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Preface

“Environmental Modeling using MATLAB® ” by Ekkehard Holzbecher is
an excellent publication and a novel approach covering the intersection of
two important, growing worlds — the world of environmental modeling and of
mathematical software.

Environmental modeling is a science that uses mathematics and comput-
ers to simulate physical and chemical phenomena in the environment (e.g.,
environmental pollution). This science was initially based on pen-and-paper
calculations using simple equations. In the last 50 years, with the develop-
ment of digital computers, environmental models have become more and more
complex, requiring often numerical solutions for systems of partial differential
equations.

Mathematical software, such as MATLAB®) , has been developed in the
last two decades. These packages have been particularly successful for users of
personal computers. Mathematical software provides a set of tools for solving
equations both analytically and numerically. This is a major improvement in
comparison to the programming tools (e.g., FORTRAN) previously used by
scientists. Mathematical software offers extremely valuable and cost-effective
tools that improve the productivity of the programmer by at least an order
of magnitude. The use of these tools also minimizes the risk of programming
errors. In addition, mathematical software offers unique visualization tools
that allow the user to immediately visualize and often animate simulation
results.

Scientists who become familiar with a tool like MATLAB® will never go
back to previous ways of computer programming.

The book “Environmental Modeling using MATLAB®) ” provides a clear,
comprehensive, and very instructive introduction to the science of environ-
mental modeling, and more importantly, includes the MATLAB® codes
for the actual solutions to the environmental equations. MATLAB®) codes
are listed in the book and also included as more complete versions in an
attached CD.
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I highly recommend this book to both beginners and expert environmental
professionals. The book will be particularly useful to those scientists who have
postponed the learning and using mathematical software. This book will open
a new world to them!

Paolo Zannetti
President, The EnviroComp Institute
Editor of Book Series on Environmental Modeling



Foreword

The book has two aims:

A. to introduce basic concepts of environmental modeling and
B. to exercise the application of current mathematical software packages.

To the target group belong all natural scientists who are dealing with
the environment: engineers from process and chemical engineering, physicists,
chemists, biologists, biochemists, hydrogeologists, geochemists, ecologists. . .!

As the book is concerned with modeling, it inevitably demands some math-
ematical insight. The book is designed to

1. be a door opener to the field for novices without any background knowl-
edge of environmental modeling and of MATLAB®) , and

2. to surprise those, who have some expertise, with advanced methods which
they have not been aware of.

For this book MATLAB®) was chosen as the computer tool for modeling,
because

i. it is powerful, and
ii. it is available at most academic institutions, at all universities and at the
research departments of companies.

Other mathematical products could have been selected from the market,
which would perform similarly well for most application problems presented
in the various chapters. But MATLAB(®) is rather unique in it’s strong capa-
bilities in numerical linear algebra.

There are twenty chapters in the book. The first chapters are concerned
with environmental processes and their simulation: (1) transport, consisting of
advection, diffusion and dispersion, (2) sorption, (3) decay or degradation, (4)
reaction, either kinetic or thermodynamic. Following aim (B) there are sub-
chapters inserted for the introduction of MATLAB® modeling techniques.
The first part of the book ends with chapters on ordinary differential equations
and parameter estimation (inverse modeling).
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The second part of the book starts with chapters on flow modeling. Flow, if
present, is an important, but mostly also complex part within an environmen-
tal compartment. Core MATLAB®) allows simple flow set-ups only. Therefore
the focus is on potential flow, which has applications in hydro (water) and
aero (air) -dynamics as well as in porous media (seepage and groundwater).
Concepts of MATLAB®) are deepened within these chapters. At the very end
special topics appear: image processing and geo-referencing, graphs, linear
systems, the phase space and graphical user interfaces.

Berlin, December 2006
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De groei van de reken — en geheugencapaciteit van computers is nog steeds
indrukwekkend, maar de spectaculaire ontwickelingen zien we momenteel toch
gebeuren of het gebiet van de software. Geladen met moderne wiskundpro-
gramma’s zijn computers allang geen domme nummerkrakers meer, en de
toekomst ligt weer helemaal open voor methoden die een groter appel doen
doen op de menselijke geest. In dit artikel willen we ... laten zien hoe analytis-
che formules ... hanteerbaaar worden, door gebruik te maken van — het klinkt
tegenstrijdig — het numerieke wiskundepakket MATLAB.

(Maas K./ Olsthoorn T., Snelle oudjes gaan MATLAB, Stromingen, Vol. 3,
No. 4, 21-42, 1997; in Dutch)

The growth of performance and storage capacity of computers is still im-
pressive, but we see the most spectacular development in the field of software.
Equipped with modern mathematical packages computers are not stupid num-
ber crunchers any more, and the future lies again wide open for methods,
which appeal more to the human mind. In this contribution we show...how
analytical formulae become manageable by using — it sounds contradictory -
the numerical mathematical tool MATLAB®).

(translated by E.H)
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Primer to Modeling with MATLAB®)



1

Introduction

1.1 Environmental Modeling using MATLAB®)

There are various types of models in the environmental sciences, and surely
there is no unique opinion about the essence of an environmental model. Differ-
ences may mainly concern the scope of the models and the modeling methods.
Concerning the scope, this book is relatively open; i.e. examples from differ-
ent branches of environmental science and technology are included, mainly
from the hydrosphere and the geosphere, and also from the biosphere and the
atmosphere. However, the examples are selected for demonstration purposes
and can in no way represent the vast variety of phenomena and approaches,
which can be met in publications and studies of all types of environmental
systems.

Concerning the methods, the book does not represent the entire field ei-
ther. In this book modeling is process-oriented and deterministic. These two
terms characterize almost all presented methods, which, according to many
opinions, represent the most important approach to understand environmen-
tal systems. There are environmental problems, for which other approaches
not tackled here work more successfully. Statistical or stochastic methods are
not mentioned, for example. Data processing, either graphical or numerical,
as for example in Geo-Information Systems (GIS), appears rudimentary in
this book.

Processes are in the focus of the presented approach. In the modeling con-
cept of this book processes can be of physical, chemical or biological nature.
The reproduction of biological species is a process, death is another; degrada-
tion of biochemical species, or decay of radioactive species are other examples.
Some relevant processes are explained in detail: diffusion, dispersion, advec-
tion, sorption, reactions, kinetic and/or thermodynamic and others.

A view into journal or book publications shows that models of the treated
kind, process-oriented and deterministic, are applied to different environmen-
tal compartments, to different phases and to different scales, as well as to
multi-phase and multi-scale problems. There are models of the entire globe,
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of earth atmosphere and oceans, of the global atmosphere, of the sea, of rivers,
lakes and glaciers, of watersheds, of the soil, of terrestrial or aquatic sediments,
of aquifers, and of parts of streams, and so forth. There are models of techni-
cal devices for environmental purposes, in addition. Experimental set-ups in
laboratories are simulated in order to understand relevant processes.

The methods presented in this book are deterministic, throughout. A
search for any statistics would be in vain. The description of processes is trans-
lated into mathematical terms. Often the approach leads to differential equa-
tions, which are conditions concerning the change of a variable, like concentra-
tion or population density, in space and time. Nowadays the solution of such
equations is not as tedious as in former times. Using core MATLAB®), prob-
lems in 0 and 1 space dimensions can be solved comfortably. Core MATLAB®)
is also convenient for solving 2 and 3-dimensional problems with analytical
solutions. For more complex modeling in more than one dimension, toolboxes,
especially the MATLAB®) partial differential toolbox, can be recommended.

The aim of the book is to introduce basic concepts of environmental mod-
eling. Starting from basic concepts the problems are transformed into mathe-
matical formulations. Strategies for the solution of the mathematical problems
on the computer are outlined. The main aim of the book is to communicate the
entire path of such a modeling approach. At some points algorithmic details
will be omitted for the general aim. Who is interested strictly in computer
algorithms, will be better served with a book on numerics, applied mathemat-
ics or computational methods. It is important that the modeler has a basic
understanding of the underlying numerics. There is no need, however, to dive
so deep into the algorithms that one would be able to program them oneself.
In fact, it is an advantage of the chosen software that modeling tasks, which
could be handled only by people with profound programming knowledge and
skills, become now available to a wider audience.

Who is addressed? In a broader sense everyone is addressed, who is dealing
with or is interested in the simulation of environmental systems on a com-
puter. In a considerable part of the book concepts of environmental modeling
are introduced, starting from basic principles, tackling differential equations
and numerical solutions. In another similarly big part of the book special
implementations are introduced and described. If someone is very familiar
with another mathematical software, the book may be of help too, as most
of the described models can also be realized using other maths computer
programs.

There are several good and excellent books on environmental model-
ing and on MATLAB®. Richter (1985) deals with ecological systems and
with time dependencies (but no space dependencies), as well as Deaton &
Winebrake (1999) using STELLA®?!. Shampine et al. (2003) also present
MATLAB® modeling of ordinary differential equations; concerning appli-
cations they do not address environmental modeling particularly; concerning

! See: http://www.iseesystems.com/
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methods, they do not address partial differential equations. Gander & Hrebicek
(1997) offer little to the specialized environmental modeler, although some of
the presented mathematical tools could be applied to environmental problems.
Christakos et al. (2002) focus on the connection of time dependent simulation
and GIS using MATLAB®. McCuen (2002) treats statistical methods (which
do not appear here) for modeling hydrologic change. Cantrell & Cosner (2004)
examine spatial ecology via reaction-diffusion models, without reference to
any specific software package. Lynch (2005) addresses scientists and engineers
in his general introduction to numerical methods without preference for any
specific software and with few references to applied environmental model-
ing. In his introduction to MATLAB®) Kiusalaas (2005) addresses engineers
in general. The topic of Zimmerman (2004) is chemical process simulation
using FEMLAB? code. Hornberger & Wiberg (2005) have the hydrologist’s
perspective on numerical methods. Trauth (2006) focuses on image- and data-
processing, as well as statistical methods for geoscientists. Finlayson (2006)
deals with the chemical aspects and gives an introduction to MATLAB®) as
one of several modeling tools. All these books® differ concerning scope and
methods; and none of them has the same constellation of scope and methods,
as it is presented in this book.

The book is divided into twenty chapters which differ concerning scope
and complexity. The first ten chapters form a primer on fundamental concepts
and basic environmental modeling. All of the model examples presented are
0- or 1-dimensional. In the further ten chapters more complex models, as
for example spatial 2D, are outlined with an explanation of the underlying
methods. Concepts of flow modeling are introduced.

In this book the focus on basic ‘core’ MATLAB®? is intended. There is
the hope to address a wider audience, as not all readers may have access to
the complete palette of MATLAB®) toolboxes. On the other hand, there are
lots of powerful commands in core MATLAB® and novice users might be
confused being confronted with more specialized tools. It turns out that this
is not a severe restriction, as most basic tasks, which are of interest to the en-
vironmental modeler, can be performed using core MATLAB®). For advanced
higher dimensional and coupled problems the MATLAB®) partial differential
equation toolbox has to be used, or COMSOL alternatively. COMSOL has
developed a multi-physics software environment, which can be applied with
MATLAB® in the background, and which is also known under the former
name FEMLAB.

Although other mathematical codes have developed a similar extension
from a special purpose module to a toolbox for mathematical calculations

2 Now COMSOL; see: http://www.comsol.com/

3 There are numerous other books on MATLAB®), which could not all be
checked by the author. The reader can get a list on the MathWorks Website
http://www.mathworks.com/support/books

4 For this book MATLAB version 7, release 14 was mainly used. Thanks to Math-
Works for providing access to the most recent MATLAB®) versions during the
work on the book.
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in general, matrix manipulation is the backbone and stronghold of the
MATLAB®) package and explains its strong competitiveness. Therefore sub-
chapter 1.2 gives a brief reminder of basic matrix operations.

The book is accompanied by a CD-ROM containing advanced and final
versions of the program files described in the text. The Mathworks logo

4\

appears where MATLABG®) files of the CD-ROM are referenced.

The terms ‘modeling’ and ‘simulation’ are synonymously in the concerned
scientific and technical literature. However, the term ‘model’ appears to be
more general, encompassing all types of attempts to capture one or more
aspects of a real system, and is therefore preferred in this book. The term
‘simulation’ also fits to the presented approach, as it suggests that pro-
cesses which are relevant for the behavior of a system are included in the
computer simulation. In the sequel the term is used for time-dependent
dynamics.

The book contains relatively simple models throughout. It is not the case
that complex models constructed by MATLAB® don’t exist, but they are
not appropriate for an introduction into modeling techniques. For such an
aim models should be as simple as possible, even more, when novice modelers
are addressed.

Usually the extensive work with a model leads to renewed extensions,
which turn simple models into complex ones almost as a rule. Not all models
are improved by doing this. Jorgensen (1994) envisages the connection be-
tween model complexity and knowledge, gained by the model, as shown in
Fig. 1.1. Simple models can be improved by extensions, but there is a certain
peak position after which further extensions do not add to the knowledge —
rather quite the contrary. An improved model design increases the quality
of the model (lets take gained knowledge as a quality measure), but further
extensions of the improved model may finally lead to a situation in which the
increase of model complexity is counter-productive.

-o-—reference
knowledge .
—&—improved
o—0-0—0-4
o e
/0/ ‘6\
-4 ®,
/ N\,
/° =
Y
\
. Q
0 complexity ™
0

Fig. 1.1. Model evaluation: knowledge gained vs. complexity
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The model evaluation study of Constanza & Sklar (1985) provides a plot
similar to Fig. 1.1, but with ‘articulation’ on the xz-axis and ‘effectiveness’ on
the y-axis. Chwif & Barretto (2000) envisage a similar picture, putting ‘level
of detail’ on the x-axis and ‘model confidence’ on the y-axis. All these terms
can be taken as different terms for the complexity of a model on one side and
its performance on the other side.

The method, how to construct complex models, is another topic which is
left out in the book. The major drawback of complex models is the increased
number of parameters, sometimes to a drastical extend. The situation may
be worsened by the fact that many new parameters are usually difficult to
obtain or have to be determined by parameter estimation runs with the model.
Another drawback may appear, if the model becomes very sensitive to one or
more parameters, i.e. that relatively small changes of a parameter induce a
tremendous effect on the output results. A complex model which depends
sensitively on numerous unknown parameters can surely not be used as a
predictive tool.

However, complex models have their justification. Whether they can be
successful also depends on the architecture, design and construction itself,
especially on the analytical and/or numerical techniques.

A complex model concerning sediment phosphorus and nitrogen pro-
cesses is presented by Harper (2000): the SNAPP model is constructed in
MATLAB®) and contains even a graphical user interface. As another exam-
ple Luff et al. (2001) present a MATLAB library to calculate pH distributions
in marine systems. Kumblad et al. (2003) construct an ecosystem model of
the environmental transport and fate of carbon-14 in a bay of the Baltic Sea,
just to give another example. A complex MATLABG) surface fluid flow model
for rivers, streams and estuaries is presented by Martin & Gorelick (2005).

It is not the aim of modeling to set up complex models. The opposite of
that statement is a more suitable goal: the aim of modeling is to find simple
models that explain some aspects of a real system. Unfortunately that aim
turns out to be a tricky one, because every real system appears to be complex,
as long as there is ample knowledge about the driving mechanisms. Moreover,
if a system is complex, a simple model can explain a few aspects at the most
and that may nor be enough to solve a real problem.

1.2 Introduction to MATLAB®)

MATLAB®) is a mathematical software, originated and mainly developed by
mathematicians (Moler 2004). The name envisages a laboratory for matrix
calculations, where the mathematical term of a matrix refers to an array of

numbers such as
1 2
a-(12) "
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Linear algebra is the name of the mathematical field in which calculations
with matrices are treated. Some basic terms are listed in the appendix of this
chapter.

While MATLAB® was designed for numerical linear algebra in the begin-
ning, it has become a tool for all types of mathematical calculations in the
meantime. Nowadays, MATLAB®) has been applied in nearly every field of
scientific or technical calculations. In the academic branch there is almost no
university where MATLABQ®) is not available.

With MATLAB® innumerable types of mathematical operations can be
performed. Of course, numerous linear algebra calculations are available, such
as inversion of matrices, eigenvalue and eigenvector determination, which
can be applied to perform various tasks, for example, the solution of sys-
tems of linear equations. One may perform basic statistics, numerical dif-
ferentiation and integration, evaluate all types of functions, solve dynami-
cal systems and partial differential equations, estimate parameters and so
forth. All this is part of core MATLAB®), a collection of basic mathematical
tools®.

Before some details of linear algebra are examined, an introduction into
the work with MATLABQ®) is necessary. This should be read by novices, but
can be skipped by those who have already worked with the program.

Getting Started with MATLAB®

When MATLABQE) is opened, the user obtains a graphical user interface on
the display, as it is shown in Fig. 1.2, containing several windows. The main
window, to start with, is the ‘Command Window’, where commands are given
and answered. In the command window the MATLAB®) prompt ‘>>’ stands
at the position where the user command is shown on the display, during and
after entering.

In order to start type the command:

a=2

Press the return button and the program gives an answer, here with the in-
formation that a variable a was created in the machine containing the value 2:

a =
2

A new prompt appears after the answer of the system, in order to enable
the user to give the next command. Note that only the line after the last
prompt in the command window can be used for a new command. The former
lines remain in the command window to allow the user to have an overview

5 Core MATLAB®) can be extended by numerous toolboxes for special purposes,
for details see: http://www.mathworks.com/products/product listing; most in-
teresting for environmental modeling, as it is tackled here, are the optimization
toolbox and the partial differential equations toolbox.
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+) MATLAB
File Edt “iew ‘Web “Window Help

O ﬁ‘ 4Bz v ca | h‘ ? |CureriDiret:Icry’.|elrnaﬂab lIJ

Cormmand Window

D” E m | ﬁﬂ sudc;lp_,aﬁe vI Using Toolbox Path Cache. Type "help toolbox_path cache”
MName Jize E To get started, select "MATLAR Help™ from the Help memu.
@a 1xl

>> a = 2

a =

5 |

Fig. 1.2. Appearance of MATLAB®) graphical user interface

on the previous work and the produced answers. Confirm that the ; as closing
character of the command, for example

a = 2;

prevents that the answer is shown in the command window.

The command window is good for an introduction into MATLAB®).
Finally, the work with M-files replaces extensive operating in the com-
mand window (see Chap. 2.5). Nevertheless, for certain tasks, the com-
mand window will remain the most direct and simple way to compute with
MATLAB®.

Aside from the command window, the user may select numerous other
views of the desktop. The different options are depicted in Fig. 1.3. Very
important is the workspace view, where all variables of the current session
are visible and directly available. The workspace of the just started session,
shown in Fig. 1.2, is depicted on the left side of the figure. The workspace
appears only if the view is selected in the ‘Desktop’ submenu, as shown in
Fig. 1.3. Using who or whos in the command window is an alternative way to
access the workspace (and its contents).

Here, a is the only variable in the workspace which is of ‘double’ type and
of 1 x 1 size (a single variable and not a ‘real’ matrix). A double-click on the
block-panel symbol, left of the variable name in the workspace, delivers an
array editor, in which the contents of variables can be viewed directly. In the
simple example case the result is given in Fig. 1.4. With the array editor it
is not only possible to view variables, but also to change them. The user can
easily explore the use of the editor on her/his own.

To mention is the ‘command history’ view, in which all commands are
listed. An example with one command only is listed in Fig. 1.5. The user
can initiate the repeated command, mostly with some workspace variables
changed, by double-click in the command history window. It is an alternative
method to copy a former command in the history view and to paste it
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<) MATLAB
File Edit Debug | Desktop  Window Help

N - ‘ # By A Undock Command Window by yrert
Deskkop Layout b

Shortcuts (2] How
—e Save Lavouk,,,

: a
m Organize Layouts,

e [ el
' m "B command Window E

Matne L v Command History
v Current Directory

v Workspace
¥ Help
Profiler

v Toolbar
v Shortcuts Toolbar
v Titles

Fig. 1.3. Submenu-entries of desktop main entry, listing all possible views of the
desktop

in the command window. The user may wish to perform some alterations
in the command and can do that easily, before the command is executed
after pressing the return button. The up-arrow and down-arrow keys of the
keyboards offer an alternative, allowing a sequential loop through former
commands.

Matrices in MATLAB®

The name ‘MATLAB’ is a combination of ‘matrix’ and ‘laboratory’. With
respect to the suite of various mathematical tools, which are made available by
recent versions of the software, one might think the origin of the MATLAB®)
software is numerical linear algebra.

B & '] i ‘ Elacli:IElase v| |EE| -] » x
1 2 3 4 5 5
1 2 EI
| 2 |
3
4 -
'1| I Pl

Fig. 1.4. MATLAB®) array editor
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Command History

5-- 4/29/06 6:41 PM --%

Fig. 1.5. MATLAB® command history window

A matriz is a 2-dimensional array of numbers, for which examples are
given right below. Matrices can be specified directly by the user. Entries in
lines are separated by blanks; lines are separated by ¢;’.

A=1[123; 45 6]

A =
1 2 3
4 5 6

The example matrix has 2 rows and 3 columns. Matrix dimensions are 2
and 3. A is a 2 x 3 matrix. It is thus non-square, as a square matriz has the
same number of rows and columns. Once a matrix is constructed, its elements
can be called by using usual round brackets, which is exemplified by:

A(2,1)

ans =
4

The element in the second row and first column of A is 4. As no variable
is used in the command, MATLAB® uses the notation ans = in order to
indicate an answer to the given command. Sub-matrices of a matrix can be
called by using ‘:’, as the following example illustrates:

A(2,2:3)

ans =
5 6

Elements in the second line, second and third column are given in the
answer. The ‘:” without any numbers is used to indicate the entire range. In
the example, the entire first column of A is given

AC:,1)

There are several special commands to input special types of matrices.
Vectors are multi-element matrices, for which either the number of rows or
the number of columns is 1. Row vectors with constant increment can be
specified as follows:
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v = [2:0.5:5]

V =
2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000
v is a row vector, containing all values between 2 and 5 with increment

0.5%. A column can easily be obtained by using the transponation operation,
which in MATLABG®) is performed by the *:

v)
ans =
2.0000
2.5000
3.0000
3.5000
4.0000
4.5000
5.0000
Matrices containing 1s are given by:
B = ones(2,3)
B =
1 1 1
1 1 1

Matrices containing zeros are produced analogously:
B = zeros(3,1)

B =
0
0
0

How matrices containing a constant, different from 0 and 1, can be ob-
tained easily, is demonstrated by the following command:

C = 4.5%ones(3,5)

C =
4.5000 4.5000 4.5000 4.5000 4.5000
4.5000 4.5000 4.5000 4.5000 4.5000
4.5000 4.5000 4.5000 4.5000 4.5000

The ones—matrix is multiplied by a single value, a so called scalar, here
4.5. The * stands for multiplication. As will be explained in more details in the
next sub-chapter, there are several multiplication operations in linear algebra
and in MATLAB®. In the previous command line the * stands for scalar

5 The comma in common numbers is a dot in all mathematics software products,
thus also in MATLAB®).
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multiplication, where all elements of the matrix are multiplied by the same
scalar value.

The command for random matrices is

C = rand(2,5)

C =
0.9501 0.6068 0.8913 0.4565 0.8214
0.2311 0.4860 0.7621 0.0185 0.4447

Random values between 0 and 1 are entries of the matrix. If there is only
one integer argument in the preceding matrix types, a square matrix results:

D = rand(2)

D =

0.9501 0.6068
0.2311 0.4860

As mentioned above matrices are 2-dimensional arrays. Single numbers
can be regarded as 1-dimensional arrays. MATLAB®) can, of course, handle
arrays of higher dimensions. We demonstrate this by introducing the randn
command:

E = randn(2,4,2)

E(:,:,1) =
0.0000 1.0950 0.4282 0.7310
-0.3179 -1.8740 0.8956 0.5779
E(:,:,2) =
0.0403 0.5689 -0.3775 -1.4751
0.6771 -0.2556 -0.2959 -0.2340

which is a 3-dimensional array of random numbers with mean value p = 0 and
standard deviation ¢ = 1. In the same manner, all previous matrix generating
commands can be applied to obtain higher dimensional arrays if the number
of arguments in the call exceeds 2. Multi-dimensional arrays can be viewed
using the array editor, but they cannot be edited within the editor. In order
to do this, address single elements from the command window, or specify
2-dimensional sub-arrays:

El = E(: PR 2)
and edit those. Last but not least, lets mention that MATLAB®) has the

empty matrix as zero-dimensional array:

e=1[1

Basic Matrix Operations

It is expected that readers are already familiar with matrix operations and
basics of linear algebra. The purpose of the following is (1) to be a reminder
for those, to whom matrices are not (yet) part of daily practice and (2) to
introduce the notation used in the following chapters of this book.
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A matrix is a 2-dimensional array of numbers. A matrix has a certain
number of lines and columns, and the single numbers in the matrix are called
elements (sometimes the term ‘entries’ is used here as alternative). The ma-
trix in (1.1) has 2 lines and 2 columns, and the element in the second line
and first column is 3. A single number can be conceived as special case of a
matrix with one line and one column. Thus matrix algebra is a generalization
of the usual calculations with single numbers. However, in order to distin-
guish ‘real’ arrays from single numbers, bold letters are used for matrices and
vectors.”

Basic operations as known from single numbers can be generalized for
matrices. Matrices can be added. The sum of the matrices A and B

ail ai2 cee A1m b1 b2 ce bim
A — a1 a2 A2m and B = bo1 bao bom
anl aAn2 e Anm bnl bn2 e bnm
(1.2)
is given by:
air +bi1 aia+biz - A +bim
A+B-= a21.-.F.b21 a22.-.F.522 a2m.'.~_.b2m (1.3)
anl + bnl an2 + bn? et Anm + bnm

In order to add two matrices, both need to have the same number of lines
and columns. In each element of the matrix A+B, the sum of the correspond-
ing elements of A and B appears. One may also say that in order to obtain
the element in the i-th row and j-th column of A+B, the elements in the i-th
row and j-th column of A and B have to be added:

(A +B),;; = a;; + b (1.4)
Example in MATLAB®):
A=112;34]; B=1[-10;12]; C=A+B

When the number of columns or the number of lines do not coincide,
MATLAB® produces an error:

D=1[5678];

A+D

7?77 Error using ==> +

Matrix dimensions must agree.

7 A vector is a matrix consisting of one line or one column only. Terms as line-
vectors or column-vectors are used, too.
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Clearly the subtraction of matrices is defined analogously. One may also
formally introduce subtraction by the definition that subtraction of B is the
addition of —B. As one may expect —B contains the negative of the elements
of B and is the inverse of B with respect to the addition operation. The gen-
eralizations of matrix multiplication and division are slightly more complex.

It was already mentioned that there are several multiplication operations.
Correspondingly there are several division operations. Aside from scalar mul-
tiplication, there are several matrix multiplications. The standard matrix mul-
tiplication for the two matrices A and B, given by

a11 @12 ce aik b11 b12 ce bim
A — a21 @22 ce a2k and B = 521 bao ce bam
an1 an2 T Ank bkl bk2 ce bkm

(1.5)

in order to obtain a new matrix A - B, is defined by the following formula:

k
(A - B)ij = Z @i (1.6)
=1

This is a formula for the element in the i-th row and j-th column of the
matrix AB. Matrices can be multiplied if the first matrix has the same number
of columns as the second matrix has columns (inner dimension). In formula
(1.6) that number is k. Elements in lines of the first matrix are multiplied
with columns of the second matrix, and the products are summed in order to
obtain an entry in the result matrix A - B.

Example in MATLAB:

C = AxB
C =
1 4
1 8

If the inner dimensions of the matrices do not agree an error message
results. Matrix multiplication is a generalization of the multiplication of single
numbers. Clearly, if the product A - B is possible, the product B - A is only
possible if A and B are square matrices. Even then the identity A-B =B-A
is not valid generally (see exercises below).

The multiplication, described by formula (1.6), is the standard multi-
plication of matrices, denoted by a ‘’-dot in the formulae and by a * in
MATLAB® commands. Analogously to the definition of addition, given
in (1.4), there exists also an element-wise multiplication:

(A . B)U = aijbij (17)

In order to perform this multiplication, matrices A and B need to have the
same number of rows and columns. In formulae element-wise multiplication is
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denoted by .* in MATLAB® commands, distinguishing element-wise opera-
tion from the standard matrix multiplication. In formulae we use the ‘-’-dot or
omit the operator symbol entirely. There are scalar multiplication and vector
product as further operations which are explained below.

Division of matrices can be defined for both multiplications. To start with
the simple case: element-wise division is performed with element values. In
MATLAB®) element-wise division is denoted by ./. Element-wise division
with the same matrix delivers a matrix containing 1 in each entry, which is
the unit matrix with respect to element-wise multiplication.

Example in MATLAB®):

C=A./B

Warning: Divide by zero.

(Type f‘warning off MATLAB:divideByZero’’ to suppress this
warning.)
Cc =

-1 Inf

3 2

Obviously, in three entries the element-wise division is performed. In the

second entry of the first row Inf stands for infinity, which is the result of a

division by zero®.

Example in MATLAB®):

C=A./A
C =
1 1
1 1

The matrix with entries 1 everywhere is the unit matrix of pointwise matrix
multiplication.
The unit matrix with respect to matrix multiplication is given by:

1 0 - 0
T (L8)
0 () 1

This matrix is a diagonal matrix, as there are non-zero elements only in
the main diagonal from the top left to the bottom right. The unit matrix
within the matrix algebra corresponds to the 1 in usual multiplications using

8 In contrast to school knowledge, division by zero is allowed in MATLAB®). The
result is infinity. MATLAB®) shows a warning (but no error) in order to remind
the user that such an operation may result in some errors in further operations.
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single numbers. In MATLAB®) it is delivered by the eye-command. eye (n)
produces the unit matrix with n lines and n columns.

eye(3)

ans =
1 0 0
0 1 0
0 0 1

Formally, the division can be introduced similarly to the definition of sub-
traction given above: division by B is the multiplication with the inverse of
B, denoted as B~! in mathematical notation. In MATLAB®), the inverse of
a matrix is denoted as inv(B) and is defined by the formula:

B-B!'=1 (1.9)

It can be checked easily that the matrix multiplication in (1.9) can only be
performed for square matrices B. However, this is not the only requirement;
the matrix needs to be regular in order to be invertible. The regularity of
matrices is a standard topic in textbooks on linear algebra and will thus not
be deepened here. Matrices for which no inverse exists are also denoted as
singular.

The inverse of a matrix is unique, i.e. there is only one matrix with the
property (1.9). If the matrix B is regular, the division is defined by the ex-
pression A - B~

Example in MATLAB®):

X = Bx*inv(A)

X =
2.0000 -1.0000
1.0000 0

X is the solution of the linear system XA = B. The MATLAB®) user will
usually use the /-operator for the same expression: B/A. However, the division
procedure is not unique, because matrix multiplication does not have the com-
mutation property to which we are used to from calculating with single num-
bers (see exercise below). There are two types of divisions depending on the
order in which the product is performed. The / operator has to be used if A~!
is the second operator; if A~ is the first operator, the (backslash) is necessary.

Example in MATLAB: instead of the expression inv (A) *B one may use:

Y = A\B

Y =
3.0000 2.0000
-2.0000  -1.0000

Y is the solution of the linear system A - X = B. One speaks of left-
division for the latter case and of right-division’ in the former case. Both
division operators can also be used for non-square matrices (see Sidebar 1.1).
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The power operation is defined for matrices as well. There is a power
operator for matrix multiplication and another for pointwise operation. In
MATLAB® these are written by ” for matrix multiplication and .” for
pointwise multiplication. In formulae the power notation is used for matrix
multiplication.

Sidebar 1.1: Over- and Underdetermined Systems

Both divisions are also possible for non-square matrices. In the latter case
the linear system A - X = B is over- or underdetermined. In the case of
an overdetermined system the equations usually can not be fulfilled exactly.
Then the solution X is computed in the sense of least square minimization,
i.e. X minimises the expression A -X —B. In the following example the right
side of the system is a column vector b: The solution x is also a column
vector.

x1=1; y1 =1;
x2 = 2; y2 =1.5;
x3 = 3; y3 = 2.2; o5
A=1[x1x2x3;1111]"; '
b = [yl y2 y3]’; 5
x = A
Axx-Db 15
x =
0.6000 1
0.3667 05 )
ans = 1 2 3
-0.0333
0.0667
-0.0333

The solution of the overdetermined system A -x = b is given in the
MATLAB® answer. The second part of the answer gives the deviation in
each of the three elements. The example can be interpreted as linear curve
fitting on three given points (see graphic). For such a task the user may also
use the polynomial curve fitting tool of MATLAB®) , which is introduced
in Chap. 10. As an exercise, the novice may confirm the obtained result for
x by using the graphical user interface tool.

The division operator can also be applied for underdetermined systems
A - X = B, where the number of columns of A exceeds the number of rows.
In that case the solution is usually not unique, and MATLABG®) delivers just
one solution.
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Example in MATLAB®):

AN2
ans =
7 10
15 22
A.N2
ans =
1 4
9 16

It was already mentioned that matrices can be multiplied by a single num-
ber, by a so-called scalar. The scalar multiplication is demonstrated by the
example:

c = 2;

c*A

ans =
2 4
6 8

All elements of the matrix are multiplied by the scalar. Note that in
MATLAB® the * is also used for scalar multiplication. MATLAB® dis-
tinguishes between scalar multiplication and standard matrix multiplication
automatically (both are written by the same * operator). The type of the
operands gives the unique clue which of both operations is meant. From the
dimension of the operators the program finds out, whether matrix or scalar
multiplication is meant. Also note that MATLABG®) is case-sensitive: in gen-
eral C is not the same as c. In formulae we will usually use no symbol to
indicate scalar multiplication. Sometimes we use the " in formulae in order
to separate the factors.

Exercise 1.1. 1. Find an example to show that the commutation-property
A -B =B - A, which is valid for single numbers, is not valid for matrix
multiplication! Take care that A and B are square matrices of the same
size. Is it valid for pointwise multiplication?

2. Confirm by random matrices the validity of the following identities:

(A+B)-C=A-C+B-C

C-(A+B)=C-A+C-B
(A-B)-C=A-(B-C)
(A-B) '=B1.A!
(A=)
A - (cB)=c(A-B)=(cA)-B

3. Find the inverse of the following matrices:
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1 3 1 2
4 5 4 8
4. Confirm by random matrices and some integer values of p and ¢ the
validity of the following identity:

APT? — AP . A4

1.3 A Simple Environmental Model

A simple example may illustrate the methodology used in this book. As an
introductory simple situation consider the population of a biological species,
which is denoted by c. As a first approach it seems reasonable that the number
of children increases with the population. The number of children stands for
the reproduction rate of the species, denoted as dc¢/dt, the temporal change
of the population at each time instant. For the sake of simplicity one may
consider that the reproduction rate is proportional to c:

dc

gt ©°€ (1.10)

When the proportionality factor is denoted by o, the same relation is
expressed by the equation

Jdc

ot

which is a differential equation for the population ¢ as a function of time ¢.
With (1.11) the first task in modeling is already performed. The conceptual
model, the proportionality relationship, is expressed as a differential equation.
In this book differential equations are derived for various different processes
in different environmental compartments. The user is led from a conceptual
model concerning processes to the mathematical formulation of one or more
differential equations.

This task is completed with the formulation of the initial condition: at
time ¢ = 0 the population has the value ¢g, or:

=ac (1.11)

e(t=0) = ¢ (1.12)

The second step of modeling is the solution of the differential equation
under consideration of the boundary condition. There are several different
means to do that. For simple equations the solution can be written explicitly
in a formula, here:

c(t) = ¢ exp(at) (1.13)
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The given exponential function fulfils both requirements. In MATLAB®
the formula can be evaluated and plotted directly. The following commands
need to be given in the command window:

alpha = 1;

cO =1;

t = [0:0.1:1]

f = cOxexp(alphaxt)
plot (t,f);

t =
0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000
0.7000 0.8000 0.9000 1.0000
f =
1.0000 1.1052 1.2214 1.3499 1.4918 1.6487 1.8221
2.0138 2.2255 2.4596 2.7183

Figure 1.6 depicts the outcome of the plot command. The concentration
obviously increases by a factor of 2.8 during the time period of length 1. Before
continuing let us have a short view on the commands given above. The first
two commands specify the parameters « and cy. The third command defines
the vector t, containing 11 elements: 0, 0.1, 0.2, ... 1. Note that MATLAB®
prints the vector into the command window when the semicolon at the end of
the line is omitted. The fourth command initiates several tasks. At first the
vector t is multiplied by the parameter value of alpha. The result of this scalar
multiplication is again a vector (see Chap. 1.2). As a next task, the exponen-
tial function is calculated for that vector. The command for the exponential

2.8 T T T T T T T T T

2.6 B

2.4} B

22F B

Fig. 1.6. MATLAB® ) figure; first example
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function is: exp. This again is a vector. It is the strength of MATLAB®) that
functions are defined on matrices. The result of the exponential operation is
multiplied by cO - again by scalar multiplication — and stored in the vector £.

Finally, the plot command yields the graphical representation: the t vec-
tor is used on the z-axis, and the vector £ on the y-axis. The plot is depicted
in a new window on the display, the figure editor. More details of the figure
editor are given in the next sub-chapter.

In many cases the solution can not be expressed by an explicit formula like
in (1.13). For that situation MATLABG®) offers a command for the numerical
solution, which is the approximate solution derived by a computational al-
gorithm. For ordinary differential equations there are several ode-commands,
for partial differential equations it is the pdepe-command. Both situations
will be explained in detail below. In addition, it is possible for the modeler
to construct a numerical solver oneself. For that more challenging strategy
examples will be given, too.

Usually the modeling is not complete with the second step. The third
step of modeling is the evaluation of the results, which one may also call
post-processing. Examples are simple calculations of derivative variables. In
the given example one may be interested in the growth rate at the 10 time
periods between the time instances, given by the vector £. This can simply be
evaluated by using the diff - command

diff (£)
ans =
0.1062 0.1162 0.1285 0.1420 0.1569 0.1734 0.1916
0.2118 0.2341 0.2587

Looking at the development of real species in the real world, the sim-
ple expression (1.11) turns out to be too simplistic to describe the observed
behavior. However, it may be sufficient for certain populations for certain time
periods. The most obvious flaw of the model is that it allows the population to
increase beyond any arbitrary margin, provided the time period is long
enough. Of course this is impossible: as soon as a certain high population den-
sity will be reached, conditions will turn to become increasingly unfavourable
and the reproduction rate will become smaller than assumed by the linear
approach. Extended model approaches, which take a carrying capacity into
account, will be presented in Chap. 19.

Let’s examine the situation in which the proportionality constant in the
example given above is lower than 1:

lambda = 1; cO = 10;

t [0:0.1:1];

f = cOxexp(-lambdaxt) ;
plot (t,f);

grid

The result of the plot command is shown in Fig. 1.7.
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Note that it is allowed to write several commands in a single line, as
demonstrated in the first line. In such a case it is necessary to finish the
writing of commands with ; (the last must not have it). Instead of using a
negative parameter, we choose to specify a positive value but write the formula
with a minus sign.

Obviously the population is decreasing. This model is particularly inter-
esting for biogeochemical species in the environment. In many situations the
concentration of a chemical or biochemical species is declining according to
the simple linear model, as presented. The shown development of concentra-
tion is well known as exponential decay. Exponential decay depends on the
linear decay law (1.11). X is called the decay constant or degradation constant,
depending on the nature of the real process.

The proportionality constant can be related to a characteristic half-life
Ty /5. The relationship is obtained from the condition:

exp(—/\Tl/Q) = 1/2 (114)
which can be rearranged to:

‘In” denotes the natural logarithm. In MATLAB®) the natural logarithm
is called by log:
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Fig. 1.7. MATLAB® figure; second example
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log(2)

ans =
0.6931

According to formula (1.15) half-life and decay constant are of inverse
proportionality. With increasing T/, the decay rate decreases and vice versa.
When the decay rate is 1 with the physical dimension [time™!] in a given time
unit, half-life is given by 0.6931 in the same time unit. Vice versa holds: for
Ty/3 = 1 the decay constant is A = 0.6931.

It is important to realize that condition (1.14) delivers an universal half-
life. In fact, it is a unique characteristic of the model for exponential decay
that the concentration is halved after a universally fixed time period.

1.4 MATLAB® Graphics - The Figure Editor

As demonstrated above, using the plot command leads to a special graphical
user interface for the creation and manipulation of graphics: the figure editor.
The figure editor is reached directly by the figure command. Headline, main
menu entries and buttons for the most important commands are shown in
Fig. 1.8.

The figure editor has a manifold functionality out of which only few im-
portant elements can be mentioned here. Maximum and minimum on both
axes are determined automatically, also the grid spacing on the axes. All these
settings can be changed by using the sub-menu commands of the figure editor.
The sub-menu entries of ‘Edit’ are depicted in Fig. 1.9

The axes are changed using the ‘Axes Properties. ..” option. All properties
of the graphic can be changed under the ‘Figure Properties...” option. The
appearing input select box has changed between versions 6 and 7. Fig. 1.10
depicts the outlook of the recent version.

The elements of the graphics can be selected by mouse click. The Prop-
erty Editor Box changes its outlook again, showing relevant properties of
the chosen element. If the standard properties are still not sufficient, the
‘Inspector...” button opens another input box for more properties to be
checked and changed. See an example for a line element in Fig. 1.11.

) Figure No. 2 - (O] x]
File Edit View Inset Tools ‘“Window Help

I ERY Y2

Fig. 1.8. Headline, main menu entries and buttons of the build-in MATLAB®
figure editor
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Fig. 1.10. Property editor of the MATLAB®) figure editor

1.5 MATLAB® Help System

MATLAB® has a simple to handle and very effective help system. It is
reached under the main menu entry ‘Help’ under ‘MATLAB Help’. The main
help input box is displayed in Fig. 1.12. Particularly useful is the detailed
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description of key words, which can be obtained under ‘Index’. If the exact
notation of a command or keyword is not known, one should use the ‘Search’
section and enter related terms. The term ‘rectangle’ for example does not ap-
pear in the index; but search leads directly to the corresponding MATLAB®)
command, which is rectangle. It must be used when a rectangle is added to
a graphics.
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Fundamentals of Modeling, Principles
and MATLAB®

2.1 Model Types

As the term of ‘model’ has a wide variety of meanings, clearly a very narrow
type of models is addressed in this book. Even within the special field of
‘environmental models’ only the sub-class of deterministic models is treated;
statistical models do not appear, although statistics plays a significant role in
enviromental sciences and technology.

In deterministic models all variables and parameters are functions of in-
dependent space and time variables. The independent variables are referred
to by the usual notation x, y, z and t. In most models, especially in the rela-
tively simple examples presented here, it is sufficient to formulate the problem
considering only a subset of these four variables.

Depending on the number of space dimensions, one speaks of 0D, 1D,
2D or 3D models. 0D models have no space dependency, only a time de-
pendency. Ecological models concerning populations of biological species in
an environmental compartment are in their majority of that type. As ¢ is
the only independent variable, the analytical formulation leads to ordinary
differential equations. These are differential equations, which depend on one
variable only; in contrast to partial differential equations, where there are at
least two independent variables.

Models with no time dependency are denoted as steady, steady state or
stationary. The corresponding terms for time dependent simulations are: un-
steady or transient. A steady state is approached in real systems, if the internal
processes have time enough to adjust to constant outer conditions. It is a nec-
essary condition for steady state that exterior processes or parameters do not
change in time. Otherwise steady conditions cannot be reached.

1D models include one space dimension only. Models for the soil compart-
ment are mostly 1D, as the changes in vertical direction are of concern: seepage
to the groundwater table or evaporation to the ground surface. Processes in
rivers (image a water level peak or a pollutant plume moving downstream)
can be regarded in 1D under certain conditions. Water from surface water
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bodies infiltrating into aquifers may be described by a 1D approach, if rele-
vant conditions do not change substantially in the vertical direction and along
the shoreline.

1D steady state models lead to ordinary differential equations. Transient
models, including at least one space direction, lead to partial differential
equations. It is important to know about these differences, as mathemati-
cal solution techniques for both types of equations are different and different
MATLAB® commands need to be used. Here we use MATLABQ®) for steady
and unsteady modeling in 1D.

2D models include two space variables. One may distinguish between 2D
horizontal and 2D vertical models. Terrestrial ecology is a typical field, where
this type of model is suitable, describing the distribution or population of
species on the land surface. In streams or estuaries or in shallow water models
are often set up for vertically averaged variables, for which a 2D horizontal
description results. Models for 2D vertical cross-sections are obtained,

e in groundwater flow, where several geological formations are to be in-
cluded, but no variations of hydraulic conditions in one horizontal direc-
tion
in cross-sections of streams
in air pollution modeling, if no space direction is preferential around a
source; in that case the single radial coordinate r replaces two horizontal
space variables x and y

3D models are quite complex in most cases and will marginally appear
in this book, as the focus is on simple explanatory examples. Numerical al-
gorithms using the methods of Finite Differences, Finite Volumes or Finite
Elements are the methods of choice for modeling in higher space dimensions,
steady and unsteady. The MATLAB@ ‘Partial Differential Toolbox’ can be
recommended for the application of these algorithms”. As the focus here is
on core MATLAB®), we leave numerical methods out. Instead it is outlined,
how core MATLAB® can be applied for steady state modeling in higher
dimensions, based on computing of analytical solutions.

2.2 Modeling Steps

The task of modeling can be sub-divided in several steps. The way from a
real system to the working model contains different tasks, where every step
depends on good performance of the previous step. The major steps are to
build a conceptual model, to describe it by mathematical analysis, to solve the

9 In the partial differential eqautions toolbox, the modeling of advection processes
(see below) is difficult and requires numerical skills. All other processes can be
simulated using the appropriate commands.
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differential equations by computational methods and finally to perform post-
processing tasks. A schematic overview of the procedure is given in Fig. 2.1
(see also: Holzbecher 1998).

At first a conceptual model has to be formulated. From the available sci-
entific and technical expertise and knowledge, as well as the experience with
observations of the system in question, a concept has to be set up. The concept
involves all processes, which could be relevant for the studied system. This
first step is a qualitative one, i.e. there are no numbers involved yet. Scientific
or technical expertise from the involved branches has to be included. In case
of environmental problems advice has to be obtained from several disciplines
mostly: chemistry, physics, biology, biochemistry, geology, biogeochemistry,
ecology, hydrology, hydraulics, or hydrogeology.

The next step is the formulation of the model in mathematical terms.
Variables and parameters as functions of time and space are related to each
other by mathematical expressions. Rearrangements and transformations of
the expressions usually lead to the formulation of differential equations. Fun-
damental theoretical or empirical laws and principles are combined to finally
yield differential equations. In the simplest case there is a single equation
only, in general a system of equations emerges. It can be ordinary differential

Modelin
Reality Step 9
Chemistry Physics Biology Conceptual
Model
Mathematical Differential
Analysis Equation
. Analytical .
Numerics Solutions Solution
Y A
Numerical . s Post
Evaluation Visualisation Processing
Model

v

Fig. 2.1. Modeling steps
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equations, which have a single independent variably. More general partial dif-
ferential equations depend on more tha one independent variables. As will be
shown in numerous examples the differential equations need to be accompa-
nied by boundary and initial conditions, in order to complete the mathemat-
ical formulation.

With the next main step, according to the list in Fig. 2.1, we come to the
computer. The solutions of the differential equations, under consideration of
initial and boundary conditions, have to be calculated, which is always done
on a computer. There is not a single strategy, which delivers these solutions
and thus different paths have to be followed. Sometimes the solutions can be
expressed by explicit formulae, which are quite easy to implement using any
mathematical software. An example for such a situation with an analytical
solution was presented in Chap. 1.3. With the exponential function the ex-
ample formula is much simpler than in more general cases. However, in most
cases even sophisticated analytical formulae do not suffice.

For most problem formulations in terms of differential equations numerical
methods are required. As there is no explicit formula available, the solution
has to be found approximately by so called numerical methods. It is sufficient
to find such an approximate solution, as there are tolerance parameters, which
mostly ensure to reach a good accuracy. Fortunately these methods need not
to be implemented by the modeler: there are outworked strategies available
in software packages. MATLAB@®) solvers for ordinary and partial differential
equations will be presented.

In order to solve a problem usually some data need to be made available
to the software program. Thus the computer very often comes into play even
before the calculation of the solution is at stake. These tasks are referred to
as pre-processing. A simple example is to transfer a parameter value from one
physical unit into another. The computation of one parameter from another
or from several others may be more complex. A more callanging task is the
determination of parameter distributions within a model region based on some
measured values. It will be shown how such tasks can be performed easily using
MATLAB®.

After the approximate solution is computed (the computer always delivers
approximate solutions, also when analytical solutions are evaluated!), there are
usually several post-processing steps. Almost always the modeler and her/his
client appreciate to have a graphical representation. Another task is compute
fluxes for some key variables, may be in order to set up an entire balance for a
model entity. For such a purpose numerical integration is a useful tool, which
is also possible using MATLAB®). As another example the user may like to
compare calculated and measure values. These few examples demonstrate that
post-processing is a problem-specific task.

Finally the steps lead from a real system to a computer model. The step
concept, sketched in Fig. 2.1, needs not to be followed strictly. In practise
work will be on different steps at the same time. Feedback loops within the
task list are necessary to improve earlier approaches, to correct errors and to
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adjust the model in view of measured data. Often new data come in after the
start of modeling, which make adjustments necessary.

The feedback loops within the system of tasks can be related to terms
as verification, calibration and validation, which is visualized in Fig. 2.2. All
these terms do not have a uniquely definition and thus may be found in slightly
different contexts in the scientific literature. The term werification is mostly
used in connection with software testing, which is a crucial step of software
development. When a software code is entered and runs regularly without
error messages from the computer, it is not sure that there are no ‘bugs’ in
the code. In order to test the correct performance of the computer program,
test cases are set up, to check, if the program delivers the correct answer.
Test cases can be based on simple post-processing, on analytical solutions, on
theoretical derivations and on intercomparison with results from other codes.

Comparison with test cases, which are generally accepted in the concerned
scientific community (so called benchmarks), is called benchmarking. Within
the outlined step concept verification is thus a feedback loop in which it is
checked, whether the computed solution delivers the solution of the differential
equation. Unless it is a simple straight forward computation, the MATLAB®)
modeler also has to verify her/his implemented m-code. In case of errors the
code debugging becomes necessary. How to ‘debug’ in MATLABG®) is explained
in subchapter 2.7.

The term calibration is used for the procedure of adjusting the model pa-
rameters for a specific application of the code. The term is almost identical

I Feedback Loops
Conceptial 4—
[
el |o>
| ] Verification
Solution P>
| Calibration
Post_ —p
Processing
I Validation
Evaluation

!

Fig. 2.2. Verification, calibration and validation as feedback loops between different
model levels
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to parameter estimation and strongly related to the term inverse modeling.
Within the step concept the term means a feedback loop, in which the solu-
tion or some entity that is determined by post-processing is compared with
values, obtained from the real site. In case the check is negative, usually some
parameter values have to be adjusted in order to obtain a good fit. If that does
not help, it may become necessary to make adjustments in the mathematical
formulation or even in the conceptual model.

The work of validation is the most challenging. As the result of such work
it is proven that a model is valid, i.e. behaves like the real system. The term
usually is restricted to a field site application, but it sometimes also refers to
the fact that a code can be applied for a certain type of applications. In the
later case for each application site-specific parameters have to be included.
Connected to software tools the term ‘valid’ remains slightly obscure as its
concrete meaning is to be specified for each application field. It has to be
clarified, which aspects of the real model should be represented by the model.
As a model is not identical to the represented real system, there are always
real world aspects for which the model is not sufficient.

The step concept, visualized in Fig. 2.1 and Fig. 2.2, is less a work schedule
than a priority list. The mathematical formulation has to be based on a good
conceptual model. If the mathematical formulation is insufficient, good solu-
tion techniques will not improve the model. One has to be sure that the solvers
deliver accurate results, before putting extensive efforts into post-processing.

2.3 Fundamental Laws

The mathematical analytical formulation is based on fundamental principles
and on empirical laws. From the former most important are the principles of
conservation:

Mass conservation
Momentum conservation
Energy conservation

Total mass, momentum and energy are preserved. If there are losses or
gains, these are introduced in the conservation formulation as sources or sinks.

Conservation of Mass

The most nearby and most common application of the continuity equation
is that for mass. There are two types of mass conservation. One type is the
mass conservation of the medium, which can be solid, aqueous or gaseous.
The mass is expressed in terms of a density p with a physical unit [M/ L?’].
‘M’ represents a mass unit and ‘L’ a length unit. For example the density of
fresh water at a temperature of 4°C and the pressure of 101325 Pa (1 atm) is
1000 kg/m®.
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The second formulation of mass conservation in a fluid concerns biogeo-
chemical species within a fluid. In that case the mass is expressed in terms of
the concentration c¢. The continuity equation then is formulated in terms of
the concentration ¢ of the species. The concentration also has the unit [M/L’]
and measures the mass within a volume of fluid. The content of chloride C1™
in seawater amounts to 19 g/l

One has to extend the mass definition in situations, where the fluid does
not fill the entire volume. Then the total mass per space volume is expressed by
fc with porosity 6 as additional factor. Porosity is dimensionless and measures
the volumetric share of the fluid phase on the total volume. The physical
dimension of the product is thus further [M/L’]. In aquifers groundwater
usually fills approximately 25% of the volume; thus holds: #=0.25.

The described concept can be extended to situations with several phases,
where each phase has its own 6-value. In the unsaturated soil zone below the
ground surface, above the groundwater table there are three phases present:
the soil as solid phase, seepage water as liquid phase and soil air as gaseous
phase.

The mass of a gas component is expressed in terms of partial pressure.
According to the ideal gas law the product of pressure and volume is a con-
stant, which changes only with temperature. Thus mass conservation can be
formulated in terms of pressures instead of volumes. According to Dalton’s
Law'® the pressures of a gas mixture have to be summed up to yield the total
pressure.

Conservation of Momentum

The momentum of a fluid is expressed as the product pv, where v denotes
the velocity. The physical unit of momentum is [M/(L2T)], where the letter
‘T’ represents a time unit. As velocity is a vector, the momentum also is a
vector, with one vector component for each space dimension of the model.

Conservation of Energy

The kinetic energy of a fluid is expressed as 1/2pv? with the physical unit
[M/(LT?)]. If energy is measured in Joule, the given expression measures Joule
per volume.

In problems, which include heat transfer, thermal energy is expressed in
terms of temperature T'. The energy content per volume is given by the prod-
uct pCT, where the new factor C' is the specific heat capacity. The physical
unit of C is [L?/(T?K)], where ‘K’ represents the temperature measure unit,
mostly °Celsius or °Kelvin. In many tables values for the product pC' can
be found, which is addressed simply as heat capacity. Heat capacity has the
unit [M/(LT?K)]. If energy is measured in Joule pC' has the physical unit of J

19 John Dalton (1766-1844), English chemist and physicist.



36 2 Fundamentals of Modeling, Principles and MATLAB®)

per volume and °Kelvin, while C' is measured in the unit Joule per mass and
°Kelvin.

2.4 Continuity Equation for Mass

For the mathematical formulation of mass conservation consider the change
of mass during the small time At within a control volume with spacing Ax,
Ay and Az, each for one direction in the three-dimensional space. There are
two ways to calculate changes of mass. One method is to consider the mass
within the control volume at the beginning and at the end of the time period
and calculate the difference. The other method is to balance all fluxes across
the boundaries of the volume. Balancing means that fluxes into the volume
have to be taken as positive, while those leaving the volume are negative. In
three-dimensional space six faces of the control volume have to be taken into
account.

A simpler set-up for the one-dimensional space is depicted in Fig. 2.3. A
box contains a certain amount of mass at the start of the time period, and
a different amount at the end. During the time period there was influx on
one face and outflux at the other. The graphical symbols in the equation at
the bottom of the figure will be replaced by mathematical formulae in the
following derivation.

The mass at the beginning and the end of the period ¢ and t + At is
given by:

start

end

Principle of mass conservation

Fig. 2.3. Illustration for the derivation of the mass conservation equation
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0-c(z,t) - AzAyAz and 6 -c(z,t+ At) - AzAyAz

where 6 denotes the share on the total volume. In case of a saturated porous
medium 6 denotes porosity. In the unsaturated zone, within soil for example,
0 is the volumetric water saturation, when the aqueous phase is concerned.
In the situation in which two fluids occupy the space (for example water and
oil) the share of each phase has to be taken into account, too. AzAyAz is the
volume. ¢ denotes the concentration, measured as [mass/volume]. The change
of mass per time is given by:

c(z,t + At) — c(z

1)
- AzAyA
Ap TAyAz

0 -
Fluxes in z-direction are given across faces of the control volume:
0ju—(z,t)AyAz and  0j,(x,t)AyAz

where j,_ denotes mass flux per area across the left face of the volume, in
negative z-direction. Analogously j,; denotes the mass flux in z-direction
across the right face, in positive z-direction (see Fig. 2.4). The fluxes may
change spatially and temporally which do the brackets indicate. Both fluxes
are positive, if they add mass to the control volume, and negative otherwise.
The physical unit of mass flux is [M/(L? - T)]. The term §AyAz denotes the

area, through which flow takes place!!.

Control Volume |

Fig. 2.4. Illustration of a control volume in two space dimensions = and y

' 1t is generally assumed that the volumetric share and the aera share compared to
the entire volume or area respectively are both quantified by the same number,
here 6. This is not necessarily true. Especially in technical systems such as filters
both ratios may vary significantly. The practioneer in the field is usually happy,
if there is one value at all.
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The balance between both flux terms is thus given by:
¢ (.71— ('T7 t) - jﬂH-('ra t)) AyAZ

For simplicity the fluxes across the four other faces are neglected for the
derivation at this point. One may assume here that the flux components in
y- and z-direction are zero. As stated above, both formulations measure the
change of mass and thus need to be equal:

90(%15 + At) — ¢(z, t)
At

Division through the volume AzAyAz and porosity € yields:

clz,t+At) —c(@,t) _ Jor(2,t) = Ja(2,1)

At Az (2.2)

From this equation a differential equation can be derived by the transition
of the finite grid spacing Az and time step At to infinitesimal expressions,
e.g. by the limits Az — 0 and At — 0. It follows:

dc 0

ot~ 9z’" (23)
which is a differential formulation for the principle of mass conservation. The
presumption for the differentiation procedure is that the functions c and j,, are
sufficiently smooth, mathematically speaking differentiable, which is usually
taken for granted. Equation (2.3) is valid for one-dimensional transport and
is the basis for the mathematical analysis of transport processes. The unit of
the equation is [M/(L3-T)].

Formulation (2.3) is valid if there are no internal sources or sinks for the
concerned biogeochemical species. Sources and sinks are understood here in
the most general sense: each process, which creates or destroys some species
mass, can contribute to such a source or sink. In the remainder of this volume
we will see examples, where chemical reactions and inter-phase exchange of
species can be included in that way.

Easily the given mathematical formulation can be extended to consider
sources and sinks additionally. If these are described by a source- or sinkrate
q(x,t) [M/(L3 - T)], which may vary spatially and temporally, one simply has
to add a corresponding integral term

/ /q(ac, t)dtdx

Ax At

on the right side of equations (2.1) and (2.2). The term is positive, if mass
is added (source) and negative, if mass is removed (sink). In the derivation
of (2.3) the integral term had to be differentiated, which leads to the general
transport equation in one space dimension:
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02? - —8‘19]’1 +q (2.4)

Flux components in y- and z-direction can also be taken into account,
based on formulae analogous to formula for the z-direction. The fluxes
Jy—» Jy+>J=— and j,4 have to be introduced, balanced and the balances added
on the right side of (2.1) and (2.2). Taking the limits Ay — 0 and Az — 0
one obtains:

Jc 0 0 0

0 =— 05 0j 05, 2.5
ot (ax]+8yjy+3zj)+q (2.5)

which is the generalized formulation of the mass conservation for three space

dimensions. Using the formal V-operator (speak: ‘nabla’),

0
ox 0
0
V- gy in 3D, = ; in 2D, = 8833 in 1D (2.6)
0 dy
0z
the equation can be written more compactly:
dc
0., =-V-06j 2.7
5t V-0j+q (2.7)

With the different forms of the V-operator the short notation of the con-
tinuity (2.7) is valid in 1-; 2- or 3-dimensional space. On the right side the
Ja
V-operator is multiplied by the flux vector 8j =0 | j, | as a vector product.
Jz
In the formulae, here and in the following, the - denotes the standard wvector
product'?, which in MATLAB®) is applied by using the * multiplication and
the transpose of one column vector. Examine with the following command:

[1;2]°*[1;2];

An advantage of the formulation (2.7) is that it is valid for one-, two- and
three-dimensional situations. The number of components in the flux-vector
and V-operator is equal to the number of space dimensions. In two dimensions,
as illustrated in Fig. 2.4, the flux vector has two components. The illustration
is concerned with a fluid, for which the mass conservation principle can also

Ug Vg
'2 Tn three dimensions for vectors arbitrary vectors u and v: u-v = (uy ) . ( vy ) =

Uy Vs
UzVy + UyVy + U2V, not to be confused with the cross-product u x v; another
formulation, found in the literature is: gf = —div j; divergence ‘div’ is another

expression for a vector product with the nabla-operator.
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be applied, as for any other chemical species. When the fluid density is not
changing, one may express mass change by volume change (AV), which itself
is represented by a change of the ‘water’-table.

The derived equation for mass conservation alone is not yet sufficient for a
complete mathematical formulation. There are too many unknown variables,
namely concentration ¢, and the components of the flux vector j. In order to
reduce the number of unknowns, one has to utilize a formulation, in which
the flux terms are connected with the concentrations. Finally an equation will
result, in which c is the only unknown variable.

The advective flux is simply given by the product of the concentration
and the velocity. In the three-dimensional case the three flux components are
determined by the three velocity components:

Jo = UzC Jy = vyC Jj» =z (2.8)
Independent of the dimension, using the scalar multiplication one may
write in vector notation:

j=ve or j=cv (2.9)

In formulae we mostly omit the multiplication sign. Note that on the right
side of (2.9) there is scalar multiplication: the scalar variable ¢ is multiplied
with the vector variable v, as already outlined in Chap. 1.

2.5 MATLAB® M-files

In the first chapter it was shown how MATLABG®) operations are stated in the
command window. Even after few exercises the user will recognize that it is
often necessary to give a former command again or to give it in a slightly dif-
ferent form; may be just with a parameter name altered. It was already shown
that the command history view of the MATLAB®) graphical user interface is
an appropriate tool to go back to former commands. As already mentioned
an alternative way is to use the up- and down-arrow buttons of the keyboard.

There is another alternative, which for most purposes turns out to be
so powerful that most users prefer it for their normal work in comparison
to the command window. MATLAB® command sequences can be gathered
and stored as files. The extension of these files is simply .m; for that reason
they are called M-files. What the MATLAB®) user does with M-files, is what
programmers do with other programming languages, as FORTRAN, JAVA or
some C variant, just to mention some names.

In order to create a new M-file we use the ‘New — M-file’ entries of the
‘File’ main menu, as shown in Fig. 2.5. In the same menu there is an entry
for opening an already existing M-file.

A simple example demonstrates the procedure. As just described, create
a new M-file. The MATLAB®) editor appears. The main menu of the editor
is depicted in Fig. 2.6. Type the following commands:
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|F|Ie Edit Debug Desktop Window Help
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Import Data... Gdel
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Fig. 2.5. File submenu entries for M-files and other files

S Editor - W:\ymatlab'M-files" test.m
File Edit Text Cel Tools Debug Desktop ‘Window Help

Fig. 2.6. MATLAB®) editor; main menu entries of the graphical user interface

cO =1;

t = [0:0.1:1];

f = cOxexp(-lambdaxt) ;
plot (t,f);

Use the ‘Save’ or ‘Save as. ..” entries in the ‘File’ menu of the editor, or the
corresponding button, to save the file under the name ‘example.m’. Return to
the command window and type:

lambda = 1;
example;

A graph showing concentrations decreasing with time appears'3. All com-
mands of the ‘ezample.m’ file are executed, when example is used as com-
mand. A bundle of graphs can now be plotted in the same figure without
much typing work:

hold on;
lambda = 2;
example;

13 Depending on the specific installation and organization on the computer, the user
could have a problem here, if MATLAB®) does not find the ‘example.m’ file. The
user should store the file in a directory, which is included in the MATLAB®) path
list. Use the command path, to see the current path list of the installation. In
case of problems store the file in another directory or use the addpath command,
to add another directory in the path list. There may also be a problem, if the
user chooses an M-file name that already exists within the directories of the path
list. Use the which command in order to check, if your stored version of the file
is the most nearby version in the MATLAB®) system on your machine!
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Fig. 2.7. Graphical output of ‘ezample.m’ file

A second graph appears. Proceed further:

lambda = 3;
example;
legend (‘lambda = 1’,‘lambda = 2’, ‘lambda = 3°’);

A graph, showing stronger degradation with increasing lambda — value,
appears. It should look similar to Fig. 2.7

The example shows that it is convenient to call repeatedly appearing com-
mand sequences in an M-file. The demonstration application is a mixture of
commands on the command window, and of editing a file. Alternatively the
entire command sequence can be started in an M-file. There is also an alter-

native way to start the current M-file: the button in the main menu of the
editor'. The procedure is exemplified in the next sub-chapter.

2.6 Ifs and Loops in MATLAB®

In M-files quite often commands or sequences of commands are to be exe-
cuted under certain conditions only. This can be easily programmed using the
if, a keyword that is available in all programming languages. The following
command sequence in pseudo-programming language explains its application:

if condition
commandsi;
else
commands?2;
end

4 The button does not appear, when the editor is called outside of MATLAB®),
for example by double-click on a M-file from the operating system.
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If the conditionis fulfilled, commands1 are executed. Otherwise commands?2
are executed. The else block can be omitted if there is nothing to be done,
if the condition is not fulfilled. Conditions can be formulated differently.
Instead of a rigorous definition here four mainly self-explaining examples:

a== a>1 a<b a

In order to be valid conditions, a and b must be of same data type. There
are two equality signs in the first example in order to distinguish a condition
from an asignment. In the second example the condition is clear, if a is a
number. But the condition is also valid if a is of different data type, which
the reader may explore. The last of the four conditions is fulfilled if a is a
positive non-zero number, otherwise not. The letter represents the value of a
condition, and could also be defined like this in MATLAB®):

c = (a>=0);
if ¢ a=1; end

By the example sequence the value of a is changed to 1, if the former value
was positive or equal to zero.

The if, else and end keywords are reserved and should not be used by
the MATLABQ®) user as function or variable names. The same is true for other
keywords as well, which will not be noted especially in the sequel.

In order to use the functionality of a single M-file for the example from the
preceding sub-chapter, the programming technique of loops has to be applied.
How loops work, is best explained by an example. The most common for-loop
is used in the command sequence:

cO =1;

t = [0:0.1:1];

figure; hold on;

for lambda = 1:1:5
f = cO*exp(-lambdax*t) ;
plot (t,f);

end

legend (€1°,¢2°,¢37,4%,57);

for is a MATLAB® keyword, which is indicated by a different color.
MATLAB® keywords may not be used as variable names. The statement,
starting with the for keyword, starts a loop, which ends at the line with the
end keyword. lambda is the loop variable in this example (the user is free to
choose the name of the variable). In the first run through the loop lambda has
the value 1. The commands within the loop are executed with that parameter
value; here the function vector f is evaluated and a graph is plotted in the
figure. Then the commands are executed again with the variable parameter
taking the next value. In the example lambda gets the values 2, 3, 4 and
finally 5. After the last run through the loop the execution continues with the
next statement after end. In the example after the loop, the final command
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adds the legend in the figure. As described in chap. 2.5 store the entire M-file

under a new name and call that name in the command window; or use the 13
button.

Note that commands within loops are indented. This is not required by
MATLAB®), but it is highly recommended, as it enhances the readability of
the M-files significantly. In most programs several loops appear within each
other. It is good practise to indent commands with every inner loop even
further. In that way the programmer visually obtains a connection between the
start of a loop (with either a for or a while keyword) and the corresponding
end.

Usage of loops is a very powerful programming technique. Thus loops can
be met frequently in all types of computer programs. In MATLAB®) there
are various ways to specify the loop variables in a for-loop. Like in any other
programming language there are several types of loops. In MATLAB®) there
are mainly two types: the for-loop and the while-loop. See MATLAB®) help
to find out the differences and the related continue and break commands.
The differences between loops mainly concern the type of condition, which
the programmer uses to end the loop.

Loops can also be used in the MATLAB® command mode. A trivial
example is:

fori = 1:4

Note that no prompt appears after pressing the return key. The command
is not yet executed. Enter:

a(i) = i

end

When the end command is entered the entire loop is executed and the
prompt appears in the command window again. Note that in the specification
of the loop variable i only two values are given. The increment 1 is used as
default in such a situation.

2.7 Debugging of M-files

It was already said that the M-file, currently shown in the editor, is executed

by pressing the B button in the editor menu list. Alternative ways to do the
same thing are (1) pressing the F5 button, or (2) select the sub-menu entry
‘Run’ from the ‘Debug’ main entry. For the exploration of M-files some other
debugging commands are very convenient, which are explained here.
Debugging is a term, which came up with computer programming. De-
bugging is the task to find and correct errors, so called bugs. If a program or
an M-file does not behave as intended, if there is still at least one erroneous
statement, it is convenient to stop the program execution at a certain point



2.7 Debugging of M-files 45

E Editor - W:'matlab'M-files"test.m
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Fig. 2.8. Illustration of debugging; set of breakpoint and stop of execution

and watch the execution of the following steps in detail. For such tasks several
tools are available in the MATLAB®) editor in the ‘Debug’ submenu.

A breakpoint, at which execution stops, can be set by the user easily by
using the column of ‘-’signs left from the line number counter in the editor
window. A mouse click initiates the bar to change into a red circle, indicating
the location of a breakpoint, as shown in Fig. 2.8. When the program is run,
execution stops at the first breakpoint encountered. A green arrow indicates
the current position of the command execution (see Fig. 2.8).

Now the user may check the current values in variables. Moving the curser
through the editor window will make the contents of variables pop-up in small
boxes. Figure 2.9 depicts an example: variable T', which was touched by the
cursor, is a 1x1 double variable and currently contains the value 4. Another
method for checking variables at a breakpoint is more convenient, if the vari-
able is a huge array, and its contents can not be shown appropriately in a
small box. The user can change into the MATLAB® command window and
examine the workspace, as described in Chap. 1.

The (E button in the editor’s main menu initiates the execution of the
next line only. Alternatives are the keyboard F10 button or the ‘Step’ entry
in the ‘Debug’ sub-menu. Now each command can be checked step by step,
examining the effect of the command on the variables involved. The green

E Editor - W:\matlab®M-Files"test.m
File Edit Text Cell Tools Debug Deskbop ‘Window Help

S H| i BBo | S AF| 0D DR OO

BN T = 4;
37 |p: 1x1 doubls =
4 & 4
B D = 1;

Fig. 2.9. Illustration of debugging; variable check
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arrow on the left side of the text window moves further with every step,
always indicating the next command, which is not jet executed. Although
the ‘Debug’ commands and options were designed for the programmer to find
bugs in programs, these are also convenient tools for novices to understand
M-files, written by others. Novices are urged to try the debug functionality
on the loop of the M-file of the previous subchapter.

There are further debugging tools, for which the reader may view the

MATLAB® help. It is important to know that the 13 vutton (or key F5) al-
ways stands for continuation: starting from the current position the M-file will
be executed until it reaches the next breakpoint (it is possible to set several

breakpoints!) or the end of the M-file. The LB button stops execution; alter-
natively select sub-menu entry ‘Exit Debug Mode’. Breakpoints are deleted
by a click, which changes the red circle back to a bar. All breakpoints are

cleared by using the 3 button, or by selection of the corresponding submenu
entry.

Reference

Holzbecher E., Modeling Density-driven Flow in Porous Media, Springer Publ.,
Berlin, 286p, 1998
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Transport

3.1 The Conservation Principle

Transport is a general term, denoting processes which determine the distri-
bution of biogeochemical species or heat in an environmental compartment.
In this chapter transport is understood in a narrower sense as interaction
of physical processes with an effect on species or components, or on heat.
Other processes, which also may be relevant for the environment, like sorp-
tion, degradation, decay and reactions of various types, are not conceived as
pure transport processes and are treated in chapters below.

These transport processes are relevant in almost all environmental sys-
tems. The term is not restricted to a specific compartment of the environ-
ment. Heat and mass transport are a common phenomenon which can be
found almost everywhere, in the hydrosphere, in the pedosphere as well as in
the atmosphere, in surface water bodies - rivers, lakes and oceans, in sedi-
ments, in groundwater, in the soil, in multi-phase systems as well as in single
phases.

There are two different types of transport processes in the narrower sense:
advection and diffusion/dispersion. Advection denotes transport in the nar-
rowest sense: a particle is purely shifted from one place to another by the flow
field. Diffusion and dispersion are processes which originate from concentra-
tion differences. Within all systems there is a tendency to equalize concen-
tration gradients. If the species are mobile, e.g. if they have the possibility
to move from one place to the other, there will be net diffusive or disper-
sive flux from those locations with high concentrations to locations with low
concentrations.

Transport can be described by differential equations as will be shown be-
low. In fact it is one differential equation for each species or component. The
differential equation, the so called transport equation can be derived from the
principle of mass conservation and Fick’s Law.

Concerning heat transport a differential equation for temperature T  as
dependent variable results. The equation is derived from the principle of
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energy conservation and from Fourier’s Law. From the mathematical point of
view it is the same differential equation, with different meanings of the coeffi-
cients only. Thus we refer to the temperature equation as transport equation
as well.

The fundamental formulation of a conservation principle is expressed by
the general continuity equation. For mass the continuity equation was already
derived in Chap. 2. What follows next is a generalization of the mass conserva-
tion equation, derived in Chap. 2. The conservation of variable A, which may
represent mass, momentum or energy, and which depends on time ¢ and the
three space directions z, y and z, is quantitatively expressed by the differential
equation:

0 e 0

ot ox
where jaz, jay and ja. represent fluxes in the three space directions. The
three flux terms are components of the flux vector j4 corresponding to the
three space directions. Fluxes, as all other terms in the continuity equation,
depend on the independent variables x, y, z and t too. In the term @ all sources
and sinks are gathered. If Q(z,y, z,t) is positive, there is a source at time ¢
at position r=(z,y, 2); if Q is negative, there is a sink.

The continuity equation states that the amount of change of variable A
in time is equal to the local flux budget. The continuity equation is derived
from the budget of a control volume, i.e. a volume of finite small extensions
Az, Ay and Az (in 3D). Figure 2.3 shows a control volume in 2D for a
fluid filling the entire space, where only two finite extensions Ax and Ay are
sufficient.

In the small but finite time interval At, the amount of A per volume unit
changes from A(x,y, z,t) to A(zx,y, z,t + At). The total amount of change in
the control volume is thus given by (A(z,y, z,t + At) — A(z,y, 2,t)) AzAyAz.
In Fig. 2.3 this corresponds to the volume change AV. On the other hand,
the total budget can be expressed by the fluxes, the sources and the sinks.
In each space dimension there are two surfaces, across which mass, mo-
mentum or energy may enter or leave according to the corresponding flux
component. In z-direction the fluxes across the two faces are given by
(Jaz(x + A%/ y, 2, 1) — jas(x — A%/ y, 2, 1)) AyAzAt; the difference in flux
terms of j4, from one side of the control volume to the opposite side has
to be multiplied by the face area of the control volume, which is here
given by AyAz. In the notation of the fluxes, visualized in Fig. 2.3, the
A in the subscript is omitted and the + or — sign denotes the direction.
Note the assumption that the time step At is small, so that the change of
the flux terms and also of the sinks and sources during that time can be
neglected.

Both expressions of the change within the control volume with a time step
have to be equal, which is expressed in the detailed equation:

. 0 . 0 .
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(A(z,y, z,t + At) — Az, y, 2,1)) AzAyAz

= (Jac(® + 22, y, 2,t) — jas(x — Bj,y, 2, ) AyAzAt

+ (Jay(@,y + A/, z,t) — jay(z,y — Ao, 2,t)) AxAzAL (3.2)
+ (Jaz(z,y, 2+ 2%/, t) — ja.(z,y, 2 — B%/a,t)) AxAyAt

+ QAzAyAzAL

Using the notation of the 2D case in (3.2), the corresponding equation
without sources or sinks is simply AV = (jot — jo— ) AYyAt+(jy+ — Jy—) AzAt.
Equation (3.2) is simplified in two steps. First one divides through the product
of all spatial extensions and the finite time step AzAyAzAt and obtains:

Az, y, 2, t + At) — Az, y,2,t)
At B
_ jAz(x + Az/% Y, th) - jAI(x - Az/% Y, th)
N Ax
jAy(xvy + Ay/Z’ 2, t) - jAy(xvy - Ay/Z’ 2, t)
Ay
jAz(xvya z+ Az/% t) - jAZ(xa Y,z — AZ/% t)

+ As +Q

(3.3)
+

The second step is the transition from finite steps to infinitesimal steps,
Ax — Oz, Ay — 0y, Az — 0z, At — Ot, according to the differential calculus
in order to get the continuity equation in the formulation given in (3.1). Using
the vector notation, the same equation can be expressed briefly as:

0A
ot
Thus the aim to express the flux as a function of the concentration is

simple for advective transport. In order to achieve this for diffusive/dispersive
flux, an empirical relationship has to be introduced, e.g. Fick’s Law.

=Vija+0Q (3.4)

3.2 Fick’s Law and Generalizations

Diffusion

There is a natural tendency in natural systems to level out concentration
differences. The process which causes this tendency is called diffusion. When in
a system there is a high concentration at one place and a smaller concentration
at another place, there will be a net diffusive flux of the component from the
location with higher concentration to the one with lower concentration. In the
molecular scale, diffusion is a random motion of molecules in all directions. In
systems without concentration differences all random walks together maintain
the same concentration level. But if concentration is not constant, there is a
net flux in one direction, from the high to the low concentrations.
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A system with initial concentration differences will finally reach a constant
concentration level if no other processes are present. Other processes can sta-
bilise the concentration gradient. Then the diffusive flux may be balanced by
processes which maintain a permanent out- and inflow. Still the concentration
gradient is accompanied by diffusive flux.

The empirical (15%) Fick’s Law!® is a quantification of diffusive flux (phys-
ical unit: mass/(area-time)), here stated for the fluid phase:

j=-DVe (3.5)

In words: the diffusive flux is proportional to the negative concentration
gradient. The minus sign guarantees that the direction of the net flux is from
high concentrations to low concentrations. The factor of proportionality is the
diffusion constant or diffusivity D with the physical unit [area/time]. Note that
here too the V-operator is used. Here it is not working in connection with a
vector product, because the following variable is a scalar'S. The result of such
an operation is a vector. In three dimensions it can be written as:

Oc/Ox
Ve=| 0c/dy (3.6)
0c/0z

In general, the diffusivity D depends on the fluid and on the transported
component; it depends on temperature and pressure and on the geochemical
environment. For all substances there is a diffusivity in gases, which differs
from the diffusivity in liquids, and it even depends on the type of gas or
liquid. The diffusivity in saltwater usually is different from the diffusivity in
freshwater.

The diffusivity, as defined by (3.5), is defined in single phase systems, i.e.
in liquids or in gases, and is a characteristic of the molecules involved, i.e. of
the component and of the medium. For that reason it is common to speak of
D as molecular diffusivity. In the following this will be taken into account by
writing Dy, while D remains the notation for diffusivity in general.

The order of magnitude of D,,, in water at common temperatures of
20°C for most chemical components is around 1072 m?/s. In air it is in the
range of 107°m? /s. For ammonium gas NHj for example, D, in water is

15 Adolf Eugen Fick (1829-1901), German physiologist; Fick’s 2" Law is valid for
mass conservation in a single phase environment:
1o} o?
c=D c
ot 0x?
The formula is obtained when Fick’s Law, as given in (3.5), is used as replacement
for the flux in (3.4).
16 In contrast to a vector a scalar has a single value only. A scalar function has a
single value, depending on space and/or time. Velocity is a typical vector variable,
which in a one-dimensional case is reduced to a scalar variable.
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1.46:107%m? /s at 20°C and 1.23-107%m?/s at 4°C (Hifner et al. 1992). For
the same gas the same reference gives a value of 1.98-107°m?/s at 0°C for
the molecular diffusivity in air.

In order to formulate Fick’s Law in multi-phase systems, such as in porous
media, two modifications have to be made. At first it has to be taken into
account that the area through which diffusive flux may occur is only a part of
the total area (see control volume in Fig. 2.4). Usually it is assumed that the
area is reduced by the same factor as the volume. The volumetric share of the
pore space, porosity, is thus taken as the factor that measures the share of
the active area. For that reason a factor § appears on the right side of (3.5) if
applied in porous media. In unsaturated porous media 6 represents volumetric
water content.

The second correction is necessary to take into account that diffusion path-
lengths are necessarily longer if several phases are present. The situation is
illustrated in Fig. 3.1. While in single phase systems the shortest path is avail-
able for diffusive fluxes of particles, in a multi-phase environment such direct
connection is impeded by obstacles. As pathlengths are longer in multi-phases,
the diffusive flux in those systems is smaller than in a single phase case. One
may also say that pathlenghts are prolonged, which yields a factor ¢ greater
than 1 in the denominator of the concentration gradient.

Pathlength prolongation also has to be considered in the calculation of
flux j. The flux in normal direction is smaller than the flux following the
generally non-normal pathline. The combined effect of both corrections with
the length prolongation factor ¥ leads to the equation:

1

j=— g DmaVe (3.7)

In sedimentological and geochemical science (Boudreau 1996, Drewer 1997)
Fick’s Law is formulated with the correction factor as given in (3.7), which goes

Fig. 3.1. Comparison of diffusion pathlengths in single and multi-phase systems
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back to Carman (1937). Later Carman (1956) used the term tortuosity factor
for ¥}, which is misleading in (3.7), where it appears in the denominator. We
prefer here to adopt a notation that is often found in groundwater literature:

j=—-mD,,uVec (3.8)

where the tortuosity 7 is defined as another factor, aside from factor 6, with
values between 0 and 1 in Fick’s Law for multi-phase systems, a formulation
which was already proposed by Bear (1972)!7. The factor 7 and the prolon-
gation factor are thus connected by the formula 7 = 1/92. The coefficient of
the gradient, consisting of three factors, can be termed effective diffusivity.

Dot = 607Dy (3.9)

Care is advisable with the term ‘effective’, because it is not used in the
same way in scientific literature. Sometimes the product of diffusivity and
tortuosity, without porosity, gets the predicate ‘effective’. Sometimes the term
effective is omitted at all. In contrast to effective diffusivity the single phase
diffusivity is often referred to as molecular diffusivity.

Length prolongation and tortuosity are connected to the formation factor,
which is determined by electrical resistivity measurements. Using this tech-
nique, Archie (1942) found a power law relationship between porosity and
formation factor, which in terms introduced above can be noted as

Doy =0™Dypoy or T=0""" (3.10)

and can be found as Archie’s Law in several publications (Sahimi, 1993;
Boudreau, 1996).

Archie (1942) reports values for m (3.10) of 1.8-2 for consolidated sand-
stones, 1.3 for unconsolidated sand in a laboratory experiment, and 1.3-2
for partly consolidated sand. For theoretical or conceptual work the value
m = 2 is considered, which may be justified if there is no further informa-
tion. From (3.10) then follows: 7 = 6, and from (3.9): Defr = 62D,y with
formation factor 62.

Boudreau (1996) provides an extensive overview of papers about tortuosity
and porosity and their relationship. Several fixed relationships between 7 and
© have been proposed. The relations given by Archie (1942), Weissberg (1963)
and Iversen & Jgrgensen (1993) contain parameters that can be estimated
based on measured data. The latter propose the relation 92 = 1+ n (1 —0)
with a typical value of n = 3 for clay-silt sediments and of n = 2 for sandy
sediments. As Boudreau (1996) already noted, the resulting parameter curves
are identical to those given by the Burger-Frieke equation 92 = 0 + a (1 — 6)
with parameter a. Figure 3.2 depicts the curves for Archie’s Law and the
Iversen-Jgrgensen equation for the main parameter range.

179, which is here called the length prolongation factor, is often introduced as
tortuosity (Boudreau, 1996; Drewer, 1999).
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Fig. 3.2. Tortuosity 7 as function of porosity 6, according to Archie’s Law for
different values of parameter m, and according to Iversen & Jgrgensen (I-J) for
parameter values of n

Dispersion

Another generalization of Fick’s Law is necessary if advection is also present.
It can be observed that in a fluid flowing through a homogeneous porous
medium the diffusivity as proportionality gradient in Fick’s Law (3.5) is not
constant, but shows itself a strong dependency on the flow velocity. In the
scientific literature on groundwater this effect is referred to as dispersion.
Dispersion is thus a general phenomenon that includes diffusion as special
case. For the 1D situation one may write:

D=7D,,0 +arv (3.11)

The effective dispersivity, which is used in Fick’s Law, consists of two
parts. One stems from the molecular diffusion and the other from porous
media flow. For high velocities the second part dominates, which is the com-
mon situation in groundwater, although flow in aquifers is still rather slow
compared to fluxes in other hydrological compartments. The proportionality
factor between dispersion and velocity along a flow pathline is given by the
parameter «y, which has the physical dimension of [length]. One may also
use the term dispersion length or longitudinal dispersivity. The subscript ‘.’
refers to longitudinal, as it is valid only in the direction of the flow.

In the general 2- and 3-dimensional situation the concept of dispersion
has to be generalized. Transverse to the flow direction, the factor ay as
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proportionality factor between effective dispersivity and seepage velocity is

not valid any more. Another parameter has to be introduced, the transver-

sal dispersivity ap. The analytical formulation becomes much more complex,

because the scalar factor D.ss has to be replaced by the dispersion tensor D:
ay — ar T

D = (Dot + agv) I + A (3.12)

with unity matrix I. The elements of the matrix vv? contain the products of

the velocity components. Here the usual matrix product of a column vector
and a row vector yields a matrix. The formulation may seem a little complex
at first sight. It takes into account that the mixing constant in the direction
of velocity is different from the mixing constant transverse to the velocity
direction and is valid for arbitrary vectors v. Note that v may change spa-
tially and temporally. With the dispersion tensor the dispersive flux term
becomes:

j=-DVe (3.13)

where the product on the right side is performed as matrix-vector multiplica-
tion. Transversal dispersivity is smaller than longitudinal dispersivity. Even a
factor of one or two orders of magnitude is possible.

An important feature is the scale dependency of longitudinal and transver-
sal dispersivities, which has been observed in groundwater studies. Figure 3.3
shows the scale dependency of longitudinal dispersivity in porous media. Data
for that figure were taken from several studies on dispersion in groundwater.
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Fig. 3.3. Scale dependency of longitudinal dispersivity in porous media, as observed
by different authors
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It is also intersting to compare the effective diffusivity with the veloc-
ity dependent dispersion, i.e. the two terms which contribute to the ef-
fective dispersivity in (3.11). For a length scale of 1m, a velocity in the
range of some mm/a, and a longitudinal dispersivity of 0.1m, the value
of 107*m?/a results. Molecular diffusivity in water for most components
is around 107?m?/s or 3:1072m?/a. Even though the diffusivity has to be
reduced by the factor 7, it can be concluded that for the given scale the
diffusive flux exceeds dispersive flux. The values are characteristic for lacrus-
tine sediments. Only for very high sedimentation burial rates and for very
long mixing pathlengths a non-negligible contribution of dispersion can be
expected.

3.3 The Transport Equation

Mass Transport

When both advection and diffusion/dispersion are taken into account, the flux
vector in x-direction results as the sum of both contributions:

Jc
o =—D _ +wc 3.14
where in the diffusivity D different contributions have to be considered: from
the molecular scale, from tortuosity or from dispersion at the regional scale.
Similar formulae can be stated for the flux components in y- and z-direction.
In vector notation results:

j=-DVc+vec (3.15)

Here, the coefficient is written as a matrix in order to account for the
general case, as described above.

Now it is time to use this result to replace the flux terms in the mass
conservation equation (2.4). The result in one dimension is:

oc 0 oc
0(,% = 8950 <D3x —vc) +4q (3.16)

In case of constant velocity one obtains the most common formulation of
the transport equation:

dc 0 Oc Oc
981& = 5 <9D833> _9U8x+q (3.17)
In case of constant D the equivalent formulation is:
2
0% —op?¢ 9,9 1, (3.18)

ot 0x? Ox
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Sidebar 3.1: Mass Conservation in Streams

For 1D models in streams, the mass conservation leads to a slightly different for-
mulation. A sketch of the setting is given in Fig. 3.4. The changing cross-section
along the stream needs to be considered. Instead of (2.1) one obtains:

c(z,t + At) — c(z,t)

At AAx :jzf(mvt)AZ* _jZJr(m?t)Aer

where A denotes the cross-section in the y-z- and j fluxes through cross-sections.
As the riverbed is usually changing, different upstream and downstream cross-
sections A,_ and A,_ have to be taken into account.

N .
AN deposition

N

fgibutaries, ~/

pol/utiorTi
N

outflow

Fig. 3.4: Illustration for the derivation of 1D transport equation in streams
Division by Az and transition to infinitesimal scale leads to the formulation

dc 0

ot~ Ox

After application of Fick’s Law for the cross-section the equation becomes:

A (JzA)

Oc 0 Oc 0
A9t = ou (D “"”Aam) ~ g (Umeandc)

where Dy,rp stands for mean turbulent diffusivity across a cross-section, and vmean
for mean velocity across the cross-section.

Of course, the 1D approach is a simplification of the flow regime in a stream
or channel. However, it is justified in order to capture the dominant downstream
behavior in the main flow channel. Additional features, such as counterflow in
groyne fields or along the bankline and flow in floodplains, can be accounted for
by the introduction of additional source and sink-terms in the equation.
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For higher dimensional problems one may use the V-operator to obtain an
equally short formulation for the general situation:

ogj — V.0 (DVe - ve) + g (3.19)
This is the so-called mass transport equation, which is valid for biogeo-
chemical species of all kinds. The mathematical characterization is as follows:
it is of second order in space, as there appear second derivatives in x, y and
z but not third derivatives. It is of first order in time. It is parabolic concern-
ing the mathematical classification of partial differential equations. In case of
constant coefficients it is a linear equation.
The simplifications, performed for the 1D equation, can be made for the
multi-dimensional situation as well. For the equation

0
0 aj = V- (6DVe¢) — 0v-Ve +q (3.20)
the generalized condition is that the flow field is divergence-free, or in math-
ematical formulation: V-v = 0'¥. Formulation (3.20) is then obtained from
formulation (3.19) due to: V-ve = vVe + ¢(V-v) = vVe.

Fourier’s Law and Heat Transport

In this chapter energy is understood as heat energy throughout. The main aim
is to derive the fundamental equations for heat transport, which are based on
the energy conservation principle. Other forms of energy, for example the
energy consumed or produced in reactions or by phase transitions, may be
relevant in certain cases, but will not be treated here.

In analogy to mass conservation, the conservation of thermal energy can
be stated in the following form:

0
(pC) o, T = =Vie + g (3.21)

0
where (pC') denotes heat capacity in [energy/(volume-°temperature)](often:
[J (°K)~'m™3]) and j. the heat flux in [energy/(area-time)] (often [Watt/area]).
The energy sink or source ¢, as well as the entire differential equation, mea-

sure the volumetric energy rate in the physical unit [energy/(volume-time)]?.
Some values of heat capacities are listed in Table 3.1.

18 For an incompressible fluid the condition V-v = 0 means that there are no internal
sources or sinks for the fluid (see Chap. 12).

19 The given formulation is a simplified version already. The left side can be derived
by using the following formula for internal energy: € = o + [ c,dT with specific
heat ¢,. The given formulation is also valid for incompressible media under nearly
constant pressure (Héafner et al., 1992).
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Table 3.1. Thermal conductivities and diffusivities for selected fluid, solid and
mixed phases (Sources: Héfner et al., 1992, Lide 1995)

Phase Density Thermal Specific heat  Thermal
[kg/dm?] conductivity  capacity diffusivity
(W/m°C'] [kJ/kg°C)| [107m?/s

Water at 5°C 1.0 0.5724 4.202 0.13622
Water at 10°C 0.9998 0.5820 4.192 0.13886
Water at 20°C 0.9982 0.5984 4.182 0.14335
Water at 30°C 0.9957 0.6154 4.178 0.14793
Water at 40°C 0.9922 0.6305 4.179 0.15206
Water at 50°C 0.988 0.6405 4.181 0.15505
Water at 90°C 0.962 0.6753 4.210 0.16674
Seawater at 10°C 1.0269 0.5781 3.911 0.1439
Calcite 2.6-2.8 2.2 0.91 0.92984
Sand (dry) 1.2-1.6 0.6 (0.33) 0.8 0.62500
Fine Sand (dry) 1.635 0.627 0.76 0.50459
Fine Sand (saturated)  2.02 2.75 1.419 0.95940
Gravel (dry) 1.745 0.557 0.766 0.41671
Gravel (saturated) 2.08 3.07 1.319 1.11900

The left side describes the storage of heat, while in the first term on the
right side mass differences are expressed through the spatial change of heat
fluxes. The coefficient on the left side relates energy storage in form of heat
due to temporal temperature change to the mass. The heat capacity C' is the
expression of the energy - mass relationship, while specific heat capacity pC
is the expression for energy — volume relation. At first instance, (3.21) is a
formulation for pure phases. In porous media as a two-phase system, either
storage and fluxes can be added weighted by their relative volumetric share,
expressed in terms of porosity:

O+ (1-0)(o0)

s aatTS = —Vije+ ¢ (3.22)

In (3.22) both phases may have different temperatures: T in the pore wa-
ter, Ty in the sediment. Usually heat transport is slow in relation to interphase
heat transfer, i.e. the heat exchange between fluid and solid phase is fast and
as a result temperatures in the two phases are the same: 75 = Ty = T'. Con-
cerning the long-term development of non-oscillating thermal regimes, as it

is mostly met in field situations, the assumption of one temperature level is
true. Then holds:

[a (pC); + (1-0) (pc)s} gtT = —Vje + g (3.23)
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When the coefficient on the left side of the equality is regarded as the heat
capacity of the solid/fluid sediment system:

(pC) =0 (pC) ;s + (1 =0) (pC), (3.24)

one can stay with the formulation of the energy conservation as noted above
in (3.21). In a multi-phase environment (pC) is a property of the system
including all phases.

The heat transport will be derived from this equation by specifying the
flux j. with respect to the relevant processes. In order to reach an equation
like that for mass transport, one has to express the heat flux vector in terms of
temperature. For advective heat flux this can be achieved in analogy to (2.9):

Je =0(pc);vT (3.25)

For diffusive heat flux there is an analogue to Fick’s Law, which is Fourier’s
Law?C. In 1822 J.B. Fourier stated a linear relation between heat flux on one
side and the temperature gradient on the other:

je = —ArVT (3.26)

The proportionality factor is the thermal conductivity Ar that depends on
the medium through which heat transfer is taking place. Ay is thus a material
property which can be compared with the diffusivity in Fick’s Law (3.5). In
the literature one can also find the term conductive heat fluz. The physical
unit of A is [energy/(length-time-°temperature| (mostly: [Watt (°Km)~1]).
Some values of thermal conductivities can be found in Table 3.1.

Like Fick’s Law, Fourier’s Law was at first stated for a single phase situa-
tion, but the formulation (3.26) does not have to be changed for multi-phases.
The proportionality factor usually is not the same: in the saturated porous
medium, A7 is a weighted mean of the phases involved, i.e the fluid and the
solid phase:

Ar=(1-0) s+ Oy (3.27)

where the subscripts denote the thermal conductivities for the pure phases.

Table 3.1 provides a list of ‘material properties’, which are relevant for
heat transport. Some are related to pure phases (water and calcite), some to
mixed phases (gravel, sand).

A parameter with the unit [area/time] results when thermal conductivity
is divided by the specific heat capacity. In analogy to mass diffusion, this pa-
rameter is termed thermal diffusivity, and Fourier’s Law can be understood as
the law of heat diffusion. Note that the transformation from single phase to
multi-phase is not the same for heat and mass diffusion. The important dif-
ference is that heat diffusion takes place in all phases, whereas mass diffusion
is relevant only in the fluid phase.

20 Jean Baptiste Fourier (1786-1830), French mathematician.
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Replacing the energy flux vector in (3.21) by the terms for advective and
diffusive fluxes, as formulated in (3.25) and (3.26), one obtains the heat trans-
port equation:

(vc) ?

T =V (AVT — 0(pC) svT) + qe (3.28)

which for a divergence-free flow field simplifies to:

0

(pC) 9t

T =VAVT — 0(pC) yv-VT + qc (3.29)
Division by pC' delivers:

0 Qe
T=V-DpVT — VT .
op T = V-DrVT = 0rv-VT + oC (3.30)

with thermal diffusivity Dp = pc and the ratio of heat capacities k = (PO
Some values of thermal diffusivities are listed in Table 3.1. Note that thermal
diffusivities are more than two orders of magnitude higher than molecular
diffusivities for species. In systems, in which heat and mass diffusion act si-
multaneously, heat diffuses much faster than any species.

Aside from the 0k term, the advection term (3.30) and the different rep-
resentation of the sources, the heat transport formulation is identical to the
mass transport equation (3.19). Concerning the mathematical type both dif-
ferences do not change the type of the differential equation: it remains second
order in space and first order in time, and is thus of parabolic type. There
is a first time derivative on the left side of the equation, and on the right
side there are three space derivative terms: the second order term, repre-
senting diffusion and dispersion, a first order term, representing advection,
and a source term which usually does not contain derivatives and is thus of
zero order.

3.4 Dimensionless Formulation

Without the source term one often reads of the advection-diffusion-equation,
in connection with the differential equations derived in the preceding sub-
chapter. Depending on how the processes are understood, one may also
speak of advection-dispersion, convection-diffusion or convection-dispersion-
equation. These terms can be found for the transport equations for mass (3.19)
or for heat (3.30).

For a better illustration of the sensitivity of the solutions, it is often appro-
priate to use the dimensionless formulation of these transport equations. In
the sequel, we consider the situation with constant coefficients and no sources
or sinks. The transport equation in dimensionless form is:
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ow 0 1 0w Ow

Or 9 Pe ¢ O¢ (3.31)

with dimensionless variables w = ¢~ ¢ =% 7= "
Cin—Co’ L> L

and dimensionless Péclet>’-number Pe = “% for the mass transport equation,
T—To 5_ T = Orkvt

Tin—To' ST LT = L

and dimensionless Péclet-number Pe = Gg”TL for the heat transport equation.
The advantage of formulation (3.31) is obvious. There is only one parameter
left, which is the Péclet number. The behavior of the solutions can thus be
explored by the variation of that single parameter, and can often be visualized
nicely in a single diagram (see Chap. 5.3 for an example).

and with dimensionless variables w =

3.5 Boundary and Initial Conditions

In the preceding part of the book, the fundamental theoretical and empirical
laws are presented and it is shown how these are combined to yield differential
equations. For most differential equations several functions can be found which
fulfil the equation. The equation du/0s = —u(s) for example is fulfilled by
the functions u(s) = Cexp(—s) for all values of C. Such solutions are called
general solutions and contain one or more integration constants, like C' in the
example. In order to restrict the solution space, additional conditions have to
be specified. The additional requirements are usually formulated as boundary
and initial conditions. The mathematical formulation based on differential
equations is completed by these conditions.

The number of conditions, required to deliver a unique solution, is mainly
determined by the order of the differential equation. For 15 order equations
(which contain only 1%t derivatives) one condition is needed, while 2°¢ order
equations require two conditions. The term initial condition usually refers to
the variable time ¢ and a condition at ¢ = 0. The term boundary condition
refers to a space variable z, y or z and a condition at the boundary of the model
region. In the just mentioned example s = ¢, the initial condition u(t = 0) = ug
leads to the unique solution u(t) = ugexp(—t). Typical for 1D steady states
in sediment layers is s = z and the boundary condition u(z = 0) = ug
at the sediment-water interface. The unique solution u(z) = ugexp(—z) is
then valid, representing an exponentially declining profile of the unknown
variable.

A fundamental classification distinguishes three types of boundary con-
ditions what is summarized in Table 3.2. A 1%* type boundary condition or
Dirichlet type®? condition specifies the value of the unknown dependent vari-
able at the boundary. There is a concentration value to be given in a mass
transport problem and a temperature value in a heat transport problem.

2! Jean Claude Eugene Péclet (1793-1857), French physicist.
22 Peter Gustav Lejeune Dirichlet (1805-1859), German mathematician.
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Table 3.2. Classification of boundary conditions, overview

Type Name Condition for variable u(s)
15t Dirichlet u = u; specified

ond Neumann Ou/ds specified

3rd Cauchy or Robin aou + a1du/ds = j

In a 2" type boundary condition or Neumann?? type condition, the deriva-
tive of the variable is specified. As this gradient is proportional to diffusive
flux, one can interpret these conditions best as a specified diffusive flux. In
mass transport the concentration gradient is to be given, while in heat trans-
port the temperature gradient is prescribed.

A prominent role plays the condition with a vanishing gradient. Accord-
ing to Fick’s Law or Fourier’s Law there is no diffusive flux then. Often the
condition is simply referred to as ‘no-flow’ condition; but it should be kept
in mind that a vanishing gradient still allows advective flux. If there is a non-
zero velocity component across the boundary, then there usually is heat or
mass flux across that boundary even when the so called ‘no-flow’ condition
is declared. Thus, it is more precise to use the characterization ‘no-diffusive
flow’ instead of ‘no-flow’. Only a zero velocity normal to the boundary and a
vanishing gradient together guarantee no flux.

The 3" type, Cauchy®* - or Robin boundary condition, is the general
condition as it requires a relationship between the gradient and a given value
of the variable:

dc .
apc + oy o = for mass transport or
(3.32)
oT .
ool + oy P = Je for heat transport
n

with given coefficients ay and a7 and given mass flux j or heat flux j.. In
flow problems 3™ type boundary conditions are formulated analogously in
terms of hydraulic head, pressure, pressure head or streamfunction. The 3"
type condition includes 1%t and 2°¢ type conditions as special cases. 3'4 type
boundary conditions are connecting advective and diffusive fluxes.

Values of boundary conditions may change with time. There are applica-
tions where even the type of the boundary condition changes with time.

In transient problems, another form of conditions appears in addition to
boundary conditions: the initial conditions. As the name tells, an initial condi-
tion concerns the knowledge of a variable at the beginning of the simulation,
usually at time ¢t = 0. It is necessary to know the starting position if the
temporal development for ¢>0 is to be simulated.

2 Carl Gottfried Neumann (1832-1925), German mathematician.
24 Augustin Louis Cauchy (1789-1857), French mathematician.
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4

Transport Solutions

4.1 1D Transient Solution for the Infinite Domain

An analytical solution for the transport (3.18) with constant coefficients and
g = 0 was given by Ogata & Banks (1961). It is independent of § and reads:

ctant) = G (ante (370 ) e (pa)erte (20)) )

‘erfc’ denotes the complementary error-function which is defined as follows:

4
erfc(§) :==1— \/271_ /exp (—¢?) ds

0

‘erfc’ is related to the error-function ‘erf’:
9 ¢
erfc(€) ;=1 —erf(§) mit erf(§) := y /exp (=¢?) ds
T
0

Both functions can directly by called by a MATLAB® command, equal
to the abbreviation used above. The sequence of commands

x = [-4:0.04:4]; plot(x,erf(x),‘--r’,x,erfc(x),‘d’);
legend (‘erf’,‘erfc’,2); grid;

illustrates the graphs of the two functions:

In MATLAB® other functions relevant in connection with the error-
function are implemented. Details can be obtained by using the keyword ‘error
function’ in the MATLAB®) help system.

The 1D-solution for transport, given in (4.1), is valid in the infinite half-
space x > 0 for the initial condition
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and the boundary condition:
c(x =0,t) = cin, clx =00,t) =0

e.g. when the component is not present at the initial simulation time and is
introduced into the system by inflow of concentration c;, at position z = 0.
The second boundary condition concerns the behavior of the system at a point
that is infinitely far away from the inflow boundary, where the concentration
remains constant. For the application of the formula in practice follows that
the outflow boundary is far away during all time instants of interest. When
the front approaches the outflow boundary, the solution of Ogata-Banks is
not valid anymore.

The generalization of the formula of Ogata & Banks for a non-zero initial
condition ¢(x = 0,t) = ¢g is given by:

Cin — Co r — vt v T+ vt
c(x,t) =co + erfc + ex x ) erfc 4.2
() =cot 7, ( <2\/Dt> »(p7) (NDt)) *2)

(Wexler 1992). In MATLAB® the formula is computed in an M-file ‘anal-
trans.m’, which is described in the following. First input data are specified?®:

T=1; % maximum time

L =1; % maximum length

v =1; % velocity

D =0.1; % diffusivity / dispersivity
cO0 = 0; % initial value

cin = 1; % inflow value

M = 50; % number of timesteps

N = 50; % number of nodes

Before the formula is implemented, some auxiliary variables are introduced:

e = ones (1,N); % ones-line-vector

t = linspace (T/M,T,M); % time discretization
x = linspace (0,L,N); % space discretization
c = cOx*e; % initial distribution

e is a row vector of length N. In another row vector t, the time instants are
gathered for which the formula is to be evaluated. There are M time instants,
where the initial time ¢ = 0 is not counted. In the row vector x, there are the
positions at which the formula is evaluated. There are N locations, without
start- and end-position. In the row vector c, the initial condition at ¢ = 0 of
the concentration at the positions x is given.

%5 In MATLABG®) % is the comment indicator. All in a line that follows this symbol,
is interpreted as a comment during executing. The writer of M-files is encouraged
to use comments in order to make M-files more readable. The M-files on the disk
(mostly) can be taken as examples of good commenting practice.
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During the execution run of the program, the vector c becomes
a matrix, for which a new line is created for each of the time-instants given
by vector t. This happens in the following loop, in which the formula is im-
plemented:

for i = 1:size(t,2)
h = 1/(2.xsqrt (Dxt(i)));
C [c;c0+(cin-c0)*0.5%(erfc(h*(x-exvxt(i)))...
+exp ((v/D)*x) . *xerfc(h* (x+exv*t(i))))];

end

The loop-index is i, the current time within the loop is t(i). The size
function?® determines the number of columns in a vector, here the number of
entries in the row vector t. h is the coefficient 1/ 2v/Dt?", which appears in
the brackets. The lengthy expression in the third and forth line corresponds
with the formula of Ogata-Banks. Note that x is a vector. In order to add
or subtract the term vt (see (4.2)) it has to be ensured that the term is also
a vector: this is done by multiplication with the ones-vector e. Also note
that the multiplication of the ‘exp’-factor and the ‘erfc’-factor in the last
term of the expression has to be performed element-wise: for that reason the
multiplication-operator .* is necessary.

When the MATLAB®) plot command is applied for a matrix, the values
in the columns are plotted against line numbers. As an exercise check that
the command

plot ([1 2; 2 6; 7 8; 8 1])

produces two function graphs based on four nodes each. In order to obtain
a plot of lines against column numbers, one has to use the command for the
transpose matrix. The final command

plot (c’);

produces the plot depicted in Fig. 4.2:
In case of pure diffusion the solution of Ogata & Banks simplifies to the
form:

c(a,t) = cierfc ( (4.3)

)

The dimensionless solution ¢/c¢;, is identical to the complementary error
function with the dimensionless argument ¢ = z/2v/Dt. The evaluation can
be performed easily in the classical manner: if one is interested in the concen-
tration at location x and at time ¢, it is convenient to calculate £ and go with
the obtained value into the graphical plot of the error function (Fig. 4.1) to

26 Correspondingly size(4,1) delivers the number of rows in an array A. The func-
tion works analogously for higher dimensional arrays with higher integers.
2T sqrt denotes the square root.
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2

o
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Fig. 4.1. Error-function (erf) and complementary error-function (erfc)

get the corresponding functional value. The latter has to be multiplied by c¢;,

to receive the wanted ¢ value.

Exercise 4.1. Heat diffusion

D=10"%m?/s, Ty=5°C, T1=15°C, L=1m; how long does it take until the
temperature on the other side of the wall reaches 10°C? Answer: 1.1 10%s, to
be read in the plot produced by the following sequence of commands:

Fig. 4.2. The solution for the transport equation;
with MATLAB®

analytical solution computed



4.2 A Simple Numerical Model 69
t=[10e5:5e4:20e5] ; D=1.e-6;
plot(t,5+10*erfc(ones(1l,size(t,2))./(2xsqrt(D*t))));

Also for the constant heat flux boundary condition:

or
—-A =0,t) =7 4.4
o e =0.0) =y (14)
with a constant flux jo an analytical solution exists (Baechr & Stephan 1994).
It is given by:

Jo , T
T(x,t) = Ty + 2. VDt - ierfc 4.5
(2,0) = Ty 427 () (15)
with the integral error function
1
ierfe(§) = Y exp(-£%)-Eerfc (€) (4.6)
™

The integral error function is not specified in MATLAB®), but it can easily
be computed by use of (4.6). A corresponding M-file is delivered on CD under
the name ‘erfc.m’.

4.2 A Simple Numerical Model

In Chaps. 2 and 3 it is demonstrated that processes and fundamental laws
can be formulated in form of differential equations. Above in this chapter, it
was shown that a solution for a differential equation could be given by an
explicit formula. With reference to mathematical analysis, functions given in
formulae, as in (4.2), are called analytical solutions.

In fact, there are analytical solutions for relatively few situations, com-
pared to the immense complexity which can be represented in differential
equations. For that reason, an alternative approach has gained importance
in which an approximation for the solution is obtained by a mathematical
algorithm on a computer. The mathematical discipline dealing with these ap-
proximations is numerics. The methods used in numerics are called numerical
methods, and the solutions are called numerical solutions — in contrast to
analytical solutions.

As an example for the numerical method a simple procedure is presented
which delivers an approximate solution for the transport (3.17) that was
developed above. For reason of simplicity the demonstration covers the 1D
situation.

Imagine a series of cells of equal geometry, as depicted in Fig. 4.3, rep-
resenting an idealized situation in an environmental compartment. It is as-
sumed that there is a constant flow with velocity v through all cells. When
an increased concentration ¢;, enters the first cell with the flow, how does
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Fig. 4.3. Cells in series

that affect the concentration distribution in the entire system? To keep it
simple, it is assumed that the concentration in each cell has a single value:
the concentration in the i-th cell is designated as ¢;. The transport problem
is to compute the concentrations ¢;, depending on time and the transport
parameters.

A simple algorithm is developed in the sequel to mimic the major processes,
advection and dispersion. Let’s start with advection: after an appropriate time
step At, the entire system will be shifted by one cell. The time step depends
on the velocity v and the spatial extension of the cells in flow direction Ax.
The formula is: At = Az/v. In MATLAB®) we start with some settings in
the command window:

N = 100;
cO = 0;
cin = 1;

c = cOxones (1,N);
and the following command sequence in the editor:

¢ = circshift(c’,1)’; % advection
c(1)=cin;
plot (c); hold on;

Store the M-file under the name ‘advection.m’. The first commands spec-
ify the number of cells N and the initial concentration, which holds for all
cells c0. In the first row of the M-file the initial concentration is set for all
cells. In MATLABG®) it is convenient to work with vectors, and thus the con-
centration distribution in the system of cells is represented by a row vec-
tor c. In the next row the concentration is shifted by one position to the
right. For such an operation MATLAB®) offers the circshift command.
Parameters of the command are the vector and the number of positions to
be shifted. One has to use the transpose-’, because circshift operates on
column vectors, only. Additionally, the circular shift puts the concentration
from the last cell into the first cell, which is not the intention here. The
concentration in the first cell should be the inflow value ¢;,. This setting
is performed in the next command, which overrides the preceding value in
that cell.

In the final row the concentration is plotted. The hold on command en-
sures that the new graph is plotted in the same figure-window, and that the
old graph is not deleted. Run the small M-file several times, and plots similar
to Fig. 4.4 will be visible on the display:
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20 40 60 80 100

Fig. 4.4. Pure advective passing of a concentration front through a 1D compartment

A front of increased concentration is passing from the left to the right. This
animation is user-controlled, as it is the user who initiates each step with a
mouse-click. The sequence shows advection, i.e. pure transport with the flow
field. What is not correct is that the vertical front-line is slightly tilted. One
could think that this represents a tiny transition zone between the low and the
high concentration regime, but such a zone would be the result of diffusion or
dispersion, which are not yet included in the model. In fact, the tilting is an
effect of the spatial discretization, e.g. the representation of a 1D-space interval
by a finite number of discrete cells. The plotting algorithm, implemented in
MATLAB®), connects neighbouring positions by a straight line. The tilting
becomes less pronounced when the number of cells is increased.

For further use modify the advection M-file slightly:

cl = circshift(cl’,1)’;
cl1(1) = cin;

The concentration variable is re-named to c1 as it contains the current
value of the concentration in a row vector. The ¢ will be reserved for a matrix
containing concentrations for all cells at all time-instants. The ‘advection.m’
file is called as a sub-module from a main M-file, in which the initialization
and the post-processing are performed. The main module should look like this:

N = 100; % number of cells
cO = 0; % initial concentration
cin = 1; % inflow concentration
cl = cOxones (1,N); c = cl;
hold on;
fori = 1:N
advection;
plot (c1);
c = [c;cll;
end

In the first three lines, the input part, variables are initialized, a task
which was done in the command window in the previous demonstration. In
the forth line, the row vector of current concentrations is set to the constant
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initial value, and also the first row of what is to become the concentration
matrix c is filled with the initials. A for-loop is introduced in which N time
steps are simulated. Advection is simulated in ‘advection.m’, called within the
loop. Then the concentration is plotted as already shown in Fig. 4.4. Finally,
the row of current concentrations is attached to the matrix c. Store this file
under the name ‘simpletrans.m’.

Run the program. After that, a surface plot in the z-t-diagram is obtained
with the surf-command (see Fig. 4.5, use MATLAB® command-window):

figure; surf(c)
As a next step we introduce diffusion into the model. For that purpose, we
set up another M-file with the task to mimic diffusive/dispersive processes:
for i = 2:N-1
c2(i) = c1(i) + Neumann*(cl(i-1)-2xc1(i)+c1(i+1));
end

c2(1) = c1(1) + Neumann*(cin-2*c1(1)+c1(2));
c2(N) = c1(N) + Neumann*(c1(N-1)-c1(N));
cl = c2;

Store this M-file under the name ‘diffusion.m’. The Neumann number
Neumann, which appears here, has to be specified in the main module. The
definition of the dimensionless Neumann number is given in Sidebar 4.1; let’s
take it simply as a parameter. The influence of that number is to examine.
An auxiliary concentration row c2 is computed in the sub-module, where the
value in each cell is calculated from the last concentrations c1 in the same
cell and the two neighbouring cells. Why such a procedure mimics diffusion
is derived in the following. The corresponding main M-file has a Neumann-
number specification additionally and a call of the diffusion sub-module (called
by the diffusion command):

Fig. 4.5. Pure advection in a space (z)-time(t)-diagram
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Neumann = 0.5;
cl = cO*xones(1,N); c = ci;
hold on;
fori = 1:N
diffusion;
advection;
plot (c1);
c = [c;cl];
end

Store the M-file under the name ‘simpletrans.m’. Advection and diffusion
are simulated in the corresponding sub-modules which are called within the
for-loop of the main file. A general term for such a numerical procedure is
operator splitting. The for-loop mimics advancing time. A snapshot of the
output of the M-file is depicted in Fig. 4.6.

The graph was obtained by ending the loop in the main module at a value
lower than N. In the graph, the build-up of a transition zone with concentra-
tions between initial concentration and inflow concentration is obvious (which
here is not the result of a graphic routine on discrete data). The transition
zone moves with the advancing front, in the figure from left to right. It is
also obvious that the transition zone widens with time. In other words: the
gradients of the concentration curves become less steep. That is even better
visible in the (z,t)-diagram, produced with the surf-command:

figure; surf (c )

As depicted in Fig. 4.7, the concentration is shown as a surface above the
(z,t)-plane.

An alternative is the contourf-command

figure; contourf(c)

visualizing the transition zone nicely. The transition zone is the multi-colored
region between the plateaus of initial concentration (blue) and the inflow
concentration (red) — see Fig. 4.8. For more details concerning 2D graphics
see Chap. 14.

Fig. 4.6. Transport due to advection and dispersion; snapshot from an animation
using ‘simpletrans.m’
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Sidebar 4.1: Derivation of the Diffusion Algorithm

As noted, diffusion is described by Fick, which in 1D is stated as:

J= Dam

with diffusivity or dispersivity parameter D (see (3.5)). It was shown that
the application of the principle of mass conservation together with Fick’s
Law leads to the transport equation which is a differential equation for the
concentration c. In the derivation, the mass balance was set up for a control
volume (3.3):

clz,t+At) —c(@,t) _ Jor(2,t) = Ja(2,1)

At N Az
In order to describe the change of concentration in the finite system of
cells, the same equation can be used for each cell. We choose an arbitrary cell
at position 7 of the series with neighbour cells at positions i+1 and i—1. The
concentrations are designated as ¢;, ¢i+1 and ¢;_1. The fluxes in z-direction
across the corresponding faces of the cell can be approximated by a finite
version of Fick’s Law:

Ci —Ci—1

D Ci+1 — G
Az

= d . —-D
Ja+ Az an J

Note that these formulae are not valid exactly but may serve well as
approximations. It is the idea that small errors in the approximation may
lead to small deviations between analytical and numerical solutions after
performing the algorithm. Mathematicians speak of stability at this point
as not all algorithms turn out to be stable. Replacing the finite difference
terms in the mass conservation equation above, yields:

Ci,new — Ci 1 Cit1 — G C; — Ci—1
: —_ " (-p D
At Az ( IN N )

and
Cimew = Ci _ p)Cit1 — 2¢; + ci—1
At Az?

where ¢; new denotes the concentration in the i’th cell after a time step, e.g.
t+At, while all other concentration terms are relevant at the time ¢. The ratio
on the right side is a finite difference representation of the second derivative
0?c/0z%. There is an entire class of numerical methods which is founded
on such Finite Differences, whereas the simple algorithm here adopts this
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methodology for the simulation of diffusive fluxes only. In these equations
the cell concentrations between neighbouring cells are related. Thus one may
use them applying an explicit formula from which the new concentrations
in the system of cells can be computed:

D - At
Cinew = Ci + Ag? (i1 —2¢; + cit1)

The coefficient which appears in front of the brackets, the parame-

ter combination is also known as Neumann-number (abbreviation:

2 ?
Neu), see Holzbecher & Sorek 2005). It is the given explicit formula for ¢; neqw
that is computed in the M-file ‘diffusion.m’.

Exercise 4.2. Instability of the Explicit Diffusion Simulator

Check the simple transport algorithm, introduced above, for Neumann?8-

numbers Neu = 0.1, 0.2, 0.3, 0.4, 0.5 ! Show that the algorithm becomes
unstable when Neu takes values greater than 1/

The algorithm can be improved by using several (M) diffusion steps within
one time step simulation. In other words: a diffusion time step Atg;rr = At/M
can be introduced in addition. Note that the time step of the splitting algo-
rithm is not arbitrary. It is determined by the velocity v and the cell extension

100

40

00 20

Fig. 4.7. The solution of 1D transport in the space (x) — time (t) diagram, visualized
as surface plot

28 John von Neumann (1903-1957), US-American mathematician, physicist, chemist
and computer scientist.
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10 20 30 40 50 60 70 80 90 100
X

Fig. 4.8. The solution of 1D transport in the space (x) — time (t) diagram, visualized
by filled contours

Ax. The following M-file, which is stored under the name ‘simpletrans.m’ on
the book-CD, takes such a refinement into account.

T = 30; % maximum time [s]

L = 50; % length [m]

D =1; % dispersivity [m*m/s]

v =1; % velocity [m/s]

cO0 = 0; % initial concentration [kg/m*m*m]
cin = 1; % inflow concentration [kg/m*m*m]
dtout = 1; % output timestep[s]

dxmax = 1; % maximum gridlength [m]

dx = dtout/v;

K = 1; if (dxmax<dx) K = floor(dx/dxmax); end
dx = dx/K; dtadv=dtout/K;

N = ceil(L/dx);

x = linspace(0,N*dx,N);

Neumann = Dxdtadv/dx/dx;

M = ceil(2*Neumann) ;

Neumann = Neumann/M;

dtdiff = dtadv/M;

t = 0;

clear ¢ cl c2;
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c(1:N) = c0; cl1 = c;

k=1;
while (t < T)
for i=1:M
diffusion;
end
advection;
c = [c;cll;
h = plot (x,cl); hold on;
t =t + dtadv;
end

plot (x,c’,‘-=?) % profiles
xlabel (‘space’); ylabel (‘concentration’);

After the specification of the input parameters, the grid spacing dx is
calculated in several steps. First it is derived from the two input parameters
time step and velocity. The user may require smaller grid spacing if the user-
defined value for dxmax is smaller. In the latter case, K is the integer factor
by which dx is reduced. The time step, corresponding to the reduced dx, is
dtadv. N is the number of blocks which is required to reach the user-specified
length L. M denotes the number of diffusion time steps necessary to fulfil the
Neumann condition:

D- Atdiff < 1

New = Az? -2

(4.7)

Note that in the M-file the time is specified explicitly by a maximum
simulation time and an output time step. The algorithm is also described by
Appelo & Postma (1993).

4.3 Comparison between Analytical
and Numerical Solution

Compare analytical and numerical solutions, as obtained with the M-files
‘analtrans.m’ and ‘simpletrans.m’! A typical result is shown in Fig. 4.9, which
was obtained for input values T =1, L=1,v=1,D =0.1, ¢g =0, ¢;, = 1,
M = 50, N = 50. There are differences at the start and the end of the
simulation, while for intermediate times the two curves coincide.

As was shown above, the presented algorithm treats advection exactly to
the truncation error of numbers on the computer. The deviances between an-
alytical and numerical solutions are thus due to the discretization of diffusion.
Directly after start of the simulation the concentration gradient is very steep,
and thus the error due to the approximate representation of the differentials
by finite differences is higher than in the later simulation. The error can be
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reduced by an increase of the number of cells, which is done here by lowering
the input value for dxmax.

The differences at the end of the outflow boundary are due to a different
reason. In fact, the boundary condition, which is included in the numerical
algorithm, does not coincide with the analytical solution which is valid for the
infinite half space £>0. The ‘erfc’-solutions (4.1) and (4.2) do not fulfil the
Oc/0x = 0 Neumann condition at any finite location.

The Neumann boundary condition is in fact approximated by the numer-
ical algorithm, more precisely in the command

c2(N) = c1(N) + Neumann*(cl(N-1)-c1(N));

appearing in the module ‘diffusion.m’. The formula results from the general
finite difference formulation by setting c1 (N+1)=c1(N), where c1(N+1) rep-
resents the concentration in the outflow reservoir behind the final cell. The
slope of the numerical solution vanishes at the right boundary, which is clearly
visible in Fig. 4.9.

The boundary condition is not altered by a finer discretization, and thus
the deviation on the outflow side remains. Figure 4.10, obtained for 100 cells,
demonstrates that the deviation on the left side is reduced in comparison to
Fig. 4.9, but the deviation on the right side remains.
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Fig. 4.9. Comparison of analytical and numerical results for the 1D transport
equation
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Fig. 4.10. Comparison of analytical and numerical results for the 1D transport

equation, for a finer discretization

4.4 Numerical Solution using MATLAB®) pdepe

Here, another method for solving the transport equation is presented which
is based on the pdepe solver for partial differential equations (pde’s). It is
necessary to introduce this third method as it offers more possibilities and
can be applied for a much broader class of problems. Several species and/or
temperature can be treated simultaneously; for that reason the vector variable
u is used in this sub-chapter to gather all dependent unknown variables. The
coefficients may have dependencies, either on time or on space, i.e. on the
independent variables x and ¢, or on the dependent variables u. Various forms
of additional terms can be taken into account in order to consider complex
sources or sinks. This capability of pdepe opens the possibility to simulate
networks of reacting biogeochemical species. Moreover, initial conditions are
allowed to be space dependent and boundary conditions to be time dependent.
The field of possible applications is so wide that only a few examples can be
presented here.

pdepe is a MATLAB® command. For any command, the MATLABG®) help
system delivers some information and instructions. One may use the ‘Help’
item in the main menu or the command window. Here write:

help pdepe

in order to get the basics about the pdepe command. The information supplied
by the help system is brief and directed to a mathematically skilled audience.
Therefore we provide an introduction which can be understood without being
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used to mathematical presentations. On the other hand, the focus here is on
transport equations, which are typical for environmental models, and not on
those numerous other partial differential equations which can also be treated
using pdepe.

pdepe solves ‘pde’-systems of partial differential equations, which can be
written in the following form

ou  _0(x™f)
C g =7 P +s (4.8)

In the notation of (4.8) the terminology of the MATLAB®) help system
is adopted. It was already mentioned that the unknown variables which have
to be determined are gathered in the vector u. The coefficients of the time
derivatives are gathered in a diagonal matrix ¢ (has nothing to do with concen-
trations). The functions f and s on the right side of (4.8) are vector functions
too, depending on x, ¢, u and du/dz. Also for c, these dependencies can be
valid. The integer value m may take the values 0, 1 and 2, representing slab,
cylindrical, or spherical symmetry respectively. In favor of simplicity, m = 0
will be valid in the introductory examples.

Let’s look at an illustrating example. The distributions of species A and
B are to be simulated in a system in which advection, dispersion and reaction
are the relevant processes. According to the derivations in Chap. 3, such a
situation can be described by two transport equations:

dca g <DacA—ch)—r

ot oz ox (4.9)
dcg 0 D 0 B n '
ot  Ox &ECB veB "

ca and cp denote the concentrations of species A and B, D the dispersivity,
v the velocity, and r the reaction rates. The system (4.9) fulfils the form (4.8)
with m = 1 and the following functions:

0
(10 (eca e D&ECA—UCA (=
c=\lo 1 u= ca - 0 ST\
D _ cp—wvcg
T

Another possible representation is:

D@ 1o}
_ (1 0 _[cA _ 8JccA _ U@ch "
c= u= f= s =
01 caA 0 1o}
D _ c¢cp —v_. cg+r
T or
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Note that the latter formulation requires the condition dv/dz = 0. The
difference between both formulations is that in formulation (4.10) the flux
term f includes dispersive and advective fluxes, while in formulation (4.11)
only dispersive fluxes are included. This difference is also important for the
boundary conditions, as is shown in the following.

For the complete formulation of the mathematical problem, initial and
boundary conditions need to be set. Using the terminology introduced above,
the initial condition at time tq is given by the vector equation:

u (z,t9) = ug(z) (4.12)

The boundary condition, valid at locations x = ¢ and = = z,, is formu-
lated in MATLAB®) by

p+q-f=0 (4.13)

The function p may depend on z, ¢t and u, the function q on = and ¢t. Note
that f is the flux-vector from the differential equation (4.8). At first sight, the
formulation (4.13) seems rather different from the formulations of boundary
conditions given above. But it turns out that the MATLAB®) formulation
offers a lot of flexibility and extended options for all types of conditions. An
overview is given in Table 4.1.

In the notation in Table 4.1 a single unknown variable u is used, rep-
resenting a single unknown component. The boundary conditions, even the
type of the boundary conditions, may be different for each component of the
vector u.

The reference to the equation representation indicates which processes are
included in the flux term f, either in case of diffusion/dispersion alone or with
advection. In case of several unknown variables, the representation can be
chosen differently for the different components.

Table 4.1. Implementation of transport boundary condition, using MATLAB®
‘pdepe’

Type Name Representation Formula p q
1% Dirichlet (4.11), (4.10) u=u u—ug

ond Neumann (4.11) Dgz =—m p1 1
3rd Cauchy or Robin  (4.10) qngZ =u1—u u—ur  q
« « (4.11) Daz —veu=0 0 1
« « (4.10) D%Z —viu=p P 1
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Sidebar 4.2: Syntax of the MATLAB®
pdepe-Command

Syntax

sol = pdepe(m,pdefun,icfun,bcfun,zmesh,tspan)
sol = pdepe(m,pdefun,icfun,bcfun,zmesh,tspan,options)
sol = pdepe(m,pdefun,icfun,bcfun,zmesh,tspan,options,pl,p2...)

Arguments

m geometry parameter (slab = 0, cylindrical = 1, spherical = 2).

m geometry parameter (slab = 0, cylindrical = 1, spherical = 2).

pdefun  function submodule for coefficients of the differential equation
(c, f and s).

icfun function submodule for initial condition (ug).

befun function submodule for boundary conditions (p and q at
and ).

xmesh  vector [xg, x1,. .., Zy,], positions at which the solution vector is

calculated; elements of xmesh need to fulfill: zog < 1 < ... <
., and there must be at least three entries

tspan vector [to, t1,...,ts], time instants at which the solution vector
is calculated; elements of tspan need to fulfill: to < t; < ... <
ty and there must be at least three entries

options options concerning the numerical algorithm: RelTol, AbsTol,
NormControl, InitialStep, and MazStep; see,odeset’ in help
system for details; use default first

pl,p2,... optional parameters fiir pdefun, icfun und bcfun

sol solution matrix, containing values for all elements at all posi-
tions of zmesh at all time instants of tspan.

A complete description can be found in MATLAB®) -help. With the pdepe
command the M-file ‘pdepe.m’ is called. The user finds the location of that
file by using

which pdepe

The user may open the file to see that the implemented solution algorithm
is also written in m-language. The inexperienced user is not recommended to
alter that file, but it is worth to know that alterations of the algorithm are
possible in MATLAB®). The syntax of the pdepe command is presented in
Sidebar 4.2 in brief form.
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4.5 Example: 1D Inflow Front

The first test case for the pdepe method is the simulation of a situation
for which the Ogata-Banks solution holds. At first the functions have to be
specified. Because the transport equation is concerned, the names transfun,
ictransfun and bctransfun are chosen for the equation specification, the
initial conditions and the boundary conditions repectively. The entire specifi-
cation is given by:

function [c,f,s] = transfun(x,t,u,DuDx,D,v,c0,cin)

c=1;

f D*xDuDx;

s -v*DuDx;

% ___________________________________________________________
function u0 = ictransfun(x,D,v,c0,cin)

u0 = c0;

Y -

function [pl,ql,pr,qr] = bctransfun(xl,ul,xr,ur,t,D,v,c0,cin)

pl = ul-cin;
ql = 0;
pr = 0;
qr = 1;

The functions f and s are specified in accordance with formulation (4.11),
as the flux term includes diffusion only. Parameters in this example are dif-
fusivity D, velocity v, initial concentration cO and inflow concentration cin.
These parameters have to be included in the formal parameter list appearing
in the header of each function module. Number and order of these parameters
need to be the same. Note that in the boundary module p and q have to be
specified for both boundaries. The subscripts 1 (left) and r (right) indicate the
boundary. The specifications for the left boundary coincide with the settings
in line 1 of Table 4.1; i.e. the Dirichlet boundary condition is specified, while
the specifications for the right boundary coincide with line 2, the Neumann
condition.

The main module of the M-file looks as follows:

function pdepetrans
% transport-solver using ‘pdepe’

T=24.; % maximum time [s]

L =2.5; % length [m]

D =0.01; % diffusivity [m*m/s]

v=1; % velocity [m/s]

c0 =0 % initial concentration [kg/m*m*m]

cin = 1; % boundary concentration [kg/m*m*m]
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M = 100; % number of timesteps
N = 100; % number of nodes

t = linspace (T/M,T,M); % time discretization
X linspace (0,L,N); % space discretization

Y= execution-———-—-——-—---————-

options = odeset;

¢ = pdepe (0,@transfun,@ictransfun,@bctransfun,x,...
[0 t],options,D,v,c0,cin);

Y= output --—---—---———-——-
plot ([0 t],c) % breakthrough curves
xlabel (‘time’); ylabel (‘concentration’);

The execution part of the module consists of a single call of pdepe. The
previous command has to be made in order to specify the options structure
for the next command. The parameter set for the example appears behind the
options—parameter in the pdepe call. The results are stored on matrix c.

The function modules may be located in the same M-file behind the main
module. As a result of the plot command, one obtains breakthrough curves
shown in Fig. 4.11. Breakthrough curves result from plotting concentration
vs time at a specified location. The term is common in experimental sciences,
where breakthrough curves are recorded in column experiments. The set-up
in a column experiment corresponds to the situation described by the Ogata-
Banks solution. A front of usually increased concentration enters a 1D system
in which at certain positions and certain time instants measurements are

concentration

time

Fig. 4.11. Breakthrough curves as result of the transport solution using MATLAB®)
pdepe
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taken. A breakthrough curve results if the values measured at one of the
locations are plotted against time.

In MATLAB®) the plot (c) command yields breakthrough curves if the
concentrations for the current time step are added in another row of the
matrix, as it is done by MATLAB®) pdepe. The first formal parameter [0 t]

determines the x-axis.

Extended versions of the M-files ‘analtrans.m’, ‘simpletrans.m’ and ‘pde-
petrans.m’ can be found on the accompanying CD-ROM. The extensions are
explained in the following chapters.
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5

Transport with Decay and Degradation

5.1 Decay and Degradation

Organic matter and organic substances are subject of degradation. The degra-
dation processes are of biochemical nature as they are mediated by bacteria.
The details of these processes are usually quite complex. For their activity,
the different bacteria cultures depend strongly not only on the biogeochemi-
cal environment but also on temperature and pressure conditions. One crucial
condition, for example, is the availability of oxygen. In an aerobic environ-
ment bacteria dominate that consume oxygen aside from organic matter.
These components are transformed into various products which always in-
clude carbon dioxide. In an anaerobic environment, when the available oxy-
gen is consumed, other bacteria take over the role of major contributors to
organic matter degradation. Other electron acceptors become more impor-
tant, as manganese and iron in the solid phase, or nitrogen and sulphate in
the fluid phase.

The term decay generally is used for physical or chemical processes that
cause a loss of substance. The term is well known in connection with radioac-
tive decay for the transformation of radionuclides into daughter products.
Uranium U?3® decays with a halflife of 4.5 - 10° a, i.e. after that time half of
the initial mass is still present while the other half is transformed into Th*** (if
no other processes are involved). As the daughter product Th?** has a halflife
of 2.1 days only, most of it decays into Pa?**, which is even more short-lived
with a halflife of only 12 minutes. The next daughter product U?3* has a long
halflife of 2.5 - 10° a.

There is a basic mathematical formulation that is commonly used to de-
scribe decay and degradation. More complex approaches will be presented in
the following Chaps. 7 and 9. One general approach recognizes losses ¢ being
proportional to a power of the concentration c:

qg=—Ac" (5.1)
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where the integer n is the order of degradation. X is the so called decay or
degradation constant, which generally depends on all variables in the envi-
ronment of the system in question. Second order decay is proportional to the
square of the concentration. Note that the physical unit of A depends on the
exponent n. For the important case with n = 1, the unit of X is [1/T].

The sink term, given by (5.1), is substituted in the general mass transport
equations as (3.19) and (3.20). Note that both, ¢ and the differential equation
have the same physical units (M/T/ L3). Because the porosity 6 appears in all
terms, it can be omitted. One obtains:

6CzV-DVC—V-vc—/\c" (5.2)
ot
With this approach, decay and degradation processes are included in the
transport equation, and it becomes possible to treat transport, decay and
degradation simultaneously. Before we give solutions and solution strategies
for the general situation, special cases will be treated first.
If no other processes are relevant remains:

Oc

o= —Ac (5.3)

This is an ordinary differential equation for the independent variable t.
Most important is 15° order decay or degradation, i.e. the case n=1, where
losses are proportional to the concentration. Then the solution of the differ-
ential equation (5.3) can be noted directly:

¢ = cpexp(—At) (5.4)

which holds for the initial condition ¢(t = 0) = ¢g. The exponential function
obviously is the solution for a component with first order decay - that explains
the notation exponential decay. The halflife t1 18 the time period in which the
component concentration declines to half of the initial value. Thus according
to (5.4) the t1 5 1 characterized by the condition

1/2 = exp(—At1,) (5.5)
which is equivalent to the condition #;/, = In(2)/A. This is the reciprocate

relation between decay constant and halflife. With t1 b exponential decay can
be noted in dimensionless form as:

C/co = exp(— 1n(2)t/t1/2) (5.6)

for the dimensionless variables ¢/co and ¢/t1,,. For the time period of five
halflifes the function is depicted by the following MATLAB® commands in
Fig. 5.1.



5.1 Decay and Degradation 89

\ \ \ \
[ [ [ [
09y -———--- - ————-- 9= T~~~ 1
[ [ [ [
I N - 1 _
0.8 [ [ \ !
[ [ [ [
07— A\~——l——————- - === == - +——————o
[ [ [ [
[ [ \ |
06F-———-—-X~ T T e e
° [ [ [ [
S 05F———— =N — - — — [, Ao Lo
[3) \ [ [ [
[ [ [ [
04F------ [t NGty === === I B T T
[ [ [ [
[ [ | |
03pF-——==-- [ N [
[ [ [
02F--—-—-—-—- - ———— = e e ——————
[ [ [ [
[ [ [
(O iy e L Ay
[ [ [ T
0 Il Il Il Il
0 1 2 3 4 5
timet/t1/2

Fig. 5.1. Exponential decay as represented by dimensionless variables

plot ([0:0.1:5],exp(-log(2)*[0:0.1:5])); grid;
xlabel(‘time t/t {1/2}’); ylabel(‘c/c 0’);

From mathematical point of view, the major difference between radioac-
tive decay and other forms of first order losses lies in the decay constant. The
halflife of radionuclides is constant under all conditions known. The rate of ex-
ponential decay of a nuclide is not influenced by any environmental condition,
neither by temperature, nor by pressure, nor by the biogeochemical surround-
ing. Table 5.1 lists some radionuclides and their halflifes. The simulation of a
chain of radionuclides is described in Chap. 18.2.

In contrast, chemical and biochemical rates are strongly affected by en-
vironmental variables. In fact, the decay law can often be understood as a

Table 5.1. Half-lifes of selected radionuclides

Radionuclide Halflife Radionuclide Halflife
U-238 4.5-10° years H-3 12.35 years
U-235 32500 years Ra-228 5.8 years
Ra-226 1600 years Th-228 1.91 years
Am-241 432.2 years Gd-153 242 days
Pu-238 87.74 years Po-210 138 days
Cs-137 30 years Sr-89 50.5 days

Pb-210 22.3 years Th-234 24.1 days



90 5 Transport with Decay and Degradation

most simplified rule, in which the interaction of several complex processes are
gathered and where A is a lumped parameter. Clearly, in a changed environ-
ment the parameter is different. More complex degradation rules, using the
Michaelis-Menten or Monod kinetics, are treated below (see Chap. 7).

5.2 1D Steady State Solution

As mentioned above, the differential equation for the steady state is obtained
by setting the time derivatives in the transport equation (5.2) to zero. The
right hand side of the 1D transport equation has thus been set to zero:

0 _0Oc dc
8£L'D8£L'—U8£L'_/\C:O (5.7)

This is an ordinary differential equation for the independent variable x.
With MATLAB®) ordinary differential equations can be solved numerically
(see Chap. 9). Here, an analytical solution, which provides the solution in an
explicit formula, is an alternative if the coefficients are constants, i.e. inde-
pendent of z and ¢. In order to solve differential equation (5.7) analytically,
it is appropriate to note it in a different form:

(2-m) (2 -s)emo -

The parameters p; and pe can be obtained by comparison of coefficients
in (5.7) and (5.8):

prtp2=v/D  py-pe=-A/D (5.9)
A quadratic equation results, which has the solutions:
1
— 2
e =y, (v + /v +4>\D> (5.10)

Equation (5.8) can now be solved in two steps. First the solution ¢ of the
equation

(8850_’u1>c:0 (5.11)

is determined, which is given by ¢ = Cj exp(u1x). Cp is an integration constant
that is determined below in order to fulfil the boundary conditions. In a second
step, ¢ is found as solution of the differential equation

(2 s)ems 12

One obtains a formula for the general solution:
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c(x) = exp (pu22) (C’l +Co /exp (1) exp (—p2x) dx)
(5.13)
Co

= Crexp (u2z) + exp (1)

M1 — M2
where (' is the second integration constant. Both Cy and C; are determined
by the boundary conditions. The usual condition at the inlet ¢(x = 0) = ¢;p,
yields the condition: C + Co/ (1 — p2) = cin or C1 = ¢y — Co/ (1 — p2)-
Note that pq and ug, as given by (5.10), have opposite signs. As 1 is pos-
itive, the first term in (5.13) is decreasing with depth, while the second is
increasing with depth. For that reason, the solutions approach infinity for all
values Cy # 0. Vice versa, the function with Cy = 0 is the only solution
which guarantees finite concentration for arbitrary high values of z. It is this
property which makes the choice Cy = 0 favourable in studies, where there
is no information concerning the downstream boundary condition (Anderson

et al. 1988; Henderson et al. 1999). Then the solution simply reads:

c(x) = ¢in exp (uox) (5.14)

When the second boundary condition requires a vanishing concentration
gradient at depth L, i.e. (0¢/0x) (L) = 0, the second equation for Cy and Cy
is given by:

Copn

Ciug exp (uaL) + , exp (uiL) =0 (5.15)

which leads to the solution:
= Cintt2 (p2 — p1) exp (p2 L)
p1 exp (p1L) — po exp (p2L)

L Cinft1 exp (p1 L)
prexp (u1L) — poexp (p2L)

(5.16)

With these formulae the solution is complete to be computed in
MATLAB®). This will be done in the next sub-chapter. Here, we want to
point out that the given procedure can be applied to obtain the solution
for different types of boundary conditions. In all cases the free constants Cjy
and C7 in a formula for the general solution, like in (5.13), have to be de-
termined to fulfil the conditions. For Dirichlet boundary conditions on both
sides ¢(0) = ¢;, and ¢(L) = ¢p one obtains:

_ Cin(p2—m)exp(ual) o Co (5.17)
exp (p1L) — exp (p2L) {1 — fiz

Higher order decay usually is much more difficult to handle than decay of
first order. In order to tackle more complex formulations MATLAB®) offers
the possibility to use numerical methods for ordinary differential equations.
Such methods are treated in Chap. 9.
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5.3 Dimensionless Formulation

In dimensionless form the solution (5.13) can be written as:

(@) _ Coexp (fi1Z) + (1 - éo) exp (fi2Z) (5.18)

with dimensionless depth & = x/L, i1 = p1L, fia = peL and one integration
constant C’O.

The parameters ji; and fi2 can be expressed as function of the dimension-
less Péclet number Pe = vL/D (see Chap. 3.5) and the dimensionless 274
Damkohler?® number Day = AL?/D:

1 1
fl,2 = 2Pe + \/4P6’2 4+ Dag (5.19)

If the 15 Damkohler number for the fluid phase is defined by Da; =
AL /v, the two p-values can also be expressed as function of Pe and Daj.
Using the identity Das = Pe/Day, one obtains ji; and fip as functions of Pe
and Dayq:

Pe

Da1

The solution with vanishing concentration gradient at depth L can be
expressed by the formula:

1 1
fa,2 = 2Pe + \/4Pe2 + (5.20)

c(¥) _ fizexp (fi2) exp (f11%) — fi1 exp (fi1) exp (fi2)

fix
= ~ - - - 5.21
Cin fiz exp (fig) — fur exp (fun) 521
A special case of (5.21) is
c(Z) _ exp(v/Daz) exp(—v/Das) + exp(—v/Daz) exp(v/Da ) (5.22)

Cin exp(v/Dag) + exp(—+/Das)

which is obtained for Pe = 0, i.e. for no advection. The graphs of functions
(5.22) for different values of the second Damkdhler number are presented in
Fig. 5.2. The following MATLAB®) code is used for the plot. Markers in lines
were added by post-processing with the MATLAB®) figure-editor.

x = [0:0.01:1];
Da2 = 8; mul = sqrt(Da2); mu2 = -mul;
s = mu2xexp(mu2)-mul*exp(mul);
c = (mu2*exp(mu2) *exp (mul*x)-mul*exp(mul)*exp(mu2+*x))./s
for Da2 = [4 2 1 0.5 0.25 0.125];
s = sqrt(Da2); mul = s; mu2 = -s;

2 Gerhard Damkéhler (1908-1944), German chemist.
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Fig. 5.2. Concentration profiles in the case of diffusion and decay with constant
parameters D and \; as function of dimensionless 2°¢ Damkéhler number Dasy

s = mu2*exp (mu2)-mul*exp(mul);

¢ = [c; (mu2*exp (mu2)*exp (mul*x)-mul*exp(mul)*exp(mu2*x))./s];
end
plot (x,c);

legend(‘Da 2=8’,‘Da 2=4’, ‘Da 2=2’,‘Da 2=1’,‘Da 2=0.5",
‘Da 2=0.25’, ‘Da 2=0.1257);
xlabel (‘x/L [-]’); ylabel (‘c/c {in} [-]1’);

4

The corresponding M-file ‘analtrans si.m’ can be found on the accompa-
nying CD-ROM.

The result of a varying Péclet number is illustrated in Fig. 5.3. All but
one of the depicted curves are calculated for Da; = 1 and variable Pe. The
unit value of Da; guarantees equal importance of advection and degradation
or decay. The increasing value for Pe then represents a reduced importance
of diffusion, which in the profiles is reflected by steeper gradients.

The corresponding M-file ‘analtrans s2.m’ can be found on the accompa-
nying CD-ROM.
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Fig. 5.3. Profiles for fluid phase concentration in case of transport with constant
parameters for Da; = 1 in dependence of the Péclet number Pe

The lower most curve in Fig. 5.3 shows the profile for advection and de-
cay only, i.e. for no diffusion, calculated as solution of the simple first order
ordinary differential equation

Oc Oc A
_ —Xe = = — 2
Y ow Ac=0 or P o€ (5.23)
The solution is:
c(x) = ¢inexp(— Km) (5.24)

or in dimensionless form (for dimensionless concentration, with dimensionless
parameter and independent variable

¢/cin = exp(—Da1 ) (5.25)

Formally one can represent the no-diffusion case by Pe = oco. As could
be expected for increasing values of Pe, the function of (5.25) is approached
as asymptote. But the convergence is quite slow. For the value of Da; = 1,
the value of the Péclet number should be distinctly above 10 in order to
obtain a good correspondence between the concentration distribution and the
asymptote. For a good correspondence close to the outlet (x close to L), Pe
should be 100 or higher.
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x = [0:0.01:1];
Dal = 1;
c = exp(-Dalx*x);
for Pe = [10 5 4 3 2 1 0.5 0.25];
s = sqrt(0.25%PexPe+Pe/Dal);
mul = 0.5%Pe+s; mu2 = 0.5%Pe-s;
s = mu2*exp(mu2)-mul*exp (mul) ;
c=[c; (mu2*exp (mu2) xexp (mul*x) -mul*exp(mul)*exp (mu2*x))./s];
end
plot (x,c);
legend(‘Pe=Inf’, ‘Pe=10’, ‘Pe=5’, ‘Pe=4’, ‘Pe=3’, ‘Pe=2’, ‘Pe=1’
‘Pe=0.5", ‘Pe=0.257);
xlabel (‘x/L [-]1’); ylabel (‘c/c {in} [-17);

Figure 5.4 shows graphs of functions according to (5.21) for a fixed value
of the Péclet number Pe = 1 and selected values of the 15 Damkoéhler number
Day. The constant value of Pe guarantees a constant relation between diffu-
sion and advection, while with changing values of Da; decay or degradation
processes change their relative importance. For high values of the Damkdohler
number decay is relatively important and thus concentrations are significantly
reduced from the inlet (x = 0) to the outlet (x = L). With decreasing
value for Daj, decay becomes less relevant. Then the profile for advection
and diffusion is approached, which is the straight line representing constant

— « Day=16

5 Da1=8

—— Da1=4

- 06} Da1:2
(\'JE Da;=1
S 05}
Da;=0.5
04t
& Da;=0.25
031 — o Day=0.125
02} ]
0.1 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

XL[

Fig. 5.4. Profiles for fluid phase concentration in case of transport with constant
parameters for Pe = 1 in dependence of the 15 Damkohler number Da;
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concentration ¢ = ¢y (for the given boundary conditions). The figure is pro-
duced in MATLAB®) by the following commands:

x = [0:0.01:1];
Pe = 1; Dal = 16;
s = sqrt(0.25*%Pe*Pe+Pe/Dal) ;
mul = 0.5xPe+s; mu2 = 0.5%Pe-s;
s = mu2xexp(mu2)-mul*exp(mul);
c = (mu2*exp(mu2) *exp (mul*x)-mul*exp(mul)*exp(mu2+*x))./s;
for Dal = [8 4 2 1 0.5 0.25 0.125];
s = sqrt(0.25*%Pe*xPe+Pe/Dal);
mul = 0.5%xPe+s; mu2 = 0.5%Pe-s;
s = mu2xexp(mu2)-mul*exp(mul) ;
¢ = [c; (mu2*exp(mu2)*exp (mul*x)-mul*exp (mul)*exp(mu2*x)) ./sl;
end
plot (x,c);
legend(‘Da 1=16’, ‘Da 1=8’, ‘Da 1=4’,‘Da 1=2’,‘Da 1=1’, ‘Da 1=0.5’,
‘Da 1=0.25",‘Da 1=0.125");
xlabel (‘x/L [-]1’); ylabel (‘c/c {in} [-1?);

¥ |\

The corresponding M-file ‘analtrans s3.m’ can be found on the accompa-
nying CD-ROM.

Figure 5.5 represents the solutions for increasing advection if the rela-
tion between diffusion and decay remains equal. For this plot it is assumed
that both processes are equally important, which is expressed by the 27d
Damkohler number Das = 1. With increasing Péclet number advection be-
comes more relevant, the front can penetrate further, and the concentration
gradients become less steep.

x = [0:0.01:1];
Da2 = 1;
mul = sqrt(Da2); mu2 = -mul;
s = mu2xexp(mu2)-mul*exp(mul);
c = (mu2*exp(mu2)*exp (mul*x)-mul*exp(mul)*exp (mu2+*x)) ./s;
for Pe = [0.0625 0.125 0.25 0.5 1 2 4 8 16];
s = sqrt(0.25*%Pe*xPe+Da?2) ;
mul = 0.5%Pe+s; mu2 = 0.5%Pe-s;
s = mu2xexp(mu2)-mul*exp(mul) ;
¢ = [c;(mu2+*exp (mu2) *exp (mul*x)-mul*exp (mul) *exp (mu2*x))./s];
end
plot (x,c);
legend(‘Pe=0’, ‘Pe=0.0625", ‘Pe=0.125", ‘Pe=0.25", ‘Pe=0.5",
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Fig. 5.5. Profiles for fluid phase concentration in case of transport with constant
parameters for 2"¢ Damkdhler number Das = 1 in dependence of the Pe

‘Pe=1’, ‘Pe=2’, ‘Pe=4’, ‘Pe=8’, ‘Pe=16");
xlabel (‘x/L [-]’); ylabel (‘c/c {in} [-]1’);

The corresponding M-file ‘analtrans s4.m’ can be found on the accompa-

nying CD-ROM.

The limit solution for Pe = 0 was obtained from the differential equation

for no advection:

0 _Oc 9%c A
(%cDBx_)\C_O or D2 —Dc

with the general solution:

e(z) = Cyexp <\/]";x> + C1exp <—\/gx>

In terms of dimensionless parameter and variable this is

c(z) = Coexp (Dasi) + Cy exp (—Dasi)

(5.26)

(5.27)

(5.28)

The free constants Cy and C; are again obtained from the boundary

conditions.
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5.4 Transient Solutions

The analytical solution for the inflow of a front with concentration ¢;, into a
region with concentration cq is given by:

1 r — vt 1 vE T+ vt
() = coexp (= At) (1 B <2\/Dt) — e () ere (NDt))
+ cin <exp <U . ux) erfc (m - Ut)
2 2D 2v/ Dt
+ exp (U - ua:) erfc (m * ut))
2D 2V Dt

with u = vv2 + 4\AD (Wexler 1992). The solution consists of two parts: the
first describes the decline of the original concentration ¢y and the second the
change of the inflow concentration ¢;, in the 1D set-up.

In MATLAB®) the solution is to be included in the M-file ‘analtrans.m’,
which was introduced in the previous chapter. The decay parameter ) is added
in the input part of the module:

(5.29)

lambda = 0.1; % decayrate
Then the auxiliary parameter u is computed by:
u = sqrt(vxv+4xlambdaxD) ;
and the formula (5.29) is programmed by the lengthy term:

c = [c; cO*exp(-lambdax*t(i))*(e-0.5*erfc(h*(x-e*v*t(i)))
-0.5xexp ((v/D) *x) . ¥erfc (h*(x+e*xv*t(i))))
+...(cin-c0)*0.5*(exp((v-u)/(D+D) *x) . *erfc (h* (x-e*xuxt(i)))
+exp ((v+u) / (D+D) *x) . *erfc (h* (x+exu*xt(i))))];

Also the ‘simpletrans.m’ model can be extended easily by introducing
decay as additional process. Write another submodule, named ‘kinetics.m’
that includes only one command:

cl = exp(-lambda*dtdiff)*cl; % simple first order kinetic

In the main module ,simpletrans.m’, the command kinetics is called
before diffusion. Appelo & Postma (1993) describe a similar procedure.
In dimensionless formulation the solution is:

. . 1 -t
c(Z,t) =coexp (—Dast 1— _erfc 5
) =cgomn (Do) (1= Yo (71 )

1 N T+t
_Qexp(Pe-a:)erfc (2\/£/Da2>>
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+Ci" e p<Pel_u£> erfc Z—ut
X -
2 2 2\/t/DCL2
+ exp (Pel N u;ﬁ) erfc . j— ut
2 2\/t/DCL2

with u = /1 + 4Day/Pe. Figure 5.6 illustrates the solution for a high Péclet
number Pe = 100 and a moderate 2"¢ Damkohler number. The front proceeds
in positive z-direction from left to right. The time to proceed from one front
line to the next amounts to the 10*" part of the mean time which a tracer
would need to migrate through the entire system.

With the intruding front the concentration is reduced. Because of the
high Péclet number, the front line remains relatively steep, which has the
additional effect that the deviation from the steady state is relatively moderate
but increasing. The plot was obtained by using the M-file ‘analtransnodim.m’
with appropriate parameters.

Figure 5.7 shows a typical behavior when ¢g is not equal to zero. In that
case, both terms in the formulae (5.29) and (5.30) have to be considered. The
decline of concentrations from one line to the other on the right side of the
figure illustrates the decay of the material, which was initially present in the
system. Increasing concentrations on the left side stem from the advancing
front.

(5.30)

Concentration ¢ [-]

0 0.2 0.4 0.6 0.8 1
Distance ¢ [-]

Fig. 5.6. Steady and transient solution for transport equation with degradation;
dimensionless space variable £ and dimensionless concentration 6 for Pe = 100 and
Das =1
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Fig. 5.7. Transient solution for transport equation with degradation; dimensionless
space variable £ and dimensionless concentration 6 for Pe = 100 and Das = 1, for
Cco = Cin/2 =0.5
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6

Transport and Sorption

6.1 Interphase Exchange

Aside from advection, diffusion and dispersion, which can be formulated
separately for the solid and the fluid phases, the interaction between the
phases is another process which is relevant in many environmental systems.
Under certain conditions, particles in the pore space are attracted by the sur-
face of the porous medium where some chemical processes tend to bind them
in various ways. Different processes like electrical attraction and repulsion,
complexation or chemical reaction can be distinguished in a detailed look,
gathered under the general term sorption.

In multiphase environments, sorption denotes processes that affect an ex-
change of components between phases. One can speak of interphase exchange.
In porous media there is the exchange between solid and fluid phase, i.e. be-
tween the water in the pore space and the solid matrix. Adsorption denotes
fluxes from the fluid to the solid phase, while desorption is the opposite pro-
cess, in which there is a flux from the solid to the fluid phase. In the following
the term mobilization is used frequently. A pollutant particle which has been
fixed at the surface of the solid matrix in a first time period, may be re-
mobilized and freed for dispersion and advection processes in a second time
period.

A schematic view on adsorption and desorption in the pore space of a
porous medium is given in Fig. 6.1. In the remainder of this chapter, we
will mostly refer to that multi-phase set-up as it is the standard concept for
environmental models concerning groundwater, seepage water and pore water
in aquatic sediments.

In a first fundamental distinction, the speed of the processes governing
interphase exchange in relation to the transport processes is of concern. One
speaks of fast sorption if sorption is faster than the transport processes; and
of slow sorption if sorption is slower than transport. Thus the characterization
of sorption depends on the specific situation.
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Fig. 6.1. Schematic illustration of ad- and desorption processes

Let ¢ denote the fluid phase concentration and cs the solid phase con-
centration. Normally ¢ and ¢s are not independent but connected. High or
low concentrations in one phase are usually connected with high or low con-
centrations in the other phase. Such phenomenon can be formulated by a
mathematical relationship. In the case of fast sorption, the relationship is
mostly stated in the functional form

¢s(c) (6.1)

in which the solid phase concentration is given in dependency of the fluid phase
concentration. This is called a (sorption-) isotherm3® and can be understood
as an equilibrium, very much like the equilibrium in chemical reactions. The
concentrations in one phase are adjusted if, for whatever reason, the concen-
tration in the other phase is changing.

The simplest example is the linear isotherm

cs = Kg4c (6.2)

where the distribution coefficient K4 determines the ratio between solid phase
and fluid phase concentrations. The physical unit [volume/mass| can be at-
tributed to the fact that the concentrations in the fluid and solid phase are

30 The notation ‘isotherm’ stems from the fact that such measurements are mostly
performed for constant temperatures, i.e. isothermal conditions. In general the
isotherm changes with temperature.
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usually not measured in the same physical units. Strongly sorbing components
have a high K4, while it is low for weakly sorbing components. Non-sorbing
components do not interact with the solid phase and are called tracers. Chlo-
ride is such a tracer in most environments.

K4 not only depends on the component but also on the solid material.
In clays sorption can be expected to be high due to the high surface area
per volume and due to the high electric potential. Clay minerals have an
excess of imbalanced negative charges, thus favoring the adsorption of cations.
Divalent cations are usually more strongly adsorbed than monovalent ions
(Fetter 1994).

In the literature, K; values are treated extensively for different kinds of
chemical species, for inorganic and organic components, for chemicals of the
natural environment and for contaminants. K, values extend over several
orders of magnitude, from low values as 2-10~*m?/kg for sodium (Holtts
et al. 1997) up to high values like 400 m? /kg for protactinium (Geibert 2001).
For tracer-like components even lower values may be found and for strongly
fixed components even higher values.

Often ad- and desorption are not taking place at the surfaces of the porous
matrix directly but on organic material that itself is fixed at the solid matrix.
Especially in aquatic sediments near the sediment-water surface this type of
connection may be dominant. Synthetic organic chemicals tend to adsorb on
organic carbon. If ¢,y denotes the concentration of organic material, K,q
denotes the distribution coefficient on organic carbon, and the distribution
coefficients are related by the formula:

K= Korgcorg/ps (63)

where the ratio c,,q/ps represents the weight fraction of organic matter in the
solid phase (Karickhoff et al. 1979; Karickhoff 1984). For pure sand, which
does not contain any organics, the adsorption is thus zero. As an alternative to
K,rg, the octanol-water-distribution coeflicient K,,, can be taken. For several
chemical components a relation between K,,, and K4 is given in the form

log(Korg) = alog(Kow) + 3 (6.4)

where o and (3 are empirical constants. A mathematically similar relation
often can be stated for K,y and solubility S of a component:

1Og(Korg) = —alog(9) + B (6.5)

with empirical constants & and 3 (Karickhoff et al. 1979). While K, and
K. are correlated positively, the correlation between K4 and S is negative.
Highly soluble chemicals can be expected to interact only marginally with the
porous material. Vica versa, chemicals with low solubility show a strong ten-
dency of interaction with the solid matrix. This is illustrated in Table 6.1 show-
ing a classification concerning mobility using K,,. Mobile components have
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Table 6.1. Mobility classes, octanol-water-distribution coefficients Koy, according
to Fetter (1994) and the range of solubility for organic pollutants

Mobility class Kow [mL/g] Solubility S [ppm]
very high 1-50 4.4-10°-1.4-10°
high 50-150 850-3570
moderate 150-500 110-1100

low 500—2000 30-156

slight 2000-2-10* 0.275-10
immobile >2.10% <0.252

low distribution coefficients, low K,,,, and a high solubility. Immobile, strongly
sorbing components have high distribution coefficients and low solubility.
A generalized formulation for fast sorption is the Freundlich®' isotherm

cs = ap1cF? (6.6)

with coefficients ap; and aps. The exponent aps usually is smaller than 1,
which corresponds to the observation that for low concentrations of ¢ the gra-
dient of the isotherm is higher than for higher concentrations. For apo=1,
the Freundlich isotherm also describes a linear relationship between the con-
centrations in both phases. The Freundlich isotherm is favoured mostly by
experimental scientists, who fit their experimental data using a power law
relationship.

The third important formulation is the Langmuir
written as:

32 igotherm that is

ar1c

= e (6.7)
with coefficients ap; and ays. The Langmuir isotherm also has the property
that for low concentrations the gradient of the isotherm is higher than for
high concentrations. In contrast to the Freundlich isotherm, the Langmuir
isotherm approaches a finite asymptote for ¢ — oo, given by the parameter
ar1. The argument for the relevance of the Langmuir isotherm is that for high
concentrations the limited number of sorption sites at the surface of the pore
space is occupied, so that no further increase of ¢, is possible.

Figure 6.2 depicts examples of the three major isotherm types. Formulae
of further isotherms are listed in Table 6.2.

In the soil compartment, sorption and cation exchange are closely con-
nected; see the paper of Johnson et al. (1998), which is concerned with forest
eco-systems for an example study. Cations as Ca?", Na*, NH], Srt2, A3
exchange sorption places if the equilibrium is disturbed when water of different

31 Herbert Freundlich (1880-1941), German chemist.
32 Irving Langmuir (1881-1957), US-American chemist and physicist.
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Fig. 6.2. Illustration of sorption isotherms: linear, Freundlich and Langmuir
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composition enters. This is a typical situation for the soil column with water
from precipitation or irrigation entering.
A very popular description for the equilibrium between the cations is the

Gapon isotherm:

Table 6.2. Overview on further sorption isotherms

Sorption Isotherm

Linear

Freundlich

Langmuir

Tempkin

Frumkin
Langmuir—Freundlich
Redlich—Petersen
Toth
Dubinin-Raduskevich

33 produced  using

Formula

cs = Kq4c

cs = ap1c*F?

«@rc

aro+tc

¢s = ar1 + arz log (c)
Kqexp(2apcs)c

Ccs =

Cs = 1+ Kgexp(2apcs)c
&
— ai1c¢
Cs = ag+c3
_ ajc
Cs = an+c3
Cs = ajc

(ag+ce3)l/e3

log (¢s) = —a1 log? (aac) + log (a3)

Number of
parameters

W W W W N NN DN

MATLAB® by: ¢=[0:0.01:1]; csl=c; cs2=c.”0.5;

cs3=3*c./ (1+2xc); plot (c,csl,c,cs2,c,cs3); and some additional design
changes from the Figure editor.
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cacy™

1/’!L1
Cs2Cq

- K (6.8)

where cg1 and cso are the concentrations of sorbed species, and ¢; and co
are the concentrations of dissolved species. The exponents ny and no are the
electric valence coeflicients for the species 1 and 2. K is the characteristic equi-
librium constant for the exchange between two cations. For the competition
between Ca?t and Na™ the formula (6.8) delivers:

CCa,sCNa

=K 6.9
CNa,s\/CCa ( )

Several equilibrium sorption approaches for cation competition are dis-
cussed by Vulava et al. (2000).

In the formulation of mathematical analysis, given in (2.4), sorption can
be included by the introduction of the exchange terms. Considering advective
and diffusive fluxes, first order decay or degradation, neglecting additional
sinks and sources, the analytical formulation of the mass balances in both
phases is:

g (0c) = =V - (6)) — OAc —eys
at (6.10)
at (pbcs) =-V- (ijs) - pbASCs - esf

with concentrations ¢ and ¢, porosity ¢ and sorption exchange terms ey, and
esf. The exchange term with subscript fs denotes the losses from the mobile
to the immobile phase and sf vice versa. The exchange terms have a positive
sign for losses in the first phase and a negative sign if the first phase gains
due to exchange. Note that in addition to the formulation, given in Chap. 3,
porosity appears as coefficient in the storage, in the flux and in the decay
terms. In these terms the additional factor is relevant in order to take into
account that storage, flux and decay occur in the pore space only.

The second (6.10) describes the mass balance for the solid phase, the
porous medium. As the species concentration at the solid surface is usually
given as a mass fraction, the coefficient p, has to appear in order to ob-
tain the mass balance for the species. py [kg/mg] is the bulk density of the
porous medium that is given by.

po = (1= 6) py (6.11)

where p; is the density of the solid material without pores. On the right side
of the equation, the flux j; appears in order to denote fluxes in the solid phase.
In groundwater or soil systems, advective or diffusive fluxes in the solid phase
can be neglected. But there are exceptions: imagine, the upper soil horizon is
turned over due to agricultural practice. That could be described by a diffusion
term. In aquatic sediments even more processes contribute to diffusive and
advective processes.
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As both (6.10) denote a total mass balance, the exchange terms are neces-
sarily equal. In a two-phase environment the sinks of one phase are the sources
of the other. Therefore, it is sufficient to introduce one exchange term only
and omit the other one (eys), i.e. efs = —esy. What is gained in one phase
from the sorption process must be lost in the other phase. The describing set
of equations then becomes:

0

ot
0

ot

(0c) = =V - (6)) — OAc —eys
(6.12)
(pbcs) =-V- (pbjs) - pb)\scs + €fs

6.2 Retardation

In case of fast sorption it turns out that the exchange terms in (6.12) can
hardly be quantified. They surely change with time and space. Also the sign
changes: in front of an advancing concentration front there is a net gain of
the solid phase and losses of the fluid phases. The situation is contrary after
a front has passed: there are net gains of the fluid phase and losses of the
solid phase. For a quantitative analysis of transport problems it is therefore
convenient to find a mathematical formulation in which the exchange term
disappears. This is achieved here easily by adding both equations of (6.12). If
one neglects decay or degradation, one obtains:

0 . .

ot (6‘0 + prs) =-V- (9.]) -V (pb.]s) (613)
In order to take advantage of the summation the unknown variable ¢, is

eliminated. In the case of fast sorption it is possible to reduce the system by

utilizing the isotherm relationship (6.1). Equation (6.13) can be re-written as:

0 _ . . : _ b Cs
ot (ROc) = =V - (6j) — V- (pbls) with R=1+ 0 ¢

(6.14)
where R is the so called retardation factor. The formulation (6.14) is frequently
used by geochemists (Postma & Appelo 2000). In groundwater studies an al-
ternative formulation often can be found that is valid for the constant porosity
situation. Using the chain rule dc¢s /0t = (9c¢s/Oc) (Oc/Ot) on the left side, the

retardation factor appears outside of the time derivative:
9] . Pb 808

RO ==V -(0)) — V- (pjs th R=1
Py (03) (pbjs) — wi 0 8e
(Kinzelbach 1987). For formulation (6.15) it is assumed that porosity and bulk
density are constant in time. One can interpret the role of the retardation
factor on the left side of the equation as changing the time scale (see below
in this sub-chapter for a more detailed discussion). As the factor is always

(6.15)
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greater than 1 (all terms appearing in its defining equation are positive), R is
responsible for retardation.

In the case of a linear isotherm c¢;/c=K, there is no difference between
the factors R in (6.14) and (6.15):

R:1+?Kg (6.16)
For constant 6 there is a constant retardation, for which one often finds
the definition (6.16). Retardation factors range from values slightly above 1
up to 107, as measured for example by Luo et al. (2000) for Thorium 232.
In general, R depends on the concentrations and on porosity and thus may
change with time and space. Both definitions given above differ in the general
situation. The left hand side of the differential equations (6.13) and (6.14) is
then cause for nonlinearity. For the Freundlich-isotherm holds:

R=1+ pgbaplapg (C)aF271 (617)

and the Langmuir isotherm:

Pb CL1CL2

R=1+
0 (aps+ 0)2

(6.18)

In systems with one static phase as it is in groundwater, formulations (6.13)
and (6.14) have profound advantage in comparison with the (6.12). If the solid
phase is fixed in space (if it is static), the genuine processes of advection and
diffusion are not present, or in mathematical formulation: j,=0. Then (6.15)
is a differential equation for the unknown variable c:

R@;C =V (6DVe) —0v-Ve (6.19)
On the right side appear terms for diffusion, dispersion and advection in
the fluid phase, but there is no contribution from the solid phase. When the
differential equation is solved, the other unknown variable ¢y and its change in
space and time can be computed easily with the help of the isotherm. Division
by 6 yields:
Raatc =V -(DVe)—v-Ve (6.20)
For a further interpretation, (6.19) is compared to (3.20) (the latter with-
out sources, sinks and exchange, as it is valid for tracers). In (6.19) retardation
is nothing more than the validity of a prolonged time scale in comparison to
the tracer. In mathematical analysis one could formally express that by the
notation R -9/t = 8/9(t/R). Using the new timescale { = t - R one can say
that the spatial concentration distribution of the retarded component at time
t is equal to the distribution of the tracer at time ¢.
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Following the concept of pure retardation sorption has no effect on station-
ary concentration distributions. This can easily be seen in (6.20) and (6.19):
the left side vanishes, and the concentration c is determined as solution of the
remaining terms on the right side of the differential equation, in which the
retardation factor does not appear.

The concept of retardation can also be maintained if degradation or decay
have to be taken into account. The equations above have to be extended by
decay terms. Instead of (6.13) one obtains:

0 . .
: (Oc+ pyes) = =V - (0)) — OAc — V - (pbis) — ppAsCs (6.21)

)
and instead of (6.14):
O (Rbc) = —V-(0)—V-(mjs)— BOAc  with =147 (6.22)
ot - ! prls v T oA e

If there is the same decay constant in both phases (which is surely valid for
the radioactive decay of radio-nuclides), both R-factors are identical: R=R.
For a fixed porous matrix, instead of (6.20) the following differential equation
results:

0

R@tc =V - -(DVe¢) —v-Ve— RO (6.23)

6.3 Analytical Solution

For a homogeneous 1D constant flow field and constant parameters, the dif-
ferential equation for a retarded species (6.23) has an analytical solution. For
the inflow of a front with concentration c¢;,, into a region with concentration
co holds:

1 Rx — vt 1 VT Rx + vt
) =coe —At) |1 — _erfc — e erfc
c(x,t) = coexp ( )( o T (2\/DRt) 5 xp(D) T (2\/DR1€))
+ cin (exp(v_ux) erfc(R:r_Ut)
2 2D 2V DRt
v+ u Rx + ut
+ ex x ) erfc 6.24
p( 2D ) (2\/DRt)) ( )

with u = vv2 + 4ARD (Kinzelbach 1987). This is an extension of the formula

of Ogata & Banks (1961), which was presented in Chaps. 4 and 5. In contrast
to the original formula there are two terms, one describing the decline of
the original concentration ¢y and the second concerning the change of the
inflow concentration c;,. If one of these two concentrations is zero, the formula
becomes less lengthy as one of the two terms can be omitted.
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First the already introduced MATLAB® M-file ‘analtrans.m’ is extended
to account for fast sorption. The retardation factor R is a new input parameter:

R = 2; % retardation
The computations for variables h and u have to be extended:

u = sqrt(vxv+4*xlambda*R*D) ;
h = 1/(2*sqrt (D¥R*t(i)));

Then the explicit formula is written as follows:

c = [c; cO*exp(-lambdaxt(i))*(e-0.5*%erfc(h*(Rxx—exvxt(i)))-...
0.5%exp((v/D) *x) . xerfc (h* (R¥x+e*xvxt(i)))) +...
(cin-c0)*0.5% (exp ((v-u)/(D+D) *x) . *erfc (h*x (R*¥x-e*uxt (i)))+...
exp ((v+u) / (D+D) *x) . *erfc (hx (Rxx+e*xuxt(i))))];

That’s all. Let’s examine some solutions calculated with the extended code.

y

The complete code can be found on the CD under the name ‘analtrans.m’.

concentration

space

Fig. 6.3. Result of exercise 6.1; both situations are represented by three concentra-
tion distributions. Squares mark t=1/3, diamonds ¢t=2/3 and circles t=1. The graph
for R=1 and t=1/3 falls together with the graph for R=3 and t=1
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Exercise 6.1. Compare results with R=1 and R=3, with parameters: T'=1,
v=1, D=0.1, L=1, A=0!

Figure 6.3 depicts the results for exercise 6.1. The effect of retardation
is nothing but a factor in the time-scale. The concentration distribution at
time ¢ - R for the retarded species is identical to the curve at time ¢ for the
tracer - at least that is the expectation due to the mathematical description.
Uncertainties in measurement will, of course, provide differences in observed
laboratory or field data.

6.4 Numerical Solutions

Fast sorption can also be introduced into the ‘simpletrans.m’ code. After the
definition of R in the input part of the code, internally only timesteps have
to be adjusted. The advection timestep is reduced by the factor R:

dtout = dtout/R;
Also the Neumann-number:
Neumann= Neumann/M/R;

The time-end criterion for the loop also depends on the retardation:

while(t < T/R)

The complete code can be found on the CD under the name ‘simpletrans.m’

Exercise 6.2. Use ‘simpletrans.m’ to compare results with R=1 and R=2,
with parameters: T=1, v=1, D=0.1, L=1, A=1.2!

Figure 6.4 illustrates the effect of increasing R for a species that is also
subject to degradation. Compared are the solutions for no retardation, with
parameters as in the example above and with R=2. The two advancing fronts
are depicted at 10 time instants, which represent the 10" part of the mean
time for a tracer to pass through the entire system. The difference between
both solutions is not only due to retardation but also due to higher degra-
dation. This stems from the fact that the retardation factor R appears twice
in the differential equations: as coefficient in the storage term on the left side
and in the decay/degradation term.

Retardation can also be considered in the ‘pdepetrans.m’ code.

¢ = pdepe(0,@transfun,@ictransfun,@bctransfun,x, [0 t],
options, ...D,v,lambda,R,cO,cin);
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Fig. 6.4. Result of exercise 6.2; both situations are represented by 10 concentration
curves, which represent the proceeding front. Dotted lines without markers represent
the case without retardation; lines with markers represent the front for a sorbing
species with the same degradation rate

The complete parameter list needs to appear in all function calls. However,
the variable R contributes to computations only in the main sub-routine,
which reads:

function [c,f,s] = transfun(x,t,u,DuDx,D,v,lambda,R,c0,cin)
c = R;

f DxDuDx ;

s = —-vxDuDx -lambda*R*u;

R appears as the coefficient ¢ of the time derivative and in the assignment
for s. With this version of ‘pdepetrans.m’ all applications, which were pre-
sented above using the ‘analtrans.m’ or ‘simpletrans.m’ files, can be run.
Recall that the advantage of ‘analtrans.m’ is that there are no numeri-
cal errors as an analytical solution is evaluated explicitly. The advantage
of the ‘simpletrans.m’ algorithm is that it can be implemented outside of
MATLAB®) or any other mathematical software package. The advantage of
‘pdepetrans.m’ is that it can be easily extended to include other processes
which can not be taken into account by the other methods. This is demon-
strated in the following for problems of extended complexity for fast and slow
sorption.
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First it is shown how the code can be extended to include all types of fast
sorption, i.e. linear sorption using formula (6.2), Freundlich sorption using
formula (6.17) or Langmuir sorption using formula (6.18). In the extended
version of the M-file, the retardation factor is calculated from two sorption
parameters, depending on the sorption option chosen in the initialization
part of the M-file. The new lines in the input part are as follows:

sorption = 1; Y sorption-model: no sorption (0), linear (1),

% Freundlich (2), Langmuir (3)
k1l = 2; % sorption parameter 1 (R=0 for linear isotherm
% with Kd, else k1=R)
k2 = 1; % sorption parameter 2 (Kd for linear isotherm

% with Kd)
rhob = 1300; % porous medium bulk density [kg/m*m*m]
theta = 0.2; % porosity [-]

The sorption-switch has to be set to an integer between 0 and 3. For
tracers it should be set to 0, for linear sorption to 1, for Freundlich sorption
to 2 and for Langmuir sorption to 3. Depending on the sorption-switch, the
variables k1 and k2 contain different variables. In case of Freundlich and
Langmuir isotherms these two variables contain the two sorption parameters.
In case of linear sorption k1 should be set to the retardation factor if that is
used directly. For the user the alternative is to give the K4-value in variable
k2. In the latter situation, k1 needs to be set to 0 (not a valid value for
retardation) in order to indicate which option is wanted. The two variables
are not used for tracers, i.e. when sorption = 0.

The two variables rhob and theta contain the bulk density and poros-
ity. These are used only if the Freundlich or Langmuir retardation factors
are calculated or if R is to be calculated from the Kg-value for the lin-
ear isotherm. Some re-calculations have to be performed before the pdepe-
function is called3*:

if sorption==1 & k1 <=0

k1 = 1+k2*rhob/theta;
else

if sorption > 1 k1 = rhob*kl/theta; end
end

For the linear isotherm the retardation factor is calculated in the second
line of these commands. In the forth line, bulk density and porosity are multi-
plied with the first factor of the Freundlich- or Langmuir-sorption parameters.
This is done in order to reduce the number of variables to be transferred to
the function sub-routines. The call is lengthy even with that cosmetic:

34 g is the logical ‘and’ operator; for other logical operators see MATLAB®) help
under ‘logical array functions’; the logical ‘or’ operator is: |.
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c = pdepe(0,Q@transfun,@ictransfun,@ctransfun,x, [0 t],
options, ...D,v,lambda,sorption,kl,k2,c0,cin);

The parameter list in the second line needs to appear in all functions of
the M-file. The only place where the new introduced variables are needed is
the transfun-function. The following statements need to be included in the
function before the assignment of the other variables:

switch sorption

case 0
R =1;
case 1
R = ki;
case 2
R = 1+k1xk2+*u” (k2-1);
case 3
R = 1+k1xk2*u/(k2+u)/(k2+u);
end
c = R;
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Fig. 6.5. Result of exercise 6.3; both situations are represented by 10 concentration
curves, visualizing the proceeding front. Dotted lines without markers represent the
case for the Freundlich isotherm; lines with markers represent the case for linear
sorption with the same marginal retardation factor
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With these commands the retardation factor is computed for the different
sorption alternatives as described above.

4

The complete code can be found on the CD under the name ‘pdepetrans.m’

Exercise 6.3. Compare concentration profiles for the linear isotherm with
R=2.3 and the Freundlich isotherm with 8 = 0.2, p;, = 1200 kg/m37 Ky =
4-10~*m3 /kg; use the following parameter assignments for further parameters:
initial concentration co=0.1mg/l, ¢;,=1mg/l, v=1m/s, D=1m?/s and no
degradation.

In Fig. 6.5 the concentration profiles for linear and Freundlich isotherms
are compared. There is the same marginal retardation factor for both cases, i.e.
for concentration c=1 the retardation for the Freundlich isotherm is identical
to R=2.3 of the linear isotherm. The figure illustrates the higher retardation
for the Freundlich isotherm for low concentrations, with the effect that for the
same time instant the concentration values for the Freundlich case are always
below those of the linear sorption case.

6.5 Slow Sorption

In the derivation of differential equations, as presented above, it was assumed
that the interphase exchange processes are fast compared to the other relevant
processes. The equilibrium between solid phase and fluid phase concentrations
is reached at all times. Such an assumption is valid in many field situations
where transport time scales are long, for example, in aquifers or aquatic sed-
iments It is surely not valid in other cases.

Concerning slow sorption one may keep the original set of two differential
equations (6.12). In the following we will show how to treat such a system in
case of no transport processes for the solid phase (js=0):

88 (0c) = =V - (6)) — OAc — ey
; (6.25)
ot (pch) = _pbASCS + €fs

The equation (6.25) describe transport, sorption and degradation. The lat-
ter is allowed to be different in the dissolved and in the solid phases. Replacing
the detailed formulation for the transport fluxes, and using the assumption of
constant 6 and py, yields the formulation:

atc:v-(DVC)—V-VC—)\C—efS/O

0
ot

(6.26)
Cs = _Ascs + efs/pb
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The exchange term is assumed to have the following form:

€fs = KfC — KsCs (6.27)

The following describes an extension of the already developed M-file to
account for slow sorption:

function slowsorp

T = 16; % maximum time [s]

L = 8; % length [m]

D =0.1; % diffusivity [m*m/s]

v = 0.5; % real fluid velocity [m/s]

theta = 0.2 % porosity [-]

rhob = 1200; % porous medium bulk density [kg/m*m*m]
kappaf = 0.01; % transition rate fluid to solid [1/s]
kappas = 0.00; % transition rate solid to fluid [1/s]
lambdaf = 0; % decay rate in fluid [1/s]

lambdas = 0; % decay rate in solid [1/s]

cOf = 0.1; % initial concentration in fluid [kg/m*m#*m]
cOs = 0.01; % initial concentration in solid [-]
cin = 1; % inflow concentration [kg/m*m*m]

M = 10; % number of timesteps

N = 40; % number of nodes

fym— output parameters

gplot = 2; % =1: breakthrough curves; =2: profiles

The output parameters can be adopted from one of the other transport
M-files, ‘simpletrans.m’, ‘analtrans.m’ or ‘pdepetrans.m’. The discretization
parameters are also taken analogously as demonstrated above. The execution
part consists mainly of the call of the pdepe-module. The function names and
parameters are of course new for the slow sorption application:

t = linspace (T/M,T,M); % time discretization
x = linspace (0,L,N); % space discretization
A L Lt execution------———————————

options = odeset;
¢ =pdepe(0,0@slowsorpde,@slowsorpic,@slowsorpbc,x,t,options,...
D,v,theta,rhob,kappaf ,kappas,lambdaf,lambdas, [cOf;cO0s],cin);

graphical output
switch gplot
case 1
plot ([0 t],c(:,:,1)) % breakthrough curves
xlabel (’time’); ylabel (’concentration’);
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case 2
plot (x,c(:,:,1)7,°-=") % profiles
xlabel (’space’); ylabel (’concentration’);
end

The solution is again written in matrix form. As there are two unknown
concentrations at each position and for each output time level, there are three
indices: one speaks of a tensor of rank 3. Three indices are necessary to mark
a single element of c. The third index must be 1 or 2, depending on whether
to denote the concentration of the dissolved or the adsorbed species. In all
output commands, the third index needs to be specified in order to determine
which concentration has to be plotted. Where in former codes the variable
¢ was sufficient, now c(:,:,1) has to be inserted. With this command only
the fluid phase concentration is plotted. In order to obtain the solid phase
concentration use c(:,:,2).

The idea of two function variables in one vector has to be adopted to
understand the functions of the M-file. Where a single value was sufficient in
former programs, now two values need to be given; the first for the single phase
differential equation, the second for the solid phase differential equation. The
functions read as follows:

function([c,f,s] = slowsorpde(x,t,u,DuDx, ...
D,v,theta,rhob,kappaf,kappas,lambdaf,lambdas,c0,cin)
c = [1;1];

f [D;0] .*DuDx;

s = -[v;0].*%DuDx - [lambdaf;lambdas].*u -...
([kappaf -kappas]*u)*[1/theta;-1/rhob];

functionuO = slowsorpic(x,...
D,v,theta,rhob,kappaf,kappas,lambdaf,lambdas,c0,cin)

u0 = c0;
/OSSO
function [pl,ql,pr,qr] = slowsorpbc(xl,ul,xr,ur,t,...
D,v,theta,rhob,kappaf,kappas,lambdaf,lambdas,c0,cin)

pl = [ul(1)-cin;0];
ql = [0;1];
pr = [0;0];
qr = [1;1];

The coefficient for the time derivative term is 1 in both differential equa-
tions. Thus, both components in the column-vector ¢ are equal to 1. The flux
term f contains the negative of Fickian diffusion in the first component and
zero in the second (as there is no diffusion in the solid phase). Note that the
variable DuDx contains the spatial derivatives of the concentrations and is a
two-component column vector within the function.
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In a similar manner the variable s contains the contributions from advec-
tion, decay and sorption. The first component of the first term -v*DuDx (1)
contains the advection term already known from the other M-files. The sec-
ond component in the first term is zero, as there is no advection in the solid
phase®. The second term of the s=. . . assignment includes decay terms, which
are allowed to be phase-dependent. If they are phase dependent, the variables
lambdaf and lambdas have to be chosen differently. The last term denotes the
interphase exchange. In the coefficient term (in round brackets) the amount
of exchange is computed. The exchange needs to be included with a posi-
tive sign in the first differential equation and with a negative in the second
differental equation. In order to achieve that, one has to multiply with the
[1/theta;-1/rhob] vector.

For both phases initial conditions are specified in the slowsorpic function.
Note that c0 is a two component vector, which contains the specified initial
concentrations for both phases. For the boundary conditions the concentration
of inflowing fluid is the only parameter required. All other boundary condi-
tions, for solid and fluid phases, are all of no-flow Neumann type.

The complete code can be found on the CD under the name ‘slowsorp.m’

Exercise 6.4. Compare concentration profiles for a varying solid to fluid
transfer factor £y . Which known situation is described by x, = 0?7 The fluid
to solid transfer factor is given by k¢ = 0.021/d. Use the following values for
the other parameters:

T=16d, L=8m, D=0.1m?/d, v=0.5m/d, A=\ =0

6 =0.2, p, =1200kg/m®, ci = 1mg/l, co = cos =0

Figure 6.6 shows that for a varying transfer rate the solutions lie between
two marginal states. One is given if the transfer factor x; is very low. For
ks = 0 the solution is identical to the situation with linear decay, as all mass
which disappears on the solid surfaces has no way back into the fluid. As the
figure shows, this marginal situation already is approached for values ks < 1.
The other marginal state is characterized by an immediate back-reaction. The
transfer from solid to fluid is not a limiting factor any more. For the given
parameter values this is obviously true for ks > 10°1/d.

35 In most applications on porous media, the solid phase or porous matrix is assumed
to be fixed in the chosen spatial coordinate system. However, in some cases this
may not be true. In sediments the solids move with respect to a fixed level in
space. If the interface between the sediments and the overlying region of free flow
is taken as a reference, one may obtain a situation with no flux of solids. However,
this trick works doesn’t work if there are temporal changes in sedimentation, or
even in steady state, when compaction has to be taken into account.
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Fig. 6.6. Results of exercise 6.4; on the graphs for =16 d the corresponding value
of the transfer factor sy is depicted

6.6 MATLAB® Animations

One can use MATLAB®) to produce animations. Using the getframe com-
mand, single shots from a MATLAB®) figure window can be gathered as one
animation. After finishing the production, there are commands to store and
play the animations.

We demonstrate the procedure, how an animation is produced, for the
transport models that were described in Chaps. 4 to 6. The change of the
concentration profile with time is to be illustrated by a sequence of profiles. It
is assumed that the results of the simulation are stored on the matrix ¢, which
contains concentration profiles in the rows; the different rows represent differ-
ent time instants. The entire sequence is shown below and is included in the
M-files ‘simpletrans.m’, ‘analtrans.m’ and ‘pdepetrans.m’ (with minor differ-
ences concerning dtout). The switch variable ganim in the input specification
is introduced to initiate or not initiate the animation production.

if (ganim)
[FileName, PathName] = uiputfile (‘*.mpg’);
figure;
if (ganim > 1) hold on; end
for j = 1:size(c,1)
axis manual;
plot (x,c(j,:),‘r’,‘LineWidth’,2);
YLim = [min(cO,cin) max(cO,cin)];
legend ([‘t=’ num2str(dtout*(j-1))1);
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Anim(j) = getframe;
plot (x,c(j,:),‘d’, ‘LineWidth’,2);

end

mpgwrite (Anim,colormap, [PathName ¢/’ FileName]);

movie (Anim,3); % play animation
end

The first command in the if-block concerns the filename under which the
animation is to be stored. Following the uiputfile command?%, the user
is asked to input the name of a ‘mpg’-file. Thereafter the figure editor is
opened. Within the for-loop two concentration profiles are plotted in the
figure window. The axes are set to manual scaling, because otherwise the con-
centration interval, shown on the vertical axis, may change from one frame
to the other. For an animation such a change is not wanted. Within each
run through the loop, the current profile is plotted in red color first by
the first plot command. The YLim command ensures that the concentra-
tion axis remains fixed between initial concentration and inflow concentra-
tion. With the legend statement the current time becomes visible in the
figure.

The getframe stores the current figure in an animation structure, which
in the sample M-file in this implementation has the name Anim. The index j
denotes the index of the plot. After that assignment the same plot is performed
in blue color, overwriting the red curve, before proceeding in the same manner
with the next concentration profile.

Note that there is another option connected with the ganim parameter. If
the user chooses ganim>1, the final blue colored profiles are not deleted. Thus
the history of the profile development remains visible in the following single
plots of the animation.

After the end of the loop, the entire animation is stored under the
given file name. Here we demonstrate the mpgwrite command, which does
not belong to core MATLAB®. However, everyone is free to use the com-
mand; the corresponding M-file can be downloaded from Mathworks web-site;
see: http://www.mathworks.com/matlabcentral /fileexchange. Don’t forget to
specify the directory path where the corresponding files have to be saved
(using the addpath command or the ‘Set Path...’ sub-entry of the ‘File’
menu.)

The movie command starts the movie. The second formal parameter in
that call corresponds to the repetition time. If at that place a negative value
is specified, each animation is shown forward then backward. It is possible
to influence the speed of the animation by specification of a third formal
parameter, which represents the number of frames per second.

36 With the uiputfile command a file name is specified using a file-select box.
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Fig. 6.7. Final frame of example animation

An example animation with ganim=2 can be found on the CD under the
name ‘animation.mpgq’.

The final frame is shown in Fig. 6.7. As an exercise, the user may extend
the animation letting the profiles run through a cycle of colors.
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Transport and Kinetics

7.1 Introduction

Very often biogeochemical reactions in which several species of the environ-
ment participate play an important role for the fate and the distribution of
species of environmental relevance. Due to reactions a potentially hazardous
component can be gradually degraded and may reach concentration levels
above limits set by environmental regulations. Another scenario is also im-
potant: potentially harmful chemical species may emerge as products of a
reaction along a flow path within a compartment.

In this and the following chapter the focus is on modeling the simultaneous
action of transport and reactions. It will be shown that for mathematical
modeling it is relevant whether reactions are slow or fast in comparison to the
considered transport processes. In this chapter we stay with slow reactions,
while fast reactions are the topic of the next chapter.

The characteristic time for a slow reaction is at least in the same scale
as advection and dispersion/diffusion. In applications at different length and
velocity scales in different environmental compartments, the classification of
slow and fast reactions may differ significantly. A reaction, which has to be
classified as slow in a flowing river, can be fast in aquatic sediments or in
aquifers.

The rate of reactions is quite different. According to Cox (1994), the lower
limit for the characteristic time lies between 107!? and 10~'3s. H-bond for-
mation in metal complexes can be as fast as 10719 s, macromolecular complex
formation exceeds 10" s, and hydrolysis 102 s. All these processes are surely
fast in all environmental systems, unless they are inhibited by specific biogeo-
chemical conditions leading to much higher reaction times.

CO3 hydration is in the order of 10%s, Fe(II) oxidation by Oz in the order
of 10*s (Morel & Hering 1993). SO5 transformation and deposition as HySO,4
or SO4%~ in the atmosphere has a time characteristic of 10h and 33h respec-
tively (Deaton & Winebrake 1999), i.e. in the order of 10°—10°s. Photolysis
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of a pesticide (carbaryl) and Mn(II) oxydation have a similar speed. Hydrol-
ysis of an insecticide (disulfoton) and heterogeneous Mn(II) oxidation can be
observed in a time scale of 107s. More than a year can be estimated for the
hydrolysis of methyl iodide in freshwater and for homogeneous Mn(II) oxida-
tion (Morel & Hering 1993). Tributylin, an ingredient of anti-fouling paints,
is degraded in three steps, of which each has a characteristic time between 1.5
and 3 years (Sarradin et al., 1995).

Morel & Hering (1993) give amino acid racemization as an example for
an extremely slow process with a rate coefficient of 10'*s. This can surely
be classified as a geological time-scale (it can be compared to petroleum
formation).

For the modeler, the time scale of the process always has to be related
to the typical time scale of interest of the problem for which the model is
designed. Processes which are much faster than the time scale of interest need
not to be resolved in the model — neither processes which are much slower
than the time scale of interest. Only processes, for which the characteristic
time is similar to the problem time scale need to be treated as kinetic pro-
cesses. Therefore any kinetics classification has no general validity. It is rather
problem and site specific.

Kinetics is a branch of chemistry that deals with reactions, for which the
reaction rate has to be given as a function of environmental state variables.
The determination of such kinetic rates is the main task of kinetics. It is often
a formidable task, because the number of state variables and the range of the
validity of experimentally determined reaction rates is not clear a priori.

The implementation of kinetics turns out to be unproblematic within the
mathematical framework used in this book. Kinetics deals with reaction rates.
The transport differential equations are stated in terms of rates. Thus, in the
differential equation a rate r just has to be added, and the resulting transport
equation for the concentration c of a single species becomes:

ng = -V -0j(c) +q with j(c)=—-DVec+ve (7.1)
Within this formalism one can conceive decay and degradation as special
cases of kinetics with ¢ = —60Ac for linear decay and ¢ = —6Ac" for general
decay of order n. If the factor 6 appears in all terms, it can be omitted; this
will be assumed for the remainder of this chapter.
In general, several reactants are involved in reactions, and it is often not
sufficient to consider a single species in a model. Let’s assume that a simple
reaction has two reactants a and b and one reaction product c:

a+b—c (7.2)

The corresponding system of differential equations is obtained by adding
the reaction rate in all three differential equations, of which each represents
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the mass balance for one of the species. Let’s denote the concentrations by
the symbols ¢, ¢, and c.:

dca _ .

o = =V -jleq) —r

0 .

a‘;b =V -j(e) —r (7.3)
dce _ .

g = =V -jlee)+r

Note that the sign of the reaction rate is negative for reactants (as mass
is lost) and positive for the product (as mass is gained).

For a general formulation one may introduce a reaction matrix S, which
is given in the example by:

S=(-1 -1 1) (7.4)

indicating that one molecule of species a and one molecule of species b yield
one molecule of species ¢. The product STq is a column vector, which gathers
all reaction terms, and the system of differential equations (7.3) can be written
briefly as:

Ca
g‘; =-V-jle)+STr with c= ¢ (7.5)
Cc

The notation can be used for general systems of a multitude of species
that are connected by several reactions. The reaction rates are gathered in a
column vector r. One can write the entire system by the vector equation:

dc

o=V -j(c) +STr (7.6)

This approach will be extended in the following chapter. If transport does
not have to be considered, (7.6) reduce to:

Oc
ot

which is a system of ordinary differential equations. The solution of such
dynamical systems is outlined in Chap. 9.

=STr (7.7)

7.2 Law of Mass Action for Kinetic Reactions

As mentioned above, chemical reactions often are described by a so-called
kinetic formulation. The term kinetic is used in order to distinguish the de-
scription from the equilibrium or thermodynamic formulation. In the latter
case an equilibrium condition is used to characterise the relationship between
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the participating species. The thermodynamic formulation is equivalent to the
formulation of isotherms, which was introduced in Chap. 6.

In the kinetics approach the rate term itself is expressed in terms of con-
centrations of the chemical species. Different formulations of such kinetic laws
can be found in concerned publications that are valid for certain reactions
under certain conditions and a certain parameter range. The most common
formulation is the kinetic version of the Law of Mass Action. The equilibrium
version of that law is presented in the following chapter.

For the reaction example (7.2) the law of mass action formulation is:

q = —KCaCp (7.8)

with a reaction-characteristic parameter . The parameter k is a characteristic
for the ‘speed’ of the reaction. For fast reactions, x has a high value. For slow
reactions it is a small number.

The increase of the rate with the concentration, as expressed by (7.8), is
an expected behavior. For a reversible reaction a + b = 2¢, the rate law is
given by:

q=—FK_CaCp + K C (7.9)

There appear different reaction parameters for reaction and back-reaction:
k_, and k.. Moreover, the stoichiometric number for the involvement of a
species in the reaction appears in form of an exponent of the concentration;
2 for species c. The rate increases proportionally to the respective power of
the concentration if the stoichiometric number exceeds 1. Equations (7.8) and
(7.9) are special cases of the general form

q=—kK_ H itk H i (7.10)

reactants 1 products j

where the stoichiometric numbers are denoted as «; and «;. Equation (7.10) is
not the most general formulation of the law of mass action. In fact, it turns out
to be valid only for the small and moderate concentration range. If the fluid
is highly mineralized, i.e. when concentrations of dissolved species are high,
inhibition due to competition between species has to be taken into account.
Then activities replace concentrations in the above expressions. Further details
are given in Chap. 9.

7.3 Monod, Michaelis-Menten and Blackwell Kinetics

When biological species are involved, another description for rate is often
used. In analogy to an approach proposed by Michaelis?” and Menten®® al-
ready three decades before (Michaelis & Menten 1913), Monod®® suggested

37 Leonor Michaelis (1875-1949), German-American biochemist.
38 Maud Leonora Menten (1879-1960), Canadian physician.
39 Jacques Lucien Monod, 1910-1976, French biochemist.
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the following term to describe the growth of bacteria cultures in the 40s of
the 20" century (Monod 1949):

c
= 7.11
q Cl/2+C ( )

Sidebar 7.1: Free Radical Reactions in the Atmosphere

Understanding the behavior of free radicals in the atmosphere is of
paramount importance for the understanding of lifetime and hence of spa-
tial scales of pollutant transport. Free radicals participate in photochemical
reactions, which are initiated by light. Most free radical species have short
life spans. However, they can promote the conversion of ozone to oxygen and
thus take part in the catalytic cycle of ozone destruction. The most impor-
tant radical acting in the lower atmosphere is the hydroxyl radical OH. A
system of free radical reactions involving OH is given by

H+ NOy — OH + NO
20H — H,0+ O
O+0OH —- 02+ H

with reaction constants k1, k2 and k3 (Bradley et al. 1973). Neglecting
transport, the entire set of reaction equations is as follows:

8CH
ot —K1CHCNO, + K3COCOH
8CH2O o 2
gt~ "con
8CNO
ot = K1CHCNO,
(96]\/02 o
ot —R1CHCNO,
360 2
ot = K2Copg — K3COCOH
8602
ot = R3COCOH
8COH 2
ot = R1CHCNO, — RK2Copg — R3COCOH

with k1=2.9, k3=0.155 and k3=1.1.

For high concentrations a maximum reaction rate r is approached, while
for low concentrations ¢ is proportional to ¢ (with proportionality
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Fig. 7.1. Monod — Michaelis/Menten and Blackwell kinetics (normalized)

constant r/cy /2). If the concentration ¢ of the species coincides with the half-
concentration parameter ci,, half of the maximum rate is reached.

In some computer codes, the transition between linear and constant rate
appears at a specified characteristic value of the concentration. Such a dis-
tinction between low and high concentration situations is used as a simpler
alternative to Monod kinetics. It is referred to as Blackwell kinetics and ap-
plied by van Cappellen & Wang (1995) among others (see Fig. 7.1).

7.4 Bacteria Populations

In models one may also consider bacteria populations explicitly. If there is a
high abundance of bacteria, degradation processes are favoured. Vice versa,
the abundance of fuel favours bacteria population growth.

For a description that takes more details into account concerning the bac-
terial degradation, a formulation can be used in which the bacteria population
X appears as another variable. In addition to the differential equation for the
chemical species, another differential equation for the biological species has to
be added. As extension of (3.20) it is possible to write:

Rac:V'(DVC)—V-VC—OéX ¢
ot c+p
(7.12)
ox x ¢ _gsxn
ot =7 c+p
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with retardation factor R, dispersion tensor D, velocity v and parameters
a , B, v and §. The degradation rate for the substrate is linearly dependent
on X. For high concentrations ¢, a maximum rate of aX is reached. Half of
that maximum is given for the substrate concentration C' = 3. Such behavior
is described by the Monod term, the last term in the first equation of system
(7.12). The same functional dependency is used to describe the growth of
the bacteria population where the coefficient 7 includes the relation between
bacteria population and substrate concentration. The last term in the second
equation of system (7.12) accounts for the decline of the bacteria population
or natural death of the bacteria, for which two additional parameters, § and
n, are introduced. Bacteria are assumed not to migrate with flow; that’s why
the dispersion and advection terms are missing in the second equation.

Approaches as in (7.12) are common in biogeochemical modeling. The use
of a linear term for the decline of X is a common approach used in biogeo-
chemical modeling (Lensing 1995, Tebes-Stevens et al. 1998). For n=2, the
approach coincides with the so-called logistic equation, which is most popular
in the biological and ecological sciences; see Chap. 9). Marsili-Libelli (1993)
refers to the given approach with a first order growth term in X and a degra-
dation term with a free exponent as Richards dynamics. Even more general
approaches with free exponents in growth as well as in decay terms are exam-
ined by Savageau (1980).

An alternative formulation of similar complexity is obtained when the
second equation of the system (7.12) is replaced by

83)7:( =X j PR 52X 2 (7.13)
In (7.13) a linear and a quadratic decay term are included. In a discussion
of various different mortality terms in ecological models, Fulton et al. (2003)
favour such an approach stating that the linear term represents ‘basal’ mor-
tality, while the quadratic term is due to predators which are not explicitly
represented in the model.
A further approach for modeling the bacteria population was suggested by
Schéfer et al. (1998), following Kindred & Celia (1989), using an inhibition
term for the bacteria population:

0X c €

ot c+p0X+e¢
where e denotes one additional parameter. The inhibition factor ¢/ (X + ¢)
has also to be included in the decay term of the substrate equation.

If the 1-dimensional formulation of the differential equations (7.12) is suf-
ficient, one may write:

Rac: 0 <aLv86>—v86—o¢X c

5X (7.14)

82;5 ox ox ox c+ 0 (7.15)
&

=X —oX"

ot ! c+p 0
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Concerning the formulation (7.15) it is assumed that dispersion dominates
over diffusion (see Chap. 3): molecular diffusivity is omitted. If the velocity
and also the dispersivity are constants, as for example in column experiments,
the coefficients a;, and v can be taken out of the brackets of the first term of
the right hand side.

The simulation of the transient change of concentration and/or population
of biological species, described by a set of 1D equations, can be performed by
using the MATLAB®) pdepe solver that was already described in chap. 4. In
the sequel, as another MATLAB®) application, we determine the degradation
characteristics by evaluating the steady-state solution.

7.5 Steady States

In order to determine the degradation rate it may be sufficient to examine
the steady state. From the 1D formulation for the unsteady situation a set of
ordinary differential equations emerges. Two equations result for the system
described by the (7.15):

8( 0 ) 0 c

apv,. c)l—v, c—aX =0

oz oz oz c+p (7.16)
c

X —0X"=0

LR

If bacteria populations remain above zero, a steady-state value for X, in
dependence of ¢ can be extracted from the second equation:

v ¢ 1/7171
(1) i)

The formula (7.17) is introduced in the first equation of system (7.16):

1
0?%c Jc v ¢ =1
aLU@m_Uax_a(éc+ﬂ> c+ﬂ_0 (7.18)

which is a single differential equation of second order. As an equivalent system
of two differential equations one obtains:

Oc ,

(7.19)
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Sidebar 7.2: Gadolinium-DTPA Steady Transport
and Degradation

Diethylene-triamine-pentaacetic acid (DTPA) is used in the pulp and paper
industry, where its application increased dramatically with the introduction
of HyO4 as a substitute for the bleaching agent chlorine. Chelating agents,
particularly DTPA, are added to bind heavy metals and thus prevent the
decomposition of HyO9 during the bleaching process (van Dam et al. 1999).
After processing, DTPA remains a component of the effluent reaching sewage
treatment plants and downstream surface water bodies such as rivers and
lakes, as well as connected aquifers. Finally the substance enters the water
supply systems.

Gadolinium (Gd) is a rare earth element (REE), which rarely occurs in
natural environments. Therefore Gd has become an indicator for human im-
pact in metropolitan areas; Gd is widely used in medical applications. Since
1988 most contrast agents for magnetic resonance imaging in medicine con-
tain gadolinium. Gd is complexed with DTPA to form Gd-DTPA, an aqueous
soluble stable complex. Gd-DTPA does not accumulate in the human body
but is eliminated without significant chemical change via the kidneys within
a day.

Gd-DTPA reaches sewage treatment plants after having passed the
sewage systems. The sewage treatment processes are not sufficient to de-
grade the Gd-DTPA complex. In densely populated areas increased concen-
trations of GAd-DTPA can be found in surface water bodies that are partially
recharged by effluents of sewage plants. Even aquifers contain Gd-DTPA in-
troduced by infiltration of surface water. Such a path is of particular concern,
where drinking water is pumped from well galleries in the vicinity of surface
water bodies, where bank filtration is used for public water supply.

In the sequel, we deal with a column experiment that was set up in order
to identify the DTPA degradation processes in porous media. The reported
column experiment was performed in a series of columns with an entire
flowpath length of 30 m. The set-up and the evaluation of the experiment was
already reported by (Holzbecher et al. 2005). Inflow velocity and dispersion
coefficient were obtained from the evaluation of a tracer experiment. Mean
interstitial velocity and longitudinal velocity for the entire duration of the
experiment are v = 0.86 m/d and a7, = 0.06 m. Advection dominates within
the system.

Concentrations were measured at several locations along the flowpath.
Figure 7.2 depicts the measured breakthrough curves for Gd concentration
at four selected positions, 0.22m, 10m, 20m and 30m from the inlet to
the first column. After an initial time period with initial zero concentra-
tions, ¢ increases fast when the front approaches. Clearly, the length of
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the initial time depends on the position of the observation point. Follow-
ing the sharp increase, finally a level is reached which is constant over
time. The concentration level of that steady period depends on the posi-
tion along the flowpath. Minor fluctuations are due to difficulties main-
taining a constant concentration at the inlet. In Fig. 7.2 on the first
breakthrough curve a rectangle indicates the time period with steady
concentration.

60 —

50

N
o
|

30

Gd [ng/ml]

0 7 14 21 28 35 42 49 656 63 70 77
days after tracer input

Fig. 7.2. Observed breakthrough curves (selected) in Gd-DTPA column
experiment

The constant concentration levels in dependence of travel distance are
depicted as dots in Fig. 7.3. The figure also shows two curves obtained by
two different modeling approaches. If the approach (7.12) is assumed to be
valid, according to the presented derivation, one has to solve (7.21).

For n = 2, one has the alternative to solve the implicit formula (7.23),
which is implemented by using the MATLAB®) fzero command. The com-
plete M-file sequence is:

xdata = [0.22 0.42 0.84 1.66 3.33 5 10 15 20 25 30];

ydata = [54.7 54.3 54.2 54.0 52.8 52.4 51.0 49.9 48.7
47.6 46.2];

cin = bb;

aeta = 4304;

beta = 5937;

for i=1:size(xdata,2)

yfunc(i) = fzero (@GD,cin,odeset,cin,beta,aeta,xdata(i));
end
plot (xdata,ydata, ‘o’,xdata,yfunc);
xlabel (‘distance [m]’); ylabel (‘Gd concentration [ng/ml]’);
function y = GD(c,cin,beta,aeta,x);
y = x+(c+2*beta*log(c)-beta*beta/c-cin-...
2xbeta*log(cin)+betaxbeta/cin) /aeta;
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4

The complete code can be found on the CD under the name
‘GADTPA.m’. Figure 7.3 depicts the result of the computation labelled
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Fig. 7.3. Results for steady state modeling of the Gd-DTPA column experiment

by ‘n = 2’. Estimated parameter values for 3 and 1 were adopted from
Holzbecher et al. (2005).

Additionally, Fig. 7.3 depicts the result of another model run in which
the parameter n was included in the estimation. For the solution, the steady
state equations (7.21) were modeled using a MATLAB®) solver for ordinary
differential equations (see Chap. 9). The optimum fit was obtained for n =
1.029, B = 16.2 and n = 5425. How parameter estimations can be performed
in core MATLAB®) is shown in Chap. 10.

The second run obviously represents much better the curvature in the
observed data than the first run. A more detailed model may even improve
the fit, i.e. the correspondence between measured and modelled data. Also
the approaches (7.13) and (7.14) deliver better results than the run with
a fixed n = 2 (Holzbecher et al. 2005). Which of the approaches is more
realistic can only be judged by including non-mathematical findings of the
applied sciences.
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In cases in which dispersive fluxes are small, one obtains a single 15¢ order
differential equation:

Oe a 1/nfl
=47 c ¢ (7.20)
Oz v\dc+p c+ 3 '
or
de c n/(n—1)
= - 7.21
oz K (c + ﬂ) (7.21)
ayt/(n=1)
with n = ) - Formula (7.21) can be re-written as:

pol/(n—1
ﬂ n/(n—1)
/ (1 + c) de = —n(x — o) (7.22)

For n=2 (7.22) can be integrated analytically. One obtains:

1 52 ,32
T — T = ~ ¢+ 281log(c) — . T Cin 2Blog(cin) + (7.23)
where ¢;,, is the inflow concentration at © = z¢. Expression (7.23) is an

implicit formula for ¢ as function of x for given parameters and boundary
condition. Provided a value for x is known, the corresponding ¢ can be deter-
mined by a zero-finding algorithm. See Sidebar 7.2 for an application using
the MATLAB®) fzero command.

With the same assumptions the approaches (7.13) and (7.14) also lead to
ordinary differential equations:

Oc ary c 2 ad; ¢
= — 24
Oz vl <c+ﬂ> +'U(52€+,8 (7.24)
and
Oc c
= — — ]_ .2
Ox m (mc + 4 ) (7.25)
respectively.
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Transport and Equilibrium Reactions

8.1 Introductory Example

The situation that environmentally relevant species take part in chemical re-
actions, while being transported through a compartment of the environment,
was already treated in Chap. 7. In this chapter the same situation is taken up
again with the difference concerning the time scale of the reactions. Here we
deal with reactions which are fast in comparison to transport processes.

The situation that chemical reactions are fast compared to other envi-
ronmental processes is met quite often but on very different time scales.
The scale difference is related to the fact that the transport time scale de-
viates significantly in different compartments. There are systems which are
almost in a no-flow state. In deep underground reservoirs transport is mea-
sured in geological time scales, and most chemical transformations can be
assumed to be fast in comparison. In near-surface aquifers velocities are often
in the range of several meters per year or higher, and some chemical processes
may not reach their equilibrium. Sedimentation rates in the deep ocean or
in lakes are in the order of several mm per year; this sets the scale for fast
and slow reactions in those systems. Therefore, each environmental compart-
ment has its own time-scale and is related to chemical processes in a different
manner.

Reactions with a characteristic time, which is in the same scale as trans-
port or even slower, can be included in the mathematical description as shown
in the previous chapter. The reaction rate has to be formulated in dependence
of concentrations and maybe some other state variables, like temperature, and
added as another term in the differential equation. As the reaction contributes
to the mass balance, which is expressed by the differential equation, the math-
ematical formulation is straight forward. More difficult is the determination
of rate expressions that are relevant in practice from the chemical point of
view. But this has to be left to chemists and is outside of the scope of this
book.
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For fast reactions, the rate law is not relevant. Instead, the equilibrium
characteristic is brought into play. A widely accepted formulation is given
by the law of mass action, which is presented in sub-chapter 8.2. Here, the
mathematical framework is demonstrated in a special introductory example.

Let’s take a reaction in which n, molecules of species a react with ny
molecules of species b to produce n. parts of species c:

Nea@ + nNpb = nec (8.1)

In connection with transport the development of the system of three
species can be described by the set of three differential equations:

Ocq .

P V-j(ca) — nar

0 .

actb = V-j(c) — npr (8.2)
Jce .

9 = V-j(ee) + ner

This is a slight extension of the system (7.3), where all stoichiometric num-
bers ng, np and n. were set to 1. As in the previous chapters, the vector j
denotes the flux due to transport processes, and the symbol in brackets de-
notes the species which is transported. The last term in all three differential
equations represents the reaction. The notation is analogous to the descrip-
tion introduced in Chap. 7. r denotes the reaction rate. The problem is that
the reaction rate r is not known in equilibrium reactions. The rate r has to
be eliminated from the mathematical description, which is achieved by an ap-
propriate gathering of the equations (sums of 1°* and 3", as well as 2" and
3'd equations):

Ocg Mg Ocg . Ng o .
= V'J(Ca) + V-j(ee)

0t Ne 0t Ne
dcy | mpdep Vijley) + nbv'.( ) (83)
ot ne ot I Ne e

In favour of simplicity, we assume that the flux term is linear, i.e. that dis-
persivities, diffusivities and fluid fluxes are independent of the concentrations.
Then fluxes on the left side can be gathered in a single term:

J Cq + nac =V-jlcg+ nac
at a ”’LC C - .] a nc C
0
<Cb + 1 Cc) =Vj <Cb + 1 Cc)
at Ne Ne

In order to obtain a suitable formulation for three unknown variables c,,
¢y and c., these two equations are complemented by the mathematical for-
mulation of the equilibrium state, which is a mathematical function including

(8.4)
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Ca, ¢ and c.. According to the law of mass action (see sub-chapter 8.2), the
equilibrium condition for the given reaction is given by the equation:

Ne

¢ K (8.5)

ca ey’

C

with a specific reaction-dependent equilibrium constant K.

The general solution procedure for the entire system is as such: solve the
differential equations (8.4) in order to obtain the variables A := ¢, + ' ¢ and
B :=c¢+ Zi’ ¢, as functions of time and space! In a second step, determine for
each location and time instant the three unknown values ¢,, ¢, and ¢, from
the three known values A, B and K!

In order to perform this task, we utilize the resulting explicit formulae for
¢q and ¢, as functions of ¢ := ¢, as well as A and B: ¢, = A — (ng/ne¢) ce,
¢y = B — (np/ne) c.. Thus we may re-write (8.5) as:

ce
Mg ny
(A _Na c) (B T c)
Ne Ne

£(c) i= cne (A _ e c) o <B _ c> ko (8.7)

N e

=K (8.6)

or:

The further task is to find the zero of a non-linear equation. The standard
procedure for such a computation is Newton’s method (see Sidebar 8.1).

Sidebar 8.1: Newton*?’s Method

Newton’s method is a mathematical standard method for the determination
of the zeros of a function. Let’s introduce the method for functions of one
variable f(z) first before extending it to several dimensions.

Newton’s method is an iterative method; i.e. starting from an initial
guess, a new approximation for the zero is computed in each iteration step.
The formula for the next approximation of the zero is:

f(z)

T <— T —

f'(x)

where f’(x) denotes the derivative. It can be shown easily that the new x is
the position where the tangent on the function graph at the old x position
meets the z-axis.

40 Tsaac Newton (1642-1727), English scientist and philosopher.
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The iteration stops, if the change of approximation within the last it-
eration is lower than a specified tolerance (1), or if the maximum number
of iterations is reached (2). The following command sequence demonstrates
the method by calculating the zero of the cosinus, i.e. m/2.

toll = 1.e-7; % tolerance
nmax = 20; % max. no. of iterations
x = 2.5; % initial guess

err = toll+l; nit = 0;
while (nit < nmax & err > toll),
nit = nit+1;

F=£f(x);
DF = fderiv(x);
dx = -F/DF;
err = abs(dx);
X = X+dx
end
display ([‘Zeroobtainedafter ’num2str(nit) ‘iterations:’]);

X

function F = f(x)
F = cos(x);

function DF = fderiv(x)
DF = -sin(x);

The complete code can be found on the CD under the name ‘newton-
demo.m’.

In the first three lines tolerance, maximum number of iterations and ini-
tial guess are specified. What follows is the initialization of the error variable
err and the iteration counter nit. In the while-loop the new x-position is
calculated from the old one. First, the iteration counter is increased. Then,
after function and derivative are evaluated, the change of x (the second
term in the iteration formula) is computed by the command dx = -F/DF.
The absolute value of dx becomes the error variable err. Finally, the new x
is calculated.

The result of the iteration for the cosinus as demonstration function is
x = 1.5708, which is already reached after 3 iterations. There are further
iterations, because the required tolerance with 107 is higher than the digits
presented in the MATLAB® command window.

Note that the Newton method requires an explicit formula for the deriva-
tive of the function.
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Note that the derivative df/0c is to be computed in order to apply New-
ton’s method. For function (8.7) the derivative is available, although a bit
lengthy to write down. In the following sub-chapter we present a general
procedure, which can be applied to general systems of multi-species interact-
ing in several reactions.

8.2 The Law of Mass Action for Equilibrium Reactions

The most common unit for concentrations of components in the fluid phase is
[component mass / fluid volume]; in SI units [kg/m®]. Another way describing
concentrations is by using mass fractions [component mass / fluid mass], which
in physical units are dimensionless. In chemistry it is common to use molar
or molal concentrations, where the number of moles per fluid volume or fluid
mass is measured.

From the mathematical point of view a reaction is regarded as the transi-
tion from one set of species to another. In the following, the total number of
species is denoted by N, and the number of reactions by N,. In a reaction a
subset of species has the role of reactants and another set gathers the reaction
products. Formally one may write:

N, N
Z nl(-J)-componenti — Z mE]) -component; j=1,...N, (8.8)
i=1 i=1

where the coefficients nl(-j ) and mgj ) are stoichiometric integer numbers. Re-

versible reactions are characterized by the observation that both the reaction
and the back reaction occur. If the reaction is fast in comparison to the other
relevant processes (as transport for example), the equilibrium between the
reactions in both directions is reached at every time instance. This can be
assumed to hold for many geochemical processes, because transport and com-
paction in the pedosphere are usually slow. According to the Law of Mass
Action the equilibrium is characterized by a constant K;:

m@
a;

K; = (8.9)

N,

[1

i=1

N ()
n.:

il;ll

K2
a;

Equation (8.9) is valid for fast reversible reactions. The K;’s are inde-
pendent from the geochemical surrounding but depend on temperature and
pressure. a; denotes the activity of the i*? species, which is the product of
concentration and a species-dependent activity coeflicient v;:

a; = 7+ C; (810)
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For more details concerning activities see Sidebar 8.4 below. For low concen-
trations, the activity coefficients are close to 1 and the activities in the law of
mass action can be replaced by concentrations. Taking the logarithm*! of (8.9)
one obtains:

2

(mgj) —ngj))log(ai) = log(K;) j=1,...N, (8.11)
1

o
Il

It is convenient to write (8.11) in matrix form. In order to do that, the
convention is used that stoichiometric coefficients related to reactants obtain
a positive exponent and those related to reaction products obtain a negative
exponent:

nji = mgj) - ngj) (8.12)
With the help of matrix S = (n;;) results:
aq Kl
S-log(a) = log(k) witha=1| ... | andk=| ... (8.13)
an, KNT

S has N, rows and Ny columns. Each line in (8.13) represents one reaction.
With respect to the calculation of Ny unknown activities, (8.13) provides N,
conditions.

For low ionic strength, the activity coeflicients are approximately 1, and
it is allowed to replace activities by concentrations:

S -log(c) = log(k) (8.14)

Usually it is required that there is no reaction that can be obtained as
combination of the other reactions. The mathematical expression for that
requirement is that the rank*? of matrix S is maximal. The maximal rank of
the N, x N reaction matrices is N,.. With MATLABQ®) it is easy to check if
the condition is fulfilled, by using the rank command.

The following reaction example between hydrogen H, nitrotriacetic acid
NTA (a chelating agent in detergents influencing the metal ion activity in
aqueous systems), and cobalt (II) Co demonstrates the case:

H+ NTA=HNTA
CoNTA=Co+ NTA
CoNTA+H=Co+ NTA

41 In this chapter, we deal with logarithms to the basis 10; in the text we do not
introduce a different notation to distinguish from the logarithm to the basis e,
which is used in other chapters. However, in MATLAB® the log10 command
has to be taken!

42 The rank of a matrix is the maximum number of linear independent column or
row vectors in the matrix; see textbooks on Linear Algebra.
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There are five species involved in three reactions and the corresponding
reaction matrix is:

S=[-1-1100;010-11; -101-11]

In MATLAB®) it is easy to check if the above given requirement is fulfilled.
The rank of the matriz is the maximum number of independent reactions. In
the example case MATLAB®) shows:

rank (S)
ans =
2

In fact, only two of the given reactions are independent. The rank is lower
than 3 and thus not maximal. The chemical system is treated in more de-
tails by Fang et al. (2003). In order to obtain a maximum rank for the
given example, one of the three reactions has to be omitted. The resulting
2 x 5 matrix has maximum rank. Without mentioning we assume a matrix of
maximum rank in all following theoretical derivations.

8.3 Speciation Calculations

The equation for a system of species in equilibrium is given by:
STr., =0 (8.15)

The problem with the system (8.15) is that it can not be computed directly,
because the exchange rates of the equilibrium reactions req are neither known,
nor are they given by an explicit expression. In order to reach an appropriate
formulation, the equations have to be added up in a way that eliminates the
unknown reaction rates. There are N, equations in the system (8.15), and
there are N,. equilibrium conditions for the reactions. Usually Ng > N, holds,
i.e. the system is overdetermined.

In order to complete the system (8.15), Ny — N, additional conditions
in form of specified values for total concentrations can be given (Steefel &
MacQuarrie 1996). Total concentrations are invariants that are obtained by
linear combinations of the species concentrations. Mathematically this can be
expressed by (left) multiplication of the (8.15) with a matrix U, a matrix with
Ns — N, rows and N, columns. The vector

u=U-c (8.16)

contains values of total concentrations. u is a column vector with Ny — N,
components. The conditions (8.15) imply:

U-ST.r, =0 (8.17)
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Sidebar 8.2: Single Reaction Example

For the reaction between species A, B and C'
2A+B & C
the reaction matrix S is given by

S=(2 1 -1)

102
U_(011)

Total concentration u; and us are thus given by:

and for U holds:

UL = ca + 2¢co
uz = cp + c¢

which can be explained as follows: the total concentration u; of A is given by
the concentration c4 and two times the concentration cc, because according
to the reaction two A-species are within the reaction product C. For the
total concentration us of B the two concentrations c¢g and cc have to be
summed up, because there is one unit of B to be found in C'. This may give
an impression why the term ‘total concentration’ is used.

In this example case the matrix U is unique if it is required that U
is combined by the unit matrix and one additional column fitting to the
formulation (8.20).

In order to fulfil the conditions (8.17), the matrix U is chosen to obey the
equation
Us? =0 (8.18)

There are several ways to find such a matrix U which is not unique.
Saaltink et al. (1998) mention Gram-Schmidt orthogonalization and singu-
lar decomposition as alternative methods to construct a matrix U with the
property (8.18) and provide an example for the latter procedure. In addition,
Saaltink et al. (1998) suggest another procedure which can easily be imple-
mented using MATLABQ®), as it is formulated in matrix form. The algorithm
is based on the partition of the matrix S in two sub-matrices:

S =(51]S2) (8.19)
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where Ss is a regular square matrix with IV, rows and columns. S; is a matrix
with Ng — N,. rows and NV, columns. U is then given by:

U= [INS_NT

s*T] (8.20)

with
S*=—-8,718,; (8.21)

and unit matrix In,_y, with Ng — N, rows or columns.

In order to perform the matrix operation, So must be invertible. Sometimes
some permutations of the species’ system are required to achieve that Ss is
regular. It is possible in either case if the matrix S has maximum rank (see
above). The number of entries in the right sub-matrix of (8.20) is NV, X (Ng —
N,.), for which there are (N; — N,.) conditions only.

For a given vector u the (8.16) is a system of Ny — N, equations for the
unknown components of the vector c. In addition, there are N, equilibrium
conditions. For given total concentrations, gathered in vector u, the system

u=U-c

S - log(c) = log(K) (8.22)

has to be solved for c. It is a nonlinear system of N equations for Ny unknown
values. The so-called speciation problem (8.22) can be solved by the New-
ton-Raphson method, an extension of the Newton method described above.
There are Ny — N, linear balance equations and N, non-linear equilibrium
equations. In MATLAB®), the generalization of the Newton method for vec-
tor functions of several independent variables can be implemented for that
purpose:

toll = 1.e-10; % tolerance

nmax = 50; % max. no. of iterations

Se = [-1 -1 1]; % reaction matrix

logc = [1.e-10; 1.e-10; 0]; % initial guess (log)

logK = [-0.93]; % equilibrium constants (log)
logu = [-0.301; 0]; % total concentrations (log)

1n10 = 2.3026;

n=size(Se,1); m=size(Se,2);

S1 = Se(:,1:m-n);

82 = Se(:,m-n+1:m);
Sistar=-82\S1;

U=[eye(m-n) ,Sistar’];
c=exp(1lnl0*logc) ;

u(l:m-n,1) = exp(1nlOxlogu);

err = toll+l; nit = 0;

while (nit < nmax & err > toll),



146 8 Transport and Equilibrium Reactions

nit = nit+1;
F = [Uxc-u; Sexlogl0(c)-logK];

DF = [U; Se*diag((1/1n10)./c)];
dc = -DF\F;
cn = max(c+dc,0.005*%abs(c));

err = max(abs(cn-c));

Cc = cn;

logc = logl0(c);
end
display ([‘Species concentrations obtained after
‘num2str(nit)’ iterations:’]);

| “

The complete code can be found on the CD under the name ‘Speciation.m’.

In the input part of the M-file the tolerance, the maximum number of
iterations, and an initial guess are specified in a similar way as in the Newton
M-file (see Sidebar 8.1). In addition, the reaction matrix, the equilibrium
constants for the reactions, and the total concentrations are specified. All
concentrations and equilibrium constants are entered using their logarithmic
values.

The execution part of the M-file is divided into two parts. In the first
part, the initialization is done for the iterations to be performed in the second
part. In the first part, the submatrices S; and S, of the reaction matrix
are determined to be used in the computation of S* and U. Total and species
concentrations are converted from logarithm to their real values. Error variable
and iteration counter are already introduced in the formwer example, see
Sidebar 8.1.

Within the iteration the zero of the function

U.-c—u
F(e) = (S -log(c) — log(K)) (8.23)

is computed. It is easy to see that the zero is identical with the solution
of system (8.22) if activity corrections are neglected. The derivative of the
function F, the so called Jacobi matrix, is given by:

U
DF(c) = (S/ (c 10g(10))> (8.24)

In analogy to the Newton algorithm, presented in Sidebar 8.1, the generaliza-
tion is given by the formula:

c+—c—DF(c)! F(c) (8.25)



8.4 Sorption and the Law of Mass Action 147

In the command sequence, first the second term is evaluated and stored in
the dc variable. The following command in the listing ensures that the con-
centrations remain positive.

8.4 Sorption and the Law of Mass Action

One can formally write sorption as an equation of a reaction between sorption
sites and free species on one side and sorbed species on the other side. In
analogy to the Law of Mass Action, one may note the differential equation for
the temporal change as:

Oc

=KeCs—K_C-$
ot
0
aj =K Cs— KC" 8 (8.26)
Ocg

=K_C- S — KeCs

ot

where ¢ denotes the concentration in the fluid, s the number of free sorption
sites and ¢s the number of occupied sorption sites. The terms for transport
have been omitted in order to focus on sorption. The equilibrium condition is
then given by:

or:

=K-s (8.28)

Sidebar 8.3: Activities and Activity Coefficients

a; denotes the activity of the i*" species in a multi-species system. It is
the product of concentration ¢; and activity coefficient 7; that is species-
dependent, i.e. for the i*" chemical species holds:

a; = 7" C

The activity depends on ionic strength p in the solution, defined by

p= ;Zcz'z?

where the sum has to be extended over all charged components. z; denotes
the electrical charge of species i. The logarithm of the activity coefficient
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can be computed explicitly by a formula like:

logyi = —A- 2°/

This is the simplest formulation that can be derived theoretically. For
very low values of u (<10723; Sigg & Stumm, 1989), the formula is valid
with a value of A = 0.51 (in water of 25°C, see: Krauskopf & Bird, 1995).
An extended formula was proposed by Davies:

Y G
logy; = —A- % <1+\/u 0~3u>

The Davies equation is usually assumed to be valid for ionic strengths
up to = 0.5. The coefficient A depends on temperature only. Values for A
are given in Table 8.1. The activity coefficient thus depends on temperature,
on ionic strength and the electric charge of the species.

Another extended formulation for the relation between activity coeffi-
cients and ionic strength is found with reference to Debye*3-Hiickel**:

A- ziQ\/u

logyi = |+ Ba® + bip

with coefficients B, a;° and b; (Debye & Hiickel 1923). The coefficient B
depends on temperature only. The ion-size parameter a;" as well as b; are
species-dependent. The latter formulation is used in the speciation code
PHREEQC (Parkhurst 1995). Another extension uses a different formulation
of the last term:

A 22
1+ Baj\/u
This is implemented in the CHESS code (van der Lee, 1998). The tem-

perature-dependency of the parameters is shown in Table 8.1. If activities
are considered, the derivation above leads to equation

logvy; =

u=U-c
S - [log(v) + log(c)] = log(K)

instead of (8.22), where  denotes the vector of activity coefficients.

s here denotes the number of free sites. If no competition between species
is taken into account, s can also be expressed as csmax — Cs, the number of

43 Peter Debye (1884-1966), Dutch chemist and physicist.
44 Erich Armand Arthur Joseph Hiickel (1896-1980), German chemist and physicist.
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Table 8.1. Coefficients in extended equations for activity equations (Berner 1971,
van der Lee 1998)

Temperature A B B’
[°Cl
0 0.4883 0.3253 0.0374
5 0.4921
10 0.4960
15 0.5000
20 0.5042
25 0.5085 0.3288 0.0410
30 0.5130
35 0.5175
40 0.5221
50 0.5319
60 0.5425 0.3346 0.0440
100 0.9595 0.3421 0.0460

available free sites is diminished by the number of occupied sites. Altogether

results:

CCS = K - (Co.max — Cs) (8.29)

or, resolved for cy:

_ KcsmaxC

14+ K-c
With parameters a1 = ¢smax and ars = K ~! this is the already men-

tioned Langmuir isotherm (6.7). A generalization of this formula results for

species which participate with more than one unit on the reaction, as for

example gaseous Os. Starting from the reaction terms:

Oc 9

=K Cs— K_C"-5§

(8.30)

Cs

ot

5}

8? =Ko Ccs—KC-s (8.31)
865—143 A s—kec

at = R «—Cs

the same arguments as above lead to the isotherm:

2
_ Kcsmaxc

€ = 1+ K-c?

(8.32)

Figure 8.1 depicts an example of such a sorption isotherm. Formula (8.32)
is a special case of the so called Langmuir-Freundlich isotherm (Klug et al.
1998) with exponent 2.
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1

solid phase concentration
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Fig. 8.1. Sorption isotherm for species with stoichiometric coefficient = 2 (see text)

8.5 Transport and Speciation

The differential equation for multi-species reactive transport has been written
in vector notation (see (7.6)):

dc
ot

The system (8.33) contains one differential equation for each species. It is a
system with N; equations. In case of equilibrium reactions it is not possible to
treat the system (8.33) directly, because the exchange rates of the equilibrium
reactions r are neither known nor given by an explicit expression. In order to
reach a feasible formulation, the equations have to be summed up in a way
that eliminates the last term on the right side of the equation. The procedure
was already described in Chap. 8.3.

It is appropriate to multiply the equation from the left by a matrix U with
the property U - ST = 0. The matrix U has Ny — N, rows and N, columns
and is not unique. The result is:

0
ot

The last term on the right side can be omitted because of U-ST = 0. If the
transport terms are linear, multiplication with matrix U and differentiation
can be exchanged. From (8.34) one directly obtains a differential equation for
the total concentrations u:= U - c:

0
ot

Equation (8.35) represents a system of Ny — N, transport equations for
the Ny — N,. components of u. The problem is thus significantly simpler than
the original system with N coupled equations. The gain is paid by the need
for speciation calculations. When the vector u is calculated, the N, species
have to be computed in a second step with the help of (8.22).

The formulation of the entire problem, given by (8.35) and (8.22), offers
various advantages. The given formulation has the following properties:

=-V-j(c)+STr (8.33)

Uc=-U-Vijkc)+U-S™r (8.34)

u=-V-j(u) (8.35)
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(1) transport and reaction modeling are not coupled, because transport can be
solved independently from the speciation; solving the transport problem,
the knowledge of the c-vector is not required

(2) the transport problem consists of Ny — N, linear differential equations

(3) the differential equations of the transport problem are independent from
each other

(4) the reaction problem consists of a nonlinear system of Ny equations which
have to solved for each node

For the solution of such a system it is justified to apply a sequential non-
iterative approach (SNIA, see: Steefel & MacQuarrie 1996): transport is solved
first in order to obtain u, from which c is determined in a second step. In the
first step Ny — N,. independent linear transport equations have to be solved.

In the case of reactive transport with equilibrium equations, the SNIA
approach causes no additional errors in contrast to other approaches. If the
type of boundary conditions is the same for all total concentrations, it is even
sufficient to solve the transport equation only once. When the transport step
is completed, the speciation has to be calculated for each block (or node).
These computations are independent from each other, i.e. the speciation in
one block does not depend on the speciation in any other block of the model
region.

The de-coupled solution procedure is only possible, because within the for-
mulation itself (equations (8.35) and (8.22)) transport and equilibrium geo-
chemistry are not coupled. The sequential (de-coupled) treatment of transport
and speciation is not always possible. When kinetic reactions have to be con-
sidered additionally, the equations remain coupled and the numerical solution
is not as easy (Holzbecher 2005).

The situation is also more complex when species in different phases are
involved. In the mathematical formulation species in different phases can not
be expressed by the same transport operator, as it is assumed in (8.33).

For demonstration purposes we selected an example from carbon chem-
istry. A formulation is chosen in which 7 species are involved in 5 reactions.
These are ordered in the species vector as follows:

(H*,HCO3,Ca®*,0H", H,CO3,C0O3°~,CaHCO3™)

The major reactions for the carbon species and the equilibrium constants
are gathered in Table 8.2. Note that two additional species appear in the
reactions: water, HoO, and calcite, CaCOs. Those two species are not included
in the model, because it is assumed that both are available from an infinite
pool. In that case their concentrations can be set to unity. Water is the medium
within which other species are dissolved. Concerning calcite, it is assumed that
the flow passes through a calcareous or limy formation, a fracture, a pipe or
a karst system.

The following reaction matrix corresponds with the reaction system:
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Table 8.2. Carbon chemistry equilibrium constants

Reactions and Equilibrium Constants (log) for T = 25°C

Ht +OH~ < H»0 —14
HY +C0s%~ — HCOs~ —10.329
Ca*t + HCO3~ — CaHCOs™* —1.106
2H' + CO3%~ < HyCOs —16.7
Ca*t + COs%* — CaCOs —8.48
1 0 01 0 0 O
1 =100 0 1 0
S=|0 1 10 0 0 -1 (8.36)
2 0 00—-110
0 010 010

The matrices S; and Sy are given by:

1 0 01 00 0
1 -1 000 1 0

S;=|0 1 |S=|100 0-1 (8.37)
2 0 00-11 0
0 0 100 1 0

and for the transformation matrix U results:

101 -11-11
U_<01—1 01 1 0) (8.38)

Thus there are two totals which are a combination of the species concen-
trations:

Totl\ (H* +Ca** —OH™ + H,CO3 — CO3*> + CaHCO3"
Tot2 ) — HCO5;™ — Ca?* + HyCO5 + CO3°~

For each of the totals a differential equation is solved. The entire system is
reduced to the solution of the transport equation for two totals and the specifi-
cation calculations. The connection with transport was tested for a situation of
fracture within calcareous rock, entered by water which was under-saturated
with respect to calcite. Such a system was studied by Saaltink et al. (2001).
Some parameter values were adopted from that study.

A list of parameters is given in Table 8.3. A 1D porous fracture of 100m
length is modeled with water entering at a Darcy velocity of 2m/a. Initial
and input concentrations for both species have to be specified as well.

The MATLAB® model for the problem is implemented as a combination
of the pdepe solver and the speciation calculations. pdepe is used for the usual
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Table 8.3. Parameter for calcite dissolution equilibrium test-case

Variable Value Unit
Length 100 m
Maximum simulated time 5 a
Porosity 0.1 -

Darcy velocity 2 m/a
Diffusivity 200 m?/a
Initial concentration Tot1 —4.019 log mol/1
Initial concentration Tot2 —3.018 log mol/1
Input concentration Tot1l —4.365 log mol/1
Input concentration Tot2 —5.421 log mol/1

transport equation as described in Chap. 4 in detail. The speciation has to
be performed for each geochemical species set at each node and each time
instance of interest.

The simulation using MATLAB®) shows the propagation of the front for
all species. Figure 8.2 depicts pH as an example. The pH rises, because carbon
species, entering the aqueous system by calcite dissolution, bind more of the
available H-species. With pH = 9.7 the inflowing front thus shows higher
values than the initial system with pH = 8.75.

The given procedure can also be applied to systems in which both kinetic
and equilibrium reactions are expected. The mathematical formalism has to
be slightly extended, as it was demonstrated by Holzbecher (2005). Without
going into details, we demonstrate the procedure for a situation derived from
the example above. Saaltink et al. (2001) already consider the case in which

9.8
pH S Equilibrium Calcite Dissolution
9.6
9.4

9.2+

8.8+

8.6 - - - - )
0 20 40 60 80 100
distance [m]

Fig. 8.2. Calcite dissolution example, equilibrium case
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the calcite dissolution reaction (the last in Table 8.2) is slow compared to all
other processes.

In that case, the reaction matrix for equilibrium reactions contains 4 rows
only. for S; and S, results:

1 00 1 0 00
1 -10 0 010
Si=10 11| 57|00 01 (8:39)
2 00 0-110
Using (8.20) and (8.21) and MATLAB®) it is easy to calculate U:
100 -11-10
U=(010 0 1 1 1 (8.40)
001 0 0 0 1

Now the total concentrations are different combinations of the species:

TotH HT —CO3*" + Hy,CO3 —OH~
TotC | = | HCO3™ + HyCO3 + CO3%~ + CaHCO3™
TotCa Ca*t + CaHCO5™

There are three initial and inflow concentrations required for the totals
TotH, TotC and TotCa. The values proposed by Saaltink et al. (2001) are
provided in Table 8.4. The kinetic transfer coefficient « varies over 4 orders
of magnitude. It is used in the kinetic rate law given by:

Thin =7 =a (1 —0) (8.41)

where o denotes the calcite saturation index.

Figure 8.3 illustrates the results for pH in dependence of the kinetic trans-
fer coefficient. For the cases CAL-1 to CAL-4, the kinetics rate is increased
by a factor of 10, taking the values given in Table 8.4. In the CAL-1 case, the

Table 8.4. Parameter for calcite dissolution simulation (CAL — see Saaltink
et al. 2001)

Variable Value Unit

Initial concentration TotH —7.978 log mol/1
Initial concentration TotC —3.018 log mol/1
Initial concentration TotCa —3.019 log mol/1
Inflow concentration TotH —5.496 log mol/1
Inflow concentration TotC —5.421 log mol/1
Inflow concentration TotCa —4.398 log mol/1

Kinetic transfer coefficient(s) 9.939 10~*7 mol/(1 a)
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—— MatLab, CAL-1
—m— MatLab, CAL-2
—v— MatLab, CAL-3
—w— MatLab, CAL-4
—— MatlLab, Cal-E

T T
0 20 40 60 80 100
distance [m]

Fig. 8.3. Calcite dissolution example; results for different calcite dissolution kinetics

process of calcite dissolution is too slow to have any effect on pH. There is a
front of low pH penetrating the system.

For enhanced kinetics the already mentioned rise of pH becomes more and
more pronounced. Due to increased calcite disolution, HT ions are increasingly
consumed by the dissolved carbon species. As a result, the pH is increased
where the inflowing water dominates. The equilibrium situation is approached
gradually with a front of high pH entering the fracture.

The MATLAB® simulation is again based on a combination of the
pdepe solver and speciation calculations based on the Newton method.
Holzbecher (2006) extended the presented approach for the simulation of the
horizontal and vertical concentration distribution within a fracture. The 2D
flow field is computed following the Hagen-Poiseuille analytical solution (see
Chap. 11). The 2D advection-dispersion equation with an anisotropic disper-
sion tensor is solved using COMSOL. The reaction term (8.41) is computed
at each node and each time level. In order to evaluate formula (8.41), the
concentrations of the species need to be known. They are obtained within a
MATLAB®) speciation M-file, which is called by COMSOL. The M-file looks
as follows:

function [q] = source(t,x,y,u,u2,u3)

U=[100-11-10;0100111;0

Se=[1001000;1-100010;0
2000 —110];

logK = [—14; —10.329; —1.106; —16.7];

Skin [0010010];

0 11;
0 —1;

)

0100
1100
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c = [3.1913e—6; 3.7928e—6; 3.9992e—5; 3.1329e—9; 9.9985e—11;
9.9985e— 11; 9.9985e—11];

pkin = 9.939%e—4;

toll = 1e—10; nmax = 100;

for i=1:max(size(u))
err = toll+l; nit = 0;
while (nit < nmax & err > toll * max(abs(c))),
nit = nit+1;
F = [Uxc—[u(i); u2(i); u3(i)]; SexloglO(c)—1logkK];

DF = [U; Sexdiag((1/2.3026)./c)]1;
dc = —DF\F;
cn = max(c+dc,0.005*abs(c));

err = max(abs(cn—c));
c = cn;
logc = logl0(c);
end
sp = exp(2.3026*(Skin*logc+8.48));
q(i) = pkin*(ones(size(sp))—sp);
if isnan(q(i)) q(i) = 0; end
end

Using the software combination of this book, it is thus possible to treat reactive
transport in several space dimensions.
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9

Ordinary Differential
Equations — Dynamical Systems

Ordinary differential equations (ode) are differential equations for functions
which depend on one independent variable only. These ‘odes’ are simpler than
partial differential equations which contain more than one independent vari-
able. In almost all models or simulations independent variables are either time
and/or space.

In environmental modeling, two situations can be distinguished in which
odes appear. The first situation deals with systems in which spatial differences
can be neglected and the temporal development is questioned. In chemistry,
the continuously stirred reactor is an often used concept for which an approach
is allowed with time ¢ as the only independent variable.

One such situation a was already described In Chap. 5.1, with degradation
or decay as the only relevant process for the transient change of some species
concentration. Below (Chap. 10.1) an example is presented dealing with the
determination of a reaction kinetic, using data from batch experiments. In
the field situation such ideal systems are seldom appropriate, but sometimes
the assumption of no space-dependence may be approximatively fulfilled. The
long-term accumulation of a substance in lakes can be modeled with the idea
of an ideally mixed reservoir, for example.

In a second different constellation time is neglected and a steady state is
sought for a system which can be described by a single space variable. Such
models are common for aquatic sediments, where parameters and variables
show characteristic changes normal to the water-sediment interface, usually
in vertical direction. Also in streams the one-dimensional approach can be
applied under certain circumstances: the space coordinate is taken along the
steady streamline following the river downstream. Surface water infiltrating
an aquifer has a pronounced direction along the flow path. Here the 1D for-
mulation is justified, because the transverse gradients almost vanish.

Aside of analytical solutions, two numerical solvers of MATLAB®) are
introduced in this chapter, one (ode15s) designed for the solution of initial
value problems, the other (bvp4c) for the solution of boundary value problems
(bvp). In initial value problems boundary conditions are formulated for one
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value of the independent variable only (typically: ¢ = 0), whereas in boundary
value problems there are conditions required at both ends of the interval of
the independent variable. A special MATLAB(®) related textbook on modeling
with odes is published by Shampine et al. (2003).

9.1 Streeter-Phelps Model for River Purification

A relatively simple model concerning decreased concentration of oxygen down-
stream from a polluting discharge and the recovery to background level was
proposed by Streeter and Phelps already in 1925. Although the application
is based on several assumptions, such type of modeling is used as part of
regulations for sewage facilities. Bacteria gradually degrade the organic mat-
ter contained in the discharge along the course of the river downstream. The
most relevant bacteria prefer aerobic conditions, i.e. they also rely on oxygen
(DO=dissolved oxygen). The change of these two components (organic matter
and DO) along the flow path is simulated in the following.

In the model, the concentration of the organic pollutant is measured as
biodegradable oxygen demand (BOD) as a proxy. Two parameters are con-
nected to the BOD behavior: the inflow rate fpop (kg/m®/s) and the degra-
dation rate k1 (1/s). Degradation concerns both BOD and DO, which is ex-
pressed in the system of two ordinary differential equations

Oc
ng = fBop — kicBop
(9.1)
Ocpo
o = k2 (¢po,sat — cpo) — kicBop

The oxygen concentration cpo is additionally determined by the reaera-
tion process. Reaeration brings oxygen back into the water, for which various
processes may be relevant. One of the most important is the contact with
atmospheric air. If the contact time is long enough, the equilibrium between
partial pressure of oxygen in air po, and cpo is established. According to
Henry’s Law?®® such equilibria are characterized by a component specific ratio
of dissolved concentration and partial pressure. As in the earth atmosphere
Po, is fixed with approximately 0.21 atm, cpo can reach a value of 12.9 mg/146,
which is the saturation limit for oxygen in water.

However, the saturation limit in a natural river may be somewhat smaller
as a result of other processes that influence the oxygen balance. Aquatic plants
produce oxygen, aquatic fauna consumes oxygen. Moreover, oxygen is needed
by bacteria which are busy degrading natural organic matter at the bottom of
the water body and in the sediment compartment. Thus, the oxygen saturation

45 William Henry, 1775-1836, English chemist.
46 Henry’s Law constant for the equilibrium between gaseous and aqueous phase
oxygen at 5°C is 61.2 mg/1/atm.
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limit ¢po,sqt depends on local circumstances and is not an universal (not even
a terrestrial) constant.

However, the reaeration process will make oxygen concentration converge
to the limit. Therefore in the most simple approach the difference from the
limit ¢po,sat — cpo determines the rate of DO-change aside from the kinetic
parameter k.

The system (9.1) of two differential equations is quite simple to solve.
The first equation contains only one dependent variable (cgop) and has an
exponential function as analytical solution. With that solution one can regard
the second equation as a differential equation for cpo. Together, both (9.1)
form a linear system. A method for the solution of general linear systems is
presented below (Chap. 18). The following lines are a special implementation
for the Streeter-Phelps system. The presented numerical approach can also be
extended to non-linear systems of equations, which may appear if there are
complex parameter dependencies.

T = 25; % maximum time [T]

ki = 0.3; % deoxygenation rate coefficient [1/T]
k2 = 0.4; % reaeration rate coefficient [1/T]
DOsat = 11; % DO saturation [M/L 3]

BODin = 7.33; % initial BOD [M/L 3]

DOin = 8.5; % initial DO concentrations [M/L 3]
fBOD = 1; % matural BOD inflow [M/(L 3%T)]

N = 60; % discretization of time
Y= execution ———————————————————— o

% BOD = y(1), DO = y(2)

options = odeset(‘AbsTol’,1e-20);

[t,y] = odelbs(@SP, [0 T], [BODin; DOin],
options,k1,k2,D0sat,fB0OD);

plot (t,y);

legend (‘BOD’,‘D0’);

xlabel (‘traveltime’); ylabel (‘concentration’);
grid;

function dydt = SP(t,y,k1,k2,D0sat,fB0OD)
dydt = zeros(2,1);

dydt (1) = fBOD-ki*y(1);

dydt (2) = k2#(DOsat-y(2))-kixy(1);
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The complete code can be found on the CD under the name ‘Streeter-
Phelps.m’

Input values for the example are adopted from Deaton & Winebrake (2000).
Deoxygenation and reaeration rate coefficients are given in 1/d. BOD inflow
is in mg/(l-d). All concentrations are in mg/l. The steady state is given by
cgop = feop/k1 =3.33mg/l and cpo = cpo,sat — fBOD/K2 = 8.5 mg/1.

Figure 9.1 shows the result for the increased input values with cgop =
7.5mg/l. BOD concentration decreases within a time period of 15 days. The
content of oxygen decreases within the first three days if degradation exceeds
reaeration. After that follows a second time period in which reaeration is
dominant leading to a gradual recovery of the DO level back to the natural
state.

The Streeter-Phelps model is based on several conditions. Diffusion and
dispersion processes are neglected. There is no distinction of concentrations
within the river cross-section. The system of differential equations (9.1) is
based on a Lagrangian®” description, which is a formulation for the con-
centration along the flow path. In the Lagrangian description the advection
terms disappear, whereas they remain in the alternative Eulerian descrip-
tion. The Eulerian approach, which was introduced in Chaps. 3 and 4, is
based on the conception of a fixed space and delivers the following set of
equations

9§concentration
L o—o—
E&%‘e’e’e —=—BOD|_|
—e—DO
;“E"E'—EI——EI—E—E-—E—E—EF
3
0 5 10 15 20 25

traveltime

Fig. 9.1. Model results for river purification

47 Joseph-Louis Lagrange, 1763-1813, French mathematician.
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Jdc .
gtor) =V -jlegop) + fBop — kicBop
9.2)
Jdc .
8[7;0 =V -j(cpo) + k2 (cpo,sat — ¢pO) — k1€BOD

Also with respect to biogeochemistry the Streeter-Phelps model has to
be extended to capture a more detailed behavior. Vanrolleghem et al. (2000)
present and discuss several generalizations of the simple Streeter-Phelps ap-
proach. In order to consider photosynthesis-respiration, the model contains
four more variables: ammonium, nitrate, phosphorus and algae. The mathe-
matical description takes into account that phosphorus and nitrate are pro-
duced by the degradation of organic matter. Algae growth on the other hand
consumes nutrients, nitrate-NOs and phosphorus-HPO,, and produce oxygen.

Even more complex models may consider anoxic and anaerobic degra-
dation as well as growth and respiration of different bacteria populations
(Vanrolleghem et al., 2000).

9.2 Details of Michaelis-Menten or Monod Kinetics

The Michaelis-Menten kinetics for the description of rate limited chemical
and biochemical degradation processes was introduced in Chap. 7. It can be
written as

Os _ . _ hus (9.3)

ot ko + s
with maximum rate k; and half-degradation concentration k3. s denotes the
concentration of a chemical species, here called the substrate. It will be demon-
strated that the kinetics (9.3) may result from a sequence of reactions, in which
aside from the reactant and the final reaction product an enzyme e and an
intermediate product ¢ are involved. The system of chemical reactions can be
noted as:

s+ez=i—p+te

The substrate s and enzyme e are connected with an intermediate species
i by an equilibrium reaction. Moreover, the intermediate ¢ is broken down
into the final reaction product p with the enzyme e as a by-product in an
irreversible reaction. According to the law of mass action, the set of differential
equations for the reaction system is:

0s = —kise + k3t Oe = —kise + k3t + kot
ot ot (9.4)
di dp '

= k18€ — kgi — in kzi

ot ot

with rate coefficients ki, ko and ks. Transport is neglected in this system.
It can be shown (Fife 1979, Morel & Hering 1993) that for long times the
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behavior of the 4-species system can simpler be described by the following
Michaelis-Menton kinetics:

0s _ klkg(io + 6’0)

ot ko + k3 + k1s (9.5)

Both alternative systems are implemented in MATLAB®) using the odel5s
solver. After the input section the M-file looks like this:

% substrate= y(1),enzyme2= y(2),intermediate= y(3),product= y(4)

options = odeset(‘AbsTol’,1e-20);
[t,y] = odelbs(@detail, [0 T], [sO; e0; i0; pO],options,k);
[tt,z] = odel5s(@lumped, [0 T],s0,options,e0,i0,k);

fymm—mmm graphical output -——----—----—--—————————-
plot(t,y(:,1:4)); hold on;
plot(tt,z(:,1),¢-=’,tt,s0-z(:,1)+p0, ‘--7);

legend (‘substrate’, ‘enzyme’, ‘intermediate’, ‘product’, ...
‘lumped substrate’, ‘lumped product’);

grid;

YA e e ettt functions -——-----=——-——emmmm— e
function dydt = detail(t,y,k)

r1 = k(D*y (D) *y(2);
r2 = k(3)*y(3);
3 = k(2)*y(3);

dydt = zeros(4,1);
dydt(1) = -rl + r2;

dydt(2) = -r1 + r2 + r3;
dydt(3) = rl - r2 - r3;
dydt(4) = r3;

function dzdt = lumped(t,z,e0,i0,k)
dzdt (1) = -k(1)*k(2)*(e0+i0)*z/ (k(2) +k (3)+k (1) *z) ;

The system of four species is solved in the y-vector, and the system is spec-
ified in the detail-function. The substrate development according to the
Michaelis-Menton kinetics is given in variable z and specified in the lumped-

function.

The complete code can be found on the CD under the name ‘Michaelis-
Menten.m’
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Fig. 9.2. Comparison of a detailed 4-species model and the approximation using
Michaelis-Menten kinetics

For the input parameters sg = 1, eg = 0.2, ig = 0.1 and py = 0.3 and the
rate coefficients k1 = 1, ko = 0.15, k3 = 0.4 the result is depicted in Fig. 9.2.
The strong initial change is obviously not captured by the Michaelis-Menten
approach. But for long time periods the common Michaelis-Menten model is
a good approximation, although several initial conditions and rate constants
are lumped into two parameters.

9.3 1D Steady State Analytical Solution

Steady-state or stationary means time-independent. In real systems steady
state is achieved when the relevant timescale for the problem is too long
compared to the internal time scale.

The transport equation for the steady state is simply obtained by omitting
the storage term on the left side, which includes the time-derivative dc/dt.
The right hand side of the 1D transport equation has thus been set to zero:

0 _ 0c Jdc
D —v,. +q=0 9.6
Jx  Ox ar 1 (96)

Equation (9.6) is an ordinary differential equation, as only space deriva-

tives in a single direction (x) appear. For constant parameter values, the



166 9 Ordinary Differential Equations — Dynamical Systems

solutions of such an ordinary differential equation can be written explicitly.
In the first step to obtain a solution we neglect sources and sinks, i.e. the last
term in (9.6) is omitted: ¢ = 0. If there is a Dirichlet condition at one side
and a Neumann condition at the other side of a finite system with length L

c(0) = cin Oc/dx(L) =0 (9.7)

the solution is obviously given by the constant function ¢ = ¢;,, because all
derivatives vanish. For constant parameters D and v and Dirichlet boundary
conditions on both sides

¢(0) = ¢in (L) =¢1 (9.8)

the solution is:

o 4 1—exp(v-x/D)
(@) = Cin + (1= Cin) o w/D)

or in dimensionless form:

c(€) = ¢in _ 1—exp(Pe- &) (9.10)
c1 — Cin 1 — exp(Pe)
with dimensionless space variable £, dimensionless Péclet number Pe = v-L/D
for dimensionless concentration on the left side of (9.10). Note that the Péclet
number is allowed to have a sign depending on velocity and flow direction.
Results for selected values of the Péclet number are shown in Fig. 9.3. In all
cases a steeper gradient can be observed near the outflow boundary; i.e. for
negative Pe on the left, and for positive Pe on the right boundary. The devi-
ation in the slope between inflow and outflow side increases with the absolute
value of Pe. The linear profile, which results for the pure diffusion situation, is
not plotted as it corresponds with the main diagonal of the coordinate system.
Clearly, the figure is symmetric with respect to the diagonal.

The figure is obtained by the following command sequence and some post-
processing in the figure editor on the graphs’ appearance (introduction of
markers and colors):

Pe = [-10,-1,-.1,0,.1,1,10];
x = [0:0.025:1];
figure; hold on;
for i = 1:size(Pe,2)
plot (x,(1-exp(Pe(i).*x))./(1-exp(Pe(i).*ones(1l,size(x,2)))));
end
legend (‘Pe=-10’, ‘Pe=-1’,‘Pe=-.17,‘Pe=0’, ‘Pe=.1", ‘Pe=1’, ‘Pe=107);
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Fig. 9.3. The steady-state solution of the advection-diffusion equation in dimen-
sionless form in dependence of the dimensionless Péclet number

The complete code can be found on the CD under the name ‘sttransanal.m’

For aquatic sediments the fluid velocity in the pores decreases with depth.
Near the bottom the velocity is smaller, because the fluid obeys an additional
moment against the sedimentation direction. The reason is the shrinking size
of the pore space due to compaction processes. Holzbecher (2002) showed that
in such a situation the velocity v, the sedimentation velocity (burial rate/area)
Upur and the final porosity in the compacted sediment 6, are connected by the
formula (see sidebar 9.1):

v = %vbm (9.11)

The depth-dependent porosity profile v(z) thus determines the local
velocity. Then the general solution for variable parameters

1—J(x)

c(x) = cin + (1 — cin) - J(D)

with J(x) = exp / g(é)) d¢
0

(9.12)
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has to be taken into account. Only for special cases of parameter dependen-
cies an analytical solution can be derived, as the integral may be difficult to
evaluate. For that reason numerical methods have to be applied to achieve ap-
proximate solutions. This can be done using MATLAB®). As an example, we
assume a porosity profile which changes exponentially between a high value
0y at the sediment-water interface and the final value 6;:

O(x) =01 + (6o — 1) exp (—ax) (9.13)

Solutions with MATLABQ®) for the variable parameter situation are given
below.

Sulphate Reduction

Dealing with sulphate reduction in aquatic sediments, Berner (1964) intro-
duces a simple model on organic matter. Organic carbon is utilized by bac-
teria in the biochemical degradation process. It is assumed that ‘the rate of
metabolism of the bacteria is directly proportional to the concentration of uti-
lizable organic matter’. Taking into account the sedimentation velocity w,
which is derived from the burial rate, he solves the differential equation for
the steady state of organic matter in the solid phase:

0
_wazcorg,s - )\corg,s =0 (914)

with degradation constant of organic matter A in the physical unit [time™!].
Equation (9.14) is a differential equation for the concentration of organic
matter in the solid phase corg,s. Such an equation was already treated in
Chap. 4 (4.6). The equation reflects that under steady state conditions there
is a balance between degradation of organic matter and sedimentation. It can
be derived from the general transport equation (3.19) by restriction to the
one-dimensional steady state situation, when diffusion due to bioturbation,
additional source- and sink-terms and inter-phase exchanges are assumed to
be irrelevant. Furthermore, both remaining relevant terms are divided by bulk
density pp, which they have in common. For the spatial coordinate we use z
here in order to distinguish the vertical direction.

Sidebar 9.1: Velocity Profiles in Steady Compacted
Aquatic Sediments

Sedimentary deposits of all kinds near the surface often show a characteristic
decrease of the pore space in vertical direction. The process that causes the
decrease is compaction. Due to rearrangement of sediment particles and to
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compression of particles, i.e. the porosity, the volumetric share of pore space,
decreases with distance from the interface.

Here we take the Lagrangian approach, where the origin of the coordi-
nate system is fixed at the sediment interface and is thus moving in space.
In an Eulerian system, which is fixed in space, no steady state can be ex-
pected for compacting sediments. A constant burial velocity vy, and a con-
stant porosity ¢¢ at the interface are assumed, a necessary prerequisite for
a steady-state in the Lagrangian system.

The mass conservation equation for the fluid filling the pore space is
given by the continuity equation

0
P (Bpv) =0

(compare Chaps. 3 and 4), which in case of constant fluid density p reduces to

0
Ov) =0
5z (V)
The solution obviously is
v =C_

with integration constant C. The constant C' can be evaluated in the deep
sediments:
C= 91’U1

with v, denoting the fluid velocity in the deep sediments, where porosity
does not change any more. v; can be expressed differently by taking into
account that the burial velocity at all locations is given by

Upur = (1 = 0()) vsea(x) + 0(2)v(z)

where vy, denotes the burial velocity and vs.q the velocity of the sediment
(solid) phase. The latter changes with depth. In the deep sediments, out of
reach for compaction processes, holds

v(00) = Vgeq(00) = v1.

It follows:

V1 = VUbury
and thus:

C= elvbur
The final result is g

v = alvbur

(see also: Holzbecher 2002).
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Figure: pore velocity u, porous media velocity w, in relation to interface velocity

v; in case of compaction; velocity ratios w/v, u/v are measured on the left axis,
porosity on the right axis (modified from: Holzbecher 2002)

Concerning sulphate, Berner (1964) takes into account the processes of
diffusion, fluid flow and degradation. The resulting differential equation for
the 1-dimensional steady state is:

0? 0
D@zQ s = Uy €5 = ASCorg,s = 0 (9.15)
where cg denotes sulphate concentration. D is the relevant diffusion coeffi-
cient, u denotes fluid flow and Ag the kinetic degradation coefficient. Equation
(9.15) is a differential equation for sulphate concentration cg. If there is no
compaction and no connection to the ambient groundwater regime, one can set
v = u = w. The general solution of the given system for both components is:

A
Corg,s = Corg,s0 €XP (_ ’UZ

(9.16)
v 2Cora.s0 A
cs = Co+ Cyexp (Dz>— 957 exp (—Uz>

v2 4+ DA

with integration constants Cy and C7. The particular solution given by
Berner (1964) results for C; = 0:
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A
Corg,s = Corg,s0 €XpP | — v z
(9.17)

A
cs = (¢s0 — Csoo) €XP —Uz + €500

where the subscript ‘0’ denotes the concentration at the sediment-water in-
terface, while the subscript ‘oo’ represents the concentration in the deep sedi-
ment. Berner (1964) presented the solution (9.17) to describe sulphate reduc-
tion in maritime sediments and later used it to describe a part of the nitrogen
cycle (Berner 1971). If the nitrogen cycle is concerned, c¢g in the equations
given above has to be replaced by the concentration of total ammonia.

As soon as the sulphate disappears, the solution of (9.16) produces negative
concentrations. Boudreau & Westrich (1984) suggest the use of the Monod
or Michaelis-Menton kinetics (see Chap. 7 and Chap. 9 above) to describe
sulphate reduction and organic carbon content. In the here used notation one
obtains:

0 kcorg,scs
— ’LUaZCorg,s - Kg+cg = (9 18)
aDacs—uacs—fkcorg’SCS =0 .
0z 0z 0z Kgs+cs

where k denotes the reaction parameter, which is a characteristic for the
‘speed’ of the reaction. Kg is a ‘half reaction concentration’, which means
that for given c,r4 s the reaction rate takes half of its maximum value. f is a
parameter relating the mass of organic matter to the sulphate mass. In f the
stoichiometric relation in the sulphate reduction process has to be taken into
account. The bulk density and porosity also play a role if organic matter in
the solid phase reacts with sulphate in the fluid phase.

The system (9.18) of two ordinary differential equations has no analytical
solution. Results can only be obtained by numerical methods. The system can
be treated using the MATLAB®) bvp4c function for the solution of boundary
value problems (bvp). The function is designed for solving problems which
can be formulated in the following notation (see MATLAB®) help on ‘bvp’):

y/ = f(xh%p)
0 = be(y(a), y(b),p)

where the first line characterizes the differential equation telling that the first
derivative ¢’ of the unknown variable y is a function of y itself, of the indepen-
dent variables x and of a parameter set p. As always in MATLAB®), y as well
as p can be vectors. The second line characterizes the boundary conditions
telling that these are specified at the boundaries * = a and = = b.

The first differential equation in the system (9.18) is of first order and can
easily be brought into the required form:

0 1 kcorg,sCs

org,s — T 9.19
3zc 9 w Kg +cg ( )
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The second equation has a second derivative and can be the brought into
the necessary form by a simple trick. Another variable is introduced: cg’, which
is the first derivative of the unknown function cg. The second-order differential
equation can thus be written as a system of two first order systems:

0
0z
0 r_ / fkcm"g,scs
azcs D <“azcs + Kgs +cs

Note that for the entire formulation of the problem there are three un-
known functions: ¢; org, s and c. The vector y in the MATLAB®) notation
has three components, which have to be taken into account in the formulation
of the system of differential equations and of the boundary conditions. The
following m-code excerpt shows how the MATLAB®) routine for boundary
value problems can be utilized to solve the system (9.19) and (9.20).

[ Cs/
(9.20)

solinit = bvpinit (linspace(0,L,N), [cin; 0]);
sol = bvp4c(@bw,@bwbc,solinit,odeset,D,v,k,KS,f,cin);

plotyy (sol.x,sol.y(1,:),sol.x,s0l.y(2,:));
legend (‘Corg’,‘S04’); grid;

function dydx = bw(x,y,D,v,k,KS,f,cin)

monod = k*xy(2)/(KS+y(2));

dydx = zeros (3,1);

dydx (1) = -monodxy(1)/v;

dydx(2) = y(3);

dydx(3) = (v*y(3)+f*monod*y(1))/D;

function res = bwbc (ya,yb,D,v,k,KS,f,cin)
res = [ya(1:2)-cin; yb(3)];

4

The complete code can be found on the CD under the name ‘boudreau
westrich.m’.

The initial commands, in which the parametersL, v, D, k, KS, f, cin
and N are specified, are omitted in the listing above. Before the call of the
solution routine in the second line, an initial guess of the unknown functions
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is required. This is done by the bvpinit command. The first formal parameter
in the command is the vector of z-values, for which the variable-values are to
be computed. The second formal parameter consists of three values (cin is a
two-component column vector). Each of these three is a guess of a constant
valued function.

In the bvpéc call there is a list of formal parameters. First in the list are
the function calls: (1) the function in which the system of differential equations
is specified, (2) the function in which the boundary conditions are specified.
solinit is the initial guess obtained from the previous command. odeset
yields the standard options for the solution routine. What follows as formal
parameters is the set of parameters for the described example.

In the bw function the differential equations are specified, following (9.19)
and (9.20). y denotes the vector of unknown variables. Thus y(1) denotes
the concentration of organic matter, y(2) the sulphate concentration and
y(3) the derivative of sulphate concentration. The Monod-term for sulphate
is calculated under monod.

The bwbc function specifies the boundary conditions. At the left side, i.e.
at the lowest z-value (a) given above, the condition is computed using the ya
variable. The variable yb is responsible for the condition at the highest z-value
(b) . The condition is formulated in a way making the residual res vanish.
Thus the first two variables at boundary x = a take the values given in the
cin vector, while the third variable has a vanishing value at boundary x = b.
The physical meaning of the latter condition is that there is no diffusive flux
because of a vanishing concentration gradient.

As output, concentrations of organic carbon and sulphate are plotted
in one figure with two y-axes, one on the left and one on the right side.
MATLAB®) provides the plotyy command for that task.

The problem of negative concentrations, which was recognized in Berner’s
approach according to formulae (9.14) and (9.15), is overcome in the presented
model. In fact, the sink term in the sulphate equation is responsible for that
improvement. Some other approaches concerning the sink term of organic
matter can be found in the literature. In their model on oxygen penetration
depths and fluxes, Cai & Sayles (1996) use a simpler linear degradation term
for corg and the corresponding analytical solution of exponential decline. The
argument for such a simplified approach is that degradation of organic matter
occurs anyway. If the aerobic pathway with oxygen as an elector donor is not
sufficient, other anaerobic pathways for decomposition usually take over. The
following sub-chapter shows approaches how such a redox sequence can be
treated in detail.

9.4 Redox Sequences

Redox conditions play an important role in environmental systems, as they are
a determining factor for population growth or decline of bacteria and microbes.
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Depending on the local redox state, conditions may favour or disfavour the
existence of certain microbial cultures which are able to degrade hazardous
or otherwise harmful organic substances.

Redox zones are usually observed in aquatic sediments at the bottom of
surface water bodies, in aquifers with infiltrating river water, and downstream
from contaminated sites or landfills.

There are six major chemical pathways being responsible for the degra-
dation of organic matter in environmental systems. These are oxic respira-
tion, denitrification, manganese oxide and iron (hydr)oxide reduction, sul-
phate reduction and methanogenesis. The transfer of electrons plays a crucial
role in all six redox reactions. In each reaction one specific substance acts
as electron donor: oxygen in oxic respiration for example. All half-reactions,
including the donors, are listed in Table 9.1. Each half reaction is completed
by another half-reaction in which an electron acceptor consumes the elec-
trons. If degradation processes are concerned, organic matter is the electron
acceptor. As a matter of fact, microorganisms do the work in most redox
reactions. A detailed approach including bacteria populations requires some
knowledge of their consumption and reproduction behavior, which is seldom
available.

It is an important characteristic of redox reactions that most environ-
ments show a distinctive preference for a special redox reaction, depend-
ing on the biogeochemical conditions. The numbering in Table 9.1 provides
the preference priority. As long as oxygen is abundantly available in a sys-
tem, all other redox reactions play a minor role. If there is no or only a
small amount of oxygen present, nitrate takes the leading role. If there is
also no nitrate, manganese and iron oxide reduction become important and
so forth.

The example in Fig. 9.4 results from measurement and modeling studies
in aquatic sediments, published by van Cappellen & Wang (1995, 1996). The
relevant redox parameters change within the first centimeters below the sed-
iment water interface (‘depth’ in the figure). The figure depicts the share of
specific redox processes on the total reaction dynamics as a function of depth
below the water sediment interface. In the upper half centimeter, in the aero-
bic zone where oxygen is present, aerobic respiration dominates over all other
processes. Below follows a zone where the share of reactions consuming oxygen
becomes less important, increasingly admitting all other redox interactions to
take place. Denitrification is the first competing process but is relevant only
in a narrow zone of a few millimeters length and always remaining with a
share of less than 30%. Iron and manganese reduction become relevant at the
same depth, but, due to the higher abundance of iron (hydr)oxides, the former
redox process remains more relevant within the rest of the depth interval. Sul-
phate reduction is the only process that gains relevance with increasing depth.
Obviously, in this set-up sulphur is available at such high concentrations that
methane formation is suppressed everywhere.
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Fig. 9.4. Redox-sequence in aquatic sediments, see van Cappellen & Wang (1995,
1996); recalculated by the author

In other environmental compartments the extensions of redox zones may
have a different length scale than in the given example. Holzbecher et al. (2001)
present a study on river water infiltrating an aquifer where redox zones are in
the range of 10-100m. Further studies on bank filtration were published by
Doussan et al. (1997). A similar range is often met downstream of contami-
nated sites and landfills (Keating & Bahr 1998, Lu et al. 1999).

The approach, presented above for sulphate reduction as one of the dom-
inant redox processes, can be extended to treat such a sequence of redox
reactions. This is achieved by the introduction of so-called inhibition terms.
If the abundance of species with concentration c¢ inhibits some other kinetics,
the formula for the latter should contain the inhibition factor k_’f_c with a suit-
able value for the inhibition parameter k. Clearly, the factor is small for high
values of ¢, and approaches 1 for low values.

The idea is demonstrated on a rudimentary redox model containing the
first three redox reactions of Table 9.1.

Table 9.1. Primary redox (half) reactions, according to Hunter et al. (1998)

1. Oxic respiration O3 +4HT + 4~ — 2H,0

2. Denitrification NO; +6H" + 5e~ — 0.5N> + 3H20
3. Manganese oxide reduction MnOs + 4H' + 2¢~ — Mn?* 4 2H,0
4. Iron (hydr)oxide reduction Fe(OH), 4+ 3H" + e~ — Fe’ + 3H,0
5. Sufate reduction SOif +9Ht + 8¢~ — HS™ + 4H,0
6. Methanogenesis CO, + 8H' + 8¢~ — CH4 + 2H-,0
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4\

The command listing for the file, stored on CD under ‘redozsteady.m’ is
as follows:

L = 100; % length [m]

v =1; % velocity [m/s]

D = 0.02; % diffusivity [m*m/s]

lambda = 0.01; % organic carbon degradation parameter [1/m]

k1 = [0.1; 1; 0.2]; % 1. Monod parameter [m/s]

k2 = [0.035; 1]; % 2. Monod parameter [kg/m*m*m]

k3 = [3.5e-3; 1]; % inhibition coefficient [kg/m*m*m]

corg = 1; % organic carbon concentration at interface
cin = [4; 3; 0.001];% interface concentrations [kg/m*m*m]

N = 100; % number of nodes

Y= execution——————————————————————————————

x = linspace(0,L,N);

solinit = bvpinit (x, [cin; zeros(3,1)]);

sol = bvp4c(@redox,@bcs,solinit,odeset,D,v,lambda,
k1,k2,k3,corg,cin);

YA e graphical output ---------—--———-——-———-
plot (x,corg*exp(-lambda*x),sol.x,sol.y(1:3,:));
legend (‘C {org}’,‘0 27,°NO 2’,‘Mn’); grid;

function dydx = redox(x,y,D,v,lambda,kl,k2,k3,corg,cin)

c0 = corg+exp(-lambda*x) ;

monod = ki.*y(1:2)./(k2+y(1:2));
monod (3) = k1(3);

inhib = k3./(k3+y(1:2));

dydx = zeros (6,1);

dydx(1) = y(4);

dydx(4) = (vxy(4)+cO*monod(1))/D;

dydx(2) = y(5);
dydx(5) = (vxy(5)+cO*monod(2)*inhib(1))/D;
dydx(3) = y(6);

dydx(6) = (vxy(6)-cO*monod(3)*inhib(1)*inhib(2))/D;

function res = bes (ya,yb,D,v,lambda,kl,k2,k3,corg,cin)
res = [ya(1:3)-cin; yb(4:6)-zeros(3,1)];
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As the main part of the M-file and the function calls coincide with the
previous example, the explanation of the code is restricted to the function
section. Note that in this example there are six unknown functions, which are
the concentrations of the three redox species that are included in the model
with their derivatives. All functions are included in the vector y. y(1) is the
oxygen concentration, y(4) its derivative, y(2) is the nitrate concentration,
y(5) its derivative, y(3) is the manganese concentration and y(5) its deriva-
tive.

In the variable cO the analytical solution for organic matter is imple-
mented. The lambda value used here coincides with the ratio A/w of for-
mula (9.14). In the monod vector three Monod terms are calculated and in
the inhib vector the two inhibition factors for the two redox processes with
higher preference.

The derivative specifications for the first three components of y are the
defining formulae for the derivatives of the concentrations. The other three
specifications represent the differential equations in the following form:

0 co,' = 1 u. co, +c¢ ko, o,
9292 D\ 9.7 " Ko, 4 co,
0 , 1 3] , ko, kno,cNoO,
c = U, C +c -
0z NO2 D < 0z NOz org,s k02 + co, KNOQ +CcNO,
9 entn’ = 1 (u 9 enn! — ¢ ko, kno, knincrno, )
oz " D oz T orgs ko2 + co, kNOg + cNO, Ky + CMnO,

(9.21)

The degradation of oxygen is given by the product of organic matter con-
centration with the Monod term: cO*monod(1). The coefficients ko,, kno,
and kpr,, are stored in the k1 vector, the parameters Ko,,Kno, and Ky, in
the k2 vector and the inhibition parameters ko, and kyo, in the k3 vector.
The degradation term for nitrate in addition to the Monod term includes the
inhibition term for oxygen inhib(1). The corresponding term for manganese
has another additional term: inhib(2), the inhibition term for nitrate. Note
that the sign of the reaction term in the equation for manganese is opposite to
that of the other two substances, as free manganese ions are produced in the
redox reaction, while oxygen and nitrate are consumed. That is the reason
why the Monod-term for the manganese redox reaction is different. Equa-
tions (9.21) also contain the concentration of the reaction product MnO,. In
order to keep the number of parameters small, it is assumed that the man-
ganese pool in the porous matrix remains at a constant high level for this
model. For carno, >> Ky the Monod term can be approximated by kazy,.

Biochemical redox reactions, which are strongly coupled with the degra-
dation of organic matter, are taken into account by the formulation:

qi = _Am’gcorgfi (922)



178 9 Ordinary Differential Equations — Dynamical Systems

8 T T T T
| | | |
concentration } ! )
| |
Yl----—======= 4} ——————————— %} ........................ Corg ————————————
| |
) I A O |__________|
| |
| P — NO,
5 [ s Foomecosooo] I -~~~ oo
! ! Mn
| |
] S— e e Y A
| | | |
| | | |
| | | |
3 ! EEESEN .
| | A |
| | L |
) E— M mmmmm e L W S VAR—
| | Y |
| | K |
1 ""'--T-T..T.::_::_Tf‘l 77777777777 ‘l 77777777777 1‘\7 7777777777 L’ 77777777777
----- { S CIT I T [ I
‘ o por e IS !
| | I N  LLL LTI TP TN
1 1 I e ‘
0 | | - ;
| | | |
! ! ! !
0 20 40 60 80 100

distance

Fig. 9.5. Result of MATLAB® example for the redox sequence example

with concentration of organic matter ¢, and degradation constant A,.q. The
factor f; is a measure for the relative share of the i" redox process on the total
degradation of organic matter. Following van Capellen and Wang (1995), the
factor f; takes a form that is similar to Monod kinetics:

i—1
=-S5 © (9.23)
J=1 Ci Clim,s

where a limit concentration ¢, ; appears, which is specific to components.
The term in the brackets ensures that the sum of all contributions does not
exceed 1. All six major redox processes are thus implemented in the model:
organic respiration, denitrification, manganese-, iron- and sulphate reduc-
tion and methanogenesis. More details of the model are given by Holzbecher
et al. (2001). The graphical outcome of the M-file is depicted in Fig. 9.5.
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Parameter Estimation

10.1 Introduction

In most application fields one frequently finds models that are applied with a
different goal than described in the previous chapters. The purpose of mod-
eling was defined as prediction in a general sense. Models show how an envi-
ronmental system develops, starting from an initial state, restricted by some
boundary conditions under the assumption that some parameters are well
defined and well known. That usual procedure of simulation was demon-
strated above.

Mostly, before being able to start any prediction run, parameters turn out
to be the problem: values for the parameters need to be known. There are vari-
ous ways to obtain parameter values. They can be taken from literature. There
are well known constants: the acceleration due to gravity (= 9.807m?/s), for
example, can be treated as a constant in environmental problems. Values can
be taken from tables: thermodynamic data are found in steam tables, for ex-
ample; and reaction constants can be found in concerned data-bases. Some
parameter values are reported in text-books, reports and in journal publica-
tions. Under certain conditions, parameter values can be obtained from exper-
iments, i.e. from a controlled environment which is similar to field situation.
Some parameters can be measured on-site directly, like spatial extensions,
time, temperature etc.

After utilizing all these possibilities, there may be still some parameters
left. These need to be determined by parameter estimation. Parameter esti-
mation can be performed using the model in question (then we speak of cali-
bration) or for an especially designed experimental set-up. When observations
of one or more variables are available, the model can be run with different
parameter values in order to check, which parameter value fits best to the
observations. Following such a procedure, the original role of parameters and
variables is exchanged: now the parameters are unknown, while variables are
known. For that reason parameter fitting is also named inverse modeling.
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Table 10.1. Example data-set from microcystin batch experiment

time (h) 025 1 2 4 8
concentration (ug/l)  0.9405  0.5537  0.3994 0.1509  0.0592

Ezample 10.1. Microcystins (MCYST) are a group of toxic substances pro-
duced by cyanobacteria (‘blue-green-algae’). In case of cyanobacterial blooms
microcystin concentrations in surface waters may reach values far above the
value proposed as provisional guideline for drinking water by the WHO of
1ug/1 for MCYST-LR. When a well is installed in the vicinity of a river or
lake shore, part of the pumped water originates from surface water, which is
called bank filtrate. When bank filtrate is utilized for drinking water, it has
to be ensured that concentrations in pumped water are below the threshold.
For that reason, it is important to understand the sorption and degradation
processes during the sub-surface passage of the bank filtrate water. Batch ex-
periments using surface water and characteristic porous materials are a first
approach for such an examination.

In a batch experiment microcystin, dissolved in water, was brought into
contact with porous sediments. The original concentration was 1 ug/1. In aque-
ous sediments microcystin is subject to sorption and biodegradation. In order
to obtain retardation factors and degradation rates batch experiments can be
run. The decrease of the concentration was measured at several time instants
after the first contact. Table 10.1 shows example concentrations for five in-
stants of time (here demonstrated for another data-set — Griitzmacher 2006):

In MATLAB®) the values are entered as two line vectors:

tfit
cfit

[0.25 1 2 4 8];
[0.7716 0.5791 0.4002 0.1860 0.1019];

10.2 Polynomial Curve Fitting

In order to outline the basic concepts of inverse modeling, we first focus on the
simple situation, in which the dependent variable obeys an analytical formula
with respect to a variable time ¢. Imagine the dependent variable being the
concentration of a pollutant. The reader may think of ¢ as time. For a first
approach it is even assumed that this formula is a polynomial. The coefficients
of the polynomial, which are connected to the parameters, are unknown and
have to be determined by the inverse modeling procedure.

The best fit is that polynomial (represented by a set of coefficients that are
the parameters), for which the deviation between given values and modelled
values is minimal. For such polynomial curve fitting MATLAB® has the
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polyfit command. Use the following command to find the best fit for the
data-set given above under the assumption that the formula is quadratic:

p = polyfit (tfit,cfit,2)

p =
0.0181 -0.2326 0.8099
The last formal parameter in the brackets on the right side specifies the
degree of the polynomial, i.e. the exponent of the highest power term. It
needs to be above 1 and lower or equal to the number of given measurements.
MATLABQ®) returns the coefficients of the polynomial in an array, here p. The
answer shown above corresponds to the polynomial:

c(t) = 0.0181#% — 0.2326t + 0.8099 (10.1)

Polynomials are evaluated by the polyval command. Use the following
command in order to compute the values of the polynomial, given by (10.1),
and just obtained by parameter fitting:

c = polyval(p,[0:.2:8])

c =
Columns 1 through 7

0.8099 0.7641 0.7198 0.6769 0.6354 0.5954 0.5568
Columns 8 through 14

0.5197 0.4840 0.4498 0.4170 0.3857 0.3557 0.3273
Columns 15  through 21

0.3003 0.2747 0.2506 0.2279 0.2067 0.1869 0.1685
Columns 22  through 28

0.1516 0.1362 0.1222 0.1096 0.0985 0.0888 0.0806
Columns 29  through 35

0.0738 0.0684 0.0645 0.0621 0.0611 0.0615 0.0634
Columns 36  through 41

0.0667 0.0715 0.0777 0.0853 0.0944 0.1050

The first formal parameter of polyval is a line vector and is interpreted as
the polynomial whose coefficients are the elements of the vector. The second
formal parameter is the line vector of instants at which the polynomial is
evaluated. The output is a corresponding vector with values of the polynomial.
The plot command yields a visual comparison of the original values and the
fitted curve:

plot(tfit,cfit, ‘o’,[0:.2:8],c,‘-");

The graphics is depicted in Fig. 10.1. Note that the fitting procedure is
based on a quantitative measure for the quality of an approximation. Such
different evaluations are based on the residual vector, showing the difference
between given and modelled values for all measurements:

¢ = polyval(p,tfit);
resc = cfit-c



184 10 Parameter Estimation

0.9 T T T T T T T

Fig. 10.1. Quadratic curve fitting for example batch experiment

resc =
0.0187 -0.0163 -0.0168 0.0175 -0.0031

There is no unique measure for the quality of a fit. One can use for ex-
ample the mean absolute error 3 Y |c(tsit) — cgit|, the mean quadratic error

1{,\/2 (c(tie) — Cfit)Q, the maximal absolute error max {|c(tit) — csit|} or

the maximal quadratic error max {(c(tﬁt) — cﬁt)Q}. There are even other

measures possible.
It is most common to check the quadratic error. The mean quadratic error

for the given approximation is obtained by the command:
sqrt (sum (resc.*resc))/5

ans =
0.0070

One may also use the square root of the sum of the squares of the residuals

normc = sqrt(sum(resc.*resc))

normc =
0.0348

This is the so called norm of the residuals which can also be obtained by
the commands:
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normc = norm(resc)

or

normc = norm(resc,2)

For more details concerning the norm command, which can be used for
alternative quality measurements, see the MATLAB® help. For every poly-
nomial other than the best fit, the deviation between measured and calculated
values, quantified in the residual norm, will be higher. Lets make one check:

¢ = polyval([0.0015 -0.1078 2.0315],tfit);
normc = norm (cfit-c)

normc =
2.9623

The residual norm for the chosen quadratic polynomial is far above the resid-
ual of the best fit.

Alternatively, curve fitting can be performed from the MATLAB®) figure
editor. Use the plot command first in order to perform the fitting:

plot (tfit,cfit,‘0’)

Then click the ‘Basic Fitting’ submenu in the ‘Tools’ menu of the figure
editor to obtain the box depicted in Fig. 10.2.

In the ‘Basic Fitting’ box various options are available: polynomial fitting
for polynomials of degrees 1 to 10 and spline interpolation. Residuals can be
shown as bar plots, line plots or scatter plots, either in a subplot or a separate
figure. Equations can be shown in the curve plot, residual norms in the residual
plot. The user may select the number of significant digits of the fitting and
may center and scale z-axis data. If more than one data-set is depicted in the
figure, fitting can be performed for all data-sets separately. Moreover, there
is the option to save the results of the fitting procedure to the workspace.

Using the options shown in Fig. 10.2 for the example data-set, one obtains
the plot, given in Fig. 10.3.

The upper subplot of Fig. 10.3 shows the linear, quadratic and cubic best
fits together with the original data. The lower subplot depicts histograms of
the residual vectors for all three fits and lists the norm of the residuals. The

coeflicients of the polynomials are obtained by using the button in the
‘Basic Fitting” box.
10.3 Exponential Curve Fitting

In environmental systems exponential fits are often more appropriate than
polynomial fits. See the next sub-chapter for an argument, why exponential
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Fig. 10.2. The ‘Basic Fitting’ command box

curves can be expected as outcome of batch experiments. Generally, there
may be some reason that the solution has the exponential form:

c(t) = coexp(—At) (10.2)

There are two parameters: the initial concentration ¢y and the decay con-
stant A. Note that the fitting procedure can be performed for any dependent
variable ¢ and the independent variable ¢; both symbols do not necessarily
represent concentration and time in this chapter.

As the polyfit command works with polynomials, one may use the idea
that the exponential curve is a linear curve in logarithmic representation. Thus

the polyfit command can be used for the logarithm of the concentration
vector:

p = polyfit(tfit,log(cfit),1)

p =
-0.2619 -0.3387
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Fig. 10.3. Results for the example fitting problem, using the ‘Basic Fitting’ tool
under MATLAB®

The best fit for the logarithm is thus given by:
log(c) = —0.2619¢ — 0.3387 (10.3)

or:

c(t) = exp(—0.3387) exp (—0.2619¢)

(10.4)
= 0.7127 exp (—0.2619¢)

Comparison with formula (10.2) shows that the second line of (10.4) is the
aimed formulation with ¢y = 0.8236 and A = 0.3487. In Fig. 10.4 the result is
again plotted together with the original data:

c = exp(polyval(p,[0:.2:8]));
plot (tfit,cfit, ‘o’,[0:.2:8],c,‘-);

Lets check again the quadratic difference between observed and modelled data:

¢ = polyval(p,tfit);
normc = norm (cfit-c)

normc =
3.6427
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Fig. 10.4. Exponential fit for example batch experiment

and check:

c = exp(-tfit);
normc = norm (cfit-c)

normc =
0.3915

Obviously the chosen function

c(t) = exp(—1)

(10.5)

is a much better approximation for the example data set, showing that the
coefficients obtained before for the exponential fit do not represent the best
fit. The explanation for that apparent contradiction is nearby: the linear curve
is found under the condition that the sum of squares of the quadratic loga-
rithmic deviations )" (log(cfit) — log(c(tfit)))2 is minimized and not the sum
of the quadratic deviations Y (cyi — C(tfit))Q. In the next sub-chapter, we
present a better procedure for the determination of the optimal exponential

curve.
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10.4 Parameter Estimation with Derivatives

MATLAB®) offers the possibility to find the best exponential fit by another
procedure, which is demonstrated in the following. The method can be ex-
tended for parameter fitting for arbitrary curves, i.e. it is not restricted to
polynomial or exponential curve fitting.

Remember that it is the goal to minimize the norm of the residual vector:

Iresll = /3" (eltgie) — cgin)® (10.6)

The square root operation within the norm formula does not change the
result of the task and can be omitted. Thus, the task can also be formulated
without the square-root: the objective is to minimize the term e understood
as a function of the parameter A:

e(A) = Z (c(trits A) — Cfit)z (10.7)

Note that ¢ also is conceived as a function of the parameter \. A necessary
condition for the minimum value of A is that the derivative of ewith respect
to A becomes zero:

dc

Oe
ox = 22 (€ltrie, X) = crie) g (b, ) =0 (10.8)

Obviously the leading 2 of condition (10.8) can be omitted. The last factor
can be obtained from (10.2),

g/c\ = —tcpexp(—At) = —t-c (10.9)
leading to the following formulation of the condition:
> (eltpin, N) = cpi)eltyi, Nt g =0 (10.10)
Using the vector notation, the last formula can also be written as:
(et git, \) = cgir) (c(bgie, \) o tgi) " =0 (10.11)

One can define the right hand side as a function, and the conditions (10.10)
or (10.11) are fulfilled for the zero of that function. In order to find the zero
of a function, MATLAB®) provides the fzero command.

fzero starts a MATLAB® algorithm for the computation of the zeros of
a function f(z), i.e. to find a value zp with f(xo) = 0. If fzero is called, at
least two parameters have to be given by the user. One concerns the function
f, the other is a starting value for xg:

fzero(@f,x0);

The function f can be any function which MATLAB® knows. For exam-
ple, one obtains the well-known zero of the cosine-function by the command:
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fzero(@cos,0.11)

ans =
1.5708

As expected, the zero is m/2. The input of another start value may yield an-
other zero of the cosinus-function, as demonstrated by the following command:

fzero(@cos,4.11)

ans =
4.7124

Of course, it is possible to determine the zeros of user specified functions. In
the following, the example name myfun is used as name for a user-specified
function. The function with name myfun needs to be specified in an M-file.

Here we write the function f together with the fzero command in the same
M-file:

function parestO
x0 = fzero(@myfun,1.)

function f = myfun(x);
f = sin(x) + cos(x)*cos(x);

The command sequence is stored in a function M-file. It is not possible to
use the same sequence in a script-file. When running, the M-file produces the
result of £y = —0.6662 in the MATLAB® command window, which is a zero
of the function sin(z) + cos?(z).

Parameter estimation is performed in the same manner. The function f
for the exponential fit needs to be calculated according to formula (10.11):

function par est

% parameter estimation with derivatives
% for exponential fit for lambda
lambda = fzero(@myfun,0.05)

function f = myfun(lambda);

tfit = [.256 1 2 4 8];

cfit = [0.7716 0.5791 0.4002 0.1860 0.1019];

c = exp(-lambdax*tfit); % equation for c

f = (cfit-c)*(c.xtfit)’; % specify function f to vanish

In the fourth line of the M-file, the fzero-function is called for the function
myfun and the starting value of 0.11 for A. In the first line of the function,
the given values are specified as two line vectors: tfit for the values of the
independent variable and cfit for the values of the dependent variable. These
two vectors may represent measured concentration values for a certain sub-
stance at different time instants. The next line computes the values of the
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function at the specified time instants for a given value of A. The last line
corresponds to formula (10.10). The term c(t i)t ¢ir is evaluated element-wise
and then transformed into a column vector (using the ’-operator!). The usual
vector-multiplication of the line vector ¢(¢s;) — cpix with the column vector
(c(tgie)t fit)T yields the summation required according to the formula.
Running the M-file delivers the result: A = 0.3329. The following M-file
‘par est.m’ is slightly extended to perform further post-processing tasks:

function par est

% parameter estimation

% for exponential fit for lambda
global tfit cfit cO

% specify fitting data

tfit = [0.25 1 2 4 8];

cfit = [0.7716 0.5791 0.4002 0.1860 0.1019];
cO = 0.8; lambdaO = 0.5;

lambda = fzero(@myfun,lambdaO) ;

normc = norm(cfit-cO*exp(-lambda*tfit));

display ([‘Best fit for lambda = ’ num2str(lambda)]);
display ([‘Norm of residuals =’ num2str(normc)]);

tmax = tfit(size(tfit,2));

t = [0:0.01*tmax:tmax];

figure; plot (tfit,cfit, ‘or’,t,cO*exp(-lambda*t),‘-’);
legend (‘given’, ‘modelled’);

text (0.5%tmax,c0%0.7, [‘\lambda: ’ num2str(lambda)l);
text (0.5%tmax,c0*0.8, [ ‘norm of residuals: > num2str(norme)]);

function f = myfun(lambda);

global tfit cfit cO

c=cOxexp(-lambda*tfit); %solve linear decay eq. for ¢ with ¢(0) = c0
f = (cfit-c)*(c.*tfit)’; % specify function f to vanish

4\

The corresponding M-file ‘parest.m’ can be found on the accompanying
CD-ROM.

The vectors of fitting data tfit and cfit as well as the initial concen-
tration cO are now specified in the input section of the M-file. Also the ini-
tial value for A (in the M-file called lambda0) is specified at the beginning.
normc, computed directly after the calculation of A, represents the norm of
the residuals. The next two lines initiate output of lambda and normc in the
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Fig. 10.5. Exponential fit for parameter A using the demonstration data set

MATLAB® command window. The last four commands in the main module
produce a plot showing given values and best fit curve, the best fit value and
the norm of residuals. Figure 10.5 is the plot obtained for the microcystins
example data introduced at the beginning of this chapter.

The optimum A is 0.3329 and the norm of residuals is 0.0646. Obviously,
the function with the new value of A is a much better fit than the exponential
fit of the previous sub-chapter that was obtained by polynomial curve fitting.

Using the calculated A one may have the idea to improve the fit further by
changing ¢o in formula (10.2). For this purpose, the ‘par est.m’ file has to be
changed slightly in order to optimize for ¢y and not for A. Instead of condition
(10.8) one obtains:

Ode de
Doy = 23 (cltsi) — crit) (trit) =0 (10.12)

€o

The factor 2 can be omitted. Evaluation of the last factor delivers the
condition:

Z (c(trit) — crit) exp(—=Atyit) = 0 (10.13)

In the following M-file the zero of that function is determined. The sum
of (10.13) is evaluated in the last line. In all other parts the M-file resembles
the ‘par est.m’ example given above.

function par esta
% parameter estimation with derivatives
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% for exponential fit for cO
global tfit cfit lambda

% specify fitting data

tfit = [0.256 1 2 4 8];

cfit = [0.7716 0.5791 0.4002 0.1860 0.1019];
lambda = .3329; c00 = 1.;

c0 = fzero(@myfun,c00);

normc = norm (cfit - cOxexp(-lambdaxtfit));

display ([‘Best fit for cO= ’ num2str(c0)]);

display ([‘Norm of residuals= ’ num2str(normc)]);

tmax = tfit(size(tfit,2));

t = [0:0.01*tmax:tmax];

figure; plot (tfit,cfit, ‘or’,t,cO*exp(-lambdax*t), ‘-’);
legend (‘given’, ‘modelled’);

text (0.5%tmax,c0*%0.7,[‘c 0: ’> num2str(c0)]);

text (0.5%tmax,c0%0.8, [‘norm of residuals: ’ num2str(normc)]);

function f = myfun(c0);
global tfit cfit lambda

¢ = cOxexp(-lambdaxtfit);
%solve linear decay equation for ¢ with c(0)=c0
ccO0 = exp(-lambdaxtfit); % equation for dc/dcO
f = (c-cfit)*cc0’; % specify function f to vanish

4\

The corresponding M-file ‘paresta.m’ can be found on the accompanying

CD-ROM.

The result is ¢y = 0.816 with an improved residual norm of 0.061. The

reader may check the result as an exercise.

It is also possible to combine the last two M-files to estimate both ¢

and A. Then, two function modules have to be used within the M-file. In
one function (myfun) A is optimized. Within that function, the second one
(myfun2) is called, in which ¢ is optimized.

function par estb

% parameter estimation with derivatives

% for exponential fit with cO amd lambda as parameters
global tfit cfit cO

cO = 0.816; lambda = 0.333; % start values
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% specify fitting data
tfit = [0.25 1 2 4 8];
cfit = [0.7716 0.5791 0.4002 0.1860 0.1019];

lambda = fzero(@myfun,lambda) ;

normc = norm (cfit - cO*exp(-lambda*tfit))

display ([‘Best fit for lambda= ’ num2str(lambda)l);
display ([‘Best fit for cO= ’ num2str(c0)]);

display ([‘Norm of residuals= ’ num2str(normc)]);
tmax = tfit(size(tfit,2));

t = [0:0.01*tmax:tmax];

plot (tfit,cfit, ‘or’,t,cO*xexp(-lambdaxt),‘-’);

legend (‘given’, ‘modelled’);

text (0.5%tmax,c0%0.8,[‘\ lambda: > num2str(lambda)]);
text (0.5*%tmax,c0*0.7,[‘c 0: ’> num2str(c0)]);

text (0.5%tmax,c0*0.6, [‘norm of residuals: ’ num2str(normc)]);

function f = myfun(lambda);
global tfit cfit cO

options = optimset;
c0 = fzero(@myfun2,cO,options,lambda) ;
display ([‘Best fit for cO = ’ num2str(c0)]);

¢ = cOxexp(-lambda*tfit); % solve linear decay eq.
for ¢ with cO
clambda = -c.*tfit; % equation for dc/dlambda
f = (c-cfit)*clambda’; % specify function f to vanish

function f = myfun2(c0,lambda) ;
global tfit cfit

c = cOxexp(-lambdaxtfit); Ysolve linear decay eq. for c
with c(0)=c0

= exp(-lambdaxtfit); % equation for dc/dcO

(c-cfit)*cc0’; % specify function f to vanish

4\

The corresponding M-file ‘parestb.m’ can be found on the accompanying
CD-ROM.

ccO
f =
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Fig. 10.6. Exponential fit for A and co

The formal parameter lambda needs to be added in the call of the second
function. In order to do that, options must be transferred, too. The standard
options set is obtained by using the options = optimset command.

The result of the estimation procedure for both parameters is A = 0.355
and ¢y = 0.833. Figure 10.6 depicts the result with the improved norm of
residuals equal to 0.057. For the chosen data set the change of parameters
in the last two steps is relatively marginal, but in general that can be very
different. It can be crucial to apply a procedure that really delivers optimal
approximation.

Example Evaluation:

For many substances in many environmental compartments it can be assumed
that sorption processes are fast in comparison to degradation processes. If this
is true, the first drop of the concentration from the original concentration cref
in solution (in the example 1ug/1) to a value of cO can be attributed to sorp-
tion: part of the total mass available attaches to the surfaces of the porous
material. The slow decline observed thereafter is due to degradation processes.
Concerning degradation we assume a linear degradation characteristic (com-
pare Chap. 5). The temporal development of the system can be described by
the differential equation:

oc

R (10.14)
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Note that the retardation factor disappears, as R is a coefficient in both
relevant terms in the equation. The solution of differential equation is

c(t) = coexp(—At) (10.15)

for initial concentration c0. The degradation rate 1 can directly be obtained
from the optimized parameter set. The sorption parameters

Cref
Co

R= (10.16)

According to formula (10.16), microcystin has a retardation of R = 1.2 in
the concerned batch experiment.

10.5 Transport Parameter Fitting

The described algorithm can also be applied for the estimation of transport
parameters. Here this is demonstrated for 1D transport as described by the
Ogata-Banks solution:

Cin xr — vt v T+ vt
c(x,t) =co + erfc + ex x ) erfc 10.17
(nf)=cot < (th) »(p?) <2\/Dt)) (10-17)

The situation is examined in which the velocity v is the most unknown
parameter. Such a situation can be met quite often in the description of en-
vironmental systems.

In order to apply the procedure introduced above, the derivative of the
solution due to velocity is needed. The derivative of the complementary error
function is given by:

;merfc (x) =— jﬂ exp (—2?) (10.18)

By application of the chain rule results:

o [ aveme |2 Coum) ) oo e (- (000 )
ov + ;D exp (;m> erfc (Z;Z;:)
(10.19)

The derived equations are implemented in the following subroutine. As in
the examples mentioned, the measurements are represented in the two vectors
xfit and cfit. They are assumed to be measured at time T after the start
of migration. D denotes the relevant diffusivity, cO is the initial and c1 the
inflow concentration.
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function f = myfun(v);
global xfit cfit T D cO ci

e=diag(eye(size(xfit,2))); h=1./(2.*sqrt(D*T));
argl = hx(xfit-v*Txe’); arg2 = h*(xfit+v*T*e’);
arg3=(v/D)*xfit;

% solve advection diffusion equation for ¢ with c(t=0)=c0O and
c(x=0)=cl c=c0+0.5*cl*(erfc(argl)+(exp(arg3).*erfc(arg2)));
% compute derivative of solution due to v

cv = c1x((T*h/sqrt(pi))*(exp(-argl.*argl)-exp(arg3) .*...
exp(-arg2.*arg2))+0.5*%(xfit/D) . *exp(arg3) .*xerfc(arg2));

% specify function f to vanish
f = 2%(c-cfit)*cv’;

The algorithm is demonstrated for an example of chloride concentrations mea-
sured in a sediment core of the Marmara Sea (Pekdeger 2006). It is assumed
that a concentration profile, as it is observed today, results from two interact-
ing processes. Sedimentation compounds the sediment layer. For the sake of
simplicity a constant sedimentation rate is assumed which corresponds to a
sedimentation velocity v. The second process is diffusion.

When there are no horizontal differences in variables or parameters, a
1D description can be used. The sediment water interface reduces to a sin-
gle position. One may choose the origin to be located at the sediment water
interface for the complete simulation. Note that this point moves in a coordi-
nate system that is fixed to the earth, but that does not change the validity
of the differential equations. The change of the concentration profile can be
described by the usual transport equation with effective diffusivity D and
positive sedimentation velocity v.

The main program is given in the following:

function par estc
% transport parameter estimation with derivatives
global xfit cfit T D cO cl

% Example values for Marmara Sea Sediment Core

T = 6.3e11; % [s] 20.000 years
D = 1.0e-5; % [cm*cm/s]

c0 = 0; yA

cl = 619; % [mmol/1]

xmax = 4000; % [cm]

% specify fitting data
xfit = [0 20 40 60 100 120 140 160 215 255 275 300 375 450
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525 600 750 1050 1200 1350 1650 1950 2250 2550 2700 3000
3450 3900];

cfit = [619 597 608 615 619 615 621 571 621 618 619 625 577
612 608 612 609 590 582 582 556 494 457 489 487 444 381 371];

v = fzero(@myfun,0.2e-8,options);
display ([‘Best fit for v = ’ num2str(v)]);

x = [0:xmax/400:xmax] ;

h = 1./(2.%sqrt(D*T)); e = diag(eye(size(x,2)));

plot (xfit,cfit,‘o’,x,c0+0.5*%cl*(erfc(h*(x-v*Txe’))+. ..
(exp((v/D) *x)) .*xerfc(h* (x+v*T*xe’))),’ =) ;

legend (‘given’, ‘modelled’);

xlabel (‘depth [cm]’);

ylabel (‘chloride concentration [mmol/1]’);

text (0.1*xmax,c1*0.65, [‘sedimentation velocity [cm/a]:’

num2str(vx3.15e7)]); e = diag(eye(size(x£fit,2)));

normc = norm(cfit-cO0+0.5*cl*(erfc(h*(xfit-v*T*e’))+. ..
(exp((v/D)*xfit)) .*xerfc(hx(xfit+v*T*e’))));

text (0.1*xmax,c1*0.6, [‘norm of residuals:’ num2str(normc)]);

4\

The corresponding M-file ‘parestc.m’ can be found on the accompanying
CD-ROM.

The value for T represents 20000 years. This is approximately the time
when a fresh water lake, located where the Sea of Marmara is found today,
was flooded from the rising Mediterranean. The value for D is a standard
first guess for molecular diffusivity, which is valid for many substances dis-
solved in water. It is assumed that before the flooding the sediment pores
were filled with water of low chloride concentration. A more realistic low
non-zero value could have been taken, but this has no significant influ-
ence on the model results, as the inflow concentration for saline water with
619mmol/] is quite high. The maximum length for the simulation corre-
sponds to 40m slightly exceeding the maximum depth of the measurement
locations.

What follows is already the fzero-command, which here is the optimiza-
tion routine. Starting value for the velocity is 2-107% cm/s. All further com-
mands concern the design of the graphic in which measured data and the
modelled curve can be compared, and where the result of the estimation pro-
cedure is depicted in addition. The output is shown in Fig. 10.7.
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10.6 General Procedure

The described zero search procedure for the computation of the optimal fit
can also be applied to parameters of differential equations, i.e. if the solution
is not given by an explicit formula like in the examples treated above. The
value for diffusivity is determined in a new demonstration example, (1) by
using analytical formulae, and (2) by using differential equations.

Example: Diffusivity Estimation

An environmental system is considered with two processes governing the
distribution of a (bio)chemical species. To keep it simple, we examine a
1-dimensional set-up. There are two reservoirs separated by a barrier. The bar-
rier does not allow fluid flow, but chemical species may penetrate by means of
diffusion. The driving force for diffusion is the fact that the two reservoirs have
a different level of concentration c¢. Additionally, there is a constant source or
sink for the examined species: it is produced or consumed passing through the
barrier at a constant rate (). The differential equation for the steady state of
such a system is:

0 dc

o <D8x) +Q=0 (10.20)

The diffusivity D is to be estimated based on a measurement within the

barrier. The condition for the best estimate is that the following function e is
minimized:
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e = Z (c(xpit) — cfit)Q (10.21)

Like the previous tasks the problem is solved by considering the derivative
0e /D, which is required to be zero for the best fit diffusivity:

Oe Jc
op =22 (clagi) = cgir) o (@ie) = 0 (10.22)

The derivative 9¢/dD, which appears in (10.22), fulfills a differential equa-
tion that is obtained by differentiation of (10.20) with respect to D:

0 0 Oc dc
o (Dax op T ax> =0 (10.23)

or, taking again (10.20) into account:

0 d dc\  Q
Oz (Dam 6D> D (10-24)

In order to test the approach we can work with analytical solutions
of (10.20) and (10.24). The general solution for ¢ is given by:

c(x) = — 2%:# + Cyx + Cy (10.25)
With boundary conditions
(=1 and  ay=o (10.26)
B ox ’

one obtains: Cyp = 1 and C; = @Q/D. Analogously, the general solution
of (10.24) is given by:

dc Q

oD (z) = 012 22 + Dz + Dy (10.27)

As the Dirichlet condition for ¢ at the left boundary is independent of D
one obtains the boundary conditions:

c c
;)D (0)=0 and 6856 ;)D(l) =0 (10.28)
The second condition follows from the chainrule d¢/0D = (dc/dx) (0x/0D)
and the second boundary condition given in (10.26). It follows: Dy = 0 and
D, = -Q/D%.
The following M-file demonstrates the procedure for an example data set
(see Rom 2005):
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function par est2

% parameter estimation with derivatives

% Idea from FEMLAB - there R instead of Q

% see COMSOL News, Nr. 1, 2005, page 15
global xfit cfit Q

% specify fitting data
xfit = [0.05:0.1:0.95];
cfit = [0.9256859756097451 0.7884908536585051 0.6665396341462926

0.559832317073104 0.4683689024389414 0.39214939024380824
0.33117378048770196 0.28544207317062964 0.25495426829258294
0.23971036585356142] ;

Q=-2;

D = fzero(@myfun,2);

display ([’Best fit for D = ’ num2str(D)]);

x = [0:0.01:1];

plot (xfit,cfit,’o0’,x,-(Q/D/2)*x.*x + (Q/D)*x + 1,’-’);
legend (’given’,’modelled’);

xlabel (’x’); ylabel (°c’);

function f = myfun(D);
global xfit cfit Q

% solve diffusion equation for c with c(0)=1 and dc/dx(1)=0
c = —(Q/D/2)*xfit.*xfit + (Q/D)*xfit + 1;

% solve Poisson equation for dc/dD (cD) with boundary conditions
cD = (Q/D/D/2)*xfit.*xfit - (Q/D/D)*xfit;

% specify function de to vanish

f = 2x(c-cfit)*cD’;

The corresponding M-file ‘parest2.m’ can be found on the accompanying
CD-ROM.

The main program follows the same line given by the ‘par est’” M-files
presented in the previous subchapters. The fzero function is called with an
initial guess D = 2. The function myfun consists of three commands. The first
evaluates c as formulated in (10.25); the second evaluates the derivative d¢/0D
following (10.27); the third specifies function £ according to formula (10.22).

For @ = — 2 the procedure delivers the correct result of D = 1.312 ! The
best fit is visualized in Fig. 10.8:
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Fig. 10.8. Optimal fit for diffusivity estimation example problem

Hitherto, the analytical solution of the problem has been utilized again.
The first two commands in the function myfun can be replaced by calls of
differential equation solvers. In the first command, the (10.20) needs to be
solved with regard to the boundary conditions (10.26); in the second com-
mand, it is the differential equation (10.24) with regard to conditions (10.28).
The function f then becomes:

function par est2a

function f = myfun(D);
global xfit cfit Q
options = bvpset;

% solve diffusion equation for c with c(0)=1 and dc/dx(1)=0
solinit = bvpinit ([0 xfit 1],Qguess);
¢ = bvpdc (@matdode,@matdbc,solinit,options,Q/D,1);

% solve Poisson equation for dc/dD (cD) with boundary conditions
solinit = bvpinit([0 xfit 1],Qguessl);
cD = bvpdc (@matdode,@matdbc,solinit,options,Q/D/D,0);

% specify function f to vanish
f = 2x(c.y(1,2:size(c.y,2)-1)-cfit)*cD.y(1,2:size(c.y,2)-1)’;

function dydx = mat4ode(x,y,Q,c0)
dydx = [y(2); -Q];
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function res = mat4bc(y0,y1,Q,c0)
res = [y0(1)-c0; y1(2)];

% ____________________________________________________________

function v = guess(x)
v = [xx(x-2)+1; 2x(x-1)]1;

% ____________________________________________________________

function v = guess1(x)

v = [xx(x-2); 2x(x-1)];

The corresponding M-file ‘parest2a.m’ can be found on the accompanying
CD-ROM.

The main body of the M-file is omitted. In the f-function module we obtain
two solutions by calling the bvp4c command for the solution of boundary

2
value problems. Both differential equations are of Poisson type grg = const;
therefore, it is possible to use the same module (mat4ode) with different formal
parameters. It is an alternative to use two different functions. The second order
differential equation is re-written as two first order differential equations with
C1 = C:
(901 (902
=c = const 10.29

ox ? Ox ( )

In the mat4ode sub-module the vector y has two elements representing
¢1 and cz. The mat4bc module specifies the boundary conditions (10.26) and

(10.28), which in terms of ¢; and ¢y are given by:
c1(zx=0)=const cx(x=1)=0 (10.30)

The two functions guess and guess1 deliver initial guesses for both func-
tions fulfilling the boundary conditions. The graphical output resulting from
that algorithm is identical to Fig. 10.8.

It has been demonstrated that the procedure, using solutions of differential
equations within the fzero-module, is applicable to parameter estimation in
situations in which an explicit formula for the solution is not available. We
chose a one-dimensional set-up as demonstration example and had to solve
boundary value problems for ordinary differential equations. However, the
same concept can be applied to more general set-ups, steady or unsteady, in
one or more space dimensions. In general, the solutions of partial differential
equations are required within the zero-search-algorithm.
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Advanced Modeling using MATLAB®)



11
Flow Modeling

Flow, of course, is a crucial topic in many environmental sciences. Flow is the
carrier of advective transport (see Chap. 3). Biogeochemical species are trans-
ported by flow through environmental compartments and through systems of
compartments. Often transport with the flow is the fastest process by which
a species of potentially hazardous impact, starting from a source, reaches a
sensitive region. A sketch of various important flow-paths is given in Fig. 11.1.

Let’s take a repository for radioactive waste as an example. In several coun-
tries of the world final storage facilities are envisaged located in some nearly
impermeable geological environments in the deep sub-surface. The main safety
problem with these waste disposal sites is concerned with the identification of
flow. Containments and barriers of any type are not able to shut off heat pro-
ducing, acid, radioactive and/or toxic material for long time periods. There is
the danger that in the long run hazardous substances find a subsurface flow
path, which takes them up to the surface. Even if that are long distances and
long time periods, the potential thread still remains, as those nuclides with
long half-lives remain active for 1000s of years. Though the transport along
the flow path may take several 1000s or 10000s of years, this is a much faster
process than any other one. Thus, it is important to understand and model
flow paths and fields.

Speaking of flow in environmental sciences not always means the same
thing. There are various types of fluids and fluxes. In the hydrosphere, con-
taining as different compartments as creeks, rivers, lakes and the sea with
coastal waters, continental margins and the deep sea sub-compartments, wa-
ter is the flow medium. Aquifers and the pore space of aquatic sediments
also belong to the hydrosphere. Air is the flow medium of the atmosphere. In
the unsaturated zone, between the earth surface and the groundwater table,
water and air are both fluids, although with quite different characteristics.
There is also flow in the biosphere, for example, when water is taken up
by the roots and transferred to the green parts of plants above the earth
surface.
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Fig. 11.1. Pollutant environmental pathways with relevant advective transport

According to the differences concerning the medium and the compartments
and sub-compartments respectively, there is not the one and only approach
to modeling flow phenomena. In the sequel, the term free fluids is used if the
flow medium occupies the entire volume. A contrasting term is porous media
flow, where the fluid flow occurs within the pore space of a solid material, as
in aquifers, aquatic sediments or the soil, the latter with seepage and air flow
in the unsaturated or vadose zone.

11.1 The Navier-Stokes Equations for Free Fluids

Considering all the different phenomena of flow fields, it may seem to be
amazing that one mathematical approach is well accepted as a fundamental
description. It is valid for all types of free flow, either laminar or turbulent,
in bounded or unbounded domains. The equations are a basis for many sit-
uations, although simplifications or extensions are necessary. The generally
accepted Navier*®-Stokes®® equations can be noted as follows:

0
patv+p(v-V)v—pf—|—Vp+77V2v:O (11.1)

with fluid density p, velocity vector v, volume force f and pressure p. p and v
are the dependent variables. For a 1-dimensional description the system (11.1)

48 Louis Marie Henri Navier (1785-1836), French mathematician and physicist.
19 George Gabriel Stokes (1819-1903), Irish mathematician and physicist.
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reduces to a single equation, in 2-dimensional space there are two differen-
tial equations given by system (11.1), and in 3-dimensional space there are
three.

Equations (11.1) are derived from the principle of momentum conserva-
tion, where momentum is defined as the product pv. From that point of
view the Navier-Stokes equations are for fluid mechanics what is Newton’s
Law for classical mechanics. The first two terms in (11.1) represent temporal
change and advective transport of momentum. The pf-term introduces outer
forces as for example gravity. The connection with pressure is given by the
Vp-expression. The final term, including the viscosity n as parameter, rep-
resents the internal friction within the fluid. A more general formulation of
the Navier-Stokes equations can additionally take the effect of compressibility
into account (Guyon et al. 1997).

Detailed derivations of the Navier-Stokes equations can be found in text-
books on fluid mechanics; see for example Guyon et al. (1997). In the deriva-
tion of the formulation (11.1) it is assumed that the internal shear stress
within the fluid is proportional to the change of the velocity in transverse
direction. The dynamic viscosity 7 is the proportionality factor in that re-
lationship, which can also be traced back to Newton. Water is a Newtonian
fluid for which such a relation is valid, while different formulations result for
non-Newtonian fluids. The change of water viscosity in the temperature range
between 0°C and 50°C is depicted in Fig. 11.2.

Equations (11.1) are completed by the continuity equation

gtp—V-(pV) =pQ (11.2)

which represents the principle of mass conservation for the fluid. As out-
lined in Chap. 3, the derivation of (11.2) is analogous to the derivation of the
mass conservation for species, utilizing the equation for fluid flux: j = pv. @
represents volume sinks and sources within the flow region. Not taken into
account in both (11.1) and (11.2) is the case in which the fluid phase does not
cover the entire space.

That can be included by an additional factor, which represents the share of
the concerned phase on the entire volume. In the system of (11.1) and (11.2)
the number of equations equals the number of unknown variables p and v.
From the mathematical aspect, the most problematic term in the equations
is the second term of (11.1), which is nonlinear.

The plot is produced by the ‘“wviscosity dyn.m/m file’, available on CD.

There are few classical solutions for the complete set of Navier-Stokes equa-
tions (11.1) and (11.2). Analytical solutions are mostly restricted to special
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Fig. 11.2. Change of dynamic viscosity of water; according to different authors

circumstances. One example is incompressible laminar flow through a pipe,
see Sidebar 11.1. Incompressible flow concerns fluids with constant density,
for which the continuity (11.2) simplifies to:

V-v=0Q (11.3)

where the right hand side represents sources and sinks, measured as volumetric
rate. In absence of sources and sinks the equation becomes identical to the
condition for divergence-free vector fields:

V-v=0 (11.4)

The Reynolds®® number Re is defined by Re = vehar - Henar /v, with a char-
acteristic velocity vcpar , a characteristic length Hcp,, and kinematic viscosity
v = n/p. In situations in which the Reynolds number is above that value,
the flow regime becomes turbulent. In turbulent flow small disturbances are
amplified, and the assumption of zero velocity components perpendicular to
the main flow direction is not valid anymore. For turbulent flow there are no
analytical solutions of the Navier-Stokes equations.

50 Osborne Reynolds (1842-1912), English physicist.
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Sidebar 11.1: 1-Dimensional Laminar Flow
(Hagen-Poiseuille)

One of the simplest examples for a solution of the Navier-Stokes equations
is the 2-dimensional horizontal flow between two plates, in a steady state
situation with constant density p. Assume that the z-axis is directed per-
pendicular to the plates and the distance of the plates is given by Az. The y-
direction is neglected in the 2-dimensional set-up. Moreover, the assumption
of a vanishing velocity component v, perpendicular to a pressure gradient
in z-direction can be made. From (11.2) or (11.4) follows that

vy =0

oz "
i.e. the velocity is not changing in z-direction. If a constant pressure gradient
is given in z-direction (Ap/Ax), the steady state version of the (11.1) reduces
to equations for v,:

0? Ap
n 0z2 Ve Az

Fig. 11.3: Laminar flow between two plates

The solution of the differential equation for v, is a quadratic function
of z. The two integration constants are derived from the condition that the
velocity component vanishes at the plates at positions z = +Az/2. The
resulting parabolic profile, depicted in Fig. 11.3, can be expressed as:

1 422
Vg = Umax -
Az?

Umae 18 the maximum velocity at the halfway between the plates, given
by the formula:
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Az? Ap
v =—
max 8"7 Aa'/'
The mean velocity is given by:
Az? Ap
v =—
mean 1277 Al‘
and the flux per unit width by:

AZ3 Ap

1= 799y Az

The equation states a linear relationship between fluid flux ¢ and the
pressure gradient Ap/Az. So far, 1-dimensional flow between two plates
in cartesian coordinates has been studied as most simple situation. 1-
dimensional flow within a pipe can be treated similarly using a 2-dimensional
coordinate system. Instead of the z-coordinate, the radial coordinate r has
to be considered, and the differential equation for v, in cylinder coordinates

takes the form:
10 0 n Ap 0
nr or T@r Ve Ax

In analogy to the procedure demonstrated just before one obtains the

solution:
2
r
Uz = Umax (1 - R2>

where R denotes the radius of the pipe; here with

R? Ap
4dn Ax

Umax = —

The paraboloid shape of the flow is shown in Fig. 11.4.

Fig. 11.4: Laminar flow of paraboloid shape in a pipe with circular cross-section
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The mean velocity is given by:

" _ _R2 Ap
mean — 87’] Ax

Regarding the corresponding head h of the fluid as a measure for pres-
sure, it is also possible to write:

B R? 0h
8v Ox

Umean =

Taking into account that the total flux through the pipe is known, one
obtains the classical result of Hagen®!' and Poiseuille®?

TR* Ap

R
Q= /vz(r)Zm“dr = Sy Az
0

The formula was first experimentally developed by Hagen and by
Poiseuille independently. According to the Hagen-Poiseuille formulae there
is a linear relation between the flux @ and the pressure gradient Ap/Axz,
and between the characterising velocities and the pressure gradient. Such a
relationship is typical for situations in which the friction on solid walls is a
dominant process. A linear relation between velocity and pressure, or flux
and hydraulic head, holds not only in systems of pipes of small diameter
but for porous media flow in general. Darcy’s Law for porous media states
exactly such a relation (see 0).

The validity of the given formulae is limited by the dimensionless
Reynolds-number of Re = 2300, where the diameter is taken as charac-
teristic length and the mean velocity as characteristic velocity.

Using MATLAB®), the focus will be on analytical solutions, which can be
applied for special cases only. In the following subchapter cases will be con-
sidered in which internal friction can be neglected. Thereafter special systems
are in the focus which are dominated by friction.

11.2 The Euler Equations and the Bernoulli Theorem

There are situations in which the friction can be neglected. For frictionless
ideal fluids, i.e. fluids with zero viscosity, the FEuler®® equations are written
in modern notation as:

5! Gotthilf Heinrich Ludwig Hagen (1797-1884), German engineer.

52 Jean Louis Marie Poiseuille (1799-1869), French physician and physicist.

53 Leonard Euler (1707-1783), Swiss mathematician.
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pgtv+p(v-V)v—pf+Vp=O (11.5)
which were published by Euler in 1750.

Utilizing potential theory for fluid mechanics is the classical approach
(“classical hydrodynamics” according to Prandtl & Tientjens, 1957), devel-
oped already by the Bernoulli’s®® and Euler. The works of Euler in Berlin
and St. Petersburg not only mark the completion of classical fluid mechanics
(Szabo, 1987), but also the origin of an approach by which natural phenomena
in the laboratory or in the field are described by differential equations and
their solutions.

The general Navier-Stokes equations have few analytical solutions (for an
example see Siebar 11.1). Thus, they usually have to be solved by special
software packages utilizing numerical methods, such as finite differences, fi-
nite elements, or finite volumes. The use of numerical methods by applying
the pdepe command was already described in Part I of the book. However,
pdepe can be used for 1D problems only. For higher dimensional problems
the MATLAB®) partial differential toolbox has to be applied, which is not
described here. In the following chapters, it is the aim to examine the use of
MATLAB® for potential flow.

Potential flow is an umbrella term for a technique to obtain analytical
solutions. Analytical solutions are explicit formulae for the unknown variables,
sometimes also referred to as closed form solutions (Narasimhan 1998). If a
flow field is irrotational, i.e. if the condition®®

Vxv=0 (11.6)

is fulfilled at a time instant, this property remains valid further on. It can be
shown that under condition (11.6) a potential ¢ exists, which is characterized
by the property

54 Johann Bernoulli (1667-1748), Daniel Bernoulli (1700-1782), Swiss mathemati-
cians.

55 (x> denotes the cross product for vectors, which for vectors ri=(z1,y1,21)" and
I‘QZ(JJQ, Y2, ZQ)T is defined by:

T
r1 X r2 = (Tays — Tay2, T3yl — T1Y3, T1Y2 — T2Y1)

If the nabla-operator is used as first vector and v = (vs,vy,v5)T as second,
one obtains:

VXxv= 81}—8'0 8'0—811 8'0—8'0 ’
“\oy " 0z %0z" ox 7oz Y oy "

For the special case of flow in the 2D (x,y)-plane follows the equation:

d o \"
VXxv= (0,0, 8xvy— 8yvz) .
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v=Vop (11.7)
and that it fulfils the Bernoulli theorem (for example: Gallavotti 2002):

Oy

)
= 11.
p8t+2v +pp+p=C (11.8)

where ¢ denotes the potential of the force vector £ (i.e. £ = V¢). C is a
constant in a simply connected domain. If condition (11.6) is skipped, C' is
a constant for each streamline but not in the entire flow domain. For steady
states the first term in (11.8) can be omitted. In fact, the Bernoulli theorem
yields a relation between pressure and velocity. In following chapters methods
will be explained how the potential can be determined, from which the velocity
field is derived.

Sidebar 11.2: Open Channel Flow

Open channel flow is defined as flow in any situation in which a liquid has a
free surface, such as in channels, rivers, streams, ditches, uncovered conduits
and discharge from tailings ponds. There is open channel flow in closed
channels, such as pipes, tunnels or adits, if the liquid does not fill the entire
cross-section. Open channel flow is not under pressure, with gravity as the
driving force.

Some characteristics of open channel flow can be derived from the
Bernoulli theorem. For steady conditions according to (11.8) and (11.10),
one can state that the left hand side of the Bernoulli equation (11.8)

2

;}g + hcos(B) = He

is a constant, which represents total energy in the dimension of height and
is therefore denoted as H., the energy height(see also textbooks on fluid
mechanics, for example: Schroder 1995). h denotes the height of the water
column, i.e. the water level with reference to the zero level at the bottom
of the flowing water body. Using the formula between mean flow velocity
v, cross-sectional area A and flux @ = Av, one may write the equation in
the form:

Q2
2gA(ryz T Mo B) = He
If the flow is kept at a constant value, the question arises, which water levels
result from the formula. In order to answer the question, the area has to
be expressed in terms of water level. For a rectangular cross-section one
obtains:
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e
2gh? + hecos(B) = He
where g denotes the flow rate per unit width. The formula yields an energy

height as function of water depth h. The situation can be visualized using
MATLAB®.

1.6

14}

1.2}

energy height

—6&— Possible states
Asympotic line

0.6

041

02

h crit| | | |

0 0.5 1 1.5 2
water level above ground

Fig. 11.5. Energy height and water level characteristic for open channel flow

The corresponding M-file can be found on the CD under the name ‘Open-
Channel.m’

Figure 11.5 illustrates that there is a minimum energy height He,min.
The water level, corresponding with He,pn, is commonly referred to as
critical height hc,;+. For all possible levels Ho>He min, there are two possible
water table positions; one above h¢-;; and one below h,;;. Both values for the
height of the water column are denoted as conjugated heights. In the former
situation the velocity is lower than in the latter situation. That’s why the
first case is called subcritical, while the second case is called supercritical.
Height and velocity at the critical state are given by:
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hcrit = \3/(12/9 COS(ﬂ) Verit = \/ghcrit COS(ﬁ)

which can be derived from the condition H./0h = 0. For $=0 the critical
state can be related to the Froude®® number

v
P‘r =
Vgh

Flow is subcritical flow for Fr<1 and supercritical for Fr>1. In open
channels and regulated rivers changes from subcritical to supercritical or
vice versa can be observed at locations where the channel characteristics
change, as channel boundary roughness, channel bottom slope, lower bound-
ary elevation, etc. (Rouse 1978). Most natural rivers are in the sub-critical
regime in most parts (Olsen 2002), except in the vicinity of water falls, weirs
or other structures.

Ideal fluids are quite rare, but they exist. Helium below a temperature
of 2.17°K becomes a suprafluid without viscosity. However, there are situa-
tions with more common conditions, in which potential flow theory provides
an approximate solution. At high velocities disturbances due to friction, for
example at the boundary of an obstacle, can not develop into the fluid, at
least not within the short time of the passing fluid. Obstacles in a fast flowing
fluid can thus be treated by potential flow. Also for fluids with high Reynolds
numbers the Euler equations can be taken as an approximation if the flow is
far away from any walls and not turbulent (Guyon et al. 1997).

Potential flow also plays an important role in hydraulic engineering
(Schroder 1995). From (11.8) an explicit formula for total pressure p can be
derived. For the steady state in the gravity field follows directly:

p
D = Dref + pgz — 21)2 (11.9)

where z denotes the opposite direction of gravity, g acceleration due to gravity,
and pr.s a pressure reference value. If, for constant density, dynamic pressure
Ddyn = D — pgz is expressed as height of a fluid column (denoted as k), the
result is:

’U2

29
Equation (11.10) is a simple formula connecting piezometric head h and
velocity v.

h=hyes — (11.10)

11.3 Darcy’s Law for Flow in Porous Media

Not only the visible or sensible flow of water or air, which we observe above
the ground surface, is relevant for the distribution of potentially harmful

56 William Froude (1810-1879) English engineer.
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substances within the environment. A multitude of pathways below the ground
surface contribute substantially to the migration of pollutants. The sketch of
Fig. 11.6 visualizes some of those.

Chemical substances are transported from a contaminated site with the
seepage flow into the unsaturated soil as first compartment in the subsurface.
Even in arid regions such transport can be observed, although only scarce pre-
cipitation events produce a transient flow field. Modern landfills are equipped
with a confined bottom to prevent the downward movement of components.
Thus, the described migration by seepage is reduced significantly on these
sites. However, the confinement is not complete and may last only temporar-
ily. Toxic, aggressive waste may diminish the sealing function over long time
scales. Old landfills or contaminated sites can be sealed at the top by a cover
which is more or less impermeable to water. This helps to reduce flow and
advective transport effectively.

Contaminants can pass the unsaturated zone and enter the groundwater
compartment. While in the vadose zone the dominant flow direction is ver-
tically downward, in groundwater layers the horizontal velocity component
usually dominates. The substances may thus be transported to more vulnera-
ble regions. Where water is pumped for drinking water or any other purposes,
the contaminants can return back to the ground surface with the potential to
produce hazards in the antroposphere.

The time scale for such a return can differ substantially. In the vicinity of
surface water bodies the residence time in the subsurface compartments may
be as short as several days or weeks. When deeper groundwater layers are
involved, the time scale of residence is surely to be counted in years. In several
regions fossil groundwater is pumped which was recharged several 1000s of

_;‘Egngﬂ‘;';mon. L % Precipitation C:)

Fig. 11.6. Crucial sub-surface flow paths at waste disposal sites
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years before. In comparison to the ambient state without any anthropogenic
influence, the natural residence time within the subsurface may be significantly
shortened by pumping wells.

It was already mentioned in Sidebar 11.1 that in situations in which the
wall friction is a relevant process a linear relationship between flux or ve-
locity on one side and the pressure or head gradient on the other side can
be expected. The relationship was derived from the Navier-Stokes equations
(11.1) and (11.4) for 1-dimensional pipe flow. A similar situation is given for
fluid flow within the pore space of a porous matrix or porous medium. Pore
water movements in sediments, seepage through the soil, or groundwater flow
in aquifers are environmental systems that fall into that category.

The mentioned proportionality between flux and pressure drop for porous
media is stated in Darcy Law. In 1856, Henry Darcy®” was the first who
published such a proportionality law. He has performed a series of experiments
in metal columns filled with sand. An experimental set-up, which in many
parts resembles the original facility, is sketched in Fig. 11.7.

Driven by a pressure gradient water flows from the inlet of the column
to the outlet. The pressure is kept constant if the two piezometer pipes are
connected with water reservoirs of constant height. The height difference Ah
between both reservoir levels is taken as a measure for the pressure difference.
The finding from the Darcy experiment is stated mathematically as follows:

Q/A x AhJL (11.11)

where (Q denotes the volumetric flow rate, A the cross-sectional area, L the
length of the column and Ah the head gradient. In the 150 years that passed
since the first publication, Darcy’s law has been confirmed to be valid for a

Piezometric
head
difference

ZFo—-haH

Fig. 11.7. Typical set-up of a Darcy-experiment; for examination of Darcy’s Law
and the determination of hydraulic conductivity

7 Henry Darcy (1803-1858), French engineer.
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huge variety of porous media and for wide ranges of velocities and scales. In
terms of the Reynolds-number the limiting value is Re = 10 (Bear 1972).
For higher values of Re a generalized formulation has to be used, but in most
subsurface aqueous environments the velocities are so low that Re stays below
the threshold.

Nowadays it is common to formulate the law as an explicit equation for
the Darcy velocity in an infinitesimal scale of the 3-dimensional space:

Ov = —K;Vh (11.12)

The left side of the equation denotes the Darcy Velocity, which is derived
from the real mean interstitial flow velocity by multiplication with the porosity
6. Tt is, in fact, the same variable as on the left side of (11.11); i.e. it is the
velocity which represents the fluid flux. On the right side of (11.12) the head
gradient Vh is a generalization of the right side of (11.11) replacing the head
difference per unit length. K is the proportionality factor, which is mostly
referred to as hydraulic conductivity. It has the physical unit of velocity [L/T],
[m/s] in MKS units. Ky depends on the properties of pore space, such as
pore diameter and length, connectivity and porosity, or pore structure in
general. The structure of the pores is far too complex to predict the K-
value from microscopic properties. For porous pipe structures the hydraulic
conductivity can be estimated on the basis of the Hagen-Poiseuille formula
(see Sidebar 11.1).

The Kj-value also depends on the properties of the fluid which flows
through the pore space. It is accepted that the dependencies can be sepa-
rated by the approach:

K;= (11.13)

where k represents the permeability (physical MKS unit: [m?]) that depends
on the porous medium, while density p and dynamic viscosity n are fluid
properties. g = 9.81m?/s is the acceleration due to gravity. Concerning the
flow of water, it has to be taken into account that the dynamic viscosity
changes by a factor of 2 between 0°C and 25°C. The permeability varies
across a relatively wide range, which is shown in Table 11.1.

Note that with the corresponding version of the V-operator, the given
formulation of Darcy’s Law (11.12) is valid in 1D, 2D and 3D situations. 2-
and 3-dimensional situations often make it necessary to distinguish between
conductivities in different directions. In the mathematical formulation this
can be taken into account by using a tensor (a matrix) Ky instead of a scalar
Ky value, or a permeability tensor k instead of k. Some situations require
an even more general formulation of Darcy’s Law. For example for variable
density flow (Holzbecher 1998) the head gradient on the right side of the
equation has to be replaced by the gradient of the dynamic pressure:

k
Ov = —’uV(p—pgz) (11.14)



11.3 Darcy’s Law for Flow in Porous Media 221

Table 11.1. Classification and examples for hydraulic conductivities and perme-
abilities

K, [m/s] 10° | 10" [ 10% [ 107 [ 10* [10° | 10° [ 107 [ 10® | 10® | 10" | 10" | 107
k [mz] 107 108 ]09 10—[0 10—11 10—]2 10713 10714 10715 10716 10—17 10718 10—[9
Pervious
Semi- "
Impervious
Gravel
Sand
Fine Sand
Peat
Clay

As additional variable besides velocities either hydraulic head h or pres-
sure p appears. The concepts based on both variables are equivalent as long
as there are no density gradients, which is a general assumption here. The
mathematical treatment given here is similar to the derivations presented in
textbooks on groundwater flow (Bear, 1972; Bear & Verruijt 1987). In both
formulations of Darcy’s Law, (11.12) and (11.14), it is obvious that it is not
the absolute value of pressure or head that determines the velocity. Flow, in
its size and direction, is induced by the pressure or head gradient. For that
reason it is irrelevant according to which reference value pressure and head
are measured. From one application to the other the reference frame often is
chosen very differently taking the specific circumstances in consideration.

In the mathematical formulation of porous media flow Darcy’s Law re-
places the momentum conservation (11.1). The conservation of mass principle
for porous media can be formulated similarly to (11.3). The generalized for-
mulation of the steady state is

V-v=Q (11.15)

When in formula (11.15) the velocity v is replaced with the help of Darcy’s
Law (11.12), one obtains:

V- -K¢Vh =0Q (11.16)

When the conductivity as a material parameter for a porous medium is

known, the differential (11.16) has a single unknown variable: h, the hydraulic

or piezometric head. For given boundary conditions, the differential equation

(11.16) has to be solved for h. A generalized version, which is very appropri-

ate for 3D groundwater flow, results if formulation (11.14) is taken into the
continuity equation:

V-Ev(p—ng)=Q (11.17)

where pressure p is the dependent variable.
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For unsteady flow the generalization of (11.16) is given by:

Oh

=V -K¢Vh 11.1
o = VKV (11.18)

where S is the storage coefficient, which is dimensionless. It denotes the vol-
ume of water released per unit area of aquifer and per unit drop in head.
As far as a confined aquifer (see Chap. 12) is concerned, the storage coeffi-
cient is a function of the compressive qualities of water and matrix structures
of the porous material. In 2D horizontal models for the unconfined aquifer
(see Chap. 12) the storage coefficient is mainly determined by the change of
the water column depth and thus may take much higher values than in the
confined aquifer.

Codes for modeling groundwater flow apply numerical methods to solve
(11.16) or (11.17) for the steady state, or (11.18) for the transient situation
(Holzbecher 2002). In a homogeneous porous medium the (11.16) becomes
equivalent to the Poisson equation. With the core version of MATLAB®
numerical solutions can be obtained for 1-dimensional cases, and analytical
solutions for 1- and 2-dimensional cases. This will be presented in the next
chapters.

11.4 Flow in Unsaturated Porous Media

One speaks of an unsaturated situation if there are two fluids filling the pore
space of a porous medium, a gaseous and an aqueous phase. Soil is the most
important environmental compartment, in which the unsaturated situation
is met. The unsaturated layer between the land surface on the top and the
groundwater table at the bottom is the unsaturated or vadose zone.

In order to model the more complex flow phenomena under unsaturated
conditions, an extended formulation of Darcy’s law is applied. The hydraulic
conductivity for water decreases with the water content. Here the volumetric
water content as a generalization of porosity is denoted by 6. Its maximum
value is equal to the porosity of the porous medium. As an alternative param-
eter, the effective saturation S. can be used. S, takes values between 0 (gas
phase only) and 1 (aqueous phase only):

60,

- 11.1
S, 0.0, (11.19)

where 0, is the residual water content and 6, the water content in the saturated
situation.

Several mathematical relationships have been proposed for the dependency
between hydraulic conductivity and water content. Mualem (1976) suggests a
power law:

K(S.) = KS" (11.20)
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with a soil specific exponent n. The value for K on the right side of the equa-
tion is the conductivity of the saturated soil. For most soil types the exponent
takes values between 3 and 4 (Brooks & Corey 1964). van Genuchten (1980)
proposed a formula, which is frequently found in publications :

K(S.) = K+/S. {1 . (1 . Sg/m)mr (11.21)

The application in the vadose zone requires the hydraulic head to be split
into a term representing the effect of total pressure p and buoyancy, as it was
done in (11.17) already. With pressure head ¢ as a measure of total pressure
in a length unit (representing the height of a corresponding water column),
the (11.18) for 1D gets the form:

90 9 9
ot — 0:5 ) o,

On the left side of (11.22) storage of water is described by the change of

water content.

The code for retention curve visualization can be found on the CD under
the name ‘retention.m’.

(¢ — 2) (11.22)

In the unsaturated zone the pressure head takes negative values. Some-
times the term suction head is used for the negative of pressure head. ¥
becomes zero at the groundwater table. The saturation-suction relationship,
often referred to as retention curve, is an empirical relationship, which has to
be considered in soil modeling. van Genuchten (1980) uses the mathematical
form:

Se=1/(1+ |ay|™)™ (11.23)

with parameters & and n = 1 — 1/m. The unit of « is [1/L]. Parameter m is
identical to the one introduced in (11.21). Figure 11.8 depicts some example
retention curves. There are various other formulations of the retention curve,
which are not repeated here. A problem that is seldom tackled is the hysteresis
of the retention curve, which means that the curve is not unique. In fact,
experiments have shown that the saturation-suction curve for dewatering is
often very different from the curve for re-wetting.

There are two possible ways to compute problems of unsaturated flow,
based on (11.22) and the retention curve 1(#). Some authors prefer to use the
retention curve to rewrite the term on the right side of (11.22) as function
of . A MATLAB® implementation, using that approach, is presented by
Hornberger & Wiberg (2005). The alternative approach is to rewrite the left
side as follows:
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Volumetric water content [-] — Hygiene sandstone
0.55 T T
—&— Touchet Silt Loam
o5k —8—Silt Loam
' Guelph Loam
0.45
0.4
0.35
0.3} E
0.25 i
0.2} E
1 1 1
0 50 100 150 200

Suction head [cm]

Fig. 11.8. Examples of retention curves, data from Hornberger & Wiberg (2005);
produced using MATLAB®

00 0 0 0

The coefficient of the pressure derivative on the left side is evaluated based
on the retention curve formula. For the van Genuchten formulation (11.23)
one obtains:
0 (09, —ah)"!
20 _ ( )nman( al) (11.25)
o (1+ Jop[")mF
The differential equation (11.24) is the so-called Richards®® equation,
which can also be found in a slightly different notation:

909y 9 A
oY ot o5 W) (82 B 1) (11.26)

The following M-file is an implementation of the Richards equation with
the van Genuchten formulation for the suction-saturation and the conductiv-
ity-saturation relationships.

L = 200; % length [L]

sl = 0.5; % infiltration velocity [L/T]
s2 = 0; % bottom suction head

T = 4; % maximum time [T]

qr = 0.218; % residual water content

®8 Lorenzo Adolph Richards (1904-1993), US-American soil physicist.
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f =0.52; % porosity
a = 0.0115; % van Genuchten parameter [1/L]
n = 2.03; % van Genuchten parameter

ks = 31.6;% saturated conductivity
x = linspace(0,L,100);
t = linspace(0,T,25);

options = odeset(‘RelTol’,le-4, ‘AbsTol’,le-4, ‘NormControl’,
‘off’,...‘InitialStep’,1le-7)

u=pdepe (0,Qunsatpde,@unsatic,@unsatbc,x,t,options,... si,s2,
gqr,f,a,n,ks);

figure;

title(‘Richards Equation Numerical Solution, computed with
100 mesh points’);

subplot (1,3,1);

plot (x,u(l:length(t),:));
xlabel(‘Depth [L]’);

ylabel (‘Pressure Head [L]’);

subplot (1,3,2);

plot (x,u(l:length(t),:)-(x’*ones(1l,length(t)))’);
xlabel(‘Depth [L]’);

ylabel (‘Hydraulic Head [L]°’);

for j=1:length(t)
for i=1:length(x)
[q(j,1),k(j,1),c(j,i)]=sedprop(u(j,i),qr,f,a,n,ks);
end
end

subplot (1,3,3);

plot (x,q(l:length(t),:)*100)
xlabel (‘Depth [L]’);
ylabel(‘Water Content [%]°’);

A ——
function [c,f,s] = unsatpde(x,t,u,DuDx,sl,s2,qr,f,a,n,ks)
[q9,k,c] = sedprop(u,qr,f,a,n,ks);

f = k.*DuDx-k;

s = 0;
A ——
function u0 = unsatic(x,sl,s2,qr,f,a,n,ks)

u0 = -200+x;

if x < 10 u0 = -0.5; end
.
function [pl,ql,pr,qr] = unsatbc(xl,ul,xr,ur,t,sl,s2,qr,f,)
a,n,ks)
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pl = s1;
ql = 1;
pr = ur(1)-s2;
qr = 0;
Ypmm e soil Hydraulic properties-———-------——--———-
function [q,k,c] = sedprop(u,qr,f,a,n,ks)
m = 1-1/n;
if u >=0
c=1e-20;
k=ks;
q=f;
else
q=qr+(f-qr)*(1+(-a*u) n) "-m;
c=((f-qr)*n*m*a* (-a*xu) (n-1))/((1+(-a*u) "n) (m+1))+1.e-20;
k=ks*((q-qr)/(f-qr)) "0.5%(1-(1-((g-qr)/(f-qr))
M1/m)) “m) 25

end
0 T 0 T 52 T
Pressure Hydraulic Water
20 Head [L] : 20 H Head [L] E soH Content [%] i
40 | E 40 H .
48 H N
60 | 1 o} E
46 B
80 {1 -80H g
44 H E
100 1 -100 H E
a 42 H -
-120 p 1
o
40 N
-140 | E a
B
L
38 b
-160 k
-180 | 1 T T
2200 1 E | 34 1
0 100 200 0 100 200 0 100 200
Depth [L] Depth [L] Depth [L]

Fig. 11.9. Solution of Richards equation for infiltration within the soil compartment
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The complete code can be found on the CD under the name ‘richards.m’.

The output for the example data-set is reproduced in Fig. 11.9. The initial
profile is linear in the major deeper part of the soil column. In the upper
10 cm, the linear profile is disturbed by a layer with high pressure head and
high water content. There is constant inflow specified as input condition at
the top of the column, and a zero pressure head 2 meters below the top,
representing the groundwater table.

The simulation shows the gradual development towards a steady state
with constant infiltration and a gradual increase of volumetric water content
from 38% towards its maximum of 52%. Parameters for soil properties were
taken from Hornberger & Wiberg (2005). The physical units for all data are
a combination from length in [cm] and time in [h].
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Groundwater Drawdown by Pumping

Aquifers are a valuable source of water. Groundwater is available and used
in many parts of the world for industrial and municipal purposes and for
public water supply. In several regions and urban centers the percentage of
groundwater on public water supply reaches 100%. Although the chemistry of
subsurface water may be very different, groundwater quality can fulfil highest
standards nevertheless.

Groundwater is pumped from single wells or galleries of several wells. In
the vicinity of the wells the water table may decrease, depending on the type
of the aquifer. In all cases the piezometric head decreases, which is explained
in more details below.

Environmental studies in connection with groundwater withdrawal are nec-
essary for several reasons. The maximum yield, which can be extracted on a
sustainable basis, is of high concern for the well operating agency. The draw-
down of the water table itself may also be of ecological importance, as eco-
systems in the catchment of the well can be affected. Wetlands for example are
vulnerable systems, which react quite sensitive to changes of the sub-surface
or surface water table.

Water quality is another important topic for water withdrawal systems.
If the quality of pumped water is not sufficient, knowledge about the well
catchment and the flowpaths may enable counter-measures in order to avoid
or reduce the migration of polluted water towards the pumping facilities.
Recharge wells may prevent such migration if operated at an appropriate
location and an appropriate recharge rate.

In this chapter we examine the change of piezometric head h in the
vicinity of a single pumping well. There are analytical solutions for h as func-
tion of distance from the well centre r, which can be computed easily using
MATLAB®) . In all cases other causes for groundwater flow (for example base
flow) are neglected. More complex situations are treated in the following two
chapters.
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12.1 Confined Aquifer

A confined aquifer is a permeable groundwater layer between two impermeable
layers (aquitards), as shown in Fig. 12.1. In idealized situations, which are
treated in this chapter, groundwater flows in a permeable layer, the aquifer,
from all sides radially towards an installed pumping well. It is assumed that
the situation is totally equal in all radial directions, which allows the use of the
radius r as the space variable. It is also assumed that there are no differences
in vertical direction: the well is screened across the entire aquifer and there
are no differences concerning the hydraulic properties within the permeable
layer. The aquifer remains water saturated, i.e. there are no parts that fall
dry due to pumping.

In the idealized situation shown in Fig. 12.1, the aquifer is characterized by
a thickness H [m] and a transmissivity 7' [m?/s]. In the transmissivity param-
eter the hydraulic conductivity K of the porous material and the thickness of
the aquifer H are represented:

T=K-H (12.1)

T increases with thickness; T is higher for more permeable aquifers. It is as-
sumed that the well withdraws water at a constant rate Q [m?/s], which allows
the description of the steady state groundwater flow. The relevant variable for
the analysis of groundwater flow is the piezometric head h, which changes with
the distance r from the well position. Piezometric head is the key variable for
flow (see Darcy’s Law, Chap. 11), quantifying the height of the water table
above some reference level measured by a piezometer. A piezometer is a pipe
that is open at both ends, and reaches into the aquifer with the lower end). h
decreases if the well is approached and can be calculated by using the formula
of Thiem®? (1906):

W— pumping rate Q m O

Aquitard
e — <+— <+ H
. Groundwater
Aquifer transmissivity T | Flow
Aquitard

Fig. 12.1. Schematic cross-sectional view of a well pumping from a confined aquifer

59 Adolf Thiem (1836-1908) German hydrologist.
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h(r) = ho + 27?7’ log (;) (12.2)

with: ho  piezometric head above base at radius 7 [m]
Q  pumping rate [m?/s]
T  transmissivity of the aquifer [m?/s]
ro  radius [m]

A derivation of the formula is found in Sidebar 12.1. Here we describe a
short command sequence by which the piezometric head values in the vicinity
of the well are calculated. At first, the values of the input parameters have to
be given:

hO = 5;

o1
o o

T = 6
Q= 1.e-4;

r0 = 0.1;
Afterwards the radius vector r is specified. For each radius within the vector
the lowering of the piezometric head h is calculated:
r = [0.1:0.1:20];

The following command initiates the computation of the desired values
according to formula (12.2):

h = h0 + (Q/(2*pi*T))*log(x/r0);

In MATLAB®), log is the natural logarithm to the basis e. In the vector
h we now find all piezometric heads for the radii, given in the radius vector r.

22

piezometric head [m]
20

distance [m]

4 L L L
0 5 10 15 20

Fig. 12.2. Drawdown of groundwater piezometric head in a confined aquifer due to
pumping (Thiem formula)
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For an illustration it is best to use a graphic which is produced most easily
by the command:

plot (r,h);
ylabel (‘piezometric head [m]’); xlabel (‘distance [m]’);

The result is shown in Fig. 12.2.

12.2 Unconfined Aquifer

In contrast to a confined aquifer, an unconfined aquifer (also called phreatic
aquifer) is not limited by an impermeable layer from above. The upper bound-
ary of an unconfined aquifer is given by the groundwater table. Between the
groundwater table and the earth surface the unsaturated zone is located,
where the pore space within the porous material is filled with water and air.
Within the aquifer it is only water that flows in the pore space. The situation
is schematically depicted in Fig. 12.3.

If measured in reference to the aquifer base, the variable h is the water
saturated thickness of the aquifer, which is the distance between the position
of the groundwater table and the base of the aquifer below. In contrast to the
confined aquifer, in the unconfined aquifer piezometric head h represents the
position of the groundwater table.

The following formula adapts the Thiem equation (12.2) to the situation
of an unconfined aquifer. It is derived in Sidebar 12.1 and delivers piezometric
headh in the distance r from a well:

h2(r) = h2 + gf log (;) (12.3)

\WV pumping rate Q m O

ter Table
—
h
- — — <4+
Aquif Groundwater
quiter conductivity K | | Flow
Aquitard

Fig. 12.3. Schematic cross-sectional view of a well pumping from an unconfined
aquifer
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with: ho  water level in well [m]
Q pumping rate [m3/s]
K aquifer hydraulic conductivity [m/s]
ro  well radius [m]

Sidebar 12.1: Derivation of Thiem’s Equations for
Confined and Unconfined Aquifers

In the confined aquifer horizontal flow towards a well in a steady state needs
to fulfil the volume conservation equation:

2nrHvu,. = Q

for all radii r with radius-dependent velocity v,., aquifer depth H and pump-
ing rate Q). According to Darcy’s Law holds:

oh

r =K
v or

Both equations together deliver a differential equation for h(r):

oh  Q

"or T onT

with T=K H. As the right hand side is a constant, the differential equation
can also be written as follows:

0 oh
r =0
or \' or
In order to obtain a solution formula, we proceed with a reformulation
of the equation:

oh Q1
or 2nTr
The solution can simply be obtained by integration:
_Q
h= 9T log(r) +C

with integration constant C. If the head hg at a position rg is given, the
integration constant can be determined:

C=ho— log(ro)

Q
27T
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The formula (12.2) given above results.
In the unconfined situation one starts analogously with the volume con-
servation principle:

2rrhv, = Q

Instead of the total height of the groundwater layer, the height of the
water table h above the base has to be considered. Using Darcy’s Law, as
stated above, yields:

rhah = @
or 21K
or
rah2 _ Q
or K
with the general solution:
h? = 73( log(r) + C

As above, the knowledge of a pair (rg,ho) helps to determine the inte-
gration constant C' and the formula (12.3) results.

h changes with the radius r, as already explained above. We compute the
changing values in a short command sequence. In the MATLAB® command
window specify the new input parameter first:

K= 1.e-4;

The following line initiates the computation of the vector of piezometric
heads:

h = sqrt(h0xh0 + (Q/(pi*K))*log(r/r0));

sqrt denotes the squareroot. With the next command the results are
shown as a green broken line:

plot (r,h,‘--g’);
Exercise 12.1. Change the value for K and compare drawdowns of piezo-
metric head in a single figure! Use the command

hold on;
to keep the graphic, and the command

legend (,K=1.e-4’);

to show a legend. The legend, like other additions to or corrections of the
graphic, could also be added from the figure editor itself. A title is plotted by
using the title command:

title (‘Theis unconfined’);
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12.3 Half-confined Aquifer

The situation in a half-confined aquifer is depicted in Fig. 12.4: an aquifer
is overlain by a half-permeable layer. Thus, the pumped water partially
originates from the aquifer itself, partially from the overlying strata, which is
connected through the half-permeable layer.

For a thick half confined aquifer, de Glee (1930) derived a formula describ-
ing the drawdown s of piezometric head at a distance r from a well:

s(r) = 27?TK0 <¢;C) (12.4)

Q pumping rate [m3/s]

T transmissivity [m?/s]

c resistance of half-permeable layer [s]

Ky modified Bessel function 2. type 0. order

with:

In MATLAB®), put in the new parameter c:
c =1.e7;

and calculate the vector of drawdowns according to:
s = (Q/(2*pi*T))*besselk(0,r/sqrt(T*c));

The correct variant of the Bessel function (here besselk) and the pa-
rameters are found in MATLAB-help. The result is shown by using the plot
command:

plot (r,-s);

Figure 12.5 depicts the graphical output. In Fig. 12.6 drawdowns in a con-
fined, an unconfined and a half-confined aquifers are compared. The drawdown
for the half-confined situation lies between the drawdown for the confined and
the unconfined aquifers. The user may easily find parameter values for which

r’ Well ‘ .
\mlgface/__ pumping rate Q m Q

Half permeable layer i ¢ *

— — -«— - H
- Groundwater

quier transmissivity T | Flow
Aquitard

Fig. 12.4. Schematic cross-sectional view of a well pumping from a half-confined
aquifer
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0

Sp-----

drawdown [m]]

zélccording to de d!lee

Fig. 12.5. Drawdown of groundwater piezometric head in a half-confined aquifer

[}

10

distance [m]

due to pumping, according to de Glee (1930)

that reasonable result is not true. The reason for the apparent incompatibility
is that all three formulae are valid under different conditions. The formula of
de Glee is derived for the half-space below the half-permeable layer, i.e. un-
der the assumption that the aquifer is too extended, making the value of its
thickness irrelevant.

The complete code can be found on the CD under the name ‘welldraw-

down.m’

15 20

-0.1 T

drawdown (neg) [m]

confined
—— half-confined
—— unconfined

distance [m]

Fig. 12.6. Steady drawdown of groundwater piezometric head in a confined, a half-

confined and an unconfined aquifer

25 30

35
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12.4 Unsteady Drawdown and Well Function

In a confined aquifer the drawdown of the piezometic head s is given by the
formula of Theis (1983). s is a function of the distance from the well r and
the time t after the start of pumping:

str) = 47?TW (iﬁ) (12.5)

with: Q pumping rate [m?/s]
T  aquifer transmissivity [m?/s]
S storage coefficient of the aquifer [1]

In the formula appears the function W, with an argument which is usually
abbreviated as u. W(u) is so important for well drawdown that it is named
well function in the corresponding literature. In the mathematical literature,
the same function is called the exponential integral and is mostly referred to
as F1(u). The name is explained by the definition of Fj(u):

Wi = B = [ PV (12.6)

20

Fig. 12.7. Unsteady drawdown of groundwater piezometric head in a confined
aquifer due to pumping according to Theis; parameters given in text, for times
t =102, 10%, 10° and 10°
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In MATLAB® the well function can be found under its mathematical
notation. It is called by expint. In order to compute the formula given above,
specify the storage parameter as new parameter:

S =0.1;
Then specify the time for which drawdown is to be computed:
t = [1000000] ;

Calculate and plot the results by the following commands:

s = (Q/(4xpix*T))*expint (S*r.*r/(4*T*t));
plot (r,-s);

Figure 12.7 depicts the resulting drawdowns at four different time instants.

12.5 Automatic Transmissivity Estimation

The formulae given in the previous sub-chapters can not only be used for the
computation of the groundwater drawdown and lowering of piezometric head
but also for parameter estimation. In so called pumping tests water is pumped
from one well, while drawdown is observed in some surrounding boreholes or
piezometers. The result is a series of drawdown values; an example data set
is given in Table 12.1. The conductivity or transmissivity of the aquifer is to
be determined, i.e. we have a task of inverse modeling as already introduced
in Chap. 10.

In simple cases parameter estimation can be performed manually, i.e.
the concerned parameter is adjusted until a reasonable coincidence between
observed and calculated values is obtained. Here we follow the procedure,
described in Chap. 12.5, performing automatic parameter estimation using
MATLAB® . The procedure is demonstrated for the Thiem formula (12.2),
i.e. for the determination of the transmissivity of a confined aquifer. The ex-
ample is based on a data set given by Kruseman & de Ridder (1991), measured
for a pumping test at the ‘Oude Korendijk’, the Netherlands. Values for steady
state drawdown were obtained at four positions in different distances from the
well. In MATLAB®) , distances and drawdowns are specified in vectors:

rfit = [0.8 30 90 215];
sfit [2.236 1.088 0.716 0.25];

Next pumping rate [m3/d] and reach of the well are given, as well as an
initial guess for the transmissivity [m?/d]:

Q = 788;
reach = 500;
T = 700;
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Table 12.1. Pumping test example data-set (after: Krusemann & de Ridder 1973)

Time at Drawdown Time at Drawdown Time at Drawdown
r=30 r=30 r=90 r=90 r=215 r=215
fmin] fm] fmin] fm] fmin] fm]
0 0 0 0 0 0
0.1 0.04 1.5 0.015 66 0.089
0.25 0.08 2.0 0.021 127 0.138
0.5 0.13 2.16 0.023 185 0.165
0.7 0.18 2.66 0.044 251 0.186
1.0 0.23 3.0 0.054
1.4 0.28 3.5 0.075
1.9 0.33 4.0 0.090
2.33 0.36 4.33 0.104
2.8 0.39 5.5 0.133
3.36 0.42 6.0 0.153
4.0 0.45 7.5 0.178
5.35 0.50 9.0 0.206
6.8 0.54 13.0 0.250
8.3 0.57 15.0 0.275
8.7 0.58 18.0 0.305
10.0 0.60 25.0 0.348
13.1 0.64 30.0 0.364

The estimation is performed by utilizing the MATLAB®) zero-search func-
tion fzero:

T = fzero (@myfun,T);

with an appropriate function myfun. The function is derived from the residual
condition

lres|| = \/Z (rfit) — (ho — sfn)) is minimal (12.7)

When the reach of the well with condition hy=0 is considered, condition
(12.7) is equivalent to finding the minimum of the objective function

e(T) = Z (h(ryit) + sgit)” (12.8)

This has the following necessary condition:

oh
=2 E szt + Sflt)aT (Tfit) = 0 (129)
Using the Thiem formula, the derivative can be written as:
oh Q r h
=— 1 = - 12.1
or ~ oxr2 8 (m) T (12.10)

and thus the condition can be reformulated as follows:
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h Tfi
Z (h(ryit) + syit) (j]: ) 0 (12.11)
The vector notation is:
1
7 (B(rsie) +8pi) h(rgi) " =0 (12.12)

It is convenient to use the function in an M-file, which should look
similar to:

function f = myfun(T);
global rfit sfit reach Q

% calculate Thiem solution
h = Q*log(rfit/reach)/T/2/pi;

% specify function f to vanish
f = (h+sfit)*h’/T;

The result for the example data set is: T = 352m?/d, which is obtained after
few iterations within the MATLAB®) fzero-module. Figure 12.8 depicts the
hypothetical drawdown for the ideal case, calculated by MATLAB® , and

the measured drawdowns.

The MATLAB® module for automatic transmissivity estimation based
on Theis steady-state solution can be found under the name ‘thiem test.m’.

Thiem Solution

T =351.8756

0 measured
—ideally

0 100 200 300 400 500
r

Fig. 12.8. Automatic transmissivity estimation in MATLAB® based on Theis
solution
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The described results can be obtained by setting the test-parameter in the
input section of the M-file to 1.

The example demonstrates a procedure for the determination of transmis-
sivity in a confined aquifer using the Thiem formula (12.2). The method can
be performed similarly for the other formulae given in this chapter. One can
determine hydraulic conductivity in an unconfined aquifer with the help of
formula (12.3). One can estimate transmissivity and/or resistance of the half-
permeable layer for a half-confined aquifer using the de Glee formula (12.4),
and one may obtain the transmissivity and storativity of a confined aquifer
using the Theis formula (12.5).

Automatic Transmissivity Estimation Exercise

Write an M-file, similar to the example given above, and perform an automatic
parameter estimation for an unsteady pumping test using the Theis formula
(12.5). As two parameters have to be estimated, use a structure of two
functions, where the second function for the estimation of the transmissivity
is called within the first for the estimation of the storage coefficient.

As an exercise, use the data set from Table 12.1. There are three observa-
tion points in the distances r = 30m, 60m and 215m from the well. In the
columns of the table corresponding times and drawdowns are given for the
various measurements. The example data-set was taken from Krusemann &
de Ridder (1973).

Hint: use the derivative of the well function

OW(u) exp(—u)

= 12.1
Ou u (12.13)
to show the following two equalities:
oW OW Ou  —exp(—u)
or — ou or T (12.14)
and
oW oW Ou  exp(—u) (12.15)

S ~ ou 89S S
Formulae (12.4) and (12.5) have to be used in the automatic parameter

estimation procedure that is based on derivatives and is demonstrated above
and in Chap. 10.4.
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Aquifer Baseflow and 2D Meshing

13.1 1D Analysis

In general a flow field, as introduced in Chap. 11, may be different at every
location and, for transient flow, at every time instant. In contrast, one-
dimensional base flow represents a constant vector independent of time and
space. Such an idealized situation is seldom met in environmental compart-
ments, but it may serve as an approximative description of field situations.
An example could be the groundwater flow between two parallel channels
which have a constant but different water level. However, in parts of a re-
gional watershed often a constant flow field is assumed as a simplification of
the real situation. The 1D assumption is also often justified for experimental
set-ups, for example in column experiments. The simplest flow pattern for a
fluid set-up between two plates is also 1D.

For a basic description, we assume that the z-axis is chosen in flow direc-
tion. The flux per unit width results as product of the height h of the water
column and the velocity u:

g=h-u (13.1)

The unit of ¢ is [L2/T]. When the fluid fills only part of the space, i.e. in
porous media or in multi-phase situations, v is the product of the real velocity
v multiplied with the share 6 of the porespace or the corresponding phase on

the total volume:
u=0-v (13.2)

In porous media, u is the Darcy-velocity or filter velocity. A slightly more
generalized situation is given if water height and velocity are allowed to change
along the flowpath (in z—direction):

q = h(z)u(x) (13.3)

with: q water flux per unit width [m?/s]
h  height of the water column [m]
v velocity [m/s]
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For a confined aquifer (see Chap. 12) the height remains constant: h is
equal to the thickness of the aquifer H. In porous media Darcy’s Law is valid,
which can be formulated as

oh
u(z) = _Kaac (13.4)
with: K hydraulic conductivity [m/s]
Replacing « in (13.3) by the formula (13.4) delivers:
oh
q o (13.5)

as transmissivity is the product of hydraulic conductivity and aquifer height:
T=K - H. Equation (13.5) is a differential equation for the function h(z). For
constant transmissivity 7' the equation is easy to solve:

h(z) = —;m+ho (13.6)

For the unconfined aquifer (see Chap. 12) the starting point is not (13.5)
but the following:

oh
=—Kh 13.7
q 9 (13.7)

The differential equation (13.7) can also be written as:

1 0h?
=— K 13.8
¢=-,K (13.8)

which has the solution:
2

h2(z) = — ng + h2 (13.9)

Another relevant term is the discharge potential ¢ [m?/s] with deriva-
tive —¢ as defining condition. The discharge potential can not be measured
directly but is introduced, because it fits into the theoretical framework. ¢
plays an important role in the following chapters. Note that the findings for
the potential are valid, whether an aquifer is confined or unconfined. How-
ever, the transition from potential ¢ to piezometric head h depends on the
conditions of the aquifer.

The transformation formulae are derived from the equivalent defining
equation:

olx) = —/qdaz (13.10)

and further:

KH [ gh dx for the confined aquifer
pla) = h T on2 (13.11)

K[ hgx dz = ) Ik 9 dz  for the unconfined aquifer
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Thus follows finally:

) (13.12)

T(h(x) — hg)  for the confined aquifer
=< K
P 5 (h?(z) — h3)  for the unconfined aquifer

Note that the relation T' = K H was applied. The potential is not unique.
The addition of a constant does not change the potential property.

13.2 1D Implementation

For modeling with MATLAB®) set input parameters first:

hO = 10;
Qx0 = 5.e-5;
K = 0.0001;

Then define the vector x with distances at which h is to be calculated:
x = [1:1:100];

In the following line the vector with piezometric heads for the confined
aquifer is calculated utilizing formula (13.6):

hc = h0 + (Qx0/(K*h0))*x;

The calculation of the unconfined situation, according to formula (13.9),
is similar:

hu = sqrt (hO*h0 + (2%Qx0/K)*x);

With the following commands heads in confined and unconfined aquifers
are compared:

plot (x,hc,‘-b’,x,hu, ‘- -g’);
legend (‘confined’, ‘unconfined’,2)

Exercise 13.1. Change g to a more realistic value that is 2 orders of magni-
tude lower

Quite often the discharge ¢ is not known. Instead, the groundwater level
h1 in a certain distance L is known from measurements. The derivation of the
solution, as shown above, delivers the formulae:

hi—h
ho + 1L OCE

h(z) = b2 (13.13)
\/ h3+ ! I Og for the unconfined aquifer

for the confined aquifer

Obviously, h depends only on the observed values hy and h; and the length
L. h is independent of the material parameter K and the aquifer depth H.
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Fig. 13.1. Piezometric head for a confined and an unconfined aquifer with identical
hydraulic properties

Exercise 13.2. Compare the confined and the unconfined situation in a
graph, as it is shown in Fig. 13.1!

The solution is obtained by using the following commands (see Fig. 13.2):

L=100;
hl = 12;
hc = h0 + ((h1-h0)/L)*x;

hu = sqrt(h0*h0 + ((h1*h1-h0*h0)/L)*x);
plot (x,hc,‘- -g’,x,hu, ‘-b’);
legend (‘confined’, ‘unconfined’,2)

13.3 2D Implementation

Of course most flow fields in environmental systems are higher-dimensional.
In this chapter we are concerned with 2D flow fields, which are more complex
than 1D fields, but in gerneral still simpler than 3D flows. The first task is to
represent a 1D flow field in 2D.



13.3 2D Implementation

confined

11.8 H| —— unconfined .
11.6 | b
114 1
112} 4
11 1
10.8 | b
10.6 | 4
104 | b
10.2 | 4

10 : ; ; : ; ; ; ; :

0 10 20 30 40 50 60 70 80 90

100

247

Fig. 13.2. The difference of piezometric head between two specified levels for a

confined anda n unconfined aquifer is obviously marginal

In order to start with a 2D description, one needs to know how to represent
meshes. In MATLAB®), the easiest way to obtain a mesh is the meshgrid

command. It is best explained by an example:

= meshgrid ([0:10:100], [10:2:20])
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A rectangular mesh, a grid, is produced for which the z-coordinates are
given by the first vector in the brackets and the y-coordinates by the sec-
ond vector in the brackets. If the command is called with a single vector
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as parameter, that one is used for both z- and y-direction. The meshgrid
command produces two matrices, one containing the z-coordinates, and one
containing the y-coordinates. In the example the matrices are denoted by x
and y also. Using the commands

hc
hu

hOo + (Qx0/(K*hO))*x;
sqrt (hOxh0 + (2%Qx0/K)*x);

the piezometric heads for the confined and for the unconfined aquifers are
calculated for all grid points. Both hc and hu are also matrices here which
have the same dimension as x and y. The fields are plotted as surfaces by
using the command:

surf (x,y,hc);
hold on
surf (x,y,hu);

Here the mesh is rectangular and regular, but the surf-command can also
be used for irregular meshes.

The next step is to extend the model for situations in which the aquifer
is partially confined and partially unconfined. The potential ¢ (in the M-file:
phi) is first evaluated without a constant. Then an appropriate constant phi0
is added. The constant is computed differently for the confined and for the
unconfined situation. The confined situation is given if hO, the head at mesh
position (1,1), exceeds the aquifer thickness H. In order to use this simple
criterion, it is required that the hydraulic head is measured to zero level at
the aquifer base.

The formulae (13.12) are applied. The potential for the confined situa-
tion gets another constant, which is —1/2K H?. Inserting this constant the
potential becomes a continuous function at locations with h=H, where the
conditions change from confined to unconfined or vice versa. The potential
value at these ‘critical points’ is given by:

1
Perit = 2KH2 + o (13.14)

The formulae for the head thus become:
H
9 + ('OI((Z) for the confined aquifer
h(z) = ) (13.15)
\/ Kgo(x) for the unconfined aquifer

The entire M-file is given by:

Qy0 = -1.e-6; Qx0 = 0.0;
K = 0.001;

hO = 9.99;

H = 10;
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[x,y] = meshgrid ([0:2:200],[0:2:200]);
phi = -Qx0*xx - QyO*y;

if (hO>=H)

phiO = -phi(1,1) + K*HxhO - 0.5*K*H*H; % confined
else

phiO = -phi(1,1) + 0.5*K*hO*hO; % unconfined
end

phi = phi + phiO;

phicrit = 0.5xK*H*H + phiO; % margin between confined and
unconfined confined = (phi>=phicrit);

h = confined.*(0.5%H+(1/K/H)*phi)+~confined.*sqrt ((2/K)*phi) ;
surf (x,y,h);

In the final part of the M-file we use a matrix containing the values 0 and 1,
depending on the hydraulic situation of the aquifer at the corresponding mesh
position. The array confined contains a 1 if the aquifer is confined, and a 0 if
it is unconfined. The matrix is created simply by the formula phi>=phicrit.
In the following statement the matrix h is calculated using the formula for
the confined or for the unconfined situation, depending on the situation at
each mesh node. For that purpose the confined and the ~confined arrays
are used, with the negation operator ~ that switches between 0 and 1 at each
location. The graphical results for the reference data is depicted in Fig. 13.3.

200

Fig. 13.3. Head distribution for the reference input data
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Fig. 13.4. Two examples for baseflow for confined aquifer (with refernce head 10 m
K = 107*m/s); left: in z-direction (Quo= — 107%, Q,0=0), right: in y-direction
(Qz0=0, Qyo=—10"°)

The following figure depicts the output of the M-file for the reference input
data-set.

Exercise 13.3. Change Qx0 and Qy0! Two examples are given below in
Fig. 13.4.

13.4 Meshs and Grids

Some commands concerning MATLAB®) 2D graphics have already been used
in previous chapters and subchapters (see Chap. 4 for surf and contourf).
MATLAB® 2D graphics, justifying the name of the software, is based on
matrices, i.e. 2D arrays. The values within a matrix can be visualized by
several graphics commands. The user may try the following simple sequence:

A = rand(10);
surf (A);

which produces a surface plot of a random matrix, as shown in Fig. 13.5:

Other commands that work on single matrices are: plot (A), contour
(A), contourf (A),mesh (A) and waterfall (A). In these introductory ex-
amples the z-y-positions in the graph are simply the indices corresponding to
rows and columns of the matrix. In most 2D graphics such a simple mesh of
integers is not appropriate. Thus the graphical representation starts with the
computation of the mesh.

The basic mesh generating meshgrid command was already used in this
Chapter before. Using meshgrid in 2D, two 1D vectors are transformed into
two 2D arrays; the latter represent the z- and y- coordinates of the mesh nodes.
As already demonstrated, the command can also be used for the generation of
3D meshes. If the input vectors are equidistant, a regular mesh is produced,
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1 2 3 4 5 6 7 8 9 10

Fig. 13.5. Surface plot and filled contours for a matrix
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in which all areal elements of the mesh are of same size. If the vectors are not
equidistant, the resulting mesh is irregular.

MATLAB®) contour commands are based on a rectangular grid. The con-
touring algorithm is quite simple. For a given contour level v the positions
between two neighboring grid points are computed based on linear interpola-
tion if the contour level lies between the variable values of these two positions
x; and z;, ie. if w(x;)<v<u(z;) or w(x;)>v>u(z;) hold. In a second step
the algorithm draws lines connecting the calculated positions within the same
block.

Contours can also be created if positions are not distributed on a rectan-
gular grid. An intermediate operation is to interpolate and extrapolate given
data to a rectangular grid. This is done by the griddata command. The com-
mand has several parameters and options and the graphical output, i.e. the
exact locations of the contour lines may be quite different, if different options
are used.

We demonstrate the procedure for a dataset that is available in three
columns: z-coordinates, y-coordinates and values, all gathered in an array X.
The following command sequence can be used to produce a figure of filled
contours:

[x,y] = meshgrid(linspace(xmin,xmax,100),linspace(ymin,ymax,
100));

z = griddata (X(:,1),X(:,2),X(:,3),x,y);

contourf (x,y,z);

xmin, ymin, xmax and ymax are the limits of the z- and y-region. By the
first command the mesh is calculated and stored in the variables x and y. The
second command initiates the interpolation. Interpolated data are stored in
variable z. The last command produces the plot.

Of course the interpolation depends on gridsize of the mesh. But also the
interpolation method is important. There are four options currently imple-
mented in MATLAB®):

e ‘linear’: triangle-based linear interpolation (default)

e ‘cubic’: triangle-based cubic interpolation

e ‘nearest’: nearest neighbor interpolation

e ‘v4’: biharmonic interpolation

The influence on the outcome is demonstrated for a data-set that was ex-
tracted from 100 borehole logs. For each borehole the file contains the informa-
tion, if a certain subsurface strata was detected or not. The detection of that
highly impermeable strata is connected to a value of hydraulic conductivity
(see Chap. 11.3). Detection is identified with a vertical hydraulic conductivity
of 1078 m/s, while there is a high conductivity of 1073 m/s otherwise. The
interpolations using the four different methods available in MATLABG®), lead
to very different results that are presented in Fig. 13.6.
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Linear Interpolation 10~ Cubic Interpolation <10~
10

Nearest Neighbour Biharmonic Spline <104

10
8

6

s

Fig. 13.6. Comparison of interpolation methods

Results from linear and cubic interpolation look most similar at first sight,
but a closer look reveals that the cubic method delivers negative values at sev-
eral places of the map. Like other material properties and like concentrations,
conductivities can not take negative values and the result of cubic interpola-
tion is thus not appropriate for processing in an environmental model.

Biharmonic spline is a method, for which the curvature of the approx-
imated surface plays an important role (Sandwell 1987). As a result local
peaks in the data set have an influence on a larger region in their vicinity.
The method is not appropriate in this example, as the regions with negative
values are even more extended than for cubic interpolation.

The ‘nearest neighbor’ method delivers a completely different picture, as
the variable takes only two values. There is no transition zone. Concerning its
geological significance the result seems to be the closer to reality, as there are
no locations with intermediate values: the impermeable layer is either present
or not.

There are also differences between the four methods concerning extrapo-
lation. Linear and cubic interpolation are based on triangulation of the model
region and thus deliver no values outside the subregion, for which data are
available. Outside that region NaN is given by the algorithm, i.e. there are no
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values extrapolated. Consequently in these regions, near the upper and right
boundary, no colours are depicted in the plot. The other two methods deliver
values for the entire grid, although extrapolation may not be justified. By us-
ing the ‘nearest neighbor’ method, the user has to set NaN’s manually before
plotting, if extrapolation is not wanted.

Reference

Sandwell D.T., Biharmonic spline interpolation of Geos-3 and Seasat altimeter data,
Geophys. Res. Lett., Vol. 14, No. 2, 139-142, 1987
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Potential and Flow Visualization

14.1 Definition and First Examples

Potential and streamfunction are mathematical functions that can not be
observed directly in the real world, but which turn out to be extremely
powerful concerning the calculation and visualization of 2D flow fields. There
are applications for all types of fluids, for free flow of gases and liquids, as well
as for porous media flow. Electro- and magnetodynamics are other scientific
fields where potential theory is applied extensively.

The notation potential refers to a function ¢, from which a flow field is
derived by the gradient of ¢. ¢ is a velocity potential if:

v==xVp (14.1)
For steady incompressible fluids (see Chap. 2), for which the continuity equa-
tion V- v = 0 is valid, follows the potential equation or LaplaceS® equationS:
2 2
Ox? 0y? (14.2)
ap Peeye) | Pl s) | Py '
' Ox2 Oy 022 n

The short form, using the V-operator, is valid for 2D and 3D cases. In fluid
dynamics the potential ¢ has the physical unit of [m?®/s]. The name potential
is connected with the property that at each location of the model region the
flux or velocity vector can be derived from the gradient of the potential:

v=Vop (14.3)
60 Pierre-Simon Laplace (1749-1827), French mathematician and astronomer.

61 The formulation Ap = 0 can be found frequently, which makes sense, as the
Laplace operator A is formally defined as A :=V - V.
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There is an entire mathematical discipline dealing with solutions of the
2D potential equation. Subject of complex analysis are harmonic functions
that are solutions of the 2D Laplace equation. In this chapter we deal with
1D parallel flow that is represented by the potential

o(z,y) = o + a1 + Pyy (14.4)

Additionally there are sources and sinks in the infinitely extended space,
which are represented by the potential:

ilog(\r—ro\) (14.5)

p(r,y) = 9

where ¢,, ¢, and ¢q are constant numbers. ) denotes the source- or sink-
rate, ro the location of the source or sink in 2D space and r = (z,y) the
vector towards the current location. According to vector analysis, r — rq is
the vector connecting source/sink location with the current position. |r — r|

is the length of the connecting vector, equal to \/(ac —20)* 4 (y — w0)*.

In the following we examine potentials emerging from the superposition
of formulae (14.4) and (14.5). According to the principle of superposition, the
sum of the functions is a solution of the Laplace equation too. The principle
is a trivial consequence from the fact that the potential equation is linear. In
MATLAB®) such functions can be visualized easily as demonstrated by the
following command sequence.

xmin = -1; xmax = 1; % x-coordinates

ymin = 0; ymax = 2; % y-coordinates

x0 = 0; yO = .905; % source/sink location
Qx0 = 0.1; Qy0 = 0; % baseflow components
Q = 1; % source/sink rate

xvec = linspace(xmin,xmax,100);
yvec = linspace(ymin,ymax,100);
[x,y] = meshgrid (xvec,yvec); % create mesh

r = sqrt((x-x0) . 2+(y-y0)."2); % distances to well
phi = -Qx0*x-QyO*y+(Q/(2*pi))*log(r); % potential

surf (x,y,phi); % surface plot

With the first five instruction lines the parameter values are specified.
In the next step, 100 equidistant positions at the intervals on the z- and y-
axis are computed before the mesh is constructed and stored in the x and y
arrays, using MATLAB®) meshgrid. Next, the array r is computed, which
contains the distances to the source/sink position for all mesh-points. The
potentialarray phi is evaluated in the following command and finally plotted
as surface plot.

The result of the entire series of commands is given in Fig. 14.1. The outer
gradient, due to baseflow, is clearly visible as well as the dramatic drawdown
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Fig. 14.1. Surface plot for a potential function; derived from superposition of 1D
baseflow and flow towards a sink

where the sink is approached. As the M-file is written, a positive value for
Q produces a sink, while a negative value results in a source. The user may
check the direction and gradient of baseflow by variation of the variables Qx0
and Qy0. Note that the given logarithm has a single singularity at the source/
sink position with r = ry.

In 3D the point source/sink solution, corresponding to formula (14.5), is
given by
Q 1

4 |r — 1

In MATLAB®) the 3D potential is calculated by the following command
sequence. The resulting plot is depicted in Fig. 14.2.

Q=1;

Qx0 = 1;

i = linspace(1,3,50)

[x,y,2z] = meshgrid (i,i,i)

r = sqrt((x-2.05).72+(y-2.05).72+(2-2.05).72);
xslice = [1.5;1.9;2.3];

yslice = [3];

zslice = [1.5;2.2];

phi = -Qx0*x-Q/4/pi/r;

slice (x,y,z,phi,xslice,yslice,zslice)

o(x,y,2) = (14.6)



258 14 Potential and Flow Visualization
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Fig. 14.2. Polential flow in 3D

14.2 Potential and Real World Variables

From the Euler equations (see Chap. 11) for irrotational potential flow the
following formula can be derived (Guyon et al. 1997):
2
pgf +pv2 +p+ppr=C (14.7)

where C' is a constant for the entire domain. ¢y denotes the potential of an
outer force. Equation (14.7) resembles the Bernoulli theorem (see Chap. 11),
which holds for all solutions of the Euler equations but with a constant C
on streamlines only. It is a formula connecting the potential and real world
variables p and v. If the potential is known, the velocity can be obtained by
formula (14.1), and (14.7) becomes an equation for the pressure p as only un-
known variable. Some conditions concerning p and ¢ are required additionally,
which was already discussed in detail by Prandtl & Tientjes (1934).

In 2D porous media flow it is usual to use the discharge vector q as the
negative gradient of the discharge potential ¢:
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1) _Op(z,y)

—_ o . qr xay _ €T

q=—Vy, in2D: <qy(x,y)) = | ovlz.y) (14.8)
Jy

The discharge vector has the dimension [m?/s] and denotes the volume of
water flowing in the x-y-plane per unit space of z-direction. Discharge vector
and Darcy-velocity u [m/s] are related according to the formula:

H-u(z,y) for the confined aquifer

alz,y) = {h(x, y) - u(z,y) for the unconfined aquifer (14.9)

with  H thickness of the confined aquifer [m]
h  height of watertable above the base of the unconfined aquifer [m]

For the real interstitial velocity v [m/s] holds:

H- -0 v(z,y) for the confined aquifer

alz,y) = { h(z,y)-0-v(z,y) for the unconfined aquifer (14.10)

with porosity 8. Using Darcy’s Law u = — K - VA (with hydraulic conductivity
K), a formula for the calculation of the potential ¢ from the piezometric head
h can be given:

(2,1) = K-H-h(z,y)+C. for the confined aquifer
vy = LpK - h(z,y)* + C, for the unconfined aquifer

h [m] is the piezometric head above the base, both for the confined and the
unconfined case. In the unconfined aquifer, i corresponds to the position of
the groundwater table. C,, and C\ are constants that are irrelevant for the flow
field: when the potential is differentiated, the two constants vanish. However,
C, and C, are relevant for the relation between h and . Details are given
below.

The condition that the head has no jump, where the aquifer changes from
confined to unconfined state, yields a condition for C,, und C.. If both formulae
for the marginal condition h = H are evaluated, both potential values are
equal under the condition:

(14.11)

C.=C,—1pKH? (14.12)

One obtains a continuous potential ¢(z,y), with which it is possible to
describe aquifers being partly confined and partly unconfined. Altogether one
may thus write:

(2,y) = K -H-h(z,y) — 1K -H?+ ¢y  for the confined aquifer
PAOY = 1kK - bz, y)? + o for the unconfined aquifer
(14.13)

where the notation g is used instead of C,. The transition between confined
and unconfined situation is given for the (critical) potential value:
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Perit = LK H? + g (14.14)

In order to compute piezometric head from the potential, which is obtained
as solution of the potential equation, the (14.13) have to be resolved for h.
The result is:

Wz y) (o(, ) 1/2K H? — ) / (KH) for the confined aquifer
V2 (g — o) /K for the unconfined aquifer
(14.15)

Equations (11.16) and (11.17) are valid for porous media flow independent
of the number of spatial coordinates, i.e. in 1D, 2D and 3D. Under certain
conditions these may be reformulated as potential equations. From (11.6) can
be derived that in case of constant conductivity K the potential equation is
valid for ¢ = K - h in model regions without sinks or sources. One may also
use the pressure formulation (11.7) to obtain a connection between potential
and pressure:

k
¢=MV@—w@ (14.16)

14.3 Example: Groundwater Baseflow and Well

In the following example the formulae, derived for aquifers in the previous sub-
chapter, are applied to a system of wells in an aquifer. Input values are typical
for hydrogeological set-ups. There are aquifer thickness, hydraulic conductiv-
ity and baseflow in both coordinate directions. Moreover, there is a reference
value for piezometric head, which is to be valid at a very specific position of
the model region.

Well coordinates and pumping rate are to be specified as well as the ex-
tension of the model region:

% Baseflow

H=5.; % thickness [L]

hO = 5.5; % reference piezometric head [L]
K = 5.e-5; % hydraulic conductivity [L/T]
Qx0 = 1.e-6; Y% baseflow in x-direction [L"2/T]
Qy0 = 0; % baseflow in y-direction [L~2/T]
% Well

x0 = 100; % x-coordinate well position [L]
yo = 0; % y-coordinate well position [L]

Q = 1l.e-4; % pumping / recharge rate [L~3/T]

% Mesh

xmin = 0; xmax = 200;% min./max. x-position of mesh [L]
ymin = -100; ymax = 100;% min./ max. y-position of mesh [L]
% Reference point position in mesh

iref = 1; jref = 1;
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xvec = linspace(xmin,xmax,100);
yvec = linspace(ymin,ymax,100);
[x,y] = meshgrid (xvec,yvec); % mesh
r = sqrt((x-x0) .*(x-x0)+(y-y0) .*(y-y0)); % distances to well
phi = -Qx0*x + QyO*y + (Q/(2*pi))*log(r); % potential
phiO = -phi(iref,jref) + K+#H*hO - O.5*KxHxH;...
% reference potential
hc = 0.5%H+(1/K/H)*(phi+phiO); % confined
surf (x,y,hc); % surface plot

In the execution part the mesh is computed first in the arrays x and
y. The vector of distances from the well position is stored in r. Then the
potential is calculated in phi. The reference potential is determined to produce
the reference head value hO at the (iyef, jref) position of the mesh. For the
chosen input values, the position of the reference head has the coordinates
(Tmin, Ymin). The user has to choose different values if the reference value is
to be valid at another location of the model region. The array of piezometric
heads hc for the confined aquifer is computed from the potential using (14.15)
with a value for reference potential phi0 calculated before. The final command
initiates the figure plot.

The last commands are valid for the confined aquifer. For the unconfined
aquifer the command sequence needs to be changed only slightly. The potential
remains the same. Only the part in which the head is computed from the
potential has to be altered. The command for phiO is concerned, as well as
the computation of the head hu for the unconfined aquifer. One may use the
following commands

phiO = -phi(iref,jref) + 0.5*%KxhO*hO; ¥ reference potential
hu = sqrt ((2/K)*(phi+phi0)); % unconfined
contourf (x,y,hu);

in order to produce a contour plot, as shown in Fig. 14.3. The reference head
value needs to be below the aquifer thickness; H=6 was used in the computa-
tion.

The M-file can be extended to account for situations in which the aquifer
is partially confined and partially unconfined in the model region. To do that,
the M-file must be changed in the part where the head is calculated:

if hO > H

phiO = -phi(iref,jref) + K*H*hO - 0.5*KxHxH;
else

phiO = -phi(iref,jref) + 0.5%K*h0*h0; ) reference potential
end

hc = 0.5*%H+(1/K/H)*(phi+phi0); % head confined

hu = sqrt ((2/K)*(phi+phi0)); % head unconfined
phicrit = phiO + 0.5*%K*Hx*H; %transitionconfined/unconfined
confined = (phi>=phicrit); % confined/unconfined indicator

h = confined.*hc+~confined. *hu; % head
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Fig. 14.3. Drawdown in an aquifer in the vicinity of a pumping well

The reference value phi0 is computed in the first five lines. If the speci-
fied reference head hO exceeds the aquifer depth H, the aquifer is confined,
otherwise it is unconfined. For those situations the reference potential is
computed using different formulae, which are obtained by solving (14.13)
for ¢p.

Then the heads hc and hu for the confined and the unconfined situa-
tion are both calculated. phicrit is the critical potential value at which
the aquifer switches between confined to unconfined state, according to
formula (14.14). The confined array contains a 1 at every entry corres-
ponding to a mesh node, where the aquifer is confined, and a 0 at every
entry that corresponds with a mesh node where the aquifer is unconfined.
In the final command the real 2D head array is computed. Each entry
related to a location in the confined part takes the hc value, and the
hu value if that is related to a location in the unconfined part of the
aquifer. ‘~’ is the negation operator, switching an l-entry to 0 and vice
versa.

It is useful to indicate to the user the state of the aquifer within the
model-region. In the demonstration example below, messages concerning the
state of the aquifer are displayed in the command window. The display
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command produces a message in the command window, showing the text
string specified in the brackets.

if all(all(confined))
display (‘aquifer confined’);
else
if all(all(~confined))
display (‘aquifer unconfined’);
else
display (‘aquifer partially confined and unconfined’) ;
end
end
if any(any(h<0))
display (‘aquifer falls partially dry’);
h = max(0, h);
end

For a confined aquifer the confined array contains only 1s. Here we use
the MATLAB®) all command to question if all entries are 1. The command
has to be used twice, as it operates on columns first, i.e. for a 2D array the
command all(A) produces a line vector with the same number of columns
as A. The column has a 1-entry for each column containing non-zero elements
only. The second call gathers all columns. Some other MATLAB®) commands
operate on the same idea.

The following double all command on the ~confined array delivers a 1
if the aquifer is unconfined. For the remaining situations, in which the aquifer
is neither confined nor unconfined, the corresponding message is given in the
nested else block.

The any command is applied in the last four lines. It asks if the condition
is true for any entry of the matrix phi < 0. Any user in doubt may examine
that for each matrix A the expression A < 0 is a matrix too! If the head value,
representing the height of the piezometer level table above the aquifer base,
becomes less or equal zero, the aquifer is fallen dry. Is that true in any part
of the chosen region, the corresponding message is given in the command
window. The final command changes all negative head values (as they are

impossible) to zero.

The commands outlined above are part of the ‘gw flow.m’ file, which can
be found on CD. The groundwater baseflow and well example is extended in
Chap. 15.

Exercise 14.1. Vary parameters and examine in which parts the aquifer is
confined and unconfined, and when the aquifer falls dry!
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14.4 MATLAB®) 2D Graphics

Based on mesh data several output commands for 2D and 3D meshes are
available in MATLAB® . Some of these (contourf and surf) have already
been introduced in the previous sub-chapters. They will be demonstrated
here by extending the M-file developed in this chapter until this point. First
a graphic option is introduced in the specification part of the M-file:

% Graphical output options
gsurfh = 1; % piezometric head surface plot

The user controls the graphical output by the gsurfh parameter. At the
end of the previous version of the M-file add the plot commands:

if gsurfh
figure; surf (x,y,h); % surface
end

If the graphics control parameter is nonzero, the figure editor is opened
and a surface of the head values is plotted.
As another extension of the M-file, two further graphics options are added:

gcontf = 20; % no. filled contour lines (=0: none)
gquiv = 1; % arrow field plot

which are connected to additional output commands at the end of the file:

figure;
if gcontf % filled contours
contourf (x,y,h,gcontf, ‘w’);
colormap (winter);
colorbar; hold on;
end
if gquiv
quiver (x,y,u,v,‘y’); hold on; % arrow field
end

With the gcontf parameter there is the option to plot filled contours of
head values. If such a plot is not wanted, set the parameter to zero. gcontf
not only serves as a switch for contour plots; it also contains the number of
contours to be plotted. The contours’ color is white (formal parameter ‘w?).

The MATLAB®) colormap command determines the use of colors in the
plot. The default colormap is jet, which has all colours of the rainbow. Here
we select the winter colormap, in which the colors blue and green are pre-
ferred. The user may select other predefined colormaps. It is most convenient
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Fig. 14.4. Colormap editor

to explore colormaps from the figure editor. Use the ‘Colormap...” sub-menu
entry of the ‘Edit’ main entry in the figure editor. Figure 14.4 depicts the
colormap editor and the choice of pre-defined colormaps.

The colorbar command displays a colorbar next to the figure, on the
right. The colorbar relates the colors to numbers, e.g. to head values in the
given example. Minimum and maximum values of colorbar are calculated au-
tomatically by the software.

The gquiv switch is related to a quiver call. For a given velocity field
the command depicts an arrow field. Input values are, aside from the mesh
coordinates x and y, the velocity components u and v. The latter are obtained
from the potential by the gradient command:

[u,v] = gradient (-phi);
which corresponds to (14.8). In the example the arrows are plotted in yellow
(formal parameter ‘y’). Note that quiver can only be used for 2D flow fields
and equidistant meshes.

Figure 14.5 depicts the output of the groundwater flow example, as far as
developed to this point. The plot was obtained after zooming in the figure
editor. Flow towards the well is clearly visible. Visible also is the increase of
velocity if the well is approached.

Finally another graphic option is introduced. The streamline command
produces flowpaths, which are also based on the velocity field. Flowpaths trace



266 14 Potential and Flow Visualization

80 a5 a0 95 100 105 {10 115 120 125

Fig. 14.5. Example graphic showing contours, colorbar and arrow field

the flow of a particle within the flow field; for that reason the method is also
called particle tracing. Flowpaths are identical to streamlines in steady state
flow fields and identical to contours of the streamfunction; see Chap. 15 for
differences and advantages/disadvantages compared to streamfunction plots.

We add a gflowp fit switch as another option where graphic options are
specified. At the end we add the following commands:

if gflowp fit % flowpaths
xstart = [ ]; ystart = [ ];
for i = 1:100
if v(1,i) > 0 xstart = [xstart xvec(i)];...
ystart = [ystart yvec(1)]; end
if v(100,i) < 0 xstart = [xstart xvec(i)];...
ystart = [ystart yvec(100)]1; end
if u(i,1) > 0 xstart = [xstart xvec(1)];...
ystart = [ystart yvec(i)]; end
if u(i,100) < 0 xstart = [xstart xvec(100)];...
ystart = [ystart yvec(i)]; end
end
h = streamline (x,y,u,v,xstart,ystart);
set (h, ‘Color’, ‘red’);
end
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The streamline command, almost at the end of the last command listing,
obtains mesh and velocity field information like the quiver command. There
are two new vectors to be added, which have to contain the starting values
for the flowpaths. With the for loop the starting positions for the flowpaths
are determined. Each mesh node at the boundary becomes a start position if
the flow velocity is directed into the model region.

A nice way to determine the catchment of a well is to choose startposi-
tions near the well position and trace the flowpath backward in time. In the
code we introduce another option parameter gflowp bit. The value of the
parameter determines whether backward tracing is performed at all. In case
of backward tracing, the value of the parameter determines the number of
starting positions around the well. The well radius R is introduced as another
new input parameter that is used for the calculation of the starting locations.

if gflowp bit
xstart = x0 + Rxcos(2*pi*[1:1:gflowp bit]/gflowp bit);
ystart = y0O + Rxsin(2*pi*[1:1:gflowp bit]/gflowp bit);
h = streamline (x,y,-u,-v,xstart,ystart);
set (h, ‘Color’,‘y’);

end

Another nice feature is the option to use dots along the flowpaths in order
to indicate the size of the velocity. The use of the option is demonstrated on
the following commands:

if gflowp dot
[verts averts] = streamslice(x,y,u,v,gflowp dot);
sc = 10/mean(mean(sqrt (u.*u+v.*v)));
iverts = interpstreamspeed(x,y,u,v,verts,sc) ;
h = streamline (iverts);
set (h, ‘Marker’,‘.’,‘Color’,‘y’)
end

As a switch, the variable gflowp dot is introduced. The streamslice
command delivers flowpaths for the given mesh and velocity field similar to the
streamline command. The information is gathered in two data structures.
The structure verts contains coordinates for all streamlines. If averts is
not returned, arrows indicate the direction along the flowpaths instead of
dots. gflowp dot has the additional function to determine the streamline
density: a doubled value produces approximately twice as much streamlines.
interpstreamspeed evaluates the speed along the streamlines, which is scaled
by the sc parameter. sc is the inverse of the mean velocity, multiplied by 10.
mean initiates the calculation of the mean value and has to applied twice, as we
have arrays of dimension 2. Some manual adjustment is surely necessary here:
the author found it often appropriate to use the mean velocity multiplied by a
factor of 10. The last two commands have already been explained: streamlines
are finally plotted in yellow color, using dots as time markers.
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Fig. 14.6. Flow towards a well, depicted by filled head contours and flowpaths with
speed dots

The result for a well with pumping rate Q = 2 - 10~*m?/s is depicted in
Fig. 14.6. The pumping rate is 2-10~*m3 /s.

Exercise 14.2. Confirm the following formulae for a control sample by choos-
ing an appropriate graphical output!

1. The distance between the well location and the stagnation point down-
stream from the well is given by:

Q
d= 14.17
27TQ10 ( )
2. The width of the well catchment in far upstream distance is:
Q
b= 14.18
QwO ( )

14.5 MATLAB®) 3D Graphics

Potential flow can also be computed in 3D. The potential for a sink or a source
is given by the formula:

Q log

— 14.19
47 |r — ro] ( )

o(x,y,2) =
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instead of formula (14.5). This can be combined with baseflow in x-direction.
An example M-file for a sink or source at position (2,2,2) is shown below.
Slices xslice, yslice and zslice are defined for all three different space
directions, which are then used within the slice command. Streamlines are
drawn using streamline.

Q=1; % source/ sink rate [L"3/T]
Qx0 = 0.2; % baseflow [L~2/T]

i = linspace(1,3,50);

[x,y,2z] = meshgrid (i,i,i);

r = sqrt((x-2).72+(y-2).72+(z-2).72);

xslice = [1.3;1.7;2.4];

yslice [31;

zslice = [1.1;1.9];

phi = -Qx0*x-Q/4/pi/r;

slice (x,y,z,phi,xslice,yslice,zslice); hold on;
[u,v,w] = gradient (-phi);

h = streamline (x,y,z,u,v,w,ones(1,50),1i,1i);

set (h, ‘Color’, ‘y’)

or

coneplot (x,y,z,u,v,w,)
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Fig. 14.7. 3D potential flow, computed and visualized using MATLAD®)
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)

The M-file can be found on the CD under the name ‘ThreeD flow.m’.

Figure 14.7 shows the flow field produced by the M-file after some manual
changes using the MATLAB® Figure editor. The color range for the color
map was restricted and lines on slices were omitted.
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Streamfunction and Complex Potential

15.1 Streamfunction

The streamfunction is another mathematical construct that is of high impor-
tance for models using analytical solutions. Together with the potential the
streamfunction enables the visualization of flow patterns that can hardly be
produced by other methods. In 2D the streamfunction ¥ is defined by the
equations:

ov ov

I:_ = 1.1

The derivatives of the streamfunction are the components of the discharge
vector. In contrast to the potential, the negative of the y-derivative delivers
the x-component of discharge, and the x-derivative delivers the y-component
of discharge. From the defining equations follows that the streamfunction also
fulfills the potential equation:

82\I!+82\I/_38\I!+88\I!_8 2
0x2  Oy?2  Ox0x OyOdy Ox Ty ayqf N
o __0h 0 _0Oh ( 0%h 0%h ) B

Oor 0Oy Oy Oz dxdy  Oyox

(15.2)

Streamlines are characterized by the property that the tangentials are
perpendicular to the contours of the potential or the head. The mathematical
proof utilizes the connection between streamfunction and discharge vector
(15.1) as well as the connection between potential and discharge vector (14.3):

dp dp

y = - 15.3
©= o BT g, (15.3)
The condition for orthogonality is then obtained through:
Op 0V Jp OV
v 7O = gty + 4oty =0 (15.4)

8x8x_8y8y_
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There are explicit formulae for the streamfunction for special flow elements,
for example:

W(z,y) = { éony + Qyox for baseflow (15.5)
ford(z,y) for a well

with ¥ = angle of the connecting vector between position (z,y) and well
location.

The physical unit of the streamfunction is [m?/s], i.e. the dimension of
volume flux. This is easiest explained regarding baseflow in z-direction. Q)
is the volume flux per unit width Ay = 1. According to the formula (15.5)
holds: ¥(z,y) = —Q.0y, representing is the flux between the z-axis and its
parallel in distance y. It follows that between two horizontal lines at locations
y1 and yo and streamfunction values ¥, and Wy the flux is given by

AV =T — T, (15.6)

It is a general property of the streamfunction that for any two locations in
the model region the flux between these positions is given by the difference of
their streamfunction values. This characteristic property of the streamfunc-
tion follows directly from (15.1) by integration along curves within the model
region. The restricting condition is that the model region has to be simply
connected (Needham 1997), which roughly means that it has no holes.

Imagine two arbitrary locations. If the streamfunction takes the same value
at these positions, the volumetric flux between these locations is zero, which
results as a special case from the above given property of the streamfunction.
The property is obvious if the connecting line is the streamline itself, but it
holds for every connecting line. Then, positive fluxes across the line are exactly
outweighted by negative fluxes. In a more general sense one may consider
arbitrary closed curves in the model region. Take an arbitrary point on this
curve, representing both start and end point of the curve. The streamfunction
property states that the integral of fluxes across this line is zero (because
the streamfunction value at start and end is the same). Physically speaking,,
negative and positive fluxes outweight each other exactly.

Because of the mentioned property, the streamfunction is a very appropri-
ate measure for fluxes. In order to demonstrate the application of the stream-
function, we extend the M-file ‘gw flow.m’, which was developed in Chap. 14.
That is done in 3 steps:

1. In the execution part of the M-file add a command by which the stream-
function is computed under the variable psi:

psi = -Qx0*xy + QyO*x + (Q/(pi+pi))=*atan2((y-y0), (x-x0));

The command is an implementation of the two formulae given in (15.5).
Following the priciple of superposition (see Chap. 14), the formulae have to
be added to account for a situation with baseflow and a single well. The angle
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9 is calculated by the arcustangens function. In MATLAB®) there are two
ways of computing the arcustangens. Here we chose not to use the standard
atan command, which delivers angles in the interval between —7/> and 7/.
The atan2 command is chosen, because angles in the range between —m and
7w are computed. We will come back to that point below.

2. Add another plot option in the input part of the M-file:
gstream = 10; % streamfunction plot
3. Plot baseflow with the contour command (without filling colors):

if gstream
contour (x,y,psi,gstream, ‘w’);
end

The gstream parameter is not only a switch for streamline graphics, but
also determines the number of contours to be depicted. According to the
property of the streamfucntion mentioned above, there is no flux between two
locations on the same contour. This means that the WU-contours are stream-
lines, a term already met in Chap. 14 in connection with the MATLAB®)
streamline command. The streamfunction offers an alternative method for
plotting streamlines.

Figure 15.1 shows the output of the M-file if both the streamline and the
streamfunction contours are active. Streamfunction contours are depicted in
black color, lines from streamline in yellow, using the gflowp dot option,
introduced in Chap. 14. Obviously the flow field representations coincide5?.
But streamline distributions are obviously different. Using streamline, the
lines are determined by starting points; the MATLAB®) algorithm thus is
a flowpath algorithm by which a flowpath is traced forward or backward in
time. Another word for such a procedure is particle tracking. In 2D these are
numerical solutions of the differential equations:

(Zf = Vg gi{ =y (15.7)

Streamlines, obtained as streamfunction contours, originate from a very
different idea. When W-contour levels are selected equidistantly, the same
volume of fluid flows between neighboring streamlines. Between two locations
on neighbouring streamlines there is the same volumetric flux, independent of
the locations, i.e. 1 — Wy, If the streamfunction is plotted using equidistant
values of streamfunction levels (as in the example above), the same amount of
fluid flows between two neigboring streamlines — that holds for all streamlines

62 Of course, there should be no cross-overs between the streamline patterns if both
representations are correct. The user may play around and find out that under
certain conditions there are cross-overs. One important example is given, when
the mesh spacing in z- and y-direction is not equal, as the output of the streamline
command is not a correct representation of the flow field.
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100

Fig. 15.1. Streamfunction contours and flowpaths for a single well in uniform
baseflow

in the plot. Thus, streamlines provide a very nice visualization of velocities:
where streamlines are dense, the velocities are high; where streamlines are far
apart, velocities are low. The streamline density illustrates the velocity of a
flow field.

Figure 15.1 shows another advantage of the streamfunction: flowpaths are
easily followed into regions with high velocities, here into the immediate vicin-
ity of the well. As illustrated in the figure, the particle tracking algorithms
have difficulties in the vicinity of the well.

An advantage of the MATLAB®) particle tracking is that markers can
be used as indicators of velocity size. A disadvantage of the streamfunction
approach is that cuts may appear. In Fig. 15.1 there is a cut, depicted as a
thick black line between the well and the left side boundary. Such cuts appear
where the stream function has a singularity. Using the atan2 function in the
M-file the cuts appear if the angle is ¥ = 7, which is 180° from the positive
z-axis. Along the negative z-axis the arcustangens function has a jump, which
becomes visible in the contour plot as a cut. If the atan function is called in
the M-file, the flow pattern is still represented correctly but with cuts from
the well singularity in vertical direction.

Exercise 15.1. The formula concerning the width of the upstream catchment
of a well, given in Chap. 14, can easily be checked by the streamfunction
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property mentioned above. Hint: in the far distance from the well only the
baseflow determines the flow pattern. Between two locations perpendicular to
baseflow with distance b the water flux is Q,b.

15.2 The Principle of Superposition

The principle of superposition has been introduced in Chap. 14 and proved
to be a powerful method to obtain solutions of the flow potential. We con-
tinue with further demonstrations, as the principle can also be applied to the
streamfunction. For that purpose we extend the groundwater M-file, which
was developed in the previous sections. The M-file is extended to account for
several wells (the former version can be used for a single well only). Wells,
i.e. their positions within the model region and their pumping rates, are in-
troduced in the input part of the M-file and replace the concerned commands
by the following sequence:

% Wells

xwell = [100 100 150]; % x-coordinates well position [m]
ywell = [0 50 100]; % y-coordinates well position [m]
Qwell = 1.e-4*[1 1 1]; % pumping / recharge rates [m"3/s]

The sequence gives an example for the introduction of three wells with
equal pumping rates. In the same manner the user may enter as many wells
as she/he likes. There may be pumping and recharge wells in the same well
gallery, each working at its own rate. The vectors, specified in the three lines,
must have the same length.

In order to take several wells into account in the potential and stream-
function calculation, we use a for loop as follows:

phi = -Qx0*xx - QyOx*y;

psi -Qx0*y + QyOx*x;

for i = 1:size(xwell,2)

r = sqrt((x-zxwell(i)).*(x-xwell(i))+(y-ywell(i)).
*(y-ywell(i)));

phi + (Qwell(i)/(2*pi))*log(r); % potential

psi + (Qwell(di)/(2*pi))*atan2((y-ywell(i)),

(x-xwell(i)));

phi
psi

end

While the index variable i takes values starting from 1 to the number of
wells, the loop runs through all the wells. In each run through the loop, the
analytic solution for the well is calculated and added to the amount calculated
before, according to the principle of superposition.

An example output is provided in Fig 15.2.
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Fig. 15.2. Groundwater flow towards three wells (isopotential, streamlines and
flowpaths)

The ‘cplzPot.m’ M-file on CD, where the complex potential is applied, is
an extension of ‘gw flow.m’, in which several wells can be taken into account.

The Doublette

A problem which is suitable for the application of the program concerns a
doublette system. Such a system consists of a pumping well and a recharge
well. More complex installations with several recharge and discharge wells are
not treated here, although they can be simulated easily using the presented
procedure. Such systems are installed for several environmental purposes, for
example, to extract freshwater and simultaneously dispose waste water.
Doublettes are a typical set-up of geothermal technology. In geothermal
facilities hot water is pumped, usually from deep geological formations. In
most applications the pumped water has a high mineral content and can
neither be used for other purposes except for the use of heat, nor dumped
into surface water bodies. Environmental regulations often require the fluid
to be suppressed back into the subsurface region, from where it originates. The



15.2 The Principle of Superposition 277

question of cold water breakthrough, which can be answered by modeling, is
important as it defines the lifetime of the facility.

Also for the clean-up of contaminated groundwater doublette well systems
are common. The pumping well takes the polluted fluid to a treatment station.
After purification the treated water is brought back into the aquifer by the
recharge well.

Exercise 15.2. Model a doublette system with recharge and pumping well
100 m apart from each other. Model a recharge and a discharge well with equal
pumping rates and assume no baseflow. How do isopotentials and streamfunc-
tions look like?

As shown in Fig. 15.3, the doublette flow pattern is symmetric in several
respects. One symmetry axis connects both wells and is a stremline. The other
symmetry line, which is an isopotential line, is perpendicular to the connecting
line. Note that the depicted isopotentials are not completely identical on the
left and right side of the figure, which stems from the fact that the internally
determined potential levels are not symmetrical around the mean value. It is
also easy to see that all streamlines and isopotentials are circles. If that is
not true on the user’s computer display, it probably depends on the scaling
that may not be the same for both length axes. Moreover, streamlines and
isopotentials meet at right angles. All these properties are well known from
classical theory, but it is nice to see them confirmed using a small M-file.

Mirror Wells

The modeler may utilize non-existing wells in order to simulate special bound-
ary conditions. For that purpose virtual wells are introduced that do not exist
in reality. The previous example showed the simple doublette system with a
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Fig. 15.3. Doublette system (isopotential and streamlines)
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constant potential line as a symmetry axis between both wells. The modeler
may thus take advantage of that property and use such a doublette system to
produce a constant potential boundary where it is needed. In fact, for each
real well a virtual well needs to be located at the mirror position with respect
to the iso-potential line. For real pumping wells the mirror well should be a
recharge well and vice versa.

A typical application is given for a well or a well gallery in the vicinity of a
river or lake. The spatial gradient within the surface water body is usually very
small and can be neglected. If both water bodies, groundwater and surface
water, are well connected, the shoreline becomes a constant head boundary for
the groundwater modeler. Constant head corresponds with constant potential.
The formula for the analytical solution of such a situation is identical to the
doublette solution. However, in this case the pattern needs to be computed
only for that side of the bank where ground surface and well are located. The
‘virtual side’ should be omitted.

The water pumped in the well partially originates from the surface water
body. This part is often referred to as bank filtrate. Very often the flow pattern
is a combination of natural groundwater baseflow towards the bank and the
imposed regime by the well gallery. For very small pumping rates the well
withdraws ambient groundwater only and no bank filtrate. Bank filtrate starts
to play an increasing roll if the pumping rate is increased above a critical
value Q.rit.

Exercise 15.3. Verify, using different pumping rates, that the critical pump-
ing rate for bank filtration is given by the following formula

Qcm't = QxOﬂ-xO (158)

where Qo determines base flow towards the isopotential boundary and x( the
distance between well and boundary. Use a plot of the flow pattern to decide
whether there is bank filtration or not!

Exercise 15.4. Confirm for some sample runs the dependence of groundwater
and surface water withdrawal from pumping rate.

Figure 15.4 visualises the exact formula for the share of water originating
from the surface water body (bank filtrate) and ambient groundwater. The
formula is given by:

Q_QA\I/ _ 72r (arctan (\/QQ _1> _ ngt\/QQ _1> (159)

Hint: utilize that in streamfunction plots for equidistant levels the same
amount of water flows between two contour lines. In the situation shown
in Fig. 15.5 the percentage of bank filtrate is 4/11 =~ 36%. The entire well
discharge is divided into 11 equal parts, 4 of them originating form the bank
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Fig. 15.4. Percentage of groundwater and bank filtrate withdrawal for a single well,
depending on pumping rate
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Fig. 15.5. Bank filtration example plot (for zo = 100m, Qo
Q = 0.001164 m?3/s)
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Fig. 15.6. Image of vortex; filled contours for potential and white contour lines for
streamfunction

on the left side of the figure. Those, who do not believe that the procedure
works, may evaluate formula (15.9) to obtain the same result.

Figure 15.6 shows a vortex with circulating flow as another flow pattern
which can be modelled by using the analytical method. The detailed steps of
the method are summarized in Sidebar 15.1.

Sidebar 15.1: Summary of the Analytical Method

In summary, the set-up of a model based on an analytical solution can be
devided into 4 steps, which are repeated here in brevity with some comments:
Step 1

Choose the analytical formulae that are appropriate for the situation to be
modelled.

See Table 15.1.
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Step 2

Compute the analytical solution by superposition of the chosen elements;
that means: add all potential and streamfunction elements!

Step 3
Numerical Postprocessing

Compute hydraulic heads h(z,y) =

{ (¢(z,y) + 1K - H? — ) / (KH)  for the confined aquifer

V2 (p(z,y) — ¢o) /K for the unconfined aquifer
Op(z,y
x
Compute flux vector components or
0 (@,y) = _Op(x,y)
Y\ ay
OV(z,y)
U (x,y)
w(T,y) =" 5
Compute velocity vector components
_ qz(z,y)/H for the confined aquifer
val(@,y) = {qz(a:, y)/h(z,y) for the unconfined aquifer and

(z,y) = ay(z,y)/H for the confined aquifer
Y= ay(z,y)/h(z,y) for the unconfined aquifer

The last two formulae are to be processed for groundwater flow based on
the discharge potential. For free fluids the potential has to be transformed
in terms of pressure (see Chap. 14.2).

Step 4

Graphical Postprocessing
Plot (optionally):

- Hydraulic heads

- Velocity vectors

- Streamfunction contours
- Pathlines
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Table 15.1. Analytical elements for some fundamental flow patterns

Element (Real) Potential ¢ Streamfunction ¥
Baseflow%3  —Qgo7 — Qyoy —Qzoy + Qyox
Well64 Q/Qﬂ. log <\/(:L‘ - rwell)Q + (y — yweu)2> Q/Qﬂ. arctan < Y Yuwell )
T — Twell
Vortex%® A/ﬂ. arctan < Y=o > A/ﬂ. log \/(LE —20)? + (y — y0)?
T — o

cos (arctan ( y—vo ) — B) sin (arctan ( y—vo ) — B)

Di-pole®®  Sfp v %o v
V@ = 20)* + (w — w0)? V@ = 20)* + (w — w0)?

15.3 Complex Analysis and Complex Potential

In MATLAB® both potential and streamfunction can be visualized more
easily if one adopts the notation of the 2D plane using complex numbers. The
simplest command sequence to produce a potential for a sink or source, are:

z=cplxgrid(30)
cplxmap(z,log(z))

In Fig. 15.7 the real part of the logarithm is plotted. Compare with Fig. 14.1.
Instead of the computation of the real potential and the streamfunction,

the imaginary potential is evaluated. Real potential ¢, streamfunction ¥ and
imaginary potential ® are connected by the formula:

=p+il (15.10)

1 denotes the square root of -1, the imaginary unit. In MATLAB®) specify
the imaginary number z by:

z =1

z = 0 + 1.00001
or

z = -1+2i

z = -1.0000 + 2.00001

In the latter example the real part of z is —1, and the imaginary part is 2.
Complex numbers are just another more general data type which MATLAB®

63 with z-component Q.o and y-component Q0.
64 at position (Tweir, Ywen) With pumping rate Q.
55 at position (zo, o) with strength A.

66 at position (zo,yo) with strength s and angle 3.



15.3 Complex Analysis and Complex Potential 283

Fig. 15.7. Surface plot of the complex logarithm

can handle. Thus in MATLABG®) there are arrays, vectors, matrices and func-
tions of complex numbers, and the user may use those as she/he is accustomed
to with real numbers.

Often it is easier to implement the imaginary potential instead of the sep-
arate computation of the real potential and the streamfunction (see examples
in Table 15.2). When the complex potential is computed, (real) potential and
streamfunction can be obtained as real and imaginary part of the imaginary
potential:

¢ =Re(®) U =Im(P) (15.11)

Table 15.2. Complex potentials for various flow patterns; basic flow patterns with

parameters as in Table 15.1; with Z = 2= 1/2(Za+ 2s)

1/2(Z2 — Z)
Element (Imaginary) Potential ®
Baseflow —Qoz
Well Q/27r log(z — Zwer)
Vortex A/m' log(z — zo)
Di-pole S e;p(zzﬂ )
—Zo
Line-sink®” oL/ A(Z+1)log (Z+1) — (Z —1)log (Z — 1)

+2log [ (22 — z1)] — 2}

67 Between positions z; and zs with strength o.
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There are more analytical elements than those for baseflow and wells.
Formulae for line sinks or line sources, for di-poles, for vortices and so forth

can be found in the textbooks.
4\

The M-file for the dipole is found on the CD as ‘dipole.m’ file. Figure 15.8
illustrates the dipole.

The figure was produced by calling the function from the ‘AnElements.m
file with appropriate parameters. The ‘AnFElements.m’ file has options to su-
perpose baseflow, di-pole, sources, sinks and vortices.

For the easy computation of complex potentials the ‘AnFlements.m’ file
can be used. In the following example we demonstrate the superposition of a
di-pole and a baseflow solution:

)

Q0 = .5; % baseflow

s = -10; % dipole strength

beta = 0; % dipole angle

z0 = 0; % position of well, vortex or di-pole
et mesh------
xmin = -5; % minimum x-position of mesh [m]

xmax = 5; % maximum x-position of mesh [m]

dx = .21; % grid spacing in x-direction [m]

ymin = -5; % minimum y-position of mesh [m]

ymax = 5; % maximum y-position of mesh[m]

dy = .22; % grid spacing in y-direction [m]

= m start positions (for streamline)--

zstart = xmin + i*(ymin+(ymax-ymin)*[0.1:0.1:1]1);

Fig. 15.8. Dipole pattern (streamlines white, potential contours black)
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zstart = [zstart xmin-i*0.001]

% - - execution---------
[x,y] = meshgrid ([xmin:dx:xmax], [ymin:dy:ymax]); % mesh
zZ = X+ix*y;

Phi = -Q0’*z; % baseflow
if (s ~= 0) Phi = Phi + (s/(pi+pi))*exp(i*beta)./(z-z0); end %
% - - -—-output---------

colormap (bone) ;

contourf (x,y,real(Phi),70);

hold on;

[u,v] = gradient (-real(Phi));

h = streamline (x,y,u,v,real(zstart),imag(zstart));
set(h, ‘Color’, ‘w’);

The M-file performs the major tasks of input, initialization, execution
and output in consecutive blocks. Isopotential lines are visualized by filled
contours, the streamlines by the streamline command. A streamline pattern
could also be produced by contours for the imaginary part of the complex
potential. However, by using the option to specify starting points one obtains
a better representation of the circular limit streamlines.

Fig. 15.9. Flow round an obstacle; groundwater flow towards a lake
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Figure 15.9 results, which can be found in different application fields. The
white lines can be interpreted as flow lines around a spherical obstacle in the
2D plane (Prandtl & Tientjes 1934). Black lines are the iso-potential lines
in that case. In groundwater modeling the same superposition is interpreted
differently. The black lines represent streamlines. Here, baseflow is in vertical
direction towards a circular lake, where a constant potential (water table) is
given (Strack 1989).

White lines are the potential contours. Streamlines are depicted in black.
The interior of the lake, within the white circle, has to be neglected in the
groundwater flow problem.

The user may investigate the influence of the solution parameters, here QO,
s and z0.

15.4 Example: Vortices or Wells Systems

As an example for the various applications of analytical solutions for the com-
plex potential an M-file is developed, by which systems of several vortices or
wells can be evaluated and illustrated. Moreover, various types of boundaries
can be considered, here as example along the x- or y-axes. The input section
of the file is as follows:

wellvort = 1; % wells (1)/ vortices (0) switch
mirrorx = 1; % symmetry property for x-axis
mirrory = O; % symmetry property for y-axis
mirror = O; % symmetry / antisymmetry switch

xspace=1linspace(-100,100,200) ; % x-values mesh

yspace =1linspace(-100,100,200) ;% y-values mesh

N = 3; % no. of wells/ vortices (random)
% for manual input set N = 0

zloc = [-20 40] + ix*[40 60]; % well /vortex positions

s = [5 10]; % pumping rates/circulation rates

NO = 30; % no. of filled contours

MO = 8; % no. starting points around
each well/vortex

gquiv = 1; % arrow field on/off

With the wellvort switch the user decides if wells or vortices are consid-
ered. The mirrorx switch enables the user to make the x-axis a symmetry
boundary; analogously, the value stored in mirrory decides about the y-axis.
It is possible to decide about the x- and y-axis independently: either option
may be ‘on’ or ‘off’ independent of the other. In both cases the symmetry
may result in an impermeable boundary or an open boundary. For the latter
alternative the mirror switch is responsible: if it is ‘on’ (1), the well or vortex
on the other side of the symmetry line is of identical strength; if it is ‘off” (0),
the mirror object has opposite strength. In the latter case the pumping well
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is vis-a-vis of a recharge well, and a clockwise circulating vortex is vis-a-vis of
another one circulating counter-clockwise.

Under xspace and yspace the x- and y-values of the mesh are specified.
Moreover, the user can choose the number of vortices or wells. There are two
options: randomly dsistibuted wells and manual input. For the first option
the user has to choose a value N greater than 0. Otherwise the locations of
the wells/vortices are specified in the zloc vector and their strengths in the
s vector. The positions are given as complex numbers.

There are some further options. The number of start positions around
the well is required. For well systems the starting positions concern stream-
lines, for vortices iso-potentials. There is the number of filled contour lines
that represent streamlines for vortices plots and iso-potentials for well gal-
leries. Finally, there is the option to switch on/off the output of arrow
fields.

The next commands compute some auxiliary variables, which are needed
in the following. xrange and yrange represent the length of the model region
on both coordinate axes. x and y are the mesh variables in real numbers, z
in complex numbers. zloc is a vector containing randomly determined posi-
tions of the vortices and wells. s is a vector containing the strength of all,
also randomly determined. With the final command the minimum absolute
value of all the vortices or wells strengths is computed and divided by the
integer K.

xrange = xspace(end) - xspace(l);
yrange = yspace(end) - yspace(l);
[x,y] = meshgrid (xspace,yspace); z = x +ix*y;
if N>0
zloc = xspace(1l)+xrange*rand(1,N)+i*(yspace(1)
+yrange*rand(1,N))
s = -10+round(20*rand(1,N)) % strength steps
between -10 and 10
else
N = size(s,2);
end

Note that the contents of the two vectors zloc and s are displayed in
the command window. The user is thus able to find the exact data for the
output in case she/he is interested to reproduce interesting results. In the
next command lines virtual wells or image vortices are introduced depending
on the options set in the specification part of the M-file. The position given
by conj(zloc) is the mirror location of a well with respect to the z-axis,
the conjugate complex. 1t is easy to check that the commands in the nested
if-blocks fulfill the task, which is explained above.

if mirrorx
zloc = [zloc conj(zloc)];
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if mirror

space s = [s s];
else

space s = [s -s];
end
N = N+N;

end

if mirrory
zloc = [zloc -real(zloc)+i*imag(zloc)];
if mirror

space s = [s sl;
else

space s = [s -s];
end
N = N+N;

end
f = Phi(z,zloc,s);

In the next command, at the end of the last listing, the complex potential
is evaluated. The function Phi appears at the end of the M-file:

function f = Phi (z,zloc,s)
f = 0x*xz;
fork = 1:size(s,2)
f =1f + s(k)*log(z-zloc(k))/2/pi;

end

The formula for the complex logarithm, as given in Table 15.2, is evaluated
in every run through the for-loop and added to the former output. Note that
all computations are performed in the space of complex numbers. The result
of log is a complex number. All further commands are based on the complex
potential, which is available under the variable f after execution.

At first, velocity vectors are computed from the real potential, which is
contained in the real parts of the complex potential. The following four com-
mands construct the legend, stating that streamlines are illustrated by white
lines, and isopotential contours by blue lines. The last command selects the
colormap.

[u,v] = gradient (-real(f));

whitebg([.753,0.753,0.753]); % legend

plot (xspace(1:2),yspace(1)*[1 1],‘w’); hold on;

plot (xspace(1:2),yspace(1)*[1 1],‘b?);

legend (‘streamlines’, ‘isopotentials’)

colormap(‘jet’);

In the next commands starting positions for the streamline command are
calculated. Around each well and virtual well (vortex and image vortex) MO
positions are chosen equidistantly.
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xstart = []; ystart = [];
for k = 1:size(s,2)
for j = 1:MO
xstart = [xstart real(zloc(k))
+xrangex*cos (2*pix*j/M0)/1000] ;
ystart = [ystart imag(zloc(k))
+yrange*sin(2xpix*j/M0)/1000] ;
end
end
xspace = linspace (xspace(1l),xspace(end),20);
yspace = linspace (yspace(1l),yspace(end),20);

With the final command new mesh-spacing vectors are computed. With
the latter the arrow plot is performed. For fine meshes the arrows become
unidentifiable, and thus it is better to visualize them on a coarser grid.

In the last command block a figure is composed out of filled contours,
contours and arrows. This has to be done separately for a well galery on one
side and a vortices system on the other side. For the well option, the real part
of the complex potential represents the real potential and the contours are
given in blue color. The streamline command is started twice, once forward
and once backward. This is realized by changing the sign in the velocity com-
ponent. The user may increase the performance of the execution by choosing
the correct set of start values for each streamline command. In the final if
block the arow field is plotted. The course mesh is computed first and stored
in variable z. Then the velocity field is re-calculated, based on another evalua-
tion of the complex potential, before the quiver command plots arrows in the
figure.

if wellvort

contourf (x,y,real(f),NO,‘b’); hold on;

hh = streamline (x,y,u,v,xstart,ystart);

set (hh, ‘Color’, ‘w’);

hh = streamline (x,y,-u,-v,xstart,ystart);

set (hh, ‘Color’, ‘w’);

if gquiv
[x,y] = meshgrid (xspace,yspace); z = x +ix*y;
[u,v] gradient (-real(Phi(z,zloc,s)));
quiver (x,y,u,v,gquiv, ‘w’);

end

For the vortex option the same tasks are performed but with slightly dif-
ferent details. The filled contour plot gets white isolines, as these represent
streamlines in this case. The lines, plotted with the streamline command,
are iso-potentials in the vortex case and are thus plotted in blue. For the arrow
field, it has to be taken into account that the real part of the complex poten-
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tial represents the streamfunction, and thus the velocity components have to
be computed following the (15.1).

else
contourf (x,y,real(f),NO,‘w’); hold on;
hh = streamline (x,y,u,v,xstart,ystart);
set (hh, ‘Color’, ‘b’);
hh = streamline (x,y,-u,-v,xstart,ystart);
set (hh, ‘Color’, ‘b’);

if gquiv
[x,y] = meshgrid (xspace,yspace); z = x +ixy;
[v,u] = gradient (-real(Phi(z,zloc,s))); u = -u;
quiver (x,y,u,v,gquiv, ‘w’);

end

end

The M-file described in this sub-section is found on the CD as ‘wellvor-
tex.m’ file.
An example output of the M-file is given in Fig. 15.10.

_ =
4 [ -
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' \ e g g ‘ “ =, ~
" 0 . . - - = -
- . - - = o ~ k2 e - = - i
- - o £ o 5 | 3 % =] B - b -
S N e e wh v s —— streamlines
. 5 o s . rf o+ 4 e+ —— jsopotentials
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Fig. 15.10. Vortex plot example, as obtained using the ‘wellvorter.m’ file; change
of white color to black color by copy option in the figure editor
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Exercise 15.5. Examine, by use of the M-file, which option combination of
the wellvort and mirror switches leads to an impermeable or to an iso-
potential boundary?
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2D and 3D Transport Solutions
(Gaussian Puffs and Plumes)

16.1 Introduction

In the Chaps. 4 to 7 several solutions of the transport equation in a single
space dimension (1D) have been presented. Analytical solutions were pre-
sented including various kinds of different processes. The models are valid
under restricted conditions. In this chapter we show that analytical solutions
are also available for higher dimensional problems.

The 1D formulae can be applied to various situations in almost all envi-
ronmental compartments. Such models are especially popular in air pollution
modeling, for example in the modeling the local concentration distribution
due to emissions from stacks, but they can also be applied to problems of
point pollution in rivers, channels, lakes, reservoirs and the sea, in ground-
and soil water.

Most solutions are derived from the 1D solution for a plume, which is given
by the normal distribution function f(z):

fa)= ) () (16.1)
x) = exp | — .

Vono P 2 o

The normal distribution has most applications in statistics. p is the mean
value of the distribution and o the standard deviation. As the normal distri-
bution is also referred to as Gauss®®’ian distribution, these methods are also
named Gaussian plumes (in case of steady state) or Gaussian puffs (for the
transient case). One may find the term Gaussian models too.

The normal distribution f(x) with g = 0 and ¢ = /2Dt is the solution of
the transport equation

dc 0 _Oc
ot axDBx (16.2)

68 Carl Friedrich Gauss (1777-1855), German mathematician.
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which accounts for diffusion only. The initial condition for this solution is the
peak with infinite concentration at = 0. This mathematical construction
is termed the d-function. More precisely the d-function is defined by the two
properties:

o0
é(z) = {O(;j igi i ; 8 and / d(x)dz =1 (16.3)
— 00

The normal distribution converges to zero for x — Fo00. This is a suitable
boundary condition for an excess concentration, i.e. when the background
value is subtracted from the measured value.

The solution (16.1) can be extended to the situation where the plume is
transported within a flow field. If the fluid moves with velocity v in z-direction,

the solution is:
M (m—vt)Q)
c(x,t) = exp | — 16.4
@ = o pee (= (16.4)

M denotes the total mass per unit area in the fluid system. The concen-
tration c is a solution of the transport equation, which accounts for diffusion
and advection:

Jc 0 _Oc Oc
ot = ox"or ~ Vou (16.5)
The solution (16.4) can be implemented easily in MATLAB®. The fol-

lowing command sequence is an example:

Dx = 0.000625; % diffusivity

v =20.1; % velocity

M=1; % mass

xmin = -0.05; xmax = 2.15; % x-axis interval

t = [1:4:20]; % time

Y= execution-——-—--—-—————————————
x = linspace (xmin,xmax,100);

c=1[11;

fori = 1:size(t,2)
xx = x - vxt(i);
c = [c; (M/sqrt(4*pi*Dx*t(i)))*ones(l,size(x)) . .*...
exp (- (xx.*xx)/(4xDx*xt(1)))];

plot (c’); hold on; xlabel (‘space’);
ylabel (‘concentration’); title (‘1D Gaussian puff’);

The space interval is divided into 100 parts. Within each run through the
for-loop, which represents the time instants, the solution is evaluated for the
entire space vector x. The resulting vector of concentrations is appended as a
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new line in the concentration matrix c. Note that using the plot command
in the final plotting section the column indices of the matrix appear on the
z-axis. Similar constructions were already used in Chap. 4 for simulations of
concentration fronts.

Figure 16.1 depicts the output, slightly modified in the MATLAB®) figure
editor. The concentration distribution for 5 different time instants is plotted.
Obviously, the plume moves downstream while the shape of the bell function
changes. The peak concentration decreases with time, and the space interval,
in which elevated concentrations show up, widens.

)

Most command sequences, presented on the following pages, are gathered
in the ‘GaussianPuff.m’ file, which can be found on CD. Between various
solutions the user may choose using option parameters in the input section of
the file.

The presented formula (16.4) has been applied in almost all branches of
environmental sciences and only few examples can be listed. Based on (16.4),
Maloszewski et al. (1994) explain tracer experiments in karstic aquifers,
Sukhodolov et al. (1997) deal with dispersion in a lowland river, Wang &
Persaud (2004) investigate experiments from soil columns. Bear (1976) and
Kinzelbach (1987) recommend the normal distribution for pollution problems
in aquifers.

A dimensionless formulation can be derived easily if the transport (16.5)
is modified to:

12
—o—t=1
1D Gaussian puff —— =5
10}
——t=9
=13
8 — t=17]

Concentration
(o)}
.

0 20 40 60 80 100
space

Fig. 16.1. 1D Transport solution for instantaneous source for 5 time instants
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dc 1 0% Oc

or  Pedg2 0t (16:6)

where £ = /L denotes dimensionless space and 7 = tv/L dimensionless time.
Pe =ovL/D is the dimensionless Péclet number that was already introduced
in Chap. 5. The dependence of the transport solution for dimensionless time
7 = 1 on the Péclet number is visualized in Fig. 16.2. The figure was obtained
using the M-file ‘GaussianPuff.m’ with input data:

d=1; v=0; M=1;xmin = -0.2; xmax = 0.2;t = 1; gplot = 1;
in three runs with different diffusivities:
Dx = 0.01; 0.0025; 0.000625;

It is instructive to view the development of the concentration profile in
the space-time diagram. Such an illustration is given in Fig. 16.3, which was
obtained using the M-file ‘GaussianPuff.m’ with input data:

d
t

1;Dx = 0.000625; v = 0.1;M = 1; xmin = -0.05; xmax = 0.2;
[.1:.025:1]; gcont = 2;

A more generalized formulation of the normal distribution is valid for
substances that are subject to degradation or decay processes in addition. If
) refers to the decay coeflicient, one obtains the formula:

(v — vt)? )
clxz,t) = exp (| — — At 16.7
@) VartyD ( 4D (167)
12 T T
; Pe=1/100
Y i i Pe=1/400
; —*— Pe=1/1600
8f-------- s eREE WLEEEEEEEEEEEEEEEEES
o :
g ‘
g 6f-------- T REnEt ETEEREEE: EEETEEEPPTEEPRRRE
£ :
=
3 :
R ey S e R
° :
2o iy SOt STTTEEEELI LR Uy - SPRTERRRES
0 ! ~%
0 20 40 60 80 100

space (250* &)

Fig. 16.2. Transport solution for instantaneous source in dependence of the Péclet
number Pe
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time

Concentration

0. 4
-0.05 0 0.05 0.1 0.15 0.2
space

Fig. 16.3. Transport solution for an instantaneous source, represented in a time-
space diagram

(see also: Hunt 1983, Kinzelbach 1987). Linear equilibrium sorption can be
included following the derivations in Chap. 6. For a constant retardation co-
efficient R, the solution is given by:

o(x,t) (v —vt/R)* _ At) (16.8)

_ M (_
" Vantyp/R°P\" 4tD/R

In analogy to the 1D situation analytical solutions can be derived for
the higher dimensional cases. The generalization of the 1D normal distribu-
tion (16.1) for 2D is:

Fla,y) = %Ulray exp (—; [(w ;:“)2 + (y ;y““ﬂ) (16.9)

with standard deviations o, and o, and mean values j, and p, for z- and
y-directions. Formula (16.9) gives the solution of the differential equation

dc 0 oc 0 oc
ot  Odx ~Ox * oy Yoy (16.10)

with a d-peak initial condition (formula (16.3)) at position (4,4, ) and zero
boundary condition at infinity. Standard deviations and diffusivities are re-
lated by the equations o, = v/2D,t and o, = /2Dt.

Analogously, the solution for the corresponding 3D situation is given by:
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fla,y) = {"/QchlzayUz exp (_; [(az ;:Lw>2 + (y ;yﬂy>2 + (2 ;ZF‘Z>2]>
(16.11)

From the given formulae solutions can be derived for various 2D and 3D
situations. Some of these will be presented in the remainder of this chapter.

16.2 2D Instantaneous Line Source

The explicit formula for transient transport, including diffusion/dispersion,
constant advection in z-direction and decay is given by:

M 1 [(x—vt)? 42 ) )
Ly t) = _ n " 16.12
e(@y.1) 4nt\/D,D, eXp( 4 ( p. D, (16.12)

(see also: Fried 1975, Kinzelbach 1987). M denotes the total mass per unit
length in that situation. Figure 16.4 depicts the surface plot of an example
2D Gaussian puff.

The plot was produced using the M-file ‘GaussianPuff.m’ with input data:

d =2; Dx = 0.01; Dy = 0.000625; v = 0.1; M = 1;
xmin = -0.2; xmax = 0.5; ymin = -0.2; ymax = 0.2; t = 1;
gsurf = 1;

The concentration distribution ¢, given by (16.12), is a solution of the differ-
ential equation:

=_D + . D —v,_, —Ac (16.13)

I 30

40 : | 2D Gaussian puff |
E _.---1"" concentration "~ o 25
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Fig. 16.4. Transport solution for an instantaneous source in 2D
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The formula (16.12) can be derived from the statistical formulation (16.9)
with the help of the relationship between diffusivities as transport parameters
on one side and standard deviations as statistical characteristics on the other
side: 0, = 2Dt and o, = \/ 2Dyt, already encountered above. Various
more complex models are based on more general relationships between these
two types of parameters. Smith (1989) gives an overview and more details on
this topic.

16.3 2D Constant Line Source

The 2D steady state analytical solution, describing the effect of a constant
line source on an infinitely extended plane, is given by:

co@ Tv v22? v2y?
= K 16.14
)= 5 i, ® (3.) (32 *anyp,) (1619

(see: Fried 1975, Bear 1976) with K, being the modified Bessel function of
the second kind and zero order.

The formula can easily be implemented in MATLAB®). The Bessel func-
tion of second kind is reached by the command

bessely(nu,Z)

where nu is the order and Z the array of arguments.

16.4 3D Instanteneous Source

The effect of diffusion, advection in a constant unidirectional flow field, and
decay is given by the analytical solution:

c(z,y,2,t) = M exp(—l<(x_vt)2+y2—|—z2>—/\t)
U (Vant) /DDy D, 4\ D, Dy D

(16.15)

(see also: Kinzelbach 1987, Wexler 1992), which can be derived in analogy
to (16.7) and (16.12). There are many applications of this equation, mainly
for pollution spreading in the atmosphere. Richter & Seppelt (2004) apply the
Gaussian puff solution with no advection in order to evaluate pollen disposal
from genetically modified crops in agricultural ecosystems. The method can
be chosen as an option in the ‘GaussianPuff.m’ file.

oc 0 oc 0 oc 0 Oc Oc
= D, D D, — — 16.1
ot = oeP70r ToyPray T 02T 0, " Vor € (16.16)
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concentration

0.1

0.05

-0.05

-0.1
0.85

Fig. 16.5. Concentration distribution from a 3D Gaussian puff

A 3D Gaussian puff is visualized in Fig. 16.5. The result was obtained
using the ‘GaussianPuff.m’ file with input data:

d =3; Dx = 0.004; Dy = 0.001; Dz = 0.001; v =1; M = 1;
xmin = 0.85; xmax = 1.15; ymin = -0.1; ymax = 0.1;
zmin = -0.1; zmax = 0.1; t = 1; gcont = 2

For applications in the atmosphere, the formula is extended to take the
ground surface into account. The ground surface is located at z = 0, while the
release of the pollutant appears at height H. In applications H can correspond
with the stack or chimney height, but often an increased value has to be
adopted in order to account for the initial rise of an emission plume with
an increased temperature compared to the ambient environment. H is also
referred to as effective stack height.

At the ground surface, it is common to require a no-flow boundary con-
dition. As demonstrated in Chap. 15 the no-flow condition can be fulfilled
by adding another source in mirror position on the other side of the bound-
ary, i.e. for the situation here at location (x,y,z) = (0,0, —H). For a linear
transport equation the solution can be constructed by using the principle of
superposition (see Chaps. 13 and 14):

1)
'Y, 2t) = - + — Xt
ez (Vart) /D,D,D. N\ 4\ D, D,

)
(16.17)



16.5 3D Constant Source 301

(see also: Kathirgamanathan et al. 2002, Mitsakou et al. 2003). Overcamp
(1983) describes this method for a meteorological model.

16.5 3D Constant Source

Neglect of diffusion in horizontal direction leads to the differential equation:

Oc 0 dc 0 dc dc
ot = ayProy T 0P 0. Vo (16.18)

for which the steady state can be reformulated as:

Oc 0 Dy, Oc 0 D,0c A
= - 16.19
Ox 3y08y+8zv8z v© ( )
From the analytical point of view the differential equation (16.19) is iden-
tical to (16.13). Only parameters and variables have different names. For the
latter equation, the solution was already denoted in (16.12). Reformulation of
the solution in terms of the new variables and parameters yields:

M v [ y? 22 A
y,2) = - - 16.20
Azy.2) dma/DyDy T ( Az (Dy + Dz> vx) (16.20)

In fact, (16.20) is the steady state solution for a constant source in 3D
space. The product Q = Mwv in the nominator of the first term on the right
side represents the emission rate in unit [mass/time].

Formula (16.20) can be modified to account for a source at height H and
a no-flow surface boundary condition along the line z = 0. The procedure,
using an image source, was already described in Subchapter 16.4. In the same
manner a steady state solution for a constant source in 3D is obtained:

ox (_v(z — H)?
c(z,y,z) = @ exp (— 41)‘3; ) b 4?D_i HY? exp (/\x)
dmx\/DyD, 2Dy ) | | exp <_v ZxD ) v
(16.21)

For the concentration distribution at ground level (z = 0) follows:

_ Q v (y? H? A
c(z,y) = 2rar/D, D. exp( A (Dy + p.))eel e (16.22)

For a tracer component (i.e. without decay) in terms of standard deviations
the corresponding formula reads:
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Q 1 y2 H2
= - 16.2
c(z,y) roye. P\ T2 02 T o2 (16.23)

(see: Vaz & Ferreira 2004). Applying the principle of superposition (see
Chaps. 14 and 15) the formula can be used to account for several stacks.
The contributions from the different sources, calculated by formula (16.21),
have to be added.

Such models are used extensively for estimations of the local development
of a plume in the atmosphere. For the most common application of release
from a stack, the parameters are visualized in Fig. 16.6. The Gaussian models
take into account diffusive processes, advection with a mean air flow direc-
tion (wind), and first order decay. The term diffusion here is used as an
umbrella term for various processes which have in common the tendency to
lower concentration or temperature gradients. Diffusion at the molecular scale
can surely be neglected in the atmosphere, while variations and fluctuations
at various scales within the velocity field are the cause for the observation
of diffusion at a larger scale. Moreover, turbulence adds as another origin of
diffusion.

Idealized conditions are assumed for these processes if formula (16.21)
has to be applied. Other processes, which often play an important role in
the atmospheric environmental compartment, are not taken into account: dry
and wet deposition on the ground, washout due to precipitation, and multi-
species reactions. More specifically, all decay processes are neglected for which
a first order description does not suffice. For example, photochemical degra-
dation, that is relevant in air pollution problems, requires a more detailed
approach.

< ( Washqut oy

Fig. 16.6. Release from a stack; schematic illustration of parameters and processes
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The following commands deliver the result of a Gaussian plume according
to formula (16.23).

Dy = 0.2; Dz = 1; % diffusivities

v = 0.5; % velocity

lambda = 0; % decay constant

Q=1 % emission rate(s)

xstack = 0; ystack = 50; % stack location(s)

xmin = 10; xmax = 1000; % x-axis interval

ymin = 0; ymax = 100; % y-axis interval

H = 50; % effective stack height(s)

z = 0; % height of observation (=0 for
ground surface)

gplot = 1; % plot option (=1 yes; =0 no)

gcont = 2; % contour plot option (=2 filled;
=1 yes; =0 none)

fpm execution—-———-——————————————————

[x,y] = meshgrid (linspace(xmin,xmax,100),linspace

(ymin,ymax,100));

c = zeros (size(x)); e = ones(size(x));

for i = size(Q,2)
xx = x - xstack(i); yy = y - ystack(i);
¢ =c+Q(i)*e./ (4*pixxx*sqrt (Dy*Dz)) . *exp (-v*yy.*yy./
(4#Dy*xx)) .*. ..
(exp(-v*(z-H(i))*(z-H(i))*e./(4*Dz*xx) ) +exp (-v* (z+H(i) ) *. ..
(z+H(1)) .. .*e./(4*Dz*xx)) . *exp(-lambda*xx/v) ;

end

if gplot
for i = 10:10:100
plot (c(:,1)); hold on;
end
end
if gcont
figure;
if gcont > 1
contourf (x,y,c); colorbar;
else
contour (x,y,c);
end
end
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4\

The command sequence can be found on CD in file ‘GaussianPlume.m’.

The results of the commands, slightly modified in the MATLAB® fig-
ure editor, are shown in Fig. 16.7 and Fig. 16.8. The first figure depicts the
concentration on the ground. Highest concentrations on the ground can be
observed approximately 300 m downstream from the stack. In analogy to the
1D situation analytical solutions can be derived for the 2D situation. They
decrease slowly after the peak is reached at ~ 350 m.

Figure 16.8 depicts ground concentrations along slices with constant z
and varying y. Clearly, all distributions are of Gaussian type. Global peak
concentration is found in the slice at z = 300. For lower x < 300, the bell
shaped concentrations have small standard deviations, and local peak con-
centrations increase with x. Beyond the slice with peak concentration, i.e. for
x > 300, the standard deviations increase, and the local maximum decreases
with x.

Finally let us list the assumptions for the application of the Gaussian
plume model for the estimation of stack release:

the smokestack emission is continuous and constant

the terrain is relatively flat

the wind speed is constant in time and in elevation

in main wind direction, advection dominates over diffusion and dispersion
the diffusivities in horizontal and vertical direction are constant, i.e. they
do not change spatially and temporally

4
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Fig. 16.7. Concentration distribution at ground surface according to a Gaussian
plume
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Fig. 16.8. Concentration distribution at ground surface according to a Gaussian
plume; concentration at cross-sections, parallel to y-axis at various distances from
the source

no settling velocity for the species
the pollutant is not involved in reactions, i.e. the species is neither pro-
duced nor consumed; in particular there is no degradation

e when the pollutants hit the ground, they are reflected and not absorbed

It is not only the potential hazards from stacks or chimneys that can be
estimated by Gaussian’ plumes. As mentioned above the normal distribution
has applications in all environmental compartments. Methods, similar to the
ones described in this subchapter, were applied in other fields as well. Karol
et al. (1997) simulate the exhaust composition of a subsonic aircraft and com-
bine Gaussian plumes with chemical reaction modeling. Raupach et al. (2001)
deal with the insecticide endosufan that, applied by spraying on agricultured
land, finally enters and pollutes rivers and lakes. Dayan & Koch (2002) deal
with the dispersion of PCB following a release caused by fire.
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17

Image Processing and Geo-referencing

17.1 Introduction

In many applications of environmental modeling it makes sense to process
images, to read them into a MATLABGE) figure for certain types of processing.
In some applications it is necessary to process the images themselves. Satellite
images for example contain information about some environmental variables.
The distribution of botanical and sometimes also of zoological species within
a geographical area can be determined by a computational algorithm based
on images. Infrared images are used as they contain information about the
temperature distribution.

MATLABQ®) allows various types of image processing. Only few commands
are treated here. Trauth (2006) tackles the topic in much more details. For
those who need an extended functionality, MathWorks offers an Image Pro-
cessing Toolbox, containing tools to analyze and visualize images, develop
algorithms, and share results; see: http://www.mathworks.de/applications/
imageprocessing/index.html. Interested readers are referred to the related
textbook of Conzales et al. (2004).

In core MATLABG®), the ‘hdftool.m’ is available to explore, extract, and
display satellite remote sensing data sets, distributed by the National Aero-
nautical and Space Administration (NASA) in Hierarchical Data Format
(HDF). The reader can view the details in the MATLAB®) help index under
the keywords ‘hdf’ or ‘hdftool’. In this chapter these options will not be pre-
sented further.

In the following, examples are restricted to few other purposes. Imagine a
map or a cross-section plot through some environmental system. The figure
contains some valuable information about a relevant variable or parameter
distribution. Using a map the location of positions, of lines and of areas can
be determined. Lakes, rivers, shorelines, and land-use patterns are examples
of such distributions which can be located with the help of a map. A geolog-
ical cross-section, in which rock- or soil-type layers are visualized, is another
example of a 2D illustration of information. The thickness of these layers, as
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well as their location, represented in the cross-sectional view, are data that
the user may need to extract for modeling soil, aquifer or geological processes.

It is the aim of the modeler to transfer some information from the map into
a computer model, which may itself be implemented in MATLABG) or at least
connected to MATLAB®). Different kinds of connections between MATLAB®)
and a Geo Information System (GIS) have already been discussed in literature.
Marsili-Libelli et al. (2001) couple a river quality model with a GIS software,
whereas Marsili-Libelli et al. (2002) present a pure MATLAB®) approach for
a task of similar kind. Raterman et al. (2001) describe an integrated approach,
using MATLAB® with GIS for groundwater modeling.

Moreover, it is often convenient to view model output results in front of a
map or a cross-section plot. Calculated concentration distributions of environ-
mental species, temperature, hydraulic head or pressure are often visualized
in front of an area background. In the following it is outlined how the task
can be achieved with MATLAB®).

In the first subchapter it is shown how the user can include a bitmap
image in a MATLAB®) figure. There are two steps: the image must be read
(1) and displayed on the screen (2). The second part is a guide to the correct
coordinate frame. In the GIS literature such a task is referred to as Geo-
referencing. In the third subchapter it is demonstrated how information from
the map is transferred to the computer model. We summarize this work under
the header Digitizing.

17.2 Reading and Display

The main new features within an M-file for geo-referencing are explained
using an example. As an example image, we choose a map that is read from
MATLAB®). It is shown how the map is depicted in the MATLAB®) figure
editor. Thereafter, the image is geo-referenced in order to be able to extract
basic features from the map image figure. The following command sequence

performs the first task.

The complete code, outlined in this chapter, can be found on the CD under
the name ‘georef.m’.

[infile,path] = uigetfile(‘*.jpg’, ‘Select graphics file...’);
infilepath = strcat(path,infile);

1x = 1000; 1y = 1000;

figure;

[X,map] = imread(infilepath);

imagesc(X);

axis off; hold on;
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axl = gca;
ax1 axes (‘Position’,get(axl, ‘Position’),‘Color’,...
‘none’, ‘XLim’, [0 1x],‘Y1lim’, [0 1y], ‘XTick’,[], ‘YTick’,[1);

The first line opens a file select box using the MATLAB® uigetfile
command. Parameters in the command are the type of the file (here: *.jpg),
and the header ‘Select graphics file. . .”. The file-select box is shown in Fig. 17.1:

The output of the uigetfile command is the filename, which is stored in
the variable infile. The second output is the directory path of the graphics
file, stored in the variable path . Both these text strings are concatenated in
the second command by using strcat. The initial length 1x and width 1y
scale of the image are set to 1000. The imread demands the chosen file to
be read.

After reading into the workspace, the image file is represented by two
variables, X and map. X contains the color information for each pixel and map
the colormap information. The dimension of X is 3; the content of the first
and second entries is equal to the corresponding pixel-numbers of the image.
For RGB color images, the third dimension is 3 because the color information
is internally represented by 3 color values. Altogether there is thus one R, one
G and one B value for every pixel.

For those modelers wishing to work extensively with graphic files, it is
recommended to study the information in the MATLAB®) help, the various
types of image representation and the various corresponding commands for in-
put, output, display and conversion. Using the imread command all standard
type bitmap images can be read by MATLAB®), such as ‘bmp’, ‘cur’, ‘gif’,

Select graphics file...

Suchen in: |'@Eui3 x|« Cf E3-

. wellssurf. jpg [@ wannseel. jpg
ERIT.JPG [@ HORZBANK, PG

. WaRMING. JMG @ TWOBAMKS, IPG
MESSAGE, PG [@ Werthank, jpg
MASRLiDg 5l hu_rab072 ipg
WaRMNSEE. PG

Dateinams: | | Offnen I
" pg ﬂ Abbrechen |

Fig. 17.1. The MATLAB® ) file-select box for graphic files

Dateltyp:
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‘ico’, ‘jpg’, ‘jpeg’, ‘pbm’, ‘pcx’, ‘pgm’, ‘png’, ‘pnm’, ‘ppm’, ‘ras’, ‘tif’, ‘tiff’
and ‘xwd’. The complete list of formats is found in the MATLAB®) help.

With the imagesc command the map is displayed in the figure that was
opened before. The following final commands of the presented sequence ma-
nipulate the outlook of the coordinate axes.

17.3 Geo-Referencing

When the map appears on the display, the user may like to have the real
world coordinates displayed on the axes. The real world coordinates are of
course not unique. Very often the origin is chosen in the lower left or upper
left corner of the model region. However, when the model region is irregular,
the choice may not be appropriate any more. Another choice of coordinates
refers to those from geodetic projections. Numerous different projections are
common in different countries of the world, even within countries, and this
is not the place to go into details. The procedure which enables the user to
have any real world coordinates available on the display, showing the map, is
known as geo-referencing.

There are various ways of geo-referencing. One way is to specify the coordi-
nates of two opposite corners. Often the positions for which exact coordinates
are known are not identical with the corners of the map. Then two positions
within the image can be chosen to which all others are related. There is one
condition for the procedure to work well, which is that the two selected points
may not have the same z- or the same y-coordinates. For this task an M-file is
presented below. For those with access to the MATLABQ@ mapping toolboz, it
may be more convenient to work with the more general approach there. In the
toolbox a 3 x 2 transformation matrix R is used, which enables the transfor-
mation for a tilted image and for a geoid (see: http://www.mathworks.com/
/access/helpdesk /help/toolbox/map/).

In the following commands, which continue the command listing from the
previous subchapter, the user chooses the image positions by mouse-click and
enters the real world coordinate values in an input box.

== Geo-reference ————————————————————-
h = gca; hold on;

hO = text (0,-1y*0.05, ‘Set referencepoint 17,
‘BackgroundColor’..., ‘y’, ‘EdgeColor’, ‘red’, ‘LineWidth’,2);

[x0,y0,but] = ginput(1);

h1l = plot (x0,y0, ‘k+’);

coords = inputdlg({‘horizontal’, ‘vertical’}, ‘Field
position’,1,{0’,¢0°});

xx0 = str2double(coords(1)); yy0 = str2double(coords(2));

delete (h0);
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hO = text (0,-1y*0.05, ‘Set referencepoint 2’,
‘BackgroundColor’,... ‘y’, ‘EdgeColor’, ‘red’, ‘LineWidth’,2);
[x1,y1,but] = ginput(l);
h2 = plot (x1,yl,‘k+’);
coords = inputdlg({‘horizontal’, ‘vertical’}, ‘Field
position’ ,1,{‘4000’ s ‘3000’}) ;
xxl = str2double(coords(1)); yyl = str2double(coords(2));
delete (hO,h1,h2);

mx = (xx1-xx0)/(x1-%x0); xmin = xx0-mx*x0; xmax = xx1+mx*(1x-x1);
my = (yyl-yy0)/(y1l-y0); ymin = yyO-my*y0; ymax = yyl+my*(ly-y1);
axl = axes (‘Position’,get(axl, ‘Position’),...

‘Color’, ‘none’, ‘XLim’, [xmin xmax], ‘Ylim’, [ymin ymax]);

In the second command line, the text ‘Set reference point 1’ is displayed below
the bottom axis of the figure. The user is informed that a location has to be
set on the image by mouse-click. ginput is the MATLAB® command that
delivers the location of the mouse during a mouse click. The third command
demonstrates its use. ginput stores the position in the current coordinate
system in the variables x0 and y0. The input parameter 1 in the command
tells that a single point is read. Note that the command waits for user input,
i.e. the execution of the M-file does not continue before the user has not
finished the task.

The following plot command places a black ‘4’ at the location on the
display where the mouse click occurred (see Fig. 17.2). inputdlg is the
MATLAB® command for an input dialog, which here asks the user to in-
put the coordinates of the marked location in the real coordinate system. The
dialog box is shown in Fig. 17.2, with the values ‘900’ and ‘1000’, which have
been entered by the user. The input parameters of the command are easy
to relate: ‘horizontal’ and ‘vertical’ are text strings associated with the input
fields; ‘Field position’ is the header text. Both input fields are located in a
single line, and default values for the two variables are ‘0’.

After the input dialog is closed, the coordinate values, chosen by the user,
are stored in the coords variable, containing two strings. As for further pro-
cessing the values (not the strings) are required, the strings have to be trans-
formed into numbers. The two str2double commands transform the strings
to double precision values. After the reference point 1 is read, the following
delete command deletes the text string hO, which is used in the sequel for
other purposes. The following commands (until the next delete) repeat the
previous commands for reference point 2. As these correspond exactly to the
commands, outlined for reference point 1, they need not to be commented
again.

In the final four lines the new coordinate system is computed and displayed
on the figure axes. The user may check that the linear transformation of coor-
dinates, gathered in the first two lines, is correct. The final command adds the
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Fig. 17.2. Illustration of work with the geo-referencing example

real world coordinates under XLim and Y1im axes properties. The specification
of the ‘Color’ property as ‘none’ensures that the image remains visible.

17.4 Digitizing

In the example it is shown how some characteristic structures, which are
visualized on the map, can be made known to MATLAB®) in real-world co-
ordinates. That is done once for a line (structure) and once for locations. The
command sequence within the M-file is basically the same for both tasks.

Y —mmm e Set Line —————————————————————-

h = gca; hold on;

hO = text (xmin,ymin-0.05%(ymax-ymin), ‘Set line: left mouse
button:...set; right: last value’, ‘BackgroundColor’, ‘y’,
‘EdgeColor’, ‘red’, ‘LineWidth’,2);

but = 1; count = 0;

while but ==
[xi,yi,but] = ginput(1);
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plot (xi,yi,‘rx’);

count = count+1;

xline(count) = xi; yline(count) = yi;
end
line (xline,yline, ‘Color’,‘r’);
delete (hO);

In the second command, the information text for the user is displayed
below the bottom axis; the text is: ‘Set line: left mouse button: set; right: last
value’. The user is asked to set the locations of the polyline by mouse clicks
on the left button. The last input is indicated by a click on the right button
instead of the left.

The main part of the command sequence is given in the while loop. Before
the loop is entered, the button indicator but is set to 1, and the point counter
count to 0. Within the loop, the first command questions the location of the
click, storing the results in the variables xi and yi. Moreover, the but variable
is renewed, depending on the mouse button that was used by the modeller.
The left mouse button is represented by a 1 in variable but, the right button
by a 3.

The next instruction in the loop puts a red cross at the location selected
by the user. The counter is increased by 1 and the last coordinates are put
into vectors xline and yline, which represent the current polyline.

The loop is ended when the right mouse button is used and the button
variable but contains a 3. Finally, after the loop, the polyline is plotted on
top of the map (in red color) and the info-text is deleted.

Y —mmm e Set Locationg————-————————————————-
hO = text (xmin,ymin-0.05%(ymax-ymin), ‘Set locations: left
mouse...button: set; right: last value’, ‘BackgroundColor’,
‘y?,...‘EdgeColor’, ‘red’, ‘LineWidth’,2);
h = gca; hold on;
but = 1; n = 0;
while but ==
[xj,yj,but] = ginput(1);
plot (xj,yj,‘bo’);
count = count+1;
xloc(count) = xj; yloc(count) = yj;
end
delete (hO)

The procedure, described for a polyline, is repeated for the location set.
There are minor differences: instead of a red cross, a blue circle becomes the
indicator on the map, and there is no connecting line drawn finally.

An example result of digitizing work with the presented M-file is given in
Fig. 17.3.



314 17 Image Processing and Geo-referencing

Fig. 17.3. Effect of digitizing work on the map of an island (shoreline in red,
locations in blue)

17.5 MATLAB® Functions

On the CD-ROM the ‘georef.m’ M-file has a different header than most of
the other M-files developed in the book. The header line

function [xx0,yy0,xx1,yyl,xline,yline,xloc,yloc] = georef ()

defines a MATLAB®) function with name georef. The name appears on the
right side of the equals sign. As a rule, the file has the same name, with
extension ‘.m’. A function may be called from the MATLAB® command line
or another M-file. That is not the main point, as all M-files can be called
that way. The difference lies in the connection between calling module and
function via both input- and output parameters. When an M-file, which is
not a function, is called, parameters and variables in the called file are taken
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from the calling program. If there is a variable in the M-file, it is taken from
the pool of global variables, defined at an upper level by the calling program.
If it does not exist there, an error message results. In MATLAB®) such files
are called scripts.

Functions are distinguished from scripts, because functions are working
within their own local data environment with variables that are locally de-
fined only: local variables. Of course, data can be transferred from and to the
calling M-file. This is done via a list of reference arguments. This point is
best discussed by an example. The ‘georef.m’ file on the CD starts with the
function command, given above. On the left side of the equals sign, in square
brackets, the output parameters appear, i.e. those values that are computed
or manipulated within the M-file and which are needed for further processing
in the calling module. There are eight parameters in this example, starting
with xx0 and ending with yloc.

Input parameters appear on the right side of the function name in round
brackets. In the example there are no such variables: the brackets are empty.
Empty brackets can also be omitted in m-language. The same parameter may
appear both in the input and in the output list.

The user has to make sure that the types of the variables in the function
M-file and in the calling command fit to each other. Not only the number
of variables needs to be the same, the sequence and the types of each of
the corresponding variables need to be identical as well. Exceptions from that
general rule exist, but are not discussed here. The interested MATLAB®) user
may have a look into the help system under nargin, nargout. The example
georef function could be called by the command:

[A,B,C,D,xbound,ybound,xwell,ywell] = georef;

by which the variable xx0 of the function becomes A in the calling routine. In
this example command, all variables have different names within and outside
of the function. A must be a double value, as xx0 is one, and xbound must be
a 1D array, as the corresponding xline is a 1D array. The function georef
can be called from the MATLAB® command window, or from any M-file in
which geo-referencing is needed. It may be useful in any M-file in which data
from scanned graphs are processed. It is no problem, if the variables in both
files have different names: georef can be called from both, each using its own
names for the variables, as explained. That’s the advantage of using functions
in comparison to using scripts.

The majority of M-files accompanying this book are written as functions,
i.e. the first command is the function command without input and output
parameters. In most modules the first line is not necessary: the reader of this
book will already have recognized that the function line is omitted in the
printed listings. The major reason for using the first command in the files is
to ensure the user that the right program is called. Because function-name
and file-name are identical, the module can be recognized by the file name.
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The function commands, printed in the book, are always necessary. Some-
times the reason is that input and/or output parameters have to be specified.
It is also necessary to use the function command if there are subfunctions
within the M-file. Otherwise MATLAB®) gives an error message, as can be
demonstrated by the following lines:

A =1,
function demo (A)
A= 2;

Error: A function declaration cannot appear within
a script M-file.

Subfunctions are functions that are called within an M-file. There have
been several examples already. Within the ‘pdepetrans.m’ file (see Chap. 4),
there are calls to three subfunctions:

function [c,f,s] = transfun(x,t,u,DuDx,D,v,lambda,...)
function u0 = ictransfun(x,D,v,lambda,sorption,kl,k2,c0,cin)
function [pl,ql,pr,qr] = bctransfun(xl,ul,...)

The calling rules, explained in this chapter, have already been applied
there.
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18

Compartment Graphs and Linear Systems

18.1 Compartments and Graphs

Seen from the process perspective, compartment models are the simplest type
of environmental models. This type of model is based on quite rigorous condi-
tions. There is probably no environmental system at all, where the conditions
are fulfilled exactly. Nevertheless, as a first guess and in order to give a rough
idea about the interactions between compartments, the simplicity justifies the
application.

Compartment models consist of a network of compartments. An example
for such a network is given in Fig. 18.1, representing the terrestrial part of
the hydrological cycle.

There are four compartments to be modelled in the system of Fig. 18.1:
interception, soil moisture, groundwater and surface water, visualized by rect-
angular boxes. Systems of compartments are the simplest concept in environ-
mental modeling. A compartment is part of an environmental system which
is spatially not further resolved. The analogue in chemical engineering is the
continuously stirred chemical reactor. A compartment model can thus only
be an approximation of a real system if there are no steep gradients within
the real environment.

Several processes induce fluxes between compartments, visualized in
Fig. 18.1 by arrows. Groundwater recharge is a flux from the soil to the
groundwater, overland flow from interception to the surface water compart-
ment. There is interflow from unsaturated soil moisture to the surface water
compartment.

Rounded boxes illustrate processes connecting to the outer world, which
is not explicitly taken into account in the model. Ocean and atmosphere are
compartments within the hydrological cycle not being treated within the con-
ceptual model demonstrated by Fig. 18.1.

A system of compartments, shown in a flux diagram, can be represented
by a matrix. The adjacency matriz represents each compartment in one line
and one column. It has a l-entry at the corresponding position, if there is a
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Evapotranspiration Precipitation
A

Interception
storage

Unsaturated Surface water
soil moisture storage

storage

!

Saturated
groundwater

Runoff

Fig. 18.1. Network of compartments for modeling the terrestrial part of the hydro-
logical cycle according to Freeze & Cherry (1979), modified by E.H

|:| Compartment < Fluxes across outer borders

——> Fluxes between environmental compartments

flux from the row compartment to the column compartment; otherwise there
is a O-entry.
The adjacency matrix for the system of Fig. 18.1 is:

(18.1)

>

Il
OO OO
o O OO
OO = O
O == =

which is directly related to the tabular representation of Table 18.1.

A more complex representation of the terrestrial part of the hydrological
cycle is given in Fig. 18.2. Vegetation and surface are included as new com-
partments, interception is omitted. Several processes, which were neglected
for simplicity in Fig. 18.1, are included. For example, due to capillary rise
there may be fluxes from groundwater to the soil and from soil to the surface.

Table 18.1. Tabular representation of connections within the compartment system
of Fig. 18.1

Storage Interception Soil moisture Ground-water Surface water
Interception b'e
Soil moisture X X
Groundwater X

Surface water
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Instead of surface water the less general term ‘channel storage’ is preferred in
this graph.
The adjacency matrix for the system of Fig. 18.2 is:

0o 1 0 0 1
0 0 1 0 1

A=fo 1 0 1 1 (18.2)
0 0 1 0 1
0 1 0 1 0

In MATLAB®), the graph corresponding to an adjacency matrix can be
plotted directly using the gplot command. The following command sequence
demonstrates how that is done:

A=[01001;00101; 01011; 00101; 01010];
xy = [14; 13; 22; 21; 4 2.5];

gplot (A,xy,‘-0’);

axis ([0.5 4.5 0.5 4.5]);

text (0.8,4.2, ‘Vegetation’); text (0.9,3.2, ‘Surface’);

text (1.9,2.2,So0il’); text (1.5,1.2, ‘Groundwater’);

text (3.7,2.7,‘Surface water’);

axis off;

( Evaporation
Transpiration |
—j ( Precipitation )

A

interception ¢

—
« Vegetation channel precipitation
stemflow throughfall
throughfall
\ overland flow vy
< Surface |[€-----—f-----—------Z-—---—2
D infiltration ~ floods | v

< Soil moisture throughflow

[

1
capillary risei |percolation
1

[ 4

baseflow
< Groundwater

recharge

Fig. 18.2. Network model of a part of the hydrological cycle containing secondary
fluxes (Ward & Robinson, 1990, modified by E.H.)
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Vegetation

Fig. 18.3. Graph, representing a flux network between compartments, visualized
using MATLAB®)

In A the adjacency matrix is specified. The vector xy contains the positions
representing the compartments in the plot. The ‘-o’ string in the gplot-
command specifies how lines and nodes in the plot (vertices and edges in graph
theory — see for example: Chartrand 1985) are represented in the figure. The
axis-command defines the limits of the coordinate system. The final text
calls set the text-strings near to the corresponding edges. Figure 18.3 depicts
the graph, as depicted in MATLAB®).

In order to complete a compartment model, fluxes need a mathematical
quantification. Formulae for such fluxes are more or less complex, which de-
termines the degree complexity at this point. In the following sub-chapters

Fig. 18.4. Graph, representing the foodchain in the Barents Sea; simplified by E.H.
from Dommasnes et al. (2001)
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fluxes of different mathematical complexity will be treated, starting with the
simplest linear case.

Holzbecher et al. (2005) describe some other properties of the adjacency
matrix, especially in relation to the feedback property within compartment
systems. In the following we examine linear systems as most simple mathe-
matical examples of compartment models. Finally, there is to mention that
Avila et al. (2003) present the ECOLEGO toolbox for radiological risk as-
sessment, which is a MATLAB®) implementation based on the compartment
idea. The model was used for modeling the accumulation of radionuclides in
the arctic Barents Sea (Dommasnes et al. 2001). A simplified version of the
food chain as a graph is shown in Fig. 18.4

18.2 Linear Systems

A first, most simple approach comprises component mass fluxes as linear func-
tions of some state variable of the involved compartments. The procedure is
best demonstrated on a sequence of lakes, connected by streams, as depicted
in Fig. 18.5. If some substance is introduced into the lake most upstream, it
is subject of mixing processes first. It is assumed that mixing is fast in com-
parison to the residence time of the lakeS?. In the argumentation we assume
all fluxes @; and volumes V; to be known, and the concentrations ¢; being the
unknowns to be determined.

The concentration in the outflow of the lake is equal to the concentration
c¢1. The total mass leaving the lake per time is thus Q¢ (), where @1 denotes
the mean water flux. Neglecting further losses, that mass enters the next lake
downstream.

Again the same argumentation can be used to set Qac2(t) as the flux out
of the second lake into the third. The procedure can be extended to the entire
system of lakes. Following the principle of mass conservation (Chap. 2), one
obtains a differential equation for each lake. For the ith lake holds:

oc;
Vi (’%Z =Qi—1ci-1 — Qi (18.3)
Recharge Q Discharge Q, Discharge Q,
—>| Lake1 >{ Lake 2 —>
Volume \/1 Volume V2
Concentration c1 Concentration <

Fig. 18.5. Scheme for a sequence of lakes

59 Under steady state conditions (inflow @;_1 = outflow Q;) the residence time is
given by V;/Q;; the notation is given in the text.
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where V; denotes the mean volume of the lake. In systems theory such a set-up
is called donor controlled, as the input for the following compartment (lake)
is determined by the state variable (concentration) of the previous compart-
ment. The contrasting term is recipient controlled, i.e. the flux is determined
by the concentration of the receiving compartment (for the lake sequence that
approach does not make sense). Each equation can be divided by V;. Using
matrix notation the resulting equations can be written in one system, repre-
senting all lakes:

gtc =Bc (18.4)
with elements B;_1; = Q;—1/V; and B;; = —Q;/V;. The matrix B is a

generalization of the adjacency matrix. The off-diagonal locations of the ze-
roes in both matrices coincide. Where the transpose of the adjacency matrix
AT has unit entry, there is a positive entry in B of (18.4), too. Opposite
to the adjacency matrix there are nonzero entries in the diagonal of the
compartment matrix. In the donor-controlled cases these entries are nega-
tive. The sign of the matrix entries corresponds to the sign in the formu-
lae given above, because the fluxes ); denote absolute values and are thus
positive.

With such compartment matrices general networks of connected compart-
ments can be described. Each upstream compartment corresponds with a pos-
itive off-diagonal entry in the matrix. Each downstream compartment leads
to a negative contribution in the diagonal. Sidebar 18.1 outlines the idea
how a linear model can be used for indoor air quality modeling. Figure 18.6
depicts a graph of the compartment concept used for the migration of ra-
dionuclides after the fallout in the plant-soil environment. The concept,
which was presented by Amano et al. (2003), leads to a linear system of

equations.
We note the compartment matrix for the system, shown in Fig. 18.2, as
an example. It looks as follows:

—(Qvs +Qvec) /v 0 0 0 0
Qvs/Ww —(@sso+Qsc) /Vs 0 0 0
B= 0 Qs550/Vs — (@506 + Qsoc) /Vso 0 0
0 0 Q506/Vso —Qac/Va 0
Qve/W Qsc/Vs Qsoc/Vso Qcc/Va 0

(18.5)

For a more general description it is assumed that there is an additional
vector of fluxes f; into the lakes (i for influx). Additional fluxes out of the
system can be taken into account.

There are connections to compartments, which are not included in the
model, as the atmosphere and the ocean in the examples represented by
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Fallout

Deposition

Plant surface —>|Plant interior
Translocation

Vegetation

Weathering Resuspension Root uptake

Fast comprtm. ——>Slow comprtm.
Fixation

Soil

Infiltration Infiltration

> Deep layer |€

Fig. 18.6. Graph for the migration of nuclides in the plant-soil environment after
a fallout, as used by Amano et al. (2003); modified by E.H

Fig. 18.1 and Fig. 18.2. These fluxes are also donor controlled. For that reason
they are best represented by a matrix-vector product E,c, with a diagonal ma-
trix E, (o for outflow). The mass conservation equations within the network
can then be expressed in the more general form

Sidebar 18.1: Indoor Air Quality Modeling

Various compounds from different sources affect Indoor air quality. There
are random short-term on/off sources, like cigarettes for example, long-term
on-off sources like heaters, long-term steady-state sources, like moth crys-
tals. Sources may have a high initial emission rate, which is decreasing in
time with quite different rates. Wax or painted surface emissions decline
within hours, while others show modest decay. Sources for volatile organic
compounds (VOCs) may be located outdoors (air quality in vicinity of in-
dustrial emissions, landfills or contaminated sites) or within the building
(combustion, human activities, surface emissions).

Problems of indoor air quality, due to VOCs, can be treated by
linear compartment models, as demonstrated by Bouhamra & Elki-
lani (1999). The approach is presented here briefly. In analogy to (18.3)



324 18 Compartment Graphs and Linear Systems

for each room the concentration of VOC is described by two differential
equations:

VZ(; — Qi — Qc — ko Acs + kadAcs + q

aacts =k,c — kqcs

where ¢ denotes the concentration within the room, ¢;, the inflow concen-
tration, V the volume of the room, @ air inflow and outflow, and ¢ the rate
of the sources within the room, if there is any. Two terms and the second
differential equation are introduced to account for sorption effects. Espe-
cially furniture and soft tissues may act as temporary sinks of sources for
the VOC due to ad- and desorption processes. The corresponding ad- and
desorption coefficients are denoted by k, and kg, while cs denotes the sorbed
concentration and A the area of the reacting surface.

When the source is described by ¢ = kc(Csource — ¢) & set of two linear
equations results. The approach can be extended to a complete apartment,
floor or building, when the set of equations, given above, is formulated for
a network of room compartments:

de;
Vigs = 2 Qici— D Qrer—kaidici +haidicei +a
Jinflow Koutflow
80571-
ot

:ka,ici - kd,ics,i

where the index i is used to indicate the i** room. Inflow and outflow terms
are extended in order to consider that several other rooms may contribute to
the total inflow and outflow. Sorption coefficients are assumed to be room-
specific, as the involved surfaces may be of different kind. Of course it would
also be possible to consider different types of surfaces with respect to sorption
in each room. With all these extensions the presented approach still leads
to a linear system connecting compartments, which can be solved by the
methods described in the second sub-chapter.

Some caution concerning the applicability of the approach should be
mentioned. Bouhamra & Elkilani (1999) use the model to determine sorption
coefficients within an experimental test chamber with controlled in- and
outflow and an installed toluol source. For real apartments or buildings, the
number of uncontrolled parameters increases quite fast and surely limits
the model’s applicability for predictive purposes. However, the presented
approach can be useful in hypothetical studies exploring the relevance and
interaction of processes. In any case, the compartment approach is more
justified for gaseous environments, where mixing occurs fast in comparison
to an aquatic environment.
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gtc =Bc+f;, — E,c (18.6)

where ¢ denotes the vector of the state variables. The number of elements
of ¢ corresponds thus with the number of compartments. In the matrix B
the exchange coefficients are gathered. Ey is a diagonal matrix, representing
outflow into the exterior, which is also proportional to the state variable. f; is
a source/sink vector, defining a constant sink or source for each compartment
which is independent of any state variable. For a compartment source the sign
of the corresponding element is positive, for a sink it is negative.
For the following we define:

C=B-E, (18.7)

For non-constant input vector f; the general solution is given as:

c(t) = exp(CH)E + exp(Ct) / exp(—Cs)f(s)ds (18.8)
0

(Jordan & Smith 1977; Walter & Contreras 1999). The expressions with the
exponential function need further explanation, as the arguments Ct and -
Cs are matrices. The exponential value of a square matrix is defined by the
infinite series:

Cc?t? , CrtF

exp(—Ct) =1 —Ct + +...+(-1) 1l

. ... (18.9)

which is the analogue to the infinite series of the exponential function for
single numbers. The powers of C in the higher order terms are results of
matrix multiplication. The result of the operation is also a matrix. The so
computed matrix is different from the elementwise evaluation of the infinite
series or the exponential function. In MATLAB® the expression exp(Ct)
can be programmed easily, as the exponential function of a matrix is avail-
able. In m-code it is written using the matrix exponential call expm (compare
Sidebar 18.2):

c = expm(Cxt)

The exp command in MATLABQ@®) is reserved for the elementwise eval-
uation of the exponential function. The vector € in formula (18.8) contains
unknown parameters, which have to be determined from boundary or initial
conditions.

The computation of the general solution (18.8) is quite complex. It includes
the evaluation of an integral, which usually needs special analysis. We keep
it simple by assuming constant f;. For constant f; the solution of equation
(18.6) can be written as:
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c(t) = exp(Ct)e — C'f; (18.10)

The result can be derived easiest by the application of the integration
formula for the exponential:

t

/exp(Cs)ds = C lexp(Ct)
0

which is common knowledge for single values, but also holds for matrices.
C~!is the inverse matrix of C. Thus, the formula (18.10) is applicable only
for regular matrices (for which an inverse exists). The first term in equation
(18.10) is the general solution of the problem dc/0t = Cc, which mathemati-
clans call homogeneous. The second term in (18.10) is a particular solution
of the differential equation (18.6), representing the equilibrium solution with
Oc/0t = 0, which can be verified easily.

Sidebar 18.2: MATLAB® Matrix Functions

Matrix functions are common functions that allow matrices as arguments.
There are several matrix functions directly inplemented in MATLAB®):

expm ( )
logm ()
sqrtm ( )

Other matrix functions can be defined by using the MATLAB®) ’fun.m’
M-file or funm command. How it works is best explained by an example.
Instead of using expm (A) as command with matrix A one may write:

funm (A,Gexp)

In the same manner sin, cos, sinh or cosh can be called with a ma-
trix argument. Unfortunately, the same procedure does not work for func-
tions with more than one argument. Thus the call

funm (0,A,@besselk)

does not work. Maas & Olsthoorn (1997) propose the following nice trick,
which works by introducing two new M-files:

function f = besselk0 (x)
f = besselk (0,x)

function f = KO(A)
f = funm(A,@besselk0)
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For an initial value problem with the condition c(t = 0) = co, it can be
verified that the solution is:

c(t) = exp(Ct)co — (exp(Ct) — I) C™f; (18.11)
For a zero source vector f; the special solution is:
c(t) = exp(Ct)co (18.12)

An example for the application of (18.11) is given by the following com-
mand sequence:

T = 10; % maximum time
c=1[-11;1-3]; % matrix

f = [1; 0]; % input vector

cO = [1; 1]; % initial concentrations
N = 60; % discretization of time
t = linspace (0,T,N);

c = c0;

fori = 2:N

expm(C*t (1)) ;
[c Exc0-(eye(size(C,1))-E)*inv(C)*£f];

c
end
plot (t,c’);

legend (€1°,¢2%);

text (T/2,1.2, ‘Eigenvalues:’); text (T/2,1.1,num2str(eig(C)’));
text (T/2,0.8,‘Steady state:’);

text (T/2,0.7,num2str (-(inv(C)*£f)’));

xlabel (‘time’);

Sidebar 18.3: Chains of Radionuclides

The safety analysis for a repository of radioactive waste includes the mod-
eling of the fate of radionuclides. In such a work it is necessary to look at
several radionuclides simultaneously, as these are connected in chains of ra-
dionuclides. Let’s explain the general behavior here without going too much
into detail.

With a characteristic half-life the concentration of a mother nuclide
declines by radioactive decay. Instead of half-life it is convenient to work with
a decay coefficient, as introduced in Chap. 5. The differential equation (5.3)
with n = 1 is the basis for mathematical modeling of the mother nuclide. As a
result of the radioactive decay a daughter nuclide is produced. The daughter
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nuclide usually is unstable itself, i.e. it also decays with a characteristic
constant, which is expressed by the differential equation:

aCdaughthar
ot = Amothcrcmother - Adaughtcrcdaughter

The daughter nuclide itself is a mother nuclide for a next daughter
nuclide. Thus a chain of radionuclides can be identified. Let’s denote the
concentrations within that chain by ¢;, where the index i indicates the i*®
member in the chain. The entire system of species may thus be described by
a system of linear differential equations:

C1 —>\1 0 0 e C1

0 C2 _ )\1 —>\2 0 “e C2

ot c3 o 0 A —A3 ... c3
1%}

briefly written as j,¢ = Be, which is a special case of equation (18.6).
The solution of the system is given by equation (18.12) with C=B. The
eigenvalues of the matrix are identical to the deacy rates with negative sign.
If source rates for the nuclides are gathered in the vector f, the resulting
system

gtc =Bc+q
is still a special case of equation (18.6). The general solution is given by
equation (18.11) with C=B and f; = q.

An M-file for the simulation of the nuclide chain can be constructed
in close relation to the compartment simulation, described and listed in
the text. In the specification part of the M-file the decay rates, the initial
concentration and the source rates have to be defined. The matrix B is
constructed by the following commands:

B = -diag(lambda);

for i = 2:size(lambda,1)
B(i,i-1) = lambda(i-1);

end

The solution is evaluated using the exponential matrix function expm.

The complete code can be found on the CD under the name ‘nuclides.m’
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In the code the matrix exponential is evaluated only once, and stored as
matrix E. This is good programming practice, as for the computation of ¢ in
the next command the term is needed twice. Such programming saves time,
which is surely not relevant in the simple example presented here, but it can
be crucial in an elaborated code, where in the interior of nested loops the same
command sequence is executed again and again. The term eye (size(C,1)) in
the expression for ¢ denotes the unit matrix, represented in the mathematical
formulae by I.

In the final lines the eigenvalues and steady state values of the given sys-
tem are calculated and displayed in the figure. The plot resulting from the
M-file is shown in Fig. 18.7 (markers were added afterwards using the figure
editor). The reader may notice that the text command adds textstrings to
the figure. The first text places the ‘Eigenvalues’ text into the figure. Within
the second text command eigenvalues (see the following subchapter) are cal-
culated, values (numbers) are converted to strings (command num2str), and
the result is added to the figure.

It was already mentioned above that the formula C~'f; represents the
steady equilibrium. That term is evaluated within the last text statement.
The transient development, depicted in the figure, shows that the steady state,
obtained by the evaluation of the formula, is approached. We are in the lucky
position that the steady state can be obtained in two ways: by evaluating an
analytical formula and by regarding the temporal development at long times.
In many other models only the second alternative is available.

The development of the transient simulation against the steady state (here
c=(1.5,0.5)T) does not become as obvious as in Fig. 18.7, if the time interval
is not sufficiently long. Note that there are systems which do not approach

1.8 T T T

16} 2 |

1.4}

1.2} Eigenvalues: 1

-3.4142 -0.58579
1d .

0.8¢ Steady state: 1
1.5 0.5
0.6} g
0.4 . ; . . !
0 2 4 6 8 10
time

Fig. 18.7. Transient and steady state solution of a 2-compartment model using
MATLAB®
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the equilibrium, independent of the length of the time interval. In that case
we speak of an unstable equilibrium. It can also be checked by the sign of the
biggest eigenvalue (see below), whether the system converges towards a steady
state, i.e. if the equilibrium is stable or unstable. For the next sub-chapter keep
in mind that in the example the maximum eigenvalue is ~ —0.59, and thus
negative.

The complete code can be found on the CD under the name ‘comparts.m’

Sidebar 18.4: Systems of Aquifers

Systems of aquifers or layers of permeable porous media in the subsurface
are often connected. If the flow within these layers is to be studied, one has
to take into account the connections. Using matrix notation for the entire
setting all layers can be represented in one model. If the porous matrix
within each aquifer is homogeneous one can note the following differential
equation for the i*" layer:

hi —hi—1 = hi— hiy1
- K;Hici  KiHiciy

where h; denotes the piezometric head, K; the hydraulic conductivity and
H; the thickness, all for in the ¢*h layer, whereas ¢, and c¢;4+ denote the
conductances of the overlying and underlying aquitards. In this notation we
have: ¢;— = c¢(j_1)4+ and ¢;4 = c(j11)—. The entire system can be noted in
vector notation as:

V?h = Ah

with matrix A, which for a 3-layer system is given by:

1 ( 1 1 > 1
+ - 0
KlHl C1— Cl+ K1H101+
1 1 1 ) 1
A = _ + _
KoHoco— K>Ho 62I Cot K2{1202+
0 _

K3Hzcz— K3Hsesy

Using the exponential and square-root matrix functions, the solution for
the system is given by:
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h(z) = exp(—zVA)hy

for all positions = (Maas 1986). In the vector hy for each aquifer the reference
heights at position £=0 are stored. The explicite formula can be programmed
easily:

h = expm (-x*sqrtm(A))x*h0

In the same manner the formula of de Glee for semi-confined aquifers,
which was introduced for a single aquifer in Chap. 12, can be extended for
a system of aquifers. One may write

h(z) = ! Ko(rvVA)hg
21
(Maas & Olsthoorn 1997) where Ky is the Bessel function, already discussed
in Chap. 12. hy here is the elementwise product of pumping rate with the
reciproce of conductivity and thickness.
The MATLAB® command is simply:

h = 1/(2%pi)*K0 (-r*sqrtm(A))*(Q./K/H)

More details are given by Maas (1986) and Maas & Olsthoorn (1997).
For an extension of the method for unsteady flow towards wells see
Hemker (1985) and Hemker & Maas (1987).

18.3 Eigenvalues and Phase Space

Eigenvalues of a matrix allow a much deeper insight in the behavior of a
system of differential equations. For every square matrix C, the eigenvalues A
are values for which the system of linear equations:

Cx = \x (18.13)

has a non-zero solution vector x. The vector x is called eigenvector for the
eigenvalue \.

Eigenvalues and eigenvectors as basic characteristics of matrices are dis-
cussed in every textbook on linear algebra or matrix algebra (for example:
Robbin, 1995). It is not the place here to recall properties of eigenvalues and
eigenvectors; the reader who is not yet familiar with these terms should refer
to a textbook on linear algebra. As MATLAB®)’s origin is numerical linear
algebra, the determination of eigenvalues is one of the most basic tasks for
which this software can be used.

In MATLAB®) eigenvalues are calculated using the eig command, for
example:
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eig ([1 2; 3 4]1)

ans =
-0.3723
5.3723
i.e. the matrix (il)) i has the eigenvalues \; = —0.3723 and Ay = 5.3723.

The eigenvalues of a diagonal matrix are the elements in the diagonal:

eig ([1 0; 0 4]1)

ans =
1

For a square matrix with N rows and columns there are N eigenvalues,
of which some have to be counted several times. How many times an eigen-
value has to be counted is not arbitrary, of course: we call it the order of the
eigenvalue. In the following example

eig ([1 00; 020; 00 1)

ans =

N =

there are the eigenvalues ‘1’ and ‘2’. ‘1’ has the order 2 and appears twice in
the MATLAB® output list. The unit matrix has only one eigenvalue (‘1’),
but with the order of N. Try the command:

eig (eye(5))

The nice property that the number of eigenvalues, if counted according
to their order, is equal to N is only true, if complex valued eigenvalues are
allowed. In general, eigenvalues are complex numbers, which is no problem for
MATLAB®), of course:

eig ([1 2; -2 11)

ans =
1.0000 + 2.00001
1.0000 - 2.00001

The eigenvalues in this example are A\; o = 1 & 2¢, where ¢ denotes the
imaginary unit i = v/—1 (for complex numbers see also Chap. 15). Also, the
eigenvectors can be obtained from the eig command; see the MATLAB®) help
system for details. The reader interested in the numerics of the calculation of
eigenvectors should consult a textbook on linear algebra.
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The connection with linear systems of differential equations is that the
eigenvalues tell something about the behavior of the solutions. Negative real
parts tell that the unsteady solution is converging towards the equilibrium
(which is given by:c., = C'f;, see the preceding subchapter). The equilib-
rium in that case becomes a steady state, as demonstrated in Fig. 18.7. As
both eigenvectors are negative in that example, the solutions with increasing
time tend towards the steady state.

The importance of eigenvalues for the analysis of the development of linear
systems is most apparent in phase diagram. Phase diagrams, such as plots of
the phase space, are a tool for the visualization of the behavior of linear and
nonlinear systems. In a phase diagram two dynamic variables or derivations
are plotted against each other. The representation is unique if there are only
two unknown variables. For the matrix C, treated in a listing above, the
procedure is performed and demonstrated by the following commands:

T = 10; % maximum time
c=1[-11;1-3]; % matrix
f = [1; 0]; % input vector
co0 = [1; 1]; % initial concentrations
N = 60; % discretization of time
t = linspace (0,T,N);
c = c0;
for i = 2:N

E = expm(C*xt(i));

¢ = [c ExcO-(eye(size(C,1))-E)*inv(C)*f];
end

plot (c(1,:)’,c(2,:)7);

The result is a ‘lowpath’ in the phase space towards the steady state, a
so-called trajectory. In the phase space such lines are called trajectories. In
order to obtain a more illutrative figure, we chose several starting positions
around the equilibrium solution. One obtains:

T = 10; % maximum time

c=1[-11;1-3]; % matrix

f = [1; 0]; % input vector

cc = 1; % initial concentrations (absolute
value of the vector)

N = 60; % discretization of time

M = 16; % no. of trajectories

fpmmm execution & output--—----—--———-———————————

equilibrium = -(inv(C)*f);

t = linspace (0,T,N);
for angle = linspace (0,pi+pi,M)
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c0 = equilibrium + cc*[sin(angle); cos(angle)]; c = cO0;
fori = 2:N
E = expm(C*t(i));
¢ = [c ExcO-(eye(size(C,1))-E)*inv(C)*£f];
end
plot (c(1,:)?,c(2,:)’); hold on;
end
plot (equilibrium(1),equilibrium(2),’s’);
xlabel (‘variable 1’); ylabel (‘variable 27)
title (‘phase diagram’)

The complete code can be found on the CD under the name ‘phasediag.m’.

The graphical output of the M-file is depicted in Fig. 18.8. The graphic
was extended manually by arrows in order to indicate the temporal direction
of the trajectories. A textbox was added close to the position of the stable
equilibrium. Figures similar to the one depicted arise, whenever two variables
are plotted in the vicinity of a stable equilibrium. Obviously, the equilibrium

phase diagram

1.5 T T
variable 2
1 L -
“
0.5} = \ -
stable
equilibrium
0 L -
variable 1
-0.5 1 1 1
0.5 1 1.5 2 2.5

Fig. 18.8. Phase diagram for a simple compartment model using MATLAB®



18.3 Eigenvalues and Phase Space 335

is approached differently from different angles, which is a result of the different
eigenvalues. For the more seldom case of equal eigenvalues, the resulting figure
looks differently, although the qualitative behavior remains the same. In case
of an unstable equilibrium similar trajectories result, but the flow direction is
opposite. It is left to the reader to explore these different cases by modifying
the ‘phasediag.m’ M-file.

Table 18.2 provides a classification of equilibria for a two variable system,
based on the real parts of the eigenvalues (see also: Hale & Kogak (1991).

Figure 18.9 provides a view of the stable oscillations that are obtained if
both eigenvalues are purely imaginary, i.e. if both eigenvalues have vanishing
real parts. The trajectories are circles around the origin, describing a cycling
of the corresponding variables: if variable 1 increases, variable 2 decreases and
vice versa. Turning points between these two situations are reached, when one
of the variables has a zero value and changes its sign.

For higher values of N the characterization of stable and unstable situ-
ations can easily be extrapolated from the simple N = 2 case. If there is
at least one eigenvalue with a positive real part, the equilibrium is unstable.
If real parts of all eigenvalues are negative, there is convergence towards a

Table 18.2. Classification of equilibria stability according to eigenvectors, for N=2

Eigenvalues A1, A2 Matrix of stable (s) Comment
equivalent  unstable (u)
reference
system

o2]

hyperbolic sink

A A T N T T e e
=

Re(M1) < 0, Re(X2) < 0 (_(1)

—_

Re(A1) > 0, Re(A2) > 0 u hyperbolic source

)

Re(A1) > 0, Re(X2) <0 u hyperbolic saddle

| o
I

S =

Re(M) <0, 22=0 s equilibria for all ca, ¢c1 =0

Re(A) >0, X2 =0 equilibria for all ¢c2, ¢1 =0

AM=X=0 8 S all locations equilibria
2 eigenvectors
AMM=X2=0 0 u equilibria for all ¢1, co =0

o

1 eigenvector

Re()\l) = Re()\z) =0

— o

S oscillations

/\/\/\/@\H/\/\/\
o= OFr OO0 OO0 OO0 HO PO O
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Fig. 18.9. Phase diagram for the reference matrix of two purely imaginary eigen-
values, representing oscillations around the equilibrium; obtained using phasediag.m
file with reference matrix from Table 18.2, zero right hand side and equidistant start
positions on the cz-axis

stable solution. Degenerate situations, in which there is at least one purely
imaginary eigenvalue, can be interpreted analogously to the five lower rows in
Table 18.2.

For 2D phase space calculation and visualization, the MATLAB® M-file
‘pplane.m’ by Polking is available on the web (http://math.rice.edu/~dfield/).
It sets up a graphical user interface (GUI) and has several other convenient
features. The manual for the program is available as a book (Polking 2004).
We demonstrate an application example in Chap. 19.
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Nonlinear Systems

Linear systems, as examined in the previous chapter, represent the simplest
type of models. But linear models are often too simplistic from the process
aspect. The set-up of a linear model is often motivated by the fact that few
characteristics, parameters or variables, of the system have been observed and
that few data are available to check the model approach, whatever that may
be. This chapter describes models slightly more complex than the linear ones.
It is demonstrated that even simple nonlinear terms in the differential equation
open the door to a much greater variety of phenomena than experienced by
the work with linear systems.

There are several mathematical textbooks on nonlinear systems of ordi-
nary differential equations. Jordan & Smith (1977) provide a wide range of
examples, not only for environmental systems. Hale & Kocak (1991) focus on
bifurcations in nonlinear systems, but with hardly a connection to environ-
mental sciences. For MATLAB® users the book of Polking (2004) is highly
recommended, because the accompanying software is extremely user-friendly
and can be obtained via internet.

19.1 Logistic Growth

The linear differential equation d¢/9t = rc for a single species describes expo-
nential growth, for » > 0. With reference to discussions on earth’s population
this is sometimes referred to as Malthus™%ian growth. However, there is no
environmental system in which any species can grow infinitely. The model,
described by the simple linear equation above, can thus be valid for a limited
range of parameter or variable values only. If the model is to be valid for
an extended parameter range, the equation needs to be extended itself. The
basic formulation for the development of a biological species is the logistic

" Thomas Robert Malthus (1766-1834), English demographer and political
economist.
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growth equation:

gi = re (1 - Z) =:f(c) (19.1)
with growth rate rand carrying capacity . For populations we maintain to use
the symbol ¢, which was introduced in previous chapters (with an eye on con-
centrations to be described). The term 'logistic growth’ was introduced by Ver-
hulst™, who studied the equation already in the first half of the 19" century.
For small populations the first (linear) rc term is dominant, describing first
order growth r» > 0. For high concentrations the population approaches the
carrying capacity x, while the temporary growth rate r (1 — ¢/k) approaches
zero. Equation (19.1) is a nonlinear differential equation. It has an analytical
solution:

cok exp(rt)

() = K+ co (exp(rt) — 1) (19:2)

which can easily be implemented using MATLAB®). Here an example com-
mand sequence for parameter input, execution and graphical output:

fymmm input ——————————————
T = 10; % maximum time

r=1; % rate

kappa = 1; % capacity

c0 = 0.01; % initial value

= execution ——————————————————————————

t = linspace (0,T,100);

e = exp(r*t);

c = cOxkappaxe./(kappa+cO*(e-1));

fym—m graphical output —-—------------——--—-
plot (t,c); grid;

xlabel (‘time’); legend (‘population’);
title (‘logistic growth’);

The complete code can be found on the CD under the name ‘logistic.m’.

™! Pierre Frangois Verhulst (1804-1849), Belgian mathematician.
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Fig. 19.1. Logistic growth; computed form analytical solution using MATLAB®)

The graphical output of the M-file is given in Fig. 19.1, showing the increase
of the population from an initial value towards a maximum value, at which
the carrying capacity of the system is reached.

Also for nonlinear equations it makes sense to examine equilibria, as intro-
duced in Chap. 18. The logistic equation has two equilibria that are obtained
by finding values ¢, for which the left hand side of (19.1) vanishes: f(c) = 0.
The population ¢ = 0 is an unstable equilibrium, while ¢ = k is stable. Small
deviations from the unstable equilibrium, in the example ¢y = 0.01, lead to
increased deviations at later times. The user may check easily for the given pa-
rameters that an initial value near to the stable equilibrium of ¢ = 1 produces
an almost constant system development.

The stability of equilibria can be examined by the use of the deriva-
tive. For a negative value of the derivative the system is stable, while it is
unstable for a positive derivative. For the logistic equation (19.1) there is
0f/0c = r (1 — 2¢/k), which is positive at the origin but negative for ¢ = k.
In the following we treat systems of equations instead of single equations. For
systems the eigenvalues of the Jacobi-matrix take the just described role of the
derivative and have to be examined in order to check the equilibria for stability.

There is almost no branch of environmental modeling in which nonlinear
systems do not appear. In ecological sciences ecosystems are in the focus
with interactions between species populations. The structure of a foodweb
model is often visualized in a compartment graph, in the way hydrological
systems were represented in Fig. 18.1 and Fig. 18.2. An example of a foodweb
graph is depicted in Fig. 19.2. Species or groups of species are represented by
compartments. Arrows in foodweb graphs indicate the direction of the food-
chain; in the example lake trouts consume forage fish, which themselves live
on zooplankton.

In the example graph, representing a part of the Lake Michigan aquatic
ecosystem, there are four trophic levels. Detritus and phytoplankton are the
lowest level and lake trout alone represents the highest level in this model.
Most modeling efforts of lake eco-systems end up with less than five or
six trophic levels. Foodweb structures can be represented by an adjacency
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Fig. 19.2. Example of a foodweb model; for part of the Lake Michigan aquatic
ecosystem

matrix and visualized using the MATLAB® gplot command, as shown in
Chap. 18.

In the sequel some simple foodweb models are examined as examples for
the treatment of nonlinear systems by MATLAB®). Analytical solutions can
be obtained for simple networks and interactions only, as for example for
the logistic growth (19.1). Therefore, numerical methods will be used for the
solution for more complex set-ups. First we study species of the same trophic
level, like in the forage fish or the zooplankton compartments of Fig. 19.2.

19.2 Competing Species

More specifically we are interested in the development of two species that are
competing for exactly the same resources. For very low populations the growth
rates are given by the specified values r; and r9. For increased populations
the growth rate is reduced by a term which takes into account the reduced
foodstock of both species. If the foodstock is reduced by Ah, the following
system of two differential equations can be used to describe the temporal
development:

601 =C (7’1 — Oélﬂh)

S with  Ah = hicy + hacy (19.3)
C2

ot = C2 (7"2 — CVQAh)

The system of (19.3) can be re-written in analogy to formulation (19.1):
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r1C1 1-— “ with R1 = 10
8 c K1 1 + /\CQ/Cl
L) = (19.4)
ot \ ¢c2
rocg | 1 — ©2 with Koy = 20
Ko 14+ X 1lep/eo
with capacities ;0 = r;/a;h; for single species cases and the dimensionless
system parameter A = 22 =a :;g (compare: Richter 1985). When the

ratios r; /a; are equal, the capacities are related by the formula: kK19 = Akog.
If species 1 is more efficient than species 2 concerning resource consumption,
it holds: A < k10/k20; while the opposite inequality holds if species 2 is more
efficient.

The following M-file explores the situation in a phase diagram. As exam-
ple a situation is studied in which the parameters are non-dimensionalized
(Murray 2002), i.e. in which rates and equilibria are set to unity.

T = 1000; % maximum time
r = [1; 1]; % rates
e = [1; 1]; % equilibria

lambda = 0.2; % lambda parameter
cO = [0.1; 0.1]; % initial concentrations

options = odeset(‘AbsTol’,1e-20);
[t,c] = odel5s(@CS,[0 T],cO,options,r,e,lambda);

plot (c(:,1)?,c(:,2)?); hold on;

plot (e(1),0,‘s’); plot (0,e(2),‘s’);
legend (‘trajectory’);

xlabel (‘species 1’); ylabel (‘species 2’);
title (‘competing species’);

function dydt = CS(t,y,r,e,lambda)
dydt = zeros(2,1);

= [e(1)/(1+lambdaxy(2) /y(1)); e(2)/(1+y(1)/y(2)/lambda)];
dydt = r.*y.*(1-y./k);

The complete code can be found on the CD under the name ‘compspec.m’
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Various trajectories (see Chap. 18.3) for the same starting populations,
but with varying parameter A, are shown in Fig. 19.3. Obviously, for almost
all A-values the solutions at coordinates (0,1) or (1,0) are approached.

In both equilibria cases one of the species becomes extincted. As both
equilibria for single species are identical, the marginal parameter value is
A = 1. For A > 1 species 2 uses resources more efficiently and species 1
becomes extinct. For A < 1 the fate of the species is reversed. In Fig. 19.3
the two positions in the phase space, which represent these two situations, are
marked by ‘species 1’ and ‘species 2’.

In fact the two mentioned states are equilibria, because they fulfil the sys-
tem equations (19.4) for vanishing left hand side, i.e for zero time derivatives.
A refined examination of the two-equations- system (19.4) reveals that there
are three equilibria in the competing species model, which are given by:

0 0 rl/alhl
o) (5o

Even more equilibria are obtained for the degenerate case of parameter
values, in which both brackets on the right side of (19.3) vanish. That condi-

competing species

T T T T T T
1 specie 2 trajectory
0.8 1
0.6 i
0.4 B
0.2 i
0 - -
IS specie 1
1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Fig. 19.3. Trajectories in phase space for the competing species model; Ae{0.2,
0.25, 0.4, 0.5, 0.667, 0.8, 0.9, 1, 1.11, 1.25, 1.5, 2, 2.5, 4, 5}; use the corresponding
M-file for other input values
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tion is characterized by the equality r1/a; = ro/ag, and all positions on the
line, given by hic1 + hoco = r1/as, become equilibria. The second and third
equilibria represent those states in which one of the species dominates over
the other, and the latter becoming extinct.

The mathematical analysis offers more than just the number of equilib-
ria and their position in the phase space. Also the behavior of the system
concerning the equilibria can be determined by analytical means. The crucial
condition includes the eigenvalues, as outlined in more detail in the sequel.

The behavior of the system at the equilibria can be analyzed by the exam-
ination of the Jacobi™-matriz at the equilibrium position. For a (multicom-
ponent) vector function f with components f;, depending on the variables ¢;,
the Jacobi matrix is given by

Df := (afi) (19.6)
dc; ij=1...N

where ¢ denotes the row index, and j the column index. The Jacobi matrix
changes with the variables ¢; and thus with time ¢, as the ¢’s are functions of
t. The Jacobi matrix depends on the position in the phase space where it is
evaluated. Df is a generalization of the derivative for multi-valued functions,
depending on several variables.

For the competing species system (19.3), the function f is given by:

o=t = (F00)) = (G0 oan) 007

All four expressions in (19.7) are different writings of the same thing.
MATLAB®) users, familiar with vector notation, probably prefer the most
compact writing on the left. As the reader may easily verify, the Jacobi matrix
at location (c1,c9) is given by:

T — Q1 (2h161 + hQCQ) —ozlhgcl
—Oézhlcz To — Qg (2h262 + hlcl)

Df(c1, c5) = < ) (19.8)

For ¢; = ¢o = 0 the Jacobi matrix is diagonal with r; in the upper-left
position and 79 in the lower right. The eigenvalues of the diagonal matrix are
given by two reaction rates r; and ry (compare Chap. 18). These are always
positive; the eigenvalues are positive, indicating that the equilibrium at zero
concentrations is unstable.

At the other two equilibrium positions the Jacobi matrices look as follows:

Df(Tl/Oélhl,O) _ (—7‘1 —hle/hl T — 0&17‘2/0&2 0 )

0 1 ang/hl) Df(0,r2/azhz2) = ( Charajhy —rs
(19.9)

™ Carl Gustav Jacob Jacobi (1804-1851), German mathematician.
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The eigenvalues for these two triangular matrices can be read directly from
the diagonal:

N = —r1 at (Tl/alhl,o) Ny — T2 —0427‘1/0(1 at (rl/alhl,O)
VT ) ri—aare/as at (0,r2/ashs) P T ) —ro at (0,72/azhs2)
(19.10)

The eigenvalues are real in all cases, because all parameters are real num-
bers. The stability depends on the sign of both eigenvalues. The equilibria are
stable if both eigenvalues are negative. As the rates r1 and re are positive,
there remains only one condition. Stability is equivalent to the conditions:

71 T2 T1 T2
o < o at (r1/ai1h1,0) and o > ag at (0,72/azhs2) (19.11)

The Jacobi-matrix at (ri/aihi,0) has negative eigenvalues for ri/a; >
ro/as and positive eigenvalues if the inequality holds in opposite direction.
For the Jacobi-matrix at (0, r2/azhs) the conditions are exactly reversed. The
analysis shows that the result, obtained above for the example values from a
phase space analysis, is generally valid.

For the degenerate case with r1/a1 = r2/a2 one eigenvalue becomes zero;
as the other one is negative the equilibrium is still stable. However, it needs
to be noted that all positions on a line are also equilibria in that case. The
eigenvalues for those points are —ajhic1 and —ashace and thus also negative.
All these equilibria are stable.

In order to visualize this in the phase space, various trajectories have been
plotted as described above. Input parameter within the ‘compspec.m’ were
specified as follows:

T = 1000; % maximum time

r = [1; 1]; % rates

e =[1; 1]; % equilibria
lambda = 1.; % lambda parameter

Several starting positions were chosen and the M-file was run several times
with the hold on option being active. As shown in Fig. 19.4 all trajectories
are straight lines, which end at the diagonal that connects the upper left and
the lower right corners of the plotted region. Using the mathematical analysis
from above it is easy to verify that this line represents all equilibria (except
zero). The illustration allows the obvious conclusion that the equilibria on the
line are stable, which we already know from the eigenvalues.

In order to improve the graphical representation of the phase space, an
arrow field is added, illustrating the direction and the velocity along the tra-
jectories. The option for such an extension is implemented in the ‘compspec.m’
file. In the input part several option parameters are added:

gquiv = 20; % arrow field plot;
value for no. of arrows in 1D
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Fig. 19.4. Trajectories in the phase space for the degenerate case A = 0 of the

competing species model; all equilibria on the diagonal line (from upper left to
lower right) are stable

xmin = 0; xmax
ymin = 0; ymax
scale = 2;

]
-

% x- interval for arrow field plot
% y_ n n n n n

% scaling factor for arrows

1]
i

In the output part of the file find the following instruction block:

if (gquiv)
[x,y] = meshgrid
(linspace (xmin, xmax,gquiv) ,linspace(ymin, ymax,gquiv));
dy = zeros(gquiv,gquiv,2);
for i = 1:gquiv
for j = 1l:gquiv
dy(i,j,:) = €S(0,[x(i,j);y(i,j)],r,e,lambda);
end
end

quiver (x,y,dy(:,:,1),dy(:,:,2),scale);
end

With the meshgrid command a regular mesh is constructed, which has
already been demonstrated in previous chapters. The array dy is initialized
with two values for each mesh node. In the interior of the for loops these two
values, which represent the time derivatives of both variables, are calculated.
The final quiver request initiates the plot of the arrow field. The scale pa-
rameter is related to the length of the arrows. The outcome of the M-file with
the given values can be recognized in Fig. 19.4.
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The described situation of non-coexistence in an ecological system can be
observed in reality, especially in aquatic eco-systems, where disfavored species
have no chance to emigrate to places with more favorable conditions. One of
the such catastrophes happened in Lake Victoria, when the nile perch was
introduced into Africa’s biggest lake in 1960 (Goldschmidt 1998). At the top
of the food-chain the single predator gradually replaced more than one hun-
dred species of predators. As a result, the complete foodweb changed. The
prawn, which was rare before the appearance of the Nile perch, replaced sev-
eral detritus-eating species, the sardine replaced more than twenty species of
zooplankton-eating fish. Algae-grazing fish disappeared without replacement.
This radical change of the species population in the lake may have contributed
to increased blue-green algae blooms and eutrophication, which has been ob-
served hitherto. While the catch of Nile perch strongly increased after its
introduction, the overall productivity of the lake was reduced by 80% in 1984,
compared to pre-1960 levels. The consequences not only concerned the aquatic
system. Problems arose in communities around the lake, which were strongly
dependent on the catch. Ecological problems worsened the situation in addi-
tion to economical problems. Large perch is oily and can not be dried in the
sun. Fish preservation by smoking over wood led to a decline in the stock of
trees. The spread of the infectious and often lethal bilharzia disease can also
be related to the introduction of the Nile perch (Murray 2002).

19.3 Predator-Prey Models

Another type of model describes the development of populations of a predator
and its prey. The model covers two trophic levels. The simplest approach goes
back to publications in the 20s of the last century. In 1926, Volterra™ tried
to explain the observation of oscillatory fish catches in the Adriatic Sea with
the set of two ordinary differential equations; the first for prey population ci,
the second for the predator concentration cz:

(9(21
8t =C1 (Tl — 041(22)
(19.12)
O = ca(aser — r2)
ot = C2 (201 2

with positive parameters ri, r2, a1 and as.

While Lotka™ developed the same approach for a system of chemical
species (Lotka 1956) Volterra was the first who applied the system to an
ecological problem (Murray 2002). Often the term Lotka- Volterra-models is
found. The assumptions that lead to the system (19.12) are rather simplis-
tic. Without the predator-prey interaction the prey population would increase

™ Vito Volterra (1860-1940), Ttalian mathematician and physicist.
™ Alfred James Lotka (1880-1949), Austrian-US-American mathematician, chemist
and ecologist.
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exponentially with rate r;, accompanied by the exponential decrease of the
predator population with rate ro. However, it is assumed that for the overall
behavior the interaction is crucially relevant. Prey consumption and predator
population growth, both increase or decrease with ¢; and ¢z, which is expressed
by the two terms including the product cice. In the corresponding M-file the
MATLAB®) ode15s solver is again utilized for the calculation of the ordinary
differential equations. The M-file in large parts coincides with the previous
examples, so that few comments are necessary only.

T = 100; % maximum time

r = [.5; .5]; % single species rates

a=[1; 1]; % alpha parameter

cO = [0.1; 0.1]; % initial population density
fhmmmmmmmmmm e execution ------—-----—-——-o—o———o———

options = odeset(‘AbsTol’,1e-20);
[t,c] = odel5s(@PP, [0 T],cO,options,r,a);

subplot (2,1,1);

plot (c(:,1)’,c(:,2)’); hold on;
legend (‘trajectory’);

xlabel (‘predator’); ylabel (‘prey’);
subplot (2,1,2);

plot (t,c(:,1)’,=?,t,c(:,2)’,=?);
legend (‘predator’, ‘prey’);

xlabel (‘time’);

function dydt = PP(t,y,r,a)

dydt = zeros(2,1);

dydt (1) = y(D)*(r(1)-y(2)*a(1));
dydt (2) = y(2)*x(-r(2)+y(1)*a(2));

The complete code can be found on the CD under the name ‘predprey.m’

In the output section the subplot command is used to place two plots
with different coordinate systems in the same figure. subplot can be used to
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place sub-plots in one or more rows or columns (like a matrix) within the
same MATLAB® figure. The command has three integer parameters. The
first integer specifies the number of rows, the second the number of columns,
the third gives the ’serial number’ if sub-plots are counted along the rows
first, starting with the uppermost row. See the MATLAB® help for some
instructive examples. Here two plots are drawn, one above the other; the upper
containing the phase space plot, the other a visualization of the population
time series. The output of the M-file with the data set printed above is shown
in Fig. 19.5.

Both sub-plots show the characteristic oscillations of predator and prey
populations. When prey populations increase, the predator finds favourable
conditions, which leads to an increase of the predator population, too. With in-
creasing predatory stress the situation changes gradually for the prey, leading
to a decline of prey population, which finally results in unfavourable condi-
tions for the predator and a corresponding decline of the population. When the
situation becomes favourable for the prey, the entire loop starts again. The os-
cillations can be observed in the second subplot, where the oscillating behavior
of the prey population is followed closely by the predator population curve.

The corresponding figure in the phase space is a closed curve, as depicted
in the upper subplot. The populations follow that curve in anti-clockwise
direction. Along the lower boundary the predator population remains small,
while the prey has favourable conditions. Then, the number of predators starts
to increase, which at the rightmost positions leads to a decline of the prey.
With declining prey the predator population can increase only for a limited
time, until, at the uppermost position of the closed curve, these decline, too.
Finally, near the origin the low abundance of predators makes the prey pop-
ulation rise again.

5 predator
—trajectory
1 -
O L
0 0.5 1 1.5 2
prey
2
prey
— predator
1 - 4
0 1 1
0 20 40 60 80 100

time

Fig. 19.5. Example output of a predator-prey model
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The result, obtained by the numerical methods included in MATLAB®),
coincides with findings from analytical methods for the simple and much ex-
amined classical Lotka-Volterra system. In fact, it is easy to see that there are
two equilibrium solutions:

¢ = (8) and ¢y = (:??Zj) (19.13)

The Jacobi-matrix can be used to examine the stability of the equilibria.
Simple calculations yield that the eigenvalues of the Jacobi-matrix at c; are
r1 and —r2. As the second eigenvalue is real and positive, the equilibrium is
unstable. At cz the eigenvalues are pure imaginary =+i,/rir2, which indicates
a stable equilibrium with oscillations around the equilibrium in its vicinity.
In the phase space there are circular motions around the equilibrium. The
reader may explore this using the MATLAB® M-file by changing the initial
value c0.

The solutions in the phase space can also be obtained by integration
(Richter 1985, Murray 2002). In non-dimensional form they are given im-
plicitly by the equation:

In(c1) — ¢ = :; (In(c2) — ¢2) + co (19.14)

The calculation and visualization of such curves requires also numerical
means, which are in most cases more sophisticated than the presented so-
lution method using numerical MATLAB® solvers for ordinary differential
equations.

In practical applications it has been observed that the classical Lotka-
Volterra-system has several drawbacks. The simplistic assumptions have al-
ready been mentioned. Nevertheless, it is a jumping-off place for more realistic
models, which are obtained by extensions of the original system (19.12). Such
extensions have been proposed in the literature. Murray (2002) provides an
overview. The most nearby idea is to use a logistic growth term, as in (19.1),
instead of the linear 1.order term.

In the presented approach is is quite easy to implement extensions of the
Lotka-Volterra equations. All that needs to be done is to extend the formu-
lae in the function of the ‘predprey.m’ M-file. If additional parameters are re-
quired, these should be added in the input specifications part of the M-file and
considered as formal parameters in the function call. Using various starting
positions in following runs, it is possible to examine, whether an equilibrium
is stable or unstable or if a limit cycle exists.

For 2D problems, i.e. settings with two variables, the ‘pplane.m’ model can
be a very useful tool for the MATLAB® user. Briefly, we present an example
application for the phase space M-file ‘pplane.m’, which was already mentioned
in Chap. 18. The M-file is available from the web (http://math.rice.edu/
~dfield/).



352 19 Nonlinear Systems

Figure 19.6 depicts the set-up and the output for a predator pray problem,
for which we used the MATLAB® version 7 file: ‘pplane?.m’. Four windows
are depicted. In the ‘Setup’ window the differential equations are specified.
There are edit-boxes for the input and change of parameters as well as for
the basic settings concerning outlook and axes of the display window. For the
example case we did not edit the system of differential equations, but chose
the ‘predator prey’ entry from the ‘Gallery’ menu.

The display window shows the phase space. A field of grey arrows as a
first visualization depicts the trajectories. Blue lines for trajectories appear
by mouse click within the displayed phase space where the cursor location
is taken as starting value for a trajectory. The red dot, indicating an equi-
librium location, appears when the corresponding sub-menu entry ‘Find an

) pplane? Setup B [w] 3| M - pplane? Linearization =10 x|
Flle Edt Gallery Deskiop Window Help Flle Edit Selutions View Insert Desktop Window Help
The differential equations. U=Aus+By A=0 B=-05
. ¥v=Cu+Dv C=05D=0
| prey " |G- Bpredmoryprey
[ predatar ** [@prey - Crpredator
A= [ 8= 1
Parameters:
o c|i= 0.5 D= 1
i = =
The displary window. The dinection field.
Tha minimum value of =
" prey 0_ 5 Arous e
The maximum value of prey = 2 . field points per
The minimum value of predstor = n 9 s row or column.
The maximum value of predator = 7 ™ Mone IT . s
i | et [ — A 05 0 05 1
) pplane? Display _lgl- Ell
File Edt Solutions Options Graph View Insert Deskbop Window Help ) pplane Equilibriur powm da = 54|

prey = (A - B predator) prey
pretatar * = (D prey - C) predator

There iz a spiral aquilibium point at (0.5 0.5)
ks specific type has not been determined,

- 1 | The Jacobian is:
R oy I e th - =) = - 0 05
2 05 0

= | The eigenvalues and eigenvestors are:
0405 (0.70711, 0-0.70711i)
05 O.70711. 0+0.707110)

o 02 04 06 08 1 12 14 186 18 2
Cursor postion: (0.316, 1:26) prey

Fig. 19.6. Example windows of ‘pplane.m’ (Polking 2004) for the predator-prey
model (see text)
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equilibrium point’ under ‘Solutions’ is selected. The user has to click into the
displayed phase space and to select a starting point for the search.

When an equilibrium position has been found, some of its characteristics
are shown in a separate small window with text output, depicted on the right
side of Fig. 19.6. The exact position, the corresponding Jacobi matrix, the
eigenvalues and eigenvectors can all be read from the window. There is an ad-
ditional button reading ‘Display the linearization’. After pressing that button,
the linearized system is shown in another window named ‘Linearization’, into
which trajectories are plotted after a mouseclick (Fig. 19.6). In the example we
see circles around the origin. The pattern of the trajectories of the linearized
system corresponds with the last row of Table 18.2, with non-zero entries only
in the off-diagonal of the matrix and two purely imaginary eigenvalues.

The user may further explore the ‘pplane7.m’ program by her/himself.
There are numerous new entries in the menu, which are added to the
MATLAB®) figure editor. In the ‘Solutions’ there is the option to ‘Show null-
clines’. Nullclines are curves along which only one of the two functions becomes
zero. Under the ‘Edit’ menu several options allow to erase unwanted graphical
objects or to include text. The ‘Solver’ options, under menu ‘Options’, may
be relevant to obtain better trajectories, especially closed orbits.

19.4 Chaos (Lorenz Attractor)

Finally, in this chapter we want to give a short impression of a more complex
behavior than shown in the previous sub-chapters. Even quite simple nonlin-
ear systems may show such behavior which we nowadays call chaotic in the
scientific literature.

In the first publication on the topic, Lorenz (1963) dealt with the following
relatively simple system:

U1 o (uz —u1)
uz | = | pur —u2 —uius (19.15)
us uiuz — Bus

Lorenz was concerned with convective motions in the atmosphere. Fac-
ing the problem of the limited capacity of computers at that time, he had
set up a very simplified model with which he hoped to explain real mo-
tions of air masses. The system (19.15) has three unknown variables u1, us
and uz and three parameters: the Prandtl number o, the Rayleigh number
p and S.

What Lorenz discovered was a completely new behavior of a nonlinear
system, which had not been known before that time. The trajectories did not
converge to a stable equilibrium position or an oscillating orbit neither did
they run to infinity. Within a limited region the trajectories showed a chaotic
behavior. The shown phase space picture is now well-known and the system
which it represents is called the Lorenz attractor.
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The Lorenz attractor, depicted in Fig. 19.7, is produced by the following
command sequence:

sigma = 16; rho = 45.92; beta = 4; I parameters

N = 1000; % no. of time steps

span = 0.05; % inner iteration time span

AbsTol = 1.e-5; % absolute tolerance for ODE solver
RelTol = 1.e-5; % relative tolerance for ODE solver

H = figure; set(H, ‘DefaultLineLineWidth’,1.0);
options = odeset(‘RelTol’,RelTol, ‘AbsTol’,ones(1,3)*AbsTol);

u0 = [1;1;1];

for i = 1:N
[t,u] = ode45(@lornz, [0 span],u0,odeset,beta,rho,sigma);
hold on;

plot(u(:,1),u(:,2),‘r’);
u0 = u(end,:);
end

title(‘Attractor of Lorenz System’);
xlabel(‘Component 1’); ylabel(‘Component 27);
axis off; hold off;

function dydt = lornz(t,y,beta,rho,sigma)
dydt = [sigma*(y(2)-y(1)); rhoxy(1)-y(2)-y(1)*y(3); y(L)*y(2)-
beta*xy(3)];

Attractor of Lorenz System

Fig. 19.7. The Lorenz attractor, produced using MATLAB®)
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The code can be found on the CD under the name ‘lorenza.m’

The code does not need lengthy explanations. The first five lines represent
the specification part of the file. The main numerical computation is performed
within the for loop. First the Lorenz system (19.15) is solved, using the ode45
solver of MATLAB®. The system itself is specified as a subfunction in the
very last lines of the listing. Then the trajectory in the phase space, which is
spanned by the first two variables, is plotted (computation and output are not
strictly separated in this M-file). The advantage of the chosen procedure is
that the storage space for the solutions remains small. If the span is small, only
a limited number of storage is required: the old solution values are overwritten
after the corresponding part of the trajectory has been plotted.

The example shows that even simple nonlinear systems may exhibit chaotic
behavior. Also systems of chemical or biological species may lead to observa-
tions similar to the Lorenz system (see for example: Fussmann & Heber 2002).

If a model system is chaotic, it can not be used for predictions. In fact,
chaos in the mentioned sense can also be characterized by the property that
tiny deviations in an initial state lead to significant deviations at later times
(Devaney 1987). The modeler, working with dynamical systems, should be
aware that models may show such a ‘strange’ behavior.
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20

Graphical User Interfaces

In the previous chapter the reader found a graphical user interface
(‘pplane7.m’), which allows easy input of parameters as well as direct output of
results, numerically or graphically. The technical term for these types of ‘man-
machine-interfaces’ is Graphical User Interface, and the abbreviation is GUL
Nowadays, computer users are already used to GUIs, as there is hardly any
software that does not utilize its capacities, including the operating system.

Looking back to Fig. 19.6, the user may ask how difficult it may be to
construct such an interface. In this final chapter it is shown how a GUI can
be implemented using MATLAB®. It will be demonstrated that GUIs can
be set up using core MATLAB®), and that it is easier than the novice may
have imagined beforehand, although the functionality of the examples does
not reach the one of the ‘pplane7.m’ file of the previous chapter.

20.1 The MATLAB® GUIDE

There is a special MATLAB® tool for the set-up of GUIs. It is called from
the MATLAB® command window by:

guide

What appears is a graphical user interface to construct GUIs. First the
user is asked whether she/he wants to open an existing GUI, or whether to
create a new one (Fig. 20.1).

We proceed with an example, and therefore choose the ‘Blank GUT’ default.
The window that appears on the display next is reproduced here in Fig. 20.2.

On the left side bar of the window we find various elements which consti-
tute a GUIL. Major elements that are used in the following demonstration are:
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GUIDE Quick Start

aulf)
o\ GUI with Uicontrals
o\ GUI with Axes and Menu
o\ Modal Question Dialog

Fig. 20.2. The MATLAB® ‘guide’ GUI
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There are further elements we do not use in this example: slider, radio
button, check-box, listbox, toggle button, panel, button group and ActiveX
control. Click at the ‘static text’ variable and move the cursor into the big
GUI workbench on the right. The workbench represents the GUI window,
which finally will become the interface to the user. The ‘static text’ appears
and is fixed at a certain location. In order to change and format the text
element, double click on it (see right side of Fig. 20.3). As a result another
window appears in which all properties of the selected element are shown and
can be edited. This so-called ‘Property Inspector’ is shown on the left side of
Fig. 20.3.

We want to change the text to ‘Diffusivity’. The new text string is entered
as ‘String’ property, where before the ‘Static Text’ was found (see Fig. 20.3).
As further exercise with the new tool the reader may change the ‘FontSize’
property to 12 and the ‘FontWeight’” property to ‘bold’. Having entered the
changes in the Property Inspector these become active in the workbench.

Now let’s examine the previous procedure for a different GUI element.
Choose the ‘edit text’ element and place it aside the static text element,
which was already entered. Double-click on the element to reach the Property
Inspector with the corresponding properties. Change the ‘String’ property to
‘1’; we want to use this element for the input of the diffusivity and change the
‘Tag’ property to ‘D edit’.

In the very same way we add some further text and edit elements, as
illustrated in Fig. 20.4. The reader may recognize that the elements are related
to the major input parameters of a transport model, as described in Chaps. 4,
5 and 6. In fact, when finished the example GUI will allow 1D transport
simulation and visualization.
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Fig. 20.4. The example GUI, in construction using MATLAB®) guide

In addition an ‘axes’ element is introduced, covering nearly the entire space
of the GUI. It is reserved for the graphical output and has the ‘Tag’ property
‘xaxes’.

When the user clicks on the ‘Save as...” button, MATLAB® saves the
work in two files. The user interface window is stored under a file with ‘.fig’
extension, a corresponding M-file with the same name is saved in addition.
Within the exercise the user may choose the name ‘transport.fig’ and a file
‘transport.m’ is created too.

Let’s have a look on the M-file. It starts with the following commands:

function varargout = transport(varargin)

% TRANSPORT M-file for transport.fig

% TRANSPORT, by itself, creates a new TRANSPORT

% or raises the existing singletonk.

%

% H = TRANSPORT returns the handle to a new

yA TRANSPORT or the handle to the existing singletonx.
h

% TRANSPORT (CALLBACK’ ,hObject,eventData,handles,...)
% calls the local function named CALLBACK in

yA TRANSPORT.M with the given input arguments.

% TRANSPORT (‘Property’, ‘Value’,...) creates a new

% TRANSPORT or raises the existing singleton*. Starting from
% the left,

A property value pairs are applied to the GUI before
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% transport OpeningFunction gets called. Anunrecognized

% property name or invalid value makes property application
% stop. All inputs are passed to transport OpeningFcn via

yA varargin. *See GUI Options on GUIDE’s Tools menu. Choose
yA ‘‘GUI allows only one instance to run (singleton)’’.

h
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help transport
% Last Modified by GUIDE v2.5 22-Sep-2006 16:50:52

% Begin initialization code - DO NOT EDIT
gui Singleton = 1;
gui State = struct(‘gui Name’, mfilename,

«

gui Singleton’, gui Singleton,

‘gui OpeningFcn’, @transport OpeningFcn,

[

gui OutputFcn’, @transport OutputFcn,
‘gui LayoutFen’, [] ,
‘gui Callback’, [1);
if nargin && ischar(varargin{1})
gui State.gui Callback = str2func(varargin{1});

end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

As already outlined above, a function with the same name (here: ‘trans-
port’) is created. varargin and varargout are lists of input- and output param-
eters. What follows is a list of comments and the initialization of the entire
structure. As the details are relevant for the specialist only, we skip any expla-
nation but pinpoint to the very last comment of this part of the program. It
tells the user that all statements above concern initialization and may under
no circumstances be edited.

After the initialization part several subfunctions follow, starting with the
opening function

function transport OpeningFcn(hObject, eventdata, handles,
varargin)

Some explanations concerning the functions are given in the comments.
Most sub-functions are of the following types:
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function D edit Callback(hObject, eventdata, handles)

% hObject handle to D edit (see GCBO)

% eventdata reserved - to be defined in a future version

% of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject, ‘String’) returns contents of D edit

% as text str2double(get(hObject, ‘String’)) returns
% contents of D edit as a double

% —-- Executes during object creation, after setting

YA all properties.

function D edit CreateFcn(hObject, eventdata, handles)

% hObject handle to D edit (see GCBO)

% eventdata reserved - to be defined in a future version
% of MATLAB

% handles empty - handles not created until after all
% CreateFcns called

% Hint: edit controls usually have a white background on Windows.
h See ISPC and COMPUTER.
if ispc && isequal(get(hObject, ‘BackgroundColor’),
get (0, ‘defaultUicontrolBackgroundColor’))
set (hObject, ‘BackgroundColor’, ‘white’);
end

There is one ‘callback’ function and one ‘create’ function. The reader may
verify that there are these two sub-functions for each element of the GUI win-
dow. With the functions the functionality of the GUI is created. The ‘callback’
function is called every time when the element is selected during the execu-
tion of the program. In the example command sequence the function listings
are empty, aside from an adjustment concerning the background color (get
and set commands). That is the standard functionality of the GUI element is
performed, with which the user is not really concerned here.

In the current example there is only one part of the program where the
user has to add some functionality. That concerns the ‘Run’-button. When
that button is pressed, several tasks have to be performed in order to draw
a picture of the concentration profiles on the screen. The corresponding com-
mands have to be added to the runbutton Callback function, which is executed
after pressing the run-button. Here we add the following list:

% —--— Executes on button press in runbutton.

function runbutton Callback(hObject, eventdata, handles)

% hObject handle to runbutton (see GCBO)

% eventdata reserved - to be defined in a future version
h of MATLAB
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% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

D = str2double(get(handles.D edit, ‘String’));

v = str2double(get(handles.v edit, ‘String’));

R = str2double(get(handles.R edit, ‘String’));

lambda = str2double(get(handles.lambda edit, ‘String’));
T = str2double(get(handles.T edit, ‘String’));

L = str2double(get(handles.L edit, ‘String’));

The data, given by the user in the GUI window, have to be allocated to
corresponding variables. The reader recognizes the relevant variables on the
left side of the assignments above. In the sequel we give some clues how to
understand the remainder of the lines. handles is a structure which contains
the entire GUI implementation. handles.D edit is a call of the D edit function
of the given structure. The name of the function corresponds with the ‘Tag’,
specified in the Property Inspector. The value, entered by the GUI user during
program execution, can be found under ‘String’ and is reached by the get
command. The content of the ‘String’ is of data type string, i.e. a listing of
characters. As for the further processing in the program the numerical value
is relevant (not the text-string), the string has to be converted to a numerical
double type. In MATLAB® the command that performs such conversion is
str2double.

Using the debugging mode, the user may check some parameter functions.
For example the variable D contains the value found in the edit box for dif-
fusivity. The given command sequence delivers the values of the parameters
for further processing. In Chaps. 4 to 6 the same task was performed in the
specification part of the M-files in a more obvious way.

Now that the parameters are available, the execution part can be adopted
almost identically from former transport models. The remainder of the
runbutton Callback function is taken from the ‘analtrans.m’, outlined in Chap. 6:

cO = 0; % initial concentration
cin = 1; % inflow concentration
%Calculate data

y =‘rgbcmyk’;

ones (1,100);

sqrt (vkv+4*xLlambda*R*D) ;

e

u

% Create space plot

t = linspace (T/10,T,10);

axes (handles.xaxes) ;

x = linspace(0,L,100);

for i = 1:size(t,2)

h = 1./(2.%sqrt (D*xR*t(i)));

hh = plot (x,cO*exp(-lambdaxt(i))*(e-0.5xerfc(h*(R*x-...
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exvxt (1)))-0.5%exp((v/D)*x) . kerfc (hx (Rkx+exvxt(i)))) +...
(cin-c0)*0.5*(exp((v-u)/(D+D) *x) .
xerfc(hx (Rxx-exuxt(i)))+... exp((v+u)/(D+D)*x).
xerfc (hx (R¥x+exuxt(i)))),y(mod(i,7)+1));
set (hh, ‘LineWidth’,2)
hold on;
end
grid on
hold off

As the mathematical aspects of the command sequence are explained in
Chap. 6, we can restrict our description to the graphics commands. After hav-
ing set initialization values for c0, cin, y, e and u, the t vector is computed.
t contains those time instants at which a concentration profile is plotted.
Here the entire time period of length T is equidistantly divided into 10 parts
(the starting time t = 0 is not included). The following axes command tells
that the following graphic statements are executed within the coordinate sys-
tem, named xaxes, which is part of the handles structure. Later we introduce
another coordinate system, making the necessity to specify the axes more
obvious.

The x vector is a discretization of the entire model length. Within the
following for loop, for each time instant of the t vector, the temporary ‘help’
parameter h is calculated. h is used in the lengthy analytical formula that

i
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Fig. 20.5. The example GUI, first step
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follows within the plot command. Note that the concentration values are not
stored in a big matrix, unlike in the M-files of Chaps. 4-6. Here they are lost
after plotting is executed, because they are not needed further.

The last formal parameter in the plot command (y(mod(i,7)+1))) effects
that the line color changes from one profile to the next, according to the
characters given above in the y string. The set command specifies an increased
line width (default is 0.5). The hold on statement is necessary in order to
obtain all profiles in the same figure. The final graphics command, grid on,
plots the grid. The resulting outlook of the GUI is depicted in Fig. 20.5.

20.2 The Transport GUI

Here we extend the M-file from the previous part. In the MATLAB® guide
we add three graphical elements, all of which are shown in Fig. 20.6. A second
‘Axes’ element is introduced. In order to make both graphics fit on the same
panel figure, the size of the coordinate systems is reduced. Using the property
inspector, the new axes gets the tag ‘taxes’ (for time axis). As header we
introduce another static text element, for which font size, font weight and
color are changed from default. As third adjustment we enter a pop-up menu.
Using again the property inspector we specify ‘Author’, ‘Book’, ‘Publisher’
and ‘Software’ as four entries in the ‘String’ property.

il

File Edt View Layout Taols Help
DEE| R = | aEBHm| AR~

[x | 1D Transport Simulator imIm_lzl.
[2=]| = | ‘ . | .
® Diffusivity K
=il ] | ‘ ¥axes
=S Velocity K
= |
7] [ Degradation| | o
x Lo \
Retardation | | 1
Length | 100
] | ‘ taxes
Max. time | 100
|
Run

Fig. 20.6. The extended example GUI, in production using MATLAB®) guide
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After these adjustments of the last sub-chapter GUI, use ‘Save’ in the
MATLAB® guide menu to store the new figure. Note that the ‘transport.m’
is also changed as a result of the ‘Save’ click. The interested user may have a
look into the M-file listing to see some new ‘callback’ and ‘create’ command
blocks, corresponding with the new elements.

As a next step, the new M-file has to be extended to include a new func-
tionality. Within the command block, related to the run-button, the following
list should be added at the end, i.e. behind the commands concerning the
space plot:

% Create time plot
x = linspace (L/10,L,10);
axes(handles.taxes);
t = linspace (T/100,T,100);
h = 1./(2.%sqrt(D*R*t));
for i = 1:size(x,2)
hh = plot(t,cO*exp(-lambdaxt).*(e-0.5%erfc(h.*(exRxx(i)...
-v*t)))-0.5*%exp((v/D) *x (1)) *erfc(h.* (exR*x (i) +v*t))+...
(cin-c0)*0.5%(exp((v-u) /(D+D) *x (i) ) *erfc(h.*(exR*x(i). ..
—u*t))+exp ((v+u)/ (D+D) *x (i) ) *erfc(h.* (exR*x(i)+u*t))). ..
,y(mod(i,7)+1));
set (hh, ‘LineWidth’,2)
hold on;
end
grid on
hold off

In the sequel we follow the procedure outlined in the preceding sub-
chapter. The concentration values are calculated from the analytical solu-
tion given in Chap. 6. Here the vector of concentration values is computed
for each of 10 equidistant locations along the model axis. After the calcu-
lation the corresponding curve is plotted. The graphs are depicted in the
second coordinate system, where all graphics commands are directed after
the axes(handles.taxes) command has become effective.

An example view of the GUI with the computed result for an example data
set, including dispersion/diffusion, advection and degradation, is depicted by
Fig. 20.7.

The algorithm is surely not time-optimized, as all values of the concen-
tration matrix are calculated twice. On the other hand the computation al-
gorithm is quite effective with respect to computer storage. Only two 100-
element vectors are used aside from all other variables. The set-up of the
GUI itself surely is the most time consuming part in the M-file. However, for
problems in one space dimension performance questions are irrelevant, taking
into account the performance of todays computers. For problems in two space
dimensions performance questions may become relevant, in three dimensions
they surely are.
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Fig. 20.7. The transport GUI, with output for a selected parameter set

At last we introduce some functionality to the pop-up menu. This is done
within the corresponding ‘callback’ function. Function header and added com-
mands are listed below:

% —--- Executes on selection change in popupmenul.

function popupmenul Callback(hObject, eventdata, handles)

% hObject handle to popupmenul (see GCBO)

% eventdata reserved - to be defined in a future version

%  of MATLAB

% handles structure with handles and user data (see GUIDATA)

val = get(hObject, ‘Value’);

switch val

case 1
msgbox(‘E. Holzbecher, WIAS, Mohrenstr. 39, 10117 Berlin,...
GERMANY, E-mail: holzbecher@wias-berlin.de’, ‘Info’, ‘none’);
web http://www.igb-...
berlin.de/abtl/mitarbeiter/holzbecher/index e.shtml;
uiwait;

case 2
msgbox (‘Environmental Modeling using MATLAB, Springer...
Publ.’, ‘Info’, ‘none’);

case 3
msgbox (‘Springer Publ., Heidelberg’, ‘Info’, ‘none’);
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web www.springer.com;
uiwait;
case 4
msgbox (‘MATLAB, MathWorks Inc, see: www.mathworks.com’,...
‘Info’, ‘none’);
web www.mathworks.com;
uiwait;
end

The ‘callback’ function is reached when the user has clicked on a menu
entry of the pop-up menu. In the example, the pop-up menu has four en-
tries: ‘Author’, ‘Book’, ‘Publisher’ and ‘Software’. During the execution of
the program, the menu entry, which is selected by the user, is obtained by the
command get (hObject, ‘Value’). The returned variable is an integer between
1 and 4, by which the selection is uniquely determined. In the listing the
current value is stored in variable val.

It is convenient to use the switch keyword for the val variable in order
to jump to different command blocks. If the value is 1, a message box opens
with information about the author. The corresponding MATLAB® command
is: msgbox. Additionally, using the web command, a browser opens with the
personal site of the author. The uiwait command makes the process wait
until the user clicks at the closure button.

The other cases are handled in exactly the same way; there are other
message texts and other web-sites.

The code can be found on the CD under the name ‘“transport.m’

As an example for a more elaborated graphical user interface, the
‘pplane?.m’ file for processing ordinary differential equations was already men-
tioned in Chap. 19; see also: Polking (2004). Another example implementation
for environmental science and technology is the ‘Menyanthes’ software, which
is used to manage, analyze, model, and present groundwater level data in the
Netherlands (van Asmuth 2006); see also: (http://www.mathworks.com/res/
menyanthes).
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Supplement 1: MATLAB® Data Import

There are several ways to import data into the MATLAB workspace. See topic
‘Using Import Functions with Text Data’ in the online help for an overview
concerning text data. There are special commands for importing spreadsheet
data (csvread); there is even a special command for importing from Microsoft
EXCEL: xlsread.

It is not the intention here to go into details. We demonstrate a user-
friendly tool, which provides a data preview and several data manipulation
tools during importing. The ‘Open Import Wizard’ interface is called by

uiimport
from the MATLAB® command window. The functionality is exemplified on
one of the most cited data sets, showing the increase of atmospheric CO-
concentrations within almost 50 years. The data-set, which is measured at
the Mauna Loa Observatory in Hawai’i at a height of 3400 meters above
sea-level, can be obtained from the internet. For monthly recorded data see:
http://www.seattlecentral.org/qelp/sets/078/078.html. All data are given in
a single ASCII text file. Typical content is depicted after calling uiimport from
the command window and opening the file (see Fig. S.1).

ol
~Select Data Source
% File: ‘W\maﬂalealamaunaloa co2 Browse... |
" Clipboard

Preview of ¥, \matlab\Datalmaunaloa.co2

TSNS AATAATAASNTAAARATANN A maunaga]

TE% Atwospheric COZ concentrations (ppmw AR AR R A AT ARG R AR AR AR A AR AT ARG R AT R DL
Tr% air samples collected at Mauna Loa O 1 +#% Atmospheric COZ concentrations
TEE

"#%% gir gamples collected at MHauna
**% Source: C.D. Keeling it PP _]LI
q | v | | >
Help = Back | :- 1 Finish | Cancel |

Fig. S.1. Data import, 15 screen
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Fig. S.2. Data import, 2° screen

After pressing the ‘Next’ button another similar window appears, which
allows some manipulations on the data file. Here it is important to increase
the number of text header lines to 15. After that in the right data window the
data matrix appears, as depicted in the Fig. S.2.

The year is given in the first column; 14 following columns show month
related concentrations, the annual mean and a fitted annual mean. As we
liked to take the monthly measurements only, we highlight the corresponding
12 columns by mouse-click in the right data window. Use the right mouse
button to obtain a pop-up window, including a copy button. After copying
the highlighted columns, use the ‘Back’ button to return to the first window;
and select ‘Clipboard’ using the corresponding radio button. Now the carbon-
dioxide values appear in the data blocks; years are omitted.

Click two times ‘Next’ to move to the final window. Here, choose only
to re-name the data variable (use again right mouse button) to ‘CO2’. The
final ‘Finish’ (button!) creates a new variable with the chosen name in the
workspace (see Fig. S.3). With that operation the command is finished and
the wizard disappears.

iBix

~Select variables to import using check
% Creste variables matching preview.

| Create vectors from each columnusing columm names

" | Creste vestors from each royy using oy nemes.

Variables in W mallsbW-fies
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~ 002 |4tz 4512 couiok | -30.99 -30.99 571 7454
2 31558 316.47) 31665 37—
3 316.43 316.97 31758 319.03
4 31689 377 31854 31948
- W — e o WZ'J

Help I < Back | NEXH= | Finish | Cancel |

Fig. S.3. Data import, 3% screen
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Fig. S.4. Atmospheric COs increase; visualized using MATLAB®)

In the next step we manually change -99.99’ entries in the data set that
is used in the data set for missing values, to ‘NaN’, which fits with the
MATLAB® convention (using copy and paste operations in the array edi-
tor. There are only few missing values, which allow the manual operation. For
more complex data sets one has to utilize some MATLAB® commands as
demonstrated in the following.

In order to plot the data, the matrix is transformed into a row vector. This
can be done using the following command sequence:

for i=1:47
for j = 1:12
co2(12%(i-1)+j)=C02(i, j);
t(12%(i-1)+j)=datenum(1957+i,j,15)
end
end

The 2D data set in the variable ‘CO2’ is converted to a row in the vari-
able ‘co2’. In addition another row vector with corresponding times is created.
We use the serial date number, which is one of several MATLAB® alterna-
tives to represent date and time (for more information see the online help in-
dex ‘dates and times’). The datenum command converts a date into the serial
date number. Called with three numbers, these correspond to year, month
and day. There are several more alternative calls of the command, which
the user may look up in the help. The aimed plot is finally created by the
commands:

plot (t,co2)
datetick (‘x’,11)
xlabel (year); ylabel(‘Atmospheric CO 2 [ppm]’);

The following figure results. Corresponding to the time format the datetick
command offers several options to display time. There is a list of 28 alterna-
tives which can be applied by the datetick command. Here we choose to show
the year only. The result is shown in Fig. S.4.



Supplement 2: Data Export

Data are exported by using the save command. Let us take the calculated co2
data from Supplement 1 as an example. The command

save (‘co2.mat’, ‘co2’)

stores the values in the file ‘co2.mat’ in the working directory. Make sure that
the user has write-permissions on that file. Otherwise change the directory by
using the cd (change directory) command. Note that MATLAB® has its own
data storage format that is the default here. Usually the extension ‘.mat’ is
used for files with that data format.

Other data formats can also be stored. Most important is the ASCII for-
mat, which is obtained by using:

save (‘co2.mat’, ‘co2’, ‘-ascii’)

Also important is the -append option for the data to be appended at the
end of an existing file.



Supplement 3: Data Presentation
in a Histogram

There are various ways to represent environmental data using MATLAB®.
The reader may have a look in MATLAB® online command index for the
hist, bar and bar3 commands.

As an example we show a histogram of concentration measurements of
different chemical species at various observation points. Six species were mea-
sured at 13 positions. The entire data-set is stored in a matrix C.

The histogram is then produced by the bar command:

bar(C);

The code can be found on the CD under the name ‘bardemo.m’

measured concentrations

1400

N
1200} Blc |
s
1 L 4
000 []HCO,
= 800t Lt
= Il ToC
o 600}
400t
200}

12 34567 8 910111213
observation points

Fig. S.5. Example data representation in a histogram
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The result of the M-file is depicted in Fig. S.5. Further commands concern
the labels of the axes and the legend. Note how greek characters are introduced
in the text, by using the \ operator.

xlabel (‘observation points’);

ylabel (‘C [\ mug/1]1°);

title (‘measured concentrations’);

legend (‘Na’,‘Cl’,‘B’,‘HCO 3’,‘F’,‘T0OC’);



Epilogue

In twenty chapters, the book shows various applications of MATLAB®) in the
field of environmental modeling. Numerous MATLAB® commands are into-
duced and their use demonstrated. Various fields of environmental modeling
have been touched.

After twenty chapters, the book remains incomplete. Neither the entire
field of environmental modeling is covered, nor is the entire capability of
MATLAB® exploited. Of course, either of the mentioned tasks would be
too ambitious to be worked out, even within several book volumes.

Is something missing that is important? Probably everyone working in the
field of environmental modeling, who does not find her/his special problem
set-up, will say, yes. It was already mentioned that the entire field is too
vast. Concerning MATLAB® , the important application field of numerical
methods for 2D and 3D applications is missing. MATLAB® can be used to
implement important numerical approaches, like finite differences, or finite el-
ements. These methods were omitted as a consequence of the decision to focus
on core MATLAB® . The easiest way to apply such numerical techniques is
to use the partial differential toolbox of MATLAB® . Core MATLAB® could
also be used to implement higher-dimensional numerical models, but manual
programming skills are required. Only the advanced user would be addressed
by this topic, to whom the recently published book of Danaila et al. (2007) can
be recommended. Among other numerical topics Quarteroni (2003) outlines
methods for the advection diffusion equation using advanced Finite Element
modeling techniques and presents MATLAB@ source code for the solution of
the 1D steady state.

Concerning the environment, the hydrosphere is surely over-represented in
the book, while the atmosphere and the pedosphere appear only sporadically.
Among the hydrosphere topics, groundwater has the biggest share. The choice
of the topics is surely due to the background of the author, who in the past
mainly worked in the favored fields. However, the mathematical concepts that
were introduced are mostly independent from the environmental compartment
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and thus applicable in several environmental areas. The given applications
should be viewed as examples for the mathematical techniques.

It was the purpose of the book to give a first introduction. I hope that
goal is reached. Aside from that, some novel approaches have been introduced
and examined which are beyond state-of-the-art. Some of these approaches
turn out to be simple and useful and will hopefully find their way into the
practice of environmental modeling. If that really happens, is due to the reader
and her/his conception of the book. In that sense, I wish the book to find
understanding readers who make these concepts work.
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MATLAB® Command Index

The following list gathers the MATLAB® commands, which are mentioned in
the book. For each command find the corresponding chapter and sub-chapter
numbers within the book. For frequently appearing commands the most im-
portant occurances are listed, only.

addpath 2.2 cos 8.1

all 14.3 cplxgrid 15.3

any 14.3 cplxmap 15.3

atan 15.1 csvread Supplement
atan2 15.1 datenum Supplement
axes 20.1 datetick Supplement
axis 6.6, 18.1 delete 17.3

bar Supplement diag 18.2

bar3 Supplement diff 1.3
besselk 12.3, 18.2 display 8.1
bessely 16.3 eig 18.3
break 2.6 else 2.6

bvp4c 9.3 end 2.6
bvpinit 9.3 erf 4.1

case 6.4, 20.2 erfc 4.1

cd Supplement exp 1.3

ceil 4.2 expint 12.4
circshift 4.2 expm 18.2

clear 4.2 eye 1.2, 18.2
colorbar 14.4 figure 1.4
colormap 14.4, 15.3 floor 4.2

conj 15.4 funm 18.2
continue 2.6 function 17.5
contour 15.1, 16.5 fzero 7.5, 10.4, 12.5

contourf 4.2 get 20.1
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getframe 6.6 polyval 10.1
ginput 17.3 quiver 14.4, 15.4
global 10.4 rand 1.2

gplot 18.1 randn 1.2

gradient 14.4, 15.3 rank 8.2

grid 1.3 real real
griddata 13.4 rectangle 1.5

guide 20.1 round 15.4

hdftool 17.1 save Supplement
hist Supplement set 20.1

hold 2.5 sin 8.1

i 15.3 size 4.1

if 2.6 slice 14.1

imread 17.2 sqrt 4.1

imag 15.3 sqrtm  18.2

imagesc 17.2 streamline 14.4, 15.1
inputdlg 17.3 streamslice 14.4
interpstreamspeed 14.4 str2double 17.3, 20.1
inv 1.2 strcat 17.2
legend 2.5, 4.1 subplot 19.3

line 17.4 surf 4.2
linspace 4.2 sum 10.1

log 1.3. 10.3, 12.1 switch 6.4, 20.2
logi0 8.2, 8.3 text 18.2

max 6.6, 8.3 title 11.4

mean 14.4 uiimport Supplement
mesh 13.4 uiwait 20.2
meshgrid 13.3, 14.5 uigetfile 17.2

min 6.6 uiputfile 6.6

movie 6.6 waterfall 13.4
mpgwrite 6.6 web 20.2
msgbox 20.2 which 2.2

nargin 17.5, 20.1 whitebg 15.4
nargout 17.5, 20.1 while 2.6

num2str 18.2 who 1.2

odelbs 9.1, 19.3 whos 1.2

ode45 19.4 xlabel 4.2

odeset 4.5, 9.3, 11.4 ylabel 4.2

ones 1.2 xlsread Supplement
path 2.2 zeros 1.2

pdepe 4.4, 6.4 + 2

plot 1.3 - 1.2

plotyy 9.3 * 2
polyfit 10.1 / 2
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Companion Software List

The accompanying CD contains the M-files which are described in the
book, sometimes extended versions. The files can also be downloaded from
the MATLAB® central file exchange (www.mathworks.com/matlabcentral/
fileexchange).

advection.m MichaelisMenten.m
analtrans.m newtondemo.m
analtrans sl.m nuclides.m
analtrans s2.m OpenChannel.m
analtrans s3.m par est.m
analtrans s4.m par esta.m
analtransnodim.m par estb.m
AnElements.m par estc.m
animation.mpg par est2.m
bardemo.m par est2a.m
boudreau westrich.m pdepetrans.m
comparts.m phasediag.m
compspec.m predprey.m
cplxPot.m redoxsteady.m
diffusion.m retention.m
dipole.m richards.m
DischargePotential.m simpletrans.m
GaussianPlume.m slowsorp.m
GaussianPuff.m Speciation.m
GADTPA.m StreeterPhelps.m
georef.m sttransanal.m
gw flow.m thiem test.m
histogram.m ThreeD flow.m
ierfc.m transport.m
kinetics.m viscosity dyn.m
logistic.m welldrawdown.m

lorenza.m wellvortex.m



Index

Archie’s Law’s Law , 52
Darcy’s Law velocity, 220
Darcy’s Law’s, 219
Euler

equations, 213
FEuler equations, 213
Fick’s Law’s Law, 74
Gaussian

models, 293
Gaussian puffs, 293
Gaussian

plumes, 293
Lorenz attractor, 354
Marmara Sea, 197
Michaelis-Menten, 126, 163
Monod kinetics, 126, 176
NTA, 142
Poisson equation, 201, 202
Reynolds number, 210
Streeter-Phelps, 160
adjacency matrix, 317
advection, 70, 71, 73, 77, 197
advection-diffusion, 60
advection.m, 72
advection.m’, 70, 71
animatio, 120
bank filtrate, 278
boundary conditions

Neumann, 73, 76, 111
boundary conditions, 201, 202

Dirichlet, 61

Neumann, 62

Robin, 62

Cauchy, 62

Neumann, 72, 73, 76, 78

Neumann-number, 75
boundary condition, 201, 202

Dirichlet , 61

Cauchy, 62

Robin, 62
chloride, 198
closed form solutions, 214
concentrations

total, 144, 145
conductivity

hydraulic, 260
conductivity, 58, 260
decay, 87, 88, 98, 303
degradation, 87, 176
degradation or decay, 88
density, 106, 349
di-pole, 284

diffusion, 73, 77, 98, 197, 201, 202

diffusion-equation, 60
diffusion.m’, 73, 75, 78

diffusivity, 52, 58, 59, 66, 83, 176, 294

molecular, 52

thermal, 59
dispersion, 53
dispersivity, 66, 76
donor controlled, 322
doublette, 276
equation

Poisson, 201, 202

potential, 255
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equilibrium
unstable, 330
finite differences, 74
free fluids, 208
function
harmonic, 256
grid, 65, 89, 161, 164, 172, 176, 284,
340, 365-367, 382
harmonic function, 256
head
piezometric, 231, 260, 264
suction, 223
heat capacity, 58
ideal fluids, 213
initial conditions, 61, 62
isotherm
linear, 102, 103, 113
kinetics
Monod, Michaelis, 126
kinetics, 126
Michaelis-Menten, 163
Monod, 163, 176
logistic growth, 340
mesh, 250, 256, 260, 261, 284286, 382
normal distribution, 293
norm, 184, 185, 187, 188, 198
nuclides, 328
numerical solutions, 69
parameter estimation, 190, 197, 201
phase diagram, 334
phase diagrams, 333
phase space, 333
piezometric head, 231, 260, 264
potential, 256, 261, 275
potential equation, 255
predator-prey, 349
reactions
redox, 176
kinetic, 98
redox, 176
recipient controlled, 322
redox reactions, 176
residence time, 321
residual vector, 183
retardation factor, 107
retention curve, 223
scaling, 347
script, 316
sink, 256, 269, 283

sorption, 101, 114, 316
streamfunction, 271, 273
streamlines, 273, 288
subfunctions, 316
suction head, 223
timestep, 76
tortuosity, 52
trajectory, 333, 343, 349
turbulence, 210
variables

global, 315

independent, 29

local, 315
velocity

Darcy, 220
viscosity dyn.m’; 209
vortex, 284, 286
wells, 286
Fourier’s Law, 57
conductivity [L/T], 225
decay eq. for ¢ with ¢(0)=c0, 191, 194
decay eq. for ¢ with c0, 194
decay, 116, 193
density, 113, 116
diffusivity, 116
grid; , 22
head

suction [L], 224
isotherm

linear, 113
mesh points’);, 225
norm of residuals:

191, 193
norm(cfit - cO*exp(-lambda*tfit));, 193
norm(cfit - cO*exp(-lambda*tfit)), 194
norm(cfit-cO*exp(-lambda*tfit));, 191
norm, 194
parameter estimation with derivatives,
191-193

porosity, 113, 116, 225
residual water content, 224
retardation factor, 110
sedimentation, 198
soil hydraulic properties, 226
sorption = 1;, 113
sorption, 113, 114
suction head, 224
water content , 224

> num2str(norme)));,



activitiy, 87, 141, 142, 146-149
adjacency matrix, 318-322, 342
Adriatic Sea, 348
advection, ix, 3, 30, 47, 53, 55, 60, 70,
71, 77, 80, 81, 92-97, 101, 108,
111, 118, 123, 129, 155, 162, 294,
298, 299, 302, 304, 367, 379
air quality, 322, 323
analytical solutions, 4, 30, 32, 33, 69,
159, 200, 210, 213, 214, 222, 229,
271, 286, 293, 297, 304
animation, 71, 119-121
aquifer
confined, 222, 230233, 235, 237, 238,
241, 244, 245, 259, 261, 263, 331
half-confined, 235, 241
unconfined, 222, 231, 232, 235, 241,
244, 245, 248, 259, 261
Archie’s Law, 52, 53, 63
atmosphere, 3, 4, 47, 123, 127, 160, 207,
299, 300, 302, 317, 322, 353, 379

bacteria, 87, 127-130, 160, 163, 168,
173, 174
bank filtrate, 182, 278, 279
Barents Sea, 321, 337
Bernoulli theorem, 213-215, 258
Bessel function, 235, 299, 331
biosphere, 3, 207
boundary condition, 20, 32, 61, 62, 66,
69, 78, 79, 81-83, 90, 91, 96, 97,
118, 131, 151, 159, 166, 171-173,
181, 200, 202, 203, 221, 277, 294,
297, 300, 301
Cauchy, 62, 81
Dirichlet, 61, 62, 81, 83, 91, 166, 200
Neumann, 78
Robin, 62, 81
boundary conditions, 32, 61, 62, 79,
81-83, 90, 91, 96, 97, 118, 151,
159, 166, 171-173, 181, 200, 202,
203, 221, 277
Cauchy, 62, 81
Dirichlet, 61, 62, 81, 83, 91, 166, 200
Neumann, 62, 73, 75, 77, 78, 81, 83,
111, 118, 166
Robin, 62, 81
buoyancy, 223

Index 389

calcite, 59, 151-155
calibration, 33, 181
carrying capacity, 22, 340, 341
chaos, 355
chloride, 35, 197, 198
cobalt, 142
compartment, x, 29, 47, 69, 104, 123,
137, 160, 218, 222, 302, 317,
320-325, 328, 341, 379
complex potential, 276, 283-286, 288,
289
concentrations
total, 144-146, 150, 151, 154
conductivity, 59, 220-224, 227, 230, 232,
238, 241, 244, 252, 259, 260, 330,
331
hydraulic, 220, 222, 227, 230, 232,
241, 244, 252, 259, 260, 330
thermal, 59
conservation, 34-36, 38-40, 47, 48, 50,
55-57, 59, 74, 169, 209, 221, 233,
321, 323
energy, 48, 57, 59
mass, 34-36, 38-40, 47, 48, 50, 55-57,
74, 169, 209, 321, 323
continuity equation, 34, 35, 39, 48, 49,
169, 209, 210, 221, 255
convection, 60
convergence
of numerical algorithms, 94, 335
curve fitting
exponential, 189
polynomial, 19, 182, 192
cyanobacteria, 182

Dalton’s Law, 35

Damkohler number, 92, 95, 96, 99

Darcy’s Law, 152, 153, 213, 217,
219-222, 230, 233, 234, 243, 244,
259

Davies equation, 148

decay, ix, 3, 23, 24, 47, 87-89, 91, 93-96,
98, 99, 106, 107, 109, 111, 118,
122, 124, 129, 159, 187, 296, 298,
299, 301, 302, 323, 327, 328

degradation, ix, 3, 23, 42, 47, 87, 88,
90, 93, 95, 106, 107, 109, 111, 115,
124, 128-130, 132, 135, 159, 160,
162, 163, 168, 170, 173, 174, 177,
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178, 182, 195, 196, 296, 302, 305,
367
density, 4, 22, 34, 40, 46, 106, 107, 113,
168, 169, 171, 208, 210, 211, 217,
220, 221, 267, 274
fluid, 40, 169, 208
deposition
wet, 302
di-pole, 284
diffusion, ix, 3, 5, 47, 49-51, 53, 55,
59, 60, 63, 67, 71-75, 77, 81, 83,
93-96, 101, 106, 108, 117, 123,
130, 166, 168, 170, 197, 199, 294,
298, 299, 301, 302, 304, 367, 379
heat-, 59
diffusivity, 50-53, 55, 56, 59, 60, 74, 83,
130, 196-200, 359, 364
molecular, 50, 51, 130, 198
thermal, 60
turbulent, 56
digitizing, 313
dispersion, ix, 3, 47, 53-55, 60, 70, 71,
80, 81, 85, 101, 108, 123, 129, 130,
132, 155, 162, 295, 298, 304-306,
367
length, 53
dispersivity, 53-55, 74, 80, 130
donor controlled, 323
doublette, 277, 278
DTPA, 131, 132, 135

ecosystem, 7, 28, 135, 341
eigenvalue, 8, 330-332, 335, 346, 351
eigenvector, 8, 331, 335
endosufan, 305
energy, 34, 35, 48, 57-60, 215, 216
equation

Laplace, 256

Poisson, 203, 222

state, 134
equations

continuity, 34, 35, 39, 48, 49, 169,

209, 210, 221, 255

potential, 256, 260, 271
equilibrium

stable, 334, 341, 351, 353

unstable, 335, 341
Fuler

equation, 217, 258

Euler equation, 217, 258
eutrophication, 348

Fick’s Law, 47, 49-53, 56, 59, 62, 74
finite differences, 75, 78, 214, 379
finite elements, 214, 379
finite volumes, 214
food chain, 321
foodweb, 341, 342, 348
Fourier’s Law, 48, 59, 62
free fluids, 281
function
Bessel, 235, 299, 331
error, 65, 67, 69, 196

Gaussian

models, 302

plumes, 305
Geo Information Systems (GIS), 3, 5,

27, 308, 316

geo-referencing, x, 308, 310, 315
gravity, 181, 209, 215, 217, 220
grid, 24, 38, 77, 247, 248, 252, 254, 289
groundwater level, 245, 369

head
hydraulic, 213, 221, 223, 248, 281, 308
piezometric, 217, 221, 229-232, 234,
235, 238, 244, 245, 248, 259-261,
330
pressure, 62, 223, 227
heat capacity, 35, 57-59
Henry’s Law, 160, 219
histogram, 186, 377
hydraulic head, 62, 213, 221, 223, 248,
281, 308
hydrological cycle, 317, 318

image processing, x, 5, 29, 287, 288,
301, 307-312

initial conditions, 32, 79, 83, 118, 165,
325

insecticide, 124, 305

interception, 317, 318

ionic strength, 142, 147, 148

isotherm

linear, 108, 113, 115
isotherms, 104, 113, 115, 126

Jacobi matrix, 146, 345, 353



karst, 151
kinetics
Michaelis-Menten, 90, 126, 135,
163-165, 171
Monod, 90, 126, 128, 129, 135, 171,
173, 177, 178

lake, 182, 198, 278, 286, 321, 322, 341,
348

Lake Michigan, 341

Lake Victoria, 348

Laplace equation, 256

linear system, x, 17, 18, 161, 321, 322,
324, 333, 339, 353

logistic growth, 340, 342, 351

Lorenz attractor, 353-355

Lotka-Volterra, 348, 351, 355

Marmara Sea, 197
mass action
Law of, 126, 138, 139, 142, 163

mesh, 247-250, 252, 256, 261, 262, 264,
265, 267, 273, 287, 289, 347

Michaelis-Menten, 90, 126, 135,
163-165, 171

microcystin, 182, 196

model region, 32, 61, 151, 253, 255, 260,
261, 267, 272, 275, 287, 310

Monod kinetics, 90, 126, 128, 129, 135,
163, 171, 173, 177, 178

Neumann number, 73

Newton method, 139, 140, 145, 146,
155, 209

Nile perch, 348

nonlinear system, 145, 151, 333, 339,
341, 342, 353, 355

norm, 185, 186, 189, 191-193, 195

normal distribution, 293-297, 305

nuclides, 109, 207, 328

numerical solutions, vii, 4, 74, 77, 222,
273

Péclet criterion, 61, 92, 96, 99, 166, 296

Péclet number, 61, 92-96, 99, 166, 296

parameter estimation, ix, 7, 34, 134,
181, 203, 238, 241

PCB, 305

pedosphere, 47, 141, 379

Index 391

permeability, 220
phase diagram, 343
phase space, x, 333, 336, 344-346,
350-353, 355
phosphorus, 7, 163
phytoplankton, 341
piezometric head, 217, 221, 229-232,
234, 235, 238, 244, 245, 248,
259-261, 330
Poisson equation, 222
pollution, vii, 30, 63, 85, 100, 179, 227,
293, 295, 299, 302, 306
porosity, 35, 37, 38, 51-53, 58, 63, 88,
106-108, 113, 167-171, 220, 222,
259
potential, x, 103, 207, 214, 215, 217,
218, 244, 245, 248, 255-262, 265,
268, 271, 275278, 280-283, 285,
286, 288-290, 305
complex, 276, 283286, 288, 289
potential flow, x, 214, 217, 258
precipitation, 105, 218, 302
precision mode
double precision, 311
predator-prey, 348, 350, 352
pressure, 34, 35, 50, 58, 62, 87, 89, 141,
160, 208, 209, 211-213, 215, 217,
219-221, 223, 224, 227, 258, 260,
281, 308
dynamic, 217, 220
head, 62, 223, 227

Rayleigh number, 353
reactions
equilibrium, 138, 143, 150, 153, 154
kinetic, 90, 124, 126, 128, 135, 151,
154, 155, 163, 164, 171, 175, 178
redox, 173-175, 177-179
redox reactions, 173175, 177-179
residence time, 218, 321
residual, 173, 185, 186, 189, 193, 222,
239
retardation, 107-111, 113, 115, 121,
129, 182, 196, 297
retention curve, 223, 224
Reynolds number, 210, 213, 217, 220
Richard equation, 224
Richards equation, 224
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scaling, 120, 277
script, 190
sedimentation, 55, 118, 167, 168, 197
sediments, 4, 47, 52, 55, 63, 100, 101,
103, 106, 115, 118, 122, 123, 135,
141, 159, 167-169, 171, 174, 178,
179, 182, 207, 208, 219
aqueous, 182
seepage, X, 29, 35, 54, 101, 208, 218, 219
settling velocity, 305
sink, 38, 48, 56, 57, 88, 168, 173, 199,
256, 257, 268, 269, 282, 325, 335
line, 284
sinks, 34, 38, 48, 49, 57, 60, 79, 106-108,
166, 209, 210, 256, 284, 324
soil, 4, 29, 35, 37, 47, 104, 106, 208, 218,
219, 222-224, 227, 293, 295, 307,
317, 318, 322
sorption, ix, 3, 47, 101-104, 106, 107,
109-113, 115, 116, 118, 122, 147,
149, 182, 195, 196, 297, 324, 337
sources, 34, 38, 48, 49, 57, 60, 79,
106-108, 166, 209, 210, 256, 260,
284, 302, 306, 323, 324
stack release, 304
streamfunction, 62, 255, 266, 271-275,
278, 280283, 289
streamlines, 258, 266, 267, 273, 276,
277, 285-289
Streeter-Phelps, 160-163, 179
subfunctions, 316, 362
superposition, 256, 272, 275, 281, 284,
286, 300, 302
system
linear, x, 17, 18, 161, 321, 322, 324,
333, 339
nonlinear, 145, 151, 333, 339, 341,
342, 353, 355

temperature, 34, 35, 47, 50, 57-59, 61,
62, 68, 79, 87, 89, 102, 137, 141,
148, 181, 209, 217, 300, 302, 307,
308

timestep, 111

toluol, 324

tortuosity, 52, 55, 63

trajectory, 352, 355

transition zone, 71, 73, 253

turbulence, 56, 208, 217, 302

unsaturated zone, 35, 37, 51, 207, 208,
218, 222, 223, 227, 232, 317

vadose zone, 37, 207, 208, 218, 222, 223,
231
validation, 33, 34
variables
dependent, 79, 208
dimensionless, 61, 88, 89
independent, 29, 32, 48, 79, 145, 159,
171
velocity
Darcy, 152, 153, 220, 243, 259
flow, 53, 215, 220, 267
verification, 33
viscosity, 209, 210, 213, 217, 220
dynamic, 209, 220
kinematic, 210
volatile organic compound, 324
vortex, 280, 286, 288, 289

water content, 51, 222, 223, 227

wells, 219, 229, 260, 275-277, 284, 286,
287, 331, 337

wet deposition, 302

zooplankton, 341, 342, 348
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