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Preface 

This books makes an attempt to provide systematic description of recently accumulated 
results that shed new light on the well-known object - solitons, i.e., self-supporting soli­
tary waves in nonlinear media. Traditionally, solitons are studied theoretically (in an 
analytical and/or numerical form) as one-, two-, or three-dimensional solutions of non­
linear partial differential equations, and experimentally - as pulses or beams in uniform 
media. Propagation of solitons in inhomogeneous media was considered too (chiefly, 
in a theoretical form), and a general conclusion (which could be easily expected) was 
that the soliton would suffer gradual decay in the case of weak inhomogeneity, and 
faster destruction in strongly inhomogeneous systems. 

However, it was recently found, in sundry physical and mathematical settings, that 
a completely different, and much less obvious, situation is possible too - a soliton 
may remain a truly robust and intrinsically coherent object traveling long distances 
in periodic heterogeneous media, composed of layers with very different properties. 
A well-known example is dispersion management in fiber-optic telecommunications, 
i.e., the situation when a long fiber link consists of periodically alternating segments 
of fibers with opposite signs of the group-velocity dispersion. Such a structure of the 
link is necessary, as the dispersion must be compensated on average, which is pro­
vided by the alternation of negative- and positive-dispersion segments. In this case, 
a simple result is that localized pulses of light feature periodic internal pulsations but 
remain stable on average (do not demonstrate systematic degradation) in the absence 
of nonlinearity. A really nontrivial result is that optical solitons, i.e., nonlinear pulses 
of light, may also remain extremely stable propagating in such a periodically hetero­
geneous system. Moreover, under certain conditions, (quasi-) solitons may be robust 
even in a random dispersion-managed system, with randomly varying lengths of the 
dispersion-compensated cells (each cell is a pair of fiber segments with opposite signs 
of the dispersion). 

While the dispersion management provides for the best known example of stabil­
ity of solitons under "periodic management", examples of robust oscillating solitons 
in periodic heterogeneous systems were also found and investigated in some detail in 
a number of other settings. Essentially, they all belong to two areas - nonlinear op­
tics and Bose-Einstein condensation (being altogether different physically, these fields 
have a lot in common as concerns their theoretical description). It should be said that 
the action of the periodic heterogeneity on a soliton may be realized in two different 
ways - as motion of the soliton through the inhomogeneous medium, or as strong peri­
odic variation of system's parameter(s) in time, while the soliton does not move at all. 
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A very interesting example of the latter situation is the so-called Feshbach-resonance 
management, when the sign of the effective nonlinearity in a Bose-Einstein conden­
sate periodically changes between self-attraction and self-repulsion. In the latter case, 
nontrivial examples of stable solitons have also been predicted. 

The book aims to summarize results obtained in this field. In fact, a vast majority of 
results still have the form of theoretical predictions, as systematic experimental study of 
stability of solitons in periodic heterogeneous systems have only been performed in the 
context of the dispersion management in fiber optics. For this reason, the material col­
lected in the book has a strong theoretical bias. A hope is that collecting the theoretical 
predictions in a systematic form may suggest directions for experimental investiga­
tion of solitons under the "periodic management". In particular, creation of solitons in 
Bose-Einstein condensates subjected to the Feshbach-resonance management, possi­
bly in combination with spatially periodic potentials, provided by the so-called optical 
lattices, seems to be quite feasible in the real experiment, which would be especially 
interesting in two- and three-dimensional settings (creation of a three-dimensional soli-
ton in a real experiment has never been reported in any field of physics, despite various 
theoretical predictions of this possibility). 

As concerns theoretical results, virtually all of them are not rigorous ones, for an 
obvious reason - it is very difficult to rigorously prove the existence of stable oscil­
lating localized solutions in models based on nonlinear partial differential equations 
with periodically varying coefficients, which provide for the theoretical description of 
the systems with periodic management. Therefore, theoretical results are either purely 
numerical ones, or, sometimes, they are known in a (semi-) analytical form, which is 
based (most frequently) on the variational approximation. Nevertheless, despite the 
lack of the rigorous theory, there is a possibility to summarize the results in a system­
atic and sufficiently consistent form. An attempt of that is done in this book. It should 
be said that the presentation of material in the book has a rather subjective character 
(which is, probably, inevitable in a book on such a topic), as emphasis is made on those 
issues and aspects which seem specially interesting or significant from the viewpoint 
of the author. 

The subject of the periodic management of solitons is far from being completed. 
Not only the experimental results are very scarce, as said above, but also theoretical 
analysis (even in a non-rigorous form) of many important problems should be further 
advanced. However, although the field is in the state of development, a coherent de­
scription of its current status is quite possible. 

Three distinct parts can be identified in the book. The first chapter (Introduction). 
which is, as a matter of fact, a separate part by itself, gives a possibly general overview 
of solitons, with an intention to briefly outline the most important theoretical models 
and results obtained in them, as well as most significant experimental achievements. 
Since the length of the introduction is limited, the outline was focused on models and 
settings related to the realms of nonlinear optics and Bose-Einstein condensation, as 
the concepts and techniques of the periodic soliton managements have been developed 
in these areas. The introduction also includes a brief description of the subject and 
particular objectives of the book. Then, two technical parts (one includes chapters 2 -
6, and the other chapters 7 - 10) report results, respectively, for one-dimensional and 
multidimensional solitons. Such separation is natural, as methods used for the study 
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of one-dimensional settings, and the respective results, are very different from those 
which are relevant to multidimensional problems (nevertheless, chapter 10 includes 
some results for a one-dimensional situation too, which are closely related to the basic 
two-dimensional problem which is considered in that chapter). 

Writing this book would not be possible without valuable collaborations and dis­
cussions with a large number of colleagues. It is my great pleasure to express the 
gratitude to F. Kh. Abdullaev, J. Atai, B. B. Baizakov, Y. B. Band, A. Berntson, J. G. 
Caputo, A. R. Champneys, P. Y. P. Chen, P L. Chu, D. J. Frantzeskakis, B. V. Gisin, D. 
J. Kaup, P G. Kevrekidis, Y. S. Kivshar, R. A. Kraenkel, T. Lakoba, U. Mahlab, D. Mi-
halache, V. Perez-Garcfa, M. Salerno, M. Segev, N. Smyth, L. Torner, M. Trippenbach, 
F. Wise, and J. Yang. Special thanks are due to younger collaborators (some of them 
were my students or postdoc associates), including R. Driben, A. Gubeskys, M. Gutin, 
A. Kaplan, M. Matuszewski, T. Mayteevarunyoom, M. I. Merhasin, G. Theocharis, and 
I. Towers. 

The work on particular projects that have generated essential results included in 
this book was supported, in various forms and parts, by grants No. 1999459 from the 
Binational (US-Israel) Science Foundation, and No. 8006/03 from the Israel Science 
Foundation. At a smaller scale, support was also provided by the European Office of 
Research and Development of the US Air Force, and Research Authority of the Tel 
Aviv University. 
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List of acronyms used in the text: 
ID, 2D, 3D - one-dimensional, two-dimensional, three-dimensional 
AWG - antiwaveguide 
BEC - Bose-Einstein condensation/condensate 
BG - Bragg grating 
CW - continuous-wave (solution) 
DM - dispersion management 
DS - dark soliton 
FF - fundamental-frequency (wave) 
FP - fixed point 
FR - Feshbach resonance 
FRM - Feshbach-resonance management 
FWHM - full width at half-maximum (of an optical pulse) 
FWM - four-wave mixing 
OPE - Gross-Pitaevskii equation 
GS - gap soliton 
GVD - group-velocity dispersion 
GVM - group-velocity mismatch 
HS - hot spot (a local perturbation switching a spatial soliton) 
ISI - inter-symbol interference 
1ST - inverse-scattering transform 
KdV - Korteweg - de Vries (equation) 
ME - Mathieu equation 
NLM - nonlinearity management 
NLS - nonlinear Schrodinger (equation or soliton)' 
ODE - ordinary differential equation 
OL - optical lattice 
PAD - path-average dispersion 
PCF - photonic-crystal fiber 
PDE - partial differential equation 
PR - parametric resonance 
QPM - quasi-phase-matching 
RI - refractive index 
RZ - retum-to-zero (signal) 
SH - second harmonic 
SHG - second-harmonic generation 
SPM - self-phase modulation 
SSM - split-step model 
STS - spatiotemporal soliton 
TF - Thomas-Fermi (approximation) 
TS - Townes soliton 
VA - variational approximation 
WDM - wavelength-division multiplexing 

WG - waveguide (when referred to in the context of the waveguding-antiwaveguiding model) 
XPM - cross-phase modulation 



Chapter 1 

Introduction 

1.1 An overview of the concept of solitons 

The concept of solitons (solitary waves) plays a profoundly important role in modern 
physics and applied mathematics, extending beyond the bounds of these disciplines. It 
was introduced in 1965 by Zabusky and Kruskal who numerically simulated collisions 
between solitary waves (pulses) in the Korteweg - de Vries (KdV) equation, and dis­
covered that these pulses not only are stable in isolation, but also completely recover 
their shapes after collisions [175]; this observation was an incentive which had soon 
led to the discovery of the inverse scattering transform (1ST) and the very concept of 
integrable nonlinear partial differential equations (PDEs) [72]. The next principally 
important step in this direction was made by Zakharov and Shabat, who had demon­
strated that the integrability is not a peculiarity specific to a single (KdV) equation, but 
is also featured by another equation which finds very important applications in physics, 
viz., the nonlinear Schrodinger (NLS) equation [177]. Integrability of the sine-Gordon 
equation, which was actually known, in terms of the Backlund transformation, since the 
19th century, was also naturally incorporated into the 1ST technique (the sine-Gordon 
equation finds its most important physical realization in superconductivity, as a dynam­
ical model of a long Josephson junction, i.e., a thin layer of an insulator sandwiched 
between two bulk superconductors [170]). Further development of the studies in this 
field has produced a body of results which have become a classical contribution to sev­
eral core areas of physics and mathematics. The 1ST technique and results produced 
by it were summarized in several well-known books written by the very same people 
who had produced these results [176, II, 133]. 

Parallel to the theoretical developments, great progress has been achieved in exper­
imental studies of solitons. The very first published report of observation of a soliton is 
due to John Scott Russell, who spotted a stable localized elevation running on the sur­
face of water in a canal in Edinburgh, and pursued it on horseback. In retrospective, the 
most astonishing feature of this report, published in 1844 [149], is the very fact that J. 
S. Russell was able to instantaneously understand the significance of the phenomenon. 
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1.1.1 Optical solitons 

Qualitative consideration 

In the modern experimental and theoretical studies of solitons, the most significant 
progress has been achieved in optics and, most recently, in Bose-Einstein condensates 
(BECs). A milestone achievement was the creation of bright temporal solitons in non­
linear optical fibers in 1980 [127], after this possibility had been predicted seven years 
earlier [79]. In the realm of nonlinear optics, this was followed by the creation of dark 
solitons in fibers [60, 98, 172], bright spatial solitons in planar nonlinear waveguides 
[118, 18], and gap solitons (GSs) in fiber Bragg gratings [57]. In all these cases, the 
soliton is supported by interplay between the chromatic dispersion (in the temporal 
domain) or diffraction (for spatial solitons) of the electromagnetic wave and cubic self-
focusing nonlinearity, induced by the Kerr effect. The latter may be realized as an 
effective positive correction, An(/) , to the local refractive index (RI) of the material 
medium, which is proportional to the local intensity, / , of that very electromagnetic 
wave on which the RI acts, i.e., An(/) = 722/ with a positive coefficient n2- Besides 
the self-focusing sign of the Kerr effect (An(/) > 0), its essential property in normal 
optical materials is the instantaneous character (no temporal delay between An(/) and 
/ ) . In view of the fundamental importance of the temporal and spatial optical solitons 
supported by this mechanism, it is relevant to present a short quantitative explanation 
for it here. 

In the course of the propagation in the nonlinear medium, the light pulse accumu­
lates a phase shift that, through the correction n2l to the RI, mimics the temporal shape 
of the pulse, / = I(t). To understand this feature in a more accurate form, one may 
start from the normalized wave equation for the electric field E, 

E,, + E^^ + Eyy - (n^E)^^ = 0, (1.1) 

where the subscripts stand for the partial derivative, z is the propagation distance, x 
and y are transverse coordinates, t is fime, and n is the above-mentioned RI (detailed 
derivation of the wave equation can be found, e.g., in book [15]). A solution to Eq. 
(1.1) for a one-dimensional wave, which must be a real function, is looked for as 

E{z, t) = u{z)e''">'-''^°'' + u*{z)e-'''°'+''^°\ (1.2) 

where exp {ikoz — iuot) represents a rapidly oscillating carrier wave, the asterisk stands 
for the complex conjugation, and u{z, t) is a slowly varying complex local amplitude. 
Substituting this in Eq. (1.1), in the lowest approximation one obtains the disper­
sion relation between the propagation constant (wave number) k and frequency to, 
^0 — ('̂ o'̂ o) . with no the RI in the linear approximation. The next-order approx­
imation, which takes into regard the above correction to the RI, n = no + n2/ , yields 
an evolution equation for the amplitude, 

.du non2 2r n t^ i\ 
1-- + ——LOQIU = 0. (1.3) 

dz KQ 

Actually, this equation is a nonlinear one, as the intensity is tantamount to the squared 
amplitude, / = |wp. A solution to Eq. (1.3) is simply Ac/) — (non2) (wg/fco) Iz, 
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where A</< is a nonlinear contribution to the wave's phase (the accumulation of the non­
linear phase is usually called self-phase modulation, SPM). The corresponding SPM-
induced frequency shift being Aw = —dA(j)/dt, one obtains an expression for it, 

U)Q dl 
Aw =-non2^—— 2;. (1.4) 

Ko at 

It follows from Eq. (1.4) that the lower-frequency components of the pulse, with Aw < 
0, develop near its front, where dl/dt > 0 (the intensity grows with time), while higher 
frequencies, with Aw > 0, develop close to the rear of the pulse, where dl/dt < 0. 

On the other hand, the dielectric response of the material medium is not strictly in­
stantaneous, featuring a finite temporal delay. This implies that the linear part, e = UQ, 
of the multiplier n^ in the wave equation (1.1) (the dynamic dielectric permeability) is, 
as a matter of fact, a linear operator, rather than simply a multiplier. The accordingly 
modified form of the linear term {eE)^^ inEq. (1.1) becomes (/g°° e{T)E{t — T)dT)^^, 
where r is the delay time. Finally, approximating this nonlocal-in-time expression by 
a quasi-local expansion, eoEu + e-2Etttt + •••> which is justified when the actual delay 
in the dielectric response is very small, gives rise to second- and higher-order group-
velocity-dispersion (GVD), alias chromatic-dispersion, terms in the eventual propaga­
tion equation, which can be translated into the corresponding linear dispersion relation, 
fc = fc(w) [15]. 

In particular, the normal (positive) GVD (which means that waves with a higher 
frequency have a smaller group velocity, as expressed by the condition that the second-
order-dispersion coefficient is positive, P2 ^ d'^k/dco'^ > 0) reinforces the above 
(nonlinearity-induced) trend to the temporal separation between the low- and high-
frequency components of the pulse, contributing to its rapid spread. On the contrary, 
anomalous (negative) GVD (/32 < 0), which also occurs in real materials, may com­
pensate the nonlinearity-induced spreading. With the magnitudes of the dispersion 
and intensity properly matched, the balance may be perfect, giving rise to very robust 
pulses, i.e., solitons. 

Nonlinear Schrodinger equation and solitons 

Putting all the above ingredients together, and assuming that the amplitude u in Eq. 
(1.2) is a slowly varying function of z and "reduced time", T = t — k'^z (here and below, 
the value of the derivative k'^ is calculated at the carrier-wave's frequency, w = WQ), 
one arrives at the nonlinear Schrodinger (NLS) equation which governs the evolution 
of w(z,r), 

1 2 
iu^ — -jSurT + 7|w| w = 0, (1.5) 

where (3 replaces /?2 (the replacement will not lead to confusion, as higher-order disper­
sion, which is different from j3'2, is not dealt with below), and 7 ~ n2^/eoiOQ/ko. The 
introduction of T instead of t is necessary to eliminate a term with the first derivative 
in t (the group-velocity term), thus casting the NLS equation in the simplest possible 
form, namely, the one given by Eq. (1.5). 
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Below, a number of models will be considered that may be viewed as various gen­
eralizations of the NLS equation (1.5) - two-component systems, equations with dif­
ferent nonlinearities, multidimensional systems, etc. A very recent succinct review of 
equations of the NLS type can be found in article [105]. 

An elementary property of the NLS equation is its Galilean invariance: any given 
solution u{z, T) automatically generates a family of moving solutions by means of the 
Galilean boost that depends on an arbitrary real parameter c (it is an inverse-velocity 
shift, relative to the inverse group velocity, k'^, of the carrier wave): 

^ ^ - - g - r j . (1-6) 

Another simple property of Eq. (1.5) is the modulational instability of CW (continuous-
wave) solutions, wcw = ^o exp {i'^A^z) with an arbitrary amplitude A^: although the 
CW solution does not contain the GVD coefficient /3, it is stable in the case oij3^ < 0, 
and unstable (against r-dependent perturbations) in the opposite case. 

The NLS equation has natural Lagrangian and Hamiltonian representations. The 
former one will be considered below (see Eq. (2.7)), while the latter takes the form 

»Mz = ^ , (1-7) 

where 5/5u* is the functional derivative, the asterisk stands for the complex conjuga­
tion, and the Hamiltonian, 

'^ dT, (1.8) 
1 (-i-oo 

^=-2 J {P\Ur\^+lH')^ 

is considered as a functional of two formally independent arguments, W(T) and (M(T) ) *. 
The Hamiltonian is a dynamical invariant of Eq. (1.5), i.e., dH/dz = 0. Two other 
straightforward dynamical invariants of the NLS equation are energy E, alias norm of 
the solution (in the context of fiber optics, the energy is different from the Hamiltonian), 
and momentum P, 

1 |.+oo 
E ^ ^J \uiT)fdr, (1.9) 

-fco 
uu*dT. (1.10) 

— oo 

Due to the fact that the NLS equation is exactly integrable by means of the 1ST, 
it has an infinite set of higher-order dynamical invariants, in addition to E, P, and H 
[176]. In particular, the first two higher-order invariants are 

1 f~^°° 
/4 = - / (-/3u<^^ + 37|w|2ww;) dr, (1.11) 

-oo 

'^ = 4 
-1 /"t-OO _ 

^ J— oo '-
#1-12) 
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(the subscripts 4 and 5 imply that they follow the first three elementary dynamical 
invariants, E, P, and H). These higher-order invariants do not have a straightforward 
physical interpretation, and are seldom used in applications. Nevertheless, an example 
of a physical application of the invariants ( l . l l ) and (1.12) will be presented in this 
book, when analyzing splitting of higher - order solitons in the model based on Eq. 
(5.5), see subsection 5.2.3. 

In the case of the anomalous GVD, /? < 0 (it is assumed that 7 is positive), i.e., 
when the CW solutions are unstable, a commonly known family of soliton solutions to 
Eq. (1.5) is 

Uso\{z,r) = —sech ( rj ( —j= - cz ) | exp " +U^'-'') l/?l 2 
(1.13) 

where r/ and c are arbitrary real parameters, that determine the soliton's amplitude and 
the above-mentioned inverse-velocity shift. The function sech (hyperbolic secant) in 
this solution provides for the localization of the soliton. In the experiment, the tem­
poral soliton is observed as a localized pulse running along the fiber with the velocity 

y = 1/ f/c^ + cy^ j^ j . The entire soliton family (1.13) is stable against small pertur­

bations. 
The application of the 1ST yields exact solutions of the NLS equation more complex 

than the fundamental soliton (1.13). In particular, the initial condition (in the case of 
/3<0) 

(1.14) 

with integer n and arbitrary rj, that generates the fundamental soliton forn = 1, gives 
rise to higher-order "n-solitons" for n > 2 [154]. Analytical expressions for these 
solitons with n > 3 are cumbersome. A relatively simple analytical solution describes 
the 2-soliton, 

4^ cosh (sr^T/ V M ) + 3 exp {iirj^z) cosh (STJT/ v/pf) 
U2.0I = -p T̂  —jT 7 —IT-" ^ exp -ri'z 

V^ cosh U ? 7 T / y p l j + 4 cosh f 2 7 7 T / \ / P | j + 3 cos {irj'^z) ^ ̂  
(1.15) 

As seen from this expression, the shape of the 2-soliton, i.e., the distribution of the 
power in the soliton, \u{z, T) \ , oscillates in z with the period 

2 s o l = ^ , (1.16) 

which is called the soliton period. It can be demonstrated that all the exact n-soliton 
solutions generated by the initial condition (1.14) with N > 2 oscillate with exactly 
the same period (1.16), irrespective of the integer value of n. In fact, ŝoi is also an 
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estimate for the propagation distance which is necessary for formation (self-trapping) 
of the fundamental soliton from an initial pulse of a generic form. 

As well as the fundamental soliton (1.13), the 2-soliton (1.15) remains single-
humped at any z (i.e., |w(2:,r)| always has a single maximum as a function of r). 
However, the 3-soliton solution periodically splits into a double-humped structure and 
recombines into a sharp single-peak one, see Fig. 5.4 in book [15]. 

In terms of the 1ST, the 2-soliton (1.15) may be regarded as a nonlinear bound state 
of two fundamental solitons, with the amplitudes 

4-='^ = 3r,,4-='^=n. (1.17) 

Similarly, the 3-soliton is a bound state of three fundamental solitons, with 

Note that the energy (1.9) of the n-soliton (1.14) is 

En = ^ ^ ^ ^ n V (1.19) 
7 

As follows from the above and Eq. (1.19), for n = 2 and n = 3 (actually, for any n) 
the energy of the n-soliton is exactly equal to the sum of energies of the constituent 
fundamental solitons, if they are separated from each other. To understand if the bound 
state is stable against splitting into the separate fundamental solitons, one can identify 
its binding potential, as a difference between the value of the Hamiltonian (1.8) for the 
n-soliton, which is 

Hn = ^rfv? (2n2 - l) , (1.20) 

and the sum of the values of H for the separated constituent solitons. The result is 
that the binding potential is exactly equal to zero for all the n-solitons. For this reason, 
they are considered as unstable states. Indeed, an initial perturbation which imparts 
infinitely small velocities to the constituent solitons will result in splitting. However, 
this is a slowly growing instability, rather than exponential growth of perturbations, 
which would imply usual dynamical instability. For this reason, n-solitons may be 
physically meaningful objects. 

In the case of normal GVD, /9 > 0, localized {bright) solitons do not exist, but a 
dark soliton (DS) is found in this case, in the form of a dark spot ("hole") against a 
uniform CW background. It is described by the following exact solution to the NLS 
equation (1.5): 

Ti I n \ 

ur)s(.z,T) = -—tanh ( -J^TJ exp (ir/^z), (1.21) 

where 77 is an arbitrary amplitude of the background which supports the dark soliton. 
The DSs are stable, which is possible because the CW background supporting them 
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is itself modulationally stable for /3 > 0, as mentioned above. DSs were created ex­
perimentally in nonlinear optical fibers [60, 98, 172], about a decade after the first 
observation of the bright solitons in fibers was reported. DSs are not a subject of this 
book, except for a brief consideration in the context of the ID Feshbach-resonance-
driven Bose-Einstein condensate, see Fig. 5.3 and related text. A review of DSs can be 
found in article [91]. 

An important generalization of the NLS equation is a system of two coupled equa­
tions, that describe co-propagation of two waves in an optical fiber. The waves are 
distinguished by either orthogonal polarizations or different carrier wavelengths. In 
the general case, the corresponding system is 

iu^ + icur - -PUUTT + 7 {\u\^ + cr|t;|^) M = 0, (1.22) 

iv^ - icVr - -pvVrr + 7 ( ^ P + <^H'^) V =0, (1.23) 

where a is the ratio of the SPM and XPM (self-phase-modulation and cross-phase-
modulation) coefficients, /?„ and fiy are the GVD coefficients (they may be different 
in the case of two different carrier wavelengths), and a real parameter 2c measures the 
group-velocity mismatch (GVM) between the two waves (in the case of orthogonal 
polarizations, c accounts for the gwup-velocity-birefringence effect). The cases of 
different wavelengths or mutually orthogonal circular polarizations correspond to a = 
2, and two orthogonal linear polarizations are described by Eqs. (1.22) and (1.23) with 
a = 2/3 (strictly speaking, in the latter case the equations also contain/owr-wave-
mixing (FWM) nonlinear terms, {l/2>)v'^u* and (1/3)I)^M*, respectively, but they may 
be usually neglected due to birefringence effects [15]). However, the only case when 
the system of the coupled NLS equations is integrable (the Manakov's system [117]) 
has (7 = 1. 

The system of equations (1.22) and (1.23) conserves the sum of momenta (1.10) in 
the two components, 

Ptot = « / uu*^dT + i / vv*dT. (1-24) 

The energy (1.9) is conserved separately in each component, unless the FWM terms 
are included. If the FWM coupling is present, then only the total energy is conserved, 

Etot^^j_ \u{TfdT+-J^ \v{T)fdT. (1.25) 

In the case of c = 0, Eqs. (1.22) and (1.23) have obvious two-component (vec­
torial) soliton solutions with v{z, r ) = exp (i(/io) u{z, r ) and arbitrary phase shift (t)o, 
that trivially reduce to the ordinary single-component soliton (1.13). In terms of the 
effective polarization angle 9, such solitons correspond to 9 — 45°. The system (1.22), 
(1.23) with c = 0 also gives rise to nontrivial (and stable) soliton solutions with arbi­
trary polarization (0 < 9 < 90°), which can be found in a numerical form, or in an 
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analytical approximation by means of the VA [87] (only in the Manakov's case, a = 1, 
the vectorial-soliton solutions with 9 ^ 45° can be found in an exact analytical form, 
with v{z, T) = exp (j(^o) (tan 0) u{z, T)) . 

In the spatial domain, the analysis which leads to solitons is simpler. In this case, 
relevant solutions to Eq. (1.1) are looked for in the form (1.2), where the amplitude 
u{z,x) may be a slowly varying function of z and the transverse coordinate x, while 
the time delay in e is irrelevant, i.e., e = CQ- The latter implies setting WQ = feo/^/eo in 
the expression for the carrier wave in Eq. (1.2), then the first nontrivial approximation 
leads to the following nonlinear equation for the slowly varying amplitude, 

iu^ + -—-u^x+-i\u\^u = Q, (1.26) 

where the relation / = |M|^ is again taken into regard, and this time the nonlinearity 
coefficient is defined as 7 = n2ko/y/eo. The spatial-domain equation (1.26) takes ex­
actly the same form (with the same relative signs in front of the second derivative and 
nonlinear term) as the NLS equation (1.5) in the temporal domain with the anomalous 
GVD (i.e., the transverse diffraction in the spatial domain is a counterpart to the nega­
tive GVD in the temporal domain). Accordingly, the family of solutions (1.13), with T 
replaced by x, describes spatial solitons, in the form of localized planar beams of light 
in the two-dimensional plane (z, x). The solutions with c ^ 0 correspond to the beams 
tilted relative to the z axis. 

Bragg-grating (gap) solitons 

The above-mentioned gap solitons were experimentally created in a nonlinear optical 
fiber equipped with a Bragg grating (BG) [57], i.e., a periodic system of weak defects 
in the fiber's cladding, with the period A/2, which gives rise to the resonant Bragg 
reflection of the right- and left-traveling electromagnetic waves, with the wavelength 
A and local amplitudes u{x, t) and v{x, t), into each other (note that here t is ordinary 
time, rather than the reduced time T defined above). A standard model of the BG-
equipped nonlinear optical fiber is based on a system of coupled-mode equations for 
the two waves, 

iut + iU:,+-i\--\uY + \vY\u + KV = 0, (1.27) 

ivt-ivx+^ {-\vY •\-\uY\v +Ku = 0, (1.28) 

where 7 is (as above) the nonlinearity coefficient, K is the Bragg-reflectivity coefficient, 
and the group velocities of the waves and normalized to be 1. The relative XPM coef­
ficient in Eqs. (1.27) and (1.28) is 2, cf. Eqs. (1.22) and (1.23) for a pair of different 
wavelengths. 

A similar model is known in the spatial domain, with time t replaced by the propa­
gation constant z; in that case, the BG is implemented in the form of a system of parallel 
grooves (or ridges), with spacing h, on the surface of a planar waveguide, while u{x,z) 
and ti(x, z) are local amplitudes of two waves whose Poynting vectors constitute equal 
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angles x with the grooves. The waves are resonantly reflected into each other under 
the condition 

A = 2/isinx, (1.29) 

where A is again the wavelength. 
Before considering solutions of the full nonlinear equations (1.27) and (1.28), it 

is relevant to consider their linearized version (obtained by dropping the cubic terms). 
Looking for the corresponding linear-wave solutions as {u{x,t),v{x,t) ~ exp{ipx — iu)t)}, 
one immediately finds the corresponding dispersion relation, w^ = p"^ + K'^. As seen 
from this expression, there are no linear waves whose frequency belongs to the gap in 
the spectrum (which is also frequently called bandgap), 

— K < LO < +K. (1.30) 

Unlike the NLS equation, the system of equations (1.27) and (1.28) is not exactly 
integrable (it becomes tantamount to an exactly integrable massive Thirring model, 
which has been known for a long in the quantum field theory, if the SPM coefficient ^ 
in the equations is formally replaced by zero). Nevertheless, a family of exact soliton 
solutions to these equations, with an arbitrary amplitude parameter 9, which takes val­
ues Q < 6 <-K (see below), and an arbitrary velocity c, which is limited to the interval 
— 1 < c < -M, was found in works [13] and [42], following the pattern of the pre­
viously known exact solutions in the massive Thirring model. Although the solutions 
seem relatively complex, they are quite usable in theoretical analysis: 

UGs(x,t) = J ^ ! l i l ± £ | ( l - c 2 ) ^ / V ( X ) e * ^ m - * ^ - ^ ^ 

vos{x,t) = - J ^ ! ^ l i _ £ | ( l - c 2 ) ^ / V * ( X ) e ^ ^ W - * ^ - ^ ' ' . (1.31) 

Here, the asterisk stands for the complex conjugation, and 

X X — ct ^ t — ex 
K , z, I = K-

WiX) 

vr-
4c 

3 - c 2 
arctan tanh {X sin 6) tan ( - (1.32) 

(sin 9) sech I X sin ^ 

The soliton solutions (1.31), (1.32) with zero velocity (c = 0), i.e., pulses of standing 
light pinned by the BG, take an essentially simpler form: 

(c=0) 

^(c=0) 
"GS 

{x, t) = . P (sin 9) e-*(''^°^^)*sech ( KX ;sm 

ix,t) / ^ ( s i n 6»)e-*('̂ <=°'*̂ )*sech f/cx sin 61 + ^ ) . (1.33) 
37 V 2 
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Note that the frequencies of the soliton family (1.33), Wgoi = K COS 6, exactly cover the 
bandgap (1.30), for which reason the solutions themselves are commonly called gap 
solitons (GSs), as mentioned above. This is a manifestation of a very general principle, 
which states that the linear waves and solitons must occupy different regions in the fre­
quency space. Exceptions to this rule are known too, in the form of embedded solitons 
(they are embedded into the frequency region occupied by the linear waves), which are 
reviewed in article [39]. However, the embedded solitons, being nongeneric solutions, 
exist not in families, but at isolated values of the frequency; they also feature very spe­
cific stability properties, being semi-stable (they are stable in the linear approximation, 
but, generally speaking, nonlinearly unstable). 

An essential difference of the GS solutions from their NLS counterparts (1.13) is a 
nontrivial phase distribution in the soliton: even in the case of c = 0, the solution (1.33) 
is an essentially complex one, with the intrinsic phases ± arctan (tan {9/2) tanh {x sin 6)) 
of its u- and u-components. Another noteworthy difference from the NLS solitons is 
that the moving GSs cannot be automatically generated from ones with c = 0, as Eqs. 
(1.27) and (1.28) do not obey the Galilean or Lorentz invariance. The GSs are asymp­
totically equivalent to the NLS solitons only in the limit of 0 —̂  0, which corresponds 
to very broad small-amplitude solitons. 

Besides the Hamiltonian, Eqs. (1.27) and (1.28) conserve the total momentum and 
energy, which are given by the same expressions (1.24) and (1.25) as for coupled NLS 
equations. For the exact GS solutions (1.31), (1.32) they are 

80 (1 - c2) 

PGS 

7 ( 3 - c 2 ) ' 

—^cV 1 — ĉ  
7 

(7 -

. ( 3 - c2)2 
(sin 6 --61 cos 61) 

61 cos 61 
(1.35) 

The stability of the GSs is quite a nontrivial problem. For the first time, it was 
considered by means of the variational approximation (VA) in work [113], and later a 
numerically exact result was obtained in works [28] and [47] by means of numerical 
computation of the stability eigenvalues, using equations (1.27) and (1.28) linearized 
for small perturbations. Quite remarkably, the VA had predicted virtually the same 
result which was later found by dint of the numerical methods: the quiescent solitons 
(c = 0) are stable in slightly more than a half of their existence region, viz., in the 
interval 0 < 0 < ^cr ~ 1.01(7r/2), being unstable against oscillatory perturbations 
(ones with a complex instability growth rate) in the remaining interval, 1.01(7r/2) < 
6 < TT. The stability border, 9a, very weakly depends on the soliton's velocity c, 
remaining close to 7r/2 up to the limit values of c = ± 1 . 

Experimental creation of temporal GSs was reported in 1996 [57]. The experiment 
was run in a short (6 cm) fiber grating. Such a piece of the fiber was sufficient for the 
formation and observation of the soliton, as the grating induces a very strong artificial 
dispersion (up to six orders of magnitude stronger than the fiber's natural GVD). To 
match the strong dispersion, a laser pulse with a very high power was launched into the 
fiber. The created soliton was observed to travel at the velocity c « 0.75, in the present 
notation. In later experiments, the velocity was reduced to w 0.5, while a standing-light 
soliton, with c = 0, has not yet been created in the experiment. 
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Second-harmonic-generation solitons 

Besides the Kerr (alias cubic, or x^^^) nonlinearity, optical solitons can also be sup­
ported by the balance between diffraction/dispersion in the spatial/temporal domain 
and quadratic (x̂ ^̂ )> alias second-harmonic-generating (SHG), nonlinearity. Unlike 
the universal Kerr effect, the x̂ ^̂  nonlinearity occurs only under special conditions in 
anisotropic media, such as certain optical crystals, or periodically poled waveguides. 
The existence of x^'^^ solitons was predicted by Karamzin and Sukhorukov back in 
1974 [86], but, in the experiment, solitons of this type were created more than 20 years 
later, first as (2+l)-dimensional spatial solitons (self-supported localized cylindrical 
beams in a bulk crystal sample) [164], and soon thereafter as spatial (l-i-I)-dimensional 
solitons, i.e., localized beams in planar waveguides [155] (the latter are spatial solitons 
of essentially the same type as described above for the case of the Kerr nonlinearity). 

The standard model of the spatial x̂ ^̂  solitons in a planar waveguide includes 
normalized equations for the local amplitudes u{x, z) and v{x, z) of the fundamental-
frequency (FF) and second-harmonic (SH) waves, 

iu^ + -Uxx + u*v = 0, 

liv^ +-v^x +-V? + qv = 0, (1.36) 

where x and z have the same meaning as in the spatial-domain model (1.26), i.e., 
the transverse coordinate and propagation distance, respectively, the nonlinear x̂ ^̂  
coefficient is set to be 1, and a real parameter q measures the mismatch between the 
FF and SH waves. By means of an obvious rescaling, one can always set g = ± 1 , for 
positive and negative q, respectively (or keep q' = 0, in the case of exact matching). 

A single particular solution for the SHG soliton is available in an analytical form 
for q = -fl, as shown in the pioneer work by Karamzin and Sukhorukov [86], 

u{x,z) = i-^e^^/^sech^ {^^ , u{x,z) = le^-Z^sech^ ( ^ ) . (1.37) 

A general family of soliton solutions can be sought for in the form of u{x, z) = 
e*'̂ (̂7 (x), v{x, z) = e^^^^V (x), with fc > 0 in the case of q = —1 or g = 0, and 
A; > 1/4 in the case of q — +1. Except for the single exact solution (1.37) correspond­
ing to k = 1/3, the localized functions U{x) and V{x) can be found in a numerical 
form, or in an approximate analytical form by means of VA, as described in detail in 
reviews [62] and [35]. The exact solution (1.37) is stable, as well as a larger part of 
the general soliton family (unstable are only the solitons corresponding to q = +1, 
in a very narrow subregion, 0.25 < k < 0.264, of their existence region, which is 
k > 0.25). 

Experimental observation of x̂ ^̂  solitons in the temporal domain is much more 
difficult, because of the small propagation distance in available samples, and weak 
GVD in available materials. Nevertheless, this aim was achieved in an experiment 
which employed strong artificial dispersion, created by means of a technique using the 
so-called tilted wave fronts (the technique can be implemented in a waveguide with an 
extra transverse spatial direction) [49]. 
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A very important property of the quadratic nonlinearity is the fact that it, unlike its 
X̂ '̂ ^ counterpart, can support stable multidimensional solitons (as mentioned above, 
the first experimentally created x^'^^ solitons were, effectively, two-dimensional (2D) 
ones [164]). The problem with the cubic nonlinearity is that it gives rise to collapse, 
i.e., formation of a true singularity after finite evolution, in both the 2D and 3D (three-
dimensional) versions of the NLS equation (a detailed account of the collapse theory 
for the NLS equation can be found in article [29] and book [159]). The possibility of 
the collapse makes formally existing solitons in both the 2D and 3D equations with 
the cubic nonlinearity unstable. On the contrary to that, the x̂ '̂ ^ nonlinearity does not 
give rise to collapse in any physically relevant dimension, which opens a way to the 
existence of stable multidimensional solitons. An especially challenging possibility 
is experimental creation (and possibly use in future applications) of spatiotemporal 
solitons (STSs), alias "light bullets" (the latter term was coined by Silberberg [156]), 
which are pulses of electromagnetic waves localized in all the directions, transverse and 
longitudinal. The self-localization in the longitudinal direction actually implies that 
the soliton is (simultaneously with being a spatial soliton in the transverse directions) 
a temporal one, as explained above for the solitons in fibers, hence the term STS. 

A mathematical model that can generate 3D STSs in SHG media is based on a 
straightforward generalization of equations (1.36), 

^/3iu.. + ^ ' iw^ — ;^/3IUT-T + ^Vj_W + W*!! = 0, 

2w,--(i2Vrr + ̂ V\v+-u'' + qV = 0, (1.38) 

where /3i and (^2 are the GVD coefficients at the FF and SH, respectively (cf. Eq. 
(1.5)), and the diffraction operator Vj^ = d"^/dx^ + d"^ jdy^ acts on the transverse 
coordinates. The existence of stable STS solutions to Eq. (1.38) (actually, with q = 0) 
was first predicted, in a rigorous but abstract form (on the basis of variational estimates, 
without developing any actual approximation to the shape of the soliton) as early as in 
1981 by Kanashov and Rubenchik [83]. Similarly, a fully localized 2D STS can exist 
in a planar waveguide (it is described by Eqs. (1.38) with V\ replaced by d'^/dx^). 

The first actual approximation for the 3D and 2D spatiotemporal solitons in the 
generic SHG model, in both analytical and numerical forms (the former was based 
on the VA), was developed in 1997 [107] (in an earlier paper [97], another approxi­
mation was proposed, based on a factorized-product ansatz of the type u{z, r, a;) = 
e*'°^F(T)G(x)). This theoretical work was followed by attempts to create STSs in 
SHG crystals. The best result was the making of effectively 2D "light bullets" of this 
type in bulk (3D) crystals [103, 101] (the light pulses were self-localized in one trans­
verse direction and in the longitudinal one, while in the other transverse direction they 
extended across the entire sample). In fact, a full 3D "bullet" could not be created 
in these experiments, as they employed the above-mentioned tilted-wave-front tech­
nique (as the self-localization of the pulse in the temporal direction required sufficiently 
strong dispersion, that could be induced only artificially), which absorbed one trans­
verse direction. The creation of completely localized STS in three dimensions remains 
a great challenge to the experiment, and is an intensive for the development of new 
relevant schemes - first of all, in the theoretical form, before they can be tested in the 
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experiment. An up-to-date review of the topic of optical STSs, including experimental 
and theoretical aspects, can be found in article [109]. 

1.1.2 Solitons in Bose-Einstein condensates, and their counterparts 
in optics 

As mentioned above, another (non-optical) field in which solitons have been created 
quite recently is the Bose-Einstein condensation. A BEC is a low-density vapor of 
boson atoms of alkali metals (^^Rb, •̂̂ Na, ^Li, and others) which, by means of special 
techniques, are cooled down to a temperature on the order of a fraction of nano-Kel vin. 
In such an ultracold state, all the atoms fall into a single ground state, which is the 
essence of the condensation (a detailed description of the topic can be found in the 
book by Pethik and Smith [141]). Existence of solitons in BECs is strongly suggested 
by the fact that the fundamental equation which describes the evolution of the single-
atom wave function u{x, y, z, t) in the condensate, viz., the Gross-Pitaevskii equation 
(GPE), is similar to its NLS counterpart in optics: 

.du ft^ , ^ 2 TT, N 47rfi2c 

---V^ + U{x,y,z) + 2 1 " V " 7 iJ •) '- J > 

m m 

(1.39) 

where m is the atom's mass, V^ = d'^/dx'^ + d'^/dy'^ + d'^/dz^ is the usual Laplacian 
(kinetic-energy operator, in this case), U{x,y,z) (which, in addition, may be time-
dependent) is an external potential, and a is the s-wave scattering length which char­
acterizes collisions between the atoms. Positive and negative scattering lengths corre­
spond, respectively, to the repulsion (as in ^^Rb) and attraction (as in '''Li) between the 
atoms. 

In particular, it is relevant to consider the BEC of a strongly elongated, i.e., nearly-
ID, form, in an appropriately devised magnetic or optical trap which holds the con­
densate. The nearly ID trap corresponds to the potential U = (l/2)mfi^ (y^ -I- z^), 
the respective transverse harmonic-oscillator length, ĥo = \/h/(rnQ), being much 
smaller than the longitudinal size of the condensate in the x direction. In this case, the 
full 3D GPE (1.39) can be effectively reduced to a ID equation, which is essentially 
tantamount to the ID NLS equation with the cubic nonlinearity. The equation looks 
like Eq. (1.5) with /? < 0, while the sign of the nonlinearity coefficient 7 is opposite to 
that of the scattering length a. Thus, effectively one-dimensional bright matter-wave 
solitons, similar to the temporal solitons found in nonlinear optical fibers, may be natu­
rally expected in the elongated condensate if the atomic interactions are attractive, with 
a < 0. Indeed, bright solitons in the ^Li condensate, in which the atoms interact attrac­
tively (but very weakly, which makes it possible to prevent collapse of the condensate, 
that would be inevitable in the 2D or 3D case), were created in two independent exper­
iments [158, 92]. Still before that, dark solitons were created in repulsive condensates 
(rubidium and sodium) [34,46]. 

The most recent achievement in this direction is the experimental creation of weakly 
localized ID bright solitons in an (effectively one-dimensional) repulsive condensate 
of ®̂ Rb loaded into a periodic potential in the form of an optical lattice (OL; it is an 
ordinary interference pattern created by two coherent laser beams that illuminate the 
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condensate from opposite directions [58]). The OL corresponds to the longitudinal po­
tential U{x) = e cos (kx) in the GPE (1.39), as well as in its reduced ID counterpart. 
Despite the fact that the repulsive cubic nonlinearity cannot create bright solitons in the 
free space, its interplay with the periodic OL potential can support bright solitons of 
the gap type, as first predicted by Baizakov, Konotop and Salerno [23] (see also papers 
[135] and [56]). To understand this possibility, one should note that, as is well known, 
the ID linear Schrodinger equation with the periodic potential, e cos (kx), gives rise to 
a spectrum with finite bandgaps separating distinct Bloch bands that host linear-wave 
spatially quasi-periodic solutions. The repulsive cubic nonlinearity may support gap 
solitons (GSs) with frequencies belonging to these finite bandgaps. To understand this 
possibility in simple terms, one may notice that the fiber-BG model (1.27), (1.28) sup­
ports the family of the gap-soliton solutions (1.31) - (1.33) irrespective of the overall 
sign in front of the cubic terms, as the sign reversal may be compensated by complex 
conjugation of the equations. The GSs of this type extend over many cells of the lattice 
potential (they are weakly localized in that sense) and feature the wave function u{x) 
that oscillates (in x), many times crossing zero and gradually vanishing at \x\ —> oo. 

In the multidimensional case, the attractive cubic nonlinearity in the GPE (with 
a < 0), as well as in its NLS counterpart in optics, gives rise to collapse. Nevertheless, 
the 2D or 3D periodic potential of the OL type in Eq. (1.39), i.e., 

U{x,y,z) = e [cos(fc2;) + cos{ky) + cos{kz)] (1-40) 

(in the 3D case), can readily stabilize the corresponding multidimensional solitons 
against collapse [24]. A solution for the soliton is looked for as 

u(x,y,z,t)=e-"''/''v{x,y,z), (1.41) 

where the constant /̂  is a real chemical potential (in similar optical models, it would 
be the propagation constant), and the real function v{x,y,z) satisfies the stationary 
equation, 

liv = --y^ + Uix,y,z) + —^v^ (1.42) 

Depending on the value of the soliton's norm (which measures the number of atoms in 
the condensate), 

iV2D = / / [v{x,y)fdxdy, NSB = / / / [v{x,y,z)]'^ dxdydz, (1.43) 

the stable multidimensional solitons may assume a "single-cell" shape, being confined 
essentially to a single cell of the underlying OL potential (1.40), or a multi-cell form, 
see typical examples in Fig. 1.1. 

In the multi-dimensional GPE with the OL potential and repulsive nonlinearity 
(a > 0), weakly localized stable bright solitons of the gap type can be created by 
essentially the same mechanism which, as mentioned above, gives rise to the GSs in 
the ID case. This possibility was for the first time predicted, together with the ID 
gap solitons, in the above-mentioned work [23]. An example of the 2D gap soliton is 
displayed in Fig. 1.2(a). 
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Figure 1.1: Typical examples of stable single-cell (a) and multi-cell (b) solitons in 
the 2D Gross-Pitaevskii equation with the attractive nonhnearity and optical-lattice 
potential. The ratio of the strengths of the optical-lattice potential in the cases (a) and 
(b) is fa/efc — 0.092, and the ratio of the corresponding norms (see Eq. (1.43)) is 
NJNb = 1.98. 

In fact, the dimension of the OL which is sufficient for the stabilization of the 
multidimensional solitons in the GPE with the attractive potential is smaller by 1 than 
the dimension of the equation itself, as it was independently shown in the works [25, 
26] and [125]: a quasi-2D potential, given by the expression (1.40) without the last 
term, cos(A;2;), can support stable fully localized 3D solitons. Similarly, a quasi-lD 
potential (the one containing only the term cos(fca;)) can stabilize a fully localized 2D 
soliton, but it cannot stabilize a 3D soliton [25, 26]. Naturally, the shape of the soliton 
in such a low-dimensional lattice is strongly anisotropic, in the directions across and 
along the lattice, as illustrated by a typical example of the 3D stable soliton displayed 
in Fig. 1.3. 

Besides the fundamental 2D solitons outlined above (ones with the peak at the 
center), the GPE stabilized by the OL potential can also give rise to 2D solitons with 
embedded vorticity S, where S is an integer, 5 = 0 corresponding to the fundamental 
solitons. The presence of the vorticity means that the phase of the stationary complex 
soliton solution acquires a change of 27rS' along a closed path surrounding the soliton's 
center. The concept of vortices is a very well-known one (see a book [145]), but it 
is usually considered in isotropic media, and in that case the topological charge (alias 
vorticity), S, is a dynamical invariant, whose conservation is tantamount to the con­
servation of the angular momentum. Obviously, the OL potential breaks the isotropy, 
hence the vorticity cannot be an integral of motion of the GPE (1.39). Nevertheless, the 
vorticity can be defined for a given stationary solution, even in an anisotropic model. 
As it was independently shown in works [24] and [174], the vortices with 5 = 1 are sta­
ble in the 2D GPE (1.39) with the attractive nonlinearity (a < 0); vortices with higher 
values of S may be stable too. In the equation of the same type with the repulsive cubic 
term (a > 0), stable 2D solitons of the gap type can also carry embedded vorticity, as 
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Figure 1.2: Stable 2D fundamental gap soliton (a) and its vortical counterpart with the 
topological charge 5 = 1 (b), in the 2D Gross-Pitaevskii equation with the repulsive 
nonlinearity and optical lattice. Both solitons have the same norm N2D, and are found 
for the same strength and period of the optical-lattice potential. 

was shown independently in several works [25, 152, 136]. A typical example of such 
a gap-soliton vortex is displayed in Fig. 1.2(b). 

The GPE in two dimensions, supported by periodic potentials, has its important 
counterpart in nonlinear optics, in the form of models describing photonic crystals 
and photonic-crystal fibers (PCFs, alias microstructured fibers). Fabrication of the 
first PCF was reported in 1996 [94]. Generally, it may be realized as a "thick fiber" 
with an intrinsic structure in the form of a system of voids running parallel to the 
fiber's axis. In the transverse plane, the voids form a regular lattice (most frequently, a 
hexagonal one), which frequently includes a relatively wide empty core in the center. 
The respective NLS equation, governing the spatial evolution of the local amplitude of 
the electromagnetic field in the coordinate z running along the PCF's axis, is similar 
to the GPE (1.39) with the coordinates x and y, where t is replaced by z. In this case, 
a 2D periodic potential, resembling the 2D version of the expression (1.40), accounts 
for the periodic modulation of the refractive index in the PCF's transverse plane due 
to the fiber's microstructure. The difference from Eq. (1.39) is that the nonlinearity 
coefficient in a PCF model is also subject to a periodic modulation in x and y, as 
the inner holes have no nonlinearity. Similar to the 2D GPE with the OL potential, 
the NLS equation for the PCF supports stable spatial solitons (localized in x and y 
and uniform along z) [173, 64] and soliton vortices [65], that were found in direct 
numerical simulations. 

Another counterpart of the 2D GPE with the periodic OL potential describes spatial 
solitons in a photorefractive optical medium, in which an effective photonic lattice, in 
the coordinates x and y, is induced by an interference pattern produced by coherent 
laser beams, with large intensity /Q, illuminating the crystal in the ordinary polariza­
tion, in which the medium is nearly linear. Then, a signal beam is launched in the ex­
traordinary polarization, which feels a mixture of a strong saturable nonlinearity and 
the virtual photonic lattice induced by the transverse illumination. The corresponding 
dynamical model is based on the following equation for the local amplitude u{x, y, z) 
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Figure 1.3: An example of a stable single-peaked 3D soliton in the Gross-Pitaevskii 
equation (1.39) with the attractive nonlinearity (a < 0) and quasi-2D optical-lattice 
potential (1.40) (i.e., one without the term cos{kz)). The 3D soliton is shown through 
its 2D cross sections, in the planes z = 0 (a) and y = 0 (b). Recall that the quasi-2D 
optical-lattice potential does not depend on z, but depends on x and y. 
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of the signal beam, confined in the {x, y) plane and evolving along z, 

1 u 
iu, + -V^u--——- —-— ,, .,„ , I 12 ' (1-44) 

2 1 + yo[cos(Kx) + cos(A:y)J"'+ |M| 
cf. Eqs. (1.39) and (1.40). 

As well as the above-mentioned PCF model, the one described by Eq. (1.44) gives 
rise to stable 2D solitons, as was first predicted in work [55]. These objects have 
already been created in the experiment - first, fundamental solitons [66], and then 
vortical ones [132, 67]. 

The ID version of Eq. (1.44), with the expression [cos{kx) + cos{ky)]'^ in the 
denominator replaced by cos^(/cx), is a physically relevant model too, applying to the 
propagation of the signal wave through the ID photonic lattice. In this case, assuming 
a strong lattice, i.e., /Q !» 1, the full equation with the x-dependent coefficients may be 
approximated by a system of two coupled equations with constant coefficients, within 
the framework of the coupled-mode approximation - similar to that which leads to the 
derivation of the standard GS model (1.27), (1.28). To this end, one introduces the 
couple-mode representation of the field, 

u{x,z) = U+{x,z)e''''' + U-{x,z)e-''''', (1.45) 

where f7_|_ and t/_ are slowly varying amplitudes of the right- and left-traveling waves. 
Substituting this representation in the ID variant of Eq. (1.44), Fourier expanding over 
the harmonic set of exp [inkx) with integer n, and keeping only the fundamental har­
monics (n = ±1) leads to the couple-mode system with a nonlinear saturable coupling 
[108],cf. Eqs. (1.27) and (1.28). 

du+ du+ _ u+-u_ 
' dz ^' dx " ^7o(l + \U+ - f/_|2) + 1 + 2 (|t/+|2 + |t/_|2)' 

• 9U- .,af/_ U.-U+ ^, ^̂ ^ 

dz dx V^o(l + \U+ - C/_|2) + 1 + 2 (|C/+|2 + |C/_|2)'' ' 

In fact, one combination of these equations is just a linear relation, 

^ (C /+ + [ / _ ) - f f c ^ ( C / + - f / _ ) = 0 . (1.47) 

Equations (1.46) are much more convenient, than the underlying equation (1.44), for 
the analysis of soliton solutions [108]. 

1.2 The subject of the book: solitons in periodic hetero­
geneous media ("soliton management") 

1.2.1 General description 

With all the profound importance of the basic exactly integrable systems, such as the 
KdV, modified KdV, NLS, derivative-NLS, sine-Gordon equations and others, they 
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are exceptional models, in the sense that any additional term, which takes into regard 
physical effects that were not included in the basic model, breaks the exact integra-
bility. This circumstance suggest the necessity to investigate solitons in nonintegrable 
models (in a strict mathematical sense, these solutions are not "solitons", but rather 
"solitary waves"; however, following commonly adopted practice, they will be called 
solitons). In many physically relevant situations, the additional terms which break the 
integrability of the unperturbed model are small, making it natural to apply a perturba­
tion theory relying on an asymptotic expansion around exact solutions provided by the 
1ST in the absence of the perturbations. Numerous results generated by this technique 
were reviewed in article [93]. 

There is another technique, based on the variational approximation (VA), which 
is less accurate than the one based on the 1ST, but applicable to a much broader class 
of models, as it only requires a possibility to derive the corresponding equation from 
a Lagrangian (i.e., the equation must have a variational representation), and does not 
rely upon proximity to any integrable limit. For instance, in the case of the GPE, the 
VA approximates the mean-field wave function, as a function of spatial coordinates, by 
a particular analytical expression (ansatz) which contains several free parameters that 
may be functions of time. Numerous examples of ansatze (plural for ansatz) are con­
sidered below, see Eqs. (2.6), (1.51), (2.31), (5.16), (7.5), (8.5), (9.6), (9.15), (9.18), 
(10.3). Effective evolution equations for the free parameters are derived using the La­
grangian representation of the underlying PDE. For the NLS solitons in one dimension, 
this technique was first proposed by Anderson [19], and it was applied for the first time 
to BEC in works [142,143]. Many results generated by VA were collected in an exten­
sive review article [104]. 

Another approximate technique, which also applies to a broad class of models, is 
based on the method of moments. In the general case, this approach too relies upon 
approximating the wave function (in the case of BEC) by an ansatz with a fixed func­
tional dependence on the spatial coordinates, and several free parameters that may vary 
in time (see, e.g., papers [71] and [6] for the application of this method to the GPE, 
and paper [144] for an application to nonlinear fiber optics). A system of evolution 
equations for free parameters is derived by multiplication of the PDE by several appro­
priately chosen functions of the spatial coordinates (the number of functions must be 
equal to the number of the free parameters). Each time, the result of the multiplication 
is explicitly (analytically) integrated over the spatial coordinates, which casts it in the 
form of an ODE. In the case of the two-dimensional GPE with the isotropic parabolic 
potential, an exact closed system of evolution equations for moments can be derived 
[71]. 

A vast class of nonintegrable but physically important models includes a periodic 
modulation of some of the system's parameters in space and/or in time (early results 
obtained by means of the perturbation theory for solitons in weakly inhomogeneous 
media were reviewed in article [93]; still earlier, some results were collected in book 
[8]). In particular, it was explained above that a spatially periodic potential, such as 
one generated by the OL in BEC, see Eqs. (1.39) and (1.40), or by the photonic lat­
tice in the photorefractive crystal, see Eq. (1.44), can easily stabilize multidimensional 
solitons, which is an example of a principally important effect produced by the trans­
verse modulation, that does not involve the evolutional variable. Another possibility is 
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longitudinal modulation, which makes coefficients of the governing equation periodic 
functions of the evolutional variable, i.e., the propagation distance z, in optical mod­
els of the NLS type (see Eqs. (1.5), (1.26), and (1.44)), or time t, in the GPE (1.39). 
A drastic difference of the longitudinal modulation from its transverse counterpart is 
that the corresponding mathematical problem is a non-autonomous one. As concerns 
solitons, their existence in transversely modulated models is quite obvious, as the sub­
stitution separating the evolutional and transverse variables, such as in Eq. (1.41), leads 
to an equation of the same type as Eq. (1.42), which should have soliton solutions, in 
the general case. On the contrary, in models subjected to the longitudinal modulation 
the very existence of robust soliton solutions is a highly nontrivial issue, as is explained 
below and in the rest of the book. 

1.2.2 One-dimensional optical solitons 

A paradigmatic system featuring the longitudinal modulation is a long fiber-optic telecom­
munication link subjected to the dispersion management (DM), i.e., periodic alterna­
tion of positive and negative values of the GVD coefficient along the link. This means 
that it is built as a periodic concatenation of two different species of optical fibers, with 
opposite values of the GVD coefficient (as described in review [168]). Accordingly, 
the corresponding NLS equation differs from its standard form (1.5) in that the GVD 
coefficient is a periodic function of z: 

iu,--p{z)Urr+l\u\''u = Q. (1.48) 

In the practically important case, this coefficient is a piecewise-constant function, 

« _ / A > 0 , i f O < ^ < L i , 
'̂  ~ \ /32 < 0, ii Li<z<Li + L2 = L, ^'•^^' 

which repeats with a period L. This form of the periodic modulation of the GVD co­
efficient is usually referred to as the DM map. Note that, in a more realistic model, the 
coefficient 7 in Eq. (1.48) also periodically jumps between two different values, corre­
sponding to the two alternating species of the fiber, but this feature is less significant, 
as the nonlinearity coefficient does not change it sign. 

Transmission of solitons, or, more generally, pulses localized in the temporal vari­
able T (in optical telecommunications, they are commonly referred to as return-to-zero 
(RZ) pulses, which implies that the field u{z, r ) becomes very close to zero between 
the pulses), through long DM systems is an issue of fundamental importance to appli­
cations. The reason is that all the existing medium- and long-haul commercial telecom­
munication fiber-optic networks are built in the dispersion-compensated form, which 
corresponds to Eq. (1.49), with the path-average dispersion (PAD), 

^^hhlMl^ (1,50) 
Li + L2 

equal to zero or very small. This is necessary because, in the usual linear regime, in 
which the networks actually operate (with the exception of the single soliton-based 
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commercial link, about 3,000 km long, which was built in Australia in 2002 [126]), RZ 
signals avoid systematic degradation only if/3o = 0. Indeed, the linear version of Eq. 
(1.48) (with 7 = 0) gives rise to an exact RZ solution in the form of a Gaussian pulse, 

.(linear). . _ / ^ 0 ^ ^ ^ ( — I ^ - '^'^^^^ 

where the accumulated dispersion is defined as 

B{z) = Bo+ [ f3{z')dz' (1.52) 
Jo 

{Bo is an arbitrary constant determined by initial conditions), the temporal width of the 
RZ pulse is 

W{z) WS + ^ ^ , (1.53) 
wi 

while Wo and PQ are arbitrary parameters that measure the width and peak power of 
the pulse (the width is measured at points where B{z) = 0, which means that the pulse 
is narrowest at these points). As seen from Eq. (1.53), the width of the pulse evolves 
in the course of the propagation, and the pulse suffers no systematic degradation, i.e., 
the width does not grow on average, solely in the case when the mean value of fi{z), 
i.e., PAD (1.50), vanishes, /3o = 0. Thus, if the operation regime is to be upgraded 
by replacing linear signals by nonlinear RZ pulses, it is very important to consider the 
transmission of nonlinear pulses in the dispersion-compensated links. 

Getting back to the full NLS equation (1.48) with the variable GVD coefficient, 
it is relevant to mention that it admits the same Hamiltonian representation (1.7) and 
(1.8) as above, but the Hamiltonian with the z-dependent coefficient/3(2:) is no longer 
a dynamical invariant. Nevertheless, the energy (1.9) and momentum (1.10) remain 
dynamical invariants in this case. 

The DM is just the first example of nonlinear pen'oofjc heterogeneous systems which 
feature the longitudinal modulation. Generally speaking, one may expect that a soli-
ton, periodically passing from one segment of the system into another, with strongly 
differing parameters, will be quickly destroyed. In the most general case, this is true 
indeed. Nevertheless, a nontrivial fact is that there is a class of systems where very 
robust solitons can be found, despite the fact that they propagate through a strongly 
heterogeneous structure. In an explicit form, a concept of such a class of the soliton-
bearing periodic systems was for the first time formulated in paper [85], where another 
realization of this class was reported, in the form of a model supporting robust spatial 
solitons in a channel which is heterogeneous in the longitudinal direction. The channel 
is built as a periodic concatenation of waveguiding and anti-waveguiding segments, 
which share the self-focusing Kerr (x^^^) nonlinearity. 

Further, the concept of the DM suggests its counterpart in the form of nonlinearity 
management (NLM), i.e., insertion (into a long fiber-optic telecommunication link) of 
special nonlinear elements that can compensate the accumulated nonlinear phase shift 
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generated by the Kerr effect in the fiber. This possibility was first proposed, in a rather 
abstract form, in work [139], and was further developed in papers [78, 54], where it 
was demonstrated that SHG modules can be used to generate an effective negative 
Kerr effect (through the so-called cascading mechanism, i.e., repeated action of the 
corresponding quadratic nonlinearity), which will play the compensating role. The 
NLM model is described by equation (1.48), in which both (3{z) and 7(2) periodically 
jump between positive and negative values. 

Still another example of periodic heterogeneous systems is provided by the split-
step model (SSM), that was introduced in work [50] as a periodic concatenation of 
nonlinear dispersionless and linear dispersive segments. The term SSM stems from the 
name of the well-known numerical technique used for simulations of the NLS equa­
tion and similar equations, which splits each step of marching forward into two sub-
steps, one purely nonlinear, and the other one purely dispersive. Unlike the numerical 
scheme, in the SSM proper this separation is not an artificial trick, but a real physical 
feature, as the lengths of the segments are not small, but are rather comparable to the 
characteristic nonlinearity- and dispersion lengths of the pulses, such as the one given 
by Eq. (1.16). Quite surprisingly, the RZ pulses, which may also be called solitons 
in this case, were found to be very robust in the SSM, in a fairly large region in the 
corresponding parameter space. They are robust too if a small amount of nonlinear­
ity is added to dispersive segments, and weak dispersion is admixed to the nonlinear 
ones (in fact, such a system is a "hybrid" of the SSM and DM) [53], as well as in a 
multi-channel generalization of the SSM [51]. The latter system implements the WDM 
(wavelength-division-multiplexed) scheme, which is the basis of the operation of fiber­
optic telecommunications networks. Moreover, it was also found that both DM and 
SSM solitons remain stable in the presence of loss (natural absorption in the fiber) and 
compensating amplification. 

Another model, which combines the NLM with the effective dispersion (actually, 
diffraction, as the model was realized in the spatial domain) induced by the Bragg 
grating, was investigated too [21]. It is composed of alternating BGs with opposite 
signs of the Kerr nonlinearity, and also gives rise to a family of robust solitons. 

A periodic heterogeneous system with the x̂ ^̂  nonlinearity was proposed in the 
form of the so-called tandem model [162], which combines linear segments and ones 
carrying the quadratic nonlinearity [162]. Specific solitons were revealed by numerical 
simulations in this model. 

In all these systems, stable solitons exist in the form of periodically oscillating 
breathers (obviously, the solitons cannot keep a permanent shape propagating through 
the inhomogeneous structure). Qualitatively, the breathers resemble the exact solution 
(1.51) in the linear DM model, found under the above-mentioned condition /3o = 0. 
The periodic oscillations make theoretical analysis of the solitons and their stability 
essentially more complex than in the case of the ordinary stationary solitons. 

To complete the general discussion of the periodically managed ID optical soli­
tons, it is relevant to mention that quite robust solitons can also be found in randomly, 
rather than periodically, modulated systems. A practically important example is pro­
vided by stable solitons found in the model of random DM, which is described by the 
above equations (1.48) and (1.49), with a difference that the length L of the DM map 
varies randomly from a cell to a cell [106]. This situation corresponds to real terrestrial 
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telecommunication networks. Another example is a random SSM, in which, too, the 
length of the system's cell varies randomly along the propagation distance [52]. 

1.2.3 Multidimensional optical solitons 

All the above examples of nonlinear periodic heterogeneous systems supporting sta­
ble solitons are one-dimensional. Multidimensional systems which may be included 
into the same general class were found too. An essential example is a model of a 
bulk medium composed of alternating layers with self-focusing and self-defocusing 
Kerr nonlinearity [165], which may be regarded as a multidimensional counterpart of 
NLM systems. Stable 2D cylindrical solitons were found in this model, both in the 
numerical form and by means of VA, which implies that the periodic alternation of the 
self-focusing and self-defocusing suppresses the instability against collapse. However, 
3D "light bullets" (STSs) are unstable in this setting, as well as 2D vortical solitons 
[165]. 

The DM model also has its 2D counterpart, constructed by adding a transverse 
coordinate to the temporal-domain equation (1.48). Stable solitons, both single- and 
doubled-peaked ones, were found in this 2D model, but, again, the DM alone cannot 
stabilize 3D solitons ("bullets") [122]. 

The above-mentioned ID model of the tandem type, with alternating linear and x̂ ^̂  
segments, can also be made two-dimensional, and stable light-bullet solutions exist in 
it [163]. In this case, the stabilization of the 2D soliton is more straightforward, as the 
X̂ ^̂  nonlinearity does not give rise to collapse. 

1.2.4 Solitons in Bose-Einstein condensates 

Mechanisms admitting "management" of solitons were also developed in BEC models. 
In particular, the size and sign of the scattering length a in GPE (1.39) can be, in some 
cases, easily controlled by external magnetic field, through the effect of the Feshbach 
resonance (FR), as was predicted theoretically [82] (FR can be also induced and con­
trolled by an external optical field [61]), and then demonstrated in direct experiments 
inBECs[8I, 148, 157]. 

The external magnetic field which gives rise to the FR can be made time-periodic, 
with the zero mean value, which induces periodic harmonic modulation of the non-
linearity coefficient in the GPE. In the ID situation, this opens a way to develop a 
technique of the Feshbach-resonance management (FRM), as was proposed in work 
[90] (below, this mode of handling the condensate will be sometimes called "ac-FRM" 
control, to stress that the nonlinearity coefficient in the corresponding GPE periodi­
cally changes its sign). Actually, FRM is a BEC counterpart of the above-mentioned 
nonlinearity management in fiber-optic links, with the propagation distance z replaced 
(as the evolutional variable) by time t. It is still more interesting that the FRM can 
stabilize solitons against collapse in the GPE in two dimensions [5, 150], which is a 
direct counterpart of the above-mentioned stabilization mechanism for the 2D spatial 
optical solitons in a layered material with periodic alternation of the sign of the Kerr 
coefficient. It is noteworthy too that, as well as in the optical model, 3D solitons can­
not be made stable by means of the FRM technique alone (a recent result [166] is that 
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the stabilization of solitons in the 3D space is possible if the FRM is combined with a 
one-dimensional OL - recall that a ID lattice alone cannot stabilize 3D solitons either). 

1.2.5 The objective of the book 

As was outlined above, certain understanding has been accumulated in the study of one-
and multi-dimensional solitons which turn out to be stable as they propagate through 
a nonlinear medium periodically modulated in space in the longitudinal direction, or 
evolve under the action of a time-periodic field. Moreover, stable solitons of approx­
imately the same type can sometimes be found even in the case when the spatial or 
temporal "management" of the system is random, rather than periodic. 

Unlike integrable models, no rigorous or truly general method (such as the 1ST or 
bilinear Hirota representation) is known for analysis of the soliton dynamics in this 
class of the longitudinally modulated systems. Nevertheless, it is possible to collect 
essential results obtained by means of numerical and, in some cases, (semi-) analyt­
ical methods in particular models falling into the class of the periodic heterogeneous 
nonlinear systems (including some random systems), and arrive at sufficiently general 
conclusions concerning fundamental properties of solitons in such systems. This is the 
objective of the book. 



Chapter 2 

Periodically modulated 
dispersion, and dispersion 
management: basic results for 
solitons 

2.1 Introduction to the topic 

Dispersion management (DM) is a name commonly adopted in the literature for the 
model based on the NLS equation (1.48) with a constant nonlinearity coefficient 7 
and the sign-changing GVD coefficient /3, modulated along the propagation distance 
z as per Eq. (1.49). As explained in Introduction, the transmission of quasi-soliton 
signals, alias return-to-zero (RZ) pulses, in the DM model is an issue of fundamental 
importance to fiber-optic telecommunications. It should be stressed that, unlike many 
other nonlinear systems with periodic management, where the results have thus far 
been chiefly theoretical, the DM solitons in fiber-optic telecommunication links were 
studied in the experiment in detail, see, e.g., paper [38]. 

Most theoretical works which studied the soliton transmission in the DM model 
relied on direct numerical simulations. As concerns analytical approaches, two most 
significant ones are based on the variational approximation (VA), and on integral equa­
tions. Actually, both methods assume that the nonlinearity in the model is weak 
enough, so that, in the zero-order approximation, the RZ pulse may be approximated 
by the expression (1.51), which is an exact solution to the linear version of Eq. (1.48). 

The integral formalism for the DM solitons was worked out by Gabitov and Turit-
syn [69] and Ablowitz and Biondini [9] (see also paper [138]). It is based on an idea 
that, in the linear limit, a general solution to equation (1.48) can be searched for by 
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means of the Fourier transform as 

1 + 00 

U{Z,T) = — e-"^^u{z,uj)du>. (2.1) 
271" J_oo 

Substituting this representation in the linear version of Eq. (1.48), one immediately 
derives an evolution equation for the Fourier transform: 

a solution to which is obvious, 

u{z,u;)=u{0,oj)exp(^co^B{z)), (2.3) 

where B{z) is the accumulated dispersion, defined as per Eq. (1.52). 
If the nonlinearity is taken into regard, the wave field can still be represented in 

the form of Eq. (2.1), but then the nonlinear term in Eq. (1.48), after the substitution 
of the Fourier representation, will add a cubic integral term to the evolution equation 
(2.2). Various results can then be obtained from the analysis of the nonlinear integral 
equation. 

Similar to the integral formalism, the VA also makes use of the linear limit of Eq. 
(1.48); however, it starts not with the general linear superposition (1.51), but rather 
with the fundamental solution (1.51). The general idea of the VA is that, after the intro­
duction of the weak nonlinearity, the Gaussian wave form (1.51) may be an adequate 
ansatz for the solution, assuming that its constant parameters may become slowly vary­
ing functions ofz; the main objective of the variational technique is to derive equations 
governing slow evolution of the parameters. In this chapter, the variational approach 
will be presented following, chiefly, paper [100]. 

Besides the model with the DM map (1.49), it is also interesting to consider a 
system with the harmonic modulation of the GVD coefficient, 

(3{z) = -(l + esmz), (2.4) 

where the PAD is normalized to be —1, and the modulation period is scaled to be 
27r. Although the sinusoidal modulation is not a realistic assumption for fiber-optic 
telecommunications, the model is of interest in its own right, as it may predict quite 
interesting results even for relatively small values of the modulation amplitude e, when 
the local GVD coefficient (2.4) does not change its sign, remaining always negative 
(i.e., corresponding to the anomalous GVD). In fact, nontrivial results (such as splitting 
of a soliton into two, see below) may be generated by resonances between internal 
vibrations of a perturbed soliton, and the periodic modulation defined by Eq. (2.4). 

In this chapter, the analysis will be performed first for the model (2.4), and then for 
the one (1.49). The VA (combined with direct simulations) will be used in both cases, 
but the results will be very different, due to the fundamental difference between the 
two types of the periodic modulation. 
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2.2 The model with the harmonic modulation of the lo­
cal dispersion 

In the case of the harmonic modulation (2.4), the NLS equation (1.5) takes the form 

iuz + - (1 + £ sin z) UTT + \U\'^U = 0, (2.5) 

where the normalization 7 = 1 is adopted. This model was introduced in 1993 in paper 
[110], with the intention to study possible resonances in it. In that first work, only the 
VA was used, without direct simulations. An important contribution to the analysis of 
the model was later made by Abdullaev and Caputo [3], and direct comparison of the 
predictions of the VA with direct simulations, which reveal effects that the VA could 
not predict, was reported in paper [76]. 

2.2.1 Variational equations 

The application of the VA to the soliton in the model (2.5) was described many times 
and summarized in review [104], therefore here it will be presented in a brief form. 
The VA assumes the ansatz which mimics the exact NLS soliton solution (1.13), but 
with arbitrary amplitude A, temporal width a, and phase (p; in addition, it is assumed 
that the nonstationary soliton may have chirp, i.e., a parabolic phase profile across the 
pulse, with a real coefficient b in front of it: 

•«ansatz(z, T) = A{z) sech f — - j exp [i(t){z) + ib{z)T^] . (2.6) 

All the free parameters in the ansatz are allowed to be functions of the evolutional vari­
able z, the first objective being to derive a system of evolution equations for them. This 
is done using the fact that the NLS equation can be derived, in the form of 5S/6u* = 0, 
from the action functional S{u,u*}, where 6/5u* is the symbol for the variational 
derivative. The action is represented in the form of S = f Ldz, where L is a La-
grangian, that has its own integral form, L = / _ ^ Cdr, with a Lagrangian density £, 
which must be real. For the NLS equation (1.5), the latter is 

£ = 1 {u*u, - uul) + \mK? + \l\u\''. (2.7) 

The insertion of the ansatz (2.6) into the Lagrangian and analytical integration in r 
yields the corresponding effective Lagrangian, as a function of the variational parame­
ters and their z-derivatives (denoted by the prime), 

i(NLS) ^ _2^2^^ , _ !^^2„3^/ ^ \l3{z)- - ^DA\%' + '^^A'a. (2.8) 
0 KJ CI O O 
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A standard set of the variational (Euler-Lagrange) equations follows from the effective 
Lagrangian, 

dz d<t>' dz dh' db 
o.(NLS) o.(NLS) 
"^eS _ ^-^eff _ Q (2.9) 

da dA 

After straightforward manipulations, these equations can be cast in the following form: 

d 
£(>i^^)-o, (2.10) 

b = - (2/3(^)a 
_i da 

dz^ 
(2.11) 

dz * ) ) - ! da 
(2.12) 

[/eff(a) = (/3a-2 + 27Ea- i ) , E = A^a, (2.13) 

supplemented by a separate equation for the phase, 

dz 12 
d6 
dz 

2l3{z)b^ 
6 a2 77^ • (2.14) 

Equation (2.10) implies the existence of the dynamical invariant E = A?a. The 
conservation of this quantity is a straightforward manifestation of the conservation of 
energy (1.9) in the full NLS equation. Indeed, the substitution of the ansatz (2.6) into 
Eq. (1.9) yields E = A?a. Equation (2.11) shows that the intrinsic chirp of the soliton 
is generated by its deformation (change of the width). 

Equations (2.12) and (2.13) demonstrate that the evolution of the soliton's width 
can be represented as a motion of a Newtonian particle with a variable mass — l//3(z) 
and a coordinate a{z) in the potential well t/eff(a), while the propagation distance z 
plays the role of time. For the case when /? is a negative constant, the potential is shown 
in Fig. 2.1. In this case, the bottom of the potential well corresponds to an equilibrium 
position at 

a = a, eq -lE' 
(2.15) 

Comparison with the expression (1.13) shows that the ansatz (2.6) with a = aeq exactly 
coincides with the unperturbed soliton solution. 

In the case of constant /3, Eq. (2.12) with the potential (2.13) is tantamount to the 
equation of motion for the radial variable r in the classical Kepler's problem (motion 
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Figure 2.1: The effective potential (2.13) for p = -1, jE = ATT"^ 

of a particle in the gravitational field with the potential — 1/r) [3]. Accordingly, exact 
solutions can be found in a parametric form, 

cos^ 
7r^|g|3/2 

V2E z = e -
TT^\H\ 

2^2 sinC, 

(2.16) 

where it was set —f3 = 7 = 1, ^ is an auxiliary dynamical variable, and H is the value 
of the Hamiltonian of the equivalent Kepler's problem, that takes values in the interval 
— (S/TT^) E^ < H < 0 (the minimum value of H corresponds to the equilibrium 
position (2.15) at the well's bottom). The frequency of the oscillatory solution a(z), as 
given by Eqs. (2.16) is 

K = 
,2|_ff|3/2 

V2E 

It takes the maximum value 

Ko = 2E^/TT 

(2.17) 

(2.18) 

&l H = - (2/7r2) E"^, which corresponds to small oscillations near the bottom of the 
potential well. 

2.2.2 Soliton dynamics in the model with the harmonic modulation 

Predictions of tlie variational approximation 

As was mentioned above, in the case of the harmonic periodic modulation of the local 
GVD coefficient, such as in Eq. (2.5), one may expect resonances between intrinsic vi­
brations of the free soliton, which are described, within the framework of the VA, by the 
solution (2.16), and external modulation of the GVD coefficient. Possible resonances 
can be studied analytically in the case of shallow modulation, e -C 1, by expanding 
equation (2.12) around the equilibrium position (2.15), and retaining quadratic and cu­
bic nonlinear terms in the expansion. The fundamental resonance corresponds to the 
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case when the (spatial) frequency KQ of free small oscillations near the equilibrium 
position, given by Eq. (2.18), is close to the spatial modulation frequency, which is 1 
in Eq. (2.5). In other words, varying the initial soliton's energy E, one may expect that 
the fundamental resonance occurs in a vicinity of the value -Efundam = \/7r/2 » 1.25. 
Further, the first subharmonic resonance, corresponding to 2Ko close to 1, and the 
second-order resonance, which takes place for KQ close to 2, are expected around 
^subharm = \/7r/2 « 0.87 and £̂ second = \/7r » 1.77, respectively. 

Actual predictions of the VA should be obtained by from numerical simulations of 
Eq. ((2.12) with (i{z) = — (1 + esinz). In particular, a solution with a{z) ^ c» at 
2; —+ oo is interpreted as destruction of the soliton, as it becomes infinitely broad. In 
fact, this implies decay of the soliton into radiation. 

The simulations performed in work [110] have demonstrated that, in an interval of 
values of the soliton's energies E which covers both the above-mentioned first sub-
harmonic and second-order resonances, oscillations of a{z) driven by the sinusoidal 
modulation of ^{z) are anharmonic but still periodic at very small values of e, typi­
cally £ ~ 0.01. With the increase of the modulation depth e, the oscillations become 
nonperiodic at £ ~ 0.05, and apparently chaotic at £ closer to 0.20. Finally, a criti­
cal value £cr can be found such that, at e slightly larger than £cr, a{z) performs a large 
number of irregular oscillations inside the potential wall, and then suddenly gets kicked 
out from the trapped state and escapes to infinity, as shown in a typical example in Fig. 
2.2. The escape actually implies indefinite spreading out of the pulse, i.e., its eventual 
decay into radiation. In all the cases considered (with different values of the energy 
E), the critical modulation amplitude takes values in the interval 

0.20 <£cr <0 .25 . (2.19) 

Figure 2.2: An example of the destruction of the soliton by a relatively weak harmonic 
modulation of the group-velocity-dispersion coefficient, P{z) = — (1 + 0.25 sin z), as 
predicted by numerical simulations of the variational equation (2.12). In this case, the 
energy is taken as E = yjii « 1.77, which corresponds to the second-order resonance 
in small-amplitude driven oscillations near the bottom of the potential well (see the 
text). The width of the soliton, a{z), performs a large number of irregular oscillations 
in the well, but finally escapes, which implies the decay of the soliton into radiation 
waves. 
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In the case when the modulation amplitude £ is small, the rate of direct emission 
of radiation by the soliton (obviously, this effect is beyond the scope of the VA) can be 
calculated by means of the perturbation theory [4]; however, this process does not play 
a crucial role in the destruction of the soliton. 

Numerical results 

The predictions produced by VA for the soliton in the NLS equation (2.5) with the si-
nusoidally modulated local GVD were compared with results of direct simulations of 
the equation in work [76]. Results of the simulations are summarized in Fig. 2.3. Two 
gross feature of this diagram roughly comply with predictions of the VA. Firstly, the 
destruction of the soliton may take place if the modulation amplitude exceeds a critical 
value, which varies, essentially, within an interval 0.15 < Sa < 0.20, that should be 
compared to interval (2.19) predicted by VA. Secondly, the destruction of the soliton 
actually takes place, for e not too large, if the initial squared soliton's energy E'^ ex­
ceeds a minimum value E^^^ varying between 1.8 and 2.0, which may be compared 
to the above-mentioned value -Ê undam = ^/2 that gives rise to the fundamental reso­
nance between small vibrations of the perturbed soliton and the periodic modulation of 
the local GVD in Eq. (2.5). 
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Figure 2.3: The phase diagram in the parametric plane i£,E^) for solitons in Eq. (2.5). 
The filled and unfilled rectangles correspond, respectively, to stable and splitting soli-
tons. 

The most essential difference between the assumptions on which the VA was based 
and numerical results is that the fundamental mode of the soliton destruction under the 
action of the sinusoidally modulated dispersion is not decay into radiation, but splitting 
of the soliton into two apparently stable secondary solitons (which is accompanied by 
emission of a considerable amount of radiation). A typical example of the splitting 
in displayed in Fig. 2.4. Obviously, the ansatz (2.6) does not admit any splitting; 
nevertheless, basic characteristics of the destruction of the soliton, even if the actual 
destructions mode is different from the one postulated by the VA, are predicted by the 
approximation qualitatively and semi-quantitatively correctly. 

Detailed inspection of the numerical results shows that, prior to the splitting, the 
soliton performs a number of irregular vibrations, which resembles the picture pro­
duced by the VA, cf. Fig. 2.2. As well as in that picture, the vibrational stage preced-
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Figure 2.4: A typical example of the splitting of a fundamental soliton into two sec­
ondary ones in the NLS equation (2.5) with the sinusoidal modulation of the local 
dispersion coefficient, for e = 0.3 and E'^ = 2.9 

ing the destruction of the soliton is quite long if the splitting takes place at e that only 
slightly exceeds the corresponding critical value ecr-

The soliton stability diagram in the sinusoidally-modulated model (2.5), displayed 
in Fig. 2.3, has a number of other noteworthy features, such as a narrow "stability 
isthmus" , and a trend to restabilization of the soliton at large e (note that for e > 1, 
the local GVD coefficient in Eq. (2.5) becomes sign-changing). These features are 
observed in a parameter region where the VA cannot be used. 

Essential additional results concerning the comparison between the VA and direct 
simulations in the same model were reported, on the basis of direct simulations, by 
Abdullaev and Caputo [3]. They have also found that the destruction of the soliton 
takes place via its splitting into two secondary ones, and demonstrated that agreement 
between the VA and direct simulations of small intrinsic vibrations of the soliton is 
fairly good as long as the vibration frequency Ko, see Eq. (2.18), remains smaller than 
the external modulation frequency (recall it is set to be 1 in Eq. (2.5)). At ii'o ^ 1, 
intensive emission of radiation takes place (even without complete destruction of the 
soliton), which, naturally, strongly affects the agreement with the VA, as the approxi­
mation completely disregarded the radiation component of the field. Another important 
numerical finding reported in work [3] is that, in cases when the variational and direct 
numerical result are generally close, a more subtle effect of the radiation loss is strong 
suppression of higher harmonics in the soliton's internal vibrations, in comparison with 
the picture predicted by the VA. 

2.3 Solitons in the model with dispersion management 

This section deals with solitons in the practically important model of the long dispersion-
compensated nonlinear fiber link based on Eqs. (1.48) and (1.49). For convenience, 
the equations are given here again: 

iu, - -p{z)urT + y\u\'^u = 0, (2.20) 
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r /?i > 0 , if 0 < z < L i , 
^ ~ \ /32 < 0, if L,<z<Li+L2 = L, ^^•^^' 

The concept of the dispersion management (DM) for solitons in dispersion-compensated 
systems which, in the simplest case, amount to the model based on Eqs. (2.20) and 
(2.21), was introduced nearly simultaneously in works by Knox, Forysiak, and Do-
ran [95], Suzuki, Morita, Edagawa, Yamamoto, Taga, and Akiba [160], Nakazawa and 
Kubota [131], and Gabitov and Turitsyn [69]. The original motivation for the develop­
ment of the DM technique for solitons was the necessity to suppress the Gordon-Haus 
effect, i.e., random jitter of the soliton's center due to its interaction with optical noise, 
which is accumulated in the fiber-optic link due to the spontaneous emission from the 
optical amplifiers (these are actually Erbium-doped segments of the fiber, periodically 
inserted into the link, with the objective to compensate the fiber loss). The dispersion-
managed solitons were predicted (and found in the experiment) to have large energy, 
which helps to improve the noise-to-signal ratio. Indeed, it has been demonstrated 
that the DM technique is very efficient in stabilizing solitons against the random jit­
ter. On the other hand, a problem for the use of solitons in the DM system is posed 
by interactions between them. As the DM solitons periodically expand and contract, 
they may tangibly overlap, through their "tails", at the expansion stage, which leads to 
the increase of unwanted interaction between them. Besides their great significance to 
the applications, solitons in DM models have also drawn a great deal of attention as a 
subject of fundamental research. The account given below focuses chiefly on the latter 
point, although applied aspects are briefly considered too. 

As explained below, the VA is a very natural tool to investigate the soliton dynam­
ics in DM models. The presentation in this section will chiefly follow the approach 
elaborated in works [100] and [106] (the latter work applied the VA, in combination 
with direct simulations, to solitons in a model of random DM). In particular, the same 
normalization of parameters of the DM map (2.21) as in paper [100] is adopted here, 

(/3i - /3o) Li + (/32 - /3o) L2 = 0, lA " /3o|ii = |/32 - /3o|L2 = 1, L = Li -f- L2 = 1, 
(2.22) 

which can be always imposed by means of an obvious rescaling (recall /3o is the PAD 
defined as per Eq. (1.50)). 

In the case of strong DM, when the nonlinear term in Eq. (2.20) may be treated as 
a small perturbation, the RZ Gaussian pulse (1.51), which is the exact solution in the 
linear limit, may be used as a natural variational ansatz, to take into regard effects of 
the weak nonlinearity. For convenience, the ansatz is written here again: 

"^^(" '^) = ^/^ . 2i5(.)/>yo2 exp ( - ^ - ^ ^ j ^ ^ , (2.23) 

B{z) = Bo+ [ (3{z')dz' (2.24) 
Jo 

The PAD will also be treated as a small perturbation, as an intuitive assumption 
is that the weak nonlinearity and small PAD may effectively compensate each other, 
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supporting a robust RZ pulse (alias, DM soliton). An important dimensionless char­
acteristic of the pulse (2.23) is its dispersion-management strength, which is defined 
as 

5 ^ 1 4 4 3 N i a + | ^ ^ _ (2.25) 

The factor 1.443 appears here due to the use of the so-called FWHM (full-width-at-
half-maximum) definition of the pulse's width, which is different from WQ. According 
to the value of S, the DM schemes are usually categorized as weak-DM, moderate-
DM, and strong-DM regimes - in the cases of, roughly, 5 < 3, 5 ~ 3 — 4, and S > A, 
respectively. 

The VA is based on the assumption that the arbitrary constants WQ and BQ in Eqs. 
(2.23) and (2.24) become slowly varying functions of z, if the weak nonlinearity is 
taken into regard. Additionally, the accumulated dispersion B{z) is defined for the 
map (2.21) from which the PAD value /3o is subtracted. The analysis presented in 
detail in paper [100] yields the following evolution equations for the slowly varying 
parameters: 

dW, j^EWoB{z) 

dB^^ E^izy-W^ (2.27) 
dz ^° 2V2W^z) 

where the function W{z) is defined in Eq. (1.53). To derive these equations, the nor­
malization (2.22) was used, and the energy of the pulse is defined &s E — PQTO (recall 
that PQ is peak power, i.e., maximum value of the squared amplitude, in expression 
(2.23)). In fact, E plays the role of a small parameter measuring the relative weakness 
of the nonlinearity in comparison with the local dispersion. 

An issue of fundamental interest is to find conditions allowing for the stationary 
transmission of the pulse, i.e., a dynamical regime in which the parameters WQ and BQ 
return to their initial values after passing one DM period. Because, as it is seen from 
Eqs. (2.26) and (2.27), changes of Wo and BQ within one period are generally small, 
~ (/3o, E), in the first approximation one may insert unperturbed values of WQ and 
BO into the right-hand sides of Eqs. (2.26) and (2.27), and impose the conditions that 
(recall that the DM period is 1 in the present notation) 

'''^Uz=r'-^dz = 0. (2.28) 
dz Jo dz 

After some analytical calculations, Eqs. (2.28) yield the following stationary-propagation 
conditions for the Gaussian pulse in an explicit form, 

Bo = -^ , 1^0 = "^-^'^0 
VW+^ 

(2.29) 
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The meaning of the condition BQ = 1/2 is quite simple: it requires the pulse to 
have zero chirp at the midpoint of each fiber segment. The second condition (2.29) 
predicts that the DM soliton propagates steadily at anomalous PAD, /?o < 0, provided 
that W^ > (W^)^^ « 0.30, at /3o = 0 if Wg = (W^)^,, and at normal PAD, po > 0, 
if (W ô̂ )jjii„ » 0.148 < W^ < (W^)^^. The latter case is very interesting, as the 
classical NLS soliton cannot exist at normal dispersion. Further analysis of Eq. (2.29) 
shows that, in this case, the solution exists in a limited interval of the normal-PAD 
values, 

0 < f3o/E < iPo/E)^^^ « 0.0127. (2.30) 

Inside this interval, Eq. (2.29) yields two different values of the minimum width 
Wo for a given value of (3o/E, while in the anomalous-PAD region, WQ is a uniquely 
defined function of f3o/E. In the case of the normal PAD, /?o > 0, it can be concluded 
that the DM soliton corresponding to the larger value of WQ is stable, while the one 
corresponding to smaller WQ is unstable. The border between the stable and unstable 
solitons corresponds to (3o/E = {Po/E)^^^ (see Eq. (2.30)), and it is located at 
WQ = {WQ) • ~ 0.148 (i.e., all the stable and unstable solitons have, respectively, 
W^ > (Wg^)^.^ and WQ̂  < {W^)^.^J. The results concerning the stability of these 
two solitons were substantiated in a mathematically rigorous form in work [140]. 

Translating WQ into the standard DM-strength parameter 5 according to Eq. (2.25), 
one concludes that the VA predicts the following: 

• 

• 

stable DM solitons at anomalous PAD if 5 < Scr ~ 4.79; 

• stable DM solitons at zero PAD if 5 = 5cr « 4.79; 

stable DM solitons at normal PAD if 4.79 < S < 5max » 9.75; 

• no stable DM soliton for S > S^ax ~ 9.75. 

The normalized power of the DM soliton, which is P = 4 • 1.12Po (the factor 
1.12 is the ratio of the FWHM widths for the sech-shaped and Gaussian pulses) is 
shown vs. the DM strength, at several fixed values of PAD /3o, as predicted by Eq. 
(2.29), in Fig. 2.5. A counterpart of the same dependence, obtained in work [31] from 
direct simulations of the underlying equation (2.20), is displayed in Fig. 2.6 (a typical 
example of the shape of the DM soliton, found from direct simulations, is displayed 
below in Fig. 2.10). In Fig. 2.5, the curves are shown only in the region of 5 < 9.75, 
where the solitons are expected to be stable. The curves in Fig. 2.6 corresponding 
to the normal PAD (/3o > 0) terminate at points where the corresponding DM soliton 
becomes unstable. 

As a matter of fact, Fig. 2.6 is the most fundamental and comprehensive character­
istic of the family of the DM solitons. The comparison of Figs. 2.5 and 2.6 shows that 
the VA yields acceptable results for relatively small values of the soliton's power, where 
the underlying assumption, that the nonlinearity may be treated as a weak perturbation, 
is relevant. In particular, the VA-predicted critical value Scr » 4.79 is different from 
but nevertheless reasonably close to the critical DM strength ^cr « 4 which direct sim­
ulations yield in the small-power limit. With the increase of power, numerically found 



36 DISPERSION MANAGEMENT 

E" 
* / ^r \ 

P -0.02 / _ 
° / P„-0 

T""^ , , )t, . . , , 

Map stcength, S 

Figure 2.5: The peak power of the stable soliton in the DM system vs. the map strength 
S at different values of the path-average dispersion /3o, as predicted by the variational 
approximation based on Eq. (2.29). Here and in the next figure, stars mark cases for 
which the corresponding model with random DM was investigated in detail, see section 
2.4. 

.. 

I: 

' 

h -0,2 

fh'O 

(io-0.02 

P^=0.02 

Map strength, S 

Figure 2.6: A counterpart of Fig. 2.5 obtained from direct numerical simulations of 
Eq. (2,20). 

S'cr grows. It is also noteworthy that the value ^max ^ 9-75, predicted by the VA as 
the stability limit for the DM solitons, is indeed close to what is revealed by direct 
simulations for small powers, as seen in Fig. 2.6. 

The DM soliton considered above is a fundamental one (i.e., it always keeps the 
single-peak shape). Higher-order DM solitons can be constructed too. Indeed, along 
with the expression (2.23), its r-derivatives of all orders are also exact solutions to the 
linearized version of Eq. (2.20), and can be used as ansdtze to generate an (approx­
imate) higher-order soliton solutions in the weakly nonlinear case. In particular, an 
ansatz proportional to the first derivative of the Gaussian (2.23), 

( « ( [ r ^ ) ( . , r ) ) ^ Po 
dd Y 1 - 2iB{z)IW^ W^z) exp 

r^ 2iB{z) 
'W^z)~W^Vr\z 

(2.31) 

was used in work [137] to construct an odd (antisymmetric, as a function of r) DM 
soliton. However, this soliton is unstable against even perturbations. Related to this 
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generalization is another technical approach to the description of the fundamental DM 
solitons and perturbations around them: an extended solution, including the perturba­
tion, may be looked for starting from a linear combination of Hermite-Gauss functions 
(of r) [167, 99]. In particular, this approach correctly reproduces the results of the VA. 

2.4 Random dispersion management 

Existing terrestrial fiber-optic telecommunication networks are patchwork systems, 
which include links with very different lengths [16]. This practically important cir­
cumstance suggests to consider transmission of RZ pulses (quasi-solitons) in random 
DM systems. It was shown that VA applies to this case too [106]. Random-DM mod­
els of different types were considered in works [1] and [73], where local values of the 
GVD coefficient, rather than the fiber-segment lengths, are distributed randomly. Ac­
tually, search for robust RZ pulses in random nonlinear fiber-optic systems is an issue 
not only important to the applications, but also fundamentally significant to the general 
theory of nonlinear waves in disordered media [96]. 

The basic equation and normalizations for the DM system with random distribution 
of the cell lengths can be taken in the same form as in the previous section, i.e., as per 
Eqs. (2.20), (2.21), and (2.22), with a difference that, in the random system, the nor­
malizations must be applied to mean values of the randomly varying lengths. The con­
sideration is limited here to the most important case when the lengths of the segments 
with the anomalous and normal GVD are equal in each DM cell, Li = L2 ^ L/2. 
Then, Eqs. (2.22) yield the mean values Li,2 = 1/2, and |/3i,2 — Po\ = 2 . To com­
ply with the former condition, one may assume that the random lengths are distributed 
uniformly in the interval 

0 . 1 < L / 2 < 0 . 9 . (2.32) 

The minimum length 0.1 is introduced because, in reality, the length can be neither 
very large (say, larger than 200 km) nor very small (shorter than 20 km). 

The same ansatz (2.23) and variational equations (2.26) and (2.27) which was ap­
plied above to the regular (periodic) DM system, may be used with its random coun­
terpart. As explained above, the change of the soliton's parameters, WQ —> WQ + 5Wo, 
Bo —^ Bo + SBo, within one DM cell is small. Therefore, the evolution of the pulse 
passing many cells may be approximated by smoothed differential equations, 

dWo _ 5Wo dBo _ 5Bo 
dz L(") ' dz L(") ^ ' 
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(n is the cell's number). Finally, the equations take the following form, 

dWo 
dz 

dBo 
dz 

\/W^o+4Bo^ ^W^ + ^{B^-L{z)y 
(2.34) 

Pa 
^/2EW^ 4Bo 4( -Bo-L) 

8L(z) [^W^ + AB- ^W^ + A{B,-L{z)f 

+ ln 
^W^ + ABl - 2Bo 

^ ^W^ + 4 (Bo - L{z)f -2 {Bo- Liz)) ^ 
(2.35) 

where L{z) is regarded as a continuous random function with values uniformly dis­
tributed in the interval (2.32). 

The most essential characteristic of the pulse propagation at given values of /3o and 
E is the cell-average pulse's width, 

W W{z)dz. (2.36) 
cell 

Simulations of Eqs. (2.34) and (2.35) reveal that there are two drastically different dy­
namical regimes. If the soliton's energy is sufficiently small (hence the approximation 
outlined in the previous section is relevant) and PAD is anomalous or zero, i.e., /3o < 0 
(especially, if /?o = 0), the pulse performs random vibrations but remains truly stable 
over long propagation distances. In the case when the energy is larger, as well as when 
PAD is normal, /3o > 0, the pulse suffers fast degradation. 

Following work [106], typical examples of the propagation are displayed in Fig. 
2.7 for the zero-PAD case, which is the best one in terms of the soliton stability. Sim­
ulations of Eqs. (2.34) and (2.35) were performed with 200 different realizations of 
the random function L{z). Figure 2.7 displays the evolution of {W{z)), i.e., mean 
value of the width (2.36) averaged over the 200 random realizations, along with the 
corresponding normal deviations from the mean value. The figure demonstrates that 
some systematic slow evolution takes place on top of the random vibrations, which are 
eliminated by averaging over 200 realizations. Systematic degradation (broadening) of 
the soliton takes place too, but it is extremely slow if the energy is small. In the case 
shown in the bottom part of Fig. 2.7, the pulse survives, with very little degradation, 
the transmission through more than 1000 average cell lengths (in fact, as long as the 
simulations could be run). It is not difficult to understand this: in the limit of zero 
power, i.e., in the linear random-DM model, an exact solution for the pulse is available 
in an essentially the same form as given above for the periodic DM, see Eq. (2.23). If 
PAD is exactly zero, this exact solution predicts no systematic broadening of the pulse. 

If the soliton's energy is larger, further simulations of Eqs. (2.34) and (2.35) show 
that, after having passed a very large distance, the slow spreading out of the soliton 
suddenly ends up with its blowup (complete decay into radiation). This seems to be 
qualitatively similar to what was predicted by the VA in the case of the periodic sinu­
soidal modulation of the dispersion, as shown in Fig. 2.2: a long sequence of chaotic 
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but nevertheless quasi-stable vibrations is suddenly changed by rapid irreversible de­
cay. 

In fact, the case of/3o = 0 is a point of a sharp optimum for the random-DM system: 
at any finite anomalous PAD, /?o < 0, the degradation of the pulses is essentially faster, 
especially for pulses with larger energy, and at any small normal value of PAD, /3o > 0, 
very rapid decay always takes place, virtually at all values of the energy. 

Comparison of the results predicted by VA with direct simulations of the full random-
DM model was also reported in work [106]. Direct numerical results, averaged over 
the same number (200) of the realizations of the random-length set L^"), turn out to be 
quite similar to what was predicted by VA. In particular, the most stable propagation 
is again observed at zero PAD, the soliton's broadening is faster at nonzero anomalous 
PAD, and all solitons decay very quickly at nonzero normal PAD. The soliton's stabil­
ity in direct simulations drastically deteriorates with the increase of the energy, as was 
also predicted by the VA. 

Detailed comparison shows that, surprisingly, direct simulations yield somewhat 
better results for the soliton's stability than the VA: the actual broadening rate of the 
soliton may be ~ 20% smaller than that predicted by VA. The slow long-scale oscil­
lations, clearly seen in Fig. 2.7, are less pronounced in direct simulations. The sudden 
decay into radiation, predicted by the VA after very long propagation, is not observed 
in direct simulations; instead, the soliton eventually splits into two smaller ones, quite 
similar to what is observed in direct simulations of the model with the periodically 
modulated dispersion, see Fig. 2.4. 
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Figure 2.7: Evolution of the cell-average pulse width in the random-DM system with 
zero path-average dispersion, as predicted by the variational approximation. The prop­
agation distance exceeds 1000 DM cells. The top and bottom panels correspond, re­
spectively, to high and low power, P = 0.47 and P = 0.1. The mean values (solid 
curve) and standard deviations from them (dashed curves) are produced by numerical 
integration of equations (2.34) and (2.35), followed by averaging over 200 different 
realizations of the random length set. 

To conclude this section, it is relevant to mention that some other versions of the 
DM systems, also different from strictly periodic ones, were studied too. In particular, 
an interesting possibility is to consider the so-called "hyperbolic" model, in which 
the size of the DM cell is fixed, while the PAD gradually decreases, as 1/z, with the 
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propagation distance (which is achieved by a slow systematic change of the ratio of the 
anomalous- and normal-GVD segments in the DM map). It was demonstrated that the 
system of the latter type is especially efficient in suppressing the soliton's jitter [178]. 

2.5 Dispersion-managed solitons in the system with loss, 
gain and filtering 

As mentioned above, a strong incentive for the introduction of the DM schemes for soli-
tons was the potential that they offer for suppression of the jitter induced by the optical 
noise in the fiber through the Gordon-Haus effect. However, the DM alone cannot pro­
vide for complete suppression of the jitter, that is why long-haul dispersion-managed 
links for the transmission of solitons must include optical bandpass filters [120] (the 
filters are well known to be a versatile tool of the jitter control [16]). Therefore, it is 
necessary to modify the theory outlined above, in order to take the filtering into re­
gard. Simultaneously, a model of the real-world fiber-optic link must include fiber loss 
and compensating gain provided by linear amplifiers periodically inserted into the link 
(these very amplifiers are also the main source of the optical noise that gives rise to 
the jitter). In this section, basic results for solitons in the filtered DM model will be 
presented, following the analysis developed in works [32] and [40]. A qualitative dif­
ference from the results outlined above for the lossless model is that there is a minimum 
value of the pulse's peak power necessary for the existence of stable solitons. 

2.5.1 Distributed-flltering approximation 

In the most typical case, the characteristic soliton period Zso\ in long-haul fiber links 
(see Eq. (1.16) for the definition of Zsoi) is quite large, ~ 200 - 300 km, while the spac­
ing between the amplifiers is essentially smaller, ~ 50 — 80 km. Normally, bandpass 
filters are integrated with amplifiers, therefore the spacing between the filters is rela­
tively small too. This suggests to adopt the approximation in which the corresponding 
modified NLS equation (2.20) neglects the discrete placing of the amplifiers and filters, 
assuming that they are distributed uniformly along the link. The accordingly modified 
NLS equation takes the form 

1 2 
iUz - -(3{z) Urr + "1 \u\ U = {QQU + igiUrr, (2.37) 

where g\ > 0 is the effective filtering coefficient, and fiio > 0 is gain necessary to com­
pensate the filtering losses; the model implies that the fiber loss proper is compensated 
by the main part of the gain, that does not appear in Eq. (2.37) in the distributed-gain 
approximation. It is necessary to stress that, despite the use of the assumption postulat­
ing the uniformly distributed filtering and gain, the model based on Eq. (2.37) belongs 
to the general class of the periodic strongly inhomogeneous nonlinear systems, due to 
the presence of the DM on the left-hand side of the equation. 

Following the lines of the analysis developed for the lossless model, one can treat 
the filtering and gain terms in Eq. (2.37) as additional small perturbations (which 
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completely corresponds to the realistic conditions in fiber-optic telecommunications). 
The perturbation theory may again be based on the ansatz (2.23), which, by itself, is 
the exact solution of Eq. (2.20) in the absence of the nonlinearity, filtering and gain. 
One can easily see that, in fact, the Gaussian ansatz provides for an exact solution to 
Eq. (2.37) if the nonlinearity is still neglected, while the linear terms on the right-hand 
side are taken into regard. The corresponding exact solution is obtained from (2.23) by 
the substitution 

B{z) ^ B{z) = r (3 {z') dz' + Bo- igiz, Po -^ Poe'^°" (2.38) 
Jo 

(note that the accumulated dispersion B, modified by the filtering, is complex). 
Next,one can analyze conditions which single out established DM solitons, by de­

manding zero changes of parameters WQ and BQ after the passage of one DM map 
(recall these conditions result in Eqs. (2.29) in the lossless model). As follows from 
Eq. (2.38) and from the way the accumulated dispersion enters the Gaussian ansatz 
(2.23), the filtering and gain do not affect the evolution of BQ, and generate an addi­
tional small change, 

AWo = 2giL/Wo, (2.39) 

of the width parameter of the pulse passing the distance L corresponding to the DM 
map (the meaning of this result is quite simple: the filtering gives rise to spreading out 
of the pulse at a constant rate). A new condition, which is enforced by the filtering 
and gain terms, is that the energy of the pulse must also remain equal to the initial 
value after the passage of the DM map (in the conservative model, this condition holds 
automatically, provided that emission of linear "radiation" from the soliton may be 
neglected). To realize this additional condition, one should notice that the terms on the 
right-hand side of Eq. (2.37) give rise to the following exact evolution equation for the 
soliton's energy E (which is defined as per Eq. (1.9)): 

(2.40) 

The substitution of the ansatz (2.23) into this equation and calculation of the integrals 
yields an explicit result for dE/dz, which can be further integrated over the interval 
Az = L corresponding to the DM-cell's length. Finally, equating the energy change 
to zero yields a very simple relation which shows that the balance between the filtering 
loss and compensating gain uniquely selects the width parameter WQ, 

Wl = 51/30 (2.41) 

(which remained arbitrary without the filters [100]). Actually, Eq. (2.41) may be un­
derstood in a different way: for given WQ, it determines the necessary value 50 of the 
gain. 

Amending the second relation in Eqs. (2.29) with regard to the filtering-induced 
change (2.39) of the width, and defining, for convenience, K = ^/2/lyo and ^ = 
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Figure 2.8: The diagram of the stationary transmission regimes for soliton in the DM 
model with filtering, as obtained from the analytically derived equations (2.42) and 
(2.43). The thin solid, bold solid, and dashed curves are reference lines which cor­
respond, respectively, to the values /?o/5i = —5 and —1 (anomalous dispersion), 
Po/gi = 0, and /?o/fli = 1 and 5 (normal dispersion). 

—2BO/WQ, the conditions for the pulse to be stationary are (the same normalizations 
(2.22) as in the lossless model are implied here) 

7fo 
91 v / r + ^ V I + (<^+K2)2 

+ V^K"* = 0, (2.42) 

7-Po 
51 

In 
> + K^ + ^/T+(J+Wf 

i +v/TTi 

2^2 

V 1 + (<A+K2)2 
V2f^ 

\9i 
•24> 0. 

(2.43) 

(recall 7 is the constant nonlinearity coefficient in Eq. (2.37)). 
By solving Eqs. (2.42) and (2.43), one can find the dependence of the pulse's peak 

power Po on the pulse's width and normalized PAD, fio/gi, in the presence of the 
filters. To facilitate the comparison with the lossless model (see Figs. 2.5), (2.6)), the 
results are displayed in Fig. 2.8 in terms of the map strength (2.25) and normalized 
peak power. Following work [32], the latter is taken as Q.22'^PoWQ/gi. 

The results predicted by the analytical equations (2.42) and (2.43) are compared 
with results of direct numerical simulations in Fig. 2.9. Strictly speaking, the pulses 
in Eq. (2.37) are unstable because the gain term makes the trivial solution, w = 0, 
i.e., the background on which the soliton sits, unstable. Indeed, for high values of the 
gain, no stable solutions could be found numerically. Nevertheless, it is easy to find 
pulses that remain completely stable, at values of the parameters used in Fig. 2.9, after 
having passed, at least, 100 DM-map lengths, which is more than sufficient for the 
applications. 

It is seen from the comparison of Figs. 2.8 and 2.9 that the analytical and numerical 
findings are in qualitative agreement. Further, comparing these figures to Figs. 2.5 and 
2.6 which display analogous results for the lossless model, one notices a principally 
novel feature: the critical strength, S^v « 4, which separates the stable transmission of 
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Figure 2.9: A counterpart of the diagram of stable soliton states shown in Fig. (2.8), as 
obtained from direct numerical simulations of Eq. (2.37), for /Jo/fli = —5 ('+'), —1 
(dot),0('o'), l ( ' * ' ) and5( 'x ' ) . 

the DM solitons at the anomalous and normal PAD, is removed, the stable transmis­
sion at zero and normal PAD being now possible at any map strength S. Instead, there 
appears, for the fixed filtering strength gi, a minimum (critical) power which is neces­
sary for the stable transmission of the RZ pulses (solitons) in the filtered DM system. 
In particular, it was shown in work [32] that an absolute minimum of the normalized 
power, ~ 3.3, is found for 5 = 0 and weakly anomalous PAD, fio/gi — —0.7. 

The general conclusion (which is supported by more detailed numerical results 
[32]) is that the filtering makes the DM solitons essentially less sensitive to the exact 
value of PAD. This feature can be quite beneficial for the applications. In particular, 
in a multi-channel (WDM) system, the PAD may alter from a channel to a channel, 
because of the presence of the third-order dispersion in the fiber. The filtering will 
make the system more stable not only against the Gordon-Haus jitter, but also against 
the scatter of the PAD values. 

2.5.2 The lumped-filtering system 

The results obtained in the approximation of the uniformly distributed filtering and 
gain generally correcdy describe qualitative properties of realistic systems with lumped 
(discretely placed) filters and amplifiers. Nevertheless, important features are missed 
by the distributed-filtering approximation - in particular, specific instability occurs if 
the filters are placed at "wrong" positions relative to the DM map, namely, at midpoints 
of the normal-GVD segments (while the transmission of the solitons is completely 
stable with the filters set at midpoints of the anomalous-DM segments) [121], 

A full stability diagram for the DM solitons in the model with lumped amplifiers 
was recentiy obtained in work [40]. The model is based on Eq. (2.37), with the right-
hand side replaced by the following lumped-filtering expression: 

igou + igiUrr -^ i 2_]^ [^ ^ ^o — Ln) (g^u + Gu| , (2.44) 
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Figure 2.10: A typical example of the shape (shown on the logarithmic scale) of 
dispersion-managed solitons in the ideal lossless model, and in its realistic counterpart 
with lumped filters and amplifiers (for comparison, the solitons with equal amplitudes 
are taken in both cases). Each soliton is shown at a position (close to the midpoint of 
the anomalous-GVD segment of the DM map) where it is narrowest. 

where the filtering operator G is defined by its action on a temporal harmonic, 

' (e-''^'") (/T") ^''''^''' "̂̂  "" °̂"̂ * (2.45) 

(the latter is usually referred to as the Gaussian transfer function with the bandpass 
width Aw). A typical example of the shape of a stable soliton in this realistic model is 
shown (on the logarithmic scale of the power, which is relevant to display the soliton's 
shape) in Fig. 2.10; for comparison, the shape of the soliton in the lossless model, with 
the same DM map and the same value of the soliton's peak power, is also displayed in 
the figure. As is seen, a beneficial effect produced by the filters is suppression of the 
soliton's "wings", which is quite important to attenuate unwanted interactions between 
solitons carrying the data stream in a fiber-optic telecommunication link. 

A full stability diagram for the DM solitons in this model was generated by means 
of numerical methods specially developed for this purpose in work [40]. The diagram 
is displayed in Fig. 2.11 (the stability borders shown in this figure are, actually, some­
what fuzzy, as, close to the borders, the RZ pulses observed in numerical simulations 
are still stable - in the sense that they do not decay - but they demonstrate irregular 
oscillations, and also change the shape, developing relatively large sidelobes attached 
to the main body of the soliton). Comparison of Figs. 2.11 and 2.9 shows that the 
distributed-filtering model indeed provides for a generally reasonable approximation 
to the lumped-filtering system. 
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Figure 2.11: Stability diagram for the DM solitons in the realistic model with lumped 
filtering and amplification, given by Eqs. (2.37), (2.44), and (2.45). Symbol chains 
show stable solitons with different fixed values of the path-average dispersion (mean 
GVD). The overall stability area is bordered by the bold curves. 

2.6 Collisions between solitons, and bound states of soli­
tons in a two-channel dispersion-managed system 

2.6.1 Effects of inter-channel collisions 

The wavelength-division multiplexing (WDM), i.e., the use of a large number of data-
bearing channels in the same fiber, carried by different wavelengths, is the most im­
portant direction in the development of optical telecommunications. In soliton-based 
systems, a serious problems posed by WDM is crosstalk due to collisions of pulses 
belonging to different channels. Collisions are inevitable, as the fiber's GVD gives 
rise to a difference in the group velocity (GVM) between the carrier waves in different 
channels. 

In addition to the above-mentioned benefits of the jitter suppression in DM sys­
tems, another strong insensitive to study the soliton dynamics in DM systems is the 
fact the DM provides for strong suppression of the inter-channel crosstalk, as was first 
shown in direct simulations of a two-channel DM model reported in paper [134]. Be­
sides that, collisions between solitons in coupled channels is a subject of considerable 
interest from the viewpoint of the general theory of solitons in periodic strongly in-
homogeneous systems. In this section, an account of the analysis of collisions in the 
two-channel DM system will be given, following, chiefly, work [88]. 

The simplest two-channel system is described by two NLS equations coupled by 
the XPM (cross-phase-modulation) terms (cf. Eqs. (1.22) and (1.23)), 

i {Uz + CUr) - -f3{z)UrT + -\l3^''^Urr+y{\vf + 2\uf)u 0, (2.46) 

i (Wj; - CVr) - -l3{z)VrT + -.^'o 
(''). + j(\uf + 2\vf^v = 0, (2.47) 
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where 2c is the inverse-group-velocity difference between the channels (i.e., the GVM), 
/3{z) is the main part of the dispersion, with the zero average, that may be assumed 
the same in both channels, I3Q'^' are values of the PAD in the channels, which are, 
generally, different. The nonlinear terms in Eqs. (2.46) and (2.47) represent the SPM 
and XPM effects. 

An analytical approach to the problem may be based on the ansatz of the type (2.23) 
for the soliton in each channel, modified with regard to the inverse-group-velocity shifts 
±c in Eqs. (2.46) and (2.47). In order to describe the dynamics of the interacting 
pulses, the ansatz should be further modified by applying independent Galilean boosts 
to u and v (cf. the boost formula (1.6) for /3 = const): 

U{Z,T;U}) = u^^^ i^''^ ~'^^-''^y'i^))^^P['~'^'^ur + i'>pu{z)], 

V{Z,T;UJ) = u^^^'^'^' {z,T + cz — Tv{z))exp[—iu!yT + i'>py{z)]. (2.48) 

Here, Uu and ojy are frequency shifts of the two solitons, and the corresponding position 
shifts obey the equations 

dTu 
dz 

OJy P{z)+(i'o («) 
dz 

UJ,, /SW+/3^ 
(v) (2.49) 

In the absence of the interaction, parameters of the DM solitons in both channels 
are selected by the conditions (2.29). Since these conditions were obtained by treating 
the SPM nonlinearity as a small perturbation, the XPM-induced interaction between 
solitons may also be considered as another perturbation. This approach makes it possi­
ble to derive (by means of the Lagrangian technique, as shown in detail in work [88]) 
the following XPM-induced evolution equations for the frequency shifts of the solitons 
in the u- and ii-channels: 

dz\ ^v J 

25/2R, .W^cz 

[W^ + AB^{z) 
,3/2 

+Pv 
-Pu exp 

WS{^T{z)f 
W^-\-AB'^[z) 

(2.50) 

where P„ and P„ are the peak powers of the pulse in the u- and v-channels, and ^T{z) 
is the temporal separation between the solitons. According to ansdtze (2.48) and Eqs. 
(2.49), AT(z) obeys the equation 

dz 
AT = 2c + oju /3(z)+/?(") -uy m+pi o(v) (2.51) 

The dynamical equations (2.50) are not only important for the application to optical 
telecommunications, but also help to understand the nature of the soliton's dynamics 
in the system: in the present approximation, the solitons may be regarded as quasi-
particles with the coordinates T„ and T„, if the evolution variable z is treated as formal 
time, LOu + c and ujy — c being momenta of the particles. In terms of this mechani­
cal interpretation, (i{z) + /JQ and I3{z) + (i^ are proportional to the corresponding 
inverse masses (note that the DM solitons are characterized by the time-dependent 
effective masses, which periodically flip the sign), and Eq. (2.50) is a force of the in­
teraction between the particles, which depends on the distance AT between them. In 
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this connection, it is relevant to mention that a dynamical equation similar to (2.50) 
was derived in work [10] for a two-channel model with constant GVD. However, there 
is a principal difference between the collisions in the two-channel DM system and in 
its constant-dispersion counterpart: as the coefficient f3{z) in Eqs. (2.49) periodically 
changes its sign (i.e., the effective masses periodically flip their sign, as mentioned 
above), in the strong-DM regime colliding pulses pass through each other many times 
before separating. 

In the case relevant for the application to the WDM system in optical telecommuni­
cations, the term 2c is Eq. (2.51) is much larger than the two other terms [88], therefore 
Eq. (2.50) may be replaced by a simpler one, with 

AT{z) = 2cz (2.52) 

(however, a case is also possible when this assumption is not valid; then, the two soli-
tons may form a bound state [63], see below). 

It is necessary to distinguish between complete and incomplete collisions. In the 
former case, the solitons are far separated before the collision, while in the latter case, 
which corresponds to a situation when the collision occurs close to the input point 
{z = 0), the solitons begin the interaction being strongly overlapped. In either case, 
the most important result of the collision are shifts of the soliton's frequencies 5LOU and 
Suy, which can be calculated as 

5uju,v = / — ^ d z . (2.53) 

Here dwu^v/dz are to be taken from Eq. (2.50), with AT{z) replaced by 2cz, as per 
Eq. (2.52). The lower limit of the integration in the expression (2.53) is finite for 
the incomplete collision, while the complete collision corresponds to 2:0 = —00. The 
frequency shift is very detrimental in terms of the fiber-optic telecommunications, as, 
through the GVD, it gives rise to a change of the soliton's velocity. If the soliton picks 
up a "wrong" velocity, information carried by the soliton stream in the fiber-optic link 
may be completely lost. 

An estimate of physical parameters for the dense WDM arrangements, with the 
actual wavelength separation between the channels 6X < 1 nm (this is the case of 
paramount practical interest) shows that, although the term 2c dominates in Eq. (2.51), 
c may be regarded as a small parameter in the integral expression (2.53), in the sense 
that the function cz varies slowly in comparison with the rapidly oscillating accumu­
lated dispersion B{z). In this case, the integral (2.53) and similar integrals can be 
calculated in a fully analytical form, as shown in work [88]. In particular, Eq. (2.53) 
yields zero net frequency shift for the complete collision, which shows the ability of 
the DM to suppress collision-induced effects. In fact, the zero net shift is a result of 
the multiple character of the collision (see above): each elementary collision generates 
a finite frequency shift, but they sum up to zero. 

If the frequency shift is zero, the collision is characterized by a position shift, which 
is a detrimental effect too in optical telecommunications, but less dangerous than the 
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frequency shift. The position shift can be found from Eq. (2.49), 

dlu,v = / —;—dz =-efix / z—-^dz - / B(z)—r^dz, 
J-oo dz J_^ dz J_^ dz 

(2.54) 

where integration by parts was done. Then, substituting the expression (2.50) for 
duiu/dz, one can perform the integrations analytically, to obtain a very simple final 
result: 

ST. / - ^ ^ \ / ^ ^ P . / • ^ '- ' '^ 

This result contains a product of two small parameters, namely, the PAD (SQ'^' and 
power Py^u (the latter is small as it measures the nonlinearity in the system, and it was 
assumed from the very beginning that the nonlinearity is a small perturbation). 

The frequency shift generated by the incomplete collision can be found similarly. 
In this case, the worst (largest) result is obtained for the configuration with centers of 
the two solitons coinciding at the launching point z = 0: 

(S^u,.)^.. = ^ In ( 5 + v T + 5^) , (2.56) 

where S is the DM strength defined by Eq. (2.25). 
These analytical results were compared with numerical simulations. First of all, 

simulations show that the frequency shift generated by complete collisions is very small 
indeed (much smaller than in the case of incomplete collisions at the same values of 
parameters). As for the position shift in the case of the complete collision, the ana­
lytical prediction (2.55) for it is compared to numerical results in Fig. 2.12, showing 
a reasonably good agreement. In the case of incomplete collisions, simulations yield 
a nonzero frequency shift, which was compared to the analytical prediction (2.56) in 
work [88], also showing a reasonable agreement. 

2.6.2 Inter-channel bound states 

The case when the last two terms in Eq. (2.51) are comparable to 2c is relatively ex­
otic but physically possible too. For this case, formation of stable bound states of two 
solitons belonging to the different channels was predicted in work [63]. In physical 
units, the "exotic" conditions mean that, for the wavelength separation between the 
channels '^ 0.1 nm, a large peak power of the solitons is needed, ~ 1 W. While this 
effect is not practically important in terms of optical telecommunications, it is inter­
esting for the study of the soliton dynamics. These bound states were studied in work 
[63] by means of the VA and direct simulations. The former was actually based on 
Eqs. (2.50) and (2.51), without the simplifying assumption (2.52). It was found that 
VA predictions compare quite well with direct numerical results. Studied were both the 
symmetric system, with equal PADs in the two channels (zero, anomalous, or normal), 
and asymmetric ones, with zero PAD in one channel and either anomalous or normal 
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Figure 2.12: The analytically and numerically found position shift of the soliton in­
duced by the complete collision in the two-channel DM model described by Eqs. (2.46) 
and (2.47) with Li = 0.4, Lg = 0.6, /3i = -5 /2 ,02 = 5/3, 2c = 0.3, peak powers of 
the colliding pulses being Pu = Pv = 0.1. 

PAD in the other, or with opposite signs of the PADs in the two channels. In all the 
cases, it was found that stable bound states in which the solitons oscillate relative to 
each other exist indeed, provided that the energy of the solitons exceeds a certain min­
imum value jBmin, that depends on PADs and the inverse-group-velocity difference 2c 
between the channels. There is, however, a maximum value of 2c, beyond which no 
bound state is possible. Typical examples of the dependences Emax (2c) are displayed 
in Fig. 2.13. Additionally, it was demonstrated in work [63] that, in the case when 
PAD in one channel is normal and so large that the DM soliton is unstable in it, the 
interaction with the soliton in the mate channel with anomalous PAD can produce a 
completely stable bound state. 

2.6.3 Related problems 

It is relevant to mention another two-channel model that, generally, also belongs to 
the class of the periodic heterogeneous nonlinear systems, although it does not involve 
DM. Instead, the group-velocity mismatch between the two XPM-coupled modes is 
subjected to periodic modulation, i.e., the model is based on the system of NLS equa­
tions (1.22), (1.23) with /3„ = /?„ = const < 0, 7 = const > 0, cr = 2, and 
c{z) = Co sin (kz). A natural object in this model, considered in work [112], is a two-
component synunetric soliton, with equal energies in both components. Without the 
modulation of c{z), this compound soliton features an eigenmode of intrinsic excita­
tion, in the form of mutual oscillations of centers of the two components, which was 
studied in detail [169, 87, 114]. The inclusion of the periodic modulation of the GVM 
between the components can give rise to resonant effects, if the modulation (spatial) 
frequency, 2n/k, is commensurate with the eigenfrequency of the above-mentioned 
intrinsic mode. This possibility was explored in work [112], although only in the 
framework of the VA (without direct simulations of the coupled NLS equations). It 
was shown that the periodic modulation of c{z) may split the compound soliton into 
two free single-component ones, the minimum GVM-modulation amplitude, {co)„iin' 
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Figure 2.13: The minimum soliton's energy, necessary for the formation of bound 
states of solitons in the two-channel DM system, is shown as a function the inverse-
group-velocity difference 2c for zero (/3 "̂̂  = (3^^' = 0), anomalous {(3^ = PQ = 

-0.1), and normal (J3Q 
(u) 

^'o 
(v) 0.01) path-average dispersion (PAD). The mini­

mum energy predicted by the variational approximation for these three cases is shown, 
respectively, by solid, dashed-dotted, and dashed lines. Discrete symbols - circles, 
rhombuses, and crosses - represent values found from direct numerical simulations for 
the zero, anomalous, and normal PAD, respectively. The plots are aborted close to 
points where they abruptly shoot up (almost vertically); no bound state is possible for 
2c> 0.40 in the cases of the zero and normal PAD, and for 2c > 0.45 with the anoma­
lous PAD. In the asymmetric model, with PQ ^ (SQ , the dependences Emax (2c) are 
quite similar. 

necessary for the splitting, having deep minima (if considered as a function of k) at k 
corresponding to the fundamental and additional resonances with the intrinsic mode. 

Interaction between DM solitons belonging to the same channel is also a problem 
of great interest (it is just "interaction", rather than collision, as the solitons keep a rel­
atively large separation between themselves, the interaction being mediated by "tails" 
of each soliton overlapping with neighboring ones). In fact, it was found that this kind 
of the interaction gives rise to the most serious factor limiting the use of the DM, as, 
for relatively strong DM {S > 2.5), interaction effects severely affect the maximum 
distance of the error-free transmission of data by soliton streams (see papers [171,146] 
and references therein). The source of the problem is that, in the strong-DM regime, 
the solitons periodically spread out, which leads, through their overlapping and result­
ing formation of "ghost" pulses, to accumulation of mutual distortion induced by the 
FWM effect [116]. Semi-analytical consideration of the intra-channel interactions be­
tween DM solitons, based on a specially devised version of VA, was worked out and 
yielded quite accurate results (as compared to direct simulations), but the analysis is 
cumbersome. Details can be found in work [171]. 



Chapter 3 

The split-step model 

3.1 Introduction to the model 

The most common numerical algorithms used for simulations of equations (and sys­
tems of equations) of the NLS type belong to the "split-step" type. It is based on 
splitting each step /S.z of the numerical integration, A2 = A^AT -|- AZ£), SO that only 
the nonlinear term(s) in the equation(s) are taken into regard at the first substep, and 
only the GVD and other (if any) linear term(s) are dealt with at the second substep. At 
the latter stage, the corresponding linear equation(s) are solved by means of the Fourier 
transform. 

The split-step model (SSM), which was introduced in work [50] and further de­
veloped in paper [52], is formally similar to the split-step numerical algorithm, but 
the difference is that the propagation distances corresponding to AZAT and Az£) are 
not small, both being comparable to the soliton's period, see Eq. (1.16) (for this rea­
son, they are denoted below as Ljv and LD, respectively, rather than as AzAr,£))- In 
other words, the SSM assumes periodic alternation of long segments of two different 
fiber species that are (in the first approximation) purely nonlinear and dispersive, re­
spectively. Moreover, the nonlinear and dispersive components of the SSM are not 
necessarily fibers - the former may be SHG (x^^ )̂ modules [54], and the latter may be 
realized as short pieces of a fiber Bragg grating. Clearly, the SSM also belongs to the 
general class of the periodic heterogeneous nonlinear systems, and it is interesting to 
understand if SSM can support robust solitons. 

SSM has something in common with previously studied fiber-optic schemes us­
ing the so-called comb-like dispersion profile, that assumes short segments of high-
dispersion fiber inserted in a low-dispersion bulk fiber [161]. However, there is strong 
difference of SSM from the "comb" schemes: in the latter case, a large number (~ 8) 
of strong-dispersion segments are inserted (non-uniformly) per dispersion length, with 
the objective to emulate a continuous exponentially decreasing dispersion profile, ad­
justed to the gradual decay of the soliton's energy due to the fiber loss (so that the 
soliton does not feel the system's heterogeneous structure, and its temporal width re­
mains nearly constant). On the contrary, the SSM typically assumes one dispersive and 
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one nonlinear sections per dispersion length, and the transmission regime is completely 
different from that in the comb systems. 

SSM offers a potential for applications to optical telecommunications. On the one 
hand, periodically inserting short strongly nonlinear elements can help to upgrade a 
linear fiber-optic link, making it possible to transmit solitons through it. On the other 
hand, periodic insertion of strong dispersive elements can be useful to improve pulse 
transmission in links using dispersion-shifted fibers (ones with a small value of the 
GVD coefficient), where the nonlinearity may be too strong versus the dispersion. 

3.2 Solitons in the split-step model 

3.2.1 Formulation of the model 

The dispersive segment of the SSM is described by the linear version of the NLS equa­
tion (1.5), iuz + {1/2)UTT = —iaou, where the GVD coefficient is normahzed to be 
/? = —1 (in the case of normal dispersion in the dispersive segments, /? > 0, the SSM 
supports no solitons), and a^ is the loss constant of the dispersive fiber (in physical 
units, typical values of/? and ajj in standard telecommunication fibers are —20 ps^/km, 
and 0.2 dB/km, respectively). The substitution of u{z, r) = v{z, r ) exp {—aoz) leads 
to the lossless equation for the dispersive segment, 

iVz + -Vrr = 0, (3.1) 

that can be solved by the Fourier transform in r. 
In the nonlinear segment, one is dealing with the dispersionless version of equation 

(1.5), 

iUz + \u\ u = —iaNU, (3.2) 

where the nonlinearity coefficient is normalized to be 7 = 1 (its typical physical value 
in optical fibers is 2 (Wkm)"^), and QJAT is the respective loss parameter. An obvious 
solution to Eq. (3.2) is 

u(z, T) = u(0, T) exp I —ajv z + i '• [1 — exp (—2af^z)] ] . (3.3) 
V 2Q;iv / 

In the lossless limit, a^ -^ 0, it takes the form 

U{Z,T) =u{0,T)exp{i\u{0,T)\'^z). (3.4) 

It is assumed, as usual, that the losses are compensated by linear amplifiers which 
act on the wave field so that 

U{T) -^ U{T) • e^ , (3.5) 

where G is the gain (in applications, the gain is usually measured in dB (deciBells), 
which will be 8.696"). The value of the gain is selected so that to provide for the 
balance with the total loss, 

G = LNCHN + LoOiD, (3.6) 
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where LD and Ljv are lengths of the periodically alternating dispersive and nonlinear 
segments. In fact, the model is equivalent to its lossless version {ao = cnjv = G = 0) 
with a renormalized value of Lj\f. Indeed, comparing Eqs. (3.3) and (3.4), and taking 
Eqs. (3.5) and (3.6) into regard, it is easy to see that the model including the losses and 
gain is tantamount to the lossless one with LN replaced by 

-(eff) ( 2 a j v ) " ^ [ (1 - 6-'^°"''°) + e2G-2"N^o fl _ g - 2 a „ ( L j v - z o ) \ | ^ ( 3 7 ^ 

where ZQ is the distance from the beginning of the nonlinear segment to the point at 
which the amplifier is installed. For this reason, in what follows below only the lossless 
model is considered, making no distinction between L^^ ' and LN, nor between u and 
V, see Eq. (3.1). Dynamical invariants of the lossless SSM are the same energy and 
momentum as defined above in Eqs. (1.9) and (1.10). In the absence of losses, Eqs. 
(3.1) and (3.2) are invariant with respect to the transformations, respectively 

r -» T/KD, Z -^ z/K]^, 

u -^ ANU, Z -> z/A% (3.8) 

with arbitrary rescaling factors A75 and AN- This transformation may be used to set, 
for instance, LN = LD = 1/2, so that the full size of the system's cell is L = 1. 

The exact definition of the cell is an interval between midpoints of two neigh­
boring nonlinear segments, with a dispersive segment inserted between them. A full 
transformation (map) of the pulse passing the system's cell can be represented as a su­
perposition of two transformations (3.4) corresponding to the nonlinear half-segments 
at edges of the cell, and the linear transform between them, corresponding to the dis­
persive segment in the middle of the cell. Numerical simulations of the pulse evolution 
in the SSM are performed by many iterations of the map, with a fixed cell's size in the 
case of the regular system (or with the values of the size picked randomly from a finite 
interval for a random SSM, see below). 

Note that averaged (in z) version of both the regular and random SSM systems 
amounts to the usual NLS equation, 

2lU^ + -Urr + \u\'^U = 0 (3.9) 

For this reason, it is natural to start the simulations with an initial pulse which would 
be a fundamental soliton of the average equation (3.9), 

UO(T) = 77sech(?7r), (3.10) 

with an arbitrary amplitude rj. Besides that, in order to understand the operation of 
the system in the general case, initial pulses with an arbitrary relation between the 
amplitude and width will also be considered, 

uo(r) =77sech(^||jj , (3.11) 

where M̂  is a relative width parameter. Note that, in the case of the ordinary NLS 
equation, an asymptotic (for z ^ oo) form of the solution generated by the generic 
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initial pulse (3.11) can be found in an exact form for any value of W [154]. With 
the GVD and nonlinearity coefficients fixed as in Eqs. (3.2) and (3.1), and with the 
above normalization, Ljsr = LD = 1/2, free remaining parameters of the model are 
the amplitude 77 and relative width W of the initial pulse (3.11). 

It should also be noted that, while the dispersive equation (3.1) is invariant with 
respect to the Galilean transformation (1.6), the nonlinear equation (3.2) is not formally 
Galilean-invariant; however, it is obvious that the system as a whole is invariant with 
respect to a modified boost transformation, 

u{z, T) I—> u{z, T — cz) exp (—c î̂ /2 + icr) , (3.12) 

where 2 is the distance passed only in the dispersive segments. As well as in the case 
of the ordinary NLS equation, the effective Galilean invariance of the SSM is related 
to the conservation of the momentum (1.10). 

3.2.2 Variational approximation 

To apply the variational approximation (VA) to SSM solitons, the usual ansatz (2.6) 
can be used, and, in the nonlinear segment, Eqs. (2.10) - (2.13) yield the following 
evolution equations for the width and chirp: 

db__2Eda_dE_ 
dz TT̂  a^ ^ dz ' dz 

(here, as above, the definition of the energy is £̂  = A^a). In the dispersive segment, 
the variational equations amount to 

dz"^ TT̂  a^' 2a dz 

As £• is a constant, a solution to Eqs. (3.13) is trivial, 

2E 
a = const s flmax, Kz) = j - ^ — (-2 " -^jv), (3.15) 

"^ '^max 

where ZN is an arbitrary constant. A general solution to Eqs. (3.14) is simple too, 

a{z) = -^ , (3.16) 
Tva min 

(^<in) +'iiz-ZD) 

where ZD and a„iin are other arbitrary constants. 
In terms of the VA, steady transmission of the soliton implies that its amplitude, 

width, and chirp return to their original values after passing a full cell of the system. It 
immediately follows from Eqs. (3.15) and (3.16) that, if ZD is chosen to coincide with 
the midpoint of the dispersive segment, the width a{z), which takes the value Omin 
at this midpoint, automatically returns to the same value at the midpoint of the next 
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dispersive segment, amin being the smallest value which the width of the pulse attains 
in the course of its periodic vibrations. 

According to Eq. (3.17), the soliton's chirp vanishes at the midpoint of the dis­
persive segment. A condition which guarantees that it vanishes at the midpoint of the 
next dispersive segment can be easily obtained: the net change of b{z) in the nonlinear 
segment, which is 

IP 
(^^)iV = - - 5 - ^ ^ i v (3.18) 

" "max 

according to Eq. (3.15), must exactly compensate the difference of the values of the 
chirp at edges of the dispersive segment, which is, according to Eq. (3.17), 

(^min) +Lh 

(to make the meaning of the expressions clearer, it is not assumed here that LD = LN)-
Note that, due to the continuity of a{z), the value a^ax which appears in Eq. (3.18) is 
one attained at the edge of the dispersion segment, i.e., it is given by Eq. (3.16) with 
Z- ZD = LDJI, 

flmax = • (3.20) 

In fact, Omax is indeed the maximum width attained in the process of the steady propa­
gation of the SSM soliton. 

Finally, the substitution of Eqs. (3.18), (3.20), and (3.19) into the balance condition 
for b{z), (A6)^ + (A^)/) = 0, yields a basic result: 

7 r 2 ( ^ E y « ^ „ = 7r2â ,„ + L|,. (3.21) 

This is a constitutive equation for the SSM solitons, which (as predicted by the VA) 
determines its minimum width, ifmin. as a function of the energy E. This equation can 
also be written in terms of the maximum width, 

^E^ a L x = ^ < a x + {LNEf . (3.22) 

Considering i? as a function of Uynm or amax. it is easy to see that Eqs. (3.21) and 
(3.22) yield exactly one physical (real) value of amin and exactly one value of ttmax for 
any E > 0. 

In the limit of LD, LN -^ 0, the SSM reduces to the average NLS equation (3.9), 
with the extra coefficient LD/LN in front of the term (1/2) Urr- In this limit, the width 
a{z) becomes constant, a = Amin = «max- On the other hand, the exact fundamental-
soliton solution (1.13) of the thus defined NLS equation has 

(3.23) 
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with an arbitrary width QQ, the soliton's energy being E = {LD/LN) a,o^- Inserting 
this in the limiting forms of Eqs. (3.21) and (3.22) corresponding to LD, LN -^ 0, one 
concludes that they are satisfied automatically, i.e., the VA correctly reproduces the 
exact result for the fundamental soliton in the NLS limit. The same limit corresponds 
to £̂  —> 0 at finite LD and LN, as in this case the soliton becomes very broad, with the 
dispersion length ZD '^ cfi ^ LD, LN, hence it must be asymptotically equivalent to 
the ordinary NLS soliton. 

It is also relevant to note that, as it follows from Eq. (3.21), the minimum width 
amin may take any value from 0 to oo when E is varied from oo to 0. However, Eq. 
(3.22) shows that the maximum width Omax diverges in both limits, E ^> 0 and E -+ 
oo, which suggests that there is a finite smallest value that a^ax may assume. Indeed, 
analysis of Eq. (3.22) demonstrates that this value is (aniax)„iin ~ \/(2/7r)L£i, and it 
is attained at E = \/'1-KLDL'^. In this case, the minimum width is ( l /V2) ('̂ max)min-

3.2.3 Comparison with numerical results 

Direct simulations of the SSM were performed in works [50, 52]. The simulations 
started with the initial wave form (3.10) that would generate a fundamental soliton in 
the averaged NLS equation corresponding to the SSM. In the case when the soliton 
period in the averaged equation (defined as per Eq. (1.16)) is comparable to the cell's 
size L, a soliton readily self-traps in the SSM, with an extremely small radiation loss 
and very little change of the shape against the initial form, see an example in Fig. 3.1. 

If the opposite case, with L much larger than the soliton period (with the latter de­
fined as per the average NLS equation, see Eq. (1.16)), the adjustment of the soliton 
and radiation loss accompanying its relaxation to the eventual shape are quite conspic­
uous, as shown in Fig. 3.2. In this case, the established soliton features intrinsic chirp 
(i.e., the wave field is complex), as shown in Fig. 3.2(d). Nevertheless, the amplitude 
distribution in the soliton, |'U(T)|, is still well fitted by the usual sech ansatz, see Fig. 
3.2(c). In fact, the proximity of the pulse to the classical shape of the NLS soliton may 
be characterized by its area, 

I- + 00 

A= \u{T)\dT (3.24) 

(unlike the energy (1.9), the area is not a dynamical invariant of the NLS equation). 
For any soliton of the average NLS equation (3.9), A = n (note that the area does not 
depend on the soliton's amplitude). For the established soliton displayed in Fig. 3.2, 
the area is 3.25, i.e., quite close to TT. If L is very large in comparison with the soliton 
period in the average NLS equation, the initial pulse completely decays into radiation, 
as will be explained in more detail below. 

To compare the analytical results outlined above with direct simulations in a sys­
tematic way, it is more convenient to cast the constitutive equation (3.21) in a dif­
ferent form, which determines the maximum amplitude of the SSM soliton, A^ax = 
A/E/ttmin (recall that E = J^a; obviously, the largest amplitude is achieved at a point 
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Figure 3.1: (a) Numerically simulated evolution of a soliton in the split-step model 
with the cell's size L = 1, starting with the initial configuration WQ = sech r (which 
generates a soliton in the average NLS equation (3.9) with the soliton period 7r/2). 
(b) Evolution of the soliton's energy in the course of its adjustment to the established 
shape. The total propagation distance shown in the figure corresponds to 1500 system's 
cells. 
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Figure 3.2: The same as in the previous figure, but with the SSM period ten times as 
large, L = 10. Panels (c) and (d) additionally show the fit of the eventual shape of the 
soliton to the usual sech form, and the distribution of the local chirp, (Pcp/dr^, in the 
established soliton ((^(r) is the phase of the soliton's complex wave field). 
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Figure 3.3: Continuous curve shows the largest amplitude ^max of the soli ton in the 
split-step model, as predicted by the variational approximation, see Eq. (3.25), vs. the 
amplitude ri of the initial pulse (3.10), in the case of LD = LN = 1/2. The dashed 
curve shows the share of the initial energy which remains trapped in the established 
soliton, after the completion of its relaxation, as found from numerical data (this resid­
ual energy was used to generate the continuous curve). Stars show a set of values of 
the amplitude of the established soliton at midpoints of dispersive segments, as found 
from direct simulations. 

where the soliton's width is smallest, a(z) = amin): 

Ll (At 2^4 A4 
+ TT'E^'A: 

LD 
(3.25) 

This prediction for the amplitude was compared to results of direct simulations starting 
with the exact soliton (3.10) of the average NLS counterpart of the SSM, Eq. (3.9). 
The comparison is presented in Fig. 3.3 (for the case of LD = LN = 1/2, which 
is tantamount to the general case, as explained above). It is necessary to take into 
regard that, because of the radiative loss suffered by the soliton in the course of its 
adjustment to the established regime, the energy of the finally observed SSM soliton 
may be considerably smaller than the energy Em = rj of the initial pulse (3.10), as 
is seen, for instance, in Fig. 3.2(b). Therefore, Fig. 3.3 was "phenomenologically" 
improved, by substituting E in it by the value of energy found from numerical data 
for the established soliton (the share of the initial energy which remains trapped in the 
soliton is also shown in Fig. 3.3). 
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A noteworthy feature of the dependence of the SSM-soUton's amplitude vs. the 
ampHtudeof the initial pulse is saturation obvious in Fig. 3.3. If one launches the pulse 
with a large amplitude, it quickly sheds off a considerable part of its energy in the form 
of radiation waves, and relaxes to the eventual form. Note that the characteristics shown 
in Fig. 3.3, are universal, as they do not depend on any remaining free parameter. 

A feature which is not predicted by VA is termination of the characteristics: the 
curve in Fig. 3.3 is not aborted arbitrarily, but ends at a point beyond which no stable 
SSM soliton is produced by simulations. It was observed that, past the termination 
point, the solitons disappear abruptly. 

3.2.4 Diagram of states for solitons and breathers in the spHt-step 
system 

General results characterizing the dynamics of solitons and quasi-solitons in the SSM 
can be collected from systematic simulations starting with a pulse (3.11), which admits 
an arbitrary relation between the amplitude and width (controlled by the parameter W), 
rather than locking them to the form of the average soliton (3.10). It is well known that, 
in the case of the ordinary NLS equation, the evolution problem for the initial condi­
tion (3.11) has an exact analytical solution, in terms of the inverse scattering transform 
[154]. The latter solution demonstrates that the configuration (3.11) generates no soli­
ton iiW < 1/2; in the interval 1/2 <W< 3/2, a fundamental soliton is generated, 
together with some amount of radiation; and higher-order n-solitons are produced in 
intervals n — l / 2 < W < n 4 - l / 2 (which is also accompanied by emission of radi­
ation, unless W is an integer). The higher-order solitons, unlike the fundamental one, 
look like breathers, demonstrating persistent internal vibrations (see the expression for 
the 2-soliton given in Eq. (1.15). 

Results of systematic simulations performed in the SSM with the initial condi­
tion (3.11) are summarized in the diagram displayed in Fig. 3.4, which clearly shows 
similarities and differences between the NLS and SSM models. Regions generating 
qualitatively different states, viz., a fundamental soliton, a breather, and separating 
pulses ("splitting"), are identified in the diagram. The white area is one where the ini­
tial configuration completely decays into dispersive radiation, without generating any 
persistent localized state. Delineating all the borders in the diagram in a very accu­
rate way would demand an extremely large number of very long simulations, therefore 
some borders have a rather approximate form. 

The lower horizontal border which marks the threshold of the fundamental-soliton 
formation is virtually the same as the above-mentioned one, W = 1/2, in the NLS 
equation. However, a drastic difference between the SSM and NLS equation is that, at 
large ry, no soliton is generated. In particular, the plot shown in Fig. 3.3 terminates at 
a point which corresponds to the intersection between the right border of the soliton 
region in Fig. 3.4 and the line W = 1 (Fig. 3.3 was generated for this value). 

At small rj, the breather-formation border is almost the same as the above-mentioned 
one in the NLS equation, i.e., W = 3/2. At larger rj, the difference of SSM from 
the NLS equation manifests itself in the uplift of the border to W » 2. Moreover, 
the fundamental-soliton region protrudes farther upward in the interval 3 < 77 < 4, 
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Solitons 

ri 

Figure 3.4: The diagram showing different outcomes of the evolution of the initial 
pulse (3.11) in the split-step model with LD = LN = 1/2. In white area the initial 
pulse completely decays into radiation. The dashed horizontal line, W = 3/2, is the 
exact breather-generation threshold in the corresponding averaged NLS equation (3.9). 
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Figure 3.5: A typical example of splitting of the initial pulse (3.11), with 77 
W — 3, into a set of stable separating breathers. 

2 and 

and a conspicuous stability island for the fundamental solitons is found around rj — 
1.5, W — L The borders shown in Fig. 3.4 were found with limited accuracy; quite 
plausibly, smaller stability islands can be found inside the splitting region. 

Splitting of the initial pulse into several moving ones (actually, they are breathers), 
which takes place in the large region in Fig, 3.4, is another drastic difference from the 
NLS equation, in which the chirpless initial pulse (3.11) never splits. Varying r] and 
W, one may observe splitting into up to seven moving breathers (if the number of the 
splinters is odd, the central one remains quiescent). A typical example of the splitting 
into four fragments is displayed in Fig. 3.5. The splitting of a moderately broad initial 
pulse may be prevented if chirp of a proper sign and magnitude is added to it [50]. 
In this case, the pulse eventually transforms itself into a single soliton, which keeps 
almost all the initial energy and has almost no chirp. This property is another essential 
difference of SSM from the NLS equation. 

In the narrow region where a single stable breather is generated, it features irregular 
long-period oscillations, as shown in Fig. 3.6 (the length along the x-axis in this figure 
is given in units of the SSM period L). Inspection of this example shows that the 
pulse periodically assumes a double-peaked shape; multi-peaked breathers were found 
at larger values of W. At small values of 77, the breather becomes unstable against 
splitting into separating pulses, which are breathers too (not shown here; examples can 
be found in [52]). In the latter case, the splitting takes place after a long quasi-stable 
evolution stage, and some spontaneous symmetry breaking is observed. 
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Figure 3.6: An example of formation of a stable quasi-periodic breather from the initial 
pulse (3.11) in the case of 7/ = 0.4 and W = 3. 

It was mentioned above that the initial pulse corresponding to the soliton of the 
average-NLS counterpart of the SSM, in the form (3.10) with 77 ~ 1, completely decays 
into radiation in the SSM with very large L. In terms of Fig. 3.4, which pertains to 
L = 1, the latter is tantamount to taking very large ij. Indeed, the figure shows that 
such initial pulses suffer complete decay, which is another salient difference from the 
NLS equation (where the same initial pulse would result in formation of a soliton of a 
very high order). 

The diagram in Fig. 3.4 does not include small stability islands for solitons and 
breathers (except for the aforementioned one, found around the spot with 7] = 1.5, W = 
4), which definitely exist inside the "radiation" region. Actually, a complex (plausibly, 
fractal) system of stability islands was found in Ref. [50] in the case ofW = r]= 1, by 
increasing the value of L in steps of AL = 1. As a result, it was found that the soliton 
remains continuously stable up to L = 14; then, stability islands were found around 
the following values of L: 

L = 18, L = 20, L = 22, L = 24, L = 26, L = 36, L = 51, L = 59. (3.26) 

In the islands at large L, the stable solitons have a small amplitude, and are broad. No 
stability regions were found for L > 60. 

In connection to the latter finding, it is relevant to mention that a sophisticated sys­
tem of alternating windows was earlier discovered in a very different nonlinear model 
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based on the Goldstone equation (also called (f)'^ equation) for a real function (l){x, t), 

4>tt - (l>xx - (l^ +'P'^ = 0, (3.27) 

which has exact solutions in the form of topological solitons (kinks) that may move at 
an arbitrary velocity c, within the interval — 1 < c < +1 , 

( X — ct \ 
, ,, , (3.28) 

^/2{l-c^)J 
cr = ±1 being the polarity of the kink. Numerical simulations of collisions between 
the kinks with opposite polarities and opposite velocities ±c in Eq. (3.27) had revealed 
that the collision results in annihilation of the kinks into a breather (which is subject to 
subsequent slow radiative decay) if c is very small. On the other hand, the collision is 
quasi-elastic (i.e., the kinks pass each other with almost no loss) if c is sufficiently close 
to 1. Between these two cases, a system of alternating windows of annihilation and 
quasi-elastic collisions was found [36]. A semi-qualitative explanation to these findings 
was based on the collision-induced exchange between the original kinetic energy of the 
kinks, and the energy absorbed by the internal oscillatory degree of freedom, which the 
kink is known to have in this model (internal oscillations are excited in both kinks as 
a result of the collision). A similar fine system of alternating windows was found, 
and a similar explanation to it was proposed, for kink-antikink collisions in the so-
called double sine-Gordon equation [37]. It may happen that the SSM soliton also has 
an internal degree of freedom (note that the ordinary NLS soliton does not have any 
intrinsic mode). However, the latter issue has not been explored. 

3.3 Random split-step system 

As was mentioned above in connection to the random DM systems, the study of het­
erogeneous nonlinear models in which cells alternate not periodically but randomly 
(i.e., the length of the cell is picked randomly from some interval, such as (2.32)) is an 
issue of significant interest to applications, and in its own right as well. The random 
version of the SSM was considered in work [52]. To pose the random-SSM model, it 
was assumed that the lengths Ljv and LD of the nonlinear and dispersive segments are 
not fixed as above (for instance, as LN = LD = 1/2), but are taken at random from 
an interval Lmin < L^ — Lo = L/2 < Lmax (note that it is assumed that the lengths 
Ljv and Ljj remain mutually locked in each cell; if, instead, they are chosen at random 
and independently from each other, no stable soliton can be found in the system). 

Numerous runs of simulations, performed for the random model at various values 
of parameters, have yielded a simple conclusion: if the ratio Lmax/Lmm is not very 
large (for instance, if Lma,x/Lmm = 5), stable SSM solitons persist in the random 
system, and, on the average, they seem almost identical to the solitons in the regular 
(strictly periodic) SSM model, with L simply equal to the median value, L = (1/2) 
{Lmax + Lmin), of the random distribution. As a typical example. Fig. 3.7 displays 
the evolution of the initial pulse (3.10) with 77 = 1 in the random SSM with Lmin = 1, 
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Figure 3.7: (a) A typical example of the formation of a soliton in the random split-
step model, with Lmin = 1 and Lmax = 5, from the initial pulse (3.10) with 
•q ~ I. (b) For comparison, the same is shown in the regular system with L = 
( 1 / 2 ) (Lmax + Lynin) = 3. 
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Lmax = 5, and, for comparison, the evolution of the same initial pulse in the periodic 
SSM with L = L = 3. 

Thus, SSM solitons are stable against the disorder (in fact, they seem more robust, 
in this sense, then the DM solitons). Moreover, Fig. 3.7 (and many more numerical 
results) clearly shows that, as well as in the regular system, the soliton in the random 
SSM is an effective attractor, in the sense that initial pulses whose parameters, such 
as the amplitude or initial chirp, are different from those of an SSM soliton, quickly 
relax to it (in particular, suppression of the initial chirp can be observed). Attractors 
are typical to dissipative systems; nevertheless, in conservative nonlinear-wave systems 
they are possible too, due to the effective dissipation through radiation losses. 

Other properties of the solitons in the disordered SSM mode and its regular coun­
terpart were also shown to be very similar - such as the stability limits (see Fig. 3.4), 
formation of breathers, etc. 

3.4 A combined split-step - dispersion-management sys­
tem: dynamics of single and paired pulses 

The above consideration was dealing with a limit case of the SSM, composed of cells in 
which one segment is purely nonlinear, and the other one is purely dispersive. A natural 
question is whether soliton dynamics keeps the same character in a more realistic case, 
with nonzero dispersion in the nonlinear segment, and some nonlinearity in the disper­
sive one. The answer is that the transition to such a "mixed system" does not cause 
any drastic change in the dynamics [53]. Actually, it is more interesting to consider 
a mixed system which is constructed as a DM model with the map including an extra 
segment, with strong nonlinearity and negligible GVD. As was shown in work [53], 
such a three-step system, which may be regarded as a combination of SSM and DM, 
produces quite interesting and promising (for applications) results, although robust RZ 
pulses found in it are not true solitons. In particular, an essential advantage offered by 
the combined SSM-DM system is prevention of developing the overlap between adja­
cent pulses, see below (the latter problem is known in optical telecommunications as 
inter-symbol interference, or ISI). It is relevant to mention that three-step versions of 
the DM provide some other assets, such as better suppression of effects of inter-channel 
collision between RZ pulses (not necessarily solitons) in the WDM setting [17]. 

3.4.1 The model 

The combined SSM-DM system is based on Eq. (1.48) with the map that involves the 
piecewise-constant modulation of both /3 and 7 : 

r {/3i=0,7i} i f O < ^ < L i , 
{/?,7} = < {^2,70} if Li < z < Li + L2, (3.29) 

\ {/?3 = -/?2,7o} if Li -I- L2 < z < Li + L2 + L3. 

The three-step cell (3.29) repeats itself with the period L = Li-{-L2 + L3. Here,7o and 
7i are, respectively, the nonlinearity of the system fiber, and of the additional strongly 
nonlinear segment. 
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The latter (additional nonlinear) element may be realized in several different ways. 
One possibility is to use a long segment of a dispersion-shifted fiber, with a usual value 
of the nonlinear coefficient and very weak dispersion. Another realization may be 
based on a short (less than a meter) piece of an Erbium-doped fiber, which, if prop­
erly designed and pumped, may feature the nonlinearity coefficient larger by a factor 
of ~ 5-10^ than in the regular fiber. Also quite short may be a segment of a PCF 
(photonic-crystal fiber), which can provide for very strong nonlinearity with diverse 
arrangements of the fiber's microstructure, see paper [124] and references therein. 
Moreover, the nonlinear element must not necessarily be a piece of a fiber; instead, 
it may be a compact module, based on an SHG crystal, in which strong effective x^^^ 
nonlinearity is induced by x'^^^ interactions through the cascading mechanism, while 
the module's GVD may be completely neglected in view of its small size (a detailed 
description of the model with SHG modules is given in the following chapter, which 
deals with the nonlinearity management). Loss and gain terms are not included in Eq. 
(3.29), following the usual assumption of the local compensation of the fiber loss by 
lumped amplifiers. 

The simulations start with the unchirped Gaussian pulse atz = 0, 

uoit) = ^oexpf-^Y (3.30) 

with the peak power PQ and width T. Following the analogy with the definition of the 
DM strength (2.25), it is convenient to define a dimensionless nonlinearity strength of 
the extra segment, 

NS = jiPoLi (3.31) 

(actually, it is the the nonlinear phase shift at the center of the pulse passing the non­
linear segment). 

3.4.2 Transmission of an isolated pulse 

The aim of the consideration of the combined SSM-DM system is not to construct a 
true soliton solution, but rather to find propagation regimes for robust RZ pulses that 
may outperform the operation mode with usual DM solitons. Systematic simulations of 
the model with the initial condition (3.30) demonstrate that, in a broad range of param­
eter values, the propagation leads to self-compression of the pulse, with simultaneous 
generation of side-lobes attached to it in the temporal domain, a typical example of 
which is displayed in Fig. 3.8 (as the pulse performs nearly periodic shape oscillations, 
the figure shows it at a point where it is narrowest). The self-compression of the pulse 
is an effect of the additional nonlinearity added to the system. It can be checked that 
the peak power of the pulse in the case shown in Fig. 3.8 is too small for the formation 
of a soliton, but large enough to make the nonlinearity effects significant. Without the 
nonlinear segment inserted into the DM map, no systematic reduction of the width is 
observed as a result of the transmission. 

The example shown in Fig. 3.8, as well as many others, suggest that, up to some 
value of the transmission length, the overall quality of the pulse improves, as its width 
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Figure 3.8: A typical example of comparison of the input Gaussian pulse and the output 
one (in the present case, it was produced by the propagation through 30 maps of the 
combined SSM-DM system). The side-lobes of the output pulse contain, in this case, 
only 1.6% of the total energy. 
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gets reduced, roughly, by a factor of 2; after that, although the self-compression of the 
central body of the pulse continues, its overall quality starts to deteriorate due to the 
growth of the side peaks. A trade-off between these two trends defines the maximum 
acceptable {optimal) transmission length Zopt- Analysis of the numerical data reveals 
that ^opt virtually does not depend on the DM strength (2.25), when the latter takes 
values in a very broad interval, 

1.5 < 5 < 11 (3.32) 

(outside this interval, the results are much worse) [53]. However, the optimal prop­
agation length is quite sensitive to the nonlinearity strength (3.31) of the additional 
segment: the best performance is observed at NS « 0.05, and at NS > 0.10 the 
system becomes inferior to its usual DM counterpart. 

For further understanding of the dynamics of the pulses in the SSM-DM model, it is 
necessary to know how much they spread out in the course of the transmission. To this 
end, Fig. 3.9 displays plots showing the evolution of the pulse's width within one cell 
in the present model, and in its DM counterpart (the one without the extra nonlinear 
segment). For this figure, the integral definition of the squared temporal half-width is 
adopted, 

^^°° t'\u{t)\''dt 
-'int — p+oo I /,M9 ,, • P - J j ; 

J_oo Ht)?dt 
As is evident from Fig. 3.9, the same initial configuration produces a pulse that, on 
average, is definitely narrower in the present system than its counterpart in the ordinary 
DM model. 

In work [53] it was also shown that the combined system provides for more efficient 
suppression of the temporal jitter of the RZ pulse (induced by random optical noise) 
than the DM model per se. This beneficial effect may be due the fact that, inside the 
additional nonlinear segment, the phase shift acquired by the pulse is much larger than 
that of the small-amplitude noise components, which makes the interaction between 
the pulse and the noise effectively incoherent, i.e., weak. 

3.4.3 Transmission of pulse pairs 

As mentioned above, a key problem hampering the use of strong-DM schemes in the 
soliton regime is the intra-channel interaction between solitons. To understand if the 
SSM-DM model alleviates this difficulty, it is necessary to simulate the co-propagation 
of a pair of two pulses, created with a temporal delay At. The objective is to find 
the minimum value of At that provides stable coexistence of the pulses (in particular, 
without conspicuous shifts of their centers due to the interaction). It was found [53] 
that, in the interval (3.32), the SSM-DM system gives rise to the minimum separation 

(At)^i„ = 1.57TFWHM, (3.34) 

where if TFWHM = L I S T is the standard width of the Gaussian pulse (3.30), within 
the propagation distance where it is possible to maintain the acceptable quality of the 
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Figure 3.9: Comparison of the evolution of tiie squared half-widths of the pulse (gen­
erated by the same input) within one map (system's cell), in the combined SSM-DM 
system and its DM counterpart, that does not include the extra nonlinear segment. The 
integral definition (3.33) of the squared half-width is adopted here. The two plots are 
juxtaposed so that the borders between the anomalous- and normal-GVD segments, 
where the pulse's width attains its maximum in the ordinary DM system, coincide. In 
the plot corresponding to the SSM-DM model, the width keeps a small constant value 
inside the additional nonlinear segment (0 < 2; < 20). 
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Figure 3.10: The comparison between the input and output two-pulse configurations 
in the combined SSM-DM system (a) and its ordinary DM counterpart (that does not 
include the extra nonlinear segment) (b). The output is generated by the transmission 
of the pair through 30 system's cells. 

single-pulse transmission, see above. If At exceeds {^t)^^^, the co-propagating pulses 
feature virtually no interaction at all; in the opposite case, At < {At)^^^, the pulses 
merge into a single one. 

The small value of (At)^-^^ is quite promising for the applications, making it pos­
sible to realize a high bit rate (per channel) in the fiber-optic telecommunication link. 
For instance, for the pulse width TpwHM = 7.08 ps, that was actually used in the above 
examples, Eq. (3.34) yields (At)^-^^ = 1.57 TFWHM = 11-12 ps, which implies the 
maximum bit rate as high as 89 Gb/s per channel. 

In fact, the present system not only prevents the merger of the pulse pair with 
At > (At)j^;^, but also improves the quality of the double-pulse configuration, show­
ing a trend to clear the space between them, which means suppression of the above-
mentioned ISI effect. The latter property is illustrated by typical examples in Fig. 3.10, 
through comparison between the input and output shapes of the two-pulse configura­
tions, in the case of At = 1.69 TFWHM > which is close to the minimum necessary 
separation, as per Eq. (3.34). In the figure, the comparison is given, in parallel, for 
the full model and its DM counterpart, which makes the effect of the ISI suppression 
obvious. 



Chapter 4 

Nonlinearity management for 
quadratic, cubic, and 
Bragg-grating solitons 

4.1 The tandem model and quasi-phase-matching 

The models considered in the previous chapters involved only x^^^ (cubic, alias Kerr) 
nonlinearity. Quadratic (x^^ )̂ nonlinearities and, in particular, SHG (second-harmonic-
generating) ones also play an important role in optics. The quadratic nonlinearity may 
be another natural ingredient of periodic heterogeneous nonlinear systems. In partic­
ular, a tandem system, which is a periodic concatenation of x^^^-nonlinear and linear 
elements, was proposed by Torner [162] as a medium facilitating the creation of x̂ ^̂  
solitons in the temporal domain. The respective model is based on the SHG equations 

iUz+ic{z)uT —-P{z)uTr+ ''i{z)u*v = 0, 

2iv^ - ic{z)ur + ^li{z)vrr +-;p{z)u^ + q{z)v ^ 0 (4.1) 

(cf. Eqs. (1.36) for the spatial-domain SHG model), which take into regard the walk-
off c (alias group-velocity mismatch, GVM) between the FF and SH waves. The co­
efficients c, (3 and 7 in Eqs. (4.1) take two different sets of values in periodically 
alternating intervals of z, so that one of them has 7 = 0 (no nonlinearity) and much 
higher values of the GVD and GVM coefficients than the nonlinear segment. Gen­
erally, the strongly dispersive linear segments are (effectively) much shorter than the 
low-dispersive nonlinear ones. 

Systematic numerical simulations performed in work [162] had demonstrated that 
robust oscillating solitons can readily self-trap in this model. In fact, the alternation 
of the parameters in the linear and nonlinear segments can facilitate the making of 
temporal x̂ ^̂  solitons in comparison with the uniform waveguide (in particular, the 
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tandem scheme may help to resolve the most difficult problem of compensating the 
usually large GVM between the FF and SH waves). 

A well-known application of periodic heterogeneous structures in SHG media is the 
quasi-phase-matching (QPM) technique. This technique is implemented as periodic re­
versal of the orientation of electric-polarization domains in ferroelectric crystals, which 
are used as x̂ ^̂  materials, or the periodic reversal of the orientation of poling, which 
provides for the x̂ ^̂  nonlinearity in other settings. The reversal is periodic along the 
propagation direction, with a period l-njQ. This implies that the coefficient in front of 
the SHG terms in Eqs. (1.36) or 4.1) is a periodic function of z that can be expanded 
in a Fourier series, starting with the spatial harmonic exp {iQz). The extra wave vector 
Q, introduced this way, may be used to compensate the phase-velocity mismatch, if the 
latter is two large, which is often the case (for instance, the QPM period may be ~ 10 
/Lim for the wavelength of light ~ 1 /um, which means that Q may compensate the wave 
vector mismatch in the size of up to ~ 10% of the carrier wave vector itself). 

Soliton propagation in the QPM medium was theoretically investigated [43], with 
a conclusion that the soliton may feel the action of an effective nonlinearity which 
includes not only x̂ ^̂  terms, but also x̂ ^̂  ones, induced through the cascading mech­
anism. In fact, the QPM technique can be used to engineer desirable effective non-
linearity, that may include rather exotic terms (for instance, with opposite signs of the 
effective SPM and XPM coefficients). A known example [27] of such a theoretically 
predicted engineered system is 

1 
lU, + -Wa r̂r + ?? l "* ' ^+ ( 7 2 | w p - 7 l | ^ ^ P ) W = 0 

2 

ivz +-Vxx+V2U^-'2j2\ufv + qv = 0, (4.2) 

where 71,71 and 772 are real coefficients selected by the the engineering method. These 
equations were derived by averaging over the small-scale spatial modulation that rep­
resents the QPM. 

Still more sophisticated systems can be created using a new theoretically and ex­
perimentally elaborated technique of the quasi-periodic (rather than periodic) QPM, 
see paper [68] and references therein. The latter technique makes it possible to pro­
vide for simultaneous matching of many sets of quadratically interacting waves, rather 
than of the single FF-SH set. However, the QPM models and their generalizations do 
not actually belong to the class of the periodic heterogeneous nonlinear systems, be­
cause averaged equations which describe the light propagation in x̂ ^̂  media altered by 
means of the QPM technique, such as Eqs. (4.2), have constant coefficients. 

4.2 Nonlinearity management: Integration of cubic and 
quadratic nonlinearities with dispersion management 

A practically interesting application of the x̂ ^̂  nonlinearity which leads to another 
example of the nonlinear periodic heterogeneous systems is the use of SHG modules 
for generating an effectively cubic (cascaded) nonlinearity with a negative Kerr coeffi­
cient. If periodically inserted in a long fiber-optic link, properly tuned SHG elements 
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may provide for compensation of the nonlinear phase shift accumulated by RZ pulses 
passing long fiber spans, similar to how the DM provides for periodic compensation 
of the accumulated dispersion. This technique is known as nonlinearity management 
(NLM). Besides the application to the long-haul fiber-optic telecommunications, the 
utility of the technique was demonstrated in soliton-generating fiber-ring lasers [102], 
and for optical signal processing [33]. 

In terms of the optical telecommunications, NLM was proposed (in an abstract 
form, without specifying that the compensating elements would use cascaded x̂ ^̂  
nonlinearity) in work [139]. A full model, that includes the Kerr nonlinearity and 
DM in fiber spans, and SHG equations in the compensating modules, was developed 
in paper [54], which showed that the SHG modules provide not only for the nonlin­
earity compensation, but, what is quite important too, periodic reshaping of the pulses, 
and simultaneously help to suppress the earlier mentioned detrimental effect of the 
ISI (inter-symbol interference) between co-propagating pulses. Basic results demon­
strating robust transmission of RZ pulses in this system are presented below, chiefly 
following work [54]. 

4.2.1 The model 

The system is arranged in such a way that the carrier frequency of the optical signal 
propagating through the fiber link is, simultaneously, the fundamental frequency (FF) 
of the energy-conversion cascade in the x̂ ^̂  module. Parameters of the module are 
selected so that the peak power of a given input signal corresponds to the complete 
conversion cascade, FF —> SH —» FF (SH stands for the second harmonic), therefore 
the portion of the pulse around its center passes the module wasting negligible energy 
to the generation of a residual SH component, that cannot couple into the fiber span 
and is therefore lost. However, for parts of the pulse corresponding to smaller values of 
the power, the same propagation length in the SHG module is essentially different from 
that corresponding to the complete cascade, therefore the energy loss is conspicuous 
farther from the pulse's center. This mechanism reshapes the pulse, chopping its wings 
off. The extra energy loss incurred by the reshaping is compensated by increase in 
the gain of optical amplifiers, which must be included in the full system in any case. 
The optimum arrangement has the SHG module placed immediately after the amplifier, 
which maximizes the nonlinear x̂ '̂ ^ effects. 

To elaborate the approach outlined above, one should consider equations describing 
the evolution of the amplitudes u and v of the FF and SH fields in the SHG medium, 
which are just the general equations (1.36) without the diffraction terms (the latter ones 
are irrelevant in the present context). In a notation slightly different from that adopted 
in Eqs. (1.36), the SHG equations are 

du I. ^ 
- = --tKuv, (4.3) 

— = --IKU -iqv, (4.4) 
dC, 2 

where C is the distance passed by the beam in the medium, and the asterisk stands 
for the complex conjugation, K and q being the x^^^-interaction coefficient and phase 
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mismatch, respectively. Dissipative attenuation of the signal inside the SHG crystal 
and the GVM between the FF and SH signals are not included, as both are negligible 
for relevant propagation lengths. Nevertheless, the model does imply that the GVM 
must be zero (or very small), which turns out to be necessary for a different reason: 
as demonstrated in work [78], a condition tantamount to the zero GVM provides for 
equalization of the phase-velocity mismatch across channels in the WDM system. 

The propagation of the signal in the fiber spans (with altering sign of the GVD coef­
ficients, to provide for the dispersion compensation) obeys the ordinary NLS equation 
(1.48) for the field u{z, r) in the DM system. In the analysis, the latter equation in­
cludes the linear fiber loss (the same as in Eq. (3.2)), and linear amplifiers are included 
too, as per Eq. (3.5). A peculiarity of the model is that the gain G of different ampli­
fiers is not exactly the same; instead, it is adjusted at each node so as to have a fixed 
peak power of the signal entering the x̂ ^̂  module right after the amplifier, for which 
the signal is shaped by the module in an optimum way, as described above. Typically, 
the thus selected values of the gain for the model with realistic parameters are scattered 
between 10 and 13 dB. 

The reshaping of the pulse by the x̂ ^̂  module is described by a numerical solution 
of Eqs. (4.3) and (4.4) (the equations themselves are integrable, but solutions are not 
available in an explicit analytical form). Taking the input pulse as 

Win(T) = ^/pi„ ( r ) exp [i(j)in (T) ] , Vin{T) = 0, (4.5) 

the pulse exiting the SHG module becomes 

Wout(T) = \/pout {Pin ( T ) ) exp [i {(t)in (T ) + A ^ (pin ( T ) ) } ] , (4.6) 

where the power-transform function pout (Pin) and the x^^^ phase shift Ac/) (pin) can 
be found in a numerical form [54]. 

4.2.2 Results: transmission of a single pulse 

The initial pulse was launched, at the point 2; = 0, in the form of a chirp-free Gaussian 
(cf. the same waveform (3.30) used in the combined SSM-DM model), 

uo (r) = VPo exp f - ; ; ^ j . (4.7) 

The propagation of the pulse is simulated in the following way. The initial pulse (4.7) 
was propagated over the distance corresponding to one span of the link, which was 
followed by its linear amplification according to Eq. (3.5) and shaping as per Eqs. 
(4.5) and (4.6). Then, the pulse was fed into the next span, with the opposite sign of the 
GVD, and so on. As mentioned above, the gain of each amplifier was adjusted (within 
the interval 10 dB —13 dB) to provide for a constant value of the pulse's peak power 
entering the x*̂ ^̂  shaper. 

Without the DM, the shape of the pulse cannot be maintained for the propagation 
length exceeding 10 spans, and in most cases irreversible distortion of the pulse starts 
after 8 spans. The introduction of the DM as explained above (opposite signs of the 
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(a) (b) 

Figure 4.1: "Eye diagrams" illustrating the transmission of a single pulse in the sys­
tem with the nonlinearity management provided for by the periodically installed x^'^^ 
modules. The diagrams are generated by juxtaposing the pulse profiles, \U{T)\ , at the 
end of each span, (a) The system composed of 10 spans without the dispersion com­
pensation; (b) the system composed of 50 spans with the zero average dispersion, i.e., 
with the full dispersion compensation (the DM strength corresponding to this example 
is 5 = 0.9). 

GVD coefficients between adjacent spans) improves the situation drastically: at a fixed 
value of the GVD coefficient pi in the anomalous-dispersion span, variation of the 
GVD coefficient /?2 in the normal-dispersion one leads to a steep increase of the stable-
transmission distance, almost by an instantaneous jump, from 8 spans to an indefinitely 
large number, when (32 passes a relatively small critical value. Typical minimum values 
of the DM strength (defined as in Eq. (2.25)), which are necessary for the complete 
stabilization of the pulse, are quite small, Smin = 0.5 — 0.6. 

The drastic difference between the transmission of the pulses in the absence and 
presence of the DM is illustrated by "eye diagrams" for a pulse presented in Fig. 4.1. 
Diagrams of this type are frequently used in the analysis of pulse transmission in mod­
els of optical telecommunications. In the present case, they were generated by juxta­
posing the pulse profiles, \U{T)\ , at the end of each span passed. As is seen, in the 
NLM model without DM, the "eye" completely closes after the passage of 10 spans, 
which means that the pulse is not able to keep its shape, and is therefore unusable for 
the applications. On the contrary to that, in the system combining the DM and NLM, 
the eye remains completely open after 50 spans, i.e., the pulse is fully stable. The nu­
merical analysis has demonstrated that, in the combined model, it is possible to secure 
the stable transmission through an indefinitely large distance, for the pulses with the 
width and amplitude taking values in very broad limits. 

An essential aspect of the stability problem for the present system is robustness 
of the transmission against random variations of the initial peak power of the pulse. 
Indeed, the (effective) passage distance in the SHG modules, and the gain of each am­
plifier were selected so that the power at the center of pulses entering each module 
corresponded to the complete cascading cycle, FF —> SH —> FF. Noise-induced fluctu­
ations in the initial peak power po (see Eq. (4.7) will violate this condition, and may 
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therefore be potentially deleterious to the operation of the system. Investigation of the 
robustness of the system against disturbances of this type demonstrates that the op­
eration regime is vulnerable against perturbations which make the initial peak power 
po smaller (subtracting 1% frompo can essentially destabilize the pulse transmission). 
However, the transmission regime is fairly robust against perturbations that increase 
the peak power. For instance, in the case that was shown in Fig. 4.1, the pulse is 
destabilized only if its initial peak power is increased by more than 8% (if the initial 
perturbation exceeds this critical level, the pulse will get split into two after having 
passed ~ 10 spans). 

It is relevant to note that the stability of the pulse against the increase of the ini­
tial power, and lack of stability against the decrease of the power, is an acceptable 
situation, as, in the case of random-noise perturbations, the powers of the unperturbed 
pulse and noise sum up, thus making the total power only larger than in the absence of 
perturbations. 

4.2.3 Co-propagation of a pair of pulses 

It was explained in the previous chapter that the ISI (inter-symbol interference), i.e., 
gradual filling of the gap between adjacent pulses in a data-carrying stream, is an is­
sue of great practical importance. In the present model, a generic result revealed by 
systematic simulations is that the stable co-propagation of pulses is possible through 
the distance in excess of 16 spans, although not much larger. The difference from the 
single-pulse case, where the stable transmission is possible for an indefinitely large 
number of spans, may be explained as follows: in the course of the propagation, each 
pulse emits small portions of radiation, which hit the other pulse. The accumulation of 
this perturbation eventually leads to strong distortion of the pulses. The situation could 
be improved if optical filters are added to the system (cf. the situation considered in 
the previous chapter for the soliton transmission in DM systems), as the filters absorb 
the radiation. 

A necessary condition for the stability of the co-propagating pair of pulses is that 
the temporal separation between them must exceed a minimum value, Tmin- This char­
acteristic is important as it sets a limit for the possible bit-rate capacity of the opti­
cal telecommunication link. Varying the DM strength within the (quite broad) inter­
val of 0.5 < S < 5, it was found that Tmin attains a flat minimum in a subinterval 
2.5 < 5 < 3.5, as shown in Fig. 4.2. This result demonstrates that, as concerns the 
suppression of the interaction between pulses, the case of the moderate DM is an opti­
mal one; recall that a similar conclusion has been made about the soliton interactions 
in the ordinary DM systems [171, 146]. 
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Figure 4.2: The minimum separation between the co-propagating pulses, necessary 
for the stable passage of (at least) 16 spans in the system combining the nonlinearity 
management and dispersion management, vs. the DM strength in the system with the 
zero average dispersion. 
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4.3 Nonlinearity management for Bragg-grating and 
nonlinear-Schrodinger solitons 

4.3.1 Introduction to the problem 

Gap solitons (GSs) in the model of the fiber Bragg grating (BG) with the cubic nonlin­
earity, based on Eqs. (1.27) and (1.28), and similar models constitute a separate class 
of solitons. A principal difference between them and the NLS solitons is that the lat­
ter ones exists as a result of the balance between the self-focusing SPM nonlinearity 
and anomalous temporal dispersion. If the nonlinearity is self-defocusing, while the 
dispersion remains anomalous, bright solitons do not exist. However, the sign of the 
nonlinearity does not matter in the BG model, as the effective dispersion (or diffrac­
tion, see below) induced by the grating includes both normal and anomalous branches, 
hence either of them will be able to support solitons. The latter circumstance suggests 
to consider a model where the nonlinearity may change its sign, and explore GSs in 
that case. 

The simplest possibility to realize the sign-changing nonlinearity is to take it as a 
combination of cubic and quintic terms with opposite signs. This modification of the 
standard BG model was considered in work [20]. As well as in the case of the standard 
BG system (1.27), (1.28) with the cubic nonlinearity, stationary soliton solutions of its 
cubic-quintic counterpart were found in an exact analytical form, while their stability 
was studied by means of numerical simulations. It was concluded that the family of 
GSs in the modified system is drastically different from that in its standard counterpart: 
the family splits into two disjoint subfamilies, each being dominated by one of the two 
nonlinear terms of the opposite signs (in accordance with what might be expected), and 
a part of each subfamily is stable. 

A different possibility to study the effect of the sign-changing nonlinearity on the 
GSs is to introduce a model with the nonlinearity being represented by the cubic term 
only, whose sign changes periodically as a function of the evolution variable, i.e., the 
NLM in combination with the BG. In the temporal domain, this implies that the non-
linearity must periodically change its sign in time, which is not a physically realistic 
assumption. However, the necessary arrangement can be implemented in the spatial do­
main, i.e., for stationary light beams propagating across a layered structure in a planar 
nonlinear waveguide. 

4.3.2 Formulation of the model 

According to what is said above, the model to be considered has the form 

iu^+iu^+'r{z)(-\u\'^+ \v\'^\u + v = 0, (4.8) 

iv^-iv^+'y{z)(-\vf + \u\Av + u = 0, (4.9) 

where z is the propagation distance, which plays the role of the evolution variable in­
stead of time in Eqs. (1.27) and (1.28), and x is the transverse coordinate in the planar 



4.3. NONLINEARITYMANAGEMENT 81 

layered waveguide. The form of Eqs. (4.8) and (4.9) implies that the carrier wave vec­
tors of the two waves, which are resonantly reflected into each other by BG, form equal 
angles with the z axis. The reflecting scores (or ribs) which form the BG with spacing 
h on the planar waveguide are oriented normally to the z axis, the Bragg-resonance 
condition taking the form of Eq. (1.29). The usual diffraction in the waveguide is 
neglected, as it is assumed that BG gives rise to a much stronger artificial diffraction. 
Although Eqs. (4.8) and (4.9) are z-dependent, they conserve the net power, 

/

+ 00 

{\u{x)fdx+\v{x)\^)dx. (4.10) 

-oo 

The layered structure of the waveguide assumes that the Kerr coefficient 7(2) takes 
positive and negative values 7+ and 7_ in alternating layers, cf. Eq. (3.29): 

7 ( z ) = | ^ + ' ., / f ° < " < ^ + , (4.11) 
'^ •' \ 7_, if L + < z < L + + L _ , ^ ^ 

which is repeated periodically with the period L = L+ + L-. Using the scaling 
invariance of Eqs. (4.8) and (4.9), one may always impose the following normalization 
conditions: 

L+ + L_ = l, L+7+ + L_|7_| = l. (4.12) 

Thus, the model contains two irreducible control parameters, which may be selected 
as, e.g., L+ and 7+, while the other parameters can be found from Eqs. (4.12), 

L_ = 1 - L+, 7_ = - (1 - L+7+) / (1 - L+). (4.13) 

Note that corresponding average value of the Kerr coefficient is 

7 ^ ' ^ V - ^ ! ^ ^ - = 2 L ^ 7 ^ - l . (4.14) 

Being interested in the sign-changing model, with 7_ < 0, the case of L+7+ < 1 will 
be considered here, as it is equivalent to 7_ < 0 according to Eqs. (4.13). 

Because the usual broad small-amplitude GS solitons (1.33) with ^ <C 1 are asymp­
totically equivalent to broad NLS solitons, it is natural to consider, parallel to the model 
based on Eqs. (4.8), (4.9), also the spatial-domain NLS equation with the nonlinearity 
coefficient subjected to the same periodic modulation as in Eq. (4.11), 

1 2 
iu^ + -u^^ + 7(z) |w| w = 0. (4.15) 

Comparing the results for the gap and NLS solitons in the two models will be quite 
helpful in realizing the generality of the conclusions presented below; besides that, the 
model (4.15) is of interest in its own right. 
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4.3.3 Stability diagram for Bragg-grating solitons 

Unlike the NLS solitons, the variational approximation for the gap solitons is very 
complex even without NLM [113]. Therefore, one should rely on direct numerical 
simulations of Eqs. (4.8), (4.9), with -j{z) defined as per Eqs. (4.11 ) and (4.13). 
The simulations used the initial configuration (at 2; = 0) in the form of the exact GS 
solution (1.33) for the uniform medium, parameterized by 9 and taken at i = 0. The 
simulations were run for a fixed value of 9, while the model's control parameters 7+ 
and L+ were gradually varied, subject to the above-mentioned constraint I'+7+ < 1. 
Then, the same was done for other values of 9. 

Numerical results identify a stability region for the solitons in the parameter plane 
(L-I-, 7+) which is shown in Fig. 4.3. The upper boundary of the stability region is 
L4.7+ = 1, which, as said above, limits the case considered here, as the local Kerr 
coefficient ceases to be sign-changing above this boundary. The upper boundary itself 
corresponds, as is seen from Eqs. (4.13), to a system in which nonlinear layers of the 
width L+ alternate with linear ones (having 7_ = 0) of the width L_. The simulations 
demonstrate that everywhere on this boundary, the solitons are stable, and they remain 
stable above the boundary, so by itself it is not a stability border. The left vertical 
boundary of the stability region in Fig. 4.3 at L+ = 0.2 is not a real stability border - it 
only bounds a range for which the results are displayed (the range is 0.2 < L+ < 1.0). 

The lower boundary of the stability region in Fig. 4.3 is rather close to a hyperbola, 
with the product L+7+ along this boundary taking values between 0.65 and 0.70. For 
comparison, the dashed curve in Fig. 1 shows the hyperbola L+7+ = 1/2, along which 
the average Kerr coefficient (4.14) exactly vanishes. The finite separation between the 
lower stability boundary and the dashed curve can be measured by the average value 
7 of the Kerr coefficient (4.14), the smallest value for 7 found on the lower boundary 
being « 0.3. Thus, stable solitons are not possible in a system where the average 
value of the Kerr coefficient is zero. This is, incidentally, a noteworthy difference from 
the DM system, where stable solitons are found in the case when the path-average 
dispersion exactiy vanishes (see the previous chapter). This result is similar to one 
obtained in work [165], and presented in Chapter 7 below, for the (2+l)D (cylindrical) 
solitons in a bulk (3D) layered medium without BG: there too, a finite positive average 
value of the Kerr coefficient is necessary for the existence of any soliton, stable or 
unstable (see Fig. 7.1 and related text). It will be shown here that the same result is 
also true for the layered NLS model (4.15). On the other hand, a difference of the BG 
model from the NLS one is that the sign of the nonlinearity is not crucial, as explained 
above. Therefore, there exists another stability area in the region where the average 
Kerr coefficient is negative, i.e., L+7+ < 1/2 (not shown in Fig. 4.3). 

The formation of stable solitons in this system is accompanied by emission of radi­
ation, and, sometimes, by generation of a small additional pulse, as shown in Fig. 4.4. 
The emission of radiation is conspicuous in the case when the stable soliton is close to 
the lower stability border (in terms of Fig. 4.3). On the other hand, in the unstable case 
the initial pulse completely decays into radiation. 

The stability diagram displayed in Fig. 4.3 was obtained from simulations of Eqs. 
(4.8) and (4.9), starting from the initial configuration (1.33) with 9 = 0.484 • IT, which 
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Figure 4.3: The stability diagram for the Bragg-grating solitons in the model with the 
nonlinearity management, based on Eqs. (4.8), (4.9) and (4.11), (4.13). The stabil­
ity region is bounded by the lower solid curve, while the upper curve, the hyperbola 
L+7+ = 1, is a border of the parametric area where the local Kerr coefficient period­
ically changes its sign. The dashed curve is the hyperbola L+j^ = 1/2 along which 
the average value of nonlinearity is zero. 
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Figure 4.4: An example of the formation of a stable soliton in the Bragg-grating model 
with the sign-changing nonlinearity, for L+ = 0.5 and 7-1- = 1.7. Only the u compo­
nent is shown. An explanation to broken symmetry of the observed configuration (the 
small pulse has no mirror-image counterpart) is given in the text. 
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is close to the stability-limiting value 6cr ~ 1.01 • (7r/2) of the standard model (1.27), 
(1.28) with constant coefficients. Additional simulations show that the stability region 
has virtually no sensitivity to the variation of ^: for example, decreasing 9 from 0.484-7r 
to 0.452 • TT (i.e., from arccos 0.05 to arccos 0.15; recall the relation u) = cos 9 between 
the frequency of the usual BG soliton (1.33) and 9) produces absolutely no detectable 
change in the shape of the stability region. 

4.3.4 Stability of solitons in the NLS equation with the periodic 
nonlinearity management 

For the sake of comparison of the manifestations of the NLM in different models, it is 
relevant to generate a stability diagram for solitons in Eq. (4.15), with 7(2) taken again 
as per Eqs. (4.11), (4.13). The simulations were run with the initial condition 

uo{x) = 'risech{r]x), (4.16) 

that would generate an exact soliton in the NLS equation with 7 = 1. 
The result is that, for all the moderately narrow initial solitons (4.16), i.e., ones 

with T] not too large, the respective stability diagram is almost indistinguishable from 
its counterpart in Fig. 4.3. A difference between the BG and NLS models becomes 
conspicuous if r] in the initial pulse (4.16) is high. One may expect that, for very 
narrow solitons with large r], whose diffraction length ~ 1/77̂  is much smaller than the 
NLM period L = 1, the periodic change of the nonlinearity sign, as in Eq. (4.11), is 
a very strong perturbation that may destroy the soliton (cf. the situation for the SSM 
presented in the previous section, where solitons with the width ~ 1 cannot exist in the 
model with a very large modulation period L). Indeed, running the simulations of Eq. 
(4.15) with the initial condition (4.16), it was found that the stability region strongly 
shrinks, see an example for r; = 5 in Fig. 4.5. Moreover, even if the evolution of the 
initial pulse (4.16) with large ry results in the appearance of stable solitons, they were 
frequently produced by splitting of the initial pulse, as shown in Fig. 4.6. Recall that 
an initial chirpless pulse cannot split in the integrable NLS equation, but it does split in 
the SSM, provided that the energy of the pulse is large enough (Fig. 3.5). 

4.3.5 Interactions between soHtons and generation of moving soli­
tons 

Interactions between solitons in the nonlinearly-managed BG model based on Eqs. 
(4.8), (4.9), (4.11), and (4.13) were also studied in work [21]. In particular, two iden­
tical solitons with an initial phase difference Acj) attract each other if A^ = 0 (see Fig. 
4.7(a)), and repel if Acj) = IT (see Fig. 4.7(b)) or A(f> = 7r/2 (not shown here). Figure 
4.7 also demonstrates two other important features. First, it shows that stable "moving" 
solitons exists in the present model (in fact, in the spatial-domain model they are not 
moving, but are, actually, tilted spatial solitons in the {z, x) plane). Second, in the case 
when the two solitons initially attract each other, and hence temporarily merge into a 
"lump" , as seen in 4.7(a), conspicuous spontaneous symmetry breaking is observed, 
and the outcome of the interaction is inelastic: an additional tilted pulse is generated, 
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Figure 4.5: A narrow stability region in the nonlinear Schrodinger model (4.15) with 
the Kerr coefficient periodically changing its sign as per Eqs. (4.11) and (4.13), for the 
case when the initial pulse is given by Eq. (4.16) with 77 = 5. 
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Figure 4.6: An example of splitting of the narrow pulse (4.16) with 77 = 5 in the model 
(4.15) into two secondary solitons with a smaller amplitude. The parameters of the 
model are L+ = 0.35 and 7+ = 2.74. The propagation distance shown in this figure is 
200 modulation periods. 
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Figure 4.7: Interaction of two identical stable solitons with an initial phase difference 
A^ and separation Ax in the BG model with the periodically changing sign of the 
nonlinearity, for L+ = 0.5, 7+ = 1.94. The solitons have been generated from the 
initial configuration (1.33) with 9 w 0.484 • n (the same as the one used in Fig. 4.4). 
(a) A<f) = 0, Ax = 12 (attraction); (b) A(f) = TT/2, AX = 12 (repulsion). Only the u 
component is shown. 

along with some radiation. It seems plausible that a "lump", which was temporarily 
formed as a result of the attraction between the initial solitons, is subject to modula-
tional instability, hence the amplification of small random numerical perturbations by 
the instability gives rise to the symmetry breaking. Note that the symmetry is preserved 
in the case of repulsion in Fig. 4.7(b), where no intermediate lump was formed. 



Chapter 5 

Resonant management of 
one-dimensional solitons in 
Bose-Einstein condensates 

It was explained in the Introduction that the technique based on the Feshbach resonance 
(FR), which makes it possible to control the size and sign of the scattering length of 
atomic collisions in BEC, i.e., the coefficient in front of the cubic term in the corre­
sponding GPE (Gross-Pitaevskii equation), has become a very important tool in the 
experiment [81, 148, 157], and also is a strong incentive for the development of the­
oretical analysis. Especially interesting is the possibility to control the nonlinearity 
coefficient by ac (time-periodic) magnetic field, which brings the nonlinearity manage­
ment concept into the realm of BEC. In the ID setting, this technique was developed 
under the name of the Feshbach-resonance management (FRM) in work [90]. The 
analysis was focused not on solitons proper, but rather on more general states whose 
localization was supported by the external parabolic trapping field (in the experiment, 
magnetic or optical trap is always necessary [141]). Additionally, the resonant action 
of the harmonic time modulation of the nonlinearity coefficient on fundamental and 
higher-order solitons in the NLS equation without external potential was recently stud­
ied in work [153]. Main results obtained for the FRM-driven localized nonsoliton and 
soliton states in the ID setting are summarized in this chapter. 

5.1 Periodic nonlinearity management in the one-dimensional 
Gross-Pitaevskii equation 

It is known that the 3D Gross-Pitaevskii equation (GPE) (1.39) for BEC tightly con­
fined in two transverse directions {x and y), and loosely confined by the parabolic 
potential fl'^x'^/2 along the longitudinal axis x, can be reduced, by averaging in the 
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transverse plane, to the ID equation. In a normalized form, this effective GPE is 

iut = --u^x + •zO.'^x'^u + a{t)\u\'^u, (5.1) 

where u{x, t) is the ID wave function. Following work [90], the FRM-controled non-
linearity coefficient, proportional to the scattering length, is modulated in time the 
same way as the GVD coefficient in the DM models is modulated as a function of the 
propagation distance z (see Eq. (1.49)), 

r a i > 0 , i f 0 < i < T / 2 , 
^ ' " 1 as ^ 0 if T/2 < t < T, ^^•'•' 

which is repeated with a period T. The value 02 in Eq. (5.2) may be both positive 
and negative, but the most interesting case is one with a^ < 0, when the nonlinearity 
coefficient periodically flips its sign. The modulation map (5.2) naturally defines the 
average ("dc") value of the nonlinear coefficient, and its "ac" part, as the amplitude of 
the periodic variation, 

Ode = 2 ('̂ l + ^̂ 2) , flac = 2 ("1 ~ "2) • (5.3) 

The main difference of this model from the NLM models considered in the previous 
chapter is an important role played by the parabolic trap (see below). 

The most natural structure which may be expected to set in under the action of 
FRM, and in particular for small average values a, is one oscillating between ground 
states that would exist at positive and negative constant values of a. In the former 
case (a > 0), this state is well approximated by the Thomas-Fermi (TF) wave function 
[141], 

u,, = / 2 M : _ M ! e - . * , (5.4) 
y 2a 

where /z is the chemical potential (determined by the number of atoms in the conden­
sate). The TF approximation neglects the kinetic energy of the ID motion of atoms in 
the condensate, i.e., the term Uxx in Eq. (5.1). 

In the latter case, a < 0, a Gaussian wave function, i.e., the ground state of the 
quantum harmonic oscillator, is a natural approximation, unless a is too large (very 
strong nonlinearity). Numerical simulations corroborate this assumption: starting with 
the initial TF state, prepared for a(0) = 1 as per Eq. (5.4), simulations of Eq. (5.1) 
reveal persistent oscillations between the TF and Gaussian configurations, as shown in 
Fig. 5.1. For small values of ai and |a2|, the oscillations are always regular (periodic). 
As ai and —02 increase to values ~ 1, more frequencies come into play, the oscillations 
become chaotic, which is accompanied by fragmentation of the wave function in space. 

Overall description of dynamics of the FRM-driven ID condensate is provided by 
a phase diagram which is displayed in the (adc, ̂ ac) plane in Fig. 5.2(a) (it may be 
relevant to compare this diagram with the diagram of dynamical states in the SSM 
model displayed above in Fig. 3.4). The "breather" (oscillating state) is stable beneath 
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Figure 5.1: (a) Stable oscillations in the FRM-driven condensate in the weak parabolic 
trap with Q, = 0.002, between the Thomas-Fermi and Gaussian configurations, in the 
case of T = 2, a^c = 0, Oac = 0.1, see definitions of the parameters in Eqs. (5.2) 
and (5.3). (b) Time evolution of the field's amplitude for Odc = 0, aac = 0.1 (dotted 
line) and Odc = 0.4, Oac = 0.6 (solid line). In the former case, the oscillations are 
quasi-periodic, while in the latter case they are chaotic. 
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Figure 5.2: (a) The phase diagram for dynamical states of the FRM-driven condensate 
for T = 2. (b) Shape oscillations of the stable state close to the 2-soliton of the NLS 
type, for Odc = -0.4 and adc = 0.015. The inset shows the fundamental-soliton stable 
state obtained instead of the 2-soliton if the trap is switched off, fi — 0. 

the solid curve, featuring periodic and chaotic oscillations in areas I and II, respectively. 
In area III, the breather is closer to the TF state, which is quite natural, as the interaction 
is always repulsive in this case (adc > Oac)- Finally, in area IV, the breather strongly 
resembles the 2-soliton solution (1.15) of the self-focusing NLS equation, an example 
of which is shown in Fig. 5.2(b). It is relevant to mentioned that, in accordance with 
the fact that the 2-soliton is (weakly) unstable in free space, this breather demonstrates 
a completely different behavior in the absence of the trapping potential (f2 = 0): it 
then sheds off s» 2% of its norm with radiation, and reorganizes itself into an ordinary 
fundamental NLS soliton shown in the inset to Fig. 3.4(b). 

Another type of the FRM-controlled dynamical state can be obtained by embed­
ding a narrow dark soliton (DS) into the trapped condensate, thus creating a dip in 
the center of the breather. This can be done with the initial condition of the form 
u = UT^p{x) tanha; (recall the TF wave function is given by Eq. (5.4)). Then, a new 
stable state emerges, featuring drastically different dynamics: the central part of the 
condensate including the DS remains virtually static even as a{t) takes negative val­
ues, as can be seen in Fig. 5.3 (cf. vibrations of the breather in Fig. 5.1), and only 
"wings" oscillate quasi-periodically between states with smaller and larger curvature 
(which may be regarded, respectively, as remnants of the former TF and Gaussian 
states). This soliton-like state may be viewed as a nonlinear counterpart of the first 
excited state of the quantum harmonic oscillator. 
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Figure 5.3: A dark soliton nested in the FRM-driven one-dimensional condensate with 
T = 2, ajc = 0, and a^c = 0.1. The top panel shows the evolution of the density. The 
left and right bottom panels display, respectively, the density profiles at i = 139.6 and 
t = 142.8 (by dashed-dotted and solid lines), and maximum density as a function of 
time. 

5.2 Resonant splitting of higher-order soHtons under 
the Feshbach-resonance management 

5.2.1 The model 

A very long effectively ID condensate is described by the GPE without the trapping 
potential. The simplest possibility to introduce the FRM in this case is to add a small 
time-dependent harmonic ("ac", in terms of the previous section) term to a large con­
stant ("dc") part of the coefficient in front of the cubic term, which corresponds to the 
attractive collisions between atoms in the condensate (negative scattering length). The 
corresponding version of GPE (5.1) is (in this section, the notation (p is adopted for the 
normalized ID wave function) 

1 
i<t>t + •7,<t>xx + [1 + &sin{tot)] \(j)Y<l) = 0, (5.5) 

where the amplitude h of the ac drive is small. Resonant splitting of higher-order 
solitons in this model was reported in work [153]. Note that Eq. (5.5) is similar to Eq. 
(4.15) dealt with in the previous chapter. However, the form of the periodic modulation 
of the nonlinearity coefficient was completely different there, and resonant effects were 
not considered in Eq. (4.15). 
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5.2.2 Numerical results 

The n-soliton states in Eq. (5.5) with 6 = 0 are generated by the initial conditions 
(1.14) with 7 = |/3| = l,i.e., 

4>o{x) = Nrj sech {rfix — XQ)) , (5.6) 

where XQ is the coordinate of the soHton's center. As the shape of the resulting state 
oscillates with the period given by expression (1.16) (irrespective of the integer value 
of n, for N >2),a. resonance may be expected if the driving frequency in Eq. (5.5) is 
close to the frequency corresponding to the soliton period (1.16), 

u)Q = 4r] (5.7) 

Figure 5.4 displays the evolution of the wave function generated by the initial con­
dition (5.6) with N = 2 and ry = 1, in the anticipated resonant case, with u = UQ = A 
(pursuant to Eq. (5.7)) and the FRM-driving amplitude h = 0.0005. This very weak 
resonant drive is sufficient to split the 2-soliton into two fundamental solitons. The 
amplitudes of the splinters are very close to 771 = 3 and 772 = 1, exactly corresponding 
to parameters of the fundamental-soliton constituents of the original 2-soliton with, as 
perEq. (1.17). Velocities of the splinters were measured to be 

vi = 0.00197, V2 = 0.0066, (5.8) 

respectively (with the ratio wi : V3 « 1 : 3). 
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Figure 5.4: A typical example of splitting of a 2-soliton, generated by the initial con­
dition (5.6) with N = 2 and ri = 1, into an asymmetric pair of moving fundamental 
solitons, under the action of the weak resonant FRM drive, with LU = 4 and b = 0.0005. 
(a) The evolution of |^(x, t) \. (b) The wave-function configuration at i = 1000. 

Similar resonant splittings were observed for n-solitons with n > 2. In particular, 
Fig. 5.5 shows this outcome for the initial configuration (5.6) with N = 3,r} = 0.5, 
ui = 1 (which should be the resonant frequency, as per Eq. (5.7)),and6 = 0.0005. This 
time, the splitting gives rise to three moving fundamental solitons, whose amplitudes 
are close to Ai = 2.5, A2 = 1.5, and A3 = 0.5. These values precisely correspond to 
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the constituents of the original 3-soliton (with A = 0.5), as given by Eq. (1.18). The 
velocities of the three splinters are 

vi = -0.00146, V2 = 0.0732, vs = -0.0148, 

with ratios between them vi : V2 '• v^ K (—1) : 5 : (—10). 

(5.9) 

- I 1 1 r 

10 20 30 40 50 
X 

Figure 5.5: The same as in Fig. 5.4 for a 3-soliton, generated by the initial configuration 
(5.6) with N = ^ and rj = 0.5. In this case, the forcing frequency and amplitude are 
w = 1 and 6 = 0.0005. 

These results are summarized in Fig. 5.6 in the form of plots which show the 
minimum (threshold) value of the forcing amplitude b, necessary for the splitting of 
the 2- and 3-solitons as functions of the driving frequency LU. As seen from the figure, 
these dependences clearly have a resonant shape, with sharp minima at the frequency 
predicted by Eq. (5.7). Similar results were also obtained for the n-solitons with n = 4 
and 5. 
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Figure 5.6: The minimum values of the amplitude b of the FRM driving term, necessary 
for the splitting of the 2-soliton (a) and 3-soliton (b),versus the driving frequency w. 
The initial condition is taken in the form of Eq. (5.6) with, respectively, N = 2 and 
T] = 1, or N = 3 and rj = 0.5. In both cases, the sharp minimum exactly corresponds 
to the resonant frequency, as predicted by Eq. (5.7). 
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5.2.3 Analytical results 

The amplitudes and velocities of the fundamental solitons, into which the higher-order 
ones split, can be predicted in an analytical from. It was already mentioned above that 
the amplitudes of the secondary solitons coincide with those which correspond to the 
constituents of the original n-soliton, as given by Eqs. (1.17) and (1.18). However, 
the velocities of the emerging fundamental solitons cannot be forecast this way, as, in 
terms of the 1ST technique applied to Eq. (5.5) with 6 = 0, which correctly predicts 
the amplitudes, the velocities must be zero. 

Nevertheless, both the amplitudes and velocities of the final set of the solitons can 
be predicted in a different way, using the exact and nearly exact conservation laws of 
Eq. (5.5). These are two exact dynamical invariants, the norm (1.43) and momen­
tum (1.10), and, in addition to them, three approximately conserved quantities are the 
Hamiltonian (1.8) and two higher-order expressions, (1.11) and (1.12) (they are con­
served only approximately as the nonlinearity coefficient in Eq. (5.5) contains the small 
variable part). 

In the case of the splitting of the 2-soliton (5.6) with the amplitude r], the exact 
conservation of the norm and approximate conservation of the Hamiltonian yield the 
following relations between rj and the amplitudes T/I,2 of the emerging fundamental 
solitons (splinters): 4?7 = 771 -f 772. and 28r]^ Ri rif + r]l (the latter relation neglects 
small kinetic energy of the emerging solitons). These two relations immediately yield 
rji = 3?7 and 7/2 = 77, which coincides with the the above-mentioned numerical re­
sults, as well as with the predictions based on the set of the 2-soliton's eigenvalues 
(1.17). Furthermore, the exact momentum conservation yields a relation involving the 
velocities 7;i_2 of the secondary solitons, rjivi + r]2V2 = 0. With regard to the ratio 
'rii/V2 = 3, this implies vi/7;2 = —1/3, which is consistent with the numerical results 
(5.8), although the absolute values of the velocities cannot be predicted this way. 

Similarly, in the case of the splitting of the 3-soliton, the exact conservation of A'̂  
and approximate conservation of H and h (see Eq. (1.12)) yield the relations (which 
again neglect small kinetic terms, in view of the smallness of the observed velocities) 

977 = 7?i + 7?2 + 773,15377̂  « J?? + ??2 + Vl 336977̂  ^vl+vl+vl (5.10) 

A solution to this system of algebraic equations is 771 = 677,772 = 377, A3 = 77, which 
are the same values that were found from direct simulations, and can be predicted as 
the 1ST eigenvalues (1.18). The conservation of P and h gives rise to further relations, 

77i7;i + 772̂ 2 + ?73V3 = 0, (771̂ 1 - rifvi) + {r]2vl - 772̂ 2) + {mvl - illvs) = 0. 
(5.11) 

If the velocities ^1,2 are small, it follows from here that 7;i/t'2 = — (̂ 2 ~ V2V3)/{Vi ~ 
ViVs) = - 1 / 5 , and 7̂ 3/7;2 = -(77! - il2i]i)/iV3 ~ VsVi) — ^2 . These ratios are 
consistent with the numerical results (5.9). 
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5.3 Resonant oscillations of a fundamental soliton in a 
periodically modulated trap 

Besides the periodic modulation of the scattering length (that determines the nonlin-
earity coefficient in the GPE) by means of the FR, another experimentally feasible 
way to "ac-manage" dynamical states in the ID condensate is to periodically modulate 
(in time) the strength of the parabolic trapping potential, as was proposed in papers 
[70, 71]. The corresponding normalized GPE in one dimension is 

* ^ + 2 9 ^ + 1̂ 1 V = [1 +£cos(m)] x^ij, (5.12) 

where the interactions are assumed attractive, £ and to being the amplitude and fre­
quency of the modulation, cf. Eq. 5.5. In particular, the modulation of the trap may 
give rise to a resonance with harmonic oscillations that a soliton, as a quasi-particle, is 
expected to perform in the constant parabolic potential. In the latter connection, it is 
relevant to mention that gap solitons, supported by the additional potential in the form 
of an optical lattice in the BEC with repulsive interactions (see their description in the 
Introduction), have a negative effective mass, hence they may perform stable oscilla­
tions in an anti-trapping (inverted) parabolic potential, in the ID [151] and 2D [152] 
settings alike. 

5.3.1 Rapid periodic modulation 

The ID GPE with the trapping potential subjected to the time-periodic modulation was 
studied in detail in work [6] for the case of rapid modulation with a large frequency J7. 
In that work, the trapping potential U{x) could be more general than U{x) = x'^ in Eq. 
(5.12). In this case, a general solution may be looked for in the form of 

•4){x,t) = * s i o w ( x , 0 + X r a p i d ( a : , 0 . (5-13) 

where the parts Xrapid(a;, *) and N&siowlâ , i) account for, respectively, rapid oscillations 
of the wave function due to the high-frequency modulation of the potential, and slow 
systematic evolution of the main part of the solution. The substitution of this expression 
in Eq. (5.12) and separating rapidly and slowly varying terms make it possible to find 
a small-amplitude (linearized) solution for Xrapid(a;, t), and then an effective equation 
for the slow evolution is derived by the method of averaging. As a result, with the use 
of an additional transformation of the slowly varying part of the solution (5.13), 

* ' ( ! , ( ) S > + 2(s) ' ' ( ' ' ^'^{x,t) (5.14) 

(here, U{x) is the constant part of the potential, e.g., U{x) = x^, as said above), the 
eventual equation is cast in the form 

9$ 192$ 
% \ h $ $ = f/(x)+(^)^f/'(-))^ $. (5.15) 
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This equation contains a constant potential, which, however, is different from the orig­
inal one, U{x), as it includes an extra term ~ (C/'(x)) (the prime, as usual, stands 
for the derivative) generated by the averaging procedure. Note that, if U{x) = x^, the 
extra potential term is parabolic too. An example of the effective potential altered by 
the rapid modulation of the trap is shown in Fig. 5.7. 

An interesting prediction of Eq. (5.15) is a possibility to stabilize the situation 
with the inverted parabolic potential, U{x) = —Cx^, with a positive constant C. As 
it follows from Eq. (5.15), the full potential becomes normal (uninverted) under the 
condition C (s/fi) > 1. 

5.3.2 Resonances in oscillations of a soliton in a periodically mod­
ulated trap 

Analytical considerations 

The high-frequency drive considered in the previous subsection cannot lead to reso­
nances. On the other hand, periodic modulation applied at moderate frequencies, com­
mensurate with eigenfrequencies of collective oscillations of the trapped condensate, 
may give rise to resonances. In particular, parametric resonances (PRs) induced by 
periodic modulation of the trap filled by the self-repulsive condensate in ID, 2D, and 
3D geometry, were studied in several works [71, 70, 7]. 

Another possibility is to investigate PRs in the motion of solitons in a ID con­
densate with attractive nonlinearity, which was done in work [22]. Basic results are 
presented below, following that paper. 

Assuming that the trap is effectively weak, the soliton may be approximated by the 
usual NLS ansatz (2.6), i.e., in the present notation, 

i/'(a:, t)=r] sech ( -—- j exp (i[(/) -|- w{x - C) + K^ - C)^]) > (5-16) 

where 77, a, ^, 0, tti, 6 are the real time-dependent amplitude, width, coordinate, wavenum-
ber, and chirp of the soliton. The application of the standard VA technique leads to the 
following system of dynamical equations, 

4 2A'' 
- - 2 " ^ - 2 [ l + ecos(ni)]a, (5.17) 

TT^a^ 

'i = - 2 [ l + ecos(m)]^, (5.18) 

where Ns = 2?7̂ a is the conserved norm (proportional to the number of atoms in the 
condensate), and the overdot stands for d/dt. The other dynamical variables are given 
by relations w; = ^ and 6 = d/{2a), cf. Eqs. (2.11)-(2.13). 

Equation (5.17) is tantamount to one that was derived in the context of collective 
oscillations of ID repulsive BEC held in the periodically modulated trapping potential 
[7]. 

Equations similar to (5.17) and (5.18) can also be obtained by means of the method 
of moments in a completely different problem, viz., the evolution of optical beams in 
nonlinear graded-index fibers [144]. In that work, strong resonances in oscillations of 
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-0.0S--

Figure 5.7: An example of the potential altered by the contribution from the rapid time 
modulation of the trapping potential, as per Eq. (5.15) (the example is taken from paper 
[6]). The original potential, shown by the dashed line, is U{x) = —0.05sech(0.6x), 
£ = 180, and f2 = 10 (large e helps to show the result in a clear form). The full 
(renormalized) potential, given by Eq. (5.15), is shown by the continuous line. Note 
that the renormalized potential acquires two local potential minima, at points x = 
±xi = 3.96. 
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the beam's width were found in the case when the fiber's graded index is a piecewise-
constant periodic function of the propagation coordinate, which is qualitatively similar 
to the periodic modulation of the trapping potential in the GPE. 

The fact that equation (5.18) for the coordinate of the soliton's center is decoupled 
from the equation for the soliton's width is a general result, which is valid irrespective 
of the applicability of the VA. Indeed, precisely an equation in the form of (5.18) for 
the soliton's center-of-mass coordinate, which is defined as 

1 f'^°° 
m^j;jj x\ij{x,t)fdx, (5.19) 

(recall TV is the conserved soliton's norm), can be derived as an exact corollary of the 
GPE with the (time-dependent) parabolic potential. In fact, this is a manifestation of 
the Ehrenfest theorem in the present context (the validity of this theorem for the NLS 
with a parabolic potential was proved by Hasse [80]). 

It is relevant to present here the derivation of Eq. (5.18) in the exact form. First, one 
should differentiate the expression (5.19) in time, substituting ipt by the full expression 
following from the ID GPE (for instance, Eq. (5.12)). It is easy to see that, for the 
GPE with any external potential, including a time-dependent one, this operation yields 
an identity 

where P is the momentum defined as per the integral expression (1.10) (properly ad­
justed to the present notation). Further, the differentiation of the integral definition of 
P in time yields another exact result, 

ip r + OO 

— = - y U\x)\i;{x)\^dx, (5.21) 

where U{x) is the potential in the GPE. Because the norm A'̂  is conserved indepen­
dently, the insertion of P = Nd^/dt from Eq. (5.20) in Eq. (5.21) yields 

dt^ ~ N /

+00 

U'{x)\i;{x)\^dx. (5.22) 
-CX) 

Finally, substituting U{x) = [1 + £ cos{Q,t)] x"^ in Eq. (5.22) and once again talcing 
into regard the definition (5.19), one arrives at Eq. (5.18). 

Equation (5.18) is precisely the classical linear Mathieu equation (ME) [12]. It is 
commonly known that the ME gives rise to parametric resonances (PRs) when Q. is 
close to the values 

fiJTtl = 2\/2/n, (5.23) 

n = 1 and n > 1 (n is integer) corresponding to the fundamental and higher-order res­
onances, respectively. In fact, Eq. (5.17) may be regarded as a nonlinear generalization 
of the ME, which also gives rise to PRs. 
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As concerns Eq. (5.17), which is not an exact one, but is only valid within the 
framework of the VA, it is relevant to mention that, in the low-density limit (Â ^ -C 
7r^a^/2), the second term on the right-hand side of the equation may be dropped. The 
respective simplified equation is equivalent to an exact equation for the width, which 
was derived in paper [71] (without the use of the VA or other approximations) from the 
GPE in two dimensions (no such exact equation is available in ID or 3D case) with the 
repulsive nonlinearity and parabolic trapping potential. It is known that solutions of 
the latter equation can be expressed, by means of an exact transformation, in terms of 
solutions of the linear ME. Therefore, in the limit when the underlying GPE goes over 
into the linear Schrodinger equation, which corresponds to Ns —» 0, the PRs in Eq. 
(5.17) are exactly the same as in Eq. (5.18). However, Eq. (5.17) cannot be reduced to 
the linear ME in the general case (for finite Ns). 

Numerical results 

The trivial solution of the Mathieu equation (5.18), ^ = 0, loses its stability in certain 
zones in the parameter plane (O, e), close to the PR points (5.23) [12]. In that case, 
the solution features oscillations with a permanently growing amplitude. On the other 
hand, solutions of Eq. (5.17), which is a nonlinear generalization of the ME, are al­
ways oscillatory ones (obviously, this equation has no trivial solution), and it may be 
expected that, also close to the points (5.23), a periodic solution to the latter equation 
will develop its own instability, that will manifest itself too in unlimited growth of the 
amplitude of the oscillations ("swinging"). However, a difference from the linear ME 
should be in the swinging period: the variable a{t) in Eq. (5.17) cannot pass through 
zero (the width must always be positive), and in the case of large-amplitude oscillations 
of a{t), it will suddenly bounce back from a vicinity of a = 0, instead of crossing into 
the unphysical region of a < 0. This implies that the swinging period in Eq. (5.17) 
must be half of that in the linear equation 5.18. 

This expectation is corroborated by simulations of Eq. (5.17). Actually, the PR-
induced instability is always identified in simulations as permanent growth of the am­
plitude of oscillations. This definition makes the onset of the instability in Eqs. (5.18) 
and (5.17) identical, as for large a (which corresponds to large amplitudes of the oscil­
lations) the two equations are nearly identical, except for the above-mention peculiarity 
of Eq. (5.17), that a{t) must bounce back from a = 0. Thus, the double parametric 
resonance is expected in the system. 

An issue of obvious interest is to explore manifestations of the double PR, which 
was predicted within the framework of the approximation based on the ODE system 
(5.18) and (5.17) (recall only the former equation is an exact one), in PDE simulations 
of the full model (5.12). The double PR was indeed observed in direct simulations, 
in the form of the growth of the amplitude of the oscillatory motion of the soliton 
{external instability), concomitant to permanent increase of the amplitude of the soli-
ton's intrinsic vibrations {intrinsic instability). To identify the latter effect, ^[t) was 
extracted from results of the PDE simulations according to Eq. (5.19), and a{t) - as 
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per a natural definition, 

/

+ 00 
[x - C{t)f \^{x,t)\^ dx 

-CX) 

(5.24) 

(recall that A'̂  is the norm of the solution). An example of the dual instability, generated 
by the double PR, is displayed in Fig. 5.8. Note that, in accordance with what should 
be expected (as explained above), the swinging period of ^(i) is indeed seen to be twice 
thatof a(t). 

Figure 5.8: An example of the double parametric resonance in oscillations of a soli-
ton in Eq. (5.12). The harmonic trap is periodically modulated at the fundamental-
resonance frequency fi = 2\/2 (see Eq. (5.23), with the amplitude e = 0.2. Simula­
tions were performed with the initial condition ifjo{x) = sech(a; — 0.5) (the initial offset 
of the soliton from the trap's center, x = 0, leads to the oscillations). The correspond­
ing results for ^(^)and a{t), shown by continuous curves, were generated by means of 
Eqs. (5.19) and (5.24). They are compared with results of simulations of ODEs (5.18) 
and (5.17), which are shown by dashed curves. 

In this figure, one can see some difference between the oscillation law for ^{t) as 
found from the direct simulations of Eq. (5.12), and from the numerical integration of 
ODE (5.18). An explanation to this is that the soliton under periodic perturbation emits 
linear waves which are eliminated by absorbers set at edges of the integration domain. 
As a result, the norm of the soliton slowly decreases, while the above derivation of Eq. 
(5.18) presumed a constant norm. The loss of the norm also explains strong deviation of 
the oscillations of a{t) from the prediction of Eq. (5.17), observed in Fig. 5.8 at a late 
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stage of the evolution. As concerns correspondence to the experiment, the absorbers 
emulate evaporation of atoms from a finite-size trap, which is a real physical effect. 

Results of systematic direct simulations of Eq. (5.12) are summarized in the map of 
instability zones in the parametric plane {fl,£), which is displayed in Fig. 5.9. Zones 
shown in this figure reveal three separate PRs, viz., the fundamental one at fi = 2.82, 
obviously corresponding to n = 1 inEq. (5.23), and two higher-order PRs, at fi = 1.41 
and fl = 0.94, which correspond to n = 2 and n = 3, respectively. The instability 
growth rate rapidly decreases for higher-order resonances, which explains why the PRs 
corresponding to n > 3 cannot be easily spotted in simulations running for a finite 
time. This also explains the fact that the instability "tongues" corresponding to the PRs 
with n = 2 and 3 do not extend to very small values of £ in Fig. 5.9. 

Borders of the intrinsic-instability zones in Fig. 5.9, are, generally, close to the bor­
ders of the external instability (recall the latter are strictly tantamount to the instability 
borders in the parametric plane of the ordinary ME), except for a notable upward shift 
of all the intrinsic-instability zones, including the one corresponding to the fundamen­
tal PR at f2 = 2.82. A reason for the shift is the above-mentioned radiation loss, which 
may be interpreted as effective dissipation. Accordingly, a more accurate approxima­
tion could be provided by a weakly damped nonlinear ME, instead of Eq. (5.17). It 
is known that weak friction indeed shifts the instability zones of the ME upward in e, 
without affecting the resonant frequencies (in the first approximation) [147]. 

Finally, it is relevant to stress that, although Fig. 5.9 displays what was defined as 
instability zones, the soliton, even after the amplitude of its intrinsic vibrations starts 
to grow, does not feature self-destruction, remaining a coherent, although unsteady, 
object. Eventually, it gets destroyed, but only when it hits the absorbers at edges of the 
integration domain. 
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Figure 5.9: Instability zones, as found from direct simulations of the Gross-Pitaevskii 
equation (5.12) with the periodically modulated parabolic trap and self-attractive non-
linearity. In the area covered by open circles, the oscillating soliton develops the intrin­
sic instability, in the form of a growing amplitude of the internal vibrations. Crosses 
cover regions where the soliton demonstrates the external instability (indefinite growth 
of the amplitude of oscillations of its center). The double parametric resonance occurs 
where both areas overlap. 



Chapter 6 

Management for channel 
solitons: a 
waveguiding-antiwaveguiding 
system 

6.1 Introduction to the topic 

The simplest way to stabilize and guide spatial optical solitons is to use channels for 
them, in the form of waveguides (WGs), i.e., stripes in nonlinear planar waveguides 
with a locally enhanced refractive index (RI). Multichannel systems are fabricated as 
sets of parallel waveguides. Antiwaveguides (AWGs) are structures with a reverse, 
relative to the ordinary WG, distribution of the linear RI between the core and cladding, 
see paper [74] and references therein. In the linear approximation, the light is ejected 
from the AWG's core into the cladding; however, a beam can be trapped inside AWG 
by the Kerr nonlinearity, provided that the beams's power exceeds a certain threshold 
value. An advantage of AWGs is that they may have very small cross sizes of both the 
core and trapped light beam, down to the order of the wavelength [74]. 

The antiwaveguided propagation is always unstable; however, the instability may 
be mild enough, being suitable for the design of all-optical multichannel switching 
schemes [74, 75]. In particular, an effective way to control the instability, initiating it 
at a point where the switching is required, is provided by the so-called "hot spot" (HS) 
[115], i.e., a spot attracting the propagating signal, which can be created, via the XPM, 
by a control laser beam shone perpendicular to the guiding structure and focused on 
the necessary spot off the AWG's axis (see Fig. 6.1 below). 

In work [85], a new type of a nonlinear guiding structure was proposed, which, 
sharing with the usual AWGs their potential for switching applications, may be strongly 
stabilized, so that the length of stable propagation can be made, as a matter of fact, as 
long as required. The structure is an alternate waveguide, built as a periodic concate-
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nation of AWG and WG sections. Clearly, it belongs to the class of the periodic hetero­
geneous nonlinear systems. In fact, the very concept of this class was for the first time 
put forward in the same paper [85] where the alternate waveguides were proposed. A 
unifying principle for the class, which was formulated in that paper, and is developed 
in the present book, is strong stability of solitons in such systems, contrary to an a 
priori expectation that coherent pulses would be quickly destroyed traveling through 
strongly heterogeneous structures. This chapter presents main analytical and numeri­
cal results for channeled spatial solitons trapped in alternate waveguides, following the 
paper [85]. 

6.2 The alternate waveguiding-antiwaveguiding struc­
ture 

The alternate waveguide is a channel structure with equal Kerr coefficients in the core 
and cladding, and a periodic RI modulation, n = no + 5n{z, x), along the propagation 
axis (z) as schematically shown in Fig. 6.1: 

5n{z) 0,z) nix • oo,z) 
Sn^ > 0, in WG segments 
Sri- < 0, in AWG segments 

(6.1) 

(the values of Sn^ and |<5n_| are, in the general case, different). It is assumed that 
the RI in the cladding is constant, n{x = oo,z) = no, so that the modulation of n is 
limited to the core. A typical range of physically realistic values of the RI change in 
waveguides is |(5n| < 0.01. 

In the usual paraxial approximation, the evolution of the local amplitude of the 
electromagnetic wave, ^(a;,z), obeys the spatial NLS equation, whose normalized 
form is (cf. Eq. (1.26)) 

dz dx'^ 
[E + U{x,z)]^-\^\^^, (6.2) 

where E is an effective propagafion parameter (wavenumber), and U{x, z) ~ no6n{x, z) 
is an effective channel potential. Sections of the system with U < 0 (potential wells) 
and with f7 > 0 (potential hills) correspond, respectively, to the WG and AWG seg­
ments. Detailed derivation of Eq. (6.2) from the full propagation equation can be found 
in paper [85]. 

As is known, the RI profile produced by the diffusion technology which is used 
for the fabrication of the WG/AWG core may be approximated by the function erf. 
Therefore, the refractive index distribution in the AWG and WG parts of the alternate 
waveguide may be assumed to be 

n{x, z) = no + 5n{z) • f{x), f{x) = - erf 
XQ+X 

D 
• e r f 

Xo 

D 
(6.3) 

where Sn{z) is defined in Eq. (6.1), XQ is the effective half-width of the core, which 
is 1 in the notation adopted above, and D is a fabrication (diffusion) parameter that 
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Hot spot locations 
within AWG segment 

Figure 6.1: Schematic of the refractive index distribution in the waveguiding 
antiwaveguiding alternate structure. 
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determines the eventual effective width of the guiding structure. Both WG and AWG 
segments of the alternate waveguide shown in Fig. 6.1 are assumed to have equal 
values of D. Finally, the effective potential corresponding to this channel structure, 
being proportional to 6n{x, z), is 

U{x,z) = -A{z)f{x), (6.4) 

where the function f{x) is the same as in Eq. (6.3), and the amplitude A{z) periodically 
jumps between negative and positive values, as is typical to the periodic heterogeneous 
systems (cf. Eqs. (1.49), (3.29), and (4.11)), 

4(^^ = 1 ^ + > 0' in WG segments 
^ ' ~ \ A^ <0, in AWG segments ' ^° ' 

6.3 Analytical consideration of a spatial soliton trapped 
in a weak alternate structure 

Exact analytical solutions to Eq. (6.2) with the potential given by the expressions (6.5) 
and (6.3) are not available even for a stationary beam described by a real function 
^{x) in a uniform (WG or AWG) system. Nevertheless, stability of a spatial soliton 
(beam) propagating in the alternate structure with a small strength A can be investigated 
analytically. Indeed, in this case one may apply the perturbation theory which treats 
the solitary beam as a quasiparticle [104]. To this end, a beam solution to Eq. (6.2) 
with the potential (6.4), is sought for as 

*(a;, z) = exp [iqx + i<f){z)] <^o{x - ^(z)), (6.6) 

where ^o{x) = \/2£'sech is the shape of the spatial soliton in the uniform 

medium, (^(z) is its phase, and ^{z) is a small off-center deflection of the soliton. The 
dynamical equation produced by the perturbation theory at the lowest order for ansatz 
(6.6) is: 

(6.7) 
d^( _ A{z) dW 
d^ ~ A T di ' 

where the effective mass and quasi-particle's potential are 

/

+ 00 /• + 00 

•^l{x)dx = AVE, W(C) = / [^o{x - C)? f{x)dx (6.8) 
-co J — CO 

(a separate equation for the phase 4>{z) is not displayed here, as it is not used in the 
analysis). 

To study the stability of the beam guided in the channel, it is sufficient to linearize 
Eq. (6.7) in ^{z), which yields 

g ^ - ^ . 4 ( . K . - . = ( . ) < ; , (6.9) 
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Here, UQ = (dU/d^) | j=o, and, with regard to Eq. (6.5), 

, , 2 . ^ / {UO'/M)A+=UJI, inWGsegments 
^'^\-{Uo'/M)\A-\ = -u^_, inAWGsegments " ^°-^^' 

Equation (6.9) describes a concatenation of stable oscillations with the frequency 
iu+ in the WG segments, and unstable motion with the instability growth rates a;_ 
in the AWG ones. To predict the stability or instability of the channeled beam, it is 
necessary to find an explicit solution and conclude whether it is growing or remains 
confined, on the average, as the beam passes a large number of the WG-AWG cells. 
This implies solving Eq. (6.9) inside each interval where u!{z) is constant, and then 
matching the solutions, maintaining the continuity of^{z) and d^/dz across junctions 
between different segments. 

The solutions inside the WG and AWG segments have, respectively, the form 

CWG(^) = 0+cos(a;+^) + 6+sin(w_|_2:), (6.11) 

CAWG(-2) = « - cosh (co+z) + 6- sinh (w^-z), (6.12) 

with arbitrary constants a± and b±. It is a straightforward algebraic exercise to find 
relations between the two sets of the constants which follow from the conditions of the 
continuity of ̂ (z) and d^/dz. If a WG segment is followed by an AWG one, they are 

a_ = a+cos(a;_|_L+)+6-|-sin(w-|-L+), 

6_ = (w+/a;_) [—a-|-sin(a;4.L+) + 6+cos(a;_)_L_|_)], (6.13) 

and in the opposite case 

0+ = a_ cosh (a;_L_) + 6_ sinh (w_L_), 
b+ = (w_/a;4.) [a_ sinh (a;_L_) + 6_ cosh (w_L_)], (6.14) 

where L+ and L_ are the lengths of the WG and AWG segments, respectively (their 
ratio is frequently called a duty cycle). 

The product of the two linear transformations (6.13) and (6.14) yields a map which 
describes the transformation of the perturbation amplitudes a± and b± after the passage 
of a full cell of the alternate structure. It takes the form of a matrix, 

/ cos x+ cosh X- - ^ sin x+ sinh X- sin x+ cosh X- + ^ cos x+ sinh X- \ 

\̂  - s i n x + c o s h x - + ^ cos x+sinh X- cos x+cosh x - + ^ sin x+sinh X- J ' 

where x± = '^±L±. The stability of the trapped beam is determined by the size of 
multiplicators of the map, i.e., eigenvalues ii\^2 of the matrix, the stability condition 
being |/Ui,2| < 1> which must hold for both eigenvalues simultaneously. As the system 
under consideration is a conservative one, the only actual possibility for the stable 
propagation is that both |/^i,2| are exactly equal to 1. 

An elementary calculation of the eigenvalues yields 

/ i i , 2 = r / 2 ± V T V 4 - l , (6.15) 
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where T is the trace of the matrix, 

T = 2cos (a;+L+) cosh (w_L_) + (w?. — w^) (w-).w_)~ sin (a;+L+) sinh (w_L_) . 
(6.16) 

As it follows fromEqs. (6.15) and (6.16), the stability conditions |/Ui,2| = 1 are met if 
\T\ < 2, or, in an explicit form, 

cos {uj+L+) cosh (a;_L_) sin (a;+L+) sinh (a;_L_) < 1 . (6.17) 

This inequality represents the full stability region in an explicit form, as predicted by 
the analytical approximation. Note that the condition (6.17) is trivially satisfied in the 
case of the uniform WG, L_ = 0, and it is definitely not satisfied in the opposite case 
of the uniform AWG, L+ = 0. 

It is easy to find a minimum value {L+)^^^ of the WG segment which is necessary 
to achieve the stabilization at given values of the parameters L_ and ui±: as it follows 
fromEq. (6.17), 

'^+ (-^+)min = arCCOS 
/cosh^ {u-L-) + a^ sinh^ (a;_L_ 

— arctan(Qtanh(w_L_)), (6.18) 

where ft = (w^ - w?.) / {2UJ+UJ^). It is easy to show that the expression (6.18) is 
always positive. Note that it remains finite in the limit of L_ -^ oo, which is ex­
plained by a possibility to find a special value of the parameter u:+L+ such that a WG 
segment inserted between two AWG segments mixes the eigenmodes so that the one 
corresponding to the unstable eigenvalue -f-w- in the AWG section preceding the WG 
one will go over into an eigenmode corresponding to the stable eigenvalue —w_ in the 
next AWG section. In fact, the mixing of the stable and unstable AWG eigenmodes by 
the WG segments is a mechanism which makes the stable channeling of the beam in 
the alternate structure possible. 

A noteworthy property of the stability condition (6.17) is that the stabilization of 
the trapped beam does not monotonically enhance with the increase of the duty-cycle 
ratio L+/L- of the WG and AWG segments. For instance, in the case of w^ = uit the 
inequality (6.17) takes the form |cos (a;+L+)| < sech {uj-L-). If one increases L4., 
keeping L_ fixed, the latter condition is met in intervals 

arccos [sech (a;_L_)] + 27rn < w+L+ < — arccos [sech (a;_L_)] + 27r (n + 1), 
(6.19) 

n = 0,1,2,..., and it is not met in gaps between the intervals. An implication of this 
is that, even if the length of the AWG segment is very small, there are some values 
of the ratio L+/L-, which may be arbitrarily large, around which the trapped beam is 
unstable. The non-monotonic dependence of the stability on the duty cycle is confirmed 
by numerical results displayed in the following section. 
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Figure 6.2: (a) Indefinitely long stable propagation of the spatial soliton in the 
waveguiding-antiwaveguiding system is shown by means of contour plots. The lengths 
of the respective segments are L+ = L_ = 2, and the strengths are ^ + = 5, A- = —3 
(see Eq. (6.5). For comparison, panel (b) shows one of the least unstable examples of 
the propagation of the beam in the uniform antiwaveguide, with A = ~5 , and param­
eters of the input pulse (6.20) C^ = 5, CT = 1. In both case, the propagation parameter 
is £: = 2. 

6.4 Numerical results 

6.4.1 Beam propagation in tiie alternate structure 

The analytical results presented in the previous section strongly suggest that trapped 
beams may be stable in the alternate structure, but definite results concerning the sta­
bility can only be obtained from direct simulations. A realistic input profile is one with 
a Gaussian shape, 

*(z = 0) = Cexp[-(x/<7)2]. (6.20) 

Simulations demonstrate that the strongest result, i.e., indefinitely long stable propa­
gation with the smallest length-share of the inserted stabilized WG segments, could be 
achieved with equal lengths of the AWG and WG sections (50% duty cycle), both being 
on the order of the core width. An estimate shows that the corresponding lengths of the 
AWG and WG sections in physical units is ~ 25A, where A is the carrier wavelength 
[85]. A typical example of the thus stabilized propagation in the alternate waveguide 
is shown in Fig. 6.2; for comparison, unstable propagation in the uniform AWG is also 
shown (in fact, the later case is one of the least unstable ones possible in the uniform 
AWG). 

6.4.2 Switching of beams by the hot spot 

The above-mentioned "hot spot" (HS) can provide switching by pushing the beam 
from the core into the cladding at a necessary value of the propagation distance. In 
the simulations, the HS was approximated by a small increase of the refractive index, 
(10~^ — 10"'^) 15n|, in a localized region of the AWG section, whose size was 1 x 1 in 
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the normalized units, and Sn is the same as in Eq. (6.3). The HS strength corresponding 
to these values of the parameters is sufficient to control the switching; in real-world 
units, this implies that the net power of the beam creating the HS should be between 1% 
and 0.1% of the signal-beam's power (this power, although small, is much higher than 
the fluctuation level, i.e., random fluctuations cannot switch the beam accidentally). 
Detailed simulations demonstrate that a virtually identical switching effect is produced 
by various particular forms of the distribution of the refractive-index perturbation inside 
the HS, provided that the net perturbation, integrated over the HS, is fixed. 

The simulated switching, in the form of the controllable deflection of the beam 
from the guiding core into the cladding (where, in fact, it may be easily captured by 
another guiding channel, as it was described in detail in Ref. [75]) under the action of 
the HS is displayed in the Fig. 6.3. In this example, the lengths of the AWG and WG 
sections are 4 and 1, respectively. The corresponding duty cycle is taken small, i.e., not 
promising a very large length of the stable propagation, as very long propagation is not 
needed for the switching. 

In Fig. 6.3, many particular realizations of the switching to the left and right at 
different values of z are juxtaposed. Each time, the switching position is selected by 
placing the HS at an appropriate place, as shown above in Fig. 6.1. Note that the HS 
in Fig. 6.3 is always set near the end of an AWG section, close to the beginning of the 
following WG one, as it was found that it acted most efficiently at this position, so that 
its strength might be minimized. It is easy to understand the highest sensitivity of the 
beam to the action of the HS at this place, as the potential instability accumulates to a 
maximum at the end of the AWG segment. 
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Figure 6.3: Juxtaposition of switchings induced by the "hot spot" applied on the left or 
right side off the axis to different anti-waveguiding sections in the alternate waveguide 
(as shown explicitly in Fig. 6.1). The lengths of the anti-waveguiding and waveguiding 
sectionsare4and2, respectively, the absolute value of the guiding parameter is \A\ = 4 
for both sections, the propagation parameter is £̂  = 2, and D = 0.8 (recall D is defined 
inEq. (6.3)). 



Chapter 7 

Stabilization of spatial solitons 
in bulk Kerr media with 
alternating nonlinearity 

7.1 The model 

The usual (2+ l)-dimensional NLS equation governing the spatial evolution of light sig­
nals in bulk (3D) optical media with the x*̂ ^̂  (Kerr) nonlinearity cannot support stable 
spatial solitons in the form of cylindrical beams: if the nonlinearity is self-defocusing 
(negative), any beam spreads out, while in the case of the self-focusing (positive) non-
linearity, a stationary-beam solution with a critical value of its norm (integral power) 
does exist, as was demonstrated by Chiao, Garmire, and Townes in 1964 (as a mat­
ter of fact, it was the first example of a soliton considered in nonlinear optics, and is 
frequently referred to as a Townes soliton, TS), but it is (weakly) unstable because of 
the possibility of the weak collapse in the 2D NLS equation [29, 159]. In work [30], 
it was shown, by means of direct simulations, that the beam can be pardy stabilized if 
the nonlinearity coefficient in the 2D NLS equation is subjected to weak spatial mod­
ulation along the propagation direction, so that the beam's power (which is virtually 
constant, as radiative losses turn out to be negligible) effectively oscillates about the 
accordingly modulated critical value, being sometimes slightly above and sometimes 
slightly below it. As a result, it was observed that the beam could survive over a large 
propagation distance, although eventually is was destroyed by the instability. 

A model of a strong NLM (nonlinearity management) for the bulk medium, with 
the periodic alternation of the sign of the local Kerr coefficient (the same as in the ID 
NLM model in Eq. (4.II)), was proposed in paper [165]: 

iu^ + -\7lu + -f{z)\u\\ = 0, (7.1) 
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7(.) = | ^ + ' ., if 0 < ^ < ^ + ' (7.2) 
'^ ' \ 7_, if L+< z < L++L-, ^ ^ 

where the diffraction operator Vj^ acts on the transverse coordinates x and y. The 
main result of work [165] is that this model provides for complete stabilization of the 
(2+l)-dimensional solitons, as shown in detail below. The consideration of this model 
was not only interesting in its own right, but also served as a pattern for prediction of 
the stabilization of 2D BECs under the action of the time-periodic FRM, see the next 
chapter. 

Axisymmetric spatial solitons, as solutions to Eq. (7.1), are sought for in the form 

u{z, r, 9) = exp{iS9)U{z, r), (7.3) 

where r and 6 are the polar coordinates in the (x, y) plane, S is an integer vorticity 
("spin"), and the function t/(z, r) obeys the equation 

1 / 1 _ ^ 
2 V r r-^ 

iU, + -[ Urr +zUr-^U)+ J{z)\U\^'U = 0. (7.4) 

7.2 Variational approximation 

First of all, VA may be applied to Eq. (7.4). To this end, the following ansatz is 
adopted, 

U = A{z)r'^ exp [ih{z)r'^ + i(t){z)] sech ( - ^ j , (7.5) 

where A, b and a are the soliton's amplitude, chirp and width, and (p is the phase, cf. 
the ID ansatz (2.6). An essential difference in the 2D case is the necessity to add the 
multipliers r^, for the case of S j^ 0 (by definition, S is positive). Then, the following 
set of the variational equations for the parameters of the ansatz (7.5) can be derived. 
First, due to the conservation of energy, there is a dynamical invariant 

which makes it possible to eliminate the amplitude A from the equations. After that, 
the VA reduces to a second-order equation for a{z), 

dz^ ^ 

AS) r{S) 

AS) AS) 'y^f 

the chirp being expressed as b{z) = {2a)~^da/dz, cf. similar variational equations 
(S) 

(2.12) and (2.11) for the ID soliton. Numerical constants /^ 24 ai'e integrals resulting 
from VA; for 5 == 0 (zero-spin beam), they are l[°l^ w (1.352,0.398,0.295). 

In the NLM model with the periodic modulation (7.2), equation (7.7) can be solved 
inside each interval where 7 is constant. The result is 

^ ] +r = HV, (7.8) 
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where V = a?, H (which is actually the Hamiltonian of Eq. (7.7) with 7 = const) is 
an arbitrary integration constant, and 

r.sLAj:. (7.9) 
-'1 

Within the interval 0 < z < L+, the parameter F keeps a constant value r + , 
then it assumes another constant value r _ in the interval L^ < z < L+ + L-, and 
this configuration repeats itself periodically. The formulas can be additionally rescaled 
to set L_ = 1 and r _ = 1, leaving one with two irreducible control parameters, 
L+ = L and r + = F (note that the definition of F implies that, once it was set 
r_ = 1, then F = F_|_ may only take values smaller than 1, including negative values). 
Across each junction point where 7 flips its sign, the values of V and dV/dz are related 
according to the physical conditions that the width and chirp of the pulse, as functions 
of z, must be continuous. As immediately follows from the above equations, this 
simply means that both V and dV/dz are continuous across the jump. Such boundary 
conditions are essentially easier to handle than their counterparts in the case of DM, 
where the continuity of the chirp, given by the expression b = —2/3{z)a{da/dz) (see 
Eq. (2.11)), and the jump of the GVD coefficient f3{z) at the junction point imposes a 
jump condition on the derivative da/dz. The simplification of the boundary conditions 
in the present NLM model makes it possible to obtain results in a completely analytical 
form, as shown below (which was impossible in the DM model). 

Starting with arbitrary initial values VQ and VQ of V{z) and dV/dz at 2 = 0, one 
can derive a map that yields the values VQ and VQ of the same variables at the end of 
the period, i.e., at z — L+ + L^ = I + L. Straightforward integration of Eq. (7.8) in 
the segments L±, with regard to the continuity of V and dV/dz at the junction points, 
makes it possible to derive the map in an explicit although rather cumbersome form. 
Nevertheless, a fixed point (FP) of the map, which corresponds to the quasi-stationary 
propagation of the beam, can be found in a simple form: 

This FP exists only for negative values of the coefficient (7.9), F < —1/L. 
Calculating the path-average value of the nonlinearity coefficient, with regard to 

the normalizations adopted here, 

_ _ L+7+ + L - 7 - _ 8/2 (L + 1) - / i F , (LF + 1) 
^ " L+ + L_ 8/4 (L + 1) ' ^ ' 

it is easy to see that FPs (7.10) may only exist with positive 7 (corresponding to self-
focusing on average). Taking into account the above-mentioned necessary condition 
r < —1/L and normalizations, Eq. (7.11) predicts the minimum value of the path-
average nonlinearity coefficient at which the FPs exist: (7)jnin = -̂ 2 / M ~ 1-3453. 
This result is quite natural, as it would be strange to expect the existence of quasi-
stationary soliton beams in the case when the average nonlinearity is self-defocusing 
on average. On the other hand, it is relevant to recall that ID stable solitons do exist in 
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Figure 7.1: The existence and stability regions of the fixed points in the parameter 
plane (F, L) of the variational approximation for the model of the beam propagation in 
the layered bulk medium based on Eqs. (7.1) and (7.2). The fixed point is stable in the 
speckled area. 

the DM model when the PAD coefficient is exactly zero or falls into a narrow interval of 
normal-dispersion values, see Fig. 2.5. This feature once again stresses the difference 
between the DM model and the present NLM one. 

To investigate the stability of the FP, one should find eigenvalues /i of the map's 
Jacobian, 9 (Vij), V'o) / ^ (^o, VQ) (alias multiplicators). FP is stable if both eigenvalues 
satisfy the condition |/i| < 1. The results of this analysis are summarized in Fig. 7.1. 
No FP exists beneath the curve L = — 1/r . Above this line, FP is stable inside 
the speckled band. Outside the band, the FP exists but is unstable, according to the 
calculation of the multiplicators. 

7.3 Numerical results 

To test the VA-based analytical results against direct simulations, the underlying equa­
tion (7.1) was solved numerically, using the ansatz (7.5), with the parameters taken at 
the FP (7.10), as the initial configuration. A typical result is shown in Fig. 7.2: after 
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Figure 7.2: The evolution of the soliton's cross section in direct simulations of Eqs. 
(7.1), (7.2), as it propagates in z. As is seen, the initial configuration taken according 
to the variational ansatz (7.5) with 5 = 0 rapidly relaxes to a stable soliton beam. In 
this case, L = 2.0 and T = -0.55. 

a short relaxation period, the initial beam reshapes into a nearly stationary stable one, 
which propagates with small residual oscillations. 

On the other hand, simulations starting with the ansatz (7.5) that carries nonzero 
vorticity S show that, unlike the 5 = 0 beam, they all are unstable. In particular, the 
vortex beam with 5 = 1 splits into two stable fundamental solitons (ones correspond­
ing to 5 = 0), which is a typical manifestation of the azimuthal instability of vortical 
solitons in media with "simple" nonlinearities (vortices may be stabilized in media with 
competing nonlinearities, such as self-focusing cubic and self-defocusing quintic [44], 
or quadratic and self-defocusing cubic [111]). 

A 3D counterpart of the model (7.1) was investigated too. It is based on the equation 

-U-i^"^ . + 'y(z)\u\\ = 0, (7.12) 

where T and /3 are, as usual, the reduced time and GVD coefficient, cf. Eq. (1.5), and 
7(z) is the same as in Eq. (7.2). To allow the existence of 3D solitons (STSs), (3 must 
be negative (corresponding to the anomalous dispersion). However, direct simulations 
demonstrate that stable 3D solitons are impossible in Eq. (7.12) [165]. 



Chapter 8 

Stabilization of two-dimensional 
solitons in Bose-Einstein 
condensates under 
Feshbach-resonance 
management 

The possibility to stabilize (2+l)-dimensional spatial solitons by means of the peri­
odic alternation of the sign of the Kerr coefficient in a layered bulk material suggest a 
physically different but mathematically similar possibility to stabilize 2D soliton-like 
BEC configurations by means of the ac-FRM technique, which amount to making the 
nonlinearity coefficient in the corresponding 2D Gross-Pitaevskii equation (GPE) a si­
nusoidal function of time. This possibility was first independently explored in works 
[5] and [150]. Additional results, including the case of a 3D condensate strongly con­
fined in one direction, which makes it nearly two-dimensional, were reported in paper 
[130], and a similar mechanism providing for stabilization of a two-component 2D 
soliton in a system of two nonlinearity coupled GPEs was investigated too [128]. Here, 
main results for this important problem will be presented, chiefly following paper [5]. 
It will also be shown that the ac-FRM technique (if acting alone) cannot stabilize 3D 
solitons. 
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8.1 The model and variational approximation 

8.1.1 General consideration 

The normalized GPE is taken in the usual form (cf. Eq. (5.5) in the ID case), 

iut + -Aw + [Ao + Ai sin(wt)] |M|^M, (8.1) 

where A is the 2D or 3D Laplacian, Ai and u> being the ac-FRM amplitude and fre­
quency. Further, using the scaling invariance of the equation, it is set |Ao| = 1, so that 
Ao is a sign-defining parameter, Ao > 0 and Ao < 0 corresponding to self-attraction 
and self-repulsion, respectively. The external potential is not included, with the inten­
tion to focus on a possibility to stabilize the condensate in the trapless case, relying 
solely on the FRM ac drive. 

For the subsequent analysis, it is sufficient to consider solutions to Eq. (8.1) in 
the axially or spherically symmetric situation (in the 2D and 3D cases, respectively), 
assuming that the wave function u is a function of time and 2D or 3D radial variable 
r, without angular dependences (if the solution carries no vorticity, there is no danger 
of an isotropy-breaking instability, hence the angular dependences may be consistently 
ignored). The accordingly restricted equation (8.1) takes the form 

du / 92 D-l d 

'-31 = - ( ^ + —;— g:;:) ^ - i^o + ^^ sm{ut)] \u\'^u, (8.2) 

where D = 2 or 3 is the spatial dimension. 
An analytical approach to Eq. (8.2) may be based on its variational representation, 

with the corresponding Lagrangian 
/ • O O 

L = cons t / C{u,u*,ut,u*}r"-^dr, (8.3) 
Jo 

i /du ^ du" , du 
dr 

2 1 
+ -m\u\\ (8.4) 

The respective variational ansatz for the wave function is based, as usual, on the Gaus­
sian (cf. Eq. 7.5), 

wvA(r,t) = A{t)exp f - ^ ^ + ^^KO^' + i5{t)\ , (8.5) 

where A, a, b and S are, respectively, the amplitude, width, chirp and phase, which are 
assumed to be real functions of time. 

8.1.2 The two-dimensional case 

In the 2D case, the substitution of the ansatz (8.5) in Eqs. (8.3) and (8.4) and integration 
yield the effective Lagrangian, 

Lgjj = const • la'^A^f - a^A'f - A^ - a^AH^ + -A(t) a^A^ 
2 dt dt A ^ ' 

(8.6) 
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where A(i) s Ao + Ai sin(a;t). The variational (Euler-Lagrange) equations following 
from this Lagrangian yield the conservation of the solution's norm (which is tanta­
mount to the scaled number of atoms in the condensate), 

TrA^a^ = N = const, (8.7) 

an expression for the chirp, b = {2a)~^da/dt, and a closed-form evolution equation 
for the width: 

(fa - A + esin(a>^) 
'dfi " ~ ^3~ ' ^ ' 

Actually, these equations are the same as ones presented (also for the 2D case) in the 
previous chapter, see Eqs. (7.6) and (7.7), differing only in the form of the modulation 
functions \{t) and 7(2). 

In the absence of the time-periodic (ac) modulation, e = 0, Eq. (8.8) conserves the 
Hamiltonian, 

H,. = \ dtj ~ a? 
(8.10) 

Obviously, E2T) —> —00 as a —> 0, if A > 0, and E^D —> +00 as a —> 0, if A < 0. 
This means that, in the absence of the ac drive, the 2D pulse is expected to collapse if 
A > 0, and to spread out if A < 0. The case A = 0 corresponds to the critical norm 
which is the separatrix between the collapsing and decaying solutions. The critical 
norm corresponds to the solution in the form of the above-mentioned Townes soliton 
(TS). Note that a numerically exact value of the critical norm is N = 1.862 (in the 
present notation, and setting, as said above, Ao = -|-1) [29, 159], while the variational 
equation (8.9) yields, as the analytical approximation for it, N = 2. 

If the ac component of the nonlinear coefficient oscillates at a high frequency, Eq. 
(8.8) can be treated analytically by means of the averaging method (which may be 
compared to the derivation of Eq. (5.15) in the ID model with rapid modulation of the 
trap's strength). To this end, one sets a{t) = a + Sa, with \5a\ « \a\, where a varies 
on a slow time scale and 5a is a rapidly varying function with a zero mean value. After 
straightforward manipulations, the following equations for the slow and rapid variables 
can be derived: 

d == -A(a-^- | -6a-^{((5a)2))-3e ((5asin(wi)) a - ^ (8.11) 
dt^ 

j^Sa = 3 6aAa-'^ + esm{ujt)d-^. (8.12) 

where (...) stands for averaging over the period 27r/w. A solution to the linear equation 
(8.12) is straightforward, 

.. , s esinfwt) „ ^ 
a-̂  (u:^ + 3a *A) 



124 FESHBACH-RESONANCE MANAGEMENT IN TWO DIMENSIONS 

The substitution of tliis into Eq. (8.11) and averaging yield the final evolution equation 
for the slow variable, 

d^ -3 3Ae2 3 £2 
- A - , ,_ , , „ . ,o + (w2a4 + 3^)2 2oj'^a'i + 3A_ 

(8.14) 

To understand whether collapse is enforced or inhibited by the ac modulation of the 
nonlinearity, one may consider Eq. (8.14) in the limit a —> 0, when it reduces to 

; ^ . = ( - A + | ^ ) . - 3 . (8.15) 

It immediately follows from Eq. (8.15) that, if the amplitude of the high-frequency ac 
drive is large enough, ê  > SA^, the behavior in the limit of small a is exactly opposite 
to that which would be expected in the presence of the dc component only: in the case 
of A > 0, bounce from the center should occur instead of the collapse, and vice versa 
in the case of A < 0. 

On the other hand, in the limit of large a, Eq. (8.14) takes the asymptotic form 
(Pa/dt^ = — A/a^, which shows that the condensate remains self-confined in the case 
of A > 0 (the negative acceleration d'^a/dt^ implies that the variable a is pulled back 
from large to smaller values). Thus, these asymptotic results suggest that Eq. (8.14) 
gives rise to a stable behavior of the condensate, with both the collapse and decay 
being ruled out if 

e > A / 6 A > 0 . (8.16) 

In other words, conditions (8.16) ensures that the right-hand side of Eq. (8.14) is 
positive for small a and negative for large a, which implies that Eq. (8.14) must give 
rise to a stable FP (fixed point). Indeed, when the conditions (8.16) hold, the right-hand 
side of Eq. (8.14) vanishes at exactly one FP, 

(8.17) 

which can be easily checked to be stable, within the framework of Eq. (8.14), through 
the calculation of an eigenfrequency of small oscillations around it. 

Direct numerical simulations of ODE (8.8) produce results (not shown here) which 
are in exact correspondence with those predicted by the averaging method, i.e., a stable 
state with a{t) performing small oscillations around the point (8.17). 

8.1.3 Variational approximation in the tiiree-dimensional case 

The calculation of the effective Lagrangian (8.3), (8.4) with the ansatz (8.5) in the 3D 
case yields 

:(3D) ^ 1^3/2^2^3 (Jdh, _ d5 1 ;^(,)^2 __ 3 ^ 3^2^2 
"^ 2 \ 2dt dt 2v^ a2 
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cf. Eq. (8.6). The Euler-Lagrange equations applied to this Lagrangian again yield the 
norm conservation, 

TT /̂̂ A â̂  = Â  = const (8.19) 

(cf. the 2D counterpart (8.7)), the same expression for the chirp as in the 2D case, 
b = {2a)~^da/dt, and the final evolution equation for the width of the condensate, 

df^ 
^ + =±tlp(^, (8.20) 

where the adopted definitions are A = XON/V^TT^ and e = —XiN/y 
(8.9). Note the difference of Eq. (8.20) from its 2D counterpart (8.14). 

In the absence of the ac drive, e = 0, Eq. (8.20) conserves the Hamiltonian 

Obviously, i/ao -^ —oo as a —> 0, if A > 0, and H^u —> +oo if A < 0, hence one 
will have collapse or decay of the pulse, respectively, in these two cases. 

ODE (8.20) was solved numerically (without averaging), to check if (within the 
framework of the VA) there is a region in the parameter space where the condensate, 
that would decay under the action of the repulsive dc nonlinearity (A < 0), may be 
stabilized by the ac FRM drive in the 3D case. Figure 8.1 shows the dynamical behavior 
of solutions to Eq. (8.20) in terms of the Poincare section in the plane of the variables 
(a, a' = da/dt), for A = — 1, e = 100, w = IO^TT, and initial conditions ait = 0) = 
0.3, 0.2, or 0.13 and a'{t = 0) = 0. It is seen from the figure that, in all these cases, 
the solution remains bounded and the condensate does not collapse or decay, its width 
performing quasi-periodic oscillations. 

Systematic simulation of Eq. (8.20) demonstrate that, as well as in the examples 
shown in Fig. 8.1, the frequency and amplitude of the ac drive need to be large to secure 
the stability, which suggests to apply the averaging procedure to this case too (similar 
to how it was done above for the 2D case). The stability is predicted by the simulations 
only for A < 0, i.e., for the repulsive dc (constant) component of the nonlinearity. In 
the opposite case, of A > 0 (attractive dc nonlinearity), the VA predict only collapse, 
i.e., the situation is exactly opposite to that in two dimensions, where stability was 
predicted solely for A > 0, see Eq. (8.16). 

The averaging procedure goes through the calculation of the rapidly oscillating 
correction 5a{t), 

cj2a5-12a + 4A' 

cf. Eq. (8.13) in the 2D case. The final averaged equation for the slow variable a(t) is 
(cf. Eq. (8.14)) 

d'^a 4 

-dt^=~^~ 
2e2 2 6 a - 5 A 

4a - A + -TT^—--—'—— + e^-u;2a5 - 12a + 4A (w^a^ - 12a + 4A)2 
(8.23) 
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CO 

Figure 8.1: The Poincare section in the plane (a, a' = da/dt), generated by the numer­
ical solution of the variational equation (8.20) in the three-dimensional model of the 
ac-FRM-driven Bose-Einstein condensate for A = 1, e = 100, w = IO'̂ TT and different 
initial conditions. The full model is based on the Gross-Pitaevskii equation (8.1). 
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In the limit of a -^ 0, Eq. (8.23) takes the form 

(fa ( , , 36^ \ ^_4 

cf. Eq. (8.15). Equation (8.24) predicts one feature of the 3D model correctly, viz., in 
the case of A < 0 and with a sufficiently large amplitude of the ac component, e > 
(4/\/3) I A|, collapse takes place instead of the decay. However, other results following 
from the averaged equation (8.23) are wrong, as compared to those following from 
direct simulations of the full variational equation (8.20), some of which are displayed 
in Fig. 8.1. In particular, detailed analysis of the right-hand side of Eq. (8.23) shows 
that it does not predict a stable FP for A < 0, and does predict it for A > 0, exactly 
opposite to what was revealed by direct simulations of the underlying ODE (8.20). This 
failure of the averaging approach (in stark contrast with the 2D case) may be explained 
by the existence of singular points in Eqs. (8.22) and (8.23) (for both A > 0 and 
A < 0), at which the denominator to'^ct' — 12a + 4A in these equations vanishes. Note 
that, in the 2D case with A > 0, for which the stable state in the region (8.16) was 
predicted above, the corresponding equation (8.14) did not have such singularities. 

8.2 Averaging of the Gross-Pitaevskii 
equation and Hamiltonian 

In the case of the high-frequency FRM modulation, there is a possibility to apply the 
averaging method directly to the GPE (8.2), without the resort to the VA. To this pur­
pose, the solution to the PDE is looked for as an expansion in powers of 1/w, 

u{r,t) = AQ{r,t)+oj-^Ai{r,t)+w-^A2{r,t) + ..., (8.25) 

with (^1,2,...) = 0 (the symbol (...) stands for the average over the period of the rapid 
modulation). The normalization AQ = -t-1 is adopted here, as it is expected that it 
should provide for stability in the 2D case. The final result is an effective equation for 
the main (slowly varying) part of the wave function in the expansion (8.25) derived at 
the order w"^ [5]: 

i ^ + AAo + \Ao\^Ao + ^Xl [^y [\AofAo - (8.26) 

3\Ao\^AAo + 2\AofA{\Ao\''Ao) + A"A {\Ao\^A*o)] = 0, (8.27) 

where e is the same amplitude as in Eq. (8.9). Note that Eq. (8.27) is valid in the 
2D and 3D cases alike. Cumbersome analysis of this equation, performed in work [5] 
demonstrates that the collapse is indeed arrested in the 2D version of the equation, 
essentially the same way as it was predicted above by the VA. 

To understand the nature of the collapse arrest by the high-frequency FRM drive, it 
is actually more instructive to insert the expansion (8.25) and perform the subsequent 

file:///AofAo
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averaging not in equation (8.2) itself, but rather in the Hamiltonian, 

H = C 
0 

du 
dr 

+ lx{t)\uA dV, (8.28) 

where dV is the infinitesimal volume in the 2D or 3D case, and a constant C is positive. 
The resulting averaged Hamiltonian, expressed in terms of the slowly varying main part 
Ao{r, t) of the wave function, is [5] 

H= dV |2 1 I /I |4 I ' ^ l / ^ \ 2 nX7n A |2 IVAop - -\Ao\' + -^{-f (|V(|AopAo)|2 - 3|Ao|«) (8.29) 

where Ai is the same coefficient as in Eq. (8.1). 
A possibility to arrest the collapse can be explored using the effective Hamiltonian 

(8.29). To this end, one may follow the pattern of the usual virial estimates [29, 159]. 
Thus, one notes that, if a given field configuration has compressed itself to a spot with 
a small size p and large amplitude N, the conservation of the norm A'̂  (in the first 
approximation, the norm conservation remains valid for the field A, as follows form 
the expansion (8.25)) yields a relation 

H V ^ ~ N (8.30) 

(recall D is the dimension of space). On the other hand, estimates of the same type, 
applied to the strongest collapse-driving and collapse-arresting terms, i7_ and H+, 
in the averaged Hamiltonian (which are the fourth and second terms, respectively, in 
expression (8.29)) yield 

i ^ _ ^ _ ( l ) ' H V , F + ~ ( - i ) ' K V ' ' - ' . (8.31) 

Eliminating the amplitude from Eqs. (8.31) by means of the relation (8.30), one con­
cludes that, in the case of the catastrophic self-compression of the field in the 2D space, 
/> —> 0, both terms H- and iJ+ assume a common asymptotic form, ~ p~^, hence the 
collapse may be stopped, depending on details of the initial configuration (the initial 
state determines a ratio between coefficients in front of p"^ in the two asymptotic 
expressions). On the contrary to this, in the 3D case the collapse-driving term H-
diverges as p"^, while the collapse-arresting one has the asymptotic form ~ p"^ (for 
p -^ 0), hence in this case the collapse cannot be prevented. 

8.3 Direct numerical results 

The existence of stable 2D self-confined soliton-like oscillating condensate states, pre­
dicted above by means of analytical approximations in the region (8.16), when the dc 
part of the nonlinearity corresponds to attraction in the BEC, was checked against di­
rect simulations of the 2D equation (8.2), i.e., one with D = 2 [5]. In was quite easy 
to confirm this prediction. In the case of AQ = —1 in Eq. (8.2), i.e., when the dc 
component of the nonlinearity corresponds to self-repulsion, direct simulations always 
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Figure 8.2: Time evolution of the condensate's shape |«(r)p, as obtained from direct 
simulations of the radial Gross-Pitaevskii equation (8.2) with strong and fast ac-FRM 
modulation (w = IC'TT, e = 90). From left to right, the panels pertain to the moments 
of time t = 0.007,0.01 and 0.015. 

show decay (spreading out) of the 2D condensate, which also agrees with the above 
predictions. 

Additionally, direct simulations show that, unlike the fundamental solitons, their 
vortical counterparts cannot be stabilized by the FRM-induced periodic modulation of 
the nonlinearity. On the other hand, in a recent work [129] it was demonstrated that a 
two-component (vectorial) generalization of the present model may support stable ex­
istence, in the course of very long time, of compound solitons in which one component 
is arranged as a (partly incoherent) fundamental soliton, while the other one carries 
vorticity. 

In the 3D case, direct simulations are still more necessary, in view of a rather con­
troversial character of the variational results for this case, as explained above. With 
A < 0 (the repulsive dc nonlinearity), and a sufficientiy large amplitude of the ac 
FRM drive, the simulations show temporary stabilization of the condensate, roughly 
the same way as predicted above by the solution of the variational equation (8.20). 
However, the stabilization is not permanent: the condensate begins to develop small-
amplitude short-scale modulations around its center, and after ~ 50 periods of the ac 
modulation it collapses. An example of this behavior is displayed in Fig. 8.2, for 
^ " = 1 , A = - l a n d a ; = 10%. 

Results displayed in Fig. 8.2 are typical for the 3D case with A < 0. The eventual 
collapse which takes place in this case is a nontrivial feature, as it occurs despite the 
fact that the dc part of the nonlinearity drives the condensate towards spreading out. 
In the case of A > 0, simulations show that the ac-FRM drive is never able to prevent 
the collapse. These general conclusions comply with the analysis developed above on 
the basis of the averaged Hamiltonian (8.29), which showed that the collapse cannot 
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be arrested in the 3D case, provided that the amplitude of the ac drive is large enough. 
Besides that, this eventual result is also in accordance with simulations of the model of 
the bulk optical medium with the periodically alternating sign of the Kerr coefficient, 
based on Eqs. (7.1) and (7.2): as mentioned in the previous chapter, simulations never 
produced stable 3D solitons (STSs) in this model. 

Lastly, it is relevant to mention paper [14], where opposite conclusions were re­
ported: that the ac-FRM modulation can stabilize 3D solitons, and can stabilize 2D 
vortical solitons too. The latter result was obtained in simulations of the GPE restricted 
to the temporal and radial variables only, similar to Eq. (8.2), while, as is known, 
the instability of soliton vortices is induced by azimuthal perturbations which break 
their axial symmetry [44, 111]. As concerns the stability of 3D FRM-driven solitons 
reported in work [14], it seems plausible that what was observed in that work is an 
unstable soliton which is made to seem stable if its shape is found with very high ac­
curacy, and perturbations are kept extremely small in the simulations. All the other 
works on this topic [5,150,130,166] concluded that 3D solitons in the ac-FRM-driven 
model are unstable if no additional stabilizing element is present. In section 10.2, it 
will be shown that a combination of the ac-FRM drive and quasi-one-dimensional op­
tical lattice (OL) is sufficient for true stabilization of 3D solitons in the corresponding 
GPE. 



Chapter 9 

Multidimensional dispersion 
management 

9.1 Models 

As it was explained in the Introduction, up to date neither 3D spatiotemporal solitons 
(STS) in a bulk optical medium, nor their 2D counterparts in planar waveguides have 
been observed in the experiment. For this reason, theoretical analysis of new settings 
that may suggest possibilities to create optical STS in the experiment remains a highly 
relevant topic. 

In paper [122], a new scheme capable to support stable STS in the case of the 
ordinary Kerr (x̂ "̂ )̂ nonlinearity in a 2D medium (planar waveguide) was proposed. It 
relies on propagation of an optical beam across a layered structure that does not affect 
the nonlinearity (i.e., the Kerr coefficient is positive and constant everywhere, on the 
contrary to models with the nonlinearity management considered in previous chapters), 
but rather provides for periodic reversal of the sign of the local GVD coefficient. Thus, 
it is a model of the DM (dispersion management) in a nonlinear planar waveguide. 
The same work [122] has concluded that the DM itself, without additional ingredients, 
cannot stabilized 3D solitons in a bulk medium with a similar layered structure. In the 
2D case, however, not only the ordinary stable single-peaked (fundamental) solitons, 
but also very robust double-peaked localized oscillatory states were found. This chapter 
summarizes basic results concerning the stabilization of the STSs by means of the DM 
in two dimensions. 

The model is a straightforward variant of the NLS equation, quite similar to ones 
considered in previous chapters (cf., e.g., Eq. (7.12)): 

lU^ + - {U^^ + D{z)Urr) + \u\'^U = 0. (9.1) 

Here z is the propagation distance, x is the transverse coordinate in the planar waveg­
uide (in the bulk medium, Uxx is replaced by u^x + Uyy, where y is the another trans­
verse coordinate), r is the same reduced time as in Eq. (1.5), and the local GVD coef-
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ficients is denoted here as —D, instead of /?. It is subject to the same DM modulation 
asinEq. (1.49), 

^^^' \ D^<0,L+<z<L+ + L^=L, ^^-^^ 

which repeats itself periodically with the period L (in terms of D, the anomalous and 
normal GVD correspond, respectively, to D > 0 and D < 0). Note that Eq. (9.1)) 
has a manifest property of the Galilean invariance: if uo(x, z, r ) is a solution, a two-
parametric family of "boosted" (moving) solutions can be generated from it as follows: 

U{X,Z,T) — exp i{qx — (jjT q^z — -uP' D{z)dz 

UQ Ix — qz,z,T + u) / D{z)dz 1 , (9.3) 

where q and w are two arbitrary real parameters ("Galilean boosts"), which is to be 
compared with the similar invariance of the ID NLS equation, see Eq. (1.6). 

To cast the model into a normalized form, one can set, by means of obvious rescal-
ings, D+ = 1, L = 2. The ratio L-/L+ remains an irreducible parameter, but it is 
well known that, in the usual DM model for optical fibers, the results do not depend 
on this ratio, nor separately on the soliton's temporal width Tpwuu, but rather on the 
DM strength, S = {D+L+ + \D^\L^) / T | W H M ' see Eq. (2.25). Therefore, it will 
be fixed here that L+ = L_ = 1. Then, in addition to S, the only remaining free 
parameter of the model is the PAD (path-average dispersion), which takes the form 

I 5 . 5 ± i ± ± i ^ = l a + Z,_), ,9.4) 

with regard to the normalizations D+ = \,L± = 1. The remaining parameter Z?_ can 
be expressed in terms of D: as it follows from Eq. (9.4), D_ = 2D — 1. 

It is relevant to mention that this 2D model is somewhat similar to another one, 
that was recently introduced in work [2]; it differs by sinusoidal modulation of D{z), 
instead of the piece-wise constant DM map adopted in Eq. (9.2), and, most impor­
tantly, by the fact that (in the present notation) it has the same modulated coefficient 
multiplying both the GVD term UTT and the diffraction one, u^x'-

iu^ + -[Do + Di sin {kz)] {u^x + UTT) + \u\^u = 0, (9.5) 

with Do > 0. In fact, this model was motivated by a continuum limit of some discrete 
systems; as concerns the context of nonlinear optics, it would be difficult to introduce 
the periodic reversal of the sign of the transverse diffraction (the coefficient in front of 
Uxx)- There is a great difference between Eq. (9.1), which is strongly anisotropic in 
the plane {x, r ) , and the isotropic equation (9.5). 

9.2 Variational approximation 

The VA (variational approximation) is a natural tool for the analysis of solitons in Eq. 
(9.1). To apply it, a straightforward Gaussian ansatz is adopted (cf. ansatze (2.6) and 
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(8.5)), 

u = A{z) exp < ifpiz) — - + W^lyz) T^{z) 
+ ' [b{z)x^+p{z)' (9.6) 

where A and (f) are the amplitude and phase of the soliton, W and T are its transverse 
and temporal widths (the latter is related to the above-mentioned full-width-at-half-
maximum as follows: TpwHM = 2^/ln2T), and b and f3 are the spatial and temporal 
chirps. The Lagrangian from which the 2D version of Eq. (9.2) is derived is 

- ^ 

-l-oo 

i {uzU* ~ ulu) — \ux\ — D{z)\ur\ + \u\'^ dxdr. (9.7) 

Substitution of the ansatz (9.6) into the Lagrangian yields an effective Lagrangian, 

-LefF = A^WT[4:(j)'-b'W'^-l3'T^~W-'^-DT 

2rp21 +A' - h'W - D{z)f3'T'\ , (9.8) 

where the prime stands for d/dz. 
The variational equation 5L/5(j) = 0, applied to the expression (9.8), yields, as 

always, the energy-conservation relation, dE/dz = 0, where 

E = A^WT. 

Equation (9.9) is used to eliminate A? from subsequent equations. Then, the term' 
in the Lagrangian may be dropped, and it takes the form 

(9.9) 

4L, eff 

•KE 
h'W'^ - /3'T'^ 

1 D{zl 
]y2 J'2 

E 
WT 

-yW^-D{z)(i^T\ (9.10) 

Varying the latter expression with respect to W, T and 6, /? yields the following Euler-
Lagrange equations: 

__W' __ T 
^^W^^^(z)f' (9.11) 

W" 

D' 
D 

E 

W^ 2W^T' 
D^ DE 
f^ ~ 2WT'^ ' 

(9.12) 

(9.13) 

Note that, as is known from the variational approach to the description of collapse 
in the 2D NLS equation [48], in the case of /3 = const < 0, fixed-point (FP) solutions 
to the VA equations (9.12) and (9.13) are degenerate: the FP exists at a single value 
of the energy, E = 2\/D, and, at this special value of E, there is a family of FPs 
with T = \/DW (W is arbitrary). These results exactly correspond to the existence 
of the TS (Townes soliton) in the isotropic 2D NLS equation. The family of the TS 
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solutions are found at a single value of the energy, but with arbitrary width. Within the 
framework of Eqs. (9.12) and (9.13), all the FPs corresponding to D — const > 0 
are weakly unstable (against small perturbations that grow with z linearly, rather than 
exponentially, which corresponds to the fact that the collapse is weak in the 2D case, 
on the contrary to strong collapse in three dimensions). 

In the case of the piece-wise constant modulation corresponding to Eq. (9.2), the 
variables W, W, T and /3 at junctions between the segments with D = D± must be 
continuous. As it follows from Eq. (9.11), the continuity of the temporal chirp I3{z) 
implies a jump of T' when passing from D_ to D+, or vice versa: 

{T')D=D,=^_{T')„^^_^. (9.14) 

9.3 Numerical results 

Both the variational equations (9.12), (9.13) and the underlying GPE (9.1) were simu­
lated numerically. In the latter case, the initial state was taken as per the ansatz (9.6), 
with zero spatial chirp (obviously, a point at which it vanishes can always be found, so 
this choice does not imply any special restriction), while the initial temporal chirp, /3o, 
was included: 

UQ = AQ exp \{wS ̂ ei-'^'^' (9.15) 

Completely stable periodically oscillating solitons were easily found in direct PDE 
simulations, closely following the prediction provided by the VA. As a typical exam­
ple, Fig. 9.1 shows a sequence of the soliton's snapshots through one (40th) cycle of 
the evolution. This picture remains identically the same, for instance, at the 80th cy­
cle, attesting to the true stability of the solitons in the 2D DM model. No leakage (net 
radiation loss) from the established soliton was observed, up to the accuracy of numer­
ical simulations. This implies that a small amount of radiation, emitted from the pulse 
when it passes the normal-dispersion slice, is absorbed back into it in the slice with 
anomalous dispersion. 

The shape of the pulse in Fig. 9.1 remains very close to a Gaussian, which explains 
why the VA provides for good accuracy in this case. The evolution of the temporal 
width T{z) for the same parameters, as predicted by the VA, is displayed in Fig. 9.2. 
On the contrary to T{z), the spatial width W{z) remains nearly constant, suggesting 
that the stable 2D soliton may be realized, in loose terms, as a "product" of the temporal 
DM soliton in the r-direction, and ordinary spatial soliton localized in x (a factorized 
ansatz of this type was proposed for the consideration of multidimensional optical soli­
tons in work [97]). Comparison shows that the PDE numerical solution indeed agrees 
well with the VA prediction. 

However, in some other cases direct simulations of Eq. (9.1) reveal periodic evo­
lution in a drastically different form: the initial pulse splits into two subpulses, which 
do not fully separate, but rather form an oscillatory bound state, examples of which are 
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1/4 cycle 

Figure 9.1: Evolution of the intensity distribution in a stable 2D soliton through a cycle 
of its propagation in the dispersion-managed nonlinear planar waveguide, described by 
Eqs. (9.1) and (9.2), with D+ = -£>_ = 1, L+ = L_ = 1. Parameters of the initial 
pulse (9.15) are To = 1.35, WQ = 1.35, E = 1, and /?o = -1.85. Snapshots are taken 
at points corresponding to the start, 1/4,1/2 and 3/4 of the cycle. 
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H 0 

Figure 9.2: A cycle of the soliton's evolution in the plane of (T, T' = dT/dz), accord­
ing to the variational approximation, in the same case as shown in Fig. (9.1). The jump 
in T' occurs at the junction between L+ and L_, according to Eq. (9.14). Unlike the 
temporal width T, its spatial counterpart W remains almost constant within the cycle. 
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shown in Figs. 9.3. In this case the VA still predicts a stable soliton in the form of a sin­
gle Gaussian. Oscillatory bound states of two subpulses are also found in some cases 
when the VA predicts that the Gaussian-shaped soliton cannot self-trap. The bound 
state demonstrates qualitatively similar behavior in all the cases when it is found. First, 
an initial Gaussian with zero temporal chirp splits into two subpulses with chirps of 
opposite signs. Then, in the regime of established oscillations, the subpulses approach 
each other and nearly merge while passing the layer with D = D+, and they separate 
again in the layer with D = Z)_. 

The VA makes wrong predictions in cases when the pulse transforms itself into the 
bound state of two subpulses, as the simple Gaussian ansatz (9.6) obviously cannot 
describe such a configuration. It is relevant to mention that the splitting of an initial 
Gaussian is one of possible generic outcomes of the evolution in ID models of the DM 
type, see Fig. 2.3. However, a cardinal difference is that no stable oscillatory bound 
states resulting from the splitting was found in ID models. In this connection, it may be 
relevant to mention that a drastic difference of the splitting of ID (temporal) pulses and 
their spatiotemporal counterparts was observed in a recent experimental work [119], 
which was dealing with the propagation of ultrashort spatiotemporal pulses in water: 
while the pulse undergoes on-axis splitting and recombination, its spatially integrated 
temporal profile remains unsplit. 

The findings are summarized in stability diagrams for the 2D solitons displayed in 
Fig. 9.4. The diagrams were generated on the basis of simulations of the variational 
equations (9.12) and (9.13), which were verified by direct simulations of the PDE (9.1) 
at sampling points indicated in the diagrams by digits. At points 1, 2, 3, 6, 9, and 10 
the behavior predicted by the VA is confirmed by the simulations. At points 7 and 8, 
the periodic split-pulse evolution (bound states) is observed, of the type shown in Figs. 
(9.3). Note that this behavior, which may be interpreted, in loose terms, as intermediate 
between the stability and decay of a single-peaked soliton, is indeed observed close to 
VA-predicted borders between stable and decaying solitons. 

At point 4, which is close to the VA-predicted border between decay and collapse, 
direct simulations initially demonstrate strong emission of radiation and broadening of 
the pulse, which eventually cease, being changed by seemingly chaotic oscillations of 
the localized pulse without any tangible energy loss. At point 5, essentially the same 
chaotic regime sets in, which is preceded, however, by self-compression of the initial 
pulse, rather than by its broadening. Lastly, at point 11, a strong transient emission of 
radiation is observed, like at point 4, but the pulse keeps its Gaussian shape, and regular 
periodic oscillations of the soliton finally set in. It may happen that, in the course of an 
extremely long evolution, chaotically oscillating solitons (observed at points 4 and 5) 
gradually relax towards a periodically oscillating soliton. 

Finally, the observation that the stability regions (unshaded in Fig. 9.4) tend to be 
centered around a particular value of the energy (especially in Fig. 9.4(b)) has a simple 
explanation: this value is the one which corresponds to the TS (Townes soliton) in the 
free space, and, in a crude approximation, the DM, as well as other means of stabiliza­
tion of the 2D solitons (such as 2D and quasi-ID lattices [24, 26]) act to stabilize the 
pre-existing weakly unstable TS. 
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1/4 cycle 

Figure 9.3: The same as in Fig. 9.2, but for different parameters of the input pulse: 
To = 1, Wo = 1, E = 2, and /3o = 0. In this case, although the variational approx­
imation predicts a stable single-peaked solution, the pulse splits up and gives rise to a 
stable oscillatory bound state of two subpulses. 
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Figure 9,4: Stability diagrams for the solitons in the model of the dispersion-managed 
nonlinear planar waveguide: (a) in the plane {E, WQ) of the energy and width of the 
initial pulse, with WQ = To and 0o = 0; (b) in the plane {E, 0o) of the initial energy 
and temporal chirp. Predictions of the variational approximation are marked as follows: 
the stability region is unshaded, while ones where the pulse is predicted to be unstable 
due to spreading out or collapse are shaded, respectively, by gray and dark gray. The 
numbered points are those at which direct simulations of Eq. (9.1) were performed, to 
verify the predictions, as explained in the text. 



140 MULTIDIMENSIONAL DISPERSION MANAGEMENT 

9.4 The three-dimensional case 

The 3D generalization of the model (9.1), with the 2D transverse Laplacian, Uxx +Uyy, 
instead of w^x, was also investigated by means of the VA and in direct simulations, 
starting with the ansatz (9.6) in which x is replaced by the transverse radial coordinate 
r = A/X^ + 2/2 [122]. Both the variational and fully numerical approaches yield a 
negative result: the 3D soliton can never be stabilized by means of the longitudinal 
DM. The addition of NLM, i.e., periodic (in z) alternation of the sign of the coefficient 
in front of the cubic term, as in Eqs. (7.1), (7.2), does not stabilize 3D solitons either. 

A possibility to find stable 3D solitons is offered by a model of a bulk layered 
medium (instead of the planar waveguide considered above). It includes the same 
longitudinal DM as in the above 2D model, which is combined with a transverse (in 
direction y) quasi-ID lattice, in the form of periodic modulation of the RI (refractive 
index): 

w = 0. (9.16) 

Here e is the strength of the transverse modulation (the modulation period is normalized 
to be TT), and the DM map is taken in the symmetric form (cf. Eq. (9.2), 

^^'^^[D-D^<Q,L<Z<2L, • ^^-^^^ 

Parameters of the map are fixed by rescaling to be i = 1 and £)m = 1, while the PAD 
D is small. This 3D model was very recently investigated, but only in the framework 
of VA in work [123] (direct simulations will be reported later). 

The variational ansatz was taken in the form (cf. Eq. (9.6)) 

du 
dz 

[ 1 / ^ 2 92 „ , , 92 \ , , , „1 

[ 2 ( ^ + ^+''^'^^J''""^''^ + '"'1 

u = A{z) exp •̂  i(f>{z) — -
2/2 r2 

+ T7TrT + + W2(z) v'^{z) T'2{z)_ 

+ '-[b{z)x^ + ciz)y^ + l3{z)T^]Y (9.18) 

where V and c are the additional width and chirp in the direction of RI modulation. 
The standard VA procedure leads to the conservation of the energy, E = A'^WVT, 
and evolution equations (cf. Eqs. (9.12) and (9.13)) 

1 rp 

W" = — — (9 19) 
W^ 2V2W^VT' ^ • ' 

V" = :^ - AeVexp (-V^) ^ ^ ^ , (9.20) 

T'\ D E 

Dj T3 2V2WVT^' 
(9.21) 
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supplemented by the same matching (boundary) condition (9.14) as in the 2D model, 
and also by the relations (cf. Eq. (9.11)) 

W V T' 

For large e (a strong lattice), one may keep only the first two terms on the right-
hand side of Eq. (9.20). This approximation yields a nearly constant value VQ of V, 
which is a smaller root of the corresponding equation, 

4sVo^exp{-Vo^)=l (9.23) 

(a larger root corresponds to an unstable equilibrium of Eq. (9.20)). The roots exist 
provided that 

£ > £min = eVl6 « 0.46, (9.24) 

the relevant one being limited by VQ < 2. Then, the substitution of ^ = VQ in the 
remaining equations (9.19) and (9.21) leads to essentially the same VA-generated dy­
namical system for the 2D model which was shown in the previous section to give rise 
to stable STSs. 

Simulations of Eqs. (9.19)-(9.21) readily produce solutions corresponding to stable 
3D solitons, an example of which is shown in Fig. 9.5. The analytical prediction 
(9.24) for the minimum RI modulation amplitude, necessary for the existence of stable 
solitons, is very accurately verified by numerical data. The simulations also reveal 
finite minimum and maximum values of the energy which border the area of stable 
solitons. It is noteworthy too that, as well as in the case of the ordinary DM solitons in 
optical fibers (see Fig. 2.5), stable 3D solitons in the present model can be predicted 
at small negative values of D, up to (—D) ~ 0.005, which corresponds to normal 
(rather than anomalous) average GVD in the system. 
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Figure 9.5: An example of the stable evolution of solutions to the variational equa­
tions (9.19)-(9.21), which approximate 3D solitons in the model (9.16) combining the 
longitudinal DM and periodic modulation of the refractive index in one transverse di­
rection. The soliton's widths in the direction x, y and r, i.e., W, V and T, are shown as 
functions of z, for E = 0.5, £ = 1, and D = 0. 



Chapter 10 

Feshbach-resonance 
management in optical lattices 

10.1 Introduction to the topic 

Stabilization of 3D solitons in nonlinear optics and BECs (Bose-Einstein condensates) 
is a cardinal problem in the current studies in these fields. Various theoretical ap­
proaches to this topic constitute one of central themes of the present book. As ex­
plained in previous chapters, the ac-FRM technique, in the form of periodic reversal 
of the sign in front of the nonlinear terms in the corresponding GPE (Gross-Pitaevskii 
equation), is sufficient to stabilize only 2D solitons in BEC. On the other hand, a quasi-
ID optical lattice (OL), which is much easier to create in the experiment than its multi­
dimensional (2D or 3D) counterparts, is also capable to support stable solitons only in 
the 2D setting, but not in three dimensions [26]. These findings suggest a natural ques­
tion, whether a combination of FRM and quasi-ID lattice may be sufficient to stabilize 
3D solitons. In a recent work [166] a positive answer was given to this question, using 
an analytical approach (VA) and direct simulations. 

The interplay of an OL and low-frequency FRM suggests another interesting pos­
sibility. Indeed, it is well known that the GPE equipped with the OL gives rise to 
regular solitons or GSs (gap solitons) if the nonlinearity is, respectively, self-attractive 
or self-repulsive. Then, in the case of periodic slow switching between the two signs 
of the nonlinearity provided by the FRM, a question arises, whether periodic adiabatic 
transitions between solitons of the two types can be predicted. The corresponding sta­
ble alternate solitons are possible indeed, as was demonstrated in both the 2D and ID 
settings [77]. An account of these results is also included in the present chapter. 
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10.2 Stabilization of three-dimensional solitons by the 
Feshbach-resonance management in a quasi-one-
dimensional lattice 

10.2.1 The model and variational approximation 

The model introduced in work [166] is based on the GPE in three dimensions, that 
includes the ID lattice potential and the same ac-FRM modulation of the nonlinearity 
coefficient as in other models considered in this book. Thus, the normalized equation 
for the single-particle wave function tp is 

- - V ' + £ (1 - cos(2z)) + {go + gi sin(Ot)) jV'l̂  V', (10.1) 

where the Laplacian (kinetic-energy operator) V'̂  acts on all the three coordinates x, y, 
and z. Further, e is the strength of the OL potential, whose period is scaled to be TT, go 
and gi account for the dc and ac parts of the FRM-controUed nonlinearity coefficient, 
and D. is the ac-FRM frequency. Solitons can be constructed only in the case of 50 < 0, 
which implies that the constant part of the interaction is self-attractive. 

Equation (10.1) can be derived from the Lagrangian, 

L = 
+ 0 0 

dz 

-2£(1 

gdg 

008(2^)) IV-I (5o+3isin(f2i))IV'l'] 

d'lP 

dg 

2 

dz 

(10.2) 

where the asterisk stands for the complex conjugation, and g = ^Jx^ -\- y^ is the radial 
variable in the plane transverse to the lattice. To apply the VA to this model, a complex 
Gaussian ansatz may be adopted (cf., for instance, ansatz (9.6), with the real amplitude 
^( i ) , phase 0(^), radial and axial widths W{t) and V{i), and the corresponding chirps 
6(Oand/3(t): 

ip{r,t) = Aexp 
2W^ 

+ ib (J- + if3 (10.3) 

An effective Lagrangian is obtained by inserting the ansatz (10.3) into Eq. (10.2). The 
Euler-Lagrange equations derived from the effective Lagrangian yield, first, the con­
servation of the solution's norm (dE/dt = 0), which is proportional to the number of 
atoms in the condensate, 

E = — Id r 
^ J-00 Jo 

gdg\^\^ = A^W^V, (10.4) 

and dynamical equations for the widths W and V (cf. Eqs. (9.13), (9.12), derived in a 
similar situation in the previous chapter): 

fW_ _ _ 1 _ E 

dt^ 

d^V 
df^ 

Vsww 
[90 + 5i sin(r2t)], (10.5) 

1 
_ _ = _ _ 4 £ F e x p ( - y 2 ) 

E 
V8iy2y2 

[go + gism{nt)]. (10.6) 
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Numerical results will be given below for the normalization E — TT"^/^ (this condition 
may always be imposed by rescaling g^ and gi). 

A necessary condition for the existence of a 3D soliton in the present model can be 
derived from these equations in an approximate form. To this end, it is assumed that gi 
is small, while Q is large in Eq. (10.1). It is also conjectured that the average value W 
of the soliton's radial size, W, is large (see below). Further, in the lowest approxima­
tion, the soliton's size in the axial direction may be assumed constant, V{t) w VQ, as 
determined by the relation 

AsVo^exp{-V^)=l, (10.7) 

that follows from Eq. (10.6) where the last small term (~ W^"^) is dropped. Equa­
tion (10.7) has real solutions if the OL strength exceeds a minimum (threshold) value, 

e > ethr = eVl6 « 0.46 (10.8) 

(note the same value appeared in a similar context in the model considered in the pre­
vious chapter, see Eq. (9.24)). For s > Sthr, Eq. (10.7) has two real solutions, which 
implies the existence of two different solitons. It seems very plausible (cf. the situation 
for static models considered Refs. [24,25,26]) that the narrower soliton, corresponding 
to smaller VQ, is stable, and the other one is unstable. 

Next, replacing V(t) by VQ in Eq. (10.6), one may look for a solution as W{t) w 
W + Wi sin (fit). For large fl, the variable part of the equation yields 

Wi = ^ . (10.9) 

Then, the consideration of the constant part of Eq. (10.5), with regard to the first cor­
rection generated by averaging of the product of Wi sin (ilt) g{t), yields the following 
result: 

W' = -±- (^)\ , ' ^ , . (10.10) 
4v^yo \ ^ J {E\go\-V8Vo) ' 

An essential corollary of Eq. (10.10) is a necessary condition for the existence of the 
3D soliton: 

\9\>{\9o\U^ = ^ (10.11) 

(recall ^o is negative). In fact, this minimum value, for given E, corresponds (within 
the framework of the VA) to the critical norm necessary for the existence of the 2D 
soliton (i.e., the norm of the TS). Direct simulations presented in the next subsection 
show that this condition holds indeed, albeit approximately. 

4 

Finally, the above conjecture, that W is large, is (formally) valid only when l̂ ol 
slightly exceeds the minimum value defined in Eq. (10.11) - then, the expression 
(10.10) will be large, as the denominator is small. 
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' . M 

Figure 10.1: Evolution of \i){x, y, z, t)\ in the numerical experiment providing for the 
formation of a three-peak soliton in the 3D model combining the ac-FRM management 
and quasi-lD lattice (the final form of the model is given by Eq. (10.1)). Panels a) 
through d) display the shape of the wave functions at different moments of time. The 
established soliton in panel d) corresponds to go = —18, gi = igo, e — 20.5, and 
Vt = 22. In panel (e), thin and thick lines show the evolution of the amplitude of the 
central peak in two different cases: the three-peaked soliton proper, and in the case 
when two side peaks were suddenly removed (the latter configuration is shown in the 
inset). 

10.2.2 Numerical results 

PDE simulations of the full model (Eq. 10.1) produce stable single-peaked solitons 
(as predicted by the VA) and their multi-peaked counterparts. However, it is difficult 
to enforce direct self-trapping of an initial Gaussian pulse into the soliton, therefore, 
a special procedure was worked out in work [166] to construct stable solitons in this 
model. To this end, simulations began with Eq. (10.1) that contained additional terms 
(an ad hoc potential providing for initial trapping in the Q and z directions); the coef­
ficients in front of other terms were also different from what is written in Eq. (10.1). 
Then, the added terms were gradually removed, and coefficients in front of the remain­
ing terms were cast in the final form, corresponding to Eq. 10.1. 

Figure 10.1 displays self-trapping of a typical three-peaked soliton in the numerical 
experiment. Panel (d) in the figure shows the established pattern, which then remains 
unchanged over indefinitely long time. In all stable multi-peaked solitons, the relative 
phase difference between adjacent peaks is close to TT. 

It is important to understand whether the multi-peak solitons are true coherent 
bound states, supported by the interaction between peaks, or just sets of quasi-2D soli­
tons, completely isolated from each other by barriers in the strong OL potential. To 
this end, panel (e) in Fig. 10.1 shows the evolution of the central-peak's amplitude 
in the three-peaked soliton itself, and in the case when two side peaks were suddenly 
eliminated. As is seen, in the former case the amplitude performs oscillations without 
systematic decay, while decay begins if the central peak is no longer supported by the 
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Figure 10.2: Stability regions for the 3D solitons in the model combining the FRM 
and quasi-ID lattice, as predicted by the variational approximation ("VA"), and as 
found from direct simulations of the Gross-Pitaevskii equation (10.1) ("numerics"), a) 
The {go, f2) parameter plane; b) the (e, Q,) plane (in this figure, go and s are denoted, 
respectively, as goi and ef). Other parameters are as in Fig. 10.1. The vertical line in 
(a) corresponds to the minimum value of \go\ predicted by Eq. (10.11), which actually 
corresponds to the two-dimensional Townes soliton. The fat dot in panel (b) (at e w 
20.5, Q w 22) corresponds to the example displayed in Fig. 10.1. 

interaction with the side ones. Eventually the single peak completely decays in this 
case (although stable single-peak solitons can be found in this model too). 

If the strength of the OL is increased by a factor ^ 2 against the value for which 
Fig. 10.1 was generated, the stable multi-peaked pattern becomes a set of virtually 
uncoupled fundamental solitons, each being trapped in a single lattice cell (then, in 
contrast with what was shown in Fig. 10.1 (e), the removal of matter from any subset of 
the cells does not affect the localized states in other cells in any tangible way). In fact, 
in the latter case one is dealing with a nearly 2D situation, as the condensate is tightly 
confined by individual potential wells in the OL. It was known before that a very strong 
ID parabolic potential can stabilize ac-FRM-driven solitons in three dimensions, just 
by making them effectively two-dimensional objects [130] 

Results of systematic direct simulations of the GFE (10.1) are collected and com­
pared with predictions of the VA (which follow from simulations of ODEs (10.5) 
and 10.6) in Fig. 10.2. As is seen, the agreement between the VA and full numeri­
cal results is quite good. 

The variational estimate (10.11) for the minimum size of the average nonlinear co­
efficient necessary for the existence of the 3D soliton in the ac-FRM-driven QID lattice 
is borne out by direct simulations, although approximately. Figure 10.2(b) confirms the 
existence of the minimum OL strength e which is necessary to support the 3D soHtons, 
as predicted by the VA, see Eq. (10.8). 
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10.3 Alternate regular-gap solitons in one- and 
two-dimensional lattices under the ac 
Feshbach-resonance drive 

10.3.1 The model 

The model dealt with in this section is set in the 2D space with a full 2D lattice. The 
corresponding GPE is 

i ^ + ^ + ^ + £ [cos(2x) + cos(2y)] V + [AQ + Ai cos(wt)] IV'lV = 0, 

(10.12) 

The only dynamical invariant of Eq. (10.12) (with the time-dependent nonlinearity 
coefficient) is the norm, which is proportional to the number of atoms in the condensate, 

N= I [ \i;{x,y,t)f dxdy. (10.13) 

The objective of the consideration is to find alternate solitons, which perform periodic 
adiabatic transitions between gap-soliton configurations and regular solitons that cor­
respond, respectively, to AQ + Ai cos(wt) < 0 and AQ + Ai cos(a;t) > 0, in the case 
when the modulation frequency OJ is small enough. The results included in this section 
were obtained in work [77]. 

In case of Aj = 0, stationary solutions to Eq. (10.12) are sought as 

'4'{x,y,t) = u{x,y)exp{-int), (10.14) 

with a real chemical potential /i and a real function u which satisfies the equation 

d Vj d u 
MW + ^ + ^ + £ [cos(2x) -I- cos(2y)] u + XQU^ = 0. (10.15) 

Search for soliton solutions should be preceded by consideration of the spectrum of the 
linearized version of Eq. (10.15), as solitons may only exist at values of /j. belonging 
to bandgaps in the spectrum. The linearization of Eq. (10.15) leads to a separable 2D 
eigenvalue problem, 

[L:c + Ly\u{x,y) =-^u{x,y), (10.16) 

where a ID linear operator is Lx = d'^ jdx^ -\- £cos(2a;). The corresponding eigen-
states can be built as Uki{x,y) = gk{x)gi{y), with the eigenvalues iiki = /J-k + jJ-i, 
where gk{x) and gi{y) is any pair of quasi-periodic Bloch functions solving the linear 
ME (Mathieu equation), Lxgkix) = —fJ.kgk{x), fJ-k and fii being the corresponding 
eigenvalues. The band structure of the 2D linear equation (10.16) constructed this way 
was already investigated in detail (see, e.g., papers [135] and [56]). It includes, as 
the spectrum of the ME itself, a semi-infinite gap which extends to /i —> — oo, and a 
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Figure 10.3: The system of vertical stripes gives a typical example (for e = 7.5) of 
the bandgap structure found from the linearized version of Eq. (10.15), shaded and 
unshaded zones being the Bloch bands and gaps, respectively (solitons may exist only 
inside the gaps). The solid curve shows the dependence /^(AQ) for numerical soli-
ton solutions, as found (also for e = 7.5, and for a fixed norm, A'' = 47r) from the 
full nonlinear stationary equation (10.15). The dashed curve is the same dependence 
for approximate soliton solutions found by means of a variational method based on a 
Gaussian ansatz (details of the latter are given in paper [77]). Points "a" through "f' 
mark particular solitons whose shapes are given in Fig. 10.4. 
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set of finite gaps separated by bands that are populated by quasiperiodic Bloch-wave 
solutions, see a typical example in Fig. 10.3. 

With the constant self-attractive nonlinearity (Aj = 0, AQ > 0), a family of stable 
stationary 2D solitons is known to exist in the semi-infinite gap [24, 174, 56]. With the 
repulsive constant nonlinearity, AQ < 0, stable 2D gap-soliton solutions can be found 
in finite gaps [23, 135, 26, 152]. In either case, a necessary condition for the existence 
of the stationary 2D solitons is that their norm, defined by Eq. (10.13), must exceed a 
certain minimum (threshold) value, A t̂hr [56]. 

Stationary soliton families are characterized by the corresponding dependences 
/Li(Ao) in each gap where the solitons exist. For a fixed OL strength e = 7.5, and 
fixed norm, 

A'' = 47r, (10.17) 

these dependences are shown by the solid curve in Fig. 10.3. Possible shapes of the 
solitons are illustrated by a set of profiles displayed in Fig. 10.4. 

10.3.2 Alternate solitons in two dimensions 

The existence and stability of alternate solitons were studied by direct simulations of 
Eq. (10.12). The case of the vanishing dc part in the nonlinearity coefficient, AQ = 
0, is to be considered first. At i = 0, the simulations started with an initial profile 
corresponding to a numerically found soliton solution of the stationary equation (10.15) 
with A = Aj (assuming Ai > 0). Systematic simulations demonstiate that it is indeed 
possible to achieve stable periodic adiabatic alternations between two quasi-stationary 
soliton shapes, one corresponding to an ordinary soliton belonging to the semi-infinite 
gap in the case of the constant attractive nonlinearity, the other being a gap soliton in 
one of the finite gaps, supported by the constant repulsive nonlinearity. Relaxation to 
such an alternate soliton, which periodically switches between the two limit forms, is 
accompanied by very weak radiation loss. In the established regime, no emission of 
radiation could be detected in the simulations. 

An example of a robust alternate soliton is displayed in Fig. 10.5. In particular, 
sidelobes in the soliton's profile, characteristic of the gap-soliton shape, periodically 
appear and disappear in the course of the cyclic evolution. It is noteworthy that periodic 
crossings of the zero-nonlinearity point, A = 0, at which no stationary soliton may 
exist, do not destroy the alternate soliton. The spatially-averaged squared width of the 
soliton, the evolution of which is shown in the lower panel of the figure, is defined as 

eit) = S ! A<^.y^t)?d^dy _ ^^^^^^ 
f J \u{x,y)\'^dxdy 

Results of systematic simulations are summarized in stability diagrams for the al­
ternate solitons, which are displayed in Fig. 10.6 for AQ = 0 and several different 
values of the FRM amplitude Ai. Naturally, the solitons may be stable under low-
frequency (quasi-adiabatic) FRM drive. The stability region in Fig. 10.6 is defined as 
one in which the total radiation loss, measured in the course of indefinitely long evolu­
tion, is less than 2% of the initial norm. In particular, the example shown in Fig. 10.5 
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Figure 10.4: Solid lines show cross sections of the two-dimensional solitons' shapes 
through the line y = 0, i.e., u{x, 0), see Eq. (10.14. Panels (a) to (f) correspond to the 
string of marked points in Fig. 10.3. 
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Figure 10.5: An example of a stable alternate soliton, for £ = 5, Ai = 0.7, w = 1, 
and Ao = 0; it corresponds to point (a) in Fig. 10.6 (for Ai = 0.7). The upper 
panel displays the soliton evolution in terms of contour plots. The lower panel shows 
the time dependence of the amplitude and mean squared width of the soliton. Two 
insets are cross-sections of instantaneous profiles of the soliton taken at moments of 
time {t = 50 and t = 150) when it is very close to a regular soliton and gap soliton, 
respectively. 
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Figure 10.6: Stability diagram for the alternate solitons in the (£,c<;) plane for AQ = 0 
and different fixed values of the Feshbach-resonance-management amplitude Ai. The 
region of complete stability (it is shaded for Ai = 0.7) is defined so that the total 
radiation loss of the soliton's initial norm is less than 2% in this region. 

corresponds to the point (a) in Fig. 10.6 (for Ai = 0.7); in this case, the total loss is 
almost exactly 2%. 

As the driving frequency w increases, the soliton emits more radiation. For moder­
ately high frequencies, the initial solitary-wave pulse prepared as said above (i.e., as a 
numerically exact stationary soliton corresponding to the initial value of A) sheds off a 
conspicuous share of its norm; then, the emission of radiation ceases, and the remain­
ing part of the pulse self-traps into a robust alternate soliton. An example of a such a 
semi-stable dynamical regime is displayed in Fig. 10.7. To additionally illustrate the 
relaxation to the stable regime, the lower panel of the figure includes a curve /j(t) which 
shows the evolution of the soliton's norm in time. In this case, the resulting alternate 
soliton oscillates between nearly stationary shapes corresponding to points (a) and (b) 
in Fig. 10.3, which belong to the semi-infinite and first finite gaps, respectively (there-
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Figure 10.7: An example of a "semi-stable" soliton, for s = 7.5, Ai = 0.7, w = 4.5, 
and Ao = 0, which corresponds to point (c) in Fig. 10.6 (for Ai = 0.7). After 1400 
oscillation periods, the soliton definitely survives. 

fore, the former one corresponds to regular solitons, and the latter one - to solitons of 
the gap type). In general, the alternate solitons become more robust with the increase 
of the OL strength e. 

In Fig. 10.6, the semi-stable regimes are not marked separately from completely 
unstable ones, as the border between them is fuzzy (in particular, it is not quite clear 
whether the semi-stable solitons would not very slowly decay on an extremely long 
time scale). In any case, a broad area adjacent to the completely stable one in Fig. 10.6 
is actually a region of semi-stability. At still higher driving frequencies, the soliton is 
definitely destroyed. 

It is not quite clear either if the stability region of the alternate solitons is limited 
on the side of very small frequencies. Indeed, one may expect that, in this case, the 
soliton spending long time around the zero-nonlinearity point, A = 0, will spread out, 
and may thus decay; on the other hand, if the soliton is very broad by itself, it may 
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survive this temporary spreading out. The lowest frequency checked in the simulations 
was a; = 0.1, the solitons being unequivocally stable at this point. 

It is also relevant to address the issue of the existence of the threshold necessary 
for the formation of the soliton, which, as mentioned above, exists for both A > 0 
and A < 0 in the static 2D models. In the nonstationary (FRM-driven) model with 
the fixed norm (see Eq. (10.17)), rescaling (necessary to keep the norm fixed) shows 
that the threshold manifests itself in the fact that persistent alternate solitons cannot be 
found if the FRM-drive's amplitude is too small, Aj < (Ai)j.jjj,. In the strong lattice 
with £ = 7.5 (the situation in the stationary model at this value of e is illustrated by 
Figs. 10.3 and 10.4), the threshold exists but is so small that its accurate value cannot 
be identified. This is possible for smaller e. In particular, for e = 4 it was found to be 
(^i)thr ~ 0-^^' which should be compared to the the thresholds for the same £ = 4 
and the same fixed norm (10.17) for the ordinary and gap solitons in the corresponding 
static 2D models: x[lf^ w 0.04, and Â ^̂ "̂  » -0.04, respectively. Quite naturally, 
the dynamical threshold is much higher than its static counterparts. 

The FRM-driven soliton dynamics with a negative nonzero dc part of the nonlin-
earity coefficient, AQ < 0, which corresponds to repulsion, was also considered. The 
interaction being repulsive on average, one may expect the existence of gap solitons in 
the high-frequency limit. The situation may be illustrated by an example for AQ = —0.9 
and Ai = 1.6. The simulations started with the initial profile corresponding to point 
(a) in Fig. 10.3, as the initial value of the nonlinearity coefficient, A(0) = 0.7, pertains 
to this point. The minimum instantaneous value of the oscillating nonlinear coefficient 
is Amin = —2.5 in this case, the stationary solution with A = —2.5 pertaining to point 
(d) in Fig. 10.3, which belongs to the second finite band. In this regime, the oscillating 
nonlinear coefficient X{t), in addition to cycling across the point A = 0 and a very nar­
row Bloch band separating the semi-infinite and first finite gaps, periodically passes the 
wider Bloch band between the first and the second finite gaps, where stationary soli­
tons cannot exist. Nevertheless, a stable alternate soliton, found in this case, survives 
all the traverses of the "dangerous zones", as shown in Fig. 10.8. A small amount of 
radiation is emitted at the initial stage of the evolution (the curve p{t) again shows the 
evolution of the soliton's norm), and then a robust alternate soliton establishes itself, 
cf. Fig. 10.7. It is noteworthy that, as seen in the insets, this soliton develops sidelobes 
that actually do not oscillate together with its core, and do not disappear either as A 
takes positive values. The latter feature distinguishes this stable regime from the one 
shown in Fig. 10.5, where the sidelobes periodically disappear. 

Finally, the application of the FRM mechanism to weakly localized ("loosely-
bound") solitons, such as the one in panel (f) of Fig. 10.4, cannot produce any stable 
regime periodically passing through a shape of this type, for any combination of AQ 
andAi inEq. (10.12). 

10.3.3 Dynamics of one-dimensional solitons under the Feshbach-
resonance management 

The ID case also deserves consideration, as the experiment may be easier in this case, 
and it is interesting to compare the results with those reported above for the 2D model. 
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Figure 10.8: A stable alternate soliton for e = 7.5, Ao = —0.9, Ai = 1.6, and UJ = 
1. The soliton survives while the nonlinear coefficient periodically traverses both the 
A = 0 point and two Bloch bands separating the semi-infinite and first two finite bands. 
Insets show cross-sections of instantaneous soliton's profiles with the largest (left) and 
smallest (right) amplitudes. 
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Figure 10.9: (a) A typical example of a stable alternate soliton found in the one-
dimensional model (10.19), for e = 4.5, Ai = 1, w = 7r/2, and Ao = 0. (b) Two 
profiles between which the alternate soliton periodically oscillates. 

In particular, an issue is whether the existence of the ID alternate soliton requires 
any threshold condition (minimum norm). The effective one-dimensional GPE is a 
straightforward reduction of Eq. (10.12), 

i-^ + -Q^ + £cos(2x)V' + [Ao + Ai cos{ujt)] jVI^^ = 0. (10.19) 

Here, results will be presented only for the most fundamental case without the dc 
component in A(i), i.e., AQ = 0, and fixing |Ai| = 1. The strategy is the same 
as in the 2D case: direct simulations of Eq. (10.19) start with a soliton profile that 
would be a numerically exact stationary soliton for the initial value of the nonlin-
earity coefficient, A = A(0). In most cases, the solution's ID norm was fixed at 
N = f_°° \u{x)\ dx — 7.9 (this normalization was chosen as it corresponds to an 
almost constant value of the chemical potential, ;U « 2, in the stationary version of the 
problem). However, the overall stability diagram will include different values of A ,̂ 
see Fig. 10.10 below. 

In the ID case, stable alternate solitons can be readily found, see an example in 
Fig. 10.9(a). The soliton periodically oscillates between the narrow and wide profiles, 
which are displayed in Fig. 10.9(b). 

The stability diagram for the ID alternate solitons, based on systematic numerical 
simulations, is displayed in Fig. 10.10. It is noteworthy that the shape of the stability 
area is qualitatively similar to that in the 2D version of the model, cf. Fig. 10.6. The 
similarity suggest that the basic results for the stability of the alternate solitons in the 
FRM-driven model with the OL potential are quite generic. 

It is well known that the existence of the ordinary and gap solitons does not require 
any finite threshold (minimum norm) in the static ID models with both A > 0 and 
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Figure 10.10: Stability diagram for alternate solitons in the one-dimensional model 
(10.19) combining the ac-FRM drive, with AQ = 0, and lattice potential. The stability 
borders are shown for two different values of the fixed norm. 
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A < 0. A principal difference of the dynamic (FRM-driven) ID model is that persistent 
alternate solitons can be found only above a finite threshold, N > A t̂hr- For instance, 
the numerical results yield A t̂hr ~ 2.1 for e = 7.5 and a; = 7r/2. Thus, in this sense 
the ID dynamic model is closer to the 2D one than to its static ID counterparts. 

Besides the fundamental (single-peaked) ID solitons considered above, stable higher-
order (multi-peaked) alternate solitons can also be found in the FRM-driven ID model. 
As concerns static higher-order solitons on lattices, a known example is the so-called 
twisted localized mode, i.e., an odd (antisymmetric) soliton in the discrete NLS equa­
tion [45]. A similar object is a bound state of two lattice solitons, which, too, is stable 
only in the anti-symmetric configuration, in the ID [84] and 2D [89] cases alike. 

Following the pattern of the static lattice models, an antisymmetric initial state was 
prepared as a superposition of two separated stationary solitons with opposite signs 
(i.e., the phase difference TT), corresponding to the initial value of A . Direct simulations 
demonstrate that stable alternate antisymmetric solitons can be easily found this way, 
see a typical example in Fig. 10.11. Stable bound states of several fundamental solitons 
with the phase shift TT between them were found too in the present model. 

A 2D counterpart of the odd soliton would be a vortical soliton. Such stable vortices 
were found indeed in the static models with self-attraction [24, 174] and self-repulsion 
[26, 152, 136]. However, simulations have not produced stable solitons with intrinsic 
vorticity in the 2D FRM-driven model based on Eq. (10.12) with AQ — 0. 
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variational equations for, 27-29, 29/ ' 

Harmonic-oscillator length, 13 

Hirota representation, 24 
Hotspot(HS), 111-12, 113/ 

Inverse scattering transform (1ST), 1,4 
application of, 5,24 
effects of, 75, 78 
eigenvalues, 96 
suppression, 71 

Inverse-velocity shift, 5 
1ST. See Inverse scattering transform 

Jacobian multiplicators, 118 
Josephson junction, 1 

KdV. See Korteweg - de Vries equation 
Kerreffect, 105,106 

coefficient, 115 
on fibers, 22 
negative, 22,74 
nonlinearity of, 11,115 
ordinary, 131 
self-focusing sign of, 2,21 

Korteweg - de Vries equation (KdV), 1 
kz. See Cos 

Lagrangian, 4, 19 
density, 27 
effective, 27-28,122,133,144 
technique, 46 
yields, 123,125,133 

Laplacian (kinetic-energy operator), 140144 
Lattices. See also Optical lattice 

low-dimensional, 15, 17/ 
quasi-one-dimensional, 144-Al, I46f, 147/ 
two-dimensional, 148-59,149/ 151/ 

152/ 153/ 154/ 156/ 157/ 158/ 
160/ 

virtual photonic, 16-18 
Light, standing, 9-10 
Longitudinal modulations, 20 
Lorentz invariance, 10 
Lumped-filtering systems, 4 3 ^ 5 , 4 4 / 45/ 

Manakov's system, 7-8 
Maps, 20,26, 33,109,140 
Massive Thirring model, 9 
Mathieu equation (ME), 100,101,148 
ME. See Mathieu equation 
Modulations. See also Cross-phase 

modulations; Self-phase modulations 
amplitude, 30 
longitudinal, 20 
periodic, 140 
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rapid, 97-98 
transverse, 19-20 

Multiplicators, 109,118 

Newtonian particle, 28 
NLM. See Nonlinearity management 
Nonlinear SchrOdinger equation (NLS), 1,45 

average counterpart of, 63 
generalizations of, 4—5, 7 
harmonic modulation model and, 27-29 
layered, 482 
modified, 40 
properties of, 4 
solitons and, 3-8 
usual (2+1 )-dimensional, 115 
variant of, 131 
versions of, 12, 52 

Nonlinearity management (NLM), 21-22 
for BG solitons, 73-74, 80-88, 83/ 84/ 

86/ 87/ 88/ 
co-propagation of pair of pulses, 78,19f 
for cubic solitons/DM, 73,74-78,77/ 79/ 
formulation of model, 80-81 
model, 75-76 
periodic, 83/ 85, 86/ 87/ 89-92,91/ 92/ 

93/ 
for quadratic solitons/DM, 73,74-78, 77/ 

79/ 

OL. See Optical lattice 
Optical beams, 98 
Optical fibers, 2, 52, 132 
Optical lattice (OL), 13-14 

dimensions of, 15-16,16/ 130 
FRM in, 143-59,146/ 147/ 149/ 151/ 

152/ 153/ 154/ 156/ 157/ 158/ 
160/ 

potential, 14-15,15/157 
Optical telecommunications 

SSM and, 52 
WDM and, 45, 47 

Optics, 13-18,15/ 16/ 17/ 
Oscillations 

amplitude of, 101 
of solitons, 98-103, 99/ 102/ 103/ 

PAD. See Path-average dispersion 
Parametric resonances (PRs), 98-103,99/ 

102/ 103/ See also Double parametric 
resonances 

Partial differential equations (PDEs), 1, 
101-2,146 

Path-average dispersion (PAD), 20-21 

decrease of, 39 
equal, 48-49, 50f 
normal, 26, 35, 36/ 39 
treatment of, 33-34 

PCFs. See Photonic crystal-fibers 
Periodic heterogeneous systems, 21 
Periodic modulations, 140 
Photonic crystal-fibers (PCFs), 16,67 
Poincar6 section, 126/ 
Poynting vectors, 8-9 
PRs. See Parametric resonances 
Pulse(s). See also Gaussian pulses; 

Retum-to-zero pulses 
co-propagation of pair of, 78,79/ 
input, 138/ 
isolated, 67-69, 68/ 
paired/single, 66-71,68/ 70/ 
pairs, 69-71, 7 0 / 7 1 / 
propagation, 38-39,39/ 
reshaping of, 75 
self-compression of, 67 
splitting of initial, 61 / 62 
transmission of single, 76-78, 77/ 

Quasi-phase-matching technique (QPM), 73 

Rapid modulations, 97-98 
Refractive index (RI), 2,140 
Resonance. See also Feshbach-resonance 

fundamental, 30 
second-order, 30 
subharmonic, 30 

Retum-to-zero pulses (RZ), 20, 22, 25, 33, 
37 

RI. See Refractive index 
Russell, John Scott, 1-2 
RZ. See Retum-to-zero pulses 

Saturation, 60 
Second-harmonic waves. See Waves, 

second-harmonic 
Second-harmonic-generating (SHG), 11-12, 

67 
modules, 75-76 
periodic heterogeneous structures in, 74 
spatial-domain, 73 

Self-phase modulations (SPMs), 3 
coefficient, 9 
effects of, 46 
ratio of, 7 
self-focusing, 80 

SH. See Waves, second-harmonic 
SHG. See Second-harmonic-generating 
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Solitary waves. See Solitons 
Soliton(s) 

alternate, 143,148,150-55,151/ 152/ 
153/ 154/ 

amplitude of, 5, 56, 59,133 
area of, 56 
BECs/one-dimensional, 89-103,91/ 92/ 

93/ 94/ 95/ 99/ 102/ 
inBECs/optics, 13-18, 15/ 16/ 17/ 

23-24 
EG, 8-10, 73-74, 80-88, 83/ 84/ 86/ 

87/ 88/ 
binding potential of, 6 
bound states of, 47, 4 8 ^ 9 
bright,localized, 6 
collisions between, 45-50,49f, 50f 
concept of, 1-13 
degradation of, 38 
in DM, 32-37,36/ 40-^5,42/ 43/ 44/ 

45/ 
dsmamics in harmonic modulation model, 

29-32,30/31/32/ 
embedded, 10 
energies, 30-32, 30/ 31 / 32/ 
external/intrinsic instability of, 101-2 
FRM/one-dimensional, 155-59,156/ 

157/ 158/ 160/ 
fundamental (splinters), 97-103, 99/ 

102/ 104/ 
higher-order, 93-96, 94/ 95/ 
interactions between generation of 

moving v., 85-88, 88/ 
management for channel, 105-13,107/ 

111/113/ 
matter-wave, 13 
multidimensional optical, 23 
NLM/DM for cubic/quadratic, 73, 74-78, 

77/ 79/ 
NLS and, 3-8 
one-dimensional, 89-103, 9 1 / 92/ 93/ 

9 4 / 9 5 / 9 9 / 1 0 2 / 
one-dimensional optical, 20-23 
optical, 2-13 
oscillations of, 98-103, 99/ 102/ 103/ 
period, 5-6 
in periodic heterogeneous media, 18-24 
quasi, 25 
in randomly, modulated systems, 22 
semi-stable, 10 
spatial, 11,106, 108-11,116-19,118/ 
spatially-averaged squared width of, 150 
splittingof, 31-32, 32/ 
in SSM, 52-62, 57/ 58/ 59/ 6 1 / 62/ 63 / 

SSM/diagrams of states for, 60-64, 61 / 
62/ 63/ 

stable multidimensional, 12 
3-, 6, 94/ 96 
3D, 144-47,146/ 147/ 
2-, 6, 96 
2D, 121-30,126/ 129/ 
vectorial (two-component), 7-8 

Soliton management 
BSEs and, 23-24 
general description of, 18-20 
multidimensional optical solitons and, 23 
one-dimensional optical solitons and, 

20-23 
Solitons, dark (DSs), 2, 6-7 
Solitons, gap (GSs), 2, 9 

alternate regular-, 8, 143 
creation of, 8, 143 
family of, 80-81 
ID, 14 
second-harmonic-generation, 11-12 
temporal, 10 
3D, 15, 17/ 
2D, 14-15, 16/ 

Solitons, spatiotemporal (STSs), 2, 12, 23, 
131 

Solitons, Townes (TSs), 115, 123, 137,145 
Split-step model (SSM), 22 

breathers in, 60-64, 6 1 / 62/ 63/ 
combined DM-, 66-71, 68/ 70/ 
constitutive equation for, 55 
diagrams of states for solitons in, 60-64, 

61/ 62/ 63/ 
formulation of, 52-54 
introduction to, 51-52 
isolated pulses and, 67-69,68/ 
numerical result comparisons of, 56-60, 

57/ 58/ 59/ 
optical telecommunications and, 52 
pulse pairs and, 69-71,70/ 71 / 
random, 53,64—66,65/ 
solitons in, 52-62, 57/ 58/ 59/ 61 / 62/ 

63/ 
three-step system for, 66 
VA to, 54-56 

SPM. See Self-phase modulations 
SSM. See Split-step model 
Stationary transmissions, 34 
STSs. See SoHtons, spatiotemporal 

Tandem model, 22, 73-74 
Termination, 60 
Thomas-Fermi functions (TF), 90-92, 9 1 / 



180 INDEX 

Threshold values, 95,95/ 150,159 
Topological charges, 15 
Townes solitons. See Solitons, Townes 
Transverse modulations, 19-20 
TSs. See Solitons, Townes 

Variational approximation (VA), 10,19 
approach, 25-26 
frameworks of, 101 
model and, 122-24 
multidimensional DM and, 132-34 
numerical results of, 30/; 31-32, 32/ 

118-19,119/ 
predictions, 29-31, 30/ 39, 39/ 134-37, 

135/ 136/ 138/ 139/ 
spatial solitons and, 116-19,118/ 
to SSM, 54-56 
standard, 98 
in three-dimensional case, 124—27,126/ 

Velocities, 96 
Vortices, 119 

electromagnetic, 8 
equation, 2-3 
FF,73 
fields, 252 
functions, 19 
Gaussian,26, 76, 90, 91 / 
linear, 9 
ID, 93 
one-dimensional, 2 

Wave, continuous (CW), 4-5 
Waveguides (WGs), 105. See also 

Antiwaveguides 
Wavelength-division-multiplexing (WDM), 

22 
arrangements, 47 
optical telecommunications and, 45,47 
system, 76 

Waves, second-harmonic (SH), 11, 73, 
75-76 

WDM. See 
Wavelength-division-multiplexing 

Wave(s) XPM. See Cross-phase modulations 




