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I dedicate this book to Martina. I would like
to skip writing reasons, because this part
should be shorter than a book chapter.



Foreword

It is a pleasure to write this foreword because this book is an important contribution
to the literature on applications of fuzzy models. There are many books dealing with
fuzzy sets in a general way but this work is an essential contribution to the
description of fuzziness in information systems.

Usually in statistical information systems data are stored as numbers which
pretend a precision which is not justified, because real data are frequently not
available as precise numbers but they are more or less non-precise. This imprecision
is different from errors and it is best modelled by the so-called fuzzy numbers,
which are special fuzzy subsets of the set of real numbers. To describe fuzziness
in quantitative mathematical terms, is an important innovation in science and
management.

When Karl Menger introduced the generalization of classical sets in the year
1951 by generalizing the indicator function of classical sets, this was a theoretical
concept and it took many years until practical applications of these generalized sets
came up. An important step was the paper by Lotfi Zadeh in 1965 when he
introduced the name fuzzy set and defined generalized set operations based on the
defining functions of fuzzy sets. These defining functions were called membership
functions and in the last decades of the twentieth century enormous research
activities developed the theory and applications of fuzzy sets. The concept of
fuzziness was extended to generalize logics, and the calculus of fuzzy logics was
created. In the meantime fuzzy concepts are applied in many scientific fields, for
example in civil engineering for risk analysis of structures, in medical science for
diagnostic systems, in measurement science to describe results of precision mea-
surement, in statistics for the description and analysis of real data, in Bayesian
analysis to model fuzzy a priori information, in information science to describe
fuzzy information and to formulate fuzzy questions.

Chapter 1 of the book gives an introduction to fuzzy sets and fuzzy logic,
linguistic variables, fuzzy quantifiers, and related references.

Chapter 2, Fuzzy Queries, considers the way from crisp to fuzzy queries, the
construction of fuzzy sets for flexible conditions, the conversion of fuzzy conditions
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to SQL ones, the calculation of matching degrees, empty and overabundant
answers, and some issues related to practical realization.

Chapter 3, Linguistic Summaries, explains the benefits of linguistic summa-
rization (LS), the basic structure of LS, relative quantifiers, quality measures of LS,
applicability of LS, and building summaries.

Chapter 4, Fuzzy Inference, is devoted to fuzzy models for control systems.
After introducing fuzzy inference engines, the chapter presents a section on fuzzy
classification, and concludes with remarks to applications.

The next chapter, Fuzzy Data in Relational Databases, is central to the book. It
starts with the classical relational databases, has a section on fuzziness in the real
world, explains fuzzy databases and their basic model, fuzzy data in traditional
relational databases, aggregation functions in queries, and linguistic summaries on
fuzzy data.

Chapter 6, Perspectives, Synergies and Conclusion, briefly explains the rela-
tionship between fuzzy inference and fuzzy databases and linguistic summaries as
well as fuzzy queries.

The references at the end of each chapter are helpful for further reading.
Appendixes, Illustrative Interfaces and Applications for Fuzzy Queries and

Illustrative Interfaces and Applications for Linguistic Summaries, and an Index are
helpful for the reader.

This book explains important applications of fuzzy logic in information systems.
Congratulations to the author for this valuable and up-to-date contribution to
information science.

Wien Reinhard Viertl
April 2016
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Preface

The increasing use of information systems by governmental agencies and businesses
has created mountains of data that contain potentially valuable knowledge.
Admittedly, these data do constitute “golden mines” which should be swiftly and
efficiently processed and interpreted to be useful. Users (e.g. decision-makers) would
like to efficiently reveal relevant data. Moreover, users are often not interested in
large sheets of figures, but in knowledge that is usually overshadowed by large
amount of data.

People can relatively easily answer imprecise questions like, is it true that most
of tall persons in the room wear blue or green shirts? Different hues of these
colours as well as the meaning of the vague term tall people are not limitations for
solving this task. However, if we want to know, which of these two sentences: most
of young commuters commute short distances; most of medium aged commuters
commute short distances better explains the commuting behaviour, then we have to
adapt this query to mine the truth value form the data. The same holds for querying
cheap hotel with good references and if possible near to the city centre and
common-sense reasoning: if customer buys products very often, then provide high
discount.

The initial research in the theory of fuzzy sets and fuzzy logic was motivated by
the perception that traditional computing techniques are not effective in dealing
with problems, in which vagueness, imprecision and subjectivity are immanent, and
therefore should not be neglected. These types of uncertainty are commonly called
fuzziness.

According to Prof. Zadeh, four principal rationales for handling fuzziness exist.
Two of them, which are relevant for this book, are: “don’t need rationale” and
“don’t know rationale”. In the former, the tolerance for imprecision is in accord
with the remarkable human capability to solve variety of tasks without precise
calculations. For example, summarizing data by short questions of natural
language; creating queries with flexible conditions and approximate inference. In
the latter, the values of attributes are not known with sufficient precision to justify
the use of traditional databases for storing these data. Many data cannot be ade-
quately expressed as precise numbers or as one linguistic term, due to non-sharp
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boundaries of observations, tendency of people to estimate or guess answers in
surveys and tolerance intervals of measurement instruments. Therefore, the data are
often vague and include both quantitative and qualitative elements. Storing these
data as crisp values might cause loss of valuable information.

Keeping in mind the aforementioned facts, fuzzy queries, fuzzy inference pro-
cesses, linguistic summaries and managing fuzzy data in information systems could
be the option. We have chosen these areas, because businesses of all sizes and
governmental agencies cope with them in their work. The motivation for this book
has arisen from the author’s experience in teaching courses of fuzzy logic for
business informatics and database design and in research and development of
information systems and data mining applications mainly for the official statistics
purposes. Furthermore, many small- and medium-sized enterprises cannot afford
sophisticated tools or experts for information systems and data mining, even though
they are aware of limitation of sharp boundaries in data analyses. Many tasks can be
solved in a classical way, but their complexity becomes high. The complexity of the
problem can be reduced by including the intensity of the examined property. This
permits us to discern elements with the same property, based on the intensity
matching it.

Roughly, the intent of the book could be depicted in Fig. 1. The usual scenario is
that user wants to retrieve data or summarized information from a database.
Furthermore, user might be interested to classify data. Often user is not aware of the
nature of collected data or cannot determine sharp criteria. In addition, all data
including vague ones are usually stored as crisp values.

In the book we examine these approaches theoretically as well as on the
municipal statistics data. The latter is illustrated in appendixes. These data are
suitable source, due to larger number of municipalities, which are often very similar
in several attributes. Second reason is that some of attributes are fuzzy in their
nature, but are limited to crisp values.

We should not expect that domain experts are familiar with the fuzzy logic
theory. Therefore, the book demonstrates developing user-friendly interfaces to
allow users exploring advantages of fuzzy logic in their tasks. Furthermore,

Fig. 1 Intent of the book
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companies usually keep data in relational databases. We should keep this in mind
during adapting database to cope with the fuzzy data.

The main target audience of the book are students, researchers and practitioners
working in fields of data analysis, database design and business intelligence. This
book does not go deeply into the foundation and the mathematical theory of fuzzy
logic and relational algebra (e.g. theorems’ proofs). Hence, intermediate knowledge
of fuzzy logic and relational databases is recommended.

The book is divided into six chapters in the following way. Chapter 1 is focused
on the theory of fuzzy sets and fuzzy logic to a level, which is advisable to know in
order to proceed to next chapters. Readers skilled in fuzzy logic theory can skip this
chapter.

Chapter 2 is devoted to flexible queries. The following aspects of flexible queries
are examined: constructing fuzzy sets for query conditions; aggregation operators
for commutative and non-commutative conditions with and without priorities;
dealing with empty and overabundant answer problems and issues related to
practical realizations.

Chapter 3 is dedicated to linguistic summaries. We start with the basic linguistic
summary and build more complex ones. To meet this goal, selecting appropriate
aggregations, implications for preferences and issues related to construction of
membership functions are examined. Quality measures of created summaries are
also considered. Finally, several possible applicabilities are discussed.

Chapter 4 presents fuzzy logic control architecture adjusted to the aims of
business and governmental agencies. It shows fuzzy rules, construction of fuzzy
sets and procedures for solving inference tasks by generalized modus ponens. In the
first part we explain reasoning procedures. In the second part fuzzy expert systems
are discussed. In the last part classification by IF-THEN rules is examined.

Chapter 5 covers fuzzification of classical relational databases. We briefly
review classical relational databases and fuzzy database models. The emphasis is on
storing fuzzy data in classical relational databases in a way that existing data and
normal forms are not affected. Furthermore, practical aspects of user-friendly
interfaces for storing, updating, querying and summarizing are examined.

Chapter 6 shortly discusses possible integration of fuzzy queries, summarization
and inference related to crisp and fuzzy databases. Use of these approaches in a
complementary, rather than competitive way, can support variety of tasks.

Finally, we suppose that the book will provoke at least some interest to continue
research and also will be of support for developing tailored applications commu-
nicating with users by easy-to-use interfaces. Maybe the next generations of rela-
tional database management systems and applications will include many fuzzy
characteristics and users will enjoy easy-to-use interfaces for fuzzy queries, fuzzy
inferences, fuzzy summarization, fuzzy recommending and so on, without the
necessity of knowing mathematics of fuzzy logic. We hope that the book will
contribute to this field with a membership degree greater than 0.25.

Bratislava Miroslav Hudec
April 2016
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Notations

In each field variables, sets, properties, functions, etc. are either marked by letters
using an (informal) agreement, or by letters the authors decided to use in their
seminal papers. In this textbook we have decided to keep usual notation of most
used terms and adjust the notation of other terms in order to avoid misinterpretation.
As it is not always possible, some letters are not used for a single term only, but the
explanation on their usage avoids misinterpretation of used letters and indexes.

A Attribute, fuzzy set, answer to query
�A Complement of fuzzy set

AðaÞ a-cut of fuzzy set

Ac Accuracy

a;m; b Parameters of fuzzy sets

B Fuzzy set

core(A) Core of fuzzy set

card(A) Cardinality of fuzzy set, jAj
c Negation

cs Standard negation

cg Gödel negation

cdg Dual Gödel negation

C Coverage

iC Coverage index

D Domain, distance

d Measure of fuzziness

Ec Specificity

F Fuzzification operator, fuzzy set

h Height of fuzzy set

H Highest value of attribute in a database

isKD Kleene–Dienes implication
(continued)
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isL Łukasiewicz implication

iqZ Zadeh implication

irGd Gödel implication

irGg Goguen implication

L Lowest value of attribute in a database

N Negative preference

O Outlier measure

P Predicate, positive preference

Q Quantifier

Qc Quality of summary

r Database tuple

R Relation, rule, restriction

s t-conorm or s-norm

sm Maximum s-norm

sa Algebraic sum

sL Łukasiewicz s-norm

sd Drastic s-norm

supp(A) Support of fuzzy set

S Summarizer, simplicity

t t-norm

tm Minimum t-norm

tp Product t-norm

tL Łukasiewicz t-norm

td Drastic product

tnM Nilpotent minimum t-norm

T Transformation

U Usefulness

v Validity of linguistic summary

w Weight

X Universe of disclosure, universal set

a And if possible operator

b Or else operator, threshold

d Firing degree of rule

e Length of slope of fuzzy set

l Membership function

u Characteristic function

h Length of flat segment of fuzzy set

N Set of natural numbers

R Set of real numbers
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Chapter 1
Fuzzy Set and Fuzzy Logic Theory in Brief

Abstract A set consists of elements sharing the same property. This property
is essential for setting set boundaries. Hence, the following question appears:
Can we always unambiguously define these boundaries? The answer is, no. We
can unambiguously define a set containing all municipalities belonging to the
district D. Municipality either belongs to the district D (from administrative point
of view), or does not belong. However, for the set expressing high distance we
cannot clearly define sharp boundary to distinguish high from non-high distance.
This section begins with the classical sets in order to smoothly continue to fuzzy
sets. Next, relevant properties and operations of fuzzy sets are discussed. Further, the
concept of fuzzy number, as a subcategory of fuzzy sets, is explained. Fuzzy sets and
many-valued logics are basis for fuzzy logic. Fuzzy logic facilitates commonsense
reasoning with imprecise predicates expressed as fuzzy sets. In the second part
fuzzy conjunction, negation, disjunction, implication and quantifiers are examined.
Mentioned concepts are used throughout the book.

1.1 From Crispness to Fuzziness

The crisp set is a collection of elements which share the same property. The principal
concept in the set theory is belonging or membership to a set. If an element of the
universal set X belongs to the set A, we simply write x ∈ A. If x is not a member
of A, we write x /∈ A. It means that belonging to a set should be clear [47].

A crisp set can be described by several methods. The listing method lists all
elements by putting them into the braces: A = {strongly agree, agree, do not know,
disagree, strongly disagree}, where A denotes all possible answers in a questionnaire,
for example. The order of elements is irrelevant. This method is feasible only if a
set contains finite number of elements. Otherwise, a set should be described by the
membership rule (property or predicate which has to be satisfied)

A = {x ∈ X | x satisfies property P} (1.1)

© Springer International Publishing Switzerland 2016
M. Hudec, Fuzziness in Information Systems,
DOI 10.1007/978-3-319-42518-4_1
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2 1 Fuzzy Set and Fuzzy Logic Theory in Brief

where A denotes a set of all x such that x satisfies property P e.g. A = {x ∈ R | x >

350}, where R is a set of real numbers.
Finally, crisp set A can be defined by the characteristic function ϕA that matches

each element of the universal set X to the set A in the following way:

ϕA(x) : X → {0, 1} (1.2)

Example 1.1 For illustrative example, a governmental agency decided to financially
support highly polluted municipalities. In order to discern a set of highly polluted
municipalities (HP), the agency should define property explaining the HP set. If
high pollution means more or equal than 20mg of the measured pollutant, then the
crisp set HP is defined as: HP = {x ∈ X | x ≥ 20}, where X is the universal set of
all possible pollutions (real values greater or equal zero). Membership to a set HP
can be expressed as a characteristic function ϕ(x) in the following way:

ϕHP(x) =
{
0 for x < 20
1 for x ≥ 20

.

The set expressing high pollution is shown in Fig. 1.1. At the first glance we see
the drawback of crisp sets. A municipality having the value of 19.93mg will not
receive any financial support (it is treated in the same way as municipality having
value of e.g. 0.2mg), whereas municipality having pollution of 20mg will receive
full financial support as well as municipality having pollution of 60mg. Furthermore,
measured pollution is expected to be a crisp real number. But in reality, either it is
not possible to realize extremely precise measuring [31], or values are fuzzy in their
nature. It especially holds for the environmental data [44]. �

Vagueness concerning the description of the semantic meaning of events or phe-
nomena is called fuzziness [57]. Hence, uncertainty is not based on randomness or
probability; it cannot be presented as a crisp value. Vague terms such as high, cheap,
medium, around m (m ∈ R), heap share three interrelated features of vagueness
[18]: admit borderline cases, lack sharp boundaries and are susceptible to sorties
paradoxes.

Fig. 1.1 Crisp set high
pollution
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In Fig. 1.1, two kinds of fuzziness are neglected: fuzziness in data and fuzziness
in belonging to a set [16]. If managing pollution by sharp sets remains, several small
intervals e.g. [0, 15)—no support; [15, 18)—30% of full support; [18, 22)—65% of
full support; [22, 25)—85% of full support; etc., to ensure that similar municipalities
receive similar support can be employed.

However,whenwe include additional attributes, such as unemployment or number
of respiratory diseases, then managing rules by crisp sets become more complex.

The interpretation of fuzzy sets [56] has arisen from the generalization of the
classical sets to embrace the vague notions and unclear boundaries. It may not be
always clear, if an element x belongs to a set A, or not. Thus, its membership may be
measured by a degree, commonly known as the membership degree taking a value
from the unit interval by agreement.

Consequently, a fuzzy set A over the universe of discourse X is defined by function
μA thatmatches each element of the universe of discoursewith itsmembership degree
to the set A

μA(x) : X → [0, 1] (1.3)

where μA(x) = 0 says that an element x definitely does not belong to a fuzzy set
A, μA(x) = 1 says that x without any doubt is member of fuzzy set A. Higher
value ofμA(x) indicates the higher degree of membership of an element x to a fuzzy
set A. Each fuzzy set is defined by onemembership function. Amembership function
maps each element of the universal set X into real numbers from the [0, 1] interval.
We should emphasize that the universal set X is always a crisp set [21].

A fuzzy set can be defined as a set of ordered pairs

A = {(x, μA(x)) | x ∈ X ∧ μA(x) ∈ (0, 1]} (1.4)

When the universal set is finite, fuzzy set constructed on this universal set can be
expressed by counting the elements and their respective membership degrees

A = μA(x1)

x1
+ μA(x2)

x2
+ · · · + μA(xn)

xn
(1.5)

Example 1.2 Let us consider highly polluted municipalities (Example 1.1) from the
fuzzy sets point of view. The crisp set HP from Fig. 1.1 could be converted into the
fuzzy set FH P in the following way (Fig. 1.2):

μFH P(x) =

⎧⎪⎨
⎪⎩
0 for x ≤ 15
x − 15

5
for 15 < x < 20

1 for x ≥ 20

(1.6)

In this way the soft transition between belonging and non-belonging to a set is
ensured. �
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Fig. 1.2 Fuzzy set high
pollution

Example 1.3 Let us consider respondent’s consent to a question in a questionnaire.
The fuzzy set consent (A) can be expressed as A={(strongly agree, 1), (agree, 0.65),
(do not know, 0.15)}. Ordered pairs (disagree, 0) and (strongly disagree, 0) are not
included into fuzzy set A. �

1.2 Fuzzy Sets

The first publications of fuzzy set theory by Zadeh [56] and Goguen [11] were
focused on the generalization of the classical notion of sets and propositions in order
to mathematically cover fuzziness. Although the needs as well as importance of
managing fuzziness were recognized earlier (e.g. [39]), the acceptance by scientific
and practitioners communities was not high, especially at the beginning. Reasons for
accepting and non-accepting fuzzy sets and related topics were summarized in [52].

1.2.1 Properties of Fuzzy Sets

In this section properties relevant for the next sections are examined.

Scalar and relative scalar cardinality
For any fuzzy set A defined on a finite universal set X we define its scalar cardinality
by the formula

card(A) = |A| =
∑
x∈X

μA(x) (1.7)

The scalar cardinality of fuzzy set (1.7) is a generalization of the classical cardi-
nality. Elements of universal set belong to the fuzzy sets with different membership
degrees and therefore we cannot count elements of a set A, but their respective mem-
bership degrees should be summed. Some authors refer to |A| as the sigma count of
A [21].
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The relative scalar cardinality is defined by the formula:

||A|| = card(A)

card(X)
= |A|

|X | (1.8)

where card(A) is defined in (1.7) and card(X) represents the number of elements
in X . These cardinalities are broadly used in e.g. linguistic summaries.

The third type of cardinality is fuzzy cardinality expressed as ordered pair: number
of elements belonging to a particular α-cut and α-cut [22] when universal set is a
finite one. Cardinalities are closely examined in e.g. [45].

Scalar cardinality of a fuzzy set can be expressed as the area bounded by the
membership function of fuzzy set and the x-axis [35]. This approach is demonstrated
on the trapezoidal fuzzy set in Sect. 1.2.2.

Support
The support of a fuzzy set A is the crisp set with the following property:

supp(A) = {(x ∈ X | μA(x) > 0} (1.9)

This property is broadly used in flexible queries, among others.

Core
The core of a fuzzy set A is the crisp set with the following property:

core(A) = {(x ∈ X | μA(x) = 1} (1.10)

In the fuzzy sets literature the term kernel is used as a synonym for the core.

Height
The height is the highest value ofmembership degree of all elements in the considered
fuzzy set A, i.e.

h(A) = sup
x∈X

μA(x) (1.11)

From (1.10) and (1.11) we can infer that if the core is not an empty set, then the
height is equal to the value of 1. The opposite does not always hold.

Example 1.4 A heap of maize grains obviously contains large number of grains.
Because by crisp sets we cannot unambiguously discern the two sets, heap and non-
heap, a fuzzy set should be applied. For example, one could agree that 2 000 grains
is a large quantity (heap), and between 1 and 2 000, the belonging to a heap grows.
Thus, the membership function of the set heap could be:

μheap(x) =
{
0 for x = 0
2
π
arctan(0.09 · x) for x > 0

(1.12)
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Fig. 1.3 Heap of maize grains explained by fuzzy set

The graphical interpretation of the resulting membership function is shown
in Fig. 1.3. This figure explains the core and height properties of fuzzy set. In
this case the support (1.9) is unlimited. The height (1.11) is equal to 1, because
limx→∞ 2

π
arctan(0.09 · x) = 1. The core (1.10) is an empty set. Although,

h(heap) = 1, this value is not reached by any element.

Normalized fuzzy set
Fuzzy set A is normalized, if the membership degree of at least one element is equal
to 1, i.e.:

∃x ∈ X, μA(x) = h(x) = 1 (1.13)

Crossover point
The element xcp of a fuzzy set A that has amembership degree equal to 0.5 represents
the crossover point, i.e.:

xcp = {x ∈ X |μA(x) = 0.5} (1.14)

α-cut and strong α-cut
One of the important concepts used in fuzzy sets is the α-cut. The α-cut A(α) and its
restrictive variant strong α-cut A(α+) are defined in the following way:

A(α) = {x ∈ X | μA(x) ≥ α} (1.15)

A(α+) = {(x ∈ X | μA(x) > α} (1.16)

where α ∈ [0, 1].
The α-cut of a fuzzy set A is a crisp set containing all the elements of the X whose

membership degrees in A are greater than or equal than the specified value of α. This



1.2 Fuzzy Sets 7

Fig. 1.4 Convex and non-convex fuzzy sets

property is used in many directions, e.g. working with elements which significantly
belong to a fuzzy set.

Convexity of fuzzy sets
A fuzzy set is convex, if and only if [56]:

μA(λx + (1 − λ)y) ≥ min(μA(x), μA(y)) (1.17)

for all x and y ∈ X and all λ ∈ [0, 1]. Convex and non-convex fuzzy sets are plotted
in Fig. 1.4.

1.2.2 Types of Fuzzy Sets (Membership Functions)

Membership functions are classified into two main groups [10]: linear and Gaussian
or curved. All membership functions explained in this section are normalized fuzzy
sets.

Triangular fuzzy set (Fig. 1.5) is defined by its lower limit a, its upper limit b
and the modal (highest) value m as

Fig. 1.5 Triangular fuzzy
set (membership function)
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Fig. 1.6 Gaussian fuzzy set
(membership function)

μA(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for x = m
x − a

m − a
for a < x < m

b − x

b − m
for m < x < b

0 for x ≤ a ∨ x ≥ b

(1.18)

Gaussian fuzzy set (Fig. 1.6) is defined by the modal value (centre) m and width
k as

μA(x) = e−k(x−m)2 (1.19)

The bell of the Gaussian function depends on the value k. If the value k is lower,
then the bell is narrower.

Trapezoidal fuzzy set (Fig. 1.7) is defined by its lower limit a, its upper limit b,
and the flat segment [m1,m2] representing the highest value of height (1.11) as

μA(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for m1 ≤ x ≤ m2
x − a

m1 − a
for a < x < m1

b − x

b − m2
for m2 < x < b

0 for x ≤ a ∨ x ≥ b

(1.20)

Fig. 1.7 Trapezoidal fuzzy
set
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Fig. 1.8 L fuzzy set

The scalar cardinality (1.7) of trapezoidal fuzzy set is calculated by its area in the
following way [35]:

card(A) = area(A) = (m2 − m1) + (m1 − a) + (b − m2)

2
(1.21)

where parameters are the same as in (1.20). In case of triangular fuzzy set the left
part is not used.

Trapezoidal, triangular and Gaussian fuzzy sets are suitable for modelling con-
cepts such as medium value or approximate m, where m is a real number. The sup-
port (1.9) of the Gaussian fuzzy set is spread over the whole universe of disclosure,
although with values close to 0 near the edges of the universe of disclosure (or far
from the value of m). This could be a problem in fuzzy relational databases, which
is discussed later on.

L fuzzy set (Fig. 1.8) is defined by two parameters, m and b, in the following
way:

μA(x) =

⎧⎪⎨
⎪⎩
1 for x ≤ m
b − x

b − m
for m < x < b

0 for x ≥ b

(1.22)

L fuzzy set is suitable for defining sets expressing small values of the analysed
concepts such as small pollution. These concepts can be defined by nonlinear func-
tions as well. Concerning practical applications examined in the next chapters and
the simplicity for end users, nonlinear functions are not further considered. Anyway,
approaches examined in the book are valid for nonlinear functions. The difference
is in calculated values of membership degrees.

R fuzzy set (linear gamma) (Fig. 1.9) is defined by two parameters, a and m, in
the following way:

μA(x) =

⎧⎪⎨
⎪⎩
0 for x ≤ a
x − a

m − a
for a < x < m

1 for x ≥ m

(1.23)
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Fig. 1.9 R (linear gamma)
fuzzy set

Fig. 1.10 Singleton fuzzy
set

R fuzzy set is suitable for defining sets expressing high values of the analysed
concepts, such as high turnover. The same comment for nonlinearity of L fuzzy sets
holds for the R fuzzy sets.

Singleton fuzzy set (Fig. 1.10) takes the value zero in all the x ∈ X except in the
point x = m, where it takes the value 1 in the following way:

μA(x) =
{
0 for x 
= m
1 for x = m

(1.24)

At the first glance, the singleton is an usual crisp number and there is no special
need to express crisp number in this way. But, in the tasks of approximate reasoning
and in managing fuzziness by relational databases, singletons are indispensable.

According to (1.17) all aforementioned fuzzy sets (1.18)–(1.24) are convex. Fur-
thermore, applying α-cut (1.15) we can say that a fuzzy set A is convex, if and only
if all A(α) intervals are convex for ∀α ∈ [0, 1].

Summarizing this part, we could say that fuzzy sets allow users to express the
uncertainty of the analysed problem. On the other hand, the analysed system will not
work properly, if membership functions are badly defined. Hence, these functions
have to be carefully defined [10].

1.2.3 Operations on Fuzzy Sets

The operations with fuzzy sets A and B are defined via operations on their respective
membership functions.
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Equality
The fuzzy sets A and B are equal (A = B), if for ∀x ∈ X :

μA(x) = μB(x) (1.25)

This operation is the generalization of equality from classical set theory. However,
sets might be more or less equal. For this purpose distance measures and equality
indexes (optimistic, medium, pessimistic) are employed [10], as well as generalized
equality [34].

Generalized equality generalizes the operator =. One of the ways is the general-
ization of a well known equality relation from the crisp set theory

(A ⊆ B ∧ B ⊆ A) ⇔ A = B (1.26)

Straightforwardly, for the fuzzy equality holds: if (A ⊆F B ∧ B ⊆F A), then
A =F B.

Possibility measure
The possibility that the fuzzy value B belongs to a fuzzy concept A is defined as
(Fig. 1.11)

Poss(B, A) = sup
x∈X

[t (μA(x), μB(x))] (1.27)

where t stands for t-norm. T-norms are examined in Sect. 1.3.1. Usually minimum
t-norm is used and therefore this equation is known as:

Poss(B, A) = sup
x∈X

[min(μA(x), μB(x))] (1.28)

The possibility measure gets value of 0 when intersection of two fuzzy sets is
empty. This consequence is used in fuzzy queries over fuzzy values in the relational
databases, among others.

Fig. 1.11 The possibility
that the fuzzy value belongs
to a fuzzy concept



12 1 Fuzzy Set and Fuzzy Logic Theory in Brief

Fig. 1.12 Intersection of
two fuzzy sets

Inclusion
The fuzzy set A is included in the fuzzy set B, if for every x ∈ X holds

μA(x) ≤ μB(x) (1.29)

Hence, fuzzy set A is a subset of fuzzy set B.

Intersection
The intersection operation of fuzzy sets A and B is defined as

μA
⋂

B(x) = min(μA(x), μB(x)) (1.30)

Fuzzy sets and their intersection (marked as a bold line) are plotted in Fig. 1.12.
If membership degrees are reduced to values of 0 and 1, this function meets the
definition of intersection in the classical set theory. Furthermore, this operation is
often subnormalized fuzzy set, that is, its height (1.11) is lower than the value of 1,
except when A(1) ⋂

B(1) 
= ∅. Furthermore, if fuzzy sets A and B are convex, so is
their intersection [56].

Union
The union operation of fuzzy sets A and B is defined as

μA
⋃

B(x) = max(μA(x), μB(x)) (1.31)

Fuzzy sets and their union (marked as a bold line) are shown in Fig. 1.13. If mem-
bership degrees are reduced to values of 0 and 1, this function meets the definition of
union in the classical set theory. The union of two fuzzy sets is mainly non-convex,
except when the intersection of cores (1.10) is not empty and both sets are convex.

Complement
The fuzzy sets A and A are complements if

μA(x) = 1 − μA(x) (1.32)
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Fig. 1.13 Union of two
fuzzy sets

Fig. 1.14 Fuzzy set and its
complement

Fuzzy set and its complement are shown in Fig. 1.14. These two sets intersect in
the membership degree of 0.5. This point is known as the maximal uncertainty point.
For an element having this membership degree we are not sure whether it is more
in the set than in its complement. It is obvious, that the axiom of non-contradiction
from the crisp set theory (intersection of set and its complement produces an empty
set) is not valid in fuzzy sets [36]. Intuitively, violation of this rule seems to be
expectable, because uncertainty of belonging to a fuzzy set is reflected in belonging
to its complement. On the other hand, there are applications, where violation of this
axiom might cause unexpected results.

The fuzzy set theory generalizes the classic set theory. It means that when mem-
bership functions (1.3) are reduced to characteristic ones (1.2), all the results are in
accordance with the Boolean algebra.

These and other operations are examined in more details in e.g. [7, 10, 21, 32].

1.2.4 Fuzzy Numbers and Fuzzy Arithmetic

A fuzzy number is defined as a convex (1.17) and normalized (1.13) fuzzy set [3].
All fuzzy sets depicted in Figs. 1.5, 1.6, 1.7, 1.8, 1.9 and 1.10 are convex. Obviously,
fuzzy numbers are subset of fuzzy sets. In practice, the property of the bounded
support (1.9) is relevant. Therefore, triangular and trapezoidal fuzzy sets are fuzzy
numbers, whereas Gaussian fuzzy set is not. Membership function should be piece-
wise continuous and convex. The reason, why fuzzy set should be convex, is easy
to prove. Suppose that the fuzzy concept approximately 100 is expressed as a non-
convex fuzzy set shown in Fig. 1.4b (m = 100). We expect that membership degrees
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of elements closer tom are higher than membership degrees of elements farther tom.
But, in case of a non-convex fuzzy set it does not hold. Concepts like approximate 5,
more or less between 10 and 12 are modelled by fuzzy numbers.

Earlier definition of fuzzy number stated that there should exist exactly one x0 ∈ X
for which μA(x0) = 1. In this context, value x0 is called the mean value of A [57].
Nowadays, this requirement is relaxed, allowing trapezoidal functions to express
fuzzy numbers.

Comparing to crisp numbers, we can say that a fuzzy number A is positive, if
holds μA(x) = 0 for ∀x < 0. Analogously, a fuzzy number A is negative, if holds
μA(x) = 0 for ∀x > 0.

Example 1.5 People often measure values by estimation. For example, someone
could declare that speed was approximately 90km/h, but for sure not lower than
75km/h and not higher than 110km/h. This uncertainty could be managed by trian-
gular fuzzy number in a way that m = 90, a = 75 and b = 110. �

The triangular fuzzy number for the simplicity is denoted by

A = (a,m, b) (1.33)

in accordance with Fig. 1.5.
In the same way trapezoidal fuzzy number is denoted by

A = (a,m1,m2, b) (1.34)

Operations of addition, multiplication and division are basic ones on crisp num-
bers, especially when we would like to reveal sums and averages [3]. Therefore, each
relational database management system (RDBMS) supports these operations.

The sum of two triangular numbers is also a triangular number

A1 + A2 = (a(1),m(1), b(1)) + (a(2),m(2), b(2)) =
= (a(1) + a(2),m(1) + m(2), b(1) + b(2))

(1.35)

The sum of two trapezoidal numbers is also a trapezoidal number

A1 + A2 = (a(1),m(1)
1 ,m(1)

2 , b(1)) + (a(2),m(2)
1 ,m(2)

2 , b(2)) =
= (a(1) + a(2),m(1)

1 + m(2)
1 ,m(1)

2 + m(2)
2 , b(1) + b(2))

(1.36)

Triangular number can be expressed as A = (a,m,m, b) which allows us to
realize addition of triangular and trapezoidal fuzzy numbers.

Multiplication of a triangular number by a real number p is also a triangular
number

p · A = p(a,m, b) = (p · a, p · m, p · b) (1.37)
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Division of a triangular number A by a real number p is defined as multiplication

of A by
1

p
, p 
= 0

A

p
= 1

p
· A = 1

p
(a,m, b) = (

a

p
,
m

p
,
b

p
) (1.38)

Analogously, division of a trapezoidal number by a real number p is defined as

A

p
= 1

p
(a,m1,m2, b) = (

a

p
,
m1

p
,
m2

p
,
b

p
) (1.39)

Now, we are able to calculate averages (and another operations) of fuzzy numbers
expressed as triangular and trapezoidal sets.

If the supports of L and R fuzzy sets are bounded, then they are fuzzy num-
bers on which we can apply arithmetic operations. L fuzzy set can be expressed as
A = (m1,m1,m2, b). Otherwise, the support of resulting set is not bounded.

Example 1.6 Let us have a triangular fuzzy set A1(8, 10, 12) and a R fuzzy set
A2(20, 25,∞,∞). The sum of these two fuzzy sets is obtained by (1.36), when A1

is converted into trapezoidal fuzzy set, as A(28, 35,∞,∞), when bounded support
is excluded from the properties of fuzzy numbers. �

1.2.5 Measures of Fuzziness

This measure indicates the degree of fuzziness of fuzzy sets, i.e. how far is a fuzzy
set from a crisp one. Generally, entropy and degree of distinction between the fuzzy
set and its complement are used to calculate measure of fuzziness.

In Sect. 1.1 general explanation of fuzziness is provided. Further explanations of
fuzziness uses particular parameters of sets such as: lack of distinction between a
fuzzy set and its complement in sense of Zadeh [49] or entropy represented by the
uncertainty related to the corresponding crisp set [46].

LetμA(x) be themembership function of fuzzy set A defined on the finite universe
of disclosure X . The measure of fuzziness d(A) has the following properties [25]:

• P1: d(A) = 0, if A is a crisp set (subset in X )
• P2: d(A) assumes a unique maximum, if μA(x) = 0.5 for ∀x ∈ X
• P3: d(A) ≥ d(B), that is, B is crisper than A, if μB(x) ≤ μA(x) for μA(x) ≤ 0.5
and μB(x) ≥ μA(x) for μA(x) ≥ 0.5

• P4: d(A) = d(A).

Property P3 is also expressed as A ≤s B ⇔ min(0.5, μA(x)) ≥ min(0.5, μB(x))
∧ max(0.5, μA(x)) ≤ max(0.5, μB(x)), where ≤s is relation less crisp than. This
property is illustrated in Fig. 1.15.
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Fig. 1.15 Measure of
fuzziness by property P3:
fuzzy set A is less crisp than
fuzzy set B

The measure which meets these properties of fuzziness is based on the entropy
and defined as [25]

d(A) = H(A) + H(A) , x ∈ X
H(A) = −k

∑n
i=1 μA(xi ) lnμA(xi )

(1.40)

where n is the number of elements in the support of A and k > 0. Analogously,
H(A) = −k

∑n
i=1 μA(xi ) lnμA(xi ). Applying Shannon’s function of entropy

S(x) = −x ln x − (1 − x) ln(1 − x) yields

d(A) = k
n∑

i=1

S(μA(xi )) (1.41)

Example 1.7 Let A be fuzzy set expressing integers close to 6 as
A = {(4, 0.4), (5, 0.85), (6, 1), (7, 0.85), (8, 0.4)}
and B be fuzzy set expressing integers fairly close to 6 as
B = {(3, 0.15), (4, 0.35), (5, 0.75), (6, 1), (7, 0.75), (8, 0.35), (9, 0.15)}.

For k = 1 we compute the following measures of fuzziness: d(A) = 2.2244
and d(B) = 3.265. The result clearly shows that more vague fuzzy set has higher
measure of fuzziness. Thus, fuzzy set B is more vaguely defined than fuzzy set A.
If all membership degrees in B are equal to 0.5, the result is d(B) = 4.8524. �

The second measure is focused on the lack of distinction between fuzzy set and
its complement. In the case of crisp sets A∩ A = ∅ always holds. It means that these
sets are clearly distinct. If μA(x) = 1

2 for ∀x ∈ X , then according to the property P2
fuzzy set and its complement are equal.

Mathematically, measure of fuzziness can be defined as [49]:

f (A) = 1 − Dp(A, A)

||supp(A)|| (1.42)

where ||supp(A)|| is a relative cardinality (1.8) of the support of fuzzy set A and
Dp is a distance between set and its complement, i.e. Dp(A, A) = [∑n

i=1 |μA(xi )−
μA(xi )|p

]1/p
, where p is a natural number. For p = 1 we get the Hamming metric,

for p = 2 we get the Euclidean metric and so forth.
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Properties P2 and P3 are not suitable for measuring fuzziness, where membership
degree of each element contributes individually, i.e. it is not related to other elements.
An example is a fuzzy set expressing the foreign language competency of students.
For example, the student S speaks 1/French, 0.75/German, 0.25/Spanish. We think
that this student speaks better French than German. Students can speak all languages
excellently or on a medium level (0.5). In order to solve this issue new P2 and P3
measures are suggested in [40].

Measures of fuzziness are further discussed in Sects. 1.4 and 1.5. In the former,
this measure may express quality of linguistic terms in IF-THEN rules. In the latter,
this information is useful to know for decision, whether fuzzy data could be stored
in a database, or validation is required, for example.

1.2.6 Fuzzy Relations

A fuzzy relation on the Cartesian product A × B is defined as set:

R = {((x, y), μR(x, y)) | ∀(x, y) ∈ A × B, μR(x, y) > 0} (1.43)

Fuzzy relation has stronger expressive power than the crisp counterpart. By fuzzy
relation it is possible to relate elements of two sets by linguistic relations such as
x more or less similar than y or x significantly greater than doubled y. The former
fuzzy relation can be expressed by membership function

μR(x, y) =
⎧⎨
⎩
0 for x ≤ 0.7y ∨ x ≥ 1.3y
1 − |x − y| for x > 0.7y ∧ x < 1.3y
1 for x ≥ 0.95y ∨ x ≤ 1.05y

(1.44)

Example 1.8 Let us consider A = {x1, x2, x3, x4} and B = {y1, y2, y3} to be sets of
towns. Set A represents towns, where storages are located and B towns, where shops
are located. Short distance between these towns is expressed as relation μR(x, y)
shown in Table1.1. �

Table 1.1 Short distances between towns

y1 y2 y3

x1 0 0.20 0.90

x2 0.35 0.45 0.15

x3 0.20 1 1

x4 0.55 0.35 1
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Basic operations on fuzzy relations are the same as for fuzzy sets, because the
fuzzy relation is expressed as a set. More about these operations (equality, inclusion,
intersection, etc.) is in e.g. [3, 21, 57].

Compositions of fuzzy relations
Fuzzy relations in different Cartesian product spaces can be merged by composi-
tion operations. The best known is the max-min composition [57]. The max-min
composition of relations R(A1, A2) and S(A2, A3) is expressed by formula

μR◦S(x1, x3) = sup
x2∈A2

min[μR(x1, x2), μS(x2, x3)], ∀(x1, x3) ∈ A1 × A3 (1.45)

Max-min compositions have their own propertieswhich arementioned here.More
details can be found in e.g. [37, 50].

Associativity
The max-min composition of relations R, S and T is associative: (R ◦ S) ◦ T =
R ◦ (S ◦ T ).

Reflexivity
This property can be divided into two subproperties: relation R is reflexive in the
classical sense, when μR(x, x) = 1 for ∀x ∈ X ; relation R is ε-reflexive, when
μR(x, x) ≥ ε for ∀x ∈ X . The parameter ε fuzzifies the reflexivity. Furthermore, if
relations R and S are reflexive, then the max-min composition R ◦ S is also reflexive.
Symmetry
A fuzzy relation R is symmetric, if μR(x, y) = μR(y, x) for ∀x, y ∈ X .
A fuzzy relation is asymmetric, if for x 
= y either μR(x, y) 
= μR(y, x) or
μR(x, y) = μR(y, x) = 0 holds.

Transitivity
A fuzzy relation R is (max-min) transitive, if R ◦ R ⊆ R.

The more general definition of composition is: max-* for the relations on finite
sets and sup-* for the relations on infinite sets. The asterix sign stands for different
operators, such as minimum or product t-norms [12]. These compositions are further
examined in the chapter devoted to the fuzzy reasoning.

1.3 Fuzzy Logic

Fuzzy logic is an extension of the many-valued logic by incorporating fuzzy sets into
the system of many-valued logic [3].

In Sect. 1.2.3 we have discussed operations of intersection (1.30), union (1.31)
and complement (1.32). Fuzzy sets in these operations should be defined on the same
universal set. The result is projected to the same universal set. In the logic we are not
limited to a single universal set.
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Operations and properties on sets and logic are isomorph, i.e. belonging to a set is
equivalent with the statement’s truth value, union is equivalent with the disjunction,
intersection is equivalent with the conjunction and complement is equivalent with
the negation in the following way:

x ∈ A
⋂

B ⇔ (x ∈ A ∧ x ∈ B)

x ∈ A
⋃

B ⇔ (x ∈ A ∨ x ∈ B)

x ∈ A ⇔ ¬(x ∈ A)

(1.46)

where A and B can be defined on different universal sets.
Accordingly, in the fuzzy logic three main operations are conjunction, disjunction

and negation. First, we have to define proposition and predicate which are relevant
for further reading.

Proposition is a declarative sentence that is either true (denoted by 1), or false
(denoted by 0). Philosophers and mathematicians have always had doubt, how to
describe phenomena of real world with only two truth values [2, 6, 39]. When we
shift from two-valued to many-valued logics, the proposition could become partially
true, that is, truth value is not limited to the values of 1 and 0. First, three-valued logic
has been examined. Continuously,many-valued logics have been derived.When truth
values were expressed by real numbers from the [0, 1] interval, the infinite valued
logics appeared [2]. One of the many-valued logics or infinite valued logics is fuzzy
logic.

Proposition is either simple (elementary or atomic), or compound (consists of two
or more atomic propositions joined by logical connectives).

Predicate is a declarative sentence containingoneormorevariables andunknowns.
A predicate P(x) is not a proposition, because x is unknown. The predicate becomes
a proposition, when x gets a particular value. If a proposition is constructed in the
frame of two-valued logic, then the truth value can be either 0 or 1. Opposite, in the
fuzzy logic frame the truth value can be any real number from the unit interval.

1.3.1 Fuzzy Conjunction

A suitable tool for the interpretation of the and connective (conjunction) in fuzzy
logic are triangular norms (or short t-norms) [15]. The concept of triangular norms is
based on the idea of probabilistic metric spaces [41] introduced in [26]. T-norm is a
binary operation t on the interval [0, 1] (t : [0, 1]2 → [0, 1]) which is commutative,
associative, monotone andmeets boundary axiom (1 as a neutral element) [7, 19, 48].
Each function which meets these four properties is a t-norm. Relevant mathematical
aspects of t-norms are deeply discussed in [20]. This section is rather focused on
aspects which are relevant for applicability in next sections.

Theoretically, unlimited number of t-norms exists. The four basic and remarkable
t-norms are [19]
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• minimum

tm(μA1(x), μA2(x)) = min(μA1(x), μA2(x)) (1.47)

• product

tp(μA1(x), μA2(x)) = μA1(x) · μA2(x) (1.48)

• Łukasiewicz t-norm

tL(μA1(x), μA2(x)) = max(0, μA1(x) + μA2(x) − 1) (1.49)

• drastic product

td(μA1(x), μA2(x)) =
{
0 for (μA1(x), μA2(x)) ∈ [0, 1)2
min(μA1(x), μA2(x)) otherwise

(1.50)
whereμAi (x), i = 1, 2 denotes the membership degree of the element x to the fuzzy
sets Ai .

The associative axiom ensures that all t-norm functions can be extended to n
propositions by induction [19]:

tni=1(μAi (x)) =
{
1 for n = 0
t (μAn (x), t

n−1
i=1 (μAi (x))) for n > 0

(1.51)

which is a very desirable property for variety of tasks. From the practical point of
view, it is not easy to use all t-norm functions, whenwe have higher number of atomic
propositions. Aforementioned four remarkable t-norms are easy to use in this case.

The set of all possible t-norms is bounded by the largest minimum t-norm and the
smallest drastic product, i.e. td ≤ t ≤ tm , where t is an arbitrary t-norm. Concerning
the aforementioned basic t-norms, we can create the following relation:

td ≤ tL ≤ tp ≤ tm (1.52)

where the equation holds when truth values are limited to the set {0, 1}.
Furthermore, from the basic t-norms only the drastic product (1.50) is a noncon-

tinuous function. For a number of reasons, continuous t-norms play an important
role in theory and applications. But, td is also applicable.

In the frame of algebra, t is a t-norm, if and only if ([0, 1], t,≤) is a totally ordered
commutative semigroup with neutral element 1 and annihilator 0 [19]. Hence, alge-
braic properties of t-norms may beuseful in many tasks related to mining knowledge
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from the data. In this section we focus on presence of idempotent and nilpotent ele-
ments and limit property.

The idempotency property says:

∀μA(x) ∈ [0, 1] holds t (μA(x), μA(x)) = μA(x) (1.53)

The property of nilpotency says:
An element μA(x) ∈ (0, 1) is a nilpotent element of t-norm t , if there exist some

n ∈ N such that t (n)(μA(x)) = 0 for all μA(x) ∈ (0, 1).
The t-norm has a limit property if for: ∀x ∈ (0, 1) limn→∞ t (n)(μA(x)) = 0.
It is obvious that only the minimum t-norm (1.47) meets the idempotency prop-

erty. Other t-norms are idempotent only for membership degree equal to 0 and 1.
Łukasiewicz t-norm (1.49) and drastic product (1.50) contains nilpotent elements
whereas product t-norm meets the limit property.

An interesting t-norm is the nilpotent minimum t-norm defined as [33]:

tNm(μA1(x), μA2(x)) =
{
0 for μA1(x) + μA2(x) ≤ 1
min(μA1(x), μA2(x)) otherwise

(1.54)
The set of {0} ∪ (0.5, 1] is a set of idempotent elements and the set of (0, 0.5]

is a set of nilpotent elements. Hence, this t-norm can be considered in applications
as idempotent conjunction, when the sum of truth values of both atomic predicates
is significant. This property provides benefit which is not possible to obtain with
threshold value applied on minimum t-norm. Only membership degrees the sum of
which is greater than 1, are considered, similarly as for Łukasiewicz t-norm, but
with membership degree equal to minimum t-norm. To illustrate this consideration,
differences between minimum t-norm, Łukasiewicz t-norm and nilpotent minimum
t-norm are plotted in Fig. 1.16.

Fig. 1.16 3D graph of minimum (1.47), Łukasiewicz (1.49) and nilpotent minimum (1.54) t-norms
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1.3.2 Fuzzy Negation

Each function which meets two basic axioms: boundary condition and monotonicity,
is considered as fuzzy negation [21]. Furthermore, a strictly decreasing function is
called a strict negation. A strict negation is strong, if it meets the involution axiom,
i.e. c(c(μA(x))) = μA(x) for all μA(x) ∈ [0, 1].

Another relevant property of the strict negation is, that there exists a unique value
μA(x) ∈ (0, 1), for which holds c(μA(x)) = μA(x) [8]. This corresponds with the
maximal uncertainty point (x = 0.5) of the fuzzy set and its complement plotted in
Fig. 1.14.

The standard negation, which is often used, is defined as:

cs(x) = 1 − μA(x) (1.55)

Applying standard negation and continuous t-normswithout nilpotent element 0.5
we conclude that the law of non-contradiction from the two-valued logic (p ∧ ¬p)
is violated. If p = 0.25, then 1 − p = 0.75 and therefore tm(p, 1 − p) = 0.25
and tp(p, 1 − p) = 0.1875. On the other hand, this property is satisfied by the
Łukasiewicz t-norm.

Similarly as for t-norms, there exist two functions which represent limited values
for all negations. They are Gödel negations defined as:

cg(x) =
{
1 for μA(x) = 0
0 μA(x) ∈ (0, 1] (1.56)

and its dual negation

cdg(x) =
{
1 for μA(x) ∈ [0, 1)
0 μA(x) = 1

(1.57)

Hence, the set of all possible negations is bounded in the following way:

cg ≤ c ≤ cdg (1.58)

where c is an arbitrary negation.

1.3.3 Fuzzy Disjunction

The s-norm or t-conorm functions define a general class of disjunction operators.
T-conorm is a binary operation s on the interval [0, 1] (s : [0, 1]2 → [0, 1]) which
is commutative, associative, monotone and meets boundary axiom (0 as a neutral
element) [7, 19]. Each function which meets these four axioms is a s-norm.
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S-norm functions can be created axiomatically or as dual functions of t-norms
using the well known De Morgan statement: s(x, y) = 1 − t (1 − x, 1 − y) and
suitable negation operator, such as the standard negation (1.55) [4]. The name
“t-conorm” expresses the fact that these functions are dual functions to t-norms
realized by complement. The triple (t, s, c) is called a De Morgan triple [47], where
t , s and c stand for t-norm, s-norm and strict negation consequently. This statement
helps us to recognize axiomatic and algebraic properties of dual function, i.e. if t is
left-continuous then s preserves this property.

The following s-norm functions are correspondingly dual to the aforementioned
t-norms (1.47)–(1.50):

• maximum

sm(μA1(x), μA2(x)) = max(μA1(x), μA2(x)) (1.59)

• algebraic sum

sa(μA1(x), μA2(x)) = μA1(x) + μA2(x) − μA1(x) · μA2(x) (1.60)

• Łukasiewicz s-norm

sL(μA1(x), μA2(x)) = min(1, μA1(x) + μA2(x)) (1.61)

• drastic s-norm

sd(μA1(x), μA2(x)) =
{
1 for (μA1(x), μA2(x)) ∈ [0, 1)2
max(μA1(x), μA2(x)) otherwise

(1.62)
whereμAi (x), i = 1, 2 denotes the membership degree of the element x to the fuzzy
sets Ai .

Concerning s-norms, only the maximum s-norm is idempotent (it is dual function
of the minimum t-norm, which is the only idempotent t-norm).

1.3.4 Fuzzy Implication

Atomic propositions in conjunctions and disjunctions can be independent, e.g.
altitude is small and ratio of public greenery is high. We just simply search for
municipalities which have small altitude and high ratio of parks and other green
areas. In the implication atomic propositions should be in causal relationship, e.g.
short distance causes strong pressure on brake pedal. Even if data mining tech-
niques reveal relationship if altitude is small then ratioof public greenery is high,
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care should be taken before declaring that this is a causal relationship relevant for
the policy making.

In the theory of fuzzy logic four models for implication operators exist [43]:
strong or S-implications, quantum implications or Q-implications, residuated or
R-implications and Mamdani–Larsen or ML-implications.

S-implications are generalized from the tautology x ⇒ y ⇔ ¬x ∨ y [42, 51].
In the fuzzy logic disjunction and negation can be expressed with variety of func-
tions. Therefore, we cannot say that only one S-implication exists. For the maximum
s-norm (1.59) and standard negation (1.55) we obtain theKleene-Dienes implication:

isK D(μA1(x), μA2(x)) = max((1 − μA1(x)), μA2(x)) (1.63)

For the Łukasiewicz s-norm (1.61) and standard negation (1.55) we get the
Łukasiewicz implication

isL(μA1(x), μA2(x)) = min(1, 1 − μA1(x) + μA2(x)) (1.64)

Similarly, Q-implications are generalized from the tautology: x ⇒ y ⇔ ¬x ∨
(x ∧ y) [42, 51]. For the maximum s-norm (1.59), minimum t-norm (1.47) and
standard negation (1.55) we obtain the Zadeh implication:

iqZ (μA1(x), μA2(x)) = max(1 − μA1(x),min(μA1(x), μA2(x))) (1.65)

Residuated or R-implications derive from t-norms by residuation in the following
way [1, 13]

ir (x, y) = sup
c

{c ∈ [0, 1], t (a, c) ≤ b}, ∀a, b ∈ [0, 1] (1.66)

For the minimum t-norm (1.47) we obtain the Gödel implication

irGd(μA1(x), μA2(x)) =
{
1 for μA1(x) ≤ μA2(x)
μA2(x) for μA1(x) > μA2(x)

(1.67)

These equations say that when a < b, the maximal value of c for which t (a, c) ≤ b
holds is 1. When a > b the maximal value of c is equal to b.

For the product t-norm (1.48) we obtain the Goguen implication

irGg(μA1(x), μA2(x)) =
{
1 for μA1(x) ≤ μA2(x)
μA2 (x)
μA1 (x)

for μA1(x) > μA2(x)
(1.68)

Apparently, there are many other feasible fuzzy implications discussed in
e.g. [9, 29]. Apart from these implications, some applications employ for the impli-
cation purposes functions which do not meet all the axioms to be real implications.
In practice, it is very usual to describe implication by t-norms [14]. This particularly
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holds for the minimum t-norm (1.47) which is often called Mamdani implication.
The reason is explained in the chapter dedicated to fuzzy reasoning (Sect. 4.2.1).

1.4 Linguistic Variables

Variableswhose values arewords of natural language,mainly combination of adverbs
(e.g. very, few) and adjectives (e.g. small, medium, high) are called linguistic vari-
ables. Every value of a linguistic variable represents a fuzzy set [27]. In the termi-
nology of relational databases, variables are entities’ attributes such as age, length
of roads, pollution. On the domain (or universe of disclosure) of attribute, fuzzy sets
for each term are constructed.

Mathematically, a linguistic variable takes values (linguistic labels or terms)
expressed in natural language instead of numbers [55]. A linguistic variable is deter-
mined by a quintuple (L , T (L), X , G, H ), where

• L is the name of the variable
• T (L) is a set of all linguistic labels related to variable L
• X is the universe of discourse of the variable
• G is the syntactic rule to generate T (L) values
• H is the semantic rule that relates each linguistic label of T (L) to its meaning

H(L), where H(L) is a diffuse subset of X

Example 1.9 To illustrate the concept of linguistic variable consider the variable
number of days with snow coverage for a particular year or as average for a longer
period. The domain or the universe of discourse (set of integers from the [0, 365]
interval) is divided into five fuzzy sets (linguistic labels) shown in Fig. 1.17. Finally
each term is linked to its meaning.

The membership function for the term medium is

μmedium(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for 156 ≤ x ≤ 208
x − 130

26
for 130 < x < 156

234 − x

26
for 208 < x < 234

0 for x ≤ 130 ∨ x ≥ 234

(1.69)

Consequently, other terms are constructed. Furthermore, this variable has differ-
ent meaning for people looking for an interesting skiing destination and for local
authorities planning winter road maintenance needs, for example. �

Flats in Fig. 1.17 express areas, where belonging to a set is unambiguous. Slopes
depict ambiguity of being in a set. The maximal value of the intersection between
two sets represents the maximal uncertainty degree. The value of 143 has the same
membership degree to fuzzy sets small andmedium. If we examine linguistic variable

http://dx.doi.org/10.1007/978-3-319-42518-4_4
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Fig. 1.17 Terms of the linguistic variable number of days with snow coverage over the domain
[0, 365] of integers

such as distance or turnover, then the term very high can be expressed as R fuzzy set
(Fig. 1.9).

Linguistic variables play an important role in many fields such as data summa-
rization and inference rules. Not only variables of real world such as distance and
temperature, but also quantifiers can be expressed as linguistic variables.

Partition of a universal set X is a grouping of the elements x into subsets, in such
a way that every element x is included in only one of the subsets. Union of subsets
is the whole set X (A1

⋃
A2

⋃
...

⋃
An = X ) and intersection of each two subsets

produces empty set (Ai
⋂

A j = ∅, ∀i, j ∈ {1, 2, ..., n}, i 
= j).
In fuzzy set theory element can belong to several sets with different or equal

membership degrees. According to [38] a k-tuple of fuzzy sets (A1,..., Ak) is a fuzzy
partition of X if ∅ 
= Ai 
= X , ∀i ∈ Nk and

k∑
i=1

μAi (x) = 1, ∀x ∈ X (1.70)

Further requirement is the normality of fuzzy sets [30], i.e. height (1.11) of each
Ai is equal to 1.

By merging the concept of linguistic variable with fuzzy partitions we can create
a family of fuzzy sets of good quality.

Example 1.10 Theoretically, linguistic variable can be of structure shown in
Fig. 1.18. But this variable is not a fuzzy partition of the universal set X as is linguistic

variable shown in Fig. 1.17. Clearly, for x = 25 we get
k∑

i=1
μAi (x) = 1.55 > 1 and

for x = 57,
k∑

i=1
μAi (x) = 0.93 < 1.
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Fig. 1.18 Linguistic variable number of days with snow coverage which is not a fuzzy partition of
the domain [0, 365]

This linguistic variable is not a fuzzy partition, and thus not very suitable to be
used inmining summaries from data or in fuzzy rule base, whereas linguistic variable
plotted in Fig. 1.17 is. �

Concerning the measure of fuzziness, fuzzy sets plotted in Fig. 1.17 have equal
degree of fuzziness, whereas fuzzy sets shown in Fig. 1.18 have different degrees of

Fig. 1.19 Linguistic variable expressed by partition of crisp sets (degrees of fuzziness = 0 for all
sets) and by maximal degree of fuzziness
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fuzziness. By this measure we can see whether the family of fuzzy sets is uniformly
distributed on set X .

Two extreme situations are plotted in Fig. 1.19. In the upper part the universe of
disclosure is partitioned into five crisp sets causing that sum of degrees of fuzziness
for all sets is equal to 0 (1.41, 1.42). In the lower part one fuzzy set with membership
degree of 1/2 for all x ∈ X spreads over the X expressing maximal semantic uncer-
tainty (degree of fuzziness). It is more obvious when we construct a complement of
this fuzzy set because distance between fuzzy set and its complement is equal to 0
and therefore fuzziness is maximal.

1.5 Fuzzy Quantifiers

Fuzzy or linguistic quantifiers [23, 24, 54] allow us to reveal an approximate idea
of the number of elements of a fuzzy set fulfilling a certain proportion in relation to
the total number of elements in a universal set. Fuzzy quantifiers can be absolute or
relative [10].

Absolute quantifiers express the amount of elements from a particular set which
meet the propositions such as much more than 30 elements, approximately 100
elements and the like. The function of quantifier is

Qabs(x) : R → [0, 1] (1.71)

The truth value of the absolute quantifier gets values from the unit interval.
Relative quantifiers express the proportion of elements from a particular set which

meet the propositions such as most of customers meet P. Relative fuzzy quantifiers
are also expressed as fuzzy numbers. The function of quantifier is:

Qrel(x) : [0, 1] → [0, 1] (1.72)

where the domain of Qrel is [0,1] because the division of elements which meet the
fuzzy proposition and total number of elements gets value from the [0, 1] interval.
Hence, relative fuzzy quantifiers are expressed as fuzzy numbers.

The possible membership functions of quantifiers few, about half, most of and
almost all are depicted in Fig. 1.20. The universe of discourse X of these quantifiers
is the [0, 1] interval. Parameters l, o, p, s, m and n could be adjusted independently
for each quantifier and task. Furthermore, quantifier about half can be expressed
as triangular or trapezoidal fuzzy set. On the other hand, relative quantifiers can be
constructed with the help of linguistic variables and fuzzy partitioning examined in
Sect. 1.4 as a family of linguistic terms uniformly distributed on the [0, 1] interval
[17]. The family of three quantifiers is plotted in Fig. 1.21.
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Fig. 1.20 Fuzzy sets describing relative quantifiers. a few; b about half; c most of; d almost all

Fig. 1.21 Relative
quantifiers as a family of
uniformly distributed fuzzy
sets

1.6 Some Remarks

The following thoughts by Professor Zadeh explain usefulness of this approach [53]:

Soft computing is capable to exploit the tolerance for uncertainty and partial truth to achieve
robustness, low solution-cost and better rapport with reality solutions in comparison with
traditional hard computing.

Even though the fuzziness is closely related to phenomena in social sciences and
business, the mathematics of fuzzy logic is mainly applied in engineering and com-
puter science [28]. This trend continues allowing technical systems to be more and
more sophisticated and powerful. We could reach the same in social sciences and
business, if we efficiently support them by fuzzy logic.

The fact that a predicate and its negation may be true to some extent, is an essence
of fuzzy logic. We lose some properties (excluded middle, non-contradiction, idem-
potency), when we generalize two-valued logic to fuzzy logic. On the other hand,
we get a more powerful tool for analysing real world tasks [15]. However, we have
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to be careful when these properties should be satisfied. Issues which may appear in
fields which are covered by this book are discussed and solutions are provided.

The interpolative realization of Boolean algebra (IBA) [36] brings fuzziness into
the frame of the Boolean algebra. The IBA consists of symbolic or qualitative level
(related to finite Boolean algebra), where all properties of Boolean algebra are sat-
isfied, and of semantic or valued level (a matter of interpretation where truth values
from the [0, 1] interval are applied). Moreover, IBA is in the line with the ideas
expressed in [5], where it is stated that “... the symbols of the (logic) calculus do
not depend for their interpretation upon the idea of quantity ...” and only “in their
particular application ..., conduct us to the quantitative conditions of inference”.

The following statement nicely explains fuzzy logic and topics discussed in this
book

Fuzzy logic focuses on linguistic variables in natural language and provides a foundation
for approximate reasoning with imprecise propositions. It reflects both the rightness and
vagueness of human thinking [6].

In the next sections examples are mainly demonstrated on the illustrative data.
More complex examples which include building and adjusting interfaces are realized
on the statistics database of territorial units. These examples are in appendixes.
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Chapter 2
Fuzzy Queries

Abstract The goal of database queries is to separate relevant tuples from non-
relevant ones. The common way to realize such a query is to formulate a logical
condition. In classical queries, we use crisp conditions to describe tuples we are
looking for. According to the condition, a relational database management system
returns a list of records. However, user’s preferences in what should be retrieved, are
often vague or imprecise. These preferences can be expressed in atomic conditions
and/or between them. For example, the meaning of a query: find municipalities with
small population density and altitude about 1000 m above sea level can be under-
stood at the first glance. The linguistic terms clearly suggest that there is a smooth
transition between acceptable and unacceptable records. This chapter is focused on
the construction of fuzzy sets, the aggregations functions and the issues of fuzzy
logic in queries which should not be attenuated.

2.1 From Crisp to Fuzzy Queries

In order to work with the main topic of this chapter, brief introduction to relational
databases and relational algebra is desirable. Relational databases are further exam-
ined in Chap.5.

A relational database consists of relations (tables). We should emphasize that
tables and relations are synonyms. The table is a suitable representation of relation.
The relation schema has the following structure [38]:

R(A1 : D1, ..., An : Dn), (2.1)

where R is the name of relation, e.g. MUNICIPALITY or CUSTOMER (in order
to keep notation consistent throughout the book, relations in database are written
with capital letters), Ai is the i-th attribute (i = 1, ..., n), often called column (e.g.
unemployment rate) and Di is the domain of attribute Ai defining a set of all pos-
sible values which could be assigned to records (e.g. interval [0, 100] for the above
mentioned attribute). In case of attributes like sales the domain is set of positive real
numbers. A record is represented by row and often called tuple. A relation instance
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of a given relation schema is a set of tuples stored in a table. Hence, the term “relation
instance” is abbreviated to relation or table. Each tuple r j ( j = 1, ...,m) consists of
the attributes’ values in the following way:

r j = {
(d1 j , ..., dnj ) | (d1 j ∈ D1, ..., dnj ∈ Dn)

}
, (2.2)

where di j is the value of the tuple r j corresponding to the attribute Ai . The letter t
is usually used in literature to express database tuple. In this book letter t is used for
t-norms. In order to avoid any misunderstanding, t-norm is marked with letter t and
database tuple with letter r (record) throughout the book.

To clarify the understanding of relations to level required for queries, let us show
one illustrative example.

Example 2.1 The relation MUNICIPALITY(#id, name, number_of_inhabitants,
area, altitude, pollution) is represented in Table2.1.

For instance, third tuple is expressed as vector (2.2):
r3 = {(3,Mun3, 810, 1030, 625, 0.20)}. �

A query against a collection of data stored in database provides a formal description
of the tuples of interest to user posing this query [30]. The StructuredQueryLanguage
(SQL) is a standard query language for relational databases [13]. SQL was initially
introduced in [11]. Since then, SQL has been used in many relational databases for
managing data (insert, modify, delete, retrieve). The use of SQL may be regarded as
one of the major reasons for the success of relational databases in the commercial
world [45].

SQL has the following basic structure:

SELECT [distinct]〈attributes〉 FROM 〈relations〉 WHERE 〈condition〉 (2.3)

In the traditional (crisp) SQL condition a tuple can either fully satisfy the intent of a
query Qc, or not. Other options do not exist. In the set theory we can express set of
crisp answers in the following way:

AQc = {(r, ϕ(r)) | r ∈ R ∧ ϕ(r) = 1} , (2.4)

where ϕ(r) = 1 indicates that the selected tuple r meets the query criterion and R
states for the queried relation. Therefore, it is not necessary to write the answer as
an ordered pair (tuple, matching degree).

Example 2.2 An example of crisp SQL query is:

SELECT name
FROM municipality
WHERE altitude < 250 and pollution > 20.

This query returns two municipalities (Mun 2 and Mun 3) from the relation shown
in Table2.1.
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Table 2.1 Relation MUNICIPALITY in a database

#Ida Name Number_of_inhab. Area Altitude Pollution

1 Mun 1 1550 2536 251 19.93

2 Mun 2 1790 7995 248 20.50

3 Mun 3 810 1030 625 0.20

4 Mun 4 5810 8030 126 60.00
a# represents the primary key, i.e. attribute(s) which unambiguously identify tuple

The result of the query is shown in graphical mode in Fig. 2.1. Values 20 and 250
delimit the space of retrieved data. Small squares stands for municipalities. From the
graphical interpretation it is evident that two tuples (circled), although share almost
the same values of both attributes, are separated (one is selected, whereas another is
not).

�

If SQL is used for solving this problem, the relaxation would have to be done in
the following way [12]:

SELECT name
FROM municipality
WHERE pollution > 20 − l1 and altitude < 250 + l2

where parameters l1 and l2 are used to expand the initial query condition in order to
select records that almost meet the query condition. However, this approach has two
disadvantages [12]. First, the meaning of the initial query is diluted (e.g. instead of
alti tude < 250 we have alti tude < 260, if l1 = 10) in order to capture adjacent
tuples situated just beyond the border of the initial query. Themeaning of the query is

Fig. 2.1 Crisp query condition: WHERE altitude < 250 and pollution > 20
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changed and the adjacent tuples satisfy the condition in the same way as initial ones.
Second, a problem arises from the question: what about tuples that are very close to
satisfy the new expanded query? Should we add another relaxation of query? In this
way more data from the database are selected, but the initial intent of the query is
lost [24].

The other option is adjusting the select clause in the following way:

SELECT name, altitude, (iif altitude < 250, 1, iif(altitude > 250 and altitude < 260,
(260 - altitude) / 10), 0)) as matching degree

In this way, the structure of the select clause is a bit complicated, even though
only one attribute is relaxed. If further attributes were added, then the clause would
become almost illegible, e.g.

SELECT name, altitude, (iif altitude < 250, 1, iif(altitude > 250 and altitude < 260,
(260 - altitude)/10),0)) as m1, pollution, iif(pollution > 20, 1, iif(pollution > 17 and
pollution < 20, (pollution - 17)/3, 0)) as m2, min(m1, m2) as matching degree

If wewould like to use further possibilities of fuzzy logic such as different t-norms
or non-linear fuzzy sets, then rewriting the select clause is a complicated task which
may eventuate in higher occurrence of errors.

SQL is optimized to query relational databases. In this chapter the core of SQL
remains intact and the extension is done to fuzzify the imprecise conditions. Adding
flexibility to SQLmeets requirements for flexible queries and increases effectiveness
of the whole querying process.

The main reason for using fuzzy set theory to make querying more flexible is
discussed in [15] and advocated in [27]. Firstly, fuzzy sets provide a better description
of data requested by user. For example, the meaning of a query: select customers
having high turnover and short payment delay can be understood at the first glance.
Secondly, linguistic terms are clearly suggesting that there is a smooth transition
between acceptable and unacceptable tuples. In fuzzy queries, some tuples definitely
match the condition, some certainly not and some match to a certain degree.

Similarly to SQL query structure (2.3), the basic structure of fuzzy query is the
following [5]:

SELECT [distinct]〈attributes〉 FROM 〈relations〉 WHERE 〈 f uzzy condition〉
(2.5)

Hence, the fuzzy query returns a fuzzy relation (a subrelation of the initial database
relation) consisting of set of tuples that satisfy the fuzzy condition and respective
matching degrees. The set of answers to fuzzy query AQ f could be written in the
following way:

AQ f = {(r, μ(r)) | r ∈ R ∧ μ(r) > 0} (2.6)
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In fuzzy queries we distinguish preferences inside atomic conditions and between
them. The former is expressed by constructing fuzzy sets which correspond to users’
needs; the latter is realized by aggregations.

Presumably, the first attempt to fuzzify SQL-like queries is [42]. It fuzzifies the
where clause in order tomake possible to use vague terms similar to natural language.
The aggregation was realized by the minimum t-norm (1.47) for the and connective
and by the maximum s-norm (1.59) for the or connective. It was the inspiration
for practical realizations of fuzzy queries. One of the first practical realizations of
flexible queries is FQUERY, an add-in that extends the MS Access’s querying capa-
bilities with the linguistic terms inside the where clause [28]. SQLf [5, 6] is a more
comprehensive fuzzy extension of SQL queries. SQLf extends SQL by incorporating
fuzzy predicates in the where clause as well as supports, among others, subqueries
inside the fuzzified where clause and fuzzy joins. The Fuzzy Query Language (FQL)
[47] extends SQL queries with fuzzy condition inside the where clause in the usual
way and adds other two clauses which provide additional functionality: weight and
threshold.

Flexible querying is still an active field for research either in adding further flex-
ibility such as the fuzzification of the group by clause [9], conversion from fuzzy
to crisp queries [24], dealing with the empty and overabundant answer problems
[7, 40] and user-friendly graphical interface [39]. An exhaustive source of flexible
preference querying is [34].

2.2 Construction of Fuzzy Sets for Flexible Conditions

Generally, there are two main aspects for constructing fuzzy sets. In the first aspect,
users define the parameters of each fuzzy set according to their opinion. This way
gives them freedom to choose parameters (a, b, m, m1, m2) depicted in Figures (1.5,
1.6, 1.7, 1.8, 1.9 and 1.10). Nevertheless, in this approach users are asked to set more
crisp values than in classical query (e.g. two crisp values to clarify the meaning of
term small (1.22), whereas in the classical query user assigns only one value, e.g.
attribute A< a). This problem can bemitigated by adjusting fuzzy sets parameters by
moving sliders (on interfaces) over the domain of attribute to set ideal and acceptable
values [39] rather than filling input fields with crisp numbers, for example.

Let Dmin and Dmax be the lowest and the highest possible domain values of a
numeric attribute A, i.e. Dom(A) = [Dmin, Dmax ] and L and H be the lowest and
the highest values in the current content of a database, respectively. The domains
of attributes should be defined during the database design process in a way that all
theoretically possible values can be stored. For the attribute describing the daily
frequency of a measured phenomenon during the year (e.g. number of days with
temperature below 0 ◦C), the domain is the [0, 365] interval of integers. In practice,
the real values could be far from the Dmin and Dmax values; that is, [L , H ] ⊆
[Dmin, Dmax ]. This means that only part of the domain contains data. For the attribute
describing the number of inhabitants, the domain is theoretically the whole set of

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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natural numbers (N), but stored values are far from the infinity (∞). If user is not
aware of these facts, the query might easily end up as empty or overabundant. This
fact should be considered in defining not only query conditions, but also inference
rules and data summarizing sentences.

The second aspect deals with the dynamic modelling fuzzy sets parameters over
the domains of attributes. In the first step values of L and H are retrieved from a
database. These parameters are used to create fuzzy sets for attributes included in
the query condition.

The modelling of fuzzy sets parameters depends on the type and purpose of the
fuzzy query (dependable or undependable atomic conditions). In this section several
approaches are examined. In the next sections suitable ways for particular tasks are
discussed.

If collected data are more or less uniformly distributed in the domain, then the
uniform domain covering method [44] can be applied. Otherwise, the statistical
mean-based method [44] or the logarithmic transformation of respective domains
[25] can be used.

An appropriate method could be chosen by users or mined from the data. In the
first case, users could rely on their knowledge, common sense, attainments about
examined entities (e.g. territorial units or customers), and knowledge of physical
laws. Let us demonstrate this aspect on the municipal database. For attributes like the
number of inhabitants, the choicemay be the logarithmic transformation or statistical
mean-based algorithm, because the database contains a few big municipalities and
majority of smaller ones. In the case of attributes like water or gas consumption
per inhabitant, users could assume that the uniform domain covering method is an
appropriate option.

In the second case, per-computation (performing an initial computation before
run the main task) of data summary on attributes is used to reveal the information
about distribution of data. In this way the single scan of database provides relevant
information about relative cardinality [40].

In the book we use the uniform domain covering method. The parameters for the
linguistic terms are created by calculating the cores and slopes in the following way
[44]:

ε = 1

8
(H − L) (2.7)

θ = 1

4
(H − L) (2.8)

when the linguistic variable is divided into three terms. Thereafter, it is easy to
calculate required parameters shown in Fig. 2.2 for a particular fuzzy set. If it
is a requirement for more fuzzy sets (e.g. five sets: very small, small, medium,
high, very high, Fig. 1.17) these sets can be straightforwardly constructed adjusting

ε = 1

14
(H − L) and θ = 1

7
(H − L).

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Fig. 2.2 Linguistic variable uniformly distributed over an attribute domain by three fuzzy sets

Uncertainty of belonging to a set is expressed by ε. The flat segment defined by
θ express clear belonging to a set. If uncertainty decreases, the value of ε decreases.
In the extreme situation, i.e. ε = 0 we got the classical partitioning of the attribute’s
domain.

Example 2.3 An institution analysing usage of water is interested to find municipal-
ities which have small water consumption per inhabitants in cm3. For this task the
granularity to three fuzzy sets should be sufficient.

Let a simple SQL:

SELECT max(WaterConsumpt) as L, min(WaterConsumpt) as H
FROM municipality

reveals: L = 0.63 and H = 389.22. Straightforwardly, applying (2.7) and (2.8)
only parameters for the fuzzy set small are calculated, that is, A = 97.7775 and
B = 146.35125.

Therefore, we got m2 = A = 97.7775 and b = B = 146.35125 in order to keep
the notation in accordance to the notation in Sect. 1.2.2. Afterwards, user can either
modify these parameters or run a query with the suggested ones. In case of the latter,
the where clause is:

WHERE WaterConsumpt < 146.35125.

This condition ensures that all tuples which fully or partially meet the condition are
selected for the second step: calculating matching degrees. �

Another approach for constructing fuzzy sets is presented in [27] to support fuzzy
queries such as select municipalities where number of warm days is much lower than
number of days with snow coverage. The intervals [L , H ] of each database attribute
are transformed into the [−10, 10] interval of real numbers. In the case of condition
like altitude above sea level is small and number of inhabitants is high, attributes’
values can be also transformed into the [−10, 10] interval, if the data distribution
is more or less uniform. In this case, fuzzy sets small, medium, high can be created
using ε = 3.3 and θ = 6.6.

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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These linear shapes of membership functions, although very suitable for fuzzy
queries, constitute only a small subset of the all possible shapes of membership
functions. Discussion about other ones can be found in, e.g. [17, 32].

Both aspects of constructing fuzzy sets parameters can be merged. In the first
step, parameters of fuzzy sets are calculated from the current content of database. In
the second step, users are able to modify these parameters, if they are not satisfied
with the suggested ones. Obviously, the user can obtain tentative information about
the stored data before running a query. The querying process could become more
tedious, but on the other hand, it might save computation time from running queries
which return empty sets. In case when suggested parameters are far from the user’s
expectations, user has two options: (i) to quit the query process knowing that there is
no data that satisfy the query condition; (ii) to accept or slightly modify the suggested
parameters. The assistance for constructing fuzzy sets parameters should be optional
for users.

The topic of construction of fuzzy sets is covered by vast literature, mainly in
fuzzy systems. We should be careful when we consider constructing fuzzy sets for
queries, due to the following reasons [20]:

• In fuzzy inference systems fuzzy sets should cover the whole domains of attributes
in order to properly control or classify all possible occurrences of input attributes.
On the contrary, queries select a subset of data which might be relevant for users.

• If the goal is to develop an easy to use and less demanding tool (a web application
for the broad audience, for example), then the fuzzification process should be as
simple as possible. It means that, sophisticated approaches like neural networks
or genetic algorithms should be avoided.

• In queries, where answer to the first part of query influences adjusting the second
part of query we have to rapidly and efficiently construct fuzzy sets for dependable
attributes during the querying process.

In addition, the fuzzification step can be improved by mining parameters from the
recorded history, if application keeps user’s preferences. During the next attempt for
similar query, the application offers parameters of fuzzy sets from the recorded user’s
history. The second option is recommending parameters according to the parameters
used by similar users, e.g. if a 22-year-old student from the Eastern Europe searches
for a hotel, then the procedure could approximately guessmeanings of terms related to
the price and room size from other similar students. The main drawback is keeping
the user’s history and building recommendations. On the other hand, this way is
more tailored to users and may attract them. Anyway, finding suitable options for
each application should be considered.

2.3 Converting Fuzzy Conditions to SQL Ones

If we wish to effectively select tuples, flexible conditions should be converted into
SQL ones, because SQL is optimized for efficiently querying relational databases.
This task is explained on the approach based on the Generalized Logical Condition
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(GLC) [24]. This solution contains the usual steps for fuzzy querying: (i) converting
fuzzy conditions to SQL ones; (ii) connecting to database, selecting all candidates
(tuples which have membership degree greater than zero) and releasing a database
connection; (iii) calculating satisfaction degree for each tuple to each atomic condi-
tion; (iv) calculating overall satisfaction degree (often called matching degree). The
detailed explanation of this approach can be found in [23].

The GLC has the following structure:

where ⊗n
i=1 Ai ◦ Li , (2.9)

where n denotes the number of attributes in fuzzy condition of a query,

⊗ =
{
and
or

where and and or are fuzzy logical operators and

Ai ◦ Li =
⎧⎨
⎩

Ai > a, for condition high
Ai < b, for condition small
Ai > a and Ai < b, for condition medium

where Ai is i-th attribute included in the condition, parameters a and b delimit
supports of respective fuzzy sets explained in Sect. 1.2.2.

When the compound condition contains several atomic ones connected with the
and operator, then tuple meets partially or fully the overall condition only, if values
of all attributes belong to supports of the respective fuzzy sets.

If a where clause contains fuzzy as well as classical conditions, classical ones
could be easy added to the where clause (2.9) in the following way:

where ⊗n
i=1 Ai ◦ Li [and/or] Ae > e [and/or] A f = “string" . . . (2.10)

Example 2.4 In this example municipalities with altitude about 900 m above sea,
high number of beds in accommodation facilities and small population density are
sought.

In the first step each linguistic term is expressed by fuzzy set. Altitude about 900m
above sea is represented by the trapezoidal fuzzy set (1.20)with parameters: a = 850,
m1 = 875,m2 = 925 and b = 950.High number of beds in accommodation facilities
is expressed by the R fuzzy set (1.23) with parameters a = 450 andm = 550. Finally,
small population density is described by the L fuzzy set (1.22) with parameters
m = 120 and b = 135.

Now, we have all information for converting fuzzy into SQL query. The SQL
query is:

SELECT name
FROM municipality
WHERE (altitude > 850 and altitude < 950) and beds_accommodation > 450 and
population_density < 135. �

When we have selected all tuples, we can continue with calculating their respective
matching degrees.

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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2.4 Calculation of Matching Degrees

Query conditions usually consist of more than one atomic condition merged by
logical connectives. Generally, we can divide this topic into two main categories.

• The simpler category is aggregation of query conditions which have the same
significance for users and are independent, i.e. order of the execution is irrelevant
(commutative atomic conditions).

• The more complex category are queries where elementary conditions have differ-
ent relevance (commutative and non-commutative queries).
Commutative queries can be solved by fuzzy implications or Ordered Weighted
Averaging Operator (OWA).
Non-commutative queries have several structures. Bipolar queries merge con-
straints (have to be satisfied) and wishes (is nice if are satisfied) or negative and
positive judgements, respectively. Another example is non-commutative queries
containing only constraints where answer of the first atomic condition influences
answer to the second one.

In the next several subsections these categories are examined.

2.4.1 Independent Conditions Aggregated by the “And”
Operator

This is the simplest form of aggregation. The t-norm functions (Sect. 1.3.1) are used
as and logical operator. It is well known that different t-norms produce different
matching degrees. Naturally, the following question has arisen: which t-norm is the
most suitable one?

Let us recall the well-known fact that only the minimum t-norm (1.47) is an idem-
potent one. This fact is one of the reasons for the wide use of this operator. However,
the minimum t-norm has a limitation. Only minimal value of all atomic conditions is
considered, that is, other atomic conditions do not influence the solution. The product
t-norm (1.48) takes into account membership degrees of all elementary conditions.
Therefore, this t-norm distinguishes records which have the same value of the low-
est membership degree of atomic conditions and different values of the satisfaction
degree of other atomic conditions, but produces lower matching than the minimum
t-norm. The Łukasiewicz t-norm (1.49) produces membership degree greater than 0
only for tuples which significantly satisfy the condition, i.e.:

∑n
i=1 μAi (r) − (n − 1) > 0

because this t-norm is a nilpotent one. The last basic t-norm is drastic product (1.50),
which is not suitable due to non-continuity and high restrictiveness.

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Table 2.2 Matching degrees calculated by different t-norms

Tuple μP1 μP2 Min(1.47) Prod(1.48) Łuk(1.49) Drast(1.50)

r1 0.21 0.32 0.21 0.067 0.00 0

r2 0.20 0.96 0.20 0.192 0.16 0

r3 0.95 0.95 0.95 0.905 0.9 0

Let us have three records which satisfy the first atomic condition (predicate) (P1)
and the second atomic condition (P2) as is shown in Table2.2.

It is obvious that tuple r3 is the best option. But, drastic product calculates match-
ing equal to 0. Let us now focus on tuples r1 and r2. The minimum t-norm prefers
the tuple r1. But, this could contradict the human reasoning when selecting the
best tuple: although the tuple r1 is only slightly better in the first atomic condi-
tion and notably worse according to the second one, it is the preferred one. The
product t-norm prefers r2 with the membership degree lower than the values for
both atomic conditions. The Łukasiewicz t-norm calculates membership degrees
greater than 0 for the tuple r2 because r1 does not significantly satisfy both atomic
conditions.

On the other hand, if the decision depends on thematching degree, e.g. percentage
of the financial support or discount, then using non-idempotent t-norms could con-
tradict with the usual reasoning. If tuple satisfies all atomic conditions with degree
of 0.5, then it is expectable that the percentage of support is 50% (0.5). In case of
product t-norm the matching degree significantly decreases, when number of atomic
conditions increases. Although product t-norm is not a nilpotent one, it converges to
0, when large number of atomic predicates exists, that is, limn→∞

∏n
i=1 μAi (x) = 0.

This fact is known as the limit property of t-norms [31]. On the other hand, minimum
t-norm converges to minimal value of atomic predicates.

When we want to select only records which significantly meet the compound
predicate (overall query condition) and avoid issue discussed in the paragraph above,
then theα-cutmay be the solution. But care should be taken,when not onlyminimum,
but also sum of atomic conditions is relevant. The nilpotent minimum t-norm (1.54)
may be the option for such tasks. Let us have two records which satisfy the first
atomic condition (P1) and the second atomic condition (P2) as is shown in Table2.3.

According to minimum t-norm tuple r2 is preferred. But, tuple r1 dominates in
the first atomic condition and is slightly worse in the second one. In order to select

Table 2.3 Matching degrees calculated by minimum and nilpotent minimum t-norms

Tuple μP1 μP2 Min(1.47) Nilpotent
min(1.54)

r1 0.80 0.30 0.30 0.30

r2 0.40 0.35 0.35 0

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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only tuples which significantly meet the compound query condition, threshold can
be used. Let us have threshold 0.33. By minimum t-norm r1 is excluded. Contrary,
nilpotent minimum t-norm prefers tuple r1 because μP1 + μP2 is higher than 1 and
therefore meets threshold value of 1 of this t-norm. To conclude this observation,
query matching degrees of tuples which pass filtre of nilpotent minimum t-norm, are
calculated in the same way as by minimum t-norm.

Contrary to the crisp conjunction, the fuzzy conjunction can be expressed by
variety of t-norms. This provides a benefit because we can model a large scale
of users’ requirements. Nevertheless, we should carefully decide which t-norm is
the most suitable in order to avoid inappropriate solutions. Hence, developers of
information systems and databases should be familiar with the fuzzy set and fuzzy
logic theory.

To summarize, when the most restrictive matching degree of atomic condition is
required, then the minimum t-norm is the appropriate solution. Furthermore, when
it is desirable that the sum of atomic predicates significantly contributes to solution,
thennilpotentminimum t-norm is anoption.Whenusers consider satisfactiondegrees
of each atomic condition, then the product t-norm is the choice. In addition, if user
wishes to see in the resulting relation only tuples which significantly meet all atomic
conditions, then the Łukasiewicz t-norm, or applying α-cut on the result obtained by
product t-norm are the suitable choices.

Flexible queries can be straightforwardly adjusted for searching similar entities
[21] to the existing or ideal one. In this type of fuzzy query membership functions
are limited to triangular ones (Fig. 1.5), because support (1.9) should be limited and
membership degree equal to 1 should hold only for tuples having the same value of
analysed attribute as the reference tuple. The and connective should not be expressed
by minimum or nilpotent minimum t-norm.

If atomic conditions aremerged by the or logical operator, the s-norms are applied.
This kind of queries is not further examined, but the duality principle between t-norms
and s-norms discussed in Sect. 1.3.3 helps in searching for the suitable s-norm.

Design of interfaces for commutative queries, searching for similar tuples and
related discussions are in Appendix A.1.

2.4.2 Fuzzy Preferences Among Atomic Query Conditions

The aim of preferences among atomic conditions is to distinguish more important
conditions from less important ones. In everyday tasks people rarely give the same
priority to all attributes. As an example let us take the query: select young and highly
productive employees where age is more important than productivity.

In order to solve such a query, weights wi ∈ [0, 1] can be associated with atomic
conditions. Two types of weights can be applied [49]: static and dynamic. From
the names it is obvious that the static weights are fixed, known in advance and
unchangeable during query processing, whereas for dynamic weights neither their
values nor association to criteria are fixed a priori.

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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The idea for calculating the matching degree of atomic conditions Pi according
to an importance weight wi by fuzzy implication has the following form [49]:

μ(P∗
i , r) = (wi ⇒ μ(Pi , r)), (2.11)

where ⇒ represents a fuzzy implication (weight implies or influences the solution).
In order to be meaningful, weights should satisfy several requirements [15]:

• if wi = 0, then the result should be such as Pi does not exist or does not have any
influence on the solution

• if wi = 1, then Pi fully influences the solution
• weights should be assigned to each atomic condition, whereas at least one weight
should have value of 1 for the most important attribute(s): maxi (wi ) = 1, i = 1...n

By applying these requirements, it is easy to conclude that the regular implica-
tions (S, Q, R—Sect. 1.3.4) such as Kleene-Dienes, Gödel and Goguen match the
requirements.

Example 2.5 In this example we check whether the Kleene-Dienes implication
(1.63) is suitable. Consider the overall query condition consisted of several atomic
predicates connected with the and operator ∧n

i=1Pi .
For very low importance of the Pi (wi is close or equal to 0), the satisfaction of

elementary condition Pi has a very low influence on the query satisfaction, because:
wi → 0 ⇒ μ(P∗

i , r) → 1, where arrow means approaching the value of. In the
extreme situation (no importance at all, wi = 0), μ(P∗

i , r) = 1. The value of 1 is the
neutral element in the conjunction.

For maximal importance of the Pi , wi is equal to 1. The satisfaction of Pi is
essential for fulfilling the overall query, because wi → 1 ⇒ μ(P∗

i , r) → μ(Pi , r).
In the same way it is possible to prove that the other regular implications are

suitable. �

Using the Kleene-Dienes implication, the following query condition for the con-
junction is achieved:

μ(r) = min
i=1,...,n

(maxi=1,...,n(μ(Pi , r), 1 − wi )) (2.12)

if the minimum function is used as a t-norm. Other t-norms can be also used. Fur-
thermore, the Eq. (2.12) corresponds to the definition of the weighted conjunction
operator introduced in [16].

For the Gödel implication (1.67) Eq. (2.11) yields:

μ(P∗
i , r) =

{
1 for μ(Pi , r) ≥ wi

μ(Pi , r) for μ(Pi , r) < wi
(2.13)

The weight wi is treated as a threshold. If predicate Pi is satisfied to a degree
greater or equal than this threshold, then the weighted condition is considered to be

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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fully satisfied. Otherwise it equals to matching degree of Pi . Furthermore, it is easy
to prove that when wi = 0, regardless of value of μ(Pi , r) the answer participates in
the conjunction with value 1 (neutral element).

Goguen implication (1.68) is another threshold-type interpretation, but the under-
satisfaction of the condition is treated in a more continuous way:

μ(P∗
i , r) =

{
1 for μ(Pi , r) ≥ wi
μ(Pi ,r)

wi
for μ(Pi , r) < wi

(2.14)

Besides these implication functions, in some applications it is common to describe
implication by t-norms [18]. Let us see whether this assumption holds here. For the
so-called Mamdani implication (minimum t-norm), the proof of unsuitability of this
implication is simple. For no importance of Pi (μ(P∗

i , r) = min(wi , μ(Pi , r)) = 0)
the overall query satisfaction will be 0, because value of 0 annihilates truth values of
other atomic conditions in conjunction. It implies that the requirement: if wi = 0,
then the result should be such as if Pi does not exist or does not have influence, is
not satisfied for the Mamdani implication.

This result was expected. But the goal of this short discussion was to emphasize
that the “simplified implication” used in fuzzy reasoning does not work here.

Example 2.6 Let us have two atomic predicates: P1 having high importance (w1 = 1)
and P2 having lower importance (e.g. w2 = 0.5). Tuples and matching degrees are
shown in Table2.4. The second and third column shows matching degrees before
applying Kleene-Dienes implication and next two after applying this implication.

Without applying preferences tuples r1 and r2 have the same matching degree
regardless of used t-norm (commutativity axiom). But, when predicate P1 is more
preferred, then its higher membership degree should be reflected in the solution. �

An example of interface adjusted to preferences is illustrated in Appendix A.1.
Another way for realization of preferences can be found in [47], where the authors

suggest not only crisp values, but also fuzzy sets to describe the importance value in
the additional weight clause. The importance weights can be crisp numbers from the
[0, 1] interval or fuzzy sets defined beforehand and stored in a separated database
table. The benefit for users is in the possibility to select the importance defined by
linguistic terms. The linguistic variable Preferences weight may consist of several
terms such as no importance, very low, low, medium, etc. Weights can be defined in
a similar way as relative quantifiers (Sect. 1.5), because domain is the unit interval.

Table 2.4 Preferences calculated by Kleene-Dienes implication

Tuple μP1(r) μP2(r) μP1∗ (r) μP2∗ (r) Matching
degree (2.12)

r1 0.9 0.4 0.9 0.5 0.5

r2 0.4 0.9 0.4 0.9 0.4

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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2.4.3 Answer to the Second Atomic Condition Depends
on the Answer to the First One

It may happen in everyday tasks that the answer to the first question influences answer
to the second one. This occurs in queries, where conditions are not independent,
contrary to the cases explained in Sects. 2.4.1 and 2.4.2. In this case, the second
atomic condition is relative to the first one.

Two gradual conditions are combined in such a way that the second condition is
applied on a subset of database rows, already limited by the first one. An example of
such a query is: select companies with small number of employees (P1) among com-
panies with high export (P2). The condition P2 (consisted of atomic or compound
condition) is defined a priori and the condition P1 is defined in a relative manner
of satisfying the condition P2. If we permute predicates, the query is: select compa-
nies with high export (P1) among companies with small number of employees (P2).
Therefore, the result may be different.

This class of queries require focus on a limited subset of an attribute domain
instead of the whole domain (or to be more precise, the subset of the current content
of a database).

To solve such tasks efficiently, fuzzy aggregation operator called among is defined
[44]:

μP1amongP2 = min(μP1/P2(x), μP2(x)), (2.15)

where μP2 is the membership function defining fulfillment of the independent predi-
cate and μP1/P2 is the membership function of the dependent predicate relative to the
independent one. The former is constructed directly from data or by user, whereas
the latter represents a transformation of the initial membership function μP1 affected
by the independent predicate.

The construction of theμP2 can be realized by any method mentioned in Sect. 2.2.
The construction of the μP1/P2 is realized by the transformation f in the following
way [44]:

μP1/P2 = f ◦ μP1 , (2.16)

where f is the transformation between initial domain [l, h] and reduced one [l ′
, h

′ ]

[l ′, h′] �→ f : [l, h] (2.17)

f (x) = l + h − l

h′ − l ′
(x − l ′) (2.18)
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Hence, the among operator is calculated as (2.15)–(2.18):

μP1amongP2(x) = min(μP1(l + h − l

h ′ − l ′ (x − l
′
)), μP2(x)) (2.19)

Another option for constructing compressed membership function (fuzzy set) is
discussed in [22]. However, this approach requires one scan and two queries. In
the first step entities satisfying the condition P2 are selected. Tuples selected by P2
create a subrelation of all tuples. It causes the compression of initial domain, i.e.
[LP1−compr , HP1−compr ] ⊆ [LP1, HP1] of the dependent attribute P1, where LP1 and
HP1 represent the lowest and the highest value of dependent attribute in the whole
relation, respectively.

In the second step, a database scan retrieves values of LP1−compr and HP1−compr .
In the third step, the fuzzy set describing dependable condition is created on the sub-
domain [LP1−compr , HP1−compr ] by the uniform domain covering method [44]. Even
if user can define parameters for the membership function μP2 without suggestion
from the current database content, defining the membership function for μP1/P2 on
the interval [LP1−compr , HP1−compr ] depends on the selected tuples in the first step.
Therefore, this step should be automatized.

Finally in the last step, the overall query matching degree is calculated by (2.15).
This procedure is shown in Fig. 2.3.

Example 2.7 A small survey is conducted to find expensive books among books
with small number of pages. Books from a bookshop are shown in Table2.5. Inde-
pendent predicate number of pages is small is expressed as L fuzzy set (Fig. 1.8) with
parameters m = 200 and b = 250. This condition returns five books, which fully or
partially match independent predicate, shown in Table2.6.

Fig. 2.3 The procedure for calculating matching degree when dependable condition is not defined
a priori but in a relative manner

http://dx.doi.org/10.1007/978-3-319-42518-4_1


2.4 Calculation of Matching Degrees 49

Table 2.5 Books in a
bookshop

Book Pages Price

Book 1 420 60

Book 2 500 25

Book 3 290 50

Book 4 210 36

Book 5 100 45

Book 6 120 38

Book 7 225 10

Book 8 240 50

Book 9 310 70

Book 10 300 30

Table 2.6 Selected books
from Table2.5 by
independent condition

Book Pages Price

Book 4 210 36

Book 5 100 45

Book 6 120 38

Book 7 225 10

Book 8 240 50

It is now a straightforward task to detect in the Table2.6 the smallest value
(Lcompr = 10) and the highest value (Hcompr = 50) in the subdomain of price
attribute.

In the next step, by the uniform domain covering method parameters of fuzzy set
price is high are calculated: θ = 1

4 (Hcompr − Lcompr ) = 10, ε = 1
2θ = 5 and then

the price is high set is expressed as R fuzzy set with parameters a = C = 35 and
m1 = D = 40 (Fig. 2.2). Finally, by (2.15) the result is shown in Table2.7.

Clearly, if permutation of attributes is realized, then the answer may be different.
If a survey searches for small paged books among expensive ones, then the high
price is analysed on the whole domain and small number of pages on the reduced
subdomain. By the same procedure, the answer consists of two books: Book 3 and
Book 8 with the matching degree of 0.33 each. �

Table 2.7 Solution by the among connective

Book Pages μPages(r) Price μPrice/Pages(r) Among

Book 5 100 1 45 1 1

Book 6 120 1 38 0.6 0.6

Book 4 210 0.8 36 0.2 0.2

Book 8 240 0.2 50 1 0.2
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The commutativity and monotonicity properties are not satisfied, whereas the
associativity and existence of unit element are [44]. The associativity property allows
creating encapsulated dependencies, e.g. P1 among P2 among P3. It is crucial for
users to properly define parentheses. The condition could be for example, (small
polluted municipalities among high sized) among high unemployed as well as small
polluted municipalities among (high sized among high unemployed).

Predicates P1, P2 could be atomic conditions such as in Examples 2.7 and A.4
or compound ones, for instance select municipalities with (small altitude and high
pollution) (P1) among municipalities with (high unemployment and high popula-
tion density) (P2). The same discussion related to choice of suitable conjunction
in Sect. 2.4.1 holds here for calculating matching degrees inside the dependent and
independent compound predicates.

The interface from cases examined in Appendix A.1 has been adjusted to this
kind of tasks in Appendix A.2.

2.4.4 Constraints and Wishes

Not all requirements for data can be represented as constraints. When people express
their requirements they could have in mind wishes as well. A suitable example is
find hotel which has low price and possibly short distance to point M. The budget
is the limitation; we cannot afford something beyond our budget. The distance is a
wish. We would prefer shorter walk, if possible. These tasks can be solved either
by bipolar queries (where conditions are fully independent), or by non-commutative
operators keeping the wishes and constraints together. In the book the focus is put
on the latter, due to simpler way for creating applications for non-expert users. In
order to mention both aspects, bipolar queries are discussed as well.

We can formally write query as [48]: find tuples satisfying N and if possible P,
where N denotes negative preference and P describes positive preference. Answer
to a bipolar query is written in the following way:

AQ f bp = {r | N (r) and possibly P(r)} (2.20)

It is evident that this kind of queries is not commutative. Query short distance
and possible low price has a different semantic meaning (budget is not a problem
but distance is).

This type of queries cannot be solved by and operator, weights or averaging
aggregations. Let us consider the low price and short distance atomic predicates
from the aforementioned example. When both predicates are either fully satisfied, or
fully rejected the answer is clear. When low price is fully unsatisfied, then the answer
should be zero, regardless of the satisfaction degree of short distance. But, when low
price predicate is fully satisfied and short distance predicate fully unsatisfied, the
answer should be lower than 1, but greater than 0. Weight attached to the short
distance predicate is not able to provide solution.
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2.4.4.1 Bipolar Queries

The first attempt to solve bipolar queries (2.20) was realized for crisp ones. In this
classical approach the condition for tuple r is expressed as [33]:

N (r) and possibly P(r) = N (r) ∧ ∃s(N (s) ∧ P(s)) ⇒ P(r) (2.21)

In the first step tuples satisfying N are selected from a database. This step ensures
that tuples which do not satisfy N are not considered. If no tuple meets N , then
answer to bipolar query is empty. In the second step tuple r is preferred, if no other
tuples satisfies P or tuple r in the best way satisfies P . The approach: first to select
by using N , then to order by using P cannot be directly applied when satisfaction is
a matter of degree [14, 48].

The crisp structure of the bipolar query (2.21) is expressed in fuzzy terms in the
following way [48]:

AQ(N ,P,R)
= {(r, μ(r)) | min(N (r),max(1 − maxs∈Rmin(N (s) ∧ P(s)), P(r)))},

(2.22)
where (N , P, R) means answer to N and P against the set of tuples R. This equa-
tion is the generalization of the (2.21) from crisp to fuzzy logic. Quantifier ∃ is
modelled by the maximum operator. The implication is characterized by the Kleene-
Dienes one (1.63). Minimum t-norm, maximum s-norm and standard negation form
a triplet characteristic by the fact that minimum t-norm is dual to maximum s-norm
when the standard negation is applied. Other triplets like (Łukasiewicz t-norm and
s-norm, standard negation) or (product, probabilistic sum, standard negation) can
be also applied, if reinforcement effect is needed (different functions provide differ-
ent matching degrees). Influences of different functions for quantifier, implication,
t-norm and s-norm on the solution are discussed in [48].

Formula (2.22) expresses the global interpretation of the term and if possible, i.e.
checking whether the constraint is satisfied by at least one tuple from the dataset
considered and comparing with other tuples. On the other side, in the local interpre-
tation (Sect. 2.4.4.2) satisfying the constraint provides a benefit to the tuple, but there
is no need to compare with the other tuples.

Example 2.8 Let us have four houses satisfying N (low price) and P (short dis-
tance) with degrees depicted in Table2.8. The matching degree to query condition
obtained by the bipolar and if possible operator (2.22) is in the last column. The high
satisfaction of wish is not as important as high satisfaction of constraint. Further-
more, influences of other tuples are considered. In the first step, tuples satisfying N
are considered. This step ensures that tuples which do not satisfy N are excluded.
In the second step tuple r is preferred, if no other tuples better meet P or tuple r
satisfies P . Hence, the best house is Ho1. �

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Table 2.8 Bipolar and if possible operator

House N (r) P(r) AQ(N ,P,R)
(r) (2.22)

Ho 1 0.8 0.5 0.7

Ho 2 0.8 0.3 0.5

Ho 3 0.2 0.7 0.2

Ho 4 0.1 0.9 0.1

The second approach for managing bipolarity is based on the possibility theory
[14]. The answer is measured on bipolar scales: either on one scale, where the middle
point is neutral and ends bear extreme positive or extreme negative values; or on two
scales, one scale measures the positive and the other one negative preferences. The
third approach for bipolar queries is based on the lexicographic ordering [3]. In this
approach degrees for N and P are evaluated separately, i.e. no aggregation between
constraint and wish is performed.

2.4.4.2 Non-commutative Operators

Four non-commutative operators have been introduced in [4]:

• P1 and if possible P2—relaxation of conjunction
• P1 or else P2—intensification of disjunction
• P1 all the more as P2
• P1 all the less as P2

In this book first two operators are considered. Instead of bipolarity, this approach is
focused on relaxing conjunction and intensification disjunction, respectively. These
operators are also called asymmetric conjunction and asymmetric disjunction corre-
spondingly.

Bosc and Pivert [4] created the following six axioms in order to formally write
and if possible operator:

• is less restrictive than the and operator (P1 and P2), i.e. α(μP1 , μP2) ≥ min(μP1 ,

μP2)

• is more drastic than only constraint (P1) appears, i.e. α(μP1 , μP2) ≤ μP1 ;
• is increasing in constraints argument, i.e. a ≥ b ⇒ α(a, c) ≥ α(b, c);
• is increasing in wishes argument, i.e. b ≥ c ⇒ α(a, b) ≥ α(a, c);
• has asymmetric behaviour, i.e. α(μP1 , μP2) �= α(μP2 , μP1);
• P1 and i f possible P2 is equivalent to P1 and i f possible (P1 and P2), i.e.

α(μP1 , μP2) = α(μP1 ,min(μP1 , μP2)).
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Hence, function h of the structure:

α(μP1 , μP2) = min(μP1 , h(μP1 , μP2)) (2.23)

is sought.
From the aforementioned axioms and structure, the following operator is created

[4]:

α(μP1 , μP2) = min(μP1 , k · μ1 + (1 − k)μP2), (2.24)

where μ1 is the satisfaction degree to a constraint, μ2 is the satisfaction degree to
a wish and k ∈ [0, 1] expresses relation between constraint and wish. If k = 0, the
result is ordinal minimum t-norm; if k = 1, the result depends only on constraint P1.
If k = 0.5 is chosen, the operator is:

α(μP1 , μP2) = min(μP1 ,
μP1 + μP2

2
) (2.25)

At the first glance, when we consider P1 as N and P2 as P , then it could be the
bipolar query as expressed in Sect. 2.4.4.1. However, this and if possible operator
cannot handle bipolarity, because α does not keep both P1 and P2 separated. Anyway,
this operator can efficiently solve many practical tasks where connective merges
constraints and wishes.

Example 2.9 A client of real estate agency searches for a non expensive flat and
if possible near the lake. In order to focus on and if possible operator, steps of
constructing fuzzy sets and retrieving tuples from the database are skipped. Flats and
respective membership degrees are in Table2.9. This table illustrates satisfaction of
aforementioned axioms. In case of symmetric conjunction flats Ft6 and Ft7 are
indistinguishable. By operator (2.24) high satisfaction of wish is not as important
as high satisfaction of constraint. Furthermore, if wish is fully non-satisfied, then
the matching degree to constraint is lowered; if constraint is fully non-satisfied,
then the tuple’s matching degree is 0. Hence, averaging operators cannot be applied.
Furthermore, when minimum function is applied both attributes are constraints.

The formula (2.24) corresponds to the local interpretation of constraints and
wishes, that is, each tuple is examined independently. The first row in Table2.8 and
third row in Table2.9 have the same membership degrees to constraints and wishes,
but the calculated matching degree is higher by (2.22) than by (2.25), because in
Table2.8 this tuple dominates other tuples which is reflected in the matching degree.

Clearly, result by (2.24) for k �= 0 and k �= 1 does not correspond with the min-
imum operator and using only constraint, respectively (Table2.9). Matching degree
is approaching to the result obtained by minimum t-norm (1.47), when parameter k
is approaching to the value of 0.

If we try to model preferences and wishes as conditions with different priorities
(Sect. 2.4.2), then the solution is not the same. Although, some tuples could have the

http://dx.doi.org/10.1007/978-3-319-42518-4_1


54 2 Fuzzy Queries

Table 2.9 Non expensive flats and if possible near to the lake

Flat μLP (r) μSD(r) α(r)(2.25) Min (μLP , μSD)

Ft 1 1 0.7 0.85 0.7

Ft 2 0.8 0.8 0.8 0.8

Ft 3 0.8 0.5 0.65 0.5

Ft 4 1 0 0.5 0

Ft 5 0.8 0.1 0.45 0.1

Ft 6 0.6 0.1 0.35 0.1

Ft 7 0.1 0.6 0.1 0.1

Ft 8 0 1 0 0

Ft 9 0.9 0.4 0.65 0.4

where μLP (r) stands for membership degree to low price and μSD(r) to short distance

same matching degree calculated by (2.12) when weights of 1 and 0.5, correspond-
ingly to constraint and wish in (2.25) are used (e.g. for matching degrees of 0.8 and
0.2), care should be taken, as the meanings of the queries is different. It is illustrated
on tuples Ft9 in Table2.9 and tuple r1 in Table2.4. Even though these tuples have
the same satisfaction degrees, the matching degree is different. �

Analogously, the or else is dually defined, i.e. operator should be more drastic
than the or, because P2 is not a full alternative to P1; less restrictive than using only
P1; must have asymmetric behaviour (the permutation of P1 and P2 gives different
result); monotonic in both constraints and wishes; P1 orelse P2 is equivalent to
P1 orelse (P1 or P2). From these axioms the following operator appears [4]:

β(μP1 , μP2) = max(μP1 , k · μ1 + (1 − k)μP2), (2.26)

where variables have the same meaning as in (2.24). If k = 0, the result is ordinal
maximum s-norm (1.59). If k = 1, the result depends only on alternative P1. If
k = 0.5 is chosen, the or else operator yields:

β(μP1 , μP2) = max(μP1 ,
μP1 + μP2

2
) (2.27)

Construction of fuzzy sets for constraints and wishes could be modelled as inde-
pendent. Construction of fuzzy sets for N does not have influence on construction
of fuzzy sets for P (in Example 2.9 low price for constraint and short distance for
wish). It depends on users, which way for construction of fuzzy sets is chosen.

An interface covering constraints and wishes and construction of fuzzy set from
data is demonstrated in Appendix A.2.

Constraints P and wishes N could contain atomic or compound conditions. A
compound condition could be of any form mentioned above, e.g. (unemployment is
high and pollution is small) and if possible (population density is high and altitude

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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is small). As braces suggest, firstly, membership degrees inside constraint and wish
are calculated. Secondly, asymmetric conjunction is applied.

2.4.5 Quantified Queries

This class of database queries uses linguistic quantifiers in query conditions. These
conditions can be used as nested subqueries, especially for the relationship 1:N such
as REGION-DISTRICT or CUSTOMER-ORDER. An example of such a query is
select districts where about half of municipalities have high altitude.

The second application is in query relaxation tasks. A query usually consists of
several atomic predicates merged by the and connective (∧n

i=1Pi ). The answer is
empty, even if only one atomic predicate is not satisfied (whereas values of attribute
for several tuples almost “touch” the space delimited by the predicate), or none of
predicates is satisfied. When all atomic predicates must be satisfied, then the and
connective is option. Otherwise, quantified query is a solution.

Usersmay be interested in tuples whichmeetmajority of atomic predicates. In this
way the query is of structure select tuples where Q of {P1, P2,..., Pn} is satisfied [29]
where Pi (i = 1, ..., n) can be either crisp or fuzzy condition and Q is a linguistic
quantifiermost of, but other quantifiers such as about half and few can be also applied.

Furthermore, constraints and wishes can be applied on quantified queries. This
query is of structure QC of {Pi } and i f possible QW of {Pj }, where QC stands
for quantifier appearing in constraint part of the query and QW stands for quantifier
explaining wish part of the query. These queries can be solved by bipolar approaches
or asymmetric conjunction. The former is suggested in [26] to be applied (2.22) on
quantified preferences and wishes. The latter is suggested in [19] adjusting (2.24) to
quantified preferences and wishes.

In addition, quantified queries mitigate empty answer problem, because these
queries are less restrictive than queries created by the and connective. Empty answer
problems are discussed in Sect. 2.5.

Example 2.10 The task is to find suitable village for building house. The relevant
predicates could be: altitude above sea level around 1500 m (P1), small population
density (P2), medium area of village size (P3), low pollution (P4), high number of
sunny days (P5), short distance to the region capital (P6) and positive reviews about
village (P7). It is highly presumable that none of villages meets all predicates in a
query of the structure

∧7
i=1 Pi , even though predicates have flexible boundaries.

In order to solve this problem user may say that village should be considered, if it
meets majority of predicates. Let us further say that P1, P2, P3 and P4 are constraints
and P5, P6 and P7 are wishes.

This example is solved in Chap.3, where other parts required for coping with such
a query are introduced. �

Quantified queries expressed by linguistic quantifiers and fuzzy or crisp predicates
are basic building blocks for linguistic summaries. In this case the answer is not a set

http://dx.doi.org/10.1007/978-3-319-42518-4_3
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of tuples and their respective matching degrees, but the truth degree of the sentence.
For instance, marketing department is curious to know whether most of middle-aged
customers have short payment delay. Because linguistic summaries are separated
topic in this book, Chap. 3 is dedicated to them.

2.4.6 Querying Changes of Attributes over Time

Particular interest is focused on analysing development of attributes over time to
reveal trends, changes and to forecast future developments. Theory of time series is
a mature science field capable to cope with broad variety of tasks and trends. The
intent of this section is not to contribute to this field, but to show how fuzzy queries
can be used for retrieving tuples of preferred or critical trends. An example of such a
query is select municipalities which have high positive change (increase) in length of
roads. Similarly, the aim of query select customers which have almost no change in
amounts of orders is to identify customers not influenced by themarketing campaign.

In these cases, queries are not focused on attributes and their respective values,
but on difference between values in target year Yt and reference (initial) year Yi .
Hence, the difference is theoretically value form the interval [−∞,∞] with neutral
element 0 (no change).

The usual terminology of expressing changes in fuzzy control is used in this
section. The inspiration for construction of fuzzy sets has arisen from fuzzy controls
of technical systems. Changes in the left half of the interval are labelled as negative,
e.g. negative small, negative medium and negative high. Correspondingly, changes in
the right part of the interval are labelled as positive small, positive medium and pos-
itive high. Finally, changes around value of 0 are labelled as almost zero. Linguistic
variable change and possible definitions of its terms are plotted in Fig. 2.4.

In many fields, including municipal statistics or customer relationship manage-
ment this way of naming could be weird. Lets us consider changes in pollution. If
pollution significantly decreases, e.g. by value of −75%, it can be hardly expressed
as negative high change for inhabitants. On the other side, employment is an attribute
for which the meaning of positive and negative changes are opposite. In this book
we use terms as shown in Fig. 2.4 naming negative change for values lower than 0.

If changes are not stored in the database, then change is calculated as compound
attribute for a tuple r in the following way:

Acr = AYtr − AYir

AYir

· 100, (2.28)

http://dx.doi.org/10.1007/978-3-319-42518-4_3
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Fig. 2.4 Fuzzification of the linguistic variable change

where Acr is a change of tuple r for attribute A, AYtr is a value of attribute A in
a target year and AYir is a value of attribute A in an initial or referenced year. An
example of this kind of query is demonstrated in Appendix A.3.

Therefore, this is an additional computational effort, but compensated with an
efficient way for identifying tuples with critical or preferred changes.

Moreover, this kind of queries can be extended with all aforementioned
approaches: commutative query conditions (e.g. select municipalities which have
high positive change in length of roads and high positive change in employment),
preferences between atomic conditions, constraints and wishes, quantified queries
(e.g. select regions where most of municipalities has almost no change in gas con-
sumption).

2.5 Empty and Overabundant Answers

Queries (either crisp or fuzzy) contain a logical condition which delimits tuples we
are looking for. As a result of the query two extreme situations may occur: no data
or very large amount of data satisfy the query condition. The user is confronted with
informativeness of the result. In some cases, these answers are informative enough,
e.g. empty answer of the condition customers in payment delay means that all of
them meet the payment deadline and therefore no reminder should be generated.

In other cases, the main objective is to solve the problem; that is, to obtain a
non-empty result to inform users, why an empty answer occurred and how close are
tuples to meet the query condition. The opposite holds for an overabundant answer.
A survey [7] has provided a detailed insight into these two problems.
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2.5.1 Empty Answer Problem

The empty answer problem simply means that no data match the query condition.
The fuzzy query Q f (2.6) results in an empty set if AQ f = ∅. It could be useful to
provide some alternative datawhich almostmatch query condition. This problemwas
initially recognized in [1], where linguistic modifiers were suggested as a solution.
The goal of these modifiers is to slightly modify fuzzy sets in order to obtain a
less restrictive variant of query condition which may return some data and remains
semantically close to the initial query.

This problem appears in crisp queries more frequently due to sharp conditions
(Examples 2.2 and 2.11). Making conditions flexible mitigates, but not fully elimi-
nates this problem.

Generally, the query Q (either crisp or fuzzy) is transformed into a less restrictive
variant QT by the transformation T of the condition. The querying process is then
repeated until the answer is not empty, or themodified query condition is semantically
far from the original one.

In bipolar queries and asymmetric conjunction (and if possible) answer is empty,
if no tuple meets the constraint part. The satisfaction of wish is not so relevant for
the occurrence of empty answer. Hence, transformation should be primarily focused
on the constraint part.

Example 2.11 A simple example is selecting high players for a basketball team. The
condition iswhere height>200cm. If query ends as empty, there are twopossibilities:
heights of all players are far from 200cm or some of them almost meet the condition.
Hence, query is transformed into a less restrictive one by transformation T = 200−5,
i.e. relaxed query is:where height> 195cm. If relaxed query returns no players, next
transformation creates condition where height > 190cm, and so on. The process
of successive transformations should stop when some players are selected or the
transformed query is far from the initial one, e.g. condition where height > 175cm
could be hardly considered as a selection condition for high basketball players.

The main drawback is in the satisfaction degree which is always of the value
of 1 for all selected records. It is why there is no difference in membership degrees
of records selected in any of transformed queries. The same problem was discussed
in Sect. 2.1 in Fig. 2.1. �

In [8] the following approaches to defeat the empty answer problem are recog-
nized: the linguistic modifier-based approach, the fuzzy relative closeness-based
approach and the absolute proximity-based approach. In these approaches the query
weakening process should meet the following constraints for each predicate involved
in the weakening process [7]:

C1 : ∀x ∈ D, μT (P)(x) ≥ μP(x), (2.29)

where x is the value of the attribute A in the domain D. The transformation T does
not decrease the membership degree for any tuple in domain D of attribute A for
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predicate P . Tuples in transformed query should have higher membership degree
because, this query is less restrictive.

C2 : support (P) = {x | μP(x) > 0} ⊂ support (T (P)) = {
x | μT (P)(x) > 0

}
(2.30)

The transformation extends the support (1.9) of fuzzy set included in the condition.
In the case of trapezoidal fuzzy set in Fig. 1.7, the support is the [a, b] interval
constructed for the predicate P . It means that the condition is relaxed (parameter a
is transformed to lower value, whereas parameter b is transformed to higher value)
to retrieve more tuples.

C3 : core (P) = {x | μP(x) = 1} = core (T (P)) = {
x | μT (P)(x) = 1

}
(2.31)

The transformation preserves the core (1.10) of fuzzy set. The transformed query
cannot retrieve more tuples, which fully meet the relaxed condition than the initial
query condition. This is a significant difference between relaxing crisp and fuzzy
query. This requirement emphasizes the benefit for relaxing fuzzy queries in com-
parison to the relaxation of the crisp ones (Example 2.11).

An example of the original predicate (P) and the transformed one (T (P)) accord-
ing to the requirements C1–C3 (2.29–2.31) is plotted in Fig. 2.5 for the condition
expressed by the triangular fuzzy set and in Fig. 2.6 for the condition expressed by
the L fuzzy set. The transformation for the trapezoidal fuzzy set is shown in [7].
If a singleton fuzzy set (Fig. 1.10) is used, then it could be transformed into less
restrictive triangular fuzzy set. Requirement C3 causes that the membership degree
is equal to 1 only for tuples having value of attribute equal to m (1.24). In this way,
a sharp number is transformed into less restrictive triangular fuzzy number.

In order to ensure that the retrieved records are not semantically far from the
initial query condition, the stopping criterion should be incorporated. In cases of the
first and the third approaches aforementioned no intrinsic semantic limit is provided.
Hence, the user has to specify a set of non-adequate data. In case of searching high
basketball players the set for stopping criterion might be explained by the sharp limit
height not smaller than 185cm, i.e. Cc = {x ∈ D|x < 185}. Set Cc is defined by its

Fig. 2.5 Weakening of the
condition defined by a
triangular fuzzy set

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Fig. 2.6 Weakening of the
condition defined by a L
fuzzy set

Fig. 2.7 Requirement C4 is
activated for the T (T (r))

characteristic function ϕc(x) on the domain D. Applied on the fuzzy condition, the
additional requirement C4 is as follows (Fig. 2.7):

C4 : min(μT (P)(x), 1 − ϕc(x)) = 0 (2.32)

Concerning the requirements C1–C3 (2.29–2.31), the stopping criterion says that
the weakening process stops, when the answer to modified Q f is not empty. The
constraint C4 (2.32) ensures that only tuples which are not semantically far from the
initial query are selected. When during the weakening process the transformation
T (T (P)...) enters into the core of Cc, it causes that C4 gets value of 0 (because
1 − ϕc(x) = 0) and therefore weakening process stops. In this way the relaxation is
controlled.

Instead of the crisp set Cc we can construct fuzzy set Fc, a set of more or less
non-adequate data.

Aforementioned approaches dealwith the localweakening, that is, the basicweak-
ening transformation applies to each atomic condition.

The further approach is focused on replacing the query which caused an empty
answer by a semantically similar one which has been already processed and provided
non-empty answer [2].
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2.5.2 Overabundant Answer Problem

The opposite situation arises when a large amount of tuples satisfies the query con-
dition. The query Q f results in overabundant answer if the cardinality of AQ f (2.6)
is too large.

To recognize the empty answer problem is a trivial task. In the case of an over-
abundant answer problem, it is the opposite. It is not easy to answer the question,
where lies the boundary between non-overabundant and overabundant answers. It
depends on the user, how many tuples he wants to obtain, and on the number of
tuples in the database.

From the theoretical point of view the problems concerning empty and overabun-
dant or plethoric answers are dual. The ways how to solve overabundant answer
problems are examined in [7]. Generally, two situations might arise: too many tuples
fully meet a query condition and/or too many tuples partially meet a query condition.

The first situation requires intensification of the query condition; that is, reduction
of the core of fuzzy sets in order to reduce the number of tuples that fully meet
the query condition. This process is dual to the weakening process expressed by
requirements (2.29)–(2.32). At the first glance it is evident that this transformation
is not applicable on triangular and singleton fuzzy sets.

Example 2.12 Case 1: Large number of customers fully meet the condition
turnover = 950. We cannot reduce the core, because it is expressed as singleton.
The possible solution is adding an additional suitable atomic condition semantically
close to the initial query.

Case 2: Large number of customers fully meet the condition turnover about 950,
where the term is expressed as a trapezoidal fuzzy set. Hence, the answer can be
reduced by the intensification of the flat segment in the initial query condition. �

At the first glance the second situation is easy to solve, because the theory of
fuzzy sets offers several options. The first one is expressing the and operator with
the Łukasiewicz t-norm or nilpotent minimum t-norm, because tuples which do not
significantly match the query condition are excluded. The second option is the α-cut
(1.15). For example, the threshold clause [6, 47] could solve this problem. However,
a situation when very large number of answers has the samemaximal score (different
fromvalue of 1)might occur [20]. In this case the intensification of condition is not the
solution. These records will have again the same, although lower membership degree
to the answer. α-cuts and the more restrictive t-norms are not applicable as well. The
solution could consist in adding additional elementary condition semantically close
to the initial one. An approach for adding a semantically similar attribute to the query
condition in order to obtain more restrictive solution is suggested in [10]. Additional
possible option are fuzzy functional dependencies [41, 46] which are useful in the
process of mining related attributes. A related attribute could be connected by the
and operator to intensify the initial query condition.

Aforementioned approaches cope with these problems mainly, when they appear:
after the query realization.Another possibility is revealing information about possible

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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risk of empty and overabundant answers. The first approach is the pre-computation
of the summary of database in order to retrieve information about distribution of data
in domains or parts of domains limited by the created query condition, which is about
to be realized. In this way a single scan of databases provides relevant information
about fuzzy cardinality [40]. The second approach is construction of fuzzy sets for
linguistic conditions directly from data discussed in Sect. 2.2.

Anyway, from the practical point of view, the empty answer problem is more
relevant for users than the overabundant one. The empty sheet of data provides
limited information about data in databases, whereas the sheet containing a large
number of tuples could be filtered by several other methods in spreadsheet software
tools, for example.

2.6 Some Issues Related to Practical Realization

From the user’s point of view, fuzzy queries are seen as akin to human-oriented
languages, as they offer for the user to linguistically formulate query conditions, i.e.
manage vagueness in queries for searching relevant tuples.

The purpose of an interface is to offer for non-expert users the ability to ask for data
without necessity to know the complexity of relational database and fuzzy sets and
fuzzy logic theory. There are many articles dealing with the user-friendly interfaces
at disposal, e.g. [21, 27, 37, 39, 43]. The appropriate user’s interface is immanent for
the acceptance of flexible queries by variety of users. It means that topics discussed in
this chapter need to be offered for users and managed in an efficient and appropriate
way. In addition, presenting retrieved records and their matching degrees in useful
and understandable ways is also a very important task. In Appendix A interfaces
for managing several kinds of fuzzy queries for the municipal statistics database are
discussed including presentation of solutions in tables and speculation on merging
of matching degrees with polynomial areas in thematic maps.

The architecture used in this book is shown in Fig. 2.8. The mathematical back-
ground is based on the GLC (2.9), (2.10). The kernel of the application is used in
next chapters.

The operations of two-valued logic meet all axioms of Boolean algebra, namely
excluded middle, contradiction and idempotency, whereas operations of fuzzy logic
do not meet all of them [35]. At the first glance violation of the excluded mid-
dle and contradiction axioms could be considered as problematic, because user
could expect that the and connective between proposition and its negation should be
always 0. However, uncertainty in belonging to a proposition is reflected in belong-
ing to its negation and therefore higher value than 0 is acceptable. Although this fact
is disputable from the theoretical point of view (some solutions exist how to solve
it, e.g. interpolative realization of Boolean algebra [35, 36]), this is not a significant
problem in querying.

The fact which is more problematic, is the lack of satisfying the idempotency
axiom (1.53) for all t-norms, except the minimum t-norm (1.47). Let us look at

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1


2.6 Some Issues Related to Practical Realization 63

Fig. 2.8 A possible architecture of the flexible querying

two queries: A is High and A is High and A is High, where μ(r) < 1. Some t-norms
provide different answers to the first and the second query, namely the product (1.48)
and Łukasiewicz (1.49) t-norms. Moreover, in the case when μ(r) < 0.5 and using
Łukasiewicz t-norm, the result is 0. This kind of query is not a realistic one, but if
the user has the freedom to create fuzzy queries over a list of database attributes,
these situations might lead (for example in the testing of a software application)
to speculation of general applicability of fuzzy queries in the practice. This kind
of query could appear either as a mistake during the construction of the condition
or by purpose during testing application. There is a simple solution: check, before
query realization, whether the user doubled the same atomic condition (semantics
of query). If it is true, then the doubled atomic condition should be excluded from
query. It especially holds, when other than minimum or nilpotent minimum t-norms
are used. Developers of classical queries do not need to focus their attention on this
problem, because classical conjunction is idempotent.

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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A powerful scenario for using flexible queries consists of the topics mentioned in
Sects. 2.2, 2.4 and 2.5. In the first step, parameters of linguistic terms, preferences,
bipolarities between elementary conditions, threshold and appropriate aggregation
functions are created in cooperation between user and application. In this way occur-
rence of empty and overabundant answers is significantly mitigated. Even though,
empty and overabundant answersmight appear. In this case, software and user should
cooperate to solve these problems.
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Chapter 3
Linguistic Summaries

Abstract In many tasks, users are not interested in data stored in relational data-
bases, but in summarized relational knowledge and “abstracts” from the data which
are expressed in a useful and understandable way by linguistic terms. Linguistic
Summaries (LSs) are able to express the knowledge in the data that is concise and
easily understandable by users. LSs are quantified sentences of natural language such
as most of municipalities of high altitude and low pollution have small number of
respiratory diseases. The truth value of summaries gets values from the unit interval
as it is common in the fuzzy logic world. We start with simple LSs and continue
with more complex ones. In this direction, selecting appropriate t-norms for aggre-
gation and quality measures are discussed. Furthermore, a system for calculating
summaries will not work properly, if it uses ill-defined membership functions. Focus
is also on constructing these functions for summarizers, restrictions and quantifiers.
The quality measures are also analysed, because the high truth value of sentence is
not always a sufficient measure. Finally, possible applications are considered.

3.1 Benefits and Protoforms of Linguistic Summarization

Retrieving tuples from databases is the topic of Chap. 2. In many other tasks users
are not interested in data, but in summaries which briefly explain data and relations
among attributes.

Summarization can be realized by statistical methods. These methods summarize
the essential information from a data set into few numbers [9]. Methods such as
means, medians and deviations provide valuable information, e.g. in 2011 munici-
palities produced waste of the average amount of 217.9184kg per inhabitant with
standard deviation of 189.2839. However, interpreting data in this way is practicable
for rather small specialized groups of people. When the quality of collected data is
not high (e.g. errors in data collection or rough estimation), the calculations should
fight with these issues. Hence, the following quotation holds:

... method of summarization would be especially practicable if it could provide us with
summaries that are not as terse as the mean [48].
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Expressing data summarization by two-valued logic is limited. The truth value
of sentence (predicate) created by the universal quantifier (∀) is 1, only if all tuples
meet the requirement (condition), e.g. all territorial units have length of local roads
< 200km. If the truth value is 0, then we do not know whether 1 or 99% of tuples
do not meet the requirement. The same comment about data quality in statistical
methods holds here. If someone, who is responsible for the data collection, value
of 198.92km rounds to 200km and moreover, no other territorial unit has length of
road greater or equal 200km, then the truth value of this sentence is 0.

Keeping aforementioned facts in mind, data summarization by fuzzy logic could
be a suitable option.An example of such a summary ismost ofmiddle-aged customers
have short payment delay. The sentences of such a structure were introduced in
[47]. Because summarized information from the data is sought, these sentences are
called Linguistic Summaries (LSs). This field is under deep interest of scientists and
practitioners due to large variety of possible theoretical improvements and practical
applications, e.g. [6, 7, 17, 21, 23, 28, 37, 39–41, 43, 50].

Graphical interpretation is also a valuable way of data summarization but cannot
be always effectively applied [31]. Linguistics is an interesting alternative, when data
is hard to show graphically [49]. Furthermore, linguistically summarized sentences
can be read out by a text-to-speech synthesis system. This way is especially suitable,
when the visual attention should not be disturbed [3].

LSs are quantified sentences of natural language that distil the most relevant
information from large number of tuples and present it in humanly consistent forms.
Nowadays, LSs become more important due to the exponentially growing amounts
of collected data and due to the issues related to efficiently grasping these data. Indi-
vidual’s natural capability to grasp all necessarily information required for managing
and control variety of tasks is limited what means that the need for computational
support is obvious [37]. Kacprzyk and Zadrożny [23] emphasized that

Data summarization is one of basic capabilities needed by any ‘intelligent’ system.

Data summarization by fuzzy logic simulates the human capability to make con-
clusions without precise measurements and calculations. Journalist can relatively
easily find, which colour dominates on tall individuals at a party to explain the
fashion trend for tall persons, for example. Different hues of colours as well as the
meaning of vague term tall persons are not limitations for solving this task. However,
if we wish to know, which of the following two sentences: most of young commuters
commute short distances; most of middle-aged commuters commute short distances
better explains the commuting behaviour, then we have to adapt these questions to
database query languages. Furthermore, summarization should treat numeric as well
as nonnumeric data, which is also possible with LSs as is shown later.

Linguistically quantified sentences are written in general form

Qx(P(x)) (3.1)
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where Qx is a linguistic quantifier, P(x) is a predicate depicting evaluated attributes.
The truth value of a summary is also called validity (v) and gets values from the unit
interval by agreement.

In order to use advantages of SQLand linguistic summaries, Rasmussen andYager
[41] have created SummarySQL language. Further realizations are the extension of
FQUERY [24] and SAINTETIQ [39, 45].

Prototype forms (protoforms) of linguistic summaries can be divided into three
main groups [31]: classic protoforms, protoforms of time series and temporal proto-
forms.

Classic protoforms are useful forminingknowledge amongattributes in traditional
relational databases. These summaries can be further divided into basic structures
of LS, which express information about particular attributes on the whole data set,
i.e. Q entities are S, and into structures with restriction, which express relational
knowledge among attributes on the part of a database delimited by the flexible (or
sharp) restriction, i.e. Q R entities are S. The former is illustrated by the sentence
such as most of houses have high gas consumption. An illustrative example of the
latter is most of old houses have high gas consumption.

Protoforms of time series linguistically express behaviour of attributes over time.
These summaries are divided into summaries describing one time series [26], such
as most stable trends are of low variability, and into summaries considering several
time series together [1]. The latter protoform is of the structure Q R are S QT time,
such as about half customers have small number of orders most of the time. They
are suitable for data warehouses, because in these data structures one of dimensions
is time. Each attribute’s value gets distinct time stamp, which is a valuable help for
mining summaries.

Temporal protoforms do not use fuzzy quantifiers, but mode of behaviour creating
summaries such as regularly entities are S. This kind of summaries is illustrated by
a sentence such as regularly customers buy small packages. The term regularly
describes the extent, which a summary holds to, considering a special temporal
adjustment [36].

This section is focused on classic protoforms. In Chap.5 these prototorms are
extended for summarizing from fuzzy data stored in fuzzy relational databases.

3.2 The Basic Structure of LS

A basic LS is of the structure Q entities in database are (have) S, where Q is the
relative quantifier (most of, about half, few, etc.) and S is a summarizer expressed by
linguistic terms. An example of this summary ismost of municipalities have medium
water consumption per inhabitant.

The validity is computed in the following way [23]:

v(Qx(P(x))) = μQ(
1

n

n∑
i=1

μS(xi )) (3.2)

http://dx.doi.org/10.1007/978-3-319-42518-4_5
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where n is the scalar cardinality of a database (number of tuples), 1
n

∑n
i=1 μS(xi ) is

the proportion of objects in a data set that satisfies P(x) andμQ(y) is themembership
function of a chosen relative quantifier shown in Fig. 1.20,where y = 1

n

∑n
i=1 μS(xi ).

Quantifiers describe extent to which summarizer holds for the considered data set.
The validity can be expressed by scalar cardinality as [37]

v(Qx(P(x))) = μQ(
card(S)

n
) (3.3)

where
∑n

i=1 μS(xi ) represents scalar cardinality of summarizer S: card(S).
In case of the basic LS, the predicate P(x) consists of the summarizer S only.

Therefore we can use both notations μS(xi ) and μP(xi ). Summarizer could concern
more than one atomic condition joined by the and connective [13]. If summarizer
consists of several atomic predicates, μS(xi ) is calculated in the following way:

μS(xi ) = t (μSj (xi )) (3.4)

where Sj is the j-th atomic predicate j = 1, . . . ,m of summarizer S and t is a
t-norm.

Atomic predicates in summaries may be crisp, as well as fuzzy ones such as most
of houses are old and have size > 500 m2.

Naturally, the question of suitable t-norm appears again. We believe that for the
summarization only the minimum t-norm is the suitable option, because the value
of aggregation is not lower than the lowest satisfaction degree of atomic conditions
(1.47). In this way, the proportion and therefore the validity is not artificially lowered.
For example, when a tuple meets four atomic conditions with the value of 0.5, the
tuple participates in the proportion with the expected value of 0.5. In case of product
t-norm (1.48), this tuple participates with the value of 0.0625. Nilpotent minimum
t-norm (1.54), which also shows its advantages in fuzzy queries, is not suitable for
summaries. It is easy to prove. Let tuple meet the first atomic condition with 0.5. If
this tuple meets the second atomic condition with 0.49, then it does not participate
in proportion, whereas if tuple meets the second atomic condition with 0.51, then
it participates in proportion with 0.5. The further discussion related to selection of
suitable t-norms is in Sect. 3.6, where other aspects regarding quality of summaries
are examined.

3.3 Relative Quantifiers in Summaries

The validity of LSs (3.2) depends on the membership function of the chosen relative
quantifier, among others.

For a regular non-decreasing quantifier (e.g. most of ) its membership function
should meet the following properties:

y1 ≤ y2 ⇒ μQ(y1) ≤ μQ(y2); μQ(0) = 0; μQ(1) = 1 (3.5)

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Existing approaches for data summarization via linguistic quantifiers have mani-
fested various quality indicators for quantifier selection [14]. For practical applica-
tions and keeping in mind (3.5) the quantifier most of might be given as
[23, 50]

μQ(y) =
⎧⎨
⎩
1, for y ≥ 0.8
2y − 0.6, for 0.3 < y < 0.8
0, for y ≤ 0.3

(3.6)

This quantifier can be parametrized in the following way [16]:

μQ(y) =
⎧⎨
⎩
1, for y ≥ n
y−m
n−m , for m < y < n
0, for y ≤ m

(3.7)

Assigning value 0.5 to m could be suitable option, because linguistic term most
of should cover proportions, which are significantly high. The interactive option is
offering possibility for users to adjust parameters in the same ways, as is shown in
Sect. 2.2. Anyway, if we evaluate all short sentences over a database by one fixed
quantifier, then validities of these sentences will be correctly ranked.

The restrictive version of quantifier most of can be expressed as the quantifier
almost all, when n = 1 and m gets, for instance, value 0.85. In the most restrictive
case, i.e. m = n = 1, the crisp quantifier all is reached. These three quantifiers are
shown in Fig. 3.1. Function marked as a low density dotted line is the least strict one.
Function marked as a high-density dotted line represents more restrictive quantifier.
Function marked as a solid line stands for the extremely strict quantifier—the crisp
quantifier ∀. If only one record (from a very large number of records) does not meet
the predicate, the truth value of this quantifier is 0. The same truth value is calculated
when only few records meet the predicate. In case of fuzzy quantifiers this distinction
is detectable.

Analogously, nonincreasing quantifier (e.g. few) could be created as a “mirror
picture” of (3.5) and (3.6) [17].

Fig. 3.1 Adjusting the
meaning of term the majority
of

http://dx.doi.org/10.1007/978-3-319-42518-4_2
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Fig. 3.2 Quantifier about
half

The quantifier about half (Fig. 3.2) should be symmetric fuzzy number around
the value of 0.5, i.e. |q − p| = |s − r | and |0.5 − q| = |r − 0.5|, when trapezoidal
number is used. Triangular fuzzy number is also applicable, but it is more restrictive
than the trapezoidal one, i.e. membership degree is equal to 1 only for the proportion
having value of 0.5 (q = r = 0.5). Generally, the validation rule for this quantifier
consists of additional relation, e.g. 0.25 ≤ p ≤ q ≤ 0.5 ≤ r ≤ s ≤ 0.75, where
values of 0.25 and 0.75 could be adjusted for particular tasks.

Example 3.1 A sport journalist wants to know, whether most of ski jumpers are tall
and slim. The quantifiermost of is expressed with parametersm = 0.6 and n = 0.85
(Fig. 3.1). Tall jumpers are expressed by the R fuzzy sets (Fig. 1.9) with parameters
a = 180 cm and m = 190 cm. Slim jumpers are expressed by the L fuzzy set
(Fig. 1.8) with parameters m = 65 kg and b = 75 kg. Jumpers, their height, weight
and matching degree to tall and slim by minimum (1.47) and product (1.48) t-norm
are in Table3.1.

For the minimum t-norm the proportion of tuples satisfying condition is
P(x) = 0.695, whereas for product t-norm it is 0.588. It implies that validity of
summary is v(Qx(P(x))) = 0.557 for aggregating atomic conditions by minimum
t-norm and 0.251 for aggregating by product t-norm. If minimum t-norm is used, the
journalist would say that the statement is more or less significant (true). Otherwise,
if product t-norm is used, journalist would say that the statement is insignificant.
Therefore, care should be taken when working with summarizers consisted of more
than one atomic condition. Furthermore, the values of proportion and validity suggest
that quantifier about half may be better option and should be considered. �

Table3.1 contains few tuples. The main intent was to illustrate the power of
linguistically summarizing data. Obviously, the advantage of LSs is in summarizing
large data sets.

Example in Appendix B illustrates possible interface for mining basic LS from
the municipal database.

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Table 3.1 Ski jumpers and their attributes

Jumper Height (cm) Weight (kg) μtall μslim Minimum
t-norm

Product
t-norm

J1 189 66 0.9 0.9 0.9 0.81

J2 172 72.5 0 0.25 0 0

J3 194 62 1 1 1 1

J4 187.5 67.5 0.75 0.75 0.75 0.5625

J5 182.5 72.5 0.25 0.25 0.25 0.0625

J6 188 67 0.8 0.8 0.8 0.64

J7 185 70 0.5 0.5 0.5 0.25

J8 187.5 67.5 0.75 0.75 0.75 0.5625

J9 191 64 1 1 1 1

J10 193 61 1 1 1 1

3.4 LS with Restriction

Amore complex type of LS is summary with restriction having the formQ R entities
in database are (have) S, where R delimits part of database of interest. An example
of such a summary is: most of low polluted municipalities have low number of
respiratory diseases. The procedure for calculating truth value has the following
form [41]:

v(Qx(P(x))) = μQ(

∑n
i=1 t (μS(xi ), μR(xi ))∑n

i=1 μR(xi )
) (3.8)

where

∑n
i=1 t (μS(xi ), μR(xi ))∑n

i=1 μR(xi )
is the proportion of the records in database that meet

the S and belong to the R, t is a t-norm, μQ(y) is the membership function of the
chosen quantifier.

The validity can be also expressed by scalar cardinality as [37]

v(Qx(P(x))) = μQ(
card(S ∩ R)

card(R)
) (3.9)

where
∑n

i=1 t (μS(xi ), μR(xi )) is represented by the scalar cardinality of intersection
between S and R.

Restriction R could be atomic or composed of several atomic conditions. The
role of restriction is to focus on particular flexible part of a database. If R contains
several atomic conditions, then the same discussion holds as for (3.4). This kind of
LS is schematically depicted in Fig. 3.3. The grey areas around solid line between
sets small, medium and high emphasizes the uncertainty areas, i.e. parts of domains,
where unambiguous belonging to a particular set cannot be arranged. For example,
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Fig. 3.3 LS with a restriction. The grey areas emphasize the uncertainty areas (overlapped fuzzy
sets)

if the delimiting line between small and medium pollution is 50mg of the measured
pollutant, then 49.7 and 50.2 belong to both sets with slightly different membership
degrees.

Example 3.2 The goal is to find out, whether most of expensive books have small
number of pages. Books and their parameters are in Table3.2.

Concerning the fuzzy set high price, the support starts on 80e and the core begins
in 90e. Regarding the small number of pages, the core ends in 200 pages and support
ends in 250 pages. The proportion of tuples satisfying summary (3.8) is

∑n
i=1 t (μS(xi ), μR(xi ))∑n

i=1 μR(xi )
= 0.5 + 0.1 + 0.75 + 0.25 + 1

0.8 + 0.1 + 0.75 + 0.25 + 1
= 0.895.

The next step is inserting this value into quantifier most of expressed by parameters
m = 0.5 and n = 0.85. Obviously, the validity is 1, which leads to full acceptance
of the tested statement. But, one should be careful in making conclusions, because
other aspects may influence the solution. �

Usually, at the beginning user does not exactly know, how to construct fuzzy sets
in LSs and what can be expected from a database [32]. Care should be especially
taken, when working with LSs containing restriction part. As was mentioned ear-
lier (Sect. 2.2), the collected data are often situated only in a part of the attributes’
domains.When two summaries have validity equal to 0, two possible situationsmight
arise [18] (i) parts of domains included in LS have insufficient tuples for calculation
of relations between data (or are empty); (ii) parts of domains contain tuples, but
there is no significant relation between them. So, it is unclear, which interpretation
is the correct one. Moreover, one should be very careful, when no tuple meets the

http://dx.doi.org/10.1007/978-3-319-42518-4_2
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Table 3.2 Books, their prices and number of pages

Book Price (e) Number of pages

B1 88 225

B2 81 210

B3 87.5 162

B4 52 210

B5 63 295

B6 82.5 220

B7 76 230

B8 92 188

B9 72 290

R part, because it leads to dividing by zero in (3.8). This type of summary is also
analysed in Sect. 3.6 focused on the quality of summaries.

3.5 Mining Linguistic Summaries of Interest

Generally, there are two main ways for extracting summaries from the data. In the
first way the user creates particular linguistic summary(ies) or sentence(s) of interest
for evaluating its (their) validity (Examples 3.1 and 3.2). The second way is based
on automatic generation of summaries from the data.

According to [34]

Summarization is the process of distilling the most important information from a source (or
sources) to produce an abridged version for a particular user (or users) and task (or tasks).

This definition means that the goal of summarization is to briefly describe char-
acteristics appearing in the data. In case of LSs, it can be expressed as an operations
research task [33]

find Q, S, R
subject to
Q ∈ Q, R ∈ R, S ∈ S, v(Q, S, R) ≥ β

(3.10)

where Q is set of quantifiers of interest, R and S are sets of relevant linguistic expres-
sions for restriction and summarizer respectively, and β is threshold value from the
(0, 1] interval. Each feasible solution produces a linguistic summary (Q∗R∗ are S∗).

If validities of all LSs are equal to 0 or are under the threshold value β, we do not
cope with the empty answer problem discussed in Sect. 2.5. It just means that data
are randomly distributed inside their respective domains without any relationship or
grouping into the particular segments of respective domains.

http://dx.doi.org/10.1007/978-3-319-42518-4_2
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The following definition also explains LSs
Linguistic summarization is a process of constructing abstract from relatively

large data sets using predefined linguistic term sets and fuzzy logic.

Example 3.3 An illustrative database contains the following 7 customers with their
ages {C1:26, C2:28, C3:32, C4:40, C5:54, C6:56, C7:57}. The goal is to reveal
all basic LSs (3.2) by (3.10). In this case the R part is not included. The terms
set of summarizers is S = {young, middle-aged, old}. The terms set expressing
quantifiers Q consists of linguistic terms few, about half andmost of. The terms sets
of quantifiers and summarizers are plotted in Fig. 3.4. Parameters for all terms of
the terms set Q are constructed by the uniform domain covering method (2.7), (2.8)
where L = 0, H = 1 and θ = 2ε. The terms set of the variable age is created by user.
For illustrative purpose, all possible LSs and their validities are shown in Table3.3.
When the threshold value β = 0.75 (3.10) is applied, then only LSs marked as bold
are shown to users. In this way LSs are able to reveal “abstract” from large data sets
to support decisions.

If we further reveal that only most of middle aged customers have high turnover
and low payment delay, then this is a relevant information for the decision: marketing
department should attract more middle-aged customers. Furthermore, instead of a
long list of customers and their attributes, decision makers see quantified sentences
explaining the data.

In the customer relationship management (CRM) one of goals is to understand
customer behaviour and therefore create marketing actions, which may improve
retail. By help of LSs, marketing department has valuable information for adjusting
advertisement strategies to improve profit, for example. �

Fig. 3.4 Terms sets of
quantifier and summarizer

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_2
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Table 3.3 Validities of LSs
created from the predefined
linguistic terms sets

Linguistic summary v(Qx(Px))

Few customers are young 0.1430

Few customers are middle aged 0.8575

Few customers are old 0.0000

About half customers are young 0.8570

About half customers are middle aged 0.1425

About half customers are old 1.0000

Most of customers are young 0.0000

Most of customers are middle aged 0.0000

Most of customers are old 0.0000

The companies’ data in Example 3.3 can contain further business data such as
sales by particular parts of days, types of products, etc. Having all these data, we
can reveal further relevant summaries. The summaries usually involve data from
the companies’ own databases. However, no company operates without interaction
with the surrounding world. Therefore, some external data (e.g. climatic conditions,
unemployment) should be taken into account, when expressing number of purchased
items, for example. Hence, external data sources such as official statistics can be
valuable for companies.

Since the fully automatic generation of all relevant LSs is not an easy task, there is
a room for further research and development. Presumably, first results in this direction
have been presented in [44] for generating LSs related to energy consumption data.

The following question naturally arises: how to efficiently calculate LSs from
the large data sets? When the number of tuples and their attributes is relatively
large, the computation might take much time and might be costly. For instance,
when we have 2891 tuples described by 804 attributes, it is necessary to compute
2891 · 804 membership degrees according to [37]. We can avoid such an amount of
computation by selecting only tuples, which at least partially belong to summarizer
and restriction (Sect. 2.3 and Example B.1). When sets Q, R and S contain three
fuzzy sets each, then 27 possible combinations (33) exist. If we examine summaries
only for two attributes, 27 summaries should be evaluated. When 804 attributes are
considered, where R and S consists of atomic predicates, all possible variations
without repetitions is Vn,m = n!

(n−m)! = 800!
798! = 639 200. The total number of LSs is

17 258 400.
Practice and experiments show that usually not all of these summaries have high

validity. Hence, the computation of summaries with low validity is pointless. Admit-
tedly, validities of already processed summaries can be used for excluding calculation
of validities still in queue. For instance, if validity of LS: few customers are middle
aged is very high (Table3.3), then we can hardly expect that validity of most of
customers are middle aged is significantly higher than 0. In addition, the value of
proportion helps in process of excluding irrelevant summaries. For instance, if the

http://dx.doi.org/10.1007/978-3-319-42518-4_2
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proportion of tuples in (3.8) is equal to 0.51, then it indicates that significant validity
can be expected for the quantifier about half.

In this direction two aspects might help. The first is based on user’s needs and atti-
tude. The user decides, which attributes are relevant for a particular task and which
combination of Q, R and S might result in significant validity. This decision is based
on common sense and perceptions, e.g. validity of summary about half of historically
old municipalities have high water consumption is irrelevant for analysing unem-
ployment. The second aspect is based on pre-computations either by cardinalities
[42] or constructing summaries for attributes which display a preselected query of
nonzero level [13].

Example 3.4 Researchers are interested to find out, whether significant summariza-
tions between the attributes population density and production of waste exist. This
example is taken from [18]. In the first step, both attributes are fuzzified into three
fuzzy sets (small, medium, high) by the uniform domain covering method (2.7) and
(2.8). Applying the quantifier majority of defined with parameters m = 0.3 and
n = 0.8 (a less restrictive variant of the quantifier most of ) the validities for three
LSa are calculated and shown in Table3.4.

Maximal number of possible LSs in this example is nine. However, other six
possible combinations of restrictions and summarizers may have very low validity
and therefore were not evaluated. �

This experiment can be relevant for policy or business decision-making in the area
of waste management. If an experiment is focused on relation between the attributes
the year of the first written notice and size of agricultural land, then it might be
interesting for, e.g. historians. Therefore, we can mine relational knowledge among
relevant attributes for variety of research fields, decision and policy-making.

Table 3.4 Validities of LSs
created from the population
density and waste production
in municipalities

Linguistic summary v(Qx(Px))

Majority of municipalities having small

population density have small production

of waste 1

Majority of municipalities having high

population density have high production

of waste 0.662

Majority of municipalities having medium

population density have medium
production of waste

0.132

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_2
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3.6 Quality Measures of LSs

We could say that

linguistic summary is amore or less accurate textual description (summary, abstract)
of a database satisfying certain user’s requirements.

This simple definition hides many challenges some of which were discussed
above. It is worth noting that summaries bear more challenges than fuzzy queries.
Roughly speaking, data either meet (fully or partially), or do not meet the query
criterion and therefore are selected, or not. So, when the data are retrieved, the task is
more or less finished. On the contrary, obtained validities of summaries (it especially
holds for LSs with restriction part) is not always the end of a task. The next step is
measuring the quality of calculated summaries. LSs might be trapped into outliers,
there might be better description of data even with lower value of validity, subjectiv-
ity in constructing fuzzy sets might affect validity and the like. Hence, some quality
measures should be considered in order to mitigate vagueness of validity.

In addition, mining summaries is not always the main goal of a task. For instance,
summaries with restriction part can be transformed into fuzzy IF-THEN rules. Thus,
the quality of summaries influences the quality of created rule base.

The main objectives, when studying quality of summaries are (i) to see whether
a particular LS is of sufficient quality to summarize considered database and
(ii) to compare two or more LSs created on the same database. For both objec-
tives, the common task is to define a criterion for measuring quality. Regarding the
latter objective, a binary ordered relation in the space of possible LSs is required.
This relation should at least meet the properties of reflexivity and transitivity [10].
The relation is more strict, if it meets the property of anti-symmetricity. A criterion
usually consists of several atomic quality measures. But, different tasks and perspec-
tives require diverse measures and even differently defined same atomic measure. In
this section, two views on quality and their respective measures are examined.

3.6.1 Quality Measures

Hirota and Pedrycz [15] suggested the following five measures: validity, generality,
usefulness, novelty and simplicity. These measures are adjusted in [46] for auto-
matically mining summaries from the data in order to convert them into the fuzzy
IF-THEN rules (generating IF-THEN rules from LSs with restriction part is further
examined in Sect. 3.7.2).

Validity
The summary from data must be derived with high degree of truth value. The validity
(v) increases,when tuples,which (partially or fully)meet the restriction also (partially
or fully) meet the summarizer. The proportion of tuples, which meet S and are in R
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is also called subsethood measure [30]. For the validity measure we can use either
LS’s truth value (validity) (3.8), or the subsethood measure.

Generality
It is essential, that reasonable amount of data supports the summary. This feature
should be considered by two perspectives. First, if a data set is a small and nonrep-
resentative sample, then even if 99% of data meet the summary, the result is not
representative. Second, if the data set is sufficiently large (e.g. instead of a sample,
the whole population of interest is analysed), then high validity could mislead in
cases, when only few tuples (e.g. 2 tuples of 200 000) fully (or partially) meet the
restriction part and the same tuples meet the summarizer part in (3.8)). Concerning
the latter, generality is expressed as coverage [46]. For the LS with restriction, the
following coverage index can be used:

ic =
∑n

i=1 t (μS(xi ), μR(xi ))

n
(3.11)

where n is the number of tuples in a database. Other variables have the samemeaning
as in (3.8). When both μR(xi ) and μS(xi ) are included, the coverage explains how
many membership degrees influence the validity of a LS. In practice, the value
of coverage index is a small number, because LS with restriction usually covers a
relatively small subset of the considered data. Therefore, themappingwhich converts
ic into the degree of coverage suggested in, e.g. [46] can be used

C = f (ic) =

⎧⎪⎪⎨
⎪⎪⎩

0, for ic ≤ r1
2( ic−r1

r2−r1
)2, for r1 < ic ≤ r1+r2

2

1 − 2( r2−ic
r2−r1

)2, for r1+r2
2 < ic < r2

1, for ic ≥ r2

(3.12)

where r1 = 0.02 and r2 = 0.15. Anyway, parameters r1 and r2 can be set according
to the user’s preferences similarly as is suggested for quantifiers and predicates.

Clearly, this measure should be applied on LSs with restriction. Concerning the
basic structure of LS, the validity (3.2) is affected by all tuples.

Usefulness
This feature expresses, how useful is the summary. This is also a twofold measure.
From user’s perspective, this measure corresponds to the goals of the task (e.g.
importance of a mined summary on decision-making). Mathematically, degree of
usefulness can be expressed as [46]

U = min(v,C) (3.13)

where v is proportion or validity (from the validity measure) and C is coverage
of tuples (from the generality measure). Hence, usefulness can be considered as a
compound measure consisting of validity and generality.
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Novelty
Thismeasure says that the unexpected summaries whichmeet other qualitymeasures
are very valuable for users. On the other hand, summary can be also unexpected, if
it covers only outliers instead of regular behaviour in data. Hence, this summary
does not representatively express relational knowledge in the data. We can say that
outliers appear, if [46]

(a) the validity degree v is very small or very high
and
(b) the sufficient coverage C must be very small.
Therefore, the outliers measure can be expressed as

O =
{
min(max(v, 1 − v), 1 − C), for v > 0
0, for v = 0

(3.14)

where v is the validity of a summary, C is generality (coverage) measure (3.12) and
the operator and between (a) and (b) is expressed as the minimum t-norm (1.47). If
coverage is small (C → 0), then outlier measure O is near the value of 1 (if v gets
value near 1 or 0). If coverage is sufficiently high ((1 − C) → 0), then the outlier
measure is near the value of 0. The closer O is to the value of 1, the more LS is
judged as sentence expressing outliers. Therefore, when 1−O increases, the quality
of summary increases.

Simplicity
This measure concerns the syntactic and semantic complexity of the summaries. Too
complex summaries are less legible for users and require additional computational
effort. The simplicity of summary expresses, how many attributes are in restriction
and summarizer parts. In terms of rule bases this measure expresses, how many
attributes are in antecedent and consequent parts of the rule. Therefore, simplicity
can be expressed as [46]

Sim = 2(2−l) (3.15)

where l is total number of antecedents and consequences. Evidently, Sim ∈ (0, 1].
As the number of antecedents or consequences increases, Sim decreases. Obviously,
this measure gets value 1 when one attribute is in R and one attribute in S parts of
LS.

Generally, the LS credibly expresses the mined knowledge, when all measures
are near the value of 1. But on the other hand, the low value of the simplicity mea-
sure could mean that the complex summary better explains the data. This holds for
example in adding attributes into the R part of LS for focusing on a very specific
part of database.

For evaluating quality for a particular summary (consisted of summarizer and
restriction), measures of validity, coverage and novelty could be sufficient. This
statement is explained on the interface shown in the Appendix B.

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Castillo-Ortega et al. [10] examined the following four quality measures: cover-
age, brevity, specificity and accuracy. At first glance, first two measures are equiv-
alent with two ones discussed in [15] and [46]. But, they are defined from different
perspective of data summarization.

Coverage
The coverage C is the extent to which all tuples in a database DS are considered by
lsi ∈ LS, where LS is the space of possible summaries. Without loss of generality,
C is a normalized measure on dss (dss = {ri ∈ DS|ri is considered in ls}) defined
as [10]

⎧⎨
⎩
if dss = 0, then C(ls) = 0
if dss = DS, then C(ls) = 1
∀ls1, ls2, ds1 ⊆ ds2 ⇒ C(ls1) ≤ C(ls2)

(3.16)

Evidently, coverages (3.12) and (3.16) have differentmeanings and therefore value
of 1 is met for different number of tuples affected in LS. This measure is suitable for
summaries without quantifiers.

Example 3.5 Two illustrative summaries on a database of 2924 municipalities are
ls1: there are 21 municipalities with altitude over 850 m, 1446 municipalities with
altitude in interval [250, 850] and 1457 below 250
ls2: there are 1047 municipalities with altitude over 600 m, and 241 municipalities
with altitude below 200 m.
The coverages of these summaries are C(ls1) = 1 and C(ls2) = 1288

2924 = 0.4405. �

Furthermore, this approach considers only included tuples, so the crisp cardinality
is used in calculation of coverage, whereas approach (3.11) considers intensities of
included tuples, so membership degrees are used for computing coverage.

Brevity or shortness
This qualitymeasure of summary (S(ls)) is the extent towhich a summary is short, i.e.
S(ls) ∈ [0, 1] [10]. Value of 1 is reserved for the shortest possible summary. In terms
of propositions included in LSs, the shortest possible summary contains only a single
proposition. Regarding summaries in Example 3.5, it is clear that S(ls1) < S(ls2).

Measure of shortness in (3.15) is influenced by number of attributes in R and S
in the summary. Therefore, exponent is 2 − l. Analogously, in order to reach value
of 1 in summaries of types shown in Example 3.5 the brevity is expressed as

Sim = 2(1−l) (3.17)

where l is total number of propositions.
Hence, the shortness measures of two summaries created in Example 3.5 are

S(ls1) = 2−2 = 0.25 and S(ls2) = 2−1 = 0.5. An example of LS with S = 1 is all
municipalities have ratio of public greenery lower than 25%.
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Specificity
Measure of specificity of LS (Ec(ls)) is the extent to which concepts in the summary
clearly identify considered data, Ec(ls) ∈ [0, 1] [10]. Ec(ls) = 1 means that con-
cerned data set DS is explained without doubt. The higher is the specificity, better
is the summary, but on the other hand, length might increase.

Example 3.6 Consider two summaries from Example3.5 and the additional one:
ls3: there are 1047 municipalities with altitude over 600 m, 1072 with altitude from
200 to 400m
Then ls3 is more specific than ls2 but covers less data than ls1. �

Accuracy
This measure expresses the extent to which a summary says is true for all covered
tuples in DS. Ac(ls) = 1 means that the summary holds for all tuples. Clearly, the
higher accuracy, the better LS.

Example 3.7 Consider two summaries from 3.5, one from Example 3.6 and the
additional one
ls4: one-third of municipalities does not exceed altitude of 192m and two-third of
municipalities do not go below this altitude
The accuracy of ls4 is lower than the accuracy of ls1 but the coverage for both is
equal to 1. �

3.6.2 Aggregation of Quality Measures

Naturally, the question which LS is better in terms of all measures appears. It holds
for both approaches examined in Sect. 3.6.1. Although these approaches differ in
definitions and types of consideredLSs, allmeasures get values from the unit interval.
Therefore, the same structure of ordering relation can be used and moreover, for all
other approaches expressing quality measures in unit interval (and when is possible
to convert values of measures to this interval).

The basic quality ordering relation ≤Q (having less quality than) is defined as a
binary relation on LS [10]

∀ls1, ls2 ∈ LS ls1 ≤Q ls2 ⇔ C(ls1) ≤ C(ls2) ∧ Sim(ls1) ≤ Sim(ls2)∧
Ec(ls1) ≤ Ec(ls2) ∧ Ac(ls1) ≤ Ac(ls2)

(3.18)

This measure generally works when lsi is better than ls j by all measures. Otherwise,
it is not an easy task, because measures might be conflicting or partially redundant.
Apparently, creating generalized aggregation function covering quality measures is
a challenge.

Quality measures discussed above can be calculated automatically from the data-
base and obtained summaries.On the other side, qualitymeasures of approach created
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in [38] are based on experts that analyse obtained summaries. This approach is suit-
able for summarizing data expressed as numbers and pictures. The quality measures
are evaluated as values in the [0, 5] or [0, 10] interval. Anyway, these degrees can be
converted to the unit interval, if quality ordering relation such as (3.18) need to be
applied.

Summing up, a quality criterion can contain measures of both types: objec-
tive (automatically calculated) and subjective (evaluated by expert(s)). Issues like
conflicting measures, vague measures and partially redundant ones should not be
neglected.

3.6.3 Influence of Constructed Fuzzy Sets and T-Norms
on Quality

In this section, impact of chosen t-norm on the validity is examined, together with
influence of constructed fuzzy sets on the coverage and validity.

For the LSs of structure Q R are S the quality is measured for each data point
xi (i = 1, ..., n) by t-norm in the numerator of (3.8) [31]. This is one aspect of
the complex problem of quality. Chosen t-norm influences not only aggregating
restriction and summarizer, but also the truth value of conjunction between the atomic
predicates inside restriction and summarizer. T-norms meet all axiomatic properties,
but differ in satisfying algebraic properties (Sect. 1.3.1).

For instance, when each atomic predicate Pj ( j = 1, ...,m) in summarizer is satis-
fiedwith degree of 0.47, then the tuple should participate in S with the degree of 0.47.
Only minimum t-norm (1.47) meets this requirement. Furthermore, this t-norm is
not nilpotent and does not have limit property. Łukasiewicz t-norm (1.49) meets the
nilpotency property, causing that tuple participates in proportion with value of 0.
Product t-norm (1.48) meets the limit property, causes that participation of tuples is
decreasing in the proportion, in which the number of atomic predicates increases.
When j = 1 tuple participates with degree of 0.47, but when j = 5, the same tuple
participates in summary with 0.02293.

The only suitable t-norm for merging conjunction of atomic conditions in R and
S parts of LSs is the minimum one, because it does not unnaturally reduce the
proportion of tuples in a data set that satisfy LS. An appropriate t-norm influences
the quality of mined LSs, but further quality aspects should be included.

Fuzzy sets allow users to express uncertainty related to linguistic summaries.
But, the subjectivity in constructing fuzzy sets may influence quality of summarized
information. It especially holds for the sufficient data coverage and outliers.

As was already mentioned in queries, the domains of attributes are, during the
database design phase, defined in a way that all theoretically possible values can
be stored. However, in practice, collected data fill only parts of respective domains.
Hence, the situation plotted in Fig. 3.5, where L and H are the lowest and the highest
values in the current content of attributes respectively, and Dmin and Dmax are the

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Fig. 3.5 Constructed fuzzy sets for restriction and summarizer. a fuzzy sets do not reflect reality
(stored data); b fuzzy sets reflect stored data

lower and upper limit of domains respectively, might appear. The truth value equal
to 1 in Fig. 3.5a expresses summary from the outliers and therefore is of low quality.

In order to mitigate this problem, membership functions should consider only
parts of domains that contain data. The validity equal to 1 in Fig. 3.5b can be the
summary of good quality. But the data distribution far from the uniform one might
cause that mined LS expresses relations on insufficient data coverage. Let us imagine
that only 30 of 5 · 107 tuples fully meet the R and the same tuples more or less fully
meet the S, then the validity equal to 1 leads to the irrelevant linguistic interpretation
of data.

This problem can be solved by aggregating validity and coverage. In general, the
outlier measure (3.14) for v > 0 can be expressed as

O = t (s(v, 1 − v), (1 − C)) (3.19)

where t is t-norm, s is t-conorm and C is coverage (3.12).
The non-outlier measure, i.e. the negation of (3.19), is obtained by De Morgan’s

law as
1 − O = s(t (v, 1 − v),C) (3.20)

We can say that LS is of high quality Qc, if both validity and non-outliers measure
are high. This observation can be expressed as

Qc = t (v, 1 − O) = t (v, s(t (v, 1 − v),C)) (3.21)

If we define coverage as significant, when its value is higher or equal 0.5 and use
the property of t-norms t (1 − v, v) ≤ 0.5, then from (3.21) yields

Qc =
{
t (v,C), for C ≥ 0.5
0, otherwise

(3.22)

Obviously, the question, which t-norm to use, appears again. Let us have for
illustrative purpose, values of validity and coverage for two LSs shown in Table3.5.
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Table 3.5 Aggregating validity and coverage by t-norms

Summary Validity Coverage Qc by min t-norm Qc by product
t-norm

ls 1 0.75 0.75 0.75 0.5625

ls 2 0.75 0.97 0.75 0.7275

Table 3.6 Quality of mined LSs

Summary Validity Coverage Qc

ls 1 0.93 1 0.93

ls 2 0.34 0.78 0.2652

ls 3 0.75 0.75 0.5625

ls 4 1 0.67 0.67

ls 5 0.91 0.71 0.6461

ls 6 0.83 0.34 0

The minimum t-norm says that ls 1 and ls 2 are undistinguishable, because it does
not consider degrees greater than the minimal one. The same holds for the nilpotent
minimum t-norm. The suitable t-norms of the basic ones are product andŁukasiewicz
t-norms. It is an observation opposite to that of aggregating atomic predicates inside
S and R.

Example 3.8 In order to mine all relevant summaries, the user has defined fuzzy sets
for attributes appearing in restriction and summarizer and assigned parameters for
quantifiers. For illustrative purpose, mined LSs are written as ls i (i = 1, . . . , 6) and
shown in Table3.6.

The aggregation of validity and coverage by (3.22) says that the summary of the
highest quality is ls 1. Although ls 4 has the maximal value of validity, its coverage
is significantly lower than data coverage in summary ls 1. Summary ls 6 is excluded
from the set of relevant summaries due to low coverage, although its validity is
significant. �

3.7 Some Applicability of LS

Linguistic summaries could be applied in a variety of tasks. Due to limited scope
of this book, only several possible applications are discussed. Other applications
dealt with expressing trends in time series [27, 28]; bipolar linguistic summaries
[12]; interval-valued linguistic summaries [37] and the like. LSs on fuzzy data are
examined in Sect. 5.7.

http://dx.doi.org/10.1007/978-3-319-42518-4_5
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3.7.1 Quantified Queries (LS as a Nested Condition)

This is a class of database querieswhich use linguistic quantifiers as query conditions.
This class is especially suitable for the 1:N relationships in a relational database
such as: REGION-MUNICIPALITY and CUSTOMER-INVOICE. This relationship
means that one region contains more municipalities and one municipality belongs to
the exactly one region. An example of a quantified query might be as follows: select
regions where most of municipalities have small water consumption per inhabitant.
In the first step, the validity of summaries is calculated for each region based on the
municipalities data. In the second step, regions are ranked downwards starting with
region having the highest value of validity. The procedure for calculating validities
is straightforwardly created as the extension of (3.2) in the following way [17]:

v j (LS) = μQ(
1

N j
�

N j

i=1μS(xi j )) j = 1...C �C
j=1N j = n (3.23)

where n is the number of entities in the whole database, N j is the number of entities
in group j (e.g. municipalities belonging to the region j), C is the number of groups

in database (e.g. regions), v j is validity of LS for j-th group and
1

N j

∑N j

i=1 μS(xi j )

is the proportion of tuples in j-th group that satisfies summarizer S.
Although the summarization is focused on the part of database, we are working

with the basic structure of LS, because database is divided into logically and sharply
separated parts (in our case regions).

When the quantified nested query condition contains LSs with restriction (3.8)
such as select customerswheremost of small volumeof goods in orders has high price,
the query procedure for calculating validities can be straightforwardly extended to

v j (LS) = μQ(
�

N j

i=1 f (μS(xi j ), μR(xi j ))

�
N j

i=1μR(xi j )
) j = 1...C �C

j=1N j = n (3.24)

where variables have the same meaning as in (3.8) and (3.23).
Possibilities of LSs in quantified queries are demonstrated in the next three exam-

ples to illustrate variety of possible queries and applications.

Example 3.9 An agency realizing surveys by questionnaires would like to know,
which questionnaires are most demanding for respondents. The query is select ques-
tionnaires where most of respondents have high response time. The response times
for questionnaire Qu1 are in Table3.7. In the same way, response times for other
questionnaires are recorded.

In the first step, fuzzy sets small, medium and high are constructed on the
domain [10, 50] by the uniform domain covering method keeping the relation
ε = 2θ (Fig. 2.2), because the fastest answer is reached in 10min and the slowest
in 50min. The quantifier most of has parameters m = 0.5 and n = 0.85 (Fig. 3.1).

http://dx.doi.org/10.1007/978-3-319-42518-4_2
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Table 3.7 Time required for
filling questionnaire Qu1

Respondent Time (min)

Resp 1 36

Resp 2 21

Resp 3 40

Resp 4 39

Resp 5 50

Resp 6 38

Resp 7 44

Resp 8 10

Resp 9 37

Resp 10 46

Table 3.8 Selected
questionnaires by quantified
query

Questionnaire Matching degree to query

Qu3 0.8925

Qu1 0.2857

Questionnaires may be of different complexity. Thus, these fuzzy sets should be
constructed for each questionnaire according to the response times.

Applying the basic structure of LSs, the validity 0.2857 is reached. Let us think
that in the same way validities of Qu2 and Qu3 are 0 and 0.8925, respectively. The
result of query is shown in Table3.8, where matching degree of the questionnaire to
query is validity of quantified question.

The solution says that Qu3 should be re-designed in order to decrease response
burden. Otherwise, respondents may not cooperate in the future surveys or put less
attention to question, which might result in lower quality of surveyed data.

This approach provides further benefit. In Table3.7 there may be many other
attributes, such as respondents’ answers to each question and their personal data. This
query keeps data that are sensitive or are out of interest undisclosed. Agency knows
that the most problematic questionnaire is Qu3 and therefore only this questionnaire
should be considered. �

The next example illustrates deeper dive into the hierarchical structure of nodes,
in our case territorial units.

Example 3.10 An environmental agency is interested in revealing areas of small
waste production. The hierarchical structure of a fictive country is shown in Fig. 3.6.
The LS is most of municipalities have small waste production per inhabitant. Small
amount of produced waste could be caused by several reasons: low income (low
spending power implies low amount of goods bought and therefore smaller volume
of produced waste), well-developed recycling system and education, avoiding the
waste fee by burning it out in furnaces or in gardens. In order to find the right
answer, further attributes should be analysed: income, amount of collected waste for
recycling, pollution, number of respiratory diseases and the like.
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Fig. 3.6 Hierarchy of territorial units

The summarization is evaluated on the second level (Areas 1–4). In order to obtain
parameters for the fuzzy set small waste production per inhabitant the attribute is
fuzzified into three fuzzy granules (small, medium and high) uniformly distributed
on the domain of recorded waste production. Let us consider that validities for each
territorial unit are

• Area 1: v(Qx(Px)) = 0.13
• Area 2: v(Qx(Px)) = 0
• Area 3: v(Qx(Px)) = 0.34
• Area 4: v(Qx(Px)) = 0.98

According to these validities, the attention should be focused on the area number 4.
This level contains two regions: Region 4.1 and Region 4.2. The same LS (with
adjusted parameters to respective domains) on this level computed the following:

• Region 4.1: v(Qx(Px)) = 1
• Region 4.2: v(Qx(Px)) = 0.827

If we want to go deeper, the same LS can be employed on all districts in Region
4.1 and all districts in Region 4.2 (because both regions bear significant validities of
the LS). For each district with high validity of the LS, further analysis of indica-
tors such as income, developed recycling systems and education, health conditions
could reveal the main reasons for the low waste production. Reasons for small waste
production may be different in particular districts. �

The final example in this section is focused on quantified queries merging con-
straints and wishes. This approach can be solved by bipolar approaches [22] and
asymmetric conjunction. The latter is shown in the following example:
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Table 3.9 Matching degrees to atomic predicates, constraints, wishes and to overall query condition

Village P1 P2 P3 P4 P5 P6 P7 μQC μQW α

Vil 1 0.8 0.9 0.6 0 1 0.7 0.75 0.21 0.89 0.21

Vil 2 0 0 0 0.3 0.2 0 0 0 0 0

Vil 3 1 0 1 1 1 1 1 0.71 1 0.855

Vil 4 0.2 0 0.4 0 1 1 0.75 0 1 0

Vil 5 0.9 0.9 0.8 1 0 0 0.25 1 0 0.5

Vil 6 0.9 0.9 0 1 0.6 0.8 0.75 0.57 0.61 0.59

Example 3.11 This example is continuation of Example 2.10. The task is to find
suitable village for building house. Let the following be the relevant predicates for
evaluating villages: altitude above sea level around 1500 m (P1), small population
density (P2), medium area of village size (P3), low pollution (P4), high number of
sunny days (P5), short distance to the region capital (P6) and positive reviews about
public transport (P7). It is highly presumable that none of villagesmeets all predicates
in a query of the structure

∧7
i=1 Pi , even though predicates have flexible boundaries.

In order to solve this problem, user may say that village should be considered, if
it meets most of predicates. Hence, query matching degree for tuple r is calculated

by μQ(r) = μQ(
∑7

i=1 μPi (r)
7 ).

Furthermore, not all predicates may be equally important. Let us say that P1, P2,
P3 and P4 are constraints and P5, P6 and P7 are wishes.

The matching degrees of villages to respective predicates are shown in Table3.9.
Results are obtained in the following way (using quantifier most of expressed by

parameters m = 0.5 and n = 0.85):

• tuple’s matching degree to constraints: μC(r) = μQC (
∑4

i=1 μCi (r)
4 )

• tuple’s matching degree to wishes: μW (r) = μQW (

∑3
j=1 μC j (r)

3 )

• tuple’s overall matching degree applying (2.25): α = min(μC ,
μC+μW

2 )

It is obvious from Table3.9 that the and connective results in an empty answer,
because the value of 0 is the annihilator for conjunction calculated by any t-norm.

When quantified constraint is fully rejected, then the solution is 0, because the
influence of the wish part in this case is irrelevant (the case of (Vil 4)). But, when
quantifiedwish is notmet, then the solution is lower than in case,when only constraint
is considered and higher when and connective is applied (Vil 5). High values of
constraints allow wishes to influence solution. Thus, the best option is Vil 3 followed
by Vil 6 and Vil 5. �

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_2
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3.7.2 Generating IF-THEN Rules

Sophisticated and powerful approaches, such as neural networks and genetic algo-
rithms, are widely used in learning rules from the data. If a small business or agency
wants to apply flexible rules to managerial and other decisions, then complex tools
are usually beyond their resources. Contrary, mining LSs from the data does not
require complex tools.

The IF-THEN rules can be generated from the LSs with the restriction part. LSs,
which meet quality requirements (Sect. 3.6) can be transferred into the (weighted)
fuzzy IF-THENrules [46].Only single-antecedent (one attribute in the restriction part
of LS) and single-consequent (one attribute in the summarizer part of LS) rules are
examined in this section. Multi-antecedent and multi-consequent rules are discussed
in [46].

Generally, a weighted fuzzy rule merges input linguistic terms with the output
terms (classes) in the following way [8]:

if xi is A
r
i then class is Cr with c f = ϕr (3.25)

where xi is the i-th input, Ar
i is the membership function for i-th input in r -th rule,

Cr denotes the output class, c f is a confidence factor representing the rule certainty
(or validity) and ϕr ∈ [0, 1] is value of c f for a rule r .

The canonical form of LS can be expressed as IF-THEN rule [46]

if A1 has R then A2 is/has S [Q] (3.26)

where R is restriction, S is summarizer of LS (3.8) and [Q] ∈ [0, 1] is quality
measure indicating, how good is the rule. The measure [Q] is equivalent with the
weight in (3.25), when weight is based on the quality measures. Generally speaking,
both measures express doubt about a rule which is further used in inference systems.

For a given data set user should specify the terms used for each antecedent (R)
and consequent (S) from the term sets R and S, respectively (3.10). Concerning
the term set for quantifiers Q, only terms such as most of or almost all are suitable.
Quantifiers such as few are not suitable in tasks of generating rules. The next step (the
main challenge) is to compute [Q], which should merge measures listed in Sect. 3.6.

Example 3.12 The aim of this example is to illustrate generating rules from the LSs.
In Example B.3, we were interested in validity of summary most of municipalities
with high ratio of arable land have small altitude above sea level.

The validity v is high (0.814). Concerning generality or coverage C (3.12), value
is 0.9927. Regarding usefulness, user can say that this rule is useful for the pur-
pose of constructing rule base. The outlier measure (3.14) is 0.0047, i.e. this quality
measure gets value of 0.9927. Finally, simplicity of rule is equal to 1. This LS is of
high quality and therefore it is converted to rule. For aggregating atomic measures,
product t-norm is used. Hence, the quality measure is [Q] = 0.8081. Rule is of the
structure (3.26)
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if ratio of arable land is high, then altitude above sea level is small [0.8081]

The same rule can be expressed as weighted one of the structure (3.25)

if ratio of arable land is high, then altitude above sea level is small with
cf = 0.8081 �

For the sake of simplicity, if all other quality measures are met, validity can be used
as weight of the rule.

In Example 3.2 we were interested in validity of summary most of expensive
books have small number of pages. The validity of LS was high and therefore may
be suitable for converting into the rule. Let us look at other quality measures. The
coverage index ic is 0.27, which means that coverage C gets value of 1. The novelty
measure is high: mathematically, it is not based on outliers, because O is equal to 0
and we have learned something, which was not obvious. Finally, simplicity measure
S is met with maximal value. Hence, cf = 1.

In Example 3.4 validities of relevant LSs have been calculated (Table3.4). For the
simplicity, let be all quality measures fully met, then from the Table3.4 and (3.25)
or (3.26), the following two rules are created:

• if Population density is small, then Production of waste is small [1]
• if Population density is high then Production of waste is high [0.662]

The first LS is undoubtedly true and therefore Q = 1 or c f = 1. The second LS is
more or less significantly satisfied and converted into rule with lower value of quality
measure (weight). The third row in the Table3.4 cannot be converted to the IF-THEN
rule, because the validity is insignificant. The weight may be further considered in
intensity of rule firing.

Fig. 3.7 LSwith a stronger restriction part consisted of two attributes merged with the and operator
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3.7.3 Estimation of Missing Values

This problem appears, when values of attributes are not known for some tuples.
Missing values are due to the fact that data is not available because of several reasons
(e.g. nonavailability of instruments to measure phenomena in all units and reluctance
of respondents to cooperate in surveys) [16]. In case of database queries, we are not
sure, whether a nonselected tuple is far to meet the query condition, or because the
value of the attribute is missing. In classification, tuples with missing values cannot
be properly classified. This issue also influences construction aggregates consisted
of several attributes. For example, nonresponded data and errors in case of statistical
data collection are far to be negligible [4].

For instance, in the databases of territorial units’ statistics we could recognize
some similarities between units (e.g. climatic conditions and water consumption
or population density and waste production). We could presume, that for example
territorial units, which have similar values of population density, income and ratio
of the built-up area, have also similar waste production. This hypothesis could be
validated by the LSs. If validity is high then, thewaste production for units, where this
indicator is missing, can be roughly estimated. For this purpose we need to calculate
validity (3.8) by restrictive quantifier. The solution is the quantifier almost all.

Further, when validity is significant, but not sufficiently strong or qualitymeasures
are not sufficiently high, presumably in a more restricted part of database the depen-
dency is stronger. In order to reveal, whether this assumption is true, two options can
be applied. The first option is the conjunction of initial and adjacent atomic predicates
in the R part, in order to focus on more restricted part, where we expect stronger
relation. This case is illustrated in Fig. 3.7. The second option is finer granulation of
attributes’ domains depicted in Fig. 3.8.

Fig. 3.8 LS with a finer
granulation of attributes
domains
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Regarding quality measures, validity and coverage are more important than sim-
plicity. More restrictive part of database may have strong relation between attributes
(high values of validity and coverage), but the simplicity measure (3.15) is not high.
From the bipolar perspective, we can say that validity and coverage are restrictions
and simplicity is wish.

Example 3.13 Let us assume that values of attribute Ap are missing for somemunic-
ipalities. These territorial units cannot be properly classified for business or policy
decision-making. Hence, these values should be at least roughly estimated. We pre-
sume that territorial units, which have similar values of attribute A1 have also similar
values of Ap. Let us estimate only LS of structure almost all municipalities having
small value of A1 have small value of Ap has high validity and high values of quality
measures. Let us state the value for territorial unit M is missing.

In the second step, value of A1 for M (valA1(rm)) is retrieved from database. If
this value belongs to the small value of A1, the procedure may proceed. Fuzzy query
for retrieving similar tuples (Example A.2) to tuple rm has the following structure:

SELECT Ap
FROM municipalities
WHERE A1 is about valA1(rm)

The answer is vector of values of attribute Ap. The estimated value is computed
from this vector. It can be calculated as usual average of selected tuples from database
or as average influenced by membership degrees.

If LSs focused on some parts of A1 and Ap domains are of insufficient quality,
additional attribute(s), which is (are) assumed to be related to A1 and Ap is (are)
included. The stronger R (atomic predicates merged by the and connective) may
reveal that a very significant relation occurs in one part of the database. But the
number of combinations increases. Techniques for optimization and excluding LSs
of possible low validity should be used. �

For instance, in the official statistics the data imputation (estimation of missing
values) is a topic of significant interest. One of used methods is the Hot Deck impu-
tation, due to its simplicity and good results. Each missing value is replaced with
data from amore or less similar tuple using the linear restriction rules [11]. Hot Deck
is efficiently used in practice, even though its theory is not as well developed as in
other methods [2]. Neural networks [20] and genetic algorithms [29] (soft comput-
ing approaches) are also very valuable and powerful tools in this direction, though
somewhat complex. Their advantage is in estimating values of datasets containing
indicators which are complexly influenced, e.g. export of similar goods might sig-
nificantly vary in some periods, due to variety of internal and external influences. On
the other hand, LSs are not so complex and able to process nonlinear and flexible,
but relatively stable relations. For example, if similar territorial units have almost the
same climatic conditions, then it is expectable that in other periods (for which we do
not have data for some of the units) they will have also similar values for attributes
under interest.



3.8 Building Summaries 95

3.8 Building Summaries

When developing software solutions, we should consider simplicity for users and
modular extensions of future needs in the similar way, as was discussed in Sect. 2.6.
For instance, the interface of LSs with restriction (Fig. B.2) is straightforwardly
extended with quality measures (Fig. B.3), when required. It may be useful to store
LSs, which are frequently used and then slightly adjust them, if needed. In order to
store fuzzy sets appearing in summaries and IF-THEN rules, relational databases are
an option, because required data are often stored in relational databases. A possible
option is the fuzzy meta model elaborated in Sect. 5.5.

It is not necessary to build additional functionalities in the software tool from the
beginning.

Fuzzy logic is flexible, that is; with any given system, it is easy to layer on more functionality
without starting again from scratch [35].

If company already has tool for fuzzy queries, it can be extendedwith LSs capabil-
ities. Interfaces and application related to summarizing territorial units are adjusted
from fuzzy querying interfaces shown in Appendix A and illustrated in Appendix B.

The architecture plotted in the Fig. 2.8 may be the basis for tool building for LSs.
The parts related to the LSs (new interface and adjusted procedures) can be added.
The architecture enveloping fuzzy queries and LSs is shown in Fig. 3.9. In case of
basic LS, user is able to define parameters or ask for suggestion by the same procedure
as in Example A.5. In case of LS with restriction, parameters are mined from the
current content of database and suggested in the same way as in Example B.2.

Roughly speaking, two general types of applications and interfaces can be applied.
The first type is related to mining validity of a specific LS of interest or for all rele-
vant ones. The second type is related to quantified query conditions for data mainly
stored in relations merged by the 1:N relationships. In the latter, an interface man-
aging such LSs should contain module for presenting selected tuples in useful and
understandable way, as was discussed in Appendix A.

Procedures for LSs

In this section, the algorithms for three cases: evaluation of single LS, automatic
generation of linguistic summaries from predefined term sets and for rule generation
are outlined.

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_5
http://dx.doi.org/10.1007/978-3-319-42518-4_2
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Fig. 3.9 An architecture enveloping fuzzy queries and linguistic summaries

Single LS

1. Check which attributes and fuzzy sets have been selected by the user for R
and S and which quantifier is chosen

2. Open database connection
3. Select the smallest and the highest values of attributes appearing in summary by

SQL query
4. Calculate parameters for chosen fuzzy sets for all attributes
5. Offer these parameters to user for acceptance or modification
6. Select all tuples from database, which have μS(x) > 0 and μR(x) > 0
7. Close database connection
8. Calculate proportion of entities, validity v and quality measures of LS
9. Present solution to user
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Automatic generation of linguistic summaries

1. Check which attributes have been chosen by the user
2. Create all possible combinations (n) of LSs
3. Open database connection
4. Select the smallest and the highest values by SQL query for all attributes
5. Calculate parameters for all fuzzy sets of R and S
6. Apply all required quantifiers
7. For i = 1 to n

7.1 Select all tuples from database, which have μSi (x) > 0 and μRi (x) > 0
7.2 Calculate proportion of entities, validity and quality measures of LS

8. Close database connection
9. Present solution to user in a tabular form

From linguistic summaries to rules

This procedure is the same as the previous except slight modification of steps 1
and 7.2.

1. Check which attributes, quantifiers, linguistic terms and threshold value β have
been chosen by the user
7. 2. Calculate proportion of entities and validity of LS

• If validity is greater than β, then calculate other quality measures
If quality measures are sufficiently high, then LS is converted into rule

• Else LS is not accepted as rule

The advantage of LSs is in low requirements for the software tools. Nowadays,
majority of companies use relational databases. By the SQL-like query we can
retrieve all relevant information. In this chapter, tuples involved in summaries are
selected by the query approach based on theGLC (2.9).Other fuzzy query approaches
provide space forworkingwith summaries likeFQUERY[25], SAINTETIQ [39, 45],
SQLf [5] and SummarySQL [41].
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Chapter 4
Fuzzy Inference

Abstract In practice we can find many examples of inference rules, where relation
between antecedent and consequence is expressed by linguistic terms, e.g. if turnover
is high, then provide high discount in business or if temperature is low and humidity
is medium then turn valve slightly up in controlling technical systems. Furthermore,
attributes’values either measured or estimated are of both kinds: crisp and vague
or fuzzy. We start by formalizing single fuzzy rule with one antecedent and finish
with formalizing multiple fuzzy rules containing several antecedents. Both mod-
els of fuzzy inference (Mamdani and Sugeno) are examined. The solution depends
on chosen fuzzy sets, logical connectives and defuzzification strategy. Throughout
the book the first and the second topic were discussed. In this chapter focus is on
defuzzification strategies. Finally, classification by IF-THEN rules with support of
fuzzy queries is examined.

4.1 From Classical to Fuzzy Inference

Inference is the process of deriving logical conclusions from premises assumed to
be true. Classical inference is based on the modus ponens. In propositional logic,
modus ponens or implication elimination is a valid, simple argument form and rule
of inference [16].Modus ponens is of the structure:

p;
p ⇒ q;
q

(4.1)

where p is a known fact, p ⇒ q is a rule of inference and q is the consequence or
conclusion.

For example, on Wednesdays a course of fuzzy logic takes place (IF Wednesday
THEN course of fuzzy logic, p ⇒ q). Today is Monday (p), so the course is not
today (q). In classical inference truth values of p, p ⇒ q and q are either true (with
logical value of 1), or false (with logical value of 0). In the truth table of implication
(Table4.1) the modus pones is represented by the fourth row.

© Springer International Publishing Switzerland 2016
M. Hudec, Fuzziness in Information Systems,
DOI 10.1007/978-3-319-42518-4_4

101



102 4 Fuzzy Inference

Table 4.1 Truth table of the
classical implication

p q p ⇒ q

0 0 1

0 1 1

1 0 0

1 1 1

The basic rule of inference in classical logic is expressed by modus ponens (4.1)
as [15]:

fact: x is A
rule: IF (x is A) THEN (y is B)

consequence y is B

(4.2)

Example 4.1 A company has a rule: IF turnover(x) ≥ 1000 (A) THEN provide a
10%(y) discount (B) The inference is expressed as:

fact: x is turnover

rule: IF(x ≥ 1000)THEN (y = 10%)

consequence: y is discount

Let us have two customers C1 with turnover of 1 000.95 and C2 with turnover of
999.35. Obviously, C1 meets the fact, activates the rule and receives the discount of
10% (inference chain). Contrary,C2 does not meet the fact and receives no discount.
The inference rule is simple and clear, but the problem of two-valued evaluation of
predicates appeared. The value of turnover is without doubt crisp. So, in the extreme
situation company might say to the complaining customer C2: you know the rule, so
if you had bought a small box of chewing gum in addition, you would have received
discount. Albeit not a very efficient way for keeping customers, it meets the two-
valued inference.

To make inference softer, several small intervals like [0, 900)—no discount; [950,
975)—3% of discount; [975, 1 000)—6% of discount; [1 000, 1 050]—8% of dis-
count and more than 1 050—full discount of 10% can be employed. The second
option is expressing discount as a function of turnover. In order to find proper func-
tions with suitable properties mathematical knowledge is required. �

Let us now look at a task bearing vague data. For instance, if the financial reim-
bursement for significantly flooded buildings should be provided by government,
then a possible rule is: IF flooded level ≥ 100 cm THEN provide a reimbursement.
Not only the sharp condition, but also the crisp value of known fact is disputable.
The rough surface of the stream of moving water caused different shades of wetness
on walls (Fig. 5.2). The question is, where exactly to measure. Thus, not only the

http://dx.doi.org/10.1007/978-3-319-42518-4_5
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sharp rule, but also crisp fact are disputable. Solving this problem by mathematical
functions becomes a more complex task requiring deeper knowledge in comparison
with the task from the previously mentioned example.

In inferring and many other tasks we are instantaneously faced with a continuous
transition between full membership and no membership [11]. People have capability
to make conclusions based on the data and rules which are often vague. It means that
conclusions are made without precise measurements and calculations [52]. It means
that people do not require rigid rules.

Remarking difference between crisp characteristics and variety of membership
functions for the same concept (e.g. non expensive and close to city centre hotel for
student and rich businessman). Bezdek [4] concluded

uniqueness is sacrificed (andmathematicians howl), but flexibility is increased (and engineers
smile)

On the other hand, mathematicians have significantly contributed to the formulations
of fuzzy inference in order to efficiently simulate human reasoning in solving variety
of tasks.

4.2 Fuzzy Inference

Inference in a fuzzy environment is realized by the generalizedmodus ponens (GMP)
[6, 26, 34]. Fuzzy reasoning is an inference process that derives conclusion from a
set of flexible IF-THEN rules and known facts which can be either crisp or fuzzy.
In usual human reasoning, GMP is expressed in an approximate rather than crisp
manner [15]:

Premise 1: x is A′
Premise 2 (rule): IF x is A THEN y is B

Consequence: y is B ′
(4.3)

where A′ is a fuzzy set of known fact, which is more or less equal to A in rule.
Throughout this book the word rule is used instead of Premise 2 and (known) fact

instead of Premise 1. The GMP differs from modus ponens in propositions’ truth
values, which are from the [0, 1] interval instead of 0 and 1. The observation x is
A’ may be fully or partially compatible with the assumption x is A. It causes full or
partial satisfaction of the consequence y is B ′.

4.2.1 Inference Process

A fuzzy implication in rule (4.3) is expressed as a binary relation:
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R = A → B (4.4)

Thus, the inference is expressed by means of compositional rule of inference
(1.45) [53]:

B ′ = A′ ◦ R = A′ ◦ (A → B) (4.5)

This equation is considered as the backbone for fuzzy inference systems. The
compositional rule (4.5) is expressed in general case by sup-t composition [15]:

μB ′(y) = sup
x∈X

t[μA′(x), μR(x, y)], ∀y ∈ Y (4.6)

which is a more generalized composition than the max-min composition (1.45) dis-
cussed in Sect. 1.2.6.

For each left-continuous t-norm t and residual implication It (1.66) holds

μB ′(y) = sup
x∈X

t[μA′(x), It (x, y)], ∀y ∈ Y (4.7)

All basic t-norms, except drastic product (1.50), are left continuous. Further, let
hold for (A → B):

μA→B(x, y) = f (μA(x), μB(y)), ∀y ∈ Y (4.8)

where

(i) f = t∗, where t∗ is a left-continuous t-norm or
(ii) f = It∗ , where t∗ is a left-continuous t-norm with property t∗ ≥ t (It∗ ≤ It )

then compositional rule of inference (4.6) replaces GMP.
Applying residual implication and left continuous minimum t-norm tm (1.47), we

get:
μB ′(y) = sup

x∈X
min[μA′(x),min(μA(x), μB(y))], ∀y ∈ Y (4.9)

which is called Mamdani method of inference shown in Fig. 4.1.
The part min(μA(x), μB(y)) in (4.9) is often referred to as Mamdani implication,

which is theoretically wrong, because minimum function does not meet all axioms of
implication. But, in practice it is usual to describe implication by t-norms [18]. This
especially holds for theminimum t-norm,which is often calledMamdani implication.
When we are in the inference by the GMP (focused on a forth row in Table4.1),
Mamdani implication is correct.However, ifwe donot keep inmind that theMamdani
implication is not a full implication, then it might cause wrong results in other
fields, where fuzzy implication is required. This statement was proven in managing
preferences among atomic query conditions by implication in Sect. 2.4.2.

Applying residual implication and left continuous product t-norm tp (1.48) we
get:

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Fig. 4.1 Mamdani method of inference for single rule with single antecedent

μB ′(y) = sup
x∈X

min[μA′(x), μA(x) · μB(y)], ∀y ∈ Y (4.10)

which is called Larsen method of inference plotted in Fig. 4.2.
The same discussion related to the Mamdani method of inference and Mamdani

implication holds for the Larsenmethod of inference andLarsen implication (product
t-norm).

Other suitable combinations of implications and t-norms in compositional rule of
inference are discussed in [7].

Example 4.2 Government has decided to reimburse villages, where high pollution
was recorded during manufacturing relevant parts for a highway. Hence, the infer-
ence rule is: IF pollution is high, THEN reimbursement is high. The known fact is
measured pollution. Inference process is graphically shown in Fig. 4.3 for the mea-
sured pollutant about 25mg for a particular village. The fact is more or less inside

Fig. 4.2 Larsen method of inference for single rule with single antecedent
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Fig. 4.3 Solution calculated by Mamdani method of inference

the concept high pollution, what implies that the village receives more or less high
reimbursement. Villagewith recorded pollution of 24mgwill receive slightly smaller
financial support.

The rule is local, i.e. it says nothing about managing reimbursement for small
pollution. Real inference tasks usually consist of several facts and rules, therefore
the formal (mathematical) procedure for inference is indispensable. �

The next step is converting resulting fuzzy set B ′ into crisp value, because villages
should receive exact amount of resources. In above-mentioned example fuzzy set A
in the IF part of rule is not a fuzzy number, because support (1.9) is unlimited. It is
acceptable, because government is not sure, which maximal value of pollution will
be recorded. Concerning the THEN part, fuzzy numbers should be used due to two
practical reasons: (i) reimbursement, discount, etc. cannot be unlimited; (ii) for the
defuzzification (explained later) fuzzy set should be bounded.

In the next example, comparison of Mamdani and Larsen inference methods is
provided.

Example 4.3 A company decided to improve motivation of customers, who fre-
quently use its products. The rule is IF frequency is high, THEN discount is high.
Inference process is graphically shown in Fig. 4.4 for the estimated frequency of
173days of using the product by customer x . The estimated fact is more or less
inside the concept of high frequency. Customer receives more or less high discount.

In the theory of t-norms holds tp ≤ tm . From the properties of residual implications
it implies that Itp ≥ Itm . This fact is reflected in the inference methods. The solution
obtained by Larsen method is higher than solution by Mamdani method or equal to
it, depending on defuzzification methods, which are explained in the next section. A
short glimpse at resulting fuzzy sets shows that HD′

M has longer flat segment than
HD′

L . �

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Fig. 4.4 Comparison of Mamdani and Larsen inference methods. a Inference procedure based on
Mamdani method. b Inference procedure based on Larsen method

When we apply Mamdani method of inference on the single input-single rule
inference (4.3), the inference procedure can be expressed as:

μB ′(y) = sup
x∈X

min[μA′(x),min(μA(x), μB(y))] = min[δ, μB(y)] (4.11)

where δ = supx∈X min[μA′(x), μA(x)] denotes the degree of compatibility between
fuzzy sets A and A′ or possibility measure (1.28) that fuzzy value A′ is in concept A.
The parameter δ can be also interpreted as the firing degree of a rule. This value is
propagated by the rule and the resulting membership function B ′ cannot have greater

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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height than δ. Thus, by the formal procedure we reached the same conclusion as by
heuristic way of experience.

The further considerations are restricted to theMamdanimethod of inference. The
inference procedure (4.3), (4.11) can be easily generalized to the multiple inputs-
multiple rules inference, which has the following structure:

Premise x1 is A
′
1 AND...AND xn is A

′
n

Rules IF x1 is A1
1 AND...AND xn is A1

n THEN y is B1

...

IF x1 is Ar
1 AND...AND xn is Ar

n THEN y is Br

...

IF x1 is AR
1 AND...AND xn is AR

n THEN y is BR

Consequence y isB ′

(4.12)

where Ar
i (i = 1, .., n, r = 1, ..., R) describes linguistic term for i th attribute in r th

rule and Br stands for linguistic term expressing r th consequence.
The connectivesANDare interpreted as fuzzy intersection (1.30). The aggregation

of multiple rules is realized by fuzzy union (1.31). Now, applying minimum t-norm
(1.47) for AND connective, Mamdani inference method (4.9) and maximum s-norm
(1.59) for disjunction of rules, the following inference procedure yields:

μB ′(y) = max
r=1,...,R

μr ′
B(y) = max

r=1,...,R
min[δmin,r , μ

r
B(y)] (4.13)

where δmin,r = min(δ1,r , ..., δn,r ) (firing degree of r -th rule) and δi,r = supxi∈Xi

min[μA
′r
i
(xi ), μAr

i
(xi )] denotes the degree of compatibility between fuzzy sets A

′r
i

and Ar
i .

Themembership function of B ′ is obtained by taking themaximumofmembership
functions of each Br ′

clipped by the corresponding firing degree δmin,r . The graphic
interpretation is shown in Fig. 4.5 for the case of two fuzzy facts and two rules.

If facts are measured as crisp values (x
′
i ,..., x

′
n), instead of fuzzy sets (A

′
1, ..., A

′
n),

then procedure is somewhat simpler. The firing degree (δ) from formula for one
input-one rule (4.11) becomes:

δ = supx∈X min[μA′(x), μA(x)]
=

{
supx∈X min[1, μA(x)], x = x

′

supx∈X min[0, μA(x)], x �= x
′

= μA(x
′
)

(4.14)

Straightforwardly, formula (4.13) yields:

μB ′(y) = max
r=1,...,R

μr ′
B(y) = max

r=1,...,R
min[ min

i=1,...,n
(μAr

i
(x

′
i )), μ

r
B(y)] (4.15)

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Fig. 4.5 An inference procedure for two rules and two inputs expressed as fuzzy facts

Fig. 4.6 An inference procedure for two rules and two input crisp facts
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Table 4.2 Decision table of two input attributes consisted of three linguistic terms each

A1/A2 Small Medium High

Small B1 B2 B3

Medium B2 B4 B6

High B5 B6 B7

In this way, membership degrees of input values to respective fuzzy sets and
selected function for the AND operator fire the rule. The inference for crisp inputs is
shown in Fig. 4.6. Strictly speaking, crisp facts are expressed by fuzzy singletons, i.e.
height equal to 1 (Fig. 1.10), in order to keep above discussed equations consistent.

When the rule base contains two input attributes, it can be represented by the
decision table shown in Table4.2, where Br may be terms such as very low, low,
medium, etc. It is worth noting that several rules may have the same output Br . In
this case the number of rules can be reduced by method shown later on.

4.2.2 Defuzzification

The consequence of inference is represented as a fuzzy set (e.g. Figs. 4.4 and 4.6)
regardless of the fact, whether antecedents are fuzzy or sharp values expressed as
singletons. It means that the crisp value, which in the best way represents the fuzzy
set B ′ must be calculated. In business system values, such as bonus, discount or
reimbursement should be crisp values. In a technical system a valve should be turned
by exact angle.

Fuzzy conjunction can be expressed by many t-norm functions, fuzzy implication
can be strong, quantum, residual, each expressed by variety of functions. The same
holds for defuzzification. In this book only the best known methods are examined.
Defuzzification strategies are deeply discussed, e.g. in [13, 29, 40, 41, 47, 51].

Commonly used strategies for calculating crisp value y0 ∈ Y that represents
B ′ ∈ F(Y ), where F(Y ) is a family of fuzzy set on the domain of attribute appearing
in consequence, are [28]:

• Maximum value strategies or extreme value strategies considering only flat seg-
ment or point(s) of μB ′(y) with the maximal value of height (1.11)

• Gravity strategies considering the entire shape of themembership functionμB ′ (y)

Maximum (extreme) value strategies
If the μB ′(y) is unimodal (i.e. has unique maximum), the solution is simple: y0

is equal to height of μB ′(y) [55], i.e.:

y0unm = sup
y∈Y

μB ′(y) (4.16)

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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For non-unimodal μB ′(y), several methods, which calculate the defuzzification
value on the flat segment of the maximal height expressed as:

Fs(y) = {y|y ∈ Y ∧ ¬(∃z ∈ Y )(μB ′(z) > μB ′(y))} (4.17)

are [55]:

• Left of Maxima (LOM)—where the defuzzified value y0 gets value

y0lom = min{y|y ∈ Fs} (4.18)

• Right of Maxima (ROM)—where the defuzzified value y0 gets value

y0rom = max{y|y ∈ Fs} (4.19)

• Center of Maxima (COM)—where the defuzzified value y0 gets value

y0com = min{y|y ∈ Fs} + max{y|y ∈ Fs}
2

(4.20)

The LOM, ROM and COM strategies are illustrated in Fig. 4.7. Clearly, y0lom ≤
y0com ≤ y0rom . The COM method should not be confused with the Mean of Max-
ima (MOM) method, which assumes that there is not a flat segment Fs (4.17), but
separated different maxima [55].

Example 4.4 Inference by Mamdani and Larsen methods are illustrated in
Example 4.3. Crisp values that represent output fuzzy set HD′ for both methods
are:
y0lom−M = 7 < y0lom−L = 8

y0com−M = 8.5 < y0com−L = 9
y0rom−M = 10 = y0rom−L = 10

The result is not surprising, because the flat segment calculated byMamdani method
starts in smaller value of y (caused by minimum t-norm) than the flat segment of
Larsen method, which is caused by product t-norm. Both flat segments depicted in
Fig. 4.4 end in the same value of Y . �

Fig. 4.7 Comparison of
maximum (extreme) values
defuzzification strategies
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The gravity strategies are represented by:

• Center of Gravity (COG) calculated as:

y0cog =
∫
y y · μB ′(y)∫
y μB ′(y)

(4.21)

is widely adopted defuzzification strategy. Formula (4.21) is Rieman integral. In
usual tasks of inference, no problems exist as for solving these integrals.

• Half of Field (HOF), y0hof is the solution of

∫ yhof

−∞
μB ′(y) =

∫ ∞

yhof

μB ′(y) (4.22)

i.e. y0hof is a vertical line, which partitions the field under μB ′(y) in half.

Maximum values strategies are less demanding for calculation, but less precise,
because they do not consider areas of lower membership degrees. Hence, they are
especially suitable for “rough” inference, where the solution is reached without com-
plex calculations of integrals. The gravity strategies are suitable for tasks, where the
sensitivity of defuzzified value is crucial. If flat segment is more or less symmetrical
to the whole shape of μB ′(y), then y0com ≈ y0cog (Fig. 4.8—upper graph) holds.

Otherwise, values of y0com and y0cog can significantly vary (Fig. 4.8—lower graph).
A mixture of both strategies is

• Height DefuzzificationMethod (HDM), which is a generalization of COMmethod
[8]. It uses all flat segments of μB ′(y). Thus, defuzzified value y0 is:

Fig. 4.8 Comparison of
COG and COM
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y0hdm =
∑n

i=1 hi
y1i + y2i

2∑n
i=1 hi

(4.23)

where hi is the height of i th flat segment [y1i , y2i ]. For non-symmetric output fuzzy
sets this measure is closer to COG (4.21), than other Maximum values strategies,
because operation of defuzzification is performed not only on flat segments of
maximal height.

Example 4.5 The fuzzy inference rule for managing reimbursement for highly pol-
luted villages has been created in Example 4.2 (Fig. 4.3). Let us the set high pollu-
tion is expressed as R fuzzy set (Fig. 1.9) with parameters a = 90 mg and m1 =
100 mg. The government has decided that high reimbursement is defined by parame-
ters a = 600, m = 800 and b = 1000. The measured pollution for four municipali-
ties is M1: 85mg, M2: 95mg, M3: 97.5mg and M4: 108mg. For the inference the
Mamdani method (4.9) is chosen. Concerning M1, firing level is 0 and therefore rule
is not activated. The inference for M2 is shown in Fig. 4.9. Thus, by (4.11) we got
μB ′(y) = min[0.5, μB(y)]. SetμB ′(y) has core in the interval [700, 1000]. Hence, by
the COM defuzzification method (4.20) the reimbursement is y0 = 700+1000

2 = 850.
In the same way, reimbursement of M3 is 875 and for M4 is 900. When the Larsen
method (4.10) of inference is chosen, then the reimbursement is higher, due to the
shorter flat segment.

Let us look atM2 and the threemethods of themaximal value strategy. If the ROM
(4.19) is chosen, the municipality will receive reimbursement of 1000. But, if the
LOM (4.18) is chosen, themunicipality will receive reimbursement of 700. The value

Fig. 4.9 Reimbursement for a highly polluted municipality M2

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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of COM is somewhere in middle causing that both sides could be satisfied. By the
ROMstrategy everymunicipalitywhich activates the rulewill receive reimbursement
of 1000. This holds for the one input one rule case.

The inference rule might remain stable during a long period. The linguistic inter-
pretation of rule remains clear and reasonable. Only the parameters of fuzzy sets
should be adjusted to the new knowledge about limits of particular pollutants related
to their impact on health. �

Defuzzification strategiesmay be realized in twoways [3, 12]:ModeA-FATI (first
aggregate then infer) and Mode B-FITA (first infer then aggregate). In the former,
defuzzification procedure consists of two steps: (i) aggregation of individual Br ′

into an overall fuzzy set B ′ by, e.g. (4.13); (ii) one of aforementioned defuzzification
strategies D is applied on B ′, i.e. y0 = D(μB ′(y)). This way is illustrated in Figs. 4.5,
4.7 and 4.8.

In the latter, the contribution of each Br ′
is defuzzified separately and then y0 is

computed as weighted average:

y0 =
∑R

r=1 δr yr∑R
r=1 δr

(4.24)

where yr is defuzzified value of fuzzy set Br ′
and δr is the matching degree between

the input observation and the premise of rule r .
TheMode B-FITAway causes better response time due to reduced computational

effort [31].

4.2.3 Illustrative Examples and Issues

The next examples illustrate an inference task consisting of two input variables and
four rules.

Example 4.6 An institute faces a task of estimating needs for improvement of envi-
ronmental situation. Due to uncertainties in rules, a fuzzy inference system is con-
sidered. Two main input attributes are population density and pollution of selected
pollutant. For illustrative purpose input attributes are fuzzified into two fuzzy sets:
small and high. Output variable: needs for resources is fuzzified into three fuzzy sets:
small, medium and high. Fuzzy sets of input variables and consequence are plotted
in Fig. 4.10.

The number of rule is four and the number of possible outputs is three. Therefore,
the inference rules can be presented in the structure of IF-THEN rules:

• IF population density is small AND pollution is small THEN reimbursement is
small

• IF population density is small AND pollution is high THEN reimbursement is
medium
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Fig. 4.10 Fuzzy sets for input and output attributes

• IF population density is high AND pollution is small THEN reimbursement is
medium

• IF population density is high AND pollution is high THEN reimbursement is high

or in the decision table shown in Table4.3, where rows represent population density,
columns represent pollution and inner cells represent outputs.

The rule evaluation is realized by Mamdani method of inference (4.9). The needs
for municipality M with population density of 145 inhabitants/km2 and pollution of
65mg is plotted in Fig. 4.11. Themunicipality fully belongs to the set high population
density and partially to sets small and high pollution. Hence, two rules are fired
with δ < 1. The set B ′ consists of cuted sets medium and high. The final step is
defuzzification. Results yielded by several defuzzification strategies are in Table4.4.
For the municipality, which activates only the fourth rule, the result by all strategies
except ROM will be greater than for municipality M . Hence, we can say that from
municipality perspective ROM is optimistic, LOMpessimistic and COM somewhere
in between. For the agency providing resources the perspective is just the opposite:
ROM is pessimistic and LOM optimistic. Hence, compromising results are obtained
by COM and HDM.

Table 4.3 IF..AND..THEN rules for improving ecological situation

Pollut./Pop. dens. Small High

Small Small Medium

High Medium High
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Fig. 4.11 An inference based on two attributes, three output fuzzy sets and four rules

Needs for other municipalities are calculated in the same way. It ensures that
similar municipalities receive similar resources. If no rule is activated, it means that
either tuple is outlier, or the quality of rule base is problematic.

It should be emphasized that municipality with population density of 100 inhabi-
tants /km2 and pollution of 60mg will activate all four rules with level of 0.5. Hence,
output is a flat segment on the whole domain having height of 0.5. All methods
which deal with averages (COM, HDM, COG) get the same result in the middle of
domain having a consequence that this municipality receives support of 500, which
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Table 4.4 Needs obtained by different defuzzification strategies for municipality M

Defuzz. Strategy y0

ROM (4.19) 1000

COM (4.20) 859.37

HDM* (4.23) 761.72

LOM (4.18) 718.75

*HDM =
0.75 · 1000 + 718.75

2
+ 0.25 · 656.25 + 281.25

2
0.75 + 0.25

= 761.72

is fully acceptable solution. But, LOM suggests zero support, whereas ROM the full
support.

Users have the freedom to select defuzzification strategy, but should be able to
defend the decision. Roughly speaking, if left part of consequence space is activated,
LOM suggests no support; if right part of consequence space is activated, ROM
suggests full support. If it is an acceptable solution, then LOM and ROM are options.
Otherwise gravity strategies like COM and HDM should be options to consider. �

It is no surprise that the question, which defuzzification strategy is the most suit-
able, has appeared. It is because we were faced several times with the same question
(which t-norm, which s-norm, which implication, etc.). Generally, gravity strategies
are suitable, especially COG. Sophisticated tools offer these strategies, among others.
If company wishes to create its own less demanding tool, then procedures calculating
extreme values strategies can be considered. Furthermore, it is on company’s deci-
sion, how much resources is willing to provide, e.g. for motivating customers, and
therefore LOM and ROM could be considered as well.

Output variables can be expressed as any type of fuzzy setwith bounded support. It
implies that singletons (Fig. 1.10) are also acceptable. The inference process remains
unchanged. The difference is in simplified defuzzification procedure illustrated in
Example 4.7.

Example 4.7 A company is going to motivate customers by internal coupons with
different values according to bought items (price) and payment delay. Company has
created the following rule base:

• IF turnover is small AND payment delay is high THEN coupon is small
• IF turnover is small AND payment delay is small THEN coupon is medium
• IF turnover is high AND payment delay is high THEN coupon is medium
• IF turnover is high AND payment delay is small THEN coupon is high

Assume that instead of usual three fuzzy sets small, medium and high, company
has decided to use singletons to model the output discount as:

• IF turnover is small AND payment delay is high THEN coupon is 0*

• IF turnover is small AND payment delay is small THEN coupon is 5

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Table 4.5 Customers with
turnover and payment delay

Customer Turnover [e] Payment delay
(days)

c1 740 13

c2 1000 10

c3 1700 9

c4 1350 7

• IF turnover is high AND payment delay is high THEN coupon is 5
• IF turnover is high AND payment delay is small THEN coupon is 10

* numbers are used instead of singletons’ names.
Let us state for the sake of simplicity, four customers with the values of turnover

and payment delay exist in the database run by company (Table4.5).
The inference model for customer c3 is shown in Fig. 4.12. Two rules are fired

affecting two singletons (heights ofμ3
B(y) andμ4

B(y)). The consequence is unimodal
non-convex fuzzy set. The simplest method of defuzzification (4.16) picks value of
10 as a solution. It means that this customer receives coupon of value of 10. Though,
this customer is a perspective one for the company, there is another one (c4) with
better performances, who receives the same value of coupon. Let us further speculate
that customers c3 and c4 know each other. Customer c4 could consider this way of
motivation as unfair and decides to buy products from the competitor.

The better option is defuzzification by HDM (4.23), where all activated singletons
affect the solution. The solution is in Table4.6.

The motivation is better tailored to customers (more fairly distributed), the mean-
ing of the rule base is clear at the first glance and singletons on output ensure simpler
calculations.

If one customer has significantly much higher turnover than the others, then (with
other part of rule satisfied as well) it should receive maximal reward. For this reason,
fuzzy set high in the antecedent part should not be limited from the right side. �

The difference between crisp value and fuzzy singleton is in vertical representation
(membership degree). Singleton is a fuzzy set and therefore different firing level
of considered rules causes different height of fuzzy singletons in output, as was
illustrated in the aforementioned Example 4.7.

The critical part is the construction of fuzzy sets for input and output attributes.
It is desirable that the family of fuzzy sets covers the whole domain of considered
attributes in order to catch all possible observations. In illustrative examples in this
section two fuzzy sets cover the whole domain of attributes. In real-life tasks, usually
three to seven fuzzy sets cover the domains. Fuzzy sets can be created by domain
expert(s), designers of fuzzy inference system or mined from the data by variety
of approaches, such as linguistic summaries (Sect. 3.7.2), neural networks, genetic
algorithms and the like.

http://dx.doi.org/10.1007/978-3-319-42518-4_3
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Fig. 4.12 Fuzzy inference with singleton outputs—case of customers motivation

Table 4.6 Coupons adjusted
to customers by (4.23)

Customer Coupon [e]

c1 0

c2 5

c3 8.75

c4 10
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Theoretically, practitioners or domain experts are not required to know mathe-
matical background of the inference process. Many software products for inference
exist. But, on the other hand, the basic knowledge is welcome, because then they can
use the complex tools more intuitively and can be aware of differences in existing
functions for conjunction, disjunction, implication and defuzzification.

4.3 Fuzzy Inference Systems

These systems are computing frameworks,which reach the conclusion by concepts of
fuzzy set theory, fuzzy IF-THEN rules and inference processes described in Sect. 4.2.
These systems are known by other names, such as: fuzzy logic controllers, fuzzy
expert systems, fuzzy rule-based systems, fuzzy associative memories and by sim-
plified, but rather ambiguous name: fuzzy systems [23].

While software packages focused on flexible querying or mining summaries from
data support the experts in their work by data and summarized information, a fuzzy
inference system is expected to model expert’s knowledge and make it available (to
non-experts) for decision making, diagnosis, technical systems control and the like.
Expert system may be defined as:

An expert system is a computer program that solves problems that heretofore required signif-
icant human expertise by using explicitly represented domain knowledge and computational
decision procedures [25].

Fuzzy inference systems were initially developed for controlling technical sys-
tems. Pioneers in theoretical experiments and practical realization were Mamdani
and Assilian [33] who realized control of a laboratory model of steam engine. The
first industrial application was a control of cement kiln. Takagi, Sugeno and Kang
[43, 44] have created an inference system, in which consequences are functions
instead of fuzzy sets. In this section main points of these models are outlined. More
about these models and their comparison can be found, e.g. in [17, 24, 54].

4.3.1 Mamdani Model (Logical Model)

In this model both inputs and consequences are expressed as fuzzy sets. This system
works on principles discussed in Sects. 4.2.1 and 4.2.2. Both the inputs and conse-
quences in each fuzzy rule are fuzzy sets, which express linguistic terms. Hence, this
type is also called logical model of inference. The structure of the model envelopes
four conceptual components shown in Fig. 4.13. The main part is the fuzzy inference
engine, which performs the inference procedure based on the Mamdani method of
inference (4.9) on known fact (crisp or fuzzy) and rule base strictly following the
compositional rule of inference. Because the Mamdani model produces outputs as
fuzzy sets (including singletons), the defuzzification method should be used. The
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Fig. 4.13 Block diagram of the Mamdani model based on [15]

Mamdani type is represented as

Rr : IF x1 is A
r
1 AND...AND xn is A

r
n THEN yr is B ′r (4.25)

If x is crisp value, then A′(x) is computed as:

μ′
A(x) = F(x0) (4.26)

where F is a fuzzification operator and x0 is crisp input. The usual choice is the
singleton fuzzification, i.e.

μ′
A(x) =

{
1 for x = x0
0 otherwise

Non-singleton options [39] like triangular or Gaussian fuzzy sets are suitable for
representing imprecision of measurements. This imprecision is examined in Chap.5.

Two drawbacks of rule-based systems, which may appear in practice, are [31]:

• When the input attributes aremutually dependent, it is difficult to find proper fuzzy
granulation of the input space.

• The size of a rule base increases rapidly with the number of input attributes and
linguistic terms constructed on their respective domains. This problem is known
as the course of dimensionality. For instance, if a rule base consists of three input
attributes fuzzified into five linguistic terms each, the total number of rules is 125.
This issue complicates the interpretability of the system by user.

These issues can be mitigated by making the rule base more flexible. One of
solution is DNF (disjunctive normal form) fuzzy rule base, which has the following
form [32]:

IF x1 is Ã1 AND...AND xn is Ãn THEN y is B (4.27)

where each input value xi takes as its value a set of linguistic terms Ãi , whose
members are connected by a disjunctive aggregation, that is, xi is Ãi = {Ai1 or Ai2

or ... or Aip}.

http://dx.doi.org/10.1007/978-3-319-42518-4_5
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Hence, the rule of a DNF structure may be:

IF x1 is {A11} AND x2 is {A21 or A22 or A23} AND x3 is {A31 or A32} THEN y is
B.

For example, an observation may state: IF length of roads is very high THEN
winter road maintenance is high regardless of the value of number of days with snow
coverage and precipitation. This observation is converted into the rule of a DNF
structure:
IF length of roads is high AND number of days with snow is {small OR medium OR
high} AND precipitation is {small OR medium OR high} THEN maintenance is very
high.

4.3.2 Sugeno Model (Functional Model)

The structure of thismodel envelopes two conceptual components shown in Fig. 4.14.
Thismodel is similar to theMamdani method (4.25) in several points. The IF part and
rule base are exactly the same. The difference is in the consequence. In the Sugeno
model consequence is either constant, or linear function, i.e. rule structure that has
fuzzy antecedent and functional consequent parts. Therefore, this model is called
functional model of inference. The system is represented as:

Rr : IF x1 is A
r
1 AND...AND xn is A

r
n THEN yr = ar1x1 + ... + arnxn + cr (4.28)

where variables in IF part have the same meaning as in (4.12), ari is i th coefficient
in r th rule and cr is a constant. In a zero-order Sugeno model, the consequence of
rule i (yi ) is a constant (all coefficients ai , i = 1, ..., n gets value of 0). Otherwise,
Sugeno model is the first-ordered model.

Unlike the Mamdani model, the Sugeno model cannot strictly perform compo-
sitional rule of inference [15]. Since each fuzzy rule has a crisp output, the overall
output y0 is calculated via weighted average:

y0 = δmin,1 · y1 + ... + δmin,R · yR
δmin,1 + ... + δmin,R

(4.29)

Fig. 4.14 Block diagram of
the Sugeno model based on
[15]
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or weighted sum:
y0 = δmin,1 · y1 + ... + δmin,R · yR (4.30)

where yr = f r (x ′
1, ..., x

′
n), r = 1, ..., R and δ has the same meaning as in (4.11) and

(4.13). This equation corresponds with the B-FITA defuzzification (4.24), because
both are related to interpolation, where yr is individual output of each rule either in
functional way, or as defuzzified value of Br ′

.
If no rule is activated, then weighted average ends in infinity. Concerning the

weighted sum, result is 0. Care should be focused on constructing fuzzy sets, espe-
cially for input variables. If a tuple (e.g. customer or territorial unit) does not activate
any rule, it cannot be assigned to any output fuzzy set and therefore cannot be prop-
erly motivated or reimbursed, for example. Hence, all possible input values should
be considered.

An illustrative example of rules in Sugeno model is:

• IF temperature (x1) is high AND pressure (x2) is high THEN set valve on 2x1 + x2
• IF temperature (x1) is low AND pressure (x2) is low THEN set valve on 3x1 − 1

2 x2

Practically, a zero ordered Sugeno model is equivalent with the Mamdani model
expressed by singletons on the consequence side. But, theoretically, though the sin-
gleton seems to be an ordinal number, it is expressed as fuzzy set and therefore firing
degree δ can cut its height, so we should apply defuzzification method. On the other
side, a zero-ordered Sugeno model uses classical numbers. The weighted average
of crisp outputs in Sugeno model (4.29) is equivalent to the HDM defuzzification
method (4.23) applied on singletons.

Example 4.8 Let us look again at Example 4.7. This inference can be solved by a
zero-ordered Sugeno model. The rule base is:

• IF turnover is high AND payment delay is small THEN coupon is 10
• IF turnover is high AND payment delay is high THEN coupon is 5
• IF turnover is small AND payment delay is small THEN coupon is 5
• IF turnover is small AND payment delay is high THEN coupon is 0

Let us focus on customer c2 from the Example 4.7. This customer activates all
four rules with δ = 0.5. By weighed average (4.29) the solution is 5. The same as
in Mamdani model with singleton outputs and HDM method. But, if weighted sum
(4.30) is used then the customer c2 receives output of 10. �

4.4 Fuzzy Rule-Based System Design

Two components of fuzzy rule-based system are knowledge base and fuzzy infer-
ence. The latter, discussed in Sect. 4.2, is related to formal mathematical structures of
inference, which are able to imitate human’ reasoning. The former serves as a repos-
itory of the problem-specific knowledge upon which the interface process reaches
the output for the observed inputs [31].
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Roughly speaking, building the fuzzy rule-based system is divided into threemain
steps: deciding which model to employ (Mamdani or Sugeno), constructing the rule
base and selecting defuzzification strategy.

The first step in design of a knowledge base is deciding, whether to employ
Mamdani or Sugeno model. If designer wishes to avoid defuzzification and output is
better explained by functions, then Sugenomodel is the choice. Otherwise,Mamdani
model is the right one.

The next step is related to building rule base: to decide which input attributes
are related to the output one, fuzzification of their domains into linguistic terms and
merging input attributeswith output attribute by IF-THEN rules. Domains of selected
attributes are fuzzified into several fuzzy sets. In most cases this number ranges from
three to nine, with nine being an upper limit according the observations expressed in
[38].

Fuzzy sets expressing attributes are often and, sometimes reasonably, designed
with insufficient information about behaviour of attribute A at the beginning of the
rule base design [45]. In the sketch of the rule base, membership functions represent
more or less rough approximation. Attributes may be influenced by variety of facts.
Designers of inference systems or experts should be aware that the more information
related to input attributes Ai and the output ones is available, the more close the
form of membership function μAi (x) is to ideal representation. Hence, construction
of fuzzy sets should be done carefully. In order to meet this goal Trillas and Morega
[46] suggested the following steps, which may be useful in construction of a rule
base:

1. Capture the rough behaviour of attribute A in regard to its universal set X
2. Once a shape of a prototype of the membership function is reached, the final

form depends on more information about parameters and shape of fuzzy set. This
information should be deeply searched.

3. Based on additional information obtained in Step 2, the newmembership function
μA(x) is constructed

4. This membership function should be checked against the known data to be sure
that it satisfies what is required

5. In case of positive answer,μA(x) is accepted. If negative answer appears, design-
ers should return to Step 1.

Commonly accepted way for overlapping these sets is in their crossover point
(1.14). An example are the fuzzy sets plotted in Fig. 4.10.

Measures of fuzziness can be helpful in evaluation of constructed fuzzy sets. If
this measure is equal to 0, then created sets are crisp. On the other side, maximal
value of this measure (if measure of fuzziness for a set and its complement is equal)
reveals that the uncertainty is unacceptable high, i.e. instead of the fuzzy sets small,
medium, high we have one fuzzy set medium with the flat segment of value 0.5 over
the domain. Both extremes are illustrated in Fig. 1.19.

Aforementioned aspects are illustrated on the model for rewarding good sellers.

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Example 4.9 The goal is to create fair and flexible policy for rewarding sellers in
a company. Hence, the output attribute is reward in money units. Acceptable input
attributes are number of sold items and average persuasion time. Furthermore, both
attributes are equally important. For the sake of simplicity, let both input attributes
be fuzzified into two fuzzy sets and output variable into three fuzzy sets. Knowing
these facts, the rule base may be of structure:

• IF number of sold items is high (A1
1) AND persuasion time is short (A1

2), THEN
reward is high (B1)

• IF number of sold items is high (A2
1) AND persuasion time is long (A2

2), THEN
reward is medium (B2)

• IF number of sold items is small (A3
1) AND persuasion time is short (A3

2), THEN
reward is medium (B3)

• IF number of sold items is small (A4
1) AND persuasion time is long (A4

2), THEN
reward is small (B4)

Let us consider predicate number of sold items is high for which we need to
construct fuzzy set high.

This predicate is expressed by increasing function, which may be linear one with
unlimited support and core (1.9), because we are not aware of the possible highest
number of sold items. Fuzzy set high reward is also expressed by increasing function,
but with the limited core and support, because the maximal value of reward cannot
be arbitrary high.

If company has sellers in several regions, then external factors, such as unemploy-
ment and climatic conditions, which may affect number of sold items and persuasion
time, should be taken into account. Hence, parameters of fuzzy set (a, m) in (1.23)
differs by regions. Sellers in regions of low unemployment and suitable climatic
conditions have better external factors. By external factors we mean attributes, the
values of which are not collected in company database, but may be available from
e.g. statistical office. In this way the same structure of the rule base is used in each
region. The difference is in parameters of fuzzy sets, which may be stored in fuzzy
relational databases and used, when sellers from a particular region are evaluated.

Having obtained this information,membership functions for input linguistic terms
are constructed for each region. A suitable way for the construction is the uniform
domain covering method discussed in Sect. 2.2. Membership functions for output
linguistic terms can be the same for all regions. These functions can be checked
by measures of fuzziness—Sect. 1.2.5 or cardinalities—Sect. 1.2.1 to see, how they
cover respective domains.

The rule base states that there are two rules with the same output and both input
attributes are equally important. If it is not the case, the second rule may have output
medium-high and the output of the third rule may be medium stating that number of
sold items is more relevant. �

Let the decision be Mamdani model, because linguistic interpretation of output is
better legible for decision makers. The defuzzification strategy should be chosen as
well. Discussion related to strategies and their properties can be found, e.g. in [55].

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Short discussion in Example 4.6 may be also helpful. The COM or COG strategies
are suitable, because the whole flat segment or the whole shape respectively are
reflected in the final value of reward.

Computational effort may be considered as well. The decision depends on con-
sidering, whether the task requires fast method (for example, control of a technical
system in real time), or time is not a crucial element (for instance, decision-making).
In Example 4.9 time is not the crucial element, so the A-FITA is an option for the
defuzzification mode.

4.5 Fuzzy Classification

The classifications and rankings of objects (customers, municipalities,...) are topics
which gain increasing interest of decision and policy makers and researchers. We
could say that:

In the classification, objects are classified into several classes what enables better overview
of all objects and a particular action could be undertaken on objects from a chosen class [19].

4.5.1 A View on Crisp Classification

Classification can be realized by IF-THEN rules. Crisp classification consists of
precise values and sharp rules. Assume classification space created by four rules:

• IF A1 < Q AND A2 < R THEN x belongs to C1

• IF A1 ≥ Q AND A2 < R THEN x belongs to C2

• IF A1 < Q AND A2 ≥ R THEN x belongs to C3

• IF A1 ≥ Q AND A2 ≥ R THEN x belongs to C4

plotted in Fig. 4.15. One of drawbacks of crisp classification is the sharp distinction
between similar tuples r2 and r3 and the same treatment of tuples r1 and r2, as well
as tuples r3 and r4, even though they have not similar values of considered attributes.
The same holds for tuples r5 and r6. This drawback is further discussed in [36].

A possible mitigation of the recognized issue can be realized by more classes
plotted in Fig. 4.16. In such a classification space tuples r1 and r2 as well as r3 and
r4 are now distinguishable, but the number of rules significantly increased. The new
rule base consists of 16 output classes expressed by sharp boundaries.

On the other side, when rules have to be crisp without any doubt (e.g. classify
customers, whether they met or did not meet the deadline for payment), then crisp
classification efficiently solves such a task.
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Fig. 4.15 Classification space of crisp classes

Fig. 4.16 Relaxed crisp classification space from Fig. 4.15 with more rules

4.5.2 Managing Fuzzy Classification

Fuzzy classification systems are a counterpart of above discussed fuzzy control sys-
tems. The IF part of classifiers is expressed by fuzzy sets. Output takes values from
a finite set of possible values representing classes. When object must belong to one
class, the winner criteria rule may be applied. The overall output is assigned to the
consequence of rule having the highest firing value. This way is suitable for instance,
in voting systems or in assigning suitable position for workers in a company. Con-
cerning reward in Example 4.9, better option are overlapped classes.

The problem of crisp classification illustrated in Fig. 4.15 can be solved by over-
lapped output classes shown in Fig. 4.17 [36]. Now, tuples r2 and r3 belong to all
four classes with different membership degrees. Furthermore, tuples r1 and r2 as
well as r3 and r4 are distinguishable. Instead of large number of crisp rules, we have
four fuzzy IF-THEN rules:
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Fig. 4.17 Relaxed crisp classification space from Fig. 4.15 by overlapping classes

• IF A1 is small AND A2 is small THEN x belongs to C1

• IF A1 is high AND A2 is small THEN x belongs to C2

• IF A1 is small AND A2 is high THEN x belongs to C3

• IF A1 is high AND A2 is high THEN x belongs to C4

where output classes can be fuzzy sets, fuzzy singletons or constants.
Fuzzy classification also copes with drawbacks [37]. The definition of fuzzy sets

for input attributes and output classes remains to be a challenging task. The design
of fuzzy classes requires the experts or users to be aware of this issue.

If a rule base inappropriately covers data, then its quality is low. Let us examine
this issue on a classification space, presented in Fig. 4.18, which consists of two
input attributes and four output classes. Domains for both attributes are divided into
two fuzzy sets small and high (Fig. 4.18 upper graph) taking into account the whole
domains defined in the database. Fuzzy sets are constructed applying the concept
of building linguistic variables (Sect. 1.4) and fuzzy partitions (1.70). Let for both
attributes data distribution f A(x) be similar like presented in Fig. 4.18 on graph in
the middle. As a consequence, majority of records are in class C1, while class C4 is
almost empty (Fig. 4.18 bottom graph). In this way, majority of entities is treated (e.g.
motivated) in the same way. It means that the classification task is an unnecessary
burden, because this classification produces no significant effect, i.e. the main goal
of classification is not met.

The quality measures proposed in Sect. 3.6.1, especially validity expressed by
proportion, coverage (3.12) and outliers (3.14) are able to detect this problem. Based
on this information, user can adjust parameters of fuzzy sets or modify number of
rules.

Example 4.10 The task is classifying municipalities with regard to the estimation
of the winter road maintenance needs using attributes length of roads (Road) and
number of days with snow coverage (Snow). The domain of attribute number of days

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
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Fig. 4.18 Inappropriately defined fuzzy sets

with snow is the interval [0, 365] of integers. The domain for the length of roads
attribute is a set of real numbers greater than zero.

The rule base for the experiment contains nine rules of the IF-THEN structure:

• IF Road is Small AND Snow is Small THEN Needs is C1

• IF Road is Small AND Snow is Medium THEN Needs is C2

• IF Road is Small AND Snow is High THEN Needs is C3

• IF Road is Medium AND Snow is Small THEN Needs is C4

• IF Road is Medium AND Snow is Medium THEN Needs is C5
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Table 4.7 Distribution of municipalities over classes

Output class Number of municipalities fully
belonging

Number of municipalities partially
belonging

C1 253 157

C2 131 167

C3 13 19

C4 3 18

C5 2 11

C6 0 2

C7 0 4

C8 0 4

C9 0 0

• IF Road is Medium AND Snow is High THEN Needs is C6

• IF Road is High and AND is Small THEN Needs is C7

• IF Road is High and AND is Medium THEN Needs is C8

• IF Road is High and AND is High THEN Needs is C9

The percentage of needs for the winter road maintenance can be associated with
each fuzzy output class: for instance, the classC1 gets a percentage of needs of 10%,
C2 gets 20% ... andC9 gets 90%. For example, the distribution ofmunicipalities over
classesC1−C9 is illustrated in Table4.7. It means that the majority of municipalities
is situated in classesC1 andC2, while no single municipality fully belongs to classes
C6 −C9. It could mean that fuzzy sets, classes or rules are not appropriately defined.
Clearly, the rule base is of low quality and should be modified.

�

The rule base from Example 4.10 can be modified in several ways. One of pos-
sibilities is creating a rule base containing more attributes and rules, but less output
classes in the structure of DNF rule base.

The topic of fuzzy sets construction related to rule-based systems is covered by
vast literature, e.g. [5, 14, 21, 22, 42, 48, 50].

4.5.3 Fuzzy Classification by Fuzzy Queries

Roughly speaking, data selection is a special case of classification, where tuples are
separated into two classes: relevant ones that are selected and irrelevant that are not
selected. It is well known that non-weighted fuzzy rules can be directly translated
into fuzzy queries [9]. Since queries’ conditions are equivalent with the IF part of
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rules and results are tuples that fully or partially belong to the output classes, the
classification query language can be designed in the spirit of the fuzzy querying
approaches described in Chap.2. Hence, the results of queries are tuples selected
into overlapping output classes. Finally, an aggregation should be applied. Fuzzy
classification by fuzzy queries is examined, e.g. in [10, 19, 36, 49].

The fuzzy Classification Query Language, fCQL [36, 49] enables users to classify
entities from a database by selecting one of pre-determined classification contexts
stored in the context model of a database.

The classification language fCQL is based on SQL. The clauses are adjusted to
classification purposes. Instead of the select clause, the name of the atttribute to be
classified is written in the classify clause. The from clause is the usual SQL clause
stating in which table(s) data should be sought. Instead ofwhere clause this approach
has with clause which specifies condition for a classification to a particular output
class. For municipalities classification the query for the class high winter road main-
tenance needs is:
CLASSIFY municipality_name
FROM municipalities
WITH length of roads is high AND number of days with snow is high

In this section, the emphasis is put on the classification by query approach based
on theGLC (2.9). The logical operator⊗n

i=1 is reduced to the and operator to describe
the AND connective in IF part of a rule [19]:

where ⊕mk
j=1 ⊗n

i=1Ai ◦ L j
i , k ∈ K (4.31)

where n is the number of input variables, K denotes the number of output classes
(K ≤ R, where R is number of rules), ⊕ stands for maximum operator that merges
thosemk IF partswhich have commonTHENpart (sameoutput class k, k = 1, ..., K ).

Finally, the query structure is extended by the suggested clause classify_into. This
clause specifies the name of the output class to which selected tuples are classified.

A tuple in fuzzy classification activates more than one output class with different
membership degrees, if it partially satisfies more than one fuzzy query. The overall
output is calculated by the aggregation of all coefficients of classes, which the tuple
activates, severed by activation degrees (matching degrees to respective queries)
using the following equation [19]:

y0(x) =
R∑

r=1

μCr (x)Gr (x) (4.32)

where R is the number of classes (output fuzzy sets), μCr (x) is the membership
degree of tuple x to the class Cr and Gr is the coefficient describing class Cr .

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_2
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Fig. 4.19 Illustrative interface for solving classification tasks by fuzzy queries

This equation corresponds to the overall output of the Sugeno inference model
expressed by weighted sum (4.30). In order to avoid this drawback, the following
equation for evaluating overall output is created:

y0(x) =
∑R

r=1 μCr (x)Gr (x)∑R
r=1 μCr (x)

(4.33)

This equation corresponds to the overall output of the Sugeno inference model
expressed by weighted average (4.29) and the HDM defuzzification method (4.23),
applied on consequences, expressed by singletons.

Example 4.11 An institute faces a task of estimating needs for road maintenance in
winter. For the sake of simplicity two input attributes are: length of roads and number
of days with snow coverage again. Input attributes are fuzzified into two fuzzy sets:
small and high. Output variable: needs for resources, contains three constants 0.1,
0.5 and 0.9 corresponding to singletons of small, medium and high or coefficients
in zero-ordered Sugeno model. The illustrative interface for classifying territorial
units is shown in Fig. 4.19. Parameters of fuzzy sets describing length of roads are
visible in interface. Creating rule base is intuitive. At the beginning, classification
space is initialized by setting number of rules, output classes, database attributes and
parameters of their fuzzy sets. Consequently, each rule is constructed by selecting
appropriate combination of attributes’ fuzzy sets and output classes.



4.5 Fuzzy Classification 133

Three fuzzy queries are created from four rules (each query for one output class):

• for output class 0.1 (small) (k = 1, m1 = 1):
CLASSIFY_INTO Small
SELECT *
FROM municipalities
WHERE roads is Small and snow is Small

• for output class 0.5 (medium) (k = 2, m2 = 2):
CLASSIFY_INTO Medium
SELECT *
FROM municipalities
WHERE (roads is Small and snow is High) or (roads is High and snow is Small)

• for output class 0.9 (high) (k = 3, m3 = 1):
CLASSIFY_INTO High
SELECT *
FROM municipalities
WHERE roads is High and snow is High

The minimum t-norm is used as AND connective and maximum t-conorm as OR
connective.

In the next step weighted sum (4.32) is applied on each selected tuple (tuples that
activated at least one rule). The result is shown in tabular form in the lower right part
of interface. Concerning the option for exporting results, spreadsheet software and
thematic maps extend the users’ abilities to analyse tasks. �

The observation that fuzzy selection and classification can be solved by the same
basis (query engine) leads to the construction of a conceptual model of their integra-
tion shown in Fig. 4.20. When the user wants to query data, the process marked with
the solid line is activated. When the user wants to classify data, the process marked
with the dashed line is used.

4.6 Remarks to Applications

Even though the fuzziness is closely related to phenomena in social sciences and busi-
ness, the mathematics of fuzzy logic (mainly fuzzy inference systems) is prevalently
applied in engineering and computer science [1, 37]. This trend allows engineer-
ing systems to be more sophisticated and powerful. We could reach the same goal
in social sciences and business, if we efficiently support them by fuzzy logic. The
experiments have illustrated that the fuzzy control systems and their counterpart
fuzzy classifiers can be used in business and policy making.

In [8] we can find simplified inference procedure, which can be used for less
complex tasks and automatized, e.g. by in-house developed software. Furthermore,
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Fig. 4.20 Possible integration of fuzzy selection and classification based on [19]

CRM systems could be improved by simplified fuzzy inference or classification,
which might bring benefits to both sides (company and its customers) [35].

When users are willing to accept less accurate, but flexible systems and want to
include approximate reasoning, a fuzzy classification tool is the right choice and the
fuzzy tool kit should be kept on the shelf [27].

Software tools focused on fuzzy inference are mainly highly parametric and com-
plex tools in order to solve wide variety of complex tasks, but are complicated for
users (domain experts which are not familiar with fuzzy logic and databases). One of
possible solution is the approach based on integrating fuzzy selection and classifica-
tion. Another option to avoid these disadvantages is the shell to build fuzzy inference
systems in Java suggested in [30].

An interesting contribution in this direction is a newly realized survey of fuzzy
systems software [2]. It can provide valuable information for businesses, public
institutions and researchers that cope with the fuzziness of real world in their work
and search for suitable tools.

Fuzzy inference and classification tasks can be realized frequently with different
parameters. For instance, company would like to classify sellers in different regions
for rewards. Rule: if number of sold items is high and average persuasion time is
small then reward is high is generally true, but parameters of fuzzy set high number
of sold items differs in respect to the facts such as unemployment, income, climatic
conditions and the like. Hence, fuzzy sets and their parameters should be somehow
stored and modified when needed. Companies databases are usually relational ones.
If parameters of fuzzy sets are stored in these databases in a way that normal forms
and integrity rules are preserved, then all required data are in one place. Chapter5
is dedicated to manipulating fuzzy data (collect, store, modify, delete) in traditional
relational databases.

http://dx.doi.org/10.1007/978-3-319-42518-4_5
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Chapter 5
Fuzzy Data in Relational Databases

Abstract Many agree that relational databases, like any other model of the real
world, are imperfect artefacts. Hence, they cannot cover all occurrences and variety
of data, in our case fuzzy data. Fuzzy values of attributes cannot be directly stored
in traditional relational databases due to the first normal form. On the other hand,
relational databases are broadly used. We firstly examine the way, how to store fuzzy
data in traditional relational databases by satisfying normal forms in order to keep
the integrity of a database in an usual way. Databases which are in use should be
straightforwardly converted into fuzzy relational databases, when users decide that
some attributes are better expressed by fuzzy data than by crisp values. Moreover,
attributes which remain crisp, should not be affected. This improvement can be
realized by fuzzy meta model of relational database. The second part of the chapter
is focused on querying and summarizing fuzzy databases.

5.1 Classical Relational Databases

Relational databases are widely used in commercial world and governmental agen-
cies for storing data. The normalization is a crucial process in database design in
order to achieve a consistent database capable to ensure the integrity of the collected
data. A database is considered to be normalized, if it is minimally in the third normal
form [13, 30].

The normalization is a process of efficiently organizing data in a relational data-
base. It means that redundancy is eliminated, that is, each value is stored in one place
and used in relationships, if needed. Another aspect is that data dependencies make
sense, i.e. table (relation) consists of related data only.

Database is in the first normal form (1NF), when the value of any attribute is a
single value from the domain of the attribute. It implies that a subset of several values
is not allowed.

The crucial element in a relation is the primary key, i.e. one or several attributes
which unambiguously identify each record in that relation. Database is in the sec-
ond normal form (2NF), when it is in the 1NF and each non-key attribute is fully
functionally dependent on the primary key. It means that non-key attributes are

© Springer International Publishing Switzerland 2016
M. Hudec, Fuzziness in Information Systems,
DOI 10.1007/978-3-319-42518-4_5

139



140 5 Fuzzy Data in Relational Databases

not dependent on a part of the primary key, when primary key consists of several
attributes.

Database is in the third normal form (3NF), when it is in the 2NF and each non-key
attribute is not transitively dependent on the primary key.

The primary key (also mentioned in Sect. 2.1) is an unique value consisted of
one or several attributes which clearly identify the whole tuple. Hence, all attributes
included in the primary key have to be crisp values. In other words, the ambiguity in
the primary key is out of question.

Example 5.1 In a database describing students let us have the relation STUDENT
describedwith attributes #id, name, date of birth, age, telephone contact.All attributes
are precise ones. Furthermore, the relation STUDENT is not in a 1NF, because the
studentmayhavemore than one telephone number (e.g. twomobile and one landline).
Herewith, these values cannot be simply written in the column telephone_contact.
In order to keep the database consistent, we should create additional relation TELE-
PHONE_NUM and properly link it with the STUDENT table. The relational model
is shown in Fig. 5.1. �

The difference between relation and relationship should be emphasized, because
sometimes they are improperly used in database literature. The relation does not
explain, how are two tables “connected” (e.g. STUDENT and TELEPHONE_NUM
in Fig. 5.1). The relation stands for a table, e.g. STUDENT in the same figure. All
rows represent the subset of the Cartesian product. Strictly speaking, the table is a
graphical or user-friendly representation of a relation. The relationship explains the
connection between tables by primary—secondary keys.

Imprecision in attributes’ values can be, in a limited way, expressed without fuzzy
logic. This is achieved by the NULL value introduced in [12] and further developed
in [11]. The NULL value of an attribute A indicates that a value for a particular
tuple could be any value from the domain D, including non-applicable one. Any
comparison with NULL value in database queries creates an outcome that is neither
true (1) nor false (0) called maybe. In terms of the Łukasiewicz three-valued logic,
term maybe represents the truth value of 0.5 [5].

Storing fuzzy data in any relational database management system (RDBMS)
seems to be impossible due to the 1NF. The 1NF states that only atomic values
of attributes can be stored in relational tables, i.e. “none of its domains has elements
which are themselves sets” [13]. It means that, if the database attribute is defined

Fig. 5.1 Relationship STUDENT—TELEPHONE_NUM satisfying the 1NF

http://dx.doi.org/10.1007/978-3-319-42518-4_2
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over a domain of real numbers, e.g. pollution, then we cannot express it as a tri-
angular fuzzy number (Fig. 1.5), because we need three real numbers which in fact
represent a set. Moreover, these three values are not independent, because only in
proper order they represent triangular fuzzy number (1.33). In the case of relation
TELEPHONE_NUM shown in Fig. 5.1, the order of telephone numbers is irrelevant.

If these parameters are stored in away that requirements of normality are satisfied,
then we can manage fuzzy data in a traditional relational database.

5.2 Fuzziness in the Data

In databases many data are precise ones, e.g. number of passengers and number of
sold items. On the other hand, many other data are stored and used as numbers which
pretend precision. These data are fuzzy either in their nature, or caused by the non-
ideal instruments for measurements (tolerance interval). The fuzziness is amplified,
when both types appear. Data are also fuzzy, when they represent estimations of
people. For example

environmental data, quality of life data and measurements of continuous one-dimensional
quantities cannot be adequately expressed by crisp numbers [42].

A good example of the first type is the flooded level marked on wall illustrated in
Fig. 5.2, where we cannot clearly state, which crisp value is the best option.

Examples of the second type are values measured by instruments.We should keep
inmind that themeasurementmade by ameasuring instrument is usually approximate
due to the tolerance interval [27]. It means that the crisp real value is somewhere
in the (small) interval [a, b], but we do not know exactly where, i.e. μ(x) = 1 for
x ∈ [a, b] and μ(x) = 0 for x /∈ [a, b].

Further imprecision arises from people’ estimation, e.g. observations or answers
in questionnaires. For instance, someone could declare that the speed was approxi-
mately 90km/h, but for sure not lower than 75km/h and not higher than 110km/h.
This uncertainty can be managed by triangular or trapezoidal fuzzy number.

Even when data are expressed as linguistic terms, problem of choosing the right
termmay occur. Let us, for example, express the number of days with snow coverage
attribute by linguistic terms according to the partition shown in Fig. 1.17. Value 25
is expressed as linguistic term small, but value 143 (crossover point or maximal

Fig. 5.2 Flooded level
marked on wall

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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uncertainty point between sets small and medium) may be expressed as set of terms
{small, medium}, because we are not sure which term is a better option.

The relational databases, like any other model of a real world, are imperfect arte-
facts [30]. Hence, they cannot cover all occurrences and variety of data including
fuzzy data. If the real world is crisp, then classical relational databases would per-
fectly meet all requirements. But the real world is not deterministic. It means that
the values of attributes are not known with sufficient precision to justify the use of
traditional databases to store these data.

Chapter4 is dedicated to fuzzy inference. For example, expert(s) determine(s)
parameters of fuzzy sets in IF-THEN rules. These sets should be efficiently stored
for further adjustment and use in inference tasks. The PERT diagrams are widely
used in project managements. Each activity is expressed by three numeric values
(optimistic, expected and pessimistic) instead of just one crisp value. Estimation
of activity duration and time of completion is often uncertain. Fuzzy logic helps,
because it covers this uncertainty [4, 44]. Fuzzy data for these tasks should be also
efficiently stored in a structured way and available by request.

5.3 Fuzzy Databases: An Overview

A fuzzy database is a database capable to store fuzzy information related to tuple
(row in a database), attribute (column in a database) or objects in a database [8].
Presumably, the term fuzzy database was introduced in [20]. In fuzzy databases,
basic model, similarity based models, possibility based models and GEFREDmodel
are the main approaches. In order to provide overview of fuzzy databases, these
models are roughly explained.

• Basic model [30] is the simplest one. An attribute (column) expressing uncertainty
of each tuple is added to the relation. The domain of this attribute is the unit
interval. Though this model is the simplest and has some limitations, it can be
straightforwardly added to any relational DBMS. The basic model is discussed in
this chapter.

• Similarity based model or the Buckley-Petry model [6, 7] utilizes similarity rela-
tions [46] in the relational model. The value of attribute is taken from the finite
set of numbers or labels. If we are not sure which value is the best for a partic-
ular tuple, we can write both, e.g. very small and small. Furthermore, similarity
threshold can be added in order to get values the similarity of which is larger than
the threshold value.

• Possibility models utilize the possibility theory [45] in databases. The knowledge
about values of an attribute A (on a domain D) of a tuple r can be represented
by the possibility distribution πA(r) on the domain D. The most important possi-
bilistic models are [16]: Prade-Testemale model [31], Umano-Fukami model [40]
and Zemankova-Kandel model [47]. These models differ in ways of expressing
possibilities for unknown, non-applicable and undefined values.

http://dx.doi.org/10.1007/978-3-319-42518-4_4
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• The GEFRED model (Generalized Fuzzy Relational Database) [26] is a synthesis
of aforementioned models. It is based on generalized fuzzy domains of attributes
and fuzzy relationships capable to handle a wide range of fuzzy information. This
model was expanded with fuzzy division [14] and server for queries [15].

Recent overview of fuzzy databases can be found in [16, 24].
Except the basic model, these models are sophisticated enough to cope with

variety of fuzziness in attributes, relationships between entities and flexible queries.
However, they lack broad real applications due to their complex structures and lack of
commercial tools unlike the traditional relational databases.We should not neglect the
fact that users are familiar with classical relational databases and prefer to continue
working in the same way, if it is only possible. Further, database designers expect
clear methodology supported by available CASE tools. The following statement [36]
explains the main drawback of fuzzy databases.

Although this area has been researched for a long time, concrete implementations are rare.
Methodologies for fuzzy-relational database applications development are nonexistent.

Undoubtedly, sophisticated fuzzy databasemodels have their advantages for com-
plex tasks, for example, in research of complex socio-natural phenomena. On the
other hand, companies (especially small and medium sized enterprises) would pre-
fer a simple to use database tool, as is the case of classical databases. That is why,
aforementioned sophisticated models are not further examined.

To summarize, main reasons, why realizations of fuzzy databases lag behind the
theory, presumably are the following:

1. The research and applications ofmanaging fuzzydata in databases have beenham-
pered by the fast development of different database technologies. Fuzzy approach
should be adapted to each paradigm or at least main paradigms.

2. When we focus our interest on relational databases, nowadays broadly used, we
find out that users are accustomed to clear methodology and variety of CASE
tools, which is not the case in fuzzy databases.

3. Users are not interested in another database in their companies. They welcome,
whenmanaging fuzzy data is working as a part of the existing database, if possible
with trouble-free extension.

This section is focused on fuzzy relational database solutions, which follow these
findings.

5.4 Basic Model of Fuzzy Database

This is the simplest form of a fuzzy database which can be straightforwardly created
in any RDBMS.
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5.4.1 Structure of Basic Model

In a basic model of fuzzy database an additional column expressing membership
degree of a tuple to the relation is created. The benefit is a simple solution which
does not affect normality of a database, that is, if the initial relation is in 3NF, it
will also remain in 3NF after adding this column. In addition, when a relational
database is migrated to the fuzzy one, such a column has to be added only into
relations which store uncertain tuples. The drawback is in unclear meaning of the
membership degree. This degree might tell us the uncertainty of a tuple as a whole
(e.g. interviewer’s opinion, about how familiar was the respondent with the topic of
questionnaire), the uncertainty of a specific attribute (e.g. respondent is fully willing
to cooperate, but is able to give only roughly estimated value), or the uncertainty
expressing influences among attributes.

The possible solution is adding an attribute, where uncertainty is described as
open text. Nevertheless, new issues appear: (i) for user it might be a burdensome
task to express uncertainty by a short and more or less uniform sentence and (ii) it
is somewhat a complicated task for a query engine to read and properly understand
the meaning of these sentences.

Example 5.2 Let us have relation BUILDINGwith attributes #id, age, size, suitabil-
ity_living, energy_consumption. During data collection and storing data in database
users have noticed that values for some buildings are estimated or even guessed.
Thus, the existing relation BUILDING is extended into the BUILDING(#id, age,
size, suitability_living, energy_consumption, m), where attribute m ∈ (0, 1] stands
for the membership degree. The interval is open from the left side, because tuples,
which clearly do not belong to the relation, are not considered. This degree might be
related to age, suitability for living or estimated energy consumption. For someone
who just writes these values into the table, mining might be clear, but later even the
same user might forget it.

In order to avoid this problem, the additional attribute: explain_m is included.
Hence, two tuples might be expressed as follows: (55, 120, 700, good, 4230, 0.8, age
is uncertain—no information from cadastre, but specific architectonic parts indicate
the date, when house had been built) and (56, 90, 823, medium, 4235, 0.6, suitability
for living is more medium than good). �

The basic model can be efficiently used in the M:N relationship. An example
is relationship between tables EXPERT and FIELD_OF_EXPERTISE (Fig. 5.3)
expressed in the notation of Chen [10]. A relational database is not capable to directly
manage M:N relationship. The solution is a bridge table shown in Fig. 5.4. This table

Fig. 5.3 The M:N
relationship between
relations EXPERT and
FIELD OF EXPERTISE
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Fig. 5.4 The M:N relationship from Fig. 5.3 realized by bridge table

Fig. 5.5 The relationship between tables EXPERTandFIELDOFEXPERTISE and their respective
attributes

is suitable for adding membership degrees. In the bridge table, degrees express suit-
ability of an expert Ep for the field of expertise Fq . The relational model of three
tables from conceptual model (Fig. 5.4) is depicted in Fig. 5.5. In this way, the mean-
ing of themembership degree is clearer in comparisonwith the basicmodel described
in the Example 5.2.

5.4.2 Querying Basic Model

In crisp or fuzzy query the additional column expressing uncertainty should be con-
sidered. Query creates a subrelation over the relation in the database, i.e. part of
relation is selected. Hence, the selected tuple cannot belong to the subrelation with
a higher degree than it does to the initial relation. It holds when m is not subject of
the query condition. The overall query matching degree is expressed as:

μAQ (r) = t (μQ(r),m) (5.1)
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where μQ(r) stands of a query satisfaction degree for tuple r and t is a t-norm. If
query is expressed by crisp condition, instead ofμQ(r), value of 1 is used for selected
tuples.

For relations, which do not have columnm, this query works as usual fuzzy query
discussed in Chap. 2, because m = 1 for each tuple in these relations.

Example 5.3 Let us have relation BUILDING fromExample 5.2 shown in Table5.1.
The following queries are realized:
(i) select buildings belonging to the relation with degree higher or equal 0.75;
(ii) select buildings where age is high;

The query (i) is an usual SQL query of structure:
SELECT *
FROM building
WHERE m ≥ 0.75
The * means that all columns are selected. The selected subrelation contains all
buildings except buildings b5 and b6.

The query (ii) is a fuzzy SQL query of structure:
SELECT id, age, m
FROM building
WHERE age is high

If the term high is expressed as R fuzzy set (1.23) with parameters a = 90 and
m = 95, then the selected buildings ranked downward from the best to the worst
tuple are in Table5.2. The minimum function was used as t-norm between the query
satisfaction degree and column m.

If column m is a subject of query condition, then tuple might belong to query
with a higher degree than it did to the initial relation in a database. An example is
the query which selects buildings that slightly belong to the relation BUILDING.
If term slightly is expressed as L fuzzy set (1.22) with parameters 0.15 and 0.4, then
b6 meets query with degree of 1 and b5 with degree of 0.2. �

In the same way queries on the bridge table are realized. In this case the join
clause has to be included.

Table 5.1 Relation BUILDING in the basic model of fuzzy database

#id Age Size (m2) suit_living en_consumption m

b1 98 380 Good 4290 0.90

b2 89 390 Excellent 3250 1.00

b3 91 400 Low 8320 0.75

b4 125 280 Medium 4280 0.85

b5 68 410 Good 5290 0.35

b6 70 382 Excellent 51030 0.12

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Table 5.2 The result of the query condition age is high realized on relation BUILDING

#id Age m μQ(r) μAQ (r) (5.1)

b1 98 0.90 1 0.90

b4 125 0.85 1 0.85

b3 91 0.75 0.20 0.20

Example 5.4 The task is to find older experts for a demanding task in field of exper-
tise B with high score of suitability. Thus, the query is of structure:

SELECT expert.name, expert.surname, field_of_expertise.topic
FROM field_of_expertise INNER JOIN (expert INNER JOIN expertise ON
expert.id_e=expertise.id_e) ON field_of_expertise.id_o=expertise.id_o
WHERE field_of_expertise.topic=’B’ AND expertise.m > 0.8 AND expert.age is
high

At the beginning the parameters of fuzzy set high age should be defined. In the
second step, all tuples which fully or partially meet the condition are selected (e.g.
by procedure examined in Sect. 2.3). Finally, the query matching degree is calculated
by (5.1). �

Suitable t-norm for aggregating μQ(r) and m in (5.1) is minimum t-norm (1.47).
Let us have tuple which meets query condition with degree of 0.5 and belong to
the relation with degree of 0.5. We expect that the answer is 0.5, which is calculated
only beminimum t-norm.Concerning the and connective among atomic predicates in
compound query condition, μQ(r) can be calculated by different t-norms following
the nature of query condition. This topic is discussed in Sect. 2.4.

5.5 Fuzzy Data in Traditional Relational Databases
Managed by Fuzzy Meta Model

Storing fuzzy data in the classical relational database seems to be impossible at the
first glance, due to the 1NF. To recapitulate, the 1NF states that only atomic values
of attributes can be stored in relational tables, that is, none of attributes has values
which are themselves sets [13].

The main-stream in developing fuzzy databases suggested that the requirement
of the 1NF must be weakened, e.g. [30]. According to Ma and Yan [24], the normal-
ization theory of the classical relational database model must be relaxed in order to
solve the problems of anomalies and redundancies that may exist in non-normalized
fuzzy relational databases and to provide a theoretical guideline for database design.

Fuzzy functional dependencies are generalization of classical functional depen-
dencies [33, 37, 43]. Based on the fuzzy functional dependencies, normal forms such
as Fuzzy First Normal Form, q-Fuzzy Second Normal Form, q-Fuzzy Third Normal

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_2
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Form are constructed [9]. As a result, q-keys, Fuzzy First Normal Form, q-Fuzzy
Second Normal Form, q-Fuzzy Third Normal Form, and q-Fuzzy Boyce-Codd Nor-
mal Form are formulated. Furthermore, lossless-join decompositions into q-F3NFs
are discussed in [25].

On the other hand, keeping the classical 1NF, 2NF and 3NF satisfied brings
also benefits. The reasons are: (i) any traditional relational database management
system can be used without violation of classical integrity rules; (ii) migrating
existing database into fuzzy one may keep already met requirements for normality;
(iii) methodology for design of traditional relational databases is solid and supported
by CASE tools.

There aremany real situations,where relationships between relations are crisp, but
only values of several attributes are fuzzy. In this case, the adaptation of traditional
relational databases is a rational option.

In order to manage fuzzy data in classical relational databases, Škrbić [34] sug-
gested the relational fuzzy meta model. In this way relational model for managing
entities and relational fuzzy meta model for managing fuzzy data of these entities
are merged. If parameters of fuzzy sets are stored in a way that requirements of nor-
mality and integrity are satisfied, then we can manage fuzzy data in any RDBMS. In
the basic model of fuzzy database (Sect. 5.4) the support for imperfect information
is at the tuple level. In this approach the support of imperfect information is on the
attribute level, clearly statingwhich attribute and inwhat way is affected by fuzziness
for each tuple.

5.5.1 Creating Fuzzy Meta Model

Each fuzzy data or linguistic term is represented by membership function (usually
several parameters, except for the singleton fuzzy set) (Sect. 1.2.2). Therefore, the
relation (table) TRIANGULAR contains attributes #fuzzy_id, a, m, b, in order to
manage manipulation of terms expressing medium value or similar to m. In the
same way other relational tables for storing other types of fuzzy sets are created:
TRAPEZOIDAL(#fuzzy_id, a, m1, m2, b), L_FUZZY(#fuzzy_id, m, b) and the
like. Singleton fuzzy set contains only one parameter. It may tempt us to store this
value in a relational model of entities as a precise value, instead of storing it in a
fuzzy meta model. But it is a wrong decision, due to reasons explained later on.

The opinions can be expressed by terms from the set of ordered linguistic terms.
This option is used in questionnaires, among others. The frequently used scale for
measuring opinions is Likert’s [21] consisted of a set of odd number of linguistic
terms (equal number of positive and negative terms and one neutral) related to the
question asked. This scale can be managed by fuzzy logic [22]. The question in ques-
tionnaire represents fuzzy variable, whereas possible answers (terms) are linguistic
labels defined by syntactic and semantic rules (Sect. 1.4). Users cannot always unam-
biguously choose one term form the set of the ordered terms. Answer may be like:

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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more negative than neutral. In terms of fuzzy set it is expressed as, e.g. {(negative,
0.75), (neutral, 0.25)}.

We would like to emphasize that Gaussian function should be avoided, because
membership degrees appear on the whole domain (asymptotically approaching the
value 0). Hence, it seems that imprecise data cover the whole domain and inappro-
priately affect functions in SQL queries, such as SUM (total) and AVG (average
value).

The fuzzy meta model for extending relational database is introduced in [34].
That model is adjusted to fuzzy values used in this book and shown in Fig. 5.6. Two
main tables are: IS_FUZZY stating, which attributes from all relational tables are
considered as fuzzy, and FUZZY_LINK linking the fuzzy attributes from relational
model of real entities to fuzzymetamodel, where values of these attributes are stored.
Table FUZZY_TYPE allows us to express type of fuzzy set for each tuple (triangular,
trapezoidal, linguistic term, etc.).

Keeping in mind these observations we could create fuzzy meta model for a
particular database. The idea of fuzzy meta model is demonstrated on the database
which merges municipal statistics and data related to buildings.

Fig. 5.6 The possible fuzzy meta model for a relational database based on [34]
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In the Fig. 5.7 the fuzzy meta model (Fig. 5.6) attached to the relational model is
shown. In the table MUNICIPALITY attributes pollution and opinion of inhabitants
about question Q (opinion_q) do not store real values, but foreign keys to the respec-
tive tables, where these real values are stored as fuzzy. The same holds for attributes
age and flooded in the table BUILDING. In this way the database is capable to store
fuzzy data and meet integrity rules mentioned above.

Difference between singleton fuzzy set and crisp attribute should not be neglected.
A non-fuzzy attribute is always crisp, whereas fuzzy attribute could contain crisp
values for some tuples. Because in a relational table the fuzzy attribute contains only
a foreign key, the real crisp value should not be stored in entities relations, but in the
relation managing singletons.

Regarding the size of such overblown database, both the size of structure and the
size of stored data are affected. Concerning the size of structure, it fully depends on
the chosen number of fuzzy set types supported by the fuzzy meta model. In model
shown in Fig. 5.7, 10 tables containing 32 attributes are added. The size of stored
data in a database is affected by the number of fuzzy attributes (columns) and types

Fig. 5.7 A relational database extended with fuzzy meta model
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of fuzzy sets applied on them. In the extreme situation all n attributes (excluding
primary keys) for all m entities are fuzzy of the trapezoidal form. Therefore, the size
of database is 9(m · n). Anyway, user has to carefully decide which attributes should
be stored as fuzzy and in which form. Keeping in mind this deduction, we are able
to say that the size of fuzzy relational database could be significantly smaller than
this extreme situation.

It is worth noting that a relational database extended with the fuzzy meta model
is a fully relational one without weakening of any normal form and integrity rules.
Theoretically, any CASE tool capable to generate Data Definition SQL code from
the created model can be used. The DDL (Data Definition Language) is part of
SQL focused on the creation, modification and removing the structures in which the
data are going to be stored. Furthermore, it includes statements for defining indexes
and other relevant procedures for working with data structures. From the practical
point of view, the CASE tool should also support definition of relevant parameters
for membership functions. Presumably, the first realization of CASE tool for fuzzy
databases is the tool developed in Java [36].

5.5.2 Storing and Representing Tuples

Storing new tuples in the database is expressed by the following algorithm [19]:

check whether attribute appears in table IS_FUZZY
if attribute appears (is fuzzy = true) then

generate ID for foreign key
check acceptable fuzzy sets for the attribute and offer them in a combo box
according to selected type of fuzzy set provide input boxes for parameters
verify input values and store them in relevant tables∗

else
allow storing crisp value for attribute

end if

∗ In case of triangular fuzzy set, parameters should be verified by the rule:
Dmin ≤ a < m < b ≤ Dmax . If a = m = b, then either this value should be stored
as a singleton fuzzy set in the table SINGLETON (less required space and faster
computations), or user should be informed to check, whether mistake appeared.

Example 5.5 A company is interested to improve customer relationship manage-
ment. The first step is to collect informations from customers regarding their
age, frequency of using products and opinions, how efficiently company solves
complaints, by a questionnaire. Age is expected to be crisp value. Concerning the
second attribute, value is expected to be estimated like: about 75days, but not less
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than 70 and not more than 85. As for the third attribute, the answer could be one
term from the set {very negative, negative, neutral, positive, very positive} (a Likert
scale with one neutral term in the middle and two on each side). However, customers
cannot always explicitly state, which linguistic term is the most suitable answer.
Hence, they tend to express the answer of the type, more negative than neutral. A
more convenient way is to allow respondents to weight linguistic terms. In this case
a respondent might say: (negative, 0.75) and (neutral, 0.25) to clarify the term more
negative than neutral.

Evidently, for storing such a data the relational database should be adjusted. The
first step is creating new fuzzy meta model or adjusting existing one (if company
already has it). To solve this task, we need to create tables for customers’ opinions.
The relational tables TRIANGULAR and LING_TERM5 (Fig. 5.6)meet the require-
ment for attributes of frequency of using products and of opinion about managing
complaints, respectively. The attribute age is a crisp numeric one, so values are stored
in the relational table CUSTOMER. Based on these assumptions, we can create table
CUSTOMER consisting of attributes: #id_c (primary key), age, complaint (foreign
key) and frequency (foreign key) and link them with the fuzzy meta model. Now, the
database is ready for storing customers’ data. �

The next example demonstrates an interface for storing fuzzy data into the rela-
tional database of buildings and territorial units.

Example 5.6 In order to manage tuple by tuple storing data, the interface shown
in Fig. 5.8 has been created. The interface is similar to interfaces of storing data
in relational database. The only difference is in managing fuzzy data. User should

Fig. 5.8 Interface for storing fuzzy data into fuzzy relational database
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select type of fuzzy set from the list of allowed fuzzy sets for each attribute and
insert required parameters. The code behind interface manages validating inserted
data, storing data into the right tables and link them to attributes. The procedure
follows the aforementioned algorithm. �

The procedure for storing data can be automatized, if the observed data are avail-
able in a structured way. A suitable option could be an XML file, if attribute values
which are fuzzy, are marked by special tag and properly explained. An option for

Fig. 5.9 Fuzzy data in a relational database
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extending the SDMX (Statistical Data and Metadata eXchange) format based on the
XML to cover fuzzy data is introduced in [18].

Stored data can be in the structure depicted in Fig. 5.9. All fuzzy as well as crisp
data can be easily reconstructed and further used. We see for example, that Building
1 belongs to the mun 1, size is 150 m2, age is about 150years, but for sure not lower
than 140 and not higher than 160 (e.g. we do not have precise date from the cadastre
documentation, but only guess values according to visible architectonic elements),
building was flooded in a way that under 92cm wall was definitely wet and above
110cm was for sure dry. In the same way, we can retrieve data about the territory,
where this building is situated: pollution in is about 40mg of measured pollutant, but
for sure not lower than 35 and not higher than 45 and opinion about this territory is
rather positive.

Apparently, an interface will be more suitable than looking at tables. The interface
capable tomeet this goal is shown in Fig. 5.10. Displaying crisp values is not an issue.
These values are simply written. User sees that the altitude of chosen municipality is
588m.Concerning fuzzy data, it is a bit complex task. Three text boxes for displaying
parameters a, m and b for triangular fuzzy set are not satisfactorily explainable.
Hence, a short sentence to support fuzzy data explanation should be created. An
example of such a sentence is shown in Fig. 5.10 for the attribute pollution. Another
option is displaying fuzzy data in graphical way like in the figures in Sect. 1.2.2.

Fig. 5.10 Interface for displaying stored fuzzy data

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Concerning the attribute opinion, all terms with membership degree greater than 0
are shown together with their respective degrees.

5.5.3 Inserting Fuzziness into Existing Databases

From the database designers’ and users’ point of view, the seamlessmigration into the
fuzzy database is a valuable feature. In case of managing fuzziness by the fuzzy meta
model, adding fuzzy data into an existing relational database can be straightforwardly
realized, when required. At the beginning, user should decide which attributes will
be further collected as fuzzy. For example, after some period of using a relational
database, many complaints about stored values for pollution and flooded level were
recorded. In order to solve this problem, the decision is migration from the classical
to the fuzzy relational database.

Previously collected data of fuzzy attribute need to be migrated to the singletons
(fuzzified by 4.26). Apparently, this holds only for the attributes which are going to
bemanaged as fuzzy in the improved database. Because in a relational table the fuzzy
attribute contains only foreign key, the previously collected real value is shifted to
SINGLETON table in the fuzzy meta model. An unique value is generated to replace
data in the relational table with the value of foreign key. These keys point to the table
SINGLETON, where data are migrated. At this point the database is migrated to the
fuzzy one and is ready to store fuzzy data, when new collection is launched.

The algorithm for themigration from existing relational database into fuzzy one is
not complicated, but the procedure for migrating might take a lot of time, depending
on the database size. In order to use this algorithm, the fuzzy meta model should be
designed and all tables ready to use.

Shortly, the algorithm for migration is of the following structure:

select all rows from IS_FUZZY table into data reader DR
while DR is not EOF
read name of attribute and table (T) where this attribute is
open table T
while T is not EOF
read value of chosen attribute and store in temporary variable V
generate value for new foreign key
write this key value instead of the attribute’s real value
add row in table FUZZY_LINK and store this key value and choose singleton
add row in table SINGLETON and fill with generated key value and
attribute’s value from V

end while
end while

http://dx.doi.org/10.1007/978-3-319-42518-4_4
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It is worth noting that this migration can be also realized when fuzzy database is
already in use. In this case only values of chosen attribute(s) are migrated to the fuzzy
meta model. Hence, consulting other rows in table IS_FUZZY is not necessary.

Example 5.7 In the database expressed by Fig. 5.9, we see attribute number of
days with snow coverage (n_days_snow). Crisp values used to be collected for this
attribute. But we know that precise measuring of this value is disputable, due to
vagueness in this attribute: does the coverage mean a layer of snow on the whole
surface of municipality during the whole day, or at least during half a day? Someone
can declare that an estimated crisp value is sufficient. Nevertheless, in some tasks it
might cause problems. Municipalitiesmun2 andmun3 have very similar values. Let
us consider rule: if coverage is≥ 85 then government provides additional support for
the winter road maintenance to the municipal council. In this case it is obvious that
the solution does not reflect reasoning that similar municipalities should receive sim-
ilar support. A possible solution for this issue is fuzzy classification, where belonging
to consequence or output class is a matter of degree, i.e. similar municipalities have
similar membership degrees to overlapped classes (Sect. 4.5). Anyway, we cannot
always rely on fuzzy classification. Hence, keeping values of this attribute as fuzzy
in fuzzy relational database is a rational option. �

When more detailed information about vague observations is required, the α-cuts
(1.15) are suitable [42]. They are able to express both convex and non-convex fuzzy
sets. Let us consider number of days with snow coverage again. From Fig. 5.11 we
conclude that snow coverage between 52 and 127days appeared, although in some
days the coverage was very low. Between the days 56 and 98 coverage was visible,
between the days 68 and 92 coverage was significant, between the days 73 and 89
high and between the days 76 and 79 very high. This information is not possible to
be covered by trapezoidal fuzzy set.

Fig. 5.11 Number of days
with snow coverage
expressed by α-cuts and
non-convex fuzzy set

http://dx.doi.org/10.1007/978-3-319-42518-4_4
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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5.5.4 Managing Fuzziness in Data and in Inference
Rules by the Same Database

Fuzzy rule-based systems consist of knowledge base and fuzzy inference. These
topics were examined in Chap.4, where focus on knowledge base was on the con-
ceptual level. Topic which was not covered until now is an efficient way for storing
and updating parameters of linguistic terms appearing in antecedent and consequent
parts of rule base.

Attributes’ values of tuples (territorial units, customers, etc.) are usually stored in
a structural way, for instance in relational databases. These values are exported from
a database and converted into proper format for fuzzy inference systems. Attributes’
values are crisp or fuzzy. In case of former, these values are fuzzified by e.g. (4.26),
if required. In case of latter, these values are directly imported into fuzzy inference
systems. Fuzzy values of attributes can be stored in fuzzy meta model of a relational
database as was demonstrated above.

When rule base is of the structure:

• IF pollution is high and flooded level is high, THEN reimbursement is high
• IF pollution is low and flooded level is low, THEN reimbursement is low

and fuzzy values of input values are stored in fuzzy meta model shown in Figs. 5.6
and 5.9, then the following question appears: can we store parameters of linguistic
terms for rules in the same database? The answer is, yes. Moreover, this way is a
reasonable option, because we benefit from two aspects [19]. Firstly, we can use the
same procedures for storing and updating fuzzy data of observations and fuzzy data
of linguistic terms in rules. Secondly, managing fuzzy data of entities and fuzzy sets
of fuzzy rules in the same database could lead to integration of information system
and fuzzy inference system.

The databasemodel focused onmanaging parameters of linguistic terms in a fuzzy
rule base is plotted in Fig. 5.12. Table FUZZY_TYPE contains all acceptable types
of fuzzy sets. Contrary to fuzzy data of observations, linguistic terms in a rule base
can be also expressed as Gaussian fuzzy set. Similarly, other types can be added, if
needed. The difference in this part is the 1:N relationship, because linguistic variable
contains several terms (e.g. Fig. 1.17).

Example 5.8 Let us have a rule base formanaging reimbursement for floodedhouses,
considering their sizes. Thus, input variables are size and flooded level. Both vari-
ables are fuzzified into three fuzzy sets: small, medium and high. Reimbursement
is fuzzified into five fuzzy sets: very small, small, medium, high and very high. The
rule base is shown as a decision table in Table5.3. The instance of fuzzy meta model
for managing rules is shown in Fig. 5.13.

We have noticed that additional column (id_att) in tables for expressing particular
fuzzy sets is required. Hence, relations in fuzzy meta model shown in Fig. 5.6 should
be extended with this column. When a row stores values for inference rules, then
this column is filled with foreign key of respective attribute. Otherwise, this column
remains empty. Attribute fuzzy_id is a key which is generated by procedure for

http://dx.doi.org/10.1007/978-3-319-42518-4_4
http://dx.doi.org/10.1007/978-3-319-42518-4_4
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Fig. 5.12 Part of database for managing fuzzy rules

Table 5.3 Decision table for managing reimbursement

Size/Flooded level Small Medium High

Small Very small Small Medium

Medium Small Medium High

High Medium High Very high

data insertion. For instance, designers may decide that, if this value starts with 99,
the row then represents linguistic term used in fuzzy inference. Otherwise, the row
stores parameters of collected fuzzy data. In table ATTRIBUTE we can see that
input variable size is fuzzified into three fuzzy sets. Parameters of these fuzzy sets
are stored in tables TRAPEZOIDAL, L_FUZZY and R_FUZZY. For illustrative
purpose, family of fuzzy sets for this attribute is shown in Fig. 5.14. Output variable
reimbursement is fuzzified into five fuzzy set of trapezoidal type in order to keep
limited support for all linguistic terms. �

Linguistic quantifiers are mainly used in quantified queries and linguistic sum-
maries examined in Chaps. 2 and 3, respectively. These objects can be straightfor-
wardly added into fuzzy meta model in the same way as it was demonstrated for
linguistic terms in fuzzy rules.

A more complex solution for managing fuzziness is provided by Fuzzy Meta-
knowledgeBase (FMB) explained in [16]. This base organizes all information related
to vagueness in a fuzzy database. In FMB the following three elements are stored:
attributes with fuzzy processing, information about these attributes as well as other

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_3
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Fig. 5.13 An instance of part of a fuzzy meta model, where variables for fuzzy rules are managed

Fig. 5.14 Linguistic terms of attribute size in a rule base

relevant information, such as fuzzy quantifiers. Attributes with fuzzy processing are
divided into 8 types. Type 1 covers crisp attributes, type 2manages fuzzy information
on domains. Both these types are also covered in fuzzymetamodel. Type 3 and type 4
manage fuzziness in attributes by possibility distributions. Other four types represent
variations of fuzzy degrees associated to attribute or tuple.

The FMM is suitable, when first two types of fuzziness are sufficient for explain-
ing vagueness in the attributes, in linguistic terms of fuzzy rules and in linguistic
quantifiers, as well as in cases, when vagueness should be stored in a way that classi-
cal normal forms of RDBMS are met. Furthermore, degrees associated to tuple can
be added without violating classical normal forms.



160 5 Fuzzy Data in Relational Databases

5.6 Querying Fuzzy Relational Databases

In relationally structured databases (crisp or fuzzy) we can apply SQL-like queries
[30]. Two well-known query languages capable to deal with fuzzy data in fuzzy
databases are PFSQL [35, 38] and FSQL [16, 41].

Concerning fuzzymetamodel, the basic functionality of SQL is examined in order
to keep approach less demanding for tools and independent of possible variations
in different relational DBMS. All further calculation is executed in the application
layer adjusted to the particular database anduser’s needs.Algorithms and calculations
discussed below are not complex, even though sometimes a bit long.

5.6.1 Aggregation Functions in Queries

Nowadays, fuzzy sets are used inmany application areas such as planning, forecasting
and control, among others. Functions such as, total or sum and average are widely
used in this field [4]. These functions related to relational databases are discussed
in [2]. This section is focused on aggregating fuzzy data by functions examined in
Sect. 1.2.4.

For example, the AVG function in SQL returns the average value of a numeric
attribute in the whole relation or in subrelation defined through the where clause of
SQL. In the next two examples this function is demonstrated on fuzzy data.

Example 5.9 Ahistorianwishes to know the average age of buildings inmunicipality
mun1. SQL query has the following structure:

SELECT AVG(building.age) as average
FROM municipality INNER JOIN building ON municipality.id_m = building.id_m
WHERE id_m = “1”

When this query is applied on crisp attribute such as size, then the initial avg
function of SQL is used. If the attribute is fuzzy, this function is overridden with
fuzzy arithmetic function average created from the sum (1.35) and division (1.38)
functions.

Age of building 1 is triangular number: b1.age(140, 150, 160), whereas age
of building 2 is singleton: b2.age(42, 42, 42). Hence, the average is calculated
as avg(building.age) = b1.age+b2.age

2 = 1
2 (182, 192, 202) = (91, 96, 101). For the

second building we know age for sure, so the resulting fuzzy number has shorter
support (1.9) than the support of the building 1. �
Example 5.10 An environmentalist would like to know the average pollution in
districts. Because the pollution attribute is collected on municipalities level, the
query has the following structure:

SELECT AVG(municipality.pollution) AS avg_pollution, district.name
FROM district INNER JOIN municipality ON district.id_dist = municipality.id_dist
GROUP BY district.id_dist

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Table 5.4 Result of query
searching for average
pollution in districts

District Average pollution (mg) (Aavg)

dist 1 35; 40; 45—triangular number

dist 2 87.5; 97.5; 100; 107.5—trapezoidal
number

Table 5.5 Result from
Table5.4 shown as text
description instead of fuzzy
sets parameters

District Average pollution (mg)
(Aavg)

dist 1 Is not lower than 35 and not
higher than 45 with peak in
40

dist 2 Is not lower than 87.5 and
not higher than 107.5 with a
flat segment in interval
[97.5; 100]

The averages are obtained in the same way as in previous example. Because the
intent of the query is to find averages for each district, result is shown in Table5.4.
Concerning the legibility of result, short texts can replace parameters in the second
column. This option is demonstrated in Table5.5 and can be further displayed in
interface in the same way as is shown in Fig. 5.10. �

The AVG function is obtained as function SUM divided by number of considered
tuples. Therefore, function SUM is not further illustrated in examples. In the same
manner we can override other arithmetic functions in SQL.

Defuzzification of fuzzy averages
In Examples 5.9 and 5.10 results are fuzzy sets. These values often need to be
expressed as crisp ones which represent the corresponding fuzzy values in the best
way. It means that fuzzy averages need to be defuzzified. Defuzzification procedures
examined in Sect. 4.2.2 can be applied. But for the case of simplicity, it can be
reasonable to select value of maximal height [4]. Therefore, defuzzified value of
triangular fuzzy number is

xmax = m (5.2)

where m is the modal value.
This calculation corresponds with the defuzzified value of unimodal fuzzy set.

But this defuzzification cannot be defined uniquely. Options for defuzzification of
fuzzy averages are suggested in [4] as:

http://dx.doi.org/10.1007/978-3-319-42518-4_4
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(i) x (1)
max = a + m + b

3
(5.3)

(ii) x (2)
max = a + 2m + b

4
(5.4)

(iii) x (4)
max = a + 4m + b

6
(5.5)

where contrary to (5.2) the parameter 1, 2 and 4 ensures different weight for m,
but also takes into consideration the values of a and b. If a triangular number is
symmetric, i.e. |b − m| = |a − m|, then the three equations produce the same result.
According to [4], usually in applications, fuzzy averages expressed by triangular
numbers are in central form (symmetric). But this is not always the case. Hence,
these equations can be parametrized in the following way:

x (s)
max = a + s · m + b

s + 2
(5.6)

where s ∈ N. For non-symmetric triangular fuzzy numbers defuzzified average
approaches the value of m, when s increases. In case of large non-symmetricity,
gravity strategies, such as COG (4.21) or HOF (4.22), though a bit complex for the
calculation, are better options.

Average of the trapezoidal number is calculated as the extension of (5.2):

xmax = m1 + m2

2
(5.7)

wherem1 andm2 are boundaries of the flat segment. This equation corresponds with
the COM (4.20) defuzzification method.

Correspondingly, for the non-symmetric trapezoidal average defuzzification is
expressed as

x (s)
max = a + s m1+m2

2 + b

s + 2
(5.8)

where s has the same meaning as in (5.6).

Example 5.11 Averages from the Examples 5.9 and 5.10 should be defuzzified into
crisp values.

In Example 5.9 (average of building age) the result was avg(building.age) =
(91, 96, 101). It is obvious that this average is in the central form, hence xmax = 96.

In Example 5.10 calculated averages of pollution are in Table5.4. Defuzzification
of triangular and trapezoidal averages are calculated by (5.3) and by (5.8), where s
= 3, correspondingly and shown in Table5.6. �

http://dx.doi.org/10.1007/978-3-319-42518-4_4
http://dx.doi.org/10.1007/978-3-319-42518-4_4
http://dx.doi.org/10.1007/978-3-319-42518-4_4
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Table 5.6 Defuzzified averages of pollution for districts

District Average pollution (mg) (Aavg) Defuzzified pollution (mg)

dist 1 35; 40; 45—triangular number 40

dist 2 87.5; 97.5; 100; 107.5—
trapezoidal number

98.25

5.6.2 Query Conditions

If we wish to select, modify, or delete particular tuples, then we should create con-
dition. The following four types of queries are applicable:

• crisp where clause on crisp attributes (classical SQL)—these query conditions are
well documented in textbooks related to SQL queries

• fuzzy queries on crisp attributes—these query conditions are deeply examined in
Chap.2

• crisp queries on fuzzy attributes
• fuzzy queries on fuzzy attributes

This section is focused on the last two types of query conditions.

5.6.2.1 Crisp Queries on Fuzzy Attributes

In this kind of queries fuzzy data are compared to crisp values by traditional com-
parison operators, such as >, <, =. Let us firstly consider comparator equal to (=).
Whenwe fuzzify crisp value to singleton fuzzy set by (4.26), the task can be solved by
possibility measure (1.28), i.e. to find possibility that fuzzy data belong to fuzzy con-
cept. This type of query condition is illustrated in Fig. 5.15 for condition: WHERE
attribute A = q, (q ∈ R), for three tuples (r1, r2 and r3). These tuples have fuzzy
values Ar1, Ar2 and Ar3 for the attribute A consequently. We can see that tuple r1
meets the query condition with degree μA(r1) (supremum of intersection between
fuzzy data and crisp concept expressed as singleton), tuple r2 fully meets the query
condition and tuple r3 does not meet the query condition.

Fig. 5.15 Query condition
WHERE A = q, in which A
is a fuzzy attribute

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_4
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Example 5.12 The task is to select municipalities with pollution equal to 95. The
condition is:

WHERE pollution = 95

Collected values of pollution are stored in a database shown in Fig. 5.9. Value 95 is
fuzzified into singleton fuzzy set F as:

μF (x) =
{
1 for x = 95
0 otherwise

This singleton is in the flat segment of pollution in tuple mun 3. It implies that
this municipality fully meets the query condition. Concerning mun 2, supremum of
intersection is in value 0.5. The answer to query is in Table5.7. Though the condition
seems to be usual crisp where clause, fuzziness in attribute pollution is reflected in
the set of selected tuples. When the crisp value of condition is in the support of fuzzy
data, but not in the core, it is reflected in matching degree lower than 1. �

Querymatching degree is greater than zero, when crisp value of condition belongs
to support of fuzzy data. By this simple observation we can select all tuples for
calculating matching degree to query condition.

For the comparison operators >, �, < and � the above examined possibility
measure is not the right choice, because different results are expected for conditions:
attribute A > q and attribute A < q, when q is not in the core of fuzzy value. This
consideration is illustrated in Fig. 5.17, where we expect that matching degree for
attribute A < q is lower than for attribute A > q.

The condition: WHERE attribute A < q (q ∈ R) for three tuples r1, r2 and r3
having fuzzy values Ar1, Ar2 and Ar3, respectively is shown in Fig. 5.16. We can see
that tuple r2 should meet the query condition with a higher degree than r3.

Table 5.7 Tuples from database (Fig. 5.9), which meet fuzzy query condition: pollution = 95

Municipality Pollution (mg) Matching degree

mun 3 85; 95; 100; 110—trapezoidal
number

1

mun 2 90; 100; 105—triangular
number

0.5

Fig. 5.16 Query condition
WHERE A < q, in which A
is a fuzzy attribute
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Fig. 5.17 Triangular fuzzy
number in crisp condition
< q

The solution can be reached by the proportion of fuzzy data surface covered by
crisp query and the whole surface of fuzzy data. This proportion can be calculated
by integrals [19] or cardinalities [28]. Concerning the former, membership degree
for the operator < can be calculated as:

μ(r) =
∫ q
a μA(x)dx∫ b
a μA(x)dx

(5.9)

where q is the value of crisp condition, and values a and b delimit the support of fuzzy
data for tuple r . Similarly, membership degree for the operator > can be calculated
as:

μ(r) =
∫ b
q μA(x)dx∫ b
a μA(x)dx

(5.10)

where parameters have the same meaning as in (5.9).

Example 5.13 User would like to select municipalities which have pollution smaller
than 38mg.

The procedure is as follows: Check, whether the attribute pollution is fuzzy. The
answer is in the IS_FUZZY table (Fig. 5.9). If attribute is fuzzy, then activate calcu-
lation of crisp condition on fuzzy values, i.e. select municipalities which meet the
condition m < q for singletons and a < q for non-singletons.

Finally, calculate matching degree of each selected municipality. For non- sin-
gletons, calculation is divided into two cases: if b < q, the matching degree is 1,
otherwise calculation of the surface by (5.9) is activated.

From the fuzzy meta model shown in Fig. 5.9 only municipalitymun1 is selected.
For this tuple 38 ∈ [35, 45] and therefore calculation of surface is activated. The
numerator of (5.9) is calculated as:

∫ 38

35

x − 35

5
dx = 0.9 (5.11)
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Similarly, the value of denominator is calculated. Finally, the matching degree is
0.18. If the condition were pollution >38, the satisfaction degree would be 0.82. �

The importance of bounded support is evident. If we express pollution asGaussian
function, then belonging to query cannot be properly expressed, because the support
of this fuzzy set is unlimited and therefore shape’s surface cannot be calculated.

5.6.2.2 Fuzzy Queries on Fuzzy Attributes

Variety of comparison operators is applicable. In this section focus is on cardinality,
similarity, possibility and necessity.

Flexible conditions by cardinality, possibility and similarity
In Chap.2 fuzzy queries of the condition, e.g. attribute A is small are realized on
crisp relational databases. In this section the same kinds of queries are focused on
querying fuzzy attributes. In this kind of queries, where values of attribute A are
fuzzy, the possibility measure is applied. By this measure the possibility that the
tuple r from a database belongs to the fuzzy concept is computed.

Example 5.14 An user wants to see the low polluted municipalities by the query
condition

WHERE pollution is small

Analogously to Sect. 2.3, the query is divided into two steps: selecting relevant
tuples and calculating their matching degrees. If the support of fuzzy value A touches
the support of the fuzzy condition F , i.e. supp(A)

⋂
(F) �= ∅, then the tuple partially

or fully meets the condition. In other words, the intersection (1.30) means that sat-
isfaction degree is greater than 0. The graphical interpretation of satisfaction degree
calculations is in Fig. 5.18 and the solution is in Table5.8. �

Fig. 5.18 Possibility that fuzzy value belongs to concept small pollution

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Table 5.8 Low polluted municipalities

Name Pollution (mg) Matching degree

mun 1 35; 40; 45—triangular number 1.000

mun 3 90; 100; 105—triangular
number

0.500

mun 2 85; 95; 100; 110—trapezoidal
number

0.335

The next option is the generalization of the = operator by fuzzy similarity relation
[29]. Let A be fuzzy set of attribute and B fuzzy set expressing query condition, then
fuzzy similarity is expressed as:

Fs(A, B) = t ((A ⊆F B), (B ⊆F A)) (5.12)

where index F stands for fuzzy inclusion and t is a t-norm. If minimum function is
used as t-norm, then the similarity is expressed as [29]:

Fs(A, B) = card(A
⋂

B)

max(card(A), card(B))
(5.13)

where the cardinality of fuzzy set is expressed either by Eq. (1.7), if membership
function is assigned to each element, or by area of membership function (1.21). The
intersection (1.30) is mainly subnormalized fuzzy set, i.e. height is lower than 1. In
this case, the cardinality is calculated by multiplying obtained area with the height
of intersection.

The possibility function can be used in all examined cases (is small, is medium, is
high, is about s), whereas similarity can be used only for the condition
(is about s). Let us demonstrate this issue in the following example.

Example 5.15 Let us examine two query conditions: pollution is small; pollution is
about 41mg.
The first query condition is expressed by L fuzzy set with parameters m = 80 and
b = 100. For simplicity, municipalities mun2 and mun3 are not considered. Query
condition and fuzzy value for mun1 are depicted in Fig. 5.18. Applying possibility
function we get the satisfaction degree of 1 which is a fully expected solution. Let
us try calculation by cardinalities:

card(A
⋂

B) = 5+ 5
2 = 5, card(A) = 5+ 5

2 = 5, card(B) = (80 − 0) + 100− 80
2

= 90, Fs(A, B) = 5
90 = 0.055.

Apparently, the solution is far from the right one.

The second query condition is expressed by a non-symmetric triangular fuzzy set
with parameters a = 35, m = 41 and b = 45. The same municipality is considered
again. Query condition as well as fuzzy value for examinedmunicipality are depicted
in Fig. 5.19. The possibility function returns value of 0.908, because the maximum

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Fig. 5.19 Possibility and
similarity that fuzzy value is
equal to concept pollution
about 41 mg

of intersection is reached for pollution of 40.45mg. The result by cardinality is as
follows:

card(A
⋂

B) = 0.908 · (40.45− 35) + (45− 40.45)
2 = 4.54, card(A) = card(B) =

5, Fs(A, B) = 4.54
5 = 0.908.

The results are equal, which is not surprising, because these two compared sets
are almost equal. In the first condition support and core of fuzzy value is only a small
subset of the fuzzy concept. It means that fuzzy value is inside the small pollution,
but not that this fuzzy value is similar to the fuzzy concept. �

Possibility measure can be applied for query conditions is small, is medium, is
high, whereas similarity by cardinalities of fuzzy sets is suitable for more or less
equal to comparison operators.

Fuzzy comparators
In addition to the classical comparison operators (>, �, <, �, =, <= . . .), fuzzy
conditions may contain fuzzy comparators. Each classical comparator is fuzzified
into two fuzzy comparison operators: possibly and necessarily. In this way operator
= is fuzzified into operators: possibly fuzzy equal to and necessarily fuzzy equal to;
operator> is fuzzified into: possibly fuzzy greater than and necessarily fuzzy greater
than and so on. All these operators are examined in [16]. In this section fuzzified
equal to and less than comparators are illustrated.

Possibly fuzzy equal to (PFE)
The query condition may be expressed as: WHERE attribute A PFE F, in which F
stands for fuzzy number and attribute A contains fuzzy data. The query matching
degree for tuple r is calculated by possibility measure (1.28) as:

μr
APFEF = Poss(F, A) = sup

x∈X
[min(μA(x), μF (x))] (5.14)

where x stands for all possible values in the support of fuzzy data A for tuple r .
When crisp comparator is used and F is a singleton, we obtain the same solution as
in Example 5.12.

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Necessarily fuzzy equal to (NFE)
Matching degree for tuple r to the query condition: WHERE attribute A NFE F is
computed by necessity measure:

μr
ANFEF = Nec(F, A) = inf

x∈X[max(μF (x), 1 − μA(x))] (5.15)

Example 5.16 An architect is interested to find buildings the age of which is possibly
equal to 220years, where term equal to 220 is expressed as triangular fuzzy set
with parameters a = 200, m = 220 and b = 240. Relation BUILDING is a part
of database shown in Fig. 5.9. It is clear that buildings b1, b2 and b4 do not match.
Matching degree for building b3 is 0.429, because supremum of intersection between
attribute’s value and condition is in age 208.57. The answer is graphically illustrated
in Fig. 5.20. �

In order to avoid unnecessary calculations (membership degrees for tuples which
neither fully nor partially match the condition), SQL query may be applied. The
condition for triangular and trapezoidal fuzzy numbers in example above should
select tuples in which value b is greater than 200 and value a is less than 240; for
singleton fuzzy number value m should be found in the [200, 240] interval.

Possibly fuzzy less than (PFL)
Matching degree for tuple r to the condition:WHERE attributeAPFLF is calculated
by the modified possibility measure, where F is expressed as L type fuzzy set, and
attribute A is trapezoidal fuzzy number [16], as:

μAPFLF (x)r =
⎧⎨
⎩
1 form1A ≤ mF

aA−bF
(mF−bF )−(m1A−aA)

form1A > mF ∧ aA < bF
0 for aA ≥ bF

(5.16)

where aA,m1A,m2A, bA stand for parameters of trapezoidal fuzzy number A (Fig. 1.7)
and aF andmF for L type fuzzy setF (Fig. 1.8).When A is a triangular fuzzy number,
then its modal value m corresponds with m1.

Fig. 5.20 Answer to the
query age is possibly equal
to 220 years for building b2

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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Necessarily fuzzy less than (NFL)
Matching degree for tuple r to the condition: WHERE attribute A NFL F, where
F is expressed as L type fuzzy set, and attribute A is trapezoidal fuzzy number is
calculated as [16]:

μANFLF (x)r =
⎧⎨
⎩
1 for bA ≤ mF

m2A−bF
(mF−bF )−(bA−m2A)

for bA > mF ∧ m2A < bF
0 form2A ≥ bF

(5.17)

where parameters have the samemeaning as in (5.16).When fuzzydata A is expressed
by triangular fuzzy number, then its modal value m corresponds with m2.

Example 5.17 Let us have in a database three tuples having fuzzy numbers for
attribute A expressed by notation (1.33) as Ar1(1, 2.5, 4), Ar2(4, 5, 6) and
Ar3(8, 10, 12). Two query conditions are Q f 1: attribute A is possibly fuzzy less
than F, and Q f 2: attribute A is necessarily fuzzy less than F, where F is expressed
as L type fuzzy set with parameters m = 3 and b = 9. Tuples and query con-
dition are plotted in Fig. 5.21. Answer to query Q f 1 is calculated by (5.16) as:
AQ f 1 = {(r1, 1), (r2, 0.71), (r3, 0.125)}. In the same way, answer to query Q f 2 is
calculated by (5.17) as: AQ f 2 = {(r1, 0.87), (r2, 0.57), (r3, 0)}. Matching degrees
calculated by necessity functions are lower or equal thanmatching degrees calculated
by possibility functions.

Fig. 5.21 Three tuples and fuzzy condition for calculation of membership degree to conditions
fuzzy possibly less than and fuzzy necessarily less than

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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In order to avoid unnecessary calculations (membership degrees for tuples which
neither fully nor partially match the condition), SQL query should select only tuples
with degrees greater than 0. Hence, SQL query selects tuples which have value a of
considered attribute lower than value b of fuzzy condition, when the possibly less
than comparator is used, or selects tuples which have valuem of considered attribute
lower than value b of fuzzy condition, when the necessarily less than comparison
operator is used. �

In the same way, other fuzzy comparators can be applied as well. Calculating
membership degrees for all tuples is an unnecessary computational burden, because
usually a (small) subset of tuples meets the query condition. Hence, in the first step
we should select only tuples, which have matching degree greater than 0. For fuzzy
queries in traditional databases this option is illustrated on procedure in Sect. 2.3. In
the same manner, that procedure may be extended to fuzzy database. In the second
step calculation of membership degrees is realized.

The query conditions can be further created by aggregation functions, e.g. select
districts where average of pollution in municipalities is possibly fuzzy equal to
95mg of the pollutant Pl or select municipalities where age of buildings is nec-
essarily fuzzy greater than 50years and size is <250 and flooded level is small.
The combination of querying possibilities is literally unlimited. It is impossible to
discuss all of them. Our intent is to discuss the main concepts and the user can further
combine them.

5.7 Linguistic Summaries on Fuzzy Data

LSs focused on crisp data is the topic of Chap.3. When fuzzy data are stored in a
fuzzy relational database, then paradigm created for crisp data can be used. In this
section, similarly as in Chap. 3, the focus is on classical protoforms.

The difference in summarizing from crisp and fuzzy data is in calculation of
proportions consisting of summarizer and restriction. It is not possible to apply
(3.2) and (3.8), because those calculations are focused on crisp data. Regarding the
computation of linguistic quantifiers, we can use the same structures and procedures,
which were demonstrated in Sect. 3.3.

The procedure for calculating membership degrees inside proportions is extended
to cover fuzziness in data and comparison operators.

The first extension consists of crisp comparators on fuzzy data to cover LSs
such as most of buildings have age = 200 or most of buildings of age = 200 has
size < 120 m2, where age is fuzzy attribute. Membership degrees are computed by
possibility measure, cardinalities or proportions in the same way as was illustrated
in Sect. 5.6.2.1.

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3


172 5 Fuzzy Data in Relational Databases

Table 5.9 Attributes age and size of buildings

Building Age (years) Size (m2)

b1 (190, 200, 210, 220) 110

b2 (160, 190, 210) 122

b3 (50) 128

b4 (195, 205, 220) 210

b5 (200) 120

b6 (190, 205, 210, 230) 95

b7 (180, 190, 230) 128

b8 (200) 110

b9 (190, 200, 210) 90

b10 (203) 88

Example 5.18 An architect, who examines the size of older buildings, wants to find
out, whether most of buildings with age equal to 200years have small size. The
summarizer is in the same structure as for summarizers in Chap.3, because size is
crisp attribute in a database. The restriction part age of building is fuzzy attribute
stored in a fuzzy meta model. For the sake of simplicity, attributes age and size are
shown in Table5.9.

Condition age = 200 is converted into fuzzy singleton (m = 200). In this way
possibility measure (1.28) is applied in the same manner as in Example 5.12. Term
small size is expressed as L fuzzy set with parameters m = 120 and b = 130. The
computed proportion in this summary is:

∑n
i=1 t (μS(xi ),μR(xi ))∑n

i=1 μR(xi )
= 1+ 0.5+ 0+ 0+ 1+ 0.67+ 0.2+ 1+ 1+ 0

1+ 0.5+ 0+ 0.5+ 1+ 0.67+ 0.75+ 1+ 1+ 0 = 0.83641

Applying quantifier most of (3.7) with parameters m = 0.5 and n = 0.85, the
validity is 0.96. �

The second extension is more complex. It covers fuzzy data, fuzzy comparators
and fuzzy predicates. Each fuzzy comparison operator can be expressed by possi-
bility and necessity functions. Examples of such summaries are: most of possibly
old buildings have possibly high gas consumption and most of possibly low polluted
historic villages has necessarily high number of visitors.

Hence, the possibilities for constructing LSs are high. Calculation of validities
requires higher computational effort. On the other hand, flexibility covers large scale
of problems, in which imprecision in data must not be neglected. A single LS can be
consisted of linguistic quantifier, fuzzy and crisp data, fuzzy and crisp comparison
operators, and fuzzy and crisp predicates.

Concerning attributes which are expressed by limited number of terms, the pos-
sibility measure is adjusted to the countable fuzzy set in the following way [17]:

Poss(μFD(x), μC (x)) = max
x∈X

[min(μFDi (x), μCi (x))] (5.18)

http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_3
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Table 5.10 Customers age and fuzzy opinions related to solving complaints

Name Opinion Age

cust 1 M: 0.4; H:0.6 44

cust 2 M: 0.5; H:0.5 37

cust 3 M: 0.5; H:0.5 51

cust 4 H: 0.8; VH:0.2 34

cust 5 L:1 58

where index FD stands for fuzzy data (e.g. opinion about solving complaints in
Example 5.5 of customer x), C for examined concept (e.g. positive opinion in the
same example) and i for i-th linguistic term.

Example 5.19 A company is interested to examine customers’ opinions from the
point of view of their age. A database capable to store these data is mentioned in
Example 5.5. The stored data are shown in Table5.10. The task is to find relation
between positive opinion and middle age. Hence, the LSs are of structure:
ls1: most of customers which have positive opinion are middle aged;
ls2: about half of customers which have positive opinion are middle aged;
ls3: few of customers which have positive opinion are middle aged.
The concept positive opinion is expressed as fuzzy set PO = {(high, 0.75), (very
high, 1)}. The concept middle aged (MA) is expressed as trapezoidal fuzzy set with
parameters a = 35, m1 = 40, m2 = 50 and b = 55.

Regarding the opinion attribute, the possibility measure is calculated as:

Poss(μOC(x), μPO(x)) = maxx∈X [min(μOCi (x), μPOi (x))]
where indexes OC and PO stand for opinion of a customer and concept of positive
opinion, respectively.

Applying possibility measures, degrees of 0.4 for the first attribute and 1 for the
second attribute for the cust1, are calculated. In the same way, other membership
degrees are calculated and shown in Table5.11.

Consequently, the proportion of respondents for all three summaries is 0.6383.
Applying quantifiers most of, about half and few with the same parameters as in

Table 5.11 Membership degrees to positive opinion and middle age

Name μPO μMA

cust 1 0.6 1

cust 2 0.5 0.4

cust 3 0.5 0.8

cust 4 0.75 0

cust 5 0 0



174 5 Fuzzy Data in Relational Databases

Fig. 3.4, the validities of summaries are the following: v(ls1) = 0.1915, v(ls2) =
0.8085 and v(ls3) = 0. Finally, these LSs can be evaluated from the quality per-
spective. Values for measures of coverage (3.12), novelty-outlier (3.14) and sim-
plicity (3.15) are the same for all three LSs, because they use the same proportion.
More precisely, the coverage index ic (3.11) gets value of 0.22 which implies that
the coverage is 1. Measures of non-outlier and simplicity get both the value of 1.
Hence, the summary ls2 can be considered as a summary explaining stored data about
customers. �

The LS concept easily ameliorates efficiency of mining quantified textual descrip-
tion of either crisp or fuzzy database.

5.8 Final Remarks

Large amount of data is the subject of interest of businesses, research institutes and
governmental agencies. Let us speculate upon this issue from the perspective of
collecting statistical data. It is obvious that the same or similar issues can be found
in many other fields. Respondents are reluctant to cooperate in official surveys what
causes increase of costs for measuring data quality and for imputations. On the other
hand, many (big) data are already collected, though in different structures. They can
be adjusted to use in the official statistics data collections, e.g. [1, 23, 32]. Many
data are of crisp nature, such as: number of sold items, number of registered tourists
and the like. But many other cannot be always expressed as sharp values.

For instance, analysing and classifying sentiments from social networks [39] or
from open-ended questions in surveys [3] about development of society, is another
example, where variety of data is collected, but data cope with imprecision. Busi-
nesses are interested inmining patterns from their own data and data explainingmany
aspects of society in order to adjust marketing strategies, prepare new products, etc.
Traditionally, collected data are stored as crisp causing that the fuzziness of real
world is lost. Now we have possibility to record this fuzziness by deciding which
data should be stored as fuzzy.

Illustrative examples used in this chapter are related to municipal statistics and
customers. Many other data (crisp and fuzzy) can be related to territorial units, even
in short time intervals, such as traffic flow or energy consumption. Furthermore,
opinions from social networks and questionnaires provide additional valuable infor-
mation for business and policy decision making.

Summing up, interest in data increases. We should not neglect fuzzy nature of
the data. Therefore, the fuzzy database option should be kept on the shelf and used,
when it is not possible to keep all data as crisp values. In addition, approaches, such
as fuzzy meta model, allow keeping fuzzy values for selected attributes, whereas all
other data are kept as crisp ones in usual way in relational databases.

http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
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Chapter 6
Perspectives, Synergies and Conclusion

Abstract Fuzziness can be found in many areas of daily life. Hence, fuzziness
cannot be always expressed with one aspect and solved by one approach. It implies
that different approaches should cooperate. In addition, many tasks, for example,
in smaller businesses are not extremely demanding for complex tools, but rather
they look for overviews of problems from different aspects. This short concluding
chapter is focused on cooperation between fuzzy queries, summaries and inferences
with respect to fuzzy and crisp data.

6.1 Perspectives

The conclusion (decision, action, advice, etc.) is reliable, onlywhen sufficient number
of relevant data is at disposal. Nowadays, the data masses are growing so fast, that
they supersede the human capability of perception to recognize relevant data, as well
as to detect relations and dependences among attributes to make the conclusion. In
order to cope with this problem robust tools and approaches are inevitable.

Companies and other institutions may have numerous data sources to support
their decisions. However, researches have shown that many business decisions are
based on intuition, heuristics and impressions [3–5], although the potential in data
is sound. Presumably, one of reasons is that traditional dichotomous approaches and
tools cannot provide environment for incorporating subjectivity and imprecision of
real world [6]. According to Lim [1], data-driven competitive predictions have more
predictive accuracy than predictions based on informal intelligence. We can say that
the same holds in tasks, where institutions wish to mine relevant knowledge from
their internal data (customers, production, etc.) supported by external data explaining
various aspects of society (inflation, average wages, municipal statistics, censuses
and the like).

Speculating about these sentences leads us to merging data, informal intelligence
(experiences, imprecision, subjectivity) and formal mathematical procedures. In
order to gain benefits from data and incorporate subjectivity and experiences of
workers, the less complex and robust fuzzy tool(s), capable to cope with fuzziness
of the real world, is an option which should be considered.
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In flexible queries (Chaps. 2 and 5), summarization (Chaps. 3 and 5) and inference
(Chap. 4), the first step is construction of fuzzy sets for linguistic terms. The simplest
way is to give users freedom to directly define parameters of fuzzy sets. Another
way is based on mining fuzzy sets parameters from the current database content.
Actually, merging these ways creates more sophisticated fuzzification. In the next
steps all three examined approaches do not need to cooperate, while solving tasks
using data fromcrisp or fuzzy databases.However, their cooperation can be beneficial
for users.

Before to proceed, we should emphasize that, although fuzzy logic has consider-
able potential for solving variety of problems, it is not a medicine for all problems
related to uncertainties. According to [7], fuzzy epoch has already begun. Nowadays,
information systems and databases are usual. The same holds for fuzzy controllers.
It can be expected that fuzzy logic tools will be usual in businesses and public insti-
tutions. A significant advantage of fuzzy logic and fuzzy set theory is its generality,
enabling us to adapt existing approaches and create new ones for solving problems,
which will emerge in the future. Since the first paper in fuzzy set theory has been
written, a large variety of theoretical contributions and applications appeared: from
controlling technical systems to support business intelligence.

6.2 Synergy

This part is focused on several possibilities for integrating approaches examined in
previous chapters. Many other possible approaches are not discussed, due to space
limitation of the textbook and because, on our opinion, the selected approaches
can solve variety of everyday tasks in businesses and public institutions. If these
approaches work in a complementing, rather than competitive way, users gain further
benefits. The integration is schematically plotted in Fig. 6.1. Influences and relations
among these approaches are on the use case diagram shown in Fig. 6.2. This reflection
is based on the argument that in fuzzy logic it is easy to layer on more functionality
without starting again from scratch. This integration is a valuable support in business
informatics. It integrates approaches suitable for managing fuzziness of the real
world, which may influence companies’ results.

6.2.1 Fuzzy Inference and Fuzzy Databases

One of disadvantages of crisp inference is the static structure of the rule base. Rules
should be able to adjust to the changing environments. Although fuzzy rules seem
to be static, they are adjustable to changes. Linguistic terms in rules, such as small,
medium and high, remain the same, keeping the meaning and purpose of the rule
base. Parameters of fuzzy sets can be adjusted for a particular task and stored in

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_5
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_5
http://dx.doi.org/10.1007/978-3-319-42518-4_4
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Fig. 6.1 A possible integration of querying, summarizing and inferencing from crisp and fuzzy
databases

a fuzzy database. In this way, fuzzy rule base can be managed in the same fuzzy
database, where fuzzy data measuring attributes’ values are stored.

It was emphasized in Chap.4 that fuzzy inference derives conclusions using a set
of fuzzy IF-THEN rules and known facts which are crisp or fuzzy. Assume that a
business company is interested in tailored motivation of its customers or a statistical
institute would like to improve motivation of respondents in surveys. These tasks are
long-term ones. Hence, the inference and classification should be realized repeatedly
(in different time periods or in different regions). Rules may remain stable, only
parameters of fuzzy sets are changeable to adjust to particular time period or area
(e.g. set high number of sold air-conditions has different parameters for Rome and
Oslo).

From these observations, the thought of using fuzzy database for storing parame-
ters for fuzzy inference clearly emerges. This option is illustrated in Sect. 5.5.4. A
relational database can be straightforwardly extended to fuzzy one.When users want
to update parameters of fuzzy sets in rules, they could do it easily and efficiently by
the already created procedures for managing (storing, modifying and deleting) fuzzy
data.

http://dx.doi.org/10.1007/978-3-319-42518-4_4
http://dx.doi.org/10.1007/978-3-319-42518-4_5


180 6 Perspectives, Synergies and Conclusion

Fig. 6.2 Interactions among fuzzy approaches expressed by use case diagram

6.2.2 Linguistic Summaries and Fuzzy Inference

LSs express relational knowledge in the data. If the quality of LS is significant, then
the summary can be converted into the weighted IF-THEN rule. Quality measures
discussed in Sect. 3.6.1 find whether an LS is a good candidate for a rule. A rule base
can be created from summaries of high quality. This option is discussed in Sect. 3.7.2.
In this way, mining linguistic summaries can substitute complex tools for revealing
rules.

When the consequences in IF-THEN rules are constants (Sugeno model), then
inference task can be solved by fuzzy query approach extended with classification
clauses. Otherwise, inference task should be solved by tools dedicated to fuzzy
inference.

http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
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6.2.3 Fuzzy Queries for Fuzzy Classification and Summaries

Fuzzy queries play inevitable role in selecting relevant tuples from databases by
variety of vague conditions examined in Chap.2. But their role does not end here.
Queries are able to support inference and summaries.

The former is discussed in Sect. 4.5 for classification tasks expressed by fuzzy
IF-THEN rules. Usually, when solving a classification task by fuzzy inference, user
should prepare the input data fromdatabase into the proper format for fuzzy inference
tool and to convert result into a useful and understandable form. The solution for over-
coming this difficulty can be integration of inferencewith fuzzy queries. Furthermore,
tuples having values of attributes out of declared supports of fuzzy sets could cause
problems in inference engines. In case of classification by fuzzy queries, these tuples
are not selected and therefore excluded from further calculations.

If the classification or inference task is complex in number of attributes and fuzzy
sets, and defuzzification is required, then an inference tool is inevitable.

In linguistic summaries, when the number of tuples and their attributes is relatively
large, the computation of all required membership degrees for all summaries might
take much time and might be costly [2]. Fortunately, queries and optimization
techniques may reduce computational effort. Fuzzy queries reduce calculation of
membership degrees only to tuples and attributes, which contribute to summaries.
Moreover, queries are inevitable in providing parameters for calculating quality
measures of summarized sentences.
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Appendix A
Illustrative Interfaces and Applications
for Fuzzy Queries

Applications devoted to flexible queries have been suggested in the vast literature.
Our focus is on the applications and interfaces which can be easily modified to meet
variety of users’ requirements and used as a basis for more complex tasks such as
linguistic summaries.

In this appendix we explore design of fuzzy query interfaces in order to envelope
flexibilities in predicates and connectives discussed in Chap. 2. This work is realized
on the municipal statistics database of the Slovak Republic. Currently, the Statistical
Office collects more than 800 attributes for 2925 municipalities. The majority of
attributes are collected on yearly basis except those which contain stable values for a
longer period such as the altitude above sea level, the year of the first written notice
and the like. Therefore, working with such a database is an exciting task due to
variety of data which could be very similar for some municipalities. In order to meet
privacy issues related to municipal data and avoid any indication of advertisement
(municipalities selected as the best in query) names ofmunicipalities are anonymized.

A.1 Commutative Queries

In this part interfaces for queries in which the order of atomic conditions is irrelevant
are examined.

Example A.1 Anagency has decided to support development of agritourism. In order
to fairly distribute resources, the agency has chosen to apply flexible conditions and
provide resources proportionally to the matching degrees of selected municipalities.
The relevant attributes are: altitude above sea level, ratio of arable land and population
density. Hence, agency has constructed the following condition:

WHERE altitude is high AND ratio of arable land is high AND population density
is small
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Fig. A.1 Illustrative interface for flexible commutative queries of equally relevant atomic
conditions

An interface for managing such queries is shown in Fig.A.1. The available attributes
are listed in the left upper part. The right upper part is designed for managing
parameters of fuzzy sets. For each atomic condition there is a frame (tab control) for
inserting parameters, or asking for suggestion. The functionality of the “Suggestion”
button will be explained in next examples. According to the selected type of fuzzy
set, only boxes for respective parameters are enabled. In Fig.A.1 the parameters for
small population density are shown. For the aggregation, minimum t-norm (1.47)
is used. The main reason is that this t-norm calculates the highest matching degree
which is reflected in the proportion of obtained resources. Suppose that municipality
meets all three atomic conditions with the same matching degree 0.8. If the product
t-norm (1.48) is applied, then the matching degree is 0.516. The municipality will
receive only a half of maximal support which is a disputable decision.

In the lower left side of interface selected municipalities ranked downwards form
the best to the worst are shown. One municipality fully meets the query condition,
whereas other six partiallymatch the condition. Imagine that full amount of resources
is 5 000 e. It means that the worst one, which still partially meets the condition will
receive 37 e, which is a quite low amount for any activity and perhaps it is under
the cost of administrative tasks related to managing support. The suitable solution
is adding α-cut (1.15) to select only municipalities which significantly meet the
condition.

The lower right part could be used for presenting retrieved data in a thematic map.
For instance, municipalities which fully satisfy the query criterion can be marked
with some colour, let us say blue, municipalities which do not satisfy the query can
be marked with another colour (quite different than the one for expressing matching
degree equal to 1) and municipalities which partially meet the query condition are

http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1
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marked again with some other colour, let us say red, having a gradient from faint hue
to deep hue according to their matching degrees. �

If the classical SQL is used andmunicipalityMun 1 does not exist, the SQLwould
have return an empty result. Fuzzy queries mitigate the empty answer problem, but
they do not entirely solve it. On the opposite side are plethoric or overabundant
answers. Here we would like to point out that Łukasiewicz t-norm is one of the
options for solving or at least mitigating the overabundant answers.

Flexible queries can by straightforwardly adjusted for searching similar entities. In
this type of query membership functions are limited to the triangular ones (Fig. 1.5).
The next example demonstrates this query.

Example A.2 In this example we are interested to find, whether municipalities with
similar values of three attributes (year of the first written notice, altitude and popu-
lation density) as the municipalitymun 298 exist. The interface is shown in Fig.A.2.

The query is divided into two steps. The first step consists of two parts. In the
first part, user chooses municipality (in our case mun 298), relevant attributes and
percentage of dispersion from the m value required for calculating the parameters
a and b of triangular fuzzy sets. In the second part, SQL selects values of chosen
attributes (parametersm for respective fuzzy sets) for the selected municipality (mun
298). The second step is the same as for procedure demonstrated in Example A.1
(select relevantmunicipalities and calculatematching degrees). The solution is shown
in the lower part of interface shown in Fig.A.2.

Let us look at matching degrees of mun p and mun q. The minimum t-norm
will provide different and less relevant solution than the product t-norm used in this
example. Although mun p has lower membership degree on the third attribute (M3)

Fig. A.2 Illustrative interface for revealing similar tuples

http://dx.doi.org/10.1007/978-3-319-42518-4_1
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than mun q on the first attribute (M1), the membership degrees of other two atomic
conditions are a bit stronger. It implies that product t-norm is a better option. �

The similarity measure can be applied for searching municipalities which are
similar to the ideal one. In this case the interface shown in Fig.A.1 can be used. The
required parameters of selected attributes can be simply written into text boxes of
triangular fuzzy sets. In this case, the product t-norm is the option which should be
selected.

The next example illustrates query with preferences among atomic conditions.
The existing interface is improved with new functionality.

Example A.3 A research institute would like to find municipalities which have high
waste production per inhabitants and high water consumption in order to launch
economy drive in this field. In the example, water consumption is more important
than waste production. Let us say for the purpose of the example that produced waste
can be recycled, but water cleaning is a more expensive task.

The interface should provide the same functionality regarding the construction of
fuzzy sets and connectives as interface shown in Fig.A.1. In order to use the same
interface the check box for indicating, whether atomic conditions are nonequally or
equally important, is added. If this check box is marked, then user should choose
weights for each atomic condition. The interface for managing queries with prefer-
ences is shown in Fig.A.3. Weight for water consumption is equal to 1 and weight
for waste production is 0.5.

The solution is shown in lower part of interface (Fig.A.3). For example,mun 4 has
significantly higher matching degree in comparison to the result obtained without

Fig. A.3 Illustrative interface for flexible commutative queries and differently relevant atomic
conditions
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weights. The first attribute has significantly lower importance and therefore its low
membership degree does not fully influence the overall matching degree. �

A.2 Non-Commutative Queries

In this section the focus is on the interfaces for queries in which the order of atomic
conditions is relevant. The first example covers the among operator. The second
example illustrates application of asymmetric conjunction.

Example A.4 An agency focused on local tourism activities would like to recognize
municipalities with small number of beds in accommodation units among munic-
ipalities with high altitude. In order to manage such query, a suitable module and
its interface are created and shown in Fig.A.4. In the left side, the list of available
attributes is situated, in the same way as in aforementioned examples. Upper right
side consists of two boxes: one for managing independent predicate and the other
for adjusting dependent one. The user can write parameters of fuzzy sets or ask for
suggestion from the application in the left box. Let user decide to express high alti-
tude by R fuzzy set with parameters a = 875 and m = 900. Regarding the predicate
that expresses dependent attribute, parameters of fuzzy set are generated from the
subrelation delimited by the independent condition. The calculated parameters are
shown in text boxes. The solution is shown in a tabular way in the lower part of the
interface. �

Fig. A.4 Illustrative interface for managing connective among between independent predicate and
predicate relative to the independent one



188 Appendix A: Illustrative Interfaces and Applications for Fuzzy Queries

Fig. A.5 Illustrative interface for managing constraints and wishes by and if possible operator

Example A.5 A tourist is searching for a suitable municipality for holiday. Tourist’s
requirements are: altitude about 700m and, if possible, small number of warm days.
In order tomanage such a query, module and its interface are created. This interface is
designed in a similar way as aforementioned ones in Examples A.1, A.2 andA.4. The
list of available attributes is on the left side of interface. The right side consists of two
boxes: one formanaging constraints and the other for wishes. Altitude about 700m in
this examplemeans that all values higher than 650 and lower than 750 are acceptable,
but with lower degree than 700. Concerning number of warm days, tourist is not
aware of current content in the database and therefore asks for suggestion. Because
values of this attribute are more or less uniformly distributed in the domain [0, 365]
the uniform domain partition into three fuzzy sets is used. Suggested parameters
are shown in the box managing wishes. It is up to user to accept or modify these
parameters, if needed. Value of k (2.25) is initially set to 0.5, but the user can modify
the value from 0 to 1 (from fully irrelevant wish to the equally relevant as constraint).

In the lower left side of interface, the solution appears, ranked downwards form the
best municipality. The best municipality for this query ismun p. If for some reason it
is not possible to travel there, the next one, which has a little lower matching degree,
is mun q (Fig.A.5). �

A.3 Queries on Time Series

In this section fuzzy query interface is created to observe, how a given attribute
changes over time.

http://dx.doi.org/10.1007/978-3-319-42518-4_2
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Fig. A.6 Illustrative interface for managing queries related to attribute’s changes over time

Table A.1 High negative change in water consumption (high savings of water)

District W 07 W 11 W Change μ(Acr )

dist 1 878 529 −39.7494 1

dist 2 1335 911 −31.7603 0.3521

Example A.6 An environmental agency wishes to have overview about changes in
water consumption between the years 2007 and 2011. The first task is to find districts
whichhave almost no change inwater consumption.The second task is tofinddistricts
with measured high negative change (significantly smaller consumption). The water
consumption is an aggregation-able indicator and therefore values can be aggregated
from the municipality level to the district level.

Parameters for linguistic terms plotted in Fig. 2.4 are adjusted to the water con-
sumption case, where significant changes, like e.g. in stock market exchange, are not
expected. Fuzzy set around zero is a symmetric triangular fuzzy number (Fig. 1.5)
with m = 0. In this example the support of this fuzzy number is limited by values
a = −2 and b = 2.

The interface for managing these queries is shown in Fig.A.6. From the result we
learn that eight districts partially match the query conditions. The answer for agency
is that no single district with zero change exists, but there are several ones having
almost zero change: dist 1 almost meets the query condition, whereas dist 8 very
weakly meets the condition.

In the second task the negative high consumption requirement is expressed by L
fuzzy set (Fig. 1.8) with parameters m = −35 and b = 30. The result is shown in
TableA.1. From the table, agency can recognize that only one district fully matches
high savings of water and another district matches it partially. �

http://dx.doi.org/10.1007/978-3-319-42518-4_2
http://dx.doi.org/10.1007/978-3-319-42518-4_1
http://dx.doi.org/10.1007/978-3-319-42518-4_1


Appendix B
Illustrative Interfaces and Applications
for Linguistic Summaries

In this part interfaces for calculating validities of linguistic summaries and their
quality measures are demonstrated on the same database as in Appendix A.

Example B.1 Auserwishes to know,whethermostmunicipalities have small number
of inhabitants and small total area size. In order to cope with basic LSs, an interface
is shown in Fig.B.1. The left part is focused on choosing quantifier from a list of
relative quantifiers and adjusting its parameters, whereas the right part is focused
on constructing predicate which expresses summarizer. If more than one attribute
is included, then the minimum t-norm (1.47) is used as connective. Though the
interface is a bit different from the interfaces shown in Appendix A, the calculations
in the application layer are based on the same procedures. Only membership degrees
for municipalities, which at least partially meet both conditions in summarizer, are
calculated. The parameters for fuzzy sets describing quantifier and summarizer are
shown in Fig.B.1. The validity of this LS is 0.5305.

When summarizer contains only atomic predicate: small number of inhabitants,
then the validity is 0.9131.Hence, an abstract:mostmunicipalities have small number
of inhabitants explains the whole database. Adding atomic conditions, the summa-
rizer becomes more restrictive which implies on the validity of LS. �

Example B.2 An agency for agriculture examines relation between ratio of arable
land and altitude above sea level. Agency is interested to learn, whether the major-
ity of arable land (in comparison to total area size of municipality) is situated in
municipalities having small altitude above sea level. In order to reveal the validity
of this summary, the interface shown in Fig.B.2 is created. The interface is similar
to the interface of basic LS (Fig.B.1). The difference is in added restriction part.
The calculation is based on the (3.8). In this type of LS parameters of fuzzy sets are
mined from the database and suggested to the user for approval. The user can modify
them or accept them by clicking the Calculate button. Only input boxes related to
selected type of fuzzy set are marked as editable. In case of high ratio of arable land,
parameters a and m1 are available, because these two parameters define R fuzzy set
(1.23).
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Fig. B.1 Illustrative interface for creating basic LS and computing their validities

Fig. B.2 Illustrative interface for creating LSs with restriction and calculating their validities

The validity of this LS is 0.9623. Hence, an agency concludes that the sentence
most of municipalities with high ratio of arable land have small altitude above sea
level holds. �

Interfaces for building LSs and providing their validities can be straightforwardly
extended with sliders in order to display quality measures.

Example B.3 Auser is interested to evaluate two LSs. The first one is of the structure
most of municipalities with high ratio of arable land have small population density.
The validity of summary is 0.814. Further, the coverage index ic (3.11) gets value of
0.1421 for n = 2924 municipalities, which implies that the coverage C (3.12) gets
value of 0.9927, where r1 = 0.02 and r2 = 0.15. Finally, the outlier measure (3.14)
is 0.0047. These values guided us to conclude that this LS is of a high quality.

The interface for calculating LS and its quality is shown in Fig.B.3. This interface
is an extension of the already created interface shown in Fig.B.2. In the lower part

http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
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Fig.B.3 Illustrative interface for creatingLSswith restriction and calculating their qualitymeasures

of the interface three sliders graphically express quality measures (3.8), (3.12) and
(3.14), respectively. In order to present uniformly informing sliders (value 1 is the
best for all of them), instead of measure O (3.14), the measure 1 − O is displayed.

Another LS is of the structure: most of municipalities with high number of warm
days (over 25 ◦C) have small amount of produced waste per inhabitant. The validity
of summary is 1. But the coverage index gets value 0.01283. Therefore, the coverage
gets value 0, when we use the same values for parameters r1 and r2. The outlier
measure is 1 which means that this LS is based on outliers. Hence, we conclude that
this LS is of low quality. Focusing only on validitymight mislead us to the conclusion
that this LS summarizes data in a better way than the former LS of this example. �

http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
http://dx.doi.org/10.1007/978-3-319-42518-4_3
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