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Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences may vary from year to year, but all focus
on foundational and practical advances in software technology. The conferences
address all aspects of software technology, from object-oriented design, testing,
mathematical approaches to modeling and verification, transformation, model-driven
engineering, aspect-oriented techniques, and tools.

STAF 2016 took place at TU Wien, Austria, during July 4–8, 2016, and hosted the
five conferences ECMFA 2016, ICGT 2016, ICMT 2016, SEFM 2016, and TAP 2016,
the transformation tool contest TTC 2016, eight workshops, a doctoral symposium, and
a projects showcase event. STAF 2016 featured eight internationally renowned keynote
speakers, and welcomed participants from around the world.

The STAF 2016 Organizing Committee thanks (a) all participants for submitting to
and attending the event, (b) the program chairs and Steering Committee members of the
individual conferences and satellite events for their hard work, (c) the keynote speakers
for their thoughtful, insightful, and inspiring talks, and (d) TU Wien, the city of Vienna,
and all sponsors for their support. A special thank you goes to the members of the
Business Informatics Group, coping with all the foreseen and unforeseen work
(as usual :-)!

Spring 2016 Gerti Kappel



Preface

This volume contains the proceedings of ICGT 2016, the 9th International Conference
on Graph Transformation. The conference was held in Vienna, Austria, during July
5–6, 2016. ICGT 2016 took place under the auspices of the European Association of
Theoretical Computer Science (EATCS), the European Association of Software Sci-
ence and Technology (EASST), and the IFIP Working Group 1.3, Foundations of
Systems Specification. It was affiliated with STAF (Software Technologies: Applica-
tions and Foundations), a federation of leading conferences on software technologies.

The aim of the ICGT series1 is to bring together researchers from different areas
interested in all aspects of graph transformation. Graph structures are used almost
everywhere when representing or modeling data and systems, not only in applied and
theoretical computer science, but also in, e.g., natural and engineering sciences. Graph
transformation and graph grammars are the fundamental modeling paradigms for
describing, formalizing, and analyzing graphs that change over time when modeling,
e.g., dynamic data structures, systems, or models. The conference series promotes the
cross-fertilizing exchange of novel ideas, new results, and experiences in this context
among researchers and students from different communities.

ICGT 2016 continued the series of conferences previously held in Barcelona (Spain)
in 2002, Rome (Italy) in 2004, Natal (Brazil) in 2006, Leicester (UK) in 2008,
Enschede (The Netherlands) in 2010, Bremen (Germany) in 2012, York (UK) in 2014,
and L’Aquila (Italy) in 2015 following a series of six International Workshops on
Graph Grammars and Their Application to Computer Science from 1978 to 1998 in
Europe and in the USA.

This year, the conference solicited research papers that describe new unpublished
contributions in the theory and applications of graph transformation, innovative case
studies describing the use of graph-rewriting techniques in any application domain, and
tool presentation papers that demonstrate the main features and functionalities of
graph-based tools. All papers were reviewed thoroughly by at least three Program
Committee members and additional reviewers. The Program Committee selected 14
papers for publication in these proceedings with an acceptance rate of 42 %. The topics
of the accepted papers range over a wide spectrum, including theoretical approaches to
graph transformation and their verification, analyses and compilation methods, graph
queries, visual methods as well as various applications. In addition to these paper
presentations, the conference program included an invited talk, given by Juergen
Dingel (Queen’s University, Ontario, Canada).

We would like to thank all who contributed to the success of ICGT 2016, the invited
speaker Juergen Dingel, the authors of all submitted papers, as well as the members
of the Program Committee and the additional reviewers for their valuable contributions

1 www.graph-transformation.org.

http://www.graph-transformation.org


to the selection process. We are grateful to the TU Wien and the STAF federation of
conferences for hosting ICGT 2016.

Special thanks go to Barbara König, the organizer of the 7th International Workshop
on Graph Computation Models (GCM 2016), a satellite workshop related to ICGT
2016 and affiliated with the STAF federation of conferences.

We also would like to acknowledge the excellent support throughout the publishing
process by Alfred Hofmann and his team at Springer, in particular for the compli-
mentary printed copies of these proceedings, which were distributed at the meeting, and
the helpful use of the EasyChair conference management system.

During the preparation of the conference, we were saddened by the death of Hartmut
Ehrig, one of the fathers and most productive members of the graph transformation
community and co-founder of this conference series. We dedicate this volume to him.
An obituary, by Hans-Jörg Kreowski, is included in these proceedings.

July 2016 Rachid Echahed
Mark Minas
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Obituary for Hartmut Ehrig



The Graph Transformation Community
Mourns for Hartmut Ehrig (1944–2016)

Hans-Jörg Kreowski

University of Bremen, Department of Computer Science
P.O.Box 33 04 40, 28334 Bremen, Germany
kreo@informatik.uni-bremen.de

Hartmut Ehrig died on March 17, 2016 at the age of 71. His death is very sad news for
his colleagues and friends. The graph transformation community lost one of its pioneers,
a leading, most inspiring and creative researcher, and guiding spirit to many of us.

As a student back in 1971, I attended Hartmut’s seminar on categorical automata
theory, soon afterwards he introduced me to the fascinating world of graph transfor-
mation and supervised my PhD thesis. This was the beginning of a long, intense and
fruitful period of cooperation and friendship in which we sat together for hundreds of
hours discussing and working on categorical automata theory, graph transformation
and algebraic specification. I owe a lot to him.



Hartmut spent all his academic career at the Technische Universität Berlin only
interrupted by longer research stays at Amherst, Yorktown Heights, Los Angeles,
Leiden, Barcelona, Rome and Pisa. He studied Mathematics from 1963 to 1969, was
research assistant from 1970 to 1972 at the Mathematics Department, and got his PhD
in 1971. In 1972, he was appointed as assistant professor at the Computer Science
Department and got his Habilitation two years later. In the same year, he was appointed
as associate professor of Theoretical Computer Science and as full professor in 1985.
He held this position until he retired in 2010. Besides teaching and research, he was
also deeply involved in university affairs serving repeatedly as department chair and
leading the Institute for Software Engineering and Theoretical Computer Science for 32
years.

He was amazingly productive. In addition to the editing and co-editing of more
than 20 proceedings and handbooks, he authored and co-authored eight books and
more than 400 papers in journals, proceedings, handbooks and other collective volumes
while cooperating with more than 160 co-authors. Not only the sheer amount of printed
outcome is striking, but also the fact that Hartmut was the driving force behind most
of these publications.

If he looked into a matter, then he did not stop before he understood it in depth. In
this process, he often came up with innovative formulations, views and approaches. He
was a profound thinker who worked hard to disseminate his ideas. He was a great
communicator attending a good many conferences, visiting numerous research groups
all over the world and inviting a great number of famous and promising scientists to
Berlin.

He was also a dedicated teacher who prepared many courses in Theoretical
Computer Science and Mathematics for Computer Scientists including teaching
materials as evidenced by his text book Mathematisch-strukturelle Grundlagen der
Informatik and a wealth of unpublished lecture notes. At his university, he belonged to
the minority of professors who experimented regularly with new principles of teaching.
He invested much time and effort in the supervision of his students. In particular his
over 50 PhD students always found him ready to advise and collaborate.

Hartmut largely personifies the area of graph transformation. He founded the series
of International Workshops on Graph Grammars and their Application to Computer
Science with Volker Claus and Grzegorz Rozenberg starting in 1978, which continued
as International Conferences on Graph Transformation (ICGT) since 2002. He was the
first chair of the steering committee of ICGT from 2000 to 2008. He proposed and
moderated the European projects Computing by Graph Transformation I and II that
played an essential role in binding the community together. And last but not least, his
monograph on Fundamentals of Algebraic Graph Transformation and the most recent
book Graph and Model Transformation – General Framework and Applications, as
well as the co-editing of two volumes of the Handbook of Graph Grammars and
Computing by Graph Transformation are evidence of his prominent role.

In addition to other awards, his paper on Introduction to the Algebraic Theory of
Graph Grammars (A Survey), which was published in the proceedings of the first
international graph grammar workshop, was distinguished as the “most influential paper
in 25 years of graph transformation” at the ICGT conference 2010, definite a fitting
choice. Hartmut’s contribution to the area began with his paper Graph-Grammars:

XIV H.-J. Kreowski



An Algebraic Approach (co-authored by Michael Pfender and Hans-Jürgen Schneider)
presented at the SWAT conference 1973. The paper was not the first attempt to gen-
eralize rule-based string rewriting to the level of graphs as underlying structures, but it
turned out to be the most influential one. This was the birth of the famous
double-pushout diagram that establishes the application of a graph transformation rule.
From then on, Hartmut propagated the basic ideas with enthusiasm and conviction so
that his name is indissolubly associated with the approach. It became the most frequently
used and the most successfully applied variant of graph transformation.

Appreciating his achievements and the services rendered to graph transformation,
one should not forget that Hartmut played a similar role in algebraic specification and
contributed also to the areas of automata theory, Petri net theory and formal and visual
modeling in a significant way. His monographs on Algebraic Specification Techniques
and Tools for Software Development: The ACT Approach and Fundamentals of
Algebraic Specification 1 and 2 set new standards. He started the series of international
conferences on Theory and Practice of Software Develepment (TAPSOFT) in 1985,
later extended to the very successful ETAPS series. Moreover, he served as vice
president of the European Association of Theorectical Computer Science (EATCS)
from 1997 to 2002 and also as vice president of the European Association of Software
Science and Technology (EASST) since 2000.

There is a very old metaphor going back to the twelfth century that we can see
further making progress in science because we can stand on the shoulders of giants.
Hartmut was, is and will be such a giant for our area. What better way to honour him
and his work than to follow his footsteps and aspire to achieve his level of service and
dedication.

The Graph Transformation Community Mourns for Hartmut Ehrig (1944–2016) XV
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Complexity is the Only Constant: Trends
in Computing and Their Relevance to Model

Driven Engineering

Juergen Dingel(B)

School of Computing, Queen’s University, Kingston, ON, Canada
dingel@cs.queensu.ca

Abstract. Despite ever increasing computational power, the history of
computing is characterized also by a constant battle with complexity.
We will briefly review these trends and argue that, due to its focus
on abstraction, automation, and analysis, the modeling community is
ideally positioned to facilitate the development of future computing sys-
tems. More concretely, a few, select, technological and societal trends and
developments will be discussed together with the research opportunities
they present to researchers interested in modeling.

1 Introduction

The development of computing is remarkable in many ways, and perhaps most
of all in its progress and impact. However, due to the economic significance of
computing and the pace of societal and technological change, we are constantly
presented with new questions, challenges, and problems, giving us little time to
reflect on how far we have come. Also, computing has become such a large and
fragmented field that it is impossible to keep abreast all research developments.

This paper wants to briefly review some select past and present develop-
ments. Its main goal is to inform, stimulate, and inspire, not to convince. It
will attempt to do so in a somewhat eclectic, anecdotal manner without claims
of comprehensiveness, mostly driven by the author’s interest, but with ample
references to allow interested readers to dig deeper.

2 Complexity

“Complexity, I would assert, is the biggest factor involved in
anything having to do with the software field.”

Robert L. Glass [23]

In general, complex systems are characterized by a large number of entities, com-
ponents or parts, many of which are highly interdependent and tightly coupled
such that their combination creates synergistic, emergent, and non-linear behav-
iour [29]. One of the prime examples of a complex system is the human brain
consisting, approximately, of 1011 neurons connected by 1015 synapses [11].
c© Springer International Publishing Switzerland 2016
R. Echahed and M. Minas (Eds.): ICGT 2016, LNCS 9761, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-40530-8 1



4 J. Dingel

Lines of code (approx.)
(in million)

Operating Systems
Windows NT 3.1 (1993) 0.5

Windows 95 11
Windows 2000 29

Windows XP (2001) 35
Windows Vista (2007) 50

Windows 7 40
Mac OS X 85

Android OS 12

Automobiles
1981 0.05
2005 10

2015 (high end) 100
Miscellaneous

Pacemaker 0.1
Mars Curiosity Rover 5

Firefox 10
Intuit Quickbook 10

Boeing 787 14
F-35 fighter jet 24

Large Hadron Collider 50
Facebook 60

Google (gmail, maps, etc) 2,000

Fig. 1. Approximate size of software in various products [7,48]

Figure 1 shows the size of software in different kinds of products. Noteworthy
here are not only the absolute numbers, but also the rate of increase. Automo-
tive software is a good example here. Just over 40 years ago, cars were devoid of
software. In 1977, the General Motors Oldsmobile Tornado pioneered the first
production automotive microcomputer ECU: a single-function controller used
for electronic spark timing. By 1981, General Motors was using microprocessor-
based engine controls executing about 50,000 lines of code across its entire
domestic passenger car production. Since then, the size, significance, and devel-
opment costs of automotive software has grown to staggering levels: Modern
cars can be shipped with as much as 1 GB of software encompassing more than
100 million lines of code; experts estimate that more than 80% of automotive
innovations will be driven by electronics and 90 % thereof by software, and that
the cost of software and electronics can reach 40 % of the cost of a car [25].

The history of avionics software tells a similar story: Between 1965 and 1995,
the amount of software in civil aircraft has doubled every two years [14]. If growth
continues at this pace, experts believe that limits of affordability will soon be
reached [79].
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Lines of code is a doubtful measure of complexity1. Nonetheless, it appears
fair to say the modern software is one of the most complex man-made artifacts.

2.1 Why has Complexity Increased so Much?

An enabler necessary for building and running modern software certainly is mod-
ern hardware. Today’s software could not run on yesterday’s hardware. The
hardware industry has produced staggering advances in chip design and man-
ufacturing which have managed to deliver exponentially increasing computing
power at exponentially decreasing costs. Compared to the Apollo 11 Guidance
Computer used 19692 a standard smart phone from 2015 (e.g., iPhone 6) has
several tens of million of times the computational power (in terms of instructions
per second)3. In 1985, an 2011 iPad2 would have rivaled a four-processor version
of the Cray 2 supercomputer in performance, and in 1994, it still would have
made the list of world’s fastest supercomputers [45]. According to [47], the price
of a megabyte of memory dropped from US$411,041,792 in 1957 to US$0.0037 in
December 2015 — a factor of over 100 billion! The width of each conducting line
in a circuit (approx. 15 nm) is approaching the width of an atom (approx. 0.1 to
0.5 nm).

But, it is not just technology that is getting more complex, life in general
does, too. According to anthropologist and historian Josef Tainter, “the history
of cultural complexity is the history of human problem solving” [73]. Societies get
more complex because “complexity is a problem solving strategy that emerges
under conditions of compelling need or perceived benefit”. Complexity allows
us to solve problems (e.g., food or energy distribution) or enjoy some benefit.
Ideally, this benefit is greater than the costs of creating and sustaining the com-
plexity introduced by the solution.

2.2 Consequences of Complexity

On the positive side, complex systems are capable of impressive feats. AlphaGo,
the Go playing system that in March 2016 became the first program to beat
a professional human Go player without handicaps on a full-sized board in a
five-game match, was said by experts to be capable of developing its own moves:
“All but the very best Go players craft their style by imitating top players.
AlphaGo seems to have totally original moves it creates itself” [5], providing a
great example of — seemingly or real — emergent, synergistic behaviour.

On the negative side, complexity increases risk of failure. Data on the failures
of software or software development are hard to come by; according to the US

1 So many alternative ones have been proposed [61] that even the study of complexity
appears complex.

2 A web-based simulator can be found at http://svtsim.com/moonjs/agc.html.
3 https://www.quora.com/How-much-more-computing-power-does-an-iPhone-6-have-

than-Apollo-11-What-is-another-modern-object-I-can-relate-the-same-computing-
power-to.

http://svtsim.com/moonjs/agc.html
https://www.quora.com/How-much-more-computing-power-does-an-iPhone-6-have-than-Apollo-11-What-is-another-modern-object-I-can-relate-the-same-computing-power-to
https://www.quora.com/How-much-more-computing-power-does-an-iPhone-6-have-than-Apollo-11-What-is-another-modern-object-I-can-relate-the-same-computing-power-to
https://www.quora.com/How-much-more-computing-power-does-an-iPhone-6-have-than-Apollo-11-What-is-another-modern-object-I-can-relate-the-same-computing-power-to


6 J. Dingel

National Institute of Standards and Technology, the cost of software errors in
the US in 2001 was US$ 60 billion [63] and in 2012 the worldwide cost of IT
failure has been estimated to be $3 trillion4.

A recent example illustrates how subtle bugs can be and how difficult it is to
build software systems correctly: Chord is a protocol and algorithm for a peer-
to-peer distributed hash table first presented in 2001 [72]. The work identified
relevant properties and provided informal proofs for them in a technical report.
Chord has been implemented many times5 and went on to win the SIGCOMM
Test-of-Time Award in 2011. The original paper currently has over 12,000 cita-
tions on Google scholar and is listed by CiteSeer as the 9th most cited Computer
Science article. In 2012, it was shown that the protocol was not correct [82].

2.3 How to Deal with Complexity

Computer science curricula teach students a combination of techniques to deal
with complexity, the most prominent of which are decomposition, abstraction,
reuse, automation, and analysis. Of these, abstraction, automation, and analysis
lie at the heart of MDE. These principles have served us amazingly well. Exam-
ples include the development of programming languages in general, and Peter
Denning’s ground-breaking work on virtual memory in particular [15]. But, e.g.,
‘The Law of Leaky Abstractions’6, the ‘Automation Paradox’ [22], and the Ari-
ane 5 accident in 1996 [1] have also taught us that even these techniques must
be used with care.

3 Developments and Opportunities

“I have no doubt that the auto industry will change more in
the next five–10 years than it has in the last 50”

Mary Barra, GM Chairman and CEO, January 2016 [24]

“Only 19% of [175] interviewed auto executives describe their
organizations as prepared for challenges on the way to 2025”

B. Stanley, K. Gyimesi, IBM IBV, January 2015 [71]

Making predictions in the presence of exponential change is very difficult7.
For instance, when asked to imagine life in the year 2000, 19th century French
artists came up with robotic barbers, machines that read books to school chil-
dren, and radium-based fireplaces8; when the concept of a personal computer

4 http://www.zdnet.com/article/worldwide-cost-of-it-failure-revisited-3-trillion.
5 At least 8 implementations are listed at https://github.com/sit/dht/wiki/faq.
6 http://www.joelonsoftware.com/articles/LeakyAbstractions.html.
7 http://uday.io/2015/10/15/predicting-the-future-and-exponential-growth.
8 http://singularityhub.com/2012/10/15/19th-century-french-artists-predicted-

the-world-of-the-future-in-this-series-of-postcards.

http://www.zdnet.com/article/worldwide-cost-of-it-failure-revisited-3-trillion
https://github.com/sit/dht/wiki/faq
http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://uday.io/2015/10/15/predicting-the-future-and-exponential-growth
http://singularityhub.com/2012/10/15/19th-century-french-artists-predicted-the-world-of-the-future-in-this-series-of-postcards
http://singularityhub.com/2012/10/15/19th-century-french-artists-predicted-the-world-of-the-future-in-this-series-of-postcards
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was first discussed at IBM, a senior executive famously questioned its value9.
However, predicting further accelerating levels of change appears to be a safe
bet. Increasing amounts of software are very likely to come with that, meaning
there should be lots of things to do for software researchers.

The following list is highly selective and meant to complement more compre-
hensive treatments such as [65]. Also, we will focus most on technology; however,
as pointed out in [65], more technology is not always the answer.

3.1 Semantics Engineering

Capturing the formal semantics of general purpose programming languages has
been a topic of research for a long time, but the richness of these languages
present challenges that limit a more immediate, practical application of the
results contributing to a widespread belief that formal semantics are for theo-
reticians only. However, the recent interest in Domain Specific Languages (DSLs)
appears to present new opportunities to leverage formal semantics. Compared to
General Purpose Languages (GPLs), a DSL typically consists of a smaller num-
ber of carefully selected features. Often, semantically difficult GPL constructs
such as objects, pointers, iteration, or recursion can be avoided; expressiveness
is lost, but tractability is gained.

The literature contains some examples showing how this increased tractabil-
ity can be leveraged to facilitate formal reasoning. For instance, automatic veri-
fiers have been built for DSLs for hardware description [13], train signaling [18],
graph-based model transformation [66], and software build systems [10].

However, the improved tractability of DSLs might also greatly facilitate the
automatic generation of supporting tooling. Looking at how widely used tech-
niques to describe the syntax of a language have become to generate syntax
processing tools, the vision is clear: Use descriptions of the semantics of a lan-
guage to facilitate the construction of semantics-aware tools for the execution
and analysis of that language.

An Inspiring Example. This idea has already been explored in the context
of programming languages [6,28,52,77]) and modeling languages [19,43,53,83]
to, e.g., implement customizable interpreters, symbolic execution engines, and
model checkers. However, the work in [40], in which abstract interpreters for a
language are generated automatically from a description of its formal semantics,
shows that more is possible. Given a description of the operational semantics
of a machine-language instruction set such as x86/IA32, ARM, or SPARC in a
domain-specific language called TSL, and a description of how the base types
and operators in TSL are to be interpreted “abstractly” in an abstract semantic
domain, the TSL tool automatically creates an implementation of an abstract
interpreter for the instruction set:

TSL : concrete semantics × abstract domain −→ abstract semantics

9 http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/personalcomputer.

http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/personalcomputer
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The abstract interpreter can then be used by different analysis engines (e.g., for
finding a fixed-point of a set of dataflow equations using the classical worklist
algorithm, or for performing symbolic execution) to obtain an analyzer that is
easily retargetable to different languages. The tool offers an impressive amount of
generality by supporting different instruction sets and different analyses. It has
been used to build analyzers for the IA32 instruction set that perform value/set
analysis, definition/use analysis, model checking, and Botnet extraction with a
precision at least as high as manually created analyzers.

Lowering Barriers, Increasing Benefit. Recent formalizations of different
industrial-scale artifacts including operating system kernels [35], compilers [38],
and programming languages including C [17], JavaScript [57] and Java [4] provide
some evidence that large-scale formalizations are becoming increasingly feasible.
Efforts are underway to make the expression, analysis, and reuse of descriptions
of semantics more scalable, effective, and mainstream [21,54,62]. Paired with
the increasing maturity and adoption of language workbenches such as Xtext10,
this work may allow substantial progress on the road towards the automatic
generation of semantics-aware tools such as interpreters, static analyzers, and
compilers. Descriptions of semantics might one day be as common and useful as
descriptions of syntax are today.

3.2 Synthesis

The topic of synthesis has been receiving a lot of attention recently. For most
of these efforts, ‘synthesis’ refers to the process of automatically generating exe-
cutable code from information given in some higher level form: Examples include
the generation of code that manipulates many different artifacts (e.g., bitvec-
tors [70], concurrent data structures [69], database queries [9], data reprenta-
tions [68], or spreadsheets [26]), gives feedback to students for programming
assignments [68], or implements an optimizing compiler [8]. Some of these exam-
ples use a GPL, some use a DSL. The synthesis itself is implemented either using
constraint solving or machine learning. Different proposals on how to best inte-
grate synthesis into programming languages have been made and have targeted
GPLs such as Java [31,49] and DSLs [75].

Given that abstraction, automation and analysis are central to MDE, syn-
thesis certainly also is of interest to the modeling community and the work on
synthesis and its applications should be followed closely. In [74,75], the idea of
“solver-aided DSLs” is introduced. The paper presents a framework in which
such DSLs can be created and illustrates its use with a DSL for example-based
web scraping in which the solver is used to generate an XPath expression that
retrieves the desired data.

MDE features a range of activities and situations which might potentially
benefit from a little help from a solver capable of finding solutions to constraints.
Could the idea of synthesis and the use of solvers facilitate, e.g.,

10 https://eclipse.org/Xtext.

https://eclipse.org/Xtext
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– the development of models via extraction or autocompletion,
– the support for partial models with incomplete or uncertain information,
– the analysis of models,
– the refinement of models via, e.g., the generation of substate machines from

interface specifications,
– the generation of correct, efficient code from models,
– the generation of different views from a model?

How could synthesis be leveraged in language workbenches that generate sup-
porting tools such as analyzers and code generators, or in model transformation
languages and engines that support different transformation intents [44]?

Some attempts to leverage synthesis for, e.g., model creation [36], trans-
formation authoring [2], design space exploration [27] already exist, but the
topic hardly seems exhausted. Indeed, some of the technical issues Selic men-
tions in [65] might be mitigated using synthesis including dealing with abstract,
incomplete models, model transformation, and model validation.

3.3 Reconciling Formal Analysis and Evolution

There is a fundamental conflict between analysis and evolution: As soon as the
model evolves (changes), any analysis results obtained on the original version
may be invalidated and the analysis may have to be rerun. Unfortunately, both
seem unavoidable not just in the context of MDE, but software engineering in
general.

Most analyses require the creation of supporting artifacts that represent
analysis-relevant information about the model. For instance, software reverse
engineering tools collect relevant information about the code in a so-called fact
repository typically containing a collection of tuples encoding graphs [34]; most
static analysis tools require some kind of dependence graph, and test case gen-
eration tools often rely on symbolic execution trees.

When the cost of the analysis rises, the motivation to avoid a complete re-
analysis after a change and to leverage information about the nature of the
change to optimize the analysis increases as well. In general, aspects of this
topic are handled in the literature on impact analysis [39]; however, the analy-
ses considered typically are either manual (comprehension, debugging) or rather
narrow (regression testing, software measurement via metrics), and do not con-
sider, e.g., static analyses or analyses based on formal methods.

Two Approaches. Assuming the analysis requires supporting artifacts, there
are, in principle, at least two ways of reconciling analysis and evolution [33]:

1. Artifact-oriented (Fig. 2): The goal here is to update the supporting artifact
A1 as efficiently as possible, but in such a way that it becomes fully reflective of
the information in the changed program. To this end, the impact of the change
Δ on the artifact original artifact A1 is determined, and the parts of the artifact
possibly affected are recomputed, while leaving parts known to be unaffected
unchanged. Then, the updated artifact A2 can be used as before to perform all
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Fig. 2. Artifact-oriented approach to reconcile analysis and evolution. Mi, Ai, and Ri

denote, respectively, a model, the artifact extracted from the model to support the
analysis, and the analysis result

analyses it is meant to support. For instance, for analyses based on dependence
graphs such as slicing or impact analysis, the parts of the graph affected by the
change are updated and the result is used to recompute the result. Similarly, for
a dead code analysis (or test case generation) using a symbolic execution tree
(SET), affected parts of the tree would be updated to produce a tree correspond-
ing to the changed program. In this approach, the savings come from avoiding
the reconstruction of parts of the supporting artifact A2.

2. Analysis-oriented (Fig. 3): Here, the focus is on updating the result of the
analysis as efficiently as possible, rather than the supporting artifact. To this
end, the impact of the change Δ on the analysis result is determined, and the
parts of the analysis that may lead to a different result due to the change are
redone, ignoring any parts known to produce the same result. For instance,
when impact analysis is used during regression testing, only tests for executions
that were introduced by the change are run; tests covering unaffected executions
are ignored [60]. In this approach, the focus is on reestablishing the analysis
result R2 as some combination R2 = op(Δ,R1, R

′
2) of the previous result R1 and

the partial result R′
2. E.g., an analysis-oriented optimization of the dead code

analysis mentioned above (or test case generation) would use the most efficient
means to determine dead code in (or test cases for) the affected parts and the
construction of the full SET for the changed program may not be necessary for
that; in this case, R1 would be the dead code in (or test cases for) M1 and the
partial result R′

2 would be the dead code in (test cases for) the parts of the
model introduced by the change; the operation op(Δ,R1, R

′
2) would return the

union of R′
2 and the dead code (test cases) in R1 not impacted by the change.

In this case, the savings come from avoiding unnecessary parts of the analysis.
Comparing the two approaches, we see an interesting tradeoff: The first app-

roach does not speed up the analysis itself (only the update of the supporting
artifact). However, it results in a complete supporting artifact (e.g., dependence
graphs, SET) that can then be used for whatever analyses it supports (e.g., dif-
ferent static analyses for dependence graphs, and, test case generation, dead code
analysis for SETs). Moreover, the result of the analysis of the changed model
does not rely on the result of the analysis of the original program at all. The sec-
ond approach speeds up the analysis itself, but since it focusses on the changed
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parts, it is partial only. E.g., the updated program can only be concluded to be
free of dead code, if the second and the first analysis say so.

In sum, the second approach is more restricted compared to the first, but
might well hold additional optimization potential. Recent research on program
analysis using formal techniques has begun to explore these possibilities, and
analysis-oriented approaches to optimize model checking [81] and symbolic exe-
cution [58] have been developed. Inspired by these proposals, we have devel-
oped prototypes that use both approaches to optimize the symbolic execution
of Rhapsody statemachines [33]. Results indicate that both approaches are com-
plementary and effective in different situations.

3.4 Open Science

In 2010, two Harvard economists published a paper entitled “Growth in a Time
of Debt” in a non-peer reviewed journal which provided support for the argument
that excessive debt is bad for growth. The paper was used by many policy makers
to back up their calls for fiscal austerity. However, in 2013, the paper was shown
to have used flawed methodology and to not support the authors’ conclusions11.

Reproducibility. Examples of research producing doubtful results due to unin-
tended or even intended flaws in the data or methodology have been going
through the media recently and many disciplines have begun to investigate
the reproducibility of their research results. For instance, a study in economics
showed that 78 % of the 162 replication studies conducted “disconfirm a major
finding from the original study” [16]. A study focusing on research in Computer
Systems [12], examined 601 papers from eight ACM conferences and five jour-
nals: of the papers with results backed by code, the study authors were able to
build the system in less than 30 min only 32 % of the time; in 54 % of cases the
study authors failed to build the code, but the paper authors said that the code
does build with reasonable effort.

The U.S. President Steps In. However, it has been pointed out in prominent
places that in many disciplines these days reproducibility means the availability
of programs and data [30,50,64]. In other words, since software, programming,

Fig. 3. Analysis-oriented approach to reconcile analysis and evolution. The analysis
result R2 for M2 is obtained by combining the result for M1 with the partial result R′

2

11 A discussion of the paper and the controversy it caused can be found at https://en.
wikipedia.org/wiki/Growth in a Time of Debt.

https://en.wikipedia.org/wiki/Growth_in_a_Time_of_Debt
https://en.wikipedia.org/wiki/Growth_in_a_Time_of_Debt
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and the use and manipulation of data plays such a central role in so many dis-
ciplines, some of the problems with reproducibility in other disciplines are due
to limitations in programming, software, and the use and manipulation of data,
that is, they are due to problems that the computing community is at least par-
tially responsible for and should put on its research agenda12. About a year ago,
the world’s most powerful man has done exactly that with an executive order to
create a “National Strategic Computing Initiative” which includes accessibility
and workflow capture as central objectives [56].

A Good Start: Encouraging Artifact Submission. The research commu-
nity has begun to adjust with, e.g., no less than four events devoted to repro-
ducibility at the 2015 Conference for High Performance Computing, Networking,
Storage and Analysis (SC’15)13, and Eclipse’s Science Working Group announc-
ing specific initiatives (Eclipse Integrated Computational Environment and Data
Analysis Workbench). However, more should be done and promoting the value of
artifact submission at workshops, conferences, and journal appears to be a good
place to start. According to [12], 19 Computer Science conferences have partici-
pated in an artifact submission and evaluation process between 2011 and 2016,
including PLDI’15, OOPSLA’15, ECOOP’15, and POPL’16, but more need to
join. The availability of the artifacts that research is based and their integration
into the scientific evaluation process should be the norm, not the exception.

3.5 Provenance

A topic closely related to open science and reproducibility is provenance. In
general, data provenance refers to the description of the origins of a piece of
data and the process by which it was created or obtained with the goal to allow
assessments of quality, reliability, or trustworthiness. It has traditionally been
studied in the context of databases, but has also been used for data found on
the web or data used in scientific experiments. Domains of application include

– science, to make data and experimental results more trustworthy and experi-
ments more reproducible,

– business, to demonstrate ownership, responsibility, or regulatory compliance
and facilitate auditing processes, and

– software development, to aid certification and establish adherence to licensing
rules.

OPM and PROV: Metamodels and Standards for Provenance. There
are tools specifically devoted to the collection and representation of provenance
data such as Karma14 but also workflow engines supporting provenance such as
Kepler15. Many of these tools support the Open Provenance Model (OPM), a
12 Computers are even said to have “broken science”, https://www.eclipsecon.org/

na2016/session/how-computers-have-broken-science-and-how-we-can-fix-it.
13 http://sc15.sueprcomputing.org.
14 http://d2i.indiana.edu/provenance karma.
15 https://kepler-project.org.

https://www.eclipsecon.org/na2016/session/how-computers-have-broken-science-and-how-we-can-fix-it
https://www.eclipsecon.org/na2016/session/how-computers-have-broken-science-and-how-we-can-fix-it
http://sc15.sueprcomputing.org
http://d2i.indiana.edu/provenance_karma
https://kepler-project.org
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data model (i.e., metamodel) for provenance information [51] based on directed,
edge-labeled, hierarchical graphs with three kinds of nodes representing things
(Artifact, Agent, and Process) and five kinds of edges representing causal rela-
tionships (used, wasGeneratedBy, wasControlledBy, wasTriggeredBy, and was-
DerivedFrom). OPM graphs are subject to well-formedness constraints, can con-
tain time information, and have inference rules (allowing, e.g., the inclusion of
derived information via transitive edges) and operations (for, e.g., union, inter-
section, merge, renaming, refinement and completion) associated with them.
A formal semantics of OPM graphs published recently views them as tempo-
ral theories on the temporal events represented in the graph [37], but does not
account for Agents. OPM has been a major influence in the design of the PROV
family of documents by the World Wide Web Consortium (W3C) [78] which not
only defines a data model, but also corresponding serializations and other sup-
porting definitions to enable the interoperable interchange of provenance infor-
mation in heterogeneous environments such as the Web.

Open-ended Opportunities. There appears to be a lot of opportunity for
researchers with background in graph transformation, formal methods, or mod-
eling to advance the state-of-the-art in provenance. Many established topics (e.g.,
formal semantics, constraint solving, traceability, querying, language engineering
for graphical DSMLs, and model management), but also emerging topics (e.g.,
the use of models and modeling to support inspection, certification and compli-
ance checking [20,46,55] and data aggregation and visualization [41,42,48,76])
appear potentially relevant. Moreover, no approaches have been found to build
models that allow the quantification of the quality or trustworthiness of data. In
case of producer/consumer relationships, service level agreements guaranteeing
data with a certain level of quality might also be of interest.

3.6 Open Source Modeling Tools

The need to improve MDE tooling has been expressed before [32,65,80]. At
the same time, significant efforts to develop industrial-strength open source
modeling tools and communities that support and sustain them are currently
being made. Sample tools include AutoFocus16, xtUML17, Papyrus18 [3], and
PapyrusRT19 [59].

The development and availability of complete, industrial-strength open
source MDE tools is a radical shift from past practices and presents both excit-
ing opportunities and substantial challenges for everybody interested in MDE,
regardless of whether they use the tools for industrial development, research, or
education. Due to the importance of tooling to the success of MDE, this shift
has the potential to provide a much-needed stimulus for major advances in its
adoption, development, and dissemination.
16 http://www.fortiss.org/en/about-us/alle-news/autofocus-3.
17 https://xtuml.org.
18 https://eclipse.org/papyrus.
19 https://www.eclipse.org/papyrus-rt.

http://www.fortiss.org/en/about-us/alle-news/autofocus-3
https://xtuml.org
https://eclipse.org/papyrus
https://www.eclipse.org/papyrus-rt
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4 Conclusion

“We can only see a short distance ahead, but we
can see plenty there that needs to be done.”

Alan Turing

As we continue to entrust more and more complex functions and capabilities
to software, our ability to build this software reliably and effectively should
increase as well. Much more work is needed to make this happen and this paper
has suggested some starting points.

The fragmentation that plagues many research areas is harmful. Any scientific
community should keep an open mind and remain willing to learn from others
about existing and new problems and potentially new ways to solve them [67].
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Abstract. Sesqui-pushout rewriting is an algebraic graph transforma-
tion approach that provides mechanisms for vertex cloning. If a vertex
gets cloned, the original and the copy obtain the same context, i.e. all
incoming and outgoing edges of the original are copied as well. This
behaviour is not satisfactory in practical examples which require more
control over the context cloning process. In this paper, we provide such
a control mechanism by allowing each transformation rule to refine the
underlying type graph. We discuss the relation to the existing approaches
to controlled sesqui-pushout vertex cloning, elaborate a basic theoretical
framework, and demonstrate its applicability by a practical example.

1 Introduction

Sesqui-pushout graph transformation (SqPO) [2] is a relatively new variant in the
family of algebraic graph rewriting frameworks. It extends the double-pushout
(DPO) [4,5] and the single-pushout approach (SPO) [6,8] by mechanisms for
object cloning including the complete context of the object, which are all incom-
ing and outgoing edges in the case of graphs. Many practical examples, how-
ever, require more control over the cloning process. In many cases, only edges
of specific types shall be cloned. In this paper, we propose a new mechanism
for controlled object cloning by allowing each rule to refine the underlying type
graph in a way that is suitable for the cloning performed by the rule.

The paper is organised as follows: Sect. 2 recapitulates sesqui-pushout rewrit-
ing in a categorical set-up and presents major results that shall be valid in any
extension. The example in Sect. 3 motivates the mechanisms that are introduced
in Sect. 4. Section 5 formulates a categorical framework for the new approach and
shows that many results known from the standard approach carry over. Finally,
Sect. 6 discusses related work and future research.

2 Standard SqPO-Rewriting

In this section, we present sesqui-pushout rewriting in a categorical set-up. We
require that the underlying category C satisfies the following conditions:

C1 C has all finite limits and co-limits.
c© Springer International Publishing Switzerland 2016
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Fig. 1. Final pullback complement and commutative cube property

C2 Every pair (a : P → Q, b : Q � S) of morphisms with monic b has a final
pullback complement.

C3 Pushouts along monomorphisms are van-Kampen: In a commutative cube
as in Fig. 1, where g′ is monic, (h′, k′) is pushout of (f ′, g′), and (g, a) and
(f, a) are pullbacks of (g′, b) and (f ′, d) resp., we have: (h, d) and (k, b) are
pullbacks of (h′, c) and (k′, c) resp., if and only if (h, k) is pushout of (f, g).

A pair (c : P → R, d : R → S) as in the left part of Fig. 1 is final pullback
complement (FPC ) of the pair (a : P → Q, b : Q → S), if (a, c) is pullback of
(b, d) and for each collection of morphisms (x, y, z, w), where (x, y) is pullback
of (b, z) and a ◦ w = x, there is a unique w∗ with d ◦ w∗ = z and c ◦ w = w∗ ◦ y.
Note the following special cases of final pullback complement situations:

F1 For every morphism f : P → Q, (idP , f) is FPC of (f, idQ) and vice versa.
F2 In a commutative cube as in the right part Fig. 1, where (b, k′) is FPC of

(k, c), (f, g) is pullback of (k, h), and (d, h) is pullback of (c, h′) the following
compatibility condition between pullbacks and final pullback complements
holds: (a, f ′) is FPC of (f, d), if and only if (f ′, g′) is pullback of (k′, h′).1

Final pullback complements possess the following composition and decomposi-
tion properties (for proofs compare [11]):

F3 Horizontal composition and decomposition: Let c◦k = k′ ◦b and b◦g = g′ ◦a
in the right part of Fig. 1 and let (b, k′) be FPC of (k, c): (a, g′) is FPC of
(g, b), if and only if (a, k′ ◦ g′) is FPC of (k ◦ g, c).

F4 Vertical composition: If (g, b) and (k, c) are FPCs of (a, g′) and (b, k′) respec-
tively in the right part of Fig. 1, then (k ◦ g, c) is FPC of (a, k′ ◦ g′).

Condition C3 guarantees:2

F5 Pushouts in C preserve monomorphisms.
1 For a proof of the if-part see [9].
2 Compare [4,7].
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F6 Pushouts along monomorphisms are pullbacks.

For a compact notion of sesqui-pushout rewriting, we pass over from C to the
span category C←→ of C. A concrete span is a pair of C-morphisms (p : K →
P, q : K → Q). Two spans (p1, q1), (p2, q2) are equivalent, if there is isomorphism
i with p1 ◦ i = p2 and q1 ◦ i = q2; [(p, q)]≡ denotes the class of spans equivalent
to (p, q). The category of abstract spans C←→ has the same objects as C and
equivalence classes of spans as morphisms. The identity for an object A ∈ C←→

is defined by idC←→
A = [(idA, idA)]≡. And composition of [(p, q)]≡ and [(r, s)]≡

such that codomain(q) = codomain(r) is given by [(r, s)]≡ ◦C←→ [(p, q)]≡ =
[(p ◦C r′, s ◦C q′)]≡ where (r′, q′) is a pullback of (q, r). A span composition is
strong, written [(r, s)]≡ • [(p, q)]≡, if (q′, r) is final pullback complement of (r′, q).

Note that there is the natural and faithful embedding functor ι : C → C←→

defined by identity on objects and (f : A → B) �→ [idA : A → A, f : A → B]
on morphisms. In the following, the composition of a span (p, q) ∈ C←→ with
a morphism m ∈ mathcalC, i.e. (p, q) ◦ m (or m ◦ (p, q)), is the span defined
by (p, q) ◦ ι(m) (resp. ι(m) ◦ (p, q)). By a slight abuse of notation, we write
[d : A′ → A, f : A′ → B] ∈ C if d is an isomorphism. Direct derivations in
sesqui-pushout rewriting are special strong compositions of spans.

Definition 1 (Standard Rule and Derivation). A rewrite rule p is a mor-
phism in C←→, i.e. p = (l : K → L, r : K → R). A match for p is a monic
C-morphism m : L � G. The direct derivation with p at match m is constructed
in two steps, compare Fig. 2:

1. (m 〈l〉 , l 〈m〉) is final pullback complement of (l,m).
2. (m 〈p〉 , r 〈m〉) is pushout of (m 〈l〉 , r).

In a direct derivation, G is the source, p@m is the target, the span p 〈m〉 =
(l 〈m〉 , r 〈m〉) is called the trace, and m 〈p〉 is also referred to as co-match.

Remarks. A derivation is determined up to isomorphism by the match. This
is due to the fact that FPCs and pushouts are unique up to isomorphism. Since
pullbacks preserve monomorphisms, m 〈l〉 is a monomorphism and Fact F5 pro-
vides monic m 〈p〉. Due to Condition C2, rules are applicable at every match. The
direct derivation in Fig. 2 constitutes a special commutative diagram in C←→,
i.e. m 〈p〉 • p = p 〈m〉 • m, with pullback (l,m 〈l〉) of (l 〈m〉 ,m).

Since traces are morphisms in C←→, they can be used as rules and, by Fact
F4 and the composition property of pushouts, we immediately obtain:

L K R

G K m p@m

m

l

m l

r

m p(1)

l m r m

(2)

Fig. 2. Direct transformation
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Proposition 2 (Standard Derived Rule). If p 〈m〉 is the trace of a deriva-
tion with rule p at match m and n is match for p 〈m〉, then (p 〈m〉) 〈n〉 =
p 〈n ◦ m〉 and (n ◦ m) 〈p〉 = n 〈p 〈m〉〉 ◦ m 〈p〉.

Since rules are spans, they can be composed and decomposed. Condition C3
guarantees that rule composition and decomposition carries over to derivations.

Proposition 3 (Composition of Standard Derivations). If m is a match
for p′ ◦ p, (p′ ◦ p) 〈m〉 = p′ 〈m 〈p〉〉 ◦ p 〈m〉 and m 〈p′ ◦ p〉 = m 〈p〉 〈p′〉.

The proposition is a direct consequence of Theorem 7 in [11]. Together with
Proposition 2, it provides the fundaments for a rich theory.3

3 Example: Version Management

As an example that demonstrates the power of SqPO-rewriting, we present a
model for version management of decomposed components. It uses the category
G of graphs and graph morphisms or, more precisely, the slice category G ↓ T of
all graphs wrt. a type graph T ∈ G. A graph G = (V ;E; s, t : E → V ) has a set
V of vertices, a set E of edges, and source and target mappings s and t. A graph
morphism h : G → H is a pair (hV : GV → HV , hE : GE → HE) of mappings
with sH ◦ hE = hV ◦ sG and tH ◦ hE = hV ◦ tG. G satisfies Conditions C1–C3.4

The left part of Fig. 3 depicts the type graph for the version management
system. The right part shows a sample instance graph.5 The sample contains

Fig. 3. Version management: model and instance

3 Compare for example [11].
4 Given arbitrary morphism a : P → Q and monomorphism b : Q � S, the final
pullback complement (c : P � R, d : R → S) is constructed as follows, compare [2]:
Vertices: RV = PV � (SV − bV (QV )), cV = idPV , dV = bV (aV (v)) if v ∈ PV and
dV = idSV otherwise. Edges: RE contains PE and an edge “copy” (v, e, v′) for every
edge e ∈ SE −bE(QE) and pair of vertices v, v′ ∈ RV with sS(e) = dV (v) and tS(e) =
dV (v′) with the following structure: sR(v, e, v

′) = v and sR(e) = sP (e) if e ∈ PE ,
tR(v, e, v

′) = v′ and tR(e) = tP (e) if e ∈ PE , cE = idPE , and dE(v, e, v
′) = e and

dE(e) = bE(aE(e)) if e ∈ PE .
5 The typing is indicated by the graphical symbols.
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Fig. 4. Evolution of decomposed components

5 components, the components a, b and c are elementary and the components
d and e are decomposed into a and b respectively d and c. In the example,
only component c has an editable version, namely c3. Decomposed components
evolve by integrating successor versions of their components. The corresponding
rule is depicted in Fig. 4.

If a new editable version x’ of a component x is created, it shall integrate
the same components as x. Here the copy mechanism of sesqui-pushout rewriting
shall be applicable. But it is not, since x’ shall only have copies of the outgo-
ing components-edges of x but neither of the incoming components-edges nor
of outgoing or incoming successor-edges. A similar problem arises, when an
editable version x’ gets ready to be published. Then it shall become successor
of the version x it has been spun off and of all predecessor versions of that x.
This means that the successor-relation shall be transitive, for example to skip
some versions in component integration, compare Fig. 4. Here, we do not need a
complete copy of x, we only need a copy of all successor-edges pointing to x.

Fig. 5. Refined version management: model and instance

Problems of this type can be tackled by using a refined type graph. The left
part of Fig. 5 shows a suitable refinement for the problems described above. The
right part of the figure shows the instance of Fig. 3 in the refined version. The
trick is that we provide internal structure to each component by two one-to-one
relations. Now, we have a port-object for every Component that handles incoming
successors-edges, namely a node the type of which is PredecessorsManager,
and a port that handles outgoing components-edges, namely a node of type
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Fig. 6. Rules for editing and publishing

ComponentsManager. Having these structures at hand, we can formulate the
rules for the creation of a new and for the publication of an existing editable
version, compare Fig. 6.6

Although this approach works quite satisfactory, there are a lot of drawbacks
of such a global type graph refinement. First of all, the model gets more complex
and many additional consistence conditions come into play, like the one-to-one
relations in Fig. 5, that have to be preserved by all rules. Thus, rules get more
complex as well, even those rules that had no need for a refinement. E.g. the
rule in Fig. 4 must be reengineered in order to conform to the refined model.

In order to tackle the problem of partial copies more adequately, we pro-
pose to stick to a simple global type graph and allow each rule to perform the
refinements which it needs locally. In such a framework, that is elaborated in
the following, a rule like integrate in Fig. 4 is perfect while the edit- and the
publish-rules in Fig. 6 can use smaller more dedicated refinements. We will come
back to the example later.

4 SqPO-Rewriting with Local Type Refinement

In this section, we introduce the sesqui-pushout rewriting framework that allows
individual type refinements for every rule. Again, the set-up is purely categorical.
Besides Conditions C1–C3, we need:

C4 The underlying category C has epi-mono-factorisations.
C5 Pullbacks in C preserve epimorphisms.

By C→, we denote the arrow category over C.7 And, for any given (type) object
T ∈ C, C ↓T denotes the slice category of all objects under T .8

6 Note the edit-rule copies the node labelled “6, 7” from the left- to the right-hand
side, and the publish-rule copies the node labelled “2, 3” from left to right.

7 The objects of C→ are all morphisms of C and a morphism i from f : A → B to
g : C → D is a pair (iA : A → C, iB : B → D) of C-morphism such that iB◦f = g◦iA.

8 C ↓ T is the restriction of C→ to morphisms with co-domain T . Note that every
category C in our set-up is equivalent to C ↓ F, where F is the final object in C.
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Definition 4 (Rule). Given an object T in C, a T -typed rewrite rule p =
((l : tK → tL, r : tK → tR) , i : tK′ � tK) consists of a C ↓ T -span (l, r) and an
epic9 type refinement i ∈ C→, compare Fig. 7.

A rule is applicable at a monic match morphism m : tL → tG. The derivation
shall comprise 3 phases, namely (1) the refinement of the rule and the match to
the type T ′, (2) the SqPO-rewriting with the refined rule at the refined match,
and (3) the abstraction of the derivation back to type T .

Definition 5 (Derivation). The direct derivation with a rewrite rule p =
(l : tK → tL, r : tK → tR, i : tK′ � tK) at a monic match morphism m : tL �
tG consists of the trace p(m) =

(
l 〈m〉 : tK〈m〉 → tG, r 〈m〉 : tK〈m〉 −→ tp@m

)
and

the co-match m 〈p〉 : tR → tp@m in C ↓ T together with an epic type refinement
i 〈m〉 : t′K′〈m′〉 � tK〈m〉 which are constructed as follows, compare Fig. 8:

1. Refinement: Let (iL, t′L′) and (iR, t′R′) be the pullbacks of (iT , tL) and (iT , tR)
resp. and l′ and r′ the morphisms making the diagram commute. Call p′ =
(l′, r′) the i-refined rule of p = (l, r). Let (iG, t′G′) be the pullback (iT , tG) and
m′ the unique morphisms such that (iL,m′) is pullback of (iG,m).

2. Derivation: Let (l 〈m〉A , r 〈m〉A) : G → p@mA be the trace and m 〈p〉A :
R → p@mA the co-match of the sesqui-pushout derivation with p at m. Let
(l′ 〈m′〉 , r′ 〈m′〉) : G′ → p′@m′ be the trace and m′ 〈p′〉 : R′ → p′@m′ the
co-match of the sesqui-pushout derivation with p′ at m′. And let i 〈m〉A and
ip@mA

be the morphisms into the final pullback complement of (l,m) and from
the pushout of (r′,m′ 〈l′〉) making the resulting diagram commute.

3. Abstraction: Construct (i 〈m〉 , d) and (ip@m, dA) as epi-mono-factorisations
of i 〈m〉A and ip@mA

. Set l 〈m〉 = l 〈m〉A ◦ d. And, finally, let m 〈l〉, r 〈m〉,
and m 〈p〉 be the diagonal morphisms making the diagram commute.

Although the construction for a direct derivation is rather complex, it pos-
sesses good properties that can lead to a rich theory and are investigated in the
following. The first result is obvious, namely that the new rewriting mechanism
subsumes simple sesqui-pushout rewriting.
9 I.e. both components are epimorphisms.
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T

T

L K R

L K R

K m p@m

G K m A p@mA

G K m p @m

tG

iT
tL

m

l r

tK

m l A

m l

tR

m p

m p A

iL

t
L

m

tK iK

l r

m p

iR

tR

d

l m
r m

dA

l m A

r m A

iG

t
G

i m Am l

l m

i m

r m

ip@mA

ip@m

Fig. 8. Direct derivation

Proposition 6. For a rule p = (l : tK → tL, r : tK → tR, (iT , iK) : tK′ � tK)
such that (iK , tK′) is pullback of (iT , tK), the traces and co-matches of the direct
derivations according to Definitions 1 and 5 coincide.

Proof. If (iK , tK′) is pullback of (iT , tK), (iK , l′) becomes pullback of (iL, l)
in Definition 5, compare Fig. 8. By Fact F2, (i 〈m〉A , l′ 〈m′〉) is pullback of
(l 〈m〉A , iG). Finally, Condition C5 provides that i 〈m〉A is epi- and d is iso-
morphism. 	


The following lemma shows that the type refinement produces an effect on
the derivation’s left-hand side only. The right-hand side is a simple pushout.

Proposition 7. In Definition 5, (r 〈m〉 ,m 〈p〉) is pushout of (m 〈l〉 , r).

Proof. Since dA is monic, m 〈p〉 ◦ r = r 〈m〉 ◦ m 〈l〉.
If (r∗ : K〈m〉 → X,m 〈l〉∗ : R → X) is pushout of (m 〈l〉 , r), there is monic10

dX : X → p@mA with dX ◦ r∗ = r 〈m〉A ◦ d and dX ◦ m 〈l〉∗ = m 〈p〉A and there
is eX : p′@m′ → X from the pushout object p′@m′ with eX ◦ r′ 〈m′〉 = r∗ ◦ i 〈m〉
and eX ◦ m′ 〈p′〉 = m 〈l〉∗ ◦ iR.

The morphism eX turns out to be epic: f ◦ eX = g ◦ eX implies f ◦ eX ◦
r′ 〈m′〉 = g ◦ eX ◦ r′ 〈m′〉 and f ◦ eX ◦ m′ 〈p′〉 = g ◦ eX ◦ m′ 〈p′〉. The first leads to
f ◦r∗ ◦ i 〈m〉 = g ◦r∗ ◦ i 〈m〉 and (i) f ◦r∗ = g ◦r∗, since i 〈m〉 is epic. The second
leads to f ◦ m 〈l〉∗ ◦ iR = g ◦ m 〈l〉∗ ◦ iR and (ii) f ◦ m 〈l〉∗ = g ◦ m 〈l〉∗, since iR
is epic. Properties (i) and (ii) provide f = g, since (r∗,m 〈l〉∗) is pushout.

10 Morphism dX is monic, since decomposition of pushouts provides that (dX , r 〈m〉A)
is pushout of (r∗, d), and pushouts preserve monomorphisms due to Fact F5.
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Fig. 9. Local derivation

Since dX ◦ eX ◦ m′ 〈p′〉 = dX ◦ m 〈l〉∗ ◦ iR = m 〈p〉A ◦ iR = ip@mA
◦ m′ 〈p′〉

and dX ◦ eX ◦ r′ 〈m′〉 = dX ◦ r∗ ◦ i 〈m〉 = r 〈m〉A ◦ d ◦ i 〈m〉 = r 〈m〉A ◦ i 〈m〉A =
ip@mA

◦ r′ 〈m′〉, we can conclude that dX ◦ eX = ip@mA
.

Therefore, (eX , dX) is an epi-mono-factorisation of ip@mA
which provides

X ∼= p@m. Uniqueness of diagonals leads to r∗ = r 〈m〉 and m 〈l〉∗ = m 〈p〉. 	

We conclude this section by an important observation, namely that a deriva-

tion in sesqui-pushout rewriting with local type refinements has local effects only.
For a rewrite, we do not have to refine the complete source object, it is sufficient
to refine the part that is in the image of the match.

Consider Fig. 9. It depicts the left-hand side of a rule, namely l : K → L,
its refinement l′ : K ′ → L′, the match m : L → G, and the refined match
m′ : L′ → G′. While Definition 5 constructed the final pullback complement
(m′ 〈l′〉 , l′ 〈m′〉) of l′ and m′ (grey in Fig. 9), we now construct the “local” FPC
(mL′ : L′ → G∗, i∗L : G∗ → G) of the match m and the refinement of the
rule’s left-hand side, namely iL. Since (m′, iL) is pullback of (iG,m), we obtain
morphism u which makes the diagram commute. By factorisation of u into epic
eu : G′ → G′′ and monic mu : G′′ → G∗, we construct a local refinement of G, i.e.
i∗L ◦mu : G′′ → G, and a locally refined match eu ◦m′.11 Note that (idL′ , eu ◦m′)
is pullback of (mu,mL′), since mu is monic, and (idL′ ,m′) is pullback of (eu, eu ◦
m′) by decomposition of pullbacks. Now, construct the FPC ((eu ◦ m′)∗, l∗) of
(l′, eu ◦ m′) which provides the morphism i′D making the diagram commute.

We show that the epi-mono-factorisation (i′m :D′′ �D, d :D�K〈m〉A) of this
morphism provides the same sub-object of K〈m〉A as the epi-mono-factorisation
of i 〈m〉A. The argument is straightforward, since there is the morphism iD′′ :
K ′〈m′〉 → D′′ mediating between the “global” and the “local” FPC and making
the diagram commute. Since (idL′ ,m′) is pullback of (eu, eu ◦ m′), (idK′ , l′) is
11 Note that the object G′′ cannot be typed in the refined type of the rule, since it

contains unrefined parts, namely the parts outside m(L).
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Fig. 10. Rules for editing and publishing – refined version

pullback of (l′, idL′), and (m′ 〈l′〉 , l′ 〈m′〉) as well as
(
(eu ◦ m′)∗

, l∗
)

are FPCs,
Fact F2 makes sure that (iD′′ , l′ 〈m′〉) is pullback of (eu, l∗) and Condition C5
guarantees that i′′D is epimorphism. Therefore the pair (i′m ◦ iD′′ , d) is epi-mono-
factorisation of i 〈m〉A, q.e.d.

Example 8 (Version Management – Refined Version). Using the mechanisms
introduced in this section, we can specify the rules for the version management
system described in Sect. 3: We use the standard type graph given in Fig. 3. The
rule for component integration is given in Fig. 4. It does not specify any type-
refinement and works as it is. The rules for editing and publishing are depicted
in Fig. 10. The edit-rule refines the type graph such that outgoing components-
relations of a component can be handled separately, compare middle object of the
rule span for edit in Fig. 10. The publish-rule uses a different type refinement
such that incoming successors-relations can be handled and copied separately.

5 The Category of Type-Refined Spans

In this section, we define a composition operator on rewrite rules which leads to
the category of type-refined spans. We show that rule composition and decom-
position carries over to composition and decomposition of direct derivations, i.e.
that theorems like Propositions 2 and 3 are also valid in the new framework.

Let T ∈ C be a fixed type object. Two rules

p1 =
(
(l1 : tK1 → tL, r1 : tK1 → tR) , (iT ′ , i1) :

(
tK′

1
: K ′

1 → T ′) → tK1

)
and

p2 =
(
(l2 : tK2 → tL, r2 : tK2 → tR) , (iT ′′ , i2) :

(
tK′

2
: K ′

2 → T ′′) → tK2

)

with common domain and co-domain are equivalent if there is a triple

(jK : K2 → K1, jK′ : K ′
2 → K ′

1, jT : T ′′ → T ′)

of isomorphisms, such that the resulting diagram commutes, i.e. l1 ◦ jK = l2,
r1 ◦ jK = r2, tK1 ◦ jK = tK2 , iT ′ ◦ jT = iT ′′ , jT ◦ tK′

2
= tK′

1
◦ jK′ , and jK ◦ i2 =
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Fig. 11. Rule composition

i1 ◦ jK′ . In this case, we write p1 ≡ p2 and denote the class of rules that are
equivalent to p by [p]≡. Such a class is called abstract type-refined span. These
spans can be composed.

Definition 9 (Composition). Given two abstract typed-refined spans p1 =
[((l1, r1) , (iT ′ , i1))] and p2 = [((l2, r2) , (iT ′′ , i2))] such that the co-domain of r1
coincides with the domain of l2, the composition p2 ◦ p1 of p1 and p2 is defined
by [((l1 ◦ l∗2, r2 ◦ r∗

1) (iT ′ ◦ i∗T ′′ , iM ))], where (i∗T ′′ : T ∗ → T ′, i∗T ′ : T ∗ → T ′′),
(r∗

1 : M → K2, l
∗
2 : M → K1), and

(
(r1 ◦ i1)

∗ : M ′ → K ′
2, (l2 ◦ i2)

∗ : M ′ → K ′
1

)

are the pullbacks of the pairs (iT ′ , iT ′′), (l2, r1), and (l2 ◦ i2, r1 ◦ i1) resp. and
tM : M → T , tM ′ : M ′ → T ∗, and iM : M ′ → M are the unique morphisms
making the diagram commute, compare Fig. 11.

Note that the composition operator is defined independent of the choice of
representatives, since pullbacks of isomorphic diagrams are isomorphic. The com-
position is associative due to composition/decomposition properties of pullbacks.

The composition operator of Definition 9 gives rise to the category C←
T

↑→

of abstract type-refined spans under T , which has the same objects as C ↓ T
and abstract type-refined spans of type T as morphisms. The identity on A ∈
C ↓ T is given by idA = [((idA, idA) , (idT, idA))]. We call a type-refined span
p = [((l, r) , i)] total, if l and i are isomorphisms and co-total if r is isomorphism.
Note that any morphism in C ↓T one to one corresponds to a total morphism in
the category of abstract type-refined spans. With this categorical background, a
rewrite rule p is just a morphism, a match is a monic and total morphism, and
a direct derivation is a special commutative diagram.

Definition 10 (Refined Trace). Let p(m) be the trace, m 〈p〉 the co-match,
and i 〈m〉 the type refinement in a derivation with rule p at match m as given in

Definition 5. Then the C←
T

↑→-morphism p 〈m〉 = (p(m), i 〈m〉) is called refined
trace.

Proposition 11 (Direct Derivation). If p 〈m〉 and m 〈p〉 are trace and co-
match in a derivation with rule p at match m, then p 〈m〉 ◦ m = m 〈p〉 ◦ p.
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Proof. In the construction in Definition 5, (l,m 〈l〉) is pullback of (l 〈m〉 ,m) and
(m′ 〈l′〉 , iK) is pullback of (m 〈l〉 , i 〈m〉). For the first statement, let m ◦ x =
l 〈m〉 ◦ y. Then m ◦ x = l 〈m〉A ◦ d ◦ y and we get u such that l ◦ u = x and
d ◦ m 〈l〉 ◦ u = d ◦ y, since (l,m 〈l〉A) is pullback. But d is monic such that
m 〈l〉 ◦ u = y. Since m 〈l〉 is monic, u is unique. The second statement is true,
since (iK ,m′ 〈l′〉) is pullback of (i〈m〉A,m 〈l〉A), (idK′〈m′〉, i〈m〉A) is pullback of
(d, i〈m〉), and pullbacks can be decomposed. 	


The commutative derivation diagrams have nice composition properties. The
derived rule property of Proposition 2 also holds in the category of type-refined
spans.

Theorem 12 (Derived Rule). If p 〈m〉 and m 〈p〉 are trace and co-match
in a derivation and n is match for p 〈m〉, then (p 〈m〉) 〈n〉 = p 〈n ◦ m〉 and
(n ◦ m) 〈p〉 = n 〈p 〈m〉〉 ◦ m 〈p〉.

Fig. 12. Derivation with derived rule

Proof. The situation is depicted in Fig. 12: The rule p = (l, r, iK) has been
applied at match m resulting in trace (l〈m〉A ◦ dm, r〈m〉, em) and the co-match
m〈p〉, where (em, dm) is the factorisation of the morphism im the mediator
between the two FPCs of the derivation p@m. The application of p〈m〉 at
match n results in the trace (l∗ ◦ d∗

m ◦ d∗, r〈m〉〈n〉, e∗) and co-match n〈p〈m〉〉,
where (n〈l〈m〉〉A, l∗ ◦ d∗

m) is FPC of (l〈m〉 = l〈m〉A ◦ dm, n), (n′〈l′〈m′〉〉, l+) is
FPC of (l′〈m′〉, n′), and (e∗, d∗) is the factorisation of i∗ which is the media-
tor between these two pullback complements. Due to Condition C2 and Fact
F3, we can decompose the pullback complement (n〈l〈m〉〉A, l∗ ◦ d∗

m) into two
FPCs, i.e. (n∗, l∗) and (n〈l〈m〉〉A, d∗

m). Since FPCs preserve monomorphisms12,
d∗
m is monic. By Fact F4, (n∗ ◦ m〈l〉A, l∗) and (n′〈l′〈m′〉〉 ◦ m′〈l′〉, l+) are FPCs.

Thus, we obtain the mediator in◦m which is subject to an epi-mono-factorisation

12 Compare [10].
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Fig. 13. Derivation composition for co-total morphisms

in the derivation with p at n ◦ m. Since in◦m and d∗
m ◦ i∗ are two morphisms

into the FPC (n∗ ◦ m〈l〉A, l∗) which coincide under postfix composition with l∗

and prefix composition with n′〈l′〈m′〉〉 ◦ m′〈l′〉, we conclude in◦m = d∗
m ◦ i∗.

But then (e∗, d∗
m ◦ d∗) is the epi-mono-factorisation of in◦m which results in

l∗ ◦ d∗
m ◦ d∗ = l〈n ◦m〉 and n〈l〈m〉〉 ◦m〈l〉 = (n ◦ m) 〈l〉. Finally, the composition

property of pushouts concludes the proof. 	

For the proof of the horizontal composition property, compare Proposition 3,

we need to investigate some special cases first.

Lemma 13. If p2◦p1 is composition of co-total morphisms, then (p2 ◦ p1) 〈m〉 =
p2 〈m 〈p1〉〉 ◦ p1 〈m〉 and m 〈p2 ◦ p1〉 = m 〈p1〉 〈p2〉, for every match m for p1.

Proof. Figure 13 depicts the situation. The black part shows the derivation with
p1 and p2, i.e. p1 = (l1, i1), p2 = (l2, i2), p1 〈m〉 = (l∗1 ◦ d1, e1), m 〈p1〉 = m,
p2 〈m〉 = (l∗2 ◦ d2, e2), and m = m 〈p2〉 = m 〈p1〉 〈p2〉. By constructing

(
l2, i

∗
1

)

as pullback of (i1, l2) and
(
i2, i∗1

)
as pullback of (i∗1, i2), we obtain p2 ◦ p1 =(

l1 ◦ l2, i2 ◦ i∗1
)
.

The four morphisms i′′2 , i′1, i′′2 , and i′1 with (i′′2 , i′1) as pullback of (i′′2 , i′1) are the
refinements of the left-hand side of p1 and m′,m′′, and m+ are the refinements
of the match m, such that the cube under i′′2 , i′1, i′′2 , and i′1 is a cube of pullbacks.
If (i′2, i1) is constructed as pullback of (i′2, i1) and l′′1 and l′′2 as well as l1 and l2
are the morphisms making the diagram commute, then l′′1 ◦ l′′2 is the refinement
of l1 ◦ l2 and

(
i′2, l1

)
and (l′′1 , i′2) are pullbacks of (l1, i′′2) and (l′1, i′′2) resp. and

(l′′2 , i∗1) is pullback of (l′2, i1).
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Constructing the four FPCs of (m, l1), (m′, l′1),
(
m+, l1

)
, and (m′′, l′′1 ) results

in (r′
2, r

∗
1) being pullback of (r′

2, r
∗
1) and r′

2 being a refinement wrt. the refined
type of p2. The refinement r2 used in the derivation with p2 can be constructed
as the pullback of d1and r′

2. This provides e′
1 making the diagram commute and

(e′
1, r

′
2) the pullback of (r2, e1). By Condition C5, e′

1 is epic.
Now the FPCs (d′′

1 , l∗2
′) of (l∗2, d1), (d∗

1, l
+
2 ) of ( l′2

∗
, d′

1), and (m′′, l′′2
∗) of

(l′′2 , m′′ ∗) lead to the morphism r′
2

∗ with r′
2

∗ ◦ d∗
1 = d′′

1 ◦ r∗
2 and r′

2
∗ ◦ r′

1 is the
morphism which has to be epi-mono-factored in the derivation with p2 ◦ p1 at
match m. Since (m′′ ∗

, i1) is pullback of (m′, e′
1), we get e∗

1 with l′2
∗◦e∗

1 = e′
1◦ l′′2

∗

and e∗
1 ◦ m′′ = m′ ◦ i∗1. We also get d∗

1 ◦ e∗
1 = r′

1 since both morphisms are into
a final pullback complement. And Fact F2 implies that (e∗

1, l′′2
∗) is pullback of

(e′
1, l′2

∗) such that e∗
1 is epic due to Condition C5. But now (e2 ◦ e∗

1, d
′′
1 ◦ d2) is

epi-mono-factorisation of r′
2

∗ ◦ r′
1. 	


Lemma 14. If p2 ◦ p1 is the composition of a total morphism p1 and a co-
total morphism p2, then (p2 ◦ p1) 〈m〉 = p2 〈m 〈p1〉〉 ◦ p1 〈m〉 and m 〈p2 ◦ p1〉 =
m 〈p1〉 〈p2〉, for every match m for p1.

Proof. The situation of this lemma is depicted in Fig. 14: (n, r1〈m〉) is pushout
of (r1,m), i.e. constitutes the direct derivation with rule p1 at match m. The
co-total rule p2 is represented by (l2, i2). The pullbacks (l∗2, r

∗
1) of (r1, l2) and

(r1, i2) of (i2, r∗
1) define the rule p2 ◦ p1 = (l∗2, r

∗
1 , i2). The application of this

composition at match m is defined by the trace (l∗2〈m〉 ◦ d∗, r∗
1〈m〉, i〈m〉) and

the co-match n〈p2 ◦ p1〉, i.e. i
∗
2 is the FPC-mediator of the derivation, (i〈m〉, d∗)

its epi-mono-factorisation, and (r∗
1〈m〉, n〈p2 ◦ p1〉) is pushout of (m〈l∗2〉, r∗

1). Let,
finally, i∗2 be the FPC-mediator of the derivation with p2 at n = m〈p1〉.

Consider the cube defined by refinements iL, iG, i′G, and i′L. Its top, back,
front, and bottom faces are pullbacks and the right face is pushout and pullback
by Fact F6. Condition C3 implies that the left face is pushout and pullback. Now
consider the inner and outer cube in Fig. 14 defined by (l2, l∗2, l2〈n〉A, l∗2〈m〉) and
(l′2, l∗2

′ , l′2〈n′〉, l∗2
′ 〈m′〉). In both cubes, the left face is pushout and pullback, the

top face is pullback, and the front and back faces are FPCs. By Condition C3
and Fact F2, their bottom faces are pullbacks and their right faces are pushouts
and pullbacks. Therefore, we obtain monic d, pushout (d, g′) of (d∗, r∗

1〈m〉), and
i〈n〉 with i〈n〉 ◦ r′

1 = r∗
1〈m〉 ◦ i〈m〉 and i〈n〉 ◦ n′〈l′2〉 = n〈p2 ◦ p1〉 ◦ i2. We know

d◦i〈n〉 = i∗2, since both morphisms coincide under prefix composition with r′
1 and

n′〈l′2〉. A similar argument as in Proposition 7 shows that i〈n〉 is epimorphism
and (i〈n〉, d) is epi-mono-factorisation of i∗2. 	


Theorem 15 (Composition). If m is a match for p′ ◦ p, then (p′ ◦ p) 〈m〉 =
p′ 〈m 〈p〉〉 ◦ p 〈m〉 and m 〈p′ ◦ p〉 = m 〈p〉 〈p′〉.
Proof. Consequence of Lemmata 13 and 14 and the fact that pushouts compose.

Theorems 12 and 15 demonstrate that the extension of sesqui-pushout rewrit-
ing presented in this paper is as well-behaved as the standard approach as far
as rule composition and decomposition is concerned. This provides a good fun-
dament for future research wrt. subrules, remainders and amalgamation.
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Fig. 14. Derivation composition of total and co-total morphism

6 Related Work and Future Research

There are two major other approaches to controlled sesqui-pushout cloning,
namely rewriting on polarised graphs [3] and the AGREE framework [1]. Sesqui-
pushout rewriting of polarised graphs allows to specify for every vertex in the
middle graph K of a rule (l : K → L, r : K → R) if it allows incoming edges only,
outgoing edges only, or incoming and outgoing edges. This specifies, whether a
copy of a vertex obtains the full context, the incoming context only, or the out-
going context only. Thus, SqPO-rewriting of polarised graphs is a special case
of the mechanism presented here. Polarisation of graphs can be represented by
passing from G ↓ F , i.e. the comma category of all graphs under the final graph
(node with a singleton loop) to G ↓ E where E is the graph with two vertices
connected by a singleton edge. E is a refinement of F in our sense.

AGREE controls the cloning by a monomorphism t : K � TK from middle
object K of a rule (l : K → L, r : K → R) typically into a subobject of the
partial arrow classifier K∗ of K. By interpreting a monic match m : L � G as a
partial arrow m′ = (m, idL) from the source object G and l′ = (t, l) as a partial
arrow from TK into the rules left-hand side, the cloning in AGREE is performed
by the pullback of m : G → L∗ and l : TK → L∗ which are the totalisation
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of m′ and l′ into the partial arrow classifier L∗ of L. If t : K � TK is the
complete partial arrow classifier, a complete copy is performed. By choosing TK

as a proper subobject of K∗, the copy process can be controlled very precisely. In
graphs for example, it can be specified that two cloned vertices possess the same
context wrt. third vertices but do not have cloned edges between themselves.
This is not possible in our approach, and has to be substituted by some sort of
polymorphism, compare [11]. Nevertheless, the introduced rewriting approach
is an interesting alternative to AGREE. On the one hand, it can simulate the
AGREE-effects at least wrt. unknown context (outside the image of the match).
And on the other hand, while there are very few theoretical results available for
AGREE (at least for the time being), the results wrt. vertical and horizontal
composition in this paper provide solid hints that the theory of standard SqPO-
rewriting can be generalised to SqPO-rewriting with local type refinement. Work
in this direction will be a major topic of future research.
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Abstract. The AGREE approach to graph transformation allows to
specify rules that clone items of the host graph, controlling in a fine-
grained way how to deal with the edges that are incident, but not
matched, to the rewritten part of the graph. Here, we investigate in which
ways cloning (with controlled embedding) may affect the dependencies
between two rules applied to the same graph. We extend to AGREE
the classical notion of parallel independence between the matches of two
rules to the same graph, identifying sufficient conditions that guarantee
that two rules can be applied in any order leading to the same result.

1 Introduction

Graph Transformations (GT) are very much used to specify systems where con-
currency and non-determinism are present. For instance GT has been used to
model the evolution of biological systems [6], chemical reactions [15] and also
concurrent models of computations [8]. From this perspective a major concern is
to investigate how the application of different rules may affect each other. There
are two classical questions:

1. (parallel independence) Given two rules with matches in the same graph
G, are they independent? That is, can they be applied in any order (or even
in parallel) with the same result?

2. (sequential independence) Given a sequence of two rewrite steps, is the
second step independent of the first? That is, could the second rule be applied
first, followed by the application of the first rule, leading to the same result?

In this paper we shall consider parallel independence only. In the classical setting,
where typically rules are injective, two rewrite steps are parallel independent if
their matches overlap only on items that are preserved by both. In other words,
they are not parallel independent if there is a conflict of the following types:
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delete-delete: two rules try to delete the same item. In this case the conflict
is symmetric and it means that the rules are mutually exclusive.
preserve-delete: a rule deletes an item that is preserved by the other. In this
situation the conflict is asymmetric because the application of the rule that
deletes the item prevents the other to occur, but not the other way around.

Parallel independence is usually formalized, in the algebraic approaches to
GT, making reference to the following diagram. The rewrite step using rule 2
at match m2 is said to be (parallel) independent from the rewrite step using
rule 1 at match m1 if there exists a morphism m2d such that m2 = g1 ◦ m2d

(and symmetrically for rule 1). That is, it is still possible to apply rule 2 after
rule 1 has been applied, using the “same” match, and in this case the Local
Church-Rosser Theorem shows that the resulting graph is the same.

Those problems have been studied in many GT approaches: double pushout
(DPO) [5], single pushout [12], sesqui-pushout (SqPO) [4], reversible sesqui-
pushout [7], with negative application conditions [13], borrowed contexts [1] and
nested application conditions [11]. To our knowledge, in all these approaches
(but for [7]) rules are required to be linear, i.e. both the left- and the right-hand
side have to be monomorphisms. In this paper we address the problem of par-
allel independence for the AGREE approach [3]. The main feature of AGREE
rewriting is the ability to clone matched items, like in the SqPO approach that
it extends, but with the possibility of specifying how edges incident to the image
of the match can be handled. Because of this feature the analysis of parallel
independence becomes quite more complex than in the other approaches, since
new kinds of conflicts between rewrite steps arise.

The paper is organized as follows. We start with an informal introduction to
AGREE in Sect. 2, showing how, from a programmer point of view, AGREE
rewrite rules can be specified by exploiting the ability both to clone items, and
to control the embedding of the preserved or cloned items in the context. In
Sect. 3 we recall from [3] the formal definition of AGREE rewriting. Then we
present in Sect. 4, through several canonical counter-examples, how new types
of conflicts may arise due to cloning. Those counter-examples will motivate the
assumptions needed for the main result that is stated and proved in Sect. 5.
Finally we conclude and sketch future developments in Sect. 6.

2 Controlling the Embedding in AGREE

AGREE is a GT approach: states are represented by graphs and transitions are
specified by rules. When specifying a transition between states using an AGREE
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rule (see the left diagram of (2)), the designer describes with the left-hand side
L the items that must be present to trigger the application of the rule. The
morphism l from the gluing graph K to L describes which items of L will be
preserved, cloned or deleted. More precisely an item of L is deleted if it is not
in the image of l, it is preserved if it is the image of exactly one item of K
along l, and it is cloned if it is the image of more than one item along l. The
morphism r to the right-hand side R, that we assume to be mono in this paper,
defines the items that will be created, i.e. those not in the image of r. Finally
the embedding component TK , which is typical of AGREE, is used to describe
how the preserved or cloned items are embedded in the rest of the state graph.

To apply a rule to a graph G (see the right diagram of (2)), first an image of L
in G has to be found (a match).1 Then, basically, all items from G are removed,
preserved or cloned according to the rule (using L, K and TK), and new items
are added according to r. In the following, we explain intuitively how to specify
the embedding component of a rule, and how rule application is performed in
the case of typed graphs. The formal definitions will be given in Sect. 3.

The embedding component describes how to handle the context, i.e. the part
of G that is not in the image of the match. To specify this component, we first
build a graph containing the gluing graph K and all possible ways in which it is
connected to the rest. This is done by a construction called partial map classifier
for K, denoted by T (K) [2]. This graph contains the following classes of items:

(i) preserved items: K (the gluing graph);
(ii) independent context items: a copy of the type graph (to describe the

part of the state graph that is not touched by the rule application);
(iii) gluing context edges: one instance of each type of edge (from the type

graph) for each pair of nodes of K; and
(iv) embedding context edges: one instance of each type of edge (from the type

graph) for each pair made of a node in class (i) and a node in class (ii).

We call the items in classes (ii) to (iv) �-items. They are used to represent the
context: given any graph X with a map to T (K), we can classifiy X’s items
into items that represent K’s items (whose images are in (i)) and items that are
context (whose images are in (ii)–(iv)). Now, to obtain the embedding component
of a rule, one can specify how the preserved or cloned items are embedded in the
rest of the graph by removing from T (K) all items that should not be maintained
when the rule is applied, or adding some items to obtain more copies of specific
elements of the state graph.

For example, consider the graphs in Fig. 1. TG is a type graph having two
nodes and two different edges. The items to be preserved/cloned by a rule are

1 In the AGREE approach matches have to be monic.
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Fig. 1. Embedding Component Examples

shown in graph K (here the left- and right-hand sides are not important since
we only want to illustrate the embedding component). To obtain T (K) we follow
the steps previously described. As a graphical notation, we use arrows with tips
at both sides to depict two edges, one in each direction, all �-items are marked
with � and there is a vertical bar dividing T (K) as follows: we put to the right
of the bar the items of (ii) (the copy of the type graph), to the left the items
of (i) (graph K) and (iii) (all possible kinds of edges among K’s nodes), and
connect the left and right sides with items of (iv) (all possible types of edges
between items of K and of the copy of the type graph). Choosing for a rule any
embedding component TK that does not include all the items of (ii) (or adds
some elements to (ii)) would result in a rule with non-local effects. For example, if
TKa is the embedding component of a rule with gluing graph K, the application
of this rule would remove from a graph all square nodes and dashed edges, even
if not in the image of the match, because TKa specifies that the context should
not have those items. Instead the embedding component TKb has a local effect
since the part to the right side of the bar is a copy of TG. The application of this
rule would remove dashed edges between node 1© and the rest of the graph, and
solid edges between node 2© and the rest of the graph (only one edge between
nodes 1© and 2© would remain, since this edge is in K).

In the rest of this section we consider local rules only, that is, the embed-
ding component must include a copy of the type graph.2 For simplicity we also
assume that the embedding component is included in T (K) (even if the formal
development does not require it), thus it is obtained from T (K) by deleting only
items belonging to (iii) and (iv). For a simpler graphical representation of the
embedding component, to the right of the vertical bar we draw only the nodes
of the type graph (considering the edges implicitly there), since only the nodes
of (ii) are needed to specify how the gluing graph is connected to the context.

To illustrate the AGREE approach and the effect of the embedding compo-
nent, we will model the generation of Sierpinski triangles. A Sierpinski triangle
is a well-known fractal in which an equilateral triangle is divided into smaller
equilateral triangles in a controlled way, given by a rule like the one depicted in
Fig. 2(a). Applying this rule repeatedly and fairly a convenient number of times
leads to shapes like the ones shown in Fig. 2(b).

In [16] the generation of Sierpinski triangles was used as a case study to
compare different graph transformation tools. There, a triangle was modeled as
a graph with three nodes and three edges, and each step of the generation deleted

2 We refer the interested reader to [3] for a formal definition of locality.
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Fig. 2. (a) Sierpinski generation rule (b) Sierpinski triangles generation

Fig. 3. (a) Type Graph (b) Graph Representation (c) Start Graph

edges and created new nodes and edges. Here, instead, we consider a triangle as
a single node, and each step will split (or clone) the triangle into three other ones
and create suitable connections (edges) among them. To control how many times
the splitting process should occur, we use a special kind of edge: the number of
dashed loops on a node indicates how many times the splitting process can be
applied. To make the example more interesting, we will color the triangles: a gray
loop on a triangle indicates its color (b for black, g for green, r for red and w
for white). Moreover, there will be three different edges that are used to connect
triangles, called ur (up-right), ul (up-left) and lr (left-right). The corresponding
type graph is shown in Fig. 3(a). Figure 3(b) depicts a Sierpinski triangle and its
corresponding graph representation, and Fig. 3(c) presents a possible start state
for the generation of Sierpinki triangles of order 3.

Fig. 4. Rules for generation and coloring of Sierpinski triangles.

To model the splitting of the triangle we use rule Split of Fig. 4: whenever
there is a triangle that may be split (has a dashed loop) L1, it is split and new
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connections between the copies are created. Also note that the new triangles are
colored with white in R1. The embedding component is graph TK1. Remind
that we are using local rules, thus only the nodes of the type graph of Fig. 3(a)
are drawn to the right of the bar (the edges are implicitly there). Since TK1
does not contain gray loops on the left node, any possible color of the matched
node is deleted by the application of the rule. The same happens in all other
rules, but for TurnRed . The last three rules change the color of the triangle
to black, green or red in slightly different ways. Rule TurnBlack adds a black
color to the matched triangle after removing any colored or dashed loop, thus
preventing further splitting. Rule TurnGreen changes the color of a triangle
(of any color) to green and requires the presence of at least one dashed loop,
and preserves all dashed loops. Finally rule TurnRed changes the color of a
triangle to red, if the triangle was white, and keeps all existing connections (the
embedding component of this rule is the partial maps classifier of K4).

When a match m : L → G from an AGREE rule to a graph G is found, this
match induces a partition of G’s items into the following classes:

(i) preserved/cloned items: items in the image of K,
(ii) independent context items: the items that are neither in the image of

L nor are connections to items in the image of L,
(iii) gluing context edges: edges not in the image of L that connect nodes in

the image of K,
(iv) embedding context edges: edges not in the image of L that connect

nodes in the image of K to other nodes in G (not in the image of L),
(v) deleted items: items in the image of L and not in the image of K,
(vi) dangling edges: edges that connect nodes marked for deletion (in class

(v)) to other nodes (not in (v)).

The embedding component TK of a local rule is a subgraph of T (K) that
includes K, it specifies that items in classes (i) and (ii) remain untouched. The
control of the embedding is performed on items of classes (iii) and (iv): edges of
types that are in T (K) and not in TK must be removed/can not be cloned. An
AGREE rule application can be constructed by the following steps:

Deletion: delete from G all items that are in classes (v) and (vi); delete all
items that are in classes (iii) and (iv) of G and whose type is not in TK;

Cloning/Preserving: clone or preserve all items of (i) according to l : K → L,
and all edges from (iii) and (iv) according to TK (for every node that is
cloned, clone all edges connected to this node whose type is in TK);

Creation: add new items according to r : K � R.

Two examples of derivations using AGREE rules are shown in Fig. 5. Start-
ing with graph G1 rule Split is applied (to the right), deleting one of the dashed
loops of the triangle and splitting the triangle in three (cloning also the rest of
the dashed loops and creating a white-loop in each of the resulting triangles).
To the left, rule TurnBlack is applied, removing all the dashed arrows from the
triangle. These extra deletion effects are specified in the corresponding embed-
ding components (see TK2 in Fig. 4).
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Fig. 5. AGREE rewrite steps using rules TurnBlack (left) and Split (right)

3 The AGREE approach to graph transformation

In this section we recall basic definitions of the AGREE approach to rewriting
[3]. We assume the reader to be familiar with categorical notions used in the alge-
braic approaches to GT (including pushouts, pullbacks and their properties).The
following definition will be useful in the technical development in Sect. 5.

Definition 1 (reflection). Given arrows , we say that (the
image of) A is reflected identically by f (to B) if the square below to the right
is a pullback for some mono A � B or equivalently if the pullback object of f
and m is isomorphic to A.

Intuitively, this means that f is an iso when restricted to the
image of A. If objects are concrete structures like graphs, then
every item of the image of A in C has exactly one inverse image
along f in B.

We assume that the category in which GT is performed has
partial maps classifiers [2] (needed for the definition of AGREE rewriting [3])
and is adhesive, the latter assumption being standard for the results about
parallelism [10,14].

Definition 2 (partial map classifier). Let C be a category with pullbacks
along monos. A partial map over C, denoted (i, f) : Z ⇀ Y , is a span (i : X �
Z, f : X → Y ) in C with i mono, up to the equivalence relation (i′, f ′) ∼ (i, f)
when there is an isomorphism h with i′ ◦ h = i and f ′ ◦ h = f . Category C has
a partial map classifier (T, η) if T is a functor T : C → C and η is a natural
transformation η : IdC

.→ T , such that for each object Y and each partial map
(i, f) : Z ⇀ Y there is a unique arrow ϕ(i, f) : Z → T (Y ) such that (i, f) is a
pullback of (ϕ(i, f), ηY ) (see the left diagram of (3)).3

Then ηY is mono for each Y , T preserves pullbacks, and η is cartesian, which
means that for each f : X → Y the span (ηX , f) is a pullback of (T (f), ηY ). For

3 Intuitively, a partial map classifier provides a bijective correspondence between par-
tial maps over C from object Z to Y and arrows of C from Z to T (Y ), given by
[(i, f)] ⇐⇒ φ(i, f), as described by the left diagram of (3).
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each mono i : X � Z let ı = ϕ(i, idX); then ı is characterized by the fact that
(i, idX) is a pullback of (ı, ηX) (right diagram of (3)).

By composing the right and middle squares we get the left one, which proves
that for each partial map (i, f) : Z ⇀ Y :

ϕ(i, f) = T (f) ◦ ı (4)

For the definition of adhesivity, we stick to the seminal work [14]. Since then
adhesivity has been generalized in several variants and sometimes in subtly dif-
ferent ways: for a recollection of such notions the reader is referred to [10].

Definition 3 (adhesive category). A category C is adhesive if it has all pull-
backs, pushouts along monos, and if each pushout along a mono, like the square
to the left below, is a Van Kampen square, i.e. if for any commutative cube as
below to the right, where the pushout is the bottom face and the back faces are
pullbacks, we have: the top face is a pushout if and only if the front faces are
pullbacks.

We recall that in an adhesive category pushouts preserve monos, and pushouts
along monos are also pullbacks; pullbacks preserve monos in any category.

Definition 4 (AGREE rewriting). Let C be an adhesive category with a
partial map classifier (T, η), An AGREE rule is a triple of arrows with the
same source , with r and t mono. Arrows l and
r are the left- and right-hand side, respectively, and t is the embedding. A
match of rule ρ is a mono . An AGREE rewrite step G ⇒ρ,m H is
constructed as follows (see diagram (6)). First is the pullback
of . It follows that there is a unique n : K → D such that
n′ ◦ n = t, g ◦ n = m ◦ l and (l, n) is a pullback of (m, g), and that n is mono.
Then is the pushout of .
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The assumptions of Definition 4 are satisfied by the categories of graphs, of
typed graphs (defined as a slice category), and by toposes in general.

Notice that, differently from [3], we stick to rules with monic right-hand side,
thus rules which possibly model the cloning of items, but not their merging.
This choice is supported by the observation that matches must be monic in
AGREE, and thus even if a monic morphism, say, m1d : L1 � D2 can be found
(see diagram (1)), its composition with a non-monic h2 : D2 → H2 would not
necessarily result in a legal (i.e., monic) match of L1 in H2. The analysis of such
more complex situations is left as future work.

Finally it is worth recalling that as proved in [3], AGREE rewriting coincides
with SqPO rewriting [4] for rules where TK = T (K).

4 Analysis of Independence of Rewrite Steps

As stated in the Introduction, parallel independence is a condition on two rewrite
steps from the same graph that ensures that they can be applied sequentially in
both orders, leading to the same result. We formalize this last property with the
following notion of commutativity, also known as diamond property.

Definition 5 (Commutativity of rewrite steps). Let ρ1 and ρ2 be two
rules and for i ∈ {1, 2} let mi be a match for ρi in G. We say that the rewrite
steps G ⇒ρ1,m1 H1 and G ⇒ρ2,m2 H2 commute if there exist an object H and
matches m12 of ρ1 in H2 and m21 of ρ2 in H1 such that H1 ⇒ρ2,m21 H and
H2 ⇒ρ1,m12 H.

We discussed two possible kinds of conflicts that could prevent commutativity
in classical approaches to GT: preserve-delete (one of the rules deletes some
item that is preserved by the other) and delete-delete (two rules delete the
same item). In AGREE we still have these kinds of conflicts. But we have to
investigate what is the impact of using the embedding component TK of the
rules, and of allowing the cloning of items.

Let us now consider some examples illustrating different kinds of situations
that may occur in AGREE derivations. These examples are meant to show
that, although cloning is a kind of preservation, the application of a rule that
clones may hinder the application of a rule that uses the cloned items, since the
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Fig. 6. Rewrite steps with rules TurnGreen and Split : Clone-Use Confict

match may become non-deterministic (leading to different results) and items
that belong to the context of one rule application may be changed in a way that
prevents the other rule from being applied. Moreover, even if no cloning is used,
rules may get into conflict due to the treatment of context items specified in the
TK component of one of the rules.

Cloning vs Use. Consider the derivations shown in Fig. 6, where rules Turn-
Green (left) and Split (right) are applied to graph G1 (indices indicate the
match). The application of rule TurnGreen just changes the color of the trian-
gle and, after applying this rule, it would still be possible to apply Split to the
same match (that is, it is possible to extend m1 to H3) and the result would be
a graph with 3 white triangles (and corresponding edges). However, if Split is
applied first, we would have three possibilities to match rule TurnGreen that
would be extensions of m1. By choosing any of them, the result would be a graph
with 3 triangles, two white and one green, i.e. the results would not be the same.

Fig. 7. Applying TurnBlack and TurnGreen : Context Deletion–Preservation Confict

Context Deletion vs Preservation. Now consider the derivations shown in
Fig. 7, where rules TurnBlack (left) and TurnGreen (right) are applied to
graph G1. The application of rule TurnGreen just changes the color of the tri-
angle and, after applying this rule, it would still be possible to apply TurnBlack
to the same match (that is, it is possible to extend m2 to H3) and the result
would be a graph with only one black triangle. But if TurnBlack is applied
first, all dashed loops are removed (as specified by TK2) preventing TurnGreen



Parallelism in AGREE Transformations 47

from being applied. None of these rules clones items, thus this kind of con-
flict depends only on the embedding component of the rules: if the embedding
components were TK2 = T (K2 ) and TK3 = T (K3 ), no conflict would arise
because all context items would be preserved by both rules.

Fig. 8. AGREE Derivations using rule Split

Figure 5 shows a situation where both of the above cases occur: rule TurnBlack
removes the dashed loops, preventing Split from being applied, and Split clones
the triangle, creating three different matches for TurnBlack . Finally, Fig. 8
shows an example involving cloning and using a non-trivial embedding compo-
nent (TK1 �= T (K1 )), where the two steps commute. In fact the two matches
do not overlap, and thus are trivially parallel independent.

Summarizing, using AGREE rules, we have three new kinds of conflict:

clone-use (where use could be delete or preserve or clone): an item that is
preserved/deleted/cloned by one rule is cloned by the other.

ctxdel-use (context deletion-use): an item used in one rule is specified for
context-deletion by the embedding component TK of the other rule.

ctxclone-use (context clone-use): an item used in one rule is specified for
context-cloning by the embedding component TK of the other rule4.

5 The Church-Rosser Property for AGREE

This section is devoted to the main result of the paper, that is the identification
of sufficient conditions for two AGREE rewrite steps to commute, according to
Definition 5. Such conditions are identified in the next definition.

4 We did not present examples of this kind of conflict, which can be avoided by requir-
ing the embedding component to be included in T (K).
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Definition 6 (Parallel Independence in AGREE). Let C be an adhesive

category with a partial map classifier (T, η). Let ρi = (Ki
li→ Li,Ki

ri� Ri,Ki

ti�
TK,i), for i ∈ {1, 2}, be two AGREE rules and let L1

m1� G and L2

m2� G be two
matches for them to the same object G. Consider the corresponding AGREE
rewriting steps G ⇒ρ1,m1 H1 and G ⇒ρ2,m2 H2 depicted in the following dia-
gram.5

Then G ⇒ρ1,m1 H1 and G ⇒ρ2,m2 H2 are parallel independent if the following
are satisfied:

1. In the left diagram of (7) where the inner and the outer squares are built as
pullbacks, the mediating morphism K1K2 → L1L2 is an isomorphism.

2. The right diagram of (7) is a pullback for i ∈ {1, 2}, that is the image of
T (L1L2) is reflected identically by l′i to TK,i

The main result is formulated as follows.

Theorem 1 (Local Church-Rosser). If two AGREE rewrite steps are par-
allel independent, then they commute.

As a first observation note that, unlike most related results for other algebraic
approaches to GT, parallel independence does not require explicitly the existence

5 For future reference we also depict the dashed arrows m1d and m2d, which are not
mentioned in this definition.
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of arrows m1d and m2d, which will be inferred in the proof from the other con-
ditions. Nevertheless, note that the first condition can be seen as a direct trans-
lation in categorical terms of the classical set-theoretical definition of parallel
independence (see [9]) requiring m1(L1) ∩ m2(L2) ⊆ m1(l1(K1)) ∩ m2(l2(K2)).

Since the conditions of Definition 6 are pretty technical, let us explain them
by making reference to the specific case of graphs. The first condition guarantees
that each item of G that is needed for the application of both rules (belongs to the
intersection of the images of L1 and L2) is preserved by both rules (is in the image
of both K1 and K2) and it is not cloned by any rule (it has only one inverse image
in K1K2). This forbids all delete-use and clone-use conflicts. Equivalently, if a rule
duplicates or deletes an item of G, that item cannot be accessed by the other rule
not even in a read-only way. For example, the application of rulesTurnGreen and
Split shown in Fig. 6 does not satisfy this condition because the pullback of L3 →
G1 and L1 → G1 contains a single node, while the pullback of K3 → L3 → G1
and K1 → L1 → G1 contains three nodes, and thus they are not isomorphic.

For the second condition, remember from Sect. 2 that for any graph X, the
partial map classifier T (X) is made of a copy of X plus the �-elements which,
given any graph Y with a partial morphism to X, classify in a unique way the
items of the context, i.e. the items of Y on which the morphism is not defined.
Thus the second condition expresses a strong requirement on the embeddings
TK,i of the two rules: they cannot modify (i.e. delete or duplicate) any item in the
context of L1L2. For example, this condition is not satisfied by the application
of rules TurnBlack and TurnGreen to graph G1 in Fig. 7. In fact, in this case
the pullback object of L2 → G1 and L3 → G1 is a single node (it is identical
to L2), but T (L2) is not reflected identically by TK2 → T (L2), because the
embedding TK2 (see Fig. 4) does not contain the �-loop on the left node.

Proof (of Theorem 1). We present the overview of the proof, which is detailed
in the rest of the section. We focus on the application of ρ2 and ρ1 in this
order, since the reverse order is symmetric. Consider Diagram (8), where for
readability reasons we do not depict the embeddings of the rules and the partial
maps classifiers, even if they are necessary for the constructions. Objects in plain
math style exist by hypotheses, others (in bold) are introduced during the proof.

By Lemma 1, L1 is reflected identically by D2 g2 ��G providing the mono
, which composed with becomes a match .By

Construction 1 the AGREE rewrite step H2 ⇒ρ1,m12 H12 generates objects
D12 and H12 in the bottom line. Symmetrically, the AGREE rewrite step
H1 ⇒ρ2,m21 H21 generates the objects D21 and H21 in the right column. By
Lemma 2, defining D as the pullback of square 5©, K1 is reflected identi-
cally by and R1 is reflected identically by , providing
monos . Lemma 3 shows that the only arrow

that makes square 6© a pullback also makes the composed square
2©+ 6© a pushout. It concludes by building H in 8© as the pushout object
of D21 � D � D12 (where the arrow D � D12 is built symmetrically to
D � D21, making square 7© a pullback) and showing, by compositionality of
pushouts, that H must be isomorphic to H12. The result follows by symmetry.



50 A. Corradini et al.

Lemma 1. Consider the left diagram of (9). There is a unique (monic) arrow
m1d : L1 → D2 making the top and the back-left faces commuting, and the top
face a pullback. Thus L1 is reflected identically by g2.

Proof. In the left cube, the front-left face is a pullback by construction of step
G ⇒ρ2,m2 H2, the bottom face is a pullback by hypothesis (see (7)), and the
back-right face is trivially a pullback. In addition the front-right face commutes:
in fact on one hand we have T (πL

2 ) ◦ πL
1 = ϕ(πL

1 , πL
2 ) by property (4) of partial

maps classifiers, on the other hand the right diagram of (9) proves that m2◦m1 =
ϕ(πL

1 , πL
2 ). The statement follows by the decomposition property of pullbacks.
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Construction 1. Arrow m1d : L1 → D2 of Lemma 1 composed with h2 : D2 →
H2 (see (8)) provides a match m12 = h2 ◦ m1d : L1 → H2: it is mono because
both m1d and h2 are, the latter because pushouts preserve monos in adhesive
categories. The left diagram of (10) represents the resulting AGREE rewrite
step H2 ⇒ρ1,m12 H12. The right diagram of (10) represents the symmetric rewrite
step H1 ⇒ρ2,m21 H21, where m21 = h1 ◦ m2d.

The proofs of the next two lemmas are omitted for space constraints, and
will appear in the full version of the paper.

Lemma 2. Let D2 Dd2�� d1 ��D1 be the pullback of D2 g2 ��G D1g1�� (see
square 5© of (8)), and consider the diagrams (11).

1. In the left cube, there is a unique (monic) arrow n1d : K1 → D making the
top and the back-left faces commuting, and the top face a pullback. Thus K1

is reflected identically by d1.
2. In the right cube, there is a unique (monic) arrow p1d : R1 → D21 making

the top and the back-left faces commuting, and the top face a pullback. Thus
R1 is reflected identically by g21.

Lemma 3. In the left diagram of (12) there is a unique arrow d21 : D → D21

making the top and the back-left faces commuting and the top face a pullback.
Symmetrically, we get an arrow d12 : D → D12. Furthermore, the top face of
the central diagram is a pushout. Now define D21

��H D12
�� as the pushout

of D21 Dd21�� d12 ��D12 (see square 8© of (8)). Then from the right diagram we
infer that H ∼= H12.
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6 Conclusion and Related Works

In this paper we proposed sufficient conditions to ensure that two rewrite steps
in the AGREE approach to GT commute. Unlike most of previous works on
parallel independence [1,4,5,11–13], we consider an approach in which cloning
is possible. Actually, general rules are considered also in the restricted version
of the SqPO approach proposed in [7]: the exact relationship with those results
is under investigation. The possibility of cloning makes the analysis of parallel
independence more complex. Moreover, the fact that the embedding of cloned
parts can be finely tuned in AGREE adds another layer of complexity: besides of
conflicts that may arise from overlapping matches (as for classical approaches),
new conflicts may arise from cloning or deletion of edges incident to the matched
parts of the transformed graph.

The conditions for commutativity proposed in this paper are sufficient, but
not necessary. It is easy to build a counterexample with two rules, that act as the
identity transformation on a given graph G (the left- and right-hand sides are
all identities on G), but differ in the embedding component in such a way that
the second condition of Definiton 6 is not satisfied. For example, the first rule
has the partial map classifier T (G) as embedding, while the second has a larger
embedding (e.g. duplicating some contextual arc). Since the first rule acts as the
identity (both G and the context are preserved), the two rules clearly commute
when applied to G, even if they are not “parallel independent” according to
Definition 6. We are currently working on the identification of refined conditions
which could enjoy completeness. A first analysis suggests that such conditions,
if they exist, should also depend on the right-hand sides of the rules, differently
from those identified in Sect. 5.

Following the classical outline of the theory of parallelism for the algebraic
approaches to GT, other interesting topics worthy of study are the analysis
of conditions for sequential independence for AGREE rewrite steps, and the
definition of parallel rules allowing to model the simultaneous application of two
rules to a state. Both topics look not obvious: the first one because AGREE
rewrite steps are intrinsically non-symmetric (unlike, e.g., DPO or Reversible
SqPO rewrite steps); the second because of the need of merging in some way the
embedding components of the two rules.
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Abstract. Model checking is a widely used technique to prove proper-
ties such as liveness, deadlock or safety for a given model. Here we intro-
duce model checking of reconfigurable Petri nets. These are Petri nets
with a set of rules for changing the net dynamically. We obtain model
checking by converting reconfigurable Petri nets to specific Maude mod-
ules and using then the LTLR model checker of Maude. The main result
of this paper is the correctness of this conversion. We show that the
corresponding labelled transitions systems are bisimular. In an ongoing
example reconfigurable Petri nets are used to model and to verify partial
dynamic reconfiguration of field programmable gate arrays.

Keywords: Reconfigurable Petri nets · Rewrite logic · Maude · Model
checking · Field programmable gate array · Dynamic partial reconfigu-
ration

1 Introduction

Reconfigurable Petri nets – a family of formal modelling techniques – provide a
powerful and intuitive formalism to model complex coordination and structural
adaptation at run-time (e.g. mobile ad-hoc networks, communication spaces,
ubiquitous computing). Their characteristic feature is the possibility to discrim-
inate between different levels of change.

Model checking of reconfigurable Petri nets can be achieved by converting
reconfigurable Petri nets into Maude specifications. Our main purpose is to guar-
antee that the reconfigurable Petri net and its conversion to a Maude specifica-
tion are similar enough for the verification process to obtain valid results. The
main theoretical contribution ensures the correctness of the conversion in terms
of a bisimulation between the state space of a reconfigurable Petri net and the
state space of corresponding Maude modules, see also [20]. Here, we give the main
ideas and a sketch of the involved proofs. In general, a bisimulation relates state
transition systems, that behave in the same way in the sense that one system
simulates the other and vice versa. This is achieved by a bisimulation between
the reachability graph for the reconfigurable Petri net and the search tree of the
corresponding Maude modules. We have defined functions that convert syntacti-
cally all parts of the net such as places, transitions, the arcs or markings as well
c© Springer International Publishing Switzerland 2016
R. Echahed and M. Minas (Eds.): ICGT 2016, LNCS 9761, pp. 54–70, 2016.
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as the set of net rules into the Maude modules. These functions are the basis for
defining the relation between the corresponding labelled transition systems.

There are many proposals to use Petri nets to model the control logic for field
programmable gate arrays (FPGAs). But they lack a formal foundation for the
net’s reconfiguration which models the partial dynamic reconfiguration of the
FPGA (see Sect. 6). This gap can be closed using Petri nets to model FPGAs
and using net transformations to model the dynamic reconfiguration of FPGAs.
So, the paper’s motivation and its ongoing example is to model dynamic partial
reconfiguration of FPGA using reconfigurable Petri nets.

The paper is organized as follows: The next section deals with reconfigurable
Petri nets and Sect. 3 illustrates our example. Section 4 introduces the rewriting
logic Maude. Model checking reconfigurable Petri nets with Maude is given in
Sect. 4. Correctness of the model checking approach is shown in Sect. 5. Finally
we discuss related work in Sect. 6 and give some ideas concerning future work.

2 Reconfigurable Petri Nets

We use the algebraic approach to Petri nets, where the pre- and post-domain func-
tions pre, post : T → P⊕ map the transitions T to a multiset of places P⊕ given by
the set of all linear sums over the set P . A marking is given by m =∈ P⊕ with m =∑

p∈P kp ·p. Themultiplicity of a single place p is given by (
∑

p∈P kp ·p)|p = kp. The
≤operator canbe extended to linear sums:Form1,m2 ∈ P⊕ withm1 =

∑
p∈P kp·p

and m2 =
∑

p∈P lp · p we have m1 ≤ m2 if and only if kp ≤ lp for all p ∈ P . The
operations “+ ” and “– ” can be extended accordingly.

Definition 1 (Algebraic Approach to Petri nets). A (marked) Petri net
is given by N = (P, T, pre, post, cap, pname, tname,m) where P is a set of places,
T is a set of transitions. pre : T → P⊕ maps a transition to its pre-domain and
post : T → P⊕ maps it to its post-domain. Moreover cap : P → N

ω
+ assigns

to each place a capacity (either a natural number or infinity ω), pname : P →
AP is a label function mapping places to a name space, tname : T → AT is a
label function mapping transitions to a name space and m ∈ P⊕ is the marking
denoted by a multiset of places.

A transition t ∈ T is m-enabled for a marking m ∈ P⊕ if we have pre(t) ≤ m
and ∀p ∈ P : (m + post(t))|p ≤ cap(p). The follower marking m′ – computed by
m′ = m − pre(t) + post(t) – is the result of a firing step m[t〉m′.

If the marking is the focus we denote a net with its marking by (N,m).
Net morphisms are given as a pair of mappings for the places and the transi-

tions preserving the structure, the decoration and the marking. Given two Petri
nets Ni = (Pi, Ti, prei, posti, capi, piname, tiname,mi) for i ∈ {1, 2} a net mor-
phism f : N1 → N2 is given by f = (fP : P1 → P2, fT : T1 → T2), so that
pre2 ◦ fT = f⊕

P ◦ pre1 and post2 ◦ fT = f⊕
P ◦ post1 and m1(p) ≤ m2(fP (p))

for all p ∈ P1. Moreover, the morphism f is called strict if both fP and fT are
injective and m1(p) = m2(fP (p)) holds for all p ∈ P1. A rule in the algebraic
transformation approach is given by three nets called left-hand side L, interface
K and right-hand side R, respectively, and a span of two strict net morphisms
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K → L and K → R. Then an occurrence morphism o : L → N is required that
identifies the relevant parts of the left hand side in the given net N .

Fig. 1. Net transforma-
tion

A transformation step N
(r,o)
=⇒ M via rule r (see the

commutative squares (1) and (2) in Fig. 1) can be con-
structed in two steps. Given a rule with an occurrence
o : L → N the gluing condition has to be satisfied in
order to apply a rule at a given occurrence. Its sat-
isfaction requires that the deletion of a place implies
the deletion of the adjacent transitions, and that the
deleted place’s marking does not contain more tokens
than the corresponding place in L.

Reconfigurable Petri nets exhibit dynamic behaviour using the token game of
Petri nets and using net transformations by applying rules. So, a reconfigurable
Petri net as in Definition 2 combines a net with a set of rules that modify the
net [10,11].

Definition 2 (Reconfigurable Petri nets). A reconfigurable Petri net RN =
(N,R) is given by a Petri net N and a set of rules R.

The labelled transition system for a reconfigurable Petri net LTSRPN is based on
the isomorphism classes of nets, where all reachable states are considered up to
isomorphisms of marked nets. Isomorphisms are given by bijective mappings of
places and transitions. The corresponding isomorphism classes are compatible
with firing and transformation steps.

Definition 3 (Labelled Transition System for Reconfigurable Petri
nets). Given a reconfigurable Petri net (N0,R) the labelled transition system
LTSRPN = (SRPN, ARPN, trRPN) is based on the isomorphism classes of nets:

1. Initial states: [(N0,m0)] ∈ SRPN

where m0 is the marking of N0 and [(N0,m0)] = {(N,m) | (N,m) ∼=
(N0,m0)} is the isomorphism class containing (N0,m0)

2. Firing steps: For m[t〉m′ in N with (N,m) ∈ [(N,m)] ∈ SRPN we have:

[(N,m′)] ∈ SRPN, tname(t) ∈ ARPN and [(N,m)]
tname(t)−−−−−→ [(N,m′)] ∈ trRPN

3. Transformation steps: For (N,m)
(r,o)
=⇒ (N ′,m′) with some rule r =

(rname, L ← K → R) ∈ R and some occurrence o : L → N with
(N,m) ∈ [(N,m)] ∈ SRPN we have:
[(N ′,m′)] ∈ SRPN, rname ∈ ARPN and [(N,m)] rname−−−→ [(N ′,m′)] ∈ trRPN

4. Finally: SRPN, ARPN, trRPN are the smallest sets satisfying the above con-
ditions.

3 Modelling Partial Dynamic Reconfiguration of FPGAs

In this section we give a small example for the use of reconfigurable Petri nets
for modelling the control logic for FPGAs. The example is an extension of the
example in [6] where Petri nets also have been used for the modelling, but the
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reconfiguration has been modelled merely informally. In Fig. 2 an industrial
mixer of two components and water is illustrated. The water is heated before
being fed into the mixer. The sensors x1, ..., x8 measure the corresponding fill
level, x9 measures the water temperature and the actuators y1, ..., y9 control the

Fig. 2. Construction of the mixer

valves, the heater and the
mixer. The control logic has
to determine in which order
the components are fed into
the mixer. Reconfiguration
changes the control logic
accordingly. In Fig. 3 the
Petri net Nmixer describes the
control logic, where both components and the hot water are added at the same
time. This control logic can be translated into the binary coding of an FPGA
(see e.g. [6]).

Fig. 3. Control logic Nmixer

Dynamic partial reconfiguration of FPGAs
allows changing the control logic, so that a dif-
ferent order for the components and the water
can be employed. In Fig. 4 we present the rule
rule1 : L =⇒ R where the interface K is indi-
cated by node sin L and R with the same colour. It
reconfigures the net by replacing the subnet that
models the simultaneous feeding of both compo-
nents and the water, by a subnet that models the
sequential feeding, namely first the heated water,
then both components. A second rule (omitted
here) reconfigures the net by replacing the subnet
that models the simultaneous feeding of both com-
ponents and the water by a subnet that models
the sequential feeding, namely first component 1
and the water, and at last component 2. There
are more rules as well as their inverse rules modelling the dynamic partial
reconfiguration of the FPGA that implement the control logic of the mixer.

Fig. 4. rule1: First water, then both components

The interaction of the
system’s control logic with
the dynamic reconfigura-
tion becomes much more
complicated. Hence veri-
fication is of high impor-
tance. In this paper, we
propose model checking
of reconfigurable Petri

nets by translating the net and its rules to a Maude specification that subse-
quently can be used for model checking. In this example the absence of deadlocks,
a property like “the initial state can be reached again” or a property like “the
mixer never starts unless it is filled” are sensible requirements. In Sect. 4 we
verify the absence of deadlocks using Maude.
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4 Model Checking Reconfigurable Petri Nets with Maude

1 sorts Places Trans i t i on s Markings .
2
3 op : Marking Marking → Marking

[ assoc comm] .
4 op i n i t i a l : → Markings .
5 ops A B : → Markings .
6 eq i n i t i a l = A .
7
8 r l [T] : A ⇒ B B.

Listing 1.1. Maude example

Maude is a high-level lan-
guage supporting both
equational and rewriting
logic computation. As a
base, it uses a power-
ful algebraic language for
models of a concurrent
state system. Its internal
representation is given in
[15] as a labelled rewrite
theory. Implementations
in Maude are based on one or many modules. Each module has types that are
declared with the keyword “sorts”. Subsequently we introduce Maude using a
module describing a Petri net. Definitions of P/T nets, coloured Petri nets, and
algebraic Petri nets are defined in [22] in a manner that makes Maude a suitable
basis for the definition of a Maude net that models the net and rules of a recon-
figurable Petri net. So, the types for a Petri net are given line 1 of Listing 1.1.
Depending on a given set of sorts, the operators can be defined. The operators
describe all functions needed to work with the defined types. For example, a
multiset of markings can be expressed with a whitespace-functor. Place-holders,
denoted by a underscore, are used for the types behind the colon, and the return
type is given by the type to the right of the arrow, see line 3 of Listing 1.1.
Equational attributes declare structural axioms. An operator being associative
or commutative is denoted by with keywords such as “assoc” and “comm”. These
keywords are given at the end of line 3 for the multiset of places. The axioms are
the equation logic of Maude that defines the operator’s behavior. For example,
the initial marking of a Petri net can be exemplified with the initial operator.
The operators in line 3–5 describe the markings of the net in Fig. 5 and the
equation in line 6 states the initial marking. The rewrite rule in line 8 describes
the firing of transition T of the Petri net of Fig. 5. The rewrite rules replaces
one multiset by another one, namely the pre-domain of T with its post-domain.
As usual in a functional language, all the terms are immutable so that a rule
can replace the term A with the term B B, see line 8 of Listing 1.1. The rewrite
rule implements the token game of Petri nets, where the rewriting of the mul-
tiset A by B B in rule T can be seen as the firing of transition T . This is just a
basic example. The firing in our conversion has been formulated according to the
algebraic definition of Petri nets using operations of the multisets over the pre-
and post-domain of a transition (see the conditional rewrite rule crl [fire] in
Listing 1.3).

Fig. 5. Petri net

Maude’s linear temporal logic for rewrite
(LTLR) module can be used to test defined
modules with LTL properties, such as deadlocks
[3,12,13]. A first step to model checking of recon-
figurable Petri nets using Maude has been given
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in [17]. The conversion of a net and a set of rules into a Maude modules used
for (LTL) model checking with the module LTLR can be found in detail in
[19]. The LTLR model-checking module contains all the usual operators, such
as true, false, conjunction, disjunction and negation, and complex operators
with the next-operator being written with O φ or the until-operator notated
with ψ U φ. Further, it supports release-operator statements, such as ψ R φ
that are internally converted into ¬(¬φ U ¬ψ). The future-operator written as� φ states that φ is possible in the future, and the global-operator written as� φ claims that φ is true in all states. The correctness of the LTLR model
checker has been proven in [2]. In this section we sketch this approach to model
checking reconfigurable Petri nets. The ReConNet Model Checker (rMC) (see
[19]) defines Maude modules Net and Rules for a given reconfigurable Petri
net. The modules contain the net and a set of rules as well as all mecha-
nisms to fire a transition or to transform the net with a rule [19,20]. Together
with the Maude modules RPN defining the firing behaviour, the Maude mod-
ule PROP stating the properties to be verified and the Maude model checker
LTLR-MODEL-CHECKER, these modules yield a rewrite theory that allows the veri-
fication of the linear temporal logic formulas over the properties implemented in
module PROP. Listing 1.2 shows the net in Fig. 3 converted into the Maude mod-
ule NET. Each net is modelled by the multisets of places and transitions. A place
is defined as p(<label>|<identifier>|<capacity>). Transitions only con-
sist of t(<label>|<identifier>). The pre- and post-domains are wrapped
to a set by the pre- or post-operator. Finally, the initial marking is modelled as
the multiset in Listing 1.2, line 13. The conditional rewriting rule for firing crl
[fire] in Listing 1.3, line 1 uses the transition’s pre-domain to determine if a
transition is enabled and considers the capacity of each place in its post-domain.

1 mod NET i s

2 including PROP .

3 including MODEL−CHECKER .

4

5 ops i n i t i a l : −> Conf igurat ion .

6

7 eq i n i t i a l =

8 net (

9 p l a c e s { p(” y9” | 1517 | w) , p(” y5” | 1518 | w) , p(”

y9” | 1519 | w) , p(” y7” | 1520 | w) , p(” y1” |
1513 | w) , p(” y8” | 1514 | w) , p(” y3” | 1515 | w

) , p(” y4” | 1516 | w) , p(” y2” | 1512 | w) } ,

10 t r a n s i t i o n s { t (” x2+x4+x6” | 1599) : t (” x6+x9” | 1526)

: t (” x1” | 1525) : t (” x7” | 1527) : t (” x8” |
1522) : t (” x5” | 1521) : t (” x3” | 1524) } ,

11 pre{ ( t (” x2+x4+x6” | 1599) −−> p(” y5” | 1518 | w) , p

(” y4” | 1516 | w) , p(” y7” | 1520 | w) ) , ( t (” x6+

x9” | 1526) −−> p(” y9” | 1519 | w) ) , ( t (” x1” |
1525) −−> p(” y1” | 1513 | w) ) , ( t (” x7” | 1527)
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−−> p(” y8” | 1514 | w) ) , ( t (” x8” | 1522) −−> p(”

y9” | 1517 | w) ) , ( t (” x5” | 1521) −−> p(” y3” |
1515 | w) ) , ( t (” x3” | 1524) −−> p(” y2” | 1512 | w

) ) } ,

12 post { ( t (” x2+x4+x6” | 1599) −−> p(” y8” | 1514 | w) ) ,

( t (” x6+x9” | 1526) −−> p(” y7” | 1520 | w) ) , ( t (”

x1” | 1525) −−> p(” y4” | 1516 | w) ) , ( t (” x7” |
1527) −−> p(” y9” | 1517 | w) ) , ( t (” x8” | 1522)

−−> p(” y3” | 1515 | w) , p(” y2” | 1512 | w) , p(”

y1” | 1513 | w) ) , ( t (” x5” | 1521) −−> p(” y9” |
1519 | w) ) , ( t (” x3” | 1524) −−> p(” y5” | 1518 | w

) ) } ,

13 marking{ p(” y1” | 1513 | w) ; p(” y3” | 1515 | w) ; p

(” y2” | 1512 | w) }
14 )

15 [ . . . ]

16 endm

Listing 1.2. Maude conversion of Nmixer from Fig. 3

1 cr l [ f i r e ] :
2 net (P,
3 t r a n s i t i o n s {T : TRest } ,
4 pre {(T −−> PreValue ) , MTupleRest1 } ,
5 post {(T −−> PostValue ) , MTupleRest2 } ,
6 marking{PreValue ; M})
7 [ . . . ]
8 =>
9 net (P,

10 t r a n s i t i o n s {T : TRest } ,
11 pre {(T −−> PreValue ) , MTupleRest1 } ,
12 post {(T −−> PostValue ) , MTupleRest2 } ,
13 c a l c ( ( ( PreValue ; M) minus PreValue )
14 p lus PostValue ) )
15 [ . . . ]
16 i f c a l c ( ( PreValue ; M) p lus PostValue ) <=? PostValue

Listing 1.3. Firing as a rewrite rule in Maude module RPN

Listing 1.3 shows the firing of a transition, where each pre-domain condition is
implemented in line 6. The subterm PreValue; M ensures that at least the pre-
domain of the transition is part of the current marking. The if condition in line 16
in Listing 1.2 ensures the capacities using an operator <=? (called smallerAsCap)
defined in the Maude module RPN.
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1 crl [ ru le1−PNML] :

2 net (

3 p l a c e s { p(” y5” | I ru l e 1044 | w) , p(” y8” | I ru l e101298 | w

) , p(” y4” | I ru l e 1047 | w) , p(” y7” | I ru l e 1041 | w)

, PRest } ,

4 t r a n s i t i o n s { t (” x2+x4+x6” | I ru l e 1060 ) : TRest } ,

5 pre { ( t (” x2+x4+x6” | I ru l e 1060 ) −−> p(” y7” | I ru l e 1041 | w

) , p(” y4” | I ru l e 1047 | w) , p(” y5” | I ru l e 1044 | w) )

, MTupleRest1 } ,

6 post { ( t (” x2+x4+x6” | I ru l e 1060 ) −−> p(” y8” | I ru l e101298

| w) ) , MTupleRest2 } ,

7 marking{ emptyMarking ; MRest }
8 )

9 [ . . . ]

10 =>

11 net (

12 p l a c e s { p(”” | Aid1 | w) , p(” y4” | I ru l e 1047 | w) , p(” y5

” | I ru l e 1044 | w) , p(” y8” | I ru l e101298 | w) , p(” y7

” | I ru l e 1041 | w) , PRest } ,

13 t r a n s i t i o n s { t (” x2+x4” | Aid2 ) : t (” x6” | Aid3 ) : TRest

} ,

14 pre { ( t (” x2+x4” | Aid2 ) −−> p(” y4” | I ru l e 1047 | w) , p(”

y5” | I ru l e 1044 | w) , p(”” | Aid1 | w) ) , ( t (” x6” |
Aid3 ) −−> p(” y7” | I ru l e 1041 | w) ) , MTupleRest1 } ,

15 post { ( t (” x2+x4” | Aid2 ) −−> p(” y8” | I ru l e101298 | w) ) ,

( t (” x6” | Aid3 ) −−> p(”” | Aid1 | w) ) , MTupleRest2

} ,

16 marking{ emptyMarking ; MRest }
17 )

18 [ . . . ]

19

20 i f ∗∗∗ c a l c u l a t e new i d e n t i f i e r s

21 AidRestNew := c a l c u l a t e A l l I d e n t i f i e r s /\
22 ∗∗∗ ∀p ∈ PL which are d e l e t e d ; prove i f they

23 ∗∗∗ are par t o f MRest ( i d e n t i t y cond i t i on )

24 freeOfMarking ( ( p(< l abe l> | < i d e n t i f i e r > |
25 <capac i ty >) ) | MRest ) /\
26 ∗∗∗ ∀p ∈ PL which are d e l e t e d ; prove i f t he re

27 ∗∗∗ i s a r e l a t e d t r an s i t i o n ( dang l ing cond i t i on )

28 emptyNeighbourForPlace ( p(< l abe l> | < i d e n t i f i e r >

29 | <capac i ty >) ,

30 pre { MTupleRest1 } ,

31 post { MTupleRest2 } ) /\
32 ∗∗∗ s e t new maximal i d e n t i f i e r counter

33 NewMaxID := correctMaxID (MaxID | StepS ize |
34 |AidRestNew|) .

Listing 1.4. Rule rule1 in Maude module RULES
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The implementation of net rules as given in Fact 2 is illustrated in Listing 1.4.
The rule application coincides with the pattern-matching algorithm of Maude,
which ensures that the left-hand side is a subset of the current net state. If
the conditions are successfully proven, the term describing the net is rewritten.
Fact 1 states that the conditions freeOfMarking and emptyNeighbourForPlace
ensure the satisfaction of the gluing condition (see page 3) in the current net.
For more details see [20].

Fact 1 (Gluing Condition for Rewrite Rules). Given a rule application
with r = (rname, L ← K → R) in a reconfigurable Petri net that satisfies the
gluing condition. Then we have in the module RULES:

– emptyNeighbourForPlace ensures that p is not used in pre{MTupleRest1}
or post{MTupleRest2}. So, a place p may be deleted only if there are no
adjacent transitions that are not deleted.

– freeOfMarking ensures that for each deleted place p � MRest holds.

Fact 2 (Transformation Step in the Maude Module RULES). For each

transformation step m
(r,o)
=⇒ m′ with r = (rname, L ← K → R) in a reconfigurable

Petri net, there exists a rewriting rule in RULES so that

– there is a pattern match of the left-hand side ensuring that the left-hand side
is a subset of the current net state

– the match satisfies the gluing condition of Fact 1.

The implementation of this conversion is given by the ReConNet Model Checker
(rMC) [19]. rMC is a Java-based tool that enables a user to convert a given
reconfigurable Petri net1 to the Maude modules introduced above. These Maude
modules can be executed and analysed by the Maude interpreter. For the
example in Sect. 3 the absence of deadlocks is expressed in Maude’s nota-
tion using the LTL operators “finally” <> and “globally” []. The property
enabled given in the Maude module PROP and states that at least the pre-
conditions of one of the transitions or of one of the rules are met. So, the for-
mula []<> enabled asserts that the property enabled is globally finally true.
The state initial corresponds to the reconfigurable Petri net (N,R). Hence,
modelCheck(initial, []<> enabled) is the operation that checks the formula
[]<> enabled for the state initial. So, in Listing 1.5 we check that the recon-
figurable Petri net (Nmixer,R) is always enabled, i.e. there are no deadlocks.

A labelled transition system for the Maude module NET is defined by LTSMNC =
(SMNC, AMNC, trMNC), where SMNC is a non-empty set that contains all states
of a Maude breadth-first search tree. Maude’s deduction rules are used to execute
all rewrite rules, such as firing or transformation steps in the RULES module. A
state s ∈ SMNC consists of a Net term as current state. AMNC is defined by

1 ReConNet (see [16]) is the tool for modelling and simulating reconfigurable Petri
nets saving them as an extension of PNML.
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AMNC = AT

⋃
AR and contains the labels of rewrite rules, such as the firing

or the transformation. trMNC is defined as a set of transition relations that is
based on trMNC ⊆ SMNC × AMNC × SMNC. Therefore, two terms of SMNC are
related by a transition labelled with the name of the corresponding rewrite rule
in AMNC.

1 Maude 2 .7 b u i l t : Aug 6 2014 22 : 5 4 : 4 4
2 Copyright 1997−2014 SRI I n t e r n a t i o n a l
3 Mon Sep 28 19 : 1 3 : 4 4 2015
4 ==========================================
5 rewr i t e in NET : modelCheck ( i n i t i a l , []<> enabled ) .
6 r e w r i t e s : 17601 in 25ms cpu (48ms r e a l ) (704040 r ew r i t e s /

second )
7 r e s u l t Boo l : t rue

Listing 1.5. Absence of deadlocks for (Nmixer,R); proven by Maude

Definition 4 (Labelled Transition System for the Maude Module
NET). Given the Maude module NET, a labelled transition system LTSMNC =
(SMNC, AMNC, trMNC) is defined with respect to the term sets over the equation
conditions of the Maude modules by:

1. Initial: initial ∈ SMNC

2. Firing steps: If s ∈ SMNC and s → s′ is a replacement for a rewrite rule
[fire] of Listing 1.3 so that

s = net(P,

transitions{t(label|identifier) : TRest},

pre{t(label|identifier) − − > PreV alue, MTupleRest1},

post{t(label|identifier) − − > PostV alue, MTupleRest2},

marking{PreV alue; M})

is used as left-hand side of Listing 1.3, then s′ ∈ SMNC , t(label) ∈ AMNC

and s
t(label)−−−−−→ s′ ∈ trMNC

3. Transformation steps: If s ∈ SMNC and s → s′ is a replacement for a
rewrite rule [rname] in the Maude module RULE and

s = net(places { PL, PRest},

transitions{TL : TRest},

pre{PreL, MTupleRest1},

post{PostL, MTupleRest2},

marking{ML; M})
rule( l( PL, TL, PreL, PostL, ML ) , r(R) )

then is:
s′ ∈ SMNC, r ∈ ARPN and s

rname−−→ s′ ∈ trMNC
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4. Finally:
SMNC , AMNC , trMNC are the smallest sets satisfying the above conditions.

5 Correctness of Model Checking Approach

Model checking reconfigurable Petri nets using Maude is shown to be correct
by proving a bisimulation between the corresponding labelled transition systems
(LTS). Theorem 1 states a conversion of a reconfigurable Petri net (N,R) into
the corresponding Maude module NET. Then the LTS are calculated for both and
in Theorem 2 these LTS are shown to be bisimular. The LTSRPN is the reacha-
bility graph (up to isomorphism) of the reconfigurable Petri nets and is given by
all reachable states using both firing and transformation steps (see Definition 3).
The states are the isomorphism classes of marked Petri nets. LTSMNC of a
Maude module NET (see Definition 4) includes all rewriting rule applications of
firing and transforming steps. Theorem1 specifies the syntactical conversion for
a given reconfigurable Petri net to the Maude modules. For the theorem itself,
the following injective functions are used to convert all parts of a reconfigurable
Petri net into a NET- and a RULES-module: buildPlace defines the conversion
for places (see Lemma 1). The functions buildTransition (defining the conver-
sion for transitions similar to buildPlace), buildPre (defining the conversion for
each pre(t) with t ∈ T⊕), buildPost (defining the conversion for each post(t)
with t ∈ T⊕ similar to buildPre), buildNet (defining the conversion of a net)
and buildRule (defining the conversion of rules in R) are constructed inductively
as well, and can be found in [20]. Lemma 1 contains functions for the map-
ping of identifiers and capacities leading to conversion of places and transitions.
The identifiers are defined as unique keys for nodes such as places or transi-
tions and are used by the pre- and post-domain operations. The conversion of
places is defined in Lemma 1. Each new place p′ is converted to the Maude term
p(<label>|<identifier>|<capacity>) using the identifier function and the
place operator p.

Lemma 1 (buildPlace). Let N = (P, T, pre, post, cap, pname, tname,m) be a
Petri net together with an injective identity function idP : P → N

+, then there
is an injective function buildP lace : P⊕ → TPlaces.

Proof sketch: buildP lace is defined inductively over |P | by:

– for P = ∅, P⊕ = {0} and buildPlace(0) = emptyPlace
– for P ′ = P

⊎{p′} there is a buildP lace′ : P ′ → TPlaces defined by
buildP lace′(s) = buildP lace(s) if s ∈ P⊕ and buildP lace′(s) =
buildP lace(s′), p(pname(p′

1)|idP (p′
1)|cap(p′

1)), ..., p(pname(p′
k)|idP (p′

k)|cap(p′
k))

with p′
i = p′ for 1 ≤ i ≤ k and s = s′ + k · p′, k ≥ 1 and s′ ∈ P⊕

buildPlace is injective since idp is injective and its inverse function buildPlace−1

is defined accordingly [20].
Next, Theorem 1 states the conversion of one given reconfigurable Petri net

into the Maude modules NET and RULES. The first part of the proof states that
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the functions buildNet and buildRule correspond to the initial state in Maude’s
term algebra. The Maude module NET comprises the net-operator, a set of rules
defined by the rule-operator and some metadata. This metadata is used for
example to ensure efficient use of identifiers. Moreover, the theorem states that
the module RULES comprises rewrite rules for each rule in R.

Theorem 1 (Syntactic conversion of a reconfigurable Petri net to
Maude modules NET and RULES). For each reconfigurable Petri net (N,R),
there are well-formed Maude modules NET and RULES.

Proof sketch: Using buildPlace (see Lemma 1) buildTransition, buildPre, build-
Post and buildRule (see [20]) each reconfigurable Petri net (N,R) with N =
(P, T, pre, post, cap, pname, tname,m) and R = {(rnamei, Li ← Ki → Ri)|1 ≤ i ≤
n} yields the well-formed Maude module NET:

eq initial = buildNet(N)
buildRule(R)
metadata

Additionally, we have the Maude module RULESwith the rewrite rules (see Fact 2),
so that for each rule r ∈ R with r = (rnamei, Li ← Ki → Ri) there is:

crl [rname] : net( places{buildPlaces(PLi), PRest},

transitions{buildTransition(TLi): TRest},

pre{buildPre(TLi), MTupleRest1},

post{buildPost(TLi), MTupleRest2},

marking{buildPlaces(MLi); MRest})
buildRule(R)
metadata

=>

net( places{buildPlaces(PRi), PRest},

transitions{buildTransition(TRi): TRest},

pre{buildPre(TRi), MTupleRest1},

post{buildPost(TRi), MTupleRest2},

marking{buildPlaces(MRi); MRest})
buildRule(R)
new metadata
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if *** for deleted places

freeOfMarking(∀p ∈ PLi| MRest)∧
*** for places of deleted transitions

emptyNeighbourForPlace(∀p ∈ PLi \ PRi|
pre{MTupleRest1} | post{MTupleRest2})∧

calculate new metadata .

Listings 1.2 and 1.4 provide examples for both modules. Labelled transition sys-
tems are defined for reconfigurable Petri nets by LTSRPN and for the correspond-
ing Maude module NET by LTSMNC. Both labelled transition systems are related
by a surjective function map defined in Lemma 2. To distinguish the states of
the respective labelled transition systems, the variables s for state in LTSMNC

and r for state in LTSRPN are used. map relates a state s ∈ LTSMNC to a state
r ∈ LTSRPN. Note, the function map in Lemma 2 is not injective due to the
isomorphism classes in Definition 3.

Lemma 2 (Surjective mapping of LTSMNC to LTSRPN). Given a reconfig-
urable Petri net (N0,R) with N0 = (P0, T0, pre0, post0, pname0, tname0, cap0,m0)
and the set of rules R together with the corresponding Maude mod-
ules NET and RULE as in Theorem1. Then there is the surjective map-
ping map : SMNC → SRPN from the labelled transition system LTSMNC

in Definition 4 to the labelled transition system LTSRPN in Definition 3
with s = net(Places, Transitions, Pre, Post, Markings) | Rule Int Int

IDPool by
map(s) = [(N,m)] and

– P = {p|p is an atomic element in buildPlace−1(Places)}
– T = {t|t is an atomic element in buildTransition−1(Transitions)}
– pre : T → P⊕ defined by pre(t) = buildPlace−1(place) ; if

Transitions =transitions{T : t(tname | x)} and
Pre =pre{MT, (t(tname | x) → place)}

– post analogously.
– pname : P → AP defined by pname(p) = label ; if

Places =places{P, p(label | x | x)}

– tname analogously.
– cap : P → N

ω
+ defined by cap(p) = capacity ; if

Places =places{P, p(str | x | capacity)}

– m is the atomic element in buildMarking−1(Markings)

Proof sketch: By induction.
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– Given initial as defined above then (N0,m0) ∈ map(initial) and hence
r0 = [(N0,m0)] = map(initial).

– For each follower state sn+1 ∈ SMNC with sn −→ sn+1 ∈ trMNC there is a
rn+1 ∈ SRPN with rn −→ rn+1 ∈ trRPN and map(sn+1) = rn+1 :

• Firing: Given sn
tname(ts)−−−−−→ sn+1 and map(sn) = rn = [(N,m)]. Then

there is also a step rn
tname(tr)−−−−−→ rn+1 with rn+1 = [(N,m′)] in LTSRPN

since pre⊕(tr) ≤ m as ts is less or equal than the marking of sn

as marking{PreValue ; M} is rewritten by the rewrite rule [fire].
(For capacities an analogous argument holds.) If calc(((PreValue ;
M) minus PreValue) plus PostValue) is rewritten by the rewrite rule
[fire], then the follower marking Markings′ is given and the marking
for rn+1 is calculated by m′ = (m � pre⊕(tr)) ⊕ post⊕(tr).

• Transformation: Given sn
rname(rs)−−−−−−→ sn+1 then there is also a

rn
rname(rr)−−−−−−→ rn+1 in LTSRPN . If sn can be rewritten by the rewrite

rule [rname], then is the tem L a subterm of sn. Hence, there is an

occurrence o : L → N by rr and rn
rname(rr)−−−−−−→ rn+1 ∈ trRPN as well

as rname(rs) = rname(rr). freeOfMarking applies for each deleted place
p � MRest, see Fact 2.
emptyNeighbourForPlace holds for each deleted place p, since there is
no occurrence in Pre and Post, Fact 2.

– Analogously, for each follower state rn+1 ∈ SRPN with rn
l−→ rn+1 ∈ trRPN

there is a sn+1 ∈ SMNC with sn
l−→ sn+1 ∈ trMNC and map(sn+1) = rn+1.

The bisimulation between LTSRPN and LTSMNC is defined by the function
map. Theorem 2 states the behavioural equivalence of both transition systems.
For each pair (sn, rn) ∈ map with n ≥ 0 all outgoing actions are the same. The
proof ensures that the reachable states sn+1 and rn+1 are again related by map.

Theorem 2 (Bisimulation). LTSRPN and LTSMNC are bisimilar.

Proof sketch: Given s ∈ SMNC and r ∈ SRPN with map(s) = r = [N,m], we
have:

– s → s′: There is map(s) = r and for each a ∈ AMNC we have r
a−→ r′ ∈ trRPN

because s
a−→ s′ ∈ trMNC so that map(s′) = r′, since map is well-defined (see

Lemma 2).
– r → r′: There is map(s) = r and for each a ∈ AMNC we have s

a−→ s′ ∈ trMNC,
due to r

a−→ r′ ∈ trRPN so that map(s′) = r′, since map is surjective (see
Lemma 2).

Corollary 1 (LTS Properties are Preserved). For any LTL property φ we
have:

LTSRPN |= φ iff LTSMNC |= φ

Due to Theorem 3.1.5 and Theorem 7.6 in [3].
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6 Conclusion

Related work concerns the translation of some modelling techniques into Maude.
In [22] high-level Petri nets are modelled using Maude and the focus is on the
soundness and correctness of the Maude structure. [7] shows a mapping for UML
models to a Maude specification, where AtoM is used to convert the model into
a Python-code representation that solves constraints inside the UML model.
Closely related to our approach is [4], where Petri nets are converted into several
Maude modules. [5] presents a graphical editor for CPNs, which uses Maude in
the background to verify LTL properties. Specified Maude modules (similar to
[22]) are defined, which contain one-step commands for the simulation. In [18]
reference nets (a variant of the net-in-a-net approach) are used to model and
decompose embedded systems.

Concerning the application to dynamic reconfigurable field programmable
gate arrays (FPGAs) all the following approaches use Petri nets to model
FPGAs, but merely have some informal mechanism to model its dynamic recon-
figuration. [21] discusses how the FPGA architectures affect the implementation
of Petri net specifications and shows how to obtain VHDL descriptions amenable
to synthesis. [1] deals with the automatic translation of interpreted generalized
Petri Nets with time into VHDL. [8] is concerned with an FPGA-based controller
design to achieve simpler and affordable verification and validation. To model
the interactions among processes both of state diagrams and Petri nets are used
to model the concurrent processes. In [9] a Petri net variant called hierarchical
configurable Petri nets modelling reconfigurable logic controllers are translated
into Verilog language to be implemented in FPGAs. [14] proposes an approach
analysis and testing of communication tasks of distributed control systems that
uses timed colored Petri Nets for the simulation and performance estimation.

Summarizing, we have presented a correct model-checking technique for
reconfigurable Petri nets. A first step towards the underlying conversion has been
presented in [17]. In [20] these basis concepts have been extended, e.g. includ-
ing capacities, gluing conditions, garbage collection etc. Here, we have sketched
the improved conversion and have shown that it leads to a valid verification
technique as the LTL properties are preserved by this conversion.

Fig. 6. Comparison

In [20] a preliminary evaluation
our the approach to model check-
ing reconfigurable Petri nets has
been given based on another exam-
ple. The performance of our app-
roach based on Maude in version 2.7,
including LTLR in version 1.02 has
been compared to the established
tool Charlie version 2.03. A Petri net
with the same semantics (the same

2 http://maude.cs.illinois.edu/tools/tlr/, 11 March 2015.
3 http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie,

11 March 2015.

http://maude.cs.illinois.edu/tools/tlr/
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Charlie


Model Checking Reconfigurable Petri Nets with Maude 69

state space), as the reconfigurable Petri net, has been used as an example. This
net is used to perform a comparative analysis, including a transfer into a flat
Petri net, where all transformations steps are modelled as part of the net.

Ongoing work is the introduction of control structures, as transformation
units, negative application conditions and others into the tool ReConNet.
These new features cause the need to adopt the conversion to Maude accordingly.
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1 Introduction

It has been common practice in chemistry for more than a century to repre-
sent molecules as labelled graphs, with vertices representing atoms, and edges
representing the chemical bonds between them [23]. It is natural, therefore, to
formalize chemical reactions as graph transformations [6,11,13,20]. Many com-
putational tools for graph transformation have been developed; some of them are
either specific to chemistry [21] or at least provide special features for chemical
systems [18]. General graph transformation tools, such as AGG [24], have also
been used to modelling chemical systems [11].

Chemical graph transformation, however, differs in one crucial aspect from
the usual setup in the graph transformation literature, where a single (usu-
ally connected) graph is rewritten, thus yielding a graph language. Chemical
reactions in general involve multiple molecules. Chemical graph transformations
therefore operate on multisets of graphs to produce a chemical “space” or “uni-
verse”. A similar viewpoint was presented in [17], but here we let the basic graphs
remain connected, and multisets of them are therefore dynamically constructed
and taken apart in direct derivations.

Graph languages can be infinite. This is of course also true for chemical uni-
verses (which in general contain classical graph languages as subsets). In the case
of chemistry, the best known infinite universes comprise polymers. The combi-
natorics of graphs makes is impossible in most cases to explore graph languages
or chemical universes by means of a simple breadth-first search. This limitation
can be overcome at least in part with the help of strategy languages that guide
the rule applications. One such language has been developed for rewriting port
graphs [12], implemented in the PORGY tool [5]. We have in previous work pre-
sented a similar strategy language [4] for transformation of multisets of graphs,
which is based on partial application of transformation rules [2].

Here, we present the first part of the software package MedØlDatschgerl (in
short: MØD), that contains a chemically inspired graph transformation system,
based on the Double Pushout formalism [10]. It includes generic algorithms for
composing transformation rules [2]. This feature can be used, e.g., to abstract
reaction mechanisms, or whole pathways, into overall rules [3]. MØD also imple-
ments the strategy language [4] mentioned above. It facilitates the efficient gen-
eration of vast reaction networks under global constraints on the system. The
underlying transformation system is not constrained to chemical systems. The
package contains specialized functionalities for applications in chemistry, such
as the capability to load graphs from SMILES strings [26]. This first version of
MØD thus provides the main features of a chemical graph transformation system
as described in [27].

The core of the package is a C++ 11 library that in turn makes use of the
Boost Graph Library [22] to implement standard graph algorithms. Easy access
to the library is provided by means of extensive Python bindings. In the following
we use these to demonstrate the functionality of the package. The Python mod-
ule provides additional features, such as embedded domain-specific languages
for rule composition, and for exploration strategies. The package also provides
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comprehensive functionality for automatically visualising graphs, rules, Double
Pushout diagrams, and hypergraphs of graph derivations, i.e., reaction networks.
A LATEX package is additionally included that provides an easy mechanism for
including visualisations directly in documents.

In Sect. 2 we first describe formal background for transforming multisets of
graphs. Section 3 gives examples of how graph and rule objects can be used,
e.g., to find morphisms with the help of the VF2 algorithms [8,9]. Sections 4
and 5 describes the interfaces for respectively rule composition and the strategy
language. Section 6, finally, gives examples of the customisable figure generation
functionality of the package, including the LATEX package.

The source code of MedØlDatschgerl as well as additional usage examples
can be found at http://mod.imada.sdu.dk. A live version of the software can be
accessed at http://mod.imada.sdu.dk/playground.html. This site also provides
access to the large collection of examples.

2 Transformation of Multisets of Graphs

The graph transformation formalism we use is a variant of the Double Pushout
(DPO) approach (e.g., see [10] more details). Given a category of graphs C, a
DPO rule is defined as a span p = (L l←− K

r−→ R), where we call the graphs L,
K, and R respectively the left side, context, and right side of the rule. A rule can
be applied to a graph G using a match morphism m : L → G when the dangling
condition and the identification condition are satisfied [10]. This results in a new
graph H, where the copy of L has been replaced with a copy of R. We write such
a direct derivation as G

p,m
==⇒ H, or simply as G

p
=⇒ H or G ⇒ H when the match

or rule is unimportant. The graph transformation thus works in a category C of
possibly disconnected graphs.

Let C′ be the subcategory of C restricted to connected graphs. A graph G ∈ C
will be identified with the multiset of its connected components. We use double
curly brackets {{. . . }} to denote the construction of multisets. Hence we write
G = {{g1, g2, . . . gk}} for an arbitrary graph G ∈ C with not necessarily distinct
connected components gi ∈ C′. For a set G ⊆ C′ of connected graphs and a graph
G = {{g1, g2, . . . , gk}} ∈ C we write G ∈∗ G whenever gi ∈ G for all i = 1, . . . , k.

We define a graph grammar Γ (G,P) by a set of connected starting graphs
G ⊆ C′, and a set of DPO rules P based on the category C. The language of
the grammar L(G,P) includes the starting graphs G. Additional graphs in the
language are constructed by iteratively finding direct derivations G

p
=⇒ H with

p ∈ P and G,H ∈ C such that G ∈∗ L(G,P). Each graph h ∈ H is then defined
to be in the language as well. A concise constructive definition of the language
is thus L(G,P) =

⋃∞
k=1 Gk with G1 = G and

Gk+1 = Gk ∪
⋃

p∈P
{h ∈ H | ∃G ∈∗ Gk : G

p
=⇒ H}

In MØD the objects of the category C are all undirected graphs without
parallel edges and loops, and labelled on vertices and edges with text strings.

http://mod.imada.sdu.dk
http://mod.imada.sdu.dk/playground.html
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(a) (b) (c)

Fig. 1. The pushout object of (a) in the category of simple graphs is either not existing
or is the graph depicted in (b) where the two edges are merged. For multigraphs the
pushout object would be the graph depicted in (c).

The core algorithms can however be specialised for other label types. We also
restrict the class of morphisms in C to be injective, i.e., they are restricted to
graph monomorphisms. Note that this restriction implies that the identification
condition of rule application is always fulfilled.

The choice of disallowing parallel edges is motivated by the aim of modelling
of chemistry, where bonds between atoms are single entities. While a “double
bond” consists of twice the amount of electrons than a “single bond”, it does
not in general behave as two single bonds. However, when parallel edges are
disallowed a special situation arises when constructing pushouts. Consider the
span in Fig. 1a. If parallel edges are allowed, the pushout object is the one shown
in Fig. 1c. Without parallel edges we could identify the edges as shown in Fig. 1b.
This approach was used in for example [7]. However, for chemistry this means
that we must define how to add two bonds together, which is not meaningful.
We therefore simply define that no pushout object exists for the span. A direct
derivation with the Double Pushout approach thus additionally requires that the
second pushout is defined.

The explicit use of multisets gives rise to a form of minimality of a derivation.
If {{ga, gb, gb}} p,m

==⇒ {{hc, hd}} is a valid derivation, for some rule p and match m,
then the extended derivation {{ga, gb, gb, q}} p,m

==⇒ {{hc, hd, q}} is also valid, even
though q is not “used”. We therefore say that a derivation G

p,m
==⇒ H with the

left-hand side G = {{g1, g2, . . . , gn}} is proper if and only if

gi ∩ img(m) 
= ∅,∀1 ≤ i ≤ n

That is, if all connected components of G are hit by the match. The algorithms
in MØD only enumerate proper derivations.

3 Graphs and Rules

Graphs and rules are available as classes in the library. A rule (L l←− K
r−→ R)

can be loaded from a description in GML [16] format. As both l and r are
monomorphisms the rule is represented without redundant information in GML
by three sets corresponding somewhat to the graph fragments L\K, K, and
R\K (see Fig. 2 for details).

Graphs can similarly be loaded from GML descriptions, and molecule graphs
can also be loaded using the SMILES format [26] where most hydrogen atoms
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are implicitly specified. A SMILES string is a pre-order recording of a depth-
first traversal of the connected graph, where back-edges are replaced with pairs
of integers.

Both input methods result in objects which internally stores the graph struc-
ture, where all labels are text strings. Figure 2 shows examples of graph and rule
loading, using the Python interface of the software.

Fig. 2. Creation of two graph objects and a transformation rule object in the Python
interface. The (molecule) graph ‘formaldehyde’ is loaded from an external GML file,
while the (molecule) graph ‘caffeine’ is loaded from a SMILES string [26], often
used in cheminformatics. General labelled graphs can only be loaded from a GML
description, and all graphs are internally stored simply as labelled adjacency lists.
The DPO transformation rule ‘ketoEnol’ is loaded form an inline GML description.
When the GML sections ‘left’, ‘context’, and ‘right’ are considered sets, they encode
a rule (L ← K → R) with L = ‘left’ ∪ ‘context’, R = ‘right’ ∪ ‘context’, and
K = ‘context’ ∪ (‘left’ ∩ ‘right)’. Vertices and edges that change label are thus
specified in both ‘left’ and ‘right’. Note that in GML the endpoints of edges are
described by ‘source’ and ‘target’, but for undirected graphs these tags have no
particular meaning and may be exchanged. The graphs and rules are visualised in
Fig. 5.

Graphs have methods for counting both monomorphisms and isomorphisms,
e.g., for substructure search and for finding duplicate graphs. Counting the num-
ber of carbonyl groups in a molecule ‘mol’ can be done simply as

carbonyl = smiles("[C]=O") count = carbonyl.monomorphism(mol ,
maxNumMatches =1337)

By default the ‘monomorphism’ method stops searching after the first morphism
is found; alternative matches can be retrieved by setting the limit to a higher
value.
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Rule objects also have methods for counting monomorphisms and isomor-
phisms. A rule morphism m : p1 → p2 on the rules pi = (Li

li←− Ki
ri−→ Ri), i =

1, 2 is a 3-tuple of graph morphisms mX : X1 → X2,X ∈ {L,K,R} such that
they commute with the morphisms in the rules. Finding an isomorphism between
two rules can thus be used for detecting duplicate rules, while finding a monomor-
phism m : p1 → p2 determines that p1 is at least as general as p2.

4 Composition of Transformation Rules

In [2,3] the concept of rule composition is described, where two rules p1 =
(L1 ← K1 → R1), p2 = (L2 ← K2 → R2) are composed along a common
subgraph given by the span R1 ← D → L2. Different types of rule composition
can be defined by restricting the common subgraph and its relation to the two
rules. MØD implements enumeration algorithms for several special cases that
are motived and defined in [2,3]. The simplest case is to set D as the empty
graph, denoted by the operator •∅, to create a composed rule that implements
the parallel application of two rules. In the most general case, denoted by •∩, all
common subgraphs of R1 and L2 are enumerated. In a more restricted setting
R1 is a subgraph of L2, denoted by •⊆, or, symmetrically, L2 is a subgraph of
R1, denoted by •⊇. When the subgraph requirement is relaxed to only hold for a
subset of the connected components of the graphs we denoted it by •c⊆ and •c⊇.

The Python interface contains a mini-language for computing the result of
rule composition expressions with these operators. The grammar for this lan-
guage of expressions is shown in Fig. 3.

Fig. 3. Grammar for rule composition expressions in the Python interface, where
〈graphs〉 is a Python expression returning either a single graph or a collection of
graphs. Similarly is 〈rules〉 a Python expression returning either a single rule or a
collection of rules. The pseudo-operators 〈op〉 each correspond to a mathematical rule
composition operator (see [2,3]). The three functions ‘rcBind’, ‘rcUnbind’, and ‘rcId’
refers to the construction of the respective rules (∅ ← ∅ → G), (G ← ∅ → ∅), and
(G ← G → G) from a graph G.

Its implementation is realised using a series of global objects with suitable
overloading of the multiplication operator. A rule composition expression can
be passed to an evaluator, which will carry out the composition and discard
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duplicate results, as determined by checking isomorphism between rules. The
result of each 〈rcExp〉 is coerced into a list of rules, and the operators consider
all selections of rules from their arguments. That is, if ‘P1’ and ‘P2’ are two rule
composition expressions, whose evaluation results in two corresponding lists of
rules, P1 and P2. Then, for example, the evaluation of ‘P1 *rcParallel* P2’
results in the following list of rules:

⋃

p1∈P1

⋃

p2∈P2

p1 •∅ p2

Each of these rules encodes the parallel application of a rule from P1 and a rule
from P2.

In the following Python code, for example, we compute the rules correspond-
ing to the bottom span (G ← D → H) of a DPO diagram, arising from applying
the rule p = (L ← K → R) to the multiset of connected graphs G = {{g1, g2}}.

exp = rcId(g1) *rcParallel* rcId(g2) *rcSuper(allowPartial=False)* p
rc = rcEvaluator(ruleList) res = rc.eval(exp)

Here, the rule composition evaluator is given a list ‘ruleList’ of known rules that
will be used for detecting isomorphic rules. Larger rule composition expressions,
such as those found in [3], can similarly be directly written as Python code.

5 Exploration of Graph Languages Using Strategies

A breadth-first enumeration of the language of a graph grammar is not always
desirable. For example, in chemical systems there are often constraints that can
not be expressed easily in the underlying graph transformation rules. In [4] a
strategy framework is introduced for the exploration of graph languages. It is a
domain specific programming language that, like the rule composition expres-
sions, is implemented in the Python interface, with the grammar shown in Fig. 4.
The language computes on sets of graphs. Simplified, this means that each execu-
tion state is a set of connected graphs. An addition strategy adds further graphs
to this state, and a filter strategy removes graphs from it. A rule strategy enu-
merates direct derivations based on the state, subject to acceptance by filters
introduced by the left- and right-predicate strategies. Newly derived graphs are
added to the state. Strategies can be sequentially composed with the ‘>>’ oper-
ator, which can be extended to k-fold composition with the repetition strategy.
A parallel strategy executes multiple strategies with the same input, and merges
their output. During the execution of a program the discovered direct derivations
are recorded as an annotated directed multi-hypergraph, which for chemical sys-
tems is a reaction network. For a full definition of the language see [4] or the
MØD documentation.

A strategy expression must, similarly to a rule composition expression, be
given to an evaluator which ensures that isomorphic graphs are represented
by the same C++/Python object. After execution the evaluator contains the
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Fig. 4. Grammar for the domain specific language for guiding graph transformation,
embedded in the Python interface of the software package. The non-terminal 〈strats〉
must be a collection of strategies, that becomes a parallel strategy from [4]. The
production 〈strat〉 ‘>>’ 〈strat〉 results in a sequence strategy.

generated derivation graph, which can be visualised or programmatically used
for subsequent analysis.

The strategy language can for example be used for the simple breadth-first
exploration of a grammar with a set of graphs ‘startingGraphs’ and a set of
rules ‘ruleSet’, where exploration does not result in graphs above a certain size
(42 vertices):

strat = (
addSubset(startingGraphs)

>> rightPredicate[
lambda derivation: all(g.numVertices <= 42 for g in derivation.right)

]( repeat(ruleSet) )
)
dg = dgRuleComp(startingGraphs , strat)
dg.calc()

The ‘dg’ object is the evaluator which afterwards contains the derivation graph.
More examples can be found in [1,4] where complex chemical behaviour is incor-
porated into strategies. An abstract example can also be found in [4] where the
puzzle game Catalan [14] is solved using exploration strategies.

6 Figure Generation

The software package includes elaborate functionality for automatically visualis-
ing graph, rules, derivation graphs, and derivations. The final rendering of figures
is done using the TikZ [25] package for LATEX, while the layouts for graphs are
computed using Graphviz [15]. However, for molecule graphs it is possible to
use the cheminformatics library Open Babel [19] for laying out molecules and
reaction patterns in a more chemically familiar manner.

Visualisation starts by calling a ‘print’ method on the object in question.
This generates files with LATEX code and a graph description in Graphviz format.
Special post-processing commands are additionally inserted into another file.
Invoking the post-processor will then generate coordinates and compile the final
layout. In addition, an aggregate summary document is compiled that includes
all figures for easy overview. Figure 5 shows an example, where the wrapper script
‘mod’ provided by the package is used to automatically execute both a Python
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(a) Additional Python code to Fig. 2,
for generating figures.
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(b) Automatically compiled figure
of the two graphs loaded in Fig. 2.
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(c) Automatically compiled figure of the DPO rule loaded in Fig. 2.

Fig. 5. Example of automatic visualisation of graphs and rules, using the post-
processor. The Python code is an extension of the code from Fig. 2, and can be executed
using the provided ‘mod’ script that invokes both the Python interpreter ‘python3’ and
the post-processor, ‘mod post’. Edges with special labels are as default rendered in a
special chemical manner, as illustrated with the left graph of (b) (formaldehyde). In
the right graph of (b) (caffeine) the edge labels are shown explicitly. Both graphs uses
chemical colouring. The colouring of the transformation rule, (c) denote the differences
between L, K, and R. (Color figure online)

script and subsequently the post-processor. The example also shows part of the
functionality for chemical rendering options, such as atom-specific colouring,
charges rendered in superscript, and collapsing of hydrogen vertices into their
neighbours.

Derivation graphs can also be visualised automatically, where each vertex is
depicted with a rendering of the graph it represents. The overall depiction can
be customised to a high degree, e.g., by annotation or colouring of vertices and
hyperedges using user-defined callback functions. Figure 6 illustrates part of this
functionality.

Individual derivations of a derivation graph can be visualised in form of
Double Pushout diagrams. The rendering of these diagrams can be customised
similar to how rules and graph depictions can, e.g., to make the graphs have a
more chemical feel. An example of derivation printing is illustrated in Fig. 7.

Composition of transformation rules is a core operation in the software, and
for better understanding the operation we provide a mechanism for visualising
individual compositions. An example of such a visualisation is shown in Fig. 8,
where only the left and right graphs of two argument rules and the result rule
are shown. The composition relation is shown as red dashed lines between the
left graph of the first rule and the right graph of the second rule.

Including Figures in LATEX Documents. To make it easier to use illustra-
tions of graphs and rules we have included a LATEX package in the software. It
provides macros for automatically generating Python scripts that subsequently
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(a) Python code for customised visualisation of a derivation graph
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(b) Example of automatically laid out and rendered derivation graph with
custom labelling and colour.

Fig. 6. Example of derivation graph printing. Each vertex is as default labelled with
the name of the graph it represents, and a figure of the graph is embedded. Each
hyperedge is as default labelled with the name of the rule used in the derivation the
hyperedge represents. A general hyperedge is represented by a box, but for hyperedges
with only 1 head and 1 tail the box is omitted, and a single labelled arc is rendered.
(Color figure online)

generate figures and LATEX code for inclusion into the original document. For
example, the depictions in Fig. 5 are inserted with the following code.

\graphGML[collapse hydrogens=false][scale =0.4]{ formaldehyde.gml}
\smiles[collapse hydrogens=false , edges as bonds=false][scale =0.4]

{Cn1cnc2c1c(=O)n(c(=O)n2C)C}
\ruleGML{ketoEnol.gml}{ \dpoRule[scale =0.4]}

Each ‘\graphGML’ and ‘\smiles’ macro expands into an ‘\includegraphics’ for
a specific PDF file, and a Python script is generated which can be executed to
compile the needed files. The ‘\ruleGML’ macro expands into

\dpoRule[scale =0.4]{ fileL.pdf}{fileK.pdf}{fileR.pdf}
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Fig. 7. Example of visualisation of derivations. Each derivation from a derivation graph
can be printed, with the same customisation options as for graphs and rules. Additional
colouring is used to highlight the image of the rule into the lower span. (Color figure
online)

Fig. 8. Visualisation of the composition of two rules pi = (Li ← Ki → Ri, i = 1, 2,
along the a common subgraph of R1 and L2, indicated by the dashed red lines. Only
the left and right graphs of both rules, and the resulting rule, are shown. The rendering
can be customised in the same manner as the rendering for graphs and rules can. (Color
figure online)

where the three PDF files depict the left side, context, and right side of the rule.
The ‘\dpoRule’ macro then expands into the final rule diagram with the PDF
files included.

7 Summary

MedØlDatschgerl is a comprehensive software package for DPO graph transfor-
mation on multisets of undirected, labelled graphs. It can be used for generic,
abstract graph models. By providing many features for handling chemical data it
is particularly well-suited for modelling generative chemical systems. The pack-
age includes an elaborate system for automatically producing high-quality visu-
alisations of graphs, rules, and DPO diagrams of direct derivations.

The first public version of MØD described here is intended as the foundation
for a larger integrated package for graph-based cheminformatics. Future versions
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will for example also include functionalities for pathway analysis in reaction net-
works produced by the generative transformation methods described here. The
graph transformation system, on the other hand, will be extended to cover more
complicated chemical properties such as radicals, charges, and stereochemistry.

Acknowledgements. This work is supported by the Danish Council for Independent
Research, Natural Sciences, the COST Action CM1304 “Emergence and Evolution of
Complex Chemical Systems”, and the ELSI Origins Network (EON), which is sup-
ported by a grant from the John Templeton Foundation. The opinions expressed in
this publication are those of the authors and do not necessarily reflect the views of the
John Templeton Foundation.

A Examples

The following is a short list of examples that show how MedØlDatschgerl can be
used via the Python interface. They are all available as modifiable script in the
live version of the software, accessible at http://mod.imada.sdu.dk/playground.
html.

A.1 Graph Interface

Graph objects have a full interface to access individual vertices and edges. The
labels of vertices and edges can be accessed both in their raw string form, and
as their chemical counterpart (if they have one).

g = graphDFS("[R]{x}C([O-])CC=O")

print("|V| =", g.numVertices)

print("|E| =", g.numEdges)

for v in g.vertices:

print("v%d: label='%s'" % (v.id , v.stringLabel), end="")

print("\tas molecule: atomId =%d, charge =%d" % (v.atomId , v.charge), end="")

print("\tis oxygen?", v.atomId == AtomIds.Oxygen)

print("\td(v) =", v.degree)

for e in v.incidentEdges: print("\tneighbour:", e.target.id)

for e in g.edges:

print("(v%d, v%d): label='%s'" % (e.source.id , e.target.id , e.stringLabel), end="")

try:

bt = str(e.bondType)

except LogicError:

bt = "Invalid"

print("\tas molecule: bondType =%s" % bt , end="")

print("\tis double bond?", e.bondType == BondType.Double)

A.2 Graph Morphisms

Graph objects have methods for finding morphisms with the VF2 algorithms
for isomorphism and monomorphism. We can therefore easily detect isomorphic
graphs, count automorphisms, and search for substructures.

mol1 = smiles("CC(C)CO")

mol2 = smiles("C(CC)CO")

# Check if there is just one isomorphism between the graphs:

isomorphic = mol1.isomorphism(mol2) == 1

print("Isomorphic?", isomorphic)

# Find the number of automorphisms in the graph ,

# by explicitly enumerating all of them:

numAutomorphisms = mol1.isomorphism(mol1 , maxNumMatches =1337)

print("|Aut(G)| =", numAutomorphisms )

http://mod.imada.sdu.dk/playground.html
http://mod.imada.sdu.dk/playground.html
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# Let's count the number of methyl groups:

methyl = smiles("[CH3]")

# The symmetry of the group it self should not be counted ,

# so find the size of the automorphism group of methyl.

numAutMethyl = methyl.isomorphism(methyl , maxNumMatches =1337)

print("|Aut(methyl )|", numAutMethyl)

# Now find the number of methyl matches ,

numMono = methyl.monomorphism(mol1 , maxNumMatches =1337)

print("#monomorphisms =", numMono)

# and divide by the symmetries of methyl.

print("#methyl groups =", numMono / numAutMethyl)

A.3 Rule Loading

Rules must be specified in GML format.
# A rule (L <- K -> R) is specified by three graph fragments:

# left , context , and right

destroyVertex = ruleGMLString('rule [ left [ node [ id 1 label "A" ] ] ]')
createVertex = ruleGMLString( 'rule [ right [ node [ id 1 label "A" ] ] ]')
identity = ruleGMLString( 'rule [ context [ node [ id 1 label "A" ] ] ]')
# A vertex/edge can change label:

labelChange = ruleGMLString(""" rule [

left [ node [ id 1 label"A"] edge [ source 1 target 2 label"A"] ]

# GML can have Python -style line comments too

context [ node [ id 2 label"Q"] ]

right [ node [ id 1 label"B"] edge [ source 1 target 2 label"B"] ]

]""")

# A chemical rule should probably not destroy and create vertices:

ketoEnol = ruleGMLString(""" rule [

left [

edge [ source 1 target 4 label"-"] edge [ source 1 target 2 label "-"]

edge [ source 2 target 3 label "="]

node [ id 3 label"O"] node [ id 4 label"H"]

]

context [

node [ id 1 label"C"] node [ id 2 label"C"]

]

right [

edge [ source 1 target 2 label "="] edge [ source 2 target 3 label "-"]

node [ id 3 label"O-"] node [ id 4 label"H+"]

]

]""")

# Rules can be printed , but label changing edges are not visualised in K:

ketoEnol.print ()

# Add with custom options , like graphs:

p1 = GraphPrinter ()

p2 = GraphPrinter ()

p1.disableAll ()

p1.withTexttt = True

p1.withIndex = True

p2.setReactionDefault ()

for p in inputRules: p.print(p1, p2)

# Be careful with printing options and non -existing implicit hydrogens:

p1.disableAll ()

p1.edgesAsBonds = True

p2.setReactionDefault ()

p2.simpleCarbons = True # !!

ketoEnol.print(p1 , p2)

A.4 Rule Composition 1 — Unary Operators

Special rules can be constructed from graphs.
glycolaldehyde.print ()

# A graph G can be used to construct special rules:

# (\ emptyset <- \emptyset -> G)

bindExp = rcBind(glycolaldehyde)

# (G <- \emptyset -> \emptyset)

unbindExp = rcUnbind(glycolaldehyde)

# (G <- G -> G)

idExp = rcId(glycolaldehyde)

# These are really rule composition expressions that have to be evaluated:

rc = rcEvaluator(inputRules)

# Each expression results in a lists of rules:

bindRules = rc.eval(bindExp)

unbindRules = rc.eval(unbindExp)

idRules = rc.eval(idExp)

postSection("Bind Rules")
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for p in bindRules: p.print()

postSection("Unbind Rules")

for p in unbindRules: p.print ()

postSection("Id Rules")

for p in idRules: p.print()

A.5 Rule Composition 2 — Parallel Composition

A pair of rules can be merged to a new rule implementing the parallel transfor-
mation.

rc = rcEvaluator(inputRules)

# The special global object 'rcParallel ' is used to make a pseudo -operator:

exp = rcId(formaldehyde) *rcParallel* rcUnbind(glycolaldehyde)

rules = rc.eval(exp)

for p in rules: p.print ()

A.6 Rule Composition 3 — Supergraph Composition

A pair of rules can (maybe) be composed using a supergraph relation.
rc = rcEvaluator(inputRules)

exp = rcId(formaldehyde) *rcParallel* rcId(glycolaldehyde)

exp = exp *rcSuper* ketoEnol_F

rules = rc.eval(exp)

for p in rules: p.print ()

A.7 Reaction Networks 1 — Rule Application

Transformation rules (reaction patterns) can be applied to graphs (molecules) to
create new graphs (molecules). The transformations (reactions) implicitly form
a directed (multi-)hypergraph (chemical reaction network).

# Reaction networks are expaned using a strategy:

strat = ( # A molecule can be active or passive during evaluation.

addUniverse(formaldehyde) # passive

>> addSubset(glycolaldehyde) # active

# Aach reaction must have a least 1 active educt.

>> inputRules )

# We call a reaction network a 'derivation graph '.
dg = dgRuleComp(inputGraphs , strat)

dg.calc()

# They can also be visualised.

dg.print ()

A.8 Reaction Networks 2 — Repetition

A sub-strategy can be repeated.
strat = ( addUniverse(formaldehyde)

>> addSubset(glycolaldehyde)

# Iterate the rule application 4 times.

>> repeat [4]( inputRules) )

dg = dgRuleComp(inputGraphs , strat)

dg.calc()

dg.print ()
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21. Rosselló, F., Valiente, G.: Chemical graphs, chemical reaction graphs, and chem-
ical graph transformation. Electron. Notes Theor. Comput. Sci. 127(1), 157–166
(2005). Proceedings of the International Workshop on Graph-Based Tools (Gra-
BaTs 2004) Graph-Based Tools 2004

22. Siek, J.G., Lee, L.Q., Lumsdaine, A.: Boost Graph Library: The User
Guide and Reference Manual. Pearson Education, Upper Saddle River (2001).
http://www.boost.org/libs/graph/

23. Sylvester, J.J.: On an application of the new atomic theory to the graphical repre-
sentation of the invari- ants and covariants of binary quantics, with three appen-
dices. Am. J. Math. 1(1), 64–128 (1878)

24. Taentzer, G.: AGG: A graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
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Abstract. Model transformation systems often contain families of rules
that are substantially similar to each other. Variability-based rules are
a recent approach to express such families of rules in a compact rep-
resentation, enabling the convenient editing of multiple rule variants at
once. On the downside, this approach gives rises to distinct maintenance
drawbacks: Users are required to view and edit presence conditions. The
complexity and size of the resulting rules may impair their readability.

In this paper, we propose to facilitate the editing of variability-based
rules through suitable tool support. Inspired by the paradigms of filtered
editing and virtual seperation of concerns, we present a tool environment
that offers editable views for variants expressed in a variability-based
rule. We demonstrate that our tool environment is helpful to address the
identified issues, rendering variability-based rules a highly feasible reuse
approach.

1 Introduction

Model transformation is a key enabling technology for Model-Driven Engineer-
ing. Algebraic graph transformation is one of the main paradigms in this field,
enabling a high-level, declarative specification based on graph rewriting rules [1].
Non-trivial graph transformation systems often contain rules that are substan-
tially similar to each other. Such rules may share a large bulk of intended actions,
while differing only marginally, leading to a large amount of pattern duplications.

Several approaches can be used to capture such families of rules while avoid-
ing pattern duplication. Many of these approaches embody a composition-based
paradigm: rule variants are assembled from fragmentary building blocks. In the
case of rule inheritance [2], the implementation of a rule family comprises a hier-
archy of a base rule with sub-rules. Rule refinement [3] extends this concept by
supporting multiple base rules and the capability to modify super-rules. While
these approaches clearly avoid pattern duplication, they may entail managing
a large number of interrelated fragments. Their semantics are often intricate; a
scheduling mechanism may be required to handle conflicts during composition.

Inspired by product line engineering approaches [4], we propose variability-
based (VB) rules, an annotative approach to managing families of rules. The key
idea is to encode a family of rules as one VB rule. Portions of this VB rule are

c© Springer International Publishing Switzerland 2016
R. Echahed and M. Minas (Eds.): ICGT 2016, LNCS 9761, pp. 89–101, 2016.
DOI: 10.1007/978-3-319-40530-8 6
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Fig. 1. Three variants of the move method refactoring.

Fig. 2. Variability-based rule expressing the same three variants.

annotated with presence conditions to assign them to a subset of the encoded
rules. The portion common to all rules, called the base rule, is not annotated.

Example. Consider a family of three in-place transformation rules. The rules,
shown in Fig. 1, express variants of the move method refactoring for class models.
The first rule specifies the relocation of a method between two classes. The second
one additionally creates a wrapper method of the same name in the source class.
The third one adds an annotation to mark the wrapper method as deprecated.

These three rule variants can be expressed using the VB rule shown in
Fig. 2. Several elements are annotated with presence conditions over the literals
wrapper and deprecate. The variants are obtained by configuring the rule, i.e.,
binding these literals to true or false and removing elements whose presence
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condition evaluates to false. Configuration {wrapper=false; deprecate=false}
yields the base rule, a rule isomorphic to rule moveMethod in Fig. 1. The
rules induced by the configurations {wrapper=true; deprecate=false} and
{wrapper=true; deprecate=true} produce the additional variants. To avoid the
illegal configuration {wrapper=false; deprecate=true}, the rule has a constraint
called variability model, shown in the title bar, requiring wrapper to be true if
deprecate is true.

This example highlights several maintainability benefits of VB rules: (i) Dur-
ing maintenance, all included variants are viewed and edited at once. While evi-
dently convenient, this editing style may also be less error-prone: Fixing the same
bug in multiple rules manually may lead to residual bugs not being considered.
(ii) The representation is more compact, in terms of the number of rules, the
total number of rule elements and the used amount of space. While compact-
ness does not necessarily equal better readability, it is still an explicit goal of
compositional approaches [3]. (iii) In contrast to compositional approaches, no
additional mechanism is needed to glue fragments together, adding to the com-
pactness of the specification. The structure of each variant is directly present;
maintainers are not required to obtain a mental representation by assembling
fragments.

Conversely, the example also illustrates a set of drawbacks of VB rules. (i) The
use of presence conditions creates a “noisy” or “cluttered” impression, impairing
readability. To make matters worse, these presence conditions are required to be
edited manually, a tedious and potentially error-prone process. (ii) The rule size
in terms of average number of elements per rule is greater. A detrimental effect
of diagram size on readability is reported in [5]. (iii) To understand individual
rule variants, developers are required to identify and focus on selected portions,
posing a high cognitive effort. While color-coding would be helpful to mitigate
this issue, it is at least complicated if not unavailable due to existing color-coding.

In this work, we address the following research question: How can the
efficient viewing and editing of variability-based rules be facilitated?
Our key idea is to provide dynamic representations suitable to the task at hand
rather than one static representation – an idea inspired by the paradigms of
filtered editing [6] and virtual separation of concerns [7]. We propose a tool envi-
ronment that offers views on rule variants selected by the user. These views are
helpful to mitigate the identified drawbacks by (i) removing the need to read
and edit presence conditions, (ii) being smaller in size, and (iii) reducing the
cognitive effort in deriving mental representations. In addition, we provide sup-
port for converting a legacy rule set into a VB rule with little manual effort. The
basic concepts of VB rules and their automatic creation have been introduced
elsewhere [8–10].

We have implemented our tool environment on top of Henshin [11], a model
transformation language based on algebraic graph transformations. Lifting the
concepts proposed in this work to other languages and paradigms is desirable,
but left to future work. The tool and a description of its use can be found at
https://www.uni-marburg.de/fb12/swt/forschung/software/varhenshin/.

https://www.uni-marburg.de/fb12/swt/forschung/software/varhenshin/
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2 Variability-Based Rules

In this section, we briefly revisit the main concepts of variability-based rules.
We assume the reader to be familiar with double-pushout graph transformation
rules, such as those shown in Fig. 1. The underlying graph kind may include typ-
ing and attributes since these concepts are orthogonal to variability. We further
use the concept of subrule, a rule that can be embedded into a larger rule in an
injective manner. A detailed account of these concepts is given in [10].

Definition 1 (Variability-based (VB) rule). Given a set of atomic terms V ,
called variability points, a VB rule ř = (r, S, vm, pc) consists of a rule r, a set S
of subrules of r, a propositional term vm ∈ LV and a function pc : S∪{r} → LV ,
where LV is the set of propositional terms over V . Term vm is called variability
model. Function pc defines presence conditions for subrules s.t. pc(r) is true and
∀s ⊆ s′ : pc(s′) =⇒ pc(s). The base rule is the intersection of all subrules.

Figure 2 shows a VB rule over variability points {wrapper, deprecate}. The
rule is shown in a compact representation where subrules are not shown explic-
itly, but denoted using element presence conditions. Rule r is the entire rule,
ignoring annotations. S comprises a subrule for each propositional term over
V. Each subrule contains those elements whose presence conditions are implied
by its own presence condition. For instance, subrule s with pc(s) = wrapper ∧
¬deprecate contains all elements annotated with wrapper and without annota-
tions, but not those annotated with deprecate. The variability model is deprecate
→ wrapper.

Definition 2 (Configuration). Let a VB rule ř = (r, S, vm, pc) over V be
given. A configuration is a total function c : V → {true, false}. A configuration
c satisfies a term t ∈ LV if t evaluates to true when each variable v in t is
substituted by c(v). A configuration c is valid if c satisfies vm.

In the example, {wrapper=true; deprecate=false} is a valid configuration, sat-
isfying the presence condition wrapper, but not the presence condition deprecate.

Definition 3 (Rule variant). For a valid configuration c, there exists a unique
set of subrules Sc ⊆ S s.t. ∀s ∈ S : s ∈ Sc iff c satisfies pc(s). Gluing together all
elements contained in one of these subrules yields a rule rc, called rule variant
induced by c.

The example VB rule can be used to produce three variants; details are pro-
vided in the previous description of the example. Categorically, the gluing can be
expressed as a consecutive multi-pullback and multi-pushout construction [10].

There are two main application scenarios for VB rules. First, a specific user
intention may lead to the selection and application of one particular rule variant.
For instance, in the example, the user may configure the rule so that it produces
a wrapper method. Such an external configuration process leads to an individual
rule being applied in the classic way. Second, all rules in a rule set may be applied
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simultaneously. Such rule sets are found in batch transformation scenarios, such
as translation or migration suites. In this case, configurations can be set inter-
nally by the transformation engine. This approach allows to consider the base
rule of all variants at once, leading to considerable performance savings [8].

3 Main Features

In this section, we present the main features of our tool environment. The design
of these features is informed by Cognitive Dimension [12] (CD), a framework
of usability dimensions for visual programming environments. First, we give
an overview of the features, relating each to the CD framework. Second, we
exemplify the use of these features from the user perspective.

• View specific rule variants: Each variant expressed in a VB rule corre-
sponds to a configuration, a binding of all variability points to true or false.
To view specific variants, we provide a live configuration feature: The user
performs a partial or total binding of variability points, leading to immedi-
ate feedback. Irrelevant rule elements can be either turned invisible or toned
down. The former option helps the user during the comprehension of individ-
ual variants. The latter one facilitates the comparison of variants.
This feature addresses several cognitive dimensions: The visibility of rule vari-
ants is increased. The need for hard mental operations is reduced by shielding
users from the cognitive effort of deriving variants. Notational diffuseness is
reduced as fewer different symbols are needed to capture variability.

• Edit rule variants: A crucial issue of editing VB rules is the requirement
to have users edit presence conditions, a tedious and error-prone process.
We provide features to mitigate this issue: When creating a new element,
a presence condition corresponding to the currently selected configuration
is assigned automatically. We also support the reassigning of elements to
different variants by moving them to a more general or specific configuration
(i.e., one where more or less variability points are unbound).
By lifting the abstraction level from editing presence conditions to moving

elements between variants, we aim to reduce error-proneness. The capability
to move multiple elements also reduces viscosity, the resistance to change.

• Explore relationships between rule variants: We provide multiple fea-
tures to support exploring multiple variants and their interrelations. First,
a favorites feature allows rapid switching between variants. Second, a quick
access feature provides instant access to distinguished variants such as the
base rule and the maximum rule. Third, an auto-completion feature reduces
the configuration effort of by inferring certain open bindings automatically.
These features are key to increasing role-expressiveness, the ease of under-

standing “how each component [...] relates to the whole” [12].

• Manage variability points: We provide a dedicated viewer component for
the management of variability points. Using this viewer, variability points can
be created and deleted. To ensure consistency, presence conditions referring
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to the deleted variability point can be updated automatically.
This dedicated component inceases the visibility of variability management.

• Sanitize legacy rule sets: Legacy rule sets may exhibit a high degree of
pattern duplication, notably, if they were devised in a copy-and-paste manner.
To sanitize such rule sets, we provide clone detection and merge refactoring
features. Clone detection allows identifying cloned portions in a set of rules.
These portions may serve as input to merge refactoring, a feature that creates
VB rules automatically, including an optimization to preserve layout infor-
mation from the input rules. We present this technique in [9].
This feature shields from premature commitment : VB rules do not have to

be devised from scratch. Users may develop rules in an ad-hoc manner and
decide to use VB rules later, while retaining key layout information.

Fig. 3. Our tool environment from the user perspective.

User Perspective. Our tool environment is integrated with the default user
interface of Henshin. The main components of this user interface, a graphical
editor and its attached properties view, are shown in the left of Fig. 3. As cus-
tom components, we provide the variability and sanitizing views, shown in the
right. The variability view comprises features for the definition and configura-
tion of variability points. The variant produced from the current configuration
is displayed in the editor. The sanitizing view can be used to sanitize legacy
transformations.
Variability view. The variability view allows variability points in a rule to be

created and deleted. To view and edit variants individually, the user config-
ures the rule by setting the bindings for these variability points. Three literals
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are supported: true, false, and unbound. Per default, each variability point is
unbound, yielding the maximal rule, all elements regardless of their annotations.
Configurations are validated against the given variability model, deprecate →
wrapper in this case. Invalid configurations and rules lead to error messages being
displayed.

Fig. 4. Variability view with favorites
menu.

To navigate variants efficiently, frequ-
ently used configurations can be saved as
favorites using the button in the tool-
bar. The star appears in yellow if a favored
configuration is currently active. Each
configuration has a user-specified name.
In Fig. 4, the user has created two
favorites, WrapperWithDeprecate and
WrapperWithoutDeprecate, the latter one
being active. Upon selection, the configu-
ration is loaded and shown in the table at
the bottom of the view.

A view mode feature allows to access
distinguished variants rapidly. In the max-
imum rule mode, represented by the
icon, all elements included in the rule are shown regardless of the configura-
tion. In the variant mode ( ), elements absent in the current configuration are
concealed. In the base rule mode ( ), elements with a non-empty presence con-
dition are concealed.

To further improve the handling of variability, the view allows the users to
choose a concealing strategy, depicted in Fig. 5. First, elements can be turned
invisible. This avoids a cluttered representation of the rule and lets users focus
on the variant at hand. On the other hand, to allow the comparison of a variant
with the full rule, users may choose to have the elements toned down instead.

Fig. 5. Concealing strategies.

Using the button, users can select an editing mode to define which variants
are affected by edits to the rule. The supported options are: all variants, variants
included in the selected configuration, or variants associated to the current view
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mode. In particular, the editing mode determines which presence condition is
assigned during the addition or deletion of elements to a rule.

Sanitizing view. The sanitizing view, shown in the lower right of Fig. 6, supports
two operations for sanitizing legacy rule sets: clone detection and merging. Clone
detection allows the identification of duplications in the rule set. The result is
a list of clone groups. To display the most relevant clone groups prominently,
the clone groups are ordered by their size, i.e., the number of common ele-
ments. Users can inspect the duplication interactively; when a rule is selected,
the affected portions in the rule are focused and highlighted. Internally, clone
detection aims to identify isomorphic sub-graphs, a computationally expensive
problem in general. To ensure reasonable response times, our approach uses
a heuristics provided by ConQAT [13], a clone detection technique originally
introduced for Simulink models. We discuss our adaptation of this technique
elsewhere [14].

Fig. 6. Sanitizing view.

The merge button enables the merge refactoring feature. An algorithm is exe-
cuted to construct a semantically equivalent variability-based rule automatically,
using the identified duplication as base rule and annotating the variant-specific
parts with their rule names [9]. The user can inspect and post-process the refac-
toring result using the viewing and editing features. In case that the result is
not satisfactory, the process can be undone.

Context menus. Additional context menu entries allow to manage variability
at the level of individual elements. Multiple nodes, edges and attributes can be
selected and moved to a different configuration simultaneously.



A Tool Environment for Managing Families of Model Transformation Rules 97

4 Architecture and Implementation

In this section, we describe the architecture of our tool and our design principles
during the implementation.

Fig. 7. Architecture.

We give an overview of the
architecture in Fig. 7. The novel
features presented in this work
are encapsulated by Variabil-
ity UI, an integrating layer on
top of the UI, Clone Detec-
tion, Merging and Variability
extensions for the Henshin lan-
guage core. To combine the
Henshin UI with the variabil-
ity implementation first intro-
duced in [8], the Variability
UI provides the variability view
and its editor integration. Clone
detection and merging are made
available to users in the Sanitizing View. The merging component acts as a bridge
between the clone detection and variability extensions: It enables the conversion
of rules affected by cloning to variability-based rules. GMF, GEF, EMF and
Eclipse are featured as underlying frameworks. The Henshin language is based
on an EMF meta-model. The Henshin UI comprises a GMF-based editor to
enable the visual viewing and editing of transformations.

The main design goal in our architectural design was non-intrusiveness: Chang-
ing the Henshin core and UI should be avoided where possible. The rationale for
this design goal was to keep the Henshin language core, its UI and analysis func-
tionality as simple as possible. Variability is deployed as a drop-in language exten-
sion, orthogonal to additional extensions, such as the existing support for Triple
Graph Grammars [15] or possible future support for uncertainty [16]. Including
multiple of these extensions might lead to feature interactions that need to be
addressed explicitly by the designers of the extensions.

To define language extensions in a non-intrusive way, the Henshin meta-
model provides a flexible annotation mechanism. Any element contained in a
transformation may be annotated with key-value pairs of strings. The language
extension at hand is responsible for processing these annotations. This concept
allowed us to implement variability-based rules in the variability extension alone,
without modifying the language core.

5 Related Work

Model Transformation Reuse. There are two groups of reuse approaches
for model transformations. The first group focuses on intra-transformation
reuse [17], the reuse of artifacts within the same transformation. In this group,
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many approaches are composition-based: Rule refinement, the modularization of
a rule into a set of fragmentary rules, has been implemented in the eMoflon tool
[18]. The modularization of a graph transformation rules into multiple aspects
is another compositional approach [19]. A feature-based composition approach
for the reuse of ATL transformations has been proposed by Sijtema [20]. Many
of these approaches do not provide an automated tool to split a legacy rule into
a set of composition fragments, an issue that might be addressed by applying a
general-purpose splitting tool [21,22]. An important annotative approach is rule
amalgamation. While this approach allows the specification of mandatory and
optional parts in a rule, in contrast to VB rules, the optional parts are matched
and applied as often as possible. VB rules provide the capability to assign one
element to multiple variants, which is not supported in amalgamation. Amalga-
mation has been implemented in the AToM3 meta-modeling tool [23] and the
eMoflon Triple Graph Grammar tool [24].

The second group focuses on inter-transformation reuse [17], the reuse of
artifacts across multiple transformations. VCT [25] is a comprehensive toolkit
that allows to accommodate variability in a chain of multiple transformations
and to compose larger transformations from smaller ones. Cuadrado et al. [26]
have introduced a component model to orchestrate the reuse of model trans-
formations across multiple different modeling languages. Their Bentō [27] tool
provides support for generic rules for ATL transformations. These generic rules
are typed over concepts, abstract meta-models. To consider a new scenario, con-
cepts are instantiated by binding them to the types of the required meta-model.
To increase the flexibility of this approach, de Lara et al. propose an extension
that accounts for heterogeneity between concepts and meta-models [28]. Criado
et al. [29] propose to reuse existing transformations by annotating them. These
works are orthogonal to ours as they address a different reuse scenario.

Implementation Approaches to Software Product Lines. We adopted the
distinction of annotative and composition-based mechanisms from software prod-
uct line (SPL) engineering [4], where it refers to different approaches to imple-
menting a SPL. An important composition-based approach is Feature-Oriented
Programming [30], in which a SPL is developed by dividing its specification into
features and implementing each feature as a separate module. The AHEAD [31]
tool made this approach applicable for Java. An example for an annotative app-
roach are #ifdef directives: Portions of the source code are annotated with vari-
ability conditions and optionally removed during compilation. Virtual separa-
tion of concerns (VSoC) is a paradigm aiming to combine the benefits of both
approaches by means of tool support [7]. In the CIDE tool [4], users are provided
custom views, visual representations, and variability-aware type checks. Based
on the VSoC paradigm, Walkingshaw et al. [32] propose an editing model for
variational software based on an isolation principle: Edits to a view shall only
affect the variants associated with this view. We adopt this principle in one of
the editing modes of our tool. In a related work of Schwägerl et al. [33], the
scope of variants affected by an edit is set using a separate configuration.
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The FeatureIDE [34] framework integrates many of these approaches and
makes them available during the entire development cycle. Its aim is to establish
a uniformity principle of managing variability consistently in all design, imple-
mentation, and documentation artifacts. The integration of our approach into
this framework is a promising avenue for future work.

Usability-oriented Model Transformation. As we aim to improve the main-
tainability of complex rules, our work is related to usability-oriented model
transformation, a field of research addressed in [35]. Based on the premise that
users may prefer mature model editors to experimental transformation tools, the
authors provide a new modeling language that can be instantiated in any given
model editor and mapped back to a host transformation language. This work
is complementary to ours since we aim to contribute to the maturity of model
transformation tools instead of replacing them.

6 Future Work and Additional Improvement

The most important task left to future work is a user study to validate the
claim that our tool environment improves usability during editing. Such a study
would substantiate our anecdotic evidence that the development of rule fami-
lies without a dedicated reuse concept is a highly inconvenient and error-prone
task. Furthermore, we are eliciting future usability improvements. First, the vis-
ibility of distinguished variants, such as the base rule, can be further increased
by providing a “hot corner” feature. Implementing such a feature proves to
be challenging due to limitations of the underlying editor framework. Second,
relationships between variability points are currently expressed using a logical
formula. In product line engineering, dedicated formalism have emerged to cap-
ture variability, the most important one being feature models [36]. Combining
feature models with VB rules seems a promising avenue for future work.
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35. Acretoaie, V., Störrle, H., Strüber, D.: Transparent model transformation: turning
your favourite model editor into a transformation tool. In: Kolovos, D., Wimmer,
M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 121–130. Springer, Heidelberg (2015)

36. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, DTIC Document
(1990)



Compiling Graph Programs to C

Christopher Bak and Detlef Plump(B)

The University of York, York, UK
{cb574,detlef.plump}@york.ac.uk

Abstract. We show how to generate efficient C code for a high-level
domain-specific language for graphs. The experimental language GP 2 is
based on graph transformation rules and aims to facilitate formal reason-
ing on programs. Implementing graph programs is challenging because
rule matching is expensive in general. GP 2 addresses this problem by
providing rooted rules which under mild conditions can be matched in
constant time. Using a search plan, our compiler generates C code for
matching rooted graph transformation rules. We present run-time exper-
iments with our implementation in a case study on checking graphs for
two-colourability: on grid graphs of up to 100,000 nodes, the compiled GP
2 program is as fast as the tailor-made C program given by Sedgewick.

1 Introduction

GP 2 is an experimental domain-specific language for graphs whose basic com-
mand is the application of graph transformation rules. The language has a simple
syntax and semantics to support formal reasoning on programs (see [14] for a
Hoare-logic approach to verifying graph programs). GP 2’s initial implementa-
tion is an interpreter running in one of two modes, either fully exploring the
non-determinism inherent to transformation rules or attempting to produce a
single result [3]. In this paper, we report on a compiler for GP 2 which trans-
lates programs directly into efficient C code.

The bottleneck for generating fast code for graph transformation rules is the
cost of graph matching. In general, to match the left-hand graph L of a rule
within a host graph G requires time size(G)size(L) (which is polynomial since
L is fixed). As a consequence, linear-time imperative programs operating on
graphs may be slowed down to polynomial time when they are recast as rule-
based graph programs. To speed up graph matching, GP 2 allows to distinguish
some nodes in rules and host graphs as so-called roots, and to match roots in
rules with roots in host graphs. This concept goes back to Dörr [7] and was also
studied by Dodds and Plump [6].

Our compiler, described in Sect. 3, translates GP 2 source code directly into C
code, bridging the large gap between graph transformation rules and C. We use
a search plan to generate code for graph matching, deconstructing each match-
ing step into a sequence of primitive matching operations from which structured
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code is generated. The code generated to evaluate rule conditions is interleaved
in the matching code such that conditions are evaluated as soon as their para-
meters are assigned values, to rule out invalid matches at the first opportunity.
Another non-standard aspect of the compiler is that programs are analysed to
establish when the state (host graph) needs to be recorded for potential back-
tracking at runtime. Backtracking is required by GP 2’s transaction-like branch-
ing constructs if-then-else and try-then-else which may contain arbitrary
subprograms as guards.

In [4] we identified fast rules, a large class of conditional rooted rules, and
proved that they can be applied in constant time if host graphs have a bounded
node degree (an assumption often satisfied in practice). In Sect. 4, we demon-
strate the practicality of rooted graph programs with fast rules in a case study
on graph colouring: we give a GP 2 program that 2-colours host graphs in linear
time. We show that on grid graphs of up to 100,000 nodes, the compiled GP 2
program matches the speed of Sedgewick’s tailor-made implementation in C [17].
In this way, users get the best of both worlds: they can write visual, high-level
graph programs with the performance of a relatively low-level language.

2 The Graph Programming Language GP 2

GP 2 is the successor to the graph programming language GP [12]. This section
gives a brief introduction to GP 2. The original language definition is [13], an
up-to-date version is given in the PhD thesis of the first author [2].

2.1 Conditional Rule Schemata

GP 2’s principal programming constructs are conditional rule schemata (abbrevi-
ated to rule schemata or, when the context is clear, rules). Rule schemata extend
standard graph transformation rules1 with expressions in labels and with appli-
cation conditions. Figure 1 shows the declaration of a conditional rule schema
rule. The numbered nodes are the interface nodes. Nodes that are in the left-
hand side but not in the interface are deleted by the rule. Similarly, nodes that
are in the right-hand side but not in the interface are added.

Fig. 1. Declaration of a conditional rule schema

1 In the double-pushout approach with injective matching.



104 C. Bak and D. Plump

The top line of the declaration states the name of the rule schema and lists the
variables that are used in the labels and in the condition. All variables occurring
in the right-hand side and in the condition must also occur in the left-hand side
because their values a runtime are determined by matching the left-hand side
with a subgraph of the host graph.

Each variable is declared with a type which is either int, char, string, atom
or list. Types form a subtype hierarchy in which integers and character strings
are basic types, both of which are atoms. Atoms in turn are considered as lists
of length one. Labels in host graphs are variable-free expressions containing only
constructor operations such as list or string concatenation. Lists are constructed
by the colon operator which denotes list concatenation.2 String concatenation is
represented by a dot.

To avoid ambiguity in variable assignments when constructing a mapping
between the left-hand graph of a rule schema and a host graph, we require that
expressions in the left graph are simple: they (1) contain no arithmetic operators,
(2) contain at most one occurrence of a list variable, and (3) do not contain
string expressions with more than one occurrence of a string variable. Labels in
the right-hand side of a rule schema may contain arithmetic expressions.

The labels of nodes and edges can be marked with colours from a fixed set, in
addition to a dashed mark for edges only. Marked items match only host graph
items with the same mark. There is a special mark any that matches arbitrary
host graph marks. Nodes with thick borders are root nodes. Their purpose is to
speed up graph matching, discussed in more detail in the next section.

The programmer can specify a textual condition to add further control to
where the rule is applicable, declared by the keyword where followed by a boolean
expression. GP 2 offers a number of predicates for querying the host graph. For
example, the predicate indeg(1) > 1 in Fig. 1 ensures that node 1 is only matched
to suitable host graph nodes with more than one incoming edge.

2.2 Fast Rule Schemata

The idea of rooted graph transformation [4] is to equip both rule and host graphs
with root nodes which support efficient graph matching. Root nodes in rules
must match compatible root nodes in the host graph. In this way, the search
for a match is localised to the neighbourhood of the host graph’s root nodes.
It is possible to identify a class of rooted rule schemata that are applicable in
constant time if the host graph satisfies certain restrictions.

A conditional rule schema 〈L ⇒ R, c〉 is fast if (1) each node in L is reach-
able from some root (disregarding edge directions), (2) neither L nor R contain
repeated list, string or atom variables, and (3) the condition c contains neither
an edge predicate nor a test e1=e2 or e1!=e2 where both e1 and e2 contain a
list, string or atom variable.

2 Not to be confused with Haskell’s colon operator which adds an element to the
beginning of a list.
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The first condition ensures that matches can only occur in the neighbourhood
of roots. The other conditions rule out linear-time operations, such as copying
lists or strings in host graph labels of unbounded length. In [4] it is shown
that fast rule schemata can be matched in constant time if there are upper
bounds on the maximal node degree and the number of roots in host graphs.
The remaining steps of rule application, namely checking the dangling condition
and the application condition, removing items from L − K, adding items from
R − K, and relabelling nodes, are achievable in constant time.

2.3 Programs

GP 2 programs consist of a finite number of rule schema declarations and a main
command sequence which controls their application order. Execution starts at
the top-level procedure Main. The user may declare other named procedures,
which consist of a mandatory command sequence and optional local rule and
procedure declarations. Recursive procedures are not allowed.

The control constructs are: application of a set of conditional rule
schemata {r1, . . . , rn}, where one of the applicable schemata in the set is non-
deterministically chosen; sequential composition P ;Q of programs P and Q;
as-long-as-possible iteration P ! of a program P ; and conditional branching state-
ments if C then P else Q and try C then P else Q, where C, P and Q are
arbitrary command sequences. The meaning of these constructs is formalised
with a small-step operational semantics [2].

We just discuss the branching statements. To execute if C then P else Q
on a graph G, first C is executed on G. If this produces a graph, then this result
is thrown away and P is executed on G. Alternatively, if C fails on G, then Q
is executed on G. In this way, graph programs can be used to test a possibly
complex condition on a graph without destroying the graph. If one wants to
continue with the graph resulting from C, the command try C then P else Q
can be used. It first executes C on G and, if this fails, executes Q on G. However,
if C produces a graph H, then P is executed on H rather than on G.

3 The GP 2 Compiler

The language is implemented with a compiler, written in C, that translates GP
2 source code to C code. The generated code is executed with the support of
a runtime library containing the data structures and operations for graphs and
morphisms. We describe how we convert high-level, non-deterministic and rule-
based programs into deterministic, imperative programs in C.

3.1 Rule Application

Implementing a graph matching algorithm in the context of graph transforma-
tion systems is a well-researched problem. A frequently-used technique is the
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bool match rule (morphism ∗m) {
return match n0 ;

}

bool match n0 (morphism ∗m) {
for ( root nodes N o f the host graph ) {

i f (N i s not a va l i d match for n0 ) continue ;
else {

f l a g N as matched ;
update morphism ;
i f ( match e0 ) return t rue ;

}
}
return f a l s e ;

}

bool match e0 (morphism ∗m) {
for ( outedges E o f match ( n0 ) ) {

i f (E i s not a va l i d match for e0 ) continue ;
else {

f l a g E as matched ;
update morphism ;
return t rue ;

}
}
return f a l s e ;

}

Fig. 2. Skeleton of the rule matching code.

search plan, a decomposition of the matching problem into a sequence of prim-
itive matching operations [7]. The compiler supports operations to match an
isolated node, to match an edge incident to an already-matched node, and to
match a node incident to an already-matched edge. A search plan is constructed
by an undirected depth-first traversal of the left-hand side of a rule. When a
node or edge is first visited, an operation to match that item is appended to
the current search plan. Every iteration of the depth-first search starts at a root
node, if one exists, to ensure that the initial “find node” operation is as cheap as
possible. If all root nodes have been visited, it starts at an arbitrary unexplored
node.

The generated code is a nested chain of matching functions corresponding to
the search plan operations. The top-level function is named match R for rule R.
The pseudocode in Fig. 2 illustrates this structure for a rule that matches a root
node with a looping edge.
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Four checks are made to test if a host graph item h is a valid match for a
particular rule item. They are listed below.

1. h is flagged as matched (note that we use injective matching).
2. The rule item is not marked any and h’s mark is not equal to the rule item’s

mark.
3. h is not structurally compatible with respect to the rule and the current

partial morphism.
4. h’s label cannot match the expression of the rule item’s label.

The third check differs for nodes and edges. Host graph nodes are ruled out
if their degrees are too small. For example, a rule node with two outgoing edges
cannot match a host graph node with only one outgoing edge. Host graph edges
are checked for source and target consistency. For example, if the target of a rule
edge is already matched, the host edge’s target must correspond with that node.

To evaluate rule conditions, the compiler writes a function for each predicate
and a function to evaluate the whole condition. The predicate functions modify
the values of global boolean variables that are queried by the condition evalu-
ator. The condition is checked directly after each call to a predicate function.
If the condition is true or all variables in the condition have not been assigned
values, matching continues. Otherwise, the match fails and the current matcher
returns false, triggering a backtrack. At runtime, the predicate functions are
called as soon as they are needed. For example, the function to check the pred-
icate indeg(1) = indeg(2) is called immediately after rule node 1 is matched
and immediately after rule node 2 is matched. This is done in order to detect
an invalid match as soon as possible. To make this possible, a complex data
structure is used at compile time to represent conditional rule schemata. The
data structure links nodes and variables in the rule to each condition predicate
querying that node or variable.

A rule schema contains complete information on the behaviour of the rule,
including which items are added, which items are deleted, which items are rela-
belled, and which variables are required in updated labels. The rule is analysed
at compile time to generate code to apply the rule given a morphism. Host graph
modifications are performed in the following order to prevent conflicts and dan-
gling edges: delete edges, relabel edges, delete nodes, relabel nodes, add nodes,
add edges. The appropriate host nodes, host edges and values of variables are
pulled from morphism data structures populated during the matching step.

3.2 Program Analysis for Graph Backtracking

The semantics of GP 2’s loop and conditional branching commands require the
host graph to be backtracked to a previous state in certain circumstances. For
example, the if-then-else statement throws away the graph obtained by exe-
cuting the condition before taking the then or else branch. Therefore there
needs to be a mechanism to preserve older host graph states. We achieve this
by maintaining a stack of changes made to the host graph. This is more space-
efficient than storing multiple copies of the host graph. This concept is taken from



108 C. Bak and D. Plump

the implementation of the first version of the GP language [11]. At compile time
the program text is analysed to determine which portions of the program require
recording of the host graph state. This analysis is quite subtle. For instance, a
condition that requires graph backtracking in an if-then-else statement may
not require graph backtracking in a try-then-else statement. We omit the
details for lack of space. The first author’s PhD thesis [2] describes the program
analysis in detail, including the algorithm used by the compiler.

3.3 Program Translation

The main function of the generated C program is responsible for calling the
matching and application functions as designated by the command sequence of
the GP 2 program. Executing the program amounts to applying a sequence of
rules. The code generator writes a short code fragment for each rule call and
translates each control construct into an equivalent C control construct. The
runtime code is supported by a number of global variables, including the host
graphs and morphisms. A global boolean variable success, initialised to true,
stores the outcome of a computation to support the control flow of the program.

A standard rule call generates code trying to match the rule. If a match is found,
the code calls the rule application function and sets the success flag to true. If not,
control passes to failure code. Certain classes of rules allow simpler code to be gen-
erated. For example, a rule with an empty left-hand side does not generate code to
call a matching function. The failure code is context-sensitive. If there is a failure
at the top level, the program is terminated after reporting to the user and freeing
memory. Failure in a condition guard sets the global success flag to false so that
control goes to the else branch of the conditional statement. Failure in a loop sets
the success flag to false and calls the function undoChanges (described below) to
restore the host graph to the state at the start of the most recent loop iteration.

Figure 3 summarises the translation of some GP 2 control constructs to C.
The rule set call {R1, R2} is tackled by applying the rules in textual order until
either one rule matches or they all fail. The do-while loop is used to exit the rule
set if a rule matches before the last rule has been reached. The condition of a
branching statement is executed in a do-while loop: if failure occurs before the
last command of the condition, the break statement is used to exit the condition,
and control is assumed by the then/else branch. GP 2’s loop translates directly
to a C while loop. One subtlety is the looped command sequence, where the
line if(!success) break; is printed after the code for all commands except
the last. A second subtlety is that success is set to true after exiting a loop
because GP 2’s semantic rules state that a loop cannot fail. Command sequences
are handled by generating the code for each command in the designated order.
When a procedure call is encountered in the program text, the code generator
inlines the command sequence of the procedure at the point of the call.

Restore points (the variables named rp in Fig. 3) are created and assigned to the
top of the graph change stack when graph backtracking is required. The function
undoChanges restores a previous host graph state by popping and undoing changes
from the stack until the restore point is reached. The function discardChanges pops
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Command Generated Code

{R1, R2}

do {
i f (matchR1(M R1) ) {
<su c c e s s code>
break ;

}
i f (matchR2(M R2) ) <su c c e s s code>
else < f a i l u r e code>

} while ( f a l s e )

if C then P
else Q

int rp = <top o f GCS>;
do C while ( f a l s e ) ;
undoChanges ( host , rp ) ;
i f ( su c c e s s ) P else Q;

try C then P
else Q

int rp = <top o f GCS>;
do C while ( f a l s e ) ;
i f ( su c c e s s ) P
else {

undoChanges ( host , rp ) ;
Q

}

(P; Q)!

int rp = <top o f GCS>;
while ( su c c e s s ) {

P
i f ( ! s u c c e s s ) break ;
Q
i f ( su c c e s s ) discardChanges ( rp ) ;

}
su c c e s s = true ;

Fig. 3. C code for GP 2 control constructs

the changes but does not undo them. It is only called at the end of a successful loop
iteration to prevent a failure in a future loop iteration from causing the host graph
to roll back beyond the start of its preceding iteration. Each restore point has a
unique identifier to facilitate multiple graph backtracking points.

The compiler respects the formal semantics of GP 2 (given in [13] and in
updated form in [2]) in that any output graph of the generated code is admissible
by the semantics. Similarly, a program run ending in failure is possible only if
the semantics allows it. We did not formally prove this kind of soundness—that
would be a tremendous project far beyond the scope of this work. Also, there
is no guarantee that a program run terminates if a terminating execution path
exists (this would require a breadth-first strategy which is impractical).
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3.4 Runtime Library

The runtime library is a collection of data structures and operations used by
the generated code during rule matching, rule application and host graph back-
tracking. As aforementioned, graph backtracking is performed by a graph change
stack. We describe the other core data structures of the runtime library.

The host graph structure stores node and edge structures in dynamic arrays.
Free lists are used to prevent fragmentation. Nodes and edges are uniquely iden-
tified by their indices in these arrays. The graph structure also stores the node
count, the edge count, and a linked list of root node identifiers for fast access to
the root nodes in the host graph. A node structure contains the node’s identi-
fier, its label, its degrees, references to its inedges and outedges, a root flag, and
a matched flag. An edge structure contains the edge’s identifier, its label, the
identifiers of its source and target, and a matched flag.

A label is represented as a structure containing the mark (an enumerated
type), a pointer to the list and the length of the list. GP 2 lists are represented
internally as doubly-linked lists. Each element of the list stores a type marker
and a union of integers and strings, equivalent to GP 2’s atom type. Lists are
stored centrally in a hash table to prevent unnecessary and space-consuming
duplication of lists for large host graphs with repeated labels.

The morphism data structure needs to capture the node-to-node and edge-to-
edge mappings, and the assignment mapping variables to their values. Thus the
data structure used to represent morphisms contains the following four substruc-
tures: (1) an array of host node identifiers, (2) an array of host edge identifiers,
(3) an array of assignments, and (4) a stack of variable identifiers. At compile
time each node, edge and variable in a rule is identified with an index of its
array in the morphism, allowing quick access to the appropriate elements. The
stack is used to record assignment indices in the order in which the variables are
assigned values. This is needed because the variables encountered at runtime are
not guaranteed to agree with the compile-time order.

4 Case Study: 2-Colouring

Vertex colouring has many applications [18] and is among the most frequently
considered graph problems. We focus on 2-colourability: a graph is 2-colourable,
or bipartite, if one of two colours can be assigned to each node such that the
source and target of each non-loop edge have different colours.

Figure 4 shows a rooted GP 2 program for 2-colouring. The input is a con-
nected, unmarked and unrooted graph G. If G is bipartite, the output is a valid
2-colouring of G. Otherwise, the output is G. The edges in this program are
bidirectional edges, graphically denoted by lines without an arrowhead. Such a
rule matches a host graph edge incident to two suitable nodes independent of
the edge’s direction. (This is syntactic sugar: a rule with one bidirectional edge
is equivalent to a rule set containing two rules with the edge pointing in different
directions.) The rules colour red and joined blues are omitted, which are the
“inverted” versions of the rules colour blue and joined reds with respect to
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Fig. 4. The program 2colouring (Colour figure online)

the node marks. In particular, the right-hand side of joined blues also has a
grey root node.

At its core, 2colouring is an undirected depth-first traversal in which the
source node is chosen non-deterministically. The root node represents the current
position in the traversal. The rule init prepares the search by matching an
arbitrary host graph node, making it the root node, and colouring it red. Each
iteration of the Colour! loop does the following:

1. ColourNode: move the root node to an adjacent uncoloured node and colour
it with the opposite colour. Dash the edge connecting the current root node
to the previous one.

2. try Invalid else break: check if the current root node is adjacent to any
nodes with the same colour. If so, mark the root node grey and break the
inner loop.

3. Repeat steps (1) and (2) until no more rules are applicable.
4. try {back red, back blue} else break: move the root along a dashed

edge and undash the edge. If this is not possible, break the outer loop.

Observe that the dashed edges act as a “trail of breadcrumbs” to facilitate
backtracking. If the 2-colourability is violated at any point during the compu-
tation, the root node is marked grey, which acts as a flag for non-bipartiteness.
Once the Colour! exits, the remainder of the program (if g root then fail)
checks if the root node is grey. If the root node is grey, then the fail command
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causes the try-then-else to take the else branch, and the host graph assumes
its state before entering the branch, which returns the input graph. Otherwise,
the then branch is taken, which returns the current 2-coloured graph.

Termination is guaranteed because each rule either decreases the number
of unmarked nodes or decreases the number of dashed edges while preserving
the number of unmarked nodes. Therefore, at some point, a back rule will fail
because there exist no dashed edges, or a colouring rule will fail because there
exist no unmarked nodes.

Fig. 5. Example run of 2colouring (Colour figure online)

Figure 5 shows the execution of 2colouring on the host graph in the upper-
left of the diagram. This graph is clearly not 2-colourable. The rule init colours
node 1 red. The rule colour blue nondeterministically matches the edge 1 →
2. It roots node 2, colours it blue and dashes the edge. The colouring rules
are applied twice more to give the lower-right graph. At this point the rule
joined blues matches the edge 4 → 2. This colours the root node grey. The
inner loop breaks, and control passes to Backtrack. Both back rules fail because
neither match a grey root node. This causes the outer loop to break. Finally,
g root succeeds, causing the try statement to fail and return the original graph.

The following result, proved in [2], assumes that input graphs are unmarked
and connected.

Proposition 1 (Time Complexity of 2colouring). On graphs with bounded
node degree, the running time of 2colouring is linear in the size of graphs. On
unrestricted graphs, the running time is quadratic in the size of graphs.

Here “size of graphs” refers to the number of nodes and edges in host graphs.
The result is independent of the size of host graph labels.
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5 Performance

To experimentally validate the time complexity of 2colouring, and to test the
performance of the language implementation, we ran the generated C code for
2colouring against an adaptation of Sedgewick’s hand-crafted C program for
2-colouring [17].

We chose two classes of input graphs. The first class is square grids (abbrevi-
ated grids), which are suitable because: (1) grids are 2-colourable. This guaran-
tees that both programs perform the same computation, namely matching and
colouring every node in the graph; (2) grids have bounded node degree, which
tests the linear complexity of 2colouring; (3) it is relatively simple to gener-
ate large grids. The second class is star graphs, used to test the performance
on graphs of unbounded degree. A star graph consists of a central node with
k outgoing edges. The targets of these outgoing edges themselves have a single
outgoing edge. Star graphs share properties (1) and (3) of grid graphs. Examples
can be seen in Fig. 6.

Fig. 6. Examples of a square grid graph and a star graph

5.1 2-Colouring in C

This section describes a C implementation of 2-colouring based on the code in
Sedgewick’s textbook Algorithms in C [17] which uses an adjacency list data
structure for host graphs. For a graph with n nodes, an adjacency list is a node-
indexed array containing n linked lists. An edge i → j is represented by the
presence of j in the ith linked list, and vice versa if the graph is undirected.
For our purposes there is no requirement to implement a graph data structure
that supports the complete GP 2 feature set. Instead, we exploit some of the
properties of the algorithms and host graphs we wish to execute in order to
develop a minimal graph data structure.

We adapt Sedgewick’s adjacency-list data structure and functions for host
graphs. The main graph structure stores counts of the number of nodes and
edges, a node-indexed array of adjacency lists, and a node-indexed array of
integer node labels. Adjacency lists are represented internally by linked lists,
where each list element stores the node identifier of a target of one of its outgoing
edges.
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1 bool d f sColour ( int node , int co l our ) {
2 Link ∗ l = NULL;
3 int new colour = co lou r == 1 ? 2 : 1 ;
4 host−>l a b e l [ node ] = new colour ;
5 for ( l = host−>adj [ node ] ; l != NULL;
6 l = l−>next )
7 i f ( host−>l a b e l [ l−>id ] == 0) {
8 i f ( ! d f sColour ( l−>id , new colour ) )
9 return f a l s e ;

10 }
11 else i f ( host−>l a b e l [ l−>id ] != co lour )
12 return f a l s e ;
13 return t rue ;
14 }
15
16 int main ( int argc , char ∗∗ argv ) {
17 host = buildHostGraph ( argv [ 1 ] ) ;
18 bool c o l ou rab l e = true ;
19 int v ;
20 for ( v = 0 ; v < host−>nodes ; v++)
21 i f ( host−>l a b e l [ v ] == 0)
22 i f ( ! d f sColour (v , 1 ) ) {
23 co l ou rab l e = f a l s e ; break ;
24 }
25 i f ( ! c o l ou rab l e )
26 // Unmark a l l nodes .
27 for ( v = 0 ; v < host−>nodes ; v++)
28 host−>l a b e l [ v ] = 0 ;
29 return 0 ;
30 }

Fig. 7. DFS 2-colouring in C

At runtime, the GP 2 compiler’s host graph parser is used to read the host
graph text file and construct the graph data structure. This minimises the gap
between the handwritten C code and the code generated from the GP 2 compiler,
so that the comparison between the performance of the actual computations on
the host graph is as fair as possible.

The C algorithm for 2-colouring is given in Fig. 7. Code for error checking,
host graph building, and declaration of global variables is omitted. The program
takes a single command line argument: the file path of the host graph. The
function buildHostGraph initialises and adds edges to the graph (via the global
Graph pointer host) through the GP 2 host graph parser.

Nodes are labelled 0, 1 or 2. Node labels are initialised to 0, representing
an uncoloured and unvisited node. 1 and 2 represent the two colours of the
algorithm. The function dfsColour is called recursively on all uncoloured nodes
of the host graph. It is passed a node v and a colour c as its argument. It colours v
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Fig. 8. Plots of the runtimes of the 2-colouring programs in GP 2 and C

with the contrasting colour c′, and goes through v’s adjacency list. If an adjacent
node is uncoloured, dfsColour is called on that node. If an adjacent node is also
coloured c′, the function returns false, which will propagate through its parent
calls and to the main function. If main detects a failure (line 25), it sets the label
of all nodes to 0 and exits. Otherwise, the coloured graph is returned.

Figure 8 show the comparison of runtimes of both programs. There is almost
no difference between the time it takes for either program to 2-colour grids,
a remarkable result considering the compiled GP 2 code explicitly performs
(rooted) subgraph matching at each step, while the tailored C program navigates
a simple pointer structure. However, the star graph plot makes it clear that
tailored C code is not limited by bounds on node degree. The compiled GP 2
code displays quadratic time complexity because it searches the outgoing edge
list of the central node in the same order for every rule match.

6 Related Work

There exist a number of tools and languages for programming with graph trans-
formation rules, including AGG [15], GROOVE [9] and PORGY [8]. We highlight
three implementations with code generation. PROGRES [16] generates efficient
Modula-2 or C code from transformation specifications. The code generator is
more complex than that of GP 2 because it must handle sophisticated language
features, for example arbitrary path expressions in rules and derived attributes.
Programs in GrGEN.NET [10] are compiled to highly-optimised .NET assemblies
for high performance execution. The code generator of the model transforma-
tion tool GReAT [19] has some similarity to that of GP 2: both generate pattern
matching code that searches the host graph with user-declared root points to
prune the search space. However, there are some differences because of the dif-
ferent feature sets of the languages. For example, GReAT’s code generator must
handle passing matched objects from one rule to another, while GP 2’s code
generator must handle application conditions during graph matching.
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The concept of rooted rules has been used in various forms in implementations
of graph transformation. To mention a couple of examples, rules in GrGEN.NET
and GReAT can return graph elements to restrict the location of subsequent rule
applications [1,10], and the strategy language of PORGY restricts matches of
rules to a subgraph of the host graph called the position which can be trans-
formed by the program [8].

7 Conclusion and Future Work

We have reviewed the visual programming language GP 2 based on graph trans-
formation rules and described a compiler that translates high-level GP 2 pro-
grams to C code. A novel aspect of our implementation is generating search
plans at compile time and using them to systematically generate structured and
readable C code. Another distinctive feature is the static analysis of programs
to determine if code needs to be generated to facilitate the recording of the host
graph state. Using the compiler, we show that the generated C code for a depth-
first 2-colouring program performs as quickly as a handcrafted C program also
based on depth-first search on a class of host graphs with bounded node degree.
These initial results are good, but more case studies ought to be investigated
to further demonstrate the efficiency of the generated code, in particular pro-
grams that transform the host graph structurally, such as a reduction program
to identify membership in a specific graph class.

A limitation of the GP 2 implementation is that it makes little effort to
optimise rule matching for rules without root nodes. One method of speeding up
matching is to compute optimal search plans at runtime based on an analysis
of the host graph. This has been implemented in GrGEN.NET [5]. Another
approach is to optimise rule matching at compile time. An example of such an
optimisation is transforming a looped rule call to code that finds all matches
in the host graph and performs the modifications in one step, which in general
is more efficient than finding one match and starting a new search for the next
match. This requires some care because pairs of matches could be in conflict.
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AGTIVE 2007. LNCS, vol. 5088, pp. 471–486. Springer, Heidelberg (2008)

6. Dodds, M., Plump, D.: Graph transformation in constant time. In: Corradini, A.,
Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS,
vol. 4178, pp. 367–382. Springer, Heidelberg (2006)
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Abstract. Graph transformation has been shown to be well suited
as formal foundation for model transformations. While simple model
changes may be specified by simple transformation rules, this is usually
not sufficient for more complex changes. In these situations, the con-
cept of amalgamated transformation has been increasingly often used
to model for each loops of rule applications which coincide in common
core actions. Such a loop can be specified by a kernel rule and a set of
extending multi-rules forming an interaction scheme.

The Critical Pair Analysis (CPA) can be used to show local confluence
of graph transformation systems. Each critical pair reports on a potential
conflict between two rules. It has been shown recently that the generally
infinite set of critical pairs for interaction schemes can be reduced to a
finite set of non-redundant pairs being sufficient to show local confluence
of the transformation system. Building on this basic result, we present an
algorithm that is able to compute all non-redundant critical pairs for two
given interaction schemes. The algorithm is implemented for Henshin, a
model transformation environment based on graph transformation con-
cepts.

1 Introduction

In model-based software development, models play a primary role w.r.t. require-
ments elicitation, software design and software validation. Model changes can be
well specified as model transformations. If several developers work concurrently
on the same model, they may run into conflicts that have to be resolved. For
the execution of several model changes, a specific order may be necessary due
to causal dependencies. To analyze such conflicts and dependencies as early as
possible, critical pair analysis (CPA) [8,18] has been used. This analysis allows
to check transformation rules for potential conflicts and dependencies at specifi-
cation time, i.e., before run time. A critical pair describes a minimal conflicting
situation that may occur in the transformation system. If every critical pair can
be resolved by finitely many transformation steps, the system is locally conflu-
ent. Potential dependencies between rules can be discovered by inverting the first
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rule and using it as input to the CPA, together with the second rule. In that
case, local confluence of critical pairs show how resulting models of dependent
transformations can be reached alternatively.

Conflicts as well as dependencies of model transformations have been ana-
lyzed by the CPA for several different applications as, e.g., finding conflicts and
dependencies in functional requirement specifications of software systems [11],
analyzing conflicts and dependencies of model refactorings [17] as well as in
aspect-oriented modeling [16], and using conflict and dependency results to
find the right order of edit operations for reporting model differences on an
application-specific abstraction level [13].

While simple model changes can be well specified using simple rules, this
is usually not sufficient for more complex model changes. Amalgamated graph
transformation has proven to be suitable for specifying core actions equipped
with a number of optional or context-dependent actions. Considered applica-
tions are, e.g., an interpreter semantics for statecharts [4], automatic model
migration [15], and the specification of complex model edit operations [13].
A typical example of such complex changes are model refactorings where, e.g.,
equal attributes in subclasses are pulled up to one attribute in their super class.

Collaborative working developers are interested in understanding when model
changes can be applied in parallel and when they are a potential source for
conflicts. Being in conflict, it would be interesting to understand if and how these
conflicts can be resolved. Hence, the notions of parallel independence, conflict
and conflict resolution have to be lifted to amalgamated graph transformation.

An amalgamated transformation is specified by a interaction scheme con-
taining a kernel rule and a set of extending multi-rules. While the kernel rule
is intended to be matched exactly once, each multi-rule is matched as often as
possible – in the general case, a fixed, but arbitrary number of times. An amal-
gamated rule over an interaction scheme contains at least the kernel rule and
arbitrary many copies of multi-rules overlapping at the kernel rule. Hence, an
interaction scheme specifies infinitely many amalgamated rules in general.

Applying the CPA to analyze conflicts and dependencies between interaction
schemes confronts us with the problem to check infinitely many rule pairs and
therefore, critical pairs. [22] shows that a finite set of CPs is enough to show
local confluence of the overall transformation system. This result is proven for
algebraic graph transformation [8]. Model transformations that are based on
the Eclipse Modeling Framework (EMF) have been formally based on graph
transformation in [5].

To apply the CPA to amalgamated transformations in practice, we need an
algorithm that implements it. The main challenge is to find out an effective
termination criterion when enumerating pairs of amalgamated rules and their
critical pairs. The main contributions of this paper are the following:

1. An algorithm for the CPA of pairs of interaction schemes. We argue for the
correctness of the presented algorithm w.r.t. the underlying theory. In par-
ticular, we focus on the termination of this algorithm.
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2. An implementation of the algorithm within the model transformation tool
Henshin based on EMF models.

3. First tests of the algorithm: We report on the CPA of an example transfor-
mation system, focussing on termination issues.

The paper is organized as follows: The main concepts of amalgamated graph
transformation are recalled in Sect. 2. The main ideas for the CPA for amalga-
mated graph transformation are summarized in Sect. 3. Thereafter, we present
our algorithm and argue for its correctness in Sect. 4.

2 Amalgamated Transformations

In the context of graph transformation, amalgamated transformation has been
introduced to perform a kernel action exactly once and context-dependent
actions as often as possible. In this section, we consider amalgamated trans-
formations based on EMF [21] and use model refactorings as running example.
The formal basis is given by amalgamated graph transformation as presented in
[9] and the conflict analysis in [22]. Since the subtle differences do not play a
role throughout this paper, we use the notions model and graph as synonyms in
the following.

Fig. 1. Meta-model for class models

EMF is a common and widely-used open source technology in model-based
software development. It extends Eclipse by modeling facilities and allows for
defining (meta-)models and modeling languages by means of structured data
models. An EMF-model can formally be considered as an instance graph with a
prominent containment hierarchy.

Example 1 (Simple class models). In the running example, we consider selected
refactorings of simple class models. A simple class model consists of a package
being the container of all classes. A class is named and may have any number
of attributes just given by their names. Classes may be related in two ways:
A class may have a superclass and any number of references to other classes.
The meta-model for simple class models is shown in Fig. 1.

A very simple instance model to this meta-model is shown in Fig. 2; it repre-
sents two classes “List” and “Stack” where the stack is inheriting from the list.
Class “List” has an attribute called “first”. Since this design is not optimal, it
will be refactored later on.
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Fig. 2. Example instance model

In the context of EMF, refactorings are specified by model transformations.
See e.g. [3,14]. In the following, we consider rule-based model transformations
formulated in Henshin [2], a model transformation language based on graph
transformation concepts. In Henshin, rules may be depicted in an integrated
form annotating each model element node and reference edge by a change action.
Nodes and edges that have to exist but are not changed during transformation
are annotated with << preserve >> while others may be deleted or created
dependent on their annotations. In addition, rule may have application con-
ditions. In negative application conditions, nodes and edges may be forbidden
meaning that they must not occur in the specified form for applying the rule. In
contrast, positive application conditions may require model elements.

Example 2 (Deleting an empty class). A class which does not have any attribute
or reference and which is not involved in class inheritance relations is called
empty class. Since an empty class does not have any effect on other classes, it
can be deleted. This refactoring is specified by a simple Henshin rule as shown
in Fig. 3. Note that the class may only be deleted if no context edge is adjacent,
i.e., the dangling condition has to hold.

Fig. 3. Refactoring rule “Delete Class”
(DC)

When performing model refactorings,
a restructuring action is often accompa-
nied by update actions on all involved
model elements. For example, pulling up
an attribute to a superclass implies the
deletion of such an attribute from all sub-
classes. Such for all actions are specified
by additional multi-rules comprising the
basic rule (also called kernel rule). The
overall rule (with optionally contained
multi-rules) is also called interaction scheme; its semantics is defined by a set
of rules (see below). A rule without any multi-rule is a special case of interac-
tion scheme consisting of just one rule. In the following, an interaction scheme
is represented in an integrated way, i.e., all multi-rules are represented in one
diagram overlapping in the kernel rule. Note that - given an interaction scheme
- the kernel rule always performs a subset of actions specified in a multi-rule of
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that scheme. If the kernel rule deletes a node, adjacent edges specified in includ-
ing multi-rule have to be deleted as well. If this condition is fulfilled, interaction
schemes follow their formal definition as presented in [9].

In the following, we present several interaction schemes for the refactoring of
simple class models. We will see that they all include for all actions specified by
multi-rules.

Example 3 (Interaction scheme “Replacing inheritance with delegation”). If we
find out that an inheritance relation between two classes is not adequate as,
e.g., pointed out in Example 1 for class “Stack” inheriting from class “List”,
the inheritance relation might be replaced by a reference. Formerly inherited
attributes have to be copied in that case. This refactoring can be specified by a
kernel rule just replacing the superclass reference while the extending multi-rule
copies all attributes. Figure 4 shows the corresponding specification in Henshin.
All cascaded nodes and adjacent edges are in the multi-rule only while all other
nodes and edges are also contained in the kernel rule.

Fig. 4. Interaction scheme for refactoring
“Replace Inheritance With Delegation” (RIWD)

Given an interaction scheme,
i.e. a kernel rule with multi-
rules, its semantics consists of
an infinite set of simple rules
called amalgamated rules. Each
rule of this set consists of the
kernel rule extended by 0, 1, 2
or more copies of its multi-rules.
For each multi-rule, the exact
number of copies depends on
the number of different matches
found in the instance graph the
interaction scheme is applied to.
It is assumed that all multi-rule
matches overlap in the match of
their common kernel rule. In the following, we show example amalgamated rules
for the refactoring “Replace Inheritance With Delegation”.

Example 4 (Amalgamated rules and their application). Given the interaction
scheme “replaceInheritanceWithDelegation” as in Fig. 4, Fig. 5 shows three amal-
gamated rules as concrete examples using 0, 1 or 2 copies of the multi-rule.

Considering the instance model in Fig. 2, the inheritance between classes
“List” and “Stack” shall be replaced by a delegation. Hence, we apply the refac-
toring “Replace Inheritance With Delegation” here. Since class “List” has one
attribute, the multi-rule is applied exactly once which means that amalgamated
rule riwd 1 is selected for application. The result is the model in Fig. 6. The effect
is that the inheritance relation between classes “List” and “Stack” is replaced
by a reference and an attribute with name “first” is added to class “Stack”.
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Fig. 5. Amalgamated rules which replace inheritance with delegation for classes with
0 to 2 attributes

Fig. 6. Example instance model after refactoring

After having specified one refactoring we consider three further refactoring
specifications below. They are used to investigate selected refactoring conflicts
and their potential resolutions below. They all use multi-rules.

Example 5 (Interaction scheme “Push down attribute”). An attribute of a given
superclass may be pushed down to all its subclasses. This refactoring is needed
if the modeled attribute shall be modified in its subclasses in different ways.
This refactoring is the opposite of “Pull up attribute” which is not considered
in detail in this paper. The diagram in Fig. 7 shows the specifying interaction
scheme. The kernel rule pushes down an attribute to one subclass while the
multi-rule pushes down the attribute to all further subclasses.
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Fig. 7. Interaction scheme for refactoring “Push Down Attribute” (PDA)

Example 6 (Further refactoring specifications). The interaction scheme in Fig. 8
deletes all empty subclasses of a selected class indicated as superClass. Note that
model nodes may only be deleted if they do not leave any edges dangling. This
means for a class that it must not have attributes, references or subclasses. I.e.,
the interaction scheme deletes all empty subclasses of a given superclass.

Fig. 8. Interaction scheme for refactor-
ing “Delete Empty Subclasses” (DES)

Fig. 9. Interaction scheme for refactor-
ing “Inline Class” (IC)

Another class refactoring is the inlining of classes shown in Fig. 9. If all the
attributes of a class A have corresponding attributes (with the same names) in
a referenced class B then class A can be inlined into class B. This means that
class A and all its attributes are deleted. Again, the dangling condition checks
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if there are no further attributes (with different names), adjacent references or
inheritance relations. In that case, the inlining must not take place.

3 Critical Pair Analysis

The critical pair analysis (CPA) is a well-known technique to analyze potential
conflicts and dependencies of transformation systems. It has first been intro-
duced for term rewriting and later generalized to graph transformation [8,18].
A critical pair describes a minimal conflicting situation that may occur in the
transformation system. It is well-known that if all critical pairs can be shown to
be strictly confluent, the transformation system is locally confluent. This means
that each pair of direct transformation steps can be resolved by arbitrary many
steps to a common graph. The notion of strict cofluence means that the jointly
preserved part of a critical pair is also preserved by its resolution [19].

This theory has been extended to amalgamated graph transformation in [22].
Here, we have to face the problem that an interaction scheme generally describes
infinite many rules and therefore, also infinite many critical pairs may exist for
a given interaction scheme. In [22], we show that it is enough to check finitely
many critical pairs to decide for local confluence. The key observation is that,
from a certain number n of multi-rule copies, critical pairs over amalgamated
rules do not lead to new kinds of conflict resolutions, i.e., all larger critical
pairs are redundant to smaller ones. Up to now, however, there does not exist
a construction to determine this number n. As main contribution of this paper,
we present an algorithm for the CPA of amalgamated transformations below. As
a prerequisite, the main definitions are recalled and illustrated at the running
example here.

Two transformations are conflicting if (1) one transformation deletes a graph
element the other uses (delete/use conflict), (2) one transformation produces a
graph element the other forbids (produce/forbid conflict), or (3) one transfor-
mation changes an attribute the other uses (change/use conflict). A critical pair,
short CP, consists of two conflicting transformations G

r1,m1
=⇒ H1 and G

r2,m2
=⇒ H2

applying rules r1, r2 at matches m1,m2 such that G is minimal. If rules r1 and
r2 do not have application conditions, G is just an overlap graph of their left-
hand sides. For rules with negative application conditions (NACs), also slightly
larger graphs have to be considered taking parts of their NACs into account as
well.

Example 7 (Critical pair). Applying refactorings “Delete Empty Subclass”
and “Replace Inheritance With Delegation” in parallel may lead to conflicts.
Figure 10 shows a CP over corresponding amalgamated rules, each one applying
exactly one multi-rule copy. In this case, exactly one empty subclass is deleted
and one attribute is copied to a referring class. This CP shows a delete/use con-
flict since a subclass that is deleted cannot be changed to be a delegating class.
This is a potential conflict that may occur during transformations. It may be
resolved by inlining the delegating class on the right yielding the model graph
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Fig. 10. Critical pair applying refactorings DES and RIWD with one multi-rule copy
each

on the left. Note that the potential conflict shown here becomes concrete when
all the variables are instantiated by concrete values.

Given two critical pairs cps = (ts1 : Gs =⇒ Hs1, ts2 : Gs =⇒ Hs2) and
cpl = (tl1 : Gl =⇒ Hl1, tl2 : Gl =⇒ Hl2) of set CP (is1, is2) where Gs is
part of Gl. cpl is an extension of cps if Hs1 is part of Hl1 and Hs2 is part of
Hl2 and moreover, the same interaction schemes is1 and is2 are applied. Then
these CPs are considered to be redundant if their transformations ts1 and tl1
(as well as ts2 and tl2) allow for equivalent partial matches only, considering all
rules of a given transformation system. Given a transformation G =⇒ H two
partial matches m and m′ to a graph H are equivalent if each pair of isomorphic
range elements has the same history, i.e., both are newly created or both do
already exist. Due to this definition, partial matches are considered equivalent
if they differ only in range elements stemming from different multi-rule copies.
If the dangling condition is set for a rule, the equivalence check comprises the
satisfaction check of this condition as well.

Example 8 (Redundancy of critical pairs). Considering the critical pairs in
Figs. 10 and 11, we can notice that the CP in Fig. 10 applies one multi-rule copy
on each side while the one in Fig. 11 applies two copies on each side. Basically, the
same potential delete/use conflict is reported: A subclass that is deleted cannot
be changed to a delegating class. However, the contexts are different. Although
this is the case, the conflict resolution for the larger CP can be similar to the one
for the smaller CP. Inlining the delegating class (with two attributes now) on the
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Fig. 11. Critical pair applying refactorings DES and RIWD with two multi-rule copies
each

right followed by deleting the remaining empty subclass yields the model graph
on the left. Any other interaction scheme is not applicable on the left or right.
Comparing all the partial matches that exist in both cases and check whether
they are equivalent w.r.t. the above definition, we find out that this is the case
for all interaction schemes except of DES. Since the right graph in Fig. 11 still
contains a generalization relation, some new partial matches can be found here.
Hence, the CP in Fig. 11 is not redundant to the one in Fig. 10 although a very
similar conflict is reported.

4 Algorithm for the Critical Pair Analysis

In the following, we present the core algorithm for computing all relevant critical
pairs between two interaction schemes. As shown in [22], a finite set of critical
pairs is enough to decide for local confluence of a given transformation system.
The computation is performed for increasingly larger amalgamated rules. The
maximal number of multi-rules applied define the level of computation. The
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Input: is1,is2 : Input interaction schemes
Output: resultCps: Output set containing all non-redundant critical pairs
1: function computeCriticalPairs(InteractionScheme is1, InteractionScheme

is2 ): CpaResult
2: rulePairHandler = new RulePairHandler(is1,is2);
3: resultCps = new CpaResult();
4: levelCps = analyseLevelForNonRedundantCps(0, rulePairHandler);
5: resultCps.add(levelCps);
6: return resultCps;

7: function analyseLevelForNonRedundantCps(int level, RulePairHandler
rph): CpaResult

8: resultCps = new CpaResult();
9: currentRulePairs = rph.getRulePairsOfLevel(level);

10: for rulePair : currentRulePairs do
11: currentCps = computeCps(rulePair);
12: newCps = extractNonRedundantCps(currentCps,level);
13: rulePair.setCps(newCps);
14: resultCps.add(newCps);

15: if resultCps.size() != 0 || level == 0 then
16: resultOfNextLevel = analyseLevelForNonRedundantCps(level+1);
17: resultCps.add(resultOfNextLevel);

18: return resultCps;

Fig. 12. Pseudocode for computing critical pairs of interaction schemes.

stop criterion is met if all critical pairs that are computed for the current level
turn out to be redundant to critical pairs of lower levels. The main algorithm is
presented in Fig. 12.

Class RulePairHandler is a container for rule pairs and their critical pairs and
the associated partial matches of the transformation system. Function getRule-
PairsOfLevel computes all pairs of amalgamated rules where each rule has at
most as many multi-rule copies as level prescribes. Given a concrete rule pair,
function computeCps computes all critical pairs of this rule pair. Each critical
pair is reported by a minimal model with two matches of participating rules.
After having computed all critical pairs of a given level, function extractNonRe-
dundantCps filters out all those critical pairs that are not redundant to already
existing ones computed in lower levels. The identification of redundant critical
pairs is achieved by comparing the partial matches of the whole transformation
system for each new critical pair against the already known.

Correctness. Given two interaction schemes is1 and is2, we have to show that
computeCriticalPairs yields the set of all non-redundant CPs between these
two rules schemes. The main design decision is here that CPs are computed level-
wise starting with level 0. All CPs of level n are computed if n ≤ 1 or new non-
redundant CPs have been computed for level n−1. Level one has to be considered
anytime due to the fact that level zero doesn’t involve the amalgamations at all.
Given level n, function analyseLevelForNonRedundantCps computes all
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1: function extractnonRedundantCps(cpaResult cps): cpaResult
2: nonRedundantCps = new cpaResult();
3: for cp : cps do
4: tl1 = cp.getTransitionOfR1 ();
5: pMaTl1 = findAllNonEquivPartialMatches(tl1);
6: tl2 = cp.getTransitionOfR2 ();
7: pMaTl2 = findAllNonEquivPartialMatches(tl2);
8: rulePairs = rph.getReducedRulePairs(cp.getRulePair());
9: for rulePair : rulePairs do

10: reducedCps = rulePair.getCriticalPairs();
11: for reducedCp : reducedCps do
12: isExtension = isExtension(cp, reducedCp);
13: if isExtension && (pMaTl1.size()>0 || pMaTl2.size()>0) then
14: ts1 = reducedCp.getTransformation1();
15: alreadyKnownpMaTl1 = extractEquivParMatches(ts1, tl1);
16: pMaTl1.removeAll(alreadyKnownpMaTl1);
17: ts2 = reducedCp.getTransformation2();
18: alreadyKnownpMaTl2 = extractEquivParMatches(ts2, tl2);
19: pMaTl2.removeAll(alreadyKnownpMaTl2);

20: if pMaTl1.size()>0 || pMaTl2.size()>0 then
21: nonRedundantCps.addResult(cp);

22: return nonRedundantCps;

Fig. 13. Pseudocode of function extractNonRedundantCps.

non-redundant CPs of rule pairs of that level. All rule pairs for that level where
each rule has at most n multi-rule copies, are collected in currentRulePairs. All
their CPs are collected in currentCps. Function extractNonRedundantCps
directly implements the check for non-redundant CPs based on the definition
given in [22] which is informally recalled above. If any rule pair of a level yields
new non-redundant CPs, the set of resulting CPs becomes non-empty and the
next level has to be considered. Finally, the non-redundant CPs of all levels are
joined to the set resultCps.

In the algorithm in Fig. 13 we extract all critical pairs that are not redundant
to existing ones. First of all we compute all partial matches of the two involved
transformations tl1 and tl2 resulting in pMaTl1 and pMaTl2. Thereafter we take
the rule pair of cp and collect all critical pairs of reduced rule pairs in reducedCps.
A rule pair is reduced if it applies at least one multi-rule less than the original
rule pair (on the left or right-hand side). Then we check if the current critical
pair cp is an extension of a reduced one, consisting of the transformations ts1
and ts2. If this is the case, we have to further check if it is even redundant. For
this check all the partial matches on ts1 and tl1 as well as ts2 and tl2 have
to be compared. All partial matches on ts1 (ts2 ) that are equivalent to partial
matches on tl1 (tl2 ) are removed from the original set of partial matches pMaTl1
(pMaTl2 ). If there are non-equivalent partial matches left in pMaTl1 or pMaTl2,
the current critical pair cp is considered non-redundant.
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The central question to be answered here is: Does this algorithm terminate?
The answer should be yes due to the main result in [22]. The proof of this
result contains the following key idea: For each pair of interaction schemes,
there are two finite numbers c and d such that all rule pairs of amalgamated
rules with at most c and d multi-rule copies yield redundant CPs only. If we
take max(c, d) as current level, there would not be any further non-redundant
conflict found. The key idea for termination is that new CPs do not provide
new non-equivalent partial matches for the rules of our transformation system.
An extreme over-approximation can go like this: Given a transformation system
with interaction schemes, let |L| = x be the number of graph elements of the
left-hand side of the largest (multi-)rule. There are at most |P(L)| = 2x different
subsets of elements, i.e., domains for partial matches, over L. The different ranges
are not interesting in detail. We only check if range elements are preserved or
newly created. If two partial matches with the same domain are equal w.r.t. this
range classification, they are considered equivalent. Hence, the largest number of
non-equivalent partial matches is 22x = 4x. Although this number is extremely
high, it tells us that there is an upper limit for non-equivalent partial matches
independent of the result graphs H1 and H2 occurring in concrete CPs. Usually,
the number of non-equivalent partial matches is much smaller since element
types, attributes and graph structures have to be taken into account as well.
Moreover, partial matches cannot exist if sub-matches do not exist as well. The
following examples produce numbers of partial matches being smaller than 200
for any CP result graph although the extreme over-approximation yields 49. The
value nine is based on the interaction scheme “Push down attribute”, which has
the most model elements in its left-hand side compared to the other ones in the
transformation system.

Example 9 (Algorithm run). To illustrate the algorithm, we consider an example
run now: Given the interaction schemes for refactorings DES and RIWD in
Figs. 8 and 4, all non-redundant CPs with a DES rule as first and a RIWD rule as
second shall be computed. As pointed out above, the CPs of levels 0 and 1 always
have to be computed. For all pairs of kernel and multi-rules of participating
interaction schemes, the number of CPs found are shown in Table 1. Moreover,
it shows the numbers of CPs for all pairs of amalgamated rules of levels 2 and 3.
This is needed since the check by extractNonRedundantCps finds out that RIWD
and IC have new non-equivalent partial matches to CP graphs of rule pairs of
level 1, as shown in Table 2. Therefore, there are non-redundant CPs on level 1
and hence, level 2 has to be considered. Note that the table entries always show
the number of non-redundant CPs as well as the number of all CPs. One example
CP of level 2 is shown in Fig. 11. In contrast to CPs of level 1, an inheritance
relation may remain after applying refactoring RIWD which leads to new non-
equivalent partial matches of refactorings DES and PDA. Therefore, new non-
redundant CPs occur on level 2 and the algorithm does not yet terminate. Hence,
amalgamated rules of level 3 have to be checked for non-redundant CPs as well.
As explained at Table 2, it turns out that new non-equivalent partial matches
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Table 1. Numbers of non-redundant/all
critical pairs between refactorings DES
(first rule) and RIWD (second rule)

CPs RIWD RIWD RIWD RIWD

1./2. (0) (1) (2) (3)

DES(0) 0/0 0/0 0/0 0/0

DES(1) 1/1 1/1 1/1 0/1

DES(2) 2/2 2/2 0/2 0/2

DES(3) 0/3 0/3 0/3 0/3

Table 2. Numbers of non-equivalent
partial matches to the left and right
result graphs of CPs between refactor-
ings DES and RIWD

# Part. RIWD RIWD RIWD RIWD

matches (0) (1) (2) (3)

DES(0) - - - -

DES(1) 15/28 20/84 10/0 0/0

DES(2) 0/4 0/2 0/0 0/0

DES(3) 0/0 0/0 0/0 0/0

do not occur and therefore, all newly found CPs are redundant leading to the
termination of the algorithm for the considered interaction schemes.

Given all the CPs between refactorings DES and RIWD, Table 2 shows the
numbers of non-equivalent matches to the left and right result graphs of each CP.
(Remember that a CP consists of two conflicting transformations both starting
from the same graph and resulting in two graphs. The left one is the result after
applying refactoring DES while the right one is obtained by applying refactoring
RIWD.) We see that on level 3, there are no further non-equivalent matches
discovered. Hence, the computation of non-redundant CPs terminates after level
3 as stated above.

In the following, we summarize the number of non-redundant CPs found in
our transformation system and show for each pair of interaction schemes how
many levels of amalgamation have to be considered for the CPA until the ter-
mination criterion is fulfilled. We consider two variants of our transformation
system: The first one contains all presented interaction schemes without PDA
while the second one includes PDA. Tables 3 and 4 show the results. In both
tables, we see that the number of levels needed is moderate. Often, the consid-
eration of levels 0 and 1 is already enough. Tables 3 and 4 do not only differ in
the numbers of rows and columns but also w.r.t. their entries. As an example,
the CPA for DES and RIWD needs 3 or 4 levels, resp. The tables also show the
numbers of non-redundant CPs found for pairs of interaction schemes which is 7
for pairs (DES,RIWD) as well as (RIWD,DES) on level 3 and 13 on level 4. The
differences arise due to the fact that PDA causes new kinds of partial matches.
These additional conflicts have to be taken into account for future confluence
check. A more detailed view of the results can be found at [12].

The presented algorithm for the CPA of interaction schemes has been pro-
totypically implemented for rules specified in Henshin. It relies on the CPA
implementation for basic rules as presented in [6]. The current CPA implemen-
tation for interaction schemes supports the conflict detection only (i.e. does not
support the detection of dependencies yet). Furthermore, rules with application
conditions are not supported yet. These limitations are easy to erase which will
be done in the near future.
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Table 3. Level of termination and
number of non-redundant critical
pairs with four interaction schemes

Level of amalg DC RIWD DES IC

/# non-red. CPs

DC 1/0 1/0 1/2 1/0

RIWD 1/0 2/1 3/7 1/0

DES 1/0 3/7 1/0 1/0

IC 1/0 1/0 2/4 1/0

Table 4. Level of termination and
number of non-redundant critical
pairs with five interaction schemes

Level of amalg DC RIWD DES IC PDA

./# non-red. CPs

DC 1/0 1/0 1/2 1/0 1/0

RIWD 1/0 2/1 4/13 1/0 2/10

DES 1/0 4/13 1/0 1/0 2/3

IC 1/0 1/0 2/4 1/0 1/0

PDA 1/0 3/4 3/8 3/4 2/6

5 Related Work and Conclusion

Multi-objects and other variants that match graph parts as often as possible have
been considered in several graph transformation approaches: in tool environ-
ments such as PROGRES [20] and Fujaba [1] as well as in conceptual approaches
by Grönmo [10] and Drewes et al. [7]. These tools and approaches, however, do
not support the critical pair analysis (CPA) for graph transformation systems
expressing such variability.

While a basic graph transformation approach is taken in [22] to develop the
necessary theory for the CPA for amalgamated graph transformation, we switch
to model transformation based on the Eclipse Modeling Framework (EMF) and
Henshin here. EMF models have typed, attributed graphs as conceptual basis
while Henshin is based on graph transformation concepts. Hence, we have devel-
oped the CPA for the amalgamated transformation of typed, attributed graphs
here. However, we do not yet consider application conditions for rules.

The main contribution of this paper is an algorithm for computing all non-
redundant critical pairs of two given interaction schemes. It shows that the CPA
for pairs of simple rules can be reused. The key idea is to compute all critical pairs
for pairs of small amalgamated rules. This computation stops at level n when
all pairs of rules with at most n copies of multi-rules yield redundant critical
pairs only. We have implemented this algorithm in Henshin. First tests with a
set of refactoring interaction schemes have shown that the CPA for interaction
schemes is performed in a reasonable amount of time. An extensive evaluation
is planned for future work.
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20. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: language and envi-
ronment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook
of Graph Grammars and Computing by Graph Transformation. Applications, Lan-
guages and Tools, vol. 2, pp. 487–550. World Scientific (1999)

http://dx.doi.org/10.1007/s10270-011-0199-7
http://www.uni-marburg.de/fb12/swt/cpa_amal
http://dx.doi.org/10.5381/jot.2007.6.9.a3


134 K. Born and G. Taentzer

21. Steinberg, D., Budinsky, F., Patenostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Pearson Eduction, London (2009)

22. Taentzer, G., Golas, U.: Towards local confluence analysis for amalgamated
graph transformation. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015.
LNCS, vol. 9151, pp. 69–86. Springer, Heidelberg (2015). https://opus4.kobv.de/
opus4-zib/frontdoor/index/index/docId/5494

https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/5494
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/5494


Queries



Rete Network Slicing for Model Queries
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Research Group on Cyber-Physical Systems,

Budapest University of Technology and Economics,
Magyar Tudósok Krt. 2, Budapest 1117, Hungary

{bergmann,varro}@mit.bme.hu
2 IncQuery Labs Ltd., Bocskai út 77-79, Budapest 1113, Hungary
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Abstract. Declarative model queries captured by graph patterns are
frequently used in model driven engineering tools for the validation of
well-formedness constraint or the calculation of various model metrics.
However, their high level nature might make it hard to understand all
corner cases of complex queries. When debugging erroneous patterns, a
common task is to identify which conditions or constraints of a query
caused some model elements to appear in the results. Slicing techniques
in traditional programming environments are used to calculate similar
dependencies between program statements. Here, we introduce a slicing
approach for model queries based on Rete networks, a cache structure
applied for the incremental evaluation of model queries. The proposed
method reuses the structural information encoded in the Rete networks
to calculate and present a trace of operations resulting in some model
elements to appear in the result set. The approach is illustrated on a
running example of validating well-formedness over UML state machine
models using graph patterns as a model query formalism.

Keywords: Program slicing · Model queries · Graph patterns

1 Introduction

Modern industrial and open source modeling tools frequently rely upon vari-
ous services built on top of incremental query evaluation techniques [1,2] for
efficient revalidation of well-formedness constraints, recalculation of view mod-
els, re-execution of code generators or maintenance of traceability links [3,4].
EMF-IncQuery [3] is an open source Eclipse project which offers a declarative
graph query language [5] for capturing queries and a scalable query engine for
incremental query evaluation using the Rete algorithm [6].

Industrial domain-specific languages and tools (e.g. in the automotive, avion-
ics or telecommunications domain) necessitate the development of large number
of complex, interrelated queries, which turns out to be an error prone task in
industrial practice. Some constraints may accidentally be omitted, other con-
straints may be added to a query unintentionally, while patterns may be com-
posed using a wrong order of parameters. While the EMF-IncQuery framework
c© Springer International Publishing Switzerland 2016
R. Echahed and M. Minas (Eds.): ICGT 2016, LNCS 9761, pp. 137–152, 2016.
DOI: 10.1007/978-3-319-40530-8 9
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contains a type checker and various well-formedness constraints are also checked,
such static checks still do not guarantee that query specifications are free of flaws,
thus runtime debugging of queries need to be carried out in practice.

Unfortunately, the declarative nature of query languages makes debugging of
query specifications a challenging task. The order of clauses in a query specifi-
cation does not coincide with the actual evaluation order in case of local search
based query evaluation [7,8]. Furthermore, incremental evaluation techniques
further complicate the issue as all matches of all queries (and subqueries) are
readily available immediately at any time.

Model transformation slicing was introduced in [9] as a technique to assist
debugging of model transformations. As a conceptual difference with respect to
traditional program slicing, a transformation slice includes not only the relevant
instructions of the transformation program, but also those model elements that
can influence the slicing criterion. A dynamic backward slicing approach was
proposed for the transformation languages of VIATRA [9] and static backward
slicing approach for ATL [10,11].

In the current paper, we propose a slicing technique for incremental graph
patterns evaluated on top of Rete networks. Based upon an observed change in
the match set of a graph pattern (e.g. an extra match or a missing match) we
traverse the nodes of the Rete network in a bottom-up way to identify those
tuples in other Rete nodes which may contribute to the observed aggregate
change. We illustrate how this slicing information can be computed in the context
of statechart models. Our slicing approach may assist the debugging of model
queries by localizing suspicious spots in queries.

The rest of the paper is structured as follows. Section 2 gives a brief overview
of graph patterns, and presents why slicing can help to debug incorrect pattern
definitions. A formalization of incremental evaluation of model queries using
Rete networks is provided in Section 3. The slicing approach itself is presented
in Section 4 and is illustrated in the context of our running example. Related
work is discussed in Section 5 while Section 6 concludes our paper.

2 Motivating Example and Overview

Graph patterns are a declarative, graph-like formalism representing a condition
(or constraint) to be matched against instance model graphs. Graph patterns are
used for various purposes in model-driven development, such as defining model
transformation rules or defining general purpose model queries including model
validation constraints in various advanced tools (such as eMOFLON, Henshin,
EMF-IncQuery or VIATRA).

Informally, a graph pattern can be described as a set of structural constraints
prescribing the interconnection between nodes and edges of given types. Fur-
thermore, further constraint types, such as pattern composition constraints for
the reuse of subpatterns, help the description of complex constraints. Finally,
a match in a model M of a pattern is the binding of all variables to elements
of M that satisfies all constraints expressed by the pattern. Efficient caching
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Fig. 1. Example graph patterns

techniques based on Rete networks [6] enumerate all matches of a pattern and
incrementally update the caches upon model changes.

Example 1. Figure 1 describes a graph pattern using the textual syntax of EMF-
IncQuery [3] that identifies transitions whose source and target states are in
different states machines. It uses a subpattern called StateOfMachine (Line 11),
connecting two variables of type StateMachine and State with the edge type
of StateMachine.states. The main pattern DifferentStateMachine (Line 2) uses
four variables to represent a Transition, a source and a target State and a
StateMachine. The Transition and the two States are connected with two edge
constraints, while the states fr and to are connected to the statemachine by a
positive (Line 5) meaning that variable fr has to be connected via the called
pattern, and a negative pattern call (Line 6) which prevents to to be connected.

Figure 1b depicts the same pattern using a graphical notation where nodes
are entity constraints, edges are relational constraints, positive pattern calls are
inlined (copied), and negative pattern call are marked by NAC areas.

During pattern development, engineers may accidentally make faults. For
instance, imagine that the neg keyword is omitted from Line 6, and thus the def-
inition of pattern DifferentStateMachine erroneously includes (the commented)
Line 7 instead of Line 6. It results in a positive pattern call instead of a nega-
tive pattern call making the pattern to represent transitions where both source
and target states are in the same state machine, thus completely replacing the
correct match set of the pattern with incorrect matches.

During debugging of queries and transformations, when the developer iden-
tifies that the match set of a pattern is different from what was expected, he
or she frequently wishes to learn what elementary model changes would result
in the appearance of new match or the disappearance of an existing match of
a pattern. The current paper will present a formal slicing technique for Rete
network based caches of graph patterns to answer such questions.

For that purpose, we present a chain of semantic mappings (see Fig. 2) by
(1) starting from a Σ-term algebra to formalize graphs and then (2) (a subset
of) the graph pattern language of EMF-IncQuery. (3) A relational algebraic
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treatment is provided for Rete networks to cache matches of patterns and (4)
changes in the match sets are then handled by a change algebra. Finally, (5)
Rete slicing is defined as specific formulae over this change algebra. While the
main innovation of the paper is related to this final step, we briefly present the
entire chain to provide solid foundations.

Fig. 2. Overview of formalization

3 Graph Patterns and Rete Networks

We present an algebraic formalization of incremental graph pattern matching
with Rete networks following the definitions of [12].

3.1 Graphs and Graph Patterns

Since Rete networks can be adapted to various graph formalisms, we omit the
handling of types and use directed labeled and attributed graphs to represent
models for the sake of generality and simplicity.

Definition 1 (Directed labeled attributed graph). A directed labeled and
attributed graph M = 〈VM , EM , LM ,DM , srcM , trgM , lblM , attrM 〉 is a tuple,
where VM and EM denote nodes and edges of the graph, respectively. LM is a
set of labels, while DM represents a set of data nodes. The nodes, edges and
data nodes represent the universe of the graph model UM = VM ∪ EM ∪ DM .

Functions srcM and trgM map edges to their source and target nodes,
formally srcM : EM �→ VM and trgM : EM �→ VM . The labeling func-
tion lbl assigns labels to edges, formally lblM : (VM ∪ EM ) �→ LM , and
the attribute function maps nodes to corresponding attribute values, formally
attrM : VM �→ DM . We may omit subscript M when graph M is unambiguous.

Graphs will serve as the core underlying semantic domain to evaluate graph
patterns but we define an algebraic term representation (in the style of abstract
state machines [13]) for a unified treatment of formalization. For that purpose, we
rely on some core definitions of terms, substitution, interpretation and formulas.
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Definition 2 (Vocabulary and terms). A vocabulary Σ is a finite collection
of function names. Each function name f has an arity, a non-negative integer,
which is the number of arguments the function takes. Nullary function names
are often called constants.

The terms of Σ are syntactic expressions generated inductively was follows:
(1) Variables v0, v1, v2, . . . are terms; (2) constants c of Σ are terms; (3) if func-
tion f is an n-ary function name and t1, . . . , tn are terms, f〈t1, . . . tn〉 is a term.

Since terms are syntactic objects, they do not have a meaning. A term can
be evaluated, if elements of the model are assigned to the variables of the term.

Definition 3 (Substitution). Given a directed attribute graph model M , a
substitution for M is a function s which assigns an element s(vi) ∈ UM to each
variable vi. A partial substitution assigns a value to only certain variables vi.

Definition 4 (Interpretation of terms). By induction on the length of term
t, given a substitution s, a value [[t]]Ms ∈ UM (the interpretation of term t in
model M) is defined as follows:

1. [[vi]]Ms := s(vi) (interpretation of variables);
2. [[c]]Ms := cM (interpretation of constants);
3. [[f〈t1, . . . , tn〉]]Ms := fM 〈[[t1]]Ms , . . . , [[tn]]Ms 〉 (interpretation of functions).

A ground term is a term with a (full) substitution of variables.

Definition 5 (Formulas). Formulas of Σ are generated inductively as follows:

1. Equality (and inequality) of two terms t1 = t2 is a formula f .
2. If f1 and f2 are formulas then f1 ∧ f2, f1 ∨ f2 are formulas.

A simplified notation is used for predicates (i.e. boolean terms) which may omit
= 
 and = ⊥ from equality formulas.

We first define algebraic terms to represent graph patterns which are evalu-
ated over directed labeled attributed graphs as semantic models. A match of a
pattern is a binding of all variables to model elements or attribute values that
fulfill all the constraints of the graph pattern.

Definition 6 (Graph pattern and match set). A graph pattern P is a term
over a special vocabulary Σ with function symbols for constraints including
structural constraints (entity, relation), equality checks, pattern definitions with
a disjunction of pattern bodies containing conjunction of constraints and positive
and negative pattern calls and constants (representing model element identifiers
and data values). The semantics of P is defined as an interpretation of the term
over a graph M and along a substitution s as detailed in Table 1 for the key
elements of the EMF-IncQuery language [3]. For easier formulation, we use V k

as a shorthand to represent a vector of variables, formally f〈V k〉 = f〈t1, . . . tk〉.
A match of P in M is a substitution s which satisfies all constraints. The

match set is the set of all matches of a pattern in a graph model:

MSP
M = {s | [[P 〈V k〉 ← PB1 ∨ . . . PBn]]Ms = 
}
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Table 1. Algebraic definition of graph patterns

Table 2. The Different State Machines pattern

Example 2. Table 2 provides the algebraic representation of graph pattern Dif-
ferent State Machines of Fig. 1 that identifies transitions which connect elements
between different state machines.

3.2 Graph Pattern Matching with Rete Networks

The Rete algorithm [6] is a well-known and efficient technique of rule-based
systems which has been adapted to several incremental pattern matchers [12,14,
15]. The algorithm uses an incremental caching approach that indexes the basic
model elements as well as partial matches of a graph pattern that enumerate all
model element tuples which satisfy a subset of the graph pattern constraints.
These caches are organized in a graph structure called Rete network supporting
incremental updates upon model changes.
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Table 3. Relational algebraic operations of Rete networks

Definition 7 (Rete network). A Rete network is a directed acyclic graph
R ≡ 〈N,E,L, Term, src , trg , lbl , attr 〉, where N is a set of Rete nodes connected
by edges E (along src and trg), L = Kind ∪ Index defines node kinds (entity
E and relation input R, natural join ��, filter σ, projection π, disjunction ∪
and anti-join �) as node labels and indices as edge labels (along lbl), while data
associated to nodes are specific Terms of type nop〈V k〉.
Definition 8 (Memory of a Rete node). Each Rete node n ∈ N of the Rete
network RP stores all matches of an instance model M which satisfy certain
constraints which is denoted as [[n〈V k〉]]M . Each Rete node n relies upon the
memory of its parents [[ni〈V k〉]]M to calculate its own content inductively by
relational algebraic operators which are specified in details in Table 3.

The memory of an input node nI lists entities and relations of the model
with a specific label. Positive pattern calls are always mapped to join node, while
negative pattern calls are expressed via anti-join nodes. A production (output)
node in a Rete network contains all matches of a graph pattern P by expressing
the complex constraints with a relational algebraic operations (e.g. projection,
filter, join, anti-join, disjunction). The compilation of the graph pattern language
of EMF-IncQuery into a corresponding Rete network is out of scope for the
current paper and it is studied in [12] in details. We only rely on the correctness
of a compilation comp : P �→ N to guarantee that a match set of a graph pattern
P (see Table 1) equals to the memory of the corresponding Rete node (as defined
in Table 3), i.e. MSP

M = [[n〈V k〉]]M where n = comp(P ).

Example 3. Figure 3a depicts a Rete network for the Different State Machines

pattern. Its input nodes cache three references: states of Machines; out references
of States and target references of Transitions. The first join node of the network
connects the source and target states, while the second join node adds the
container machines of the source patterns by joining the production node of the
called pattern State of Machine. Finally, the anti-join node (depicted by the
red triangle) ensures that the target state is not connected to the same state
machine as the source node by filtering matches of its join parent node which
also correspond to matches of the states node along the called pattern State of
Machine (which is inlined during compilation).
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Fig. 3. A Rete network for the Different State Machines pattern

We display the cached model elements of the instance model Fig. 3b in a
table for each Rete node, describing two state machines with a few states and
transitions (some of which cross the boundary of a statemachine).

3.3 Incremental Change-Driven Behavior of Rete Networks

If the memory of a Rete nodes changes, the memory of all its children Rete nodes
needs to be updated in accordance with the relational algebraic operation of the
Rete node. For that purpose, we define a change algebra over terms n+ and n−
(jointly denoted as nΔ) which represent tuples added and removed from a Rete
node n. We briefly revisit the semantics of such change terms in Table 4 while
the reader is referred to [12] for a detailed discussion.

Definition 9 (Change algebra for Rete nodes). Let M be a graph model
cached in a Rete network R and let Δ be a set of elementary model changes
(represented by terms for creation and deletion of entities nE

+, nE
− or references

nE
+ and nE

−) over this graph. We define a term nop
Δ for each node nop of the Rete

network to represent matches that are changed by Δ with respect to M .
The semantics of such terms are inductively defined by using (i) match infor-

mation nop cached in R for M (i.e. the previous state of the model) and (ii)
change already computed at parent nodes n1

Δ and n2
Δ of nop

Δ split along opera-
tions op as detailed in Table 4.

A brief informal explanation of these cases is as follows:

Entity and relation change. A model entity appears in the change set nE
Δ if

(1) it exists in M and it is removed by Δ or (2) it does not exist in M and it
is created by Δ (and same holds for model references).

Change in projection and filter nodes. The change set of a projection node
is defined as the difference of the new n1〈V n〉 ∪ n1

Δ〈V n〉 and old n1〈V n〉
memory of the parent nodes. In case of a filter node the change set is the
change set of its single parent n1

Δ〈V k〉 filtered using the σ filter operator.
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Table 4. Change algebra for Rete nodes

Change in join nodes. The change set of a join node consists of the union of
three change sets: (1) the join of the memory of the first parent node n1〈V i〉
with the delta coming from the second parent n2

Δ〈V j〉; (2) the join of the
second parent n2〈Vi〉 with the first parent delta n1

Δ〈V j〉; and (3) the join of
the two parent deltas n1

Δ〈V i〉 and n2
Δ〈V j〉.

Change in anti-join nodes. The change set of an anti-join node is the union
of two sets: (1) the elements in the second parent delta n2

Δ〈V j〉 that are
filtering out pre-existing tuples from the first parent n1〈V k〉; and (2) the
changed elements of the first parent n1

Δ〈V k〉 that are not filtered out by the
second parent or its changes.

Change in disjunction nodes. The change set of a disjunction node is the
union of three sets: (1) the delta of the first parent n1

Δ〈V k〉 that was not
present in the second parent n2〈V k〉; (2) the delta of the second parent
n2

Δ〈V k〉 that was not present in the first parent n1〈V k〉 and (3) elements
that were added or removed by both parent changes.

4 Slicing Rete Networks of Graph Patterns

The change algebra of Table 4 precisely specifies how to propagate changes in
Rete networks from input nodes to production nodes corresponding to graph
patterns. However, an inverse direction of change propagation needs to be defined
for debugging purposes.

Slicing of Rete networks will systematically collect dependencies from (an
aggregate) change at a production (pattern) node towards elementary changes
at input nodes. More specifically, based on an observed change of a match of a
pattern, we need to calculate how to change the caches of each parent node in
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Fig. 4. Sample Rete slice for faulty pattern

the Rete network so that those changes consistently imply the specific changes
of the match set of a production node. For instance, if a match is included in
nop
+ (nop

− , respectively) then it needs to be added to (removed from) the cache of
the corresponding Rete node nop to observe a specific change nP

Δ of a production
node. In a debugging context, if a specific match of pattern P is missed by the
engineer then he or she can ask the slicer to calculate possible model changes
that would add the corresponding match nP

+.
As a slice, we present complete dependency information from aggregate

changes to elementary changes by a logic formula over change terms which is
calculated by appending new clauses in the form of (ground) change terms along
specific matches s while traversing the Rete network from production nodes to
input nodes. This slice is informally calculated as follows:

– The input of slicing is the appearance of a new match s in M or the disappear-
ance of an existing match s in M at a production node P , which is a ground
term [[nP

+〈V k〉]]M,Δ
s or [[nP

−〈V k〉]]M,Δ
s appended to the slice.

– For each ground term appended to the slice, we calculate what changes are
necessitated at their parent Rete nodes, and append those potential changes to
the slices one by one. Formulas are calculated in correspondence with Table 5
for the Rete nodes.

• For instance, when a match of a join node disappears (see Join in
Table 5(b) then at least one of the corresponding partial matches of its
parent nodes need to be removed, captured in the slice by the change
terms [[n1

−〈V i〉]]M,Δ
s and [[n2

−〈V j〉]]M,Δ
s as disjunctive branches.

• When a new match of a join node appears (see Join in Table 5(a) then we
add new matches to one or both parent nodes n1, n2 which is compliant
with the match of the join node.

– Special care needs to be taken for projection and anti-join nodes which may
need to fabricate new entities (identifiers) to create ground terms for unbound
variables.

– As a base case of this recursive definition, we stop when
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• elementary changes of input nodes are reached (first two lines in Table 5a
and b), or

• a match already existing in the cache of a Rete node is to be added by a
change (see Table 5(c)), or

• when the deletion of a match is prescribed by a change which does not
exist in M (see Table 5(c)).

Definition 10 (Rete Slice). The slice of a change predicate n+(t) or n−(t)
starting from a node n in a Rete network R over model M and along substitution
s is a formula (derived in disjunctive normal form in our case) calculated in
accordance with Table 5. ��

Example 4. Figure 4 depicts the sliced Rete network of the faulty version of the
Different State Machines pattern. The only difference in its network (as opposed
to the Rete network of the correct pattern in Fig. 3a) uses a join node instead
of an anti-join node as a production node.

The slicing starts with noticing an undesired tuple where the variable to
equals to the state S12. At this point, we can ask the slicer how to remove this
undesired tuple by calculating the slice of the change predicate n6

��
−〈 , , , S12〉.

1. The memory of node n6 is checked for tuples matching the input predicate; a
single tuple n6

��
−〈SM1, T I, S11, S12〉 is found and added to the slice formula.

2. To remove the element from the output of the join node, following Table 5b
the corresponding input tuples are to be removed from one of its parents. In
this case, the node n5

��
−〈SM11, T I, S11, S12〉 is added to the formula.

3. The first parent node n4
��
−〈TI, S11, S12〉 is selected and added to the formula.

4. n3
R
−〈TI, S12〉 is selected as the dependency to remove, and added to the for-

mula. At this point, an input node is reached so the recursion terminates.
5. However, we have to backtrack to node n4, and evaluate the second case for

the join node by adding n2
R
−〈TI, S11〉 to a second branch of the formula.

6. Similarly, n1
R
−〈SM1, S12〉 and n1

R
−〈SM1, S11〉 are added to new branches.

The final formula looks as follows:

[[n6
��
− 〈v1, v2, v3, v4〉]]M{v4 �→S12} =

(
n3

R
−〈TI, S12〉 ∧ n4

��
− 〈TI, S11, S12〉 ∧ n5

��
− 〈SM11, T I, S11, S12〉 ∧ n6

��
− 〈SM1, T I, S11, S12〉

)
∨

(
n2

R
−〈TI, S11〉 ∧ n4

��
− 〈TI, S11, S12〉 ∧ n5

��
− 〈SM11, T I, S11, S12〉 ∧ n6

��
− 〈SM1, T I, S11, S12〉

)
∨

(
n1

R
−〈SM1, S12〉 ∧ n5

��
− 〈SM11, T I, S11, S12〉 ∧ n6

��
− 〈SM1, T I, S11, S12〉

)
∨

(
n1

R
−〈SM1, S11〉 ∧ n6

��
− 〈SM1, T I, S11, S12〉

)

��
Although the formula refers to all nodes of the Rete network, the slice

describes a reduced model: (1) the model element tuples unrelated to the crite-
ria are not included, and (2) the tuples in a single disjunctive branch describe
a possible series of operations that would result in a tuple matching the input
predicate to appear or disappear.
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Table 5. Definition of slices for Rete networks of graph patterns
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5 Related Work

Traditional program slicing techniques have been regularly and exhaustively sur-
veyed in the past in papers like [16,17]. The current paper focuses on model
transformation slicing [9–11], more specifically on incremental model queries.
The main difference with respect to traditional approaches is that query slicing
has to consider the specification and the model simultaneously.

Slicing of Declarative Programs. The closest related work addresses the slic-
ing of logic programs as declarative graph patterns [5,18] share certain similari-
ties with logic programs. Forward slicing of Prolog programs are discussed in [19]
based on partial evaluation, while [20] executes static and dynamic slicing of logic
programs based on the procedural behaviour of the programs. [21] augments the
data flow analysis with control-flow dependencies in order to identify the source of
a bug included in a logic program and was extended in [22] to the slicing of con-
straint logic programs (with fixed domains). Program slicing for the Alloy language
was proposed in [23] as a novel optimization strategy to improve the verification of
Alloy specifications. Our conceptual extension to these existing slicing techniques
is the incorporation of model elements into the slices.

Slicing Queries over Databases. In the context of databases and data ware-
housing, related approaches called data lineage tracing [24] or data provenance
problem [25] aim to explain why a selected record exists in a materialized view.
These approaches focus on identifying the records of the original tables that
contribute to a selected record, and expect the queries be correct. A further dif-
ference to our contribution is that storing partial results in a data warehousing
context can be impractical due to high (memory) costs while in case of the Rete
algorithm, these partial results are already cached to be available for slicing.

Model Slicing. Model slicing [26] techniques have already been successfully
applied in the context of MDD. Slicing was proposed for model reduction purposes
in [27,28] to make the following automated verification phase more efficient.

Lano et. al. [29] exploits both declarative elements (like pre- and postcondi-
tions of methods) and imperative elements (state machines) to construct UML
model slices by using model transformations. The slicing of finite state machines
in a UML context was studied by Tratt [30], especially, to identify control depen-
dence. A similar study was also executed for extended finite state machines
in [31]. A dynamic slicing technique for UML architectural models is introduced
in [32] using model dependence graphs to compute dynamic slices based on the
structural and behavioral (interactions only) UML models.

Metamodel pruning [33] can also be interpreted as a slicing problem where the
effective metamodel is automatically derived as a view. Moreover, model slicing is
used in [34] to modularize the UML metamodel into a set of small metamodels
for each UML diagram type. Various model slicing techniques are merged by
Blouin et al. [35] into a single, generative framework, using different approaches
for different models. Still, none of the existing model slicing approaches address
the slicing of model queries, the main focus of our work.
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Model Transformation Debugging. Slicing can be beneficial for debugging
model transformations. The authors of [36] propose a dynamic tainting tech-
nique for debugging failures of model transformations, and propose automated
techniques to repair input model faults [37]. Colored Petri nets are used for
underlying formal support for debugging transformations in [38]. The debugging
of triple graph grammar transformations is discussed in [39], which envisions the
future use of slicing techniques in the context of model transformations.

6 Conclusion and Future Work

In this paper, we defined a dynamic slicing technique for Rete networks derived
from graph patterns. As a slicing criterion, the appearance of a new match or the
disappearance of an existing match is selected in a production node of the Rete
network. Since a Rete network also caches partial matches, it is possible to follow
match dependencies step by step back to the input nodes storing elementary
graph nodes and edges. Such dependencies constitute the slice is captured as
formulas over terms of a change algebra. As the main contribution, we provided a
formal slicing technique for Rete networks of graph patterns constituted from the
most frequently used language elements of the EMF-IncQuery framework. Our
slicing technique was illustrated on a running example of UML state machines.

In the future, we plan to integrate this slicing approach into EMF-IncQuery
[3] in order to use it for various tasks, such as presenting this slice together
with the Rete networks graphically, easing the debugging of erroneous model
queries. Furthermore, the approach seems promising for declarative bidirectional
view model synchronization well, as it enables calculating possible source model
changes for view model changes automatically.

Acknowledgements. The authors would like to thank István Ráth for the valuable
discussions during the preparation of this paper.
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10. Clarisó, R., Cabot, J., Guerra, E., de Lara, J.: Backwards reasoning for model
transformations: method and applications. J. Syst. Softw. 116, 113–132 (2016).
http://www.sciencedirect.com/science/article/pii/S0164121215001788

11. Burgueno, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault localization in
model transformations. IEEE Trans. Softw. Eng. 41(5), 490–506 (2015)

12. Bergmann, G.: Incremental model queries in model-driven design. Ph.D. disserta-
tion, Budapest University of Technology and Economics, Budapest (2013)

13. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

14. The JBoss Project: Drools - The Business Logic integration Platform (2014).
http://www.jboss.org/drools

15. Ghamarian, A., Jalali, A., Rensink, A.: Incremental pattern matching in graph-
based state space exploration. Electron. Commun. EASST 32 (2011)

16. Tip, F.: A survey of program slicing techniques. J. Program. Lang. 3(3), 121–189
(1995)

17. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
ACM SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)
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Abstract. The interest for graph databases has increased in the recent
years. Several variants of graph query languages exist – from low-
level programming interfaces to high-level, declarative languages. In this
paper, we describe a novel SQL-based language for modeling high-level
graph queries. Our approach is based on graph pattern matching con-
cepts, specifically nested graph conditions with distance constraints, as
well as graph algorithms for calculating nested projections, shortest paths
and connected components. Extending SQL with graph concepts enables
the reuse of syntax elements for arithmetic expressions, aggregates, sort-
ing and limits, and the combination of graph and relational queries. We
evaluate the language concepts and our experimental SAP HANA Graph
Scale-Out Extension (GSE) prototype (This paper is not official SAP
communication material. It discusses a research-only prototype, not an
existing or future SAP product. Any business decisions made concerning
SAP products should be based on official SAP communication material.)
using the LDBC Social Network Benchmark. In this work we consider
only complex read-only queries, but the presented language paves the
way for a SQL-based graph manipulation language formally based on
graph transformations.

1 Introduction

In contrast to relational database management systems, graph databases employ
dedicated data structures and algorithms tailored for analytical and transac-
tional graph processing. Current applications in the domains of social network
analysis (e.g., Facebook, LinkedIn), business network analysis (e.g., Ebay, SAP
Ariba) and knowledge graphs (e.g., Google Search, Microsoft Office) show that
there is a high demand for efficient reasoning on large-scale graph data. There
exist a number of low-level graph programming models, the most prominent
being Bulk Synchronous Parallel [16]. However, in the context of enterprise appli-
cations there is a need for high-level, declarative graph query languages that
enable complex analysis scenarios. While SQL is the accepted standard query
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language in the world of relational databases, there currently is no consensus on
a standard for a general-purpose graph query language.

OpenCypher [10] is an initiative by the inventors of the Neo4j graph database
to define a common graph query language based on their Cypher language. For
historical reasons, many companies today use Cypher. However, the language in
its current form is ad hoc and lacks tool support by other vendors. SPARQL [18]
is the standard query language in the semantic web domain. While it supports
graph query concepts, it is geared into the triple store (subject-predicate-object)
concept of the Resource Description Framework (RDF). General graph analysis
applications may be encoded in SPARQL/RDF, but due the dedicated focus on
the semantic web domain, there is a limit for applications with a different scope.

SQL is widely accepted as the standard query language for relational database
systems. While extensions for hierarchical [2], geospatial [15] and time series data
exist, graph queries have not been considered in the past. Reasons may be the
complexity of graph queries (graph pattern matching, path expressions etc.) and
too much focus on methods for encoding graph data in relational database tables.
Moreover, specifying graph queries directly in SQL is cumbersome and often leads
to inefficient query executions. Particularly graph pattern matching and transitive
closures usually require dedicated graph query languages and engines.

In this paper, we propose a novel, high-level graph query language that is
based on SQL. We build on the syntax and semantics of SQL, transfer its query
concepts into the realm of graph databases, and extend them with dedicated
graph features. In particular, our language supports graph pattern matching
with nested graph conditions [3,7], expressions for traversing paths of fixed
length, calculation of transitive closures and definition of distance constraints
between matched nodes. The pattern matching is in general non-injective, but it
can be customized by adding injectivity constraints for pairs of node variables.
Moreover, dedicated functions for computing shortest paths and connected com-
ponents are included. The general structure of queries follows the one of SQL.
The syntax for arithmetic expressions, aggregates, sorting, limits etc. can be
reused entirely. Since the result of graph queries are tables, they can be embed-
ded as subqueries in standard relational SQL queries, thereby enabling a smooth
integration with relational and other types of engines in heterogeneous database
management systems. For instance, when agreeing on SQL as common base
language, graph queries could be combined with relational, geospatial or even
time series queries. Although the engine implementations are typically sepa-
rate, a common base language enables the usage of a common query processing
infrastructure including parsing, plan generation and query optimization.

We provide an execution engine for the proposed language, referred to as
the SAP HANA Graph Scale-Out Extension (GSE) prototype in the rest of this
paper. To achieve a high query performance, our engine uses optimized graph
data structures instead of relational tables. We evaluate the expressive power of
our query language and the performance of the GSE implementation using the
LDBC Social Network Benchmark [4]. We focus in this paper on complex, read-
only queries. However, our query language lays the foundation for an SQL-based
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graph manipulation language based on the theory of graph transformations.
Therefore, it paves the way for transferring formal methods, such as critical pair
analysis for confluence checking [8], into the graph database realm.

Organization: Sect. 2 first gives an overview of the graph model we use. It then
discusses graph pattern matching with nested formulas and subsequent relational
evaluation. Section 3 introduces our SQL-based graph query language. Section 4
provides an evaluation of the GSE implementation based on an LDBC bench-
mark. Section 5 gives an overview of related work. Section 6 contains conclusions
and future work.

2 Graph Pattern Matching with Relational Evaluation

In this section, we present the models and concepts that form the foundation of
our query language and engine.

2.1 Graph Model

We consider directed and undirected graphs with typed nodes, typed edges and
typed node properties. Each of these types has a fixed value range which is part
of the graph definition. Figure 1 shows the corresponding graph model.

Node

type : NodeType
id : NodeId

Edge

type : EdgeType
target : NodeId

Property

type : PropertyType
value : DataValue

0..*edges0..*properties

UndirectedGraph InverseEdgesGraph

DoublyLinkedGraph

Graph 0..*

nodes

Fig. 1. Typed graph model with node properties and inverse edges

Every node has a unique numeric ID, a list of properties, and a list of edges. A
property has a primitive data value of a data type derived from the property type
(e.g., string, integer, float). The value of a property can be NULL independently
of its data type. We consider the ID and the type of a node as special properties
with the respective property types NODEID and NODETYPE.

An edge identifies its target node by its ID. Every node can have at most one
edge of the same type and with the same target, i.e., parallel edges of the same
type are not allowed. However, edges may target their source node (loops).
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In a doubly linked graph, every edge has a corresponding edge with swapped
source and target nodes. This corresponding edge either has the same type as
the original edge or an implicitly defined inverse edge type. In the first case, the
graph is undirected. In the second case, it is an inverse edge graph where all
edges of regular type are outgoing and all edges of inverse type are incoming.

Our graph model deliberately omits edge properties (e.g., edge weights). This
design choice enables an efficient implementation, particularly in a distributed
setting. The resulting restriction can be overcome by modeling edges with prop-
erties by auxiliary edge nodes with one incoming and one outgoing edge.

2.2 Graph Pattern Matching

In graph pattern matching, the task is to find all matches between a set of
pattern variables and the nodes of a target graph that satisfy a set of conditions.
Figure 2 shows our graph pattern model and Fig. 3 a basic example pattern.

Pattern

FormulaPredicate

compareType : ( = | <> | < | > | <= | >= | LIKE )

Expression

0..1formula

children

0..*

predicates 0..*

1

patternGraph
1

graph

CompositeFormula

operator : ( AND | OR | NOT )

ExistsFormula
1right1left

Fig. 2. Pattern model with predicates and nested graph constraints

:Pattern :Graphgraph

s:Node

id = 1
type = "PERSON"

m:Node

id = 2
type = "POST"

nodes

:Edge

type = "HASCREATOR"
target = 1

edges

Fig. 3. Basic graph pattern consisting only of a pattern graph with two typed nodes
and a typed edge between these nodes
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A pattern consists of a pattern graph, a set of predicates, and an optional
nested formula. The predicates and the formula are defined over a set of pattern
variables that represent the pattern nodes, i.e., the nodes of the pattern graph.

A match of a pattern with respect to a given target graph is a map of the
pattern variables to nodes of the target graph (called the target nodes of the
match), such that (i) each pattern node is matched to a target node of the same
type, (ii) each pattern edge is matched to a target edge of the same type, (iii) all
predicates are satisfied, and (iv) the logical formula is satisfied.

Formally, conditions (i) and (ii) describe a typed graph homomorphism from
the pattern graph into the target graph. In general, this graph homomorphism
does not have to be injective. Instead, predicates comparing the IDs of the
pattern nodes can be used to guarantee that pattern nodes are matched to
different target nodes. The same approach is used to assure that a certain set of
target nodes is matched only once if the pattern graph has symmetries.

In order to be able to omit the type constraint from conditions (i) and (ii),
we add the implicitly defined type ANY to the lists of node types and edge types
of the pattern graph. Thus, if a pattern node or edge has the type ANY, it can
be matched to any target node or edge, respectively.

A predicate is a binary comparison between two expressions. Figure 4 depicts
how we model expressions. Expressions are defined over the pattern variables
and, given a potential match, evaluate to primitive data values. Literals sim-
ply evaluate to their constant value. Arithmetic expressions and functions are
evaluated recursively, i.e., after evaluating their arguments they are evaluated
as expressions over primitive data values.

Expression

Path CompositeExpression

0..*

children

ArithmeticExpression

Literal

Function

PathElement

PathEdge

type : EdgeType

PathProperty

type : PropertyType

start : NodeId
1..*

elements

1..*

elements

value : DataValue

operator : ( + | - | * | / )
flags : String[]
functionName : String

Fig. 4. Expression model

Path expressions form the link between the pattern variables and the prop-
erties of the target nodes. In their most basic form, paths consist of a pattern
variable (given by the start node ID) and a property type (given by a path prop-
erty). Such a path is called a node property path and evaluates to the property
value with the given type of the target node matched to the given variable. All
path expressions that occur in a graph pattern have to be node property paths.
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This does not restrict the expressive power of the model, since complex path con-
ditions can be expressed in the graph part of the pattern and by nested formulas.
We discuss the evaluation of more complex paths in the next section where expres-
sions containing such paths are introduced.

Note that we may access the ID of a target node and use it in other expres-
sions, most notably functions. Such functions are called graph functions and are
parametrized by optional function flags (see Table 1). They have access to the
complete target graph, allowing them to explore the neighborhood of a node
(e.g., to calculate degrees) as well as to traverse the global graph structure
(e.g., to compute distances, shortest paths, and connected components).

Table 1. Summary of currently supported graph functions

Function Args Flag Result

DEGREE 1 Degree of argument node

IN Compute in-degree

OUT Compute out-degree (default)

INOUT Compute in-degree + out-degree

DISTANCE 2 Node distance (NULL if unconnected)

SHORTEST PATH 2 Shortest paths sub-graph (as JSON)

DIRECTED Traverse edges regularly (default)

UNDIRECTED Traverse edges in both directions

INVERSE Traverse edges in inverse direction

CONNECTED COMPONENT 1 Id of node’s connected component

STRONG Assume strong connectivity (default)

WEAK Assume weak connectivity

All graph functions: EDGETYPE type Edge type restriction (default: ANY)

Formulas are used to model nested graph conditions. They are either compos-
ite (a logical operator) or an existential quantification of a nested graph pattern.
Note that this is a recursive tree structure which terminates at patterns. There
is an implicit mapping of the nodes of a pattern graph into its child pattern
graphs given by their node IDs, which for every match of the parent pattern
graph induces a pre-match of the child pattern graph.

2.3 Graph-Relational Evaluation and Nested Paths

The result of the graph pattern matching described in the previous section is a
list of matches from the pattern variables to nodes in the target graph. Based
on a feature list, graph-relational evaluation computes a table of primitive data
values from these matches. A feature is an expression as defined in the previous
section. Thus, given a list of features and a list of matches, we can compute
a table where each column corresponds to a feature. For each match, we cre-
ate a row in the table by evaluating the feature expressions over the match.
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In the following, we extend this concept by introducing expressions that do not
evaluate to single values but rather to lists of data value tuples.

In the previous section, we introduced the concept of node property paths
which evaluate to a single value. Now we extend this notion to nested projection
paths which we specify in Fig. 4. Such a nested projection path describes a nested
traversal of the target graph and evaluates to a list of property value tuples. For
this, path elements are recursively evaluated. Unlike for composite expressions,
this evaluation is carried out top down. This means that the parent path element
is evaluated first and then passes a target node as an argument to its children.

For example, consider the nested projection path depicted in Fig. 5. It con-
sists of an edge followed by at nested projection to a property and a subpath
formed by a second edge and another property. If the pattern variable (start)
is matched to a node representing a person, the path evaluation traverses all
outgoing WORKSAT edges to find all companies the person worked for. For
every company and each location of the company, the evaluation creates a pair
of the company name and the location name. Each company generates at least
one pair, even if it has no ISLOCATEDIN edge. Likewise, the whole traversal
generates at least one pair, even if the person has no outgoing WORKSAT edge
(the NULL pair).

Fig. 5. Example of a nested projection path.

In the following, we discuss nested path expressions in detail, beginning with
basic traversal paths. A traversal path expression consists of a pattern variable
(start) and a sequence of path edges followed by a path property. When evalu-
ated, the path expression first determines the target node matched to its variable
and passes it as argument to the first path edge. Every subsequent path edge is
evaluated by traversing all edges of its argument node that match its type. For
each of these traversed edges, the end-node is passed as argument to the next
path edge in the sequence.

The recursion terminates at a path property or if the argument target node of
a path edge does not have any edges of the respective type. In the first case, the
result is the respective property of the target node that was passed as argument.
In the second case, the path expression returns a set containing a single NULL
value. From a relational perspective, a traversal path expresses a left outer join
over the edge relation. From a graph-theoretic perspective, it expresses a path
traversal of the target graph starting at the start node of the path expression
and using the edge types defined by the path edges. The result is the list of
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property values of the traversal path end-nodes specified by the property type
of the path property.

If one or more of the expressions forming a feature list contains a traversal
path, the one-to-one correspondence between matches and rows of the result
table becomes a one-to-many correspondence. When evaluating the feature list
for a particular match, we first evaluate all traversal path expressions. Next,
we create the cross product of the data value lists that result from the path
traversals. Finally, we create a row in the result table for every tuple in the cross
product. For this, we first replace all traversal paths in the feature expressions by
the corresponding cross product tuple element. Then we evaluate this modified
feature list for the current match.

In addition to traversal paths, we also define nested projection paths. A nested
projection path expression and its path edges may have more than one child
path elements. In this case, the result is a list of tuples which is derived by
evaluating all child elements and creating the cross product of their result lists.
Note that the result lists of the child elements may already be tuple lists. In
this case we stay in line with relational algebra and treat the tuples as shallow,
i.e., concatenate the tuples when creating the cross product (in contrast to cre-

Table 2. Notation used to specify the syntax of our query language

Construct Notation Comments

Grammar rule rule Grammar rules use lowercase letters and
underscores

Definition = Definitions are represented by a single equal
signs

Alternation ...|... Alternatives are separated using vertical bars

Grouping (...) Grouping is represented by enclosing
parentheses

Option [...] Optional parts are represented by enclosing
square brackets

Repetition ...* Zero or more repetitions are indicated by the
suffix *

Terminal symbol KEYWORD Language keywords are written in uppercase
letters

Terminal character "." Single-character language symbols are set in
double quotes

Terminal literal literal Literals represent typed string and numerical
constants

Terminal identifier identifier::id Identifiers are indicated by the suffix ::id

List abbreviation rule::list Comma-separated lists are abbreviated by the
suffix ::list.list rule = rule (","rule

)*
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ating tuples of tuples). From a relational perspective, a nested path expresses a
cross join over its child elements. From a graph-theoretic perspective, it expresses
a tree traversal of the target graph.

During evaluation, nested projection paths are treated like traversal paths,
i.e., the result lists of the nested projection paths become part of the cross
product created over the result lists of the traversal paths. However, a feature
represented by a nested projection path expression corresponds to several table
columns, one for every element in the result tuples of the nested projection
path. A nested projection paths may appear as a subexpression of a compound
expression (e.g., a function). The compound expression is evaluated for each
tuple generated by the nested path expression.

3 Graph Query Language

The syntax and semantics of our graph query language is described in this
section. It is closely aligned with the SQL standard. It uses, where possible,
SQL syntax and extends it with graph-specific features. Some of these exten-
sions can be also found in a similar form in the query language of SAP HANA
Core Data Services (CDS) [14]. We discuss three complex example queries in
Sect. 4.

To specify the syntax of our query language, we use the notation defined in
Table 2 which is inspired by the Extended Backus-Naur Form (EBNF). For the
sake of brevity, we consider identifiers and literals as additional syntax terminals
beside the traditional syntax terminals.

Listing 1.1. Overview of graph query syntax

query = SELECT ( "*"| feature ::list ) FROM variable ::list
[ USING GRAPH graph::id ] [ WHERE condition ]
[ GROUP BY expression ::list ] [ ORDER BY expression ::list ]
[ LIMIT literal ]

feature = expression [ AS expression_alias ::id ]
variable = node_type ::id [ [ AS ] variable_alias ::id ]

condition = formula | predicate | ( path IN path )

formula = ( "("condition ( AND | OR ) condition ")")
| ( "("NOT condition ")")
| ( EXISTS variable ::list WHERE "("condition ")")

predicate = ( expression comparator expression ) | ( path IS [ NOT ] NULL )
comparator = "="| "<>"| "<"| ">"| " <="| " >="| LIKE

expression = literal | arithmetic | function | path
arithmetic = "("expression ( "+"| "-"| "*"| "/") expression ")"

| "(""-"expression ")"
function = function_name "("flag::id* expression ::list ")"

path = variable ::id [ projection ]
projection = "."element | ( ".""{"element ::list "}" )
element = property ::id | ( edge_type ::id [ projection ] )

3.1 Query Structure

A graph query is a read-only operation that performs graph pattern matching
on a given target graph followed by relational evaluation to generate a primitive-
typed result table. This table can be subsequently consumed by other relational



162 C. Krause et al.

operators. Therefore, graph queries can in principle be embedded in and com-
bined with standard SQL queries. Syntactically, graph queries follow closely the
structure of SELECT statements in SQL. Listing 1.1 summarizes the syntax def-
inition of our graph query language.

The query language syntax provides a clear separation between the graph pat-
tern matching and the graph-relational evaluation. This is achieved by defining
each operation in different clauses (with the only overlap of the variable definition
in the FROM clause). The pattern matching is defined by the FROM, USING
GRAPH, and WHERE clauses, whereas the relational evaluation is defined by
the SELECT, FROM, GROUP BY, ORDER BY, and LIMIT clauses.

The following query finds all matches to the graph pattern shown in Fig. 3:

1 SELECT s.ID, m.CONTENT , s.WORKSAT .{NAME ,ISLOCATEDIN.NAME} AS COMPANY
2 FROM PERSON s, POST m
3 WHERE s IN m.HASCREATOR

It then evaluates for each matched person and post the nested projection path
depicted in Fig. 5. Each matched person and post together with a traversed
company and location produce a row in the result table, containing the respective
properties.

3.2 Pattern Matching

As discussed in Sect. 2.2, in graph pattern matching we compute all matches
from the node variables of a graph pattern to the nodes of a target graph that
satisfy the conditions of a given graph pattern.

The USING GRAPH clause of a graph query identifies the target graph by
its name. Thus, multiple graphs stored in a graph database can be distinguished.

The variables in the FROM clause consist of a node type and a variable
alias. Although syntactically similar to standard SQL, the semantics of these
variables differs from relational queries. In a graph query, the variables represent
the pattern variables introduced in Sect. 2.2. During the graph pattern matching,
these variables are matched to nodes in the target graph rather than to relational
tuples. Moreover, the node type of a variable declaration is already part of the
graph pattern and defines the type of the corresponding pattern node.

The main part of the graph pattern is defined in the condition part of the
WHERE clause. The syntax of formulas, predicates, expressions, and paths
directly translates to the corresponding models discussed in Sect. 2.2.

Semantically, only paths differ from standard SQL, since they are defined over
pattern variables and not over relational variables. Note that not all syntactically
correct paths are admitted at every position in a graph query. Depending on
whether the position allows for one result or a result list and for a single value
or a tuple, traversals and nested projections may be forbidden. Moreover, the
end-property of a path is optional and defaults to NODEID.

The main difference between standard SQL conditions and graph query con-
ditions is the syntax and semantics of the IN keyword. In an IN condition, the
path before the IN keyword must be a node property path. The path after the IN
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keyword has to be a traversal path. Semantically, the IN conditions are mainly
used to define the edges and the edge types of the pattern graph.

3.3 Relational Evaluation

The relational part of a graph query is defined by the SELECT, FROM, GROUP
BY, ORDER BY, and LIMIT clauses. The optional GROUP BY, ORDER BY,
and LIMIT clauses of a graph-relational evaluation follow the standard SQL syn-
tax and semantics (see Listing 1.1), generating tables as result of graph queries.

The graph-specific part of the relational evaluation is defined in the SELECT
and FROM clauses. In the previous section, we already discussed the FROM
clause and established that semantically it defines the pattern variables. The fea-
ture list syntax directly reflects and maps to the concepts introduced in Sect. 2.3.
There, we already discussed in detail the evaluation of feature lists, including
the implicit cross-join introduced by traversal paths and nested paths.

We also allow the SELECT * syntax known from standard SQL. In a graph
query, the star symbol is expanded to a feature list which contains a nested
projection path x.{NODEID, NODTYPE, P1,..., Pk} for every variable x in the
FROM clause, where P1,..., Pk are all property types for which at least one
node of the variable’s type has a non-NULL value.

Besides the graph functions defined in Table 1, function expressions can also
be classical SQL aggregates such as COUNT or AVG and arithmetic functions
such as ABS or MOD. Since the result of the graph-relational evaluation is a
table, the semantics of aggregates (in particular in conjunction with a GROUP
BY clause) carries over from standard relational queries.

4 Evaluation

In this section, we evaluate our graph query language and the GSE prototype
engine implementation using the LDBC Social Network Benchmark.

4.1 Implementation

In the following we give an overview of the GSE prototype implementation of a
graph query engine that supports major parts of our query language.

The high-level architecture of the GSE is shown in Technical Architecture
Modeling notation in Fig. 6. Application development is supported via a high-
level programming API (C/C++, Java) and a Neo4j-compatible REST-API. An
additional connector provides an integration with SAP HANA Vora [5] – a scale-
out extension of SAP HANA for massively parallel data processing integrating
with the Hadoop framework.

The core of the graph engine uses a distributed in-memory graph store which
implements the graph model shown in Fig. 1. Data adapters enable the loading
and saving of graph data from (distributed) file systems such as HDFS, and
relational tables in SAP HANA/SAP HANA Vora.
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Fig. 6. High-level GSE architecture

The query engine parses textual queries as described in Sect. 3, translates
them to pattern models (Fig. 2) and uses the pattern matcher and graph algo-
rithm implementations to execute queries (see Table 1 for supported graph func-
tions). The query execution and pattern matching are then parallelized and dis-
tributed across a cluster. The pattern matching engine is based on an encoding
into a constraint satisfaction problem [13].

4.2 LDBC Social Network Benchmark

The Linked Data Benchmark Council (LDBC) is a non-profit organization defin-
ing benchmarks for graph data management software. We use here the Social
Network Benchmark (SNB), specifically the Interactive Workload [4], consist-
ing of 29 queries which are split into three categories: complex read, short read
and update queries. This benchmark includes different “choke points” for query
engines, such as aggregation performance and data access locality. Graphs to run
this workload against can be generated with the help of a given data generator,
which produces a social network graphs of a given scale factor.

4.3 Complex Read Queries

There are 14 complex read queries in the LDBC Social Network Benchmark. Out
of these, 13 can be represented in our graph query language. Figure 7 shows three
selected queries including informal descriptions and graphical representations of
their respective pattern graphs.

In Query 9, the implicitly defined node type ANY (line 4) is used in combi-
nation with NODETYPE (lines 7–8) enabling a simple kind of node type inher-
itance. The predicate involving the DISTANCE-function (line 9) ensures that
the two PERSON nodes are connected by a KNOWS-path of length at most 2.
Note that the :KNOWS[1..2]-path in the graphical notation refers to the length
of a shortest path between the two matched nodes. The predicate s<>p is used
to selectively ensure injective matching of the two PERSON nodes.

Query 5 consists of a cyclic pattern graph. This query is also an example of a
conversion of edges with attributes to nodes and node properties (see Sect. 2.1).
The original edge HASMEMBER from PERSON to FORUM is modeled as
a node of type HASMEMBER, which contains all properties of the original
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Fig. 7. Selected queries of the LDBC Social Network Benchmark
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edge. Two auxiliary edges of types HASMEMBER IN and HASMEMBER OUT
connect the new node with the source and target nodes. Note that our Query 5
slightly differs from the original SNB query. Specifically, our query is missing an
optional match part which is currently not implemented in GSE.

Query 4 exhibits the usage of subpatterns with the help of the EXISTS-
keyword (lines 9–15). In particular, it is combined with NOT to specify a negated
graph condition. Note that graph conditions can in general be nested and com-
bined using Boolean operators.

4.4 Performance

For performance evaluation, we use generated LDBC data of scale-factor 3, which
corresponds to a graph with 23.7M nodes and 84.8M edges. Minor adaptations
of the generated data include a conversion of string-based dates into integer-
encoded timestamps. We generate property indices for the property types ID,
NAME and FIRSTNAME. The benchmarks were executed on a 24-core Intel(R)
Xeon(R) X5650 workstation at 2.67 GHz and 96 GB main memory. The total
memory consumption of the LDBC graph at scale-factor 3 is 12.5 GB.

Our benchmark is implemented as a Java application using the Java APIs
of GSE and Neo4j. We use the Community Edition of Neo4j in version 2.3.0.
The Neo4j benchmark queries are taken from [11]. Both systems were bench-
marked independently from each other on the same machine, using the same
query parameters generated by the SNB data generation tool. The queries were
executed between 20 and 50 times, depending on query complexity. To warm up
both engines, all queries were executed with randomly chosen parameters before-
hand.

Out of the 14 SNB queries, 8 queries were implemented completely. For the
queries 1, 3 and 5, the GSE implementation is currently missing some function-
ality, specifically the addition of aggregates, nested projections, and optional
pattern nodes (which, if not regularly matched, still generate a match to an
implicitly defined null-vertex without any attributes). Therefore, we used slightly
altered versions of those queries for our benchmark. Theses changes were also
reflected in the respective Cypher queries to ensure comparability of the results.
For Query 7, GSE currently lacks support for the SQL CASE-keyword, for Query
10, a DISTINCT flag for COUNT and modulo-operation. Notice, that with the
exception of optional nodes, all missing implementation belongs to the relational
part of the query and does not represent limitations of the pattern model or the
query language. Optional nodes cannot be currently expressed in the query lan-
guage (but might be by implicitly adding a special null-vertex to every host
graph). Query 14 is the only query for which a major extension of our query
language is required, since it includes shortest paths weighted by sub-patterns.

Table 3 shows the query run-times of Neo4j and GSE in milliseconds and the
respective speed-up factors. GSE is faster for all implemented queries, staying
under the one-second mark for most of them. The long running queries, partic-
ularly Query 9, yield large match sets and result tables which need to be sorted.
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Our analysis shows that the pattern matching is efficient in these queries, but
the generation of the result table and its sorting requires most of the time.

Table 3. LDBC complex read benchmark: mean of runtimes in milliseconds and speed-
up factors. Queries marked with * include minor modifications.

Query 1* 2 3* 4 5* 6 8 9 11 12 13

Neo4j 7,041 2,122 5,496 12,262 10,074 44,625 161 405,457 197 5186 5

GSE 40 195 83 105 2,468 1,325 30 13,616 12 42 2

Speed-up 174 10 66 116 4 33 5 29 16 123 2

5 Related Work

SPARQL [18] supports graph pattern matching using an RDF-triple syntax, e.g.

PREFIX LDBC: <http :// ldbcounc i l . org / deve loper /snb>
SELECT ?m ?n WHERE { ?x LDBC:NAME ?m . ?x LDBC:KNOWS ?y . ?y LDBC:NAME ?n }

Note that both edges and primitive-valued properties are described using triples.
Conditions on properties are defined using FILTER, existential quantification
using EXISTS, and alternative patterns using the UNION keyword. Further-
more, optional patterns parts can be specified using the OPTIONAL keyword.

The openCypher [10] query language uses a different query structure, e.g.

MATCH (x:PERSON)-[:KNOWS]-(y:PERSON) RETURN x.NAME , y.NAME

Alternative pattern parts are defined using UNION and optional patterns using
OPTIONAL MATCH. There is no existential quantification of patterns but
negation and collections can be used to define more complex graph conditions.
Both the SPARQL and openCypher syntax make use of SQL-keywords. How-
ever, the general query structure is too specific to be integrated with SQL. In
contrast, our query language is closely aligned to the SQL standard and therefore
enables a smooth integration with relational database systems.

The Gremlin [12] language which is part of the Apache TinkerPop project
can be characterized as a functional embedded DSL for graph traversals.

A recent performance comparison of graph and relational databases is given
in [6]. The paper shows that state-of-the-art relational databases can compete
or even exceed the performance of graph databases in certain graph pattern
matching scenarios. However, the employed benchmark uses rather simple graph
patterns without additional (nested) graph conditions.

An encoding of graph transformation rules in SQL is presented in [17]. A
graphical syntax is used for modeling the graph transformation rules. In gen-
eral, except for the limitation of being read-only, our query language provides a
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number of features that are usually not found in graph transformations, such as
distance constraints, shortest paths, and relational operations including sorting,
limits and aggregations. Note also that graph transformations usually operate
on one match, whereas our approach always considers all matches.

6 Conclusions and Future Work

We presented a novel SQL-based graph query language supporting graph pat-
tern matching with nested graph conditions [7] and distance constraints, as well
as calculation of nested projections, shortest paths and connected components.
Since it is based on SQL, the syntax for arithmetic expressions, aggregations,
sorting etc. can be reused entirely, and graph queries can be embedded as sub-
queries in relational queries. We evaluated the language features and the GSE
prototype implementation using the LDBC Social Network Benchmark.

As future work, we plan to incorporate optional matching (see [10,18]) and
concepts for shortest paths weighted by sub-patterns as required in LDBC-SNB
Query 14. We further plan to define a SQL-based graph manipulation language
formally based on amalgamated graph transformations [1]. The planned graph
manipulation language will build on the pattern matching syntax proposed in
this paper and extend it to provide the same expressive power as graph trans-
formation rules. The syntax of FROM and WHERE clauses will be reused and
extended by an UPDATE clause for specifying created and deleted graph parts,
and updates of property values. Semantically, the relational evaluation will be
replaced by an amalgamated graph transformation step. The use of graph trans-
formations is potentially enabling formal analysis techniques, such as critical
pair analysis for confluence checking [8]. For the implementation, we plan to add
nested projections and optional matching to the GSE query engine, to incorpo-
rate Bulk Synchronous Parallel [9,16] for distributed graph algorithms, and to
compare the performance of our (distributed) engine with other graph database
engines such as Sparksee and Virtuoso.
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8. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-
formation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

9. Krause, C., Tichy, M., Giese, H.: Implementing graph transformations in the bulk
synchronous parallel model. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS).
LNCS, vol. 8411, pp. 325–339. Springer, Heidelberg (2014)

10. Neo Technology Inc., OpenCypher (2015). http://www.opencypher.org
11. Prat, A., Boncz, P., Larriba, J.L., Angles, R., Averbuch, A., Erling, O., Gubichev,
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Abstract. Graph queries have lately gained increased interest due to
application areas such as social networks, biological networks, or model
queries. For the relational database case the relational algebra and gen-
eralized discrimination networks have been studied to find appropri-
ate decompositions into subqueries and ordering of these subqueries for
query evaluation or incremental updates of queries. For graph database
queries however there is no formal underpinning yet that allows us to
find such suitable operationalizations. Consequently, we suggest a simple
operational concept for the decomposition of arbitrary complex queries
into simpler subqueries and the ordering of these subqueries in form of
generalized discrimination networks for graph queries inspired by the
relational case. The approach employs graph transformation rules for
the nodes of the network and thus we can employ the underlying theory.
We further show that the proposed generalized discrimination networks
have the same expressive power as nested graph conditions.

1 Introduction

The model of typed graphs and related graph queries to explore existing graphs
and their properties has lately gained increased importance due to application
areas of increasing relevance such as social networks, biological networks, and
model queries [14] and technologies like graph databases [2] or model-driven
development [4] where graphs rather than relations are the main characteristics
of the employed models and queries.

While the definition of typed graphs by means of schemas, metamodels, or
grammars is a formally well studied topic, there is yet no clear formal under-
pinning for graph queries concerning their specification as well as their opera-
tionalization (cf. [2,16]). For the operationalization of the query evaluation and
incremental query updates of relational queries the relational calculus [1] and
generalized discrimination networks (GDN) have been suggested (cf. [13]) as a
formal framework to study which decomposition into subqueries and ordering of
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Fig. 1. GDNs in form of a SGDN (a) and SGDTs (b)(c) for a social network query

these subqueries is most appropriate. As depicted in Fig. 1(a), in such a network
each node (numbered block) is responsible for evaluating a subquery and for
this purpose it may compose subquery evaluations of nodes it depends on. The
overall result is then the query evaluation of the terminal node. However, such
a formal framework does not exist for graph queries so far.

Consequently, inspired by the relational case we suggest motivated by our
practical work on view maintenance for graph databases [6] a simple operational
concept for the decomposition of arbitrary complex graph queries into a suitable
ordering of simpler subqueries in form of GDNs. Rather than considering one
particular kind of GDN with particular computation nodes, we suggest employ-
ing graph transformation (GT) rules for these computation nodes such that we
are also able to employ the well understood GT theory [9] as a basis. The basic
idea to define our notion of GDN related to GT systems is to employ extra
marking nodes and edges to encode the results of subqueries and specific graph
transformation rules to describe the propagation behavior of the network nodes
via creating and reading markings.

We study in this paper what are the core ingredients required to app-
roach graph query evaluation based on an operational specification using the
above-described GDNs while having the same expressiveness as declarative graph
queries based on nested graph conditions (NGC) [12]. The latter have the expres-
sive power of first order logic on graphs and constitute as such a natural formal
foundation for pattern-based graph queries.

We assume in the following that a graph query is characterized by a request
graph L delivering its answers in form of a set of matches for L into the queried
graph G fulfilling some additional properties as described in the graph query.1,2

Based on the answer set semantics we were able to establish equivalence of NGCs
with GDNs including different specific subsets such as so-called simple GDNs
(SGDNs), simple tree-like GDNs (SGDT), and minimal SGDTs (MSGDT). In

1 It is to be noted that a simple record as provided by an SQL-statement is also a
special form of graph where no links are included.

2 While in practice the requested number of answers is often limited to a fixed upper
bound of answers, for our more theoretical considerations in this paper, we can
assume w.l.o.g. that all matches of L for G that fulfill the additional properties that
must hold are building the correct set of answers.
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particular as depicted in Fig. 1(d), as a main result we established the equivalence
between NGCs and SGDNs and in addition showed that all GDN variants are
equally expressive.

The paper is structured as follows: We first introduce our running example as
well as the foundations concerning typed graphs, graph queries in their generic
form, NGCs, and GT in Sect. 2. Then, in Sect. 3 operational graph queries in
form of GDNs are defined and it is shown how to transform SGDNs into trees
(SGDTs). That SGDNs and declarative queries based on NGCs have the same
expressive power follows in Sect. 4 and we discuss the different variants of GDNs
concerning their expressiveness and applicability w.r.t. optimization and incre-
mental updates for graph queries in Sect. 5. Finally, we conclude the paper and
provide an outlook on planned future work.

2 Prerequisites

After outlining our running example, we will introduce typed graphs, based on
that a generic notion of graph query (language) together with the concept of
equivalence, the notion of graph conditions with arbitrary nesting level (NGCs),
and GT systems. Moreover, we introduce in particular the answer set of graph
queries based on NGCs.

Fig. 2. Excerpt of social network type graph and an example graph G

Example 1 (social network query). As running example we use a social network
model and a slightly adjusted graph query employed by the LDBC benchmark [8].
A class diagram outlining the possible graph models as well as an example graph to
apply the query are depicted in Fig. 2(a) resp. (b). The considered complex graph
query looks for pairs of Tags and Persons (1) such that the Tag is new in the Posts
by a friend of this Person. To be a Post of a friend, the Post must be from a second
Person the Person knows (1.2). In order to be new, the Tag must be linked in the
latest Post of the second Person (and thus in a Post that has no successor Post)
(1.2.1) and there has to be no former Post by any other or the same friend that is
not her last one and where the same Tag has been already used (1.1). In both cases
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only Tags that are not simply inherited from a linked Post should be considered
(1.1.1 and 1.2.2). Note that the employed numbering of the conditions relates to
the tree-like network depicted in Fig. 1(c). Occurrences for the positive sentences
(1) and (1.2) in the example graph are depicted accordingly as markers in form of
blue circles with the respective number in Fig. 2(b). The circular blue markers (1)
on the graph denote the occurrence of the request graph consisting of the person
s and tag t. Marker (1.2) denotes the extra condition that the searched tag t must
be attached (hasTag) to a post created by person p that is known by person s. Note
that the markers (1) denote the only correct answer for the query. Thereby the
required match for the positive subquery (1.2) depicted by the markers (1.2) is
such that indeed no match exists for the negative subsubqueries (1.2.1) and (1.2.2).
Furthermore, as required no match for the negative subquery (1.1) consistent with
(1) exists such that no match for the negative subsubquery (1.1.1) of (1.1) can be
found. Consequently, no match for (1.1) is visualized.

We briefly reintroduce the notion of typed graphs and graph morphisms [9].
A graph G = (GV , GE , sG, tG) consists of a set GV of nodes, a set GE of edges,
a source function sG : GE → GV , and a target function tG : GE → GV .
Given the graphs G = (GV , GE , sG, tG) and H = (HV ,HE , sH , tH), a graph
morphism f : G → H is a pair of mappings, fV : GV → HV , fE : GE → HE

such that fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE . A graph morphism
f : G → H is a monomorphism if fV and fE are injective mappings. Finally,
two graph morphisms m : H → G and m′ : H ′ → G are jointly epimorphic if
mV (HV ) ∪ m′V (H ′V ) = GV and mE(HE) ∪ m′E(H ′E) = GE . A type graph is
a distinguished graph TG = (TGV , TGE , sTG, tTG). TGV and TGE are called
the vertex and the edge type alphabets, respectively. A tuple (G, type) of a
graph G together with a graph morphism type : G → TG is then called a typed
graph. Given typed graphs GT

1 = (G1, type1) and GT
2 = (G2, type2), a typed

graph morphism f : GT
1 → GT

2 is a graph morphism f : G1 → G2 such that
type2 ◦ f = type1. We further denote the set of all graphs typed over some type
graph TG by L(TG).

An example for a typed graph G and the type graph TG related to the social
network query Example 1 are depicted in Fig. 2.

In the rest of the paper we will compare the answer sets of graph queries
to analyze them for equivalence. Since we will compare queries stemming from
different query languages, we introduce here a generic notion of query (language)
equivalence that we will refine in the rest of the paper to particular queries and
query languages. As the most generic form of a graph query language we just
assume that it consists of a set of graph queries, where each graph query is
characterized by a request graph L typed over some type graph TG. The query
then expresses some extra properties that need to hold for the request graph L
that is searched for in the queried graph G. The answer set for this query then
describes all matches of L in the queried graph that fulfill these extra properties.



174 T. Beyhl et al.

Definition 2 (graph query (language)). Given a type graph TG, then a
graph query is characterized by a so-called request graph L, which is a finite
graph typed over TG. A graph query language is a set of graph queries.

Definition 3 (answer set mapping, equivalence). Given some graph query
language L, an answer set mapping ans for L maps each pair (qL, G) with qL a
graph query in L with request graph L typed over TG and G a graph from L(TG)
to a set of graph morphisms typed over TG with domain L and co-domain G.

Given queries qL and q′
L for some request graph L typed over TG belonging

to the graph query languages L and L′ with answer set mappings ans and ans′,
resp., then qL and q′

L are equivalent if for every graph G in L(TG) it holds that
ans(qL, G) = ans′(q′

L, G). Two graph query languages L and L′ are equivalent if
for any query qL ∈ L for some request graph L there exists some query q′

L ∈ L′

for L such that qL ∼ q′
L and vice versa. We denote equivalence also with ∼.

We reintroduce the notion of nested graph conditions (NGC) from [12], since
they represent the declarative kind of graph queries that we will consider in
this paper. Given a finite graph L, a nested graph condition (NGC) over L is
defined inductively as follows: (1) true is a NGC over L. We say that true
has nesting level 0. (2) For every morphism a : L → L′ and NGC cL′ over a
finite graph L′ with nesting level n such that n ≥ 0, ∃(a, cL′) is a NGC over
L with nesting level n + 1. (3) Given NGCs over L, cL and c′

L, with nesting
level n and n′, respectively, ¬cL and cL ∧ c′

L are NGCs over L with nesting level
n and max(n, n′), respectively. We restrict ourselves to finite NGCs, i.e. each
conjunction of NGCs is finite. We define when a morphism q : L → G satisfies a
NGC cL over L inductively: (1) Every morphism q satisfies true. (2) A morphism
q satisfies ∃(a, cL′), denoted q |= ∃(a, cL′), if there exists a monomorphism q′ :
L′ → G such that q′ ◦ a = q and q′ |= cL′ . (3) A morphism q satisfies ¬cL if it
does not satisfy cL and satisfies ∧i∈IcL,i if it satisfies each cL,i (i ∈ I). Note that
false, ∨, and ⇒ can be mapped as usual to the introduced logical connectives.
Moreover we abbreviate ∃(∅ → L′, cL′) with ∃(L′, cL′), ∃(a, true) with ∃a and
∀(a, cL′) with ¬∃(a,¬cL′). NGCs can be equipped with typing over a given type
graph TG as usual [9] by adding typing morphisms from each graph to TG and
by requiring type-compatibility with respect to TG for each graph morphism.3

Definition 4 (LNGC , ansNGC). The graph query language LNGC is the set of
all NGCs. Given some NGC cL over L, L represents the so-called request graph.
The answer set mapping ansNGC for LNGC is given by

ansNGC(cL, G) = {q : L → G|q is a monomorphism and q |= cL}

with cL ∈ LNGC a NGC with L typed over some type graph TG and G in L(TG).

3 W.l.o.g. we restrict our notion of condition satisfaction to the existence of monomor-
phisms. In particular, in [12] it is shown how to translate conditions relying on gen-
eral morphism matching/satisfaction into equivalent conditions relying on monomor-
phism matching/satisfaction and the other way round.
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Fig. 3. Graphs for the NGC c1 and its subconditions (a) and the application condition
acL1 = ∃(L1 → P 1

1 ) ∧ �(L1 → N1
1 ) ∧ �(L1 → N1

2 ) (b) and simple marking rule
r1 = (L1 → R1, acL1) (c)

An example NGC for the social network query of Example 1, where the sub-
conditions refer to the introduced numbering, is the following: c1 = c1.1 ∧ c1.2
with c1.1 = ¬∃(n1.1 : L1 → L1.1, c1.1.1), c1.2 = ∃(p1.2 : L1 → L1.2, c1.2.1 ∧ c1.2.2),
c1.1.1 = ¬∃(n1.1.1 : L1.1 → L1.1.1, true), c1.2.1 = ¬∃(n1.2.1 : L1.2 → L1.2.1, true),
and c1.2.2 = ¬∃(n1.2.2 : L1.2 → L1.2.2, true). The graphs L1, L1.1, L1.1.1, and
L1.2 are depicted exemplarily (see [5] for the complete example) in Fig. 3(a).
Morphisms are implied by equally named objects.

As foundation for an operational graph query evaluation we will employ typed
GT systems with priorities. We start with reintroducing GT and thereby assume
the double-pushout approach (DPO) with injective matching and non-deleting
rules [9] with application conditions of arbitrary nesting level (AC) [12]. A plain
GT rule p : L → R is a graph monomorphism. We say that the graphs L and R
are the left-hand side (LHS) and right-hand side (RHS) of the rule, respectively.
A GT rule r = 〈p, acL〉 consists of a plain rule p : L → R and a so-called
application condition acL being a graph condition over L. If the application
condition acL = ∧i∈I∃pi ∧ ∧j∈J�nj , then we say that ∃pi or ¬∃nj is a positive
application condition (PACs) or negative application condition (NAC) over L,
respectively. A rule r is applicable to a graph G via a graph monomorphism
m : L → G if m |= acL. A direct GT via rule r = 〈p, acL〉 consists of a pushout
over p and m such that m |= acL. If there exists a direct transformation from
G to G′ via rule r and match m, we write G ⇒m,r G′. If we are only interested
in the rule r, we write G ⇒r G′. If a rule r in a set of rules R exists such that
there exists a direct transformation via rule r from G to G′, we write G ⇒R G′.
A GT, denoted as G0 ⇒∗ Gn, is a sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn of n ≥ 0
direct GT. GT rules and GTs can be equipped with typing over a given type
graph TG as usual [9] by adding typing morphisms from each graph to TG and
by requiring type-compatibility with respect to TG for each graph morphism.

An example for a GT rule with AC in the context of the social network
query of Example 1 is r1 = (L1 → R1, acL1) as depicted in Fig. 3(c) following the
compact notation where all graphs are embedded into a single one. In particular,
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acL1 = ∃(L1 → P 1
1 ) ∧ �(L1 → N1

1 ) ∧ �(L1 → N1
2 ) is depicted more precisely

in Fig. 3(b). ++ denotes elements that are created by the rule, the additional
(dashed) elements forbidden by a NAC are crossed out and the extra elements
required by a PAC are dashed as well. These crosses for NAC N1

1 are omitted
from the rule visualization in Fig. 3(c) as it equals R1

1. Note that we use in
this example in addition to the node types defined in the type graph depicted
in Fig. 2(a) (solid rectangles) already some additional marking node (dashed
circles) and edge types (dashed lines) that will be introduced later.

A graph transformation system (GTS) gts = (R,TG) consists of a set of
rules R typed over a type graph TG. If a rule r in R of gts exists such that
a direct transformation G ⇒r G′ via r exists, we also write G ⇒gts G′. If for
some graph G it holds that r is not applicable to G, then we write G �⇒r.
Moreover, if no rule in gts exists that is applicable to G, then we write G �⇒gts.
A GTS with priorities gtsp = ((R, TG), p) consists of a GTS (R, TG) and a
transitive and asymmetric relation p ⊂ R × R. We write G ⇒gtsp G′ if a rule r
in R of gtsp exists with a direct transformation G ⇒r G′ such that �r′ ∈ R :
(r, r′) ∈ p ∧ G ⇒r′ G′′. For a GTS with priorities gtsp and an initial graph G0

the set of reachable graphs REACH(gtsp, G0) is defined as {G | G0 ⇒∗
gtsp

G}
and the set of terminal reachable graphs TERM(gtsp, G0) is defined as {G|G ∈
REACH(gtsp, G0) : G �⇒gtsp}.

3 Generalized Discrimination Networks

In the following we introduce our suggestion for the operationalization of graph
queries employing generalized discrimination networks with computation nodes
based on GT rules.

Example 5 (GDN (informal)). A possible GDN for the social network query
Example 1 is depicted in Fig. 1(a). Node 1.1.1s and 1.2.2s produce their output
independently. Then, node 1.1s and 1.2s can compute the output depending on
the output of these two other nodes. Finally, the terminal node 1s can compute
its output based on the output of the nodes 1.1s and 1.2s. We further distinguish
in Fig. 1(a) positive and negated dependencies accordingly visualized by arrows
with a single solid line when representing a PAC (∃) and by arrows with a single
dashed line when representing a NAC (�).

Our queried graph G typed over TG will be marked with so-called marking
nodes and edges to keep track of (sub-)query answer sets. In particular, so-called
marking rules in a GDN will take care of that. A (simple) marking rule ri is a
restricted form of GT rule typed over a marking type graph TG′. The latter is
equal to TG but for each marking rule ri it is extended with a so-called marking
node type ti as well as an marking edge type tv per node v present in ri’s LHS Li.
This allows ri to mark each node v from Li by adding a marking node i uniquely
corresponding to ri via its marking node type ti, called the defined type, and
by adding a marking edge ev from this special marking node i to each node v in
Li. These marking edges encode again via their type tv which node v in Li they
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mark. Finally the application conditions in each marking rule allow for referring
to the marking elements (and therefore indirectly to already matched elements)
created by other rules.

The required extension for the type graph TG for the social network query
Example 5 for rule r1, which captures that a s:Person and t:Tag exist for which
additional conditions must hold, are depicted in Fig. 3(c). Additional nodes visu-
alized as circles with number 1, 1.1, and 1.2, where 1 denotes the created marking
node of the rule r1 and 1.1 and 1.2 are marking nodes of the other rules r1.1
and r1.2 all use types in TG′ but not TG. The edges between the circles and the
rectangles also belong to TG′ but not TG. We do not visualize their direction,
since they always point to nodes of a type from TG.

Definition 6 (marking type graph). Given a set of graphs (Li)i∈I typed over
TG via typei : Li → TG, the marking type graph TG′ for (Li)i∈I has node set
TG′V = TGV � {ti|i ∈ I} and edge set TG′E = TGE � {tv|v ∈ LV

i , i ∈ I} s.t.
sTG′

(e) = sTG(e) and tTG′
(e) = tTG(e) for e ∈ TGE and sTG′

(tv) = ti and
tTG′

(tv) = typeVi (v) for each v ∈ LV
i and i ∈ I otherwise. We say that the

nodes in {ti|i ∈ I} are marking node types and edges in {tv|v ∈ LV
i , i ∈ I} are

marking edge types, respectively. Given a graph G typed over TG′, then we say
that a node or edge in G such that its type equals a marking node or edge type
in TG′ is a marking node or edge in G, resp..

Definition 7 ((simple) marking rule, defined type). Given a set of graphs
(Li)i∈I typed over TG via typei : Li → TG, a marking rule (MR) is a GT rule
ri = 〈pi : Li → Ri,�pi ∧ cLi

〉 typed over the marking type graph TG′ for (Li)i∈I

such that (1) Li inherits its typing from typeLi
, (2) RV

i = LV
i � {i} with i of

type ti the so-called marking node and ti the so-called defined type of rule ri,
and (3) RE

i = LE
i � {ev|v ∈ LV

i } such that each ev has type tv and sRi(ev) = i
and tRi(ev) = v.

A simple marking rule (SMR) is a marking rule where the application con-
dition cLi

=
∧

j∈J(∃pj : Li → Pj) ∧ ∧
k∈K(�nk : Li → Nk) such that for each

j ∈ J and k ∈ K it holds that PV
j \ (pj(Li))V and NV

k \ (nk(Li))V , resp., consist
of exactly one marking node.

In addition to the defined type of its created marking node each marking rule
induces so-called referred types in the marking type graph. Based on these
referred and defined types of MRs we define a dependency relation between
MRs.

Definition 8 (referred types, dependency relation). Given a set of graphs
(Li)i∈I typed over TG and a (simple) marking rule ri = 〈pi : Li → Ri,�pi ∧ cLi

〉
typed over the marking type graph TG′ for (Li)i∈I the set of referred types rt(ri)
is the set of all node types in TG′V for nodes occurring in some (co-)domain
graph of a morphism employed in cLi

.
Given a GTS (R = (ri)i∈I , TG

′) with each rule ri a (simple) marking rule,
a dependency relation �d⊆ R × R consists of all rule pairs (ri, rj) such that
the defined type tj of rule rj belongs to the set of referred types rt(ri).
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Note that by definition a MR ri can only depend on itself if its defined type
ti is employed for typing elements in the application condition cLi

.
The SMRs for the SGDN for the social network query of Example 5 are

depicted in Fig. 4. We use here and in the following the more compact notation
for SMRs where all graphs including the PACs and NACs are embedded into a
single one as presented in Fig. 3(c), moreover the RHS as well as the NAC equal
to pi are omitted since they can be reconstructed from the rule’s LHS uniquely.

Based on the previously introduced MRs or SMRs to encode the behavior of
the computation nodes of a GDN, we can now introduce our form of GDN or
SGDN, respectively.

Definition 9 (GDN, SGDN, LGDN , LSGDN). Given a finite graph L typed
over TG and a GTS (R = (ri)i∈I , TG

′) of (simple) marking rules typed over the
marking type graph TG′ for (Li)i∈I , then gdnL = ((R, TG′),�+

d ) is a (simple)
generalized discrimination network over L if the following conditions hold: (1)
the transitive closure �+

d is acyclic, (2) there is a unique so-called terminal rule
rt with LHS Lt = L for some t ∈ I, and (3) ∀i ∈ I s.t. i �= t it holds that
(rt, ri) is in �+

d . The graph query language LGDN (LSGDN ) is the set of all
GDNs (SGDNs). Given some GDN gdnL (SGDN sgdnL) over L, L represents
the so-called request graph.

Note that it follows directly from this definition that no rule of the GDN tran-
sitively depends on the terminal rule otherwise the transitive closure of the
dependency relation would contain a cycle.

An example for a SGDN is depicted in Figs. 1(a) and 4, where Fig. 1(a) shows
the dependencies between the nodes and Fig. 4 shows the rules for the nodes r1s,
r1.1s, r1.2s, r1.1.1s, and r1.2.2s.

In the following definitions we assume an operational query in the form of
a GDN. In particular, each GDN represents a GTS with priorities. We consider
each graph reachable via the GDN to encode an intermediate query result and the
terminal graph then encodes the final query result. As shown in the subsequent
lemma this terminal graph is indeed unique.

Lemma 10 (unique terminal graph). Given a GDN gdnL = ((R, TG′),�+
d )

for L typed over TG, then TERM(gdnL, G) consists of exactly one graph.

Fig. 4. SMRs for the SGDN of the social network example
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Proof. (sketch; more details see [5]) As there is an upper bound on matches that
can be marked and rule applications always add exactly one such marking, gdnL

terminates. As the priorities expressed by �+
d exclude conflicting applications of

different rules and acyclicity of �+
d excludes conflicting applications of a rule

with itself, gdnL is also confluent.

Definition 11 (ansGDN). Given the graph query language LGDN , the answer
set mapping ansGDN for LGDN is given by

ansGDN (gdnL, G) := {o :L→G|Gi ⇒o′,rt G
′
i is a direct GT in t∧o(L) = o′(L)}

with gdnL = ((R, TG′),�+
d ) some GDN such that L is typed over TG, G a graph

in L(TG), rt the terminal rule of gdnL and t : G ⇒∗
gdnL

G′ some transformation
with {G′} = TERM(gdnL, G).

The above definition is well-defined, since matches are never destroyed because
of dealing only with non-deleting rules and no conflicting direct transformations
arise because of the priorities encoded with �+

d and acyclicity of �+
d (as men-

tioned also w.r.t. terminal graph uniqueness). Moreover, for o′ : L → Gi it holds
that o′(L) is a subgraph of G.

In practice, it is important for efficiency reasons that we can reconstruct the
answer set ansGDN (gdnL, G) from the markings in the terminal graph G′ with-
out having to consider the transformation t leading to G′. Under the condition
that we only query graphs without parallel edges of the same type this can be
done uniquely (see [5]).

The following result shows that for each SGDN an equivalent tree-like SGDN
exists in which no two rules exist that directly depend on the same rule and each
dependency is caused by exactly one PAC/NAC. As the considerations in the
following section are considerably simpler when operating on tree-like SGDNs,
we will w.l.o.g (cf. Lemma 13) in the following restrict to tree-like networks.

Definition 12 (SGDT, LSGDT ). A simple generalized discrimination tree
(SDGT) is a SGDN sgdnL = ((R = (ri)i∈I , TG

′),�+
d ) such that (1) for each

(ri, rj) ∈�d no k ∈ I with k �= i exists s.t. (rk, rj) ∈�d and (2) for each i ∈ I
it holds that for each PAC or NAC of ri no other PAC or NAC in ri exists
referring to the same marking node type. The graph query language LSGDT is
the set of all SGDTs.

Lemma 13 (LSGDN ∼ LSGDT ). Given a SGDN sgdnL for a graph L typed
over TG, then it holds that a SGDT sgdtL exists such that sgdnL ∼ sgdtL.
Moreover, LSGDN ∼ LSGDT .

Proof. (sketch, details see [5]) We can show by induction over the depth of �+
d

that we can construct an equivalent tree by employing copied rules with disjoint
markings. Since each SGDT is in particular also a SGDN, it directly follows that
LSGDN ∼ LSGDT .
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Fig. 5. SMRs for the SGDT for the social network example (a) and with maximal
context (b) as denoted by the orange dashed lines.

The SMRs of the SGDT related to the SGDN of Fig. 1(a) depicted in Fig. 1(b)
where multiple referenced SMRs are simply replicated are presented in Fig. 5(a).
The rules r1.1s, r1.1.1s, and r1.2.2s of Fig. 4 are not shown in Fig. 5 since they
remain the same. Rules r1s′ and r1.2s′ , which differ from the rules r1s and r1.2s
of Fig. 4 only concerning the referenced other rules are shown, along with rule
r1.1.1s′ , which is a replication of rule r1.1.1s that differs only w.r.t. created ele-
ments (omitted from the visualization).

4 Equivalence to Nested Graph Conditions

In order to prove that each NGC can be represented by some equivalent SGDT,
we first show in the following Lemmas that the standard operators in NGCs
(true, existential quantification, negation and binary conjunction) (Def. see
Sect. 2) can be simulated by equivalent constructions in a SGDT.

Lemma 14 (true). Given the NGC true over L, there exists some SGDT sgdtL
such that sgdtL ∼ true.

Proof. Let sgdtL = ({rL,true}, TG′),�+
d ) for L typed over TG with mark-

ing rule rL,true = 〈p : L → R,�p〉, then for each graph G typed over TG,
ansGDN (sgdtL, G) consists of all morphisms p : L → G. This means that
sgdtL ∼ true.

Lemma 15 (∃(a : L → L′, cL′)). Given some NGC ∃(a : L → L′, cL′) and
SGDT sgdt′L′ such that sgdt′L′ ∼ cL′ , there exists some SGDT sgdtL such that
sgdtL ∼ ∃(a : L → L′, cL′).

Proof. Suppose that sgdt′L′ has the terminal rule r′
t = 〈p′

t : L′ → R′,�p′
t ∧ c′

L′〉.
We construct the SGDT sgdtL by having an additional rule rL,∃a = 〈p : L →
R,�p∧∃(p′

t◦a, true)〉 w.r.t. sgdt′L′ as terminal rule. Consider ansGDN (sgdtL, G)
consisting of all morphisms o : L → G s.t. rL,∃a created a marking to o(L).
Because of the PAC ∃(p′

t ◦ a, true) in the terminal rule rL,∃a this can only be
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the case if r′
t created a marking for some o′(L′) with o′ : L′ → G a morphism

in ansGDN (sgdt′L′ , G). Since sgdt′L′ ∼ cL′ we know that r′
t created a marking to

o′(L′) iff o′ |= cL′ . Therefore we conclude that o |= ∃(a : L → L′, cL′) and thus
sgdtL ∼ ∃(a : L → L′, cL′).

Lemma 16 (¬cL). Given some NGC ¬cL and SGDT sgdt′L such that sgdt′L ∼
cL, there exists some SGDT sgdtL such that sgdtL ∼ ¬cL.

Proof. Suppose that sgdt′L has the terminal rule r = 〈p′ : L → R′,�p′ ∧ c′
L〉.

Then consider the SGDT sgdtL having an additional rule rL,¬ = 〈p : L →
R,�p∧�p′〉 w.r.t. sgdt′L as terminal rule. Consider ansGDN (sgdtL, G) consisting
of all morphisms o : L → G s.t. rL,¬ created a marking to o(L). Because of the
NAC �p′ in the terminal rule rL,¬ this can only be the case if r did not create a
marking to o(L). Since sgdt′L ∼ cL we know that r created a marking to o(L) iff
o |= cL. Therefore we conclude that o |= ¬cL and thus sgdtL ∼ ¬cL.

Lemma 17 (c1,L ∧ c2,L). Given some NGC c1,L ∧ c2,L and SGDTs sgdt1L and
sgdt2L such that sgdt1L ∼ c1,L and sgdt2L ∼ c2,L, there exists some SGDT sgdtL
such that sgdtL ∼ c1,L ∧ c2,L.

Proof. Let r1 = 〈p1 : L → R1,�p1 ∧ cL〉 and r2 = 〈p2 : L → R2,�p2 ∧ c′
L〉 be

the terminal rules for sgdt1L and sgdt2L, respectively. Consider the SGDT sgdtL
consisting of the subtrees sgdt1L and sgdt2L with the additional rule rL,∧ = 〈p :
L → R,�p∧∃p1 ∧∃p2〉 as terminal rule. Consider ansGDN (sgdtL, G) consisting
of all morphisms o : L → G s.t. rL,∧ created a marking to o(L). Because of the
PACs ∃p1 and ∃p2 in the terminal rule rL,∧ this can only be the case if r1 as
well as r2 created a marking to o(L). Since sgdt1L ∼ c1,L resp. sgdt2L ∼ c2,L we
know that r1 resp. r2 created a marking to o(L) iff o |= c1,L resp. o |= c2,L.
Therefore we conclude that o |= c1,L ∧ c2,L and thus sgdtL ∼ c1,L ∧ c2,L.

Now we can prove that each NGC can be emulated by an equivalent SGDT.

Proposition 18. Given a NGC cL, there exists a SGDT sgdtL s.t. sgdtL ∼ cL.

Proof. We prove this by induction over the nesting level of NGCs and the way
they are constructed.
Base case: By Lemma14 it follows that for cL = true with nesting level 0 an
equivalent SGDT with a single marking rule exists. From Lemmas 16 and 17 it
follows that for any combination of conditions of nesting level 0 we can still
construct an equivalent SGDT.
Induction step: By Lemmas 15 and the induction hypothesis it follows that for
any condition ∃(a : L → L′, cL′) of nesting level n+1 it follows that an equivalent
SGDT exists. From Lemmas 16 and 17 it follows that for any combination of
conditions of nesting level n+1 we can still construct an equivalent SGDT.

We still need to show that also each SGDT can be emulated by an equivalent
NGC. An important first step thereby is the construction of a transformation
of some SGDT into a SGDT with so-called maximal context. Marking rules in
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GDNs are able to pass merely the context necessary for the next subquery, which
is a practical property for efficiency reasons, but not for showing equivalence
with NGCs based on maximal context passing. With context propagation we
therefore introduce a mechanism transforming marking rules passing only partial
context into rules passing maximal context. We moreover show that this context
propagation does not alter the answer set semantics of the corresponding SGDT.

Definition 19 (maximal context). Given a SGDT sgdtL for a graph L typed
over TG then sgdtL has maximal context if for each two SMRs ri = 〈pi : Li →
Ri,�pi ∧ ∧

j∈Ji
(∃pij : Li → P i

j ) ∧ ∧
k∈Ki

(�ni
k : Li → N i

k)〉 and rl = 〈pl : Ll →
Rl,�pl ∧ ∧

j∈Jl
(∃plj : Ll → P l

j) ∧ ∧
k∈Kl

(�nl
k : Ll → N l

k)〉 with marking node l

s.t. (ri, rl) ∈�d because for some j ∈ Ji (or k ∈ Ki) pij (or ni
k, resp.) uses a

type equal to the type tl of l, the sets V i
j (or V i

k , resp.) constructed as follows are
empty:

V i
j = {n|n ∈ LV

i s.t. �e ∈ (P i
j )

E with type of sP
i
j (e) = tl ∧ tP

i
j (e) = pij(n)}

V i
k = {n|n ∈ LV

i s.t. �e ∈ (N i
k)

E with type of sN
i
k(e) = tl ∧ tN

i
k(e) = ni

k(n)}
Lemma 20 (context propagation). Given a SGDT sgdtL for a graph L typed
over TG with two rules ri and rl such that (ri, rl) ∈�d with non-empty V i

j (or
V i
k ) (as given in Definition 19), then there exists some sgdtcL in which (ri, rl)

has been replaced by a SGDT with maximal context such that sgdtcL ∼ sgdtL.

Proof. (sketch; details see Lemma20) We construct a sgdtcL in which marking
rules with propagated context check in contrast to rl the presence of additional
nodes and edges in the queried graph G that would otherwise have been searched
for anyway by rule ri after all matches for rl had been found. Marking these
elements earlier does not change the overall answer set.

Lemma 21 (maximal context). For a SGDT sgdtL for a graph L typed over
TG their exists a SGDT sgdt′L with maximal context such that sgdt′L ∼ sgdtL.

Proof. We proof this lemma by induction on the height of the tree.
Base case: Suppose that we have sgdtL with height 0, then it trivially holds that
sgdtL has maximal context already.
Induction step: Suppose that we have sgdtL with height n + 1. Then apply sub-
sequently for each (rt, ri) ∈�d context propagation to sgdtL obtaining according
to Lemma 20 an equivalent sgdtcL of height n + 1. Now consider for each ri the
subtree sgdtriLc

i
in sgdtcL of height n. Then for each sgdtriLc

i
by induction hypothe-

sis an equivalent SGDT sgdt′Lc
i

with maximal context exists. Replacing in sgdtcL
each sgdtriLc

i
with sgdt′Lc

i
we obtain a SGDT sgdt′L with maximal context s.t.

sgdt′L ∼ sgdtL.

Two of the modified SMRs of the SGDT depicted in Fig. 1(c) with maximal
context related to the SGDN of Fig. 1(a) are presented in Fig. 5(b). While the
rules r1.1 and r1.2 already have maximal context and therefore differ from the
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r1.1s and r1.2s′ only concerning the referenced other rules and additional links
to bind the propagated context as depicted in Fig. 5(b) by the orange edges, the
rules r1.1.1, r1.2.1, and r1.2.2 are extended with propagated context concerning
the rules r1.1.1s, r1.1.1s′ , and r1.2.2s and in addition have to reference the new
rules.

Now we are ready to prove that for each SGDT there exists an equivalent
NGC and consequently also that the languages LSGDT and LNGC are equivalent.

Proposition 22. Given, a SGDT sgdtL for a graph L typed over TG, then
there exists a NGC cL s.t. sgdtL ∼ cL.

Proof. Because of Lemma 21 we can assume w.l.o.g. that sgdtL has maximal
context. We perform the proof by induction on the height of the tree.
Base case: If sgdtL has height 0, then it consists merely of some terminal rule
without any PACs or NACs. Then ansgdn(sgdtL, G) consists of all matches of
the terminal rule into G. If we choose cL equal to true over L then it returns
exactly the same set of morphisms s.t. sgdtL ∼ cL.
Induction step: Suppose that sgdtL has height n+1 and that it has terminal rule
r = 〈p : L → R,�p ∧ ∧

j∈J(∃pj : L → Pj) ∧ ∧
k∈K(�nk : L → Nk)〉. Then we

have a subtree sgdtLj
and sgdtLk

for each pj and each nk, respectively. Because
of induction hypothesis it holds that for each sgdtLj

and sgdtLk
there exists an

equivalent NGC cLj
and cLk

, respectively. Since sgdtL has maximal context, we
moreover know that there exist morphisms lj : L → Lj and lk : L → Lk. Consider
the NGCs cjL = ∃(lj , cLj

) and ckL = �(lk, cLk
) such that cL = ∧j∈Jc

j
L ∧ ∧k∈KckL.

Now ansGDN (sgdtL, G) for some G consists of all morphisms o : L → G such
that the terminal rule of each sgdtLj

and sgdtLk
has been applied and not been

applied, respectively. The latter is equivalent with the fact that for each j ∈ J a
morphism oj : Lj → G exists s.t. oj ◦ lj = o with oj ∈ ansGDN (sgdtLj

, G) =
ansNGC(cLj

, G). Analogously for each k ∈ K there does not exist a morphism
ok : Lk → G s.t. ok ◦ lk = o and ok ∈ ansGDN (sgdtLk

, G) = ansNGC(cLk
, G).

This is exactly what also each morphism o : L → G in ansNGC(cL, G) needs to
fulfill s.t. we can conclude that sgdtL ∼ cL.

Theorem 23. LSGDN ∼ LSGDT ∼ LNGC

Proof. From Propositions 18 and 22 we can follow directly that LSGDT ∼ LNGC .
From Lemma13 we can conclude that LSGDN ∼ LSGDT .

5 Discussion

In this section, we will discuss a more expressive variant, a minimal variant, as
well as some observations and implications for optimization of graph queries and
incremental updates concerning GDNs and the proposed SGDNs.

In particular, we can show that for minimal SGDT (MSGDT) – SGDT with
at most two direct dependencies per SMR, where all rules adhere to one of
the four rule schemes introduced in Lemmata 14, 15, 16, and 17, and where
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in addition all rules for existential quantification are limited to at most one
additional element in form of a node or edge – holds that LMSGDT ∼ LNGC

(see [5]) and thus the additional restrictions do not result in any loss of expressive
power. As often the tree-like simplification is not wanted, we further name SGDN
that are not MSGDT but fulfill all conditions besides the tree nature as MSGDN.

There are several approaches for optimization of graph queries or incremental
updates of graph queries based on RETE networks (cf. [10]) such as [7] and VIA-
TRA [4] that can be conceptually mapped to MSGDN. In these cases the RETE
network structure supports only at most two direct dependencies like MSGDN
and the computations of the nodes of the RETE network can be matched to the
four permitted cases of MSGDN. Our results also indicate that these approaches
have the same expressiveness as NGC.

In our own practical work on graph queries [6], we conceptually employ SGDN
with marking rules in form of graph transformation rules for optimization of
queries and incremental updates of graph queries. We were able to show that the
more powerful capabilities of a single node (marking rule) and advanced dynamic
pattern matching strategies [11] can lead to considerable improvements concern-
ing the computation speed and memory consumption for SGDN compared to
the restricted case of MSGDN (resp. RETE network). Similar results have been
obtained also in the relational case where it has been shown that the more gen-
eral GATOR networks can outperform RETE networks [13]. Consequently, it
seems reasonable to study the broader class of SGDN for optimization of queries
and incremental updates of graph queries and not more restricted forms such as
MSGDN or MSGDT. In particular the context propagation (see Definition 19)
and its inverse context elimination seem useful tools here to minimize the effort
for subqueries and the propagation of their results in the network.

As outlined in [5] in more detail, we can also have more expressive generalized
discrimination networks as given in Definition 9 for which we can show that
they will not lead to an increase of expressive power such that the language
equivalence LGDN ∼ LNGC holds. However this result only applies unless we
leave the realm of pattern-based property specification concepts such as NGC
and consider also path-related properties [15] or we permit cycles in the network
in a controlled manner as in our own practical work on graph queries [6] to
be able to support path-related properties (analogously to the controlled and
repeated rule applications to support path-related properties used in [3]).

6 Conclusion and Future Work

Analog to the relational database case where the relational calculus and gener-
alized discrimination networks have been studied to find appropriate decompo-
sitions into subqueries and ordering of these subqueries for query evaluation or
incremental updates of queries, we present in this paper GDN for graph queries a
simple operational concept where graph transformation describe the node behav-
ior. We further show that the proposed GDNs in different forms all have the same
expressive power as NGC.
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We plan to study in our future work the complexity of evaluating and updat-
ing SGDN, their optimization, and possible extensions of SGDNs towards path-
related properties to also formally cover our own practical work on graph queries
[6] supporting cycles in the network.

Acknowledgments. We are grateful to Johannes Dyck for his contribution to our
discussions and feedback to draft versions of the paper.
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Abstract. Triple Graph Grammars (TGGs) are best known as a bidirec-
tional model transformation language, which might give the misleading
impression that they are wholly unsuitable for unidirectional application
scenarios. We believe that it is more useful to regard TGGs as just graph
grammars with “batteries included”, meaning that TGG-based tools pro-
vide simple, default execution strategies, together with algorithms for
incremental change propagation. Especially in cases where the provided
execution strategies suffice, a TGG-based infrastructure may be advan-
tageous, even for unidirectional transformations.

In this paper, we demonstrate these advantages by presenting a TGG-
based, read-only visualisation framework, which is an integral part of
the metamodelling and model transformation tool eMoflon. We argue
the advantages of using TGGs for this visualisation application scenario,
and provide a quantitative analysis of the runtime complexity and scal-
ability of the realised incremental, unidirectional transformation.

Keywords: Graph transformation · Triple graph grammars ·
Incremental model transformation

1 Introduction

Triple Graph Grammars (TGGs) [23] provide a declarative, rule-based means of
specifying how two modelling languages are related. This is done in a direction-
agnostic manner using rules that describe how related models can be simulta-
neously generated. TGGs are best known for their application to bidirectional
model transformation, as both forward and backward transformations can be
derived automatically from a TGG. When choosing the right model transforma-
tion for a certain task, one might thus assume that TGGs, being “bidirectional”,
are somehow inherently unsuitable for unidirectional tasks. This is perhaps due
to the assumption that there must be some “overhead” involved in specifying
both directions at once. While this might be conceptually true, we believe it
is more helpful to regard TGGs as just graph grammars, but with “batteries
c© Springer International Publishing Switzerland 2016
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included”. This means that TGG-based tools provide a set of default, out-of-
the-box execution strategies including a forward transformation, a backward
transformation, simultaneous model generation [22], incremental forward and
backward change propagation [2], and consistency checking [15]. We suggest to
base the decision to use TGGs less on the question of bidirectionality and more
on the following:

Is the transformation task simple enough to be handled by one of the
default execution strategies? The forward and backward transformations
that can be derived automatically from a TGG are rather simple, performing
only a single pass over the input model (each element is visited and marked
exactly once). A transformation that is inherently complex, requiring rules
with advanced application conditions that create or delete auxiliary elements
to trigger the application of other rules, most probably cannot be expressed
elegantly (or at all) as a TGG. The same argument applies to deeply nested,
recursive control flow structures. Simple, straightforward transformations are
a much better fit for TGGs.

Is incremental change propagation required? The true potential of TGGs
lies in the formally founded infrastructure for incremental change propaga-
tion. Without any additional specification effort, the automatically derived
forward and backward transformations can be executed in an incremental
mode, updating existing related models appropriately. Incrementality is cru-
cial when the output model cannot be recreated from scratch without losing
information [7]. In many situations (large models and small changes), incre-
mentality can also speed-up the transformation process [7]. Even for “sim-
ple, straightforward” unidirectional transformations, providing support for
incremental updates is non-trivial, especially concerning a choice of sensible
semantics.

Contribution. In this paper, we present a case study for using TGGs (i. e., graph
transformations) to visualise various models used in the specification and exe-
cution of graph transformations. The generated visualisations are rendered in a
read-only view, meaning that the transformation is currently unidirectional. We
argue that using a TGG-based tool for this task is nonetheless advantageous,
as the provided infrastructure can be suitably leveraged to enable declarative,
compact specifications that can be executed incrementally.

To address justified concerns of scalability, we perform a detailed quantita-
tive analysis of the transformation, which has been implemented as a general
visualisation framework and is currently an integral part of the metamodelling
and model transformation tool eMoflon [16]. To enable a realistic evaluation, we
make use of a substantial set of real-world models collected over five years of
using eMoflon in diverse applications including industrial case studies, bootstrap-
ping eMoflon as much as possible (this includes the TGGs for the TGG-based
visualisation framework itself!), and a substantial collection of unit and system
tests (see [6] for a repository containing some of these examples).
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Structure. Section 2 presents our TGG-based visualisation framework and is com-
plemented by a quantitative evaluation of the realised incremental transformation
provided in Sect. 3. Section 4 gives a brief overview of related case studies. Section 5
concludes the paper with a summary and a brief outlook on future work.

2 A TGG-Based Visualisation Framework

A schematic overview of the TGG-based visualisation framework realised in
eMoflon is depicted in Fig. 1. Further examples can be found in the appendix.

The top part of the diagram (❶ and ❷) represents what is seen by the
end-user : ❶ is a tree-view representation of a source model. ❷ is a generated
visualisation of the currently selected model element, which is a TGG rule (red
box). The visualisation of the TGG rule is in concrete syntax, as defined by an
underlying transformation (specified as a TGG). Changes made to the source
model inside the tree-view editor are propagated incrementally to the visualisa-
tion as soon as the editor content is saved.

The bottom part of the diagram (between ❸ and ❹) depicts the chain
of transformations used to generate the visualisation from the source model.
In the most general case, the end-user makes a change ΔS (referred to in the
following as delta) to the source model GS and triggers an update by saving
the editor (represented by ❸). In this context, a “batch” transformation is just
a special case with an empty source model GS . Note that the source model is
a typed graph GS with type graph TGS . As TGG-based synchronisers operate
on triple graphs, a correspondence graph GC and visualisation model Gvis are
maintained in the background by the tool as a consistent typed triple graph
GS ← GC → Gvis with type triple graph TGS ← TGC → TGvis. In the context
of the visualisation framework, the type graph TGvis is fixed, representing the
visualisation capabilities that the framework currently supports.

For every source type graph TGS that is to be visualised, a transformation
designer must provide a TGG that specifies how triples GS ← GC → Gvis are to
be constructed. This TGG entails decisions on how source model elements are to
be mapped to visualisation elements such as rectangles, arrows, labels, colours,
and other available shapes. A forward synchroniser fwd is derived automatically
from this TGG and is used to forward propagate the applied source model delta
ΔS to yield correspondence and visualisation deltas ΔC and Δvis, respectively.
As depicted in Fig. 1, applying these computed deltas results in a new consistent
triple graph G′

S ← G′
C → G′

vis, with consistently updated correspondence graph
G′

C and visualisation G′
vis. Note that this resulting triple graph is also well-typed

even though this is not shown explicitly in Fig. 1.
In a final step, G′

vis is used to regenerate the visualisation presented to the
end-user via a model-to-text transformation m2t to produce a file in the .dot
format, which is then converted to an image (e. g., .jpeg) via the Graphviz1

command line tool dot. This final image ❹ is what the end-user can observe in

1 http://www.graphviz.org.

http://www.graphviz.org
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Fig. 1. Overview of TGG-based visualisation framework (Color figure online)

a corresponding view ❷. In contrast to fwd , note that m2t and dot are both
currently non-incremental (indicated in Fig. 1 by omitting the deltas).

3 Evaluation

In this section, we present and discuss a quantitative analysis of the forward
transformation (fwd in Fig. 1) used in our visualisation framework. In the fol-
lowing, we briefly describe the five types of source models that can be visualised,
currently. For each transformation, we provide the following statistics to give a
rough impression of the complexity of the transformation: (1) the total number
of TGG rules ntot, (2) the number of abstract TGG rules nabs,2 and (3) the
average number of (object and link) variables per TGG rule nvar.

TGG [ntot=14, nabs=4, nvar=22.1]: A TGG rule, such as depicted in Fig. 1, is
a monotonic triple rules (triples of story patterns without deletion).

SDM [ntot=11, nabs=3, nvar=15]: Story diagrams, a dialect of programmed
graph transformations that is similar to simplified UML activity diagrams,
are used to specify control flow structures in eMoflon.

2 An abstract TGG rule serves to, e. g., extract commonalities of multiple TGG rules,
but cannot itself be applied. TGG rules may refine other (abstract or non-abstract)
rules to reuse common elements. Refinement is roughly comparable to the purpose
of inheritance in object-oriented programming languages. See [3] for more details.
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SP [ntot=9, nabs=1, nvar=16.5]: A story pattern represents a regular graph
transformation rule that is embedded in an activity node of a story dia-
gram. A story pattern is a graph with annotated nodes and edges, formally
representing a graph transformation rule r : L → R in the SPO approach.

TM [ntot=3, nabs=0, nvar=16]: A triple match represents the match3 of a TGG
rule in an input model and is similar to a story pattern.

PG [ntot=3, nabs=0, nvar=11.7]: A precedence graph is a—predominantly a-
cyclic—intermediate data structure representing all possible triple matches
of all TGG rules in an input model, together with all resulting dependencies
between these triple matches. Precedence graphs are used to control the
TGG-based synchronisation process in eMoflon [2].

Our first two research questions to be investigated with this analysis focus on
the performance of fwd when executed in batch mode, i. e., the first time a user
opens a source model in an editor and chooses to visualise it.

RQ 1a: Does fwd scale? More precisely does the runtime of fwd grow non-
exponentially with source model size when executed in batch mode?

RQ 1b: Is the batch runtime of fwd acceptable for realistic source models?

The next three research questions concern the incremental execution of fwd :

RQ 2a: How large is the speed-up in runtime obtained via incremental change
propagation? More precisely, how large is the ratio of runtime of fwd in
incremental mode compared to batch mode?

RQ 2b: Is this speed-up in runtime perceivable for realistic source models?
Would an end-user notice the difference in runtime for re-translating the
whole source model as compared to incrementally propagating changes?

RQ 2c: Is it better (wrt. attained speed-up) to synchronise frequently, i. e., after
every small change, or to accumulate changes before synchronising?

Finally, the last research question investigates the optimality of fwd :

RQ 3: To what extent is incremental change propagation coupled to model size?
Optimal would be no coupling at all, i. e., constant time for propagating the
same change independent of model size.

Evaluation Setup. The dataset of the evaluation comprises two subsets:

D1: To provide for “realistic” models, required for RQs 1b and 2b, we collected
instances of all five metamodels from the current eMoflon developer workspace
and all test suite workspaces. These models have been used and collected
for over five years from various industrial case studies, the development of
eMoflon itself, and numerous examples and tests. To obtain realistic (or even
pessimistic) results, all runtime data for D1 was acquired on a typical busi-
ness notebook (i7-4600U with 2× 3.3 GHz, 12 GB RAM) running Windows 8.1
(64bit).

3 A match of a rule r : L → R in a graph G is an occurrence m : L → G of the
left-hand side L of the rule in G.
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Table 1. Characteristics of the evaluation datasets D1 and D2

Property TGG(D1) TGG(D2) SDM(D1) SP(D1) TM(D1) PG(D1)

Model count 3,660 12 4,395 11,191 11,310 293

Mean model size 173 206,945 342 45 69 2,991

Median model size 124 182,436 269 28 56 272

D2: To evaluate scalability for large models, required for RQs 1a, 2a, and 3,
we derived a TGG-based model generator [22] from the TGG for visualis-
ing TGG rules and used it to synthesise large TGG rules. We chose TGG
rules for this complementary synthetic data generation as the corresponding
visualisation is currently the most often used one in eMoflon and is thus the
richest (uses most visual elements). To be able to run the evaluation in a rea-
sonable amount of runtime, the data for D2 were acquired on a workstation
(i7-2600, 4× 3.4 GHz, 8 GB RAM) with Windows 7 Professional (64bit).

On both machines, we used Eclipse Mars 4.5 (-Xmx4G), eMoflon 2.12.04 and
version 1.0.0 of our evaluation application5. Table 1 summarises the core charac-
teristics of the datasets. The size of a model is the number of its contained nodes
(EObjects) and edges (EReferences). Both the mean and median of all model
sizes are provided to indicate the presence of outliers, e. g., in PG (D1).

3.1 RQ1: Scalability of Batch Transformation

Figure 2 depicts the runtime for batch transformation in milliseconds plotted
over model size for all models. The caption of each subplot shows the dataset
and number n of models. Each data point is the median execution time of 5 runs.
When comparing the plots, it is important to note that the x- and y-axes of all
plots are of vastly different scale. The characteristic runtime values are addition-
ally summarised in Table 2.

Table 2. Characteristic batch runtime values

Property TGG(D1) TGG(D2) SDM(D1) SP(D1) TM(D1) PG(D1)

Maximum [ms] 56.7 1, 558, 500.9 55.4 122.9 38.6 9, 019.6

Mean [ms] 6.0 417, 717.3 6.4 3.7 7.0 112.9

Median [ms] 5.0 145, 397.2 6.3 2.1 6.3 3.9

4 http://www.emoflon.org.
5 https://github.com/eMoflon/paper-icgt2016/releases/tag/icgt2016-v1.0.0.

http://www.emoflon.org
https://github.com/eMoflon/paper-icgt2016/releases/tag/icgt2016-v1.0.0
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(b) TGG (D2, n=12)
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(c) SDM (D1, n=4,395)
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(d) SP (D1, n=11,191)
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(f) PG (D1, n=293)

Fig. 2. Runtime of batch transformation over model size (n: model count)
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Discussion. While the size of the largest story pattern (SP) in D1 is below
700, the size of the largest precedence graph (PG) is above 100,000. This wide
range of real-world model sizes shows that the visualisation of large models is
not an unrealistic requirement, justifying our complementary dataset (D2) of
synthetically generated models (up to 500,000 in size).

The plots in Fig. 2a, c–e indicate that the runtime of the batch transformation
is generally linear for model sizes of up to about 1,000 elements. This is a positive
result, as our dataset D1 shows that most realistic models for visualisation are
in this range.

For larger models, however, Fig. 2b and f indicate non-linear behaviour. This
is to be expected, as the complexity class for TGG-based transformation is poly-
nomial [14]. The absolute values are still arguably reasonable for a visualisation
task: about 8 (25) min for a model of size 300,000 (500,000). For small models,
Table 2 shows that the mean and median runtimes for models in D1 are less
than 10 ms. The large gap between mean and median execution time for PG can
easily be explained by the three extreme outliers in D1.

In summary, our results suggest the following answers to RQ 1: (1a) fwd
appears to scale satisfactorily even up to model sizes of over 500,000, and
(1b) batch runtime for realistic source models in D1 is certainly acceptable for
visualisation purposes (being less than 10 ms).

3.2 RQ2: Synchronisation Behaviour

To analyse synchronisation behaviour, we focused on TGG models. For each
data point, we first performed a batch forward transformation and then applied
the following changes to the source model (a TGG rule), to mimic typical modi-
fications applied by an end-user: (C1 ) addition of three object variables, (C2)
renaming of one object variable, and (C3) removal of two random object vari-
ables. To investigate RQ 2c, we consider the following two situations: synchro-
nisation after every change (II), and synchronisation only after performing all
changes (III). In both cases, we compare the required time with (I), the duration
of a batch forward transformation after all changes.

Table 3 summarises the results of this experiment for both datasets, D1 and
D2. For each model, the runtimes for each situation (I)–(III) is the median of five
runs. The last two rows show the runtime of the synchronisation as a percentage
of the batch transformation (the lower the value, the greater the speed-up). The
given maximum, mean, and median values have been calculated for the metric
of each row, i. e., the maximum value for (II)/(I) is not equal to the ratio of the
maximum (II) and the maximum (I) values.

Discussion. The benefit of synchronising changes incrementally instead of re-
transforming the entire model is particularly evident for D2. The synchronisation
only takes between 0.2 % and 1.5 % of the batch transformation time in the mean
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Table 3. Comparison of batch transformation b in I and synchronisation s in II, III.

D1 D2

Max Mean Median Min Max Mean Median Min

I C1+C2+C3+b [ms] 101.0 11.4 7.8 0.4 1, 827, 980 504, 472 186, 756 233.6

II C1+s+C2+s+C3+s [ms] 17.8 1.8 1.6 0.3 2, 387.2 990.8 802.4 29.9

III C1+C2+C3+s [ms] 24.6 2.2 1.1 0.1 822.7 330.8 277.4 2.1

II/I Rem. runtime [%] 166.7 32.5 22.2 2.1 12.8 1.5 0.5 0.1

III/I Rem. runtime [%] 90.9 27.5 20.5 0.8 0.9 0.2 0.2 0.0

and median cases. In the worst case, when the ratio of synchronisation time and
batch re-transformation time is maximal, synchronising still takes only 12.8 %
to 0.9 % of batch runtime. For D1, i. e., real-world models, the speed-up is less
impressive but still remarkable: In the mean and median cases between about
70 % and 80 % of the runtime is saved.

Our results thus suggest the following answers to our research questions:
the speed-up enabled by incrementality is substantial and, as can be expected,
increases with model size (RQ 2a), even though the speed-up is still substantial
for D1, for most realistic models, an end-user probably will not notice a differ-
ence of only a few milliseconds in our visualisation scenario (RQ 2b), finally,
incremental propagation appears to perform somewhat better if changes are col-
lected (RQ 2c). Although this is not so clear for small- and medium-sized mod-
els in D1, the difference is evident for the larger models in D2. This is because
(1) every synchronisation run has a certain overhead that increases with model
size due to technical reasons, and (2) certain optimisations can be performed by
the algorithm, propagating multiple changes at the same time.

3.3 RQ3: Coupling of Incremental Change Propagation to
Model Size

The plots in Fig. 3 show the runtime of synchronisation over model size for D1
(Fig. 3a, c and e) and D2 (Fig. 3b, d and f). In each row of Fig. 3, the left figure
shows the runtime behaviour for (realistic) model sizes of up to about 1,200,
while the right figure shows asymptotic runtime behaviour for large synthetic
models. When comparing plots, note that the x- and y-axes of left and right
plots have vastly different scales.

Discussion. For an optimal synchroniser, incremental propagation time would
be constant, i. e., independent of model size. Figure 3 shows that this is not
really the case in practise (for eMoflon). Due to technical reasons and challenges
involved with using EMF collections for large models, there is a certain coupling
with model size. The results are, nonetheless, reasonably positive: for real-world
models (left plots) synchronisation time is almost constant with only a slight
linear increase (less than 0.5 ms). For large models, the linear increase is evident
but with a very small gradient: for all changes, it only takes about half a second
longer to visualise a model with 300,000 more elements.
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(b) C1 (D2, n=12)
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(c) C2 (D1, n=3,660)
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(d) C2 (D2, n=12)
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(e) C3 (D1, n=3,660)
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(f) C3 (D2, n=12)

Fig. 3. Synchronisation time over model size (TGG, n: model count)
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Our answer to RQ 3 is that a certain coupling of incremental propagation
to model size is indeed still present in practise, but it is linear and reasonably
small for our application scenario.

3.4 Threats to Validity

Our primary concern is external validity, i. e., can our results be generalised
beyond our specific case study. This is a justified concern and has two orthogo-
nal dimensions: (1) Do our results hold for other TGG-based tools or are they
specific for eMoflon? (2) Do our results hold for other possibly more “complex”
application scenarios that require, e. g., hundreds of TGG rules. Concerning (1),
TGG comparison papers [12,18] have shown that TGG-based tools are quite
diverse, especially concerning their underlying synchronisation algorithms. It is
thus difficult to argue that our results hold in any way for “TGGs in general”.
More evidence should be provided with a new comparison paper, comparing
current TGG-based tools using, e. g., our data from this case study. To miti-
gate (2), we have mined all our workspaces and collected a substantial number
of real-world metamodels for the measurements (our dataset D1). This ensures
that at least the input data for the transformation is somewhat realistic and not
completely synthesised. The task of visualisation is also quite varied, ranging
from story diagrams that are deeply nested tree-like structures, to flat, highly
connected, more graph-like patterns (TGG rules, story patterns, triple matches).
The primary limitation of our case study is more the “complexity” of the TGGs
used for the visualisation, the largest TGG having only 14 rules. Although we
have 5 TGGs, so in total 40 TGG rules, this is still not comparable to other
application scenarios requiring hundreds of TGG rules. We argue, however, that
equating complexity with number of rules is näıve: we have encountered cases
that are essentially trivial 1–1 bijections, but still require hundreds of rules as
the source and target models simply have many types.

Finally, using two different machines to perform the runtime measurements
on D1 and D2, respectively, may be considered a threat to construct validity. We
emphasise here, however, that the objectives of performing the experiments on
the two datasets were rather different: While the measurements on D1 focused
on applicability in terms of acceptable runtime for realistic models, the measure-
ments on D2 served to observe the behaviour of the TGG-based visualisation for
large, synthesised models.

4 Related Work

This paper builds on our previous work in [16,17] and shares the common goal
of bootstrapping eMoflon. In [16], Leblebici et al. present the various model
transformations used in eMoflon and describe how we have progressed from
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an initial implementation of our import/export in C#, to a bootstrapped ver-
sion with story diagrams (a unidirectional programmed graph transformation
dialect), to a final bootstrapped TGG-based version that is still being optimised
and extended up until today. A runtime comparison of story diagrams and TGGs
is provided, showing on the positive side that TGGs are expressive enough to
derive both forward (export) and backward (import) transformations from the
same specification. Noteworthy is also that both directions perform comparably
well, exhibiting almost linear behaviour for up to 10,000 elements, and then poly-
nomial until running out of memory for about 300,000 elements. This indicates
that TGGs are inherently symmetric and do not favour any direction. On the
negative side, however, the measurements show that TGGs are still 10–15 times
slower than story diagrams with lots of room for improvement in this regard.
In comparison to this paper, the TGG-based transformations in [16] were not
executed incrementally and the provided measurements thus give no indication
of how feasible or useful this might be. The measurements are also for a single
TGG and a single pair of source and target metamodels, while we provide evi-
dence for various research questions using 5 TGGs and a substantial number of
diverse source metamodels collected over five years in our test and development
workspaces (the visualisation, i. e., target metamodel is fixed in all cases).

In [17], Leblebici et al. compare TGGs implemented in eMoflon with Medini
QVT6, showing that TGGs outperform Medini QVT up to a factor of 20 for
model sizes of about 1,000–200,000 elements. In comparison to this paper, the
focus of [17] is on showcasing multi-amalgamation, a new language feature of
TGGs. Only a single “toy” TGG and a fixed pair of source and target meta-
models are used for the comparison. Finally, just as with [16], the transformation
is not executed in an incremental mode.

There has also been comparable work in the TGG community such as [12,18],
which provide a comparison of various TGG tools, including runtime measure-
ments. In contrast to this paper, the focus of [12,18] is on comparing the different
tools and not on providing evidence for the performance or advantages of TGGs
in general. To ensure that all tools could be used for the exact same TGG, a
very simple toy example is used, and only synthetic data is generated for the
measurements. The results indicate, however, that there are considerable differ-
ences between TGG tools regarding runtime efficiency and expressiveness. This
means that our results are primarily valid for eMoflon and cannot be directly
generalised to all other TGG tools (see the discussion in Sect. 3.4).

A further source for TGG runtime measurements and comparison with other
tools is the annual transformation tool contest (TTC). For example, [11,13,
20] present TGG-based solutions to various contests. Although these results
provide evidence for the expressiveness and applicability of TGGs, it is difficult
to compare solutions in many cases: for example, [13] and [11] provide solutions
using different TGG tools, but the degree of freedom of the contest (the choice of
the source metamodel) makes it impossible to compare absolute runtime values.
In many cases, it is also impossible to discern the runtime complexity of the

6 http://projects.ikv.de/qvt.

http://projects.ikv.de/qvt
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solutions, as the provided test cases are more often used to ensure correctness.
Nonetheless, both [20] and [11], for example, provide encouraging evidence that
the involved TGG transformation is not necessarily the bottleneck in practical
model transformation chains. Our experience corroborates this as dot dominates
our transformation chain for large diagrams, especially as it is not incremental.

Finally, there is some evidence indicating that TGGs can be used successfully
for industrial scale applications. In [10], Hermann et al. report on using TGGs for
the translation of satellite procedures. Their results show that a pragmatic mix
of programmed graph transformation and TGGs can be made to be “more effi-
cient than what is needed for practical use” by applying advanced optimisation
techniques. Such powerful domain- and even task-specific optimisations are fea-
sible mainly due to the formal and declarative nature of graph transformations.
The application scenario of [10] provides an interesting contrast to this paper
as it is also unidirectional but not incremental. The main motivation for using
TGGs in [10] is the formal guarantee of correctness, while in the case of our visu-
alisation, correctness is important but not crucial; incrementality, conciseness,
and readability are arguably more useful for our application scenario.

An inherently incremental industrial application scenario is presented in [4].
Blouin et al. demonstrate how a synchronisation layer between textual and
graphical editors can be established using TGGs. As explained in [4], incre-
mentality, expressiveness, and scalability are crucial for the application scenario.
Unfortunately, no evaluation and measurement results are provided by Blouin
et al., making it hard to conclude more than that the TGG-based solution was
“fast enough” for practical usage. Other (industrial) case studies include work
from Giese et al., e. g., in [8] for a TGG-based synchronisation between SysML
and AUTOSAR models, and from Greenyer et al., e. g., in [9] for a TGG-based
transformation of sequence diagram specifications to timed game automata.

5 Conclusion and Future Work

In this paper, we presented a TGG-based visualisation framework, which is cur-
rently being used as an integral part of the metamodelling and model trans-
formation tool eMoflon. This is an example of a real-world, unidirectional, and
incremental application scenario for TGGs. With a detailed quantitative analy-
sis, we have shown that the realised transformation scales with model size, and
that incrementality provides a substantial speed-up. The case study highlights
the major advantage of TGGs: due to their declarative nature, multiple default
execution strategies for the same TGG can be provided by a TGG tool. Specif-
ically, we investigated the derived forward incremental mode, and made use of
the simultaneous mode for generating large models for our scalability analysis.

A current limitation of the visualisation framework is that some steps in the
tool chain are not incremental (e. g., dot used to render diagrams), and become
the bottleneck of the framework. Future work includes, therefore, use cases
that further realise the potential of TGGs such as: (1) allowing manual adjust-
ments of the layout in the visualisation (i. e., coping with information loss), and
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(2) implementing a completely incremental tool chain such as a TGG-based
code generator for EMF. Case studies considering the correspondence between
the concrete and abstract syntax (or semantics) of a specification, as discussed,
e. g., in [1,5], would also be interesting for further investigating the potential of
graph transformation in general and TGGs in particular. Finally, a comparison
of our TGG-based model generator to other model generators such as [19,21]
would be illuminating: it is, for instance, currently impossible to enforce certain
statistical properties using our model generator, but the models are at least guar-
anteed to be translatable with the underlying TGG. This would not be the case
with general purpose (random) model generators and would require a potentially
large set of additional constraints to adequately control the generation.

Acknowledgements. This work has been funded by the German Research Founda-
tion (DFG) as part of projects A01 within the Collaborative Research Centre (CRC)
1053 – MAKI.

Appendix: Examples from the eMoflon Handbook

We show concrete examples of visualised source models taken from the eMoflon
handbook,7 whose illustrative example is Leitner’s learning box, a system, e. g.,
for language learning. This system works by creating cards, sorted into sequential
partitions, with a front face showing the known word (e. g., “hello” in English)
and a back face showing the to-be-learnt word (e. g., “Hallo” in German). While
exercising, the learner takes a card from a partition, tries to guess the back-face
word based on the front-face word, and, if successful, may move the card to the
next partition. A so-called fast card contains easy-to-learn words and may be
moved to the last partition upon success, immediately.

The story diagram in Fig. 4a shows the logic of checking a card: If the answer
is correct (story pattern checkCard) and if the card is a so-called fast card (story
pattern isFastCard), then this card is promoted to the last partition, as shown
in the story pattern depicted in Fig. 4b.

Another task in the eMoflon handbook is to synchronise (using TGGs) a
learning box with a dictionary, whose entries can be thought of as simple key-
value pairs. Figure 4c shows the precedence graph resulting from translating the
sample box in the handbook into a dictionary. The root node BoxToDictionary-
Rule 0 indicates that the box is first of all translated into an empty dictionary,
before translating all cards to dictionary entries. Finally, Fig. 4d depicts the
triple match that corresponds to CardToEntryRule 5 in Fig. 4c. This match
shows that the card containing “Question One” is mapped to the entry with
content “One : Eins”.

7 http://www.emoflon.org/.

http://www.emoflon.org/
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Abstract. Graph transformation systems have the potential to be real-
istic models of chemistry, provided a comprehensive collection of reaction
rules can be extracted from the body of chemical knowledge. A first key
step for rule learning is the computation of atom-atom mappings, i.e.,
the atom-wise correspondence between products and educts of all pub-
lished chemical reactions. This can be phrased as a maximum common
edge subgraph problem with the constraint that transition states must
have cyclic structure. We describe a search tree method well suited for
small edit distance and an integer linear program best suited for general
instances and demonstrate that it is feasible to compute atom-atom maps
at large scales using a manually curated database of biochemical reac-
tions as an example. In this context we address the network completion
problem.

Keywords: Chemistry · Atom-atom mapping · Maximum common
edge subgraph · Integer linear programming · Network completion

1 Introduction

The individual records in databases of chemical reactions typically describe,
apart from more or less detailed meta-information, the transformation of a set
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of educts into a set of products [30,31]. Both the product and the educt mole-
cules have representations as labeled graphs, where vertices designate atoms and
edges refer to chemical bonds. Chemical reactions therefore may be understood
as transformations of not necessarily connected graphs [5,32]. Chemical graph
transformations must respect the fundamental conservation principles of matter
and charge and therefore imply the existence of a bijection between vertex sets
(atoms) of the educts and products which is commonly known as the atom-atom
map (AAM).

Chemical graph transformation are by no means arbitrary even when the con-
servation laws imposed by the underlying physics are respected. Instead, they
conform to a large, but presumably finite, set of rules which in chemistry are
collectively known as reaction mechanism and “named reactions”. A chemical
reaction partitions the sets of atoms and bonds of the participating molecules
into a reaction center comprising the bonds that change during the reactions
and their incident atoms, and an remainder that is left unchanged. By virtue of
being a bijection of the vertex (atom) sets, the AAM unambiguously determines
the bonds that differ between educt and product molecules and thus it identifies
the reaction center. The restriction of a chemical transformation to the reac-
tion center, on the other hand, serves as minimal description of the underlying
reaction rule.

The task to infer transformation rules from empirical chemical knowledge
therefore would be greatly facilitated if each known reactions, i.e., each concrete
pair of educt and product molecules would imply a unique graph transformation.
Unfortunately, the true AAM is unknown in general, and even where the chemical
mechanism, and thus the actual graph transformation, has been reported in the
chemical literature, this information is in general not stored together with the
educt/product pair in a database. The inference of chemical reaction mechanisms
therefore requires that we first solve the problem of inferring AAMs for the known
chemical reactions.

Several computational methods for the AAM problem have been devised
and tested in the past [9]. The most common formulations are variants of the
maximum common subgraph (isomorphism) problem [13]. In the NP-complete
Maximum Common Edge Subgraph (MCES) variant an isomorphic subgraphs of
both the educt and product graph with a maximal number of edges is identified.
An alternative formulation as Maximum Common Induced Subgraph (MCIS)
problem [1] is also NP complete. Algorithmic solutions decompose the molecules
until only isomorphic sub-graphs remain [1,11]. In the context of graph transfor-
mation systems, few methods to infer transformation rules have been published
[20], and none applicable in the context of AAMs.

Neither solutions of MCES nor MCIS necessarily describe the true atom map,
however. There is no reason why the re-organization of chemical bonds in a chem-
ical reaction should maximize a subgraph problem. Instead, they follow strict
rules that are codified, e.g., in the theory of imaginary transition states (ITS)
[16,18]. There is only a limited number of ITS “layouts” for single step reactions,
corresponding to the cyclic electron redistribution pattern usually involving less
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than 10 atoms [19]. In a most basic case, an elementary reaction, the broken
and newly formed bonds form an alternating cycle of a length rarely exceeding
6 or at most 8 [18]. In [23] we made use of this chemical constraint to devise
a Constraint Programming approach for elementary homovalent reactions, i.e.,
those chemical transformations that do not change the charge and oxidation
state of an atom. Here, we use an extended representation of chemical graphs
that explicitly represents lone pairs and bond orders; in this manner the graph
representation incorporates more detailed chemical information.

Advances in bioinformatics technologies made it possible to infer large-scale
metabolic networks automatically from genomic information [6,14,25]. These
network models, however, suffer from structural gaps in pathways [7,28], caused
by orphan metabolic activities, for which no sequences are known and which can-
not be inferred from genomic data. Thus there is an urgent need to infer missing
metabolic reactions by other means. We illustrate the potential of AAM for the
discovery of novel metabolic reactions. To this end we determine whether chemi-
cally plausible AAMs can be founds connecting hypothetical educt/product pairs
each consisting of one or two known metabolites.

2 Chemical Reactions Are Cyclic

We model each molecule as a labeled, edge-weighted graph with loops. While the
graph model used here is similar to most other formalizations of chemical graphs,
it differs in several subtle, but important, details, such as the way charges and
lone pairs are modeled:

Definition 1 (Molecule Graph). A molecule graph G = (V,E, l, w) is a
labeled, edge-weighted, undirected graph with loops. The label function l : V ∪E →
ΣV ∪ ΣE denotes vertex and edge labels, and the weight function w : E → Z

denotes the weight of edges. These are assigned so that

– Atoms are vertices, with labels denoting which type of atom.
– Bonds are edges, with labels denoting the bond type and a weight encodes the

number of involved electron pairs. Hence 1, 2, and 3 corresponds to single,
double and triple bonds.

– Lone pairs, i.e., pairs of non-bonding electrons, are modeled by loops. Again
the weight refers to the number of lone pairs.

– Charges are modeled using a single special vertex together with edges from this
special vertex to the charged atoms. The edge weight equals the atom’s charge.

– Free radicals, single non-bonding electrons, are modeled using a single special
vertex together with edges from this special vertex to the atom with the free
radical. The edge weight equals the number of free radicals.

– Aromatic complexes aremodeled by adding a special vertex for each aromatic com-
plex in the molecules. Each atom participating in the aromatic complex has an
edge to the special vertex with weight equal to the number of electrons at the atom
taking part in the aromatic complex. The aromatic bonds themselves are edges
with weight one, but are distinguished from single bonds by the edge label.
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Fig. 1. Usual depiction and molecule graph for pyruvate. Edge labels omitted. Edge
weights shown by number of parallel edges (except where negative).

See Fig. 1 for example of molecule graph.
In the following two definitions it will be convenient to consider instead of

E the set E∗ of all possible edges on V with edges in e ∈ E∗ \ E having weight
w(e) = 0.

Definition 2 (Atom-Atom Mapping). Given two molecule graphs G1 = (V1,
E1, l1, w1) and G2 = (V2, E2, l2, w2), an atom-atom mapping from G1 to G2 is
a bijection ψ : V1 → V2 that preserves vertex labels, i.e., l1(v) = l2(ψ(v)) for all
v ∈ V1. With ψ we associate the cost c[ψ] =

∑
e∈E∗

1
|w2(ψ(e)) − w1(e)|.

The cost measures the total number of electron pairs by which G1 and G2

differ w.r.t. to a given AAM. Minimizing c(ψ) can be seen as an edit problem
[17,21,27] and is equivalent to the NP -hard MCES problem problem [2,4,9,13,
26]. Here we are only interested in MCES instances that correspond to balanced
chemical reactions. The complexity results, however, also remains valid also in
this case. Next we investigate in some more detail what exactly changes between
G1 and G2 when an AAM ψ is fixed.

Definition 3 (Transition State). The transition state of an AAM ψ : G1 →
G2 is the edge weighted graph Tψ = (Vψ, Eψ, wψ) where Eψ = {e ∈ E∗

1 | w1(e) �=
w2(ψ(e))}, wψ(e) = w2(ψ(e)) − w1(e), and Vψ ⊆ V1 are all vertices incident to
edges in Eψ.

By construction of molecule graphs, the weight of each edge is the num-
ber of valence electrons. The atom type, i.e., the label of a vertex determines
the weighted degree dw(v) =

∑
e∈δ(v) w(e). Here, loops are counted twice. This

reflects that the two electrons per bond order are shared between the incident
atoms, while both electrons of a lone pair belong to the same atom. As a con-
sequence, dw(v) is invariant under all chemically acceptable atom maps. This
restriction has important consequences for the structure of transition states:

Proposition 1 (Cyclic Transition States). The transition state Tψ of an
AAM ψ can be decomposed into a collection of (not necessarily vertex dis-
joint) cycles C1, C2, . . . , Ck with weights wC1 , wC2 , . . . , wCk

that are alternating
between +1 and −1 along the cycles such that wψ(e) =

∑k
i=1 wCi

(e) for all
e ∈ Eψ.
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Proof. Since AAMs preserve vertex labels and vertex labels imply weighted
degree the “zero-flux condition”

∑
e∈δ(v) wψ(e) = 0 holds for all v ∈ Vψ. We

consider the following algorithm to construct a cycle C. Starting from a ver-
tex v we choose an {v, u}, with wψ({v, u}) > 0, decrement wψ({v, u}) by one
and add {v, u} to C. The vertex u must be incident to an edge {u,w} with
wψ({u,w}) < 0, since otherwise the weighted valence would not be constant
under ψ. We increase wψ({u,w}) by one and add {u,w} to C. The process
is repeated until we return to v, which is guaranteed by the finiteness of V .
Clearly, C is an Eulerian graph, i.e., all its vertex degrees are even. The proce-
dure is repeated until no edges with wψ �= 0 is left. If C contains a vertex with
degree larger than two, we repeat the procedure recursively on C until we are
left with elementary cycles only. ��

The (weighted) degree δψ(v) :=
∑

e:v∈e |wψ(e)| of a vertex in Tψ is even
because in each step of the proof the value of δψ(v) is reduced by 2. Thus Tψ

is a generalization of an Eulerian graph, and Proposition 1 is the corresponding
variant of Veblen’s theorem [29], which states that a graph is Eulerian if and
only if it is an edge-disjoint union of cycles.

3 Finding Atom-Atom Mappings

The cyclic nature of the transition states established in Proposition 1 inspires
two methods for finding minimum cost AAMs described below. The idea was
used in [23] in a much more restrictive chemical setting.

3.1 AltCyc — A Search Tree Approach

The idea of AltCyc is to construct a candidate transition state with a given
cost � in a stepwise fashion and to simultaneously map V1 to V2. The search
for transition states proceeds depth first. The validity of a candidate is then
checked by testing whether G1 \Eψ and G2 \ψ(Eψ) are isomorphic. Finally, the
parameter � is increased until a valid mapping is found. A recursive definition
of AltCyc is given as Algorithm 1.

Algorithm 1. AltCyc(ψ,P, k, σ)
if k = 1 then

if w1(P.head, P.tail) + σ = w2(ψ(P.head), ψ(P.tail)) then
Complete(ψ, P )

else
for i ∈ V1 ∧ i /∈ dom(ψ) do

for p ∈ V2 ∧ p /∈ range(ψ) do
if l1(i) = l2(p) ∧ w1(P.head, i) + σ = w2(ψ(P.head), p) then

ψ ← ψ ∪ {i �→ p}
AltCyc(ψ, P.append(i), k − 1, −1 · σ)



Automatic Inference of Graph Transformation Rules 211

C3

C2
P.head

C1
P.head = P.tail

C6

C5 C4

+ k = 6 → 5
σ = +1 → −1

P = 〈1〉 → 〈1, 2〉
ψ =

{
1 �→ 3
2 �→ 4

C5

C4

ψ(P.head)
C3

ψ(P.head) = ψ(P.tail)

C2

C1 C6

(a) First step (+).

C3
P.head

C2
P.head

C1
P.tail

C6

C5 C4

+

−
k = 5 → 4

σ = −1 → +1
P = 〈1, 2〉 → 〈1, 2, 3〉

ψ =

⎧⎨
⎩

1 �→ 3
2 �→ 4
3 �→ 5

C5

ψ(P.head)

C4

ψ(P.head)
C3

ψ(P.tail)

C2

C1 C6

(b) Second step (−).

C3

C2C1
P.tail = P.head

C6
P.head

C5 C4

+

−
+

−
+

−

k = 1 → 0
σ = −1 → +1

P = 〈1, 2, 3, 4, 5, 6〉
→ 〈1, 2, 3, 4, 5, 6, 1〉

ψ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 �→ 3
2 �→ 4
3 �→ 5
4 �→ 6
5 �→ 1
6 �→ 2

C5

C4C3

ψ(P.tail) = ψ(P.head)

C2

ψ(P.head)

C1 C6

(c) Final step (−, and closing the cycle).

Fig. 2. Stepwise execution of AltCyc. Cyan marks the changes within the step. Magenta
marks the considered edges and incident vertices.

To explain the algorithm, we first restrict ourself to mappings with transition
states consisting of a single elementary cycle. The four parameters are a partial
atom-atom mapping candidate ψ, the partial transition state P constructed so
far encoded as a list of vertices from V1, and the number k of edges still to be
identified, and the variable σ ∈ {−1, 1} that determines whether the current
step will add or remove weight.

The search in AltCyc starts from all pairs (i, p) with i ∈ V1 and p ∈ V2

with l2(p) = l1(i); the map ψ is initalized ψ(i) = p and the path starts with
P = {i}. W.l.o.g., the first step is a positive change of weight, i.e., σ = 1. In
each step in the algorithm, a new pair (i, p) ∈ V1 × V2 with matching labels is
found and if the w1({P.head, i}) and w2({ψ(P.head), p}) differ by exactly one, i
is appended to P , ψ is extended such that ψ(i) = p and the algorithm is called
again with k replaced by k − 1. If k = 1 has been reached, it only remains to
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close the alternating cycle. If this is possible, the candidate transition state is
extended to a full AAM where no further changes are allowed. To this end, a
graph isomorphism algorithm is used. We use VF2 [10] in procedure Complete
(see Appendix C) because it has the added benefit of using data structures that
are similar to those used in other parts of AltCyc. The first two and the last
step of AltCyc applied to a Diels-Alder reaction are shown in Fig. 2.

In order to handle transition states that are connected but not elementary
cycles, as the case of a bi-cyclic or coarctate reaction [18], we modify AltCyc
to allow weight differences larger than one. Such vertices must then be revis-
ited. In addition, we disallow using the same edge with different signs of σ
because a pair of such steps would cancel. The modified approach is outlined in
Algorithm 2. The key point is that we now need to keep track of the weight
changes, wP (e), that we have already made along an edge e (found using the pro-
cedure WeightAlongPath, see Appendix C). The condition for acceptable weight
differences becomes w1(e) + wP (e) + σ ≤ w2(ψ(e)) if a bond is added (σ = 1),
and w1(e) + wP (e) + σ ≥ w2(ψ(e)) for bond subtraction (σ = −1).

Algorithm 2. AltCyc∗(ψ,P, k, σ)
// As AltCyc. . .
for (i, p) ∈ V1 × V2 with l1(i) = l2(p) do

if i /∈ dom(ψ) ∧ p /∈ range(ψ) then
// As AltCyc, but using ≤ and ≥ . . .

else if ψ(i) = p then
wP ← WeightAlongPath({P.head, i}, P )
if wP ≥ 0 ∧ σ = 1 then

if w1(P.head, i) + wP + σ ≤ w2(ψ(P.head), p) then
AltCyc∗(ψ, P.append(i), k − 1, −1 · σ)

else if wP ≤ 0 ∧ σ = −1 then
// Symmetric case. . .

There is no guarantee that the transition state is connected. To accommodate
disconnected transition states it suffices to replace the path P by a list of paths,
where the last path is the current path and all previous paths are kept in order
to correctly calculate wP (e). If a path closes before k = 0 is reached, the current
cycle is completed and the algorithm restarts to build new path from another
initial vertex.

The stepwise approach in AltCyc naturally allows for an elucidation of the
mechanism underlying an AAM found by the algorithm. In Fig. 3 the automatic
inference of such a mechanism is illustrated. Each step in the figure, the usual
way of drawing arrow pushing diagrams, corresponds to two steps in AltCyc.

Taken together, AltCyc uses O((n2)k) = O(n2k) recursive calls, where n =
|V1| = |V2|. Exploiting the fact that only edges to the special vertex for a charge
can be negative, this reduces to O(nk+l), where l is the number of components
in the transition state candidate, because it suffices to examine only the O(1)
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(e) Resulting molecule.

Fig. 3. An example AAM for Stork’s cyclisation of farnesyl acetic acid to ambreinolide
[33]. Note that only the single hydrogen in the transition state is shown, and while it is
assumed in the model that it is the same hydrogen leaving and later entering, in actual
chemistry it is a different hydrogen.

edges incident to P.head or ψ(P.head) depending on whether we are making a
negative or positive step in the algorithm. In addition, AltCyc incurs the cost
of the graph isomorphism check for completing the mapping.

In practice, however, the runtime is much lower since vertex labels must
match. The runtime nevertheless still depends heavily on k, and thus the length
of the optimal mapping of the instance. However, as discussed k can be assumed
to be small for the case of inferring chemical transformation rules. Due to depth
first strategy, the memory consumption of AltCyc is O(n).

3.2 ILP2 — An Integer Linear Program

The AAM problem can also be phrased as an ILP. We use binary variables
mip to encode the mapping ψ as mip = 1 iff ψ(i) = p and mip = 0 for all
other combinations of i and p. To enforce that ψ is vertex label preserving we
set mip = 0 for l1(i) �= l2(p), and to ensure ψ is a bijection we formulate the
following linear constraints.
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∀i ∈ V1 :
∑

p∈V2

mip = 1 and ∀p ∈ V2 :
∑

i∈V1

mip = 1

The most obvious way to proceed would be to keep track of the mapping between
the edge sets using either binary variables describing whether a bond is mapped
or not as in [15], or integer variables that denote the weight change if a bond
is mapped, and zero for unmapped bonds. For such variables we would need
O(|V |4) constraints, however. Empirically we found that ILP-solvers quickly run
out of memory and become very slow for such a model.

Though there already exist ILP formulations of similar problems with only
O(|V |2) constraints [22], obtained by exploiting the sparseness of molecule
graphs, we propose a new ILP formulation based on the Kaufmann and Broeckx
linearization of the quadratic assignment problem [8], which also needs only
O(|V |2) constraints.

We introduce integer variables c+ip ∈ N0 and c−
ip ∈ N0 that model the positive

and negative weight changes respectively of all edges incident to vertex i ∈ V1 if
ψ(i) = p. Both c+ip and c−

ip are zero for all other combinations of i and p. Making
use of the fact that weight changes are balanced, i.e.

∑
e∈δ(v) wψ(e) = 0 for all

v ∈ Vψ, we can use the following constraint for all i ∈ V1:
∑

p∈V2

c+ip =
∑

p∈V2

c−
ip

We also substitute them in the objective function:

obj =
∑

(i,p)∈V1×V2

c+ip +
∑

(i,p)∈V1×V2

c−
ip

Since the change variables are included in the objective function they will implic-
itly be constrained from above. In order to constrain them from below we use
the following constraints for all (i, p) ∈ V1 × V2:

c+ip ≥ (mip − 1) · M +
∑

(j,q)∈V1×V2

mjq · max{0, w2({p, q}) − w1({i, j})}

c−
ip ≥ (mip − 1) · M +

∑

(j,q)∈V1×V2

mjq · max{0, w1({i, j}) − w2({p, q})}

where M is a suitably large constant. It suffices to set M to the largest weighted
degree to void the constraint when mip = 0. The first term voids the constraints
if mip �= 1. The sums correspond to the sum of all positive (negative) changes of
edges incident to i and p respectively, if indeed these edges are mapped to each
other.

Unlike AltCyc we have little control over intermediate steps in the reaction,
but using ILP2 we have much freedom to modify the cost model used. Assuming
we have an integer linear programming solver available ILP2 takes very little
time to implement.
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3.3 Enumeration of All Optimal Atom-Atom Mappings

So far we have focused on the problem of finding a single AAM. The solution of
the optimization problem is in general not unique, however. A particular prob-
lem in this context are symmetries of the educt or product molecules, because
this may bloat the number of AAMs. We are therefore interested only in non-
equivalent AAMs.

Definition 4 (Equivalent Atom-Atom Mappings). For a given AAM
define Gψ = (Vψ, Eψ, lψ) with vertex set Vψ = V1, edge set Eψ = E1 ∪ ψ−1(E2),
and label function lψ(x) = (l1(x), l2(ψ(x))). If x /∈ dom(li) then li(x) = εi, where
εi is some label not in range(li), denoting a non-edge. We say two atom-atom
mappings, ψ and ϕ are equivalent if the graphs Gψ and Gϕ are isomorphic.

Now, let us consider whether a transition state candidate of an atom-atom
mapping uniquely defines the full mapping.

Definition 5 (Completion of Partial Mapping). Given a partial AAM
ψ′ : A ⊂ V1 → B ⊂ V2, a completion of ψ′ is an AAM such that ψ|A = ψ′

and outside A, ψ preserves all properties of G1 and G2.

Note that such a completion need not exist for a given partial AAM.

Proposition 2 (Partial Mapping). If ψ and ϕ are two completions of a par-
tial AAM ψ′, ψ and ϕ are equivalent.

Proof. Consider the two AAMs ψ and ϕ and their associated graphs Gψ and
Gϕ. By assumption, they are both completions of the same partial AAM
ψ′; therefore the two induced sub-graphs Gψ[dom(ψ′)] and Gϕ[dom(ψ′)] are
identical. Consider the subgraphs G′ := Gψ \ E(Gψ[dom(ψ′)]) and G′′ :=
Gϕ \ E(Gϕ[dom(ψ′)]) without edges in Gψ[dom(ψ′)]. G′ and G′′ both are iden-
tical to G1 \E(Gψ[dom(ψ′)]) if only considering the labels from l1 in each of Gψ

and Gϕ. As both ψ and ϕ preserve all properties of G1 and G2 outside dom(ψ′),
the labels from l2 are always identical to the labels from l1 outside dom(ψ′).

Thus Gψ and Gϕ are isomorphic and by definition ψ and ϕ are equivalent. ��
Proposition 2 can be applied in different ways. In AltCyc it shows we only

have to complete each candidate transition state once in order to enumerate
all mappings. In ILP2 it can be used to exclude solutions based on mapping
variables defining the transition states instead of all mapping variables.

4 Results

The RHEA [24] database (v. 50), which provides access to a large set of expert-
curated biochemical reactions, has been used to test our suggested AAM algo-
rithms, and to underline the necessity of graph transformation methods for net-
work completion. We exclude all reactions with unspecified repeating units and
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wildcards, resulting in a set of 19753 reactions involving a set, M , of 3786 non-
isomorphic molecular graphs. We performed a statistical analysis of RHEA, that
shows how often molecules are used in the reaction listed in the database, and
how many non-isomorphic isomers are stored in RHEA. Interestingly, terpene
chemistry [12] clearly dominates the high frequency isomers (see AppendixA).
Due to space limitations, we focus on a brief runtime analysis and network com-
pletion results. As AltCyc constructs solutions in a stepwise fashion, a chemical
mechanism explaining the bond changes as subsequent transformations is nat-
urally inferred. An example for a mechanistic inference of Stork’s cyclisation of
farnesyl acetic acid to ambreinolide [33] is given in Fig. 3.

Runtime. We compared AltCyc, ILP2, and a näıve ILP-implementation with
O(n4) constraints, ILP4, with regard to their ability of enumerating all non-
equivalent AAMs within a fixed runtime (see AppendixB). We found that ILP2
drastically outperforms the näıve ILP-implementation and also is systematically
more efficient than AltCyc. The latter has a (small) advantage for instances with
small transitions states. For both methods we see an exponential decline in ratio
of quickly solved instances as size of instances grow, this corresponds well with
the expected exponential runtime.

Network Completion. Databases of metabolic networks are by no means com-
plete because the enzymes catalyzing many of the reactions in particular in
the so-called secondary metabolism have remained unknown. Furthermore, for
almost one third of the known metabolic activities, no protein sequences are
known that could encode the corresponding enzyme. Network completion is an
important task to fill gaps i.e. missing reaction steps, in genome-scale metabolic
networks. Reaction perception, i.e. finding AAMs, is the only technique capable
of finding possible candidates for the missing reactions, where homology based
methods fail, due to lack of data.

Inferring all candidate 2-to-2 reactions addresses this issue by determining
for all disjoint pairs A,B of multisets A (one or two educt molecules, potentially
isomorphic) and multisets B (one or two product molecules, also potentially
isomorphic), whether there is a chemically plausible reaction transforming A to
B. By Proposition 1, any reaction satisfying mass and charge balance has a cyclic
transition state.

Let R2,2 denote the set of all sets {A,B} such that A and B are disjoint
multi-subsets of the set of molecules M , both of size at most 2 with A and B
containing the same vertex labels, charges, etc. The set of test instances R2,2 of
2-to-2 reactions that satisfy mass balance can be extracted from a database with
molecule set M in time O(|M |2 log |M | + |R2,2|) using Algorithm 5 (see Appen-
dixC). We obtain a set of |R2,2| = 114, 429, 849 balanced reaction candidates
with at most two molecules on either side of the reaction.

It is not feasible to test 100 million candidates for chemical feasibility in an
exact manner. Using the length of the transition state as a filter, however, will
remove implausible candidates as well as multi-step mechanisms. The length of
the transition state can be bounded in both AltCyc as well as ILP2. We used
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AltCyc because of its performance advantage with small transition states. In a
random sample of 10.000 instances drawn from R2,2 we found 34, 59, and 167
reactions with transition states of length 4, 6, and 8, respectively. Extrapolating
from this sample we have to expect approximately three million candidate reac-
tions with AAMs that will need to be examined in more detail. Clearly this num-
ber is too large for a biochemical network. Further pruning of the candidate list
will thus require additional information, e.g., on the energetics of the reactions
and on these reaction mechanisms plausibly catalyzed by enzymes. However, it
underlines the need for graph transformation techniques for computing realistic
candidate sets.

5 Conclusion

Graph transformation systems have great potential as a model of chemistry in
particular in the context of large reaction networks. Their practical usefulness,
however, stands and falls with the ability to produce collections of transformation
rules that closely reflect chemical reality. We have shown here that the extrac-
tion of AAMs from educt/product pairs is a necessary first step because the
restriction of the graph transformation to the reaction center, which is uniquely
determined by the AAM, provides a minimal description of the corresponding
reaction rule. We have shown formally that it is not sufficient to solve a general
graph editing problem. Instead, the cyclic nature of the transition states must
be taken into account as additional constraints. With AltCyc and ILP2 we have
introduced two complementary approaches to solve this chemically constrained
maximum subgraph problem. The constructive AltCyc approach performs better
on short cycle instances. If more complex transition states need to be consid-
ered or if flexibility in the cost function is required ILP2 becomes the method of
choice.

Advances in high-throughput sequencing technologies drives the reconstruc-
tion of organism-specific large-scale metabolic networks from genomic sequence
information. Reaction perception, as illustrated here on the Rhea database,
is currently the only computational technique to suggest missing reactions in
the reconstructed networks once the methods of comparative genomics to infer
enzyme activities are exhausted. We have demonstrated here that efficient com-
putation of AAMs serves as first effective step. Much remains to be done, how-
ever. Most importantly, the AAM determines only a minimal reaction rule con-
fined to the reaction center. The feasibility of chemical reactions, however, also
depends on additional context in the vicinity of the reaction center. While graph
grammar systems readily accommodate non-trivial context [3,5], we have yet to
develop methods to infer the necessary contexts from the huge body of chemi-
cal reaction knowledge. Once this is solved, such more elaborate rules will form
a highly efficient filter for the candidate AAMs. In this context the stepwise
construction of the transition state in AltCyc holds further promise: context
information could be used efficiently already in the AAM construction step to
prune its search tree, simultaneously increase the chemical realism of the solu-
tions and its computational efficiency.
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A Statistical Analysis of Rhea

Of the M = 3786 non-isomorphic molecular graphs in RHEA, 2204 are identified
uniquely by their sum formula. While 2030 of the molecules appear only in a
minimum of 4 reactions, some compounds take part in a very large fraction of
all reactions in RHEA, e.g., H+ participates in 11,1147 reactions, some of which
are different descriptions of similar reactions where only the direction of the
reaction differs, 5055 of these are truly distinct, adenosine di-, and tri-phosphate
(and it derivatives), water, and dioxide each participate in more than 2000 reac-
tions (depicted as red dots in Fig. 4 (right)). The maximum number of isomers
(i.e., compounds that have the same sum formula but a non-isomorphic graph
representation) is 63. The corresponding sum formula is C15H24. Interestingly,
most of the large sets of isomers in RHEA are terpenes, condensates of identical
five carbon atom building blocks. The terpenes form a combinatorial class of
polycyclic ring-systems via complex sequences of cyclisation and isomerization
reactions. Figure 4 (left) summarizes the results (terpenes marked with red).
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Fig. 4. Distribution of isomers and frequency of participation in reactions in Rhea.
Left plot shows a few sets of isomers are very large, while most compounds in Rhea are
unique up to sum formula of those compounds. Right plot shows the frequency with
which a compound participates in reactions. (Color figure online)

B Analysis of Runtime

As we are mainly interested in single step reactions, we restricted our algorithms
to only look for connected, vertex-disjoint transition states during the compar-
ison. Figure 5 shows the fraction of instances where AltCyc, ILP2 and a näıve
ILP-implementation with O(n4) constraints, ILP4, are able to enumerate all
non-equivalent atom-atom mappings for different instance size categories as well
as absolute number of instances solved divided by solution size.
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Only very few instances that are not completely solved within the first 60 s
are solved within reasonable time (one hour). So there seems to be a sharp
divide between easy and hard instances. From the plot in Fig. 5 (left) of the
fraction of instances solved fast we observe an exponential decline in ratio of
solved instances. This corresponds well with the expected exponential runtime
of the algorithms.
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Fig. 5. Fraction and number of instances where all optimal atom-atom maps are found
in 60 s (user time) by instance size and optimal solution cost for AltCyc (magenta),
ILP2 (cyan) and ILP4 (gray). (Color figure online)

As we restricted the solution set certain instances are proven infeasible by
ILP2, while AltCyc will continue searching for solutions until the parameter k,
the number of weight changes, gets arbitrarily high. We chose to deem instances
where AltCyc found no solutions for k ≤ 10 infeasible and terminate the search.
These two classes of solutions are marked in the rightmost column in Fig. 5.
Note that the performance of AltCyc on the infeasible class of instances depends
heavily on the somewhat arbitrary choice of maximum k.

Both ILP models are implemented using CPLEX, an efficient state of the art
MIP-solver. AltCyc and ILP2 has been tested on a total of 4295 Rhea instances,
while ILP4 has only been tested on a subset of these of size 250.

C Algorithmic Details

For completeness we include pseudo-code for the sub-procedures used in the
paper.

Pseudo-code for WeightAlongPath: In AltCyc∗ (see Algorithm 2) we need
to find all previous changes to an edge {i, j} currently under examination,
wP ({i, j}).
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Algorithm 3. WeightAlongPath({i, j}, P )
wP ← 0
σ ← 1
for i′ from 0 to |P | − 2 do

j′ ← i′ + 1
if {i′, j′} = {i, j} then

wP ← wP + σ

σ ← −1 · σ

In Algorithm 3 we show how to do this in time O(|P |), where |P | ∈ O(k).
It is possible to find wP (e) in constant time, but this would require much more
complicated data structures or making changes to the graphs we work on and
as k is in practice very small, this method is preferred.

To find wP (e) for a list of paths, add wP (e) for all paths in the list.
Pseudo-code for Complete: When a transition state candidate ψ′ is found we
need to ensure it can be extended into a complete atom-atom mapping. This
can be done as described in Algorithm 4. Note that the two graphs G1 and G2

are assumed implicitly known. The algorithm works both for a single path, P ,
or where P represents a list of paths.

The only non-trivial detail in Algorithm4 is that it is not correct to remove
all edges in the induced subgraph on the domain of ψ′, the weight change needs
to be sufficient, and there may be unchanged cords to consider.

Algorithm 4. Complete(ψ′, P )
for e ∈ P do{Here P is considered a set of edges}

wP ← WeightAlongPath:(e, P )
if wP = w2(ψ(e)) − w1(e) then

Remove e from G1 and ψ(e) from G2

else
fail

for (i, p) ∈ V1 × V2 where ψ′(i) = p do
Relabel i and p to have identical, otherwise unique labels

return an isomorphism from G1 to G2

Finding 2-to-2 Candidates in O(n2 log n) Comparisons. In order to gener-
ate all O(n4) candidate reactions with no more than two molecules in the educts
or products we use Algorithm 5. A set of molecules, M , is given, as well as a
method to obtain the distribution of atoms and charges of the molecules h, in
practice some implementation of sparse vectors. We assume we keep pointers to
the original molecules that resulted in each distribution, and we get these with
the function mol.

The algorithm is dominated by one of two things, either the sorting of the
length n2 array H (where n = |M |), or the time to output candidates k ∈ O(n4),
the resulting runtime is then O(n2 log n + k).
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Algorithm 5. 2to2(M)
H ← h(M) ∪ {0}
generate H = {h1 + h2 | (h1, h2) ∈ H × H ∧ h1 ≤ h2} as an array
Sort(H)
for i ← 1 to len(H) − 1 do

j ← i + 1
while j ≤ len(H) ∧ H[i] = H[j] do

output (mol(H[i]), mol(H[j]))
j ← j + 1
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Abstract. As part of a student’s project, computer science student
David Priemer and former graphics design student Daniel Goffin started
to develop a nice puzzle based computer game called Perlinoid. In his
Bachelor thesis, David developed a level generator for Perlinoid. The
challenge was to generate interesting puzzles with a reasonably small
number of elements and reasonably complex series of steps required for
the solution. Being educated in graph transformations, David modeled
the possible puzzles as graphs and possible user steps as graph transfor-
mations. First a random level is generated, for which the level generator
computes a reachabilty graph by applying all graph transformations in
all possible combinations on all possible matches. Next, the reachabil-
ity graph is analyzed for distances between start graph and end graph,
number of possible choices, number of different solution paths, etc. and a
number of metrics are applied. Finally, the result gets evaluated. In case
the level is considered insufficient, it will be discarded and the process
starts from the beginning. This is done within the Perlinoid application
on demand at user side. To minimize the footprint of the level generator,
a new dedicated graph transformation engine has been built and incor-
porated into the Perlinoid game. This paper reports about the concepts
and experiences with this approach.

Keywords: Graph transformations · Reachability graphs · Fujaba ·
SDM-Lib

1 Introduction

Generating pseudo-random content has always been an important part of the
video game industry but becomes even more important with ever growing worlds
and multiplayer games. Automating the process of content generation does not
only resonate well with the players who constantly long for more challenges,
but takes a lot of work from developers. Some of the biggest challenges include
validation, classification and quality assurance of such generated content as well
as keeping the generator flexible enough to adjust for changes and additions to
the game mechanics that occur during development.
c© Springer International Publishing Switzerland 2016
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Perlinoid is a puzzle game by computer science student David Priemer and
former graphics design student Daniel Goffin. Perlinoid is scheduled for release
in 2016. The finished game currently consists of 40 levels, amounting for two
hours of gameplay. Such a relatively short play time can be received with neg-
ative criticism by both players and press. This paper describes the attempt to
add automatically generated content to the game Perlinoid by means of graph
transformation. On top of the 40 basic levels there is a quick play mode where
on the fly generated levels are offered to the player.

The content generating system is based on a new graph transformation engine
that is easily adjustable to incorporate new game rules as well as to modify
existing rules. It is also used for verification and analysis of the generated content
with the help of reachability graphs a la Groove [Ren03].

The paper is structured as follows. Section 2 introduces the basic rules of
Perlinoid. Section 3 describes the steps and contained rewrite rules, which have
to be applied for generating a level. Section 4 briefly presents the graph transfor-
mation engine before Sect. 5 concludes the paper and gives an outlook on future
work.

2 Game Rules

Figure 1 shows a riddle of the game Perlinoid, the gameplay elements are named
according to the included notation.

In order to solve a level, the player has to navigate each character to one of
the exits. An exit, however, can only be used by a single character. This leads
to the difficulty of assigning each of the characters to the right exit.

Fig. 1. A complete level of Perlinoid (Color figure online)
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The levels consist of platforms, which are connected by obstacles. Characters
can cross obstacles to get from one platform to another, if certain conditions are
met.

Characters and obstacles are colored with one of the eight colors red, blue,
yellow, purple, orange, green, black and white. Red, blue and yellow are described
as ‘primary colors’, purple, orange and green are referred to as ‘secondary colors’.
Each color can be described as a set of primary-colors, which is referred to as
‘sub-colors’.

Secondary colors consist of two primary colors. For example, the sub-colors
of purple are red and blue. Primary colors only contain themselves in their sub-
colors, the sub-colors of white are empty and black contains all primary-colors
in its sub-colors.

There are two types of obstacles: bridges and walls. A bridge can be crossed
by a character if all sub-colors of the bridge are contained in the sub-colors of
the character.

For example, a red bridge as shown in Fig. 2 can be crossed by a red character.
Purple characters can cross red bridges as well, since purple also contains red as
a sub-color. The red bridge, however, will reject a blue character for its lack of
red in its sub-colors. Figure 2 shows a small level in two different states. The red
and the purple character can move from the left to the right platform and back
again, while the blue character is not able to leave the platform by itself.

Fig. 2. Cross-Bridge-Rule (Color figure online)

Walls, as depicted in Fig. 4, act exactly the opposite of bridges. Characters
can only cross a wall if none of their sub-colors are contained in the sub-colors
of the wall. As seen in Fig. 3 this allows the blue character to cross the red wall,
while the red and purple characters will be rejected by it.

Fig. 3. Cross-Wall-Rule (Color figure online)
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Fig. 4. Combine-and-Split-Rule (Color figure online)

Two characters can be combined if they are colored in different primary
colors. The resulting character will have a secondary color with the two primary
colors as sub-colors. As seen in Fig. 4, the red and blue characters are combined
and replaced by a purple character. This action can be reversed at any time,
which is referred to as ‘splitting’. A purple character, for example, can be split
into a red and blue character.

3 Level Generation

The level generator is able to create a new level from multiple configurable
parameters. With these parameters it is possible to influence the number of
platforms, the maximal amount of obstacles and the difficulty of the level.

The generation process works in four phases. First, in the layout phase, a
number of platforms are placed on the game field and connected by abstract
obstacles. This generates the basic topology of our riddle. The second phase, the
content generation phase, replaces abstract obstacles by specific obstacles, i.e.
bridges or walls. In the third phase the characters and exits are placed. The last
phase analyzes the generated riddles and removes unattractive and easy ones.
All steps of the generation are done by a graph transformation engine.

The rewrite rules used in this paper are in a Fujaba story diagram notation
[FNTZ98]. This notation describes rewrite rules as object diagrams. In general,
a rewrite rule consists of a left-hand side, the pattern graph, application context
conditions and a right-hand side, the replacement graph. A rewrite rule in Fujaba
notation combines all of these elements in a single extended object diagram.
Matching nodes and links, colored black (e.g. the e2:Element in Fig. 5), and
delete nodes and links, annotated with �delete� and colored red (e.g. the
e1:Element and the link between e1 and e2 in Fig. 5) make up the left-hand
side. The application context conditions are a set of boolean conditions and
variable assignments, depicted next to the objects. All boolean conditions have
to be true to execute the graph transformation. The matching nodes and links,
colored black, and green creation nodes (annotated with �create�) and link
(e.g. the element e3 and the links between e2 and e3 in Fig. 5) describe the
right hand side.
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Fig. 5. Example rewrite rule (Color figure online)

3.1 Level Layout Generation

Due to restrictions on screen size, user perspective and art work, the basic level
layout is based on three rows of hexagonally connectable platforms with three or
four platforms per row, cf. Fig. 6. In the first step this hexagon grid is modeled
as the basic topology graph. Note that the left and right center nodes are linked
to the maximum amount of neighbors.

Fig. 6. Hexagonal layout host graph

Three graph transformation rules are applied on the basic topology graph in
order to place the desired amount of platforms and platform connections into the
basic topology. By applying the first rule, an initial platform is placed on a topology
node as shown in Fig. 7a. One of the topology nodes, e.g. the left center node is
matched and a new platform gets created and connected to the topology node.

(a) Add initial platform (b) Add further platforms

(c) Add further connections

Fig. 7. Rulegraphs for ‘Add platforms on game field’
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The second rule is applied until the desired number of platforms is reached.
As shown in Fig. 7b a node with a platform connected to another node without
a platform is matched and a new platform gets created and connected. This
results in a tree of platforms with a minimal number of connections.

To add more complexity by obtaining more connections, rule three is applied
a random number of times creating up to a full mesh of connections. As shown
in Fig. 7c two platforms on adjacent nodes get matched and connected.

3.2 Level Content Generation

When the underlying platform graph has been generated, precolored bridges
and/or walls get placed in the platform graph which is the new host graph for
this generation step. This is achieved by applying one of two transformation rules
in the platform graph. The transformation rule for inserting a bridge is shown
in Fig. 8a where platform p1 and platform p2 are matched as two connected
platforms and a newly created bridge is inserted between the platforms, replacing
the previous connection. The color set of the bridge is calculated by calling a
method which uses conditional probabilities to avoid excessive use of a certain
color. Figure 8b shows the transformation rule for inserting a wall, which works
correspondingly.

(a) Rulegraph insert bridge (b) Rulegraph insert wall

Fig. 8. Rulegraph for inserting bridges and walls

3.3 Level Reachability Graph

So far, the generation of the platform graphs is just based on some randomized
choices. However, we found out that the placement of characters and exits within
the platform graph requires some more care. The heuristic we have developed
starts by placing the desired characters on some randomly chosen platform. Then
we compute a reachability graph by applying character movement rules in all
possible ways. Each state of this reachability graph represents one achievable
character placement. Two states are connected if there is a character movement
rule that transforms one character placement into the other. Note that all move-
ment rules are reversible i.e. for each rule application there is a rule that does the
inverse transformation or that leads back to the previous character placement.
Thus, connections between game states are bi-directional and the reachability
graph contains no dead ends and from each state every other state is reachable.
Figure 12 shows two example structures of such reachability graphs.
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Later on, we search this reachability graph for a pair of game states with a
large distance to each other. A pair of such states is then chosen as start and as
end state, i.e. the characters are placed according to the start state and exits are
added according to the end state. The idea is that the player has to go through
the whole path of game states from the start to the end state in order to solve
the riddle.

(a) Rulegraph for ’Split’ (b) Rulegraph for ’Combine’

Fig. 9. Rewrite rules for splitting and combining characters (Color figure online)

Figure 9a shows the graph transformation rule for splitting a character
according to the game rule in Fig. 4. The matching condition of the rule says,
there has to be a character c1 on a platform p. If a match is found, the appli-
cation condition is validated. The condition c1.colors.size == 2 says, that the
matching character c1 is required to have a color set of exactly two primary col-
ors, e.g. blue and red for a purple character. If the application condition holds
true, the graph transformation is executed. Two new character objects c1a and
c1b will be created and linked to platform p. The first new character c1a gets the
first sub-color of the previously matched character c1, e.g. red. The second new
character c1b gets the second sub-color, e.g. blue. The transformation execution
is finished after deleting the old character c1.

Figure 9b shows the graph transformation rule for combining two characters
c1 and c2, each colored a different primary color, matching Fig. 4, this time
considering the arrow from left to right, labeled “Combine”. The first and second
application condition c1.colors.size == 1 and c2.colors.size == 1 ensure that
the matching characters are colored in a primary color. The third part of the
condition c1.colors - c2.colors != empty is a set operation. It says that all colors
of c1 excluding all colors of c2 should not result in the empty set. This ensures
that the characters are colored in different colors. For example, excluding the
colors from a red character, from the colors of another red character would result
in the empty set. Therefore they cannot be combined.

Figure 10a shows the graph transformation for the ‘Cross-Bridge’ rule shown
in Fig. 2. The application condition b1.colors - c1.colors == empty ensures that
the character’s colors contain all colors of the bridge.

Figure 10b shows the game rule for crossing a wall. It says that excluding the
colors of w1 from the colors of c1, needs to result in the colors of c1.
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(a) Rulegraph for ’Cross Bridge’ (b) Rulegraph for ’Cross Wall’

Fig. 10. Rewrite rules for crossing a bridge or a wall (Color figure online)

3.4 Characters and Exit Generation

In the next step a user defined set of characters is distributed in the level.
For each character we also create an exit. The goal of this process is finding
a character and exit distribution that makes best use of the given structure of
platforms and obstacles. To achieve this, at first all characters are placed on one
platform. After this, the reachability graph for the level is calculated. Inside of
this graph, two nodes with the largest possible distance need to be found. The
path between those two nodes can already be used as the solution path for the
level.

In most cases, however, this procedure will lead to a shorter solution depth
than expected. Figure 11 shows a generated level with a solution depth of zero,
despite the chosen pair of nodes having a distance of 4. The problem occurs,
because of the exits not being bound to specific colors. To avoid generating
levels with solution-shortcuts, a token for each state of the solution graph is

Fig. 11. Generated level with solution depth zero (Color figure online)



Using Graph Transformation for Puzzle Game 231

calculated, which stores information about the number of characters on each
platform. The nodes of the pair shown in Fig. 11 for example would both be
labeled with the token ‘1-0-1’, each number refering to the amount of characters
on one of the platforms.

To avoid solution-shortcuts, it is required to choose a solution-path, where
the token, which labels the solution-state, is not assigned to any other states in
the solution path.

3.5 Level Filter

The amount of levels that can possibly be constructed by platforms, obstacles,
characters and exits is huge, even if the boundaries are very limited. Not all of
the constructable levels are solvable, and most of them are not fun to play at
all. In order to provide players with enjoyable levels, the riddles have to fulfill
certain criteria. They should be challenging, while keeping the amount of used
gameplay elements as small as possible. Therefore, generated levels need to be
evaluated, in order to discard deficient riddles.

To evaluate the difficulty of a given level, information derived from the reach-
ability graph can be analyzed.

Fig. 12. Reachability graphs

The two reachability graphs in Fig. 12 represent the states of two con-
structable levels. Nodes marked with an ‘S’ contain the initial state, an ‘E’
marks the solution. An important indication for the difficulty of a level is the
distance between the start and the end state, which will be referred to as ‘solu-
tion depth’. For example, the graph on the left in Fig. 12 has a solution depth
of 5, the right graph has a depth of 4. However, the level represented by the
left graph is not considered the more difficult level. This is because most of its
states are trivial, since they are only connected to two or less other nodes. In
such states, the player does not have to make an actual decision, as he only can
apply one single rule to manipulate the current state of the game. Therefore, the
average number of neighbors for each node is another important aspect of eval-
uating the difficulty of a level. Last but not least, the evaluation is influenced by
the total number of nodes in the reachability graph. A higher amount of possible
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states in a riddle requires to remember and analyze more information, which the
developers consider to be the most challenging part of the game in general.

In generated levels it is possible, that some of the used platforms or obstacles
are irrelevant for solving the riddle. Figure 13a shows a simple riddle, that can
be solved in one step, by navigating the character c1 from platform p1 to p3.
This demonstrates, that the elements b1 and p2 can be ignored by the player,
which is considered a deficiency of the riddle. The level in Fig. 13b shows a more
complex example for unused elements. The shortest solution for it requires the
player to use all of its elements. However, the riddle alternatively can be solved
by ignoring the purple bridge b3 and simply moving all characters over the red
bridges. Therefore, finding unused elements for the riddles requires analyzing all
possible solutions, not only the fastest one.

Levels also need to be discarded in case of so-called ‘action-chain-repetitions’.
An ‘action-chain’ shall be defined as a specific application of a sequence of rules.
If the reachability graph of a level contains multiple similar action-chains in one
of its solution-paths, this is called ‘action-chain-repetition’. An example for this
can be found in Fig. 14, where the red character c3 has to combine with a blue
character and walk back over the bridge b1, to split up into red and blue again.
This sequence has to be repeated two times in order to solve the level.

(a) Unused elements state (b) Complex unused elements state

Fig. 13. Two examples for unused elements (Color figure online)

Fig. 14. Example for an action-chain-repetition (Color figure online)
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4 Graph Transformation Engine

Perlinoid was developed with the game engine Unity3D and written in C#. In
order to tightly integrate the generation of content into the game, the graph
transformation engine had to be written in C# as well.

Unfortunately, Fujaba [FNTZ98] and SDMLib [SDM14] as of now only sup-
port Java. Existing C# graph engines like GrGen [GK07] and GraphSynth
[Gra06] had licensing issues for usage in a commercially published product like
Perlinoid or were not suitable. However, after analyzing the alternatives the
developers of Perlinoid decided that developing a new graph rewriting system
would be a smaller amount of work, considering the special requirements for the
targeted system. The obstacle generation for example requires the use of graph-
rewrite rules that support creating a node with a random set of attributes, as
well as applying rules by a certain probability. Furthermore, when creating the
reachability graphs information about the applied rules have to be stored. This
information is used in the filters, for example when action-chain-repetitions are
identified.

Developing a new graph rewriting system was facilitated by tailoring it for
the Perlinoid game. We did not need to build e.g. code generation for the imple-
mentation of user defined graph models but it sufficed to deal with the Perlinoid
specific graph model. Similarly, our graph rewriting system does not need to
support general attribute conditions but Perlinoid requires only special condi-
tions on sets of colors. By building a special purpose graph rewriting system, it
was easy to package it with the rest of the Perlinoid game and to deliver it to
the end user such that the end user may generate new levels on demand within
the game.

Building a new graph rewriting system was also facilitated by following the
simple architecture proposed in [Gra]. [Gra] is a regular master course given
by Albert Zündorf. In the first lecture it covers the implementation of a generic
graph model. The second lecture covers the implementation of a model for graph
rewrite rules. Then there are two lectures for implementing graph pattern match-
ing. Each week there is an assignment to implement the covered functionality in
your own graph engine implementation. This needs about 6 h per lecture. Thus,
in about 24 h of development work you have a basic graph engine. Reachability
graphs need another two lectures as you need to implement graph certificate com-
putation for hashing the graphs and a graph isomorphism check. Thus, within
about 40 h you are done. Note, this does not include a graphical user interface,
but graphs and rules are created by normal setup code. Fortunately Perlinoid
only needs basic graph rewrite rules. Complex negative application conditions
or amalgamation concepts require more effort.

5 Conclusions and Future Work

Overall, modeling the Perlinoid game with graph transformation rules was very
simple and intuitive. In addition, the usage of graph transformation rules enabled
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the computation of reachability graphs for the analysis of the complexity of gen-
erated riddles. The reachability graphs are an ideal basis for the analysis of solu-
tion possibilities of a given game level. Different kinds of graph algorithms and
metrics like shortest paths, distances, cyclomatic numbers, etc. may be applied.
This idea is easily re-used in future puzzle based games. One just models game
states as graphs and possible user actions as graph transformation rules and then
a reachability graph may be computed and analyzed for interesting paths and
features. One may also add some heuristics for the exploration of the reachability
graph e.g. to employ an A* algorithm for discovering only high rated parts of the
reachability graph. In general, graph transformations provide an ideal basis for
such an analysis. Validation of generated content is done by solving the riddles.
The levels are then classified by calculating the solution depth and more on the
reachability graph. Quality assurance is done by the filters, that are running at
the very end of the generation process.

The level generator will be shipped together with the game. The implemen-
tation uses Unity3D and the first version will run on PCs and usual gaming
consoles (supported by Unity3D by default). As players will not wait very long,
level generation needs to be done in some seconds. This is feasible by restricting
us to limited level sizes.

The final game incorporates more colors, more mechanics and more rules.
Some of these have already been added to the graph-transformation engine,
while others still need to be added to the game and to be shipped with the level
generator. A bigger challenge remains, namely adjusting the generator for not
immediately obvious features, such as creating memorable levels. This is some-
thing that a human level designer does when manually creating levels, sometimes
adding useless parts from a game mechanics perspective. Even more challeng-
ing is the creation of combinations that are suggestive in a way that has the
player try the wrong things first, as these levels tend to be more rewarding once
solved. It remains to be proven that these combinations can be either generated
by graph transformation or at least identified in the filter based level selection
process. There are more features like these, e.g. creating levels with only one
color or creating levels with a pleasing combination of obstacles.

Acknowledgments. Perlinoid is (c) 2016 by David Priemer and Daniel Goffin. All
ingame assets were created by Daniel Goffin.
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Abstract. Reversible circuits provide the subject of a new promising
direction of circuit design. Reversible circuits are cascades of reversible
gates specifying bijective functions on Boolean vectors. As one encoun-
ters quite a variety of reversible gates in the literature, there are many
classes of reversible circuits. Two main problems are considered: (1) How
can circuits of one class be transformed into the ones of another class?
(2) How can circuits within one class be optimized with respect to certain
measures? While reversible circuits are studied on the functional level
and on the level of propositional calculus, there is also a visual represen-
tation used frequently for illustrative purposes in an informal way. In this
paper, the visual description of reversible circuits is formalized by means
of graph transformation. In particular, it is shown that the problems of
model transformation and optimization can be investigated within the
graph-transformational framework. This continues the authors’ earlier
work on the generation, evaluation and synthesis of reversible circuits as
graphs.

1 Introduction

Reversible circuits including quantum circuits provide the subject of a new
promising direction of circuit design. Reversible circuits are cascades of reversible
gates specifying bijective functions on Boolean vectors. As one encounters quite
a variety of reversible gates in the literature like Toffoli gates with positive and
negative control lines [1], Fredkin gates [2] and others, there are many classes
of reversible circuits. These underlying gate classes are also called gate libraries.
Two main problems are considered concerning model transformation, optimiza-
tion and verification. (1) How can circuits of one class be transformed into the
ones of another class? For example, Toffoli circuits with positive and negative
control lines can be transformed into Toffoli circuits with positive control lines
only. And the latter can be transformed into Toffoli circuits with two or less
control lines. (2) How can circuits within one class be optimized with respect
to certain measures? A typical measure is the number of gates in a circuit. If
the gate costs matter, one tries to find equivalent circuits of shorter length.
And there are other more sophisticated measures and criteria in which respects
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optimization is considered. A very interesting side effect of model transformation
and optimization is that the underlying procedures preserve functional equiva-
lence. Hence, circuits that can be transformed into each other are proved to be
equivalent at the same time.

While reversible circuits are studied on the functional level and on the level
of propositional calculus, there is also a visual representation used frequently
for illustrative purposes in an informal way. In this paper, the visual description
of reversible circuits is formalized by means of graph transformation. In partic-
ular, it is shown that the problems of model transformation and optimization
can be investigated within the graph transformational framework. This con-
tinues the authors’ earlier work on the generation, evaluation and synthesis of
reversible circuits as graphs [3]. Besides the topic of model transformation that
is not addressed in [3], there are further differences. We consider in this paper
arbitrary reversible gates rather than Toffoli gates only. Moreover, an algebraic
operation is introduced for the generation of reversible circuit graphs as an alter-
native to a rule-based definition. As far as we know, model transformation is not
yet studied systematically in the area of reversible circuits. But in recent years,
several rewrite rules have been proposed in the literature (see, e.g., [4–7]) estab-
lishing a spectrum of single transformations of reversible circuits. Confer Sect. 5
for examples.

Considering reversible circuits as graphs and processing on circuits as graph
transformation has several advantages: (1) The set-theoretical description is
advanced to a more descriptive and visible formulation that supports the intu-
ition. (2) The rewrite rules that one encounters in the literature as already
mentioned above provide a spectrum of examples of circuit transformations on
the graph level so that they can be studied in our framework in a uniform way.
(3) Our approach allows to apply the wealth of graph transformation methods
and results to the area of reversible circuits. In particular, the parallelization
theorems, the critical-pair analysis and the results on termination and conflu-
ence are expected to lead to new insights. (4) Encoded graph transformation
rules can be executed by graph transformation tools. These tools are optimized
to finding matches and replacing subgraphs.

The paper is organized as follows. After the graph-transformational prelimi-
naries in Sects. 2 and 3 presents reversible functions, gates, and circuits. Section 4
introduces graph representations of reversible circuits. Section 5 shows exemplar-
ily how reversible circuits can be transformed using graph transformation units.
In Sect. 6, circuit graph transformation units are discussed in detail and some
fundamental properties are shown. Section 7 contains a short conclusion.

2 Graph-Transformational Preliminaries

In this section, the basic notions and notations of graph transformation units
are recalled as far as needed (see, e.g., [8]).

A graph over a set Σ is a system G = (V,E, s, t, l) where V is a finite set of
nodes, E is a finite set of edges, s, t : E → V are mappings assigning a source
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s(e) and a target t(e) to every edge in E, and l : E → Σ is a mapping assigning
a label to every edge in E. An edge e with l(e) = x is an x-edge; if s(e) = t(e),
it is also called an x-loop or a loop. The components V , E, s, t, and l of G are
also denoted by VG, EG, sG, tG, and lG, respectively. The set of all graphs over
Σ is denoted by GΣ . We reserve a specific label ∗ which is omitted in drawings
of graphs.

For graphs G,H ∈ GΣ , G is a subgraph of H, denoted by G ⊆ H, if VG ⊆
VH , EG ⊆ EH , sG(e) = sH(e), tG(e) = tH(e), and lG(e) = lH(e), for each
e ∈ EG. A graph morphism g : G → H is a pair of mappings gV : VG → VH and
gE : EG → EH such that gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and
lH(gE(e)) = lG(e) for all e ∈ EG. If the mappings gV and gE are bijective, then
G and H are isomorphic, denoted by G ∼= H. For a graph morphism g : G → H,
the image g(G) ⊆ H of G in H is called a match of G in H.

A rule r = (L ⊇ K ⊆ R) consists of three graphs L,K,R ∈ GΣ such that K
is a subgraph of L and R. The components L, K, and R of r are called left-hand
side, gluing graph, and right-hand side, respectively.

The application of r = (L ⊇ K ⊆ R) to a graph G = (V,E, s, t, l) yields a
directly derived graph H and consists of the following three steps.

1. A match g(L) of L in G is chosen subject to the following conditions.
– dangling condition: v ∈ gV (VL) with sG(e) = v or tG(e) = v for some

e ∈ EG − gE(EL) implies v ∈ gV (VK).
– identification condition: gV (v) = gV (v′) for v, v′ ∈ VL implies v = v′ or

v, v′ ∈ VK as well as gE(e) = gE(e′) for e, e′ ∈ EL implies e = e′ or
e, e′ ∈ EK .

2. Now the nodes of gV (VL − VK) and the edges of gE(EL − EK) are removed
yielding the intermediate graph Z ⊆ G.

3. Let d : K → Z be the restriction of g to K and Z. Then H is constructed
as the disjoint union of Z and R − K where all edges e ∈ EZ + (ER − EK)
keep their labels and their sources and targets except for sR(e) = v ∈ VK or
tR(e) = v ∈ VK which is replaced by dV (v).

The application of a rule r to a graph G is denoted by G=⇒
r

H and called a
direct derivation. The sequential composition of direct derivations

d = G0 =⇒
r1

G1 =⇒
r2

· · · =⇒
rn

Gn (n ∈ N)

is called a derivation from G0 to Gn. If r1, . . . , rn ∈ P (for some set P of rules),
d can be denoted as G0

∗=⇒
P

Gn.

A graph class expression may be any syntactic entity X that specifies a class
SEM (X) ⊆ GΣ . A typical example is reduced(P ) for some set of rules P specify-
ing the graphs that are reduced with respect to P , i.e. SEM (reduced(P )) = {G |
there is no G⇒

r
H for r ∈ P}. Another example of a graph class expression

specific for reversible circuits is introduced in Sect. 5.
A control condition may be any syntactic entity that restricts the non-

determinism of the derivation process. A typical example is as long as possible.
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It requires that the rules are applied as long as possible. The fact that a deriva-
tion G

∗=⇒
P

H is permitted by a control condition C is denoted by G
∗=⇒

P,C
H.

A graph transformation unit is a system gtu = (I, P, C, T ), where I and T are
graph class expressions which specify initial and terminal graphs respectively. P
is a finite set of rules, and C is a control condition. The operational semantics of
gtu is the set of all derivations from initial to terminal graphs that apply rules
in P and satisfy the control condition, i.e.

DER(gtu) = {G
∗=⇒

P,C
H | (G,H) ∈ SEM (I) × SEM (T )}.

Restricting the operational semantics to the initial and terminal graphs yields
the input-output semantics, i.e. SEM(gtu) = {(G,H) | G

∗=⇒
P,C

H ∈ DER(gtu)}.

In explicit examples, the components I, P , C, and T of a graph transformation
unit are preceded by the keywords initial, rules, control, and terminal, respec-
tively.

3 Reversible Functions, Gates and Circuits

In this section, the basic notions and notations of reversible functions and their
specification by reversible gates and circuits are recalled (see, e.g., [1]).

Let B = {0, 1} be the set of truth values with the negations 0̄ = 1 and 1̄ = 0,
and let ID be a set of identifiers serving as a reservoir of Boolean variables. Let
B

X be the set of all mappings b : X → B for some X ⊆ ID where the elements
of BX are called Boolean assignments. Then a bijective Boolean (multi-output)
function f : BX → B

X is called reversible.
If X = [n] = {1, . . . , n} for some n ∈ N with [0] = ∅, then one may write

B
n instead of B[n] and the elements b ∈ B

n can be denoted as Boolean vectors
(b1, . . . , bn) = (b(1), . . . , b(n)).

Each reversible function f can be represented by its truth table (b, f(b))b∈BX .
As this table has 2n entries if X has n elements, one is interested in smaller
representations which are given by reversible gates and reversible circuits in
many cases.

For example, the function CkNOT : Bk+1 → B
k+1 for some k ∈ N is defined

by CkNOT (b1, . . . , bk+1) = (b1, . . . , bk, b1 · · · bk ⊕ bk+1) for all (b1, . . . , bk+1) ∈
B

k+1 where xy is the logical AND of x and y and x⊕ y the logical XOR. In
other words, CkNOT negates bk+1 provided that b1 = · · · = bk = 1. All other
values are kept invariant. Therefore, CkNOT is fully specified by its name and
the parameter k where the components 1, . . . , k are called control lines and the
component k+1 is called target line. Note that C0NOT is defined as the negation
NOT , and C1NOT and C2NOT are often denoted by CNOT and CCNOT .

Similarly, the function CkC lNOT : B
k+l+1 → B

k+l+1 for some k,
l ∈ N is defined by CkC lNOT (b1, . . . , bk+l+1) = (b1 . . . , bk+l, b1 · · ·
bkbk+1 · · · bk+l ⊕ bk+l+1) for all (b1, . . . , bk+l+1) ∈ B

k+l+1. This means that
bk+l+1 is negated if b1 = · · · = bk = 1 and bk+1 = · · · = bk+l = 0 and all
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other values are kept invariant. The components 1, . . . , k are called positive con-
trol lines and k + 1, . . . , k + l negative control lines.

Another example is the conditional swap CmSWAP : Bm+2 → B
m+2 for some

m ∈ N which swaps the values of the lines m + 1 and m + 2 if and only if the
control lines 1, . . . ,m carry the value 1, i.e. CmSWAP(1, . . . , 1, bm+1, bm+2) =
(1, . . . , 1, bm+2, bm+1) and CmSWAP(b) = b for all other b ∈ B

m+2.
Such simple functions with simple representations can be used to build more

complicated functions by renaming the variables and employing the obvious fact
that the sequential composition g ◦ f of reversible functions f and g over the
same set of variables is again a reversible function.

Let f : BU → B
U be a reversible function and X ⊆ ID . Then an injective

mapping r : U → X is called renaming which induces a reversible extension
fr : BX → B

X of f with b ∈ X by fr(b)(r(y)) = f(b ◦ r)(y) for all y ∈ U and
fr(b)(x) = b(x) for x ∈ X − r(U).

The pair (f, r) (and any representation of it) is called a reversible gate over X.
Usually, one tries to keep gates small by using small sets U and simple functions
on B

U like the examples above.
Let (fi : BUi → B

Ui , ri : Ui → X) for i = 1, . . . , n be reversible gates over X,
then the sequence rc = (f1, r1) · · · (fn, rn) is a reversible circuit over X which
specifies the reversible function frc = (fn)rn

◦ · · · ◦ (f1)r1 . This means that each
choice of a class RF of reversible functions and a set X of Boolean variables
induces a class Γ (RF ,X) = {(f : BU → B

U , r : U → X) | f ∈ RF , r injective}
of reversible gates and a class Γ (RF ,X)+ of reversible circuits over X. Two such
circuits are called (functionally) equivalent if they represent the same function.

Consider, for example, the set of reversible functions TOF 2 = {CkNOT | k ≤
2}. Then Γ (TOF 2,X) and Γ (TOF 2,X)+ are the classical classes of Toffoli gates
and Toffoli circuits respectively (cf. [1]). Similarly, TOF k = {CiNOT | i ≤ k}
for some k ∈ N and TOF k,l = {CiCjNOT | i ≤ k, j ≤ l} for some k, l ∈ N yield
the Toffoli gates and circuits with up to k control lines and up to k positive as
well as up to l negative control lines respectively.

It should be noted that a Toffoli gate of the form (CkNOT , r) is usually
represented by its target line t = r(k+1) ∈ X and by its set of control lines C =
{r(i) | i = 1, . . . , k} ⊆ X and is denoted by TG(t, C). Similarly, (CkClNOT , r)
may be represented by TG(t, C,C) with t = r(k+l+1), C = {r(i) | i = 1, . . . , k}
and C = {r(i) | i = k +1, . . . , k + l}. The Toffoli circuits over X based on TOF k

for k ≥ 2 and TOF k,l for k+l ≥ 2 are universal in the sense that every reversible
function on B

X can be specified by such a circuit [1].
Another typical example is the Fredkin gate of the form (CmSWAP , r) for

some m ∈ N and a renaming r : [m + 2] → X which is often represented by
FG(t1, t2, C) with t1 = r(m+1), t2 = r(m+2) and C = {r(i) | i = 1, . . . ,m}. Let
FREm = {CiSWAP | i ≤ m} for some m ∈ N. Then Γ (FREm ∪ TOF k,l,X)+

is the set of reversible circuits consisting of Fredkin gates with up to m control
lines and Toffoli gates with up to k positive and up to l negative control lines.
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4 Graph Representation of Reversible Circuits

In the literature on reversible circuits, one often finds visual representations of
gates and circuits for illustrative purposes. A typical example is depicted in
Fig. 1.

1 1

2 2

3 3

4 4

5 5

Fig. 1. The circuit TG(1, {5}, {3, 4})FG(3, 5, {4})FG(1, 2, ∅) TG(2, {1, 3})

The variables 1, . . . , 5 are drawn as horizontal lines, target lines are indicated
by ⊕, positive control lines by •, negative control lines by ◦ and the swapped
lines are denoted by ×. The vertical lines connect the components that belong
to a gate. These representations can be formalized as graphs which provide
the basic structures for the rule-based approach to circuit transformation and
optimization as considered in the next sections.

The circuit graphs are defined by sequential composition of gate graphs. For
this purpose, the gate graphs carry in- and out-loops. Moreover, a gate graph
extends the graph representation of a reversible function in the following way.

Let f : BU → B
U be a reversible function. Then the graph gr(f) of f is

depicted in Fig. 2(a) for U = [k] and in 2(b) for the special case of CCNOT .
For an arbitrary U, it has a node with an f -loop and incoming edges for each
variable x ∈ U labeled by x as well as outgoing edges for each variable labeled by
this variable. The sources of the incoming edges and the targets of the outgoing
edges are separate nodes. So one has a node and a loop corresponding to f and
two copies of the variables as nodes and two such copies as edges, i.e. gr(f) =
(U × {in, out} ∪ {f}, U × {in, out} ∪ {f}, sf , tf , lf ) with sf ((y, in)) = (y, in),
tf ((y, in)) = f = sf ((y, out)), tf ((y, out)) = (y, out), lf ((y, in)) = lf ((y, out)) =
y for all y ∈ U and sf (f) = tf (f) = lf (f) = f. In drawings, the node with the
f -loop is represented as a rectangle with an f inside.

Let (f, r : U → X) be a reversible gate. Then gr(f) can be extended to a
graph gr(f, r) by adding nodes for each variable X−r(U) and by adding in-loops
and out-loops for each variable to corresponding nodes, i.e. gr(f, r) = gr(f) +
(X − r(U),X × {in, out}, sf,r, tf,r, lf,r) with sf,r((x, in)) = sf,r((x, out)) = x =
tf,r((x, in)) = tf,r((x, out)) and lf,r((x, in)) = inx, lf,r((x, out)) = outx for x ∈
X−r(U) as well as sf,r((r(y), in)) = (y, in) = tf,r((r(y), in)), sf,r((r(y), out)) =
(y, out) = tf,r((r(y), out)) and lf,r((r(y), in)) = inr(y), lf,r((r(y), out)) = outr(y)

for all y ∈ U.
In Fig. 2(c), gr(CCNOT , r4) with the renaming r4(1) = 1, r4(2) = 3 and

r4(3) = 2 for X = [5] is depicted.
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(c) Graph of the gate
(CCNOT , r4) = TG(2, {1, 3})
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(d) The graph of the circuit circ

Fig. 2. Graph representations of functions, gates and circuits

Graphs with exactly one inx-loop and one outx-loop for each x ∈ X are called
in-out-graphs. They allow a simple sequential composition. Let G and H be two
such graphs, then the sequential composition G ◦ H is an in-out-graph obtained
by merging the node with the outx-loop in G with the corresponding node with
the inx-loop in H for each x ∈ X and by removing these loops. This composition
is obviously associative. Moreover, each set of in-out-graphs G induces a closure
G◦ under sequential composition (cf. [9, Chap. 2]), i.e. G◦ =

⋃
i≥1 Gi with G1 = G

and Gi+1 = Gi ◦ G1.
Therefore, reversible circuits can be represented by graphs, called circuit

graphs, that are sequential compositions of the graphs representing the gates
of the circuits. Let rc = rg1 · · · rgn be a reversible circuit with the reversible
gates rg i for i = 1, . . . , n. Then rc is represented by the in-out-graph gr(rc) =
gr(rg1) ◦ · · · ◦ gr(rgn). Obviously, a circuit graph gr(rc) specifies a reversible
functions fgr(rc) = frc. The class of circuit graphs over X is denoted by CGX .

In Fig. 2(d), the graph

gr(circ) = gr(C1C2NOT , r1)◦gr(C1SWAP , r2)◦gr(SWAP , r3)◦gr(CCNOT , r4)

is shown where circ = (C1C2NOT , r1)(C1SWAP , r2)(SWAP , r3)(CCNOT , r4)
using the renamings r1(1) = 5, r1(2) = 3, r1(3) = 4, r1(4) = 1, r2(1) = 4,
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r2(2) = 3, r2(3) = 5, r3(1) = 2, r3(2) = 1, and r4 as above. It should be
noted that this graph is the formal counterpart to the informal drawing in
Fig. 1 as TG(1, {5}, {3, 4}) = (C1C2NOT , r1), FG(3, 5, {4}) = (C1SWAP , r2),
FG(1, 2, ∅) = (SWAP , r3) and TG(2, {1, 3}) = (CCNOT , r4).

It is not difficult to see that the graph representation for reversible circuits
preserves the sequential composition. For example, as Toffoli circuits are sequen-
tial compositions of Toffoli gates, the graph representations of Toffoli circuits are
obtained as the sequential composition of the graphs representing Toffoli gates.
In general, the following observation holds.

Observation 1. 1. Let rc1 and rc2 be two reversible circuits over X. Then
gr(rc1rc2) = gr(rc1) ◦ gr(rc2).

2. Let RG be a set of reversible gates. Then gr(RG+) = gr(RG)◦ where gr(RC ) =
{gr(rc) | rc ∈ RC} for each set RC of reversible circuits.

While the closure of a set of reversible gates under sequential composition is
a free semigroup, the corresponding closure of gate graphs is not free in general.
Consider, for example, the gates (C1SWAP , r2) and (SWAP , r3). Both their
sequential orders induce the same part of the graph in Fig. 2(d) because they
use disjoint sets of lines. Hence, in general, the following observation holds.

Observation 2. Let (f, r : U → X) and (f ′, r′ : U ′ → X) be two reversible
gates with r(U) ∩ r′(U ′) = ∅. Then gr((f, r)(f ′, r′)) ∼= gr((f ′, r′)(f, r)).

5 Typical Examples of Reversible-Circuit Transformation

In the literature, one encounters quite a spectrum of transformations on reversible
circuits that serve various purposes [1,4–7]. In this section, we recall two typi-
cal examples. Toffoli circuits with positive and negative control lines are trans-
formed into Toffoli circuits without negative control lines. And Fredkin gates are
replaced by Toffoli circuits of length 3.

5.1 Getting Rid of Negative Control Lines and Swapping

Given a Toffoli circuit with a negative control line in one of its gates, then this
control line can be turned into a positive one without changing the semantics,
if one negates the respective line before and after the control takes place. More
formally, a Toffoli gate tg = TG(t, C,C) for t ∈ X and C ∪ C ⊆ X and the
Toffoli circuit tc(c) = TG(c, ∅) TG(t, C ∪ {c}, C − {c}) TG(c, ∅) for some c ∈ C
describe the same reversible function. Given a Toffoli circuit, the replacement
of such gates by the corresponding circuits may be iterated as long as one finds
negative control lines. One ends up with a Toffoli circuit that is equivalent to
the initial one, but has no longer any negative control lines. The transformation
process terminates because the number of negative control lines decreases in
each step by 1. As these negative control lines become positive ones, the circuits
in Γ (

⋃
k+l≤m TOF k,l,X)+ for each X ⊆ ID and m ∈ N are transformed into
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equivalent circuits in Γ (TOFm,X)+. The transformation yields Toffoli circuits
without negative control lines as normal forms of arbitrary Toffoli circuits. It is
also an optimization with respect to the number of negative control lines ending
up in local minima with 0 negative control lines.

Another example is the replacement of Fredkin gates by Toffoli circuits.
More formally, a Fredkin gate FG(t1, t2, C) is equivalent to the Toffoli cir-
cuit TG(t1, {t2})TG(t2, C∪{t1})TG(t1, {t2}). Therefore, every reversible circuit
with Fredkin gates can be transformed into one without Fredkin gates. If all other
gates are Toffoli gates, then one ends up with Toffoli circuits where the maximum
number of control lines is increased by 1 provided that there is a Fredkin gate
with the maximum number of control lines. Circuits in Γ (FREk ∪ TOF l,X)+

are transformed into equivalent circuits in Γ (TOFmax(k+1,l),X)+. The transfor-
mation can be seen as a local optimization with respect to the number of Fredkin
gates. The transformation can be used to get rid of swaps in particular.

5.2 A Graph-Transformational View

Both examples of reversible-circuit transformations can be adequately modeled
as graph-transformation units using rules that can be applied to the graph rep-
resentations of reversible circuits.

The first unit removes negative control lines and may be called remove-ncl
therefore. The class of initial graphs is gr(Γ (

⋃
k+l≤m TOF k,l,X)+) for some

X ⊆ ID and m ∈ N containing all graphs of Toffoli circuits with up to m control
lines. It is properly specified by TOF posneg(m,X) as graph class expression, i.e.
SEM (TOF posneg(m,X)) = gr(Γ (

⋃
k+l≤m TOF k,l,X)+). The class of terminal

graphs is gr(Γ (TOFm,X)+) specified by TOF (m,X).
To reflect the replacement of tg = TG(t, C,C) by tc(c) = TG(c, ∅)TG(t, C ∪

{c}, C − {c})TG(c, ∅) by a graph transformation rule, one may use the graph
representation of the gate and the circuit as left-hand side and right-hand side
respectively. One can ignore the lines outside C ∪ C ∪ {t} as they are kept
unchanged automatically if they do not belong to the matching of a rule. One
can also ignore the renaming as this is provided by a matching. Moreover, it is
not meaningful that the right-hand side adds in- and out-loops. Finally, the in-
and out-nodes can be used as gluing part of the rule. Altogether, the reasoning
leads to the following rule

r(k, l) = (gr(CkClNOT )− ⊇ inout(k + l + 1)− ⊆ rhs(k , l)) with

rhs(k , l) = (gr((NOT , r0)) ◦ gr((Ck+1Cl−1NOT , id)) ◦ gr((NOT , r0)))− and
r0 : [1] → [k + l + 1] given by r0(1) = k + 1

where the left-hand side is the graph of the function CkClNOT for some k, l ∈ N

with l > 0; the gluing graph is the discrete subgraph of the left-hand side consist-
ing of in- and out-nodes (i, in) and (i, out) for all i ∈ [k+l+1], and the right-hand
side is the graph of the circuit (NOT , r0)(Ck+1Cl−1NOT , id)(NOT , r0) without
in- and out-loops where the removal of these loops from an in-out-graph G is
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(b) Right-hand side

Fig. 3. The rule r(1, 2)

denoted by G−. The set of lines of this circuit is [k+l+1]. The middle gate keeps
the lines identical so that its reversible function is Ck+1Cl−1NOT . The first and
the third gate negate the line k + 1. Without loss of generality, the node from
which the ini-loop is removed can be seen as (i, in) and the node from which
the out i-loop is removed can be seen as (i, out) for all i ∈ [k + l + 1] so that the
gluing graph is a subgraph of the right-hand side. Figure 3 shows the respective
rule exemplarily. Altogether, we get the unit

remove-ncl(m,X)
initial: TOF posneg(m,X)
rules: r(k, l) for k + l ≤ m and l > 0
terminal: TOF (m,X)

It is easy to show that the replacement of a Toffoli gate tg = TG(t, C,C)
within a circuit tc = tc′tgtc′′ by the circuit tc(c) = TG(c, ∅)TG(t, C ∪ {c}, C −
{c})TG(c, ∅) yielding the circuit tc corresponds to the application of the rule
r(k, l) to gr(tc) in the case k = #C and l = #C. Using this notation, the
following observation holds.

Observation 3. 1. The rule r(k, l) is applicable to gr(tc) in such a way that
the derived graph is isomorphic to gr(tc).

2. Let gr(tc) =⇒
r(k,l)

H be an application of the rule r(k, l) to the graph gr(tc).

Then tc = tc′tgtc′′ for some Toffoli gate tg and Toffoli circuits tc′ and tc′′ and
H ∼= gr(tc′tc(c)tc′′).

The removal of Fredkin gates replacing them by Toffoli circuits as recalled
in Sect. 5.1 can be modeled by a graph transformation unit employing the same
ideas.

remove-fg(k, l,X)
initial: FRE (k,X) ∪ TOF (l,X)
rules: r′(m) = (gr(CmSWAP) ⊇ inout(m + 2)− ⊆

gr((CNOT , r)(Cm+1NOT , id)(CNOT , r))−)
for m ≤ k

terminal: TOF (max (k + 1, l),X)
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The left-hand side of each rule is the respective graph of the reversible func-
tion CmSWAP . The gluing graph is chosen as before. The right-hand side is
the graph of a Toffoli circuit after removing the in- and out-loops. The circuit
consists of two CNOT gates and one Cm+1NOT gate using the identity as one
renaming and r : [2] → [m + 2] defined by r(1) = m + 2 and r(2) = m + 1 as the
other renaming.

Analogously to Observation 3 one can show that the removal of a Fredkin
gate on the circuit level corresponds exactly to the application of the rule r′(m)
on the graph level.

In both examples, the terminal graphs are exactly those that are reduced
with respect to the respective rules. Therefore, one could replace the given spec-
ification of terminal graphs by the graph class expression reduced or use the
control condition as long as possible instead.

Finally, one may notice that it is also meaningful to reverse the rule r(k, l)
and r′(m) by exchanging left- and right-hand side. The reversed rules introduce
negative control lines and Fredkin gates respectively while the number of gates
decreases. This illustrates that the left-hand side of circuit graph transformation
rules are not necessarily graphs of reversible functions but can also be circuit
graphs (without in- and out-loops).

6 Circuit Graph Transformation Units

In the literature on reversible circuits, one encounters quite a spectrum of fur-
ther examples of circuit transformations that could be mirrored on the level of
graph transformation. This motivates to propose a general framework for the
transformation of circuit graphs. We tailor graph transformation units to serve
this purpose.

Definition 1. 1. Let X ⊆ ID . Then each set RF of reversible functions specifies
the set of graph representations of all circuits given as non-empty sequences
of the gates induced by RF and X. i.e. SEM (RF ) = gr(Γ (RF ,X )+).

2. Let rc and rc′ be reversible circuits over U ⊆ ID such that none of their graph
representations contains an isolated node. Then the rule induced by the pair
(rc, rc′) is given by

r(rc, rc′) = gr(rc)− ⊇ inout(U)− ⊆ gr(rc′)−.

3. Let X ⊆ ID . A circuit graph transformation unit over X is a graph trans-
formation unit cgtu(X) = (IRF ,R, C,TRF ) where IRF and TRF are sets of
reversible functions, R is a set of rules each induced by a pair of reversible
circuits, and C is a control condition.

A gate graph contains an isolated node if the corresponding variable is not
used by the function of the gate. Hence, a circuit graph contains an isolated node
if there is a variable that is not used by any of the gate functions. We forbid such
nodes because inout(U) is not a subgraph of both gr(rc) and gr(rc′) if there is
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a variable such that one of them has an isolated node and the other not. If the
variable node is isolated in both cases, then it has no effect.

The relational semantics of a circuit graph transformation unit is a binary
relation between the initial circuit graphs and the terminal circuit graphs and
as such a model transformation of initial models into terminal ones. Without
further assumption, the transformation may be partial, i.e. there are initial cir-
cuit graphs that cannot be derived into terminal circuit graphs, or there may
be infinite derivation sequences so that one can run into a bad track. Clearly,
the transformation may also be nondeterministic relating various terminal mod-
els to an initial model. But nondeterminism is not necessarily a handicap with
respect to reversible circuits because many transformation processes in this con-
text are nondeterministic or choose a particular result out of many possible
results. Nevertheless, in most cases one would like to assure further properties
like (1) consistency meaning that each circuit graph derives only circuit graphs,
(2) semantics preservation in the sense that the semantic function of each initial
circuit graph is equal to the semantic function of each derived terminal graph,
(3) termination, (4) total definedness, i.e. each initial circuit graph derives some
terminal one, or (5) optimality in the sense that resulting circuit graphs are opti-
mal - or at least locally optimal - with respect to some valuation function. In the
latter case, a circuit graph transformation unit can be seen as an optimization.
In the remainder of this section, these properties are formally defined and suf-
ficient conditions are provided that assure them. With respect to optimization,
we restrict the consideration to minimization in this paper.

Definition 2. Let cgtu(X) = (IRF ,R, C,TRF ) be a circuit graph transformation
unit. Then it is
1. consistent if, for each initial circuit graph G and each derivation G

∗=⇒
R,C

H, H

is a circuit graph,
2. semantics-preserving if, for each derivation G

∗=⇒
R,C

H ∈ DER(cgtu(X)),

fG = fH ,
3. terminating, if there is no infinite derivation starting with an initial circuit

graph using the rules in R,
4. totally defined if there is a derivation G

∗=⇒
R,C

H ∈ DER(cgtu(X)) for each

initial circuit graph,
5. locally minimizing with respect to a valuation function val : CGX → N if,

for each derivation G
∗=⇒

R,C
H ∈ DER(cgtu(X)), there is no derivation H

∗=⇒
R

I

such that G
∗=⇒

R,C
H

∗=⇒
R

I ∈ DER(cgtu(X)) and val(I) < val(H).

The following example shows that the induced rules do not preserve circuit
graphs necessarily.
Example 1. Consider the rule gr(NOT ) + gr(NOT ) ⊇ K ⊆ gr(f) for some
f : B2 → B

2 where K consists of the in- and out-nodes properly renamed.
This rule can be applied to gr(NOT ) ◦ gr(NOT ) ◦ gr(NOT ) matching the first
and third negations. Then the derived graph is
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It has a cycle so that it is not a circuit graph. This motivates the consistency

condition.

Lemma 1. Let cgtu(X) = (IRF ,R, C,TRF ) be a circuit graph transformation
unit. Then the following holds:

1. Let G =⇒
r(rc,rc′)

H be a direct derivation for a circuit graph G and a rule induced

by reversible circuits rc and rc′. Then H is a circuit graph if the following
consistency condition holds: For each in-node v and out-node v′ that are
connected by a path in gr(rc′), but not in gr(rc), there is no path from g(v′)
to g(v) in G for the nodes g(v) and g(v′) in the match of gr(rc) in G that are
the images of v and v′ respectively.

2. Let G =⇒
r(rc,rc′)

H be a direct derivation for some circuit graphs G and H. Let

frc = frc′ . Then fG = fH .

Proof (sketch). 1. By assumption, there is a graph morphism g : gr(rc) → G.
Without loss of generality, one can assume, that the rule is not a parallel rule of
two induced rules. Otherwise the proof can be done separately for the component
rules. Due to their constructions, the graphs gr(rc) and gr(rc′) share the in-
nodes (x, in) and the out-nodes (x, out) for x ∈ U (where U is the set of variables
of rc and rc′). Then gV must map the nodes (x, in) and (x, out) to nodes on the
same line y ∈ X defining a renaming r : U → X in this way. Using the consistency
condition, one can decompose G into G′◦gr(rc, r)◦G′′ where the components are
obtained as follows: (1) Let rc = (f1, r1) . . . (fk, rk). Then gr(rc, r) = gr((f1, r ◦
r1))◦· · ·◦gr((fk, r◦rk)). (2) G′ is an initial section of G that contains at least all
function nodes that precede g(gr(rc)) in G. (3) G′′ is an terminal section of G
containing the remainder parts. As the given direct derivation can be restricted
to gr(rc, r) yielding gr(rc′, r), one gets H = G′ ◦ gr(rc′, r) ◦ G′′ proving that H
is a circuit graph.

2. Due to the decomposition above, we get fG = fG′′ ◦ fgr(rc,r) ◦ fG′ =
fG′′ ◦ (frc)r ◦ fG′ = fG′′ ◦ (frc′)r ◦ fG′ = fG′′ ◦ fgr(rc′,r) ◦ fG′ = fH .

Note that the consistency condition holds always if one considers only rules
where the right-hand sides do not create new paths between in- and out-nodes
as it is the case with all rules in the previous section. Hence one may restrict
the consideration to such rules to avoid any trouble with consistency. But this
would exclude interesting cases. For example, we have studied sequentialization,
parallelization and shift operations on multi-target Toffoli circuits in [10]. As
these operations are defined by pairs of reversible circuits, they induce circuit
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transformation units. But the rules corresponding to parallelization and shift
create new paths sometimes. Actually, the example above is a parallelization of
two NOTs.

Theorem 1. Let cgtu(X) = (IRF , R,C,TRF ) be a circuit graph transforma-
tion unit where C requires in particular to use only direct derivations that fulfill
the consistency condition. Then the following holds.

1. cgtu(X) is consistent.
2. If each rule of R is induced by equivalent circuits rc and rc′, i.e. frc = frc′ ,

then cgtu(X) is semantics-preserving.

Proof. According to the assumption, only direct derivations are considered that
fulfill the consistency condition. Let G

∗=⇒
R,C

H be a derivation and G a circuit

graph. Then H is a circuit graph due to Lemma 1 if the derivation has length
1. By a simple induction on the length of derivations, H is always a circuit
graph so that cgtu(X) is consistent. If, in addition, the assumption of the second
part holds, then due to Lemma 1 each derivation step and, by induction, each
derivation preserve the semantic function so that fG = fH . This applies to the
derivations in the derivation semantics of cgtu(X) proving its correctness.

As in other cases, one can speak about optimization of reversible circuits
whenever a quantitative valuation is assumed. In the literature, one encounters
various examples like the number of gates, the nearest-neighbor costs [11,12],
the number of control lines and others. As all such valuations can be carried
over to circuit graphs, one can study optimization problems in the framework
of circuit graph transformation units. As mentioned before, we concentrate on
minimization. The basic idea (which is often used in many contexts) is to find a
valuation that decreases under derivation. Such valuations yield also termination
and total definedness.

Theorem 2. Let cgtu(X) = (IRF , R,C,TRF ) be a circuit graph transforma-
tion unit where the control condition includes the consistency condition for all
rule applications. Let val : CGX → N be a valuation function subject to the fol-
lowing decreasing property : If G=⇒

r
H for some r ∈ R and G,H ∈ CGX , then

val(G) > val(H). Then the following holds.

1. cgtu(X) is terminating.
2. cgtu(X) is totally defined and locally minimizing provided that reduced cir-

cuit graphs are terminal.

Proof. 1. As the values along a derivation decrease monotonicly, every derivation
must end up in a reduced circuit graph.

2. Deriving an initial circuit graph as long as possible yields a reduced circuit
graph that is also terminal by assumption. Hence, the unit is totally defined.
At the same time, the reduced circuit graphs are locally minimal because
they cannot lead to a better value by further derivation steps.

Finally, we want to mention, that the examples in Sect. 5 satisfy the condi-
tions in the theorems.
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7 Conclusion

In this paper, we have continued the development of a graph-transformational
framework for the modeling, processing and analysis of reversible circuits with
the emphasis on model transformation and optimization. In particular, we have
introduced a notion of circuit graph transformation units to transform initial
into terminal circuit graphs by means of rules that are induced by pairs of
circuits. This concept covers many examples in the literature, and the very first
results on consistency, semantics preservation, termination and optimization look
promising enough to continue the study including the following topics:

1. The circuit graph transformation rules may be generalized and made more
flexible in such a way that the underlying set of variables is not kept invariant,
but may allow to remove or add variables.

2. The sufficient conditions to assure termination, optimization and equivalence
should be strengthened to cover more cases.

3. One very important, but hard problem for reversible circuits is to check their
equivalence. Hence special cases with efficient equivalence tests are of interest.
Here Theorem 1 can help. If a circuit graph transformation unit is shown
to be semantics-preserving, then two circuits are equivalent if they can be
transformed into each other. This observation should be worked out in the
future.

4. The nodes representing reversible functions together with their incoming and
outgoing edges can be considered as hyperedges. Therefore, circuit graph
transformation units are hyperedge replacement systems whenever the left-
hand sides of rules consist of single graphs of functions (as in the two main
examples in Sect. 5). In such cases, the well-developed theory of hyperedge
replacement applies (see, e.g., [13]) – a fact to be studied in more detail.

5. More case studies can shed more light on the significance of the approach.
A good candidate may be a graph-transformational counterpart of a model
transformation of so-called multi-target Toffoli circuits into canonical ones
that we investigated recently on the set-theoretical level of description [10].
The transformation by shift rules optimizes circuits with respect to the wait-
ing degree. The rules can be carried over as induced rules, but the waiting
degree depends on the sequential order of gates so that a new optimization
criterion is needed.

6. The graph-transformational modeling of reversible circuits offers the perspec-
tive to employ graph transformation tools. This would allow to get more
insight into large circuits where the intuition fails.
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