Red.(s) |R| |S| |Prep.| Red.(s) |R| |S|
M1 [71] 194054 14531 3.88E–1 142165 10855 1345 3.28E–1 147797 12037

M2 [6] 5797 796 1.90E–2 4210 503 18 4.10E–2 4210 503

M3 [52] 487 85 2.00E–3 264 56 4 2.00E–3 362 69

4 Related Work

FDE/FB are special cases of exact ODE lumpability [62], which concerns ODE
aggregations through a linear projection of the state space. While the gen-
eral theory is well-established, in particular for ODEs arising from mass-action
CRNs [72], there are no algorithms for computing these projections, unlike with
the partition refinement algorithms of FDE/FB. As discussed, when the ODE
represents the forward equations of motion of a CTMC, both FDE and FB
correspond to ordinary CTMC lumpability [14]. In addition, in that case the
partition refinement algorithm of FB yields the same time and space complexity
of state-of-the-art algorithms for CTMCs [31,77]. FDE/FB are also related to a
recently proposed notion of equivalence called differential bisimulation [47]. This
is developed for a fragment of Hillston’s PEPA process algebra that is equipped
with an ODE semantics with non-linear minimum-based drifts that approximate
the average evolution of underlying CTMCs with massively parallel computa-
tions [43,45,73]. Differential bisimulation is a relation over the set of constants of
a PEPA model, defined in terms of conditions on the sequential behaviour and
on the compositional structure of processes. It can be shown that differential
bisimulation is a special case of FDE for the ODEs induced by a PEPA process.

BDE/BB are generalisations of the notion of label equivalence for process
algebra with fluid semantics [74]. It relates processes that are equivalent when-
ever their ODE solutions are equal at all time points. Label equivalence is only
a sufficient condition for ODE reduction since it works at a coarser level of
granularity. Indeed, it relates sets of ODE variables, each corresponding to the
behaviour of a sequential process. Instead, BDE/BB relate individual ODE vari-
ables. In addition, no algorithm for computing label equivalence is available.
Analogously to FDE/FB, for ODEs that represent a CTMC we have that BDE
and BB correspond to exact CTMC lumpability [14].

Model reductions have been extensively studied for CRNs in systems biology.
In particular, for protein interaction networks, the combinatorial explosion of the
state space has motived considerable research, e.g., [15,16,19,23–25,34,35]. The
fragmentation approach for the rule-based language κ identifies a coarse-grained
ODE system for models with mass-action semantics through sums of variables;
this is weaker than an equivalence relation over species, because one variable
may appear in more than one block (a fragment) [25,35]. Using the terminology
of [62], fragmentation is a form of improper lumping, as opposed to the notions
of equivalence presented here where a species belongs to a single block.

Quantitative Abstractions for Collective Adaptive Systems 227

SMT has become a cornerstone in the programming languages and in the
verification community, with contributions to program synthesis [41], constraint
programming [53], and symbolic optimization [56]. The combination of SMT
and equivalence relations has been the subject of recent investigations. In [7]
partition-refinement algorithms are proposed to compute equivalences between
terms over arbitrary theories inferred from a set of axioms. Applied to equiv-
alences presented here, these partition-refinement algorithms could be used to
check if a candidate partition is a differential equivalence, but not to compute the
largest equivalence for an IDOL program. In [29] the authors present an SMT-
based approach for the computation of the coarsest ordinary lumpable partition
of a Markov chain, but for a fragment of the PRISM language [54].

Finally, links between ODEs and SMT are established in the formal verifica-
tion community, especially for hybrid systems (e.g., [39,59,67]); however none of
these works considers ODE comparisons and minimizations through equivalence
relations. Bisimulation for dynamical systems have been studied by Pappas [64]
and van der Schaft [69]. These works are similar in spirit to ours, but the setting
is different because the focus is on control systems, i.e., dynamical systems with
internal states, external inputs, and output maps. In that context, bisimula-
tion relates internal states mapped to the same output, i.e., they cannot be told
apart by an external observer. The largest bisimulation is therefore related to the
maximal unobservability subspace of a control system (e.g., [69, Corollary 6.4])
while our largest differential equivalences provide the coarsest partition of ODE
variables that preserves the dynamics.

5 Conclusion

This paper has presented a number of techniques for the automatic reduction of
systems of ordinary differential equations (ODEs), motivated by their popularity
in the modelling and analysis of large-scale dynamical systems such as collective
adaptive systems. The symbolic approach of differential equivalences and the
syntax-driven minimisation through reaction-network (RN) bisimulations offer
a trade-off between expressiveness and efficiency.

Differential equivalences support a rather rich class of non-linear ODE, which
can be analysed by using satisfiability solvers as the underlying engine. In gen-
eral, it is well known that such solvers are more efficient in providing a positive
“sat” result than a negative “unsat”, which is however required to check that a
candidate partition is a differential equivalence. Nevertheless, the current tech-
nology allows us to analyse models of realistic size (see also [21] for further
examples). In the current prototype implementation the SMT solver is used as
a black-box; it would be interesting in the future to consider the development of
domain-specific heuristics that improve the search.

RN bisimulations are particularly efficient since the partition-refinement algo-
rithms run in polynomial time and space; however, currently they support ODE
with derivatives given by multivariate polynomials of order at most two. Nev-
ertheless, they cover an interesting class of systems, including CRNs and affine

228 A. Vandin and M. Tribastone

systems (see also [20] for experiments in large-scale benchmarks). To further
improve efficiency it would be interesting to consider parallelisation techniques;
on a more theoretical viewpoint, an obvious direction for future research is to
extend the bisimulations of higher-order multivariate polynomials.

The forward and backward variants of the presented equivalences are not
comparable in general. This suggests a possible combined use, which has however
not been investigated so far. A better understanding of the relationship between
these two variants may help achieve further reductions.

Much of the efficiency in computing ODE reductions is owed to the fact that
the largest differential equivalences and bisimulations exist and can be computed
via partition-refinement. We argue, however, that there are situations of prac-
tical interest that cannot be cast into this framework. For example, the notion
of emulation that is instrumental to investigate evolutionary aspects of CRNs,
amounts to finding a particular backward bisimulation where each equivalence
class contains exactly one species of the small CRN and at most one species of
the larger CRN. This condition cannot be expressed as a suitable initial partition
to be refined; hence, one is left with having to enumerate all possible partitions
that satisfy these conditions in order to find emulations automatically. However,
this is feasible only for very simple models. Further research is needed to develop
algorithms that aggregate according to more liberal constraints on the desired
equivalence classes.

Finally, we remark that all the techniques presented in this paper are con-
cerned with exact aggregations. In some cases, these may be too strong because
even small perturbations may discriminate ODE variables that have nearby tra-
jectories in practice. This has motivated a large body of work into approximate
notions of equivalence [1,13,42,65]. Preliminary work for models based on ODE
semantics has been carried out in [76] in the case of process algebra; more general
ODE systems are treated in [46,75]. However all these approaches still lack an
algorithm for automatic reduction. Furthermore, they provide a priori bounds on
the approximate aggregation that tend to grow fast with time. Future research
work will be aimed at tackling these two issues.

Acknowledgement. This work was partially supported by the EU project QUANTI-
COL, 600708. The authors thank Luca Cardelli and Max Tschaikowski who co-authored
the papers [19–21] used as background material in this chapter.

References

1. Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis
of probabilistic noninterference. J. Comput. Secur. 12(2), 191–245 (2004)

2. Aoki, M.: Control of large-scale dynamic systems by aggregation. IEEE Trans.
Autom. Control 13(3), 246–253 (1968)

3. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and simi-
larity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories.
In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications,
vol. 185, IOS Press, Amsterdam (2009)

Quantitative Abstractions for Collective Adaptive Systems 229

5. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. Technical
report, Department of Computer Science, The University of Iowa (2010). www.
SMT-LIB.org

6. Barua, D., Hlavacek, W.S.: Modeling the effect of APC truncation on destruction
complex function in colorectal cancer cells. PLoS Comput. Biol. 9(9), e1003217
(2013)

7. Berdine, J., Bjørner, N.: Computing all implied equalities via SMT-based partition
refinement. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS,
vol. 8562, pp. 168–183. Springer, Heidelberg (2014)

8. Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for
rule-based modeling of signal transduction based on the interactions of molecular
domains. Bioinformatics 20(17), 3289–3291 (2004)

9. Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D.,
Loreti, M., Massink, M.: CARMA: collective adaptive resource-sharing Markovian
agents. In: QAPL, pp. 16–31 (2015)

10. Bortolussi, L., Gast, N.: Scalable quantitative analysis: fluid and hybrid approxi-
mations. In: SFM (2016)

11. Bortolussi, L., Latella, D., Massink, M.: Stochastic process algebra and stability
analysis of collective systems. In: De Nicola, R., Julien, C. (eds.) COORDINATION
2013. LNCS, vol. 7890, pp. 1–15. Springer, Heidelberg (2013)

12. Bortolussi, L., Le Boudec, J.Y., Latella, D., Massink, M.: Revisiting the limit
behaviour of “El Botellon”. Technical report (2012). http://infoscience.epfl.ch/
record/179935/

13. van Breugel, F., Worrell, J.: Approximating and computing behavioural distances
in probabilistic transition systems. Theor. Comput. Sci. 360(1–3), 373–385 (2006)

14. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Probab. 31(1), 59–75 (1994)

15. Camporesi, F., Feret, J.: Formal reduction for rule-based models. Electron. Notes
Theoret. Comp. Sci. 276, 29–59 (2011)

16. Camporesi, F., Feret, J., Koeppl, H., Petrov, T.: Combining model reductions.
Electron. Notes Theoret. Comp. Sci. 265, 73–96 (2010)

17. Cardelli, L.: Morphisms of reaction networks that couple structure to function.
BMC Syst. Biol. 8(1), 84 (2014)

18. Cardelli, L., Csikász-Nagy, A., Dalchau, N., Tribastone, M., Tschaikowski, M.:
Noise reduction in complex biological switches. Scientific reports 6, 20214 EP (Feb-
ruary 2016). http://dx.doi.org/10.1038/srep20214

19. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward
bisimulations for chemical reaction networks. In: CONCUR (2015)

20. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven
lumping of differential equations. In: TACAS (2016, to appear)

21. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation
of differential equivalences. In: POPL (2016)

22. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis
of biological systems. TCS 410(33–34), 3065–3084 (2009)

23. Conzelmann, H., Fey, D., Gilles, E.: Exact model reduction of combinatorial reac-
tion networks. BMC Syst. Biol. 2(1), 78 (2008)

24. Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B., Gilles, E.: A
domain-oriented approach to the reduction of combinatorial complexity in signal
transduction networks. BMC Bioinform. 7(1), 34 (2006)

www.SMT-LIB.org
www.SMT-LIB.org
http://infoscience.epfl.ch/record/179935/
http://infoscience.epfl.ch/record/179935/
http://dx.doi.org/10.1038/srep20214

230 A. Vandin and M. Tribastone

25. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differ-
ential semantics of rule-based models: exact and automated model reduction. In:
LICS, pp. 362–381 (2010)

26. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

27. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition systems
for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp.
435–446. Springer, Heidelberg (2009)

28. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. TAAS 9(2), 7:1–7:29 (2014)

29. Dehnert, C., Katoen, J.-P., Parker, D.: SMT-based bisimulation minimisation of
Markov models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013.
LNCS, vol. 7737, pp. 28–47. Springer, Heidelberg (2013)

30. DeMaio, P.: Bike-sharing: history, impacts, models of provision, and future. J.
Publ. Transp. 14(4), 41–56 (2009)

31. Derisavi, S., Hermanns, H., Sanders, W.: Optimal state-space lumping in Markov
chains. Inf. Process. Lett. 87(6), 309–315 (2003)

32. Feng, C., Hillston, J.: Automatic moment-closure approximation of spatially dis-
tributed collective adaptive systems. ACM Trans. Model. Comput. Simul. (to
appear)

33. Feng, C., Hillston, J.: PALOMA: a process algebra for located Markovian agents.
In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 265–280.
Springer, Heidelberg (2014)

34. Feret, J.: Fragments-based model reduction: some case studies. Electron. Notes
Theoret. Comput. Sci. 268, 77–96 (2010)

35. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. Proc. Nat. Acad. Sci. 106(16), 6453–6458 (2009)

36. Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-
based systems. Theoret. Comput. Sci. 431, 137–164 (2012)

37. Fricker, C., Gast, N.: Incentives and redistribution in homogeneous bike-sharing
systems with stations of finite capacity. EURO J. Transp. Logist. 1–31 (2014).
doi:10.1007/s13676-014-0053-5

38. Galpin, V.: Spatial representations and analysis techniques. In: SFM (2016)
39. Gao, S., Kong, S., Clarke, E.: Satisfiability modulo ODEs. In: FMCAD, pp. 105–

112 (2013)
40. Grosu, R., Bartocci, E.: Spatio-temporal model checking. In: SFM (2016)
41. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.

In: PLDI, pp. 62–73 (2011)
42. Gupta, V., Jagadeesan, R., Panangaden, P.: Approximate reasoning for real-time

probabilistic processes. Log. Methods Comput. Sci. 2(1) (2006)
43. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process

algebra. Theoret. Comput. Sci. 411(22–24), 2260–2297 (2010)
44. Hillston, J.: A compositional approach to performance modelling. In: CUP (1996)
45. Hillston, J.: Fluid flow approximation of PEPA models. In: QEST, pp. 33–43,

September 2005
46. Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous agent

types. In: DSN, pp. 1–11 (2013)

http://dx.doi.org/10.1007/s13676-014-0053-5

Quantitative Abstractions for Collective Adaptive Systems 231

47. Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian
process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015)

48. Iwasa, Y., Andreasen, V., Levin, S.: Aggregation in model ecosystems. I. Perfect
aggregation. Ecol. Model. 37(3–4), 287–302 (1987)

49. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Hei-
delberg (2012)

50. Katoen, J., Khattri, M., Zapreev, I.: A Markov reward model checker. In: QEST,
pp. 243–244 (2005)

51. Kermack, W.O., McKendrick, A.: Contribution to the mathematical theory of epi-
demics. Proc. Roy. Soc. Lond. Ser. A Containing Papers Math. Phys. Charact.
115(772), 700–721 (1927)

52. Kocieniewski, P., Faeder, J.R., Lipniacki, T.: The interplay of double phosphory-
lation and scaffolding in MAPK pathways. J. Theor. Biol. 295, 116–124 (2012)

53. Köksal, A.S., Kuncak, V., Suter, P.: Constraints as control. In: POPL, pp. 151–164
(2012)

54. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

55. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

56. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: POPL, pp. 607–618 (2014)

57. Loreti, M., Hillston, J.: Modeling and analysis of collective adaptive systems with
CARMA and its tools. In: SFM (2016)

58. Massink, M., Latella, D., Bracciali, A., Hillston, J.: Modelling non-linear crowd
dynamics in Bio-PEPA. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011.
LNCS, vol. 6603, pp. 96–110. Springer, Heidelberg (2011)

59. Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions
for hybrid systems. In: EMSOFT, pp. 1–10 (2013)

60. Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry, 6th edn. Palgrave
Macmillan, Basingstoke (2013)

61. Norris, J.: Markov Chains. Cambridge Series in Statistical and Probabilistic Math-
ematics. Cambridge University Press, Cambridge (1998)

62. Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of
chemical reaction systems. Chem. Rev. 2(98), 391–408 (1998)

63. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

64. Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)
65. Di Pierro, A., Hankin, C., Wiklicky, H.: Quantitative relations and approximate

process equivalences. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS,
vol. 2761, pp. 508–522. Springer, Heidelberg (2003)

66. Rowe, J.E., Gomez, R.: El Botellon: modeling the movement of crowds in a city.
Complex Syst. 14, 363–370 (2003)

67. Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and
hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 686–702. Springer, Heidelberg (2011)

68. Sattenspiel, L., Herring, D.A.: Simulating the effect of quarantine on the
spread of the 1918–19 flu in Central Canada. Bull. Math. Biol. 65(1), 1–26.
http://dx.doi.org/10.1006/bulm.2002.0317

http://dx.doi.org/10.1006/bulm.2002.0317

232 A. Vandin and M. Tribastone

69. van der Schaft, A.J.: Equivalence of dynamical systems by bisimulation. IEEE
Trans. Autom. Control 49(12), 2160–2172 (2004)

70. Sproston, J., Donatelli, S.: Backward bisimulation in Markov chain model checking.
IEEE Trans. Softw. Eng. 32(8), 531–546 (2006)

71. Suderman, R., Deeds, E.J.: Machines vs. ensembles: effective MAPK signaling
through heterogeneous sets of protein complexes. PLoS Comput. Biol. 9(10),
e1003278 (2013)

72. Toth, J., Li, G., Rabitz, H., Tomlin, A.S.: The effect of lumping and expanding on
kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997)

73. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process
algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)

74. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process
algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp.
380–394. Springer, Heidelberg (2012)

75. Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous nonlin-
ear models with differential hulls. IEEE Trans. Autom. Control. (2015, to appear)

76. Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations
in Markovian process algebra. J. Log. Algebraic Methods Program. 84(2), 238–258
(2015)

77. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010)

78. Voit, E.O.: Biochemical systems theory: a review. ISRN Biomath. 1–53 (2013).
http://dx.doi.org/10.1155/2013/897658897658

http://dx.doi.org/10.1155/2013/897658897658

Aggregate Programming:
From Foundations to Applications

Jacob Beal1(B) and Mirko Viroli2

1 Raytheon BBN Technologies, Cambridge, MA 02138, USA
jakebeal@bbn.com

2 Alma Mater Studiorum–Università di Bologna, Cesena, Italy

Abstract. We live in a world with an ever-increasing density of comput-
ing devices, pervading every aspect of our environment. Programming
these devices is challenging, due to their large numbers, potential for
frequent and complex network interactions with other nearby devices,
and the open and evolving nature of their capabilities and applications.
Aggregate programming addresses these challenges by raising the level
of abstraction, so that a programmer can operate in terms of collections
of interacting devices. In particular, field calculus provides a safe and
extensible model for encapsulation, modulation, and composition of ser-
vices. On this foundation, a set of resilient “building block” operators
support development of APIs that can provide resilience and scalability
guarantees for any service developed using them. We illustrate the power
of this approach by discussion of several recent applications, including
crowd safety at mass public events, disaster relief operations, construc-
tion of resilient enterprise systems, and network security.

Keywords: Aggregate programming · Pervasive computing · Field
calculus · Distributed systems · Domain-specific languages

1 Introduction

For some time now, our world has been undergoing a dramatic transition in
how we relate to computing, as the number of computing devices rises and more
and more of these devices become embedded into our environment (Fig. 1). In
the past, it was reasonable to use a programming model that focused on the
individual computing device, and its relationship with one or more users. Now,
however, it is typically the case that many computing devices are involved in
the provision of any given service, and that each machine may participate in
many overlapping instances of such collective services. Moreover, the increas-
ing mobility and wireless capabilities of some computing devices (e.g., wearable
devices, smart phones, car systems, drones, electronic tags, etc.), means that
many devices have the opportunity to accomplish part or all of their assigned
tasks through peer-to-peer local interactions, rather than by going through fixed
infrastructure such as cellular wireless or the Internet, thereby lowering latency

c© Springer International Publishing Switzerland 2016
M. Bernardo et al. (Eds.): SFM 2016, LNCS 9700, pp. 233–260, 2016.
DOI: 10.1007/978-3-319-34096-8 8

234 J. Beal and M. Viroli

Fig. 1. Our world is increasingly filled with large numbers of computing devices, embed-
ded into the environment and with many opportunities for local interaction as well as
for more traditional location-agnostic interactions over fixed network infrastructure.
Figure adapted from [8].

and increasing resilience to issues with inadequate or unavailable infrastructure,
e.g., during civic emergencies or mass public events.

To effectively program such systems, we need to be able to reliably engi-
neer collective aggregate behaviors. Ordinary programming approaches typically
focus on individual devices, entangling application design with various aspects
of distributed system design (e.g., efficient and reliable communication, robust
coordination, composition of capabilities, etc.), as well as confronting the pro-
grammer with the notoriously difficult and generally intractable “local-to-global”
problem of generating a specified emergent collective behavior from the interac-
tions of individual devices. These problems tend to limit our ability to make use
of the potential of the modern computing environment, as complex distributed
services developed using device-centric programming paradigms tend to suffer
from design problems, lack of modularity and reusability, deployment difficulties,
and serious test and maintenance issues.

Aggregate programming provides an alternate approach, which simplifies the
design, creation, and maintenance of complex distributed systems by raising
the abstraction level from individual devices to potentially large aggregations
of devices. This survey presents an introduction to aggregate programming and
a survey of key points on the current state of the art, updating and synthe-
sizing several prior surveys [7,8,10,11]. Aggregate programming has roots in
many different communities, all of which have encountered their own versions

Aggregate Programming: From Foundations to Applications 235

of the aggregate programming problem and which have between them devel-
oped a vast profusion of domain-specific programming models to address it,
which are briefly surveyed in Sect. 2. Recently, however, there have been a num-
ber of unifying results regarding field-based computational models, which are
reviewed in Sect. 3. These results lay the foundation for a more principled app-
roach, in which general mechanisms for roboust and adaptive coordination are
composed and refined to build domain-specific APIs, following the layered engi-
neering approach reviewed in Sect. 4. Ultimately, this can provide distributed
systems engineers with a simple interface for development of safe, resilient, and
scalable distributed applications, some examples of which are presented in Sect. 5
before turning to discussion of future directions in Sect. 6.

2 Background and General Approach

In many ways, aggregate programming is not a new idea: the importance of
raising the abstraction level for distributed programming has been recognized
previously in a number of different fields, motivating work toward aggregate
programming across a variety of domains, including biology, reconfigurable com-
puting, high-performance computing, sensor networks, agent-based systems, and
robotics, as surveyed in [7].

Despite the wide degree of heterogeneity in applications and context across
these antecedents, the common problems in organizing aggregates have led such
approaches to cluster around a few main strategies: making device interaction
implicit (e.g., TOTA [31], MPI [32], NetLogo [41], Hood [47]), providing means
to compose geometric and topological constructions (e.g., Origami Shape Lan-
guage [33], Growing Point Language [17], ASCAPE [28]), providing means for
summarizing from space-time regions of the environment and streaming these
summaries to other regions (e.g., TinyDB [30], Regiment [34], KQML [23]),
automatically splitting computational behaviour for cloud-style execution (e.g.,
MapReduce [21], BOINC [2], Sun Grid Engine [25]), and providing generalizable
constructs for space-time computing (e.g., Protelis [37], Proto [5], MGS [26]).

These many prior efforts have also evidenced some commonalities in their
strengths and weaknesses, which suggest that, when programming large-scale
distributed systems, it is useful to conform to the following three principles: (i)
mechanisms for robust coordination should be hidden “under-the-hood” where
programmers are not required to interact with them, (ii) composition of mod-
ules and subsystems must be simple, transparent, and with consequences that
can be readily predicted, and (iii) large-scale distributed systems typically com-
prise a number of different subsystems, which need to use different coordination
mechanisms for different regions and times.

From these observations and the commonalities amongst the various prior
approaches has come the generalized approach that we discuss in this paper,
based on field calculus [19,20,46] and its practical instantiation in Protelis [37],
which takes the following view of distributed systems engineering:

236 J. Beal and M. Viroli

Fig. 2. Comparison of device-centric programming of distributed algorithms (a) versus
aggregate programming (b): device-centric programming designs a distributed system
in terms of the (often complex) behaviors and interactions of individual devices; with
aggregate programming, simpler algorithmic building blocks can be scoped and com-
posed directly for the aggregate. Figure adapted from [8,11].

1. the “machine” being programmed is a region of the computational environ-
ment whose specific details are abstracted away (perhaps even to a pure
spatial continuum);

2. the program is specified as manipulation of data constructs with extent across
that region (where regions may be defined either regarding network structure
or regarding continuous space and time); and

3. these manipulations are actually executed by the individual devices in the
region, through local operations and interactions with (spatial or network)
neighbors.

2.1 Example: Distributed Crowd Management

Consider, for example, the architecture of a crowd-safety service, such as might
be distributed on the cell phones of people attending a very large public event,
such as a marathon or a major city festival, as in the scenarios described in [3,36].
Figure 2 compares a traditional device-centric architecture versus an aggregate

Aggregate Programming: From Foundations to Applications 237

programming approach to building a crowd-safety service with four functionali-
ties: estimation of crowd density and distribution based on interaction between
phones and observation of the local wireless environment, alerting of people in or
near dangerously large and dense regions of the crowd (where there is risk of tram-
pling or panic), providing advice for people in the interior of such regions on how to
move to help disperse the dangers, and crowd-aware navigation that can help other
people move around the event while simultaneously avoiding dangerous areas.

With traditional device-centric approaches (Fig. 2(a)), the programmer needs
to simultaneously reason about composition of services within a device, proto-
cols for local device interactions, and also about how the desired complex global
behavior will be produced from such local interactions. With aggregate program-
ming, on the other hand, the system can be readily approached in terms of a set
of distributed modules. A programmer can then compose these modules incre-
mentally to form complete applications simply by specifying where they should
execute and how information should flow between them (Fig. 2(b)). Here, for
example, crowd estimation produces as output a distributed data structure—a
“computational field” [19,20]—mapping from location to crowd density, which
is then an input for both crowd-aware navigation and for the alerting service.
These then produce their own distributed data structures, respectively vectors
for recommended travel and a map of warnings (which is in turn an input for pro-
ducing dispersal advice). The details of protocol and implementation can then
be automatically generated from such compositions of data structures and ser-
vices. Aggregate programming thus promotes the construction of more complex,
reusable, resilient, and composable distributed systems by separating the ques-
tion of which services should be executed and where, from the implementation
details of those services and their coordination.

2.2 Aggregate Programming Layers

Figure 3 shows how aggregate programming can hide the complexity of the
underlying distributed network environment and the problems of distributed
coordination with a sequence of abstraction layers. At the foundation of this app-
roach is field calculus [19,20], a core set of constructs modeling device behavior
and interaction, which is terse enough to enable mathematical proof of equiv-
alence between aggregate specifications and local implementations, yet expres-
sive enough to be universal. The notion of “computational field,” adapted from
physics, makes this particularly well suited for environments with devices embed-
ded in space and communicating with others in close physical proximity, though
it is more generally suitable for any sparsely connected network. Upon this
foundation, we can identify key coordination “building blocks” with desirable
resilience properties, each being a simple and generalized basis element gener-
ating a broad set of programs with desirable resilience properties. Finally, com-
mon patterns for using and composing these building blocks can be captured to
produce both general and domain-specific APIs for common application needs
like sensing, decision, and action, together forming a collective behavior API

238 J. Beal and M. Viroli

Fig. 3. Aggregate programming takes a layered approach to distributed systems devel-
opment: the software and hardware capabilities of particular devices are abstracted by
using them to implement a small universal calculus of aggregate-level field calculus con-
structs. This calculus is then used to implement a limited set of “building block” coor-
dination operations with provable resilience properties, which are in turn wrapped and
combined together to produce user-friendly APIs, both general and domain-specific,
for developing distributed systems. Figure adapted from [8].

suitable for transparent implementation of complex networked services and appli-
cations [8,9,45].

Engineering distributed systems with this approach can thus allow construc-
tion of complicated resilient distributed systems with rather simple specifica-
tions, as we will see in the application examples in Sect. 5. From such a terse
specification, the full complexity of the system is then automatically elaborated:
from the set of resilient coordination operators that were chosen to be used, to
the various ways in which resilience is actually achieved via particular build-
ing blocks or their functional equivalents, then how the aggregate specification
implements each of those building blocks and maps to actions by individual
devices, and finally how particular devices in the potentially heterogeneous net-
work environment actually implement capabilities like sensing, communication,
and localization.

Aggregate Programming: From Foundations to Applications 239

Here, we discuss the incarnation of this approach using Protelis, a field cal-
culus implementation with Java-like syntax and support for first-class aggregate
functions. For full details on Protelis, see its presentation in [37].

3 Field Calculus

The field calculus [19,20,46] is an attempt to capture a set of essential features
that appear across many different aggregate programing approaches. In par-
ticular, this “core calculus” approach captures these features in the syntax and
semantics of a tiny programming language, expressive enough to be universal [12]
yet small enough to be tractable for mathematical analysis. With regards to the
overall view presented in Fig. 3, field calculus forms the second lowest layer,
which is also the point where aggregate programming interfaces with the highly
heterogeneous world of device infrastructure and non-aggregate software services
(together comprising the lowest layer).

At its core is the notion of computational field, a widely-used space-time
programming concept [7] inspired by the notion of fields in physics. In physics,
a field is a function that maps each point in some space-time domain to a scalar
value, such as the temperatures in a room, or a vector value, such as the currents
in the ocean. Computational fields generalize this notion to allow the values to
be arbitrary computational objects on either continuous or discrete domains,
such as a set of messages to be delivered at each device in a network, or XML
descriptors for a set of inventory items to be stocked on the shelves of a store.

Such spatially-extended fields, with values potentially dynamically changing
over time, are then the basic “aggregate” units of values that may be distributed
across many devices in the network. More precisely, a field value φ is a function
φ : D → L that maps each device δ in domain D to a local value � in range L.
Similarly, a field evolution is a dynamically changing field value, i.e., a function
mapping each point in time to a field value (evolution is used here in the physics
sense of “time evolution”). A field computation, then, is any function that takes
field evolutions as input (e.g., from sensors or device information) and produces
another field evolution as its output, from which field values are snapshots. For
example, given an input of a Boolean field mapping a set of “source” devices to
true, an output field containing the estimated distance from each device to the
nearest source device can be constructed by iterative spreading and aggregation
of information, such that the output always rapidly adjusts to the correct values
for the current input and network structure. The field calculus [19,20] succinctly
captures the essence of field computations, much as λ-calculus [14] does for
functional computation and FJ [27] does for object-oriented programming.

3.1 Syntax of Field Calculus

Figure 4 presents field calculus syntax. Following the convention of [27], over-
bar notation denotes metavariables over sequences, e.g., e is shorthand for the
sequence of expressions e1, e2, . . . en (n ≥ 0). A local value � represents the

240 J. Beal and M. Viroli

Fig. 4. Syntax of (higher-order) field calculus, as presented in [20].

value of a field at a given device, which can be any data value c〈�1, · · · , �m〉
(written c when m = 0), such as Booleans true and false, numbers, strings, or
structured values like Pair〈3, Pair〈false, 5〉〉 or Cons〈2, Cons〈4, Null〉〉. Such a
value may also be a function value λ, i.e. a built-in operator o, a user-defined
function f, or an anonymous function (fun (x) e), where x are arguments and
e is the body, in which we assume no free variables exist. Finally, a device δ
can also hold a neighboring field value φ, which maps each neighbor of δ to a
local value � (neighboring field values cannot be expressed directly, only appear-
ing dynamically during computations such as with operator nbr, so they do not
appear in the syntax).

The main entities of the calculus are expressions, each of which defines a
field. An expression can be a local value �, representing a field mapping its entire
domain to value �, a variable x used as function parameter or state variable, or
a composite created using the following constructs:

– Built-in operator call: (e e1 · · · en), where e evaluates to a “point-wise” built-
in operator o, involving neither state nor communication, e.g. mathematical
functions like addition, comparison, and sine, or an environment-dependent
function such as reading a temperature sensor or the 0-ary nbr-range oper-
ator returning a neighboring field mapping each neighbor to an estimate of
its current distance from δ. Expression (o e1 · · · en) produces a field mapping
each δ to the result of applying o to the values at δ of its n ≥ 0 arguments
e1, . . . , en.

– User-defined function call: (e e1 · · · en), where e evaluates to a user-defined
function f, with corresponding declaration (def f(x1 . . . xn) e). Evaluating
(f e1 · · · en) provides a standard (possibly recursive) call-by-value abstraction.

– Anonymous function call: (e e1 · · · en), has the same semantics as user-
defined function calls, except that e evaluates to an anonymous function
(fun (x1 · · · xn) e).

– Time evolution: (rep x w e) is a “repeat” construct for dynamically changing
fields, using a model in which each device evaluates expressions repeatedly
in asynchronous rounds. State variable x initialises to the value of w, then

Aggregate Programming: From Foundations to Applications 241

updates at each step by computing e against the prior value of x. For instance,
(rep x 0 (+ x 1)) counts how many rounds have been computed at each
device.

– Neighboring field construction: (nbr e) captures device-to-device interaction,
returning a field φ that maps each device δ to a neighboring field value,
which in turn maps each neighbor to its most recent available value of e
(realizable e.g., via periodic broadcast). Such neighboring field values can
then be manipulated and summarized with built-in operators, e.g., (min-hood
(nbr e)) maps each device to the minimum value of e amongst its neighbors.

– Domain restriction: (if e0 e1 e2) is a branching construct, computing e1 in
the restricted domain where e0 is true, and e2 in its complement.

To better illustrate the various constructs of field calculus, consider the fol-
lowing code, which estimates distance to devices where source is true, while
avoiding devices where obstacle is true:

(def distance-avoiding-obstacle (source obstacle)
(if obstacle infinity

(rep d infinity (mux source 0
(min-hood+ (+ (nbr-range) (nbr d))))))

coloring field calculus keywords red, built-in functions green, and user-defined
functions blue. In the region outside the obstacle (with the partition conducted
by if), a distance estimate d (established by rep) is computed using built-in
“multiplexing” selector mux to set sources to 0 and other devices to an updated
distance estimate computed using the triangle inequality, taking the minimum
value obtained by adding the distance to each neighbor to its estimate of d
(obtained by nbr). In particular, min-hood+ takes the minimum of all neighbors’
values (excluding the device itself), and mux multiplexes between its second and
third inputs, returning the second if the first is true and the third otherwise.

3.2 Local Semantics and Properties

Any field calculus program can be equivalently interpreted either as an
aggregate-level computation on fields or as an equivalent “compiled” version
implemented as a set of single-device operations and message passing. The full
semantics may be found in [19,20], but the key ideas are simple enough to sketch
briefly here.

Each field calculus program P consists of a set of user-defined function defini-
tions and a single main expression e0. Given a network of interconnected devices
D that runs a program P, “device δ fires” means that device δ ∈ D evaluates
e0. The output of a device computation is a value-tree: an ordered tree of values
tracking the result of computing each sub-expression encountered during evalua-
tion of e0. Each expression evaluation on device δ is performed against the most
recently received value-trees of its neighbors, and the produced value-tree is con-
versely made available to δ’s neighbors (e.g., via broadcast in compressed form)
for their next firing: (nbr e) uses the most recent value of e at the same position

242 J. Beal and M. Viroli

in its neighbors’ value-trees, (rep x w e) uses the value of x from the previous
round, and (if e0 e1 e2) completely erases the non-taken branch in the value-
tree (allowing interactions through construct nbr with only neighbors that took
the same branch, called “aligned neighbors”). A complete formal description of
this semantics is presented in [19,20].

A type system based on the Hindley-Milner type system [18] can then be built
for this calculus [19], which has two kinds of types: local types (for local values)
and field types (for field values), associating to each local value a type L, and type
field(L) to a neighboring field of elements of type L, and correspondingly a type
T to any expression. This type system can then be used to detect semantic errors
in a program (e.g., first expression of a call not evaluating to a function, incorrect
argument types for a call, first argument of if not a Boolean), ensuring that these
localized versions of field calculus programs are guaranteed to observe correct
domain alignment and to terminate locally if the aggregate form terminates, i.e.,
to faithfully implement the desired equivalence relation.

The syntax and semantics of field calculus thus form a provably sound foun-
dation for aggregate programming, ensuring that distributed services expressed
in field calculus can be safely and predictably composed and modulated. At the
same time, the small set of constructs also aids in portability, infrastructure
independence, and interaction with non-aggregate services: the field calculus
abstraction can be supported on any device or infrastructure where these simple
constructs can be implemented, including heterogeneous mixtures of devices with
different sensor, actuator, computation, and communication capabilities, so long
as the devices have some means of interacting. Likewise, non-aggregate software
services, such as other local applications or cloud services, are often complemen-
tary to aggregate services and can be connected with aggregate services simply
by importing their APIs into the aggregate programming environment [37].

4 From Theory to Pragmatic System Engineering

Field calculus may be universal, but it is also too low level to be readily used for
building complex distributed services. First, like other core calculi, in order to be
compact enough to be readily manipulated for mathematical results, field calculus
is extremely terse and generalized, as well as lacking any of the “syntactic sugar”
features that make a language more usable for programming. Second, because it is
universal, field calculus can express any program, including many that have none
of the safety or resilience properties that we desire in distributed systems.

To make aggregate programming practically usable as an approach, we must
further raise the level of abstraction. This is done first by implementing field cal-
culus into a full programming language, Protelis [37], which makes it more usable
via syntactic sugar and methods for interfacing with other existing libraries and
frameworks. Protelis contains a complete implementation of the field calculus,
hosted in Java via the Xtext language generator [22], with syntax transformed to
an equivalent Java-like syntax with a number of useful syntactic sugar features
such as variable definition, and taking advantage of Java’s reflection mechanisms

Aggregate Programming: From Foundations to Applications 243

to make it easy to import a large variety of useful libraries and APIs for use in
Protelis. All further code will thus be given in Protelis, rather than field calculus.

The level of abstraction is then raised by identifying a composable system
resilient “building block” operators, which provide core functions of coordination
as well as resilience and safety guarantees. Finally, these building blocks are
composed into both general and domain-specific APIs, which may further exploit
optimized equivalents of particular operators for improved performance in more
restricted use cases.

4.1 Building Blocks for Resilient Coordination

We first begin to raise the level of abstraction from field calculus toward an
effective programming environment for resilient distributed systems by identi-
fying a system of highly general and guaranteed composable “building block”
operators for the construction of resilient coordination applications. This new

Fig. 5. Illustration of four “building block” operators for construction of resilient dis-
tributed services: information-spreading (G), information aggregation (C), aggregation
over time (T), and partition into non-interacting subspaces (if).

244 J. Beal and M. Viroli

layer (the middle layer in Fig. 3) is formed by careful selection of coordination
mechanisms that are all (i) self-stabilizing, meaning that they can reactively
adjust to changes in input values or the structure of the network, (ii) scalable
to potentially very large networks, and (iii) preserve these resilience properties
when the building blocks are composed together to form more complex coordi-
nation services. Critically, this means that it can be proven that any service built
using only these “building blocks” will implicitly inherit such resilience [45].

One such set of operators has been identified already [8,45]: a set of three
highly generalized coordination operators, G, C and T, along with field calcu-
lus’ if and built-ins (Fig. 5). Each of these building blocks captures a family of
frequently used strategies for achieving flexible and resilient decentralized behav-
ior, hiding the complexity of using the low-level constructs of field calculus. The
three building blocks are defined as:

– G(source,init,metric,accumulate) is a “spreading” operation generaliz-
ing distance measurement, broadcast, and projection, which takes four fields
as inputs: source (a Boolean indicator field), init (initial values for the out-
put field), metric (a function providing a map from each neighbor to a dis-
tance), and accumulate (a commutative and associative two-input function
over values). It may be thought of as executing two tasks: first, computing
a field of shortest-path distances from the source region according to the
supplied function metric, and second, propagating values up the gradient
of the distance field away from source, beginning with value initial and
accumulating along the gradient with accumulate. For instance, if metric is
physical distance, initial is 0, and accumulate is addition, then G creates
a field mapping each device to its shortest distance to a source.

– C(potential,accumulate,local,null) is an operation that is complemen-
tary to G: it accumulates information down the gradient of a supplied
potential field. This operator takes four fields as inputs: potential (a
numerical field), accumulate (a commutative and associative two-input func-
tion over values), local (values to be accumulated), and null (an idempo-
tent value for accumulate). At each device, the idempotent null is combined
with the local value and any values from neighbors with higher values of the
potential field, using function accumulate to produce a cumulative value
at each device. For instance, if potential is exactly a distance gradient com-
puting with G in a given region R, accumulate is addition, and null is 0,
then C collects the sum of values of local in region R.

– T(initial,floor,decay) deals with time, whereas G and C deal with
space. Since time is one-dimensional, however, there is no distinction between
spreading and collecting, and thus only a single operator. This operator
takes three fields as inputs: initial (initial values for the resulting field),
floor (corresponding final values), and decay (a one-input strictly decreas-
ing function over values). Starting with initial at each node, that value
gets decreased by function decay until eventually reaching the floor value,
thus implementing a flexible count-down, where the rate of the count-down
may change over time. For instance, if initial is a pair of a value v and a

Aggregate Programming: From Foundations to Applications 245

timeout t, floor is a pair of the blank value null and 0, and decay takes
a pair, removing the elapsed time since previous computation from second
component of the pair and turning the first component to null if the first
reached 0, then T implements a limited-time memory of v.

def G(source, initial, metric, accumulate) {
rep(dv <- [Infinity, initial]) {

mux(source) {
[0, initial]

} else {
minHood([nbr(dv.get(0)) + metric.apply(),

accumulate.apply(nbr(dv.get(1)))])

}
}.get(1)

}

Fig. 6. Protelis implementation of operator G

Although there are only a few operators identified in [45], they are so general
as to cover, individually or in combination, a large number of the common coor-
dination patterns used in design of resilient systems. More importantly, when
appropriately implemented in field calculus (e.g., Fig. 6), it has been shown
that this system of operators, plus if and built-in operators, are elements of
a “self-stabilizing language” where every program is a guaranteed to be self-
stabilizing [45]. This means that distributed systems built from these operators
enjoy a number of resilience properties: stabilization: if the input fields even-
tually reach a fixed state, the same happens for the output field; resilience: if
some messages get lost during system evolution, or some node temporarily fails,
this will not affect the final result; and adaptability: if input fields or network
topology changes, the output field automatically adapts and changes correspond-
ingly. These operators and their compositions are all also scalable for operation
on potentially very large networks. Furthermore, this system of resilient opera-
tors can be readily expanded, simply by proving that any additional operators
are also members of the self-stabilizing language, thereby proving that such an
additional operator has the same resilience properties and can be safely com-
posed with all previously identified operators.

4.2 Pragmatic Distributed Systems Engineering APIs

Building block operators are for the most part still too abstract and generalized
to meet the pragmatic needs of typical applications programmers. To better meet
these needs, various applications and combinations of “building block” operators
can be captured into libraries, thereby forming a pragmatic and user-friendly
API while still retaining all of the same resilience properties. Such libraries,

246 J. Beal and M. Viroli

both general and domain-specific, form the penultimate layer in Fig. 3, upon
which application code (the highest layer) is actually written.

For example, a number of useful functions related to information diffusion
and distributed action can be constructed from various configurations of operator
G (along with built-ins). One such common computation is estimating distance
from a set of source devices, which we have previously discussed as part of the
field calculus example in Sect. 3. Implemented as an application of G, it may be
expressed in Protelis as:

def distanceTo(source) {
G(source, 0, () -> {nbrRange}, (v) -> {v + nbrRange})

}

Applying G in a different way implements another common coordination action,
broadcasting a value across the network from a source:

def broadcast(source, value) {
G(source, value, () -> { nbrRange }, (v) -> {v})

}

Other G-based operations include construction of a Voronoi partition and a “path
forecast” that marks paths that cross an obstacle or region of interest.

Similarly, functions related to collective perception of information can be
implemented using operator C, such as accumulating a summary of all the values
of a variable in a region to a given sink device:

def summarize(sink, accumulate, local, null) {
C(distanceTo(sink), accumulate, local, null)

}

or computing the variable’s average or maximum value in that region. Likewise,
state and memory operations may be implemented using operator T, such as
holding a value until a specified timeout:

def limitedMemory(value, timeout) {
T([timeout, value], [0, false],

(t) -> {[t.get(0) - dt, t.get(1)]}).get(1)
}

These general API functions can then be combined together, just as in any
other programming environment, to create higher level general libraries and more
domain-specific libraries. For example, a common “higher-level” general opera-
tion is to share a summary throughout a region, which can be implemented by
applying broadcast to the output of summarize. Likewise, in the domain of
spatially-embedded services like the crowd-safety application discussed above,
a useful building block is to organize an environment into dynamically defined
“management regions,” which can be implemented by combining state and par-
tition functions.

Aggregate Programming: From Foundations to Applications 247

A mixture of such libraries at various levels of specificity and abstraction
thus forms the actual programming environment that a typical developer would
use for engineering the distributed coordination aspects of a resilient distributed
system, while implementing the purely local or cloud-based aspects of the service
using more standard programming tools for those aspects of the system. Because
the APIs are ultimately built on the foundations of resilient operators and the
field calculus, however, it is guaranteed that any service developed in this manner
also implicitly obtains the properties of resilience and safe composition from the
lower layers of the abstraction hierarchy.

4.3 Improving Performance by Equivalent Substitutions

Finally, just as the performance of more conventional programs can be improved
by changing the implementation of key libraries (e.g., changing a generic hash
table implementation to one better balanced for an application’s expected
table size and access patterns), the performance of aggregate programs can be
improved by substituting the generic building block operators by more special-
ized variants with better performance in particular contexts and patterns of
use [45].

Fig. 7. Although field calculus can express any coordination mechanism, many useful
mechanisms are difficult or impossible to express within a sublanguage that is known
to be self-stabilizing. Any coordination mechanism that is asymptotically equivalent to
a mechanism in the self-stabilizing subset, however, can be safely substituted without
compromising safety or resilience guarantees. Figure adapted from [45].

Specifically, these substitutions make use of the mathematical relationship
shown in Fig. 7: due to the functional composition model and modular proof
used in establishing the self-stabilizing calculus, any coordination mechanism
that can be guaranteed to self-stabilize to the same result as a building block
operator can be substituted for that building block without affecting the self-
stabilization of the overall program, including its final output. This allows cre-
ation of a “substitution library” of high-performance alternatives that can be
used in certain circumstances and in those circumstances are more efficient or
have more desirable dynamics. More formally:

248 J. Beal and M. Viroli

Definition 1 (Substitutable Function). Given functions λ, λ′ with same
type, λ is substitutable for λ′ iff for any self-stabilizing list of expressions e,
(λ e) always self-stabilizes to the same value as (λ′ e).

The basic idea is that the property of self-stabilization specifies only the
values after a function converges, so as long as two functions have the same
converged values, they can be swapped without affecting any of the resilience
properties based on self-stabilization. A building block operator with undesirable
dynamical properties can thus be replaced by a more specialized coordination
mechanism that improves overall performance without impairing resilience.

Three examples of substitution, given in [45], are:

– Distance estimation via G may converge extremely slowly when the network
contains some devices that are close together [6]. Much faster alternatives
exist, however, such as CRF-Gradient [6] and Flex-Gradient [4], and are
known to self-stabilize to the same values as G distance estimation.

– Value collection with C is fragile: since it collects values over a spanning
tree, even small perturbations can cause loss or duplication of values, with
major transient impact on its results. When the accumulation is idempotent
(e.g., logical AND) or separable (e.g., addition), this can be mitigated by
accumulating across multiple paths.

– Low-pass filtering a signal is often useful for reducing noise. One common
method, an exponential backoff filter, is substitutable with tracking a value
via T, meaning that low-pass filters of this sort can be freely incorporated
into programs without affecting their resilience.

When used in an application, such substitutions can markedly improve appli-
cation performance. For example, consider an extremely simple distributed ser-
vice for live estimation of crowd opinions of acts at a festival, implemented using

Fig. 8. Example crowd opinion feedback application is incrementally improved from
its baseline performance (red) by first replacing T with an exponential filter (green),
then C with multi-path summation (blue), and finally G with Flex-Gradient (black).
Figure adapted from [45]. (Color figure online)

Aggregate Programming: From Foundations to Applications 249

G to set up a potential field partitioning space into zones of influence for each
act, C to sum a binary field of feedback, and T to track values:

(def add-range (v) (+ v (nbr-range)))

(def opinion-feedback (acts feedback)

(T-filter

(C (G acts 0 nbr-range add-range) sum feedback 0)))

In simulations of this scenario from [45], each incremental substitution of a
generic function with a more optimized function improves the accuracy of the
application: Fig. 8 shows how this application’s performance can then be incre-
mentally improved by first replacing T with an exponential filter, then C with
multi-path summation, and finally G with Flex-Gradient.

Likewise, optimizations at lower layers of the framework have the potential
improve the efficiency of field calculus implementations and the efficiency and
simplicity of the implementation on particular devices and the interface with
other applications and services. This layered approach to aggregate programming
may thus serve as a framework for developing an efficient software ecosystem for
engineering complex distributed systems, analogous to existing ecosystems for
web or cloud development.

5 Application Examples

With the aid of appropriate domain-specific APIs, aggregate programming can
greatly simplify the development and composition of distributed applications
across a wide variety of domains. These can involve embedded devices and appli-
cations that are explicitly tied to space, but also can apply to more traditional
location-agnostic computer networks. This section illustrates the breadth of pos-
sible applications by presenting examples across four domains: crowd safety at
mass public events, UAV planning and control, construction of resilient enter-
prise systems, and network security.

5.1 Crowd Safety at Mass Events

One example, explored in [8], of an environment where aggregate programming
is particularly applicable is at mass public events, such as marathons, outdoor
concerts, festivals, and other civic activities. In these highly crowded environ-
ments, the combination of high densities of people and large spatial extent can
often locally overwhelm the available infrastructure, causing cell phones to drop
calls, data communications to become unreliable, etc. The physical environment
is often overwhelmed as well, and the movement of high numbers of people in
crowded and constrained environments can pose challenging emergent safety
issues: in critically overcrowded environments, even the smallest incident can
create a panic or stampede in which many people are injured or killed [43].

250 J. Beal and M. Viroli

Fig. 9. A crowd safety service, restricted to run on personal devices (colored) in a
simulation of approximately 2500 personal and embedded devices at the 2013 Vienna
marathon, detects regions of potentially dangerous crowd density (red) and dissemi-
nates warnings to nearby devices (yellow). Figure adapted from [8]. (Color figure online)

Between smart-phones and other personal devices, however, the effective den-
sity of deployed infrastructure is much higher, since more people means more per-
sonal devices. Aggregate programming can be used to coordinate these devices,
without the need for centrally deployed infrastructure, to provide services such
as for crowd safety, to help identify and diffuse potentially dangerous situations.
For example, crowding levels can be conservatively estimated by first estimat-
ing the local density of people as ρ = |nbrs|

p·πr2·w , where |nbrs| counts neighbors
within range r, p estimates the proportion of people with a participating device
running the app and w estimates fraction of walkable space in the local urban
environment, then comparing this estimate with “level of service” (LoS) rat-
ings [24], taking LoS D (> 1.08 people/m2) to indicate a crowd and LoS E
(> 2.17 people/m2) in a large group (e.g., 300 + people) to indicate potentially
dangerous density. Potential crowding danger can thus be detected and warnings
disseminated robustly with just a few lines of Protelis code dynamically deployed
and executed on individual devices [20,37]:

def dangerousDensity(p, r) {
let mr = managementRegions(r*2, () -> { nbrRange });
let danger = average(mr, densityEst(p, r)) > 2.17 &&

summarize(mr, sum, 1 / p, 0) > 300;
if(danger) { high } else { low }

}

def crowdTracking(p, r, t) {
let crowdRgn = recentTrue(densityEst(p, r)>1.08, t);
if(crowdRgn) { dangerousDensity(p, r) } else { none };

}

def crowdWarning(p, r, warn, t) {
distanceTo(crowdTracking(p,r,t) == high) < warn

}

Aggregate Programming: From Foundations to Applications 251

Figure 9 shows an Alchemist [38] simulation of such a crowd safety service
running in an environment of pervasively deployed devices: 1479 mobile personal
devices, each following a smart-phone position trace collected at the 2013 Vienna
marathon, as discussed in [3,36], and 1000 stationary devices, all communicating
via once per second asynchronous local broadcasts with 100 meters range, with
all devices participating in infrastructure services but the crowd safety service
restricted to run only on the mobile personal devices. Building this program via
aggregate programming ensures that it is resilience and adaptive despite its very
short length, allowing it to effectively estimate crowding and distribute warnings
while executing on a large number of highly mobile devices.

5.2 Humanitarian Assistance and Disaster Relief Operations

Humanitarian assistance and disaster relief operations are another example of
an environment where distributed coordination is particularly valuable, due to
existing infrastructure being damaged or overwhelmed. With appropriate mech-
anisms for distributed coordination, however, “tactical cloud” resources can sub-
stitute for fixed infrastructure in support of assistance and relief operations. For
example, [40,44] present an architecture of “edge nodes” equivalent to a 1/2-rack
of servers in sturdy self-contained travel cases, which can be effectively mounted
and operated even in small vehicles such as HMMVWs or towed trailers. Con-
tinuing advances in computing capability mean that such edge nodes actually
offer a startling amount of capability: 10 such units can be equivalent to an
entire cargo-container portable data center. The challenge is how to effectively
coordinate and operate mission critical services across such devices, particularly
given that the communications network between nodes has limited capacity and
changes frequently as nodes are moved around and also given that individual
edge nodes may be taken offline at any time due to evolving mission require-
ments, failures, accidents, or hostile action. Aggregate programming can simplify
the development of resilient services for the tactical cloud environment, whereas
existing methods tend to push application development toward a “star” topology
where edge nodes interact mostly indirectly by means of their communications
with a larger infrastructure cloud.

Consider, for example, a representative service example of assisting in the
search for missing persons following a major disaster such as tsunami. This is
a good example of a distributable mission application, since it involves data
at several different scales: missing person queries (e.g., providing a photo of a
missing loved one) and responses (e.g., a brief fragment of a video log showing a
missing person) are fairly lightweight and can be spread between servers fairly
easily, while video logs (e.g., from helmet- and vehicle-mounted cameras) are
quite large and are best to search locally.

An implementation of this coordination service requires less than 30 lines of
Protelis [37] code: this implementation distributes missing person queries, has
them satisfied by video logged by other teams, then forwards that information
back toward the team where the query originated. Figure 10 shows a screenshot

252 J. Beal and M. Viroli

Fig. 10. Simulation of tactical cloud coordination in a humanitarian response scenario:
tactical cloud nodes in survey team vehicles collectively help families find missing per-
sons following a natural disaster: a query lodged with one team is opportunistically
disseminated from its cloud node (red), to be compared against the video logs stored
locally in each team’s node. The desired information is located at a distant node (blue),
then opportunistically forwarded to other nodes (green) until it can reach either the
original source or some other node where the response can be received, thereby satis-
fying the query. (Color figure online)

from simulation of this scenario in the Alchemist simulator [38]. In this sce-
nario, a group of eleven survey teams are deployed amphibiously, then move
around through the affected area, carrying out their survey mission over the
course of several days. Each team hosts a half-rack server as part of their equip-
ment, coordinating across tactical networks to collectively form a distributed
cloud host for mission applications, such as searching video logs for missing per-
sons and collating survey data. The distributed service implementation oppor-
tunistically disseminates queries, such that they end up moving implicitly by a
combination of forwarding and taking advantage of vehicle motions to ferry data
across gaps when there is no available connectivity. At each tactical cloud node,
the query is executed against its video logs, and any matches are forwarded by
the same opportunistic dissemination and marked off as resolved once the results
of the service have been delivered to the person who requested assistance.

5.3 Resilient Enterprise Systems

Aggregate programming can also be applied to networks that are not closely
tied to space, such as enterprise service networks, as in the work on distrib-
uted recovery of enterprise services presented in [15]. Management of small- to
medium-scale enterprise systems is a pressing current problem (Fig. 11), since
these systems are often quite complex, yet typically managed much more primi-
tively than either individual machines (which are simpler and more uniform) or

Aggregate Programming: From Foundations to Applications 253

Fig. 11. Small- to medium-sized enterprises often have complex networks with many
services and servers, but are not large enough to have significant administrative
resources to devote to customization or to benefit from economies of scale. Figure
adapted from [15].

large-scale datacenters (which can invest in high-scale or custom solutions). As
a result, small and medium enterprises tend to have poor resilience and to suffer
much more disruptive and extensive outages than large enterprises [1].

In [15], aggregate programming is used to address the common problem of
safely and rapidly recovering from failures in a network of interdependent ser-
vices, for which typical industry practice is to shut the entire system down
and then restart services one at a time in a “known safe” order. The solu-
tion presented in [15], Dependency-Directed Recovery (DDR), uses Protelis [37]
to implement a lightweight network of daemon processes that monitor service
state, detecting dependencies (e.g., via methods such as in [13,29,39,42]) and
controlling services to proactively bring down only those services with failed
dependencies, then restart them in near-optimal time (Fig. 12). This system is
realized with management daemons implemented Java, each hosting a Protelis
VM executing the following simple coordination code:

// Collect state of monitored service from service manager daemon
let status = self.getEnvironmentVariable("serviceStatus");

let serviceID = self.getEnvironmentVariable("serviceID");

let depends = self.getEnvironmentVariable("dependencies");

let serviceDown = status=="hung" || status=="stop";

// Compute whether service can safely be run (i.e. dependencies are satisfied)
let liveSet = if(serviceDown) { [] } else { [serviceID] };
let nbrsLive = unionHood(nbr(liveSet));

let liveDependencies = nbrsLive.intersection(depends);

let safeToRun = liveDependencies.equals(depends);

// Act based on service state and whether it is safe to run
if(!safeToRun) {

254 J. Beal and M. Viroli

if(!serviceDown) {
self.stopService() // Take service down to avoid misbehavior

} else { false } // Wait for dependencies to recover before restarting
} else {

if(serviceDown) {
self.restartService() // Safe to restart

} else { false } // Everything fine; no action needed
}

Fig. 12. Example of dependency-directed recovery in a service network, showing status
run as green, stop as blue, and hung as red. Following failure of some set of services
(a), other services that depend on them shut themselves down (b). As failed services
restart, services that depend on them restart incrementally (c), until the entire service
network has recovered (f). Figure adapted from [15].

Aggregate Programming: From Foundations to Applications 255

With this program, any failure leads to a sequence of shutdowns, following
dependency chains from failed services to the services that depend on them.
Complementarily, when a service’s dependencies start running again, that ser-
vice restarts, becoming part of a wave of restarts propagating in parallel up the
partial order established by dependencies.

Analysis of this system shows that it should produce distributed recovery in
near-optimal time, slowed only be communication delays and the update period
of the daemons. Experimental validation in emulated service networks of up to 20
services verifies this analysis, as well as showing a dramatic reduction in down-
time compared to fixed-order restart, and allowing many services to continue
running uninterrupted even while recovery is proceeding.

5.4 Network Security

For a final example, consider the value of effective and resilient coordination
in network security. Improvements in virtualization technology have made it
possible to trace and record the state evolution of an entire service or server,
which can allow checkpointing of key points in process history, so that if attacks
or faults are later detected the process can be “rewound” to a known-safe state
and re-run with a dynamic patch or with the bad interaction edited out of the
flow [16,35]. Executing such mechanisms, however, requires that interactions be
able to be tightly monitored and ordered, which is often quite difficult and costly
for networked services.

Taking an aggregate programming perspective, however, we may recognize
that when interactions between services can be monitored, as in many networked
services, a partial order of events based on the sending and receiving of mes-
sages can be substituted for the total order otherwise required for checkpointing
or rewind and replay. To enable this, each service in the network takes local
checkpoints every time that it sends a message or processes a message that it
has received. A send/receive pair between two interacting services may then be
interpreted as a directed graph edge, from send to receive, and the union of these
directed edges with directed edges expressing the local order of local checkpoints
on each server forms an distributed acyclic directed graph that can be safely
interpreted as a partial order over events. A distributed checkpoint can then be
computed emergently using distributed graph inference to compute the closure
of graph succession on a set of local events (e.g., a set of faults or attacks), rewind
executed by coordinated deletion of this subgraph, and replay executed by re-
executing the incoming edges to the subgraph. Critically, this does not require
any sort of synchronization between services, as well as allowing recovery to take
place asynchronously, with any service not affected by possible contamination
able to run uninterrupted and other services being able to run again as soon as
they themselves are free of possible contamination.

Using aggregate programming to implement this partial order approach, coor-
dination for rewind and replay can be implemented in less than 100 lines of
Protelis [37]. Figure 13 shows an example screenshot from a rewind and replay
system running on a network of emulated services, in the process of editing out

256 J. Beal and M. Viroli

Fig. 13. Screenshot of distributed rewind and replay isolating and eliminating contam-
ination (yellow machines) from an attack on a service network: following detection of an
injected attack on a service (red box), potentially contaminated services (yellow box)
suspend, trace potential contamination, and begin rewinding potentially contaminated
interactions. Meanwhile, adjacent unaffected services (blue box) temporarily suspend
operations to prevent spread of contamination while non-adjacent services (green box)
continue to operate normally. (Color figure online)

an injected attack. Following detection of an injected attack on a service (e.g.,
via [16,35]), potentially contaminated services suspend, trace potential contam-
ination, and begin rewinding potentially contaminated interactions. Meanwhile,
adjacent unaffected services temporarily suspend operations as a “firebreak”
against further spread of contamination, while non-adjacent services continue to
operate normally.

6 Summary and Future Directions

This review has presented a summary of the aggregate programming approach to
distributed systems engineering, including a review of its theoretical foundations
in field calculus, how resilience can be guaranteed through composable “building
blocks,” and how these can be combined and refined to make effective APIs for
engineering distributed applications across a wide range of domains. Overall, the
aggregate programming approach offers the potential for complex distributed
services to be specified succinctly and treated as coherent objects that can be
safely encapsulated, modulated, and composed together, toward the ultimate
goal of making distributed systems engineering as routine as ordinary single-
device programming.

Aggregate Programming: From Foundations to Applications 257

From this present state, four key directions for future work are:

– Further development of the theoretical foundations of aggregate program-
ming, particularly with regards to mobile devices and the relationship between
continuous environments and discrete networks of devices.

– Expansion of resilience results, including expansion of the set of building
blocks and extension to a broader range of resilience properties, particularly
regarding dynamical properties and feedback systems.

– Pragmatic improvements to the infrastructure and integration of aggregate
programming, including expansion of libraries and APIs to more capabili-
ties and more domains, integration with other pragmatic concerns such as
security, optimizing usage of energy and other resources, and development of
“operating system” layers for aggregate and hybrid aggregate/cloud architec-
tures, as well as improvements to Protelis or other aggregate programming
implementations.

– Developing applications of aggregate programming for a variety of prob-
lem domains, and transition of these applications into useful real-world
deployments.

Our world is increasingly a world of computational aggregates, and methods
such as these are the only way that we are likely to be able to keep engineering
tractable, safe, and resilient in the increasingly complex interweaving of the
informational and physical worlds, and our increasing dependence upon such
distributed systems in the infrastructure of our civilization.

Acknowledgment. This work has been partially supported by the EU FP7 project
“SAPERE - Self-aware Pervasive Service Ecosystems” under contract No. 256873
(Viroli), by the Italian PRIN 2010/2011 project “CINA: Compositionality, Inter-
action, Negotiation, Autonomicity” (Viroli), and by the United States Air Force
and the Defense Advanced Research Projects Agency under Contract No. FA8750-
10-C-0242 (Beal). The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views, opinions, and/or findings contained in this article are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views
or policies of the Department of Defense or the U.S. Government. Approved for public
release; distribution is unlimited.

References

1. Aberdeen Group: Why mid-sized enterprises should consider using disaster
recovery-as-a-service, April 2012. http://www.aberdeen.com/Aberdeen-Library/
7873/AI-disaster-recovery-downtime.aspx, Retrieved 13 July 2015

2. Anderson, D.P.: Boinc: a system for public-resource computing and storage. In:
Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing,
pp. 4–10. IEEE (2004)

http://www.aberdeen.com/Aberdeen-Library/7873/AI-disaster-recovery-downtime.aspx
http://www.aberdeen.com/Aberdeen-Library/7873/AI-disaster-recovery-downtime.aspx

258 J. Beal and M. Viroli

3. Anzengruber, B., Pianini, D., Nieminen, J., Ferscha, A.: Predicting social den-
sity in mass events to prevent crowd disasters. In: Jatowt, A., Lim, E.-P.,
Ding, Y., Miura, A., Tezuka, T., Dias, G., Tanaka, K., Flanagin, A., Dai, B.T.
(eds.) SocInfo 2013. LNCS, vol. 8238, pp. 206–215. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-319-03260-3 18

4. Beal, J.: Flexible self-healing gradients. In: ACM Symposium on Applied Comput-
ing, pp. 1197–1201. ACM, New York, March 2009

5. Beal, J., Bachrach, J.: Infrastructure for engineered emergence in sensor/actuator
networks. IEEE Intell. Syst. 21, 10–19 (2006)

6. Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In:
Proceedings of ACM SAC 2008, pp. 1969–1975. ACM (2008)

7. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Mernik, M. (ed.) Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, Chap. 16, pp. 436–501. IGI
Global (2013). A longer version available at: http://arxiv.org/abs/1202.5509

8. Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of
things. IEEE Comput. 48(9), 22–30 (2015). http://jakebeal.com/Publications/
Computer-AggregateProgramming-2015.pdf

9. Beal, J., Viroli, M.: Building blocks for aggregate programming of self-organising
applications. In: Eighth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshops, SASOW 2014, London, United Kingdom, 8–12
September, 2014, pp. 8–13 (2014). http://dx.doi.org/10.1109/SASOW.2014.6

10. Beal, J., Viroli, M.: Formal foundations of sensor network applications. SIGSPA-
TIAL Spec. 7(2), 36–42 (2015)

11. Beal, J., Viroli, M.: Space-time programming. Philos. Trans. R. Soc. Part A 73,
20140220 (2015)

12. Beal, J., Viroli, M., Damiani, F.: Towards a unified model of spatial computing.
In: 7th Spatial Computing Workshop (SCW 2014), AAMAS 2014, Paris, France,
May 2014

13. Chen, X., Zhang, M., Mao, Z.M., Bahl, P.: Automating network application depen-
dency discovery: experiences, limitations, and new solutions. In: OSDI, vol. 8, pp.
117–130 (2008)

14. Church, A.: A set of postulates for the foundation of logic. Ann. Math. 33(2),
346–366 (1932)

15. Clark, S.S., Beal, J., Pal, P.: Distributed recovery for enterprise services. In: 2015
IEEE 9th International Conference on Self-Adaptive and Self-Organizing Systems
(SASO), pp. 111–120, September 2015

16. Clark, S.S., Paulos, A., Benyo, B., Pal, P., Schantz, R.: Empirical evaluation of
the a3 environment: evaluating defenses against zero-day attacks. In: 2015 10th
International Conference on Availability, Reliability and Security (ARES), pp. 80–
89. IEEE (2015)

17. Coore, D.: Botanical Computing: A Developmental Approach to Generating Inter-
connect Topologies on an Amorphous Computer. Ph.D. thesis, MIT (1999)

18. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Sym-
posium on Principles of Programming Languages, POPL 1982, pp. 207–212. ACM
(1982). http://doi.acm.org/10.1145/582153.582176

19. Damiani, F., Viroli, M., Beal, J.: A type-sound calculus of computational fields.
Sci. Comput. Program. 117, 17–44 (2016)

http://dx.doi.org/10.1007/978-3-319-03260-3_18
http://arxiv.org/abs/1202.5509
http://jakebeal.com/Publications/Computer-AggregateProgramming-2015.pdf
http://jakebeal.com/Publications/Computer-AggregateProgramming-2015.pdf
http://dx.doi.org/10.1109/SASOW.2014.6
http://doi.acm.org/10.1145/582153.582176

Aggregate Programming: From Foundations to Applications 259

20. Damiani, F., Viroli, M., Pianini, D., Beal, J.: Code mobility meets self-organisation:
a higher-order calculus of computational fields. In: Graf, S., Viswanathan, M.
(eds.) FORTE 2015. LNCS, vol. 9039, pp. 113–128. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-19195-9 8

21. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

22. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: OOPSLA, pp. 307–309. ACM (2010)

23. Finin, T., Fritzson, R., McKay, D., McEntire, R.: Kqml as an agent communication
language. In: Proceedings of the Third International Conference on Information
and Knowledge Management, CIKM 1994, pp. 456–463. ACM, New York (1994).
http://doi.acm.org/10.1145/191246.191322

24. Fruin, J.: Pedestrian and Planning Design. Metropolitan Association of Urban
Designers and Environmental Planners (1971)

25. Gentzsch, W.: Sun grid engine: towards creating a compute power grid. In: Pro-
ceedings of the First IEEE/ACM International Symposium on Cluster Computing
and the Grid, pp. 35–36. IEEE (2001)

26. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: Computational models for
integrative and developmental biology. Technical report 72–2002, Univerite d’Evry,
LaMI (2002)

27. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

28. Inchiosa, M., Parker, M.: Overcoming design and development challenges in agent-
based modeling using ascape. Proc. Nat. Acad. Sci. U.S.A. 99(Suppl. 3), 7304
(2002)

29. Lou, J.G., Fu, Q., Wang, Y., Li, J.: Mining dependency in distributed systems
through unstructured logs analysis. ACM SIGOPS Operating Syst. Rev. 44(1),
91–96 (2010)

30. Madden, S.R., Szewczyk, R., Franklin, M.J., Culler, D.: Supporting aggregate
queries over ad-hoc wireless sensor networks. In: Workshop on Mobile Comput-
ing and Systems Applications (2002)

31. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: the tota approach. ACM Trans. Softw. Eng. Methodologies 18(4), 1–56
(2009)

32. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Version 2.2, September 2009

33. Nagpal, R.: Programmable Self-Assembly: Constructing Global Shape using
Biologically-inspired Local Interactions and Origami Mathematics. Ph.D. thesis,
MIT (2001)

34. Newton, R., Welsh, M.: Region streams: functional macroprogramming for sen-
sor networks. In: First International Workshop on Data Management for Sensor
Networks (DMSN), pp. 78–87, August 2004

35. Paulos, A., Pal, P., Schantz, R., Benyo, B., Johnson, D., Hibler, M., Eide, E.: Iso-
lation of malicious external inputs in a security focused adaptive execution envi-
ronment. In: 2013 Eighth International Conference on Availability, Reliability and
Security (ARES), pp. 82–91. IEEE (2013)

36. Pianini, D., Viroli, M., Zambonelli, F., Ferscha, A.: HPC from a self-organisation
perspective: the case of crowd steering at the urban scale. In: 2014 International
Conference on High Performance Computing Simulation (HPCS), pp. 460–467,
July 2014

http://dx.doi.org/10.1007/978-3-319-19195-9_8
http://doi.acm.org/10.1145/191246.191322

260 J. Beal and M. Viroli

37. Pianini, D., Beal, J., Viroli, M.: Practical aggregate programming with protelis.
In: ACM Symposium on Applied Computing (SAC 2015) (2015)

38. Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of
computational systems with Alchemist. J. Simul. 7, 202–215 (2013).
http://www.palgrave-journals.com/jos/journal/vaop/full/jos201227a.html

39. Popa, L., Chun, B.G., Stoica, I., Chandrashekar, J., Taft, N.: Macroscope: end-
point approach to networked application dependency discovery. In: Proceedings
of the 5th International Conference on Emerging Networking Experiments and
Technologies, pp. 229–240. ACM (2009)

40. Simanta, S., Lewis, G.A., Morris, E.J., Ha, K., Satyanarayanan, M.: Cloud com-
puting at the tactical edge. Technical report CMU/SEI-2012-TN-015, Carnegie
Mellon University (2012)

41. Sklar, E.: Netlogo, a multi-agent simulation environment. Artif. Life 13(3), 303–311
(2007)

42. �Lgorzata Steinder, M., Sethi, A.S.: A survey of fault localization techniques in
computer networks. Sci. Comput. Program. 53(2), 165–194 (2004)

43. Still, G.K.: Introduction to Crowd Science. CRC Press, Boca Raton (2014)
44. Suggs, C.: Technical framework for cloud computing at the tactical edge. Technical

report, US Navy Program Executive Office Command, Control, Communications,
Computers and Intelligence (PEO C4I) (2013)

45. Viroli, M., Beal, J., Damiani, F., Pianini, D.: Efficient engineering of complex self-
organizing systems by self-stabilising fields. In: IEEE International Conference on
Self-Adaptive and Self-Organizing Systems (SASO), pp. 81–90. IEEE, September
2015

46. Viroli, M., Damiani, F., Beal, J.: A calculus of computational fields. In: Canal, C.,
Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 114–128. Springer, Heidelberg
(2013)

47. Whitehouse, K., Sharp, C., Brewer, E., Culler, D.: Hood: a neighborhood abstrac-
tion for sensor networks. In: Proceedings of the 2nd International Conference on
Mobile Systems, Applications, and Services. ACM Press (2004)

http://www.palgrave-journals.com/jos/journal/vaop/full/jos201227a.html

Author Index

Arbab, Farhad 1

Beal, Jacob 233
Bortolussi, Luca 61

Ciancia, Vincenzo 156

Galpin, Vashti 120
Gast, Nicolas 61
Ghezzi, Carlo 36

Hillston, Jane 83

Kappé, Tobias 1

Latella, Diego 156
Loreti, Michele 83, 156

Massink, Mieke 156

Nigam, Vivek 1

Talcott, Carolyn 1
Tribastone, Mirco 202

Vandin, Andrea 202
Viroli, Mirko 233

	Preface
	Contents
	Formal Specification and Analysis of Robust Adaptive Distributed Cyber-Physical Systems
	1 Introduction
	2 Desiderata for Soft Agents
	3 The Soft Agent Formal Framework
	3.1 Introduction to Rewriting Logic and Maude
	3.2 Key Sorts and Functions for Agent State
	3.3 Agents and Configurations
	3.4 Rules

	4 Case Studies
	4.1 Soft Constraints
	4.2 doTask Template
	4.3 The Patrol Bot Case Study
	4.4 Patrol Bot Scenarios
	4.5 Surveillance Drone Case Study

	5 Conclusion and Future Perspectives
	References

	Dependability of Adaptable and Evolvable Distributed Systems
	1 Introduction and Motivations
	2 Reference Framework
	3 A Case Study
	4 Modeling and Verification Preliminaries
	4.1 Discrete Time Markov Chains
	4.2 Formally Specifying Requirements

	5 Supporting Self-adaptation via Run-Time Verification
	5.1 Run-Time Efficient Parametric Model Checking

	6 Achieving Safe Dynamic Software Update
	7 Conclusions
	References

	Mean-Field Limits Beyond Ordinary Differential Equations
	1 Introduction
	2 The Classical Mean Field Framework
	2.1 Population Continuous-Time Markov Chains
	2.2 Example: SIR Epidemic Spreading
	2.3 Classic Mean Field Equations

	3 Non-continuous Dynamics and Uncertainties
	3.1 The Differential Inclusion Limit
	3.2 Application to Discontinuous Dynamics
	3.3 Imprecise and Uncertain Models

	4 Hybrid Mean Field Limits
	4.1 Stochastic Hybrid Systems
	4.2 From PCTMC to SHS
	4.3 Extensions of the Hybrid Limit Framework

	5 Related Work and Examples
	6 Conclusion
	References

	Modelling and Analysis of Collective Adaptive Systems with CARMA and its Tools
	1 Introduction
	2 CARMA: Collective Adaptive Resource-Sharing Markovian Agents
	2.1 A Running Example
	2.2 A Gentle Introduction to CARMA

	3 CARMA Semantics
	3.1 Operational Semantics of Components
	3.2 Operational Semantics of Collectives
	3.3 Operational Semantics of Systems

	4 CARMA Implementation
	4.1 CARMA Specification Language
	4.2 CARMA Eclipse Plug-In

	5 Carma Tools in Action
	6 Concluding Remarks
	References

	Spatial Representations and Analysis Techniques
	1 Introduction
	2 Representations for Dynamic Modelling
	2.1 Scalable Modelling and Analysis Techniques
	2.2 Introducing Space
	2.3 Discrete Space Illustrated
	2.4 Continuous Space Illustrated
	2.5 Summary

	3 Discrete-Space Modelling Techniques
	3.1 Spatial Parameters and Regularity
	3.2 Neighbours and Neighbourhoods
	3.3 Techniques for Individual Discrete-Space Models
	3.4 Pair Approximation: Spatial Moment Closure Based on Structure
	3.5 Techniques for Population Discrete-Space Models
	3.6 Aggregate Moment Closure: Spatial Moment Closure Based on Averages
	3.7 Multi-scale Techniques Based on Differences in Rates
	3.8 Applications of Discrete Space Models

	4 Continuous-Space Modelling Techniques
	4.1 Techniques for Individual Continuous-Space Models
	4.2 Techniques for Population Continuous-Space Models
	4.3 PDE-Based Analysis of Discrete-Space Models
	4.4 Fluid Approximation and Spatial Discretisation Applied to Agent-Based Continuous Space Models
	4.5 Applications of Continuous Space

	5 Other Approaches to Modelling Space
	5.1 Crowding
	5.2 Hybrid Approaches

	6 Conclusion
	References

	Spatial Logic and Spatial Model Checking for Closure Spaces
	1 Introduction
	2 Closure Spaces, Topology and Graphs
	2.1 Topological Spaces
	2.2 Closure Spaces
	2.3 Graphs as Closure Spaces
	2.4 Quasi-discrete Closure Spaces
	2.5 Paths in Closure Spaces
	2.6 Distance Spaces and Metric Spaces
	2.7 Hierarchy of Closure Spaces

	3 Modal Logics
	3.1 Modal Logics
	3.2 Modal Logics of Space

	4 Spatial Logic for Quasi-discrete Closure Spaces
	5 Spatial Model Checking
	6 Spatio-Temporal Logic of Closure Spaces
	7 Spatio-Temporal Model Checking
	8 Case Studies on Collective Adaptive Systems
	8.1 Bike Sharing
	8.2 Bus Clumping in Frequent Bus Services

	9 Outlook and Future Work
	References

	Quantitative Abstractions for Collective Adaptive Systems
	1 Introduction
	2 Background
	2.1 Differential Equivalences
	2.2 Symbolic Minimisation
	2.3 Reaction Networks
	2.4 Partition-Refinement Algorithms for RNs

	3 Case Studies
	3.1 Crowd Dynamics
	3.2 Multi-community Epidemiology
	3.3 Evolutionary Biology
	3.4 Protein Interaction Networks

	4 Related Work
	5 Conclusion
	References

	Aggregate Programming: From Foundations to Applications
	1 Introduction
	2 Background and General Approach
	2.1 Example: Distributed Crowd Management
	2.2 Aggregate Programming Layers

	3 Field Calculus
	3.1 Syntax of Field Calculus
	3.2 Local Semantics and Properties

	4 From Theory to Pragmatic System Engineering
	4.1 Building Blocks for Resilient Coordination
	4.2 Pragmatic Distributed Systems Engineering APIs
	4.3 Improving Performance by Equivalent Substitutions

	5 Application Examples
	5.1 Crowd Safety at Mass Events
	5.2 Humanitarian Assistance and Disaster Relief Operations
	5.3 Resilient Enterprise Systems
	5.4 Network Security

	6 Summary and Future Directions
	References

	Author Index

